
Dynamic Storage Provisioning with
SLO Guarantees

by

Prashant Gaharwar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2010

© Prashant Gaharwar 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Static provisioning of storage resources may lead to over-provisioning of resources, which
increases costs, or under-provisioning, which runs the risk of violating application-level QoS
goals. Toward this end, virtualization technologies have made automated provisioning of
storage resources easier allowing more effective management of the resources. In this
work, we present an approach that suggests a series of dynamic provisioning decisions to
meet the I/O demands of a time-varying workload while avoiding unnecessary costs and
Service Level Objective (SLO) violations. We also do a case-study to analyze the practical
feasibility of dynamic provisioning and the associated performance effects in a virtualized
environment, which forms the basis of our approach. Our approach is able to suggest the
optimal provisioning decisions, for a given workload, that minimize cost and meet the SLO.
We evaluate the approach using workload data obtained from real systems to demonstrate
its cost-effectiveness, sensitivity to various system parameters, and runtime feasibility for
use in real systems.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Kenneth Salem for his patient guidance,
insightful advices, and constant encouragement. I would also like to thank Prof. Ashraf
Aboulnaga and Prof. Johnny W. Wong for being my thesis readers.

I am also thankful to the University of Waterloo staff who have been a great help through-
out my graduate studies.

iv

Dedication

Dedicated to Ma, Pa, and Da.

v

Contents

List of Tables viii

List of Figures x

1 Introduction 1

2 System Architecture 4

3 Dynamic Storage Provisioning 7

3.1 Dynamic Storage Arrays . 7

3.2 Virtual Device Migration . 9

3.3 Modeling Dynamic Storage Provisioning 11

4 Optimizing Dynamic Provisioning 13

4.1 Problem . 13

4.2 Optimizer . 18

5 Experiments and Results 23

6 Related Work 32

7 Conclusions and Future Work 36

APPENDIX 37

A Graphs For Other Collected Data 38

vi

References 48

vii

List of Tables

3.1 Migration times for array expansion . 8

3.2 Change in migration time with size of virtual disk 11

4.1 Summary of notations used . 18

5.1 Parameters with default values . 24

viii

List of Figures

1.1 I/O workload pattern of a typical week at a UW file server 2

2.1 System Architecture . 5

3.1 Virtual Device Migration case-study . 10

4.1 Request processing in a single disk and parallel-disks system 14

4.2 Request rate (λ(t)) at a UW file server . 15

4.3 Search graph for finding the optimal schedule 19

5.1 Request rate for MSR Source1 server . 25

5.2 Average disk cost per time-interval with varying migration window size (m) 25

5.3 Average disk cost per timeslot comparison of static and dynamic plans for
various constraint values . 27

5.4 Average disk cost per timeslot with different cost functions for UW data . 27

5.5 Increasing quality (lower cost) of plans as the algorithm proceeds over time 28

5.6 Comparison of run time of various optimization techniques 28

5.7 Graphical plots of migration plans . 31

A.1 Request rates for UW and MSR server . 40

A.2 Average disk cost per timeslot with varying migration window size (m) . . 41

A.3 Average disk cost per timeslot comparison of static and dynamic plans for
various constraint values . 42

A.4 Average disk cost per timeslot with different cost functions for UW data . 43

A.5 Average disk cost per timeslot with different cost functions for MSR data . 43

ix

A.6 Increasing quality (lower cost) of plans as the algorithm proceeds over time 44

A.7 Graphical plots of migration plans . 45

x

Chapter 1

Introduction

Manual provisioning of storage resources, to meet changing I/O workload demands, is
error-prone, not always feasible, and cumbersome [2]. In modern IT data-centers, time-
varying resource demands of typical enterprise applications, due to temporal variations
of their workloads, lead to under-provisioning or over-provisioning of resources. In case
the resources are over-provisioned, the cost incurred increases. In case the resources are
under-provisioned, there may be violations of Service Level Objectives (SLOs). A modern
approach to optimize resource allocation and improve resource utilization is to consolidate
applications in a shared infrastructure using virtualization and employ dynamic resource
allocation strategies to balance the seemingly conflicting goals of meeting SLOs and mini-
mizing resource costs.

Storage virtualization forms the backbone of such environments, with storage arrays pro-
viding consolidated data access to multiple applications simultaneously. In such arrays,
one or several physical disks could possibly support a single virtual disk. Requests coming
to a virtual disk are distributed among the physical disks and processed in parallel, so
increasing or decreasing the number of physical disks backing the virtual disk would result
in an increase or decrease in I/O performance. This fact could be exploited in data-centers,
which experience variable I/O workload demands and call for dynamic allocation strategies
for storage.

Changing the configuration of resources to meet resource demands has been studied widely
(e.g. [18, 25, 1]). Unlike other resources, e.g. CPU and memory, which can be configured
on the fly (in virtualized environments), changing the configuration of storage resources
is a time-consuming process because of the significant amount of data-transfer involved
during provisioning. Data transfer is required because, if an additional disk is introduced
into the storage system, it can not start serving requests right away. It has to have data

1

0

2

4

6

8

10

12

14

R
eq

ue
st

ra
te

(M
B

/s
)

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Figure 1.1: I/O workload pattern of a typical week at a UW file server

for serving requests. This data (part of the total data residing on the storage system) is
moved from other storage devices already in the system. Similarly, if we remove a disk
from the storage system, the data residing on this disk should be moved to the disks that
would remain in the system. Depending on the size of the data to be moved, this data
migration may last for hours.

In case of dynamically changing I/O workloads, one cannot afford to wait for long-periods
for a desired storage configuration to be provisioned, as it may lead to SLO violations in the
interim. To offset this provisioning time, one must start the provisioning in anticipation of
a future change in workload. Thus, we base our study on the assumption that knowledge
of the future workload is provided to us, so that we can determine optimal provisioning
decisions that minimize the provisioned resources while meeting the SLOs. Typical I/O
workload patterns in data-centers have been found to be cyclic in nature and easily lend
themselves to be predictable [22, 21]. We found a similar cyclic pattern in I/O request rates
of a typical week at a University of Waterloo (UW) file server, which are illustrated in
Figure 1.1. Therefore, cyclic, predictable workloads in data-centers are possible use cases
for our technique, which requires advance knowledge of the workload.

In this work, we build an approach that takes a model of the upcoming workload for
a certain time-period, and emits a schedule of provisioning and deprovisioning actions that
must be initiated during the given time-period to meet a given SLO, while minimizing
the provisioned resources. Specifically, the schedule indicates the number of physical disks
that should be backing a virtual disk at each point in time. Changes in the scheduled
number of physical disks are implemented by provisioning and deprovisioning operations.

2

The schedule is such that the performance of the system will be within the requirements of
the SLO throughout the time period for which the workload model is given. In addition,
the number of physical disks required is minimized. We make the following contributions:

� An exhaustive depth-first search (DFS) technique to find an optimal schedule for
dynamically provisioning storage resources.

� Two case-studies of the characteristics of migration mechanisms, so that these char-
acteristics can be accounted for by the optimization technique.

� Search space pruning strategies for increasing the performance of the search algo-
rithm.

� Experimental analysis of the developed approach, using I/O traces from real systems,
to demonstrate its efficacy and applicability to real scenarios.

The organization of the rest of the thesis is as follows. Chapter 2 gives the general archi-
tecture of a system designed to tackle our problem, followed by Chapter 3 with discussion
and presentation of two case-studies to characterize storage provisioning mechanisms. In
Chapter 4, we present the specifics of the problem and the approach developed to tackle
it. Chapter 5 analyzes the approach for efficiency and effectiveness. We discuss the related
work in Chapter 6 and conclude with directions on future work in Chapter 7.

3

Chapter 2

System Architecture

The problem we have tackled in this work is an instance of a general problem, which is to
provision storage resources among n machines such that each machine’s SLO is met. We
specifically address the problem of minimizing the number of disks provisioned to serve
requests, while ensuring that SLO requirements are met. The general architecture of a sys-
tem designed to tackle the storage provisioning problem is illustrated in Figure 2.1. The
rectangular boxes indicate a software or a hardware module of the system that interacts
with the input data (represented as a curved gray box) and emits some output (curved
gray box), which may be used by another module of the system. The arrows indicate the
flow of data or information from one module of the system to another.

As depicted in the figure, the input to the optimizer is a workload model, which is a
description of upcoming (future) workload. In addition, the SLO specifies the I/O perfor-
mance that must be guaranteed. The optimizer is responsible for emitting a schedule of
(de)provisioning actions that will ensure that the SLO is met while minimizing the num-
ber of provisioned storage resources. This schedule is fed to the resource controller, which
effects the actual changes required in the storage system according to the schedule. Brief
discussions of various aspects of the system follow.

Workload. The workload is the stimulus applied to a system, application, or compo-
nent that prompts usage of system resources. An I/O workload is a sequence of block I/O
requests. Such a request sequence can be characterized by a set of statistics, describing
attributes of the requests, such as I/O request size or I/O request rate. In our work, we
assume that a model of the upcoming workload is given. Further details are presented in
Chapter 4. Such a workload model could be obtained by, for example, prediction based on
past workload measurements [5, 9, 25].

4

Storage System

Optimizer

Workload ModelSLO

Schedule

Resource Controller

Workload

Software/Hardware Module

Input/Output

Data/Information flow

Figure 2.1: System Architecture

SLO. Service level objectives (SLOs) are a means of specifying the quality of a service
or application. They are generally a combination of some measurable quantities indicating
the performance of the system, e.g. availability, throughput, response time, utilization.
To meet SLOs, resources must be provisioned. Thus, to achieve a balance between the
conflicting goals of minimizing number of provisioned resources and meeting the SLO, an
optimization strategy is needed. Finding such a strategy is the task of the optimizer mod-
ule.

Optimizer. The optimizer is responsible for taking as input the workload model and
emitting a schedule. A schedule indicates when to provision or deprovision storage re-
sources to meet the current or future workload demands. The schedule emitted by the
optimizer ensures that the SLO is met while minimizing the resource provisioning cost.
Generally, an online optimizer, which only has the past workload data at its disposal,
would try to provision resources based on the current demand being experienced by the
system. On the other hand, an offline optimizer, which is given advance knowledge of all
future requests, would try to come-up with a resource provisioning schedule that minimizes
the cost over that whole period and meets the SLOs as well. Our main goal is to build an
offline optimizer in this work.

Resource Controller. This module is responsible for carrying out the actual provisioning
of the storage resources based on the schedule fed to it as input. The resource controller
could be a series of system calls or OS-dependent scheduling jobs, e.g. cron jobs in Linux.
Most prior works [2, 21, 1] use their own custom job controllers to control provisioning
tasks. Third-party tools, like svmotion by VMware Inc. and the live migration tool in

5

Xen [4], could also be used if the host system supports them. We present some empirical
data obtained by using svmotion in our experimental test-bed in one of the case-studies
presented in the next chapter.

Storage System. The storage system is the hardware which stores data and handles
requests (I/O workload) to read and write data. It often contains several physical disks as
in, for example, a RAID system. The disk arrays are generally mapped to logical disks,
which serve as the logical layer for disk access by the applications. Also, a storage system
could be redesigned, which may involve reconfiguration of physical disks and their mapping
to logical disks, by provisioning commands from the resource controller.

With the above discussion, we aimed to give an overview of various modules and their
interactions in our system. Next, we discuss provisioning mechanisms in greater detail, as
we wish to develop an optimizer that can take the characteristics of such mechanisms into
account when choosing a provisioning schedule.

6

Chapter 3

Dynamic Storage Provisioning

In the previous chapter, we looked at the general architecture of our system. It includes
a resource controller, which controls dynamic provisioning of storage resources, based on
the schedule fed to it. The storage system implements provisioning, under the control of
the resource controller. Although the design of a provisioning mechanism is not the focus
of this work, we want to characterize (or, model) the provisioning mechanism so that the
optimizer can take its characteristics into account when it produces a provisioning sched-
ule. Toward this end, we present brief case studies of two provisioning mechanisms. Based
on these examples, we present a simple provisioning model, which is used by the optimizer
described in Chapter 4.

We assume that the storage system implements logical storage volumes, each of which
maps to one or more underlying physical devices. This sort of storage model is widely
used in modern data centers [6]. We also assume that the devices are identical. Dynamic
storage provisioning is implemented by increasing or decreasing the number of physical de-
vices backing a logical volume, which can serve several purposes. It can be used to adjust
the capacity (size) of a volume. It can also be used to adjust the I/O throughput that
can be supported by the volume. As our primary purpose is in reacting to a time varying
I/O request load, we are concerned with the latter motivation for provisioning. Next, we
present two case studies as examples of dynamic storage provisioning mechanisms.

3.1 Dynamic Storage Arrays

This case-study was done to study the provisioning characteristics of the storage systems
that support dynamic provisioning by restructuring of the storage array. We did this case-
study on a specific storage system product by IBM, DS4200. It has an array of physical

7

Volume Size Migration Time Source disks Target disks
100 GB 2h50m 1 2
100 GB 2h55m 2 3
100 GB 2h50m 3 4
500 GB 14h45m 1 2
500 GB 14h50m 2 3
500 GB 14h50m 3 4

Table 3.1: Migration times for array expansion

disks. The disk array is formatted as a RAID and then this RAID is partitioned into
one or several storage volumes. Each volume is striped across all physical devices in the
RAID-system. The storage system supports an expansion operation that allows the num-
ber of physical devices that implement an array to be increased from, say k to k + 1. The
expansion operation can be done on the fly, without taking the volume off-line. During
provisioning, volume data is redistributed so that it resides evenly over k+ 1 disks instead
of k disks. Unfortunately, this particular storage system did not support a compression
operation for reducing the size of the array from, say k physical disks to k − 1. Since, it
did not support a deprovisioning operation, we only did a limited set of experiments for
this system.

We wanted to get an idea of the time taken by the expansion operation and the parameters
it depends on. For this study, we used the following methodology:

1. Create a volume of size p on a RAID-0 system,

2. Expand the array from k to k + 1 disks (initially, k = 1),

3. Repeat from step 2, till k + 1 reaches 4,

4. Repeat from step 1, for various values of p.

The results are shown in Table 3.1. Observe that the migration time does not depend
on the number of devices in the array. Also, it scales proportionally with the size of the
volume. Thus, the migration takes a long time for large volumes.

We also found that this data redistribution generates extra I/O overhead, and thus, un-
derlying physical devices must support both volume’s regular I/O workload as well as
this overhead. Although, unfortunately, this particular storage system did not support
a compression operation, we believe other storage systems should exist that can support

8

this operation. To address the need for a mechanism with the ability to both increase or
decrease the number of physical devices, we present another case-study.

3.2 Virtual Device Migration

We formatted a volume (on the DS4200) with VMFS 1filesystem. As stated earlier, the
storage system implements volumes as striped arrays of physical devices. Any file residing
on the filesystem is also distributed across all devices. One can host a VM on this filesys-
tem. Each VM has a virtual disk, implemented as a file, which resides on the filesystem.
VMware provides a utility, svmotion to allow live-migration (which is desirable, to prevent
disruption of a running application) of virtual disks from one file-system to another across
a network. Thus, by migrating a virtual disk file from a file-system backed by k1 disks to a
file-system backed by k2 disks, we can effect dynamic provisioning. If k1 < k2, we increase
the I/O capacity of the virtual disk, and vice versa.

An experiment to study and characterize the behavior of this mechanism was designed
on our test-bed. We created a VM with 2GB memory, with a virtual disk, initially hosted
on a file-system backed by a single physical device. We also created three other filesys-
tems, backed by 2, 3, and 4 devices, respectively. To study the effect on actual workload
(application performance) during and after migration, we created a workload generator to
run in the VM. The workload generator was a simple multi-threaded program with several
threads reading random blocks (4K each) of a 2 GB file stored on the virtual disk, thus
generating a random I/O workload at the virtual disk. The experiment’s methodology
was:

1. Launch VM and workload generator,

2. Measure I/O performance when virtual disk is backed by k devices (initially, one
device),

3. Migrate virtual disk from k to k+1 devices using svmotion, measuring the time taken
to migrate and the workload’s performance,

4. Repeat from 2, till k + 1 reaches 4.

1VMFS (Virtual Machine File System) is VMware Inc.’s cluster file system. It is used by VMware
ESX Server to store virtual machine disk images. Multiple servers can read/write the same filesystem
simultaneously. VMware ESX is an enterprise-level virtualization OS product offered by VMware, Inc.
that can be used as a host-server for several guest virtual machines.

9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T
hr

ou
gh

pu
t(

M
B

/s
)

0 1000 2000 3000 4000 5000 6000

Time (s)

. .

. .

. .

. Migration Time

12m20s

11m10s

10m30s

Migration from 1 disk to 2 disks

Migration from 2 disks to 3 disks

Migration from 3 disks
to 4 disks

Migration Penalty

1 disk

2 disks

3 disks

4 disks

Figure 3.1: Virtual Device Migration case-study

The results of our experiment are illustrated in Figure 3.1. As expected, the application
performance (throughput) increases with the increase in the number of physical devices
backing the file-system. We also see a dip in performance during every migration because
of the extra I/O workload generated due to data transfer. Also, the dip in performance,
labeled migration penalty, largely remains constant at every migration instance. Observe,
the migration time taken to go from 1 to 2 disks is slightly more than the time taken to go
from 2 to 3 disks. Similarly, the time taken to go from 3 to 4 disks is less than that going
from 2 to 3 disks. It indicates that the migration time depends on the number of disks
involved in migration and as they increase the migration gets faster. A more important
factor in determining migration times was found to be the size of the virtual disk. We
present a few readings of the migration times with increasing size of virtual disk in Table
3.2. The methodology followed was similar to the one stated earlier and is as follows:

1. Launch VM of size p and the workload generator,

2. Migrate virtual disk from k to k+1 devices using svmotion, measuring the time taken
to migrate,

3. Repeat from 1 for various values of p.

Observe that the migration time increases almost linearly with the increase in the size of
the virtual disk. To summarize, we make three main observations from the results obtained

10

Size Migration Time Source disks Target disks
20 GB 10m30s 3 4
50 GB 24m50s 3 4
100 GB 45m10s 3 4

Table 3.2: Change in migration time with size of virtual disk

from the two case-studies and present them in the next section as characteristics to model
dynamic storage provisioning.

3.3 Modeling Dynamic Storage Provisioning

We can produce a simple model of dynamic storage provisioning by abstracting from the
two case-studies. We note three key elements of the model to be considered in our optimizer:

1. Provisioning Time. From the second case-study we observe that the migration
time from one set of disks to another largely depends on the size of the virtual-disk
(amount of data) being migrated. We also see a decreasing pattern in the amount
of migration time as the number of disks increase. For simplicity, in our optimizer,
we assume that the migration time (m) remains constant for any number of devices
migrating to any other number. However, our optimizer could easily be extended
to consider variable provisioning times. These times could be represented using a
matrix of dimensions kmax ∗ kmax, where kmax is the practical limit to the number
of disks in the system. If the rows represent from (source) disks and the columns
represent to (destination) disks in the matrix, then each element, κi,j represents the
time needed to migrate a virtual disk of size 1GB from i disks to j disks. From the
matrix, we could obtain migration times for virtual disks by simply multiplying κi,j
by a scaling factor proportional to the size of the virtual disk.

2. Provisioning Overhead. As is clear from the case-studies, the throughput suffers
a drop during the process of migration (because of the extra IOs generated by the
data-movement). Thus, we must introduce a factor of migration penalty, λm, as an
input to the optimizer and consider it in every migration. Migration penalty is the
additional load experienced by a disk during a migration. We treat the penalty as a
constant, which is consistent with our observations from the case studies.

3. Provisioning Cost. Recall that our optimizer will minimize cost, which is defined
in terms of the number of physical disks being used. When the system is operating
with k1 disks, it is clear that the cost is k1. When migrating from k1 to k2, we need to

11

define cost during the migration. We define it as the number of physical devices that
are involved in the provisioning operation. In the first case-study, the data movement
was only restricted to k1 + 1 devices (i.e. if we are going from k1 to k1 + 1 devices).
Had there been a mechanism to go from, say k1 to k1 − 1 devices, the total number
of devices involved would have been k1. So, we see that provisioning mechanisms
that rely on restructuring of the array (by expansion or contraction) as in the first
case-study, would have a provisioning cost of max(source, destination) (maximum
of the number of source and destination disks). On the other hand, in the second
case-study every migration involved data movement from a set of source disks (k1)
to a different set of destination disks (k2). Thus, the provisioning cost in such cases
would be sum(k1, k2) (sum of the number of source and destination disks). Since,
different mechanisms have different notions of cost, the optimization technique we
present in the next chapter does not depend on a specific cost model. Instead, any
appropriate function of the numbers of source and destination disks can be used.

12

Chapter 4

Optimizing Dynamic Provisioning

In this chapter, we describe our dynamic provisioning optimization problem and the op-
timizer, which is meant to solve the problem. Recall from Chapter 2 that the optimizer
takes a workload model and an SLO and produces a provisioning schedule.

4.1 Problem

The problem we aim to solve is: Given a description of the workload model, generate a mi-
gration schedule which meets the service level objective (SLO) while minimizing the storage
system cost. In this section, we look at the specifics of the problem, i.e. an abstract model
of the storage system, the notion of time in our problem, the kind of workload description
that we will use, the schedule that is to be emitted, the specifics of the SLO, and a defi-
nition of cost (not necessarily in this order). We restate the problem, towards the end of
this section, after these specifics have been defined.

Storage System Model. We present a model of the storage system abstracted from
the discussion in Chapter 3, on which our solution is based. The model is a k-server queu-
ing system (Figure 4.1(b)), with servers representing the underlying physical disks. Arrival
rate and service times are time varying. The number of servers can also vary over time, as
a result of the provisioning and deprovisioning operations which we are trying to schedule.
We also assume that the load is distributed evenly across k-devices (illustrated in Figure
4.1).

So, the storage system is characterized by k (varies with time) and the service time. In
addition, as discussed in the previous chapter, the storage system is also characterized by a
set of provisioning parameters: migration time (m), migration penalty (λm), and migration

13

Virtual Disk

Physical Disk

Block of Data

Request

Response

(a)

Virtual Disk

Physical Disk

Request

Response

Physical Disk

Physical Disk

RAID

Striped data block

(b)

Figure 4.1: Request processing in a single disk and parallel-disks system

cost (C). These parameters describe the behavior of the system during provisioning and
deprovisioning operations.

Time. We treat time, t, as a sequence of discrete fixed-length (tf) intervals. We de-
fine

τ = dT/tfe (4.1)

In the above equation, T is the time-period for which we need to find a schedule and thus,
τ is the number of discrete time intervals1of length tf in T . It also follows, in our context,
t ε [1, τ]. Arrival rate (λ(t)) and service rate (µ(t)) are fixed during each interval, but may
vary from interval to interval.

Workload. The input to the optimizer consists of two vectors of length τ . One vec-
tor defines the service rate of a disk (µ(t)), the other describes the request arrival rate
(λ(t)). Figure 4.2 illustrates an example of the request rate (λ(t)) vector for a week at a
UW file server with tf = 30 minutes and τ = 336. Further details about the workload are
presented in Chapter 5.

We treat all of the disks as identical, so their service rates are also the same. Also, as
stated earlier, we assume that the load is evenly distributed among the disks. The offered
utilization (U ′(t)) of a storage system with k disks at t is given by:

U ′(t) =
λ(t)

k(t)µ(t)
(4.2)

1We use the terms time interval and timeslot interchangeably.

14

0

2

4

6

8

10

12

14

R
eq

ue
st

ra
te

(m
B

/s
)

0 48 96 144 192 240 288 336

Timeslot

Figure 4.2: Request rate (λ(t)) at a UW file server

In addition, during migration, an extra load is experienced by the devices due to data
transfer. We define λm as the extra load experienced by a device during migration, thus,
the actual utilization (U(t)) of k disks is given by:

U(t) :=

{
U ′(t) when not provisioning

U ′(t) + λm
k(t)µ(t)

during provisioning
(4.3)

Service Level Objective (SLO). Utilization is often used by data-center operators to
vicariously control application performance because of the monotonic relationship between
the two [17]. We define the SLO in terms of keeping the utilization (U(t)) of storage system
devices below a specified threshold (Uref), where Uref is the reference utilization. We also
introduce a trade-off factor, v, in the SLO to allow a trade-off between performance and
cost. We define v as the percentage of time intervals during which the reference utilization
may be exceeded. Thus, if v is very small the optimizer will ensure that the U(t) is almost
always below Uref , possibly at the expense of provisioning additional devices. As v is
increased, the optimizer is permitted more violations of the reference threshold, which
may allow it to provision fewer devices. We also define v in terms of a positive integer V
as:

V = dvτe

15

V is simply the number of time intervals during which the Uref may be exceeded. So, we
restate the SLO statement as, “Keep U(t) below Uref with at most V violations”.

Schedule. The output of the optimizer is a schedule that indicates the following:

1. The number of devices that are available to serve requests at each time-interval t,
which is represented by vector k = [k(1), k(2), ...k(τ)].

2. The time-interval(s) at which provisioning, if any, should start and end, and the
number of devices that would be available after the provisioning ends.

The above can be extracted from a schedule vector S, which we define shortly. We also
use the supplied parameter, m (migration time) to determine the amount of time needed
to complete a provisioning step. m is given in terms of the number of time-intervals (t)
needed to complete a migration. A time-interval t during which provisioning is taking
place is called a migration slot.

We define a schedule S = [s(1), s(2), ...s(τ)]. Each s(t) represents the number of disks
available during the tth time interval, i.e. s(t) = k(t), unless t represents a migration slot.
In that case s(t) indicates the number of devices that will be available once the provisioning
operation is complete.

Consider the following example (Example 4.1) for clarity. Suppose the optimizer emits
a schedule S = {1, 2, 2, 2, 1, 1, 1, 1} with m = 2. In S, s(2) 6= s(1) and s(5) 6= s(4), indicat-
ing the beginnings of a migration at t = 2 and t = 5, respectively. Each migration would
last for m = 2 time-intervals, i.e. up to t = 3 and t = 6 respectively. Thus, t = 2, 3, 5, 6 are
all migration slots. The vector k corresponding to S is {1, 1, 1, 2, 2, 2, 1, 1}, representing
the number of devices available for serving requests.

Next, we define a few kinds of schedule that would be useful while discussing the opti-
mizer:

� x-Feasible Schedule. A schedule S is said to be x-feasible if all pairs of provisioning
operations in S have starting points separated by at least x timeslots. For example,
schedule S in Example 4.1 has 2 provisioning operations, one starting at t = 2,
the other starting at t = 5. Thus, S is 1-feasible, 2-feasible and 3-feasible, but not
4−feasible. Intuitively, an x-feasible schedule can be implemented by a provisioning
mechanism with a migration time (m) of x or less.

� Valid Schedule. A schedule that satisfies the SLO. A schedule satisfies the SLO, if for
all time-intervals, except for V of them, the number of available disks (k) is sufficient

16

to keep utilization below Uref . In Example 4.1, we can find U ′(t) (in case of t is
not a migration slot, i.e. at t = 1, 4, 7, 8) and U(t) (in case of t is a migration slot,
i.e. at t = 2, 3, 5, 6) from Equation 4.2 and Equation 4.3 respectively, for any given
workload data and migration penalty, λm. If v = 10%, then the utilization obtained
should not exceed a given Uref , in more than 1 of the time-intervals (τ = 8).

� Optimal Schedule. A schedule which is m-feasible and valid with minimal cost (the
cost of a schedule is defined a little later in the discussion and can be obtained from
Equation 4.6).

� Suboptimal Schedule. A schedule which is m-feasible and valid, and is not an optimal
schedule.

Cost. We define the cost at each time interval, C(t), as the total number of disks required
at that interval. In case there is no migration, the cost would be the number of disks
available at that time-slot. Since, migration involves provisioning or deprovisioning to a
different number of disks, the cost changes. As discussed in Chapter 3, the migration cost
varies with the migration mechanism used. Thus, during a migration slot, the cost C(t)
using a migration scheme similar to the one in the second case-study (Section 3.2) would
be:

C(t) = s(t) + d (4.4)

where d is the number of devices that were available before the provisioning operation
began. Similarly, we can define C(t) during a migration slot for a migration scheme like
the one in the first case-study (Section 3.1):

C(t) = max(s(t), d) (4.5)

The total cost of a schedule (Cost(S)) is defined as the average number of disks required
per time-slot, i.e.

Cost(S) =
Στ
t=1C(t)

τ
(4.6)

To illustrate further, the cost vector C(t) for the schedule from Example 4.1 is {1, 3, 3, 2, 3, 3,
1, 1} using the cost model based on the second case study and is {1, 2, 2, 2, 2, 2, 1, 1} using
the cost model from the first case study.

Now, equipped with these definitions, we restate our problem statement as: Given λ(t),
µ(t), Uref , V , λm, and m, find an m-feasible, valid schedule S such that Cost(S) is mini-
mized. Table 4.1 summarizes the notation used in our problem.

17

Notation Description
λ(t) Request rate vector
µ(t) Service rate vector
t Time interval or timeslot
tf Time interval length or timeslot length
T (τ) Time period (Schedule length in time intervals)
Uref Reference utilization
U ′(t) Offered utilization
U(t) Total utilization
V Number of violations allowed
pmax Maximum number of disks allowed in the system
m Migration time (in time-intervals)
λm Migration penalty (stated as extra load per disk)
S Schedule vector of s(t)
k(t) Available devices in the system to serve requests at t
C(t) Cost at each time interval
Cost(S) Average cost of a schedule

Table 4.1: Summary of notations used

4.2 Optimizer

Here, we explain the exhaustive approach used by the optimizer to find an optimal schedule
and present several pruning techniques for performance improvement.

Exhaustive Depth-first Search (DFS). The idea behind exhaustive approach is to consider
every possible m-feasible schedule and check whether it is an optimal schedule. The ap-
proach employs a depth-first search (DFS) into the search graph and progressively finds
better suboptimal schedules until an optimal schedule is found. We restrict the search-
space by a parameter kmax, which is the maximum number of physical disks allowed in the
system. To give an idea about the structure of the search graph, consider the parameters
kmax and τ (the length of the schedule). The optimizer tries to fit every possible value from
[1, kmax] at every time-slot in [1, τ] that gives an m-feasible schedule. The search graph for
2-feasible schedules, for kmax = 4, τ = 5, and m = 2 is illustrated in Figure 4.3. In the
figure, if the rows represent disks and the columns represent time-intervals then, we can
see there is a directed edge from every cell (or node or disk configuration) to the cells in
the same row in the adjacent column (next time-interval), representing no migration. An
edge from a node to a node in a different row represents a migration (change in the number
of disks) and the edge spans exactly m = 2 time-intervals, corresponding to the fact that

18

Figure 4.3: Search graph for finding the optimal schedule

a migration takes m time-intervals to complete. Thus, in this graph, which represents 2-
feasible schedules, intermediate states that correspond to 1-feasible schedules (in general,
[1,m− 1]-feasible schedules) are not possible.

Given such a graph, we would like to find out the minimum cost path (schedule) [Equation
4.6] that begins at a node at timeslot t = 1 and finishes at timeslot t = τ (τ = 5 in the
figure) and does not violate the SLO. The DFS exploration begins at the begin node in the
figure, and exhaustively searches all of the paths in the search graph. After a complete
m-feasible schedule is obtained, it is checked for being valid and saved for later comparison
if its cost is lower than the lowest cost schedule found so far. The search finishes when
all the m-feasible schedules have been explored, and the last saved schedule is an optimal
schedule. We present the essential pseudo-code of the technique in Algorithm 1. It also
includes some strategies to better the performance of the basic exhaustive algorithm, which
are discussed a bit later.

We can estimate an upper-bound on the size of search space of all complete m-feasible

19

Input: Uref , V , τ , λ(t), µ(t), λm, m, kmax
Output: Soptimal (Optimal schedule)

1 OPTIMIZER(schedule StillNow, integer VtillNow, integer Cost(StillNow))

2 if length(StillNow) = τ then
3 if Cost(StillNow) < Cost(SoptimalT illNow) then
4 Soptimal = StillNow;
5 end
6 else
7 return;
8 end

9 end
10 /* Insert minAbove pruning here, refer text for details */

11 foreach disk config k in [1, kmax] at t = (length(StillNow) + 1) do
12 bool migration = false;
13 if t > 1 AND, in StillNow, k 6= s(t− 1) then Migration possible
14 if (τ − t) ≥ m then
15 Add(k) to the schedule StillNow, m times;
16 update(VtillNow, Cost(StillNow));
17 if VtillNow ≤ V AND Cost(StillNow) ∗ t ≤ Cost(StillNow) ∗ τ then
18 migration = true;
19 end

20 end
21 if migration = false then
22 rollback(StillNow, VtillNow, Cost(StillNow));
23 continue to the next disk configuration (k + 1);

24 end

25 end
26 else
27 Add(k) to the schedule StillNow;
28 update(VtillNow, Cost(StillNow));
29 if VtillNow > V OR Cost(StillNow) ∗ t > Cost(StillNow) ∗ τ then
30 rollback(StillNow, VtillNow, Cost(StillNow));
31 continue to the next disk configuration (k + 1)t;

32 end

33 end
34 OPTIMIZER(StillNow, VtillNow, Cost(StillNow);
35 rollback(StillNow, VtillNow, Cost(StillNow));

36 end
Algorithm 1: OPTIMIZER: DFS-algorithm with pruning

20

schedules by considering the space of all 1-feasible schedules, which is (kmax)
τ . Evidently,

the search space gets huge for even moderately large values of τ . In our experiments, we
use kmax = 20 and τ = 336, which is a number with 438 decimal digits! Thus, we employ
several strategies that dramatically shrink our search space, make the exploration of paths
faster and help in improving the performance of our technique. We list them below:

� Violations based pruning. By definition, an optimal schedule must be a valid schedule.
Recall, from the SLO, U(t) should not exceed Uref more than V times. It follows
from above that an optimal schedule should have at most V violations. Therefore, we
can prune all those schedules that have more than V violations. Moreover, if during
the course of finding a schedule, if we encounter a partial schedule (length(S) < τ)
with violations greater than V , we can avoid exploring any complete schedules with
that prefix, because all schedules with that partial schedule as a prefix would have
at least V + 1 violations. We employ this strategy to prune in both migration and
non-migration cases in Algorithm 1, at line 17 and 29 respectively.

� Cost based pruning. We use this strategy to prune if the current partial schedule cost
is greater than the cost of the best complete schedule found so far. From Equation
4.6, Cost(Spartial) is monotonically increasing in the schedule length. Thus, any par-
tial schedule with cost greater than current best schedule would yield a suboptimal
(complete) schedule. Note that the addition of this cost-based pruning turns our al-
gorithm into a traditional branch-and-bound technique. As the algorithm progresses,
the bound (minimum cost schedule found so far) gets tighter, resulting in more prun-
ing. We again use this strategy to prune in both migration and non-migration cases
in Algorithm 1, at line 17 and 29 respectively.

� Exploration strategy. The order in which we explore the nodes of the graph at each
level is also pertinent to the performance of the algorithm. We explore the path
with the smallest number of devices (lowest cost) first, and rely on violations-based
pruning to prune quickly, in case the devices are too low in number to meet the
SLO. This strategy provides good cost-based pruning when the number of devices
are large, as a relatively low-cost plan is found first that acts as a good bound for
pruning the branches leading to higher numbers of disks.

� Dominant path based pruning. In Figure 4.3, consider two paths, P1 and P2 from a
node at the starting timeslot, t = 1, converging to the same node at time t, and let,
(C1, V1) and (C2, V2) be the costs and the violations of the two path. We define,

P1 dominates P2 iff C1 < C2 and V1 ≤ V2.

It follows from above that any schedule beginning with P2 need not be considered, as
P2 can be replaced by P1, and if the schedule with P2 is valid, the modified schedule

21

with P1 will be both valid and of lower cost. It is so because the schedule with the
dominant path always has at least as many violations allowed as the schedule with
the dominated path in the lower parts of the search graph below the common node
at t.

This pruning technique can be used in our algorithm. At each node n in the search
graph, and for each v ε [0, V], we record the lowest cost of any path found to n having
exactly v violations. Any subsequent path that reaches n with v violations can be
pruned if its cost is higher than the saved cost, as it is dominated by the path whose
cost we recorded. We call this strategy, minAbove. It works because from Equation
4.6:

Cost(Sdominated) =
Σt
t=1Cdominated(t) + Στ

t=tCcommon(t)

τ

Cost(Sdominant) =
Σt
t=1Cdominant(t) + Στ

t=tCcommon(t)

τ

And,
Σt
t=1Cdominated(t) > Σt

t=1Cdominant(t).

Therefore, cost of the schedule with the dominant path is always lower than the
dominated path one. We use this pruning strategy in our implementation. It can be
inserted at line 10 in Algorithm 1.

Similar to minAbove, we can define minBelow for diverging paths, which works
by bounding the sub-graph below the common node at t with the dominant path
cost (and corresponding violations allowed). We implemented it as well, but found
it to be not as effective as the previous strategy, because of the fewer opportunities
to prune branches at the top of the tree as compared to the minAbove strategy. For
our experiments, we used minAbove along with the cost-based and violations-based
pruning strategies presented earlier. We also did a comparison of optimization times
of Algorithm 1 with various pruning strategies and is presented in Chapter 5.

In the next section, we present several experimental results obtained by employing our
approach and try to evaluate the same in light of those results.

22

Chapter 5

Experiments and Results

In this chapter, we present several experiments designed to study the effectiveness and
efficiency of our approach. We want to know whether our dynamic provisioning approach
helps in lowering the cost as opposed to a static system that over-provisions the resources
to meet the SLO. If so, we would also like to study how significant are the savings, to
what parameters is the technique sensitive, and whether the required optimization time is
reasonable.

We used four sets of workload data from two sources, namely University of Waterloo Home
Directory Server and Microsoft Research (MSR) Cambridge I/O Traces. We collected the
UW traces over a period of time by monitoring the I/O traffic generated by the primary
network file server in the School of CS at the University of Waterloo. It supports mail and
general computing needs of the faculty, staff, and graduate students. The MSR traces are
available from Microsoft [16]. They include 36 I/O traces from 36 different volumes on 13
servers. We chose two sets of data from each source exhibiting some periodicity (closer to
real I/O workloads in data-center environments [22, 21]) and enough variability (significant
difference between the average and the maximum demand) so that dynamic provisioning
would be potentially useful.

The methodology was to run an instance of our algorithm on these workload traces and
study the properties of the resulting schedules (suboptimal and optimal) under default pa-
rameters vis-à-vis an optimal static schedule. We also measure the optimization times. In
addition, we varied the values of the algorithm’s parameters to study how these parameters
affect the resulting schedules.

We present results from two workload traces, one each from UW and MSR, in this section.
Additionally, we present results from the other two traces in Appendix A. Each of the two

23

Parameter Default Value Description
tf 0.5 hr. Time interval (timeslot length)
T (τ) 1 week (336) Time period (Schedule length in timeslots)
Uref 0.5 Reference utilization
v 5% Violations allowed (5% of τ)
kmax 20 Maximum number of disks in the system
m 8 Number of timeslots taken for a migration
λm 1 mb/s Migration penalty

Table 5.1: Parameters with default values

UW traces represent a week’s I/O workload, one from the month of January 2010 and
one from the month of March 2010. Each trace records the server’s I/O throughput, in
bits/s, measured over 30 minutes intervals. Our optimizer requires both request rates (
λ(t)) and service rates (µ(t)) as input. Our traces describe time-varying request rates, but
unfortunately they do not include information about service rates. Thus, for the purpose
of our experiments we assumed a constant service rate of 10 megabits/s. As a result, we
are not able to directly evaluate the impact of time-varying service rates. However, our
traces do capture significant variation in request rates.

From the MSR traces, we chose I/O data from two servers, src1 and web servers (See
[16] for details). We assumed a service rate 10 megabits/s, as in case of UW data, for
MSR traces. Also, we scaled the request rates of web by a factor of 10 as its request rate
was very low. The I/O workload of UW January server was presented earlier in Figure
4.2. The I/O workload of MSR src1 server is illustrated graphically in Figure 5.1. In both
the figures, tf = 30 minutes and T = 1 week, i.e. τ = 336 time-intervals of 30 minutes each.

We mainly used the minAbove pruning strategy with Algorithm 1 for the experiments,
but also implemented minBelow and Algorithm 1 with basic pruning. Also, we use the ad-
ditive provisioning cost-model, as represented in Equation 4.4, as the default cost model.
The default values of various other parameters are listed in Table 5.1. Unless otherwise
stated, we use the default values in our experiments.

Schedule Quality. First, we analyze the quality of the optimal schedule produced by the
optimizer. In Figure 5.2, we compare the cost of the optimal dynamic plan found by the
optimizer to the cost of the optimal static plan. The optimal static plan is the least costly
static plan that satisfies the SLO. In both, Figure 5.2(a) and Figure 5.2(b), we clearly see
the cost to be lower in our dynamic approach. To elaborate the idea, we study the benefit
obtained empirically. Here, we use the results for the default values (i.e. corresponding

24

0

2

4

6

8

10

12

14

R
eq

ue
st

ra
te

(m
B

/s
)

0 48 96 144 192 240 288 336

Timeslot

Figure 5.1: Request rate for MSR Source1 server

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 2 4 6 8 10 12

Migration Window Size (in Timeslots)

❏

❏
❏

❏ ❏ ❏

Average Disks Per Timeslot for Static Plan

(a) UW Home Directory (January 11-17, 2010)

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 2 4 6 8 10 12

Migration Window Size (in Timeslots)

❏
❏

❏
❏ ❏ ❏

Average Disks Per Timeslot for Static Plan

(b) MSR Source1 Server

Figure 5.2: Average disk cost per time-interval with varying migration window size (m)

25

to m = 8 in Figure 5.2). In Figure 5.2(a), the cost of the static schedule is 16, while the
cost of the dynamic schedule is 15, a cost reduction of around 6% or cost savings of 1
disk per timeslot. Similarly, in Figure 5.2(b), the cost of the static schedule is 9, while
the cost of the dynamic schedule is 3.1, a cost reduction of around 65% or cost saving of
around 6 disks per timeslot. The latter has greater cost savings due to the nature of the
MSR workload which sees long periods of low activity with periodic bursts of high activity.
Clearly, our approach does much better than the best static approach and, depending on
the dynamics of the workload, cost-savings could be very substantial.

Sensitivity Analysis. We did some experiments to observe the effect of changing parameter
values on the properties of the schedule. Referring to Figure 5.2 again, we see that the
margin of benefit increases as we decrease the length of the migration slots. This indi-
cates that if we use a faster migration scheme, we could profitably use a more dynamic
plan (as migrations take fewer time-intervals to complete), which results in even lower costs.

Next, we study the effect on schedule quality (cost) as we change number of SLO vio-
lations allowed. The results are shown in Figure 5.3. For both UW (Figure 5.3(a)) and
MSR (Figure 5.3(b)) data, we see that the average cost decreases as we get more liberal
with the amount of violations we are willing to allow. Clearly, it is so because as we in-
crease the number of violations allowed, one is able to use a lower number of disks, instead
of a higher number (which meets the SLO), in increasingly more time-intervals, driving
the average disk cost down.

As already discussed, our technique is independent of the cost-model used. Figure 5.4
illustrates this and compares two cost-models, viz. costSum, represented by Equation 4.4
and costMax, represented by Equation 4.5. Since, the latter imposes lesser penalty on the
use of disks during migration, its average disk cost is significantly lower. The benefit of
using our dynamic approach over a static approach is greater under costMax, since the
cost of migrations is lower.

Optimization Time. We can see significant cost benefits in our approach, but it is also
necessary that the approach provides results in a reasonable amount of time. Figure 5.5
illustrates a run of our algorithm successively finding lower-cost plans as it proceeds over
time. The increasing quality is because of the way our algorithm works. It maintains the
minimum cost plan and replaces it with some other plan if it is lower in cost. A clear bene-
fit of the approach is that it finds a good suboptimal schedule quite quickly (because of the
liberty to grossly overprovision initially for meeting the SLO), which could be used in case
there are some optimization time constraints. Also observe that the quality of plans found
initially has a steep slope. It is so because initially, the bound conditions in the search
graph are very loose. They get tighter as the algorithm proceeds and successively better

26

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

1% 5% 10%

Percentage of SLO violation time intervals (v)

Dynamic
Static

(a) UW Home Directory (January 11-17, 2010)

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

1% 5% 10%

Percentage of SLO violation time intervals (v)

Dynamic
Static

(b) MSR Source1 Server

Figure 5.3: Average disk cost per timeslot comparison of static and dynamic plans for
various constraint values

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 2 4 6 8 10 12

Migration Window Size (in Timeslots)

❏

❏
❏

❏ ❏ ❏

Average Disks Per Timeslot for Static Plan
❏ costSum

costMax

Figure 5.4: Average disk cost per timeslot with different cost functions for UW data

27

0

5

10

15

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 10 20 30 40 50 60 70 80 90 100

Optimization Time Elapsed (seconds)

...❏

. Plans
❏ Best Plan

(a) UW Home Directory (January 11-17, 2010)

0

5

10

15

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Optimization Time Elapsed (seconds)

...❏

. Plans
❏ Best Plan

(b) MSR Source1 Server

Figure 5.5: Increasing quality (lower cost) of plans as the algorithm proceeds over time

0

500

1000

1500

2000

2500

3000

3500

T
im

e
E

la
ps

ed
(s

ec
on

ds
)

0 96 192 288 384 480 576 672 768 864 960 1056 1152 1248 1344

Schedule Length (timeslots)

❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏
❏

❏
❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

algoBasic
minBelow

❏ minAbove

Figure 5.6: Comparison of run time of various optimization techniques

28

plans are found. Thus, grossly overprovisioned (suboptimal) plans are slowly replaced by
near-optimal plans. Hence, later, the plans’ costs are quite comparable to one another.
This fact could be used in scenarios, where one would like to use a plan which may not
necessarily be optimum but is better than a static plan.

Finally, Figure 5.6 shows a comparison of the optimization time of the algorithm with
various pruning techniques as discussed in the previous chapter. The migration time in
this case is 12 time-intervals. We compare three versions of Algorithm 1.

� algoBasic. Algorithm 1 in its basic implementation, with only violations and cost
based pruning.

� minBelow. algoBasic with minBelow pruning.

� minAbove. algoBasic with minAbove pruning.

Evidently, minBasic takes too much time to provide results beyond a day’s data, which
indicates that the violations and cost-based pruning alone are not sufficient for pruning
the search space for the problem size we target. Similarly, minBelow also suffers as the
problem size gets larger. minAbove is quite fast and gives results for a week’s data within
a few minutes. However, its exponential nature is visible as we increase the problem size
beyond a couple of weeks. Nevertheless, for the problem size of building weekly schedules
for data-centers (which is a prominent problem), it is quite effective.

Now, we present a few migration schedules, plotted graphically in Figure 5.7, for illus-
trative purposes. Figure 5.7(a) and Figure 5.7(c) show a graphical plot of the optimal
migration plans obtained in Figure 5.5. Observe, the workload requirement is superim-
posed on the number of disks required to meet the same. Specifically, we superimpose the
minimum number of devices that would be required to meet the SLO at that time interval.
Thus, the superimposed values can be viewed as representing an idealized resource alloca-
tion schedule that we would construct if provisioning were instantaneous and produced no
overhead. To calculate the superimposed values, we make use of Equation 4.2. We need
to plot k(t) for U(t) = Uref , where:

k(t) =
λ(t)

Urefµ(t)

Since, we take µ(t) constant for our experiments, we can just scale the request rate λ(t) by
a factor of µUref . Also observe that the number of violations do not exceed the violations
limit (V = 5% or 17, in this case) in any of the schedules. The migrations try to capture
the dynamic nature of the workload, but only if the migration time allows it, which brings

29

up our earlier observation that if we reduce the migration window size we could see more
dynamic plans that closely emulate the workload requirement. Moving on to Figure 5.7(b)
and Figure 5.7(d), notice that these plans are also for the same data but with an additional
requirement of the initial and the final disk configuration to be equal. In scenarios, where
one expects a similar workload in the following time-period as in the previous one, this
condition may well be an inherent one.

30

0

2

4

6

8

10

12

14

16

18

20

D
is

ks

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Timeslots

Migrating From
Migrating To
Violation

(a) UW Home Directory (January 11-17, 2010)

0

2

4

6

8

10

12

14

16

18

20

D
is

ks

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Timeslots

Migrating From
Migrating To
Violation

(b) Initial Config same as Final Config. UW Home Directory
(January 11-17, 2010)

0

2

4

6

8

10

12

14

16

18

20

D
is

ks

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Timeslots

Migrating From
Migrating To
Violation

(c) MSR Source1 Server

0

2

4

6

8

10

12

14

16

18

20

D
is

ks

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Timeslots

Migrating From
Migrating To
Violation

(d) Initial Config same as Final Config. MSR Source1 Server

Figure 5.7: Graphical plots of migration plans

31

Chapter 6

Related Work

Dynamic resource allocation has been studied over the years with varying objectives of
achieving desired QoS levels, load balancing, minimizing resource contention and higher
resource utilization. Padala et al. [18, 17] formulate this as a feedback control problem and
use tools from adaptive control theory to design online control algorithms. Such techniques
use a closed-loop control model where the objective is to converge to a target performance
level by taking control actions that try to minimize the error between the measured output
and the reference input. Aron et al. [3] formulate it as an online optimization problem
using periodic utilization measurements, and resource allocation is implemented via re-
quest distribution. Much prior work on resource allocation is based on prediction-based
provisioning [25, 20, 27], in which statistical models for the workloads are first developed
using historical traces offline or via online learning. Resource allocation decisions are then
made to satisfy such predicted demand. This approach is often considered to be proactive,
in that it uses predicted demand to periodically allocate resources before they are needed.
On the other hand, in reactive resource control, the system reacts to immediate demand
fluctuations before periodic demand prediction is available or in case the predicted demand
data is erroneous. Thus, both approaches are important and necessary for effective resource
control in dynamic operating environments [23]. Zhang et al. [28] outline the provisioning
approaches as typically involving the following steps:

1. Constructing an application performance model that predicts the number of applica-
tion instances required to handle demand at each particular level, in order to satisfy
QoS requirements,

2. Periodically predicting future demand and determining resource requirements using
the performance model, and

3. Automatically allocating resources using the predicted resource requirements.

32

In our work, we specifically study dynamic provisioning of storage resources. Our approach
fits the outlined steps. Our performance model is based on a k-server queuing model for
the storage system, relating utilization of the system with the request rate, the service
rate and the number of servers (devices) in the system. We do not predict future demand,
but our approach requires a knowledge of the future workload. We use the demand to
determine resource requirements using the performance model, and using our technique
proactively find a plan that allocates minimal resources and meets the SLO.

Automatic system design tools [2, 1] build systems that satisfy declarative, user-specified
QoS requirements. They effectively minimize overprovisioning by taking into account work-
load correlations and detailed device capabilities to design device configuration and data
layouts. The whole storage system may be redesigned in every refinement iteration, and
there typically is a substantial delay to migrate the data online. Both the systems cater
to only specific workload and do not reprovision resources based on dynamically changing
workload. Façade [15] is a virtual store controller, which sits between hosts and storage
devices in the network, and throttles individual I/O requests from multiple clients so that
devices do not saturate. It may be viewed as complementary to the former works as it
can handle short-term workload variations through adaptive scheduling without migrating
data, and possibly postpone the need for a heavyweight system redesign. It does not re-
allocate resources to manage demand. In this work, our system provisions resources based
on a schedule of ‘when to provision or deprovision?’ and is always mindful of the SLO and
the upcoming workload.

Researchers have studied impact of backend data-movement tasks on frontend application.
Aqueduct [14] uses a control-theoretical approach to statistically guarantee a bound on the
amount of impact on foreground work during a data migration, while still accomplishing
the data migration in as short a time as possible. QoSMig [7] is an adaptive rate-control
based data migration system that achieves the optimal application performance in a dif-
ferentiated QoS setting, while ensuring that the specified migration constraints are met.
QoSMig uses both long term averages and short term forecasts of client traffic to compute
a migration schedule. Both the systems are targeted at maximizing performance of the
foreground application while a migration is taking place, but do not consider a sequence
of data-movements for dynamic storage provisioning to meet a specified SLO.

Pulstore [21], similar to our work, relies on migrations to provision storage resources for
a given workload, while providing QoS guarantees. However, there are several differences.
In Pulstore, the authors choose a specified I/O latency for a logical disk as the QoS goal,
and predict performance outcome for a given workload and storage system configuration
using models that represent I/O latency as a function of the workload and the logical disk
configuration. Latency is difficult to predict at high utilization levels. We use a k-server

33

queuing model for the storage system to predict its performance in terms of utilization,
and use a reference utilization as the QoS goal. We also allow a cost/performance trade-off
parameter to be introduced in the SLO making our schedules more flexible to cost and
performance requirements. Also, in Pulstore, the migration model is such that a migra-
tion action changes the performance of the disks at every data movement. Thus, during
a migration, the performance of the system depends on the amount of data at the source
disks and the destination disks. This makes Pulstore consider the effect of even a single
data-movement action on QoS. Our case-studies suggest that the performance of the stor-
age system changes only after a provisioning action completes. Thus, we base our solution
on that principle.

Zhang et al. [26] build a 2-level scheduler to achieve storage performance isolation between
several applications while meeting the individual SLOs described in terms of throughput
and latency. As discussed earlier, we describe the SLO in terms of keeping the utilization of
devices below a reference utilization value. We also introduce a trade-off factor (violations
allowed) to allow a trade-off between performance and cost.

In Hippodrome [2], to meet the workload’s performance requirements while using a system
design that uses the least resources (disks) among the set of candidate valid designs, a
solver component is used that efficiently searches the exponentially large space of storage
system designs. The authors map the problem of efficiently packing a number of stores,
with both capacity and performance requirements, onto disk arrays to the problem of
multi-dimensional bin packing and use best-fit approaches [12, 13] for a quicker solution
to this NP-complete problem. Similarly, BRAHMA [24] uses a constraint-based optimizer
that takes the candidate resource list and generates an optimal allocation of resources for
a given customer SLO by formulating it as the 0/1 multi-knapsack problem [19].

The problem presented in Chapter 4 can be seen as the Restricted Shortest Path (RSP)
problem. It is defined as follows. Let G be a graph with n vertices and m edges. Each
edge ij has an associated positive integral cost cij and positive integral delay dij. The cost
(and delay, respectively) of a path is defined as the summation of the costs (and delay,
respectively) along all of its edges. The source and target nodes are also given. The aim
is to find the minimum cost source− target path in G such that the total delay along this
path does not exceed a given bound D. We can define our problem as RSP using Figure
4.3. Imagine all nodes at t = 5, converging to a target node. Then, in Figure 4.3, our aim
is to find a path (schedule) that starts at the begin node and ends at the target node. We
also observe that the cost of a path is the schedule cost (Cost(S) from Equation 4.6) and D
in the RSP problem can be seen as V (violations allowed). As observed, our problem is the
RSP problem, which was shown by Handler and Zang [10] to be NP-hard. To obtain a so-
lution in polynomial time, researchers have employed fully polynomial time approximation

34

schemes (FPTAS) [11, 8]. These techniques take an instance of the optimization problem
and a parameter ε > 0 and, in polynomial time, produce a solution that is within a factor
ε of being optimal. In the current work, we employ an exhaustive DFS with pruning in the
search space to come up with an optimal solution in a reasonable amount of time for our
targeted problem size.

35

Chapter 7

Conclusions and Future Work

We developed a dynamic storage provisioning technique that balances the conflicting goals
of meeting SLOs and minimizing the provisioned resources. Our approach takes a model
of the upcoming workload and builds an optimal schedule of dynamically provisioning and
deprovisioning storage resources. We perform two case-studies to help in characterizing
the behavior of the provisioning mechanisms, which is taken into account while develop-
ing the solution to our problem. It renders our approach to be easily applicable in real
systems. We model the storage system as a k-server queuing model. The SLO is defined
as keeping the utilization of such a system below a threshold, with a performance/cost
trade-off factor also introduced. The provisioning works by varying the number of disks in
the system (using migrations that take non-zero time) at each timeslot, and our technique
searches through this space to emit an optimal schedule that has minimal average number
of disks and is valid for the given SLO. An experimental analysis of our technique using
I/O traces from real systems demonstrated the efficacy of the approach.

There is a lot of scope for future work in this problem area. There may be errors in
the predicted model of the upcoming workload. How to account for search errors while
coming up with an optimal schedule? We can introduce self-tuning mechanisms into the
system to handle small variations, but any large variation in observed workload would
require re-provisioning of storage resources (which takes time). The current work provides
guarantees on the utilization of the storage system. Work on guaranteeing performance in
terms of other metrics (e.g. response time, throughput) using a similar mechanism would
be interesting and challenging as those metrics may depend on other system parameters as
well. Lastly, using our approach for building schedules for large time-periods may not be
as effective as for shorter periods. In Chapter 6, we discussed this problem as an RSP and
work employing polynomial-time approaches (FPTAS) for obtaining near-optimal sched-
ules could be explored for such large time-periods.

36

APPENDIX

37

Appendix A

Graphs For Other Collected Data

As mentioned in Chapter 5, we present results from the remaining two workload traces,
one each from UW (March 2010) and MSR (web server), in this appendix. The request
rates of the two I/O workloads are presented in Figure A.1.

As earlier, we used the minAbove pruning strategy with Algorithm 1 for these experi-
ments, with the additive provisioning cost-model, as represented in Equation 4.4, as the
default cost model. The default values of various other parameters are the same as were
listed in Table 5.1.

In Figure A.2, as observed in Figure 5.2, we find the cost to be lower in our dynamic
approach as compared to the cost of the best static plan. Observe, both the dynamic plan
costs and the static plan cost of MSR data are quite low. This is so because the MSR web
data (even after scaling) had very few high load values in the workload data, which allowed
the plans to ignore them as violations (set at 5%). Also, although not quite apparent in
MSR data, we see that the margin of benefit increases as we decrease the length of the
migration slots, which is consistent with the previous results.

Figure A.3 illustrates the average cost decreasing as we get more liberal with the amount
of violations we are willing to allow. Note, in MSR data, the costs of static and dynamic
plan for violations set at 10% are almost equal. The reason is same as stated earlier that
the number of violations allowed are so many that even a static plan gets away by not
over-provisioning for the very few high values of I/O workload.

The effect of changing the cost-model is shown in Figure A.4 and Figure A.5, and is
consistent with our earlier observation in Chapter 5. MSR data again shows little varia-
tion in cost with changing cost-model because of the reason discussed earlier.

38

Figure A.6 illustrates a run of the algorithm successively finding lower-cost plans as it
proceeds over time. Due to the nature of the workload, the algorithm finds the optimal
plan quite quickly in the case of MSR data. Note, that the scale of the time axis is in
milliseconds for the MSR data.

Finally, Figure A.7 shows graphical plots of the optimal migration schedule obtained in
Figure A.6. Figure A.7 (b) and (d) show plots when the initial and the final config must
be equal. These figure are obtained in a way similar to the figures in Figure 5.7, which was
discussed in Chapter 5.

39

0

2

4

6

8

10

12

14

16

R
eq

ue
st

ra
te

(m
B

/s
)

0 48 96 144 192 240 288 336

Timeslot

(a) UWaterloo Home Directory (March 01-07, 2010)

0

2

4

6

8

10

12

14

16

R
eq

ue
st

ra
te

(m
B

/s
)

0 48 96 144 192 240 288 336

Timeslot

(b) MSR Web Server (Scaled by 10 units)

Figure A.1: Request rates for UW and MSR server

40

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 2 4 6 8 10 12

Migration Window Size (in Timeslots)

❏

❏
❏

❏ ❏ ❏

Average Disks Per Timeslot for Static Plan

(a) UWaterloo Home Directory (March 01-07, 2010)

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 2 4 6 8 10 12

Migration Window Size (in Timeslots)

❏ ❏ ❏ ❏ ❏ ❏

Average Disks Per Timeslot for Static Plan

(b) MSR Web Server

Figure A.2: Average disk cost per timeslot with varying migration window size (m)

41

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

1% 5% 10%

Percentage of SLO violation time intervals (v)

Dynamic
Static

(a) UWaterloo Home Directory (March 01-07, 2010)

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

1% 5% 10%

Percentage of SLO violation time intervals (v)

Dynamic
Static

(b) MSR Web Server

Figure A.3: Average disk cost per timeslot comparison of static and dynamic plans for
various constraint values

42

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 2 4 6 8 10 12

Migration Window Size (in Timeslots)

❏

❏
❏

❏ ❏ ❏

Average Disks Per Timeslot for Static Plan
❏ costSum

costMax

Figure A.4: Average disk cost per timeslot with different cost functions for UW data

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 2 4 6 8 10 12

Migration Window Size (in Timeslots)

❏ ❏ ❏ ❏ ❏ ❏

Average Disks Per Timeslot for Static Plan
❏ costSum

costMax

Figure A.5: Average disk cost per timeslot with different cost functions for MSR data

43

0

5

10

15

20

25

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Optimization Time Elapsed (seconds)

...❏

. Plans
❏ Best Plan

(a) UWaterloo Home Directory (March 01-07, 2010)

0

5

10

15

20

A
ve

ra
ge

D
is

ks
Pe

r
T

im
es

lo
t

0 100 200 300 400 500 600 700 800 900 1000 1100

Optimization Time Elapsed (milliseconds)

..❏

. Plans
❏ Best Plan

(b) MSR Web Server

Figure A.6: Increasing quality (lower cost) of plans as the algorithm proceeds over time

44

0

2

4

6

8

10

12

14

16

18

20

D
is

ks

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Timeslots

Migrating From
Migrating To
Violation

(a) UWaterloo Home Directory (March 01-07, 2010)

0

2

4

6

8

10

12

14

16

18

20

D
is

ks

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Timeslots

Migrating From
Migrating To
Violation

(b) Initial Config same as Final Config. UWaterloo Home Direc-
tory (March 01-07, 2010)

0

2

4

6

8

10

12

14

16

18

20

D
is

ks

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Timeslots

Migrating From
Migrating To
Violation

(c) MSR Web Server, Constraint: 5p

0

2

4

6

8

10

12

14

16

18

20

D
is

ks

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Timeslots

Migrating From
Migrating To
Violation

(d) Initial Config same as Final Config. MSR Web Server

Figure A.7: Graphical plots of migration plans

45

References

[1] Guillermo A. Alvarez, Elizabeth Borowsky, Susie Go, Theodore H. Romer, Ralph
Becker-Szendy, Richard Golding, Arif Merchant, Mirjana Spasojevic, Alistair Veitch,
and John Wilkes. Minerva: An automated resource provisioning tool for large-scale
storage systems. In ACM Transactions on Computer Systems (TOCS) v.19 n.4, p.483-
518, November 2001. 1, 5, 33

[2] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal, and
Alistair Veitch. Hippodrome: running circles around storage administration. In Usenix
Conference on File and Storage Technologies (FAST), January 2002. 1, 5, 33, 34

[3] Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Cluster reserves: a mechanism
for resource management in cluster-based network servers. In In Measurement and
Modeling of Computer Systems, pages 90–101, 2000. 32

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, 2003. 6

[5] G. E. P. Box, G. Jenkins, and G. Reinsel. In Time Series Analysis: Forecasting and
Control, USA, 1994. Prentice Hall. 4

[6] E. I. Cohen, G. M. King, and J. T. Brady. Storage hierarchies. In IBM System
Journal, page 28(1):6276, 1989. 7

[7] Koustuv Dasgupta, Sugata Ghosal, Rohit Jain, Upendra Sharma, and Akshat Verma.
Qosmig: Adaptive rate-controlled migration of bulk data in storage systems. In ICDE
’05: Proceedings of the 21st International Conference on Data Engineering, 2005. 33

[8] Funda Ergun, Rakesh Sinha, and Lisa Zhang. An improved fptas for restricted shortest
path. Information Processing Letters, 2002. 35

46

[9] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. Workload
analysis and demand prediction of enterprise data center applications. In IEEE In-
ternational Symposium on Workload Characterization, September 2007. 4

[10] Gabriel Y. Handler and Israel Zang. A dual algorithm for the constrained shortest
path problem. In Networks, pages pg. 293–309, 1980. 34

[11] Refael Hassin. Approximation schemes for the restricted shortest path problem. In
Mathematics of Operations Research, pages pg. 36–42, 1992. 35

[12] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case
performance bounds for simple one-dimensional packing algorithms. In SIAM Journal
on Computing, 1974. 34

[13] C. Kenyon. Best-fit bin-packing with random order. In SODA: ACM-SIAM Sympo-
sium on Discrete Algorithms, 1996. 34

[14] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct: Online data mi-
gration with performance guarantees. In FAST ’02: Proceedings of the 1st USENIX
Conference on File and Storage Technologies, 2002. 33

[15] Christopher R. Lumb, Arif Merchant, and Guillermo A. Alvarez. Faade: Virtual
storage devices with performance guarantees. In 2nd USENIX Conference on File
and Storage Technologies, San Francisco, CA, March 2003. 33

[16] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-loading:
Practical power management for enterprise storage. In 6th USENIX Conference on
File and Storage Technologies (FAST), 2008. 23, 24

[17] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and
K. Salem. Adaptive control of virtualized resources in utility computing environments.
In EuroSys, March 2007. 15, 32

[18] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui
Wang, Sharad Singhal, and Arif Merchant. Automated control of multiple virtual-
ized resources. In 4th ACM European conference on Computer systems, Nuremberg,
Germany, April 2009. 1, 32

[19] D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. In Journal of Oper-
ations Research, page 758767, 1997. 34

[20] Radu Prodan and Vlad Nae. Prediction-based real-time resource provisioning for
massively multiplayer online games. Future Generation Computer Systems, 2009. 32

47

[21] Lin Qiao, Balakrishna R. Iyer, Divyakant Agrawal, Amr El Abbadi, and Sandeep
Uttamchandani. Pulstore: Automated storage management with qos guarantee. In
International Conference on Autonomic Computing (ICAC), 2005. 2, 5, 23, 33

[22] Chris Ruemmler and John Wilkes. A trace-driven analysis of disk working set sizes.
In Technical Report HPLOSR9323, 1993. 2, 23

[23] Bhuvan Urgaonkar and Abhishek Chandra. Dynamic provisioning of multi-tier inter-
net applications. In Second International Conference on Automatic Computing, pages
p.217–228, June 2005. 32

[24] S. Uttamchandani, K. Voruganti, R. Routray, L. Yin, A. Singh, and B. Yolken.
Brahma: Planning tool for providing storage management as a service. In the IEEE
International Conference on Services Computing, 2007. 34

[25] X. Wang, D. Lan, X. Fang, M. Ye, and Y. Chen. A resource management framework
for multi-tier service delivery in autonomic virtualized environments. In NOMS, April
2008. 1, 4, 32

[26] Jianyong Zhang, Anand Sivasubramaniam, Qian Wang, Alma Riska, and Erik Riedel.
Storage performance virtualization via throughput and latency control. In 13th IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pages p.135–142, 2005. 34

[27] Q Zhang, L Cherkasova, and E Smirni. A regression-based analytic model for dynamic
resource provisioning of multi-tier applications. In In Proc. of the 4th IEEE Int. ICAC,
2007. 32

[28] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 2010. 32

48

	List of Tables
	List of Figures
	Introduction
	System Architecture
	Dynamic Storage Provisioning
	Dynamic Storage Arrays
	Virtual Device Migration
	Modeling Dynamic Storage Provisioning

	Optimizing Dynamic Provisioning
	Problem
	Optimizer

	Experiments and Results
	Related Work
	Conclusions and Future Work
	APPENDIX
	Graphs For Other Collected Data
	References

