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Abstract

There is a tremendous amount of information being generated and stored every year,
and its growth rate is exponential. From 2008 to 2009, the growth rate was estimated
to be 62%. In 2010, the amount of generated information is expected to grow by 50%
to 1.2 Zettabytes, and by 2020 this rate is expected to grow to 35 Zettabytes[IE10]. By
preprocessing text in programmable logic, high data processing rates could be achieved
with greater power efficiency than with an equivalent software solution[VAM09], leading
to a smaller carbon footprint.

This thesis presents an overview of the fields of Information Retrieval and Natural Lan-
guage Processing, and the design and implementation of four text preprocessing modules
in programmable logic: UTF–8 decoding, stop–word filtering, and stemming with both
Lovins’[Lov68] and Porter’s[Por80] techniques. These extensively pipelined circuits were
implemented in a high performance FPGA and found to sustain maximum operational
frequencies of 704 MHz, data throughputs in excess of 5 Gbps and efficiencies in the range
of 4.332 – 6.765 mW/Gbps and 34.66 – 108.2 µW/MHz. These circuits can be incorporated
into larger systems, such as document classifiers and information extraction engines.
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1

Introduction

This thesis investigates how to quickly and efficiently preprocess documents in pro-

grammable logic for Information Retrieval (IR) and Natural Language Processing (NLP)

applications. It presents designs for UTF–8 decoding, stop word filtering, and stemming

with both Lovins’[Lov68] and Porter’s[Por80] algorithms, and outlines their respective

resource and power efficiencies in a modern Field Programmable Gate Array (FPGA). The

text documents could be delivered to the circuits via a computer network, which would

require them to process the incoming information as a character stream with a high data

transfer rate.

A document is taken to mean a collection of words, which could be embodied in an

email, a web page, or other discrete collection of text. By preprocessing in programmable

logic, high data processing rates could be achieved with greater power efficiency than

with an equivalent software solution[VAM09]. This is important since the amount of dig-

ital information in the world is growing at an exponential rate. From 2008 to 2009, the

growth rate was 62%. In 2010, the amount of generated information is expected to grow

by 50% to 1.2 Zettabytes, and by 2020 this rate is expected to grow to 35 Zettabytes[IE10].

Fast and energy efficient processing will be critical to effectively managing such vast

quantities of data with a minimal carbon footprint.
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Thesis organization

This thesis is organized as follows. Chapter 2 provides background information on the

related fields of Information Retrieval, Natural Language Processing, digital logic and

character encoding, and points to several related works. An overview of the guiding

principles and constraints that are common to the design and implementation of the four

circuits overviewed in this thesis are presented in Chapter 3. The following three chapters

focus on each circuit individually. Chapter 4 examines UTF–8 decoding and tokenization.

Chapter 5 analyzes an approach to stop word filtering, and Chapter 6 compares the design

and implementation of two word stemmers; one based on Lovins’ algorithm[Lov68] and

the other based on Porter’s[Por80].

Chapter 7 concludes the thesis by highlight the resource utilization, performance and

power efficiency of the four circuits. It also points to some possibilities for interesting

future work, such as Latent Semantic Indexing in programmable logic and the indexing

of multimedia, such as video. Supplementary material on text encoding, stop word filter-

ing, Natural Language Processing and stemming can be founded in Appendixies A, B, C

and D respectively.
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Background

Custom hardware implementations are generally significantly faster and more power

efficient than their software equivalents. These advantages come at the expense of flex-

ibility and higher development cost. The cost can be justified if the algorithm does not

undergo frequent adjustments and the economics of scale are leveraged, with the result-

ing product being either sold to a very large market, as in the case of Intel’s CPUs and

Nvidia’s GPUs, or its costs aggregated over a large number of users, as in the case of

Cisco’s IP packet routers. In both scenarios, fully custom devices, known as Application-

Specific Integrated Circuits (ASICs), are entirely justified. However, a mid–market also

exists and it can be economically catered to with implementations in programmable logic,

with the most popular family of devices being Field–Programmable Gate Arrays (FPGAs).

Furthermore, by being programmable, they facilitate prototyping, require shorter devel-

opment cycles and allow for quick upgrades when in use. FPGAs are the target devices

for all of the circuits presented in this thesis.

Although FPGAs are not as well optimized for maximum operating frequency and min-

imal power consumption as ASICs are, they have been shown to accommodate signifi-

cantly accelerated implementations of inherently parallel algorithms in the domains of

signal processing and finance. There are relatively few publications on the topic of accel-
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erated text processing in FPGAs. However, given the exponential growth in the amount

of digital information in the world[IE10], it is likely that publications on Information Re-

trieval (IR) and Natural Language Processing (NLP) applications will become more com-

mon. This chapter will present an overview of these two fields, as well as outline some

of the related implementations in digital logic. It will also present an overview of several

common text encoding standards.

2.1 Information Retrieval

IR is a domain that concerns itself with efficient access to large amounts of stored text.

It has a well–established history and has reached an initial level of maturity sufficient for

deployment in industry and business. Its strongest overlap is with the field of Natural

Language Processing (NLP). The definitive commonality for both is the textual material

on which they operate. The tools implemented at various levels of abstraction are differ-

ent since NLP has the diverging concerns of text analysis, representation and generation.

Nevertheless, linguistic techniques are being borrowed from NLP to enhance the perfor-

mance of IR systems.

The fundamental technique of information retrieval is measuring similarity.

A query is examined and transformed into a vector of values to be compared

with the measurements taken over the stored documents.[WIZD05]

IR can be broken down into three major sequential components: (1) document pre-

processing, (2) building a document index, and (3) query processing and matching to

documents. Classical models in IR represent a document by a set of indexed keywords.

The governing hypothesis is that the words themselves provide a good indication of the

document’s contents, the topic, theme, emphasis and so on. Preprocessing involves ex-

tracting words from the document and the first two components of this process are (i)

stripping document formatting and (ii) segmenting the document’s character stream into
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tokens, which are the fundamental data structures on which subsequent stages operation

on. Tokens are often individual words. Section 4.4 provides a more detailed presentation

of tokenization, the process of segmenting a stream of characters into tokens.

The preprocessing stage can also attempt to filter out the document’s most salient key-

words. Content words such as nouns, verbs, and adjectives convey most of the doc-

ument’s semantics. On the other hand, function words such as prepositions, pronouns,

and determiners are universal across all documents and have little impact on determining

a document’s contents. Function words can be filtered out with a stop–word list, a concept

explored in Chapter 5. Furthermore, some words represent the same underlying concept

(eg. walk, walks, walking). They can be conflated to their morphological root form with

a technique called stemming, which removes their affix either based on a set of heuristic

rules or with the aide of linguistic analyzers. Two approaches to stemming are explored

in Chapter 6. There are inconsistent results in the literature regarding the effectiveness

and benefit of both techniques to IR systems in general[Hul96, KMM00]. Nevertheless,

they are standard features in search engines such as Google’s or IR libraries, such as the

Apache Foundation’s Lucene[The09b].

The major component in IR is the construction of a document index. The index can

be represented as an inverted file, which generally takes the form of a two–column table

in which the document’s tokens are associated with the location of their occurrence in

the document (starting character position). Such a structure can facilitate efficient search

and retrieval. The tables on the following page illustrate how the text fragment “Video

technology will bring patients in rural clinics closer to the hospital services they need. It will

soon” would be converted to an inverted index file, both with and without stop–word

elimination & stemming. The difference in size between the two tables underlines an

important benefit of stop–word filtering and word conflation: index compression, which

leads to more efficient memory use. The inverted index can be simplified to only note the

number of occurrences of a given word, disregarding character position.
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Inverted index file without

stemming or stop–word elimination

Vocabulary Occurrences

soon 107

will 18, 102

it 99

need 92

they 87

services 78

hospital 69

the 65

to 62

closer 55

clinics 47

rural 41

in 38

patients 29

bring 23

technology 7

video 1

Inverted index file with

stemming and stop–word elimination

Vocabulary Occurrences

need 92

service 78

hospital 69

close 55

clinic 47

rural 41

patient 29

bring 23

technology 7

video 1

The major component of IR is processing the search query and matching it with occur-

rences in the indexed documents. Three statistical matching techniques that are used in

the bulk of IR systems are Boolean, vector space and probabilistic models. Boolean is the

simplest and most efficient. It requires that the user provide search queries with strict

logical operators, such as and, or, not, and it returns documents whose contents satisfy the

intersection of these constraints. IEEE Xplore implements this matching technique[Ins10].

Simplicity is also a drawback: the system is not capable of ranking the documents based

on the keywords themselves, and more importantly, searches on the basis of word pres-
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ence rather than concept, the way humans do.

Vector–space models associate non–binary weights with indexed terms, and use them

to compute the degree of similarity between documents and queries. This yields a list

of ranked results, which can be sorted from strongest match (most relevant) to weakest

(least relevant). Important variables for this technique are term frequency, which provides

a measure of how well the term describes the document contents, and inverse document

frequency, a measure of how unique the term is to a certain document. An important

alternative is Latent Semantic Indexing, which facilitates search based on concept rather

than individual index terms. This robust technique has been successfully implemented

in a number of commercial applications.

The third statistical matching technique is based on probabilistic models that treat the

query as a way to specify properties of an ideal answer set, with the properties being char-

acterized by the semantics of the index terms. The model ranks documents by relevance,

but has drawbacks related to search initialization. A more technical look at indexing in

programmable logic is presented in Section 7.1.

Performance Measures

Table 2.1 outlines four important text processing performance measures: precision, re-

call, accuracy and error rate. For a system that always assigns all candidates, its precision

and recall are the same and performance is measured either in terms of accuracy, which is

calculated the same way as precision, or in terms of error rate[Mik03].

Measure Calculation
precision number of correct answers / number of answers produced
recall number of correct answers / total number of expected answers
accuracy number of correct answers / number of answers produced
error rate (|1− accuracy|)× 100%

Table 2.1: Text Processing Performance Measures
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For the English language, the two standard corpora typically used for evaluation of

text processing tasks are the Brown corpus[KFC67] and Wall Street Journal (WSJ) corpus.

Both contain over one million words and both are included in the Penn Treebank, which

contains correct tokenization and part–of–speech information for a total of 4.5 million

words[MMS93, MTM+99]. There are a number of large corpora that are not fully anno-

tated and these include the 2 billion word Oxford English Corpus, 400 million word Cor-

pus of Contemporary American English[Dav09] and 100 million word British National

Corpus[Bri09].

2.2 Natural Language Processing

Natural Language Processing (NLP) is a field in Computer Science that deals with the

generation, manipulation and understanding of natural (human) languages, such as En-

glish. The field has substantial overlap with computer language processing. However, the

major distinction is that computer languages typically have strict, formal, rules, whereas

those in human languages are much more relaxed with poetry being a good example of

this. More importantly, natural languages, rather than computer languages, are used for

the purpose of communication between humans, even when the information is conveyed

between networked computers.

Overview

Table 2.2 overviews six layers of abstraction in Natural Language Processing, from most

mechanical (parsing) to most abstract (pragmatic analysis). Parsing can be understood as

preparing a document for analysis. This generally involves stripping out formating with

regular expression matching in order to yield a sequence of characters. The next layer

is lexical analysis, which focuses on individual words. Word stemming (Chapter 6) and

speech recognition based on Hidden Markov Models (HMMs) falls in this category. Above

that is syntactical analysis, where the structure of a sequence of words, generally a sen-
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Pragmatic Analysis
purposeful use of sentences in situations
• requires (world) knowledge that extends beyond the text
•Cyc project at the University of Austin is an attempt to utilize
world knowledge in NLP[Wik09]

Discourse Analysis

interpret the structure and meaning of paragraphs
• requires resolution of anaphoric references & identification
of discourse structure
• requires discourse knowledge: how the meaning of a sen-
tence is determined by the preceding one
• requires knowledge of how a sentence functions in text

Semantic Analysis
creating meaningful representation from linguistic inputs
• grammatically valid sentences can be meaningless: “Colorless
green ideas sleep furiously”[Cho57]
• lexical semantics (meaning of words) is key, and
WordNet[Fel98] can be used for this

Syntactic Analysis

analyzes a sentence to find its structure
• identifies how words in a sentence relate to each other
• checks grammatically with contraints: word order, number
and case agreement
• requires syntactic knowledge and grammer rules
• Part–of–speech tagging is an example

Lexical Analysis

analysis of individual words
• requires morphological knowledge: structure and formation
of words from basic units (morphemes)
• rules for forming words from morphemes are language spe-
cific
• speech recognition concentrates on this

Parsing
preparing a text file for analysis
• removes document formatting to yield a sequence of charac-
ters for analysis
• Apache Lucene has parsers for PDF, HTML, Microsoft Word,
and OpenDocument documents[The09b]

Table 2.2: Levels of text processing, adapted from[ST08]
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tence, is determined and interpreted. Part–of–speech tagging is an important component

of this phase and its product is the association of a word category (noun, verb, adjective,

etc.) with each individual word. Part–of–speech tagging is statistical in nature and is typ-

ically implemented with HMMs and Viterbi decoders. The logical meaning of a sentence is

extracted during semantic analysis. A sentence, like Chomsky’s “Colorless green ideas sleep

furiously”, can be grammatically valid but contain no meaning. Above this is discourse

analysis, which interprets the meaning and structure of paragraphs. It needs to determine

the meaning of a sentence given the prior preceding sentences’ meaning. Resolution of

anaphoric references such as it or they is key. At the highest level of abstraction in Natural

Language Processing is pragmatic analysis. Here, the entire document is analyzed in the

context of external knowledge. This is analogous to interpreting findings presented in a

conference paper with the aide of background knowledge and experiences.

Regular Expression Matching

Regular expression matching is a means of matching patterns, or even patterns of pat-

terns. In text, this can be done on a bit or character level. Regular expression matching

generally performs fairly shallow processing of text since it does not require a linguis-

tic understanding of the underlying text. The context scope is focused on the (usually

narrow) window of characters or bits in which the pattern is being matched.

One important application of a bit–level pattern recognition is data compression, in

which a repeating long pattern can be swapped for a shorter code. In virus detection, bit

patterns represent the signature of a particular type of attack. One of the most often cited

pieces of software to used to identify the patterns is Snort[Sou09]. A complete listing

of character–level regular expression syntax is listed in Table C.2. Regular expression

matching is used extensively, both on a bit and character level, in the circuits outlined in

Chapters 4, 5 and 6.
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Part–of–Speech Tagging

Part–of–speech (POS) tagging is the process of associating words in a sentence with their

grammatical categories, such as those outlined in the Penn Treebank POS Tag Table( C.1).

For example, the sentence:

The lead paint is unsafe.

Can be tagged as:

The/Det lead/N paint/N is/V unsafe/Adj.

In which /Det denotes a determinant, /N a noun, /V a verb and /Adj an adjective.

Relationships can be extracted with the aide of tags: the lead paint has the attribute

of being unsafe. The same can be done with more complex sentences or sequences of

sentences in order to build the rich relationships that humans derive when reading and

interpreting text. These relationships can be stored in a relational or graphical database to

enable searching and data mining. Most POS tagging is performed with the aide of HMMs.

2.3 Digital Logic

In the overwhelming majority of cases, IR and NLP algorithms are implemented in soft-

ware, largely because open source software libraries exist in a number of programming

languages, including Python[BLK09, BKL09, Liu09], Java[LLC09, The09d, Ai09, McC09,

Gro09b, RG09, Liu09, Mor08, Gro09a, The09a, EAD09] and C++[LLC09, Ult09, Pet09,

fLTA, The09a]. Lucene, a popular IR software library, is sponsored by the Apache Founda-

tion and has a large community of developers and users[The09b]. Many NLP libraries are

predominately maintained by university researchers and their use can significantly accel-

erate development, and the exploration of new ideas. Because of the longer development
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cycles and greater testing and implementation costs, there are no equivalent libraries for

implementation in digital logic1.

The closest published work to the topics explored in this thesis (UTF–8 transcoding, stop

word filtering and stemming), is on accelerated and energy efficient document filtering

[VAM09, FJ06, LE+06]. The design proposed by Vanderbauwhede et. al. performs docu-

ment filtering at 12.8 Gbps and matches documents against 20 topic profiles. Other publi-

cations have explored matching character patterns, either for the purpose of determining

the language of the document’s content[JG07], high–speed XML parsing[MLC08], packet

inspection and routing [BSMV06, LPB06, NP08, JP09] or specifically virus and intrusion

detection [HL09, DL06, SGBN06]. With respect to NLP in FPGAs, parsers for context–free

grammars have been developed and published [Cir01, CML06, CML08].

Applications requiring a large number of parallel character string comparisons have

made use of Bloom filters, which are space–efficient probabilistic data structures that test

the membership of a set[Blo70]. These data structures are not exact: queries can yield

false positives, but not false negatives. Extensions proposed by Song et. al. can facilitate

exact matching and guarantee a boundary on worst–case lookup time[SDTL05]. By being

space efficient, they can be placed in memory close to the indexing circuitry (typically

on chip) or in high–bandwidth and low latency memory adjacent to the FPGA, minimiz-

ing memory access delay. Recently, Ho & Lemieux have shown that 80,282 character

sequences containing a total of 8,224,848 characters, with an average length of 102 char-

acters, can be fit within 4MB of memory and support virus detection at a throughput rate

of approximately 1.6Gbps[HL09].

1However, OpenCores does maintain a large collection of ASIC & FPGA designs for other applications:
http://opencores.org/projects
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2.4 Character Encoding

There is a large number of character encoding standards though many of these have

been, or are being, replaced by Unicode. This section presents three of the most common

encodings standards: ASCII, Unicode and UTF–8.

ASCII

The American Standard Code for Information Interchange (ASCII) is based on the al-

phabetical ordering in the English language and was developed between 1960–1963. Its

proliferation during the early history of modern computing systems led it to become the

most widely used character encoding system in the world. Amongst all modern encod-

ing, it is the simplest and often a starting point for improvements or regional variants.

Extensions, such as ISO/IEC 8859, added support for other European languages. In the

past decade, Unicode has overtaken ASCII as the preferred character encoding standard.

Table A.1 shows all of the printable ASCII codes and their corresponding binary codes.

Most of the 33 control characters in the ASCII table are now obsolete.

Unicode

Unicode is a standard for consistently encoding the vast majority of the world’s writ-

ing systems. Included in the standard is data about how characters function1. The latest

standard at the time of writing is 5.2, which encodes 90 scripts and a total of 107,361

characters[The09c]. By supporting such a large number of languages, it has led to inter-

nationalization and localization in computing. Unicode is logically divided into 17 planes,

each of which consists of 65,536 code points (216). Plane 0 is referred to as the Basic Multi-

lingual Plane (BMP). It contains complete character and symbol encodings for the modern

writing systems in use by the vast majority of people in the world, and consequently, it

is rare that characters from the remaining planes are ever used. Plane 1 contains mostly

historical scripts. Plane 2 contains seldom used Unified Han Ideographs, which were
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included in the standard for completeness. Planes 3–13 are unused, 14 contains some

non–graphical characters and 15–16 are for private use by proprietary systems. Encoding

all 1,114,112 possibilities would require 21–bit characters. This is particularity space inef-

ficient given that the majority of writing in electronic form is encoded in a small number

of scripts whose characters are found at the beginning of the BMP.

UTF–8

UTF–8 is a variable–length encoding that reduces the average length of a character se-

quence encoded in Unicode. Encoding lengths can vary from one to four bytes. One byte

encoding is effectively ASCII, which supports basic Latin characters. Two byte encoding

adds complete support for Latin character extensions, Greek, Cyrillic, Armenian, Hebrew,

Arabic and others. Three byte encoding covers the entire BMP, while four byte encoding

covers all of Unicode. Officially endorsed by the Internet Mail Consortium, it is the most

popular encoding format on the Internet.

UTF–8 is the most popular Unicode Transformation format. The others include UTF–

1, UTF–7, UTF–16/UCS–2 and UTF–32/UCS–4. UCS–2 is a fixed 16–bit encoding with a

one–to–one correspondence to Unicode’s BMP. It is used as the internal character en-

coding standard in this project for two reasons: (i) the vast majority of digital text is

encoded in languages whose characters are completely encoded by the BMP (optimum

data width & flexibility) and (ii) a fixed character data width and propagation rate helps

reduce data flow irregularities and design complexity. The implementation of a UTF–8 to

UCS–2 transcoder is presented in Chapter 4.

Other Formats

Unicode was designed to overcome limitations in size and scope that affected other

character encodings and as a result, various other encodings have become obsolete. This

includes ISO/IEC 8859, which focused on European languages and whose first 256 charac-
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ters have identical encoding in Unicode, Windows code pages (amongst which Windows-

1252 is one of them), and EBCDIC used by IBM mainframes. GB18030 is closely related to

Unicode. Since 2000, the government of the People’s Republic of China has mandated

that all software sold in its country support the encoding format and that CJK Unified

Ideograph characters outside of the BMP must be supported.

Notes
1Taken directly from the Foreword to Unicode Version 5.2[The09c]: The assignment of characters is only

a small fraction of what the Unicode Standard and its associated specifications provide. They give programmers

extensive descriptions and a vast amount of data about how characters function: how to form words and break lines;

how to sort text in different languages; how to format numbers, dates, times, and other elements appropriate to different

languages; how to display languages whose written form flows from right to left, such as Arabic and Hebrew, or whose

written form splits, combines, and reorders, such as languages of South Asia; and how to deal with security concerns

regarding the many “look–alike” characters from alphabets around the world. Without the properties, algorithms,

and other specifications in the Unicode Standard and its associated specifications, interoperability between different

implementations would be impossible.
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3

Project Overview

The focus of this thesis is on circuits that preprocess text in programmable logic. These

circuits perform (i) character format transcoding, (ii) tokenization, (iii) stop–word filter-

ing and (iv) stemming. As shown in Figure 3.1, the text could be streamed into this chain

of modules from a computer network utilizing the TCP/IP protocol stack. An overview

of the guiding principles and constraints that are common to the design of these compo-

nents is presented in this chapter, while the following chapters focus on each component

individually.

Figure 3.1: Project Overview

These four components can be used to detect and filter email spam[MIFR+06] or be

integrated into the input stage of a larger document indexing system, where the hard-
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ware datapath could be interfaced with network–accessible storage (perhaps in the form

of a Storage Area Network (SAN) or Network Attached Storage (NAS)). As observed

by [VAM09], such a configuration could be significantly more power efficient than a

software–based solution. However, the greatest performance and power advantages would

be gained if the preprocessing circuit connected directly to the data bus of the disk array.

3.1 Network Attachment

With the proliferation of cloud computing, a network–centric computing model has

begun to dominate large–scale data management and computing. In this model, infor-

mation and processing services are provided for users on demand, and this places pres-

sure on computing systems to support access by multiple users and necessarily over a

network connection. Central to the cloud computation model is the notion of virtualiza-

tion: providing data or a service through an interface while abstracting the underlying

mechanics. The need for network access is recognized in the design of the datapath in

the following two ways. First, the entire internal text processing architecture is designed

according to a stream–processing model with the goal of operating at line–rate, that is, at

the transfer rate supported by the network connection. Control signals are unidirectional

(forward) in order to eliminate back-pressure on components located earlier on in the

datapath (congestion from a network point–of–view). Furthermore, each component has

a deterministic processing throughput guarantee, rather than a statistical one. Such a de-

sign approach could make the implementation of these circuits in computer networking

equipment more attractive. Secondly, the circuit is designed to support UTF–8, the most

common character encoding on the Internet (see Section 2.4 and Chapter 4).

Although the lack of a CPU can make it expensive to design and implement a document

format decoder — a module that removes all formatting and file–format specific informa-

tion from a document, yielding plain text — the decoding can be shifted to the client or

an intermediary in order to overcome this disadvantage.
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3.2 Modularity & Signaling

A key advantage of modularity is the ability to abstract interface and behavior from

the underlying implementation. With a standard interface (Figure 3.2) and timing (Fig-

ure 3.3), design and testing can be simplified, while modules can be seamlessly swapped

to quickly implement improved functionality or different algorithms.

Figure 3.2: Standard module interfaces

clock

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12

char_in XXX W O R D XXX L I M I T XXX

valid_in

eow_in

char_out XXX W O R D XXX L

valid_out

eow_out

Figure 3.3: Standard module interface timing diagram (with delay)

Figure 3.3 details the signaling involved in transferring characters between modules.

Signals with the suffixes _in denote those routed into a module, while _out suffixes
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denote signals routed out. char is a 16–bit bus that supports the encoding of a single

character found in Unicode’s Basic Multilingual Plane (BMP). This truncated and fixed–

width 16–bit encoding is referred to as UCS–2 (see Section 2.4). There are two reasons

behind this approach: (i) the vast majority of digital text is encoded in languages whose

characters are completely encoded by the BMP (optimum data width & flexibility) and

(ii) a fixed character data width and propagation rate helps reduce dataflow irregularities

and design complexity. This could lead to more regular power consumption.

Token Boundaries

All characters are aligned to the positive edge of the master clock. Word boundaries are

denoted by the edges of the valid signal, which is used by the module both to capture

the incoming character and to enable the module’s datapath. An implicit assumption af-

fecting all modules is that when the valid flag is set, the character stream is sequential

with no repetition, starting with a first character position in the source document. Since

the valid flag functions as a clock enable for downstream modules, there is no strict

requirement for the characters in a word to be adjacent to each other.

The eow (end–of–word) flag denotes that the entire word has just been transfered. It is

particularly useful for stemming operations, which operate on suffixes. However, the eow

flag has little meaning for non–segmented languages, such as Oriental languages, where

words do not have explicit boundaries and a sequence of one–characters words can be

joined to form multi–character words[Mik03]. For these languages it may be more ad-

vantages to associate a sequence number with each character and allow a tokenizer based

on HMMs to determine how the characters should be segmented into words[ZLC+03].

Once segmented, the eow flag may become useful again.

Adhering to the standard interface described in Figure 3.3 on page 18, the valid &

eow flags are appropriately set and synchronized with the output when they detect a

word boundary. This out–of–band control signaling scheme leads to three clear benefits:
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1. avoids modifying the original character stream, which allows for reverting changes

in later stages,

2. natively handles tokens with white–space and punctuation and as a result,

3. does not require a mark–up language based on SGML or XML to maintain flexibility

at the expense of transmission overhead and coding complexity[Mik03].

An additional benefit of the out–of–bound signaling is that it allows the tokenization

circuitry to focus on one character at a time and identify token boundaries rather than

token patterns. This facilitates the design of single–pass circuitry with at most O(n) com-

plexity, a critical perquisite for supporting real time processing of a line–rate stream. This

topic is explored further in Section 4.4.

Synchronous Signaling

The signaling described above does not support asynchronous data transmission for

the following reasons: (i) all modules are designed to process one character per clock

cycle, which leads to a uniform transmission rate and avoids the need for handshaking

protocols and (ii) all of the modules outlined in this thesis are relatively small in terms

of area footprint and when implemented in an ASIC, would not create clock skew large

enough that clock domain boundaries would have to be accounted for.

Managing Data Flow Irregularities

The character stream that will arrive at the final stage in the module chain (indexing),

shown in Figure 3.1, will have an irregular data flow rate. Characters will arrive at a

rate of one per clock cycle, but the whitespace between words can be of arbitrary length.

This is a consequence of the design principles used to support line–rate processing at

a deterministic rate and with synchronous signaling between modules (see Section 3.1).

Table 3.1 lists cases for each module in which whitespace would be injected into the char-

acter stream. The flow rate irregularities associated with the network interface have been
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included for completeness and it is feasible that they can be eliminated if sufficient mem-

ory is available for buffering. The lower effective data rate at the end of the processing

chain relative to the input to the module chain could relax the indexing stage’s through-

put requirements.

Module Source of Data Flow Irregularity
Network Interface transmission errors, windowing, throttling, datagram unwrapping
UTF–8 Decoding malformed sequences, variable encoding length
Tokenizaton token scope (word, sentence, etc.)
Stop–Word Filtering word filtering by whitespace substitution
Stemming modifying word length

Table 3.1: Sources of Dataflow Irregularity

3.3 Regular Expression Matching with Fully–Decoded

Delay Lines

The stop word filter and two stemmers decode the incoming character stream prior to

performing regular expression matching. Moscola has shown that such an approach can

achieve a throughput in excess of 10 Gbps, and that the performance can be linearly scaled

with operating frequency and circuit size[MLC08]. This design technique, presented in

Figure 3.4, is key to demonstrating that text processing can be performed faster in hard-

ware than in software, with efficient area and resource utilization, and with significantly

less power consumption.

With this approach, the incoming character stream is one-hot encoded; the character

is decoded such that only the single wire on the output bus that corresponding to the

character will have the logical value 1 at any given time. Registers in the bus allow mul-

tiple character positions to be compared. In this particular example, the suffix ily is being

matched and a minimum 2–letter stem length rule is being applied simultaneously (the

asterisk denotes ‘any letter’). With character decoding being performed only once, on
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Figure 3.4: Regular Expression Matching with fully–decoded delay lines

input, complex logic expressions can be build with simple logic expressions for which a

single wire is sufficient to represent a character and its position. With the latest generation

FPGAs having 6–input Look Up Tables1, the throughput is often only limited by physical

device constraints on maximum operating frequency, such as wire delay and routing ef-

ficiency within the FPGA. Modern synthesis tools will optimize the register count of each

delay line to only what is required by the logic expressions.

3.4 Supporting Multiple Languages

Multilingual support would require an additional language detection stage, and it

would need to buffer a sample of the incoming character stream in order to determine the

language. Following this, the character stream would be routed to the language–specific

chain of text processing modules. The language detection stage could be implemented

by searching for n–character sequences that are characteristic to that language[CT94]. An

implementation of such an approach has achieved a throughput of 11.2 Gbps and an aver-

age accuracy of 99.45% across several languages[JG07]. The fixed–width UCS–2 is capable

of supporting all common human languages in use.

1At the time of writing (May 2010), the newest FPGA architectures available on the market were Altera
Stratix V and Xilinx Virtex–6.
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3.5 Technology used for Benchmarking

All circuits detailed in thesis were simulated and implemented on an Altera Stratix

IV EP4SGX230KF40C2 FPGA, a device that is part of the manufacturer’s most advanced

product line in production at the time of writing. It was programmed and tested with the

manufacturer’s Stratix IV Development Kit. This 40 nm device was released in the fourth

quarter of 2008 and contains 182,400 registers, 228,000 programmable Adaptive Look Up

Tables (ALUTs) and 888 pins for general interfacing, some of which connect to 3.1875

Gbps transceivers. The unit price is significant: $9,020.01. For cost sensitive applications,

a lower–end product such as the 60 nm Altera Cyclone IV GX EP4CGX150DF31C7 ($537.46

unit price) should be considered though it will not be capable of achieving as high of a

clock rate2.

FPGA design tools incorporate statistical optimization techniques, such as simulated

annealing and Tabu search. Random algorithm seeding can yield slightly different place-

ment and timing results. Similarly, the performance of the underlying silicon fabric varies

between devices, leading to different speed grades. Thus, designs always need to allow for

a performance margin in order to guarantee performance across a large range of device

speeds, operating temperature ranges and noise interference levels, and such margins can

be determined through Monte Carlo simulation. All power figures were measured on the

development board via on–board current monitors.

2Prices sourced from Altera Buy Online on May 28, 2010 http://www.altera.com/buy/
buy-index.html

23

http://www.altera.com/buy/buy-index.html
http://www.altera.com/buy/buy-index.html


4

Text Encoding

UTF–8 is the most popular text encoding format for communication via the Internet. Its

encoding length varies from 1–4 bytes and the module described in this chapter decodes

it to UCS–2, the project’s internal 16–bit character encoding. The conversion to a fixed

character data width reduces dataflow irregularities and design complexity in subsequent

modules. Table 4.1 outlines how various UTF–8 sequence lengths are translated. Table A.1

displays all of the printable ASCII characters, which are encoded by a single UTF–8 byte.

UTF–8
Unicode Byte 1 Byte 2 Byte 3 Byte 4 Internal 16–bit

U+0000–007F 0xxxxxxx 00000000 0xxxxxxx
U+0080–07FF 110yyyxx 10xxxxxx 00000yyy xxxxxxxx
U+0800–FFFF 1110yyyy 10yyyyxx 10xxxxxx yyyyyyyy xxxxxxxx

U+10000–10FFFF 11110zzz 10zzyyyy 10yyyyxx 10xxxxxx 11111111 11111101

Table 4.1: UTF–8 Decoding

4.1 UTF–8 Decoding Errors

The UTF–8 decoder handles the following three types of errors, which it treats as out–

of–bound encodings, and replaces each erroneous sequence with the Unicode BMP re-
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placement character (11111111 11111101):

1. incorrect sequence start code

2. incorrect continuation byte encoding

3. invalid number of continuation bytes

The Unicode replacement character allows for better error handling by subsequent

modules since it does not ambiguate whitespace and preserves the original word length.

The decoder does not handle overlong sequences, which are those encoding that can be

represented by a shorter sequence:

1100000x (10xxxxxx)

11100000 100xxxxx (10xxxxxx)

11110000 1000xxxx (10xxxxxx 10xxxxxx)

Although such encoding are known to have been used to exploit string operators in

web servers (as with the Code Red Worm), such a vulnerability does not exist for this

project.

4.2 Design and Implementation

The decoder handles one UTF–8 byte every clock cycle and is controlled by a 13–state

FSM, which is binary encoded and shown in Figures 4.1 and 4.2. Because of the small

number of FSM states and the FPGA’s 6–input ALUTs, the maximum clock rate is not sen-

sitive to the complexity of the FSM’s binary decoding nor state transition logic. As a result,

utilizing one–hot encoding, a technique applied in high performance ASIC design, does

not improve maximum clock frequency, which at 704 MHz is already at the physical limit

for this device. Instead, one–hot encoding would increase register usage. Resource uti-

lization and timing results are shown in Table 4.2.
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The circuit’s maximum data throughput rate is 5.632 Gbps. The incoming network data

rate that it can effectively support will be greater in proportion to the number of packet

transmission errors and amount of datagram overhead in the network interface. Assum-

ing error–free transmission over Ethernet (1500 btye MTU) with IPv6 (320 bit header), TCP

(160+ bit header) and no application–layer overhead, the data rate entering the network

interface could be at least 4.17% larger (5.867 Gbps). However, a more meaningful metric

would be character throughput rate, the average number of characters processed per sec-

ond, which depends on the average UTF–8 character encoding length for a representative

piece of text. Consequently, English text will likely lead to a character transfer rate just

under twice that of Cyrillic text.
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Figure 4.3: UTF–8 Decoder Dynamic Power Consumption

Area Speed
Device LUTs Registers Fmax (MHz) Critical Path
Stratix IV GX EP4SGX230KF40C2 37 46 704 Master clock

Table 4.2: Resourse usage and performance of a UTF–8 decoder

Figure 4.3 shows the circuit’s dynamic power consumption at different clock frequen-

cies, which scales linearly with circuit toggle rate and clock frequency. At 704 MHz,

the maximum operating frequency, the circuit is consuming 24.4 mW while processing

a UTF–8 data stream at a rate of 5.632 Gbps. This translates to a power efficiency of 4.332

mW/Gbps or 34.66 µW/MHz. However, at this operating frequency, the FPGA’s total

power consumption is 967 mW. 127.74 mW is consumed by the design’s 30 input & out-

put wires, which are routed to the FPGA’s input & output pins that drive relatively large

load and parasitic capacitances. This figure would be zero in a complete design where

the input is chained to a network interface and the output to the next stage (tokenizer).

The remaining 814.77 mW is dissipated by leakage currents in the inactive portions of the

FPGA.
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The input data stream to the UTF–8 decoder was James Joyce’s Ulysses, which was ob-

tained from Project Gutenberg: http://www.gutenberg.org The power consumption

of the circuit with text in 9 other languages was also measured. While the activity factors

of the three most significant bits in the UTF–8 encoded data stream showed significant

variability, the difference in circuit power consumption was negligible.

4.3 Avoiding Whitespace Gaps in Tokens

The module’s input and output bandwidths are not equal. The input is 8 bits wide

and can have variable byte length, while the output is fixed at 16 bits. In order for the

output to be read out at one character per cycle with no whitespace inserted in between

characters in a word, buffering by means of a circular buffer can be implemented. Fig-

ure 4.4 overviews such a design. Whenever an incoming character is fully decoded, it

is written to the next available position in the circular buffer, and this address is incre-

mented in the write counter. A whitespace character is taken to signal the end of a word

or token, at which point an internal eow flag is generated and the current value of the

write counter is passed to the read counter. The eow flag value for each character is stored a

17th bit position associated with each decoded character, revealing the output stage from

implementing duplicate end–of–word detection logic.

On the output stage, an eow value of 1 triggers the read counter to increment a memory

address pointer from the last read position (end of previous word/token), to the position

passed in (end of the latest word/token), and wait there for the next token to be fully

buffered. After the last character is read from the circular buffer, whitespace is injected

into the output stream until the next word/token has been completely buffered and is

ready to be read back.

The output is read faster than the input is written in proportion to the average number

of byte sequences required to encode the input. Thus, the buffer’s memory requirements
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are bounded. The actual size of the buffer needs to be at least as large as the character

length of the longest token. The circular buffer also needs to be implemented in dual

ported memory in order to permit the writing of decoded input characters while the out-

put stage is reading. Furthermore, the read counter’s terminal address needs to allow for

updating while the counter is incrementing in order to allow a short token to be added to

the read queue while the output stage is reading a long token. Based on an initial analysis

of full length books in nine segmented languages available in the Gutenberg Project, the

need for a reasonable margin, and the base–2 regularity of memory size, a circular buffer

with 32 positions was found to be sufficient.

Figure 4.4: UTF–8 Decoder with Dual Ported Memory. The state of the eow flag associated
with each character is shown in the box beside each character, with a filled box denoting
a value of 1.

4.4 Tokenization

Tokenization is the process of segmenting a character stream into discrete linguistic

units (tokens) corresponding to some linguistic abstraction, and is an important prepro-

cessing stage for Natural Language Processing applications such as part–of–speech tag-

ging (see Table C.1). Examples of tokens include single words, such as computer, hy-

phenated words such as low–budget, or a sequence of words such as the named entity

United States of America. More broadly, tokens can also be paragraphs, sentences, sylla-
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bles, or phonemes. Tokenization is generally considered to be relatively straight forward

for segmented languages, which use Latin-, Cyrillic- or Greek-based characters and in which

explicit separators such as blank spaces and punctuation strongly predict segmentation

boundaries. However, ambiguous punctuation, hyphenation, clitics, apostrophes and

language–specific rules make an accurate tokenizer more difficult to design[Mik03].

Non–segmented languages, such as Oriental languages, increase design complexity since

tokens do not have explicit boundaries and a sequence of one–characters words can

be joined to form multi–character words[Mik03]. Tokenization for these languages can

be achieved with hidden Markov models[ZLC+03], n–gram methods or other statistical

techniques. Higher–level text segmentation would involve segmenting noun and verb

groups, splitting sentences into clauses, and so on. As with other text processing modules,

precision, recall, accuracy and error rate are important performance measures (see Table 2.1).

In the previous section, the transition from a printable character to whitespace signaled

a token boundary and triggered the update of the read pointer’s terminal address. This

is effectively whitespace tokenization and is the simplest and least memory intensive to-

kenization strategy. The specific whitespace characters in these scheme included space,

tab, new line and form feed.

A tokenizer’s required precision is often dictated by the needs of the target application.

However, the design should always aim for the highest precision since tokenization errors

propagate to later linguistic processing stages. A more complete tokenizer is included

in the Natural Language Toolkit[BLK09]. It handles abbreviations, words with optional

internal hyphens, currency, percentages and treats ellipses and punctuation as separate

tokens[BKL09]. Table 4.3 contains a complete listing of the regular expressions used by

this tokenizer.

Neither the whitespace tokenizer nor the NTLK tokenizer handles hyphenation. End–

of–line hyphens are used for text justification and are inserted during typesetting. It is
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Regular Expression Comment
([A-Z]\.) abbreviations, e.g. U.S.A.
\w+(-\w+)* words with optional internal hyphens
\$?\d+(\.\d+)? currency and percentages, e.g. $12.40, 82%
\.\.\. ellipsis
[][.,;"’?():-_‘] punctuations are separate tokens

Table 4.3: Regular expressions used by the default NLTK tokenizer, reproduced
from[BKL09]

assumed that they are resolved by a previous stage that handles document format strip-

ping. True hyphens are left in place and the decision of removing the hyphenation – and

how – is left to the word indexing stage. True hyphenations can be grouped into two

general categories: lexical hyphens (co–, pre–, multi–, etc.) and semantically determined hy-

phenation (case–based, three–to–five–year, etc.)[Mik03]. Email addresses, URLs, dates, ci-

tations, numbering schemes, etc. are not considered in this project, since incorporating

capabilities to recognize them would lead towards designing a preprocessor for informa-

tion extraction[Moe06].
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5

Stop–Word Filtering

The largest text corpus for the modern English language is the Oxford English Cor-

pus, which contains over 2 billion words. 80% of the source material is written in British

and US English and all has been created no earlier than the year 2000. 30.5% is sourced

from news and weblogs; material that provides an accurate snapshot of the most com-

mon words in daily use. Table B.1 lists the 100 most common word in the corpus, which

account for about 50% of all word occurrences in the corpus. Of these, the occurs almost

100 million times (approx. 5%), while the ten most common words together occur 25%

of the time. A vocabulary of 7000 words is sufficient to cover 90% of all words in use,

while an additional 43,000 words are required to cover the next 5%. The distribution has

an extremely long tail of rare words; a vocabulary in excess of 1 million words is needed

to cover 99% of all words in use. Table B.2 lists the 25 most common nouns, verbs and

adjectives. Other contemporary corpora include the Corpus of Contemporary American

English (over 400 million words, [Dav09]) and the British National Corpus (over 100 mil-

lion words, [Bri09]).

Such an uneven distribution implies that (i) natural language text has high dimension-

ality: of the hundreds of thousands of words in an language, only a small percentage

is used in a typical document, and that (ii) the most salient words in a given document
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are those which fall between these two extremes [ST08]. The words which occur most

frequently across all documents in a given collection, and thus add no differentiating,

unique meaning to the individual document, can be filtered out by means of a stop–word

list.

The design of a stop–word list leads to trade–off: recall versus precision. The inversely

proportional relationship between the two is shown in Figure 5.1. High precision filtering

will miss many useful documents while at the other extreme, a search with high recall

will return most useful documents but not be effective at filtering documents with low

relevance. The optimal stop word list is dependent on the application. In this chapter,

Porter’s stop word list is used in order to determine how the number of characters and

words affects circuit performance. The complete word listing can be found in Table B.3.

Figure 5.1: Tradeoff between recall and precision

Design & Implementation

This circuit implements regular expression matching with the technique presented in

Section 3.3, and the conceptual schematic is shown in Figure 5.2. A token is filtered out
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from the character stream by swapping its characters with whitespace characters. Within

the matching stage, the stop words are sorted by character length and the match with the

longest length will determine how many characters will be swapped. eow_in denotes

the end of the token. It allows the correct character length to be determined and enables

the signals sent to the multiplexers. The token matching circuitry has a propagation delay

that spans several cycles, and the incoming character stream is synchronized to the output

of the token matching circuit by a multi–cycle delay line (n registers in series, as shown

on the input of Figure 5.2).

Figure 5.2: A stop word filter

Figure 5.3 shows the ALUT and Register requirement for different cumulative stop word

character counts. The ALUT requirement grows approximately linearly since ALUTs are

used to match words and determine character length precedence. The register count on

the other hand does not exhibit linear growth all the way through. At low cumulative

character counts, a disproportionately large number of registers is required to create the

delay line and multiplexer infrastructure. As more words are encoded, these resources
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are reused, slowing growth. The steep tail in the 700–800 character range is the effect of

a few 7–9 letter words being added and little register reuse amongst the 7th, 8th and 9th

characters.
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Figure 5.3: Resource usage as a function of vocabulary size

Figure 5.4 shows the circuit’s dynamic power consumption at different clock frequen-

cies, which scales linearly with circuit toggle rate (an effect of the clock frequency). At

704 MHz, the maximum operating frequency, the circuit is consuming 45.36 mW while

processing a UCS–2 data stream at a rate of 11.264 Gbps. This translates to a power ef-

ficiency of 4.05 mW/Gbps or 64.8 µW/MHz. However, at this operating frequency, the

FPGA’s total power consumption is 986.64 mW, with 125.14 mW begin consumed by the

design’s input & output pins and the remaining 816.14 mW dissipated by the remainder

of the FPGA fabric, which is largely inactive.
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Area Speed
Device ALUTs Registers Fmax Critical Path
Stratix IV GX EP4SGX230KF40C2 314 664 704 Master Clock

Table 5.1: Resourse usage and performance of a stop–word filter
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Figure 5.4: Stop–Word Filter Dynamic Power Consumption
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6

Stemming

Stemming reduces a word to its root form, disregarding morphological information

such as pluralization, gender conjugation, and so on. For example, fishing, fished and

fishes can be reduced to the stem fish. Stemming is useful for compressing a word index

and increasing the recall of related documents. For this reason, the root form does need

to have valid spelling. It is the mapping between words that is important. Web search

engines, such as Google’s, also implement stemming during their query expansion phase.

Broadly speaking, there are two ways of performing stemming: either solely with a

set of regular expression rules (lexicon–free), or with the help of a lexicon. There are

also several metrics that gauge the strength of a given stemming algorithm[FF03]. These

include:

• mean number of words per conflation class

• index compression factor

• number of words and stems that differ

• mean number of characters removed in forming stems

• median and mean modified Hamming between words and their stems
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This chapters focuses on the implementation of the Lovins and Porter stemmers in

programmable logic, providing comparative metrics to gauge the design complexity, per-

formance and resource utilization. Both are lexicon–free stemmers. Of these, Porter’s

stemmer has been recognized to consistently yield good performance in larger IR and

NLP applications. However, the choice of design and stemming strength is dependent on

the application.

Stemmers which were not considered in this chapter include designs by Paice & Husk[Pai90],

Dawson[Daw74] and Krovetz[Kro93]. The design by Paice and Husk applies suffix re-

moval rules iteratively. Without a deterministic guarantee on processing time, it is not

suitable for real time applications. Dawson’s stemmer is an extension of Lovin’s design

which implements approximately four times as many suffix matchings, and a more re-

liable partial matching procedure to correct spelling. Krovetz’s stemmer is an accurate

but relatively weak stemmer which in practical applications requiring more compressed

indexes needs to be complemented with a second stemmer. This stemmer also requires a

dictionary (memory).

6.1 Lovins

This stemmer was published by Julie Beth Lovins in 1968[Lov68] and was the first of

its kind. The single pass algorithm leads itself well to an implementation in digital logic.

It can be divided into two stages. In the first stage (“Trimming” in Figure 6.1), 294 suffixes

are compared in order to find the longest match. These endings are 1 to 11 characters

long and are associated with a condition code, which specifies how much of the stem

can be removed and how the trimmed word should be transformed in the second stage.

There is a total of 29 conditions, many of which require that a particular letter or pair of

letters be identified in the stem. The second stage (“Transforming” in Figure 6.1) corrects

spelling by applying one of 35 rules, each of which typically involves swapping letters.

Table D.1 lists the frequency of Lovins stem lengths, Table D.2 contains a complete listing
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of the 294 suffixes, and Table D.3 lists the context–sensitive rules and the frequency of

their occurrence.

Hardware Design

These two stages can be viewed as string splicing and concatenation. Their schematic

is shown in Figure 6.2. The input, a stream of characters entering the circuit at a rate of

one character per clock cycle, is shown on the lefthand side. The two stages perform their

processing in parallel with the input flow.

In order to achieve a high throughput and operational clock rate, all 294 suffixes are

matched in parallel and with the smallest area (ALUT & register) utilization possible since

increasing area can negatively influence processing speed. Moscola’s technique of fully

decoding the incoming character stream into a pipelined one–hot encoded bus, where

the width of the bus corresponds to the size of the alphabet and the pipeline stage to

the character position[MCL07], is applied in order to achieve high area density and high

throughput.

As shown in Figure 6.1, suffix identification simplifies to tapping appropriate letter lines

in the bus. The character length of the ending is directly proportional to the number of

logic gate inputs. The gate output is a logical 1 if the ending exists. Rules, such as a min-

imal stem length, can also be implemented with complex logic gates, and merged with

the suffix identification function. While 26 letter lines are sufficient for the English alpha-

bet, an additional one is used to denote non–letters such as whitespace and punctuation.

If this line is equal to zero, then a valid letter resides in the associate character position,

allowing the design to avoid counters when evaluating length-based stem rules. An ad-

ditional apostrophe character line is also instantiated. The eow flag acts as an enable that

validates stem identification output.
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Figure 6.1: A design of the Lovins Stemmer in programmable logic
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Input Output
1XXXXXXXXXX 11111111111
01XXXXXXXXX 01111111111
001XXXXXXXX 00111111111
0001XXXXXXX 00011111111
00001XXXXXX 00001111111
000001XXXXX 00000111111
0000001XXXX 00000011111
00000001XXX 00000001111
000000001XX 00000000111
0000000001X 00000000011
00000000001 00000000001
00000000000 00000000000

Table 6.1: Precedence assigner truth table

Figure 6.2: Mapping the precedence assigner into lookup tables to overcome an input-
wide critical path
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The 294 suffix identification circuits are grouped by suffix length. Within each group,

the outputs of the stem matching circuits are aggregated with a tree of OR gates in order

to determine if any suffix of a given length had been identified. There is overlap in suffix

spelling, which could lead to suffixes of several different lengths being matched. To iden-

tify the longest, the OR–ed suffix length bits are fed into a precedence assigner (Table 6.1 and

Figure 6.2). The precedence assigner has 11 inputs – one for each OR tree output – and

ordered from longest suffix character length (at the MSB) to the lowest. Match precedence

is given to the longest stem match and as such, the circuit identifies the logical 1 closest

to the MSB and masks all bits between it and the LSB, inclusive, with 1s. The function’s

truthtable is shown in Table 6.1. By mapping the precedence assigner into ALUTS, which

are effectively small programmable memories, a critical path spanning from the MSB to

the LSB is avoided, allowing for a higher operational clock frequency. The precedence

assigner’s output is passed into a parallel load shift register, which is synchronized to a

delayed copy of the original word. The shift register feeds a series of multiplexers that

overwrite the ending with whitespace (space characters), effectively trimming it.

The second stage is a simplified implementation of the first. The character stream is

again decoded in order to efficiently identify the suffixes needing spelling correction. The

spelling is corrections are made by swapping appropriate letters (bit patterns) into the

correct positions in the incoming character stream by means of multiplexers. Of the 35

possible corrections, at most one is identified and made, simplifying arbitration to the

output bus to a tristate buffer.

This design has two important drawbacks. The first is that the fanout of letter lines in

the decoded character bus is (i) irregular, since it depends on the suffix character distri-

bution and (ii) could be quite large for frequently occurring letters such as the vowel e.

The second problem is that the associated suffix identification and rule evaluating logic

is fixed. A programmable, memory–based implementation could allow for rule updates

and support for multiple languages. These two points may be important considerations
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Area Speed
Device ALUTs Registers Fmax Critcal path
Stratix IV GX EP4SGX230KF40C2 605 1040 704 Master Clock

Table 6.2: Lovins Stemmer resource utilization and speed

for an ASIC implementation, though they have not been found to be performance draw-

backs for the target FPGA.
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Figure 6.3: Resource usage as a function of vocabulary size

6.2 Porter

Another popular stemmer is the one developed by Martin Porter[Por80]. It is a five

step, linear algorithm based on the idea that suffixes in the English languages are gener-

ally combinations of smaller and simpler suffixes. Similarly to the Lovins stemmer, each

step matches suffixes and evaluates the suffix removal with a condition, such as the mini-

mum number of vowels required to remain in the resulting stem. This stemmer has been

implemented in a number of document and Natural Language Processing applications,

including NLTK, Drupal and Lucene[The09b].
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Algorithm Overview

Porter[Por80] conjectures that any word is a composition of consonants and vowels, which

are defined as:

vowel a, e, i, o and y when preceded by a consonant

consonant all letters not vowels and y when preceded by a vowel

Using the following nomenclature:

v a vowel V one or more consecutive vowels

c a consonant C one or more consecutive consonants

Any word can be denoted in the following form:

[C](V C)m[V ]

Where m denotes the measure of a word. The measure can be roughly interpreted as

the number of syllables in the word. The square brackets, [], denote that the preceding

consonants or trailing vowels are optional. The following table shows how a word can be

decomposed to adhere to this notation.

m form examples

0 [C][V ] tree→ [TR][EE]

1 [C](V C)[V ] trees→ [TR](ees)

2 [C](V C)(V C)[V ] treaty→ [TR](eat)(ty)

In addition to checking the word measure, the condition may also be a compound

form of one or more of the following rules (taken from the original paper[Por80]):

rule explanation

∗S stem ends with S (and similarly for the other letters)

∗v∗ the stem contains a vowel.

∗d the stem ends with a double consonant

∗o the stem ends cvc, where the second c is not W, X or Y
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The algorithm proceeds by first removing pluralizations, then simplifying stems, and

finally fixing spelling. The transformations and rules associated with each of the five

steps are detailed in Appendix D.2.

Hardware Design

In hardware, the Porter stemmer is segmented into the five steps detailed in Appendix D.2.

As in the original algorithm proposed by Martin, the first step is further partitioned into

three steps. The flow between these steps is shown in Figure 6.4. In this design, m is used

extensively in suffix transformation conditions. It is computed in the m counter mod-

ule for each character of the incoming token. This means that for any given character in a

token, the associated value of m reflects the running total as if that character has the last

in the token. Within the Porter stemmer, the standard signaling of Figure 3.3 is appended

with m_in and m_out. Since the conditions against which m is tested are > 0, = 1, > 1,

m is implemented as a two bit signal and generated by a saturating two bit up counter.

This reduces comparison complexity and consequently, overall circuit size.

The shaded stages (2, 3 & 4) denote those implementing fully decoded delay lines (Sec-

tion 3.3). Those which are not shaded compare 16–bit characters directly since the num-

ber of characters that needs to be matched is small and the net ALUT and register use is

smaller than with the character decoding circuitry. As with stop word filtering and the

Lovins stemmer design, multiplexers are used to substitute characters or whitespace di-

rectly into the outgoing character stream (see Figure 5.2). The multiplexers are controlled

by suffix matching logic and enabled with the eow flag.

6.3 Implementation & Comparison

Figure 6.5 shows the power consumption of the two designs. While the Porter stemmer

utilizes fewer ALUTs (27.1%) and fewer registers (13.5%) than the design for the Lovins

Stemmer, the Porter stemmer engages more of its resources into the 16–bit text data flow.
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Figure 6.4: Porter stemmer design

Area Speed
Device ALUTs Registers Fmax Critical path
Stratix IV GX EP4SGX230KF40C2 441 900 704 Master Clock

Table 6.3: Porter Stemmer resource utilization and speed

This leads to a higher average activity factor for each gate with respect to the Lovins

design, whose resources are more selective with respect to the data they operate on. The

result is greater power use. At 704 MHz, the Lovins stemmer consumes 63.04 mW, which

translates to efficiencies of 5.597 mW/Gbps and 89.55 µW/MHz. The Porter stemmer

consumes 20.9% more: 76.2 mW, translating to efficiencies of 6.765 mW/Gbps and 108.2

µW/MHz.

The power consumption and resource usage of this implemenation of the Porter stem-

mer is more sensitive to the width of the character bus than the Lovins design. At at clock
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Figure 6.5: Lovins and Porter Stemmer Dynamic Power Consumption

frequency of 250 MHz, the 16–bit Porter datapath consumes 27.38 mW, while the 7–bit

equivalent (which consequently only supports ASCII encoding), consumes 19.9 mW —

27.3% less. The difference in resource utilization is equally significant. The 7–bit datap-

ath requires 353 ALUTs (20.0% fewer) and 564 Registers (37.3% fewer). The difference in

power consumed by the FPGA’s interfacing pins is minimal (2.6%) since English–language

utilizes characters from beyond the ASCII more seldomly than other languages (bits above

position 6 toggle very infrequently). The difference between the 16–bit and 7–bit datap-

aths for the Lovins Stemmer are less significant: the design with the 7–bit wide datapath

consumes 15.1% less power, and requires 6.6% fewer ALUTs and 20.1% fewer registers.
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7

Conclusions & Future Work

This thesis presented an overview of Information Retrieval and Natural Language Pro-

cessing, as well as the design and implementation of four circuits for text preprocess-

ing: (i) UTF–8 decoding, (ii) stop word filtering, and stemming with both (iii) Lovins’

and (iv) Porter’s algorithms. Table 7.1 summarizes each module’s resource utilization,

maximum speed and power efficiency. It was found that the Lovins stemmer design

was more power efficient than the Porter stemmer since power consumption was not as

tightly dependent on the width of the character bus. With respect to the stop word filter

and Lovins stemmer, it was also found that there is a good correlation between power

consumption and resource usage, and the number of characters being matched. This con-

firms Moscola’s finding that the performance of this architecture does scale linearly with

operating frequency and circuit size[MLC08].

Area Speed Power
Circuit ALUTs Registers Fmax PFmax mw/Gbps µW/MHz
UTF–8 Decoder 37 46 704 24.40 4.332 34.66
Stop Word Filter 314 664 704 45.36 4.05 64.80
Lovins Stemmer 609 1040 704 63.04 5.597 89.55
Porter Stemmer 441 900 704 76.20 6.765 108.2

Table 7.1: Circuit implementation summary
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All circuits were able to achieve the maximum clock frequency supported by the tar-

get FPGA. There are two reasons for this. The first is extensive pipelining in the designs,

which maintained no more than two levels of logic between registers. Design synthe-

sis was able to map this logic into a single level of ALUTs, leaving wiring delay and

other physical device constraints to limit the maximum clock frequency. The extent of

the pipelining is evident in each circuit implementation by the greater number of regis-

ters over ALUTs. The second reason is that the use of large memory circuits directly in

the datapath was avoided since memory read and write operations tend to have a higher

latency than ALUTs. Given these two factors, it is likely that an equivalent ASIC design

would be able to achieve an operational frequency far in excess of 1 GHz. Fast register

design will be important for achieving the maximum possible operating speed.

7.1 Future Work

There are a number of interesting directions for future work, and they include: (i) in-

terfacing with a computer network, (ii) comparing the power efficiency of the designs to

their software equivalents, (iii) addressing the issue of text indexing in hardware (iv) as

well as video indexing. Efficient memory and storage management on large networked

platforms could also be investigated.

Interfacing with a computer network

Supporting access to a computer network is key to increasing the utility and access

of the project to a larger group of users, and in doing so, aggregating the cost of the

system across a larger pool of users. One future direction would be to support docu-

ment transfer over FTP, TCP and IPv6 and integrate support for managing sessions and

multiple users, perhaps through a soft processor on the FPGA such as Altera’s NicheStack

TCP/IP Stack[Alt09] or a custom solution that can sustain throughput in the multi-Gigabit

range[SL04].
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Comparison with software

A thorough comparison with an equivalent software implementation could be made

to compare the energy efficiency of the designs detailed in this thesis with their software

equivalents. A reasonable software equivalent to compare the performance of the pro-

grammable logic to is an information retrieval framework that facilitates full text indexing

and searching, such as Lucene[The09b].

Comparison with GPU

A cost effective alternative to FPGAs is a Graphics Processing Unit (GPU). The price dif-

ference can be attributed to a significantly larger market, as well as stronger competition

within that market. In recent years, Nvidia has developed a product line called Tesla,

which enables general–purpose computing on graphics processing units (GPGPU)[Nvi10,

LNOM08]. At the time of writing, they have been shown to significantly accelerate appli-

cations in protein interactions[SH10, JBC10], neuroscience[Sco10], computer vision[PQ10]

and communications[AKBN09].

Indexing Text

The fifth and final module in the project overview presented in Figure 3.1 is a circuit

that generates and maintains an index to all words would in all documents that are passed

into the system. Such a module would facilitate document searching through statisti-

cal matching techniques based on vector space models or Latent Semantic Indexing. It

could be tuned to different applications, such as information discovery, automated doc-

ument classification, text summarization, relationship discovery, automatic generation of

link charts of individuals and organizations, matching technical papers and grants with

reviewers, online customer support, determining document authorship, automatic key-

word annotation of images, understanding software source code, filtering spam, infor-

mation visualization, essay scoring or literature-based discovery, amongst others.
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In terms of approaches to hardware implementation, Bloom filters and their derivatives

have been shown to yield good results in programmable logic applications requiring char-

acter sequence matching and indexing, such as in virus detection [HL09, DL06, SGBN06,

DSTL06, DL05, HGSD09] and IP address look–ups for packet routing [NP08, SHKL09].

These space–efficient probabilistic data structures test the membership of a set[Blo70],

but are not exact: queries can yield false positives, but not false negatives. By being space

efficient, they can be placed in memory close to the indexing circuitry (typically on chip)

or in high–bandwidth and low latency memory adjacent to the FPGA, minimizing mem-

ory access delay.

Nevertheless, the Bloom filters in the forms presented in the cited literature are suit-

able for the construction of indexes which implement boolean search (since testing set

membership is largely sufficient for operators such as conjunction (and), disjunction (or),

negation (not)). However, these approaches are not suitable for probabilistic searches that

can rank results, since probabilistic search methods require additional information to be

associated with the query, such as the frequency of word occurrence or the character po-

sitions at which the word is located. The second important issue is memory capacity:

on–chip memory is limited, force the index to be restricted in size or be moved off chip.

Likely some form of counting Bloom filters[SMV08] would need to be investigated.

Indexing Video

Video is a popular method for transferring information and is perhaps the most sig-

nificant contribution to bandwidth usage and storage space in applications connected to

the Internet. It is also computationally expensive to process and index in software. A

hardware design may be able to both accelerate processing for network applications with

real time processing constraints, as well as enable more processing on the actual content

in addition to its metadata (eliminating redundancy, filtering, etc.).
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A

Text Encoding

Binary Glyph Binary Glyph Binary Glyph
010 0000 100 0000 @ 110 0000 ‘
010 0001 ! 100 0001 A 110 0001 a
010 0010 " 100 0010 B 110 0010 b
010 0011 # 100 0011 C 110 0011 c
010 0100 $ 100 0100 D 110 0100 d
010 0101 % 100 0101 E 110 0101 e
010 0110 & 100 0110 F 110 0110 f
010 0111 ’ 100 0111 G 110 0111 g
010 1000 ( 100 1000 H 110 1000 h
010 1001 ) 100 1001 I 110 1001 i
010 1010 * 100 1010 J 110 1010 j
010 1011 + 100 1011 K 110 1011 k
010 1100 , 100 1100 L 110 1100 l
010 1101 - 100 1101 M 110 1101 m
010 1110 . 100 1110 N 110 1110 n
010 1111 / 100 1111 O 110 1111 o
011 0000 0 101 0000 P 111 0000 p
011 0001 1 101 0001 Q 111 0001 q
011 0010 2 101 0010 R 111 0010 r
011 0011 3 101 0011 S 111 0011 s
011 0100 4 101 0100 T 111 0100 t
011 0101 5 101 0101 U 111 0101 u
011 0110 6 101 0110 V 111 0110 v
011 0111 7 101 0111 W 111 0111 w
011 1000 8 101 1000 X 111 1000 x
011 1001 9 101 1001 Y 111 1001 y
011 1010 : 101 1010 Z 111 1010 z
011 1011 ; 101 1011 [ 111 1011 {
011 1100 < 101 1100 \ 111 1100 |
011 1101 = 101 1101 ] 111 1101 }
011 1110 > 101 1110 ∧ 111 1110 ∼
011 1111 ? 101 1111 _ 111 1111

Table A.1: Table of printable ASCII characters, reprinted from[Wik10]
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B

Stop–Word Filtering

1 – 20 21 – 40 41 – 60 61 – 80 81 – 100
the this so people back
be but up into after
to his out year use
of by if your two
and from good how
a they who some our
in we get could work
that say which them first
have her go see well
I she me other way
it or when than even
for an make then new
not will can now want
on my like look because
with one time only any
he all no come these
as would just its give
you there him over day
do their know think most
at what take also us

Table B.1: The 100 most common words in the Oxford English Corpus
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Nouns Verbs Adjectives
time be good
person have new
year do first
way say last
day get long
thing make great
man go little
world know own
life take other
hand see old
part come right
child think big
eye look high
woman want different
place give small
work use large
week find next
case tell early
point ask young
government work important
company seem few
number feel public
group try bad
problem leave same
fact call able

Table B.2: The 25 most common nouns, verbs and adjectives in the Oxford English Corpus
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1st Person Verb Forms Compound Other Other
Singular & Auxillaries Forms Words Words
I am I’m let’s again

is you’re that’s further
me are he’s who’s then
my was she’s what’s once
the were it’s here’s
myself be we’re there’s here

been they’re when’s there
us being I’ve where’s when
our you’ve why’s where
ours have we’ve how’s why
ourselves has they’ve how

had I’d a
you having you’d an all
your he’d any
yours do she’d and both
yourself does we’d but each
yourselves did they’d if few

doing I’ll or more
he you’ll because most
him would he’ll as other
his should she’ll until some
himself could we’ll while such

ought they’ll of
she at no
her isn’t by nor
hers aren’t for not
herself wasn’t with only

weren’t about own
it hasn’t against same
its haven’t between so
itself hadn’t into than

doesn’t through too
they don’t during very
them didn’t before
their after
theirs won’t above
themselves wouldn’t below

shan’t to
what shouldn’t from
which can’t up
who cannot down
whom couldn’t in
this mustn’t out
that on
these off
those over

under

Table B.3: Pronouns on Porter’s Stop–Word List
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C

Natural Language Processing

Tag Description Example Tag Description Example
CC coordinating conjunction and, but, or SYM symbol +,%,&
CD cardinal number one, two, three TO “to” to
DF determiner a, the UH interjection ah, oops
EX existential “there” there VB verb, base form eat
FW foreign word mea culpa VBD verb, past tense ate
IN preposition / sub. conj. of, in, by VBG verb, gerund eating
JJ adjective yellow VBN verb, past participle eaten

JJR adj., comparative bigger VBP verb, non-3sg pres eat
JJS adj., superlative wildest VBZ verb, 3sg pres eat
LS list item marker 1, 2, One WDT wh-determiner which, that

MD modal can, should WP wh-pronoun what, who
NN noun, sing. or mass llama, snow WP$ possessive wh- whose

NNS noun, plural llamas WRB wh-adverb how, where
NNP proper noun, singular IBM $ dollar sign $

NNPS proper noun, plural Carolinas # pound sign #
PDT predeterminer all, both “ left quote ‘ or “
POS possessive ending ’s ” right quote ’ or ”
PRP personal pronoun I, you, he ( left parenthesis [,({,<

PRP$ possessive pronoun your, one’s ) right parenthesis ],),},>
RB adverb quickly, never , comma ,

RBR adverb, comparative faster . sentence-final punc. . ! ?
RBS adverb, superlative fastest : mid-sentence punc. : ; . . . – -
RP particle up, off

Table C.1: Penn Treebank Part–of–Speech tags, reproduced from[JM08]
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Expression Description Examples & Expansions
Single character expressions

. any single character spi.e matches “spice”, “spike”, etc.
\char matches a nonalphanumeric char literally \* matches “*”
\n newline character
\r carriage return character
\t tab character
[. . .] any single character listed in the brackets [abc] matches “a”, “b”, or “c”

[. . .-. . .] any single character in the range [0-9] matches “0” or “1” . . . or “9”
[ˆ. . .] any single character not listed [ˆsS] matches one character that is

neither “s” or “S”
[ˆ. . .-. . .] any single character not in the range [ˆA-Z] matches one character that is

not an uppercase letter
Anchors/Expressions with match positions

\ˆ beginning of line
\$ end of line
\b word boundary nt\b matches “nt” in “paint” but not

“pants”
\B word non-boundary all\B matches “all” in “ally” but not

in “wall”
Counters/Expressions which quantify previous expressions

* zero or more of the previous r.e. a* matches “”, “a”, “aa”, . . .
+ one or more of the previous r.e. a+ matches “a”, “aa”, “aaa”, . . .
? exactly one or zero of thre previous r.e. colou?r matches “color” or “colour”

{n} n of the previous r.e. a{4} matches “aaaa”
{n,m} from n to m of previous r.e.
n, at least n of previous r.e.
.* any string of characters
(. . .) grouping for precedence

. . .|. . . matches either of neighbour r.e.s (dog)|(cat) matches “dog” or “cat”
Shortcuts

\d any digit [0-9]
\D any non-digit [ˆ0-9]
\w any alphanumeric/underscore [a-zA-Z0-9_]
\W any non-alphanumeric [ˆa-zA-Z0-9_]
\s whitespace [t\r\t\n\f]
\S non-whitespace [ˆt\r\t\n\f]

Table C.2: Regular Expression syntax, reproduced from[JM08]
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D

Supplimentary Material on Stemming

The following is a collection of supplimentary material on word stemming.

D.1 Lovins Algorithm

Length: 1 2 3 4 5 6 7 8 9 10 11
Frequency: 6 18 39 48 67 39 40 13 17 4 3

Table D.1: Frequency of Lovins stem lengths (in characters)

1 remove one of double b,d,g,l,m,n,p,r,s,t 12 pex→ pic 24 end→ ens; except following s
2 iev→ ief 13 tex→ tic 25 ond→ ons
3 uct→ uc 14 ax→ ac 26 lud→ lus
4 umpt→ um 15 ex→ ec 27 rud→ rus
5 rpt→ rb 16 ix→ ic 28 her→ hes; except following p,t
6 urs→ ur 17 lux→ luc 29 mit→mis
7 istr→ ister 18 uad→ uas 30 ent→ ens; except following m
7a metr→meter 19 vad→ vas 31 ert→ ers
8 olv→ olut 20 cid→ cis 32 et→ es; except following n
9 ul→ l; except following a,o,i 21 lid→ lis 33 yt→ ys
10 bex→ bic 22 erid→ eris 34 yz→ ys
11 dex→ dic 23 pand→ pans

Table D.2: Listing of transformation rules on stem terminations.
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A 199 Minimum stem length = 2
B 30 Minimum stem length = 3
C 6 Minimum stem length = 4
D 1 Minimum stem length = 5
E 15 Do not remove ending after e
F 8 Minimum stem length = 3 and do not remove ending after e
G 2 Minimum stem length = 3 and remove ending only after f
H 1 Remove ending only after t or ll
I 3 Do not remove ending after o or e
J 1 Do not remove ending after a or e
K 1 Minimum stem length = 3 and remove ending only after l, i or u.e
L 2 Do not remove ending after u, x or s, unless s follows o
M 2 Do not remove ending after a, c, e or m
N 2 Minimum stem length = 4 after s**, elsewhere = 3
O 1 Remove ending only after l or i
P 1 Do not remove ending after c
Q 1 Minimum stem length = 3 & do not remove ending after l or n
R 2 Remove ending only after n or r
S 1 Remove ending only after dr or t, unless t follows t
T 1 Remove ending only after s or t, unless t follows o
U 1 Remove ending only after l, m, n or r
V 1 Remove ending only after c
W 1 Do not remove ending after s or u
X 1 Remove ending only after l, i or u*e
Y 4 Remove ending only after in
Z 1 Do not remove ending after f

AA 1 Remove ending only after d, f, ph, th, l, er, or, es or t
BB 3 Minimum stem length = 3 and do not remove ending after met or ryst
CC 1 Remove ending only after l

Table D.3: Context–sensitive rules and their frequency. The implicit assumption in each
condition is that the minimum stem length is 2.
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11 alistically B arizability A izationally B
10 antialness A arisations A arizations A entialness A

9 allically C antaneous A antiality A arisation A arization A ationally B
ativeness A eableness E entations A entiality A entialize A entiation A
ionalness A istically A itousness A izability A izational A

8 ableness A arizable A entation A entially A eousness A ibleness A
icalness A ionalism A ionality A ionalize A iousness A izations A
lessness A

7 ability A aically A alistic B alities A ariness E aristic A
arizing A ateness A atingly A ational B atively A ativism A
elihood E encible A entally A entials A entiate A entness A
fulness A ibility A icalism A icalist A icality A icalize A
ication G icianry A ination A ingness A ionally A isation A
ishness A istical A iteness A iveness A ivistic A ivities A
ization F izement A oidally A ousness A

6 aceous A acious B action G alness A ancial A ancies A
ancing B ariser A arized A arizer A atable A ations B
atives A eature Z efully A encies A encing A ential A
enting C entist A eously A ialist A iality A ialize A
ically A icance A icians A icists A ifully A ionals A

ionate D ioning A ionist A iously A istics A izable E
lessly A nesses A oidism A

5 acies A acity A aging B aical A alist A alism B
ality A alize A allic BB anced B ances B antic C
arial A aries A arily A arity B arize A aroid A
ately A ating I ation B ative A ators A atory A
ature E early Y ehood A eless A elity A ement A

enced A ences A eness E ening E ental A ented C
ently A fully A ially A icant A ician A icide A
icism A icist A icity A idine I iedly A ihood A
inate A iness A ingly B inism J inity CC ional A

ioned A ished A istic A ities A itous A ively A
ivity A izers F izing F oidal A oides A otide A

ously A
4 able A ably A ages B ally B ance B ancy B

ants B aric A arly K ated I ates A atic B
ator A ealy Y edly E eful A eity A ence A

ency A ened E enly E eous A hood A ials A
ians A ible A ibly A ical A ides L iers A
iful A ines M ings N ions B ious A isms B
ists A itic H ized F izer F less A lily A

ness A ogen A ward A wise A ying B yish A
3 acy A age B aic A als BB ant B ars O

ary F ata A ate A eal Y ear Y ely E
ene E ent C ery E ese A ful A ial A
ian A ics A ide L ied A ier A ies P
ily A ine M ing N ion Q ish C ism B
ist A ite AA ity A ium A ive A ize F

oid A one R ous A
2 ae A al BB ar X as B ed E en F

es E ia A ic A is A ly B on S
or T um U us V yl R s’ A ’s A

1 a A e A i A o A s W y B

Table D.4: Listing of all 294 stems and their associated conditions, sorted by character
length.
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D.2 Porter Algorithm
Step 1: plurals and past participles

Step 1a Step 1b
sses → ss (m > 0) & eed → ee
ies → i (∗v∗) & ed → null
ss → ss (∗v∗) & ing → null
s → null

If either the second or third rule in Step 1b is executed, the following is done:

at → ate
bl → ble
iz → ize
∗d and not (∗L or ∗S or ∗Z) → single letter
m = 1 & ∗o → e

Step 1c
(∗v∗) y → i

Step 2

(m > 0) ational → ate (m > 0) tional → tion
(m > 0) enci → ence (m > 0) anci → ance
(m > 0) izer → ize (m > 0) abli → able
(m > 0) alli → al (m > 0) entli → ent
(m > 0) eli → e (m > 0) ousli → ous
(m > 0) ization → ize (m > 0) ation → ate
(m > 0) ator → ate (m > 0) alism → al
(m > 0) iveness → ive (m > 0) fulness → ful
(m > 0) ousness → ous (m > 0) aliti → al
(m > 0) iviti → ive (m > 0) biliti → ble

Step 3

(m > 0) icate → ic (m > 0) ative → null
(m > 0) alize → al (m > 0) iciti → ic
(m > 0) ical → ic (m > 0) ful → null
(m > 0) ness → ic
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Step 4

(m > 1) al → null (m > 1) ance → null
(m > 1) ence → null (m > 1) er → null
(m > 1) ic → null (m > 1) able → null
(m > 1) ible → null (m > 1) ant → null
(m > 1) ement → null (m > 1) ment → null
(m > 1) ent → null (m > 1) and (∗S or ∗T ) ion → null
(m > 1) ou → null (m > 1) ism → null
(m > 1) ate → null (m > 1) iti → null
(m > 1) ous → null (m > 1) ive → null
(m > 1) ize → null

Step 5: correcting the endings

Step 5a Step 5b
(m > 1) e → null (m > 1 and ∗d and ∗L) → single letter
(m = 1 and not ∗o) e → null
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