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ABSTRACT 

 Type II diabetes mellitus (T2DM) has been associated with the onset of diet-induced 

obesity, which is currently on the rise worldwide. T2DM is typically characterized by insulin 

resistance in peripheral tissues such as adipose tissue, liver, and skeletal muscle. In skeletal 

muscle it is widely accepted that the defective insulin action is due to the inability of the cell to 

sufficiently activate the insulin signalling pathway and promote systemic glucose uptake. The 

sarcolipin-null (KO) mouse is a potential novel model for diet-induced obesity and diabetes. 

KO mice become significantly more obese and display a greater glucose intolerance than 

wildtype (WT) mice following an 8-week high-fat diet (HFD; 42% calories from fat) but the 

underlying mechanisms are still unknown.  

In this study the role of defective skeletal muscle insulin signalling in the development 

of the impaired glucose tolerance in KO mice was investigated. It was hypothesized that the 

HFD fed KO mice would exhibit greater reductions in IRS1 tyr
628

 and Akt ser
473

 

phosphorylation (i.e. decreased activation of the insulin signalling pathway) than controls. 

Furthermore, it was believed that KO mice would display increased phosphorylation of IRS1 

ser
307

, which is commonly associated with insulin resistance. At 16-weeks of age KO mice and 

littermates were subdivided into two groups and placed on either a HFD (n=30) or chow diet 

(n=24) for an 8-week period. Changes in body weight, glucose tolerance, and insulin tolerance 

were assessed pre- and post-diet period. Following the completion of the diet intervention mice 

were treated with an intraperitoneal injection of insulin (0.75U/kg) or vehicle solution and 

sacrificed for tissue collection. Epididymal/inguinal and retroperitoneal fat pads were removed 

for assessment of whole body adiposity. Whole gastrocnemius muscle was excised and 

homogenized for Western blot analysis of several key proteins of the insulin signalling 

cascade.  

Following completion of the HFD KO mice (48.6 ± 1.6 g) weighed significantly more 

than HFD fed wildtype (WT) mice (41.5 ± 1.6 g), and all chow fed mice (KO: 36.8 ± 1.5 g; 

WT: 35.2 ± 1.2 g; p<0.001). Glucose tolerance testing showed that KO mice exhibited 

significantly greater glucose intolerance compared to control mice post-HFD (p<0.001). 

Insulin tolerance testing, however, revealed no change in insulin sensitivity in KO or WT mice 

post-HFD (p>0.05). The HFD fed KO mice (0.73 ± 0.06 g) had an elevated retroperitoneal fat 

pad weight than HFD fed WT (0.49 ± 0.05 g) and all chow fed mice (KO: 0.28 ± 0.04 g; WT: 



iv 
 

0.24 ± 0.04 g; p<0.01). Western blot analysis revealed a similar reduction in insulin receptor 

substrate-1 (IRS1) tyr
628

 phosphorylation in both KO and WT mice following the HFD (Con 

WT: 2.82 ± 0.69; Con KO: 3.06 ± 0.73; HFD WT: 1.71 ± 0.28; HFD KO: 1.28 ± 0.11 fold 

increase over non-insulin stimulated mice; p<0.02). IRS1 ser
307

 phosphorylation was elevated 

in both genotypes post-HFD (HFD WT: 2.97 ± 1.19; HFD KO: 2.17 ± 0.59 fold increase over 

standard chow fed control mice; p<0.03). Insulin treatment did not stimulate phosphorylation 

of Akt ser
473

 in KO or WT mice regardless of diet (p>0.05). In summary there was no 

difference between KO and WT mice in skeletal muscle insulin sensitivity as assessed by the 

phosphorylation of insulin signalling intermediates. An increase in IRS1 ser
307

 phosphorylation 

appears to be the primary mechanism for the reduced activation of IRS1 following the HFD in 

both KO and WT mice. However, the results from the current investigation did not support the 

notion that impaired skeletal muscle insulin signalling is responsible for the more pronounced 

diet-induced glucose intolerance observed in KO mice. Future studies investigating the 

viability of skeletal muscle GLUT4 translocation and glucose uptake as well as the glucose-

induced insulin secretion of pancreatic β-cells following consumption of a HFD would help 

elucidate the mechanism of glucose intolerance in KO mice. 
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1.0 OBESITY & DIABETES 

1.1 Introduction to Obesity 

 Over the past 20 years the incidence of obesity has progressively increased and current 

evidence suggests that this epidemic will continue to escalate (Katzmarzyk & Mason, 2006). In 

Canada, recent estimates indicate that 35% of the nation’s population is classified as 

overweight while 15% is considered obese (Katzmarzyk & Mason, 2006), which is most likely 

a conservative estimate as self-reported measures typically underestimate the actual incidence 

of obesity (Rowland, 1990; Tjepkema, 2006; Merrill & Richardson, 2009). The high 

prevalence of obesity has translated into an annual estimated cost of $4.3 billion on the 

Canadian health care system (Katzmarzyk & Janssen, 2004).  

 The hallmark characteristic associated with obesity is an inappropriate fat accumulation 

primarily as a result of a chronic positive energy imbalance (Schrauwen, 2007) and typically 

diagnosed by an individual’s body mass index (BMI). BMI (body weight (kg) / height (m
2
)) is 

a common surrogate measure for percent body fat (Deurenberg et al., 2001) that is used to 

assess potential abnormalities in body composition as determined by the World Health 

Organization guidelines. One of the most accurate methods for determining differences in body 

composition, particularly in humans, is the use of the dual-energy x-ray absorptiometry 

technique (Mattsson & Thomas, 2006). 

 The development of coronary heart disease and stroke, hypertension, gall bladder 

disease, some types of cancer (breast, colon, and prostate), and respiratory dysfunction have all 

been strongly associated with increased adipose tissue mass and obesity (Flegal et al., 2007; 

Kopelman, 2007; Blakemore & Froguel, 2008). Obesity has also been found to be an 

independent risk factor for the development of type II diabetes (Must et al., 1999) as 80% of 

type II diabetics are obese (Bloomgarden, 2000). The presence of obesity appears to predispose 

individuals to an accumulation of lipid metabolites in insulin sensitive tissues and subsequent 

insulin resistance, which will be discussed in further detail in Section 3.0 Insulin Resistance 

(Morino, Petersen, & Shulman, 2006). 
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1.2 Introduction to Diabetes 

Diabetes is a metabolic disorder characterized by the presence of hyperglycemia due to 

insufficient insulin release, defective insulin action, or both (Alberti & Zimmet, 1998). The 

most common form of diabetes is non-insulin dependent diabetes mellitus, otherwise referred 

to as type II diabetes mellitus (T2DM) or adult-onset diabetes (Alberti & Zimmet, 1998). The 

primary characteristic of T2DM is an inadequate response to insulin by the peripheral tissues 

such as skeletal muscle, adipose tissue, and the liver despite near normal levels of pancreatic 

insulin release (Alberti & Zimmet, 1998). Over time, insulin resistance can lead to a chronic 

elevation of the plasma glucose level, otherwise known as hyperglycemia (Alberti & Zimmet, 

1998; Karlsson & Zierath, 2007). 

 The International Diabetes Federation states that someone is diagnosed with diabetes 

every five seconds somewhere in the world (IDF, 2007). In 2000, the global prevalence of 

diabetes was estimated to be at 2.8% of the population, or 171 million people (Wild, Roglic, 

Green, Sicree, & King, 2004) which is significantly lower than the estimated incidence of 

T2DM in Canada (Lipscombe & Hux, 2007). It is projected that the worldwide prevalence will 

more than double to 366 million people by the year 2030 (Wild, Roglic, Green, Sicree, & King, 

2004). Diabetes is the fifth leading cause of death in developing countries worldwide (CDA, 

2008); diabetics experience a life expectancy that is 5-15 years less than healthy individuals 

(CDA, 2008).  
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Figure 2.1: Insulin Signaling Pathway in Skeletal Muscle (Cell Signaling, 2009) 

 

2.0 Insulin Signalling in Skeletal Muscle 

Skeletal muscle is the primary target of insulin-stimulated glucose uptake in diabetic 

and non-diabetic individuals (Shulman et al., 1990). In the classic study by DeFronzo et al. 

(1981), skeletal muscle accounted for 75% of exogenous glucose uptake during insulin 

infusion. The process by which insulin stimulates glucose uptake is a complex, multi-stepped 

process which ensures the tight regulation of plasma glucose levels. As seen in Figure 2.1, 

insulin elicits its effect on skeletal muscle through a series of phosphorylation processes that 

link the initial binding of insulin to the insulin receptor on the sarcolemma through the 

translocation of glucose transporters (GLUT) to the cell membrane surface and increase in 

glucose uptake into the cell (Krook, Wallberg-Henriksson, & Zierath, 2004).  

 

2.1 Insulin Receptor 

 Insulin receptors (IR) are found embedded in the cell membrane of all insulin 

responsive tissues such as adipose tissue, the liver, and skeletal muscle. The IR is composed of 

4 major peptide-subunits: 2 extracellular alpha-subunits of 135-kDa to which insulin can bind, 

and 2 intracellular 95-kDa beta-subunits (Borge et al., 2002). Upon insulin binding to the 

alpha-subunits, the tyrosine kinase domain on the beta-subunits of the IR exhibits 

autophosphorylation capabilities and rapidly phosphorylates several key tyrosine residues 

located along the beta-subunit. This activated form of the IR provides docking sites for the 
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binding of several downstream signalling molecules including the insulin receptor substrates 

(Karlsson & Zierath, 2007). 

  

2.2 Insulin Receptor Substrate 

 Insulin receptor substrates (IRS-1 to 4) act as docking proteins for a variety of insulin 

responsive molecules and function as key mediators of the insulin signal. The tissue 

distribution and functional role of each IRS isoform varies throughout the body, however IRS 

recruitment occurs in a similar fashion. Each IRS protein contains a phosphotyrosine binding 

(PTB) domain that will bind to the phosphorylated tyrosine residues on the IR (Karlsson & 

Zierath, 2007). Upon IRS binding the kinase activity of the activated IR will phosphorylate 

several tyrosine residues within a tyrosine-methionine-X-methionine (YMXM) motif on IRS 

which activates the protein (Shoelson et al., 1992, Karlsson & Zierath, 2007). The 

phosphorylated YMXM motif provides a suitable docking site for downstream intermediates of 

the insulin signalling cascade containing src-homology 2 (SH2) domains, such as 

phosphatidylinositol 3-kinase (Sun et al., 1991; Shoelson et al., 1992; Karlsson & Zierath, 

2007). 

 In skeletal muscle IRS-1 and IRS-2 are the predominantly expressed isoforms of the 

protein involved in the regulation of glucose homeostasis. Determining the specific function of 

each IRS protein has proven difficult since the high sequence similarity and partial functional 

redundancy between the isoforms allow for potential compensations to occur. For instance, 

IRS-1 transgenic knockout mice exhibit only mild peripheral insulin resistance due to a 

compensatory up-regulation of IRS-3 (Kaburagi et al., 1997). Nonetheless, recent findings 

indicate that each protein has exclusive signalling roles. 

 In L6 myotubes, a reduction of either IRS-1 or IRS-2 by small interfereing RNA gene 

silencing revealed that IRS-1 mediates GLUT4 translocation and glucose uptake while IRS-2 

has no effect on these parameters (Huang et al., 2005). Furthermore, in heterozygous null 

rodents for the gene coding for either IR/IRS-1 or IR/IRS-2, the former develop severe insulin 

resistance in skeletal muscle while the latter show severe insulin resistance of the liver (Kido et 

al., 2000). Complete knockout of the IRS-2 gene in mice leads to the development of T2D 

primarily from a reduced pancreatic β-cell mass and insufficient insulin release even though 

moderate whole body insulin resistance is reported in the liver and skeletal muscle (Withers et 
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al., 1998). These results suggest that IRS-1 is the predominant isoform mediating signal 

transduction in skeletal muscle while IRS-2 is thought to be important in pancreatic β-cell 

development and hepatic signalling processes. In humans IRS-2 may have a slightly larger role 

in skeletal muscle insulin signalling than in rodent models since the human IRS-3 gene is non-

functional (Krook, Wallberg-Henriksson, & Zierath, 2004). 

 

2.3 Phosphatidylinositol 3-Kinase 

 Phosphatidylinositol 3-kinase (PI3K) is an essential intermediary protein in the insulin 

signalling pathway of glucose uptake (Krook, Wallberg-Henriksson, & Zierath, 2004). PI3K is 

composed of a 110-kDa catalytic subunit (p110) and one of several regulatory subunits (p85α, 

p85β, p55α, p50α, or p55γ). The most predominant regulatory subunit in insulin sensitive 

tissue is the p85α subunit which comprises 70-80% of the total regulatory subunits in these 

tissues (Ueki et al., 2002; Ueki et al., 2003). 

The regulatory subunit contains a SH2 domain that binds phosphorylated tyrosine 

residues with a high affinity (Karlsson & Zierath, 2007). Upon tyrosine phosphorylation of 

IRS, the regulatory subunit of PI3K binds to the activated IRS and the newly formed protein 

complex migrates towards the plasma membrane. Following migration, the p110 subunit 

phosphorylates the 3’-OH position of the inositol ring of plasma membrane inositol 

phospholipids converting phosphatidylinositol-3,4-bisphosphate (PI2P) to PI-3,4,5-

triphosphate (PI3P) (Karlsson & Zierath, 2007). The increase of plasma membrane PI3P 

initiates the recruitment of proteins containing pleckstrin homology domains to the cell surface 

such as protein kinase B/Akt and phosphoinositide-dependent kinase-1 (PDK1) (Leney & 

Tavare, 2009). 

 

2.4 Protein Kinase B/Akt 

 Protein kinase B, also known as Akt, is a serine/threonine kinase that has been found to 

be a central intermediate for several metabolic pathways downstream of PI3K such as in the 

activation of glycogen synthase kinase-3 (Karlsson & Zierath, 2007). Akt has also been shown 

to have a critical role in GLUT4 translocation and glucose transport in adipocytes and L6 

myotubes (Tanti et al., 1997).  



6 
 

 There are three isoforms of Akt found in skeletal muscle (Akt1, Akt2, and Akt3).  

Investigations utilizing isoform specific knockout models have revealed specialized functional 

roles for each isoform. From these studies, Akt2 deficiency leads to the development of insulin 

resistance and diabetes-like symptoms, and therefore appears to play an essential role in insulin 

signalling and glucose uptake (Cho et al., 2001a).  On the other hand, Akt1 was required for 

normal growth but did not have a significant influence on glucose homeostasis in mice (Cho et 

al., 2001b). 

One of the key features of Akt is that its N-terminus contains a pleckstrin homology 

domain that favours the binding of phosphatidylinositol lipids, such as PI3P. Thus, Akt will re-

localize to the cell membrane upon the production of PI3P by PI3K, which compartmentalizes 

the serine/threonine kinase to the area of insulin signalling.  (Karlsson & Zierath, 2007) 

Once anchored to the cell membrane through its interaction with PI3P, Akt undergoes 

two phosphorylation steps to reach complete activation (Alessi et al., 1996). First, Akt is 

phosphorylated on its C-terminus at Ser
473

 by mTOR:Rictor:GbL complex (Sarbassov et al., 

2005). Additionally, PDK1, which is allosterically activated by PI3P, phosphorylates the 

catalytic domain of Akt at Thr308 (Alessi et al., 1997; Krook, Wallberg-Henriksson, & 

Zierath, 2004). 

 

2.5 Akt Substrate of 160 kDa 

 It has been well established that insulin mediates the translocation of GLUT4 to the cell 

membrane and increases glucose uptake (Leney & Tavare, 2009); however, the exact 

mechanistic steps that link the activation of Akt to the recruitment of GLUT4 has remained 

elusive. Recently, Sano et al. (2003) reported the discovery of a novel insulin-activated Akt 

substrate of 160 kDa, subsequently named AS160. 

 AS160 was first implicated as a mediator of glucose uptake upon observations that 

point mutations at two or more of the phosphorylation sites on AS160 significantly reduced 

insulin-stimulated GLUT4 translocation (Sano et al., 2003). Additionally, reducing the content 

of AS160 in 3T3-L1 adipocytes causes a 2-fold increase in cell surface GLUT4 and glucose 

uptake without insulin stimulation (Gonzalez & McGraw, 2006). Karlsson et al. (2005) have 

also shown that insulin-stimulated AS160 phosphorylation is significantly reduced in skeletal 

muscle from T2D patients. 
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There are five potential sites of phosphorylation (3 serine and 2 threonine residues) on 

AS160 in response to insulin (Sano et al., 2003). AS160 also contains a GTPase activating 

protein (GAP) domain for a Rab (Sano et al., 2003). Rabs are small G proteins that are 

commonly cited to regulate many cellular processes involving vesicle formation, movement, 

and fusion (Zerial & McBride, 2001). More recently, Rabs 8A and 14 have been implicated in 

GLUT4 translocation in muscle and are regulated by the GAP domain of AS160 (Miinea et al., 

2005; Ishikura et al., 2007). 

Interestingly, Sano et al. (2003) also reported that insulin-stimulated GLUT4 

translocation was preserved following the point mutations of the phosphorylation sites of 

AS160 when an additional mutation within the GAP domain was present. This provides a 

strong indication that AS160 requires a functional GAP domain to inhibit glucose uptake. 

The proposed mechanism by which AS160 regulates GLUT translocation is quite 

interesting as the recruitment of AS160 differs from the other insulin signalling intermediates. 

Presumably the non-phosphorylated form of AS160 is considered to be the active structure and 

restricts GLUT translocation to the cell surface. It is proposed that a guanosine triphosphate 

(GTP)-bound Rab molecule is necessary for GLUT translocation. The activated GAP domain 

of the non-phosphorylated AS160 hydrolyses the Rab-GTP to GDP and prevents GLUT 

translocation (Cartee & Wojtaszewski, 2007). Insulin stimulation, and subsequent PI3K and 

Akt activation, inhibits the activity of the GAP domain through the phosphorylation of several 

serine/threonine residues on AS160 (Bruss et al., 2005; Cartee & Wojtaszewski, 2007). 

Inactivation of the AS160 GAP domain prevents the hydrolysis of the nearby GTP-bound Rab 

and GLUT translocation will occur. 

 

2.6 Glucose Transport 

Insulin has been established to stimulate an increase of glucose uptake in skeletal 

muscle and adipose tissue for over 50 years (Park & Johnson, 1955).  However, it was not until 

decades later that insulin was observed to promote the movement of a glucose transport system 

from intracellular stores to the plasma membrane (Cushman & Wardzala, 1980; Suzuki & 

Kono, 1980). 

 Glucose transporters (GLUT) are members of the facilitated diffusion carrier family, 

and assist glucose and other hexose sugars to cross a cellular membrane barrier along a 
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concentration gradient (Mueckler, 1994; Augustin, 2010). There are fourteen members of the 

GLUT family (1-14) which have a wide distribution of expression throughout the body 

(Mueckler, 1994; Augustin, 2010). 

 In skeletal muscle two GLUT transporters, namely GLUT1 and GLUT4, are the 

primary transporters responsible for glucose uptake (Mueckler, 1994; Augustin, 2010). GLUT1 

is permanently expressed at low levels within the plasma membrane of skeletal muscle, where 

it supplies the cell with sufficient levels of glucose for basal cellular processes (Mueckler, 

1994; Augustin, 2010). GLUT4 is recognized as the primary glucose transporter isoform 

responsible for the enhanced glucose uptake following insulin stimulation (Charron et al., 

1989; Fukomoto et al., 1989; James et al., 1989). During the basal cellular state less than 5% of 

the total GLUT4 pool is found on the plasma membrane whereas up to 50% of the total 

GLUT4 pool can be found embedded in the cell surface following insulin stimulation (Leney 

& Tavare, 2009). 

 The majority of the work characterizing the location of the intracellular GLUT4 stores 

has been performed on 3T3-L1 adipocytes thereby questioning the applicability of the findings 

in vivo. Nonetheless, GLUT4 vesicles have been observed to be situated throughout subcellular 

portions of the cytoplasm and the perinuclear region of the cell, as well as in sections near the 

plasma membrane indicating that GLUT4 vesicles are localized to several distinct intracellular 

pools within the cell (Bornemann et al., 1992; Leney & Tavare, 2009).  

 The insulin-stimulated increase of GLUT4 vesicles from intracellular pools to the 

plasma membrane can be explained by two plausible models: the dynamic and the static model 

of GLUT translocation (Fig. 2.2). In the dynamic model of GLUT4 translocation, the total pool 

of GLUT4 vesicles are thought to be continuously cycling between the intracellular 

compartments and the plasma membrane. During basal cellular conditions a slow, steady state 

of GLUT4 exocytosis and endocytosis is achieved which ensures a constant rate of glucose 

uptake and maintenance of plasma glucose homeostasis (Leney & Tavare, 2009). Insulin 

stimulation increases the rate of GLUT4 exocytosis in order to increase the number of GLUT4 

molecules on the plasma membrane (Leney & Tavare, 2009). 

 The static model of GLUT4 translocation proposes that under basal conditions there are 

a limited number of GLUT4 vesicles available to cycle between the cell surface and 

intracellular stores. Thus, glucose uptake remains low. Insulin action on skeletal muscle 
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recruits additional GLUT4 vesicles into the cycling pool from the intracellular stores thereby 

increasing the total number of GLUT4 vesicles available to fuse with the plasma membrane 

and increase the rate of glucose uptake (Leney & Tavare, 2009).  

 In either case it is believed that insulin elicits its action through the insulin signalling 

cascade and subsequent inactivation of AS160 (Larance et al., 2005). The active form of 

AS160 is thought to be bound to the GLUT4 storage vesicles (GSV) under basal conditions. 

Deactivation of the Rab GAP domain upon insulin stimulation leads to the dissociation of 

AS160 from the GSV which allows the translocation of GLUT4 to the cell surface.   

In the absence of insulin, GLUT4 vesicles located near the cell surface unsuccessfully 

attempt to bind to the plasma membrane (Bai et al., 2007). The dissociation of AS160 from the 

GLUT4 vesicle enables the GTP form of Rab to bind to the vesicle. The Rab-GTP complex 

will bind to Rip11 and provide a docking site on the GSV that will interact with acidic 

phospholipids in the plasma membrane (Bai et al., 2007; Leney & Tavare, 2009). GLUT4 is 

incorporated into the plasma membrane following the docking of the GSV which increases 

glucose uptake into the cell.  

Figure 2.2: Proposed Models of GLUT translocation (Leney & Tavare, 2009) 
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3.0 Introduction to Insulin Resistance in Skeletal Muscle 

 One of the early events in the development of T2DM is the inability of insulin to 

promote peripheral glucose disposal into skeletal muscle and suppress hepatic production 

(Warram et al., 1990; Lillioja et al., 1993; Boden, 2001; DPPRG, 2005; Timmers, Schrauwen, 

& de Vogel, 2007). Insulin resistance has been well established to be associated with obesity as 

lean non-diabetic individuals are approximately two times more insulin sensitive than obese 

non-diabetics (Damsbo et al., 1991; Ferrannini et al., 1997; Boden, 2001). 

Originally it was believed that the impairment within skeletal muscle was due to a 

reduced capacity of hexokinase or glycogen synthase activity since an approximate 50% 

decrease in insulin-stimulated muscle glycogen synthesis is observed for T2DM (Shulman et 

al., 1990). However, it has since been reported that a reduction in the insulin-stimulated 

glucose transport appears to be the primary malfunction in the insulin signalling system and the 

cause for the onset of hyperglycemia (Cline et al., 1999; Cline et al., 2002; Fueger et al., 2004).  

There is a strong inverse correlation between insulin sensitivity and body fat mass as 

sensitivity decreases with weight gain and normalizes with reductions in fat mass (Sims et al., 

1973; Boden et al., 1993; Boden, 2001). Lipid infusion studies have revealed a close 

association between elevated plasma non-esterfied fatty acids (NEFAs) and impaired insulin 

sensitivity (Boden et al., 1991; Perseghin et al., 1997; Itani et al. 2002), and can produce 

defects in insulin-stimulated glucose transport due to the reduced tyrosine phosphorylation of 

IRS-1 (Boden & Chen, 1995; Dresner et al., 1999; Yu et al., 2002). Additionally, lowering 

chronically elevated plasma NEFAs with the anti-lipolytic drug Acipimox in obese non-

diabetic and obese diabetic individuals (both with impaired insulin sensitivity compared to lean 

controls) doubled insulin sensitivity in both groups (Santomauro et al., 1999). Taken together 

these results suggest a possible role of excess NEFAs in the onset of insulin resistance. 

The plasma NEFA hypothesis does fit the obesity-induced diabetes model as elevated 

plasma NEFA levels are common characteristics of obesity and insulin resistance (Gorden, 

1960; Reaven et al., 1988; Boden, 1997). However, in the lipid infusion studies there is a 3-4 

hour delay between the acute elevation of plasma NEFAs and the onset of insulin resistance; 

the insulin resistance also persists hours after the lipid infusion has stopped (Boden et al., 1991; 

Boden, 2001; Itani et al. 2002). Interestingly, changes in plasma NEFAs are linearly correlated 
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to intramuscular triglyceride (IMTG) levels and insulin resistance (Boden, 2001). Boden et al. 

(2001) have demonstrated that there is a dose-dependent increase in IMTG content following 

an acute elevation of plasma NEFA.  The elevated IMTG was measured 4-hours after lipid 

infusion suggesting that plasma NEFA may need to be transported into skeletal muscle and re-

esterified before insulin sensitivity is affected (Boden et al., 2001). 

 

3.1 Intramuscular Lipid Accumulation 

There has been a growing body of evidence for the role of aberrant lipid accumulation, 

particularly IMTG, in the onset of skeletal muscle insulin resistance (Shulman, 2000; Schmitz-

Peiffer, 2000). High-fat diet (HFD) fed mice exhibit symptoms of insulin resistance with an 

associated increase of IMTG content (Kraegen et al., 1991; Oakes et al., 1997; Dobbins et al., 

2001) whereas reducing IMTG content through caloric restriction improved insulin sensitivity 

in T2DM patients (Lara-Castro et al., 2008). 

However, not all insulin resistance is associated with elevated IMTG indicating that 

IMTG content cannot be the sole culprit in the onset of insulin resistance (Befroy et al., 2007). 

For example, the upregulation of the triglyceride synthesis enzyme diacylglyceride transferase- 

1 (DGAT1) in mice increases IMTG content but improves muscle insulin sensitivity (Liu et al., 

2007). Moreover, moderate intensity endurance exercise in humans increases DGAT1 

expression and IMTG content while improving insulin sensitivity (Phillips et al., 1996; Schenk 

& Horowitz, 2007). Interestingly, highly-trained elite endurance athletes have been found to 

exhibit severely elevated IMTG measures while exhibiting increased insulin sensitivity 

(Goodpaster et al., 2001; Kiens, 2006).  Thus, it appears that IMTG content is merely 

associated with the degree of insulin resistance rather than directly causing insulin resistance. 

More likely, specific IMTG lipid intermediates such as long chain acyl-CoA fatty acids 

(LCACoAs), ceramides, & diacylglycerides (DAGs) elicit a direct, negative impact on the 

insulin signalling cascade and impair glucose uptake as depicted in Figure 3.1 (Shulman, 2000; 

Kraegen & Cooney, 2008). 
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Figure 3.1: Proposed Mechanism of Insulin Resistance in Skeletal Muscle (Morino, Petersen, 

& Shulman, 2006) 

 

3.1.1 Long chain acyl-CoA 

 Typically, LCACoAs are transported into the mitochondria for energy production 

(Timmers, Schrauwen, & de Vogel, 2007). LCACoAs have also been shown to modify 

hexokinase activity (Timmers, Schrauwen, & de Vogel, 2007), and allosterically activate 

several protein kinase-C (PKC) isozymes (Orellana et al., 1990; Nesher & Boneh, 1994). The 

activation of PKC suggests a plausible mechanism linking the elevation of LCACoA to the 

onset of insulin resistance as PKC has been shown to interfere with the insulin signalling 

pathway (Ellis et al., 2000; Thompson et al., 2000; Morino, Petersen, & Shulman, 2006). 

Similarly, decreasing the LCACoAs concentration in skeletal muscle through dietary 

restrictions improves insulin sensitivity (Oakes et al., 1997). However, LCACoAs may solely 

be a marker of insulin resistance (as suggested with IMTG content) as LCACoA content is 

closely associated with increased intramuscular ceramide & DAG content (Timmers, 

Schrauwen, & de Vogel, 2007). 
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3.1.2 Ceramides 

 The de novo synthesis of ceramides is dependent upon 4 regulated enzymatic steps 

commencing with the rate-limiting condensation reaction of serine and palmitoyl-CoA by 

serine palmitolytransferase (Merrill, 2002; Timmers, Schrauwen, & de Vogel, 2007). 

Ceramides are common signalling molecules within a cell which mediate various processes 

such as inhibition of cell division and stimulation of apoptosis (Timmers, Schrauwen, & de 

Vogel, 2007). Elevated ceramide concentrations have been associated with skeletal muscle 

insulin resistance in animal models and men at high risk for developing T2DM (Turinsky, 

O’Sullican, & Bayly, 1990; Adams et al., 2004; Straczkowski et al., 2007), and with fatty acid 

induced insulin resistance in vitro in cell culture studies (Pickersgill et al., 2007; Sabin et al., 

2007). In contrast, inhibtion of de novo ceramide synthesis in Zucker diabetic fatty rats 

improved insulin sensitivity and lowered the associated ceramide concentration in skeletal 

muscle (Holland et al., 2007b). Ceramides elicit their effects downstream of IRS1 by 

promoting the dephosphorylation of Akt by protein phosphatase 2A (Dobrowsky et al., 1993; 

Schmitz-Peiffer, Craig, & Biden, 1999; Stratford et al., 2004; Holland et al., 2007a) which 

prevents the translocation of Akt from the cytoplasm to the plasma membrane (Stratford et al., 

2004). Thus, insulin-stimulated glucose transport is reduced. Inhibition of de novo ceramide 

synthesis restores Akt activation and subsequent glucose uptake following insulin stimulation 

(Chavez et al., 2003; Holland et al., 2007a). 

 

3.1.3 Diacylglycerides 

 As previously discussed with ceramides, DAGs are a common secondary messenger 

molecule within cells (Timmers, Schrauwen, & de Vogel, 2007). However, elevated levels of 

DAGs within muscle from acute lipid infusion or high-fat diets are associated with insulin 

resistance (Morino, Petersen, & Shulman, 2006; Timmers, Schrauwen, & de Vogel, 2007). 

Increasing intramuscular DAG content by inhibiting its primary catabolic enzyme (i.e. DAG 

kinase) results in impaired insulin signalling and glucose uptake, and mild obesity (Chibalin et 

al., 2008). There are several different reactions that produce DAGs; however, in models of 

lipid-induced insulin resistance the primary source of the elevated intramuscular DAG 

concentration is proposed to originate from the esterification of two LCACoAs with glycerol-

3-phosphate, and from the hydrolysis of triacylcerides (TAGs) (Timmers, Schrauwen, & de 
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Vogel, 2007). It is believed that DAGs transmit their effects on the insulin signalling cascade 

by activating the serine/threonine kinase, protein kinase C-θ (PKCθ) (Chalkey et al., 1998; 

Schmitz-Peiffer, 2000; Morino, Petersen, & Shulman, 2006). 

 

3.1.4 Protein Kinase-Cθ 

 Protein kinase-C (PKC) is a common component of cell functions such as cell 

proliferation, transmembrane ion transport, smooth muscle contraction, and glucose and lipid 

metabolism (Schmitz-Peiffer, 2000). However, PKCθ is regarded as the primary isozyme in 

skeletal muscle insulin resistance (Donnelly et al., 1994; Griffin et al., 1999) as aberrant PKCθ 

activation has been consistently shown to occur in conjunction with an accumulation of 

intramuscular lipids and insulin resistance (Morino, Petersen, & Shulman, 2006). PKCθ has 

also been shown to be associated with T2DM (Itani et al., 2001). Furthermore, PKCθ-null mice 

have been shown to be resistant to diet-induced insulin resistance (Kim et al., 2004). 

Nevertheless, other PKC isoforms may have a role in insulin resistance, particularly in humans, 

as PKCβ-II and PKCδ have been implicated in the acute onset of lipid-induced insulin 

resistance in skeletal muscle (Itani et al., 2002). 

 Lipid-induced activation of PKCθ promotes the translocation of PKCθ from the cytosol 

towards the cell membrane where it elicits its effect on the upstream insulin signalling 

molecules such as the IR and IRS (Ravichandran et al., 2000; Schmitz-Peiffer, 2000; Morino, 

Petersen, & Shulman, 2006). PKCθ phosphorylates serine (ser) residues on the β-subunit of the 

IR which prevents phosphorylation of tyrosine residues and subsequent docking of IRS due to 

conformational changes of the IR (Karasik et al., 1990; Paz et al., 1997; Aguirre et al., 2002; 

Liu et al., 2004).  

 There are also over 70 potential serine phosphorylation sites on IRS-1, however only 

phosphorylation of ser
302

, ser
307

, ser
612

, and ser
632

 have been implicated in insulin resistance in 

both humans and rodent models (Hirosumi et al., 2002; Kim et al., 2004; Morino et al., 2005; 

Morino, Petersen, & Shulman, 2006). Likewise, serine phosphorylation of IRS-1 leads to the 

dissociation of IRS-1 from PI3K, and prevents downstream activation of the insulin signalling 

pathway (Morino, Petersen, & Shulman, 2006). 

 Morino et al. (2008) demonstrated that transgenic modification of ser
302

, ser
307

, and 

ser
612

 to alanine residues on IRS-1 in mice defended against diet induced insulin resistance by 



15 
 

maintaining PI3K and Akt activation. This study showcased the crucial role that PKCθ 

expression and serine phosphorylation of the upstream insulin signalling molecules have on 

insulin sensitivity and glucose transport. 

 

3.2 Mitochondrial Dysfunction 

 The accumulation of intramyocellular lipids has previously been suggested to occur due 

to a decrease in the mitochondria mediated β-oxidation of fatty acids (Morino, Petersen, & 

Shulman, 2006; Kraegen & Cooney, 2008). Several studies have documented a reduction in 

mitochondria function following a prolonged high-fat diet (Sparks et al., 2005; Bonnard et al., 

2008). Other studies have reported a reduced mitochondria content in skeletal muscle from 

T2DM patients and their insulin resistant offspring (Petersen et al., 2004; Morino et al., 2005; 

Ritov et al., 2005). However, these cross-sectional observations of T2DM patients cannot 

decipher whether the decreased mitochondria content is a cause or consequence of the insulin 

resistance. Furthermore, more recent observations reveal that insulin resistance is clearly 

evident prior to a reduction in mitochondrial content (Park et al., 2005; Bonnard et al., 2008). 

 Turner et al. (2007) have shown that feeding mice a high-fat diet induces the increased 

expression of several mitochondrial oxidative enzymes and the fatty acid oxidative capacity of 

the mitochondria. Similarly, Hancock et al. (2008) demonstrated that high-fat feeding in rats 

produced a gradual increase in skeletal muscle mitochondria content which coincided with the 

onset of insulin resistance. The increased mitochondrial content was attributed to the observed 

upregulation of peroxisome proliferator-activated receptor (PPAR)-δ and subsequent increase 

in PPAR coactivator-1α (PGC-1α) (Hancock et al., 2008). Presumably the increased capacity 

of the mitochondria for β-oxidation is insufficient to prevent the accumulation of intramuscular 

lipids. 

It is evident that consistency is lacking in regards to the mitochondrial oxidative 

capacity in models of obesity and insulin resistance (Glatz, Luiken, & Bonen, 2010). Fatty acid 

oxidation can be either reduced (Bandyopadhyay et al., 2006; Han et al., 2007; Ouwens et al., 

2007), unaltered (Young et al., 2002; Smith et al., 2007), or increased (Turcotte et al., 2001; 

Coort et al., 2004a; Carley & Severson, 2005; Carley et al., 2007) in various rodent models of 

obesity or insulin resistance. The conflicting evidence in the literature suggests that there are 
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potentially other contributing factors to the lipid accumulation that is observed in insulin 

resistance. 

  

3.3 Elevated Free-Fatty Acid Transport in Skeletal Muscle 

 In healthy individuals, plasma NEFAs are transported into skeletal muscle due to an 

insulin- or contraction-mediated translocation of fatty acid transporters (CD36) from 

intracellular depots to the plasma membrane surface (Glatz, Luiken, & Bonen, 2010). 

Moreover, under basal conditions there is typically a steady distribution of CD36 fatty acid 

tranporters and GLUT4 transporters embedded in the cell membrane, and stored intracellularly 

(Glatz, Luiken, & Bonen, 2010). 

 In models of insulin resistance there is a notable shift in the rate of fatty acid uptake 

into cardiac and skeletal muscle (Chabowski et al., 2006; Glatz, Luiken, & Bonen, 2010). For 

instance, the rate of fatty acid transport into skeletal muscle is elevated by 40-80% in both 

high-fat fed and obese Zucker rats (Luiken et al., 2001; Hegarty et al., 2002) while a 4-fold 

increase is noted in obese human subjects (Bonen et al., 2004). Interestingly, the increased rate 

of lipid transport cannot be explained by an upregulation of fatty acid transporter expression as 

there are no changes in the total content of CD36 or any other fatty acid transport protein in 

skeletal muscle (Luiken et al., 2001; Han et al., 2007). There is, however, an increase in the 

number of CD36 transporters located on the plasma membrane in obese skeletal muscle 

indicating a permanent relocation of the transporters from the intracellular depots to the cell 

surface (Luiken et al., 2001; Bonen et al., 2004; Han et al., 2007). This increased membrane 

expression of CD36 highly correlates to the increased rate of fatty acid transport in the skeletal 

muscle from both obese animal models and human subjects (Bonen et al., 2004; Holloway et 

al., 2009).  

 It appears evident that the permanent relocation of CD36 to the plasma membrane has a 

significant role in the accumulation of intramyocellular lipids and subsequent onset of insulin 

resistance (Fig. 3.2). The rates of lipid transport, esterification, and oxidation are increased in 

skeletal muscle from obese Zucker rats (Holloway et al., 2009); however, the rate of 

esterification was 8-fold greater than that of lipid oxidation when expressed relative to fatty 

acid transport which indicates the rate of transport exceeds the cell’s capacity to oxidize the 

excess fatty acids (Holloway et al., 2009). Furthermore, directly inhibiting CD36-mediated 
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fatty acid uptake in insulin resistant tissue from high-fat fed rats and obese Zucker rats lowered 

the elevated rate of fatty acid esterification (Ploug et al., 1993; Coort et al., 2004a). Also, the 

elevated CD36-mediated fatty acid uptake has been observed prior to any changes in glucose 

uptake or onset of insulin resistance in cardiac myocytes from obese Zucker rats (Coort et al., 

2004b; Chabowski et al., 2006). Taken together these results support the notion that the 

accumulation of intramyocellular lipids is attributed to the relocation of CD36 transporters to 

the plasma membrane and the subsequent increase in fatty acid transport into the skeletal 

muscle cell. 

Figure 3.2: Substrate transport in healthy and diabetic individuals. In healthy individuals there 

is a balance between glucose and NEFA uptake (top). In a diabetic state (bottom) it is proposed 

that there is an increase in the number of CD36 transporters embedded in the plasma 

membrane leading to an elevated rate of NEFA transport into the skeletal muscle cell (Glatz, 

Luiken, & Bonen, 2010). 
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4.0 Rodent Obesity and Diabetes Models 

 The study of the progression of diabetes has been propelled over the past quarter of a 

century thanks in part to the discovery of several experimental rodent models that 

spontaneously portray common characteristics observed in human diabetes mellitus patients.  

Most notably the Otsuka Long-Evans Tokushima fatty rats, ob/ob mice, db/db mice, and 

Zucker Diabetic fatty rats exhibit moderate to severe obesity, hyperglycaemia, 

hyperinsulinemia, insulin resistance, deficient glucose stimulated insulin secretion, and 

reduced glucose transporter translocation in a comparable disease progression as in humans 

(Dubuc, 1976, Coleman, 1980; Coleman, 1982; Kawano et al., 1992; Kawano et al., 1994; 

Etgen & Oldham, 2000; Chen & Wang, 2005). However, these rodent models are not without 

limitations. For instance, one drawback of the ob/ob mouse is that the mutation of the leptin 

gene and subsequent lack of leptin production is not representative of the disease in the 

majority of humans since humans typically are hyperleptinemic and leptin resistant (Baribault, 

2010). Diet-induced obesity in the C57BL/6J mouse strain is another common model that 

produces an intermediate susceptibility to diabetes-related symptoms such as hyperglycemia, 

hyperinsulemia, and fatty liver; however, the later stages of the disease such as pancreatic islet 

destruction and diabetic nephropathy are rarely seen (Baribault, 2010).  
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5.0 Introduction to Sarcolipin 

5.1 Sarcolipin Mouse Model 

 A potential novel mouse model for obesity and diabetes mellitus has been proposed by 

our laboratory (Sayer et al., 2008). The sarcolipin (SLN) knockout mouse (Babu et al., 2007a) 

has been shown to significantly gain more weight and adiposity than littermate control mice 

following an 8-week high fat diet (Sayer et al., 2008). Further, the KO mice became 

hyperglycaemic and hyperinsulinemic, and have elevated plasma levels of leptin, non-esterfied 

fatty acids, and cholesterol (Bal et al., 2009). Both the KO and the wild-type control groups 

displayed glucose intolerance and insulin resistance following the high-fat diet intervention; 

however, surprisingly the KO mice exhibited a more severely impaired response to glucose 

than the control mice during a 2-hour glucose tolerance test; however, HFD fed KO mice 

exhibited a comparable reduction in insulin sensitivity as HFD fed controls (Sayer et al., 2008; 

Bal et al., 2009). The KO mouse model appears to follow the usual disease progression of type 

II diabetes mellitus as all of these symptoms are typically associated with the disease (Reaven, 

1995; Alberti & Zimmet, 1998; Baribault, 2010). However, the origin of the glucose 

intolerance is currently unknown as SLN is not proposed to directly influence glucose uptake.  

 

5.2 Role of Sarcolipin in Skeletal Muscle 

 SLN is a 31-amino acid integral membrane protein that is found in abundance in the 

atria and moderately in slow-twitch musculature, such as the diaphragm or soleus muscle, in 

rodent tissue (Babu et al., 2007b). In larger mammals, such as rabbits and dogs, SLN protein 

levels are greater in both slow and fast twitch muscle compared to levels observed in the atria 

suggesting that SLN may assert a more significant role in skeletal muscle function in larger 

mammals (Babu et al., 2007b).  

SLN is closely associated with the sarco/endoplasmic reticulum calcium-ATPase 

(SERCA) within the sarcoplasmic reticulum membrane of atria and skeletal muscle cells 

(Wawrzynow et al., 1992; Asahi et al., 2002; Babu et al., 2007b). SERCA proteins (110 kDa) 

are well known Ca
2+

 pumps that transport Ca
2+

 ions across a membrane against a gradient 

(>10
4
-fold) in response to ATP hydrolysis thereby maintaining the basal cytosolic Ca

2+
 

concentration in skeletal muscle near 100 nM (Toyoshima, 2008). During repetitive exercise 

(i.e. muscle contractions) SERCA rapidly resequesters large amounts of Ca
2+

 into the SR 
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(Tupling, 2004). This process is imperative to the contraction-relaxation cycle of repetitive 

exercise. 

The Ca
2+

 transport ability of SERCA is regulated by SLN through a physical interaction 

between the two membrane-bound proteins (Asahi et al., 2002; Asahi et al., 2003). Asahi et al. 

(2002) have shown that the co-expression of SERCA and SLN reduces the Ca
2+

-dependent 

Ca
2+

 transport of both primary skeletal muscle isoforms of SERCA (1a and 2a) at all Ca
2+

 

concentrations under physiological conditions in HEK-293 cells as indicated from the 

rightward shift of the calcium concentration curve in Figure 5.1. Despite the decreased 

accumulation of Ca
2+

 in reconstituted SR vesicles, the presence of SLN has no effect on the 

rate of Ca
2+

-ATPase activity (Smith et al., 2002). Similarly, analyses of isolated soleus muscles 

from KO mice have also revealed that SLN uncouples ATP hydrolysis from Ca
2+

 transport 

(Bombardier et al., 2008).  

Figure 5.1: Effect of SLN on SERCA Ca
2+

 Uptake (Asahi et al., 2002) 
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5.3 Sarcolipin and Disease 

It is speculated that the diet-induced glucose intolerance observed in the KO mice 

develops as an indirect consequence of a chronic positive energy imbalance and the 

development of obesity. SERCA accounts for approximately 50% of the resting energy 

requirements of skeletal muscle (Norris et al., 2009) which suggests that SERCA has a 

significant role in daily whole body energy expenditure (Zurlo et al., 1990; Rolfe & Brown, 

1997; Levine, 2003). Not surprisingly, lowering the efficiency of the SERCA pump in soleus 

muscle through the uncoupling activity of SLN results in a 10% greater energy consumption of 

SERCA in wildtype muscle compared to KO muscle (unpublished results). Even a small 

variation in total daily whole body energy expenditure, such as altering the contribution of 

SERCA, can impose serious consequences on weight gain and health indicators as evidenced 

by the KO mouse model (Sayer et al., 2008; Bal et al., 2009; Butler & Kozak, 2010). 
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6.0 Purpose of Study 

6.1 Rationale for Study 

 The purpose of this study is to examine the effects of high fat feeding on the insulin 

signalling cascade in skeletal muscle from KO mice. As noted previously, after completion of 

an 8-week high-fat diet intervention, the KO mice become more obese and have more 

pronounced glucose intolerance than wild-type littermates (Sayer et al., 2008; Bal et al., 2009). 

However, the mechanisms involved remain to be established. 

 Insulin resistance is a common feature of diet-induced obesity (Shulman, 2000; Morino, 

Petersen, & Shulman, 2006). Moreover, results from whole body glucose tolerance testing 

generally correlate well with the results from the euglycemic-hyperinsulinemic clamp 

technique (Bergman et al., 1987; Bergman, 1989), which is the gold standard for the 

assessment of insulin resistance (DeFronzo, Tobin, & Andres, 1979). Therefore, it is 

reasonable to expect that the KO mice would exhibit a noticeably greater degree of peripheral 

insulin resistance. As previously discussed, insulin resistance is the result of an insufficient 

insulin-stimulated glucose uptake (Timmers, Schrauwen, & de Vogel, 2007). Generally, a 

breakdown in the insulin signalling cascade is the primary reason for the decreased glucose 

transport in models of diet-induced obesity and diabetes. Thus, this study examined the extent 

of diet-induced impairment of the insulin signalling cascade in the KO mice. More specifically, 

IRS1 tyr
628

 and Akt ser
473

 phosphorylation will be assessed as markers for the degree of insulin 

signalling pathway activation as previous described (Fujii et al., 2004; Morino et al., 2008; 

Mullen et al., 2009). Further, changes in IRS1 ser
307

 phosphorylation will be examined in an 

attempt to characterize a plausible mechanism for potential post-HFD decreases in IRS1 

activation. The information provided from this study will help to characterize the KO mouse as 

a potential model of severe diet-induced obesity and diabetes. 

 

6.2 Brief Description of Experimental Approach 

 The euglycemic-hyperinsulinemic clamp is the most accurate method to assess insulin 

resistance quantitatively (DeFronzo, Tobin, & Andres, 1979). However, it is quite difficult to 

perform in mice, and has a high associated cost to perform the testing procedure. This study 

proposed to assess the insulin signalling pathway in skeletal muscle through the analysis of 
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several key phosphorylation sites on signalling proteins of the insulin cascade of glucose 

uptake. Numerous studies have utilized antibodies for the specific phosphorylation sites and to 

quantify the amount of each protein by Western blot techniques (Fujii et al., 2004; Morino et 

al., 2008; Mullen et al., 2009). 

 

6.3 Specific Objectives 

 There are several key objectives associated with the present investigation. The goal(s) 

of the study were to: 

a) Assess the effects of an 8-week high-fat diet on whole body and fat pad weight(s) in 

KO and wildtype mice; 

b)  Evaluate potential differences in the glucose handling capability of the KO and 

wildtype mice by means of a 2-hour glucose tolerance test following the high-fat diet 

intervention; 

c) Utilize an intraperitoneal insulin bolus to examine the insulin sensitivity of both mouse 

genotypes during a 2-hour insulin tolerance test; 

d) Examine the effects of SLN ablation on insulin-stimulated tyr
628

 phosphorylation of 

IRS1 and ser
473

 phosphorylation of Akt following the high-fat diet; 

e) Compare the degree of ser
307

 phosphorylation of IRS1 after the completion of the high-

fat diet in KO and wildtype mice. 

 

6.4 Hypotheses 

Following the 8-week high-fat diet the KO mice will: 

a) Gain more weight and become more obese compared to control mice; 

b) Exhibit a greater intolerance to glucose compared to control mice as assessed by a 

glucose tolerance test; 

c) Show no significant differences in whole body insulin sensitivity compared to control 

mice fed the high-fat diet as assessed by an insulin tolerance test; 

d) Demonstrate a significant reduction of insulin-stimulated tyr
628 

phosphorylation of 

IRS1 and ser
473 

phosphorylation of Akt compared to control mice; 

e) Display a greater level of ser
307 

phosphorylation of the IRS1 molecule compared to 

littermate control mice. 
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7.0 METHODS 

7.1 Animal Colonies 

 A sarcolipin knockout mouse model (KO) was donated by Dr. Muthu Periasamy from 

Ohio State University to establish a viable mouse colony. Breeding pairs for the colony were 

born from cross-breeding KO mice with C57BL mice, thus generating heterozygous KO mice. 

The heterozygous KO mice were bred producing homozygous wild type (WT, +/+), 

heterozygous (HET, +/-), and homozygous-null (KO, -/-) mice. 

 Genotyping of mice was performed on extracted DNA from 4 week old mice using a 

Genomic DNA mini kit (Invitrogen). The DNA of interest was amplified by RT-PCR and 

imaged using a bio-imaging system (Syngene). Briefly, 50 ng of extracted DNA was added to a 

Taq DNA polymerase mix (Fermentas: 3mM MgCl2, 200 µM dNTP, & 1u of Taq DNA 

polymerase) and 0.4 µM each of the appropriate 5’ and 3’ genomic primers (SLN-WT, 

forward, 5’-TGT CCT CAT CAC CGT TCT CCT-3’and reverse 5’-GCT GGA GCA TCT 

TGG CTA ATC-3’; KO, Forward, 5’- GTG GCC AGA GCT TTC CAA TA-3’and reverse 5’-

CAA AAC CAA ATT AAG GGC CA-3’).  Samples were placed in a thermal cycler (MJ 

MINI, BIO-RAD) and denatured  for 3 minutes at 94°C followed by 30 cycles of denaturation 

for 30 sec at 94°C, annealing for 30 sec at 54°C, and extension for 60 sec at 72°C, this 

followed by a final extension at 72°C for 7 min. The amplified products were then separated on 

a 1% agrose gel containing 0.01% ethidium bromide (BioShop) and identified using a bio-

imaging system and densitometric analysis which was performed using the GeneSnap software 

(Syngene). 

 

7.2 Experimental Protocol 

 Fifty-four age-matched animals (27 WT; 27 KO) were individually housed in an 

environmentally controlled room on a 12:12hr light/dark cycle for the duration of the twelve 

week study period. Prior to the intervention period all of the experimental animals were fed a 

standard chow diet (60% of calories from carbohydrate, 5% of calories from fat; Tekland 22/5 

Rodent Diet, Harland-Tekland, Madison, WI) and water ad libitum. Further, all animals 

underwent glucose and insulin tolerance tests (details to follow) prior to the start of the diet 

intervention. 
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 At approximately 16 weeks of age the animals were sub-divided into two groups where 

one group was fed a high-fat diet (42% of calories from fat; product TD 88137, Harlan Teklad, 

Madison, WI) for an eight week intervention period while a control diet group remained on the 

chow food. Body weight was measured prior to the intervention and subsequent changes in 

mass were assessed on a weekly basis. Following the 8-week diet intervention, glucose and 

insulin tolerance tests were reassessed. The mice were sacrificed and tissue was collected one 

week after the final insulin tolerance test. Please refer to Figures 7.1 and 7.2 for experimental 

design details, and Appendices A and B for detailed diet information.  

 

Figure 7.1: Experimental Study Timeline (GTT: glucose tolerance test; ITT: insulin tolerance 

test; BW: body weight measurement; TC: tissue collection) 

 

 

 

Figure 7.2: Experimental Study Design (HFD: high-fat diet; basal: vehicle injection pre-tissue 

collection; insulin: intraperitoneal injection of insulin pre-tissue collection; WT: wild-type 

mice; SLN KO: sarcolipin-null mice) 
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7.3 Glucose and Insulin Tolerance Tests 

 Glucose tolerance testing was performed following an overnight fast (16 hours) for 

both high-fat and chow fed animals. Venous blood samples (6 μL) were drawn from the tail 

and assessed for glucose using a blood glucometer (Accu-Chek Aviva, Roche Diagnostics) at 

0, 30, 60, and 120 minutes following a 1g/kg body weight intraperitoneal injection of 10% D-

glucose (Li et al., 2000). 

 Insulin tolerance testing was performed on both high-fat and chow fed animals one-

week following the glucose tolerance test. The animals were fasted for 4-hours prior to an 

intraperitoneal injection of insulin (Humulin, Eli Lilly, Toronto, CA) at a dose of 0.75U/kg 

body weight. Blood samples were drawn from the tail and assessed for glucose using a blood 

glucometer (Accu-Chek Aviva, Roche Diagnostics) at 0, 30, 60, and 120 minutes post injection 

(Li et al., 2000). 

 

7.4 Tissue Collection 

Upon completion of the 8-week high fat diet, the phosphorylation state of several key 

insulin signalling molecules in skeletal muscle was assessed as previously described (Fujii et 

al., 2004; Morino et al., 2008). Fasted (4-hours) KO mice and wildtype littermates (HFD and 

chow-fed mice) were anaesthetized using sodium pentobarbital (0.65 mg/kg body weight) and 

were subjected to an intraperitoneal injection of insulin (0.75 units/kg) or vehicle solution (Fig. 

7.2). Whole gastrocnemius muscle was excised from each leg 15-min post-injection and freeze 

clamped immediately using aluminum tongs pre-cooled in liquid nitrogen. Tissue samples 

were stored at -80
o
C until further analysis. Next, the epididymal/inguinal and retroperitoneal 

fat pads were surgically removed for determination of the adiposity index. 

 

7.5 Adiposity Index Calculation 

 The adiposity index was defined as the percentage that the epididymal/inguinal and 

retroperitoneal fat pads accounted for in relation to total body mass. The adiposity index was 

calculated as (Taylor and Phillips, 1996): 

1) Adiposity Index (%) = (sum of the fat pad masses) / body mass * 100  

 

 



27 
 

7.6 Skeletal Muscle Homogenization 

Frozen tissue samples (100 mg) were homogenized in a buffer consisting of (mM): 50  

Tris-HCl, 1 EGTA, 1 EDTA, 1% Triton X-100, 50 NaF, 5 sodium pyrophosphate, 10 sodium 

β-glycerol phosphate, 2 DTT, 1 sodium orthovanadate , 1 PMSF, and 10 μg/mL each of 

aprotinin, leupeptin, and pepstatin A. Protein content for each sample was determined using the 

Lowry protein method, as modified by Schacterle and Pollock (Schacterle & Pollock, 1973). 

 

7.7 Immunoblotting 

Muscle homogenate (IRS1 antibodies: 25 μg; phosphor-IRS1 antibodies: 30 μg; Akt 

antibodies: 6 μg) was separated by SDS-PAGE protocols (Laemmli, 1970) and transferred to 

polyvinylidene fluoride membranes (Roche Diagnostics, Mannheim, Germany). The 

polyvinylidene fluoride membranes were blocked for 1 hour at room temperature in Tris-

buffered saline with a 5% skim milk suspension, and subsequently incubated overnight at 4
o
C 

with antibodies for total (anti-IRS1 clone 4.2.2; Millipore), phospho-Tyr
628

 (anti-phospho-IRS1 

Tyr
628

; Millipore), and phospho-Ser
307

 (anti-phospho-IRS1 Ser
307 

clone 24.6.2; Millipore) IRS-

1, and total (anti-Akt 5G3; Cell Signaling) and phospho-Ser
473

 (anti-phospho-Akt Ser
473

 

587F11; Cell Signaling) Akt. After washing, the membranes were incubated with horseradish 

peroxidise-conjugated anti-mouse or anti-rabbit secondary antibody (Santa Cruz 

Biotechnology) for 1 hour at room temperature.  The blots were detected with an enhanced 

chemiluminescence kit (Amersham Pharmacia Biotech) using a bio-imaging system and 

densitometric analysis performed using the GeneSnap software (Syngene). Densitometric 

analysis was normalized to a control sample that was loaded onto each individual membrane to 

account for inter-membrane variability. 

 

7.8 Statistical Analysis 

Two-way ANOVAs were used to assess differences in body weight, fat pad weight, and 

the adiposity index between KO and WT mice in both HFD and chow-fed groups. Three-way 

ANOVAs were utilized to investigate differences in phosphorylation states of IRS1 and Akt 

from Western blot analysis between KO and WT mice in both diet groups.  Furthermore, three-

way ANOVAs with repeated measures were used to detect differences between the glucose and 

insulin tolerance test data of KO and WT mice at pre- and post-diet time points for different 
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times (0, 30, 60 and 120 min) for both diet groups. The significance level was set at 0.05, and
 

when appropriate, a Newman-Keuls post hoc test was used to compare
 
specific means. Trends 

in results will be mentioned when the significance value is less than 0.15. All values are 

reported as means ± standard error (SE). Sample sizes for the body and fat pad weight(s), 

adiposity index, and glucose and insulin tolerance test reflect the total number of mice in the 

chow fed or high fat fed groups (Fig. 7.2).  
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8.0 RESULTS 

8.1 Body Weight 

 Prior to the HFD, there were no differences in body weight (Fig. 8.1) between KO and 

WT mice (p>0.05). Moreover, no significant weight gain was observed in chow fed mice 

throughout the study (p>0.05). The HFD fed KO mice weighed significantly more than HFD 

fed WT mice at all time points during the 8-week period (p<0.001). Similarly, the HFD fed KO 

mice weighed significantly more than the standard chow fed control mice at all time points 

(p<0.001). The HFD fed WT mice weighed significantly more than chow fed WT mice at all 

time points following week 1 (p<0.01). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 8.1. Absolute Change in Body Weight during the course of the 8-week high-fat or 

chow-diet intervention. There was no difference between KO and WT mice pre-diet (p>0.05). 

There was no significant difference between post-diet chow-fed KO and WT mice. HFD fed 

KO and WT mice weighed significantly more than control mice (* p<0.01). Further, HFD fed 

KO weighed significantly more than HFD fed WT (# p<0.001). Values are means ± SE (n=12 

for WT and KO control; n=15 for WT and KO HFD). 
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8.2 Adiposity Measures 

 Ex vivo measures for differences in adiposity revealed a main effect in which KO mice 

had a significantly larger epididymal/inguinal fat pad weight than WT mice irrespective of diet 

(Fig. 8.2A) (p<0.05). Further, a main effect was observed where HFD fed mice (KO and WT 

combined) had a significantly greater epididymal/inguinal fat pad weight than standard chow 

fed mice (p<0.0001). It was also observed that the HFD fed KO and WT mice had significantly 

greater retroperitoneal fat pad weights (Fig. 8.2B) than their respective chow fed control mice 

(p<0.01). However, the HFD fed KO mice had a significantly greater retroperitoneal fat pad 

weight than the HFD WT mice (p<0.001). The calculation of the adiposity index (Fig. 8.3) 

revealed a main effect of genotype (KO > WT; p<0.05) and a main effect of diet (HFD > 

Chow; p<0.0001). There was no difference between chow fed KO and WT mice in 

epididymal/inguinal or retroperitoneal fat pad weights, or adiposity index (p>0.05). Adiposity 

index values for all mice were in line with previous reports regardless of diet (Taylor & 

Phillips, 1996). 

 

8.3 Glucose Tolerance Testing 

 Glucose tolerance testing of the standard chow fed mice showed no significant 

difference in plasma glucose measures at any time point tested (0, 30, 60, or 120 min) between 

KO and WT mice either pre or post the 8-week diet time period (Fig. 8.4; p>0.05). However, 

there was a main effect observed where post-HFD fed mice (Fig. 8.5) had elevated plasma 

glucose measures at all time points compared with pre-HFD fed mice (p<0.001). Additionally, 

post-HFD fed KO mice exhibited significantly higher plasma glucose levels at 30, 60, and 120 

minutes post glucose injection than post-HFD fed WT mice (p<0.001). Intraperitoneal 

injection of glucose caused a significant increase in plasma glucose concentration in both pre-

HFD and chow fed KO and WT (0 min<60<30; p<0.001), and post-HFD KO and WT mice (0 

min<120<60<30; p<0.001). 
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Figure 8.2. Adiposity measures for chow and HFD fed mice. (A) epididymal and inguinal 

fat pad weight; (B) retroperitoneal fat pad weight. (A) There is a main effect of genotype 

(KO > WT; p<0.05) and of diet (HFD > Chow; p<0.001). (B) * Significantly different than 

control (p<0.01). # Significantly different than HFD WT (p<0.001). Values are means ± SE 

(n=12 for WT and KO control; n=15 for WT and KO HFD). 
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Figure 8.4. Glucose tolerance test pre and post chow diet. There was a main effect of time 

(0<60<30 min; p<0.001). There were no significant differences observed in plasma glucose 

levels between pre- and post-chow fed mice, or SLN KO and WT mice (p>0.05). Values are 

means ± SE (n=12). 

 

Figure 8.3. Adiposity Index for chow and HFD fed mice. There is a main effect of genotype 

(KO > WT; p<0.05) and of diet (HFD > Chow; p<0.001). Values are means ± SE (n=12 for 

WT and KO control; n=15 for WT and KO HFD). 
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8.4 Insulin Tolerance Testing 

 There was a main effect of age noted in which the post-chow fed mice (KO and WT 

combined) had on average a greater absolute plasma glucose concentration (Fig. 8.6A) than 

pre-diet period mice (p<0.01). Nonetheless, there were no notable differences in absolute or 

relative (Fig. 8.6B) plasma glucose measures at any time point (0, 30, 60, or 120 minutes) 

during the insulin tolerance test between the standard chow fed KO or WT mice either pre- or 

post-diet period (p>0.05). There was no significant difference between KO and WT pre- or 

post-diet in the area under the curve (AUC; Fig. 8.7) for the absolute change in plasma glucose 

concentration during the insulin tolerance test (p>0.05). There was a main effect of time (0<30, 

60, and 120 min) following insulin injection (p<0.001). 

The HFD intervention resulted in a greater absolute fasting plasma glucose measure 

(Fig. 8.8A) for both post-HFD fed KO and WT mice compared to pre-HFD fed controls 

(p<0.001). Similarly, there was a main effect where on average the HFD fed mice (KO and WT 

combined) had an elevated absolute plasma glucose level during the course of the test than pre-

HFD and standard chow fed control mice (Fig. 8.8A; p<0.001). Additionally, the HFD elicited 

a main effect where the HFD-fed mice (KO and WT combined) had a lower relative change in 

the plasma glucose concentration (Fig. 8.8B) 30-minutes post-insulin compared to pre-HFD 

control mice (p<0.01). Interestingly, on average there was a higher plasma glucose 

concentration observed for the KO mice than the WT mice regardless of diet (Fig. 8.8A; 

p<0.05). However, there were no significant differences between KO and WT mice in the 

absolute or relative change of plasma glucose at any individual time point during the insulin 

tolerance test pre- or post-HFD (p>0.05). As seen with the chow fed mice, there were no 

significant differences between KO and WT pre- or post-diet in the AUC (Fig. 8.9) for the 

absolute change in plasma glucose concentration during the insulin tolerance test (p>0.05). 

There was a main effect of time (0<30, 60, and 120 min) following insulin injection (p<0.001).
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Figure 8.5. Glucose tolerance test pre and post high fat diet. There was a main effect of 

time (pre: 0<60<30 min; post: 0<120<60<30 min; p<0.001). High-fat fed mice had 

significantly greater plasma glucose levels at 30, 60, and 120 min than pre-diet mice (* 

p<0.001). HFD KO mice had greater plasma glucose levels at 30, 60, and 120 min than 

HFD WT mice following an intraperitoneal injection of glucose (# p<0.01). Values are 

means ± SE (n=15). 
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Figure 8.6. Insulin tolerance test pre- and post-chow diet. (A) absolute plasma glucose 

measure; (B) relative change in plasma glucose. A main effect was observed where post-diet 

mice had an elevated absolute plasma glucose measure on average compared to pre-diet 

mice (p<0.01). No significant difference KO versus WT (p>0.05). Main effect of time (0 < 

30, 60, & 120 min; p<0.001). Values are means ± SE (n=9). 
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Figure 8.7. AUC for the insulin tolerance test pre- and post-chow diet. (A) absolute 

change in plasma glucose; (B) area under the curve (AUC). There were no significant 

differences observed in AUC between KO and WT mice pre- or post-chow diet 

(p>0.05). Values are means ± SE (n=9). 
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Figure 8.8. Insulin tolerance test pre- and post-HFD. (A) absolute plasma glucose 

measure; (B) relative change in plasma glucose. (A) Fasting glucose was greater post-

HFD (post KO > pre KO; post WT > pre WT) than pre-diet controls (p<0.001). There 

was a main effect of genotype (KO > WT; p<0.05) and of diet (HFD > Control; 

p<0.001). (B) There was a main effect of diet (HFD > Control; p<0.01) at the 30-min 

time point. There were no significant differences observed in plasma glucose levels 

(A) or (B) between KO and WT mice pre- or post-chow diet (p>0.05). Main effect of 

time (0 < 30, 60, & 120 min; p<0.001). Values are means ± SE (n=13). 
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Figure 8.9. AUC for the insulin tolerance test pre- and post-HFD. (A) absolute change in 

plasma glucose; (B) area under the curve (AUC). There were no significant differences 

observed in AUC between KO and WT mice pre- or post-HFD diet (p>0.05). Values are 

means ± SE (n=13). 

B 
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8.5 Western Blot Analysis 

8.5.1 IRS1 Analysis 

 There was a main effect observed where the insulin treatment (KO and WT combined) 

produced a notable increase in the ratio of phosphorylated IRS1 tyr
628

 to total IRS1 protein 

(Fig. 8.10) compared to vehicle treated mice (p<0.001). Upon further analysis the standard 

chow fed control mice (KO and WT) exhibited a greater tyr
628

 phosphorylation of IRS1 after 

insulin treatment than HFD fed mice (p<0.02). However, there were no significant differences 

between KO and WT mice in total IRS1 protein expression (Fig. 8.10B) or IRS1 phospho-

tyr
628

 (Fig. 8.10C) regardless of the treatment (p>0.05). 

 Analysis of ser
307

 phosphorylation of IRS1 (Fig. 8.11) revealed a main effect for diet 

where there was a greater phospho-ser
307

 to total IRS1 ratio in the HFD fed mice (KO and WT) 

compared to the standard chow fed mice (p<0.03). There were no differences between KO and 

WT mice pre- or post-HFD (p>0.05). All values (means ± SE) were expressed as a ratio of 

phospho-residue to total protein normalized to the corresponding control group. 

 

8.5.2 Akt Analysis 

 Western blot analysis of Akt ser
473

 phosphorylation (Fig. 8.12C) detected no effect of 

insulin treatment regardless of diet (p>0.05). There was a non-significant trend noted where the 

HFD fed mice (KO and WT) exhibited a slightly greater expression of total Akt protein (Fig. 

8.12B) than chow fed mice (p=0.08).  

 A small non-specific band was detected immediately below the expected Akt ser
473

 

phosphorylated band (~60 kDa) on the Western blots for the anti-Akt phosho-ser
473

 antibody 

(Fig. 8.12A). Analysis of the unidentified band was performed due to the observation that a 

band was detectable in all insulin treatment mice and was absent in all non-insulin treated 

mice. Moreover, densitometric analysis of the non-specific band (Fig. 8.13A) revealed a 

significant increase in band density upon insulin stimulation in all mice (KO and WT) 

compared to non-insulin treated mice (p<0.001). Closer examination exposed a non-significant 

trend  for a 48% and 35% decrease in the non-specific band density post-HFD in insulin treated 

WT and KO mice, respectively, as compared to insulin treated chow fed mice (Fig. 8.13B; 

p=0.13). There were no differences between KO and WT mice (p>0.05). 
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Figure 8.10: Western blot analysis of IRS1 phospho-tyr
628

 pre- and post-HFD. (A) 

Western blot for anti-IRS phospho-tyr
628

; (B) total IRS1 expression; (C) phospho-

tyr
628

:total IRS. (B) There was no difference between KO and WT regardless of diet 

(p>0.05). (C) There was a main effect of insulin treatment (Ins > Non; p<0.001). * 

Significant difference compared to insulin treated Con (p<0.02). There was no difference 

between KO and WT. All values were normalized to the corresponding control group 

(means ± SE; tyr
628

: n=4/4 for Con WT; n=4/6 for Con KO; n=7/8 for HFD WT; n=6/6 

for HFD KO Non/Ins, respectively; total n=11 for Con WT; n=12 for Con KO; n=15 for 

HFD WT and KO). 
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Figure 8.11. Western blot analysis of IRS1 phospho-ser
307

 pre- and post-HFD. (A) 

Western blot for anti-IRS phospho-ser
307

; (B) phospho-ser
307

:total IRS. (B) There was a 

main effect of diet (HFD > Con; *p<0.03;). There was no difference between KO and WT 

(p>0.05). All values were expressed normalized to the corresponding control group 

(means ± SE; ser
307

: n=9 for Con WT; n=10 for Con KO; n=12 for HFD WT and KO). 
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Figure 8.12. Western blot analysis of Akt phospho-ser
473

 pre- and post-HFD. (A) Western 

blot for anti-Akt phospho-ser
473

; (B) total Akt protein expression; (C) phospho-

ser
473

:total Akt. (A) anti-Akt phospho-ser
473

 located at 60 kDa. There was a trend of diet 

where HFD fed mice exhibited a greater total Akt protein expression than chow fed mice 

(p=0.08). (C) No effect of insulin treatment (Non=Insulin) pre- or post-HFD (p>0.05). 

All values were normalized to the corresponding control group (means ± SE; n=6/5 for 

Con WT; n=6/6 for Con KO; n=7/8 for HFD WT and KO Non/Ins, respectively). 
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Figure 8.13. Western blot analysis of anti-Akt phospho-ser
473

 unidentified band pre- and 

post-HFD. (A) non-specific band of ~60 kDa; (B) insulin stimulated non-specific band 

pre- and post-HFD. (A) Main effect of insulin treatment (Ins>Non; p<0.001). (B) Main 

effect trend of diet (Con>HFD) following insulin stimulation (p=0.13). All values were 

normalized to the corresponding control group (means ± SE; n=6/5 for Con WT; n=6/6 

for Con KO; n=7/8 for HFD WT and KO Non/Ins, respectively). 
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9.0 DISCUSSION 

 The findings of the present study confirmed previous reports that KO mice are more 

susceptible to obesity and its related comorbidities than wildtype mice following an 8-week 

high fat diet (Sayer et al., 2008; Bal et al., 2009). More specifically, the current investigation 

found that SLN ablation predisposes the high-fat fed mice to greater gains in whole body and 

retroperitoneal fat pad weight, and more severe glucose intolerance than wildtype control mice 

as hypothesized. In contrast to the hypothesis, there was no difference in insulin sensitivity 

between KO and wildtype mice following the HFD treatment.  

In this study it was believed that the HFD intervention would lead to greater reductions 

in the phosphorylation of IRS1 tyr
628

 and Akt ser
473

, and a larger increase in IRS1 ser
307

 

phosphorylation in KO mice than control mice. Assessment of the insulin signalling cascade 

within skeletal muscle showed a reduction in the insulin stimulated phosphorylation of IRS1 

tyr
628

 with the expected corresponding increase in IRS1 ser
307

 phosphorylation in both KO and 

wildtype mice after the completion of the HFD. However, there was no difference between KO 

and wildtype mice which is in contrast to the hypotheses. Insulin treatment did not stimulate 

any measurable increase in Akt ser
473

 phosphorylation in either KO or control mice regardless 

of the diet intervention which may reflect technical problems with the assay or a limitation 

with intraperitoneal insulin injections (see 9.5 Limitations). The lack of difference in IRS1 

tyr
628

 phosphorylation between the genotypes suggests that the more pronounced glucose 

intolerance observed for the KO mice may be the result of an alternative abnormality within 

the glucose regulatory machinery of the KO mice. 

 

9.1 Assessment of whole body and fat pad weight(s) following an 8-week HFD 

 Following the completion of the 8-week HFD the KO mice displayed a greater 

susceptibility to obesity as SLN ablation lead to a 20% greater increase in weight gain than 

high-fat fed control mice which is similar to the weight gain disparity observed in traditional 

rodent models of obesity such as the Otsuka Long-Evans Tokushima fatty (OLETF) rat, and 

the Zucker Diabetic fatty (ZDF) rat (Shima et al., 1993; Etgen & Oldham, 2000; Zhoa et al., 

2008). The chronic weight gain was evident from the initial stages of the diet intervention as 

the KO mice gained significantly more weight at each time point starting with the first week of 

the diet. Upon closer examination ex vivo analysis of fat pad weights showcased the enhanced 
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lipogenic ability of the KO mice as the knockout mice had a larger adiposity index and fat pad 

weights, particularly the retroperitoneal fat pad, than wildtype mice. Interestingly, it appears 

that the disparity in energy balance between the genotypes is only evident in conjunction with 

the HFD as standard chow fed mice had no discrepancies in weight gain or adiposity. These 

findings raise an important issue concerning how expression of SLN can minimize the 

development of obesity. 

 Skeletal muscle has been suggested to be a principle contributor to basal metabolic rate 

(BMR) and therefore, total daily energy expenditure (Zurlo et al., 1990; Rolfe & Brown, 1997; 

Levine, 2003). There are several energy consuming processes found within muscle such as 

proton leak (i.e. UCP3), protein synthesis, the sodium-potassium pump, and SERCA; all of 

which contribute to the total energy expenditure of skeletal muscle (Rolfe & Brown, 1997). 

Findings from a recent study (Norris et al., 2009) suggest that the Ca
2+

 handling duties of 

SERCA may factor into the total energy expenditure of skeletal muscle to a greater extent than 

previously believed (Hasselbach & Oetliker, 1983; Clausen, Hardeveld, & Everts, 1991; Chinet 

et al., 1992; Dulloo, Decrouy, & Chinet, 1994). Directly inhibiting the Ca
2+

 pump with the 

highly specific SERCA inhibitor, cyclopiazonic acid (Goeger & Riley, 1989; Seidler et al., 

1989), lead to a 50% reduction of muscle oxygen consumption in both fast- and slow-twitch 

isolated whole muscle preparations during resting conditions (Norris et al., 2009). During 

periods of elevated physical activity the proportion of energy expenditure attributed to SERCA 

is proposed to further increase as the magnitude of the Ca
2+

-handling duties within the muscle 

cell intensifies (Zhang et al., 2006). Taken together these findings suggest an important role of 

SERCA in skeletal muscle energy expenditure, and thus, total daily energy expenditure. 

Potentially any alteration to the efficiency of Ca
2+

 pumping by SERCA would have 

dramatic implications on the energy consumption of skeletal muscle. It could be assumed that 

the presence of SLN would influence the energy demands of Ca
2+

 pumping. In support of this 

notion, the co-expression of SLN and SERCA pumps in reconstituted vesicles increases the 

amount of heat produced in parallel to lowering the accumulation of Ca
2+

 inside the vesicles 

(Smith et al., 2002; Mall et al., 2006) which indicates the presence of an inefficient, futile cycle 

of Ca
2+

 transport. In other words, SLN uncouples ATP hydrolysis from the Ca
2+

 transport of 

SERCA pumps (Bombardier et al., 2008). Similarly, soleus muscle from KO mice had an 

approximately 10% lower contribution of SERCA towards the total oxygen consumption (i.e. 
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energy consumption) of skeletal muscle than wildtype mice (unpublished). The influence of the 

SLN:SERCA relationship towards total skeletal muscle energy expenditure appears almost 

insignificant considering the small overall impact that SLN:SERCA would have in relation to 

whole body energy expenditure. However, Butler and Kozak (2010) described a scenario 

where a discrepancy of approximately 5% in daily energy expenditure could result in 10-gram 

difference in the body weight between mice over the course of only a few months, which is in 

fact quite similar to the results from the present investigation. In other words, even a small 

disparity in energy balance can result in significant changes to body composition. Therefore, 

under conditions of severe energy distress, such as the exposure to a HFD, the ATP-sparing 

effect that SLN ablation has will predispose mice to diet-induced obesity.  

 

9.2 Evaluation of glucose tolerance in KO mice 

 Standard chow fed KO mice maintained a regular glucose tolerance response to an 

intraperitoneal glucose load as previously described (Sayer et al., 2008). It is not until the mice 

are exposed to the HFD that a dramatic discrepancy in the glucose handling capabilities of the 

mice is observed. As expected, both the KO and wildtype mice exhibit a marked impairment in 

glucose tolerance following the HFD; however, the KO mice were severely more glucose 

intolerant than littermate controls at all time points during the 2-hour glucose tolerance test 

which suggests that SLN ablation has a role in glucose homeostasis. The OLETF and ob/ob 

rodent models of spontaneous obesity and diabetes all portray similar impairments in plasma 

glucose during a 2-hour glucose tolerance test as the HFD KO mice (Shima et al., 1993; Miller 

et al., 2008). 

 One possible explanation for the impaired glucose tolerance in the KO mice is that the 

energy imbalance and subsequent gain in adiposity, produced by the ablation of SLN, leads to 

an intracellular environment that obstructs the skeletal muscle GLUT4 mediated uptake of 

glucose from systemic circulation as described in typical cases of insulin resistance (Shulman, 

2000; Morino, Petersen, & Shulman, 2006). Interestingly, KO mice display elevated plasma 

NEFA (unpublished). Typically, the spillover of NEFAs from adipose tissue stores into 

circulation results in the accumulation of intramyocellular lipid derivates, such as DAGs and 

ceramides, which produce the onset of insulin resistance due to the reduced activation of the 

insulin signalling cascade (Morino, Petersen, & Shulman, 2006; Timmers, Schrauwen, & de 
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Vogel, 2007; Kraegen & Cooney, 2008). There is a subsequent decrease in the translocation of 

GLUT4 to the cell surface which dramatically reduces glucose uptake (Shulman, 2000; 

Kraegen & Cooney, 2008). These findings formed the basis for examining insulin signalling in 

skeletal muscle in HFD KO mice in the current study. 

  

9.3 Analysis of whole body insulin sensitivity in HFD fed KO mice 

 Unexpectedly, consumption of the HFD did not reduce the whole body insulin 

sensitivity in either KO or WT mice during the insulin tolerance test as measured by the AUC 

(Fig. 8.9). These results suggest that reductions in whole body insulin sensitivity may not be 

responsible for the observed glucose intolerance in either genotype. A common characteristic 

in the onset of T2DM is the continual deterioration in the ability of the peripheral tissues to 

adequately respond to insulin (Morino, Petersen, & Shulman, 2006; Karlsson & Zierath, 2007). 

Thus, it is surprising that the current study did not observe any impairment of insulin 

sensitivity in either HFD fed KO or WT mice. However, the insulin tolerance test is not 

without its limitations (Borai et al., 2007). The insulin tolerance test cannot decipher the site of 

the impairment in insulin action; namely, the test is unable to differentiate between hepatic or 

peripheral insulin resistance (Borai et al., 2007). Moreover, the increase of plasma 

catecholamine, glucagon, cortisol, and growth hormone levels is the classic physiological 

response to hypoglycaemia, all of which antagonize the insulin response and may disrupt the 

results of the tolerance test (Borai et al., 2007). Thus, recognizing the limitations of the insulin 

tolerance test it would still be plausible that skeletal muscle insulin sensitivity may be reduced 

in KO mice due to greater impairment of skeletal muscle insulin signalling. 
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9.4 Effect of the HFD on the insulin signalling pathway of KO skeletal muscle  

 9.4.1 Phosphorylation of IRS1 tyr
628

 

 In agreement with previous reports, the standard chow fed mice (KO and WT) 

exhibited an approximate 3-fold increase in IRS1 tyr
628

 phosphorylation upon insulin 

stimulation (Griffen et al., 1999; Samuel et al., 2004; Delibegovic et al., 2007; Prada et al., 

2009; Wang et al., 2009). Following the HFD there was a comparable reduction in the 

activation of IRS1 in both KO and wildtype mice as assessed by the amount of tyr
628

 

phosphorylation. IRS1 tyr
628

 phosphorylation post-HFD was reduced to a similar extent as 

previously seen in ob/ob and diet-induced obese C57Bl mice (Saad et al., 1992; Hong et al., 

2009; Prada et al., 2005; Prada et al., 2009).   

 The fact that IRS1 tyr
628

 phosphorylation is impaired after exposure to the HFD does 

support the notion that altered insulin signalling in skeletal muscle is contributing to the 

marked glucose intolerance in both KO and wildtype mice. It has been well documented that 

insufficient activation of IRS1 is associated with decreased PI3K recruitment, Akt 

phosphorylation, and GLUT4 mediated glucose uptake (Karlsson & Zierath, 2007).  

  

9.4.2 Phosphorylation of Akt ser
473

 

 The assessment of the downstream intermediate Akt did not present the expected 

results as insulin did not stimulate Akt ser
473

 phosphorylation in either the wildtype or KO 

mice pre- or post-HFD. It is possible that the timing of the insulin treatment and tissue 

collection was not optimal to capture the true physiological functionality of the Akt molecule. 

However, Morino et al. (2008) reported an 8-fold increase of Akt ser
473

 phosphorylation in 

chow fed wildtype C57Bl/6J mice 15-minutes post-intraperitoneal insulin injection; HFD-fed 

wildtype mice exhibited an approximate 60% decrease in Akt activation compared to controls 

(Morino et al., 2008).  

 The documentation associated with the anti-Akt phospho-ser
473

 antibody asserts that the 

phospho-ser
473

 densitometric band should be detected at approximately 60 kDa as a thick dark 

band. As aforementioned, analysis of this band revealed no effect of insulin on Akt ser
473

 

phosphorylation (Fig. 8.12C). However, a non-specific (unidentified) insulin sensitive band 

was located directly below the ser
473

 band on the Western blot for anti-Akt phospho-ser
473

 (Fig. 

8.12A). Densitometric analysis of the unidentified band showed a substantial increase in 
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phosphorylation following insulin stimulation in all mice tested pre- and post-HFD. In 

agreement with the literature, there was a 48% and 35% decrease in phosphorylation in HFD-

fed wildtype and KO mice, respectively, compared to insulin stimulated chow fed controls 

(Prada et al., 2005; Zhou et al., 2007; Morino et al., 2008). Besides the noticeable trend in the 

data there is no evidence to suggest that the unidentified band is in fact the phospho-ser
473

 band 

for Akt. It is reasonable to propose that the non-specific band may be a degraded fraction of 

Akt, or perhaps the band is simply an unidentified alternative molecule of similar structure to 

Akt phosphorylated at ser
473

. Nonetheless, it would be of interest to identify the structure of the 

molecule and determine whether the molecule is integral to insulin signalling in skeletal 

muscle. 

 

9.4.3 Phosphorylation of IRS1 ser
307

 

 The HFD initiated an approximate 2.6 fold increase in IRS1 ser
307

 phosphorylation than 

chow fed controls similar to previous accounts of HFD-induced ser
307

 phosphorylation (Prada 

et al., 2005; Adochio et al., 2009). However, there was no significant difference observed 

between the KO and wildtype mice. As the intramyocellular concentration of lipid metabolites 

(e.g. DAGs, ceramides) increases during obesity, there is a measurable increase in the 

activation of PKCθ which has been shown to have detrimental effects on the viability of the 

insulin signalling pathway (Ravichandran et al., 2000; Schmitz-Peiffer, 2000; Morino, 

Petersen, & Shulman, 2006).  Namely, PKCθ phosphorylates several serine residues on both 

the insulin receptor and IRS1 substrates (near the tyrosine binding domain) (Karasik et al., 

1990; Paz et al., 1997; Aguirre et al., 2002; Liu et al., 2004). The ensuing decrease in IR/IRS1 

binding prohibits the expected insulin-stimulated tyrosine phosphorylation of IRS1 and 

activation of downstream signalling intermediates (Morino, Petersen, & Shulman, 2006).  The 

consequence of the insulin resistance is a decrease in glucose uptake and the inability to 

effectively manage systemic glucose homeostasis (Morino, Petersen, & Shulman, 2006). The 

observed increase in IRS1 ser
307

 phosphorylation provides a plausible mechanism for the 

reduced phosphorylation of IRS1 tyr
628

 and related glucose intolerance in both KO and WT 

mice. The lack of difference in the degree of IRS1 activation post-HFD between the genotypes 

suggests that additional factors must negatively influence systemic glucose homeostasis in KO 

mice. 
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9.5 Proposed hypothesis for severe glucose intolerance in HFD fed KO mice 

Another possibility for the severe glucose intolerance observed in the HFD fed KO 

mice could originate from a deficiency in insulin secretion due to a malfunction in the insulin-

releasing machinery of the pancreas (Guillausseau et al., 2008). In healthy islets, β-cell 

depolarization initiates the rapid entry of extracellular Ca
2+

 into the β-cell which promotes the 

exocytosis of insulin containing vesicles to the cell surface for the release of insulin into 

circulation (MacDonald, Joseph, & Rorsman, 2005). Insulin release is discontinued upon 

cellular repolarization and Ca
2+

 uptake into the endoplasmic reticulum by SERCA2b and 

SERCA3 (Borge et al., 2002). Pancreatic β-cells possess a positive feedback loop where 

insulin acts on the β-cells to recruit IRS1 to directly interact and inhibit SERCA to prevent 

Ca
2+

 uptake and prolong insulin release (Borge et al., 2002). SLN, therefore, may play an 

intimate role in the maintenance of insulin release as SLN is a known inhibitor of SERCA Ca
2+

 

transport (Odermatt et al., 1998; Asahi et al., 2002; Smith et al., 2002), and SLN mRNA has 

been identified in high quantities in the pancreas (European Molecular Biology Laboratory-

European Bioinformatics Institute EMBL-EBI, 2010). Preliminary data on isolated β-cell islets 

from chow fed KO mice indicate that there is no difference in glucose-stimulated insulin 

secretion compared to control mice (unpublished data). This should not be surprising as the 

chow fed mice exhibit no measurable difference in glucose tolerance. Further investigation on 

islet insulin secretion from HFD fed mice is warranted as KO mice may be more susceptible to 

diet-induced insulin secretion deficiencies which could contribute to the onset of glucose 

intolerance in HFD fed KO mice. 
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9.6 Limitations 

 One of the limitations of the current investigation centers upon the use of the insulin 

tolerance test to assess the whole body insulin sensitivity of the mice. The insulin tolerance test 

is associated with several weaknesses (Borai et al., 2007); namely, the physiological response 

to the insulin-induced hypoglycaemia including an increase in plasma catecholamines, 

glucagon, cortisol, and growth hormone, all of which may interfere with the interpretation of 

the test (Borai et al., 2007). Moreover, the insulin tolerance test cannot differeniate between 

hepatic or skeletal muscle insulin resistance (Borai et al., 2007). The euglycemic-

hyperinsulinemic clamp is the gold standard method for assessing insulin resistance; however, 

clamp studies are expensive and require specialized expertise (DeFronzo, Tobin, & Andres, 

1979; Borai et al., 2007). Similarly, the concentration of the intraperitoneal injection of insulin 

may elicit a maximal insulin-induced glucose uptake and may mask potential differences in 

insulin sensitivity or activation of the insulin signalling pathway. A lower dose of insulin could 

expose discrepancies in the insulin sensitivity of the mice. 

 Several previous publications have incubated isolated muscle preparations with insulin 

instead of utilizing the intraperitoneal injection model (Alkhateeb et al., 2009; Mullen et al., 

2009). Incubating isolated muscle preparations allows for a tighter control of insulin dosage 

(i.e. direct delivery to the muscle), and also avoids the confounding whole body effects of 

insulin and hypoglycaemia as previously mentioned (Borai et al., 2007), and thus allowing for 

a direct assessment of the insulin signalling pathway. However, the model employed in the 

current investigation does provide a representation of the whole body physiological response of 

glucose handling and skeletal muscle insulin signalling in the KO mice. One technique to 

improve the current methodology would be to collect the muscle sample during an euglycemic-

hyperinsulinemic clamp, thus eliminating the insulin injection issues as well as providing 

information on skeletal muscle glucose disposal rate, and plasma concentrations of glucose and 

insulin (Adochio et al., 2009). 

 Another limitation of the present study was the lack of any measurable Akt ser
473

 

phosphorylation upon insulin stimulation. It is possible that the timing between the insulin 

injection and tissue collection was not optimal for detection of Akt ser
473

 phosphorylation. The 

current investigation did not assess the plasma glucose concentration at the 15-minute mark 

during the insulin tolerance test; therefore, it is not possible to confidently conclude that 
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GLUT4 translocation and glucose uptake were not stimulated at this time point. Nonetheless, 

Morino et al. (2008) observed an approximate 8-fold increase in Akt ser
473

 phosphorylation in 

chow fed mice 15-minutes post insulin injection. Perhaps the assessment of insulin signalling, 

specifically Akt phosphorylation, in a highly oxidative skeletal muscle such as red 

gastrocnemius muscle instead of the whole gastrocnemius muscle collected in the present study 

would elicit a greater response as red oxidative muscle is more susceptible to diet-induced 

insulin resistance than white non-oxidative muscle (Wilkes et al., 1998). Also, red skeletal 

muscle exhibits a greater expression of SLN than white skeletal muscle (Babu et al., 2007b); 

therefore, the effect of SLN may be more evident in oxidative tissue. 

 One of the major limitations in the present investigation was the lack of a direct 

measure of GLUT4 translocation or glucose uptake. Skeletal muscle is responsible for the 

majority of insulin-stimulated glucose disposal (DeFronzo et al., 1981; Shulman et al., 1990), it 

is possible that more pronounced glucose intolerance in the HFD fed KO mice originates from 

an impairment in the glucose uptake capabilities of the mice. 
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10.0 CONCLUSION 

 The KO mice exhibited a greater HFD-induced increase in body and retroperitoneal fat 

pad weight, and displayed more pronounced glucose intolerance than HFD fed control mice. 

The insulin tolerance test did not reveal any measurable impairment of whole body insulin 

sensitivity in either KO or WT mice following the HFD. However, there was a significant 

reduction in the phosphorylation of IRS1 tyr
628

 in both HFD fed KO and WT mice. IRS1 ser
307

 

phosphorylation was increased in both genotypes after the completion of the 8-week HFD 

which suggests a plausible mechanism for the reduced IRS1 tyrosine phosphorylation. In 

contrast to the insulin tolerance test, the Western blot data suggests that there is similar 

impairment in the activation of the skeletal muscle insulin signalling pathway in both 

genotypes. However, the results do not clarify as to why the KO mice have a dramatically 

reduced response during the glucose tolerance test. 

 The HFD fed KO mouse model exhibits similar changes in weight gain, glucose 

intolerance, and phosphorylation of IRS1 tyr
628

 and ser
307

 as the currently employed OLETF, 

ZDF, and ob/ob rodent models of diabetes (Saad et al., 1992; Shima et al., 1993; Etgen & 

Oldham, 2000; Prada et al., 2005; Miller et al., 2008; Zhoa et al., 2008; et al., 2009). Also, the 

blood profile of HFD fed KO mice (Bal et al., 2009) follows the typical disease progression for 

diet-induced obesity and diabetes (Alberti & Zimmet, 1998; Karlsson & Zierath, 2007). 

Therefore, the current investigation supports the notion that the HFD fed KO mouse is a viable 

and novel model of diet-induced obesity and Type II diabetes mellitus. 
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11.0 FUTURE DIRECTIONS 

 The primary goal of future investigations on the KO mouse model should focus upon 

further characterizing the mouse as a suitable model for T2DM. Specifically, the 

intramyocellular lipid profile, and the functionality of GLUT4 vesicle translocation and 

glucose uptake should be assessed in the KO mice following consumption of a HFD since 

abnormalities of these measures are classic features of diabetes (Karlsson & Zierath, 2007). 

Additionally, examination of pancreatic β-cell, hepatic, and adipose tissue function following 

the HFD intervention may provide useful insight into the greater glucose intolerance observed 

in the KO mice. Furthermore, the greater gain in fat mass observed for the KO mice may lead 

to abnormalities in the regulation of various adipokines, particularly leptin, adiponectin and 

TNFα, which have been associated with obesity and impairments of glucose and fat oxidation, 

and glucose uptake in skeletal muscle (Dyck et al., 2006). 

KO mice have been shown to have a higher sub-maximal rate of oxygen consumption 

than wildtype mice during treadmill running (Norris et al., 2008). This disparity should also be 

exploited via free access to running wheels as SLN should exhibit a greater influence during 

periods of high SERCA activity, such as during physical activity (i.e. elevated contraction-

relaxation cycling in skeletal muscle). Chronic exposure to this environment may potentially 

exacerbate the differences in weight gain observed between HFD fed KO and control mice, 

which should result in significantly greater metabolism in the wildtype mice and hence even 

lower susceptibility to obesity compared to KO mice. 

Another avenue of interest to be examined is the overexpression of SLN in skeletal 

muscle and its influence on metabolic rate and diet-induced obesity. It will be important to 

determine the optimal level of SLN expression in skeletal muscle as overexpression may alter 

the functional capacity of the skeletal muscles at the cost of an elevated metabolic rate.   
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