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Abstract

In this Thesis we develop mathematical models to analyze two proposed
causative mechanisms for the ventricular expansion observed in hydrocephalus:
cerebrospinal fluid pulsations and small transmantle pressure gradients.

To begin, we describe a single compartment model and show that such simple
one-dimensional models cannot represent the complex dynamics of the brain.
Hence, all subsequent models of this Thesis are spatio-temporal.

Next, we develop a poroelastic model to analyze the fluid-solid interactions
caused by the pulsations. Periodic boundary conditions are applied and the
system is solved analytically for the tissue displacement, pore pressure, and
fluid filtration. The model demonstrates that fluid oscillates across the brain
boundaries. We develop a pore flow model to determine the shear induced
on a cell by this fluid flow, and a comparison with data indicates that these
shear forces are negligible. Thus, only the material stresses remain as a possible
mechanism for tissue damage and ventricular expansion.

In order to analyze the material stresses caused by the pulsations, we develop
a fractional order viscoelastic model based on the linear Zener model. Boundary
conditions appropriate for infants and adults are applied and the tissue displace-
ment and stresses are solved analytically. A comparison of the tissue stresses to
tension data indicates that these stresses are insufficient to cause tissue damage
and thus ventricular expansion.

Using age-dependent data, we then determine the fractional Zener model
parameter values for infant and adult cerebra. The predictions for displacement
and stresses are recomputed and the infant displacement is found to be unphys-
ical. We propose a new infant boundary condition which reduces the tissue
displacement to a physically reasonable value. The model stresses, however, are
unchanged and thus the pulsation-induced stresses remain insufficient to cause
tissue damage and ventricular expansion.

Lastly, we develop a fractional hyper-viscoelastic model, based on the Kelvin-
Voigt model, to obtain large deformation predictions. Using boundary condi-
tions and parameter values for infants, we determine the finite deformation
caused by a small pressure gradient by summing the small strain deformation
resulting from pressure gradient increments. This iterative technique predicts
that pediatric hydrocephalus may be caused by the long-term existence of small
transmantle pressure gradients.

We conclude the Thesis with a discussion of the results and their implications
for hydrocephalus research as well as a discussion of future endeavors.
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Chapter 1

Introduction

In recent years, the biomechanics of brain tissue has been the subject of much
interest in the literature. Mathematical models capable of correctly predicting
the brain’s response to mechanical stresses induced by surgical procedures, trau-
matic injuries, or conditions such as hydrocephalus, aid in the design of better
diagnoses, treatments, and protocols. In this Thesis, we develop mathematical
models to analyze medical theories for the pathogenesis of hydrocephalus.

Hydrocephalus is a condition that arises due to a perturbation in the bal-
anced dynamics and interaction of cerebrospinal fluid (CSF), blood, and brain
parenchyma. The condition is characterized by enlarged ventricles and com-
pressed white and gray matter, and often has an associated increase in mean
intracranial pressure and/or CSF pulse amplitude. Other associated phenom-
ena of hydrocephalus include the presence of edema (fluid accumulation), and
damage to the tissue near the ventricles. Although the earliest known instances
of hydrocephalus date back to the time of Hippocrates, the pathophysiology of
hydrocephalus is still poorly understood, and is the subject of active debate in
the literature.

Brain tumours, infections, and traumas can all lead to the development of
hydrocephalus. When hydrocephalus develops from a known cause it is usu-
ally called secondary hydrocephalus, since it develops after a primary injury.
Hydrocephalus can also develop from unknown causes, and it is this type that
we shall focus on in this Thesis. It has been estimated that out of every 1000
live births, 1 to 2 babies are born with hydrocephalus, making it as common a
congenital condition as Down syndrome; also, an estimated 375 000 older Amer-
icans are currently believed to be suffering from normal pressure hydrocephalus,
with many of these cases being undiagnosed or misdiagnosed [2].

Traditionally, hydrocephalus has been classified into two distinct classes:
the first is non-communicating hydrocephalus, where the circulation of CSF is
somehow impeded (by a tumour occluding an aqueduct, for example), and the
second is communicating hydrocephalus, where the CSF circulates freely, but
absorption is compromised (due to infections such as meningitis, for example).
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A special, and quite puzzling, case of great clinical interest in communicating
hydrocephalus is that of normal pressure hydrocephalus, where the ventricles
are enlarged with accumulated CSF, but the intracranial pressure is within the
normal range.

In non-communicating hydrocephalus, a large pressure gradient forms across
the blockage and thus provides an underlying mechanism responsible for ven-
tricular expansion and tissue compression. In communicating hydrocephalus,
however, the free circulation of CSF implies that no significant pressure gradi-
ent can exist, and indeed this has been verified experimentally. In this Thesis,
we focus on theories for the pathogenesis of communicating hydrocephalus and
thus, for brevity, the term hydrocephalus is used to mean communicating hy-
drocephalus except where otherwise noted.

We will analyze two of the current theories for ventriculomegaly in hydro-
cephalus. The first theory claims that the pulsations of the cerebrospinal fluid
damage the tissue near the ventricles, causing the ventricles to expand and
the parenchyma to compress. We refer to this theory as the pulsation-damage
hypothesis of hydrocephalus. Using both poroelastic and viscoelastic mathe-
matical models, we will show that the CSF pulsations of a hydrocephalic brain
are incapable of causing damage to healthy brain tissue, and thus, the basis on
which the pulsation-damage hypothesis rests, is unfounded.

The second theory for ventricular expansion presumes that the brain tissue’s
ability to absorb fluid is abnormally elevated, creating an intramantle pressure
gradient, with high fluid pressure outside the tissue and low fluid pressure inside
the tissue. In addition to this, a transmantle pressure gradient must exist with a
magnitude smaller than the sensitivity of experimental sensors. These pressure
gradients, in combination with a reduced Young’s modulus due to tissue degra-
dation, are theorized to be the mechanisms underlying ventricular expansion in
hydrocephalus. We call this theory the absorption-degradation hypothesis of
hydrocephalus. Using a hyper-viscoelastic model, we will show that in infant
hydrocephalus, where the value of the steady-state elastic modulus is reduced
compared to the adult value, a small transmantle pressure gradient is sufficient
to cause ventricular expansion. This suggests that the absorption-degradation
hypothesis of ventricular expansion is plausible and worthy of further investiga-
tion.

In the process of analyzing these two medical hypotheses, we will also at-
tempt to answer some of the questions posed by Bergsneider, Egnor, and John-
ston, et al. in their paper entitled What we don’t (but should) know about
Hydrocephalus [10]. Specifically, we attempt to answer the following questions:

1. “Why do the ventricles dilate in communicating hydrocephalus?”,

2. “What causes normal pressure hydrocephalus?”, and

3. “How is the brain of a child with hydrocephalus different from that of a
young or elderly adult?”.

2



Organization of this Thesis

The remainder of this Thesis is organized as follows.
Chapter 2 briefly introduces the physiology and medical background neces-

sary to have a clear picture of the clinical condition known as hydrocephalus.
Two medical hypotheses are then described for the pathogenesis of hydrocepha-
lus. An in-depth discussion of the experimental evidence supporting these the-
ories, the current mathematical modelling attempts, and the limitations of the
hypotheses and modelling attempts are also presented. The Chapter concludes
with a description of the modelling approaches used in this Thesis, these include
time-dependent pressure volume models and both poroelastic and viscoelastic
mechanical models.

Many mathematical models have been proposed in the quest to understand
the pathophysiology of hydrocephalus. The simple, and hence commonly used,
pressure volume models, and analogous electric circuit models, have possibly
been overused and stretched beyond their capabilities. Chapter 3 uses con-
stant and phenomenological forms of the cranial compliance to demonstrate
that pressure volume models are incapable of describing the complex dynamics
of the CSF. By comparing the predictions of the pressure volume models to
clinical observations, we demonstrate in Chapter 3 that such models are unable
to accurately predict the pulsatile dynamics of CSF.

The next two Chapters develop mathematical models to investigate the ef-
fects of CSF pulsations on brain tissue, in order to determine their significance
in the pathogenesis of hydrocephalus, with specific reference to the pulsation-
damage hypothesis. In Chapter 4 we present a poroelastic model for the brain
which permits analysis of the interaction between the fluid and solid phases of
the tissue. Pressure pulsations are incorporated via boundary conditions and
the pulse amplitudes are determined from experimental data. Numerical simu-
lations of the analytic solutions for displacement and fluid filtration demonstrate
the effect CSF pulsations have on the brain. We also present a model of fluid
flow though a single pore to determine the shear stresses induced on the tissue
by the fluid filtration. This shear stress is found to be negligible in comparison
to experimental data. Thus, the effect of CSF pulsations on the fluid phase of
brain tissue is found to be incapable of causing tissue damage, leaving only the
effects of the CSF pulsations on the solid phase as a possible mechanism for
ventricular expansion in the pulsation-damage hypothesis.

In Chapter 5, we analyze the mechanical effects of the CSF pulsations on
the solid phase of brain tissue using a fractional Zener viscoelastic model. The
fractional differential operator incorporates a history-dependence into the con-
stitutive equation of the material and, in Chapter 5, we hypothesize that this
operator is capable of capturing microstructural changes in the tissue. The in-
fant and adult cases of hydrocephalus are distinguished by prescribing different
conditions at the outer boundaries, and numerical simulations of the analytic
solutions demonstrate the effects of the CSF pulsations. The internal stresses
predicted by this model are compared to experimental data and are found to be
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too small to cause tissue damage. Thus, we conclude that CSF pulsations are
incapable of causing sufficiently large internal stresses to damage healthy brain
tissue, leaving no mechanism for ventricular expansion in the pulsation-damage
hypothesis.

In Chapter 6, we determine the model parameter values of several viscoelas-
tic models for both infant and adult brain tissue using age-dependent shear
complex modulus data. The fractional Zener model parameters are then used
to recompute the simulations of the previous Chapter. The infant model is
found to predict tissue displacements that are unphysical for our model geome-
try and a new boundary condition is proposed to replace the weak condition of
a stress-free outer boundary used in Chapter 5. The material stresses are rela-
tively unaffected by the new parameter values with an order of magnitude still
incapable of causing tissue damage. Parameter sensitivity analyses identify the
steady-state elastic modulus as the parameter of interest in the development
of hydrocephalus: it is found to depend on age, increasing from a minimum
value for infant cerebrum to a maximum value for young adult cerebrum, and,
in Chapter 6, we hypothesize that the steady-state elastic modulus then slowly
decreases with age. The low steady-state elastic modulus of the infant brain
(and possibly the aged brain) increases the tissue’s susceptibility to large defor-
mations and thus to the ventricular expansion characteristic of hydrocephalus.

With regards to the absorption-degradation hypothesis, in Chapter 7 we
investigate the potential of small pressure gradients to cause ventricular expan-
sion in infant brains. A hyperelastic, fractional derivative viscoelastic model is
derived to describe infant brain tissue under conditions consistent with the de-
velopment of hydrocephalus. Both the small strain oscillatory response and the
step response of the material are analyzed, and an incremental numerical tech-
nique is developed to determine the relationship between tissue deformation and
applied pressure gradients. Using parameter values appropriate for the infant
brain, we show in Chapter 7 that pressure gradients on the order of 1 mm Hg are
sufficient to cause hydrocephalus. This is significant since such small pressure
gradients are below the sensitivity threshold of pressure transducers and are
thus undetectable experimentally. Predicting brain tissue deformation resulting
from pressure gradients is of interest and relevance to the treatment and man-
agement of hydrocephalus, and to the best of our knowledge, this is the first
time that results of this nature have been presented.

Finally, in Chapter 8 we summarize the results and discuss the implica-
tions of the analyses presented in this Thesis. Reviewing the results of both
the poroelastic and viscoelastic analyses of the effects of CSF pulsations on
healthy brain tissue suggests that the pulsation-damage hypothesis should be
revised. In addition, reviewing the hyper-viscoelastic analysis suggests that the
absorption-degradation hypothesis is worthy of further investigation. The Chap-
ter concludes by listing the experimental data that would be useful in pursuing
the concepts discussed and conjectures made in this Thesis. We also describe
possible future projects that would extend or explore further the ideas contained
within this Thesis.
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Chapter 2

Preliminaries

In this Chapter we provide a brief introduction to the physiology of the cranium,
as well as the clinical condition known as hydrocephalus, and various medical
theories concerning its pathogenesis. We conclude the Chapter with descriptions
of the mathematical models used in this Thesis to analyze these medical theories.

2.1 Physiology

The brain and spinal cord comprise the human central nervous system. Cere-
brospinal fluid (CSF) surrounds the central nervous system and it also fills the
four interconnected interior regions, or ventricles, of the brain. Effectively, the
brain and spinal cord are submerged in a CSF bath which protects, nourishes,
and cleanses the tissue. The choroid plexi of the ventricles produce about 80%
of the CSF, while the remainder is produced by the tissue itself. The normal
circulation of CSF flows from the two lateral ventricles into the third then fourth
ventricle and finally into the subarachnoid space (SAS). It also flows through the
brain parenchyma from the ventricles to the SAS. From here, it may flow down
into the spinal cord central canal or spinal SAS, or it may be absorbed [64].
CSF was previously believed to be primarily absorbed by the arachnoid villi
into the cranial venous sinuses; however, recent work by Johnston and cowork-
ers [92] has challenged this traditional view of CSF circulation and absorption.
The overwhelming body of experimental evidence amassed by Johnston et al.
now implicates the nasal mucosal lymphatic system as the major site of CSF
absorption. Figure 2.1 shows the central nervous system and the circulation of
CSF.

Brain tissue is a unique tissue of the human body for three reasons. First, the
brain has no lymphatics. One of the primary functions of the lymphatic system
is to remove interstitial fluid from tissues, and since the brain does not have
any lymphatic vessels, this mechanism for fluid removal is not directly available.
Second, the blood brain barrier, which only exists in the central nervous system,
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Figure 2.1: CSF flow in the cranial cavity. Image courtesy of [3].

restricts the normal transcapillary flow of nutrients. The barrier, formed by tight
junctions between endothelial cells, restricts large molecules from diffusing into
the tissue and instead active transport is required to transport specific nutrients
into the brain tissue. Third, while all tissues have interstitial spaces filled with
interstitial fluid, the space and fluid surrounding the cells, brain tissue also has
four interior ventricular compartments that are filled with interstitial fluid, or
CSF.

The cranial cavity holds three basic components inside the skull: CSF, brain
parenchyma, and blood. The contents of the skull are connected to the spinal
cord through the foramen magnum. By conservation of volume, if the intracra-
nial volume of one of these components increases, then assuming incompress-
ibility of all components, a necessary decrease in volume must occur in at least
one of the other components. During systole, arterial blood pulses into the
cranial cavity. Venous blood and CSF respond by pulsing out of the cranial
cavity; venous blood flows back to the heart, and CSF flows down through
the foramen magnum into the spinal SAS. Since arterial pressure is pulsatile
with a frequency commensurate with that of the heartbeat, the CSF and venous
blood also pulse with this frequency [48]; however, despite the pulsatile intracra-
nial arterial, CSF, and venous flow, capillary flow is essentially non-oscillatory.
The oxygenated blood vessel network of artery to arteriole to capillary provides
enough resistance to smooth out the pulsatile nature of the flow.

The movement of CSF from the cranium to the spinal SAS is one example of
a volume compensation mechanism available to the cranium. The intracranial
compensatory mechanisms range in reaction time from rapid to slow. Distention
of the spinal SAS, CSF absorption, and collapse of veins and sinuses are rapid
compensation mechanisms that respond to the arrival of arterial blood [74].
They also act to dampen the cardiac pulse. Larger reductions in CSF volumes,
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decreases in extracellular volume, and vasoconstriction occur quickly, but not
quickly enough to damp the cardiac pulse. Cell volume loss is the slowest
compensatory mechanism, allowing for tissue volume loss to compensate for
volume gain in CSF or blood [74].

The fluid pressure in the ventricular CSF is called the intracranial pressure
(ICP). It is oscillatory and is dependent on factors such as the heart rate, res-
piratory rate, coughing, and straining [76]. CSF and venous blood are able to
quickly compensate for the arterial pulsations since they are both connected to
lower pressure regions outside of the cranium. When the CSF and venous blood
compensatory mechanisms are exhausted, ICP will increase and eventually be-
come unstable [76]. Compliance is a measure of how volume changes occur in
response to changes in pressure. Mathematically, this is expressed as

C =
∆V
∆P

. (2.1)

Elastance is the reciprocal of compliance. Compliance and elastance, common
parameters in the hydrocephalus literature, are not to be confused with the me-
chanical concepts of elasticity [128]. Increasing the volume of intracranial blood
or CSF eventually exhausts the compliance of the cranium which destabilizes
the ICP. At this point, small changes in intracranial volume will produce very
large changes in ICP. In an adult, these large changes in pressure can cause
herniation of the brain through the foramen magnum [76].

Brain tissue consists of neuronal and glial cells which produce, organize,
remove, and attach to the extracellular matrix (ECM). The ECM is a collection
of fibers, such as versican and hyaluronic acid, which provide the scaffolding of
the tissue, and cells attach to these fibers via the integrins that protrude from
their membranes. The development, shape, migration, proliferation, survival,
and function of most cells are influenced by the ECM [55]. The tissues of
the central nervous system are classified as either gray or white matter and
structural differences between these two types occur due to factors such as
the concentration of blood vessels, the level of myelination, and the physical
arrangement of the axons. As a result, gray matter has a higher structural
resistance to deformation (is stiffer) than white matter. Furthermore, white
matter is more anisotropic than gray matter, displaying a strong directional
dependence [61].

Brain ECM has low concentrations of the common proteins found in other
tissue matrices such as collagen and fibronectin, and instead it appears to be
primarily composed of a family of proteoglycans called lecticans and two ECM
components to which they bind, tenascin and hyaluronic acid [105]. The ECM
of cartilage is also abundant in hyaluronic acid and here it appears to provide
a cushioning mechanism. The acid binds large quantities of water that can be
released when the tissue is compressed and reabsorbed when the compression
is released. It is likely that a similar mechanism occurs in brain ECM. Another
commonality between brain and cartilage is the relatively rare occurrence of
non-local cancer invasion. Ruoslahti [105] hypothesized that the uniqueness of
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the brain ECM may resist invasion from cancer cells except from glial cancer
cells, which may possess the mechanisms to circumvent this resistance since they
normally exist in this unique matrix environment.

According to Holbourn [54], the most important physical properties of brain
tissue are the comparatively uniform density, the extreme incompressibility, and
the small modulus of rigidity. Neural cells, blood, and CSF all have approxi-
mately the same density as water, giving brain tissue an approximately uniform
density. Brain tissue strongly resists changes in volume due to hydrostatic
pressures, and in comparison, it provides little resistance to changes in shape.
Thus, the bulk modulus (resistance to uniform compression) of brain tissue is
large compared to the shear modulus (rigidity under shear strains), and in this
case, tissue damage is proportional to the shear strain [54]. Due to the geometry
of the brain, the ventricle walls are more prone to damaging shear strains, and
this damage may consist of tearing of the blood vessels, axons, and synapses,
or disruption of the cell bodies. This damage may be sufficient to disturb brain
function even if it is insufficient to cause tissue breakage [54].

Brain tissue is a viscoelastic material, meaning it behaves like an elastic
solid on short time scales and like a viscous fluid on long time scales. It has
a strong strain-rate dependence. In this Thesis, the following four simplifying
assumptions of brain tissue are made:

• The CSF, interstitial fluid, and other fluids that may exist in brain paren-
chyma are not differentiated and they are all referred to as CSF.

• The structural differences between gray and white matter are neglected
and they are assumed to be mechanically equivalent in both their elastic
properties and their permeabilities.

• The ventricle walls are assumed to have the same permeability and me-
chanical properties as brain parenchyma.

• The cranial SAS is assumed to be negligibly thin, so that the brain pa-
renchyma and skull share a common boundary.

These assumptions simplify the mathematical analyses while not significantly
detracting from the results or conclusions of this Thesis.

2.2 Hydrocephalus

Hydrocephalus is a clinical condition of the brain caused by a disturbance in
the production, absorption, or flow of CSF. It is characterized by the presence
of enlarged ventricular cavities. A tumour impairing the flow of CSF into the
cranial and spinal subarachnoid spaces is one possible cause of hydrocephalus.
This case is called non-communicating since the normal circulation of CSF is
inhibited. Traumas and infections such as meningitis are other possible causes
of hydrocephalus. These cases are called communicating since the CSF is free
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(a) (b)

Figure 2.2: Illustrations of a normal brain (a) and a hydrocephalic brain (b).
Images courtesy of [87].

to move into the spinal SAS but not into the cranial SAS where absorption
occurs [64]. In all cases, the ventricles become enlarged at the expense of brain
parenchyma. Increased volume of intracranial CSF causes the brain tissue to
be squeezed between the extended ventricular walls and the skull. Figure 2.2
illustrates a normal brain and a hydrocephalic brain.

In non-communicating hydrocephalus, the blockage that impedes the circula-
tion of CSF causes fluid accumulation. Fluid pressure builds up in the ventricles
which provides the force necessary to expand the ventricle walls and compress
the brain parenchyma. Communicating hydrocephalus is a curious phenomena
because no obstruction exists, and hence no pressure gradient exists between the
central ventricles and the subarachnoid space, (i.e. no transparenchymal gradi-
ent exists). This fact has been verified experimentally [68]. Nevertheless, the
cerebral ventricles still become enlarged and the brain parenchyma still becomes
compressed. Elevated mean ICP and elevated ICP wave amplitudes are often
observed in communicating hydrocephalus, but are not necessary. Normal pres-
sure hydrocephalus (NPH) is a puzzling class of communicating hydrocephalus
where ventricular enlargement occurs but the ICP is only slightly elevated and
still within the normal range.

Although hydrocephalus can occur at any age, until the last decade the most
common occurrence of this clinical condition was in the pediatric population.
With improving health care and an aging population, however, the situation
has changed to a great degree and the occurrence of hydrocephalus has seen
a marked increase amongst the elderly, whilst there has been some decline in
the pediatric population [27]. This does not mean that infant hydrocephalus
is no longer a clinical concern. In 1992, estimates of the incidence of congen-
ital hydrocephalus were about 3 to 4 per 1000 live births [56] and statistics
from the U.S. Centers for Disease Control and Prevention from 2001 indicate
that approximately 7 infants out of every 100, 000 live births died from con-
genital hydrocephalus [39]. For comparison, estimates of the incidence of NPH
among those residing in assisted-living or extended-care facilities ranges from 9
to 14% [72].
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(a) (b)

Figure 2.3: Coronal (a) (image courtesy of [89]) and transaxial (b) (image
courtesy of [27]) MR images of hydrocephalic brains.

Symptoms of hydrocephalus can vary and depend on patient age. In infants,
where the cranial plates are not yet fused, the fontanel (soft spot) may bulge,
the scalp may appear thin with full veins, and the plates may feel separated.
The patient may experience vomiting, sleepiness, irritability, and a downward
cast to the eyes. In older children and adults, where the sutures are now fused,
symptoms include headache, nausea, vomiting, blurred vision, balance prob-
lems, gait disturbance (or delayed development in children), poor coordination,
and a decline in mental performance. Most commonly found in the elderly
population, NPH is usually diagnosed by Hakim’s triad of symptoms: gait dis-
turbance, urinary incontinence, and dementia, and it is often misdiagnosed as
either Parkinson’s disease or Alzheimer’s disease. Medical imaging (either MR
or CT) is normally performed to determine the extent of the ventricular en-
largement, and a frontal horn span greater than 5.5 cm or an Evans ratio (the
ratio of the maximum width of the frontal horns to the maximum width of the
brain) greater than 0.4 is an indicator of hydrocephalus [125]. Figure 2.3 shows
sample MR images of hydrocephalic brains. In severe cases of hydrocephalus,
an accumulation of extracellular fluid, or edema, is observed in the parenchyma
near the ventricles (the periventricular region) [59] which appears as a periven-
tricular lucency in MR images. Tissue damage in the periventricular region and
ventricle walls is also commonly observed in hydrocephalus.

The causes of hydrocephalus are many and varied. Some forms are congenital
while others result from infections, hemorrhages, traumas, or tumours. There
is no known cure for hydrocephalus, but treatments exist to help manage the
condition. Commonly, mechanical shunts are used to drain excess CSF from
the ventricles into other regions such as the peritoneal cavity. Certain patients
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may be suitable for a third ventriculostomy which is a surgical procedure that
creates a new pathway for CSF in order to restart the circulation. And finally,
pharmacological treatments are being investigated. Unfortunately, the most
common treatment, shunting, is riddled with complications. Shunt malfunction,
subdural hematoma, seizure, infection, and intracerebral hematoma are a few
examples of these complications. It has been estimated that of the over 40 000
hydrocephalus operations performed annually in the US, only 30% of these are
the patient’s first surgery [2].

2.3 Theories of Ventriculomegaly

A fundamental understanding of the development of communicating hydroceph-
alus, especially NPH, has remained elusive, although putative theories have been
proposed [9, 32, 33, 64, 93]. In non-communicating hydrocephalus, it is easy to
understand that ventricular expansion results from the accumulated fluid and
pressure build-up that occurs behind the obstruction inhibiting the normal circu-
lation of CSF. Since this standard explanation does not hold for communicating
hydrocephalus, new theories must be explored. Here two theories for ventricular
expansion are discussed. The CSF pulsation mechanism hypothesis is presented
first since it is the main theory analyzed in this Thesis.

2.3.1 CSF Pulsations

Measurements of CSF pressure clearly indicate the pulsatile nature of its flow
[68], and a link between these pulsations and ventricular enlargement has been
proposed. As early as 1979, supported by experimental evidence, Di Rocco et
al. hypothesized that ventricular enlargement may be due to abnormally high
ventricular CSF pressure pulse amplitudes [102].

Experimental Evidence

There is substantial evidence indicating that CSF pulsations may be involved in
ventricular enlargement. Bering [11] showed that in kaolin-induced hydroceph-
alus, the removal of the choroid plexus from one lateral ventricle caused dilation
to mainly occur on the side with the choroid plexus intact. Milhorat [77] tried to
reproduce these results by removing the choroid plexus from one lateral ventricle
and inducing hydrocephalus by blocking the aqueduct. He observed that both
ventricles dilated, thus showing that while pulsations may be important in the
pathogenesis of communicating hydrocephalus, they are not necessary in the
pathogenesis of non-communicating hydrocephalus. Wilson and Bertan [133]
extended the work of Bering by obstructing the artery leading to one of the
lateral ventricles. After inducing hydrocephalus, they found that the ventricle
with the obstructed artery had a smaller CSF pulse amplitude and was smaller
in size compared to the unobstructed side. They concluded that ventricular
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pressure pulsations driven by the intracranial arteries were responsible for the
formation of hydrocephalus.

Guinane [49] injected silicone into the subarachnoid space adjacent to a
ventricle and observed localized ventricular dilation. He claimed the silicone
reduced the compliance of the CSF space and increased the strain-stress ratio
in the ventricular wall, thus concluding that the increased strain caused the
tissue destruction (stretching) he observed in the ependyma (ventricle wall). Di
Rocco [101] conducted experiments by pulsing a balloon inserted into a lateral
ventricle to increase the amplitude of the CSF pulsations. He found that ventric-
ular dilation occurred, with the balloon-inserted ventricle being larger than the
other lateral ventricle. He also found that when the pulsing balloon was inserted
into the parenchyma, ventricular dilation was not observed. Hence he concluded
that the pulsations must originate in the ventricles for ventriculomegaly to oc-
cur. In a Letter to the Editor responding to the work of Di Rocco et al. [102],
McLone provided a possible explanation for increased CSF pulse amplitudes
without increased mean ICP [74]. He claimed that the ventricular pulse gen-
erated by the choroid plexus may be larger than the parenchyma pulse if the
rapid compensatory mechanisms of the cranium are impaired. Loss of elasticity
from hypertension or aging may transmit the cardiac pulse more to the choroid
plexus than to the cerebral tissues. Coupled with partial obstruction of CSF
circulation, he hypothesized that this could explain NPH.

The Pulsation-Damage Hypothesis

The theory of CSF pulsations as a causative mechanism for hydrocephalus is
based on the assumption that these pulsations damage the ventricle walls and
surrounding tissue. In systole, the choroid plexus becomes enlarged with blood
which generates a pressure pulse in the surrounding CSF. Since CSF is in-
compressible, the pulse is transmitted without attenuation or phase lag to the
ventricle walls and brain parenchyma. The pulse is finally absorbed by the
SAS, dura, and skull. In diastole, blood returns to the heart, decreasing the
volume of the choroid plexus and depressurizing the ventricle walls. The pres-
surization cycle repeats with the heart rate, during which CSF may oscillate in
and out of the ventricle walls and parenchyma. These constant oscillations may
generate large shear stresses in the periventricular tissues which may damage
the cells. The damaged tissue may lose its structural integrity, becoming more
porous and allowing oscillating CSF to penetrate increasingly deeper. This will
propagate the damage into the tissue, compressing the parenchyma behind the
expanding ventricles. Increased CSF pressure pulse amplitudes, often observed
in hydrocephalus, will exacerbate this damage mechanism. One theory for this
increased pulsatility is a decrease in the cranial compliance due to a blocked
CSF or venous pathway [11].
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Modelling Attempts

With the majority of mathematical models focusing on CSF bulk flow, to date,
not much work has been done to incorporate pulsatile CSF dynamics into mod-
els of hydrocephalus. The first attempt to model these pulsations was work by
Egnor et al. [32, 33] which reignited the debate over the role of pulsations in the
development of hydrocephalus [122, 123, 65]. Encouraged by the observation
that intracranial arterial, CSF, and venous pressure waveforms are all approxi-
mately simultaneous [97], Egnor et al. suggested that the cranial compartment
is in what they called a natural state of resonance. They claimed that devia-
tions from this state lead to a loss of normal cerebral blood and CSF flows and
ultimately to the development of hydrocephalus.

The model proposed by Egnor et al. [32, 33] is a simple linear damped
oscillator:

mCSF ẍCSF (t) = F0 sin(ωt)−RẋCSF (t)− kE xCSF (t), (2.2)

wheremCSF is the mass of displaced CSF, xCSF (t) is the displacement of CSF, ω
is the angular heart frequency, F0 is the amplitude of the arterial pulsations, R is
a resistive damping parameter, and kE is the elastic constant of the intracranial
contents. Since MRI techniques are capable of measuring CSF velocity, vCSF ,
they differentiate to get

mCSF v̈CSF (t) +Rv̇CSF (t) + kE vCSF (t) = ωF0 cos(ωt), (2.3)

which has the oscillatory long-time solution

vCSF (t) =
F0 sin(ωt− θ)√

R2 +
(
ωmCSF − kE

ω

)2 , (2.4)

where θ is the phase angle between the arterial and CSF oscillations given by

θ = arctan
(
ω2mCSF − kE

ωR

)
.

Forcing θ to be zero to ensure synchronous arterial and CSF pulsations results
in the relation

ω2 =
kE

mCSF
. (2.5)

This synchronous state is what they call the natural state of resonance [32].
Finally, Egnor et al. [33] extended this model using an analogous RLC circuit,
and concluded that ventricular dilation in communicating hydrocephalus is a
result of the redistribution of intracranial pulsations.

This synchronous state, however, is not resonance, since resonance requires
a large amplitude response in time and this does not occur in the intracranial
compartment or in their solution, (2.4). Tenti et al. [122] argued that, assuming
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(2.5) holds, if the heart rate is increased, say by physical exercise, then assum-
ing the mass of CSF is approximately constant, the intracranial elastic constant
must also increase. If the elasticity is allowed to change in time, kE = kE(t)
and their solution (2.4) and conclusions are no longer valid. Furthermore, their
model cannot explain why everyone does not develop hydrocephalus if ventricu-
lomegaly results from mere changes in the heart rate away from this natural
frequency.

In 2005, Linninger et al. [68] modelled pulsatile CSF using the Navier-Stokes
equations and brain parenchyma using linear elasticity theory. They assumed no
absorption of CSF by the parenchyma. Thus, the interaction between pulsatile
CSF and elastic parenchyma reduced, once again, to a damped linear oscillator.
In 2007, they extended this model by allowing CSF not only to flow through
the parenchyma, but also to be produced in the parenchyma [67]. This model
predicted slightly higher pressures inside the tissue than in the ventricles or
SAS. They were able to simulate hydrocephalus by decreasing the CSF absorp-
tion, the cranial compliance1, and the parenchyma permeability and porosity
parameters. These changes caused the ICP pulsations to be larger in amplitude
and the ventricles to be larger in volume than the normal brain simulation. The
model does not, however, demonstrate the significance of the CSF pulsations in
ventriculomegaly.

Tully and Ventikos [126] also used poroelasticity and computational fluid
dynamics to examine the effect of CSF pulsations and aqueduct stenosis on the
development of hydrocephalus. While they did allow for fluid flow through the
poroelastic material, they did not analyze the effect of the pulsations on the
internal stresses or shear flow induced stresses. Nevertheless, they concluded
that the pulsations have negligible effect on the displacement of the parenchyma
and thus on the development of hydrocephalus.

Critiques

There are several problems with the pulsation-damage theory of hydrocepha-
lus. Perhaps most convincing, as pointed out by Levine [65], is the fact that
conditions such as hypercapnia and pseudotumor cerebri, which are known to
increase CSF pulsatility, are not associated with hydrocephalus. Also pointed
out by Levine [65] is the following contradiction: if ventricular expansion occurs
due to tissue damage, and the propagation of this damage into the parenchyma,
then how can the relatively quick reduction of ventricle volume observed after
shunt treatment be explained? Furthermore, if the pulse amplitudes are the
same in the ventricles and the SAS then the pulsation-damage theory cannot
explain why the ventricles enlarge and the SAS does not. One reason for this
could be a small difference between the pulse amplitudes of the ventricles and
SAS. Large differences cannot occur as evidenced by experiment [68]. Levine

1The author believes that the hydrocephalus simulations of [67] used a decreased value of
the parameter β, entitled “inertia resistance of the tissue”, and that a typo exists in Table II
of the article.
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calls these potential small differences in pulse amplitude mini-gradients and
their effect will be investigated in Chapter 4. Finally, the most obvious problem
with this theory is that if ventriculomegaly is caused by the sole actions of the
CSF pulsations on the ependyma and parenchyma then why do not we all have
hydrocephalus?

2.3.2 Parenchyma Fluid Absorption

The second theory for the pathogenesis of communicating hydrocephalus was
first proposed in a short paper from 2002 by Peña et al. [93]. They hypothe-
sized that ventriculomegaly may be caused by the reversal of CSF flow into the
parenchyma, instead of out of the parenchyma, combined with a reduced tissue
elasticity or Young’s modulus (rigidity under tensile strains).

Experimental Evidence

Dye or radio-labelled albumin injected into a ventricle was later found in the
brain tissue and blood [82]. This suggests that a bulk flow of CSF from the
ventricles into the parenchyma exists and that fluid absorption might also occur
via the capillaries of the brain [64]. Ventricle perfusion experiments suggest
that there is a reversal of the normal transependymal flow, and that interstitial
fluid may flow from the ventricles into the brain tissues [104]. In experiments
where the aqueduct was occluded to isolate the ventricles from the subarachnoid
space, CSF absorption was found to balance CSF production [12]. Finally,
perivascular spaces have been shown to serve as conduits to transport cerebral
interstitial fluid to both blood and lymph drainage sites [21]. Unfortunately,
there is evidence both for and against absorption of CSF by the parenchyma [64],
with perhaps the strongest argument against absorption being the presence of
edema, or fluid build-up, in the periventricular tissue.

The pressure volume index (PVI) is a tool used to quantify the health of
the cranial compartment. It is defined as the volume of fluid necessary to
raise the ICP by a factor of 10 and it is measured by injecting mock CSF
into the ventricles while recording the immediate peak pressure response. Pang
and Altschuler [91] measured the pressure volume index in patients with low
pressure hydrocephalus and found it to be abnormally high. They argued that
since the “give” of the cranium is negligible in adults and the expansion of the
venous pool is unlikely, the only explanation for the large PVI is a change in the
viscoelastic properties of the brain tissue. Regardless of this conclusion, their
argument is flawed since Walsh and Schettini showed that there is no correlation
between the elastic properties of brain tissue and elastance, or by extension, the
pressure-volume index [128]. Chapter 6 of this Thesis presents evidence that the
elastic properties of brain tissue are age-dependent and it is theorized that a
reduced elastic modulus may be a contributing factor to ventricular expansion.

Recent research from Johnston and collaborators [86] indicates a possible
molecular mechanism for the pathogenesis of hydrocephalus. An injection of
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antibodies to β1-integrins was made to the ventricles of rats while measure-
ments of the periventricular tissue pressure were obtained. They found that the
antibodies diffused into the tissue and caused a temporary drop in the tissue
pressure as well as ventricular enlargement. This problem was discussed during
the OCCAM-Fields-MITACS Biomedical Problem Solving Workshop held in
Toronto, Ontario, 2009. The hypothesis formed by the contributors, including
the author of this Thesis, is that since the antibodies temporarily inhibit the
ability of cells to bind with the ECM, a structural relaxation in the ECM is
created which may degrade the elastic modulus and lower the interstitial fluid
pressure of the tissue [9]. This exciting work suggests a possible molecular mech-
anism which may alter the microstructure of brain tissue and thus may be an
important factor in the pathogenesis of communicating hydrocephalus.

The Absorption-Degradation Hypothesis

This relatively recent theory for communicating hydrocephalus is based on the
belief that the brain tissue surrounding the ventricles is able to absorb CSF. This
absorption may be driven by either osmotic or hydrostatic pressure gradients
at the capillaries. Whether or not it can be attributed to ECM restructuring, a
lower hydrostatic pressure is assumed to exist inside the tissue compared to the
ventricles or SAS. This intramantle pressure gradient (from ventricle and SAS to
the inside of the tissue) drives CSF into the parenchyma for absorption. A small
transmantle pressure gradient (from ventricle to SAS) must also exist to ensure
the ventricles enlarge and the SAS compresses. The result is tissue compression,
especially if the Young’s modulus is reduced due to tissue degradation.

Modelling Attempts

Peña et al. hypothesized that communicating hydrocephalus can be caused by
the flow of CSF into the parenchyma, and of CSF absorption by the paren-
chyma, as well as a reduced tissue elasticity [93]. Using Biot’s theory of con-
solidation to govern the tissue motion, they solved the poroelasticity equations
on a finite element mesh generated from a brain MR image. Their “reduced”
Young’s modulus values of 1 kPa for white matter and 5 kPa for gray matter, are
small in comparison to some estimates of brain tissue elasticity (10 kPa [59] or
21 kPa [121]) but large in comparison to other estimates (584 Pa [120]). While
the ventricle and SAS pressures were defined to be 10 mm Hg, the tissue pres-
sure was defined to be 7.5 mm Hg. Unfortunately, the paper does not discuss
the details of their mathematical model and so it is unclear how they enforced
this tissue pressure. It is mentioned, however, that they do not consider venous
pressures and thus they do not model capillary absorption. Nevertheless, their
work was the first to propose the potential existence of an intramantle pressure
gradient instead of the customary transmantle pressure gradient.

Levine [64] examined the parenchyma absorption hypothesis using a poroe-
lastic model with varying levels of seepage of CSF into the parenchyma as well
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as varying levels of absorption by the parenchyma. Fluid absorption by the
capillaries was assumed to be proportional to the net osmotic and hydrostatic
pressures according to Starling’s Law. Without the existence of permanently
raised ICP, i.e. for NPH, Levine concluded that CSF seepage into the tissue and
efficient absorption by the parenchyma are sufficient to cause ventriculomegaly.
His theory, however, requires an initial increase in ICP to compress the brain
tissue, expand the ventricles, initiate the flow of CSF into the parenchyma, and
initiate the CSF absorption mechanism.

The molecular mechanism proposed by Johnston and colleagues [86] explains
the flow of CSF into the parenchyma without the need for an increased ICP. As
well, the absorption mechanism may be triggered by osmotic pressure changes
that result from the antibody presence. A preliminary mathematical model
of this mechanism was proposed by the OCCAM-Fields-MITACS Biomedical
Problem Solving Workshop group [9]. Here, poroelasticity theory was used with
parameters such as the Young’s modulus and permeability made to vary with
the antibody concentration. Parenchymal absorption of CSF was also made to
depend on the concentration of antibodies. This preliminary model still awaits
refinement and numerical simulation.

Critiques

It is unclear why, in the model proposed by Peña et al. [93], the ventricles en-
large more than the SAS if the pressures are defined to be the same in both of
these regions. Recall that they prescribed pressures of 10 mm Hg in the ventri-
cles and SAS and 7.5 mm Hg in the parenchyma. Linninger et al. [68] showed
that no significant (greater than 1 mm Hg) pressure gradients exist between the
ventricles, parenchyma, or SAS. Thus, only small pressure gradients, on the or-
der of 1 mm Hg or less, can exist as either intramantle or transmantle gradients.
If an intramantle pressure gradient exists to drive CSF into the parenchyma for
absorption, then there must also be a small transmantle pressure gradient to ex-
plain the ventricular expansion and the SAS compression. The ability of such a
small pressure gradient to enlarge the ventricles enough to cause hydrocephalus
is discussed in Chapter 7.

2.4 Modelling Approaches of this Thesis

The main intent of this Thesis is to analyze the effect of the CSF pulsations
in order to determine their role in the pathogenesis of hydrocephalus. To com-
plete this task, several mathematical models are used. Mathematical models
have been used to study hydrocephalus since the pioneering work of Hakim et
al. [50, 51] in the 1970’s. Models of hydrocephalus allow for the investigation of
mechanical stresses and the long-term effects of abnormalities in the dynamics
of CSF and in the mechanical properties of the tissue. Most models to date,
however, have focused on the bulk flow of CSF instead of also considering its
pulsatile nature. The ultimate goal of a mathematical model is to elucidate
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the pathogenesis of the condition it describes by proposing hypotheses which
can be experimentally verified. A successful model of hydrocephalus should be
able to explain or demonstrate most of the experimental observations discussed
above as well as to deepen our understanding of ventricular enlargement and to
improve treatment strategies.

In the literature, there are two main approaches to the mathematical mod-
elling of hydrocephalus. The first approach uses time-dependent models such
as pressure volume models [71, 115] and the analogous electrical circuit mod-
els [32, 33, 57]. The second approach uses time- and space-dependent mechanical
models such as those based on the poroelastic [64, 67, 85, 93, 118, 121, 126] or
viscoelastic theories [29, 31, 113, 114, 132].

2.4.1 Time-Dependent Models

The Monro-Kellie hypothesis simplifies the dynamics of the cranium to an un-
derlying competition for space between CSF, blood, and brain parenchyma.
This hypothesis leads to pressure volume models where the CSF is contained
within one compartment, the outside of which represents the brain parenchyma
and SAS [115]. Analogous electric circuit models have been presented as ex-
tensions of the pressure volume concept [32, 33, 57]. As mentioned earlier, the
relationship between pressure and volume is called compliance. Several forms
of the cranial compliance function have been proposed [71] but they provide
little information on the behaviour of the brain [115]. Many proponents of pres-
sure volume models have erroneously believed that cranial compliance and tissue
elasticity are related [91]. Walsh and Schettini [128], however, showed that there
is in fact no relationship between these two parameters. They measured brain
elasticity and intracranial compliance as the intracranial pressure was increased
by incrementally inflating a ventricular balloon. These measurements showed
that compliance decreased with increasing pressure but that tissue elasticity
remained essentially constant.

Numerous models of hydrocephalus incorporating both time- and space-
dependencies have been proposed and are discussed in the next section. Unfor-
tunately, these models usually involve systems of partial differential equations
which require several parameters making them much more complex than the
tantalizingly simple ordinary differential equation models discussed here. In
fact, in Chapter 3 we will demonstrate that these simple time-dependent DE
models are incapable of representing the complex dynamics of the cranium and
that they provide little insight towards a more fundamental understanding of
the development of hydrocephalus.

2.4.2 Mechanical Models

Continuum mechanics provides the framework necessary to derive time- and
space-dependent mathematical models of hydrocephalus. The theory of porous

18



media was originally developed for the study of hydrogeology, such as earth-
quakes and oil extraction [16]. In 1941, Biot [15] used phenomenologically-based
assumptions to derive his theory of consolidation which describes the mechanics
of a porous elastic solid saturated with a viscous fluid. Later, Burridge and
Keller [16] showed that in the limit where the dimensionless viscosity for the
small scale was order unity, Biot’s equations could be obtained directly from the
microstructure of the material by averaging over the fast spatial variations. In
the other limit, where the dimensionless viscosity for the large scale was order
unity, they were able to derive equations describing a viscoelastic material.

The modelling approach chosen to best describe the behaviour of brain tis-
sue depends on the application being studied. Poroelastic models are capable of
describing the fluid-solid interactions and can account for the intrinsic porosity
of brain tissue. Viscoelastic models, on the other hand, are capable of describ-
ing the strain-rate dependence of brain tissue. The characteristic time scale of
the application is a good indication of which modelling approach is appropriate.
Impacts are usually modelled with viscoelasticity while long-term processes are
modelled using poroelasticity (or mixture theory) which accounts for the in-
terstitial fluid movement [61]. Franceschini et al. [40] found that the drained
behaviour of brain parenchyma should be treated as a nearly incompressible
nonlinear material, capable of permanent deformations, and that it is qualita-
tively similar to rubber-like materials. Kyriacou et al. [61] compared viscoelastic
and poroelastic models of brain tissue and they recommended viscoelastic mod-
els for short time scale phenomena and poroelastic models for long time scale
phenomena. For hydrocephalus, generally considered a long time scale phe-
nomenon, a poroelastic model was recommended [61]. Franceschini et al. [40]
also recommend a poroelastic model for brain tissue in situations where sub-
stantial volumetric deformations occur (i.e. hydrocephalus).

Unfortunately, the use of poroelastic and viscoelastic models are hindered by
the difficulties associated with accurately measuring the required model param-
eters, such as the permeability, and the viscoelastic behaviours, such as creep
and relaxation, of brain parenchyma. In this Thesis, in order to analyze the
effect of CSF pulsations, a short time scale phenomenon, a poroelastic model is
used to analyze the effect of the pulsations in terms of the fluid-tissue interac-
tions. Then, viscoelastic models, which are more appropriate for short time scale
phenomena, are used to examine the tissue deformations and stresses. A brief
discussion of both poroelastic and viscoelastic models of brain biomechanics is
presented below.

Poroelasticity Theory

In 1976, Hakim et al. [51] introduced a mechanical model which described brain
parenchyma as a porous viscoelastic sponge. They claimed that the tissue was
able to compress in response to a transmantle pressure gradient by collapsing
the sponge cells. Nagashima et al. [85] extended this model by applying Biot’s
theory of consolidation [15] to describe the porous matrix, or tissue, which is

19



saturated by the viscous fluid, or CSF. Under loading conditions, deformations
of a porous medium are accompanied by fluid flow through the medium. This is
consistent with the observed behaviour of biological tissues, which are generally
believed to be biphasic [59]. In fact, this biphasic behaviour explains why hyper-
osmotic drugs, such as mannitol, are useful in alleviating elevated intracranial
pressure by reducing the fluid volume of the brain. If there was no underlying
relationship between the hydrated nature of the brain and its solid tissue ma-
trix, the drug would not be able to relieve the herniation that can occur at the
foramen magnum [40].

The application of Biot’s theory of consolidation to brain biomechanics initi-
ated the widespread use of poroelasticity theory in the hydrocephalus modelling
literature [59, 64, 93, 117, 118, 121, 126, 134]. In these models, the brain is as-
sumed to be a porous linear elastic sponge saturated and contained in a viscous
incompressible fluid similar to water. Poroelastic models account for the inter-
action of CSF with the brain parenchyma and thus are capable of describing
the consolidation effects associated with high values of mean stresses applied
for long times [40], as occur, for example, in the development of hydrocepha-
lus. In Chapter 4, a poroelastic model is used to analyze the fluid-solid matrix
interactions associated with CSF pulsations in order to determine their role in
ventriculomegaly.

Viscoelasticity Theory

Elastic behaviour occurs when the stress depends only on the strain and it is
characterized by instantaneous deformation upon loading as well as an instanta-
neous return to the original state with unloading. Viscoelastic behaviour occurs
when the stress depends on both the strain and the strain history [61]. Such
materials display both elastic and viscous characteristics. Viscous behaviour is
characterized by strains that grow linearly with the applied stress. The result
of combining these two characteristics is that viscoelastic materials display cu-
rious behaviours such as creep, relaxation, and hysteresis. Creep is the process
of continued straining in response to the application of a constant stress, relax-
ation is the process of the material stress decaying in response to a constant
strain, and hysteresis describes the result of mechanical energy dissipation dur-
ing cyclic loading, i.e. the loading curve takes a slightly different path than the
unloading curve. Perhaps most important to the analyses in this Thesis, is that
the effective stiffness of a viscoelastic material depends on the rate at which the
load is applied.

Since brain tissue displays such a strong strain-rate dependence, many con-
stitutive equations have been proposed in the literature in an attempt to describe
this behaviour mathematically [28, 29, 36, 43, 75, 79, 80, 90, 129]. Nonlinear
viscoelastic constitutive equations, such as the hyper-viscoelastic model pre-
sented in Chapter 7, are capable of more accurately predicting large material
deformations than linear viscoelastic or poroelastic models. This is due to the
assumption of small strains in all linear models. Fractional derivatives have
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recently been incorporated into the constitutive relations describing brain tis-
sue [23, 132, 66]. This addition requires the materials entire stress-strain history
to be known in order to determine the current stress-strain state. The advan-
tage of fractional derivatives is that they are capable of describing the complex
behaviour of polymer-like materials, such as brain tissue, with a relatively small
number of model parameters. In Chapter 5, a fractional viscoelastic model is
used to analyze the effect of CSF pulsations on ventricular expansion. Chap-
ter 6 determines age-appropriate model parameters of this fractional viscoelastic
model and reanalyzes the effects of the CSF pulsations. And finally, in Chap-
ter 7, a fractional hyper-viscoelastic model is used to analyze the ability of small
hydrostatic pressure gradients to enlarge the ventricles in infant hydrocephalus.
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Chapter 3

A Pressure Volume Model
for Pulsatile CSF Dynamics

In this Chapter, we refute the claim, based on the analysis of pressure volume
models, that the relationship between arterial-ICP synchronicity and hydro-
cephalus is causal. We suggest instead that both are consequences of altered
cranial compliance and resistance to CSF absorption. To conclude the Chapter,
we claim that pressure volume models, and in fact all such spatially averaged
time-dependent models (including analogous circuit models), are too simple to
account for the complex CSF dynamics observed in the cranium, especially dur-
ing the development and treatment of hydrocephalus.

A complex relationship exists between intracranial pressure, intracranial
compliance, and hydrocephalus. Hydrocephalus is believed to reduce intracra-
nial compliance by restricting the cerebral vasculature and compressing the
brain parenchyma and SAS, thus limiting the volume compensatory mechanisms
of the cranium. Several theories exist claiming that this change in compliance
causes the ventricles to expand in hydrocephalus [46, 47, 116]. Experiments
show that in patients with reduced compliance as a result of hydrocephalus, the
amplitude of ICP pulsations increases but decreases back to normal after shunt
insertion [108, 116], which is believed to increase compliance by creating a new
volume-compensatory mechanism. As demonstrated in this Chapter, pressure
volume models are capable of predicting this phenomenon; decreasing compart-
ment compliance causes increased pressure amplitude but not increased mean
pressure in the model predictions; however, the level to which the compliance
must be reduced is not physical.

Cranial compliance is related to the pressure volume index and mean ICP.
A reduced cranial compliance corresponds to an elevated elastance, that is, a
greater rise in pressure is the result of the same change in volume. The PVI of
hydrocephalic patients, however, may be elevated or reduced compared to a nor-
mal PVI since it depends on the mean ICP. For reference, a mean CSF pressure
of 13.2 mm Hg, a mean PVI of 25.9 ml, and a mean compliance of 0.85 ml/mm Hg
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were found for normal adults [110]. In a study of hydrocephalic patients with
a mean ICP of 31.7 mm Hg, a mean PVI of 24.1 ml and a mean compliance
of 0.33 ml/mm Hg were found [107]. In the same study, hydrocephalic patients
with a mean ICP of 7.8 mm Hg were found to have a mean PVI of 12.7 ml and
a mean compliance of 0.71 ml/mm Hg [107]. Thus the hydrocephalic patients
with elevated ICP had a PVI near normal and a reduced compliance, whereas
the patients with normal ICP had a reduced PVI and only a slightly reduced
compliance. Hydrocephalus patients, however, do not always present with re-
duced cranial compliance. In low-pressure hydrocephalus patients, mean ICP of
4.4 mm Hg, the mean PVI was measured to be 43.9 ml [91], which corresponds
to a compliance of 4.3 ml/mm Hg. Similarly, in hydrocephalic infants, a mean
ICP of 11.7 ml/mm Hg and a mean PVI of 28.1 ml [109] were found; this cor-
responds to a compliance of 1.0 ml/mm Hg. Unfortunately, from a modelling
perspective, the mean ICP pulse amplitudes were not reported in any of these
studies.

Mean ICP is affected by the resistance to fluid flow, sometimes called re-
sistance to CSF absorption or resorption. It is a measure of the difficulty at
which CSF flows from the ventricles to the SAS and finally to the venous sys-
tem. If a linear relationship is assumed between the amount of CSF absorbed
and the pressure difference between the ventricular CSF and the venous blood,
then the resistance to CSF absorption can be defined as the ratio of the change
in this pressure difference to the change in the rate of absorption [64]. There-
fore, if CSF absorption is impaired, resistance to CSF absorption increases,
and ICP must increase to maintain the balance of production and absorption.
The mean resistance to absorption was measured to be 2.8 mm Hg/ml/min in
healthy adults with a mean ICP of 11.7 mm Hg [110]. In hydrocephalic pa-
tients, the mean resistance among those with an ICP above 15 mm Hg was
38.8 mm Hg/ml/min, and the mean resistance among those with an ICP be-
low 15 mm Hg was 23.5 mm Hg/ml/min [107]. In hydrocephalic infants, the
mean resistance was found to be 7.2 mm Hg/ml/min when the mean ICP was
11.7 mm Hg [109].

The synchrony between arterial and CSF pressure pulsations has been demon-
strated experimentally [46] as has the effect these pulsations seem to have on
the observed enlargement of the ventricles [11, 133]. According to the theory
proposed by Egnor et al. based on an RLC circuit model [32], development of
hydrocephalus is due to the lack of synchrony between the CSF and the cerebral
blood pulsations. They claim that decreased intracranial compliance introduces
a phase lag in the ICP pulse, and the existence of such a phase lag has been
observed in some animal experiments [101].

In this Chapter we demonstrate that this lack of synchrony is not the cause of
hydrocephalus, but rather that it may be related to variations in the compliance
and resistance to fluid flow. Analysis of the mathematical model reviewed in
this Chapter will show that when intracranial compliance decreases, the ICP
and arterial pressure pulses become synchronous. Model predictions that match
the amplitude of observed pressure pulsations only occur, however, when the
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Figure 3.1: A one compartment model for CSF with compliant walls.

intracranial compliance is reduced to an unphysical level. The requirement
of an unphysical compliance and the lack of spatial dependence indicate that
pressure volume models, in general, and analogous circuit models in particular,
simplify the dynamics of the cranium to the point where they are not longer
capable of accurately describing the behaviour of cranial CSF. Furthermore,
in hydrocephalus, where increased CSF pressure amplitudes occur with any
combination of an increased or decreased mean ICP and PVI, the dynamics are
too complex for these simple models to accurately describe.

3.1 Pressure Volume Model Formulation

Sivaloganathan et al. [115] provide a comprehensive review of time-dependent
mathematical models describing CSF dynamics. They propose a simple differ-
ential equation that encompasses all of the single compartment models found in
the literature. Here, we modify their CSF source term to incorporate the effect
of arterial pulsations on CSF dynamics. A schematic of the CSF compartment
model is shown is Figure 3.1.

The governing equation, which describes the dynamics of the CSF compart-
ment is derived from the principle of conservation of mass. For constant density,
this requires that the rate of change of volume must be equal to the difference
between the rate of formation, If (t), and the rate of absorption, Ia(t), that is,

dV
dt

= If (t)− Ia(t). (3.1)

From infusion studies, the absorption term is assumed to have the form [115]

Ia(t) =
1
Ra

(P (t)− Pss) , (3.2)

where Ra is the resistance to CSF flow, P (t) is the spatially-averaged CSF
pressure, and Pss is the pressure in the sites of CSF absorption (typically the
sagittal sinus [110] and nasal lymphatics [58, 92, 100]). The formation rate is
assumed to have the form

If (t) = I
(e)
f + S(t), (3.3)
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where I(e)
f is the bulk formation rate and S(t) is the CSF source term which

will incorporate the effect of the pulsatile blood flow into the model. Since
CSF is essentially incompressible, the rate of volume change can be related to
the rate of change of pressure using the chain rule and the compliance function
C(P ) = dV

dP . Using the chain rule as well as (3.1), (3.2), and (3.3) results in
the model equation (3.4), which describes a CSF compartment with compliant
walls, a source, and a sink,

C(P )
dP
dt

+
1
Ra

(
P (t)− Pss

)
= I

(e)
f + S(t). (3.4)

As blood flows into brain parenchyma, the volume of the parenchyma ex-
pands and, as a result, some CSF is pushed into the compartment out of the
extracellular space of the brain tissue and choroid plexi. This increase in CSF
volume results in an increase in CSF pressure which pushes back on the pa-
renchyma, resulting in a reduction in brain tissue volume as the blood leaves.
Following a suggestion of Fung [42], we assume the CSF formation source term
to have the following form,

S(t) = a sin2(ωt), (3.5)

where a is the peak-to-peak amplitude of the non-zero average pulsations and
2ω is the angular frequency of the heart beat in radians per minute. The value
1
2a is the volume of CSF displaced due to blood flow through the brain paren-
chyma per minute. Substituting this source term into (3.4), the model equation
becomes

C(P )
dP
dt

+
1
Ra

(P (t)− Pss) = I
(e)
f + a sin2(ωt). (3.6)

3.2 Numerical Simulations

Equation (3.6) describes the dynamics of pulsatile CSF in a compliant com-
partment. Two cases of particular forms of the compliance function will be
analyzed: first, the simple case where the compliance is constant, and second,
the case where the compliance function has a particular phenomenological form.

3.2.1 Constant Compliance

As a first approximation, the compliance of the compartment is assumed to be
constant, C(P ) = C0, and so (3.6) becomes

C0
dP
dt

+
1
Ra

(P (t)− Pss) = I
(e)
f + a sin2(ωt). (3.7)

With the initial condition, P (0) = P0, the differential equation can be solved
using Laplace Transforms. Introducing a characteristic time of τ0 = C0Ra, the
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CSF pressure is given by

P (t) =
(
P0 −RaI

(e)
f − Pss −

aRa
2

4ω2τ2
0

1 + 4ω2τ2
0

)
e−

t
τ0

+

(
RaI

(e)
f + Pss +

aRa
2

(
1− 1√

1 + 4ω2τ2
0

))

+
aRa√

1 + 4ω2τ2
0

sin2

(
ωt− 1

2
arctan(2ωτ0)

)
. (3.8)

The first bracketed terms give the transient response, or the effect of the
initial condition. Since we are only interested in the long-time effect of the
arterial pulsations on the CSF dynamics, we neglect the transient terms leaving
only constant terms and a term with the same form as the pulsation source.
The phase of the CSF pulsations with respect to the source term (3.5) is given
by

φ =
1
2

arctan(2ωτ0), (3.9)

and upon inspection, three interesting cases of the phase lag emerge:

1. if 2ωτ0 � 1 then φ ≈ 0,

2. if 2ωτ0 ≈ 1 then φ ≈ π
8 , and

3. if 2ωτ0 � 1 then φ ≈ π
4 .

Thus, if the characteristic frequency, 1
τ0

, is much larger than the angular heart
frequency (2ω) then the CSF pressure pulsations will be in phase, or syn-
chronous, with the blood pulsations. Otherwise, the CSF pressure pulsations
will lag the blood pulsations. Furthermore, decreasing the phase shift to zero re-
quires decreasing the characteristic time scale, τ0, by decreasing the compliance
and/or decreasing the resistance to fluid flow.

The parameter values used to numerically simulate the pressure in a normal
adult cranium are listed in column one and three of Table 3.1. Column two will
be used in the criteria enforcing simulation discussed later. Typical values of
Pss (taken as the sagittal sinus pressure), Ra, and C0 for a normal human adult
were found by Shapiro et al. [110]. The rates of CSF formation, I(e)

f and a, are
based on a daily production rate of 500 ml, and the angular frequency is based
on a heart rate of 70 beats/min.

The result of simulating the CSF pressure using the normal adult parameter
values of Table 3.1 is shown in Figure 3.2a. The resulting pressure pulsations are
very small, and would most likely not be visible in a typical intracranial pressure
measurement. This does not accurately represent actual observed measurements
where the pulsations are approximately 5 mm Hg in peak-to-peak amplitude
[110].

Using the equation for CSF pressure (3.8), parameter values can be derived
which produce more accurate predictions compared to observed measurements.
The following criteria for CSF pressure are imposed:
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1. CSF and arterial pulsations should be synchronous (zero phase shift),

2. pulsations should have a peak-to-peak amplitude of 5 mm Hg, and

3. the average long-time CSF pressure should be 13.5 mm Hg.

The first criterion implies that 2ωC0Ra � 1, thus we require:

C0 =
1
10

1
2ωRa

. (3.10)

It follows that the long-time behaviour of the CSF pressure can be expressed
as P (t) = RaI

(e)
f + Pss + aRa sin2(ωt). Therefore, imposing a peak-to-peak

amplitude of 5 mm Hg implies
aRa = 5, (3.11)

and imposing a long-time average CSF pressure of 13.5 mm Hg implies

RaI
(e)
f + Pss +

1
2
aRa = 13.5. (3.12)

Table 3.1: Parameter values for the constant compliance pressure predictions
of an adult cranium shown in Figure 3.2.

Normal Adult Values [110] Criteria Values Assigned Values

C0 = 0.85 ml/mm Hg C0 = 3.0 · 10−5 ml/mm Hg I
(e)
f = 0.01 ml/min

Ra = 2.8 mm Hg/ml/min Ra = 7.5 mm Hg/ml/min a = 0.67 ml/min
Pss = 12.2 mm Hg Pss = 10.9 mm Hg ω = 70π rad/min

Time [s]
0 1 2 3

[m
m
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g]

13.10
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13.20
Normal Adult ICP with Constant Compliance

(a)

Time [s]
0 1 2 3

[m
m

 H
g]

8

10

12

14

16

18

20
Criteria ICP with Constant Compliance

(b)

Figure 3.2: CSF pressure predictions for a constant compliance compartment
using normal human adult parameter values (a), and using parameter values
determined by the imposed criteria (b).

27



Solving these criteria along with the CSF production requirement of 500 ml/day
results in the new parameter values listed in the second column of Table 3.1.

Figure 3.2b shows the CSF pressure predicted by these new parameter val-
ues. The simulation resembles intracranial pressure measurements for normal
humans presented in [110]. The values for the resistance to fluid flow, Ra, and
the site of absorption pressure, Pss, determined by the criteria, are close to
those measured by Shapiro et al. [110]; however, in order for this simple pres-
sure volume model to accurately predict normal CSF dynamics, the compliance
of the CSF compartment needs to be on the order of 10−5 ml/mm Hg. This
is approximately 5 orders of magnitude smaller than the compliance measured
by Shapiro. Furthermore, the phase shift predicted by this model using the
normal adult parameter values is φ ≈ 0.78 ≈ π

4 rad whereas the phase shift
using the parameter values determined by the imposed criteria is φ ≈ 0.05 rad.
Thus using normal adult parameter values, this pressure volume model does not
accurately represent the observed dynamics of intracranial CSF.

3.2.2 Phenomenological Compliance

In 1978, Marmarou et al. [71] showed that the CSF pressure volume curve
is exponential in shape and that the compliance of the compartment should
decrease as CSF pressure increases. They expressed this relationship by defining
the compliance function as

C(P ) =
1
kP

, (3.13)

where k = 1
0.4343PVI and PVI is the pressure volume index. Using the compliance

function (3.13) in the general model (3.6) results in the following nonlinear
differential equation

1
kP (t)

dP
dt

+
1
Ra

(P (t)− Pss) = I
(e)
f + a sin2(ωt). (3.14)

This Riccati equation with the initial condition P (0) = P0 can be solved by
changing the dependent variable to p(t) via, p(t) = 1

P (t) , and then using the
integrating factor method. Returning to the original pressure variable, P (t),
gives

P (t) =
P0 exp

(
k
(
I
(e)
f + Pss

Ra
+ a

2

)
t− k

4ωa sin(2ωt)
)

1 + k P0
Ra

∫ t
0

exp
(
k
(
I
(e)
f + Pss

Ra
+ a

2

)
s− k

4ωa sin(2ωs)
)
ds
. (3.15)

Figure 3.3a shows the CSF pressure predicted for a normal adult cranium
at large times where the initial condition no longer affects the solution. Normal
adult CSF pressure was computed using the parameter values from columns
one and three of Table 3.2. The resistance to flow, pressure volume index, and
absorption site pressure are measurements from Shapiro et al. [110] for normal
adult craniums. The long-time CSF pressure, approximately 13.167 mm Hg,
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Table 3.2: Parameter values for the phenomenological compliance pressure pre-
dictions shown in Figure 3.3.

Normal Adult Values [110] Criteria Values Assigned Values

Ra = 2.8 mm Hg/ml/min Ra = 7.5 mm Hg/ml/min I
(e)
f = 0.01 ml/min

PV I = 25.9 ml PV I = 0.001 ml a = 0.67 ml/min
Pss = 12.2 mm Hg Pss = 10.9 mm Hg P0 = 13.5 mm Hg

ω = 70π rad/min

Time [s]
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(b)

Figure 3.3: CSF pressure predictions for a compartment with a phenomeno-
logical compliance function using normal human adult parameter values (a), and
using parameter values determined by the imposed criteria (b).

corresponds to a compliance of about 0.85 ml/mm Hg; however, this compliance
is too large and CSF pressure pulse amplitudes on the order of 5 mm Hg peak-
to-peak do not occur.

In order for the model to produce such observed pulsations in the CSF
pressure, the compliance, and thus the pressure volume index, must decrease.
By trial and error, a value of PVI = 0.001 ml along with the other criteria
parameter values listed in Table 3.2 were found to produce pulsations with a
peak-to-peak amplitude of about 5 mm Hg. This pressure volume index and an
average pressure of about 13.5 mm Hg correspond to a compliance of approxi-
mately C = 3.0 · 10−5 ml/mm Hg. Hence, a compliance on the order of 10−5 is
required to give rise to the observed pressure pulsations. This value is far smaller
than any experimentally measured value of compliance [91, 107, 109, 110]. The
pressure predicted using the criteria and assigned parameter values of Table 3.2
is shown in Figure 3.3b. CSF pressure pulsations are visible with a peak-to-peak
amplitude of about 5 mm Hg and an average pressure of about 13.5 mm Hg.
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3.3 Discussion

Assuming that the pressure volume index is 25.9 ml [110] and that CSF pres-
sure fluctuates from 11 to 16 mm Hg in a normal human adult, implies that the
compliance of the CSF compartment varies from 0.7 to 1.0 ml/mm Hg, using the
phenomenological form (3.13). Thus, to a first approximation, the compliance
of the CSF compartment can be considered constant. Analysis of this con-
stant compliance case, Section 3.2.1, shows that the phase difference between
the CSF pulsations and the arterial forcing depends on the compliance and
the resistance to fluid flow. Assuming the pulsations are initially synchronous
(2ωC0Ra � 1), increasing either the compliance, C0, or the resistance to fluid
flow, Ra, introduces a phase shift. Using the measured values of compliance and
resistance for normal adults [110], this model predicts a phase shift of π

4 rad.
Thus, the synchrony between CSF and arterial pressure pulsations is due to
a balance between the cranial compliance, the resistance to CSF absorption,
and the angular frequency of the heart. Large disruptions in this balance are
required to break this synchrony, since if 2ωC0Ra � 1, then doubling the heart
rate will give 2(2ωC0Ra) � 2, and in the worst case this may be considered as
2(2ωC0Ra) ≤ 1, which corresponds to a phase shift of at most π

8 ≈ 0.39, and so
this may still be considered an approximately synchronous state.

The constant compliance analysis also shows that experimentally determined
compliance values are too large to permit intracranial pressure measurements
with visible pulsations (pulse amplitudes larger than the sensitivity of the sen-
sors which are on the order of 1 mm Hg) in this class of models. In order for CSF
pressure pulsations with an amplitude similar to experimental observations to
be visible in the model predictions (5 mm Hg peak-to-peak amplitude), a com-
pliance on the order of 10−5 was required. This compliance is small enough that
the compartment can essentially be considered rigid. Pressure pulsations dur-
ing hydrocephalus have been measured to be about 10 mm Hg peak-to-peak [35]
which would require an even smaller cranial compliance. The model predictions
demonstrate that with a compliance value on the order of experimentally mea-
sured values (0.85 ml/mm Hg [110]), the compartment walls absorb the effect of
the source pulsations and the CSF pressure remains approximately constant.

The criteria imposed to force the model predictions to match experimental
measurements also required the resistance to fluid flow to increase slightly from
2.8 to 7.5 mm Hg/ml/min and the pressure in the absorption sites to decrease
slightly from 12.2 mm Hg to 10.9 mm Hg. Both of these altered values, however,
still lie within the physical range associated with the model parameter [22, 110].
Resistance to fluid flow has been shown to increase nonlinearly with age [22],
and is related to a decrease in the CSF production rate that occurs in elderly
people [73]. Measurements of the resistance to flow in hydrocephalic patients
ranged from 23.5 in patients with elevated ICP to 38.8 mm Hg/ml/min in pa-
tients with NPH [107]. Commonly found in the elderly population, NPH was
hypothesized by Bateman [7] to be the result of low intracranial compliance and
high impedance (which corresponds to a high resistance to fluid flow). From the
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analysis of the pressure volume model presented here, the combination of a low
intracranial compliance and a slightly increased resistance was shown to produce
large amplitude pulsations without a jump in the mean ICP. This reproduces
the conditions observed in NPH patients; however, the pressure volume index
of low or normal pressure hydrocephalus patients were measured to range from
39.2 to 48.5 ml [91] which are both much larger than the value required for the
simulation (0.002 ml).

It should be noted here that some experimentalists refer to a stiffening of
brain tissue with age. This stiffening does not refer to changes in the mechanical
parameters of brain tissue, but rather it may refer to a reduced cranial compli-
ance due to the reduced elastic properties of the vessel walls and the decreased
CSF circulation that occur with age. In this state, the brain tissue may appear
to be stiffer because changes in the intracranial pressure result in essentially no
change in the CSF volume due to the decreased compliance and limited com-
pensatory mechanisms of the compartment. This does not give any information
about the mechanical parameters of brain tissue, such as the Young’s Modu-
lus, which, as will be discussed in Chapter 6, is hypothesized to decrease with
age, meaning the brain tissue actually gets softer. This confusion is enhanced
by the term elastance, which was once thought to be a measure of brain tissue
elasticity; it was later shown otherwise, that the concepts are independent [128].

Including the phenomenological form of the compliance function in the model,
Section 3.2.2, and using an experimentally measured value for the pressure vol-
ume index (25.9 ml [110]), the model developed here predicts a compliance of
approximately 0.85 ml/mm Hg and very small pulsations in the CSF pressure.
Reducing the pressure volume index to 0.001 ml, along with slightly increasing
the resistance to flow and slightly decreasing the absorption site pressure, how-
ever, results in a compliance of approximately 10−5 ml/mm Hg (a reduction of
about 5 orders of magnitude) and predicted CSF pulsations with an amplitude
of approximately 5 mm Hg peak-to-peak.

Shapiro et al. [110] measured the mean compliance to be 0.34 ml/mm Hg in
infants and 0.62 ml/mm Hg in older children which are both smaller measure-
ments than the mean compliance of 0.85 ml/mm Hg found for normal adults,
but not small enough to produce observable pressure pulsations according to
this model. This seems to indicate that the compliance of the cranium may
depend on age via the growth and development of brain tissue and the result-
ing changes in the tissue’s mechanical properties. These differences, however,
are more likely attributable to the small venous blood volume in infant crani-
ums [110]. Large venous pools in adult craniums have more blood volume to
displace during the CSF bolus injection of a pressure volume index measure-
ment. This larger displaced volume will result in a larger PVI measurement and
thus a larger compliance. Even though the cranial sutures are open in infants,
the force exerted by the CSF bolus injection is too small to affect the brain
tissue or the surrounding unfused skull plates [110].

If this simple mathematical model correctly represents the dynamics of CSF
in the cranium, then the conclusion of this analysis must be that the experi-
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mentally measured values of the cranial compliance and of the pressure volume
index are incorrect and off by five orders of magnitude. Assuming this not
to be the case, we must conclude that this simple model, and in fact all such
single-compartment models, are incapable of accurately representing the com-
plex intracranial CSF dynamics. All single-degree-of-freedom models, including
the popular RLC circuit models, simplify the relationship between intracranial
pressure, intracranial compliance, and the development of hydrocephalus, to the
extent where they are no longer capable of accurately predicting the dynamics
of cranial CSF.

An important aspect of CSF dynamics that is lost in these models is the
spatial dependence of the flow. Recent measurements show that the velocity of
CSF ranges from 1 to 3 mm/s in the lateral ventricles and from 5 to 10 mm/s
in the third ventricle and aqueduct [46]. Measurements of CSF velocities in the
foramen magnum have been reported as large as 44 mm/s [13] and 50 mm/s [46].
According to Poiseuille’s Law, fluid velocity is proportional to the pressure dif-
ference between the flow origin and the flow destination. Given that the CSF
velocity varies drastically within the cranium, we must infer that CSF pressure
varies spatially. This implies that a mathematical model capable of describing
CSF dynamics must depend on both time and space. The analysis presented
in this Chapter demonstrates that a much more complex relationship exists be-
tween the CSF flow and intracranial compliance than can be captured by simple
spatially-averaged time-dependent models. This complex relationship requires
more sophisticated mathematical models, in particular, models that incorporate
spatial dependencies.
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Chapter 4

A Poroelastic Analysis of
CSF Pulsations and
Hydrocephalus

In this Chapter, we use poroelasticity theory to blend the dynamics of the pul-
satile CSF and the soft brain tissue in an attempt to determine the significance
of intracranial pulsations on ventricular enlargement. Specifically, we exam-
ine the pulsation-damage hypothesis for ventricular enlargement. Poroelasticity
theory, while simplifying the viscoelastic behaviour of brain tissue, enables the
interaction between the fluid and solid phases that occur in brain tissue to be
taken into account in the subsequent analysis.

Again, the pulsation-damage hypothesis assumes the following simplified
explanation for the mechanism of pressure pulse generation in the cranium.
In systole, the choroid plexus becomes enlarged due to an influx of arterial
blood. This expanded tissue pushes on the ventricular CSF and, since CSF is
an incompressible fluid, the pressure pulse is transmitted without attenuation
or phase lag to the ventricle walls and brain parenchyma. The pulse is finally
absorbed by the subarachnoid space, dura, and skull. In diastole, the choroid
plexus decreases in volume which causes a depressurization of the ventricle wall.
This cycle repeats with the angular frequency of the heart. In theory, a small
amount of CSF may oscillate across the ventricle wall with each heart beat.
These constant oscillations may generate large shear stresses in the ventricle
wall which may explain the ependymal damage observed in hydrocephalus. As
the cells closest to the ventricles become damaged, these stresses may have
an impact further into the parenchyma, and over long times, this propagating
damage forms the basis of the pulsation-damage hypothesis of the ventricular
expansion observed in hydrocephalus [11, 49].

Recall also, that in opposition to this hypothesis, Levine [65] described three
main problems with the theory. First, many conditions that increase pulsatility,
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such as hypercapnia, or reduce cranial compliance, such as pseudotumor cerebri,
are not associated with the development of hydrocephalus. Second, because the
theory explains ventricular expansion via tissue damage it cannot account for
the relatively quick reduction of ventricular volume observed after shunt treat-
ment. And third, unless a pulse amplitude gradient is assumed, the pulsation
theory cannot explain why periventricular tissues are more affected than cortical
tissues. Levine continued to show that these pulse gradients cannot be large,
and that only what he terms mini-gradients can exist.

Recent measurements by Eide et al. [34, 35] suggest that a small difference in
pulse amplitude may exist between the ventricles and the parenchyma or SAS.
Measurements from six patients with either non-communicating or communi-
cating hydrocephalus showed elevated pressure pulse amplitudes in the lateral
ventricles compared to the brain parenchyma [35]. The difference in peak-to-
peak amplitude ranged from 0.4 to 2.6 mm Hg. In another study involving ten
patients with idiopathic normal pressure hydrocephalus, measurements of the
pressure in the parenchyma and the epidural space showed no significant dif-
ference between the wave amplitudes [34]. This suggests that the small pulse
amplitude pressure gradient may be intramantle as opposed to the traditional
view of a transmantle pressure gradient.

After Hakim et al. [51] described brain tissue as a microscopic sponge of vis-
coelastic material saturated by biological fluids, mathematical models of hydro-
cephalus based on Biot’s theory of consolidation [15] (or poroelasticity theory)
became prominent in the literature [59, 85, 121] . Common modifications of
these models include incorporating variations in the permeability of the elastic
matrix [84, 112, 118] and coupling the poroelastic equations with the Navier-
Stokes equations to describe the fluid flow in the ventricles, SAS, and aque-
duct [67, 117, 126]. Another modification [83] introduced elastic nonlinearity
and a plastic behaviour by incrementally updating the Young’s modulus, stress,
and pressure of the material. Other models have incorporated absorption of
cerebrospinal fluid by the parenchyma [64, 93] which creates an intramantle
pressure gradient. Most of these modifications lead to complicated systems of
PDEs that must be solved using computational methods.

Again, a few attempts have been made to incorporate the pulsations of the
cerebrospinal fluid into the poroelastic model. Tully and Ventikos [126] cou-
pled the poroelastic equations describing the parenchyma with computational
fluid dynamics describing the flow through the aqueduct to investigate the af-
fect of aqueduct stenosis on the development of hydrocephalus. They allowed
pulsations in both the ventricle and subarachnoid space and showed that these
pulsations have negligible effect on the displacement of the parenchyma. Lin-
ninger et al. [67] incorporated pulsations of the CSF into their computational
fluid dynamics model for fluid flow in the cranium. They allowed for fluid pro-
duction by the parenchyma which predicted higher pressures in the tissue than
in the ventricles or SAS. This pressure difference seems contrary to the mechan-
ics required to compress brain tissue as the ventricles expand in communicating
hydrocephalus. Both of these models required solving the poroelastic equations
using numerical techniques.
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In this Chapter, we analytically investigate both the displacement and fluid
filtration that result from CSF pulsations and pay specific attention to the in-
teraction between the fluid and solid motions near the ventricles. Numerical
predictions of the displacement, filtration velocity, and pressure in the paren-
chyma are presented and a parameter sensitivity analysis is performed. This
analysis suggests that the cellular damage observed in the periventricular area
of a hydrocephalic brain may be caused by the stresses induced by the CSF
pulsations, especially with the combined effect of a reduced Young’s modulus
and an increased ventricular pressure wave amplitude. A model of the fluid flow
in a pore of the parenchyma is developed to estimate the shear applied to the
walls of the pore by the fluid motion. This shear force is found to be negligible
when compared to the shear required to detach a cell from a substrate or to
break a single adhesion bond. Thus, only the stress induced in the parenchyma
by the continuous cycle of compression and expansion remains as the possible
source of the hypothesized damaging shear forces.

4.1 Poroelastic Model Formulation

A simplified view of brain parenchyma is to think of the brain as a porous linearly
elastic solid saturated in a viscous incompressible fluid. The macroscopic be-
haviour of biphasic materials are captured by Biot’s theory of consolidation [15].
Following the work of Kenyon [60] and Tenti et al. [123] we study the problem
on a simple model geometry for which analytic solutions can be found. Thus,
we model the brain as a thick-walled cylinder (see Figure 4.1): the interior rep-
resents the ventricles whilst the exterior represents the SAS and skull, and the
thick wall represents the brain parenchyma. By assuming that the ends of the
cylinder are tethered, we enforce planar strains (with no coupling in the axial
direction) and simplify the governing equations.

The intricate network of cells and ECM that comprise brain parenchyma
make the pore structure extremely complex and impossible to determine a pri-
ori. Poroelasticity theory mathematically homogenizes, or smears, the elastic
solid and viscous fluid together. As a result, at each point in the domain the
solid and fluid phases exist simultaneously. The constitutive equations derived
below refer to the macroscopic behaviour of the homogenized fluid-solid com-
posite.

4.1.1 Equation of Motion

Let ~u be the displacement, ρ be the density, and T be the second order total
stress tensor of the homogenized porous material. By conservation of momen-
tum, the equation of motion is

ρ
∂2~u

∂t2
= ∇ ·T, (4.1)
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Figure 4.1: Diagram of the thick-walled cylinder model geometry.

where the total stress tensor is assumed to have the form

Tij = −pδij + τ ij . (4.2)

Here p is the pressure of the fluid in the pores of the material, δ is the Kronecker
delta function, and τ is the Terzaghi or “effective” stress tensor given by

τ ij = λekkδij + 2Geij , (4.3)

where Einstein’s notation has been used, λ and G are the Lamé coefficients of
linear elasticity for the homogenized porous medium, and e is the linear strain
tensor defined by

eij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.4)

The Terzaghi stress tensor (4.3) relates the effective stress to the strain of
the porous material saturated with fluid. In classical continuum mechanics, the
stress tensor refers only to the solid [121]. Deformations of the fluid saturated
porous material are caused by the intergranular forces of the solid. Terza-
ghi’s effective stresses, or contact stresses, are a measure of these intergranular
forces, and so deformations of the solid are determined solely by the effective
stresses [127]. The fluid pore pressure acts in the fluid and in the solid equally.
Therefore, the total stress is the sum of the pore-pressure-induced stress and
the effective stress, as in (4.2).
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Substituting (4.2), (4.3), and (4.4) into (4.1) gives the equation of motion

ρ
∂2ui
∂t2

=
∂

∂xj

(
−pδij + λekkδij + 2G

1
2

(
∂ui
∂xj

+
∂uj
∂xi

))
= − ∂

∂xi
p+ λ

∂

∂xi
(∇ · ~u) +G∇2ui +G

∂

∂xi
(∇ · ~u),

which can be written in vector form as

ρ
∂2~u

∂t2
= −∇p+ (λ+G)∇(∇ · ~u) +G∇2~u. (4.5)

The Lamé elasticity coefficients represent the mechanical properties of the fluid-
saturated porous solid. Initially, the development of hydrocephalus may be
thought of as a loading of the brain parenchyma by an increase in ventricular
pressure occurring at a constant pore pressure [121]. This situation is similar to
what Biot and Willis [14] described as a jacketed test: a porous solid, contained
in an impermeable jacket, is loaded by increasing external fluid pressure at a
constant pore pressure. The material coefficients measured during this test are
referred to as jacketed or drained quantities, although, a dry sample may not
necessarily have the same properties as a saturated one [14]. Thus, the elasticity
coefficients in (4.5) are jacketed quantities.

4.1.2 Darcy’s Law and Mass Conservation

Darcy’s Law is a phenomenologically derived equation relating fluid flow through
a porous medium to the pressure gradient driving the flow. Filtration velocity,
~W , is the velocity of the fluid relative to the solid and is given by

~W = −k
µ
∇p, (4.6)

where k is the permeability of the solid (a measure of the ability of the medium
to transmit fluids) and µ is the viscosity of the fluid (a measure of the resistance
of a fluid to deformation under shear stress). Using (4.6), the equation of motion
(4.5) becomes

ρ
∂2~u

∂t2
=
µ

k
~W + (λ+G)∇(∇ · ~u) +G∇2~u. (4.7)

Finally, conservation of mass requires that the continuity equation holds,
that is

Dρ

Dt
+ ρ∇ · ~V = 0,

where D
Dt is the material derivative and ~V is the velocity of the homogenized

(fluid and solid) material. Since the material is composed of elastic-solid and
viscous-fluid incompressible elements, the velocity can be written as

~V = ~W +
∂~u

∂t
,
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and the continuity equation becomes

∇ ·
(
~W +

∂~u

∂t

)
= 0. (4.8)

Equations (4.7) and (4.8) form a closed system of PDEs for the displacement
and filtration velocity.

Moving to the cylindrical coordinate system with planar strain, the displace-
ment, velocity, and pressure fields reduce to depend only on the radial position
r and the time t. That is, ~u = (u(r, t), 0, 0), ~W = (W (r, t), 0, 0) and p = p(r, t).
An expression for the filtration velocity, W (r, t), can be found by integrating
the continuity equation (4.8), giving

W (r, t) =
1
r
c0(t)−

∂u

∂t
(r, t), (4.9)

where c0(t) is an arbitrary function of time.
The pore pressure is assumed to have a static (constant) and a dynamic

(time and space dependent) component, p(r, t) = ps + pd(r, t). Using Darcy’s
Law (4.6) and the expression for filtration velocity (4.9) gives

∇pd(r, t) = −µ
k
W (r, t) = −µ

k

(
1
r
c0(t)−

∂u

∂t
(r, t)

)
. (4.10)

The equation for pressure (4.10) and the equation of motion (4.7), written in
cylindrical coordinates, give the following coupled system of PDEs which govern
the displacement of the homogenized solid and the dynamic pore pressure

∂2u

∂t2
+ fr

∂u

∂t
= fr

1
r
c0(t) + cd

2

(
∂2u

∂r2
+

1
r

∂u

∂r
− 1
r2
u

)
(4.11)

and

∂pd
∂r

=
µ

k

(
∂u

∂t
− 1
r
c0(t)

)
, (4.12)

where fr = µ
ρk is the relaxation frequency and cd =

√
λ+2G
ρ is the propagation

speed of the dilatational waves.

4.1.3 Boundary Conditions

Boundary conditions are required to determine the arbitrary constants and func-
tions that arise in the solutions to the above system of PDEs, (4.11) and (4.12).
For dynamic pore pressure, we require the amplitude of the parenchyma pressure
pulsations at the ventricle boundary (r = rV ) to match the amplitude of the
ventricular CSF pulsations (pV ). Similarly, the amplitude of the parenchyma
pressure pulsations at the SAS boundary (r = rSAS) must match the amplitude
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of the SAS CSF pulsations (pSAS). Assuming the pressure waves have angular
frequency ω, the boundary conditions for the pore pressure are{

pd(rV , t) = Re
(
pV eiωt

)
pd(rSAS , t) = Re

(
pSASeiωt

)
.

(4.13)

Boundary conditions for the displacement are a bit more complicated. Since
the parenchyma effectively sits in a fluid filled container, there should be no
contact stress in the poroelastic solid at the ventricular and SAS boundaries.
This requires enforcing{ [

(λ+ 2G)∂u∂r + λ
r u
]
r=rV

= 0[
(λ+ 2G)∂u∂r + λ

r u
]
r=rSAS

= 0.
(4.14)

We solve equations (4.11) and (4.12) by assuming that the solutions are
harmonic with frequency ω and have the following forms

u(r, t) = Re
(
U(r)eiωt

)
,

pd(r, t) = Re
(
P (r)eiωt

)
,

c0(t) = Re
(
C0eiωt

)
.

Substituting the harmonic forms into the PDEs and solving, the details of which
are described in Appendix A, gives U(r) and P (r) as

U
(
ξ(r)

)
= − 1

cdαξ
C0 +

cd
fr

(
C1J1(ξ) + C2Y1(ξ)

)
, (4.15)

P
(
ξ(r)

)
= −

ω2µ ln( 1
αξ)

kf2
rα

2
C0 −

iωµc2d
kf2
rα

(
C1J0(ξ) + C2Y0(ξ)

)
+ µfrC3, (4.16)

where α =
√

ω2

f2
r
− i ωfr

, ξ(r) = αfr

cd
r, and Jn and Yn are the Bessel Functions

of order n. The constants C0, C1, C2, and C3 are determined by the boundary
conditions and can be found by solving the matrix equation A~x = ~b, where

~x = [ C0 C1 C2 C3 ]T ,
~b = [ pV pSAS 0 0 ]T ,

and the matrix A is

A =



−ω2µ ln(
ξV
α )

kf2
rα

2

−iωµc2d
αkf2

r

JV0
−iωµc2d
αkf2

r

Y V0 µfr

−ω2µ ln(
ξSAS

α )

kf2
rα

2

−iωµc2d
αkf2

r

JSAS0
−iωµc2d
αkf2

r

Y SAS0 µfr

fr

αc2dξV

MξV

2G JV0 − JV1
MξV

2G Y V0 − Y V1 0
fr

αc2dξSAS

MξSAS

2G JSAS0 − JSAS1
MξSAS

2G Y SAS0 − Y SAS1 0


,
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where M = (λ + 2G), ξV = αfr

cd
rV , ξSAS = αfr

cd
rSAS , and the notation FBn =

Fn(αfr

cd
rB) with n = 0 or 1, B = V or SAS, and F = J or Y , has been used

for convenience. Finally, the filtration velocity can be found from (4.9) as

W (r, t) =
1
r

Re
(
C0eiωt

)
− Re

(
iωU(r)eiωt

)
. (4.17)

4.2 Numerical Simulations

The values of C0, C1, C2, and C3 are expressed in terms of nonlinear combi-
nations of the Bessel functions J0, J1, Y0, and Y1. To numerically simulate
the solutions for displacement, filtration velocity, and pressure, the asymptotic
expansions for the Bessel functions with large arguments [1] are used and sim-
plifications are made using the forms of the cross-product terms. For details
on the numerical computations, including the MAPLE code used to compute the
solutions, see Appendix A.

Model parameter values are chosen to represent a typical normal pressure
hydrocephalic brain. Thus, the average pressure is defined to be normal at
13 mm Hg, but the CSF wave amplitudes are defined to be large at 9.4 and
9.0 mm Hg peak-to-peak at the ventricle wall and cortical surface, respectively.
The amplitude difference of 0.2 mm Hg was chosen since it is the smallest mea-
sured difference between the ventricular and parenchymal pressures reported by
Eide [35]. We will discuss the effect of larger amplitude differences later in this
Chapter.

The pressure amplitude prescribed at the outer boundary was chosen to be
the same as the pressure amplitude measured in the parenchyma. This choice
is justified by the measurements reported by Eide [34] in which no significant
difference in wave amplitude was observed between the parenchyma and epidural
space. Table 4.1 lists the values of the model parameters used in the numerical
simulations. Note that the Lamé coefficients have been replaced by the Young’s
modulus, E, and Poisson ratio, ν, via the relationships

G =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
.

With these parameter values, the poroelastic model predictions for the pore
pressure at the ventricle wall (r = rV ), in the middle of the parenchyma (r =
rm), and at the cortical surface (r = rSAS) are shown in Figure 4.2.

The maximum pressure predicted at the ventricle wall is 17.7 mm Hg, at
the SAS boundary it is 17.5 mm Hg, and in the middle of the parenchyma it
is 17.48 mm Hg. These model predictions match the finding of Eide [35, 34]
wherein a dynamic pressure gradient across the ventricle wall into the paren-
chyma was observed as well as no significant pressure difference between the
parenchyma and the SAS. The pressure gradient from the ventricle to the pa-
renchyma is dynamic, or oscillatory, since in systole the pressure is higher in the
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Table 4.1: Parameter values for the poroelastic model representing a normal
pressure hydrocephalic brain.

µ = 10−3 Kgm−1s−1 ρ = 103 Kgm−3 k = 10−14 m2 [59]
E = 21 kPa [121] ν = 0.4 [121] ω = 6 rad s−1

pV = 1
29.4 mm Hg pSAS = 1

29.0 mm Hg ps = 13 mm Hg
rV = 3 cm rSAS = 10 cm rm = 6.5 cm
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Figure 4.2: Predicted pressure waves in the brain parenchyma at the ventricle
wall, in the middle of the parenchyma, and at the cortical surface (a), and a zoom
of a systolic peak showing the curve separations (b).

ventricle while in diastole the pressure is higher in the parenchyma. These oscil-
latory changes in pressure cause the parenchyma to be displaced in a pulsatile
manner as shown in Figure 4.3

In systole, the pressure is largest in the ventricle which causes an outward
displacement of the parenchyma. The pressure gradient reverses in diastole
which results in an inward displacement of the parenchyma. This oscillatory dis-
placement is largest near the ventricle, with a maximum amplitude of 58.8 µm,
compared to the maximum displacement amplitude in the middle of the pa-
renchyma, 27.2 µm, or the SAS boundary, 17.7 µm. At any given time, the
magnitude of the displacement is greatest at the ventricle boundary and least
at the SAS boundary.

The oscillatory pressure gradient and the resulting compression and expan-
sion of the brain parenchyma cause movement of the fluid in and out of the
parenchyma at both boundaries, see Figure 4.4. The filtration velocity leads
the displacement and pressure waves in phase due to the conflict between the
pressure gradient and the compressed or expanded parenchyma, see Figure 4.3b.
When the ventricular pressure increases from the average pressure, the pressure
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Figure 4.3: Predicted displacement of the brain parenchyma at the ventricle
wall, in the middle of the parenchyma, and at the cortical surface (a), and the
displacement, pressure, and filtration velocity (scaled to be clearly visible) at the
ventricle wall demonstrating the phase differences between the curves (b).

gradient pushes fluid into the parenchyma and it also compresses the paren-
chyma by displacing it outwards. The resulting compression forces fluid out
of the parenchyma into the ventricle. Before the pressure reaches the systolic
maximum, the parenchyma becomes compressed enough to resist the flow with
enough force to slow the inward flow driven by the pressure gradient. The flow
velocity thus peaks before the pressure and displacement waves peak. When
the pressure gradient and parenchyma fluid expulsion forces balance, the flow
reverses and fluid begins exiting the parenchyma into the ventricle. In diastole,
the ventricular pressure drops and the parenchyma expands, and again these
two mechanisms compete to control the fluid flow.

Away from the complex filtration at the boundaries, the fluid flow in the
middle of the parenchyma is small, obtaining a maximum velocity of approxi-
mately 10 pm/s. Figure 4.4 shows the filtration velocity at three points in the
parenchyma. The velocity at the cortical surface is completely out of phase with
the velocity at the ventricle wall, which is consistent with the directions of the
intramantle pressure gradients from the ventricle to the parenchyma and from
the SAS to the parenchyma. The highest filtration velocities are seen near the
ventricle wall and have a maximum magnitude of approximately 1 µm/s.

4.2.1 Parameter Sensitivity Analysis

The previous numerical simulations used parameter values describing a normal
pressure hydrocephalic brain. By reducing the peak-to-peak wave amplitudes
in the ventricle and SAS to 5.4 and 5.0 mm Hg, respectively, the same numerics
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Figure 4.4: Filtration velocity time snapshots in the periventricular tissue (a),
and the filtration velocity at the ventricle wall, in the middle of the parenchyma
(scaled to be clearly visible), and at the cortical surface (b).

can be used to predict the behaviour of a normal brain. Similarly, by increasing
the average pressure to 20 mm Hg, the same numerics can be used to predict
the behaviour of an active hydrocephalic brain. Reducing the amplitude of
the pressure waves or increasing the average pressure as suggested above, how-
ever, has no affect on the model predictions. The displacement and filtration
are only dependent on the dynamic pressure gradient caused by the difference
between the wave amplitudes of the ventricular and SAS pressures. For in-
stance, if pV = pSAS , then no oscillatory pressure gradient exists and the entire
poroelastic material is suspended in a container with a hydrostatic pressure of
ps + pV cos(ωt) mm Hg. Since the hydrostatic pressure acts equally everywhere
on and throughout the pores of the material, no displacements or filtration will
occur.

Using pressure parameter values that describe a normal brain (ps = 13,
pV = 1

25.4, and pSAS = 1
25.0 mm Hg), a parameter sensitivity analysis can

be conducted to investigate the effect that variations in the elastic constants,
the permeability, and the oscillatory pressure gradient, have on the maximum
displacement of the parenchyma. The Young’s modulus, E, is varied from 500
to 106 Pa and the predicted maximum displacements of the ventricle wall, the
middle of the parenchyma, and the cortical surface are shown in Figure 4.5a.
The Young’s modulus of brain parenchyma was estimated by Tenti et al. [121]
to be about 21 000 Pa. Taylor and Miller [120] estimated the steady-state elastic
modulus of the brain to be about 584 Pa for small strain-rate deformations such
as hydrocephalus. As the Young’s modulus decreases from 21 000 Pa to 500 Pa,
the displacement of the parenchyma increases by about two orders of magnitude.
For a Young’s modulus of 500 Pa, the poroelastic model predicts that the brain
parenchyma compresses by about 2 mm during each systolic peak in pressure.
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Figure 4.5: Maximum displacement in the parenchyma as the Young’s modulus
(a), the Poisson ratio (b), the oscillatory pressure gradient (c), and the perme-
ability (d) are varied.

In Figure 4.5b the Poisson ratio is varied from 0 to 0.49, to avoid the well-
known numerical instability associated with a Poisson’s ratio of 0.5. Variations
in the Poisson ratio have a negligible effect on the maximum displacement of the
parenchyma. Figure 4.5c shows that the maximum displacement increases lin-
early with the dynamic pressure difference, ∆p = pV − pSAS . And Figure 4.5d
shows that changes in the permeability have little effect on the displacement
until the order of magnitude of 10−10 m2 is reached. Estimates of the perme-
ability of brain tissue are on the order of 10−16 to 10−14 m2 [59, 84], so this
larger value of permeability does not lie within the physical range of values.
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4.2.2 Pore Flow Analysis

The maximum pore velocity predicted by the poroelastic model for flow near
the ventricle wall, assuming a 0.4 mm Hg peak-to-peak pressure wave amplitude
difference between the ventricles and the SAS, was about 1 µm/s. To determine
if this shear flow is sufficient to damage the tissue cells, we use a simple pipe flow
model. By assuming the fluid is Newtonian, incompressible, and steady, and
by neglecting body forces, the Navier-Stokes equations simplify to the following
equation for flow through a straight pore,

∇q = µ∇2v, (4.18)

where ∇q is the constant pressure gradient across the length of the pore, µ is
the fluid viscosity, and v is the fluid flow along the pore. In a cylindrical pore
v = v(r), and the flow is given by

v(r) =
∇q
4µ

(r2 −R2), (4.19)

where R is the radius of the pore and the following boundary conditions are
imposed, v(R) = 0 and dv

dr |r=0 = 0.
Since the fluid flow through the porous material is governed by both the

pressure gradient and the compression or expansion of the material, the pressure
gradient used in this pore flow model, ∇q, is different from the pressure gradient
in the poroelastic model. Thus, to determine the pressure gradient ∇q, we
require the maximum velocity through the pore to be 1 µm/s. This provides an
over approximation of the pressure gradient, ∇q = −1.6 Pa, assuming a 100 µm
diameter pore. The flow through the pore is thus given by

v(r) = 400(R2 − r2), (4.20)

where the viscosity of water, µ = 10−3 Pa·s, is assumed. Finally, the shear stress
induced on the walls of the pore by a steady flow with a maximum velocity of
1 µm/s is given by

σ = µ
dv
dr

∣∣∣∣
r=R

= −40 µPa. (4.21)

Cells adhere to the extracellular matrix through the binding of integrin re-
ceptors to ligands such as fibronectin or collagen. Measurements of cell adhesion
strength using shear flows in microfluidic channels average about 84± 27 Pa for
cells adhered to low concentration collagen- or fibronectin-coated substrates [18].
The smallest observed adhesion strength was about 30 Pa and the largest ob-
served strength was about 210 Pa. This is the force required to completely
remove a cell from the substrate. Dong and Lei [26] estimated the force re-
quired to rupture one adhesive bond, or to extract a receptor from the cell
membrane, as 1 µdyn (or 10−11 N). To estimate the shear, we assume this force
is distributed over the top half of a cell attached to the pore wall. This provides
a lower bound to the shear generated by this force acting directly on the smaller
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Figure 4.6: Maximum filtration velocity in the parenchyma (a) and the corre-
sponding magnitude of the shear applied to the pore walls (b) as the oscillatory
pressure gradient between the ventricles and SAS is varied.

area of an integrin binding site. Assuming a spherical cell of radius 5 µm (the
soma of a neuron ranges from 4 to 100 µm in diameter), this force corresponds
to a surface shear of about 0.06 Pa. The estimated shear stress imposed by
the fluid flow in the periventricular region was about 40 µPa, which is three
orders of magnitude smaller than the estimated stress required to break a single
adhesive bond.

Figure 4.6a shows the maximum filtration velocity at the ventricle wall,
in the middle of the parenchyma, and at the cortical surface as the pressure
wave amplitude difference between the ventricles and SAS, ∆p = pV − pSAS ,
is increased. Positive velocities represent flow away from the ventricles and
negative velocities represent flow towards the ventricles. Figure 4.6b shows the
corresponding shear stress magnitude imposed on the wall of a cylindrical pore
of radius 50 µm at each of these positions in the parenchyma. The pore pressure
gradient ∇q was chosen by requiring the maximum filtration velocity to occur
at the centre of the pore for each increment in ∆p and for each position in
the parenchyma. Even with a 2 mm Hg difference in wave amplitude (4 mm Hg
peak-to-peak) the maximum filtration velocity at the ventricle wall is only about
11 µm/s and the shear force is only about 450 µPa. This shear force is still
two orders of magnitude smaller than the shear estimated to rupture a single
adhesive bond.
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4.3 Discussion

The mathematical model presented in this Chapter incorporates the oscillations
of CSF into the poroelastic model developed by Tenti et al. [121]. The amplitude
of the oscillations were chosen to match measurements obtained by Eide [35,
34] from hydrocephalic patients. Maximum displacements, about 60 µm, and
maximum filtration velocities, about 1 µm/s, were predicted to occur at the
ventricle wall. The displacement was found to be in phase with the pressure
pulsations throughout the parenchyma while the filtration velocity was found
to lead the pressure wave at the ventricle wall.

From the parameter sensitivity analysis conducted in Section 4.2.1, we can
conclude that the Young’s modulus and the dynamic pressure gradient are the
most significant parameters in the poroelastic model. Measurements of the
difference between the ventricular and parenchymal pressure pulsations in hy-
drocephalic patients ranged from 0.4 to 2.6 mm Hg peak-to-peak [35]. From
the predictions of this model, the ventricle wall would displace 60 to 600 µm,
respectively, which is an increase by one order of magnitude. Decreasing the
Young’s modulus from the value estimated by Tenti et al. [121], 21 kPa, to the
value determined by Taylor and Miller [120], 584 Pa, increases the displacement
of the ventricle wall by almost two orders of magnitude.

No difference in displacement or filtration is predicted by this model for
changes in the average pressure or the amplitude of the oscillations, provided the
wave amplitude difference between the ventricles and the SAS remains constant.
As the difference between these two wave amplitudes increases, however, the
displacement and filtration both increase. The cyclic compression and expansion
that the brain tissue undergoes along with the corresponding inflow and outflow
of fluid cause larger than normal shear forces to act on the cells of the ependyma
(the lining of the ventricles) and on the cells of the parenchyma close to the
ventricles.

In hydrocephalus, the cells of the ependyma are observed to be flattened
and stretched, changing from cylindrical and heavily ciliated to cubic with few
cilia, and disruptions or gaps are observed in the ependyma lining [101]. To de-
termine the potential of the fluid filtration to cause this damage, we developed
a model for flow along a pore of the parenchyma, and estimated the shear force
induced on the parenchyma by the filtration. Near the ventricle wall, where the
filtration velocity peaks at about 1 µm/s, the shear applied to the pore walls
was estimated to be 40 µPa. This is significantly smaller than our estimate
of the shear required to break a single adhesion bond, 0.06 Pa, based on the
experimental work of Dong and Lei [26]. This analysis indicates that the fluid
filtration causes negligible damage to the parenchyma; however, this analysis ig-
nored parenchymal absorption which would increase the fluid filtration through
the tissue. Also, the effects of oscillatory shear flows on cell adhesion may differ
from steady shear flows, and cell adhesion strength may depend on the substrate
used in the experiments (most experiments use collagen which is not found in
abundance in brain ECM); to the best of our knowledge, these effects have yet
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to be investigated. Nevertheless, since the fluid filtration predicted here causes
only negligible shearing on the tissue, only the cyclic compression and stretch-
ing of the periventricular area remains as a possible mechanism for the damage
observed in hydrocephalus. The compressive and expansive forces are induced
by unbalanced pressure wave amplitudes between the ventricles and the paren-
chyma or SAS, but it remains to be determined how the pulse amplitude in the
ventricle becomes increased in the first place.

As was shown in Chapter 3, the amplitude of the CSF pulsations increases
as the compliance of the cranium decreases. Mimicking this apparent stiffening
of the brain tissue by increasing the Young’s modulus, however, reduces the
effect of the pulsations by decreasing the resulting displacements. Using the
value of the Young’s modulus determined by Taylor and Miller [120], 584 Pa,
we obtain a prediction of 2 mm of parenchymal compression compared to the
40 µm predicted using the value estimated by Tenti et al. [121], 21 kPa. If, for
example, the microstructure of brain tissue was somehow altered, causing the
Young’s modulus to decrease to the value estimated by Taylor and Miller, then
the unbalanced pressure pulsations that act on the brain may be more significant
to the development of the cellular damage and ventricular enlargement observed
in hydrocephalus.

The combined effect of an increased pressure wave amplitude in the ventricles
and a reduced Young’s modulus will cause larger than normal shear forces to
occur in the periventricular area. It should be noted, however, that once a
shunt is surgically inserted and CSF is siphoned off into another region of the
body, the brain responds by returning, approximately, to it’s original shape.
With successful shunt treatment, the brain parenchyma is no longer displaced
outward into the skull and many, if not all, of the symptoms of hydrocephalus
are resolved.

The damage theory of hydrocephalus is based on the assumption that the
cellular damage caused by the pulsations induces biological changes in the living
tissue, and that these changes permit the parenchyma to be deformed outward.
With shunt insertion, the pressure waves of the CSF may be initially trun-
cated due to the opening threshold of the shunt. This truncation would reduce
the pulse amplitude of the CSF pressure and reduce the oscillatory motion of
the parenchyma. Furthermore, the shunt may also increase the compliance of
the cranium by providing another mechanism for CSF removal. Increasing the
compliance would decrease the pulse amplitude of the ventricular CSF. The de-
graded mechanical properties of the tissue may then allow the tissue to return,
approximately, to it’s original shape. Initially, the tissue may be stretched, but
over time, the living cells would respond to this mechanical stimulus and relax
into the new arrangement.

If hydrocephalus is caused by a combination of a reduced intracranial com-
pliance (to increase the ventricular pressure wave amplitudes) and a decreased
Young’s modulus (to enhance the effect that the pulsations have on the paren-
chyma), then two questions arise. First, what causes the cranial compliance to
decrease prior to the development of hydrocephalus? Or, if this is not the rea-
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son for the unbalanced ventricular and SAS pressure waves, then what causes
the ventricular pressure wave amplitudes to increase? The second question that
must be raised is what cellular or chemical changes occur in the tissue to de-
crease the Young’s modulus, making the tissue more susceptible to deformation.

The promising work by Johnston and coworkers [86] provides possible an-
swers to these questions by suggesting a new molecular mechanism that causes
the development of intramantle pressure gradients and hydrocephalus. Recall
that they were able to induce hydrocephalus in rats by injecting antibodies to
β1-integrins into the ventricles. Amongst other functions, integrins play a key
role in the structural integrity of brain tissue; they protrude from cell membranes
to adhere the cell to the surrounding extracellular matrix. The antibodies block
the binding sites of the integrins which, at a macroscopic scale, is hypothesized
to reduce the structural integrity of the tissue, decreasing the Young’s modu-
lus, and causing the pore pressure to decrease [9], thus partially creating the
necessary conditions discussed above for ventricular expansion.

49



Chapter 5

A Viscoelastic Analysis of
CSF Pulsations and
Hydrocephalus

In the previous Chapter, a poroelastic model was developed to determine the
effect of CSF pulsations on the development of hydrocephalus. With respect
to the pulsation-damage theory of ventricular enlargement, the fluid filtration
resulting from the CSF pulsations was found to be negligible compared to the
shear stress required to damage tissue at the cellular level. Thus, it is not nec-
essary to consider the fluid phase of brain tissue when investigating the periodic
loading caused by CSF pulsations and the possible link to the development of
hydrocephalus. Therefore, in this Chapter we present an analysis of the effect of
periodic loading on the brain parenchyma using a viscoelastic approach to de-
termine if these pulsations have any significant role in the genesis and evolution
of hydrocephalus.

The mechanical behaviour of brain tissue should be modelled differently
for different experimental conditions, and in particular, the magnitude of the
strain rate should be considered when choosing a mechanical model. Specifi-
cally, poroelastic models cannot account for the strong strain-rate dependence
observed in the behaviour of brain tissue, but this intrinsic viscoelasticity only
influences the short-term response as the effect dissipates over time [17]. Thus,
different constitutive relations may be required for the same material depending
on the experimental conditions being modelled [61]. The behaviour of brain tis-
sue under impacts, such as the periodic loading due to CSF pulsations, may be
better suited to an incompressible viscoelastic approach. In contrast, a poroe-
lastic approach may be better suited to long-time processes where material
compressibility results from consolidation effects.

Many linear and nonlinear viscoelastic constitutive equations have been pro-
posed for brain tissue [23, 75, 78, 79, 80, 90, 129]. Sivaloganathan et al. [113]
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developed a model of hydrocephalus based on the standard linear viscoelastic
model and then extended it to include pulsatile ventricular pressure [114]. They
found that when both the dilatational and deviatoric effects are assumed to be
viscoelastic, the ability to determine model parameters from experimental data
is lost due to the large number, and lack of physical interpretations, of these
parameters.

The first fractional derivative constitutive models in linear viscoelasticity
were proposed by Bagley and Torvik [4, 5, 6] and Rogers [103]: these mod-
els were shown to predict adequately the behaviour of polymers. Since then,
fractional order models have been shown to describe accurately the creep and
relaxation processes in polymeric materials [5, 53], and to characterize the ef-
fect of vibrations in the response of viscoelastically damped materials [4, 119].
Fractional order constitutive models have also been shown to incorporate the
stochastic (micro-Brownian) motion of chain molecules at the microscopic level
into the macroscopic description of the material, and in fact, it has been shown
that these models can be derived directly from the molecular theory for polymer
solutions [5]. From the observation that brain tissue behaves qualitatively sim-
ilar to rubber-like materials [40], the success of these models has led to the ap-
plication of fractional viscoelastic models to describe the mechanical behaviour
of brain tissue [23, 66, 132].

Viscoelastic models based on frational calculus arose from the observation
that the stiffness and damping properties of viscoelastic materials are propor-
tional to fractional powers of frequency [5]. This observation leads directly to
the use of fractional derivatives via the Fourier Transform. Bagley and Torvik [6]
developed conditions for the fractional orders of a viscoelastic constitutive equa-
tion based on thermodynamic arguments to ensure that the resulting model
predicts a non-negative rate of energy dissipation and a non-negative internal
work. Later work by Heymans and Bauwens [53] showed that if the constitu-
tive equation is derived directly from a fractional rheological model, where the
viscous first order derivative terms are replaced by fractional order derivative
terms, then these requirements are automatically satisfied.

The significant difference between integer and fractional order derivatives is
that fractional derivatives are non-local operators. The entire history of a causal
function is required to determine the fractional derivative via the convolution
with a fading memory function. The main advantage of fractional viscoelastic
models is the relatively small number of model parameters required to describe
adequately the behaviour of polymer-like materials. For example, no relax-
ation spectrum is required since the model incorporates this type of complexity
through only one characteristic time and the fractional differential operator [53].
The physical interpretation of fractional differentiation is still an open question,
although one attempt has been made by Podlubny [96] who used two different
kinds of time to relate the meaning of fractional derivatives to the meaning of
first order derivatives.

Due to the reported success of the fractional Zener viscoelastic model in pre-
dicting the creep and relaxation of brain parenchyma [23], we chose this model
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Figure 5.1: Schematics of the Zener viscoelastic model (a) and the standard
viscoelastic model (b).

to describe the hydrocephalic brain in the following analysis on the effect of
ventricular pulsations. We solve the boundary value problems analytically, for
both infant and adult hydrocephalus, and use numerical simulations to demon-
strate that the displacement waves arising in adult parenchyma are small in
comparison to the displacement waves that present in infant parenchyma. The
Chapter concludes with a description of a possible link between parenchyma age
and the order of the fractional derivative.

5.1 Fractional Zener Model Formulation

Inspired by the success of fractional order viscoelastic models at predicting the
behavior of polymers, Davis et al. [23] showed that the fractional Zener linear
viscoelastic model performs better than other three- or four-parameter linear
viscoelastic models at characterizing the creep and relaxation of brain paren-
chyma when compared to the experimental data reported by Galford and McEl-
haney [43]. This may be due to the temporal multi-scaling effect of the fractional
order derivative found in the constitutive equation [28, 96]. By definition, the
Riemann-Liouville fractional derivative of order α, 0 < α < 1, of a causal func-
tion f(t) is:

Dαf(t) =
1

Γ(1− α)
d
dt

∫ t

0

(t− s)−αf(s)ds, (5.1)

where Γ(a) =
∫∞
0

e−xxa−1dx is the Eulerian gamma function.
The Zener viscoelastic model consists of an elastic spring, E1, and a viscous

dashpot, µ, in series, all in parallel with another elastic spring, E2. A diagram
of the Zener viscoelastic model is provided in Figure 5.1a. The constitutive
equation of the fractional Zener model is:

σ(t) + ταDασ(t) = E∞ε(t) + E0τ
αDαε(t), (5.2)

where σ(t) is the stress at time t, ε(t) is the strain at time t, τ = µ/E1 is the
relaxation time, E0 = E1 + E2 is the initial elastic modulus, and E∞ = E2 is
the steady-state elastic modulus.
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In this Chapter we extend the work presented in [114] by modelling the
brain as a homogeneous, incompressible, isotropic, linear viscoelastic solid that
obeys the fractional Zener constitutive law. The brain geometry is simplified
as a thick-walled tethered cylinder, hence strain can be assumed to be planar.
Following [114] and [121], we assume a cylindrical geometry for the brain. Apart
from the resulting simplification to one spatial dimension, more amenable to
analytic methods, this choice of geometry was motivated by the observation of
J. Drake (Chief Neurosurgeon, Hospital for Sick Children, Toronto) [27] that
the ventricular configuration in fully developed hydrocephalus is more akin to a
cylindrical geometry than a spherical geometry. Nevertheless, this choice does
not significantly alter the results and conclusions of this work.

Brain Parenchyma

Skull

Ventricles

a

b

0

r

Figure 5.2: Diagram of the simplified cylindrical geometry of the brain.

The inside of the thick-walled cylinder represents the cerebral ventricles,
the thick wall represents the brain parenchyma, and the outside represents the
subarachnoid space and skull, Figure 5.2. The inner boundary represents the
ventricular wall and this is subjected to a pulsatile pressure due to the rhythmic
pumping of the heart. The outer boundary represents the cortical surface and
is subjected to either a stress-free boundary condition (for infant hydrocephalus
where the skull is not yet fixed) or zero displacement (for adult hydrocephalus
where the skull is rigid).

We assume that the deviatoric parts of the stress and strain tensors behave
according to the fractional Zener constitutive law, and that the dilatational
parts obey Hooke’s law of linear elasticity. The boundary value problems are
then solved and the analytic solutions for the displacement and stress fields
are shown to be generalizations of the solutions obtained by Sivaloganathan
et al. [114], where the brain was modelled as a standard viscoelastic solid, see
Figure 5.1b.

53



5.1.1 Infant Hydrocephalus

Following the approach of Sivaloganathan et al. [114], the problem of infant
hydrocephalus requires solving the equation of motion,

∂

∂r
σrr +

1
r
(σrr − σθθ) = 0, (5.3)

subject to the boundary conditions

σrr = −pi at r = a and σrr = 0 at r = b, (5.4)

where pi is the difference between the ventricular CSF pressure and the sub-
arachnoid space CSF pressure. The zero-stress boundary condition (as used in
[64, 114, 121]) is a weak condition which avoids the much more complex free
boundary value problem. We assume that the infant brain is encased in a thin
elastic membrane representing the soft skull, cartilage, and skin. Since large
deformations to this elastic membrane, in an infant with hydrocephalus, occur
very slowly over large time scales, and the analysis presented in this Chapter
is done for short time scales (on the order of the heart beat), this zero-stress
boundary condition is valid.

In the linear elastic case, the boundary value problem (5.3)-(5.4) has the
well known solution [38]:

u(r, t) = pi(t)
(

a2

b2−a2

)(
1+ν
E

)(
(1− 2ν)r + b2

r

)
σrr(r, t) = pi(t) a2

b2−a2

(
1− b2

r2

)
σθθ(r, t) = pi(t) a2

b2−a2

(
1 + b2

r2

)
.

(5.5)

To determine the solution to (5.3) for the viscoelastic case, the elastic-
viscoelastic Correspondence Principle is used. We first rewrite the constitutive
equation (5.2) as

Pσ = Qε, (5.6)

where P and Q are differential operators of the form

P = p0 +
n∑
j=0

pj+1D
j+α, Q = q0 +

n∑
j=0

qj+1D
j+α,

with material parameters pj and qj .
By letting sij and dij be the deviatoric stress and strain tensors and σii and

εii be the dilatational stress and strain tensors, we can rewrite (5.6) as

P1sij = Q1dij , and P2σii = Q2εii. (5.7)

Assuming that the deviatoric response of the brain is described by a fractional
Zener viscoelastic model and the dilatational response of the brain is described

54



by a linear elastic model, the differential operators in (5.7) have the following
forms:

P1 = 1 + ταDα, Q1 = E∞ + E0τ
αDα, (5.8)

P2 = 1, Q2 = 3K,

where K is the bulk modulus of the brain tissue.
The time-dependent viscoelastic Young’s modulus and Poisson ratio are [38]

Ev(t) =
3Q1Q2

P2Q1 + 2P1Q2
and νv(t) =

P1Q2 − P2Q1

P2Q1 + 2P1Q2
. (5.9)

We substitute
1 + ν

E
=
P1

Q1
and (1− 2ν) =

3P2Q1

P2Q1 + 2P1Q2
in (5.5) and take the

Laplace Transform (using the notation L{f} = f̄) to obtain

ū(r, s) = p̄i(s)
(

a2

b2 − a2

)
P̄1

Q̄1

(
3P̄2Q̄1

P̄2Q̄1 + 2P̄1Q̄2

r +
b2

r

)
. (5.10)

Substituting the Laplace Transform of the differential operators and simplifying
gives

ū(r, s) =
a2

b2 − a2

[(
3r

6K + E0
+

b2

E0r

)
p̄i(s) (5.11)

+
b2(E0 − E∞)

E2
0τ
αr

p̄i(s)
1

sα + ĉ
+

3(E0 − E∞)r
(6K + E0)2τα

p̄i(s)
1

sα + d̂

]
,

where ĉ =
E∞
E0

τ−α, and d̂ =
6K + E∞
6K + E0

τ−α.

The generalized Mittag-Leffler function, defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
,

satisfies the identity,∫ ∞

0

e−sttαk+β−1E
(k)
α,β(±ct

α)dt =
k!sα−β

(sα ∓ c)k+1
,

where α, β ∈ C, Re(α) > 0, Re(β) > 0, and k = 0, 1, 2, . . . [23, 52]. Thus, the
inverse Laplace Transform of 1

sα+c can be expressed in terms of the generalized

Mittag-Leffler function as L−1
{

1
sα+c

}
= tα−1Eα,α(−ctα). Taking the inverse

Laplace Transform of (5.11) and using the above result we obtain an analytic
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expression for the displacement,

u(r, t) =
a2

b2 − a2

[(
3r

6K + E0
+

b2

E0r

)
pi(t)

+
b2(E0 − E∞)

E2
0τ
αr

pi(t) ∗
(
tα−1Eα,α

(
−ĉtα

))
+

3(E0 − E∞)r
(6K + E0)2τα

pi(t) ∗
(
tα−1Eα,α

(
−d̂tα

))]
, (5.12)

where ∗ denotes the convolution operation over time.
In order to compare this result to the solution presented by Sivaloganathan

et al. [114], we define the pulsatile boundary condition to be pi(t) = p∗ cosωt,
with p∗ a constant, and choose α = 1. To simplify the result, the following
property and convolution result are required: the Mittag-Leffler function satis-
fies E1,1(z) = E1(z) = ez, and the convolution of a cosine and exponential is∫ ∞

0

cos
(
ω(t− s)

)
e−δsds =

1
1 + δ2

ω2

(
1
ω

sinωt+
δ

ω2
cosωt− δ

ω2
e−δt

)
. (5.13)

After some manipulation, the fractional Zener viscoelastic model predicts the
displacement to be

u(r, t) =
a2p∗

b2 − a2

{(
3r

6K + E0
+

b2

E0r

)
cosωt (5.14)

+
b2(E0 − E∞)

E2
0τr

· 1
1 + ĉ2

ω2

(
1
ω

sinωt+
ĉ

ω2
cosωt− ĉ

ω2
e−ĉt

)

+
3(E0 − E∞)r
(6K + E0)2τ

· 1

1 + d̂2

ω2

(
1
ω

sinωt+
d̂

ω2
cosωt− d̂

ω2
e−d̂t

)}
,

which is similar in form to the solution presented by Sivaloganathan et al. [114],
reprinted later in this Chapter for completeness (5.23).

Finally, the planar stresses in the infant hydrocephalus case are given by

σrr(r, t) =
a2p∗

b2 − a2
cosωt

(
1− b2

r2

)
and

σθθ(r, t) =
a2p∗

b2 − a2
cosωt

(
1 +

b2

r2

)
. (5.15)

5.1.2 Adult Hydrocephalus

In adult hydrocephalus, the skull is rigid and so the outer boundary condition
must be changed from the zero-stress condition of (5.4) to a zero-displacement
condition. Thus, we wish to solve (5.3) subject to the boundary conditions

σrr = −pi at r = a and u = 0 at r = b. (5.16)
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In this case, the linear elastic solution is
u(r, t) = pi(t)

a2b(1−2ν)(1+ν)
(a2+(1−2ν)b2)E

(
b
r −

r
b

)
σrr(r, t) = −pi(t) a2

a2+(1−2ν)b2

(
1 + b2(1−2ν)

r2

)
σθθ(r, t) = −pi(t) a2

a2+(1−2ν)b2

(
1− b2(1−2ν)

r2

)
.

(5.17)

As before, we assume the deviatoric response and the dilatational response
of the brain can be separated according to (5.7) and (5.8). Using the time-
dependent Young’s modulus and Poisson ratio defined in (5.9) and the Laplace
Transform, we get that

(1− 2ν)(1 + ν)(
a2 + (1− 2ν)b2

)
E

=
3P̄1P̄2(

P̄2Q̄1 + 2P̄1Q̄2

)
a2 + 3P̄2Q̄1b2

=
3 (sα + τ−α)(

(6K + E0)a2 + 3E0b2
)
sα +

(
(6K + E∞)a2 + 3E∞b2

)
τ−α

.

By the elastic-viscoelastic Correspondence Principle, the Laplace Transform
of the displacement is

ū(r, s) =
3a2bp̄i(s)

ĝ

(
b

r
− r

b

)(
1 +

(1− ĥ)
τα

1

sα + ĥτ−α

)
, (5.18)

where f̂ = (6K + E∞)a2 + 3E∞b2, ĝ = (6K + E0)a2 + 3E0b
2, and ĥ = f̂

ĝ .
Taking the inverse Laplace Transform gives the displacement in terms of the
generalized Mittag-Leffler function,

u(r, t) =
3a2b

ĝ

(
b

r
− r

b

)(
pi(t)+

1− ĥ

τα
pi(t) ∗

(
tα−1Eα,α

(
−ĥ
( t
τ

)α)))
. (5.19)

In the infant hydrocephalus case, the planar stresses did not depend on the
Young’s modulus or Poisson ratio, and thus were the same for both the elastic
and the viscoelastic problems. In contrast, the adult hydrocephalus case planar
stresses depend on these parameters and thus must be calculated using the
elastic-viscoelastic Correspondence Principle. In a similar procedure as above,
the planar stresses are

σrr(r, t) = −a2

(
Â+ D̂

b2

r2

)
pi(t)

− a2

(
ÂĈ + D̂Ĝ

b2

r2

)
τ−αpi(t) ∗

(
tα−1Eα,α

(
−ĥ
( t
τ

)α))
(5.20)

and

σθθ(r, t) = −a2

(
Â− D̂

b2

r2

)
pi(t)

− a2

(
ÂĈ − D̂Ĝ

b2

r2

)
τ−αpi(t) ∗

(
tα−1Eα,α

(
−ĥ
( t
τ

)α))
, (5.21)
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where

Â =
6K + E0

(6K + E0)a2 + 3E0b2
, D̂ =

3E0

(6K + E0)a2 + 3E0b2
,

Ĉ =
6K + E∞
6K + E0

− ĥ, and Ĝ =
E∞
E0

− ĥ.

For α = 1 and pi(t) = p∗ cosωt these expressions simplify to

u(r, t) =
3a2bp∗

ĝ

(
b

r
− r

b

)[
cosωt

+
1− ĥ

τ
(
1 + ĥ2

τ2ω2

)( 1
ω

sinωt+
ĥ

τω2
cosωt− ĥ

τω2
e−ĥ

t
τ

)]
,

σrr(r, t) = −a2p∗

[(
Â+ D̂

b2

r2

)
cosωt

+
ÂĈ + D̂Ĝ b2

r2

τ
(
1 + ĥ2

τ2ω2

) ( 1
ω

sinωt+
ĥ

τω2
cosωt− ĥ

τω2
e−ĥ

t
τ

)]
,

and

σθθ(r, t) = −a2p∗

[(
Â− D̂

b2

r2

)
cosωt

+
ÂĈ − D̂Ĝ b2

r2

τ
(
1 + ĥ2

τ2ω2

) ( 1
ω

sinωt+
ĥ

τω2
cosωt− ĥ

τω2
e−ĥ

t
τ

)]
,

which are similar in form to the solutions presented by Sivaloganathan et al. [114],
reprinted in the next Section.

5.2 Numerical Simulations

We can now compare the displacement of brain parenchyma due to ventricu-
lar pulsations in the hydrocephalic brains of infants and adults assuming the
fractional Zener viscoelastic model, developed here, to the standard viscoelastic
model presented by Sivaloganathan et al. [114]. The constitutive equation for
the standard viscoelastic model, Figure 5.1b on page 52, is

σ +
η

k1 + k2

dσ
dt

=
k1k2

k1 + k2
ε+

ηk1

k1 + k2

dε
dt
. (5.22)

Davis et al. [23] determined the material constants of the fractional Zener
viscoelastic model by fitting to the experimentally determined brain tissue relax-
ation data presented by Galford and McElhaney [43]. They found that the best
fit required E∞ = 1.612 kPa, E0 = 7.715 kPa, τ = 6.709 s, and α = 0.641 [23].
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The model parameters for the standard viscoelastic model can be inferred by
equating coefficients between the standard (5.22) and fractional Zener (5.2) con-
stitutive equations. This results in the following relations:

k1 = E0, k2 =
E∞E0

E0 − E∞
, and η =

E2
0τ
α

E0 − E∞
.

The standard viscoelastic model solutions to the equation of motion (5.3)
subject to the infant (5.4) or adult (5.16) boundary conditions, derived by Sival-
oganathan et al. [114] are presented below for completeness. Applying the infant
boundary conditions (5.4), the stresses are the same as for the fractional Zener
viscoelastic model (5.15) but the displacement is

u(r, t) =
a2p∗

b2 − a2

[(
3r

6K + k1
+

b2

k1r

)
cosωt

+
b2

ηr
· 1
1 + c̃2

ω2

(
1
ω

sinωt+
c̃

ω2
cosωt− c̃

ω2
e−c̃t

)
(5.23)

+
3k2

1r

η(6K + k1)2
· 1

1 + d̃2

ω2

(
1
ω

sinωt+
d̃

ω2
cosωt− d̃

ω2
e−d̃t

)]
,

where c̃ =
k2

η
and d̃ =

k1k2 + 6K(k1 + k2)
η(6K + k1)

. For the adult boundary condi-

tions (5.16), the displacement and stresses are

u(r, t) =
3a2bp∗

g̃

(
b

r
− r

b

)[
cosωt+

j̃ − h̃

1 + h̃2

ω2

(
1
ω

sinωt+
h̃

ω2
cosωt− h̃

ω2
e−h̃t

)]
,

σrr(r, t) = −a
2ψ1(r)p∗

r2g̃

[
cosωt+

φ1(r)
ψ1(r)

− h̃

1 + h̃2

ω2

(
1
ω

sinωt+
h̃

ω2
cosωt− h̃

ω2
e−h̃t

)]
,

and

σθθ(r, t) = −a
2ψ2(r)p∗

r2g̃

[
cosωt+

φ2(r)
ψ2(r)

− h̃

1 + h̃2

ω2

(
1
ω

sinωt+
h̃

ω2
cosωt− h̃

ω2
e−h̃t
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,

where f̃ = 1
η

(
(6K(k1 + k2) + k1k2)a2 + 3k1k2b

2
)
, g̃ = (6K + k1)a2 + 3k1b

2,

h̃ = f̃
g̃ , j̃ = k1+k2

η , φi(r) = 1
η

(
(6K(k1 + k2) + k1k2)r2 + (−1)i+13k1k2b

2
)
, and

ψi(r) = (6K + k1)r2 + (−1)i+13k1b
2.

We used Maple to perform numerical simulations. Since the arguments of all
the generalized Mittag-Leffler functions used in the above solutions are negative,
the series that appears in the Mittag-Leffler function definition is an alternating
series. The arguments also eventually decrease in magnitude for a fixed max-
imum time, making it is easy to determine the number of terms required to
achieve a desired accuracy (here an accuracy of 10−6 is used). The parameter
values used in the numerical simulations are recorded in Table 5.1.
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Table 5.1: Fractional Zener model parameter values.

E0 = 7.715 kPa [23] E∞ = 1.612 kPa [23] K = 2.1 GPa
α = 0.641 [23] τ = 6.709 s [23] p∗ = 667 Pa
a = 0.03 m b = 0.1 m ω = 7 rad/s
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Figure 5.3: Infant hydrocephalus displacement predicted by the fractional Zener
(FZ) model (a), and the difference between the fractional Zener model and stan-
dard model (SM) displacement predictions (b).

Ventricular boundary pressure pulsations with an amplitude of 5 mm Hg
(or 667 Pa) were assumed (10 mm Hg peak-to-peak amplitude). In the case of
infant hydrocephalus, Figure 5.3, the predicted amplitude of the displacement
waves is about 3 mm at the ventricle wall and the amplitude decreases as the
wave propagates through the parenchyma. Comparing the fractional Zener vis-
coelastic model (FZ) to the standard viscoelastic model (SM) shows deviations
of about 0.13 mm in the predicted displacements of the ventricle wall, with
the fractional Zener model predicting larger displacement amplitudes than the
standard model by about 4.5%. From the ventricle wall (r = a) to the cortical
surface (r = b), there is about a 70% drop in wave amplitude.

For the case of adult hydrocephalus, Figure 5.4, the fractional Zener vis-
coelastic model predicts similar displacements when compared to the standard
viscoelastic model. The maximum difference between the simulated displace-
ments is on the order of 10−5 nm. The amplitude of the displacement waves
for both models is about 48 nm (or 100 nm peak-to-peak) at the ventricle wall,
15 nm (or 30 nm peak-to-peak) mid parenchyma, and, as expected, zero at the
cortical surface. The adult hydrocephalus displacements are much smaller than
the predicted displacements in infant hydrocephalus, and are possibly small
enough that the pulsations may be considered insignificant.
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Figure 5.4: Adult hydrocephalus displacement predicted by the fractional Zener
(FZ) model (a), and the difference between the fractional Zener model and stan-
dard model (SM) displacement predictions (b).
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Figure 5.5: Infant hydrocephalus fractional Zener (FZ) and standard model
(SM) simulated stresses, radial (a) and tangential (b), at three points in the
parenchyma. The two models predict equivalent stresses in the infant case.

The stresses for the case of infant hydrocephalus are shown in Figure 5.5.
Recall that the stresses are the same for both models in this case. Maximum
stress wave amplitudes (670 to 800 Pa) occur at the ventricle wall and the
amplitudes decrease as the waves propagate through the parenchyma. On the
cortical surface (r = b) the radial stress (σrr) is zero, but the tangential stress
(σθθ) is not. Notice also that at the ventricle wall (r = a), while σrr is completely
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Figure 5.6: The difference between the adult hydrocephalus fractional Zener
(FZ) and standard model (SM) simulated radial (a) and tangential (b) stresses
at three points in the parenchyma.

out of phase with the applied pressure pulsations (p∗ cosωt), σθθ is in phase with
the pulsations.

Figure 5.6 shows the stress differences between the two models for the case
of adult hydrocephalus. The difference is taken as the fractional Zener model
stress minus the standard model stress. Radial stress differences are shown in
Figure 5.6a and tangential stress differences are shown in Figure 5.6b. The two
models seem to produce very similar stress responses, with a difference on the
order of 10−3 Pa. The amplitude of both the radial and tangential stresses is
about 670 Pa throughout the parenchyma.

5.2.1 Incorporating Microstructural Changes

The experiments conducted by Galford and McElhaney [43] are from in vitro
adult brain tissue samples, and hence the values of the mechanical parameters
found by Davis et al. [23] do not specifically represent the hydrocephalic adult
brain. The parameters for the tissue samples used, therefore, may be different
from normal, living brain tissue, hydrocephalic brain tissue, and/or infant brain
tissue. Thus, variations in these parameters, especially the fractional order, are
possible and the effects of α on the above simulations will now be investigated
for the purpose of sensitivity analysis.

It seems reasonable, for now, to assume that the mechanical parameters
found by Davis et al. [23] adequately describe the properties of adult brain tissue,
due to the obvious difficulties involved in conducting experiments in vivo. For
infantile brain parenchyma, however, the value of αmay be significantly different
from the value of 0.641 used in the simulations above.
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Figure 5.7: Simulated maximum displacement of the ventricle wall (r = a)
while varying the fractional order α, for infant hydrocephalus (displacements in
mm) (a) and adult hydrocephalus (displacements if nm) (b).

Figure 5.7 shows the effect the fractional order α has on the displacement
of the ventricle wall. For both infant and adult hydrocephalus, larger displace-
ments of the ventricle wall are predicted for smaller values of α. For infant
hydrocephalus, the maximum amplitude for α = 0.1 is approximately 4.2 mm
which is about 1.5 times the amplitude predicted by the standard viscoelastic
model (2.7 mm). Compared to this case, the change in maximum displacement
amplitude of the ventricle wall in adult hydrocephalus is quite small (note the
different range and units (nm) used in Figure 5.7b).

The process of infant brain growth and development occurs over the first
two years of life and is a faster process than adult brain degeneration. The
unfused sutures and open fontanel of an infant skull permit this rapid brain
growth but they also enable variations in the mechanical properties of the brain
to significantly affect tissue motion. In adults, where the sutures are fused and
the skull is rigid, brain tissue motion is restricted and hence variations in the
fractional order α, while still affecting tissue motion, cannot produce as obvious
an effect as they can in infants. The coupling between the fractional order α
and the microscopic kinematics of brain tissue will be investigated in the next
Chapter.

The predictions shown in Figure 5.7a are quite encouraging. They suggest
that the order of the fractional Zener model, α, may be able to capture mi-
crostructural changes in the brain parenchyma, and when combined with CSF
pulsations, this may lead to ventricular enlargement and the development of
hydrocephalus.

Bulk modulus measures a material’s resistance to uniform compression. In
the previous simulations the bulk modulus of water was used for the bulk mod-
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Figure 5.8: Simulated maximum displacement of the ventricle wall while varying
the bulk modulus K, for infant hydrocephalus (displacements in mm) (a) and
adult hydrocephalus (displacements in nm on a log scale) (b).

ulus of brain tissue since the water content of the brain is approximately 75%
for normal adults, and higher when affected by age or health. In this Chapter,
the dilatational behaviour of the brain was modelled as an incompressible linear
elastic solid, but the value of the bulk modulus for brain tissue, especially infant
or hydrocephalic brain tissue, is not clear in the literature (Young’s modulus for
brain tissue varies from 600 [120] to 21, 000 Pa [121] and Poisson ratio varies
from 0.35 to 0.4999 [121], or 0.5 if numerical instabilities were not an issue).
Thus, the effect of variations in the bulk modulus on parenchyma motion is
important to determine.

Figure 5.8 shows how variations in the bulk modulus (K) affect the max-
imum displacement of the ventricle wall. For infant hydrocephalus, there is a
relatively small change in amplitude when the bulk modulus is changed due to
the zero-stress boundary condition that represents the ability of the unfused
skull to deform. For adult hydrocephalus, the amplitude changes by orders of
magnitude (note that a log scale has been used on the vertical axis in Fig-
ure 5.8b), indicating that in a rigid skull, variations in the bulk modulus of
brain tissue affect the motion significantly.

In infant hydrocephalus, the unfused skull should dampen the effects of
variations in the bulk modulus which is consistent with the results in Figure 5.8a.
As the adult brain ages, however, the mass of white matter slowly decreases
as it is replaced by CSF. This may cause the ventricular CSF pressure to
decrease which would result in a decreased bulk modulus. With a decrease in
bulk modulus, an aged brain may be more susceptible to the development of
hydrocephalus, even under normal pressure conditions.
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5.3 Discussion

In this Chapter, the fractional Zener model of viscoelasticity was used to solve
the boundary value problems related to infant and adult hydrocephalus. A
pulsatile ventricular pressure was applied to the inner boundary to reproduce
the effects of the cerebrospinal fluid pulsations in the cranial cavity (which occur
due to the beating heart). Parameter values for the fractional Zener model
were taken from Davis et al. [23] where the model was fitted to experimental
relaxation data. The parameter values for the standard model were estimated
from this data by comparing the two constitutive equations.

In infant hydrocephalus, zero stress was enforced at the cortical surface
(r = b) to permit possible movement of the unfused skull. This results in
large displacements (about 6 mm peak-to-peak at the ventricle wall (r = a)
and almost 2 mm peak-to-peak at the cortical surface) predicted by both the
fractional Zener and standard viscoelastic models, with the fractional Zener
model predicting slightly larger displacements. The stress amplitude predicted
by both models at the ventricle wall is about 670 Pa for radial stress, and 800 Pa
for tangential stress.

In adult hydrocephalus, zero displacement was enforced at the cortical sur-
face to reflect the fact that the adult skull is rigid and thus constrains brain tis-
sue displacement. Both models predicted peak-to-peak displacements of about
100 nm at the ventricle wall and radial and tangential stress amplitudes of about
670 Pa throughout the parenchyma. The difference between the two models in
both the predicted displacement and stresses was negligible.

According to the pulsation-damage hypothesis, the damage observed in the
ependyma and periventricular tissues of hydrocephalic brains is caused by the
strains induced by large amplitude CSF pulsations [101]. Tissue damage is
usually assumed to begin when the locking section of a stress-strain curve tran-
sitions into the hardening section of the curve. Franceschini et al. [40] found
this transition to occur at a stress of 2.71 kPa for white matter. Their stress-
strain curve peaked at 3.43 kPa and the fracture point was 2.52 kPa. The radial
and tangential tissue stresses predicted in this Chapter during extension of the
parenchyma are 25% to 30% of the transition to hardening threshold found by
Franceschini et al. [40], and thus are unlikely to cause tissue damage.

During neurosurgery the brain pulses visibly at roughly the frequency of
the heart beat with clearly evident large displacements. This observation does
not contradict the results of the adult hydrocephalus simulations, Figure 5.4,
where extremely small displacements are predicted, since the removal of the skull
changes the boundary condition on the cortical surface from zero displacement
to zero stress, (i.e. analogous to the case of infant hydrocephalus). Thus, when
the skull is closed, only small displacements of the parenchyma can occur, but
when the skull is open, displacements large enough to be seen by the human
eye ensue as a result of the removal of the restrictive rigid skull.

The pressure amplitude used was 667 Pa (see Table 5.1) or about 5 mm Hg
(10 mm Hg peak-to-peak amplitude) which corresponds to pressure pulsation
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amplitudes during the induction of hydrocephalus [68] or during hydrocephalus
with increased intracranial pressure [35]. Normal brain or shunted hydrocephalic
brain CSF pulse amplitudes are on the order of 2.5 mm Hg (or 5 mm Hg peak-
to-peak amplitude) [35]. Reducing the model pressure amplitude to 333 Pa
will reduce the tissue displacements by 50% indicating that during the onset
of hydrocephalus when pulse amplitude is abnormally large, tissue motion is
increased especially near the ventricles. This increased motion, when coupled
with unhealthy brain tissue (altered mechanical properties), may facilitate the
damage to the periventricular region often observed in the hydrocephalic brain.

The parameters of the linear viscoelastic fractional Zener model (see Ta-
ble 5.1) were based on the in vitro experiments with healthy human brain tis-
sue reported by Galford and McElhaney [43]. How these parameter values are
altered by hydrocephalus due to microstructural changes in the tissue and com-
positional changes to the CSF is unknown. Our results show that the order
of the fractional derivative, α, in the fractional Zener model can capture the
effects of microstructural changes and growth processes in brain parenchyma.
A relationship between aging and the bulk modulus is suggested, with results
indicating that a decreased bulk modulus may make the brain more susceptible
to developing hydrocephalus.

Variations in the bulk modulus clearly have an impact on ventricular dis-
tension (Figure 5.8). Thus, it is plausible that, coupled with microstructural
changes in the brain tissue induced by molecular mechanisms (Johnston [86]),
the mechanical forces generated by CSF pulsations may indeed contribute par-
tially to the progression of hydrocephalus. The work of M. Johnston and
coworkers has provided novel insights into interstitial pressure regulation by β1-
integrins and connective tissue elements. Their experimental work demonstrates
that the dissociation of β1-integrins with the surrounding extracellular matrix
results in a significant drop in interstitial fluid pressure, thus also contributing
to a significant change in the material parameters of the brain parenchyma.
Hence even from the perspective of poroelasticity theory, the drop in interstitial
fluid pressure results in enhanced movement of CSF from the ventricle into the
brain tissue providing a mechanism for brain tissue compression.

In addition, the increased hydrostatic pressure gradient favours capillary
fluid filtration (assuming that degradation of the blood brain barrier or height-
ened osmotic pressure gradients occur as a result of these molecular mecha-
nisms). This then introduces the intriguing possibility that some forms of pe-
diatric hydrocephalus may be treatable through the administration of pharma-
cological agents rather than through the use of shunts, with their associated
problems which are far from resolved. Investigating this possibility is left to
future work which would be conducted in collaboration with M. Johnston and
colleagues.

From the results discussed in this Chapter, there is little evidence to sug-
gest that the mechanical forces induced by CSF pulsations on their own play
any significant role in the development of hydrocephalus. The displacements
and stresses of the infant and adult hydrocephalic brains predicted by both the
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fractional Zener model and the standard model are arguably negligibly small;
however, the standard model is a linear model and the fractional Zener model is
based on the linear Zener model, so their abilities to predict the large displace-
ments seen in hydrocephalus are limited. Due to the promising indications of
the ability of the fractional Zener viscoelastic model to capture nonlinear effects,
the relationship between the fractional order derivative and the growth or aging
of the brain parenchyma is investigated in Chapter 6, where the implications
that brain growth or aging may have on the significance of the CSF pulsations
are also investigated.
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Chapter 6

The Effects of Aging on
Brain Biomechanics

In this Chapter, we use experimental data for infant and adult brain tissue
to determine new parameter values for the fractional Zener, the Zener, and the
standard linear viscoelastic models. Using the fractional Zener model developed
in the previous Chapter, we use the new parameter values to recompute the
displacements and stresses of the infant and adult hydrocephalic brains due to
the CSF pulsations.

The mechanical properties of brain tissue are required for mathematical mod-
els used in the study of clinical conditions such as hydrocephalus or traumatic
brain injury. Due to the complex structure of brain tissue, these properties are
difficult to determine experimentally and parameter values for human paren-
chyma are often inferred from animal experiments. Typically, these properties
are assumed to be age-independent, and infant and adult cerebra are treated
as mechanically equivalent; however, hydrocephalus seems to occur most com-
monly in infants or adults over 60 years of age [88] which seems to suggest that
brain tissue age may be important in the pathogenesis of hydrocephalus.

The earliest reported experimental data related to mechanical properties of
brain parenchyma (conducted by Franke in 1954 [41]), determined the shear
viscosity of swine cerebrum. Since then, many researchers have actively con-
tributed to developments in this area [37, 43, 79, 111, 129]. These experiments
used either human or animal cerebra but did not distinguish the tissue samples
by age. When required, the mechanical properties of infant brain tissue are
usually inferred from adult data using a brain mass scaling relationship [124].

The majority of human brain development normally occurs during the brain
growth spurt which begins four months after conception and ends around age
two. The brain growth spurt is a period of extraordinary biochemical activity
where new cellular and non-cellular components synthesize in the brain from
components that are temporarily allowed to cross the blood brain barrier [25].
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Dobbing [25] found that brain growth and development significantly increases
the DNA-P content (a measure of total cell number) and the lipid content (due
to myelination) of brain tissue. He also found that the water content sharply
decreases during this period but stabilizes at the end of the growth spurt. After
the age of two, the brain continues to grow until it reaches maturity at which
point it begins a slow regression period often leading to senility [25].

Normal brain aging, from infancy to old age, has been found to include the
flattening and calcification of the choroid plexus epithelium as well as the thick-
ening of the epithelial basement membrane [98]. These changes in the choroid
plexus are thought to reduce CSF production, ion transport, and fluid filtration.
Czosnyka et al. [22] found that, in patients with NPH, the resistance to CSF flow
and the ICP wave amplitude increased with age, while the CSF production rate
and cranial compliance decreased with age. In addition, Bateman [7] showed
that both the intracranial venous pulse amplitude and the venous mean pres-
sure increase with age. The compositional and physiological changes observed
from infancy to old age suggest that the mechanical properites of brain tissue
are likely to differ for infant and adult cerebra, and indeed this was shown to
be the case by Thibault and Margulies [124].

As described earlier, brain parenchyma is typically modelled as either a
poroelastic material saturated by a fluid (as first proposed by Hakim [51]) or
as a viscoelastic solid (as in [23, 75, 129]). Quasi-linear viscoelastic models
have been proposed [29, 79] but suffer from having a large number of model
parameters which must be determined from the limited experimental data. The
success in capturing the complex behaviour of brain tissue with a reasonable
number of model parameters makes fractional order viscoelastic models ideal for
studies involving brain biomechanics. The fractional Zener viscoelastic model
was shown by Davis et al. [23] to fit the creep and relaxation experimental
data of Galford and McElhaney [43] better than other viscoelastic models. The
human tissue samples used in [43], however, were not distinguished by age and
the strain rates used in their experiments were intentionally large to simulate
head impacts. Thus, the suitability of the model parameters fitted to this data
is questionable for hydrocephalus or surgery modelling purposes where small
strain rates occur [120].

Infant and adult hydrocephalus cases are distinct due to the fusing of the
cranial plates that occurs around two years of age. Mathematical models of
hydrocephalus handle this by prescribing different boundary conditions. The
fusing of the skull and the compositional and microstructural differences between
infant and adult brain parenchyma cause the two cases of hydrocephalus to
differ considerably in their symptoms and treatment outcomes. Thus, to better
understand the pathogenesis of hydrocephalus across the human lifespan, age-
dependent mechanical properties of brain tissue should be incorporated into
hydrocephalus models.

In this Chapter, we use the age-dependent shear complex modulus data
presented by Thibault and Margulies [124] to determine infant and adult brain
tissue parameter values for the fractional Zener, the Zener, and the standard
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linear viscoelastic models. The fractional Zener model parameter values are then
used in numerical simulations of the brain motions due to pulsatile ventricular
pressure. The simulations use the model developed in Chapter 5, also presented
in [132], and the new predictions are compared to those of the previous Chapter.
We suggest a new boundary condition for the infant skull as a more realistic
alternative to the stress-free boundary condition normally used. Simulations
of this new boundary value problem are presented and compared to the zero-
stress solution for infant brain displacement. Parameter sensitivity analyses are
performed, and the steady-state elastic modulus is identified as a significant
parameter in models of hydrocephalus.

6.1 Age-Dependent Data

The complex modulus of a viscoelastic material describes its behaviour under
oscillatory strain. Assuming an ω-periodic strain of amplitude ε0, ε(t) = ε0eiωt,
the long-time stress response is σ(t) = G∗(iω)ε0eiωt, where G∗(iω) is the com-
plex modulus. Splitting the complex modulus into real and imaginary parts
gives

G∗(iω) = G′(ω) + iG′′(ω),

where G′ is the storage modulus and G′′ is the loss modulus [19].
Thibault and Margulies [124] studied the effect of age on the mechanical

properties of brain tissue. They performed in vitro oscillatory shear tests on
infant and adult porcine cerebrum and determined the resulting complex moduli
using frequencies from 20 to 200 Hz and 2.5% and 5% shear strains. We use
the complex modulus for 2.5% shear strain since hydrocephalus develops slowly
over time, via the incremental accumulation of small strains [65, 69].

Recently, the effects of age and gender on brain tissue viscoelasticity were
investigated by Sack et al. [106] using magnetic resonance elastography (MRE).
Their method measured the complex modulus of living brain tissue within the
closed cranium and with an active cerebrovasculature, which is known to con-
tribute to the stiffness of brain tissue. Using adult volunteers ranging in age
from 18 to 88 years and driving frequencies from 25 to 62.5 Hz, they found
both the storage and loss moduli decrease with age. Table 6.1 lists the storage
and loss moduli for infant and adult porcine cerebrum [124] and adult human
cerebrum [106] at similar frequencies.

As a comparison to this data, Fallenstein and Hulce [37] found the storage
modulus of in vitro brain tissue to range from 600 to 1100 Pa and the loss mod-
ulus to range from 350 to 600 Pa using frequencies from 9 to 10 Hz. Galford
and McElhaney [43] found that for in vitro human brain tissue, at a frequency
of 34 Hz, the storage modulus is 22 200 Pa and the loss modulus is 8700 Pa.
The values found by Shuck and Advani [111] range from 7600 to 33 900 Pa for
the storage modulus and from 2800 to 81 400 Pa for the loss modulus using
frequencies from 5 to 350 Hz. These significant differences indicate the dif-
ficult nature of measuring the mechanical properties of brain tissue and may
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Table 6.1: Brain tissue complex moduli for infant and adult porcine cere-
brum [124] and adult human cerebrum [106].

Frequency [Hz] 20 25 30 37.5 40 50 60 62.5

Infant[124] G′ [Pa] 758 674 747 800 842
Adult[124] G′ [Pa] 1200 1053 1095 1200 1263
Adult[106] G′ [Pa] 1100 1310 1520 2010

Infant[124] G′′ [Pa] 210 300 330 430 460
Adult[124] G′′ [Pa] 350 460 600 740 860
Adult[106] G′′ [Pa] 480 570 600 800

be a consequence of the different methods used and the different tissue sample
treatments used in the experiments.

6.2 The Fractional Zener Model

The constitutive equation for the fractional Zener model is obtained by replac-
ing the first order differential operator in the Zener model with a fractional
differential operator of order α, denoted Dα. The schematic of the Zener model
is given in Figure 6.1. Here, σ is the stress, ε is the strain, E1 and E2 are the
spring constants (elastic moduli) and µ is the viscosity of the dashpot. Recall
from Chapter 5, that by defining an initial elastic modulus E0 = E1 + E2,
a steady-state elastic modulus E∞ = E2, and a relaxation time τ = µ

E1
, the

constitutive equation for the fractional Zener model can be written as [23, 132]

σ + ταDασ = E∞ε+ E0τ
αDαε. (6.1)

Therefore, the storage and loss moduli for the fractional Zener model are

G′(ω) =
E∞ + (E0 + E∞)ταωα cos

(
απ
2

)
+ E0τ

2αω2α

1 + 2ταωα cos
(
απ
2

)
+ τ2αω2α

, (6.2)

and

G′′(ω) =
(E0 − E∞)ταωα sin

(
απ
2

)
1 + 2ταωα cos

(
απ
2

)
+ τ2αω2α

. (6.3)

For comparison purposes, we use the Zener model and the standard vis-
coelastic model (see Figure 6.1). The complex modulus for model n (n = z for
the Zener model and n = s for the standard model) is

G∗n(iω) =
En∞ + En0 τ

2
nω

2

1 + τ2
nω

2
+ i

(En0 − En∞)τnω
1 + τ2

nω
2

, (6.4)

where Ez0 = Ez1 +Ez2 , Ez∞ = Ez2 , and τz = µz

Ez
1

for the Zener model, and Es0 = k1,

Es∞ = k1k2
k1+k2

, and τs = η
k1+k2

for the standard viscoelastic model.
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Figure 6.1: The Zener (a) and standard (b) viscoelastic model schematics.

6.3 Determining Model Parameters

For the three models discussed above, the parameter values were determined
by numerically fitting to the data presented by Thibault and Margulies [124]
and to the data presented by Sack et al. [106], using a nonlinear least squares
algorithm (lsqcurvefit in MATLAB). The results of fitting the fractional Zener
model to the infant and adult porcine brain tissue complex modulus data (19
data points each) are given in Figure 6.2.
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Figure 6.2: Complex moduli for the infant (a) and adult (b) porcine data [124]
and the fractional Zener model (parameters determined by curve fitting).

The model parameters determined by curve fitting the complex moduli to
the experimental data are listed in Table 6.2. The fractional Zener model was
previously fitted to the creep and relaxation data of Galford and McElhaney [43]
by Davis et al. [23] with the following results: curve fitting to the relaxation data
gave E∞ = 1612 Pa, E0 = 7715 Pa, τ = 6.709 s, and α = 0.641, while curve
fitting to the creep data gave 11 943 ≤ E∞ ≤ 20 770 Pa, 9238 ≤ E0 ≤ 24 173 Pa,
8.056 ≤ τ ≤ 22.211 s, and 0.382 ≤ α ≤ 0.435.

Comparing the adult parameter values for the fractional Zener model and
the two data sets (column three and four of Table 6.2), we see that the values for
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Table 6.2: Model parameters fit to porcine data [124] and human data [106].

Model Parameter Infant Porcine Adult Porcine Adult Human

(FZM) E∞ 621 Pa 955 Pa 829 Pa
(FZM) E0 6678 Pa 96 073 Pa 2842 Pa
(FZM) τ 110 µs 6.92 µs 2068 µs
(FZM) α 0.779 0.786 0.8
(ZM/SM) En∞ 737 Pa 1156 Pa 1000 Pa
(ZM/SM) En0 3244 Pa 8667 Pa 2456 Pa
(ZM/SM) τn 425 µs 257 µs 2620 µs

E∞ and α are of similar orders while the values for E0 and τ are not. Caution
should be taken when considering the adult human parameters since the 3- or
4-parameter models were fitted to only 4 data points; however, since the elastic
moduli found by fitting to the adult human MRE data are smaller, and the
relaxation times are larger, than the adult porcine fitted parameters, the same
relations may exist for the infant brain parameters. That is, the MRE method of
measuring the complex modulus of living brain tissue inside the closed cranium
may result in elastic moduli which are smaller, and relaxation times which are
larger, than those found using in vitro experiments.

6.3.1 Viscosity

The dashpot viscosity in the fractional Zener model is µ = τ(E0 − E∞). Using
the parameter values found above, µ ≈ 0.66 Pa·s for both infant and adult
porcine cerebrum (see Table 6.3). This value is comparable to the viscosity of
glycerin. Using the parameter values for material relaxation reported by Davis
et al. [23], the viscosity of the dashpot is 40 945 Pa·s (comparable to tar) which
seems too large for the viscosity of soft brain tissue.

Fallenstein and Hulce [37] estimated the dynamic viscosity of in vitro brain
tissue to range from 5.6 to 9.6 Pa·s. This agrees with the viscosities found
using the MRE data but is larger than the viscosities found using the porcine
data. The extreme differences between the viscosities found here (Table 6.3)
and the viscosities corresponding to the parameter values from Davis et al.
(40 945 to 214 514 Pa·s) [23] are due to the relaxation time (τ): the relaxation
times reported here are 4 to 6 orders of magnitude smaller than the smallest
value reported in [23]. The small relaxation times found here do not match the
observed relaxation behaviour of brain tissue [43]. Instead, material relaxation
predicted by the model parameters found here is almost instantaneous which is
not a realistic representation of the relaxation behaviour of brain tissue.
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Table 6.3: Fractional Zener, Zener, and standard viscoelastic model schematic
parameter values based on the data fitting from Table 6.2.

Model Parameter Infant Porcine Adult Porcine Adult Human

(FZM) E1 6057 Pa 95118 Pa 2013 Pa
(FZM) E2 621 Pa 955 Pa 829 Pa
(FZM) µ 0.67 Pa·s 0.66 Pa·s 4.16 Pa·s
(FZM) α 0.779 0.786 0.8
(ZM) Ez1 2507 Pa 7511 Pa 1456 Pa
(ZM) Ez2 737 Pa 1156 Pa 1000 Pa
(ZM) µz 1.07 Pa·s 1.93 Pa·s 3.81 Pa·s
(SM) k1 3244 Pa 8667 Pa 2456 Pa
(SM) k2 954 Pa 1334 Pa 1688 Pa
(SM) η 1.78 Pa·s 2.57 Pa·s 10.9 Pa·s

6.3.2 Shear Modulus

The shear modulus, G, of a fractional Zener viscoelastic material can be found
by assuming the material is incompressible so that the Poisson ratio ν = 0.5.
Then, in steady state, when the elastic modulus E ≈ E∞, the shear modulus is

G =
E

2(1 + ν)
≈ E∞

3
.

Using the fractional Zener model parameters of Table 6.2, the shear modulus
for infant porcine brain is 207 Pa; for adult porcine brain it is 318 Pa, and for
adult human brain from MRE it is 276 Pa. The shear modulus found using
the values from Davis et al. [23] range from 537 to 6923 Pa, which are larger
than the values determined here. Dobbing [25] showed that the water content
in brain tissue decreases as a function of age to about 85% of the value at birth.
Assuming adult brain tissue is about 80% water, infant brain tissue should be
about 94% water. Thus we should expect the value of the shear modulus to
increase slightly with age from infancy, which agrees with the results above.

6.4 Tissue Displacement under Hydrocephalic Con-
ditions and Pulsatile CSF

Assuming the deviatoric behaviour of brain tissue can be modelled by the frac-
tional Zener model and the dilatational behaviour can be modelled by the linear
elastic model, the displacement of the parenchyma can be found analytically us-
ing the elastic-viscoelastic correspondence principle. Recall that the two bound-
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ary value problems describing the infant and adult cases of hydrocephalus are

Infant


∂
∂rσrr + 1

r (σrr − σθθ) = 0
σrr = −pi(t) at r = a
σrr = 0 at r = b

(6.5)

and

Adult


∂
∂rσrr + 1

r (σrr − σθθ) = 0
σrr = −pi(t) at r = a
u = 0 at r = b.

(6.6)

Again, we simplify the brain geometry to a thick walled cylinder (see Figure 5.2)
and assume a pulsatile internal pressure of the form pi(t) = p∗ cos(ωt). Details
on the model derivation were given in Chapter 5.

The infant and adult displacement solutions to boundary value problems
(6.5) and (6.6), uI and uA respectively, are reprinted here for completeness
from Chapter 5, Equation 5.12 and Equation 5.19:

uI(r, t) =
a2

b2 − a2

[(
3r

6K + E0
+

b2

E0r

)
pi(t)

+
b2(E0 − E∞)

E2
0τ
αr

pi(t) ∗
(
tα−1Eα,α

(
− E∞

E0

( t
τ

)α))
(6.7)

+
3r(E0 − E∞)
(6K + E0)2τα

pi(t) ∗
(
tα−1Eα,α

(
− 6K + E∞

6K + E0

( t
τ

)α))]
and

uA(r, t) =
(
b

r
− r

b

)[
3a2b

(6K + E0)a2 + 3E0b2
pi(t) (6.8)

+
3a2b(a2 + 3b2)(E0 − E∞)(
(6K + E0)a2 + 3E0b2

)2
τα
pi(t) ∗

(
tα−1Eα,α

(
− ĥ
( t
τ

)α))]
,

where Eα,α(z) is the generalized Mittag-Leffler function,

ĥ =
(6K + E∞)a2 + 3E∞b2

(6K + E0)a2 + 3E0b2
,

and ∗ denotes the convolution operation over time. The displacements predicted
in Chapter 5 used the fractional Zener model parameter values found by Davis
et al. [23] (E∞ = 1, 612 Pa, E0 = 7, 715 Pa, τ = 6.709 s, and α = 0.641) as
well as the inner radius a = 30 mm, the outer radius b = 100 mm, the inner
pressure amplitude p∗ = 667 Pa, the bulk modulus K = 2.1 GPa, and the
angular frequency ω = 7 rad/s. The maximum displacement amplitude of the
ventricle wall predicted by the model with these parameter values was 3 mm in
the infant case and 48 nm in the adult case.
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Figure 6.3: Infant (a) and adult (b) parenchyma displacements predicted by
the fractional Zener model using the parameter values from Table 6.2.

Using the infant and adult porcine parameter values for the fractional Zener
model (Table 6.2), the displacements of the parenchyma predicted by (6.7) and
(6.8) are shown in Figure 6.3. The infant porcine parameter values predict un-
physical displacements in our infant hydrocephalus model: the maximum dis-
placement of the ventricle wall is 35 mm which is greater than the 30 mm inner
radius of the model geometry. The adult case predicts a maximum displacement
of 48 nm, the same as was predicted in Chapter 5.

The unphysical result obtained in the infant case is due to either an unphys-
ical mathematical model or poor experimental data. The model gives physical
and reasonable predictions in the adult case but not in the infant case where
smaller elastic moduli are used. It is possible that the zero-stress boundary
condition assigned in the infant case (6.5) is too weak. This condition was
previously used [64, 114, 121, 132] to avoid the free boundary value problem.
Assuming that the infant brain is enclosed in a thin elastic membrane represent-
ing the unfused skull, and that the large deformations observed in hydrocephalus
occur over time scales much larger than those considered here, this boundary
condition appears to be a reasonable approximation.

6.4.1 A Mixed Boundary Condition

An alternate boundary conditon for the infant hydrocephalus case can be con-
structed from the adult case [8]. The solution to the adult boundary value
problem (6.6) gives an expression for the radial stress at the outer boundary
(r = b): denote this stress by σArr(b, t) where A indicates the (A)dult solution.
Assuming the infant skull provides a fraction, δ, of the restrictive force provided
by the adult skull, we can assign a new mixed boundary condition for the infant
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hydrocephalus case,
σrr = δσArr(b, t) at r = b. (6.9)

From Chapter 5, Equation 5.20, the radial stress at r = b in the adult hydro-
cephalus case is

σArr(b, t) =
−(6K + 4E0)a2

(E0 + 6K)a2 + 3E0b2
pi(t) (6.10)

− 6K(E∞ − E0)τ−αa4(
(6K + E0)a2 + 3E0b2

)2 pi(t) ∗ (tα−1Eα,α

(
− ĥ
( t
τ

)α))
.

Since the partial differential equation in (6.5) is linear, boundary condi-
tion (6.9) corresponds to the linear combination of the two original boundary
value problems, (6.5) and (6.6). That is, the brain tissue displacement solution
of the mixed boundary value problem, um, is

um(r, t) = (1− δ)uI(r, t) + δuA(r, t), (6.11)

where 0 ≤ δ ≤ 1, uI is the infant displacement solution (6.7), and uA is the
adult displacement solution (6.8). Algorithms for the numerical computation
of the generalized Mittag-Leffler function are described in [44, 45] and some
sample Maple code is provided in Appendix B.

Margulies and Thibault [70] measured the mechanical properties of infant
skull and suture and conducted a finite element simulation to compare the
protective properties of infant and adult skulls. They found that when a 1000 N
load was applied to the skull, the infant skull deformed a maximum of 4 mm
while the adult skull deformed a maximum of 2 mm. Under a 5000 N load, the
infant skull deformed a maximum of 10 mm while the adult skull deformed a
maximum of 4 mm. We thus infer that the infant skull provides approximately
40 to 50% of the resistive force that the adult skull provides and so we assume δ
satisfies 0.4 ≤ δ ≤ 0.5. Note, however, that these forces are significantly larger
than those we are considering in this analysis.

Since the adult displacement, uA, is several orders of magnitude smaller
than the infant displacement, uI , the brain tissue displacement with this mixed
boundary condition is approximately (1− δ)uI . Figure 6.4a shows the displace-
ments predicted throughout the brain tissue using the parameter values listed
in Table 6.2 and δ = 0.5. Figure 6.4b shows the displacement of the ventricle
wall at t = 0.9 s (the approximate location of a maximum) as a function of the
mixing parameter δ.

The maximum displacement of the ventricle wall using the mixed boundary
condition is 17.5 mm for δ = 0.5 and 21 mm for δ = 0.4. Assuming the other pa-
rameters are constant, a more clinically common ventricular wall displacement,
about 5 mm [62], requires a value of δ ≈ 0.86. This implies that the infant skull
provides about 86% of the resistive force provided by the adult skull, which may
not be inconsistent with our previous assumed range since the magnitude of the
force considered here is much less than the magnitudes considered by Margulies
and Thibault [70].
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Figure 6.4: Displacements predicted by the mixed boundary value problem with
the fractional Zener model using the parameter values from Table 6.2.

6.4.2 Parameter Sensitivity Analyses

The fractional Zener model parameter values found in this Chapter (see Ta-
ble 6.2) were fitted to the experimental data in the least squares sense via the
storage and loss moduli, (6.2) and (6.3) respectively, which are nonlinear func-
tions of the four model parameters. To investigate the effect the parameter
values have on the predictions of the infant hydrocephalus model, boundary
value problem (6.5) with solution (6.7), sensitivity analyses were performed for
the elastic moduli and relaxation time (E∞, E0, and τ). The maximum dis-
placement of the ventricle wall was determined while one parameter was varied
over a suitable range and the other parameters were held constant at the val-
ues listed in Table 6.2. The resulting plots are shown in Figure 6.5. Assuming
again that a physical and reasonable amount of displacement at the ventricle
wall is about 5 mm, Figure 6.5 shows that this would require either τ > 0.1 s,
E∞ > 5000 Pa, or E0 > 106 Pa, if the non-varied parameters have the values
listed in Table 6.2.

The fractional order α in the fractional Zener model was hypothesized in
Chapter 5 to capture microstructural changes in the viscoelastic material. Even
though infant and adult brain tissues are known to differ in composition, mi-
crostructure [25], and mechanical properties [124], the results of fitting our
model to the age-dependent data of Thibault and Margulies [124] indicate a
value of α ≈ 0.8 for both ages of brain tissue.

The role of α in the fractional Zener model is to interpolate between the
linear elastic model (α = 0) and the Zener model (α = 1) in a manner which
incorporates the material history. When the relaxation time (or viscosity) is
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Figure 6.5: Sensitivity of maximum infant ventricle wall displacement to vari-
ations in the elastic moduli (E∞ and E0) (a) and the relaxation time (τ) (b) for
the fractional Zener model.

large enough such that τ > 1, the linear elastic model predicts larger ventric-
ular wall displacements than the Zener model, and as α ranges from 0 to 1,
this maximum displacement decreases exponentially, as discussed in Chapter 5.
When the relaxation time (or viscosity) is small enough such that τ < 1, as
is the case here, the linear elastic model predicts smaller ventricular wall dis-
placements than the Zener model, and as α ranges from 0 to 1, this maximum
displacement increases logarithmically. This behaviour is due to the factors of
τα in the constitutive equation (6.1). Using the infant brain tissue parameter
values from Table 6.2, the maximum displacement of the ventricle wall is 6 mm
when α = 0 and 35.4 mm when α = 1 (an unphysical displacement).

The same pressure pulse amplitude p∗ and angular frequency ω have been
used in all the above computations. As can be seen from the analytic forms,
(6.7) and (6.8), the amplitude of the CSF pulsations is directly proportional
to the resulting tissue displacements. Thus, a decrease in the pressure ampli-
tude by half results in a decrease in the predicted displacement amplitude by
half. Recall, that p∗ was chosen based on clinical observations of 10 mm Hg
peak-to-peak pressure pulsations in hydrocephalus patients [35]. Angular fre-
quency variations within a physically reasonable range (5 to 14 rad/s) do not
significantly affect the predicted displacements.
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6.5 Discussion

The parameter values for the fractional Zener, the Zener, and the standard
viscoelastic models were determined for both infant and adult cerebra. The
fractional Zener model was then used to predict the response of infant and adult
brains under conditions simulating the onset of hydrocephalus. The adult model
predicted displacements in agreement with previously reported results [132], but
the infant model predicted unphysical ventricular wall displacements.

A new boundary condition was proposed to create a new displacement
boundary value problem better suited to the infant hydrocephalic brain. The
new condition assumes the infant skull provides a fraction of the resistive force
that the adult skull provides. The fraction, δ, was determined from infant skull
and suture experiments [70] and the resulting ventricular wall displacements
were physical but large. Assuming our infant parameter values were correct,
a fraction of δ = 0.86 was required to obtain physically and clinically reason-
able [62] displacements at the ventricle wall. Although the skull rigidity, δ,
was shown to control linearly the amount of tissue displacement in the infant
brain, Figure 6.4b, this parameter was not considered as a possible influence in
hydrocephalus development because it was assumed that the infant skull only
becomes more rigid with age and that the adult skull is completely rigid (δ = 1).

The fractional Zener model is based on a linear constitutive equation and
is valid when a linear geometrical response is assumed (infinitesimal strains).
Because of this assumption, the model is not accurate for large deformations
and this may be partially responsible for the large unphysical displacements
predicted by the infant model with the new parameter values of Table 6.2.
The linear assumption still provides reasonable approximations for small finite
deformations (less than 10 mm) and therefore the model is able to provide
insights into the response of brain tissue to periodic ventricular wall loading due
to CSF pulsations. This issue of geometric nonlinearity in large deformations is
resolved in Chapter 7 via an incremental small strain numerical method.

Parameter sensitivity analyses demonstrated the effect of the fractional Zener
model parameter values on the maximum ventricular wall displacement in the
infant hydrocephalic brain. The steady-state elastic modulus, E∞, affected the
maximum displacement most when its value ranged from 500 to 10 000 Pa.
The range of interest for the initial elastic modulus, E0, was found to be 105

to 106 Pa, and the range of interest for the relaxation time, τ , was found to
be 10−2 to 1 s. The order of the fractional derivative, α, which incorporates
microstructural changes into the macroscopic description of the tissue by intro-
ducing a history dependence in the stress-strain relation, was determined to be
approximately 0.8 for both infant and adult cerebra. For the viscosities found
above, 0.67 Pa·s for infant cerebrum, a smaller value of α would predict smaller
displacements of the parenchyma.

Our numerical simulations represented the conditions present during the on-
set of hydrocephalus where increased pulse amplitudes are observed [35, 94]. The
fractional Zener material and infant brain tissue parameter values in our model
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of infant hydrocephalus produced unphysical displacements of the ventricle wall.
These unphysical displacements demonstrate the importance of parameter val-
ues in mathematical models of biological systems. Accurate and complete ex-
perimental data are required to determine parameter values for such models.
Since the parameter values found here predicted unphysical displacements in
the infant hydrocephalic brain, we can identify possible parameters and their
corresponding mechanical behaviours that, when altered, may lead to the devel-
opment of hydrocephalus. The infant parameter values found in this Chapter
describe a brain that is susceptible to large deformations.

From Equation 5.15, the stresses of the infant brain are not affected by the
new parameter values. The adult stresses are also relatively unaffected. The
stresses in the mixed boundary condition brain are the linear combination of the
infant and adult stresses: for example, σmrr = (1− δ)σIrr + δσArr, where σI is the
infant stress and σA is the adult stress. At the ventricle wall, the radial stress
is thus equal to −670 Pa when δ = 0, 0 Pa when δ = 0.5, and 670 Pa when
δ = 1. The tangential stress is 800 Pa when δ = 0, 735 Pa when δ = 0.5, and
670 Pa when δ = 1. These stresses are similar in magnitude to those discussed
in Chapter 5 and thus we must conclude that, again, they are not sufficient
to cause the tissue damage observed in hydrocephalus. The maximum shear
stress measure τm(r) = 1

2

(
σmθθ(r)− σmrr(r)

)
[63, 64] decreases with r. Thus, the

tissue most susceptible to damage is the periventricular region; however, the
magnitudes of the stresses are still at most 30% of the transition to hardening
threshold [40]. The resulting strains and stresses in the periventricular tissue,
due to increased CSF pressure pulse amplitudes, may contribute to the tissue
damage and ventricular expansion observed in hydrocephalus, but they cannot
be the primary cause.

The infant cerebrum steady-state elastic modulus, E∞, was determined to
be about 600 Pa, which is approximately equal to the Young’s modulus found by
Taylor and Miller for studies of hydrocephalus (584 Pa) [120], and close to the
value found by Cheng and Bilston (350 Pa) [17] for infants or young children.
The steady-state elastic modulus for adult cerebrum was determined to be about
1000 Pa, almost double that found by Taylor and Miller. Both of these values lie
within the range of interest identified above for the steady-state elastic modulus,
meaning that slight variations in these values will have a significant effect on the
predicted parenchymal displacements. Therefore, we identify the steady-state
elastic modulus as a parameter of interest in the development of hydrocephalus.

Sack et al. [106] found both the storage and loss moduli decrease with age
in adults over the age of 18 years. Thus, it is possible that the steady-state
elastic modulus increases from the infant value of about 600 Pa to a maximum
value of about 1000 Pa at early adulthood and then decreases with age. If this
hypothesis is correct, then the increased occurrence of hydrocephalus in infants
and the elderly can be partially explained by a reduced steady-state elastic
modulus, which renders the tissue more susceptible to large deformations and
to the development of hydrocephalus. This effect would be enhanced when
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coupled with a reduced bulk modulus which, as suggested in Chapter 5, might
occur in the elderly.

The microstructural mechanism for hydrocephalus proposed by M. John-
ston and colleagues [86] was hypothesized to affect the macroscopic description
of brain tissue by reducing the Young’s modulus and increasing fluid absorption
by the tissue [9]. These two factors have previously been shown to cause hydro-
cephalus in mathematical models [93]. The age-dependent analysis presented
here suggests that infant and elderly populations may be more susceptible to
hydrocephalus since the first of these two factors, a reduced steady-state elastic
modulus, is realized by the immaturity, and may be realized by the degenera-
tion [98], of the brain tissue. Therefore, the biological changes that occur during
the growth and development of the infant brain, and the brain degeneration seen
in older people, alter the mechanical behaviour of the parenchyma and thus, age-
dependent mechanical properties need to be considered in future mathematical
models of brain biomechanics for problems where age-related sensitivities may
exist.
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Chapter 7

A Quasilinear Fractional
Hyper-Viscoelastic Model
of Infant Hydrocephalus

In this Chapter, we focus on the case of infant communicating hydrocephalus
and show that long-term pressure gradients on the order of 1 mm Hg are suffi-
cient to cause ventricular expansion, especially when the mechanical properties
of the brain are degraded. Recall that up to the age of two years, the infant
brain undergoes rapid growth and development during the brain growth spurt,
and significant changes in the mechanical properties of the brain tissue occur
as a result [124]. In Chapter 6 we showed that the shear modulus, derived from
the steady-state elastic modulus of infant cerebrum, is reduced when compared
to the corresponding modulus of the adult cerebrum.

In previous Chapters, the hypothesis that CSF pulsations were a crucial
mechanism in the pathogenesis of hydrocephalus was analyzed and it was con-
cluded that the pulsations cannot be a primary cause of hydrocephalus. Re-
call that in mathematical models of non-communicating hydrocephalus, a large
mean pressure gradient (non-pulsatile component) is assumed to exist between
the cerebral ventricles and the subarachnoid space. This transmantle pressure
gradient provides the mechanical force required to compress the brain tissue,
as manifested in hydrocephalic brains. In infants, where the cranial sutures are
unfused, such outward deformation of the brain parenchyma can cause the skull
to expand if the condition is left untreated. In adults, where the cranial sutures
are fused and the skull is rigid, the signs and symptoms of brain compression
are not so outwardly evident.

The presence of such a large mean pressure gradient, however, has been
questioned by Linninger et al. [68, 95]. They inserted pressure sensors into
the ventricle, the parenchyma, and the subarachnoid space, and continuously
recorded measurements in dogs with kaolin-induced hydrocephalus. Their mea-
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surements show no significant pressure differences between the ventricles and
the parenchyma or the ventricles and the subarachnoid space; however, the sen-
sitivity of their sensors was approximately 1 mm Hg, hence pressure differences
below this threshold would not have been observed. Levine [65] suggested that
these mini gradients may be responsible for changes in the Starling forces, trig-
gering fluid absorption by the tissue, and initiating and sustaining ventricular
enlargement. Furthermore, Penn and Linninger [95] showed that in their model
of adult hydrocephalus, mean pressure gradients on the order of 1 mm Hg were
sufficient to enlarge the ventricles. Dutta-Roy, Wittek, and Miller [31], how-
ever, showed that a 1 mm Hg pressure gradient was not sufficient to enlarge the
ventricles to their hydrocephalus threshold of 58 cm3 (from 14 cm3). Instead,
they claimed a minimum pressure difference of 1.76 mm Hg was required.

The model developed in this Chapter should be able to predict large defor-
mations of the brain, deformations involving strains greater than 5%; therefore,
a neo-Hookean hyper-viscoelastic model is required [17]. Hyperelasticity de-
scribes models for which the constitutive equation is specified in terms of a
strain energy density function that is dependent on the deformation gradient.
The specific form of the strain energy density is phenomenologically determined.
For brain tissue, a viscous component needs to be coupled with the hyperelastic
component in the constitutive equation due to the tissue’s highly dissipative
characteristics [90].

Miller and Chinzei [79] proposed a nonlinear viscoelastic constitutive equa-
tion for brain tissue using a generalization of the Mooney-Rivlin strain energy
function where the coefficients were expressed as a sum of exponentials. Liber-
tiaux and Pascon [66] then developed a fractional derivative hyper-viscoelastic
model based on this strain energy function. They compared their model to sim-
ple compression tests and found that the model fit the experimental data almost
perfectly. Unfortunately, their model was not amenable to analytic methods and
the physical interpretation of the model components was lost. The assumption
that the energy of a compressive deformation and the energy of a tensile de-
formation are equal was shown to be incorrect by Miller and Chinzei [80]. To
account for this, they proposed a fractional powered hyper-viscoelastic consti-
tutive equation. Dutta-Roy, Wittek, and Miller [31] then applied a simplified
version of this hyper-viscoelastic constitutive equation (strain rate dependence
was dropped) to the problem of normal pressure hydrocephalus. Using a relaxed
shear modulus, 156 Pa, and both a single phase and a biphasic hyperelastic ma-
terial, they computed the tissue displacements using ABAQUS on a computational
brain mesh. They showed that a pressure gradient of at least 1.764 mm Hg
(235 Pa) was required to cause hydrocephalus assuming a minimal ventricular
volume increase from 14 to 58 cm3.

In this Chapter, a fractional hyper-viscoelastic model is developed due to
the recent success of fractional derivatives in capturing the complex behaviour
of brain tissue with a reasonably modest number of model parameters [23, 66].
The brain tissue is represented by a Kelvin-Voigt viscoelastic solid, where a
hyperelastic spring is coupled in parallel to a fractional viscoelastic dashpot. A
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strain energy density function of the Mooney-Rivlin form, originally developed
for rubber, is assumed. The nonlinear elastic component allows for more accu-
rate predictions of finite deformations compared to linear elastic models and the
fractional derivative viscous component incorporates the material deformation
history into the stress-strain relation. The model proposed in this Chapter is a
quasilinear model because even though the model allows for nonlinear elasticity,
the fractional viscous component is independent of the elastic component and
is based on a linear viscous model. Some authors refer to this type of model as
nonlinear [30], but we follow the lead of Fung [42] and refer to it as quasilinear.

The Chapter proceeds as follows: first, we develop the quasilinear viscoelas-
tic fractional derivative model and analytic solutions under the assumption of
small strains. Then, we present numerical simulations of these analytic solutions
and use an iterative numerical technique exploiting the incremental law of soft
tissues [42, pg. 238–9] to approximate the finite deformations observed in hy-
drocephalus. Finally, we solve the quasilinear model with first order derivatives
numerically. This mathematical analysis allows the estimation of the ventricular
expansion caused by a pressure gradient of 1 mm Hg in the infant hydrocephalic
brain, and demonstrates that such pressure gradients are sufficient to cause
infant hydrocephalus.

7.1 Mathematical Analysis

In this section we derive the mathematical model for the hyper-viscoelastic
fractional derivative Kelvin-Voigt material and present analytic solutions to the
resulting equation of motion for the case of small strains. The full quasilinear
equation of motion is presented at the end of the section.

7.1.1 Model Derivation

Again, we use a simplified geometry of the hydrocephalic brain that is amenable
to analytic solutions. In fully developed hydrocephalus, when the cerebral ven-
tricles are expanded, the brain is more akin to a cylindrical shape than a spheri-
cal shape and so we set up our model as follows: consider a thick walled cylinder
with inner radius R1 and outer radius R2 made of an incompressible fractional
Kelvin-Voigt material, see Figure 7.1a.

At t = 0, the cylinder is in an undeformed state with a Lagrangian cylindrical
co-ordinate system, (R,Θ, Z), and the unit direction vectors, (êR, êΘ, êZ). The
internal surface is subjected to a pressure, p0(t), and the external surface is
traction free, representing the unfused infant skull. There are no body forces.
For t > 0, the cylinder is in a deformed state due to the applied boundary
conditions and the Eulerian cylindrical co-ordinate system (r, θ, z) deforms with
the material. The unit direction vectors of this space are (êr, êθ, êz). We assume
that the ends of the cylinder are tethered so that under the action of the internal
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Figure 7.1: The thick walled cylinder model geometry (a) and the Kelvin-Voigt
viscoelastic material schematic (b).

pressure, p0(t), radially symmetric planar deformations occur:

r = f(t, R), θ = Θ, and z = Z, (7.1)

where f(t, R) is the deformation function to be determined. The radial vector
of the deformed cylinder is thus ~r(t, R) = f(t, R)êr + zêz.

Deformation Gradients and Tensors

Deformation gradients characterize the deformation in a small neighbourhood of
any point. More details on the derivation of the following deformation gradients
and deformation tensor can be found in Appendix C. The bi-tensor F(t, R) is
the gradient of the deformation map ~r(t, R) with respect to the Lagrangian (un-
deformed) coordinates. Using the radius vector above, the deformation gradient
is

F(t, R) = h(t, R)êr êR +
f(t, R)
R

êθ êΘ + êz êZ , (7.2)

where h(t, R) = ∂f
∂R (t, R). The relative deformation gradient tensor, which

characterizes the entire history of the deformation on the interval [0, t], is

Fτ (t, R) = F(t, R) ·
(
F(τ,R)

)−1

=
h(t, R)
h(τ,R)

êr êr +
f(t, R)
f(τ,R)

êθ êθ + êz êz. (7.3)

The left Cauchy-Green deformation tensor describes transformations that do
not lead to a change in the position vector ~r relative to the coordinate system
embedded in the material; that is, the tensor describes deformations which are
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not translations or rotations. The left Cauchy-Green tensor, B, is defined in
terms of the deformation gradient, (7.2), as

B(t, R) = F(t, R) ·
(
F(t, R)

)T
= h2(t, R)êr êr +

f2(t, R)
R2

êθ êθ + êz êz, (7.4)

where (·)T denotes the transpose operation. The principal invariants of B are
I1 = h2(t, R) + f2(t,R)

R2 + 1
I2 = h2(t, R) f

2(t,R)
R2 + h2(t, R) + f2(t,R)

R2

I3 = h2(t, R) f
2(t,R)
R2 .

(7.5)

Assuming brain tissue to be incompressible requires that the third principal
invariant be unitary. This implies that

I3 =
h2(t, R)f2(t, R)

R2
= 1.

Integrating, we find that the deformation function f must be of the form

f(t, R) =
√
R2 +A(t), (7.6)

where A(t) is a function to be determined such that A(0) = 0. Furthermore,

h(t, R) =
∂f

∂R
(t, R) =

R√
R2 +A(t)

. (7.7)

Substituting (7.6) and (7.7) into the left Cauchy-Green tensor (7.4) gives

B(t, R) =
R2

R2 +A(t)
êr êr +

R2 +A(t)
R2

êθ êθ + êz êz. (7.8)

The symmetric part of the velocity gradient tensor, ∇v, where ~v = ∂~r
∂t is

the velocity, defines the rate-of-strain tensor, D = 1
2

(
∇v + ∇vT

)
. Using the

Caputo definition of the fractional derivative of a function g(t) [66, Eq. 6],

Dαg(t) =
1

Γ(1− α)

∫ t

0

1
(t− s)α

ġ(s)ds, (7.9)

where ġ(t) = dg
dt , and generalizing to three dimensions, gives the fractional

rate-of-strain tensor, D{α} [30, equation 4.2.10], as

D{α}(t, R) =
1

Γ(1− α)

∫ t

0

1
(t− τ)α

(
Fτ (t, R)

)T ·D(τ,R) · Fτ (t, R) dτ.

Substituting (7.3), (7.6), and (7.7) into the above expression gives

D{α}(t, R) =
1

2Γ(1− α)

∫ t

0

1
(t− τ)α

(
−Ȧ(τ)

R2 +A(t)
êr êr (7.10)

+
Ȧ(τ)

(
R2 +A(t)

)(
R2 +A(τ)

)2 êθ êθ

)
dτ.
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The Constitutive Equation

We assume that infant brain tissue can be modelled as a Kelvin-Voigt solid,
schematically represented by an elastic spring connected in parallel to a viscous
dashpot, see Figure 7.1b. The Cauchy stress tensor thus has the form σ =
σe+σv, where σe is the stress in the spring and σv is the stress in the dashpot.

At small strains and uniaxial loading, the constitutive equation of a linear
elastic spring satisfies Hooke’s law, σe = Eε. For finite strains, the spring
is assumed to be a homogeneous, isotropic, hyperelastic material. Thus, the
constitutive equation for the hyperelastic spring is defined in terms of the strain
energy density function, W = W (B), via

σe =
2√
I3

[(
∂W

∂I1
+ I1

∂W

∂I2

)
B− ∂W

∂I2
B2

]
+ 2
√
I3
∂W

∂I3
I, (7.11)

where I is the identity tensor, B is the left Cauchy-Green deformation tensor
(7.8), and I1, I2, and I3 are the principal invariants of B (7.5).

At small strains and uniaxial loading, a linear viscous dashpot has constitu-
tive equation σv = ηε̇ and a fractional viscous dashpot has constitutive equation
σv = ηDαε. For finite strains, the fractional derivative of the strain is replaced
by the fractional rate-of-strain tensor, D{α}, which gives the constitutive equa-
tion

σv = 2ηD{α}. (7.12)

Our assumption of incompressibility requires that there is no net change in
volume, I3 = 1, and since the material is isotropic, the strain energy density
function does not depend on I3. Thus, the constitutive equation for the Kelvin-
Voigt material simplifies to

σe + σv = 2
[(

∂W

∂I1
+ I1

∂W

∂I2

)
B− ∂W

∂I2
B2

]
+ 2ηD{α}.

This expression describes the deviatoric part of the stress. To include dilata-
tional stress we add a hydrostatic pressure term. This term imparts no net work
on the incompressible material since any work done would have to be through a
change in volume, and an incompressible material undergoes no volume change
under hydrostatic pressure. Therefore, the complete constitutive equation for
the fractional Kelvin-Voigt material is

σ = −qI + 2
[(

∂W

∂I1
+ I1

∂W

∂I2

)
B− ∂W

∂I2
B2

]
+ 2ηD{α}. (7.13)

Constitutive equation (7.13) determines the stress state only up to an arbi-
trary function −qI. It is better to think of q as a Lagrange multiplier used to
enforce incompressibility rather than as a hydrostatic pressure or internal tissue
pressure that can be measured by a transducer.
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We assume that the strain energy density function of the soft brain tissue
can be described by the Mooney-Rivlin model,

W = c10(I1 − 3) + c01(I2 − 3), (7.14)

where c10 and c01 are material parameters. Substituting this strain energy
density into the constitutive equation (7.13) gives

σ = −qI + 2

(
c10 + c01

(
h2 +

f2

R2
+ 1
))

B− 2c01B2 + 2ηD{α}.

Since I, B, B2, and D{α} are all diagonal tensors, σ must also be a diagonal
tensor of the form σ = σr êr êr + σθ êθ êθ + σz êz êz. Substituting the expressions
for B (7.8) and D{α} (7.10) gives the components of the stress tensor as

σr(t, R) = −q + 2

(
c10 + c01

(
h2(t, R) +

f2(t, R)
R2

+ 1
))

h2(t, R) (7.15)

− 2c01h4(t, R) +
2η

Γ(1− α)

∫ t

0

1
(t− τ)α

h2(t, R)ht(τ,R)
h3(τ,R)

dτ,

σθ(t, R) = −q + 2

(
c10 + c01

(
h2(t, R) +

f2(t, R)
R2

+ 1
))

f2(t, R)
R2

(7.16)

− 2c01
f4(t, R)
R4

+
2η

Γ(1− α)

∫ t

0

1
(t− τ)α

f2(t, R)ft(τ,R)
f3(τ,R)

dτ,

and

σz(t, R) = −q + 2

(
c10 + c01

(
h2(t, R) +

f2(t, R)
R2

+ 1
))

− 2c01. (7.17)

The Equation of Motion

In the absence of body forces, conservation of momentum gives the equilibrium
equation ~∇·σ = 0, and since σr, σθ, and σz only depend on r and t, the equation
of motion is

∂σr
∂r

+
1
r
(σr − σθ) = 0. (7.18)

Introducing the notation for the boundaries of the cylindrical brain at time t as
r1 = f(t, R1) and r2 = f(t, R2), the boundary conditions enforced for the infant
hydrocephalic brain are

σr(t, r1) = −p0(t) and σr(t, r2) = 0. (7.19)

Note that, again, we use the simple stress-free outer boundary condition. Inte-
grating the equation of motion (7.18) over the brain parenchyma and applying
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the boundary conditions (7.19) gives

p0(t) =
∫ r2

r1

1
r
(σθ − σr) dr. (7.20)

Changing the variable of integration from r to R via r = f(t, R) and then
to the dimensionless variable of integration x via R2 = R2

1x gives, after simpli-
fication, the equation of motion that we wish to solve,

p0(t) =
µ

2

∫ b

1

(
1
x
− x(

x+B(t)
)2
)

dx (7.21)

+
η

2Γ(1− α)

∫ t

0

Ḃ(τ)
(t− τ)α

∫ b

1

(
1(

x+B(τ)
)2 +

1(
x+B(t)

)2
)

dxdτ,

where B(t) = R−2
1 A(t), b =

(
R2
R1

)2, and µ = 2(c10 + c01) is the shear modulus.

7.1.2 The Small Strain Solution

As a first approximation, we solve the equation of motion (7.21) using the
assumption of small strains (B(t) � 1). After introducing this approximation
and simplifying, the equation of motion becomes the linear integro-differential
equation with Abel kernel,

µB(t) +
η

Γ(1− α)

∫ t

0

1
(t− τ)α

Ḃ(τ) dτ =
b

b− 1
p0(t). (7.22)

Recognizing this integral from the Caputo definition of the fractional deriva-
tive (7.9) simplifies the notation, and the small strain equation of motion be-
comes

µB(t) + ηDαB(t) =
b

b− 1
p0(t), (7.23)

which is a fractional differential equation with initial condition B(0) = 0.

The Small Oscillations Response

We now analyze small steady oscillations of the brain parenchyma at the bound-
ary in response to an internal pressure oscillation of the form p0(t) = P cosωt =
Re
(
P eiωt

)
. Here P is the amplitude and ω is the angular frequency of the

oscillations.
Since we are interested in steady oscillations, and not in the effect of initial

conditions, we replace the lower limit of integration in (7.22), 0, with −∞, and
seek a solution of the form B(t) = Re

(
B∗eiωt

)
. Substituting p0(t) and B(t)

into the small strain equation of motion (7.22) gives

µB∗eiωt +
η

Γ(1− α)

∫ t

−∞

1
(t− τ)α

B∗iωeiωτ dτ =
b

b− 1
P eiωt.
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Changing the variable of integration to ξ via ξ = t− τ and then introducing
s = iω and using the Laplace Transform L{ξk−1} = Γ(k)s−k for k > 0 [1,
Eq. 29.3.7] allows the integral to be evaluated. After simplifying, the complex

amplitude of the oscillations is B∗ =
bP

(b− 1)(µ+ η(iω)α)
, and thus

B(t) =
bP

b− 1

(
µ+ ηωα cos πα2

)
cosωt+ ηωα sin πα

2 sinωt(
µ+ ηωα cos πα2

)2 +
(
ηωα sin πα

2

)2 .

A more biologically relevant form of the internal pressure is the combina-
tion of a constant pressure and an oscillatory pressure, p0(t) = Pc + Po cosωt,
corresponding to oscillations from Pc − Po to Pc + Po. Since the small strain
equation of motion (7.22) is linear, the long-time solution due to an internal
pressure of this form is the sum of a constant solution and a periodic solution.
The steady-state solution to (7.22) with a constant internal pressure p0(t) = Pc
is simply Bc = b

b−1
Pc

µ . Introducing Ã and φ via

Ã =
(
µ2 + η2ω2α + 2µηωα cos

πα

2

)− 1
2

and φ = arctan
(

ηωα sin πα
2

µ+ ηωα cos πα2

)
,

allows us to write the long-time solution to the small strain equation of mo-
tion (7.22) subject to an internal pressure of the form p0(t) = Pc + Po cosωt
as

B(t) =
b

b− 1

(
Pc
µ

+ PoÃ cos (ωt− φ)
)
. (7.24)

The Step Response

The previous section solved the small strain equation of motion (7.23) for the
long-time oscillatory response of the material to periodic pressure gradients. In
this section, we investigate the step response of the material for a special form
of the fractional order. If α = n

m , where n and m are positive integers satisfying
n < m, then Laplace Transforms can be used to solve the small strain equation
of motion (7.23).

The Laplace Transform of the fractional derivative of a causal function f(t)
is L{Dαf(t)} = sαF̄ (s), where F̄ (s) is the Laplace Transform of f(t). Assum-
ing p0(t) = ∆pH(t), where H(t) is the Heaviside function, then the Laplace
Transform of p0(t) is L{p0(t)} = ∆p 1

s . Using the Laplace Transform to solve
the small strain equation of motion (7.23) with the initial condition B(0) = 0,
gives, after simplification,

B̄(s) =
b

b− 1
∆p
µ

(
1
s
− sα−1

sα + µ
η

)
. (7.25)

This expression can be simplified further once the value of α = n
m is known [81].

We find the response of the fractional viscoelastic material to a 20 Pa instan-
taneous jump in internal pressure for five values of α (α = 1

3 , 1
2 , 2

3 , 3
4 , and 4

5 ).
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The solution method is now demonstrated for the simplest case, α = 1
2 , and a

demonstration of the solution method for α = 4
5 is provided in Appendix C.

In order to apply the inverse Laplace Transform to (7.25), long division of
polynomials and partial fraction expansions are required to rewrite the second
term in the parentheses in a form appropriate for the inverse Laplace integral.
For α = 1

2 , let β = µ
η , and rewrite the fractional order term to get the following

expression for B̄(s),

B̄(s) =
b

b− 1
∆p
µ

(
1
s
− 1
s− β2

+
βs−

1
2

s− β2

)
.

Then, taking the inverse Laplace Transform and simplifying gives

B(t) =
b

b− 1
∆p
µ

(
1− eβ

2t + eβ
2t erf

(
β
√
t
))
H(t),

where erf(z) = 2√
π

∫ z
0

e−t
2
dt is the error function. Using the complimentary

error function, erfc(z) = 1− erf(z), the expression for B(t) becomes

B(t) =
b

b− 1
∆p
µ

(
1− eβ

2t erfc
(
β
√
t
))
H(t). (7.26)

7.1.3 The Quasilinear Equation

Without the assumption of small strains, the quasilinear equation of motion
(7.21) can be simplified by directly evaluating the integrals over x. This gives
the following nonlinear integro-differential equation for B(t):

p0(t) =
µ

2

(
ln
(
b
(
1 +B(t)

)
b+B(t)

)
+

(b− 1)B(t)(
1 +B(t)

)(
b+B(t)

))

+
η

2Γ(1− α)

∫ t

0

Ḃ(τ)
(t− τ)α

(
1

1 +B(τ)
− 1
b+B(τ)

)
dτ (7.27)

+
η

2Γ(1− α)
b− 1(

1 +B(t)
)(
b+B(t)

) ∫ t

0

Ḃ(τ)
(t− τ)α

dτ.

Again, using the notation for the Caputo fractional derivative (7.9), this equa-
tion can be written more simply as

p0(t) =
µ

2

(
ln
(
b
(
1 +B(t)

)
b+B(t)

)
+

(b− 1)B(t)(
1 +B(t)

)(
b+B(t)

)) (7.28)

+
η

2

(
Dα ln

(
1 +B(t)
b+B(t)

)
+

b− 1(
1 +B(t)

)(
b+B(t)

)DαB(t)

)
.

To compute the components of the stress tensor (7.15)–(7.17), the value of
the Lagrange multiplier, q, must be determined. This is done by integrating the
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equilibrium equation (7.18) from r1 to r and solving for q. The expression for
the radial stress becomes

σr(t, R) =− p0(t) +
µ

2

(
ln
(
g
(
1 +B(t)

)
g +B(t)

)
+

(g − 1)B(t)(
1 +B(t)

)(
g +B(t)

))

+
η

2

(
Dα ln

(
1 +B(t)
g +B(t)

)
+

(g − 1)DαB(t)(
1 +B(t)

)(
g +B(t)

)) , (7.29)

and the expression for the tangential stress becomes

σθ(t, R) =− p0(t) +
µ

2

(
ln
(
g
(
1 +B(t)

)
g +B(t)

)
+

(g − 1)B(t)(
1 +B(t)

)(
g +B(t)

))

+
η

2

(
Dα ln

(
1 +B(t)
g +B(t)

)
+

(g − 1)DαB(t)(
1 +B(t)

)(
g +B(t)

)) (7.30)

+ η

(
g

g +B(t)
Dα

(
g +B(t)

g

)
− g +B(t)

g
Dα

(
g

g +B(t)

))
+ µ

(
2g +B(t)

)
B(t)

g
(
g +B(t)

)
where g is a function of R defined by g =

R2

R2
1

and so 1 ≤ g ≤ b.

7.2 Numerical Simulations

Numerical simulations of the radial displacement at the inner and outer bound-
aries demonstrate the behaviour of the brain parenchyma under the assumed
pressure gradient, p0(t). The ventricle wall (inner boundary at r = r1) and the
cortical surface (outer boundary at r = r2) are given by

r1(t) = f(t, R1) = R1

√
1 +B(t),

r2(t) = f(t, R2) = R2

√
1 +

1
b
B(t).

Furthermore, the displacement of each boundary from its initial position is given
by u1(t) = r1(t)−R1 (inner boundary) and u2(t) = r2(t)−R2 (outer boundary),
and the parenchyma width is given by w(t) = r2(t)− r1(t).

The model parameters used to compute the displacements numerically are
listed in Table 7.1. The initial positions of the ventricle wall and cortical sur-
face are based on a 35 cm newborn head circumference. The values of the shear
modulus µ, the viscosity η, and the fractional order α, are taken from Chap-
ter 6 (also [131]) where the fractional Zener viscoelastic model was fitted to
experimental data for infant porcine cerebrum. Note that the viscosity from
Chapter 6 (0.66 Pa·s) is used here as an approximation to the viscosity required
in this fractional viscoelastic model, which has viscosity units of Pa·sα.
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Table 7.1: Hyper-viscoelastic model parameter values for the infant brain.

R1 = 2 cm R2 = 6 cm b =
(
R2
R1

)2

= 9
µ = 207 Pa [131] η = 0.66 Pa·sα [131] α = 0.779 [131]
Pc = 20 Pa Po = 20 Pa ω = 7 rad s−1 [131]

7.2.1 Small Strain Oscillations

For small oscillations in the pressure gradient, the amplitudes P or Pc and Po,
must be chosen so that the small strain assumption is valid. For simplicity we
assume Pc = Po = P , then under a constant and dynamic pressure gradient,
assuming B(t) � 1 requires that for all t,

P � b− 1
b

· µ

1 + µÃ cos(ωt− φ)
.

Using the parameter values from Table 7.1 the above constraint requires that
P � 90 Pa for the small strain assumption to be valid. Therefore, the ampli-
tudes of the constant and dynamic pressure gradients are chosen to be 20 Pa or
less.

The predicted displacements of the inner and outer boundaries due to a
constant and dynamic pressure gradient of the form p0(t) = P (1 + cosωt) Pa
are given in Figure 7.2a. The displacement due to a constant pressure gradient
of 20 Pa is 1.06 mm at the ventricle wall and 0.36 mm at the cortical surface.
Note that these predictions use a shear modulus that is based on the steady-
state elastic modulus from Table 6.2 from Chapter 6. Thus, this shear modulus
is actually the steady-state shear modulus and it describes the material’s long-
time response to shear strains. For oscillations on the order of the heart beat,
as simulated here, a more appropriate value of the shear modulus would be
one based on the initial elastic modulus from Table 6.2, that is, a value of µ =
E0
3 ≈ 2226 Pa. Such a value would predict displacements of about 100 µm at the

ventricle wall and 34 µm at the cortical surface. For very slow oscillations in the
pressure, however, the long-time shear modulus is appropriate, and significant
displacements can occur from seemingly small pressure gradients. The long-time
shear modulus is used in these oscillatory predictions to maintain consistency
with predictions made in the remainder of this Chapter.

Model Sensitivity Analysis

To investigate the model’s sensitivity to the values of the parameters, the shear
modulus, µ, viscosity, η, and fractional order, α, are varied. The predicted
maximum displacements are normalized with the maximum displacement of
the ventricle wall obtained using the parameter values from Table 7.1 and the
results are plotted in Figure 7.2. Oscillatory pressure gradients of the form
p0(t) = 20 cosωt Pa were used.
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Figure 7.2: Simulated small strain displacements of the ventricle wall (r = r1)
and cortical surface (r = r2) of the infant brain under a pressure gradient of
the form p0(t) = 20(1 + cos ωt) Pa, (a), and the sensitivity of the displacements
to variations in the shear modulus, (b), viscosity, (c), and fractional order, (d),
under an oscillatory pressure gradient p0(t) = 20 cos ωt Pa, normalized by the
maximum displacement of the ventricle wall due to a 20 Pa pressure gradient
(1.06 mm).

From the form of the small strain solution for constant pressure gradients,
Bc = b

b−1
P
µ , we see that only the shear modulus affects the boundary displace-

ments, and the displacements decrease proportionally to 1
µ . Under an oscillatory

pressure gradient, increasing either the shear modulus or the dynamic viscosity
causes the maximum displacements of the parenchyma boundaries to decrease
with increasing µ or η. Varying the fractional order under an oscillatory pres-
sure gradient has a small effect on the maximum boundary displacements with
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the maximum displacement occurring when α = 1 and the minimum occurring
when α ≈ 0.6.

The sensitivities of the predicted displacements to the model parameter val-
ues demonstrate the importance of using tissue-dependent parameter values in
the numerical simulations. The displacements predicted here, using the infant
brain tissue parameter values listed in Table 7.1, would be quite different if
the initial elastic modulus was used to determine the shear modulus or if stan-
dard adult brain tissue parameter values were used. A larger shear modulus or
viscosity would predict significantly less deformation of the brain tissue.

7.2.2 Small Strain Step Response

From the expression for B(t) when α = 1
2 (7.26), we can estimate the effect of the

fractional derivative in the viscoelastic material. Assuming a tolerance of 10−3,
a simple calculation shows that the effect of the fractional derivative is present
in B(t) for approximately 3.7 s before the steady-state value (Bc = b

b−1
∆p
µ ) is

reached. Displacements at the ventricle wall and cortical surface boundaries of
the brain are shown in Figure 7.3 for α = 1

3 , 1
2 , 2

3 , 3
4 , and 4

5 .
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Figure 7.3: Response of the fractional hyper-viscoelastic material to a 20 Pa
instantaneous change in pressure for five values of the fractional order α.

As α approaches zero, the displacements approach the instantaneous elastic
response. As α approaches unity, the effect of the fractional derivative (viscous
element) becomes more pronounced and more prolonged in the step response
before the steady-state value is reached. For infant cerebrum α ≈ 4

5 and the
viscous component delays the hyper-viscoelastic materials response to the in-
stantaneous change. Given sufficient time, however, the material will reach the
steady-state value which is determined by the hyperelastic component of the
constitutive equation. This justifies ignoring the strain rate dependence when
considering the long-time behaviour of brain tissue as was done by Dutta-Roy,
Wittek, and Miller [31], and as is done in the following section.
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7.2.3 Incremental Approximation to Finite Strains

Ideally, we would like a solution to the quasilinear equation of motion (7.21)
that does not assume small strains, so that large deformations can be predicted
accurately. Unfortunately, the quasilinear equation is difficult to solve analyti-
cally; however, we can approximate a finite strain deformation by incrementally
solving for small strain solutions and summing the resulting deformations [20].
This iterative numerical technique is based on the incremental law discussed
by Fung [42, pg. 238–9]; using uniaxial tension tests he demonstrated that se-
quential small strain loading-unloading loops are a good approximation to the
finite-strain loading-unloading loop.

To approximate the finite deformation resulting from a large pressure gra-
dient, ∆p, we divide this gradient into n small uniform pieces, δp, so that
nδp = ∆p. The sum of the deformations caused by each incremental gradi-
ent, δp, approximates the finite deformation that would have resulted from the
pressure gradient ∆p. If δp is sufficiently small, then the resulting long-time
displacement can be approximated by the steady-state small strain solution to
a constant pressure gradient. Thus, the incremental displacement is

u(t, R) =
√
R2 +R2

1Bc −R where Bc =
b

b− 1
δp

µ
.

After the application of each incremental pressure gradient, δp, the steady-
state solution gives the new position of the parenchyma boundaries, and so
R1, R2, and b must be updated to reflect the new deformed state. Iterating
in this manner produces a series of displacements whose sum approximates the
displacement that would have resulted from the application of the large pressure
gradient, ∆p.

In Figure 7.4a, the small strain solution is summed for pressure gradient
increments of size δp = 1, 5, 10, and 20 Pa. The shear modulus value and the
initial values of R1 and R2 are listed in Table 7.1. As expected, the width of
the parenchyma decreases as the incremental pressure gradients accumulate. A
reduction in width of about 50% occurs when the total applied pressure gradient,
∆p, is about 350 to 400 Pa. This range is approximately 2.5 to 3.0 mm Hg which
is biologically reasonable and is comparable to the amplitude of cerebrospinal
fluid pressure pulsations in normal ventricles (5 mm Hg peak-to-peak). The
difference, however, is that the pressure gradients here are assumed to be held
constant for long times instead of oscillating with the cardiac and respiratory
cycles. Figure 7.4b displays the width of the brain tissue for various shear
moduli and an incremental pressure gradient of δp = 5 Pa. When reducing the
width by 50%, doubling the shear modulus requires approximately double the
total pressure gradient, ∆p, when applied in increments small enough to satisfy
the small strain assumption.

The Evans ratio is a diagnostic tool for identifying hydrocephalus. It is
defined as the ratio of the maximum width of the frontal horns to the max-
imum width of the brain parenchyma. A ratio greater than 0.4 indicates a
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Figure 7.4: Parenchyma width due to a pressure gradient divided into incre-
ments of 1, 5, 10, and 20 Pa (µ = 207 Pa), (a), and parenchyma width for various
shear moduli values due to a pressure gradient divided into increments of 5 Pa,
(b).
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Figure 7.5: Evans Ratio
` r1(t)

r2(t)

´
due to a pressure gradient divided into incre-

ments of 1, 5, 10, and 20 Pa (µ = 207 Pa), (a), and for various shear moduli due
to a pressure gradient divided into increments of 5 Pa, (b).

hydrocephalic brain [125]. Figure 7.5 shows the ratio of the inner radius to
the outer radius, the Evans ratio for our cylindrical model geometry, as both
the pressure gradient increment and shear modulus are varied. It is clear that
with a shear modulus of 200 Pa, a 1 mm Hg pressure gradient is sufficient to
cause the development of hydrocephalus in this simplified model. As the shear
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modulus increases, however, this gradient is not sufficient, and other possible
factors, such as fluid absorption by the parenchyma, would be required to ex-
pand the ventricles. It should be noted that these results are dependent on the
initial configuration and geometry of the model; however, they do suggest that
the infant brain may develop hydrocephalus in the presence of a small pressure
gradient. Furthermore, aging brain tissues, with reduced values of various me-
chanical parameters, appear to be susceptible to large deformations and to the
development of hydrocephalus. The necessity of accurate mechanical parameter
values for accurate tissue deformation predictions is also demonstrated.

The advantage of this iterative method in predicting ventricular expansion
is that large strains are never required to occur in the material. This is con-
sistent with the belief that hydrocephalus develops slowly over time due to the
accumulation of small strains [65, 69]. The pressure gradient accumulates over
such a long period of time that the living tissue is able to deform with small
strains in response to the gradient increments. The tissue may then, in re-
sponse to the mechanical stimuli of these small structural stresses, reorganize
its cell-ECM structure to reduce these stresses. With the build-up of another
increment in pressure, the process may start over again, eventually resulting
in a large deformation without large strains, and an new configuration of the
cell-ECM structure.

7.2.4 Quasilinear Solution Simulations

To solve the quasilinear equation of motion (7.28), we assume that α = 1 so that
the fractional derivatives become first order derivatives. Assigning a pressure
gradient that starts at zero and increases to a maximum of 100 Pa,

p0(t) = 100(1− e−10t), (7.31)

we can solve the first order quasilinear differential equation numerically using the
dsolve command in MAPLE and the initial condition B(0) = 0. The displacement
at the ventricle wall and the parenchyma width reduction resulting from the
application of pressure gradient (7.31) to the quasilinear equation of motion
(7.28) with α = 1 are shown in Figure 7.6. Model parameter values for b and η
are taken from Table 7.1.

With first order derivatives, the quasilinear equation predicts that a 100 Pa
pressure gradient displaces the ventricle wall by about 0.8 cm and decreases
the parenchyma width by about 0.5 cm, assuming a shear modulus of 200 Pa.
This displacement doubles the planar area of the ventricle. Comparing the
reduction in parenchyma width due to a 100 Pa pressure gradient predicted by
the quasilinear equation with α = 1 to the incremental method simulations,
Figure 7.4, shows that they are in approximate agreement with each other. The
parenchyma width reduction predicted by this model is significant for a pressure
gradient on the order of 1 mm Hg, especially when the shear modulus is reduced,
as is the case for infant brain tissue.

99



m = 200 m = 400 m = 600 m = 800

Time [s]
0 0.2 0.4 0.6 0.8 1.0

[c
m

]

0

0.2

0.4

0.6

0.8

1.0
Ventricle Wall Displacement, Nonlinear DE, a =1

(a)

m = 200 m = 400 m = 600 m = 800

Time [s]
0 0.2 0.4 0.6 0.8 1.0

[c
m

]

0

1

2

3

4

5
Parenchyma Width, Nonlinear DE, a = 1

(b)

Figure 7.6: Displacement of the ventricle wall (a) and the width of the paren-
chyma (b) according to the quasilinear DE with α = 1 due to a pressure gradient
of the form (7.31) for various shear moduli.

Analysis of the radial and tangential stresses indicates that as the pressure
gradient increases, both stresses become infinite. This behaviour is not physical;
at some threshold value for the tangential stress (tensile component), the brain
tissue will become damaged and this hyper-viscoelastic mathematical model
will no longer provide a valid description of the material behaviour. This model
does, however, indicate that stresses large enough to cause tissue damage can
occur under sufficiently large pressure gradients, and that the damaging gradient
threshold will depend on the shear modulus, and thus the age, of the tissue.

7.3 Discussion

In this Chapter, a fractional derivative hyper-viscoelastic model was developed
to describe the behaviour of infant brain tissue under loading conditions con-
sistent with the development of pediatric communicating hydrocephalus. Using
model parameter values appropriate for infant parenchyma, it has been demon-
strated that pressure gradients of 1 mm Hg are sufficient to cause ventricular
expansion.

Using the assumption of small strains, the response of the fractional hyper-
viscoelastic material was determined for pressure gradients with small oscilla-
tions and instantaneous jumps. The small oscillations response predicts the
motion of the brain parenchyma due to the small amplitude pulsatile loading
of the ventricle wall. The resulting waves travel through the incompressible
material without accruing any phase shift, a simplified approximation of the
physical behaviour of wave propagation through the cell, extracellular matrix,
and extracellular fluid system, of which all biological tissues are comprised.
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Laplace Transforms were used to find the step response of the small strain
equation of motion for various values of the fractional order. The step response
demonstrates the effect of the fractional derivative and viscous component on
material behaviour after an instantaneous increase in pressure. In Chapter 6,
infant brain tissue was found to have a fractional order of about 0.8. In this case,
the viscous component modifies the step response significantly when compared
to the instantaneous jump to the steady-state value that occurs in the elastic
limit (α = 0). For long times, however, this viscous effect can be neglected since
for all values of α, the step response eventually reaches the same elastic limit.

By summing the steady-state responses of the hyper-viscoelastic material to
small increments in the pressure gradient, an approximation to the finite strain
deformation was obtained. Figure 7.4 shows the relationship between the in-
fant parenchyma width and the steady-state pressure gradient, and the Evans
ratio plots in Figure 7.5 suggest that 1 mm Hg pressure gradients are sufficient
to cause hydrocephalus in infants. Since the small strain solution is accumu-
lated, these predicted finite deformations occur without large stresses, which
is consistent with the belief that hydrocephalus develops slowly over time via
the accumulation of small strains [65, 69]. Assuming that the pressure gradient
increments accrue over very long times, the viscous component of the material
can be neglected. Thus, the finite deformation is approximated by the sum of
the steady-state hyperelastic responses to pressure gradient increments in this
iterative numerical technique. This technique predicts the resulting parenchy-
mal width reduction, or ventricular expansion, occurring as a result of pressure
gradients applied for long times. This predictive tool could be used as an in
silico experimental technique and will hopefully prove useful to both clinicians
and experimentalists whose focus is on the development of a more fundamen-
tal understanding of, as well as the development of effective treatments for,
hydrocephalus.

The quasilinear equation of motion was solved numerically after changing
the fractional derivatives to first order derivatives. A pressure gradient that
increases to a maximum of 100 Pa (7.31) was applied to simulate the slow
evolution of a trans-parenchymal gradient. The resulting displacements were
large enough to double the planar area of the ventricle assuming a shear modulus
of 200 Pa. This deformation is significant and demonstrates that in infants,
where the mechanical properties of brain tissue are lower than the corresponding
properties for adult tissue, hydrocephalus can develop under sustained pressure
gradients on the order of 1 mm Hg.

Both the radial and tangential stresses become large with increasing pressure.
At the damage threshold, 2.71 kPa for white matter [40], these large stresses
will initiate damage in the tissue, causing edemas to form near the ventricle
wall where the stresses are largest. The long-time pressure gradient necessary
to cause these damaging stresses depends on the shear modulus of the tissue.
After the damage threshold is reached in terms of model stress, the mathematical
model no longer provides a valid description of the dynamical phenomenon under
consideration.
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Recall that the recent work by Johnston and coworkers [86] showed that the
dissociation of β1-integrins from the surrounding extracellular matrix caused
hydrocephalus to develop in rats. If this dissociation of the cells from the
ECM degrades the macroscopic mechanical properties of the tissue, then, as
was demonstrated here, the tissue will be more susceptible to deformations and
to the development of hydrocephalus. It is therefore plausible that some cases
of hydrocephalus are caused by microstructural changes in the tissue which
degrade the macroscopic mechanical properties, enabling the tissue to deform
grossly under a pressure gradient that in normal circumstances may not have
much effect.

A transparenchymal pressure gradient of 1 mm Hg was shown here to be
sufficient to cause hydrocephalus in the infant brain, where the long-time shear
modulus is about 200 Pa. In adult brains, however, where the shear modulus is
larger, this pressure gradient may be insufficient to cause hydrocephalus. It is
most likely that hydrocephalus develops as a result of a combination of events.
For example, microscopic changes may degrade the macroscopic mechanical
properties, and disrupt tissue homeostasis by altering the delicate osmotic pres-
sure balance. The gradual accumulation of a small pressure gradient due to
this CSF production-absorption imbalance may then further increase the fluid
absorption by the parenchyma by perturbing the Starling forces that govern
transcapillary flow [65]. This may generate an intramantle pressure gradient in
addition to a small transmantle pressure gradient. The reduced tissue mechan-
ical properties and increased fluid absorption are sufficient to cause ventricular
enlargement according to Peña et al. [93]. With the process of ventricular expan-
sion initiated and the mechanical properties of the tissue degraded, ventricular
CSF pressure waves may then increase in amplitude causing a dynamic pres-
sure gradient and increasing the fluid filtration and tissue displacements in the
periventricular region. Tissue damage and edemas may result from the com-
bined effect of these events, and may not necessarily be attributable to any
single event. This cascade of events, that on their own may be insufficient to
cause ventriculomegaly, may combine to produce the conditions necessary for
the development of hydrocephalus.

Finally, it should be noted that the finite deformations predicted by this frac-
tional hyper-viscoelastic model are rough estimates of the true deformations due
in part to the weak zero-stress boundary condition enforced at the infant skull
boundary, and due in part to the simplified model of the mechanical behaviour
and geometry of living brain tissue. In addition, the estimates of the mechanical
parameters of infant brain tissue are subject to variation. All of these factors
will have an impact on the predicted deformation; however, this is the first
time, to our knowledge, that results of this nature have been presented. The
results presented are clearly of significance for shunt planning and of relevance
for experimental researchers as well as for clinicians involved in the treatment
and management of hydrocephalus.
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Chapter 8

Conclusions, Implications,
Recommendations, and
Future Work

In this final Chapter, the results of this Thesis are reviewed and the implications
of the work for hydrocephalus research is discussed. We make recommendations
describing the experimental data that would be useful in verifying the conjec-
tures made in this Thesis, and outline some future directions that would continue
and extend the ideas presented in this Thesis.

8.1 Chapter Summaries and Conclusions

We begin with brief summaries of the results and conclusions of each research
Chapter of this Thesis, and the implications of these results.

Pressure Volume Model Conclusions

In Chapter 3, a pressure volume model was used to analyze the CSF dynamics
of the cranium. Using experimentally determined values of compliance, pres-
sure volume index, resistance to CSF absorption, and absorption site pressure,
the model was unable to reproduce observed CSF flow dynamics. The pre-
dicted pulsations were much smaller than the observed normal CSF pulsations
of 5 mm Hg peak-to-peak. Prescribed criteria guaranteed pulsations of 5 mm Hg,
an average CSF pressure of 13.5 mm Hg, and synchrony between the CSF and
arterial forcing pulsations, in order to determine the compliance, resistance to
CSF absorption, and absorption site pressure model parameters. A compliance
or pressure volume index five orders of magnitude smaller than experimentally
determined values was required to predict CSF flow satisfying the criteria and to
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match observed CSF dynamics. Assuming a constant compliance, it was demon-
strated that the CSF and arterial pulsations are approximately synchronous
when 2ωC0Ra � 1, and that large disruptions in the balance of the compliance,
the resistance, and the heart rate are required to disturb this synchrony. The
main conclusion of the pressure volume analysis was that these simple temporal
models, pressure volume models and the analogous circuit models, are incapable
of accurately predicting the complex CSF dynamics of the cranium. Further-
more, in hydrocephalus, where increased CSF pressure pulse amplitudes occur
with any combination of an increased or decreased mean ICP and an increased
or decreased PVI or cranial compliance, the dynamics are complex and cannot
be described by these ordinary differential equation models.

In light of the analysis presented in Chapter 3, it is hoped that future in-
vestigations of CSF dynamics and hydrocephalus will focus on spatio-temporal
models, which are better suited to capture the dynamics of CSF and brain tissue
within the cranium.

Poroelastic Model Conclusions

In Chapter 4, the pulsation-damage hypothesis was analyzed using a poroe-
lastic model to predict the interactions between the fluid and solid phases of
brain tissue in response to CSF pulsations. The model was solved analytically
for the parenchyma displacement, fluid filtration, and pore pressure, and using
parameter sensitivity analyses, significant parameters of the model were iden-
tified. The Young’s modulus and the pressure difference between the ventricle
and SAS pulsations were found to be significant factors that influenced paren-
chyma displacement and thus ventricular expansion. In order to determine the
capability of trans-parenchymal fluid flow to damage the tissue at the cellular
level, a single pore flow model was developed. The shear stress induced on the
wall of a pore by fluid flow moving at the filtration velocity was found to be
negligible when compared to the shear stress required to detach a cell from a
substrate or to break a single adhesion bond. This analysis indicates that the
fluid flow through brain tissue is not a significant contributor to tissue damage
observed in hydrocephalus. Only the internal tissue stresses remain as a possi-
ble mechanism for tissue damage, and thus a possible mechanism contributing
to ventricular expansion, in the pulsation-damage hypothesis.

The poroelastic model presented in this Thesis does not allow for parenchy-
mal fluid absorption. Incorporating absorption by the capillaries of the tissue
would increase the peak fluid filtration velocity, and thus increase the shear
stress induced by the flow on the pore walls. Furthermore, the effects of oscil-
latory shear flows on cells attached to substrates, especially substrates coated
with ligands found in abundance in the brain ECM (not collagen or fibronectin)
have yet to be experimentally determined. If the ability of cells to adhere to
brain ECM is significantly weaker than their ability to adhere to collagen, then
the shear required to detach them, or to break an adhesion bond, will be less
than the shear forces estimated in Chapter 4. In this case, the fluid filtration

104



near the ventricles may be a more significant contributor to the tissue damage;
however, it is more likely that fluid filtration plays a secondary role in the ini-
tiation of tissue damage, especially if the structural integrity of the tissue has
already been compromised. If the tissue is in a diseased state, or if preliminary
structural damage is already present, then fluid filtration may facilitate further
damage to the tissue.

The Young’s modulus and the difference in CSF pulse amplitude between
the ventricles and the SAS were shown to affect the amount of parenchymal
displacement significantly. A reduced Young’s modulus and larger amplitude
differences were hypothesized to cause larger compressive and expansive forces
in the tissue. The cells of living biological tissues are able to sense mechanical
and chemical stimuli and to react in response to these stimuli. Living tissues,
therefore, have the ability to reorganize the microstructure of the tissue which
may have profound effects on the tissue’s macroscopic mechanical properties.
With regards to hydrocephalus, the expanded ventricles compress the brain
tissue which may, over time, cause the cells to reorganize the microstructure in
order to reduce the internal state of stress of the tissue. The prospect that this
reorganization may alter the macroscopic mechanical properties of the tissue is a
new and exciting aspect that should be incorporated into mathematical models
of hydrocephalus, and represents a novel direction for future exploration.

Fractional Zener Model Conclusions

In Chapter 5, the fractional Zener viscoelastic model was used to analyze both
the infant and adult cases of hydrocephalus with regards to the effect of pul-
satile CSF on ventriculomegaly, more specifically, with regards to the pulsation-
damage hypothesis. In infant hydrocephalus, zero stress was enforced at the
cortical surface to represent the unfused sutures of the skull, whereas in adult
hydrocephalus, zero displacement was enforced at the cortical surface to rep-
resent the rigid skull. Peak-to-peak ventricle wall displacements of 6 mm were
predicted in the infant brain, and of 100 nm in the adult brain, for typical pulse
amplitudes found in hydrocephalic brains [35] (pressure pulsations of 667 Pa,
or 10 mm Hg peak-to-peak). The material stresses for both cases ranged from
670 Pa to 800 Pa which are smaller than the damage threshold of 2710 Pa de-
termined for white matter by Franceschini et al. [40]. Thus, CSF pulsations,
even at the magnitude observed in hydrocephalic patients, appear to give rise to
internal tissue stresses that are too small to be responsible for the tissue damage
observed in hydrocephalus.

In Chapter 5, two conjectures were advanced: first, that the order of the frac-
tional derivative is a parameter capable of capturing the effects of microstruc-
tural changes and growth processes in brain tissue, and second, that the bulk
modulus may decrease with advancing age, making the aged brain more easily
compressed by hydrostatic pressures, and thus more susceptible to developing
hydrocephalus. These two aspects lead to promising new directions worthy of
future investigations.
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Brain Tissue Aging and the Fractional Zener Model Conclusions

In Chapter 6, using age-dependent shear complex modulus data, the parameter
values for several linear viscoelastic models for infant and adult cerebra were
determined. Then, the tissue displacements predicted by the fractional Zener
model were recomputed both for the infant and adult brains, under conditions
simulating hydrocephalus. The infant displacements where found to be unphys-
ical when the new parameter values were used. A new boundary condition was
proposed to replace the weak condition of zero-stress at the outer boundary,
as used in the infant boundary value problem. The new condition linearly in-
terpolates between the original infant and adult boundary conditions. Initially,
it was estimated that the infant skull should provide about 40% to 50% of the
resistive force that the adult skull provides, but the model required 86% in order
to obtain physically reasonable displacements. After performing parameter sen-
sitivity analyses, the steady-state elastic modulus was identified as a parameter
of interest in models of hydrocephalus. The stresses predicted by the fractional
Zener model were relatively unaffected by the new parameter values, and the
magnitude of the new boundary value problem stresses were still in the range
of 670 Pa to 800 Pa. Thus, the material stresses induced by the CSF pulsations
remained around 30% of the tissue damage threshold discussed in Chapter 5.
Therefore, even with the age-appropriate model parameters, the CSF pulsations
are still incapable of being the primary cause of the tissue damage observed in
hydrocephalus.

From the age-dependent data presented by Thibault and Margulies [124] and
by Sack et al. [106], and from the analysis presented in Chapter 6, it was possible
to show that the steady-state elastic modulus increases from a minimum value at
infancy to a maximum value at early adulthood, which led to our conjecture that
it then declines slowly with advancing age. This age-dependence of the elastic
modulus may partially explain why the pediatric and geriatric populations seem
to be those most susceptible to hydrocephalus.

Since both the fluid and the solid phases of brain tissue have been shown
in this Thesis to cause tissue stresses incapable of damaging healthy tissue, no
mechanism remains to explain the tissue damage and ventricular expansion of
hydrocephalus, according to the pulsation-damage hypothesis. Simplifications
have been made in the analyses of this Thesis; however, we believe that they do
not significantly affect the results. Therefore, we conclude that CSF pulsations
are not a primary contributor to the forces that damage seemingly healthy tissue
in hydrocephalus, and thus the pulsation-damage hypothesis, as described in
this Thesis, should be revised.

Fractional Hyper-Viscoelastic Model Conclusions

In Chapter 7, with age-appropriate mechanical parameter values for infant brain
tissue, small magnitude long-term pressure gradients were shown to be sufficient
to cause the ventricular expansion observed in hydrocephalus. A fractional
hyper-viscoelastic model for infant brain tissue based on a Kelvin-Voigt solid
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was presented. Using the assumption of small strains, both the oscillatory re-
sponse and the step response of the material were analyzed. Next, a numerical
technique based on the incremental law of soft tissues [42] was presented. This
iteratively solved the small strain solution to approximate a finite deformation.
The technique is capable of predicting large deformations without the necessity
for large material stresses; this is consistent with the belief that hydrocephalus
may develop due to the accumulation of small strains. The technique also pro-
vides a tool by which long-term tissue deformations can be estimated from the
magnitude of steady-state pressure gradients. The predicted deformations were
shown to be consistent with the predictions of the finite-strain solution found
by solving the model with first order derivatives numerically. Assuming that an
Evans Ratio of 0.4 is an indicator of hydrocephalus, it was possible to show that
transmantle pressure gradients of 1 mm Hg are sufficient to cause hydrocephalus
in an infant brain, where the steady-state shear modulus is reduced compared
with that of a healthy young adult. Thus, pressure gradients too small to be
detected by experimental pressure sensors may exist in hydrocephalic brains,
and may contribute to the expansion of the ventricles.

In Chapter 7, it was shown that pediatric communicating hydrocephalus
may result from small pressure gradients, that in other circumstances, such as
in a mature adult brain, may not have much effect. This result is significant as
it indicates that ventricular expansion can occur under small magnitudes of the
pressure gradient that are undetectable experimentally, since the magnitudes
lie below the sensitivity threshold of the transducers [67]. Furthermore, the
iterative numerical technique provides a way of predicting ventricular expansion
without the necessity for large stresses to occur in the tissue. It also provides a
tool that may prove useful to both clinicians and experimentalists in their quest
for both a more fundamental understanding of, and more effective treatments
for, hydrocephalus; to the best of our knowledge, this is the first time that
results of this nature have been established.

8.2 Overall Conclusions

In this Thesis, we have shown, by analyzing both the fluid and solid phases of
brain tissue and their interactions, that CSF pulsations cannot be the primary
cause of the tissue damage and ventricular expansion observed in hydrocephalus.
Thus, the pulsation-damage hypothesis needs to be revised. We have also shown
that in the infant brain, where the steady-state elastic modulus, and thus the
steady-state shear modulus, are smaller than the corresponding adult brain
tissue values, a pressure gradient on the order of 1 mm Hg is sufficient to cause
ventricular expansion, and thus lead to hydrocephalus.

By hypothesizing that the steady-state elastic modulus of infant and elderly
brain tissues may be reduced, we are lead to a potential explanation for the
prevalence of hydrocephalus among these populations. Furthermore, the action
of various proteins in brain tissue, as for example by the injection of antibodies
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to β1-integrins or by hemorrhages that result in a blood leakage into the extra-
cellular environment, may initiate microstructural changes that alter the macro-
scopic mechanical properties of the tissue. During the brain growth spurt, the
blood brain barrier is relaxed to allow nutrients, proteins, and other molecules
vital to healthy brain growth and development, to enter the brain. It is plausible
that, in some infants, this relaxed barrier allows various proteins/antibodies to
enter the brain that trigger the damaging microstructural changes which lead
to hydrocephalus. Furthermore, it may be possible that the blood brain barrier
of elderly adults is compromised, although, to our knowledge, no experimental
evidence to support this claim exists. These potential microstructural changes
lead to several questions that will be addressed in the next Section.

The iterative numerical technique, used in Chapter 7, predicted ventricular
expansion without the accumulation of large stresses or strains in the material.
This is consistent with the belief that hydrocephalus develops slowly over time
due to the accumulation of small strains. When small pressure gradients ac-
cumulate over long times, the living tissue also deforms over long times, with
small strains and small internal stresses. The tissue may then, in response
to the mechanical stimuli of these small structural stresses, reorganize its cell-
extracellular matrix structure to reduce these stresses. With the build-up of
another increment in pressure, the process may start over again, eventually
producing a large-strain-free finite deformation, a new configuration of the cell-
ECM structure, and altered mechanical properties of the tissue.

A 1 mm Hg transmantle pressure gradient was shown to be sufficient to cause
hydrocephalus in infant brains where the long-time shear modulus is estimated
to be about 200 Pa. In contrast, both the long-time shear modulus and brain
geometry are larger in adult brains, suggesting that this pressure gradient may
be insufficient to cause hydrocephalus on its own. It is more likely, therefore,
that hydrocephalus develops due to the combined effects of a cascade of events.
Each event on its own may be insufficient to cause ventricular dilation to the
extent that it is seen in hydrocephalic brains, but together, their cumulative
effects may be quite severe.

One possible scenario could be as follows. A disease, microscopic, or chem-
ical change may initially degrade the macroscopic mechanical properties of the
brain tissue, as well as disrupt the tissue’s homeostatic state by altering osmotic
pressures. This may create a small intramantle pressure gradient which may fur-
ther perturb the Starling forces increasing fluid absorption by the capillaries of
the tissue. Increased parenchymal absorption would increase the magnitude of
the intramantle pressure gradient causing tissue compression, and potentially
decreasing the compliance of the cranium. This decreased compliance may cause
the CSF pulsations to increase in amplitude and to develop a slight imbalance
between the ventricles and SAS. Additionally, a transmantle pressure gradient
may develop, further compressing the tissue.

In response to the compression caused by the oscillatory, intramantle, and
transmantle pressure gradients, the hyaluronic acid complexes of the extracel-
lular matrix may release the water molecules they bind to allow tissue com-
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pression to occur without significantly affecting the health of the neural cells.
Since the periventricular regions compress the most, this released water from
the ECM may contribute to edema formation. The continual stretching and
compression of the tissue, combined with the presence of edema and the initial
microstructural/chemical/disease-induced changes may all contribute to dam-
age the ependyma and periventricular tissues. With tissue damage, the per-
meability of the tissue would increase, speeding up the fluid filtration through
the periventricular regions and potentially contributing further to the edema
and tissue damage. The resulting ventricular expansion, combined with the tis-
sue damage and presence of edema, complete the description of hydrocephalic
brains, thus suggesting that hydrocephalus may be the cumulative result of an
unfortunate cascade of events.

To summarize, we attempt to categorize the results of this Thesis by trying
to answer a few of the questions posed by Bergsneider, Egnor, and Johnston, et
al. in their paper, What we don’t (but should) know about Hydrocephalus [10].

1. “Why do the ventricles dilate in communicating hydrocephalus?”

We propose that the absorption-degradation hypothesis adequately an-
swers this question. The sequence of events eventually leading to hydro-
cephalus is initiated by microstructural changes that increase fluid ab-
sorption by the parenchyma and degrade the tissue’s elastic properties.
Intramantle and transmantle pressure gradients, small enough to be con-
sidered noise in experimental measurements, form, and over long times,
provide the mechanism for ventricular expansion.

2. “What causes normal pressure hydrocephalus?”

The above explanation does not specifically require increased intracranial
pressure and thus also explains normal pressure hydrocephalus.

3. “How is the brain of a child with hydrocephalus different from that of a
young or elderly adult?”

In Chapter 6, we discussed how the mechanical properties of infant cere-
brum are different from those of young adult cerebrum, which may also be
different from those of elderly adult cerebrum. It was demonstrated that
the steady-state elastic modulus of infant cerebrum is reduced compared
to that of adult cerebrum, and we conjectured that the steady-state elas-
tic modulus of elderly adult cerebrum is reduced. This reduction in the
mechanical properties of brain cerebrum provides a possible explanation
for the increased susceptibility of these populations to developing hydro-
cephalus. Furthermore, the compromised state of the blood brain barrier
in infants would increase the likelihood of undesirable proteins/molecules
entering the brain tissue and initiating damaging microstructural changes
leading to hydrocephalus.
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8.3 Future Directions

A central theme of this Thesis is the suggestion that ventricular expansion may
be the result of microstructural changes in the tissue. The introduction of frac-
tional derivatives into the constitutive equations for brain tissue mechanics, is a
first attempt to link microstructural changes to the macroscopic description of
the material. Thus, we foresee a fruitful and challenging future for mathematical
modelling in hydrocephalus in several areas: incorporating changes in the cell
and extracellular matrix, in the biochemical reactions that occur in the cell and
ECM, to the fibrous nature of the ECM, in the behaviour or structure of the
cell, in the osmotic balance of the tissue, in the permeability of the blood brain
barrier, and a major challenge will be to link multi-scale, multi-level effects to
a macroscopic description of brain tissue. Linking these multiple scales may
well lead to the discovery of possible biological changes that may be capable of
inducing hydrocephalus.

8.3.1 Recommendations to Experimentalists

While completing the research presented in this Thesis, it quickly became ap-
parent that there is a dearth of experimental data/information relevant for the
purposes of mathematical modelling. Below are listed various recommendations
and suggestions to experimentalists that will hopefully help to settle various
questions and, in general, further our collective understanding of hydrocephalus
(as well as brain tissue growth, development, and aging).

1. Pressure Distribution
Many theories for hydrocephalus hinge on the existence of transmantle or
intramantle pressure gradients. Recording the pressure at several positions
throughout the parenchyma from the ventricles to the SAS would help to
determine if such gradients exist, and if they do, their magnitudes.

2. Oscillatory Shear Flows
In the poroelastic model, CSF was found to oscillate in and out of the
periventricular tissue causing oscillatory shear stresses to act on the tissue.
The effect of oscillatory shear flows on cells attached to substrates has yet
to be investigated. Oscillatory shear flows may damage tissue more easily
than steady flows due to the flow reversals. Therefore, it is important to
determine the effect of oscillatory shear flows on cell adhesion in order to
better estimate their potential to cause damage.

3. Cell Adhesion Strength
Cell adhesion tests typically use collagen or fibronectin coated substrates;
unfortunately, these molecules are not predominant in brain ECM. Thus,
cell adhesion strength to brain ECM may differ significantly from the
estimates based on these studies. Therefore, in order to determine the
adhesion strength of cells to brain ECM, shear flow experiments should
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be performed with substrates coated with ligands found in abundance in
brain ECM.

4. Age-Dependent Bulk Modulus
In this Thesis, the bulk modulus of an aged brain is conjectured to be
reduced compared to that of a healthy mature brain. Experiments should
be conducted to determine if the bulk modulus of brain tissue is age-
dependent. It may also prove interesting to determine how the macro-
scopic bulk modulus of the tissue relates to the bulk modulus of the in-
dividual cells, thus linking the microscopic and macroscopic levels of the
tissue.

5. Age-Dependent Mechanical Properties In Vivo
The complex modulus data for infant porcine cerebrum presented by
Thibault and Margulies [124] may not accurately describe the tissue’s be-
haviour inside a closed cranium, since the tissues were excised and tested
in a mechanical apparatus surrounded by air. Infant brain tissue is still
developing its cellular structure and thus its behaviour may be more sen-
sitive to the environment in which it is tested than adult brain tissue, and
the mechanical behaviour may be altered by removal from the cerebrospi-
nal fluid bath in the cranial vault. The MRE experimental method used by
Sack et al. [106] resolves these problems. Therefore, animal MRE experi-
ments should be conducted with a wide range in subject age (from infancy
to old age) to test the hypothesized age-dependence of the steady-state
elastic modulus.

6. Accurate MRE Data Fitting
The magnetic resonance elastography complex modulus data [106] ap-
proximately agreed with the adult porcine data [124], but the slopes of
the storage and loss moduli curves differed. Similar differences may exist
between the infant porcine data and potential MRE measurements of in-
fant subjects. This may imply a reduction in the initial elastic modulus
and an increase in the relaxation time; however, the number of data points
used in the MRE experiments (4) is too small to permit a reliable fit to
our models. Thus, more frequency values should be used in future MRE
experiments.

7. Age-Dependent Creep and Relaxation
The complex modulus does not fully characterize all behaviours of a vis-
coelastic material. As discussed in Chapter 6, model parameters that ac-
curately predict the oscillatory response of brain tissue do not accurately
predict the relaxation behaviour of brain tissue. Thus, it is important
to perform creep and relaxation tests, as well as vibration tests, to fully
characterize the behaviour, and to allow for the determination of age-
dependent model parameters that describe all aspects of the viscoelastic
behaviour of soft biological tissues.
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8.3.2 Future Work

Lastly, we consider some possible future projects that extend the concepts of,
or investigate the conjectures made in, this Thesis.

1. Parenchymal Fluid Absorption
One possible extension of the poroelastic model described in Chapter 4, is
to incorporate parenchymal fluid absorption into the governing equations.
Fluid absorption by the capillaries of brain tissue should increase the peak
fluid filtration velocity, as well as slightly alter the interactions between the
fluid and solid phases of the brain, due to the CSF pulsations. If fluid flow
near the ventricles is markedly increased due to the additional withdrawal
of fluid that absorption would necessitate, then the shear stress induced
on the cells of the tissue will also be increased. Once the new filtration
velocities are determined, the shear flow induced stress can be calculated.
This stress can be compared to the damage thresholds, such as the shear
required to detach a cell from a substrate or the shear required to break
a single adhesion bond, in order to determine if tissue fluid filtration is
a potential factor in tissue damage when parenchymal fluid absorption is
taken into consideration.

2. Effects of Integrin Antibodies
Another possible extension of the poroelastic model described in Chapter 4
is to macroscopically incorporate the presumed effect of an injection of β1-
integrin antibodies [86]. Using the assumption that the antibodies reduce
the Young’s modulus of the tissue and locally increase the permeability,
preliminary investigations of the antibodies’ role in the development of hy-
drocephalus can be made. This work would be based on the investigations
made during the OCCAM-Fields-MITACS problem solving workshop [9].

3. ECM Cushioning Mechanism
I propose to investigate the cushioning mechanism of brain ECM provided
by the unique composition of the matrix, or more specifically, by the pres-
ence of hyaluronic acid. This acid molecule is known to be capable of
binding water molecules to provide a cushioning effect and to protect the
tissue from compression-induced damage. I would like to develop a poroe-
lastic model that allows for the partial transition of the solid phase to the
fluid phase, where the transition is triggered by compression. Such a model
could provide insight into the development of edema in hydrocephalus.

4. Fractional Order Derivatives
In Chapter 5, we hypothesized that the value of α, the fractional order
of the derivative, captures microstructural changes in the tissue; but, in
Chapter 6, curve fitting to age-dependent shear complex modulus data
showed that the value of α is approximately 0.8 for both infant and adult
cerebra. It is possible, however, that curve fitting with creep and relax-
ation data for infant and adult brain tissue would result in different values
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of α. Thus, in the future, when this experimental data becomes available,
it appears feasible to perform a curve fitting analysis to see if the order
of the fractional derivative is capable of capturing the compositional and
microstructural changes that occur during the growth and development
or degeneration phases of the human brain tissue lifespan.

5. Fractional Hyperelastic Constitutive Equation
To improve upon the simple fractional hyper-viscoelastic model based on
the Kelvin-Voigt solid used in Chapter 7, I would like to develop a more
realistic constitutive equation for brain tissue. In collaboration with C.
Drapaca PhD (The Pennsylvania State University), I would like to explore
the use of fractional derivatives to develop a new strain energy density
function. The addition of fractional derivatives to this function will intro-
duce a history dependence that may improve the model’s ability to link
the microscopic and macroscopic scales of tissues.

6. Microstructural Changes
To investigate the effects of a living tissue’s ability to reduce its internal
state of stress, I would like to develop a constitutive equation that allows
for microstructural changes due to the reorganization of the cell-ECM
binding cites. A framework for incorporating microstructural changes
into constitutive equations of materials has already been developed by Ra-
jagopal and Wineman [99], and this work would provide a starting point
for my tissue model. Building a model to account for microstructural
changes of the tissue will allow for further analytical investigation of the
work of Johnston and colleagues [86] in the development of hydrocephalus.

7. Microstructure Derived Constitutive Equation
Following the work of Bagley [5] and others in the field of polymer mechan-
ics, another direction of interest would be to derive a constitutive equation
for brain tissue directly from the microstructure. Fractional constitutive
equations have been derived from the microstructure of polymers, and
the similarities between the microstructure of polymers and brain tissue
suggest that an analogous derivation could be carried out for brain tissue.

The goal of mathematical modelling in hydrocephalus is to help further
our understanding of the causes and formation of this severe clinical condition.
Modelling may propose hypotheses or questions that can help to direct future
experimental investigations and it can help to explore existing or new etiological
theories. In these regards, the models presented in this Thesis have been quite
successful.
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Appendix A

Details of the Poroelastic
Model

A.1 Analytic Solution

This section describes the process of solving the coupled system of PDEs given
by (4.11) and (4.12), and also given below for convenience,
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Recall that fr = µ
ρk is the relaxation frequency and cd =

√
λ+2G
ρ is the propa-

gation speed of the dilatational waves. The first step to solving this system is
to nondimensionalize the equations.

A.1.1 Nondimensionalization

We begin by defining the characteristic scales and nondimensional variables
listed in Table A.1. Using these definitions, the displacement PDE (A.1) be-
comes
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and the pressure PDE (A.2) becomes
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Table A.1: Characteristic scales and nondimensional variables and parameters
for the poroelastic model equations (4.11) and (4.12).

Tc = 1
fr

characteristic time
Lc = cd

fr
characteristic length

Mc = µcd

f2
r

characteristic mass

t̂ = frt nondimensional time
r̂ = frr

cd
nondimensional length

û(r̂, t̂) = fr

cd
u(r, t) nondimensional displacement

p̂(r̂, t̂) = 1
µfr

pd(r, t) nondimensional dynamic pressure
ĉ0(t̂) = fr

c2d
c0(t) nondimensional arbitrary integration function

r̂V = fr

cd
rV nondimensional ventricle boundary

r̂SAS = fr

cd
rSAS nondimensional SAS boundary

k̂ = kf2
r

c2d
nondimensional permeability

ω̂ = ω
fr

nondimensional angular frequency

A.1.2 Solving for Displacement

Assuming û(r̂, t̂) = Re
(
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)
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)
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or, after simplifying

r̂2Û ′′ + r̂Û ′ +
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(ω̂2 − iω̂)r̂2 − 1

)
Û = −Ĉ0r̂.

Letting α =
√
ω̂2 − iω̂, ξ(r̂) = αr̂, V (ξ) = Û(r̂) and A = Ĉ0

α rescales the above
differential equation into

ξ2V ′′ + ξV ′ + (ξ2 − 1)V = −Aξ, (A.5)

which is a nonhomogeneous Bessel DE of order one. The homogeneous solution
is thus given by

Vh(ξ) = C1J1(ξ) + C2Y1(ξ), (A.6)

where J1 and Y1 are the Bessel functions of order 1.
Finding the particular solution requires the method of reduction of order.

Since J1(ξ) is a solution to the homogeneous DE, a guess of the particular
solution is Vp(ξ) = J1(ξ)w(ξ). Substituting this form into (A.5) gives

ξ2(J ′′1w + 2J ′1w
′ + J1w

′′) + ξ(J ′1w + J1w
′) + (ξ2 − 1)J1w = −Aξ.
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Rewriting the equation as

w(ξ2J ′′1 + ξJ ′1 + (ξ2 − 1)J1) + w′(2ξ2J ′1 + ξJ1) + w′′(ξ2J1) = −Aξ

shows that the first term vanishes since J1 satisfies the homogeneous Bessel DE
of order one. This leaves the following second order DE for w,

w′′ +
2ξ2J ′1 + ξJ1

ξ2J1
w′ = − A

ξJ1
. (A.7)

Rewriting this as a first order linear DE for w′, we can identify the integrating
factor as

I(ξ) = exp
(∫

2
J ′1
J1

+
1
ξ
dξ
)

= exp
(
lnJ2

1 + ln |ξ|
)

= ξJ2
1 . (A.8)

Multiplying (A.7) by the integrating factor and collapsing the left hand side
gives

d
dξ
(
w′ξJ2

1

)
= −AJ1, (A.9)

and integrating with respect to ξ gives

w′ξJ2
1 = −A

∫
J1dξ = AJ0 + C3,

or

w′ =
AJ0

ξJ2
1

+
C3

ξJ2
1

.

Integrating once again gives

w = A

∫
J0

ξJ2
1

dξ + C3

∫
1
ξJ2

1

dξ = − A

ξJ1
+
π

2
C3
Y1

J1
+ C4.

The above integrations and simplifications have used the following properties of
Bessel functions:

d
dξ

(
−1
ξJ1

)
=

1
(ξJ1)2

(J1 + ξJ ′1) =
J1 + ξ(J0 − 1

ξJ1)

(ξJ1)2
=

J0

ξJ2
1

and

d
dξ

(
π

2
Y1

J1

)
=
π

2
Y ′1J1 − Y1J

′
1

J2
1

=
π

2
W(J1, Y1)

J2
1

=
π

2
2
πξ

1
J2

1

=
1
ξJ2

1

,

where W(f, g) is the Wronskian and W(Jn(z), Yn(z)) = 2
πz [130, pg. 76].
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The particular solution is therefore,

Vp = J1w = J1

(
−A
ξJ1

+ C3
π

2
Y1

J1
+ C4

)
= −A

ξ
+ C3

π

2
Y1 + C4J1. (A.10)

Since J1(ξ) and Y1(ξ) are the independent functions that make up the homoge-
neous solution, they don’t contribute to the particular solution and the constants
C3 and C4 can be set to zero. The solution to (A.5) is therefore given by

V (ξ) = Vh(ξ) + Vp(ξ) = C1J1(ξ) + C2Y1(ξ)−
A

ξ
, (A.11)

and the nondimensional displacement is thus

û(r̂, t̂) = Re

((
C1J1(αr̂) + C2Y1(αr̂)−

Ĉ0

α2r̂

)
eiω̂t̂

)
. (A.12)

A.1.3 Solving for Pressure

Assuming p̂(r̂, t̂) = Re
(
P̂ (r̂)eiω̂t̂

)
and substituting into the PDE for pressure

(A.4) gives

P̂ ′(r̂)eiω̂t̂ =
1

k̂

(
iω̂Û(r̂)− 1

r̂
Ĉ0

)
eiω̂t̂.

Using Û(r̂) = V (ξ), substituting (A.11), and simplifying gives

P̂ ′(r̂) =
iω̂

k̂

(
C1J1(αr̂) + C2Y1(αr̂)

)
− ω2Ĉ0

k̂α2r̂
,

since α2 = ω2 − iω. Integrating with respect to r̂ gives the nondimensional
pressure amplitude as

P̂ (r̂) =
−iω̂
k̂α

(
C1J0(αr̂) + C2Y0(αr̂)

)
− ω2Ĉ0

k̂α2
ln(r̂) + C3. (A.13)

The nondimensional pressure function is thus given by

p̂(r̂, t̂) = Re

((
−iω̂
k̂α

(
C1J0(αr̂) + C2Y0(αr̂)

)
− ω2Ĉ0

k̂α2
ln(r̂) + C3

)
eiω̂t̂

)
.

(A.14)

A.1.4 Applying the Boundary Conditions

Nondimensionalizing the boundary conditions for the dynamic pressure (4.13)
requires that the nondimensional pressure amplitude function, P̂ (r̂), satisfies{

P̂ (r̂V ) = p̂V
P̂ (r̂SAS) = p̂SAS ,
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where p̂V = 1
µfr

pV and p̂SAS = 1
µfr

pSAS . Using the above expression for the
nondimensional pressure amplitude (A.13) gives{

−iω̂
k̂α

(
C1J0(αr̂V ) + C2Y0(αr̂V )

)
− ω̂2 ln(r̂V )

k̂α2 Ĉ0 + C3 = p̂V
−iω̂
k̂α

(
C1J0(αr̂SAS) + C2Y0(αr̂SAS)

)
− ω̂2 ln(r̂SAS)

k̂α2 Ĉ0 + C3 = p̂SAS .
(A.15)

Nondimensionalizing the displacement boundary conditions (4.14) requires
that the nondimensional displacement amplitude function, Û(r̂), satisfies{

λ+2G
λ Û ′(r̂V ) + 1

r̂V
Û(r̂V ) = 0

λ+2G
λ Û ′(r̂SAS) + 1

r̂SAS
Û(r̂SAS) = 0.

Using Û(r̂) = V (ξ), and substituting the expression for the nondimensional
displacement amplitude, (A.11), gives the boundary conditions as

λ+2G
λ

(
αC1J

′
1(αr̂V ) + αC2Y

′
1(αr̂V ) + Ĉ0

α2r̂2V

)
+ 1
r̂V

(
C1J1(αr̂V ) + C2Y1(αr̂V )− Ĉ0

α2r̂V

)
= 0

λ+2G
λ

(
αC1J

′
1(αr̂SAS) + αC2Y

′
1(αr̂SAS) + Ĉ0

α2r̂2SAS

)
+ 1
r̂SAS

(
C1J1(αr̂SAS) + C2Y1(αr̂SAS)− Ĉ0

α2r̂SAS

)
= 0.

(A.16)

Since J ′1(z) = J0(z)− 1
zJ1(z) and Y ′1(z) = Y0(z)− 1

zY1(z), the above conditions
simplify to{

1
α2r̂V

Ĉ0 +
(
Mαr̂V

2G JV0 − JV1
)
C1 +

(
Mαr̂V

2G Y V0 − Y V1
)
C2 = 0

1
α2r̂SAS

Ĉ0 +
(
Mαr̂SAS

2G JSAS0 − JSAS1

)
C1 +

(
Mαr̂SAS

2G Y SAS0 − Y SAS1

)
C2 = 0,

(A.17)
where M = λ + 2G and the notation FBn = Fn(αr̂B) with n = 0 or 1, B = V
or SAS, and F = J or Y , is used for convenience.

Boundary conditions (A.15) and (A.17) can be solved simultaneously by
constructing the matrix equation A~x = ~b where

~x = [ Ĉ0 C1 C2 C3 ]T ,
~b = [ p̂V p̂SAS 0 0 ]T ,

and the matrix A is defined as

A =


− ω̂2 ln(r̂V )

k̂α2
− iω̂

k̂α
JV0 − iω̂

k̂α
Y V0 1

− ω̂2 ln(r̂SAS)

k̂α2
− iω̂

k̂α
JSAS0 − iω̂

k̂α
Y SAS0 1

1
α2r̂V

Mαr̂V

2G JV0 − JV1
Mαr̂V

2G Y V0 − Y V1 0
1

α2r̂SAS

Mαr̂SAS

2G JSAS0 − JSAS1
Mαr̂SAS

2G Y SAS0 − Y SAS1 0

 .
(A.18)
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A.2 Numerical Method

In order to numerically simulate the solutions to the poroelastic model, the
asymptotic expasions of the Bessel functions for large arguments are used. They
are [1]

J0(z) =

√
2
πz

(
cos
(
z − π

4

)
+

1
8z

sin
(
z − π

4

)
− 9

128z2
cos
(
z − π

4

)
+ . . .

)
,

Y0(z) =

√
2
πz

(
sin
(
z − π

4

)
− 1

8z
cos
(
z − π

4

)
− 9

128z2
sin
(
z − π

4

)
+ . . .

)
,

J1(z) =

√
2
πz

(
cos
(
z − 3π

4

)
− 3

8z
sin
(
z − 3π

4

)
+

15
128z2

cos
(
z − 3π

4

)
+ . . .

)
,

Y1(z) =

√
2
πz

(
sin
(
z − 3π

4

)
+

3
8z

cos
(
z − 3π

4

)
+

15
128z2

sin
(
z − 3π

4

)
+ . . .

)
.

The analytic solutions for displacement, pressure, filtration velocity, and the
arbitrary constant, c0(t) are defined in terms of cross products of Bessel func-
tions such as J0(x)Y0(y)− Y0(x)J0(y) where x and y are complex. Expressions
for these cross products can be found using the asymptotic expansions above
and basic trigonometric identities. For example,

J0(x)Y0(y)− J0(y)Y0(x) =
2
π

1
√
xy

((
1
8x
− 1

8y
+ . . .

)
cos(y − x)

+
(

1− 9
282y2

− 9
282x2

+
1

82xy
+ . . .

)
sin(y − x)

)
In the MAPLE code included below, the following variable names are defined as
follows,

crossprodJ0Y 0(x, y) = J0(x)Y0(y)− Y0(x)J0(y),
crossprodJ1Y 0(x, y) = J1(x)Y0(y)− Y1(x)J0(y),
crossprodJ0Y 1(x, y) = J0(x)Y1(y)− Y0(x)J1(y),
crossprodJ1Y 1(x, y) = J1(x)Y1(y)− Y1(x)J1(y).

A.2.1 Maple Code

# Compute displacement, pressure, and filtration velocity
# from poroelastic model with pulsatile pressure BCs
restart:
digits := 20:

# Define constants
G := E / ( 2 ∗ (1 + nu ) ):
lambda := E ∗ nu / ( ( 1 + nu ) ∗ ( 1 − 2 ∗ nu ) ):
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ri := 3e−2: # 3 cm Ventricle wall boundary
ro := ri + 7e−2: # 10 cm SAS/cortical surface boundary
rm := ri + 0.5 ∗ ( ro − ri ): # 6.5 cm mid−point of parenchyma
convertmmHgPa := 133.32239: # to convert mmHg to Pa

# Define scalings, nondimensional variables and parameters
fr := mu / ( rho ∗ k ): # frequency time scale
cd := sqrt( ( lambda + 2 ∗ G ) / rho ): # speed of dilatational waves
wH := omega / fr: # nondimensional frequency of oscillations
kH := k ∗ frˆ2 / cdˆ2: # nondimensional permeability
pHi := pii / ( mu ∗ fr ): # nondimensional pressure at ventricle wall
pHo := po / ( mu ∗ fr ): # nondimensional pressure at cortical surface
rH := r −> fr ∗ r / cd: # nondimensional spatial variable
rHi := rH( ri ): # nondimensional ventricle wall boundary
rHo := rH( ro ): # nondimensional cortical surface boundary
alpha := evalf( sqrt( wHˆ2 − I ∗ wH ) ): # a scaling
xi := r −> alpha ∗ rH( r ): # scaled nondimensional spatial variable
xii := xi( ri ): # scaled nondimensional ventricle wall boundary
xio := xi( ro ): # scaled nondimensional cortical surface boundary

# Define cross products
crossprodJ0Y0 := ( x, y ) −> 2 ∗ ( ( 1 / 8 / x − 1 / 8 / y ) ∗ cos( y − x )

+ ( 1 − 9 / 128 / yˆ2 − 9 / 128 / xˆ2 + 1 / 64 / x / y )
∗ sin( y − x ) ) / ( Pi ∗ sqrt( x ∗ y ) ):

crossprodJ1Y0:=( x, y )−> 2 ∗ ( ( 3 / 8 / x + 1 / 8 / y ) ∗ sin( y − x )
+ ( 1 − 9 / 128 / yˆ2 + 15 / 128 / xˆ2 − 3 / 64 / x / y )
∗ cos( y − x ) ) / ( Pi ∗ sqrt( x ∗ y ) ):

crossprodJ0Y1 := ( x, y ) −> − crossprodJ1Y0( y, x ):
crossprodJ1Y1 := ( x, y ) −> 2 ∗ ( ( 3 / 8 / y − 3 / 8 / x ) ∗ cos( y − x )

+ ( 1 + 15 / 128 /yˆ2 + 15 / 128 / xˆ2 + 9 / 64 / x / y )
∗ sin( y − x ) ) / ( Pi ∗ sqrt( x ∗ y ) ):

# Define the numerator of the constant c 0(t)
C0num := evalf( ( pHi − pHo ) ∗ ( 4 ∗ xii ∗ Gˆ2 ∗ crossprodJ1Y0( xio, xii )

+ 4 ∗ xio ∗ Gˆ2 ∗ crossprodJ0Y1( xio, xii )
+ 2 ∗ xio ∗ lambda ∗ G ∗ crossprodJ0Y1( xio, xii )
+ 2 ∗ xii ∗ lambda ∗ G ∗ crossprodJ1Y0( xio, xii )
+ 4 ∗ Gˆ2 ∗ crossprodJ1Y1( xii, xio )
+ xii ∗ xio ∗ lambdaˆ2 ∗ crossprodJ0Y0( xii, xio )
+ 4 ∗ xii ∗ xio ∗ lambda ∗ G ∗ crossprodJ0Y0( xii, xio )
+ 4 ∗ xii ∗ xio ∗ Gˆ2 ∗ crossprodJ0Y0( xii, xio ) )
/ ( xii ∗ xio ) ):

C3num := evalf( wH ∗ ( pHo ∗ wH ∗ ln( rHi ) ∗ xii ∗ xio ∗ (
4 ∗ xii ∗ Gˆ2 ∗ crossprodJ0Y1( xii, xio )

+ 4 ∗ xio ∗ Gˆ2 ∗ crossprodJ1Y0( xii, xio )
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+ 2 ∗ xio ∗ lambda ∗ G ∗ crossprodJ1Y0( xii, xio )
+ 2 ∗ xii ∗ lambda ∗ G ∗ crossprodJ0Y1( xii, xio )
+ 4 ∗ Gˆ2 ∗ crossprodJ1Y1( xio, xii )
+ xii ∗ xio ∗ lambdaˆ2 ∗ crossprodJ0Y0( xio, xii )
+ 4 ∗ xii ∗ xio ∗ lambda ∗ G ∗ crossprodJ0Y0( xio, xii )
+ 4 ∗ xii ∗ xio ∗ Gˆ2 ∗ crossprodJ0Y0( xio, xii ) )
+ pHi ∗ wH ∗ ln( rHo ) ∗ xii ∗ xio ∗ (

4 ∗ xii ∗ Gˆ2 ∗ crossprodJ1Y0( xio, xii )
+ 4 ∗ xio ∗ Gˆ2 ∗ crossprodJ0Y1( xio, xii )
+ 2 ∗ xio ∗ lambda ∗ G ∗ crossprodJ0Y1( xio, xii )
+ 2 ∗ xii ∗ lambda ∗ G ∗ crossprodJ1Y0( xio, xii )
+ 4 ∗ Gˆ2 ∗ crossprodJ1Y1( xii, xio )
+ xii ∗ xio ∗ lambdaˆ2 ∗ crossprodJ0Y0( xii, xio )
+ 4 ∗ xii ∗ xio ∗ lambda ∗ G ∗ crossprodJ0Y0( xii, xio )
+ 4 ∗ xii ∗ xio ∗ Gˆ2 ∗ crossprodJ0Y0( xii, xio ) )
+ 2 ∗ I ∗ pHo ∗ (

2 ∗ xio ∗ Gˆ2 ∗ crossprodJ1Y0( xio, xii )
+ 2 ∗ xioˆ2 ∗ Gˆ2 ∗ crossprodJ0Y0( xii, xio )
+ 2 ∗ xii ∗ Gˆ2 ∗ crossprodJ0Y1( xii, xii )
+ xioˆ2 ∗ lambda ∗ G ∗ crossprodJ0Y0( xii, xio ) )
+ 2 ∗ I ∗ pHi ∗ (

2 ∗ xii ∗ Gˆ2 ∗ crossprodJ1Y0( xii, xio )
+ 2 ∗ xiiˆ2 ∗ Gˆ2 ∗ crossprodJ0Y0( xio, xii )
+ 2 ∗ xio ∗ Gˆ2 ∗ crossprodJ0Y1( xio, xio )
+ xiiˆ2 ∗ lambda ∗ G ∗ crossprodJ0Y0( xio, xii ) ) )
/ ( kH ∗ alphaˆ2 ∗ xiiˆ2 ∗ xioˆ2 ) ):

# Define the determinant of the matrix A
detA := evalf( wH ∗ ( wH ∗ ln( rHi ) ∗ xii ∗ xio ∗ (

4 ∗ xii ∗ Gˆ2 ∗ crossprodJ0Y1( xii, xio )
+ 4 ∗ xio ∗ Gˆ2 ∗ crossprodJ1Y0( xii, xio )
+ 2 ∗ xio ∗ lambda ∗ G ∗ crossprodJ1Y0( xii, xio )
+ 2 ∗ xii ∗ lambda ∗ G ∗ crossprodJ0Y1( xii, xio )
+ 4 ∗ Gˆ2 ∗ crossprodJ1Y1( xio, xii )
+ xii ∗ xio ∗ lambdaˆ2 ∗ crossprodJ0Y0( xio, xii )
+ 4 ∗ xii ∗ xio ∗ lambda ∗ G ∗ crossprodJ0Y0( xio, xii )
+ 4 ∗ xii ∗ xio ∗ Gˆ2 ∗ crossprodJ0Y0( xio, xii ) )
+ wH ∗ ln( rHo ) ∗ xii ∗ xio ∗ (

4 ∗ xii ∗ Gˆ2 ∗ crossprodJ1Y0( xio, xii )
+ 4 ∗ xio ∗ Gˆ2 ∗ crossprodJ0Y1( xio, xii )
+ 2 ∗ xio ∗ lambda ∗ G ∗ crossprodJ0Y1( xio, xii )
+ 2 ∗ xii ∗ lambda ∗ G ∗ crossprodJ1Y0( xio, xii )
+ 4 ∗ Gˆ2 ∗ crossprodJ1Y1( xii, xio )
+ xii ∗ xio ∗ lambdaˆ2 ∗ crossprodJ0Y0( xii, xio )
+ 4 ∗ xii ∗ xio ∗ lambda ∗ G ∗ crossprodJ0Y0( xii, xio )
+ 4 ∗ xii ∗ xio ∗ Gˆ2 ∗ crossprodJ0Y0( xii, xio ) )
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+ 2 ∗ I ∗ G ∗ (
2 ∗ G ∗ xiiˆ2 ∗ crossprodJ0Y0( xio, xii )

+ 2 ∗ G ∗ xioˆ2 ∗ crossprodJ0Y0( xii, xio )
+ 2 ∗ G ∗ xii ∗ crossprodJ1Y0( xii, xio )
+ 2 ∗ G ∗ xio ∗ crossprodJ1Y0( xio, xii )
+ 2 ∗ G ∗ xii ∗ crossprodJ0Y1( xii, xii )
+ 2 ∗ G ∗ xio ∗ crossprodJ0Y1( xio, xio )
+ lambda ∗ xiiˆ2 ∗ crossprodJ0Y0( xio, xii )
+ lambda ∗ xioˆ2 ∗ crossprodJ0Y0( xii, xio ) ) )
/ ( kH ∗ alphaˆ2 ∗ xiiˆ2 ∗ xioˆ2 ) ):

# Define the arbitrary constant of integration c 0(t)
C0 := C0num / detA:
# Define C 3
C3 := C3num / detA:

# To compute C1J1(xi) + C2Y1(xi) define the numerator as
C1J1C2Y1num := r −> 2 ∗ G ∗ ( pHi − pHo ) ∗ ( ( lambda + 2 ∗ G )

∗ ( xii ˆ2 ∗ crossprodJ1Y0( xi( r ), xii )
− xioˆ2 ∗ crossprodJ1Y0( xi( r ), xio ) )
− 2 ∗ G ∗ (xii ∗ crossprodJ1Y1( xi( r ), xii )
− xio ∗ crossprodJ1Y1( xi( r ), xio ) ) )
/ ( alpha ∗ xii ˆ2 ∗ xioˆ2 ):

# To compute C1J0(xi) + C2Y0(xi) define the numerator as
C1J0C2Y0num := r −> 2 ∗ G ∗ ( pHi − pHo ) ∗ ( ( lambda + 2 ∗ G )

∗ ( xii ˆ2 ∗ crossprodJ0Y0( xi( r ), xii )
− xioˆ2 ∗ crossprodJ0Y0( xi( r ), xio ) )
− 2 ∗ G ∗ ( xii ∗ crossprodJ0Y1( xi( r ), xii )
− xio ∗ crossprodJ0Y1( xi( r ), xio ) ) )
/ ( alpha ∗ xii ˆ2 ∗ xioˆ2 ):

# The displacement amplitude is defined by
U := r −> C1J1C2Y1num( r ) / detA − C0 / ( alpha ∗ xi( r ) ):
# and the dimension−full displacement is thus
u := ( r, t ) −> cd / fr ∗ U( r ) ∗ exp( I ∗ omega ∗ t ):

# The pressure amplitude is defined by
P := r −> − I ∗ wH ∗ C1J0C2Y0num( r ) / ( kH ∗ alpha ∗ detA )

− wHˆ2 ∗ C0 ∗ ln( rH( r ) ) / ( kH ∗ alphaˆ2 ) + C3:
# and the dimension−full pressure in mmHg is thus
p := ( r, t ) −> ( pave + mu ∗ fr ∗ P( r ) ∗ exp( I ∗ omega ∗ t ) )

/ convertmmHgPa:

# The dimension−full filtration velocity is defined by
W := ( r, t ) −> ( − I ∗ omega ∗ cd / fr ∗ C1J1C2Y1num( r ) / detA
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+ cdˆ2 ∗ omegaˆ2 ∗ C0 / ( alphaˆ2 ∗ frˆ3 ∗ r ) )
∗ exp( I ∗ omega ∗ t ):

# Assuming parameter values that describe NPH
# the displacement in micrometers is given by
NPHu := ( r, t ) −> 1e6 ∗ Re ( evalf ( subs ( omega = 6, mu = 1e−3,

k = 1e−14, rho = 1e3, E = 21000, nu = 0.4,
pave = 13 ∗ convertmmHgPa, pii = 0.5 ∗ 9.4 ∗ convertmmHgPa,
po = 0.5 ∗ 9.0 ∗ convertmmHgPa, u( r, t ) ) ) ):

# the pressure in mmHg is given by
NPHp := ( r, t ) −> Re ( evalf ( subs ( omega = 6, mu = 1e−3,

k = 1e−14, rho = 1e3, E = 21000, nu = 0.4,
pave = 13 ∗ convertmmHgPa, pii = 0.5 ∗ 9.4 ∗ convertmmHgPa,
po = 0.5 ∗ 9.0 ∗ convertmmHgPa, p( r, t ) ) ) ):

# and the filtration velocity in micrometers/second is given by
NPHW := ( r, t ) −> 1e6 ∗ Re ( evalf ( subs ( omega = 6, mu = 1e−3,

k = 1e−14, rho = 1e3, E = 21000, nu = 0.4,
pave = 13 ∗ convertmmHgPa, pii = 0.5 ∗ 9.4 ∗ convertmmHgPa,
po = 0.5 ∗ 9.0 ∗ convertmmHgPa, W( r, t ) ) ) ):
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Appendix B

Details of the Fractional
Zener Viscoelastic Model

B.1 Computing the Mittag-Leffler Function

Algorithms for the numerical computation of the generalized Mittag-Leffler func-
tion,

Eα,β(z) =
∞∑
k=0

zk

Γ(β + αk)
(B.1)

for α ∈ R+, β ∈ R, and z ∈ C have been presented by Gorenflo et al. in
[45, 44] and by Diethelm et al. [24]. For small |z|, we use the definition to
compute the function since all the instances in this thesis satisfy z < 0 and so
the series is alternating and arbitrary accuracy can be achieved. Unfortunately,
when |z| is large, this series is extremely slow to converge. Thus, the asymptotic
representation is required:

Eα,β = −
k1∑
k=1

z−k

Γ(β − αk)
+O(|z|−(1+k1)) as |z| → ∞ (B.2)

for | arg(z)| ≥ 3απ
4 where k1 = b− ln(ε)/ ln(|z|)c and ε is the machine precision.

The magnitude at which the transition between these two expressions occurs is
|z| = b10 + 5αc.

In the fractional Zener viscoelastic models, the generalized Mittag-Leffler
function is multiplied by tα−1 and then convolved with the pressure function.
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Recall that the infant and adult displacements are given by

uI(r, t) =
a2

b2 − a2

[(
3r

6K + E0
+

b2

E0r

)
pi(t)

+
b2(E0 − E∞)

E2
0τ
αr

pi(t) ∗ tα−1Eα,α

(
−E∞
E0

(
t

τ

)α)
(B.3)

+
3r(E0 − E∞)
(6K + E0)2τα

pi(t) ∗ tα−1Eα,α

(
−6K + E∞

6K + E0

(
t

τ

)α)]
and

uA(r, t) =
(
b

r
− r

b

)[
3a2b

(6K + E0)a2 + 3E0b2
pi(t) (B.4)

+
3a2b(a2 + 3b2)(E0 − E∞)

((6K + E0)a2 + 3E0b2)
2
τα
pi(t) ∗ tα−1Eα,α

(
−ĥ
(
t

τ

)α)]
,

and that the solution to the mixed boundary value problem is

um = (1− δ)uI + δuA. (B.5)

We denote k0 as the upper limit in the sum for the Mittag-Leffler definition
determined by the alternating series and k1 as the upper limit in the sum for
the asymptotic series expression of the Mittag-Leffler function, as |z| → ∞ for
| arg(z)| ≥ 3απ

4 , determined by max {b− ln(ε)/ ln(|z(ζ)|)c, b− ln(ε)/ ln(|z(t)|)c},
where ζ(z) is the transition point between the two expressions determined by
solving z(s) = b10 + 5αc for s and letting ζ(z) = s. Each convolution can then
be expressed as

C(t) =
∫ t

0

pi(t− s)sα−1Eα,α(−z(s)) ds

=


∫ t
0
pi(t− s)sα−1

∑k0
k=0

z(s)k

Γ(α(1+k)) ds if t ≤ ζ(z)∫ ζ(z)
0

pi(t− s)sα−1
∑k0
k=0

z(s)k

Γ(α(1+k)) ds otherwise

+
∫ t
ζ(z)

pi(t− s)sα−1(−1)
∑k1
k=1

z(s)−k

Γ(α(1−k)) ds

=


∑k0
k=0

1
Γ(α(1+k))

∫ t
0
pi(t− s)sα−1z(s)k ds if t ≤ ζ(z)∑k0

k=0
1

Γ(α(1+k))

∫ ζ(z)
0

pi(t− s)sα−1z(s)k ds otherwise
−
∑k1
k=1

1
Γ(α(1−k))

∫ t
ζ(z)

pi(t− s)sα−1z(s)−k ds

B.1.1 Maple Code

The following is the Maple script used to compute the infant tissue displacement
for the mixed boundary value problem.
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# Mixed Disp Final2.mw
# Compute mixed BC infant brain displacement using definition and
# asymptotic expansion of the Mittag−Leffler function
# no integral representation
#
# outer boundary condition sigma rr = delta∗(stress in adult at r=b)
# causing a mix of the two solutions

Digits := 40;
K := 2.1∗10ˆ9; # bulk modulus
alpha := 0.779; # fractional order
E0 := 6678; # initial elatic modulus
Einf := 621; # steady−state elastic modulus
tau := 0.000110; # relaxtion time
P := 667; # pressure wave amplitude
omega := 7; # angular frequency
a := 0.03; # inner radius
b := 0.1; # outer radius
tol := 10.0ˆ(−12); # tolerance (precision )

fh := (6∗K+Einf)∗aˆ2+3∗Einf∗bˆ2;
gh := (6∗K+E0)∗aˆ2+3∗E0∗bˆ2;
hh := fh/gh;
z1 := s −> −(Einf+6∗K)/(E0+6∗K)∗(s/tau)ˆalpha;
z2 := s −> −Einf/E0∗(s/tau)ˆalpha;
z3 := s −> −hh∗(s/tau)ˆalpha;

# proceedure to calculute number of terms for ML definition
maxk := proc (aa, z, tol)

local k;
k := 1;
while tol < evalf(abs(zˆk/GAMMA(aa∗(k+1)))) do

k := k+2
end do;
return k

end proc:

# values of s where transition occurs between ML definiton and
# asymptotic expansion
break2 := floor(10+5∗alpha);
s1b2 := evalf((break2/abs(z1(1)))ˆ(1/alpha));
s2b2 := evalf((break2/abs(z2(1)))ˆ(1/alpha));
s3b2 := evalf((break2/abs(z3(1)))ˆ(1/alpha));

# tissue displacement
u := (delta,r, t) −> u1(delta,r,t) + u2(delta,r,t) + u3(delta,r,t);
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u1 := (delta,r, t) −> evalf(aˆ2/(bˆ2−aˆ2)
∗((1−delta∗(bˆ2∗(4∗E0+6∗K))/gh)∗3∗r/(E0+6∗K)

+(1−delta∗(aˆ2∗(4∗E0+6∗K))/gh)∗bˆ2/(E0∗r))∗P∗cos(omega∗t));
u3 := (delta,r, t) −> evalf(delta∗(3∗aˆ2∗(aˆ2+3∗bˆ2)

∗(E0−Einf)∗tauˆ(−alpha))/ghˆ2∗(bˆ2/r−r)∗P∗ConvC(t));
u2 := (delta,r, t) −> evalf(aˆ2/(bˆ2−aˆ2)∗(E0−Einf)∗(1−delta)∗tauˆ(−alpha)

∗P∗(3∗r/(E0+6∗K)ˆ2∗ConvA(t)+bˆ2/(r∗E0ˆ2)∗ConvB(t)));

# using z1(t) we can calculate the convolution ConvA
ConvA := proc (t)

local kk, temp, k1A, kmaxA;
kmaxA := maxk(alpha, z1(s1b2), tol);
temp := 0;
if t < s1b2 then

for kk from 0 to kmaxA do
temp := temp + eval(z1(1)ˆk

∗(int(cos(omega∗(t−s))∗sˆ(alpha∗(k+1)−1),s=0. .. t))
/GAMMA(alpha∗(k+1)), k = kk);

end do;
else

for kk from 0 to kmaxA do
temp := temp + eval(z1(1)ˆk

∗(int(cos(omega∗(t−s))∗sˆ(alpha∗(k+1)−1), s=0. .. s1b2))
/GAMMA(alpha∗(k+1)), k = kk);

end do;
k1A := max(floor(−ln(tol)/ln(abs(z1(s1b2)))),

floor(−ln(tol)/ln(abs(z1(5)))));
temp := temp + Re(−1∗add(z1(1)ˆ(−k)

∗(int(cos(omega∗(t−s))∗sˆ(alpha∗(1−k)−1), s = s1b2 .. t))
/GAMMA(alpha∗(1−k)), k = 1 .. k1A));

end if:
return temp;

end proc:

# using z2(t) we can calculate the convolution ConvB
ConvB := proc (t)

local kk, temp, kmaxB, k1B;
kmaxB := maxk(alpha, z2(s2b2), tol);
temp := 0;
if t < s2b2 then

for kk from 0 to kmaxB do
temp := temp + eval(z2(1)ˆk

∗(int(cos(omega∗(t−s))∗sˆ(alpha∗(k+1)−1), s=0. .. t))
/GAMMA(alpha∗(k+1)), k = kk);

end do;
else
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for kk from 0 to kmaxB do
temp := temp + eval(z2(1)ˆk

∗(int(cos(omega∗(t−s))∗sˆ(alpha∗(k+1)−1), s= 0. .. s2b2))
/GAMMA(alpha∗(k+1)), k = kk);

end do;
k1B := max(floor(−ln(tol)/ln(abs(z2(s2b2)))),

floor(−ln(tol)/ln(abs(z2(5)))));
temp := temp + Re(−1∗add(z2(1)ˆ(−k)

∗(int(cos(omega∗(t−s))∗sˆ(alpha∗(1−k)−1), s = s2b2 .. t))
/GAMMA(alpha∗(1−k)), k = 1 .. k1B));

end if:
return temp;

end proc:

# using z3(t) we can calculate the convolution ConvC
ConvC := proc (t)

local kk, temp, kmaxC, k1C;
kmaxC := maxk(alpha, z3(s3b2), tol);
temp := 0;
if t < s3b2 then

for kk from 0 to kmaxC do
temp := temp + eval(z3(1)ˆk

∗(int(cos(omega∗(t−s))∗sˆ(alpha∗(k+1)−1), s = 0. .. t))
/GAMMA(alpha∗(k+1)), k = kk);

end do;
else

for kk from 0 to kmaxC do
temp := temp + eval(z3(1)ˆk

∗(int(cos(omega∗(t−s))∗sˆ(alpha∗(k+1)−1), s=0. .. s3b2))
/GAMMA(alpha∗(k+1)), k = kk);

end do;
k1C := max(floor(−ln(tol)/ln(abs(z3(s3b2)))),

floor(−ln(tol)/ln(abs(z3(5)))));
temp := temp + Re(−1∗add(z3(1)ˆ(−k)

∗(int(cos(omega∗(t−s))∗sˆ(alpha∗(1−k)−1), s = s3b2 .. t))
/GAMMA(alpha∗(1−k)), k = 1 .. k1C));

end if:
return temp;

end proc:

# To avoid recalculating the convolutions, precalculate them
# and then find the displacements at three points in parenchyma
t Data := [seq(evalf(i/20+0.01), i= 0 .. 60)]: # t from 0.01 .. 3
CA Data := []:
CB Data := []:
CC Data := []:
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for tt in t Data do
CA Data := [op(CA Data), ConvA(tt)];
CB Data := [op(CB Data), ConvB(tt)];
CC Data := [op(CC Data), ConvC(tt)];

end do:

# calculuate displacement at r=a
u1 Data ra := eval(aˆ2/(bˆ2−aˆ2)∗(

(1−delta∗(bˆ2∗(4∗E0+6∗K))/gh)∗3∗r/(E0+6∗K)
+(1−delta∗(aˆ2∗(4∗E0+6∗K))/gh)∗bˆ2/(E0∗r))
∗P∗[seq(cos(omega∗t),t in t Data)], {r = a, delta = 0.5}):

u2 Data ra := eval(aˆ2/(bˆ2−aˆ2)∗(E0−Einf)∗(1−delta)∗tauˆ(−alpha)∗P
∗(3∗r/(E0+6∗K)ˆ2∗CA Data+bˆ2/(r∗E0ˆ2)∗CB Data),
{r = a, delta = 0.5}):

u3 Data ra := eval(delta∗(3∗aˆ2∗(aˆ2+3∗bˆ2)∗(E0−Einf)∗tauˆ(−alpha))/ghˆ2
∗(bˆ2/r−r)∗P∗CC Data, {r = a, delta = 0.5}):

# calculuate displacement at r=0.5(a+b)
u1 Data rm := eval(aˆ2/(bˆ2−aˆ2)∗(

(1−delta∗(bˆ2∗(4∗E0+6∗K))/gh)∗3∗r/(E0+6∗K)
+(1−delta∗(aˆ2∗(4∗E0+6∗K))/gh)∗bˆ2/(E0∗r))∗P
∗[seq(cos(omega∗t),t in t Data)], {r = 0.5∗(a+b), delta = 0.5}):

u2 Data rm := eval(aˆ2/(bˆ2−aˆ2)∗(E0−Einf)∗(1−delta)∗tauˆ(−alpha)∗P
∗(3∗r/(E0+6∗K)ˆ2∗CA Data+bˆ2/(r∗E0ˆ2)∗CB Data),
{r = 0.5∗(a+b), delta = 0.5}):

u3 Data rm := eval(delta∗(3∗aˆ2∗(aˆ2+3∗bˆ2)∗(E0−Einf)∗tauˆ(−alpha))/ghˆ2
∗(bˆ2/r−r)∗P∗CC Data, {r = 0.5∗(a+b), delta = 0.5}):

# calculuate displacement at r=b
u1 Data rb := eval(aˆ2/(bˆ2−aˆ2)∗(

(1−delta∗(bˆ2∗(4∗E0+6∗K))/gh)∗3∗r/(E0+6∗K)
+(1−delta∗(aˆ2∗(4∗E0+6∗K))/gh)∗bˆ2/(E0∗r))
∗P∗[seq(cos(omega∗t),t in t Data)], {r = b, delta = 0.5}):

u2 Data rb := eval(aˆ2/(bˆ2−aˆ2)∗(E0−Einf)∗(1−delta)∗tauˆ(−alpha)
∗P∗(3∗r/(E0+6∗K)ˆ2∗CA Data+bˆ2/(r∗E0ˆ2)∗CB Data),
{r = b, delta = 0.5}):

u3 Data rb := eval(delta∗(3∗aˆ2∗(aˆ2+3∗bˆ2)∗(E0−Einf)∗tauˆ(−alpha))/ghˆ2
∗(bˆ2/r−r)∗P∗CC Data, {r = b, delta = 0.5}):

# combine displacement pieces
u Data ra := u1 Data ra + u2 Data ra + u3 Data ra:
u Data rM := u1 Data rm + u2 Data rm + u3 Data rm:
u Data rb := u1 Data rb + u2 Data rb + u3 Data rb:

# create arrays for plotting
Disp ra := []:
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Disp rM := []:
Disp rb := []:
for ii from 1 to nops(u Data ra) do

Disp ra := [op(Disp ra), [t Data[ii ], 1e3∗u Data ra[ii]]];
Disp rM := [op(Disp rM), [t Data[ii], 1e3∗u Data rM[ii]]];
Disp rb := [op(Disp rb), [t Data[ii ], 1e3∗u Data rb[ii]]];

end do:

# save data for later since computation takes a long time
save(Disp ra, Disp rM, Disp rb, ”Mixed DispData Final.out”);

# plot displacement of mixed BC infant brain
plot([Disp ra,Disp rM,Disp rb], labels = [”Time [s]”,”[mm]”],

title = ”Infant Displacement with Mixed BC”,
legend = [”r=a”, ”r=0.5(a+b)”, ”r=b”], thickness = 3,
color = [black, red, blue], linestyle = [1, 3, 2],
view = [0..3, −20..20], font = [TIMES, ROMAN, 14],
legendstyle = [font = [TIMES, ROMAN, 14]],
labeldirections = [horizontal, vertical ]);

# determine max displacement of venticle wall
max ura := 0:
max t := 0:
for ii from 1 to nops(u Data ra) do

if max ura < u Data ra[ii] then
max ura := u Data ra[ii];
max t := t Data[ii];

end if;
end do:
1e3∗max ura;
max t;

# plot displacement as a function of mixing parameter delta
unassign(’delta’);
plot(1e3∗u(d, a, .9), d = 0 .. 1, thickness = 3,

title = ”Infant Displacement with Mixed Boundary Condition”,
labels = [delta, ”[mm]”], view = [0..1, 0..40],
font = [TIMES, ROMAN, 14], labeldirections = [horizontal, vertical],
legend = [”r=a at t=0.9 s”], legendstyle = [font = [TIMES, ROMAN, 14]]);
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Appendix C

Details of the Fractional
Hyper-Viscoelastic Model

In Section C.1, after presenting the necessary background on convected curvilin-
ear coordinates, we determine the deformation gradients and deformation tensor
used in Chapter 7 to derive the quasilinear fractional hyper-viscoelastic model.
In Section C.2, we present the Laplace Transform method for solving the small
strain equation of motion for this model.

C.1 Model Co-ordinate Systems and the Deformation
Tensor

The thick-walled cylinder model geometry has initial configuration, B, for t ≤
0, with the cylindrical co-ordinate system (R,Θ, Z) and unit direction vectors
(êR, êΘ, êZ). The inner boundary is R = R1, the outer boundary is R = R2,
and the unit base vectors for this undeformed state are

êR = cos Θ ı̂+ sinΘ ̂

êΘ = − sinΘ ı̂+ cos Θ ̂

êZ = k̂.

For t > 0, the cylinder is in a deformed state b due to the applied bound-
ary conditions of σr(t, r1) = −p0(t) and σr(t, r2) = 0, with the cylindrical co-
ordinate system (r, θ, z) and unit direction vectors (êr, êθ, êz). In this deformed
state, the inner boundary is r = r1, the outer boundary is r = r2, and the unit
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base vectors are

êr = cos θ ı̂+ sin θ ̂
êθ = − sin θ ı̂+ cos θ ̂

êz = k̂.

Assuming the ends of the cylinder are tethered, the boundary conditions
cause radially symmetric planar deformations to occur:

r = f(t, R), θ = Θ, z = Z, (C.1)

where f(t, R) is the deformation function to be determined.

C.1.1 Convected Co-ordinates

Assume the XI co-ordinate system is embedded in B so that it deforms with the
body and the xi co-ordinate system coincides with the XI system at all times
during the deformation. Hence, while in motion, each point keeps the same
labels (so xi = XI). By using convected co-ordinates we lose the flexibility to
choose the deformed co-ordinate system to take advantage of symmetries but
the resulting basic equations are simpler in form.

General Curvilinear Co-ordinates: (x1, x2, x3)

Consider a set of base vectors ~gi tangent to the xi-curves at each point in space,
but not necessarily unit vectors or dimensionless as ~gi can change in magnitude
and direction as you move along the co-ordinate curves. A vector ~a can be
expressed with respect to the standard orthonormal base vectors via ~a = âiêi
or with respect to the covariant base vectors via ~a = ai~gi, where ai are the
contravariant components of ~a relative to the covariant base vectors ~gi.

The covariant base vectors of the undeformed (B) and deformed (b) states
are ~GI and ~gi respectively, and these base vectors are tangent to the XI and xi

co-ordinate curves at some point P in B which deforms into p in b. The radius
vector in the undeformed state B is

~R = RêR + Z êZ = R(cos Θ ı̂+ sinΘ ̂) + Zk̂, (C.2)

and the radius vector in the deformed state b is

~r(t) = f(t, R)êr + zêz = f(t, R)(cos θ ı̂+ sin θ ̂) + zk̂. (C.3)

We use the notation ~ξ,y to denote differentiation of ~ξ with respect to y. Thus,
the covariant base vectors of B are

~GI =


~G1 = ~R,R = êR for I = 1
~G2 = ~R,Θ = R êΘ for I = 2
~G3 = ~R,Z = êZ for I = 3

(C.4)
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and the covariant base vectors of b are

~gi =

 ~g1 = ~r,r = êr for i = 1
~g2 = ~r,θ = f(t, R) êθ for i = 2
~g3 = ~r,z = êz for i = 3.

(C.5)

The convected covariant base vectors, ~gI∗ , are tangent to the convected XI

co-ordinate curves at p and are defined by

~gI∗ =

 ~g1∗ = ~r,R = fR(t, R) êr for I = 1
~g2∗ = ~r,Θ = f(t, R) êθ for I = 2
~g3∗ = ~r,Z = êz for I = 3.

(C.6)

The deformation gradient can be computed in terms of the convected base
vectors ~gI∗ and the reciprocal or contravariant base vectors ~GI . The contravari-
ant base vectors, or dual vectors, are defined by ~GI · ~GJ = δJI , which gives from
(C.4),

~GI =


~G1 = êR for I = 1
~G2 = 1

R êΘ for I = 2
~G3 = êZ for I = 3.

(C.7)

The contravariant base vectors for b, ~gi, may be found as above, but instead
we demonstrate a different approach as discussed by Drozdov [30]. Let V be
defined by

V = ~g1 · (~g2 × ~g3) = ~g2 · (~g3 × ~g1) = ~g3 · (~g1 × ~g2) = r = f(t, R),

then

~g1 =
~g2 × ~g3
V

, ~g2 =
~g3 × ~g1
V

, ~g3 =
~g1 × ~g2
V

and the contravariant base vectors of b are

~gi =


~g1 = êr for i = 1
~g2 = 1

f êθ for i = 2
~g3 = êz for i = 3.

(C.8)

In a similar manner, the convected contravariant base vectors, ~gI
∗
, are

~gI
∗

=


~g1∗ = 1

fR
êr for I = 1

~g2∗ = 1
f êθ for I = 2

~g3∗ = êz for I = 3.
(C.9)

C.1.2 Gradients and Tensors

In this section, we find the deformation gradients and deformation tensor nec-
essary for the model derivation presented in Chapter 7.
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Deformation Gradient

The deformation gradient bi-tensor F is a gradient of the map ~r(t, R) which
characterizes the map in a small neighbourhood of any point. If a map preserves
orientation then detF > 0. The deformation gradient is defined using Einstein’s
notation as

F = ~gI∗ ~G
I

= ~g1∗ ~G
1 + ~g2∗ ~G

2 + ~g3∗ ~G
3

= fRêr êR + f êθ
1
R

êΘ + êz êZ
or

F(t, R) = h(t, R)êr êR +
f(t, R)
R

êθ êΘ + êz êZ , (C.10)

where h(t, R) = fR(t, R). The stretch ratios of the deformation are λ1 = h,

λ2 =
f

R
, and λ3 = 1.

Relative Deformation Gradient

The relative deformation gradient is the tensor Fτ defined by

Fτ (t, R) = F(t, R) ·
(
F(τ,R)

)−1 (C.11)

and it characterizes the entire history of the deformation on the interval [0, t].
Using the definition of F gives

Fτ (t, R) =
(
gI∗(t)GI(t)

)
·
(
GJ(τ)gJ

∗
(τ)
)

= gI∗(t)δIJg
J∗(τ) = gI∗(t)gI

∗
(τ),

which allows for easy computation:

Fτ (t, R) = ~g1∗(t)~g1∗(τ) + ~g2∗(t)~g2∗(τ) + ~g3∗(t)~g3∗(τ)

=
h(t, R)
h(τ,R)

êr êr +
f(t, R)
f(τ,R)

êθ êθ + êz êz. (C.12)

Left Cauchy-Green Deformation Tensor

The Left Cauchy-Green deformation tensor describes deformations that do not
lead to a change in the position vector ~r relative to the coordinate system
embedded in the material, b. Examples of deformations that are excluded by
this description are rotations and translations. The left Cauchy-Green tensor,
B, is defined by

B(t, R) = F(t, R) ·
(
F(t, R)

)T
=
(
gI∗G

I
)
·
(
GJgJ∗

)
= h2(t, R)êr êr +

f2(t, R)
R2

êθ êθ + êz êz, (C.13)
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Note that (·)T denotes the transpose operation. The principal invariants of B
are given by I1 = B11 + B22 + B33

I2 = B11B22 + B22B33 + B11B33 −B2
12 −B2

21 −B2
13

I3 = B11B22B33,
(C.14)

which in this case gives
I1 = h2(t) + f2(t)

R2
+ 1

I2 = h2(t) f
2(t)

R2
+ h2(t) + f2(t)

R2

I3 = h2(t) f
2(t)

R2
.

(C.15)

C.2 Solution Via Laplace Transforms

The solution method for solving fractional differential equations with Laplace
Transforms was first described by Miller and Ross [81]. Using the Laplace
Transform to solve the small strain equation of motion (7.23) gives, after sim-
plification,

B̄(s) =
b

b− 1
∆p
µ

(
1
s
− sα−1

sα + µ
η

)
.

With α = 4
5 and −x4 = µ

η this becomes

B̄(s) =
b

b− 1
∆p
µ

(
1
s
− s−

1
5

s
4
5 − x4

)
. (C.16)

The term − s−
1
5

s
4
5−x4

must be rewritten in a form appropriate for the inverse

Laplace Transform. Using long division, the denominator is factored into ir-
reducible factors, giving

s
4
5 − x4 = (s

1
5 − x)(s

1
5 + x)(s

1
5 − ix)(s

1
5 + ix).

Next, a partial fractions expansion is sought with numerators of the form Cks
− 4

5

for k = 1 . . . 4, and where Ck are constants. In this instance, we get

− s−
1
5

s
4
5 − x4

= −
1
4s
− 4

5

s
1
5 + x

−
1
4s
− 4

5

s
1
5 − x

−
1
4s
− 4

5

s
1
5 + ix

−
1
4s
− 4

5

s
1
5 − ix

.

Again, long division is used to simplify each term. Using the fact that

(s
1
5 + x)(s

4
5 − s

3
5x+ s

2
5x2 − s

1
5x3 + x4) = s+ x5,
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and similar expressions for (s
1
5 − x), (s

1
5 + ix), and (s

1
5 − x), gives

− s−
1
5

s
4
5 − x4

= −1
4

(
1− s−

1
5x+ s−

2
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3
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3
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3
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+
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1
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2
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3
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4
5 (ix)4

s− (ix)5

)
.

This form can now be transformed back to t-space using the inverse Laplace
Transform. The fractional powers of s in the numerators result in the trans-
formed function being expressed in terms of the Gamma function, defined by,

Γ(z) =
∫ ∞

0

sz−1e−sds,

and the incomplete Gamma function, defined by,

Γ(a, z) =
∫ ∞

z

sa−1e−sds.

Substituting these results into (C.16), recalling that x = 1+i√
2

(
µ
η

) 1
4
, and

taking the inverse Laplace Transform, gives the small strain function B(t) for
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α = 4
5 as
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Glossary

Arachnoid Villi The small protrusions of the arachnoid (the thin layer cover-
ing the cortical surface) through the dura mater into the venous sinuses.
These are believed to be a site of CSF absorption.

Blood Brain Barrier The tight junctions between endothelial cells of capil-
lary walls that restrict the transcapillary flow of molecules.

Bulk Modulus (K) The measure of a substances resistance to uniform com-
pression, defined byK = −V ∂P

∂V , or the pressure increase required to cause
a given relative decrease in volume.

Cerebrospinal Fluid (CSF) The clear colourless liquid that surrounds the
brain and spinal cord as well as fills the interior ventricles of the brain. In
this Thesis, CSF also refers to any fluid found in the brain tissue, i.e. the
interstitial fluid.

Choroid Plexus A collection of ependymal cells and capillaries found in all
cerebral ventricles where CSF production mainly occurs.

Communicating Hydrocephalus The class of hydrocephalus where CSF cir-
culates from the ventricles to the spinal SAS but not to the cranial SAS
where absorption mainly occurs. The mechanism for ventricular enlarge-
ment is unknown for this class because the non-communicating hydro-
cephalus mechanism of a large pressure gradient does not hold.

Compliance (C) The tendency of a compartment to stretch in response to an
internal pressure. It is defined as C = ∆V

∆P , or the change in volume that
results from a change in pressure.

Edema Sometimes spelled oedema, it is the abnormal accumulation of fluid,
and in this Thesis, it refers specifically to accumulated fluid in the extra-
cellular spaces of tissue.

Elastance The reciprocal of compliance, ∆P
∆V , it is the change in pressure that

results from a change in volume.

Endothelial Cells The cells that line the surface of blood vessels.
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Ependyma The thin membrane, consisting of epithelial cells, lining the ven-
tricular system of the brain and spinal cord. Commonly referred to in this
Thesis as the ventricle walls.

Extracellular Matrix (ECM) The interstitial structure consisting of fibrous
proteins that support the cells of the tissue.

Foramen Magnum The hole in the skull through which the spinal cord con-
nects to the brain.

Hydrocephalus A clinical condition with various causes and no cure that is
characterized by the abnormal accumulation of CSF in the enlarged cere-
bral ventricles.

Integrins Receptors protruding from the cell membrane that bind with the
fibers of the ECM to adhere the cell.

Intracranial Pressure (ICP) The pressure of the ventricular CSF.

Intramantle Gradient A pressure gradient from the ventricles to the paren-
chyma and/or from the SAS to the parenchyma.

Kaolin A clay mineral that is used in solution to induce hydrocephalus in
animal experiments by blocking CSF absorption in the cranial SAS.

Lectican A family of proteins commonly found in brain ECM.

Ligand A molecule in the ECM that binds to an integrin receptor. Binding
occurs via intermolecular forces.

Non-Communicating Hydrocephalus The class of hydrocephalus where a
blockage impedes the normal circulation of CSF and a pressure build up
occurs across this blockage, enlarging the ventricles and compressing the
brain tissue.

Normal Pressure Hydrocephalus (NPH) A special case of communicat-
ing hydrocephalus where the ICP is within the normal range. It most
commonly occurs in the elderly population and is often undiagnosed or
misdiagnosed as either Alzheimer’s disease or Parkinson’s disease.

Parenchyma The functional parts of an organ, in the brain this refers to the
neurons and glial cells.

Periventricular Region The regions of the brain tissue that surround the
ventricles.

Permeability A measure of the ability of a porous material to transmit fluids.

Pressure Volume Index (PVI) A method of evaluating the dynamics of the
CSF compartments. It is defined as the volume of fluid necessary to raise
the ICP by a factor of 10, that is PVI = ∆V/ log10

(
Ppeak

Pbaseline

)
.
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Proteoglycan A core protein attached to one or more long carbohydrate chains
commonly found in the ECM.

Shear Modulus (µ) Sometimes called the modulus of rigidity, it is the ratio of
the shear stress to the shear strain and thus describes a material’s response
to shear strains.

Subarachnoid Space (SAS) The region between the membrane surrounding
the brain ad spinal cord (pia mater) and the arachnoid membrane, dura
mater, and skull.

Transparenchymal (Transmantle) Gradient A pressure gradient from the
ventricles across the brain parenchyma to the cranial SAS.

Ventricles Four interconnected regions within the brain that produce CSF and
are in free communication with the cranial and spinal SAS as well as the
spinal central canal.

Ventriculomegaly A brain condition characterized by enlarged lateral ventri-
cles. In this Thesis it is used interchangeably with hydrocephalus.

Viscosity A measure of a fluid’s resistance to flow under shear or tensile stress.

Young’s Modulus (E) A measure of the tensile stiffness of a material, it is
defined as the ratio of uniaxial stress to uniaxial strain.
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