
Abstract

This thesis considers the entire automated speech recognition process and presents a standard-

ised approach to LVCSR experimentation with HMMs. It also discusses various approaches to

speaker adaptation such as MLLR and multiscale, and presents experimental results for cross-task

speaker adaptation. An analysis of training parameters and data su�ciency for reasonable system

performance estimates are also included.

It is found that Maximum Likelihood Linear Regression (MLLR) supervised adaptation can

result in 6% reduction (absolute) in word error rate given only one minute of adaptation data,

as compared with an unadapted model set trained on a di�erent task. The unadapted system

performed at 24% WER and the adapted system at 18% WER. This is achieved with only 4 to 7

adaptation classes per speaker, as generated from a regression tree.
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Chapter 1

Introduction

This thesis reviews the speech recognition problem and presents the current alternatives available

for adaptation in Automatic Speech Recognition (ASR) systems. Recognition experiments are

performed using Switchboard and Macrophone corpus'. A systematic experimental methodology

is presented and applied to cross-task recognition.

There are four general goals for this dissertation: 1) provide a conceptual background of the

�eld of speech processing, and speech recognition speci�cally; 2) provide a theoretical background

for adaptation techniques applied to parametric acoustic modeling; 3) present and discuss exper-

imental results for cross task adaptation; and, 4) establish a baseline experimental approach for

ASR research.

1.1 Objectives of ASR

Speech recognition aims to provide a natural and e�cient mode of interface for transferring

information from humans to computers. In many ways it is felt that speech is the most natural

form of communication for humans, and therefore it is desirable to use this natural mode when

communicating with automated devices. Currently, the keyboard and mouse are the primary

forms of input to a computer, and a monitor and printer are the primary forms of output. While

these devices have their advantages in terms of lack of ambiguity, the physical space they occupy

limits their use. A speech interface would reduce the physical size of the interface package to a

1



CHAPTER 1. INTRODUCTION 2

microphone and speaker. Current systems are able to perform speaker dependent recognition in

a controlled environment to very high degrees of accuracy and therefore usability, but the goal of

speaker independent recognition and robustness to environmental noise or variation in recording

quality has yet to be accomplished.

The basic measure of system performance is word error rate (WER) which combines deletions,

substitutions, and insertions. The best speaker dependent systems such as IBM Via Voice or

Dragon Naturally Speaking provide less than 1% WER once trained for a particular speaker,

with a standard accent, in a good recording environment and with a high quality microphone and

digital sampling rate. In comparison, the benchmark of general continuous conversation speech

recognition in a speaker independent environment is the Switchboard corpus for which results

lower than 40% WER have yet to be achieved.[7] It is generally considered that performance

of better than 5% WER is required for a system to be useful, otherwise the e�ort required for

correcting errors out weighs the bene�ts. For common usage, it is believed that performance

better than 1% WER is required.

The continuing process of experimentation and re�nement of ASR systems will hopefully be

able to produce human or super-human recognition systems in time. The following is a list of the

characteristics of an ideal ASR system:

� speaker independent (rapid adaptation, speaker recognition, and gender detection)

� language independent (language recognition)

� rate independent

� resilient to noise (noise rejection, or �ltering)

� correct inference from ambiguity (e.g. you're vs. your)

� stream selection (multiple simultaneous speakers or multipath)

� intelligent (able to learn new grammar, language, semantics, syntax, dialect)

While current systems are functional, they lack most of the ideal characteristics listed above.

Research systems which process acoustical data o�-line allow theoretically unlimited computing

resource to tackle the ASR problem and do not perform better than 70% correct when processing
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conversational speech in a speaker independent (SI) system even with a high SNR. While this

has discouraged researchers, commercial speaker dependent (SD) systems are able to achieve 99%

accuracy in a favourable recording environment with a good quality microphone and a "standard"

dialect of the language for which the system is intended. This suggests the weakness lies in the

speaker independent model, rather than lack of computing power.

1.2 Acoustic Adaptation

A current area of great interest is the adaptation of acoustic models. It is hoped that adaptation

of various forms can compensate for the poor performance of current SI ASR systems which

generally use static stochastic models for the acoustics (i.e. a �xed statistical distribution for each

model). Such adaptation may be able to take into account changes in environment, noise, dialect,

and speaker.

This thesis speci�cally reviews Maximum Likelihood Linear Regression (MLLR), and Multi-

scale (MS) adaptation, and experimental results are presented for cross-task MLLR adaptation.

Adaptation has generally been applied for speaker adaptation, and task adaptation is a new area

with di�erent problems associated with it.

Speci�cally, the 10hr subset of the Switchboard corpus is used as the base training model, with

recognition (testing) performed using the Macrophone corpus. Various approaches are used for

adapting the Switchboard models to maximize recognition performance on the Macrophone data.

1.3 Overview

This thesis discusses the current state of the art Automatic Speech Recognition (ASR) technology,

and presents experimental results for speaker independent Large Vocabulary Continuous Speech

Recognition (LVCSR), currently the most demanding task in ASR. Chapter 1 provides a brief

background and overview of the contents. Chapters 2 presents a conceptual background and

history of Speech Processing, and the various approaches to ASR. Chapter 3 present a theoret-

ical background in Hidden Markov Models (HMMs) and model adaptation techniques. Chapter

4 presents and discusses experimental results for cross-task recognition using Switchboard and
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Macrophone. Chapter 5 presents and defends a particular standardized experimental method-

ology for the development of HMM-based ASR systems. Chapter 6 summarizes experimental

�ndings, and discusses future research work in ASR and adaptation.



Chapter 2

A Background In Speech

Processing

2.1 The Goal

The exponential decrease in computing cost coupled with the exponential increase in computing

power has made continuous speech recognition systems both possible and a�ordable. The next

several years will likely see rapid growth in the demand for ASR systems and possibly a paradigm

shift in computing interaction to speech centered interfaces. This shift may be the most dramatic

yet in the chain that has gone from the punch-card, to the keyboard, to the mouse, and now to

voice in improving the mode by which humans interact with computers.

Broadly speaking, speech is a means for communicating information. The human brain makes

use of the articulatory system to communicate ideas through acoustic waves. These acoustic waves

can then be transmitted by various means to other people, allowing the auditory system to then

decode these waves allowing the receipt of the original idea. Possessing a complex communication

system which is learned and not genetic and the ability to receive and assimilate complex ideas

through that system are critical parts of human learning and therefore cognition. An autonomous

model of the human communication system is, therefore, a step towards understanding human

cognition.

5
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Furthermore, developing an autonomous (i.e. computer based) equivalent to the human com-

munication system provides the opportunity for an improved Human-Computer Interface (HCI).

Many computerized systems are designed with the objective of providing tools to either increase

productivity of the users or to improve their accessibility to information. The progression from

punch-card, to keyboard, to mouse have provided increasingly natural interface modes. The ability

to provide speech as an alternative for HCI would be a great jump in naturalizing interfaces.[29]

Although reproducing the human communication system does not imply an understanding of

the process it does provide insight into the nuances and complexities of the process and therefore

a greater understanding of language, learning, and cognition. E�ective models of human com-

munication can be used to improve HCI through both speech generation for output and speech

recognition for input.

2.2 Fundamental Equation of Speech Recognition

The problem of speech recognition has been succinctly described by a single equation which

captures all the elements of a typical speech recognition system. Equation 2.1 implies a numeric

parameterization of acoustic information, a prior model for the acoustics, and a prior model for

the language.

O = o1; o2; : : : ; oT

argimax[P (wijO)]

P (wijO) =
P (Ojwi)�P (wi)

P (O)

(2.1)

In equation 2.1 O represents a sequence of T observations, while argimax speci�es the selection

of word i as the highest probability word given the observation sequence O. This equation can be

rearranged by Bayes Rule such that it is a combination of the acoustic model P (Ojwi) and the

language model P (wi). The probability of the acoustic sequence does not need to be computed

since it is simply a scaling factor, independent of the maximization function to select the most

probable word wi;best.[1]

The acoustic model structure is not speci�ed by this equation, but is a stochastic function which

will provide a probability of the observation sequence having been generated by it. Likewise, the
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language model speci�es the likelihood of the word occurring. This particular formulation of

the fundamental equation of speech recognition takes into account only single word recognition.

Multiword recognition would likely include a language model which accounted for the context

of the word, while the acoustic model would be faced with the problem of determining word

boundaries. Further discussion of language models is limited to that contained later in this

chapter, while issues around acoustic models are covered more fully in chapter 3.

2.3 Acoustic Models

Concepts of acoustic resonance have been recognized for thousands of years as is attested to by

the existence of musical instruments throughout human civilization. The same laws of physics

which describe tonal patterns in musical instruments also apply to human acoustics. Generally

a computational model of the vocal tract shows a circuit like model with a driving source (the

diaphragm and lungs), and a Y circuit where the pharyngeal cavity branches into the nasal and

oral cavities. Impedance variations due to changing cavity size create variations in the base

standing wave which is produced between either a �xed node at the source and an open or closed

node at the lips or nostrils.

This driven impedance circuit model with a standing wave is identical to transmission line

models for wave propagation through electrical circuits. Electrical models can be applied directly

to the acoustic model to determine energy transfer functions and predict resulting output wave

characteristics in terms of frequency and amplitude. A further bene�t of this representation of

the articulation process is in the �eld of speech generation. The transmission model of the vocal

tract can be represented using a transfer function. The various parameters of the transfer function

can be associated with sound speci�c characteristics or speaker speci�c characteristics, as well as

variations in the driving function which is the source wave produced by the lungs, diaphragm,

and vocal chords.[9] This model attempts to quantize the e�ects of air mass dynamics, friction,

tissue and compressibility.

Figure 2.1 illustrates a schematic of the speech production system along with an equivalent

T circuit model for each of the major resonance cavities. In [9] Flanagan attributes the four

components R, G, C, and L to speci�c physical phenomena relating to the propagation of an air

mass representing a longitudinal wave moving through the vocal tract. The calculations for these
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Figure 2.1: Schematic and circuit model of the vocal tract [9]

quantities is derived from quantities such as thermal conductivity, viscosity coe�cients, and air

density. L refers to the acoustic inductance of the moving air mass, since the air mass will create

a suction e�ect drawing air behind it as it passes through the vocal tract. C refers to the acoustic

capacitance which is the stored energy as the air mass experiences compression and deation. R

is the frictional losses of the air mass through viscosity with the esh walls of the vocal tract. G

represents the power loss through heat conduction at the walls.

Research during the 1960s and 1970s aimed at achieving advances in speech recognition through

a better understanding of the speech system. This kind of circuit model, while useful for ana-

lytic speech production models and a general understanding of human physiology, have not been

bene�cial in the task of automated recognition.

This class of speech production model is called the source-�lter model, since it describes two

basic components: the source driving function u(t); and a transfer function h(t). Together these

produce the perceived output given by the equation u(t) 
 h(t) = y(t). This model has several

advantages, one being the all-pole model simpli�cation. Given that the transfer function of a

lossless tube can be described by an all-pole model it is possible to approximate the vocal tract

by:
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H(z) =
1

1�
Pp

i=1 aiz
�i

(2.2)

In equation 2.2, z�i represents the delay operator. The coe�cients ai can be estimated by

minimum mean squared error (MMSE) techniques and these values form what are known as the

Linear Predictive Code (LPC) of the speech signal. This all-pole parameterization uses a �xed

number p of previous samples to �nd the best �t for an auto-regressive predictor. While this

technique has been popular for sometime, it has signi�cant shortcomings when coping with nasal

or fricative sounds { one does not �t an all-pole assumption, and the other has the driving source

at the output (lips) rather than lungs. As well, LPC is sensitive to pitch rate and noise. These

are key reasons MFCC is now the preferred parameterization format for speech processing.

2.4 Signal Parameterization

Early approaches of parameterizing speech through the use of binned frequency components has

evolved into the mel frequency cepstrum coe�cients (MFCC). This is the most popular form of

parameterization for speech recognition as it seems to provide good separation of spectral acoustic

components, noise rejection, and a degree of normalization. The mel scale, which is used for

determining the frequency bin size and spacing, takes into account the nonlinear sensitivity of the

human ear to various frequency components, and the spectral distribution of speech information.

In simple terms, the human ear produces a linear response up to 1 kHz and a logarithmic response

beyond this.

m = 1125 � log(0:0016 � f + 1) (2.3)

Equation 2.3 is the mapping of frequency to mel scale. Coe�cients are generated by ap-

proximately uniform sized bins from this mel scale. An advantage of this approach is that it

allows narrow band representation of LF components which is where harmonics (formants) are

usually found, while still retaining good temporal resolution at HF so short acoustic events can

be detected (such as bursts). Figure 2.2 shows a typical binning for an 11 parameter mel scale

�lter.
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p1 p2 p3 p4  p5  p6    p7     p8      p9      p10        p11

(11 parameter)
Filter Bank

frequency

inverse FFTLogfilter bankFFTWAV

Figure 2.2: Bin �lters using mel scale

The cepstrum is a spectral transformation on the acoustic vector (the name derives from a

rearrangement of the word spectrum) generated by an FFT, which takes the log of the frequency

and then an inverse FFT. If human speech is thought to consist of several independent time

varying components each convoluted together then the inverse FFT of the log of the frequency

domain signal amounts to a deconvolution such that the various components add together in the

cepstrum domain. MFCC parameterization was used in all experiments discussed in this thesis.

Furthermore, common practice is to use both windowing and signal pre-emphasis in the pa-

rameterization process to improve the signal representation. The objective is to retain as much

acoustic information as possible from the original time varying speech signal. To avoid high fre-

quency noise resulting from square (i.e. cuto�) windowing before the FFT, a Hamming window

is used. This window has a peak at the mid point and conserves the overall signal power, while

tapering the signal strength to zero at the edges. The pre-emphasis process boosts the high fre-

quency signal since most of the spectral power is found at low frequencies and this will bias the

recognition process in favor of matching LF coe�cients over HF ones, even though experience

shows that substantial acoustic information is contained in the relatively weak HF signal.

Using a sample rate of 10 ms (100 Hz) provides fairly stationary parameterization, and to

improve signal estimates the samples are calculated from overlapped windows of size 20-30 ms.

Since FFTs are typically required in this process the base signal sampling rate in the time domain

needs to be at least 8 kHz, if not more. This is to satisfy the Nyquist criterion of twice the signal

bandwidth, meaning that 8kHz would provide up to 4 kHz bandwidth. While most of the relevant

acoustic information in adult speech is contained below 4 kHz, the human audible range reaches

as high as 20 kHz, implying that up to 40 kHz sample rate may be required to capture information

at all frequencies.

In summary, the parameterization of a speech amplitude signal (one dimensional) is trans-

formed to a vector representation which contains both temporal and frequency information through
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the use of a moving window FFT, coe�cient binning, and pre-emphasis. These vectors typically

represent 10ms of speech, which has been shown to be su�ciently short for the acoustics to be

considered stationary. Energy and �rst and second derivatives of the coe�cients may also be

included in the transformed sample vector to provide additional signal information pertaining to

the volume and acoustic dynamics.

2.5 Acoustic Units

Extensive research into human speech by phonologists has produced the International Phonetic

Association (IPA) alphabet which represents most sounds which can be produced by humans

in terms of phonemes. These are taken to be the smallest acoustic unit of speech. The actual

realization of these phonemes in speech are referred to as phones and due to the smooth and

continuous nature of speech are not clearly de�ned (i.e. one phone will usually blend into the

next). Convention has phonemes represented by square brackets and phones by hashes (e.g. the

phoneme [ah] or the phone =ah=).

Table 2.1 lists the TIMIT phone set used for the experiments discussed in this thesis. It

is a subset of the ARPAbet developed by ARPA for use in speech recognition trials to ease the

integration of phonetic symbols in an ASCII computing environment. It is important to recognize

that both smaller and larger acoustic units may be used, however the reasonably compact size of

the phone set and its diverse ability to represent speech events make it the unit of choice among

researchers today. The TIMIT set was chosen by Texas Instruments and MIT for its compactness

and good representation of phones occurring in American English.

While table 2.1 lists the phonemes sorted alphabetically with examples, a much more revealing

organization is shown in �gure 2.3 where the TIMIT phone set is arranged on a hierarchical

tree. This shows just one way of grouping phones { a process which will be discussed further

in Chapter 3 and Chapter 4 since it is critical to the adaptation process. Inspecting �gure 2.3

also reveals the contradictory discrimination processes which are required in speech processing.

On a coarse level the various phone groups have distinct acoustic di�erences and therefore a

pattern recognition system must be able to identify the gross characteristics of, for example, the
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Phone Example

AA father

AE had

AH mud

AO fought

AW how

AY hide

B bat

CH church

D deep

DH then

EH head

ER heard

EY hay

F �ve

G go

HH help

IH hid

IY heed

JH just

Phone Example

K kick

L love

M mom

N noon

NG sing

OW hotel

OY boy

P pea

R race

S so

SH show

T tea

TH thing

UH hood

UW who

V vice

W want

Y yard

Z zebra

ZH measure

Table 2.1: TIMIT phone set
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Phonemes

Vowels

Front        Mid          Back
/ih/
/iy/
/eh/
/ae/

/er/
/ax/
/ah/

/uw/
/uh/
/ow/
/ao/
/aa/

Diphthongs
/ey/
/ay/
/oy/
/yu/

Semivowels

Liquids Glides
/r/
/l/

/w/
/y/

Consonants

Nasals
/m/
/n/
/ng/

Stops

Voiced      Unvoiced
/b/
/d/
/g/

/p/
/t/

/k/

Fricatives

Voiced      Unvoiced
/v/

/z/
/zh/

/f/
/th/
/s/
/sh/

/dh/

/h/

Affricates
/jh/

/ch/

Aspiration

Figure 2.3: Tree classi�cation of TIMIT phone set

nasals vs. the fricatives. However, on a �ne scale, the same system must be able to identify the

nuances between similar sounds such as the nasals /m/ and /n/. Yet another dimension of the

opposing challenges faced by recognition systems is that of duration, where some acoustic events

are characterized by the average over 30 to 60 ms, and others occur in less that 10 ms. As an

example, vowels typically last 30 to 60 ms and any spurious signal during that time can safely be

taken to represent unimportant noise. On the other hand, stops such as /d/ or /t/ occur very

quickly and are easily missed by the averaging, �ltered, windowed parameterization process.

Syllable units are also frequently used in speech processing, however there are over 400 syllables

in English and the apparent necessity of including contextual models make context-sensitive syl-

lable models unreasonable. This would imply an upper limit of 64 million models in a tri-syllable

context, compared to 125 thousand tri-phones, which is currently the more popular context based

approach. For simple tasks with small language models it may be reasonable to use word-based

models. This is common for digit or character recognition applications.
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Context models have proven to be a critical development in the improvement of speech recog-

nition systems. While early models used single phone or syllable models (i.e. around 50 or 400

base models respectively), experiments involving the use of context based models proved the

importance of the adjacent acoustic information, since coarticulation occurs for many phonetic

sequences. Context models can be dependent on the left or right acoustic models, such that a

phone sequence \/a/ /b/ /c/ /d/" would become \/a/ /a+b/ /a-b/ /b+c/ /b-c/ /c+d/ /c-d/

/d/". The bold face phone represents the base phone, but - or + signify left (prior phone) or

right (subsequent phone) context for that base phone. In this way a base phone /p/ would have

several left and right context phones /l-p/ and /p+r/, each which attempted to captured the

subtle di�erences that the left phone /l/ or right phone /r/ had on the base phone. Given a set

of 50 base phones, this would provide an upper limit of 50*50 left plus 50*50 right + 50 base

phones for a total of 5050 models. In practice, not all of these phones would occur in natural

speech or the phonetic dictionary. A further context model, the triphone /l-p+r/, includes both

the left and right phones in each context model, so the upper phone limit now also must include

50*50*50 for over 130 thousand models. Again, practical limitations on which phones actually

occur limits this to around 20 thousand. The triphone is the most popular context model today,

although work has been done using quinephone (5) or heptaphone (7) context model.

2.6 Parametric Models of Acoustic Units

There are various ways of representing the acoustic models. Due to computational limitations,

early models prior to the late 1980s used vector quantization where each model was represented

by a single vector or sequence of vectors.[12] Using some distance metric new speech vectors can

be recognized by �nding the closest match with the known models. These recognized vectors can

be used to update the original model vector. Euclidean distance measures are relatively easy to

compute and the model is represented by a small number of parameters corresponding to the

mean value for each coe�cient from the training data.

These models are too rigid to cope with the acoustic variation which occurs in natural speech

and therefore were followed by statistical models in the late 1980s and early 1990s when it became

feasible to apply statistical signal processing to the speech recognition problem (although it should

be noted that CMU and other institutions had implemented statistical speech recognition systems
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in the 1970s). The advantage of statistical models is that they provide powerful mathematical

models for continuous random signals, and therefore more closely match the characteristics of

speech than a deterministic model such as vector quantization.

The most popular statistical model to date is the Hidden Markov Model. The background for

markov models and markov chains was developed by Baum in the 1960s [20] [5], but it was not

until the 1970s that this approach was applied to speech recognition by Baker at CMU [4] and

Jelinek at IBM [14], and not until the 1980s that it was widely adopted and recognized as the

preeminent modeling approach. Markov chains make a simplifying assumption that observations

are independent conditional on only the last set of observations. Provided a proper formulation

of the problem, this assumption, while not strictly true, does produce very accurate modeling

results for speech.

Using HMMs, each acoustic unit typically has it's own model. The model represents a statis-

tical description of the sample vector characteristics. Since these models generally have several

states, each state can have it's own vector description, thereby providing a means of representing

the sample vector dynamics with time. This is important since it is well known that only vowels

can be easily approximated as stationary over their duration, and even then co-articulation usu-

ally implies variation at the phone onset and �nish. The coe�cient statistical distribution usually

is de�ned as Gaussian, although work has been done in making use of other distributions with

HMMs [18]. Using the EM algorithm, it is possible to approximate general statistical distribu-

tions using a mixture of multiple Gaussian. Further discussion of the HMM is saved for Chapter

3 since the HMM has been used as the base model for adaptation in this thesis.

2.7 Language Models

The language model has been a source of signi�cant di�culty in speech processing since the outset.

While it is generally accepted that signi�cant information is contained in the a priori knowledge

of syntax and semantics, it has not yet been successfully transfered to an automated system. As

a result, statistical language models based on word pairs or word sequences have provided the

best results to date. The ideal language model would be su�ciently exible to accept a random

sequence of words, and yet able to predict missing or noise corrupted words and sounds based on

the context. Typical language model implementations do not dynamically adjust the inuence of
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the LM on the recognition process and therefore cannot do this. Their primary responsibility is

to limit the search space for model sequences.

The dictionary is a critical component of the language model and provides a selection of

all possible phonetic \spellings" of the words contained in the dictionary. Dictionary size is an

important issue both in terms of the possible size of the recognition vocabulary and the decoding

complexity which increases with the number of words. An important balance must be achieved

between the richness of the available vocabulary and the possibility for confusion. Since 80% of

common conversational speech consists of a vocabulary of 2000 words or less, it may seem that the

recognition task should simply focus on this core vocabulary. However, considering information

theory and the concept of symbol entropy it is clear that the less frequently a word occurs the

more information there is likely to be associated with it. For that reason the 2000 common words

largely do not carry the information component of speech, and it is important to be able to

recognize the uncommon words well.

Since the LM typically is not formed using a priori knowledge of the language syntax and

semantics, it can be based on either a simple word loop where each word is equally likely to occur

at all times (a valid model for digit or command recognition) or using some training texts to

generate word sequence likelihoods.



Chapter 3

Theoretical Background

An overview of the theoretical techniques is required to discuss the application of adaptation to

speech recognition. This chapter discusses the most common model used in speech recognition, a

continuous density Hidden Markov Model (HMM), in terms of it's form and features which suit

it to the task. Following this, a discussion of Maximum Likelihood Linear Regression (MLLR)

models presents the mechanics of this adaptation approach, and the key issues involved in it's

implementation. Finally the technique of multi-scale adaptation is presented.

3.1 The Hidden Markov Model

As discussed in chapter 2, the HMM has become the standard method of acoustic modeling used in

speech recognition. This is due to the rigorous and well understood mathematical background for

the model, and its ease of integration with stochastic approaches. There are three fundamental

design problems to be solved when using HMMs: i) evaluating a sequence probability given a

speci�c model; ii) choosing the optimal model state sequence; and, iii) adjusting the models to

best �t the speci�ed data.

The term \hidden" refers to the fact that each model consists of several states, and obser-

vations are a probabilistic function of the particular state, which is unknown. Referring to the

fundamental equation of speech recognition, 2.1, this amounts to a transformation of the acoustic

17
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model term P (Ojwi) to P (O;X jM).[21] That is, instead of calculating the likelihood of an obser-

vation sequence O based on a particular word, an estimate of a state sequence X which generated

the observations is made, given a set of models M which parametrically describe each state. It is

now this state sequence which is unknown, hence the term \hidden". In this new context we have

a likelihood of observing each observation ot given a particular state j. This term is indicated by

bj(ot). A state transition model aij describes the likelihood of transition from state i to state j.

Now the acoustic model term from the fundamental equation can be restated as:

P (O;X jM) = �s1bs1(o1)as1s2bs2(o2)as2s3bs3(o3): : :asi�1sibsi(oi) (3.1)

This equation introduces the �nal component of the HMM equation which is the initialization

problem for selection of the �rst state �s1 . At each time index i a di�erent state is possible,

therefore there is always a transition likelihood asi�1si from i� 1 to i as well as the observation

likelihood bsi(oi). In this way the entire collection of HMMs are characterized by a parameter set

[A;B;�].

The problem of calculating the three components �s1 ; asi�1;i ; bsi(oi) is not di�cult given that

a set of training data is supplied. The process involves an initialization then an iterative re-

estimation of the components through the EM algorithm. The challenge is in data su�ciency

for accurate estimates. Algorithms to perform this estimation were established by Baum in [20]

and [5]. They describe the EM algorithm for �rst order markov chains, in which observations are

independent conditioned only on the state which generated them { this is the �rst order markov

approximation.

Considering the estimates for the number of models which typically exist in practical speech

recognition systems (discussed in chapter 2 to be in the vicinity of tens of thousands) it may, at

�rst glance, seem intractable processing the 1e42 = 1e8 possible state transitions for all t time

intervals thus suggesting 1e8t possible transitions overall and complexity of O(N t). A limiting

factor comes from the language model which asserts a very limited word internal state transition

structure and a �xed number of possible inter-word transitions. The primary limiting factor was

recognized by Viterbi in his lattice decoding algorithm which greatly simpli�ed this otherwise

intractable problem. If one imagines a grid where the horizontal axis represents time and the

vertical axis represents all possible states, then the state sequence is simply a path through this
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grid. The challenge is in selecting the optimal path. The complexity, in fact, is not O(N t) but

only O(N2) in the worst case since the Viterbi algorithm [23] allows lattice decoding using only

the last set of all possible state transitions (N states each transiting to a maximum of N next

states for O(N2)).

Typical models make use of a low order number of states to represent each phone. Three is

a common value, since this has heuristic appeal considering a structure of onset, intermediate,

and exit regions for each phone. This is unrelated to the concept of the tri-phone which creates

a context dependent model based on adjacent phones, although given a 3 state tri-phone model

=l � p + r= with states s1; s2; s3, it is reasonable to hypothesize that s1 could be close to the

terminal state of a \typical" =l= model, and s3 could be close to the entry state of a \typical" =r=

model.

Gaussians are typically used for modeling the parameters, as they are easily calculated and

contain only two parameters. Other stochastic models have been presented [18], but the simplicity

and success of Gaussians has meant that they have remained the most common stochastic param-

eter model. While it is reasonable to assume that the statistics for a particular parameter of a

particular acoustic model for a single speaker would likely have a Gaussian distribution, speaker

variation in the form of dialect, or gender and age related pitch variances are not well represented

by a single mean and variance. It has become popular to approximate general distribution func-

tions through the use of a mixture of Gaussians. Training multi-mixture models, as they are

called, is done by successively splitting models and retraining using the Baum-Welch algorithm.

This approach has been extended even so far as to eliminate multiple models and simply group

all models together with a large number of mixtures. This approach selects acoustic units based

on the closest matching mixture. In practice this has not been successful in improving recognition

results as it eliminates the valuable lattice decoding process which allows an additional level of

structure to be asserted in the model. Typical systems use 3 to 7 mixtures per state which seem

to provide adequate coverage of gender, age, and dialect modalities.

The above suggestion concerning the cross-model association of states has been extensively

analyzed and it is common practice to perform state-tying, where a meta-state is de�ned which

is shared between several models. While attempts at performing this tying heuristically have

been attempted, the greatest improvements have always resulted from the use of numerically

determined tying.
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3.1.1 Adaptation of HMMs

Adaptation of HMMs has two distinct components. One is the adaptation which is done in

the iterative re-training process. This is carried out by the EM algorithm through the methods

established in what is known as the Baum-Welch algorithm. This process iteratively alternates

between using the existing models to estimate the state sequence, then maximizing the model

parameters to best match the observations assuming the state sequence is correct. Provided this

process is initialized properly it will tend towards improved state sequence estimates which will

thereby provide improved parameter estimates, and so on. While this can be described as model

adaptation, this process is simply called \training".

The adaptation process makes use of a model which is considered \trained" or at least \well

initialized", then adjusts it for the current operating circumstances. This usually means making

use of small amounts of data, in comparison to the data set used for training, to adjust param-

eters to capture the characteristics of the adaptation data. Adaptation can consist of adjusting

parameters, shifting mixture weights, changing state tying, or synthesizing new language model

pronounciations. Due to the limited amount of data available for adaptation, almost by de�nition

of the process, it is necessary to have some mechanism by which observations for certain models

and states can be shared more generally to provide useful adaptation of a large part of, if not the

entire, model set.

Some basic generalizations use only the center phone of the adaptation data to generate a

transformation function for the entire set of states sharing the same center phone. More advanced

adaptation models use tree structures to assert a hierarchical structure to model associations. Both

MLLR and multiscale use tree structures for representing adaptation correlations. The primary

hurdle of most adaptation approaches is to overcome the independence assumption asserted by

most acoustic models. This assumption makes the speech recognition problem tractable, such

that the overall model probability is equivalent to the product of the probability of each model.

This is shown by equation 3.2.

p(�) =

LY
i=0

p(�i) (3.2)

When the model independence is asserted in this way, it is di�cult to share adaptation data

between di�erent models. The adaptation problem then becomes the approximation of some cor-
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relation structure between models which can be used to share data and adapt correlated models.

The following two sections discuss two model based adaptation approaches. As well as adapting

the acoustic models, it is possible to perform source adaptation, such as vocal tract length nor-

malization which attempts to normalize the pitch, and dynamic time warping which attempts to

compensate for varying speaker rates and state distributions. Neither of these approaches will be

discussed further here.

3.2 Maximum Likelihood Linear Regression

Initially proposed by Leggetter and Woodland in [25] and [26], this approach performs a linear

transform on Gaussian models. The most general linear transform of a Gaussian is given by

equation 3.3.

N (�;�)! N (A� + b; A�AT ) = N (�̂; �̂) (3.3)

Empirical results suggest that covariance adaptation is secondary to the bene�ts gained from

mean adaptation, therefore the transformation A�AT is usually not performed. Since the trans-

formation matrix A already has been estimated for the mean transformation, this step is primarily

skipped for computation reasons, although it can be argued that if A is used to adapt � then adap-

tation data covariance should be used to estimate the transform A, which signi�cantly increases

the complexity of the estimation problem for the matrix A.

Consider a mean vector � of size n, then A is an n�n square matrix and b is an n�1 vector.

The transform matrix A performs scaling and linear recombination of the mean elements, allowing

cross parameter adaptation, while the vector b adds a bias component. A and b can be merged

into a single extended adaptation matrix W of size n�n + 1 where W has the form shown in

equation 3.4. This also shows the necessary transform on the mean vector � which has a one

concatenated on the end. It is plain to see that the new transform W�̂ is exactly equivalent to

A�+ b.
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Considering a single Gaussian pdf for the state s with observation set o, the pdf can be

expressed as:

bs(o) =
1

(2�)
n
2 j�j

1

2

e�
1

2
(o�W�̂)T��1(o�W�̂) (3.5)

Assuming that a well trained base model already exists, it is possible to use supplied tran-

scriptions to determine initial state occupation, leaving only the estimate of W , which is made by

maximizing the likelihood of the new model N (W�;�) matching the adaptation data o. Details

of this algorithm are given in [26].

A typical problem of acoustic adaptation is data sparsity. For adequate coverage of tens

of thousands of states, upwards of an hour of data is required to produce reasonable statistical

estimates, even if those estimates are only for adaptation purposes, using well trained base models.

To overcome this, sharing of adaptation data between various states is crucial. MLLR does

not specify a mechanism by which to group adaptation transforms, so various approaches have

been attempted.[24] The trade o� is between maximizing the number of adaptation classes to

capture speaker dependent characteristics, and estimating the adaptation transforms adequately.

Adaptation classes are therefore generated heuristically or using some rule based system that

splits all states into successive subgroups until further splitting would exceed some threshold,

such as minimum number of observations. Some approaches have looked at speaker clustering to

share adaptation data between speakers with similar characteristics. [27]

Once regression classes have been de�ned, the observations for all states in a particular class

are used to estimate the adaptation transform for that class, and that transform is then used

to adapt all states in the class. Heuristic approaches use structures such as the phone tree in

Figure 2.3 to group states based on their center phone and phonetic class. Other approaches use

Euclidean distance measures of the mean vectors to perform kNN clustering of states[3], or use

the structure established from a decision tree[2].
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Figure 3.1: Simpli�ed dependence tree

3.2.1 Hierarchical Adaptation Using Tree Structures

Decision trees use a set of context questions to create a binary tree which segments the entire

state space hierarchically. Starting with all states in the root node, the set of context questions is

applied. Every question has a true or false answer, thereby producing a particular binary division

of all states at that node, for that particular question: all states which answer true to the question

in one child cluster, and all states answering false in another. With N decision tree questions

there are N possible binary divisions of the node. The split which maximizes the likelihood of

the resulting models is used.

Decision tree, kNN, and other state clustering approaches often have a tree structure which

provides a clear mechanism for representing multiple levels of clustering { a cluster hierarchy.

Although it is possible to de�ne clusters based on available adaptation data, thereby assuring

that su�cient data exists in each cluster, typically di�erent clusters will have greatly varying

amounts of adaptation data. Using a minimum data threshold for generating an adaptation class,

it is possible to cluster data up a tree until the threshold is reached, and then estimate the

adaptation transform. In this way, adaptation transforms exist at all nodes in the tree where

there is su�cient data (either intrinsically or through grouping data from child nodes), rather

than just at the leaf nodes where the state models are clustered.

Referring to a simple example illustrated in �gure 3.1 with 3 leaf nodes A;B;C and 2 internal
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nodes X;Y , where X = A + B and Y = A + B + C, if the sample threshold was 400 then node

B would have su�cient data to have its own adaptation transform matrix WB estimated. Nodes

A and C, however, are below the threshold and would therefore be transformed by a regression

class generated at the earliest node with su�cient data. For node A, this would be node X which

would accumulate data from nodes A and B to use 750 samples to estimate the transform matrix

WA+B . Similarly, node C would need to use the transform WA+B+C from node Y , estimated

from 800 samples accumulated from all the child nodes. [10] [11]

3.3 Multiscale Adaptation

The last two years have seen the development of a remarkable system for characterizing inter-

class similarities using a stochastic, hierarchical model. The work by Kannan [15] has begun

the process of identifying the correlation structure between classes using statistical models. This

approach seeks to model the interclass covariance matrix using a multi-scale model. With a

correlation structure represented through a covariance matrix it is theoretically possible to map

acoustic vectors from one class into their equivalent representation in another class through a

basis transform.

Prior to this approach, once state-tying has been completed, the remaining states had been

assumed to be independent, so that the probability density function for the parameters of the

entire model set consisting of L states is given by:

p(�) =

LY
i=1

p(�i) (3.6)

This implies that two very similar models which are not tied to share the same state cannot

bene�t from the estimate data associated with the other state. This has been recognized as a

modeling shortcoming, and it is hoped that multi-scale models can overcome the problem.

It is regarded as an impossible task to estimate a covariance matrix for thousands of states

directly, however it has been shown that a multi-scale tree process can be used to represent the

correlation structure. [8] Chow and Liu [16] presented the dependence tree structure (not to be

confused with a decision tree) which approximates an N dimension correlation structure through

the product of N � 1 second order distributions as given in equation 3.7. This equation can be
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seen to represent a general tree where �(i) indicates the parent of class i. The interpretation,

then, is that a class is conditionally independent, given the parent nodes class.

p(�) =

N�1Y
i=1

p(�ij��(i)) (3.7)

Referring to �gure 3.1, if the entire model is made up of the individual classes, then M =

A;B;C;X; Y , and the approximated probability density function is given by:

p(M) = p(Y ) � p(CjY ) � p(X jY ) � p(AjX) � p(BjX) (3.8)

It can also be seen that an interesting result of simplifying the tree structure to have at

most one child per node produces a linear 1st order markov chain, which is exactly the structure

of an HMM. In the tree form, the dependence structure can still be estimated using the same

mathematical approach used with estimating HMMs. The variation is that tree scale (or depth)

does not have a temporal association as with linear HMMs where successive states correspond to

successive observations in time, but rather scale represents an associative hierarchy.

Chow and Liu present an information theory approach for generating an optimal tree topology.

If p = p(�) represents the probability density function of the entire model set, and pa = p(�̂)

represents some approximation of that distribution, then a similarity measure is I(p; pa) { the mu-

tual information of p and pa. If the mutual information is zero, then pa is an exact representation

of p, and I(�) is always positive as given by equation 3.9.

I(p; pa) =
X
�

p(�) � log
p(�)

pa(�)
(3.9)

Minimizing this value has the e�ect of maximizing the closeness of pa to p. They go on to

show that this criteria is equivalent to maximizing the dependence tree weight, which is the sum

of the mutual information between any two nodes (classes), also known as the branch weight.

The interpretation of this is that two nodes i and �(i) are best selected when they are maximally

related (i.e. contain the maximum mutual information) as given by I(i; �(i)), since node i should

be conditioned upon the node �(i) to which it is most similar when asserting its independence

from all other nodes. This has the objective of minimizing the e�ect of asserting �rst-order
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conditional independence. A tree generating algorithm is presented which guarantees maximum

tree weight, therefore minimum distribution information, and therefore an optimal approximation

of the actual (and unknown) distribution p(�).

Within the speech context the dependence tree structure has been used to model the adapta-

tion process and therefore acoustic observations which are used to estimate a single adaptation

transform can be spread to other adaptation transforms. [2] [15] [7] This work has shown im-

provements of up to 4% absolute improvement in WER.

The fundamental algorithms for multi-scale stochastic processes have been developed by Chou,

Willsky, and Beneviste, of which [6] is a foundational paper. This paper describes the mutliscale

process in a format analogous to the well known state-space model. Equation 3.10 is the multiscale

equivalent of the state-space model, where t indicates scale and not time.

x(t) = A(t)x(�(t)) +B(t)w(t)

y(t) = C(t)x(t) + v(t)
(3.10)

In equation 3.10 y(t) represents the observations as generated by the state x(t) and the trans-

form matrix C(t) with additive white noise v(t). The state x(t) is a function of the parent node

x(�(t)) transformed by A(t) with transformed process noise w(t). The approach described in

[6] and [8] represents a Kalman �lter on a tree, which consists of the standard prediction then

�ltering steps, as well as a merge step which is not found in typical time-linear dynamic systems.

This �ltering process takes observations y(t) and spreads them upwards through the tree. This

is followed by a smoothing step by the Rauch-Tung-Striebel algorithm which then smoothes the

observations back down the tree to leaf nodes. This approach assumes the tree process A;B;C is

already de�ned.

The outstanding problem of estimating the parameters of the tree process A;B;C has been

addressed by Ronen et al in [19] and [22]. This approach uses the EM algorithm to iteratively

estimate the state occupation of acoustic data, then maximize the likelihood of the states given

the associated data by adjusting parameters. The algorithm presented is able to make use of the

RTS algorithm to smooth model estimates from data at some nodes to other nodes where data is

sparse or non-existent. On this topic, an interesting discussion of what types of stochastic models

can be estimated by Baum-Welch type EM algorithms can be found in [17].



Chapter 4

Cross Task Speaker Adaptation

While it has been common to perform within task adaptation, cross task adaptation has not been

explored. Cross task adaptation makes use of a base model set trained from data accumulated

in one environment, and then adapted to a di�erent operating environment. It is frequently the

case that the operating conditions of an ASR system will vary greatly from the environment used

to train the initial models. The experiments conducted here make use of the large amount of

Switchboard data to train initial systems, followed by adaptation to the Macrophone task. The

software tool HTK has been used to perform initial model training and to implement MLLR

adaptation.

4.1 Description of Data

The 10 hour subset of Switchboard was used for initial model training. This data set has been

speci�cally selected from the entire Switchboard corpus to be representative of the full corpus

both in terms of phonetic coverage and speaker variance. The 10 hour subset consists of 22,000

utterances by 2500 speakers, both male and female, recorded over T1 long distance telephone

lines and stored in 8-bit mu-law format. A total of 6500 words and 7,000 triphones are repre-

sented in this set. The speech segments consist of sentence fragments generated by an automatic

segmentation program.

27
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For adaptation and testing, a set of 809 utterances from 41 speakers, all male, were selected

from the Macrophone corpus. This corpus contains natural speech read over T1 telephone lines

directly to an automated attendant. The data set was split into adaptation and testing, with 48

minutes of adaptation data total (an average of 70 seconds per speaker) and 44 minutes of test

data total (an average of 65 seconds per speaker). Macrophone utterances consist of a combination

of words, phrases and numbers.

The data has been parameterized into MFCC format with 12 cepstral coe�cients and energy,

as well as the �rst and second derivatives (velocity and acceleration) for a total of 39 coe�cients

per 10ms sample period. The sampling window is 25ms, and a Hamming window with pre-

emphasis is used. For acoustic modeling, a 39 phone set taken from TIMIT has been used, with

the addition of a long silence model and a short pause model, neither of which are included in

context sensitive models. Decision tree clustered 5 mixture, 3 state, left-right Gaussian HMMs

with diagonal covariances are used to model the 7200 triphones which occur in the 10K word

multiple pronunciation dictionary.

4.2 Experimental Results

This section describes the results of selected experiments in MLLR cross-task adaptation. The

software package HTK [3] was used for training base HMMs and for performing MLLR adaptation.

Unless otherwise stated for a particular experiment, the con�guration parameters were set as

described in the following paragraphs.

Adaptation of means and variances were performed using block diagonal adaptation matri-

ces. Three blocks were used to reduce the complexity to 1/3 of a full matrix. This makes the

assumption that the static, velocity, and acceleration coe�cients are independent of each other.

The Word Insertion Penalty (WIP) was set to -10, and the Grammar Scale Factor to +10. These

settings achieved a reasonably close %DEL and %INS, both around 2 to 3%. The Baum-Welch

re-estimation had a pruning threshold of 350. The regression trees were generated using a bi-

nary splitting algorithm based on Euclidean distance, and trees were generated until the speci�ed

number of leaf nodes existed. Node thresholds for estimating an adaptation transform was set

to 700. The language model was produced from the Macrophone data set, and the dictionary

contained 5334 words representing the adaptation data set, with pronunciations coming from the
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Description WER Expt.

Baseline - no adaptation of 10hr HMMs 24.07% 1

Global transform only 24.07% 2

Unsupervised MLLR, update after every utterance 21.76% 7

Supervised MLLR, 16 leaf regression tree 18.21% 13

Supervised MLLR, 32 leaf regression tree 18.21% 11

Supervised MLLR, 64 leaf regression tree 18.21% 16

Supervised MLLR, 128 leaf regression tree 18.21% 14

Supervised MLLR, RT-64, 39 block transform 22.83% 15

Supervised MLLR, RT-128, generic LM and dictionary 45.55% 9

Supervised MLLR, RT-128, threshold=50, 60-70 adapt classes 57.43% 17

Supervised MLLR, RT-128, threshold=100, 30-40 adapt classes 27.26% 18

Supervised MLLR, RT-128, threshold=200, 12-20 adapt classes 20.23% 19

Supervised MLLR, RT-128, threshold=400, 6-10 adapt classes 18.37% 20

Table 4.1: Summary of Signi�cant Experimental Results

CMU dictionary version 0.6. Adaptation was done in batch on approximately half the data per

speaker and used to create a set of adaptation transforms depending on the regression tree node

occupancies. Adaptation results were generated by applying the estimated transforms to the re-

maining half of the data. In all cases both a single global transform and MLLR transforms were

applied to the Switchboard models. Details of the implications and selection of these values can

be found in Chapter 5.

Table 4.1 lists the notable experimental results. From these, it can be seen that almost all

adaptation con�gurations gave substantial improvements in WER from the baseline 24%. It is

common to use all adaptation data and estimate a global transform. In this case, the global

transform alone gave no improvement in WER. Analysis of the recognition results and the global

transform �le reveal that word likelihoods and boundaries do shift, and that the global adaptation

does produce a non-trivial transform, however the resulting word sequence is identical, therefore

the WER is unchanged. This result also suggests that the LM may have a dominant e�ect on

determining word sequence.

The unsupervised MLLR adaptation results are quite promising, considering no transcriptions
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Figure 4.1: Transform distribution for default node occupation threshold (700)

are provided to correctly assign adaptation data to a class. This has to be done based on the

recognizer output. While these results are positive, with over a 2% improvement in WER, updat-

ing the model after ever utterance is generally not practical since it is computationally expensive.

As well, it shows a limit of performance for unsupervised MLLR adaptation, since any batch

unsupervised adaptation would be expected to have a higher WER.

The �rst four supervised MLLR experiments listed in table 4.1 seem to indicate that changing

the size of the regression tree did not have any e�ect on these experiments. In fact, it turns out

that the node occupancy threshold of 700 results in only 4 to 7 adaptation classes per speaker

given the one minute or so of adaptation data that was available. This can be seen in �gure 4.1,

where experiment 9 had the identical transform structure to experiments 11,13,14, and 16. In this

case every tree structure is forced to regress to a tree of e�ectively only 7 leaf adaptation nodes,

which is smaller than even the 16 node tree. Therefore the 16,32,64, and 128 leaf regression trees

all have identical adaptation transforms.

Using a diagonal transform which eliminates cross-parameter correlation clearly is a disadvan-

tage. In the case of experiment 15, using 39 elements for the block transform gave a 22.83%WER.

This is equivalent to making the transform matrix diagonal. This result, while still more than 1%

better than the baseline, is almost 3% worse than the best case, indicating that cross-parameter

correlation should not be ignored and is an important features which can be utilized to improve

parameter estimation and adaptation.
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Figure 4.2: WER Comparison for Experiment 9 and Experiment 11
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Figure 4.3: Non-Zero WER Comparison for Experiment 9 and Experiment 11
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Figure 4.4: Transform distribution for node occupation threshold of 50

To investigate the e�ect of the LM and dictionary on the result, a generic LM and accompa-

nying dictionary were used. This produced dramatically worse results, with a WER of 45.55%.

While in one sense this can be attributed to the importance of a reasonable LM, it is more likely

due to the high weighting which the LM was given, since the GSF was set to 10. Such a high

value is usually only used when the LM is known to closely represent the testing environment

data. In any case, �gure 4.2 shows the sorted distribution of the WER by utterance for both

experiment 9 (45.55% WER on average) and experiment 11 (18.21% WER on average). Figure

4.3 highlights the fact that the non-zero WER utterances largely have a similar distribution, so

the improved model has simply shifted the results along the curve. It is also interesting to note

that WER above 100% are relatively infrequent, occurring only 25 times (3.1% of all utterances)

in experiment 9 and 11 times (1.3%) in experiment 11, however they contribute a much larger

proportion to the overall WER average. If occurances of WER > 100% were reduced to 100%,

the e�ect would be an average WER of 40.7% for experiment 9, a reduction of almost 5%. For

experiment 11, since there are fewer occurances of high WER utterances, the reduction would

only be 0.6% to 17.6% WER on average.

The �nal four lines of table 4.1 show the e�ect of changing the number of adaptation classes.

An obvious conclusion is that the node occupancy threshold should be used to set the e�ective

tree size, rather than the original splitting algorithm which creates the binary regression tree.

The tree generating process can be done quickly, and therefore some large power of 2 number of
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Figure 4.5: Transform distribution for node occupation threshold of 100
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Figure 4.7: Transform distribution for node occupation threshold of 400

leaf nodes should be speci�ed, then the node occupancy threshold can be adjusted to generate an

appropriate number of adaptation classes given the available data. Figures 4.4, 4.5, 4.6, and

4.7 show the distribution of transforms to speakers. The original threshold of 700 produced the

best results with 18.21% WER, and and 4 to 7 adaptation classes per speaker.

In the extreme, using a threshold of 50 produced 60 to 70 adaptation classes per speaker, which

means approximately 1 second of data was available per transform. For a 3 block adaptation

transform of means and variances (variances are diagonal and are only transformed by a diagonal

matrix), a total of 585 parameters need to be estimated. One second of data contains a total of

100 39 parameter vectors, or 3900 values total. This only amounts to 6.67 samples per parameter,

assuming an equal spreading of adaptation data between transform classes, which is probably far

from the truth, meaning some transforms would have parameters estimated from perhaps as few

as 1 or 2 samples. In this case it is easy to understand how the transforms would be detrimental

and not representative of general class transformation. At a threshold of 100 the number of

adaptation classes is still 30 to 40, so the problem remains with an average of only 13 samples per

estimated parameter, and the resulting WER is 27.26%, which is worse than the baseline result.

Occupancy threshold limits of 200 and 400 produced 12 to 20 and 6 to 10 adaptation transforms

respectively. These both improved recognition results over the baseline, but not as well as the 700

threshold system. With so few adaptation classes, it is clear that only the coarsest adaptation

features are captured. This illustrates a clear disadvantage of MLLR over correlated adaptation



CHAPTER 4. CROSS TASK SPEAKER ADAPTATION 35

structures such as Multiscale, in that large amounts of data are required if �ne adaptation features

are to be captured.

4.3 Summary of Results

MLLR has the potential to dramatically improve recognition rates with relatively small amounts

of data. The cross-task experiments discussed above show a 6% (absolute) reduction in WER for

41 speakers after one minute of adaptation data has been collected. The regression tree structure

was entirely controlled by the node occupancy threshold, therefore it is reasonable to conclude

that a fairly large regression tree should be produced in the �rst case, probably with 256 or more

leaf nodes. A power of 2 number is only relevant when dealing with a binary tree, as it helps

to maintain a well balanced tree. The e�ective regression tree is then established by the node

occupancy threshold, using the original regression tree as a base. Cross correlation of parameters

is clearly an important feature to make use of in adaptation transforms, as it contributes 4.5% to

the WER reduction.

It is also not clear that the regression class clustering approach of using Euclidean distance is

optimal, since it can be hypothesized that two acoustically similar class from the original domain

may, in fact, require adaptation transforms which are not co-linear. Work by Ostendorf et al

[2] has suggested the use of decision trees to generate the tree structure. The decision tree is

generated using a combination of heuristic acoustic questions and maximum likelihood. This

form of hierarchical correlation structure is already applied for state tying of HMMs, and could

be transfered to the tree structure used by the MLLR process.



Chapter 5

Design of HMMs and the ASR

Experimental Process

While HMMs are presently considered the state of the art model, there are still extensive decisions

that need to be made when creating an HMM set to model human acoustics. Furthermore, the

HMM training methodology and ASR experimental structure introduce complexities that can have

dramatic e�ects on system performance, depending on which decisions are made. This chapter

discusses the process of creating typical multi-mixture gaussian triphone HMMs for performing

ASR experiments. The majority of the material is equally relevant to non-Gaussian and non-phone

based models. The general objective task is speaker independent large vocabulary continuous

speech recognition (SI-LVCSR). The discussion is focused around the use of the software package

HTK by Entropic, as this is viewed as the preeminent HMM research software, and is widely used

both in academic and commercial research settings.

In theory, the complete ASR experimentation process requires only the following components:

� waveform speech data

� word level transcriptions for at least 1 hour of waveform speech data

� pronunciation dictionary containing acoustic units of interest (e.g. phone level pronuncia-

tions)

36
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� language model

� modeling format

Even the language model is not strictly necessary, since it can be generated either from a word

loop using the set of desired recognition words, or statistically generated from the data tran-

scriptions. Preferably this should be done using only the training data transcriptions, otherwise

the model has a priori information regarding the test data, which will result in an unjusti�ed

performance improvement.

These components alone can be manipulated to form all the necessary pieces for a complete

ASR system. The following sections describe the speci�cs of each part of that process in approx-

imately the order in which they are executed when developing an ASR system.

5.1 Data Collection

In practice, much more than 1 hour of training data is required for a robust LVCSR system,

although under appropriate task constraints it may be that several minutes of transcribed data is

su�cient for training an initial system. While it is desirable to have transcriptions which contain

alignment (i.e. timing) data, this is usually impossible and automatic alignment algorithms must

be used.

To con�rm system performance once a model is fully trained, it is necessary to reserve a

portion of the transcribed data for testing. The challenge is that a �xed amount of transcribed

data is available, and the quality of training is directly proportional to the amount of transcribed

training data available, therefore it is necessary to reserve the smallest amount of transcribed data

for testing that will still provide accurate estimates of system performance. In practice, this is a

di�cult task and usually requires manually selecting representative components of the available

data, usually making up 10% to 20% of the total. It is also possible to perform testing recognition

on the training data set to indicate the di�erence in the model �t between the two sets { this

shows how representative the test set was of the training set.

It is important to be aware of the variance that exists in recognition results depending on the

\luck" of the test set quality. Figures 5.1 and 5.2 show the %WER and %COR for experiment 13
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Figure 5.1: %WER for randomly selected groups of test data

(see chapter 4) which had an average %WER of 18.21% for all 809 test utterances and a %COR

of 83.9%. It can be seen that at a group size of 440 (which would be over 22 minutes of data),

%WER varies between 15% and 22% and %COR varies between 81% and 87%. Furthermore,

the convergence of these results to the value of 18.21% WER is only due to the limit of the total

amount of testing data being used, so it can be speculated that with more data the \actual"

%WER for this task could vary by +/- several percent. It is for this reason that more than one

hour data is usually required for the test set in order to make a reasonable estimate of the system

performance (i.e. bounded to within +/- 5% relative to the estimated %WER).

In terms of units, it is best to separate from the outset a training set of �les and testing set,

both in terms of the waveform �les, the transcriptions, and the parameterized �les. It is general

practice to have no speaker overlap between train and test sets, and if multiple speaker styles exist

in the overall set, to insure that the test and train sets proportionately represent this variation.

Usually, gender and dialect regions are the two main variations, but age and recording quality,



CHAPTER 5. DESIGN OF HMMS AND THE ASR EXPERIMENTAL PROCESS 39

100 200 300 400 500 600 700 800
78

80

82

84

86

88

90
%Corr vs. Group Size

Group Size

%
C

or
r

Figure 5.2: %COR for randomly selected groups of test data



CHAPTER 5. DESIGN OF HMMS AND THE ASR EXPERIMENTAL PROCESS 40

for example, may also be factors which require balanced representation.

5.2 Dictionary

The pronunciation dictionary should contain all the words in the available transcriptions and must

contain all words in the language model since LM word networks are expanded to phone networks

using the pronunciations. CMU has produced an extensive dictionary containing over 120,000

words (counting multiple pronunciations) which is freely available. If the set of missing dictionary

words is small, it may be possible to manually create dictionary entries for them. Otherwise, it is

necessary to assign some catch-all model. This is often necessary when some general LM is used

for which not all LM words are available in the dictionary.

The dictionary contains context free phonetic pronunciations and therefore sets the base mono-

phone set which is used in the model. Using multiple pronunciations provides the opportunity

to better match the phonetic transcriptions to the actual data in the training stage, however

it increases the LM decoding complexity during the recognition stage and this added confusion

may decrease performance by more than the gains made from the bene�t of representing multiple

pronunciations.

The dictionary is also used to expand the word level transcriptions to phone level transcrip-

tions. This process sets the active phone set for the system. When using monophones, it is likely

that the entire monophone set will exist with as little as a few minutes of data, however it is im-

portant to insure that this is the case (i.e. the phone =jh= may not occur in the transcription set,

but is required since words in the LM have pronunciations requiring =jh=). With monophones,

it is very di�cult to overcome the problem of missing phones, so either additional training data

must be collected or a remapping of the phone set occurring in the dictionary must be made in

order to insure that all phones occurring in the dictionary are represented by the training data

set.

This can be particularly a problem when multiple dictionaries have been merged. The common

approach for multiple pronunciations is to place one dictionary entry consistently �rst followed

by the others. When the transcriptions are expanded, the �rst case of all multiple pronunciations

will always have come from the same dictionary. If the \primary" dictionary was exhaustive and

listed �rst, then the phone level transcriptions will only contain phones occurring in the \primary"
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dictionary. If the alternate dictionaries contain di�erent phone sets, then none of the alternate

phones will be represented in the transcriptions and therefore will have no chance of receiving

any training data. For this reason it is critical to compile a list of all phones occurring in the

phone level transcriptions and all phones occurring in the master dictionary. These lists must be

identical, and any phones occurring only in the dictionary must be remapped to phones which are

represented in the transcriptions.

The problem of missing phones is almost impossible to avoid when using triphones, since only

triphones occurring in the training data can be modeled. If multiple pronunciations are used, or

the LM contains words not occurring in the training data set, then it is likely that there will be

missing triphones when it comes to testing the ASR system, and the testing will fail. To overcome

this, it is necessary to create two triphone lists. One is generated from all triphones occurring

in the training data after it has gone through pronunciation alignment (see section 5.6.2), which

represents the set of triphones which can be modeled by the training data. The second list is

generated from a triphone dictionary which is limited only to words occurring in the LM which

will be used for testing, and containing all pronunciations for all words (if multiple pronunciations

are to be used). If no LM is known at the time, then all triphones in the desired dictionary must

be used. With these two lists it is possible to determine the set of triphones which will not be

modeled by the training data. The only good way to generate these models is to use a decision

tree clustering algorithm which will allow unseen triphones to be synthesized (see section 5.7.1).

If it is not possible or practical to create a decision tree, then unseen triphones can be copied

from the monophone model for the center state, or can be generated using manual tying, although

neither approach can be expected to produce desirable results.

5.3 Language Model

There is a tight relationship between the LM, the dictionary, and the transcribed data. Firstly,

recognition is strictly limited to words which exist in the LM, and since recognition is generally

done on a sub-word unit, the LM is expanded using the dictionary into a sub-word unit network.

This implies that all entries in the LM must occur in the dictionary, and no words outside of the

LM can be recognized.

To recognize more words than exist in the LM, a simple word loop LM must be created using
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the dictionary word list. Then all words in the dictionary occur in the LM and can therefore

be recognized. In a word-loop LM every word has an equal likelihood of following the current

word. An improved model will take a linear combination of a word loop model and a statistical

or heuristic LM. If LM words do not exist in the dictionary, it is possible to create a catch-all

model for those words, simply to satisfy the condition that LM entries must have a dictionary

pronunciation. This catch-all model should be su�ciently generic as to not ever be mistakenly

recognized. It then becomes important to check that the catch-all words do not appear in the

recognition output.

The LM can be generated from the transcriptions, however only word sequences which occur

in the transcriptions will be valid recognition sequences. For this reason, it is usual practice to

generate a LM from some large body of text, preferably spoken. Written syntax has a distinctly

di�erent structure than spoken syntax. Furthermore, a \pure" LM should not make use of the

testing data transcriptions, however this can make recognition of test data almost impossible for

unconstrained word sequences, since any sequence not contained in the training set for the LM has

0% probability of being accepted as a recognition result. Because of this, combining a statistical

LM with a word-loop LM allows a non-zero probability of any word sequence occurring. The �nal

option is to use a \cheating" LM which is trained using the testing data LM. If only the test data

transcriptions are used, this can be seen as providing a best case limit on the performance of an

optimized LM, however it should also be accepted as an unrealistically good result.

5.4 Data Parameterization

Speech data for adults is e�ectively band limited to 8 KHz for adults, and 10 KHz for young

children. This implies a source sampling rate of 16 to 20 KHz, although the application of

companding algorithms such as �-law or a-law are typically used, and corpus' which use speech

recorded over telephone lines are limited to 4 KHz acoustic bandwidth or 8 KHz sampling rate.

Obviously, this has important implications for the representation of HF acoustic components,

which are typical for fricatives and stops.

Source data should generally be recorded at 16 KHz or above in order to capture the full

speech spectrum { it should be noted that bandwidth of the human voice and auditory system is,

in fact, around 20 KHz, but features above 10 KHz typically only occur during singing and have
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not been shown to greatly inuence speech information.

At this stage it is necessary to determine a parameterization format, parameter sampling

rate, and any windowing or pre-emphasis. Typically, 10ms sampling rate with a 25ms window

using a 12 MFCC parameterization is chosen, with added energy, velocity, and acceleration for

(12 + 1)� 3 = 39 parameters per 10ms sample vector. This is equivalent to 3900 parameters per

second being generated from the original 8000.

The raw acoustic longitudinal wave amplitude is not a useful representation of the acous-

tic features, therefore it is standard practice to parameterize the acoustic sequence into a more

structured format. Estimating the linear prediction coe�cients of the all-pole model has been

popular[13], however MFCC is preferred. This also necessitates specifying a vector sampling rate,

for which 10ms has been shown to be suitable for capturing short and long acoustic phenomena.

MFCC makes use of a discrete Fourier transform (DFT) to generate frequency components. To

avoid discontinuities at the DFT window edge, an overlapping window of 25ms is typically used

along with a Hamming window which attenuates the signal to zero at the edges, thereby elimi-

nating the HF noise incurred by a discontinuity. The N MFCC coe�cients are generated from

an inverse DFT of a mel scaled �lter bank. A pre-emphasis coe�cient of 0.97 is also standard for

boosting the HF signal since perceptual loudness is di�erent from actual signal strength.

5.5 HMM Template

The HMM is used to model the acoustic units. While it is theoretically possible to have di�erent

HMM structures for di�erent acoustic units, in practice all HMMs are the same thereby producing

a uniform model set. The most general HMM consists of state models and a transition probability

matrix. Non-emitting entry and exit states are used to facilitate merging multiple models into

one meta-HMM. Non-emitting states do not produce observation vectors and immediately transit

to the next state.

HMMs generally are static stochastic models of the observation vectors produced by a partic-

ular acoustic unit. They are static in the sense that while in a particular state the distribution of

the observation vector is �xed. This limitation is not intrinsic to the HMM, and work has been

done to use trajectory models where the output distribution follows some path rather than a �xed

value.[15] [28] Figure 5.3 shows the di�erences between static, linear, and quadratic models, with
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di�erent numbers of states to make the total number of model parameters equivalent. There are

signi�cant complexities involved in using non-static state models, however the bene�ts to better

matching the actual parameter trajectories may prove to be worth the added computational load.

The trajectories in �gure 5.3 are unconstrained, meaning there is no continuity constraint, how-

ever continuity can be asserted, but again at a signi�cant computational cost, since this requires

transferring information about the terminating point of the previous state, and optimizing that

point.

Three states are usually considered su�cient when models are on the phone level. There is also

the attraction that the boundary states can be associated with the context models, for example

the �rst state being associated with the coarticulation features of the left (previous) phone. The

models for each state are typically represented by Gaussian distributions of the observation vector.

In most cases, independence of the individual parameters are assumed, which results in a diagonal

covariance matrix, thereby greatly simplifying parameter estimation. It should be noted that this

simplifying assumption is known to be poor since parameters are, in fact, closely correlated. By

the independence assumption each state has 2 _N parameters, where N is the size of the observation

vector (each coe�cient has a scalar mean and variance). Even using block diagonals to assert

independence between static, energy, velocity and acceleration coe�cients still results in 3 _N2+N

parameters. For 12 static coe�cients the di�erence is 78 parameters assuming independence

or 474 parameters using correlation by block diagonals. A full correlation matrix would have

1560 parameters. Finally, many algorithms have been developed which only work on diagonal

covariance matrices. This is frequently the case in HTK.

Given the sequential time structure of the physical phenomena being modeled by the HMM

for speech, it is reasonable to assert a left-right state sequence, meaning that states must occur

in order and that it is never possible to return to an earlier state. State transition likelihoods can

be estimated from training data so initial values should simply contain approximate values for

initialization, such as a 70% likelihood of remaining in the current state and a 30% likelihood of

transiting to the next state. Figure 5.4 shows the structure of a typical Gaussian HMM.

It is necessary to have one model per acoustic unit, and typical tri-phone training consists of

an iterative process which begins with only monophone models. In this case, the set of 40 to 50

monophone models must be initialized to reasonable values to begin the training process. Since

pre-established initializations for each model usually aren't available, a global model is generated
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by accumulating statistics for the entire training data set. This global model is then copied to

ever monophone model as a starting point.

At this stage a set of identical HMMs, one for each monophone, will exist. The models will

contain statistical distributions for each state within the model, and a state transition matrix.

5.6 Training Monophone Models

Since alignment data is typically not available with transcriptions, it is necessary for the Baum-

Welch algorithm to best estimate the model and state transition points. Given that these estimates

are made from the existing models, it is plain to see that initial boundary estimates will be poor.

It is necessary to use as much data as possible to improve the monophone models discrimination

ability before fragmenting the model space signi�cantly through the use of triphone models.

Furthermore, the models are very sensitive to noise and poor training data since every model is

initially identical. For this reason, it is bene�cial to use a boot strap portion of the training set

which has been checked to con�rm that the transcriptions are accurate and the data is relatively

noise free and of clear audible quality.

The basis of the HMM training process is the Baum-Welch algorithm which uses current data
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to estimate transitions and state sequence likelihood, then optimizes the models to best match

the assigned state sequence. This is a form of the EM algorithm and is intrinsically iterative in

nature, slowly converging on the (locally) optimal model, since the EM algorithm is proven to

not degrade the models with successive iterations. After 2 or 3 iterations of retraining with the

bootstrap portion of the training data, the full training data set may be used (including the SP

and SIL models).

During these training iterations there are only three user decisions: i) the number of iterations

to use; ii) the pruning threshold; and iii) variance oor. It has been found in general that the

Baum-Welch algorithm performs the majority of it's improvements in the �rst 2 or 3 iterations,

therefore no more than 3 iterations should be made after a change in the model. The pruning

threshold is related to the automatic alignment of transcriptions with data. Since numerous

segmentation intervals are possible, the search algorithm can be limited by pruning combinations

which fall a certain distance below the maximum likelihood. For monophones, with only 40 to 50

models total, pruning is not necessary. The variance oor prevents data sparsity from producing

a model with an extremely small variance. By setting a variance oor, no variance parameter will

be permitted to fall below the oor value.

5.6.1 Modeling Silence

Two additional model types which have not yet been mentioned are the silence model (SIL) and

the short pause model (SP). When there are extended periods of silence in an utterance, it is

necessary to mark this with an appropriate label, otherwise the training process will be forced

to stretch phonetic models to cover the silence region. The short pause model is used to model

the word terminus period which may or may not contain silence. In natural speech there is no

discontinuity between words unless a pause or end of utterance is reached. The short pause model

is an alternative to cross word triphones, since the cross word triphone is di�cult to represent in

dictionaries and dramatically increases the number of context models. It is generally tied to the

silence model and then attached as the last phone in every dictionary word.

The danger of using SIL or SP during the initial training period is that due to poor model

discrimination it is necessary for training models to occur with approximately equal frequency.

If a few models occur much more frequently than the rest they will become well trained and
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therefore match increasingly large portions of the training data, beyond their proper scope. Since

SP typically occurs at the end of every word, and most words contain less than 10 phones, SP

will have 4 to 10 times the frequency and therefore will become overtrained. In order to avoid

this, it is necessary to use a transcription and dictionary set which do not include any SP or SIL

models for the �rst several training iterations.

5.6.2 Use of Multiple Pronunciations

As has already been mentioned, use of multiple pronunciations can have the detrimental e�ect of

increasing the complexity of the LM network and therefore increase the likelihood of confusion,

which increases the error rate. That being said, training of models is done from phone level

transcriptions which are usually expanded from word level transcriptions (since transcription is

generally done at the word, rather than phone, level), so the selection of which pronunciation to

use for a given word will have an e�ect on which phone models are trained. By default word

level to phone level transcription conversion programs will use the �rst occurance of a word, but

once the phone set has undergone initial training it is possible to compare the quality of various

pronunciations and select the best match.

Even in the case where �nal recognition is done using a single pronunciation dictionary, it is

advisable to perform transcription alignment and pronunciation selection from a multiple pronun-

ciation dictionary. This is generally done after 2 or 3 iterations of full training with the the SIL

and SP models included. This will improve the model training and decrease the e�ects of bad

alignment which occurs when a model is associated with data to which it is unrelated, since this

degrades the model estimates.

As a �nal note, changing the phone level transcriptions will e�ect the triphone set which exists

in the transcriptions. Because phone sequences can change, phone contexts can change. Triphone

transcriptions and the triphone list are generally only created after alignment has been done.

5.7 Training Triphone Models

After several iterations of monophone training, with the newly aligned transcriptions, triphone

models can be created. It is typical to have 6000-8000 triphones created from the base 40 to
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50 monophones. Initially, every one of the triphones will be an exact copy of one of the most

recently trained monophone models, based on the center phone of the triphone model (i.e. all

phones matching � � p+ � will be copies of monophone model p). With 3 states per model, this

represents on the order of 20,000 states.

5.7.1 Decision Tree State Tying

A few iterations of training with the full state count is necessary in order to establish some model

discrimination (i.e. to vary model l1 � p+ r1 from model l2 � p+ r2). After this, it is bene�cial

to reduce the number of parameters by tying similar states to improve estimation and overall

robustness. A variety of methods are available for tying states so that two models share the same

meta-state. An obvious approach is to use a Euclidean distance measure between states, and

merging closest states until either a maximum cluster distance was reached or until a set number

of clusters had been created. While this approach de�nitely has merit, it can result in loss of �ne

discrimination between similar states which need to remain distinct.

Decision tree tying builds a binary tree which contains a combination of heuristic and statistical

structure. It is created by asking \yes/no" questions regarding states clustered at the root node,

and splitting the data to one or the other child depending on the answer (e.g. states answering

\yes" to the question go to the left child and those answering \no" go to the right child). The

questions refer to the phone model structure from which the state came from, for example \Left

Phone is a Fricative" or \Right Phone is =aa=". At each level the question which produces the

maximum likelihood split is used then that question is removed from the list (since it has already

been applied to the data). This process is continued until the questions have been exhausted or

the increase in log likelihood falls below a certain value. The root nodes of the trees generally

have all states for a given base phone and state position (e.g. all �rst states of triphone models

for which the base phone is =ey=). Leaf nodes can then be clustered if they are very close by a

Euclidean distance measure.

One of the greatest advantages of this approach is that unseen triphones can be synthesized by

traversing the decision tree until a leaf node is reached. The set of decision tree questions should

reect some sort meaningful phone structure or groupings. Although application of multiple

mixture decision trees is possible, many algorithms currently available are based on single mixture
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Gaussian distributions. Data driven clustering can generally accept any distribution format, while

decision trees are currently limited to Gaussian distributions due to the use of maximum likelihood

estimates derived from the model rather than the data. Decision trees are currently the most

popular form of triphone clustering and state tying.

5.7.2 Estimating General Statistical Distributions

A single Gaussian distribution for a model is generally not reasonable, given speaker variations

which are typically clustered such as dialect and gender. For this reason, it is desirable to have

more of a general statistical distribution. A general distribution can be approximated by a multiple

mixture Gaussian model, and creation of multiple mixture models should be done after state tying

has been completed (and a few iterations of re-estimation).

This process is straight forward and consists of using an iterative mixture splitting algorithm

where the initial Gaussian is split into two by o�setting the new means by some �xed amount to

either side of the previous mean, then re-estimating the distributions. This can be repeated an

arbitrary number of times, although re-estimation should be done after every mixture increase,

and mixtures should only be increased by one between re-estimation (i.e. single mixture to double

mixture, then retrain, double to triple, then retrain, etc.). Of course, M mixtures increases the

total number of parameters by M , thereby creating data sparsity problems and poor parameter

estimates.

Most practical LVCSR systems �nd 3 to 7 mixture distributions is su�cient to capture the

parameter distribution. Because the total number of model set parameters increases so substan-

tially during this process, and due to the iterative nature of training multi-mixture models, it

is usually necessary to apply limits on the computations to reduce the processing time. This is

generally done in the form of a pruning threshold which is monitored during the Baum-Welch

re-estimation. The Baum-Welch algorithm must check a large number of possible state sequences

and state alignments (i.e. actual time boundaries for the start and �nish of each state). During

this process a beam search will keep track of the most likely state sequence and any sequence

which is more than a certain amount below this likelihood is considered to be su�ciently unlikely

as to warrant elimination from the list of possible state sequences. It is possible that this process

will eliminate all sequences and the utterance will have no acceptable predicted state sequence,



CHAPTER 5. DESIGN OF HMMS AND THE ASR EXPERIMENTAL PROCESS 51

which will result in training failure. To avoid this, the threshold must either be adaptable (i.e.

increase if a failure occurs) or set su�ciently large that this will not occur.

5.8 Performing Recognition and Evaluation System Perfor-

mance

Once a fully trained multiple mixture triphone HMM set has been produced, it can be used to

recognize the test set. As has already been noted, it is necessary to have a LM and a corresponding

dictionary which contains pronunciations for all words occurring in the LM. The HMM set must

contain every triphone occurring in the dictionary, otherwise recognition will fail when the LM

is expanded into a triphone network, using the dictionary, and corresponding HMMs cannot

be found. The recognition process consists of two parts: i) traversing the phone level lattice

representing the LM to generate an acoustic score; and ii) incorporating a LM score relating to

the syntactical structure of the utterance.

The lattice traversal is done using the Viterbi algorithm, and is usually computationally in-

tensive, even given the overall e�ciency which is gained by using Viterbi rather than brute force

calculation. To limit the computational load, a beam search method analogous to the one de-

scribed in section 5.7.2 can be used. The lattice is traversed using tokens which move through the

lattice in time. Each token contains the current lattice path and it's probability to that point. If

any token falls a certain threshold below the maximum token at that time it is eliminated.

Words with more phones will have a lower probability because each time a token is passed

from one phone to the next the probabilities are multiplied (and all probabilities are less than 1).

This means there is an intrinsic bias towards fewer words in the recognizer output. To compensate

for this, a word insertion penalty (WIP) is applied. This value is added to every token when it

reaches the end of a word. It can be used to encourage more words to be output or discourage the

number of words. Furthermore, the scale of the LM score and the AM score will not correspond

so it is necessary to scale the LM score to be appropriately sized compared to the AM score. This

is usually termed the grammar scale factor (GSF). It is also an important parameter depending

on the quality of the LM and the desired e�ect of the LM on the recognition output. If pure

acoustic results are desired, it is possible to use the LM only for expanding the allowed word and
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Figure 5.5: WER Surface for various GSF and WIP values

phone sequences, but have no inuence on adjusting the token scores by setting the GSF to zero.

Of course, even with a GSF of zero, it is possible that the lattice structure of the LM asserts a

very high degree of syntactical structure to the recognizer. If pure AM results are desired, it is

necessary to produce a word-loop LM using the dictionary entries.

Figures 5.5 and 5.6 show two di�erent WER surfaces generated using various GSF and WIP

values. The problem of determining \good" values of GSF and WIP is very di�cult. This

is usually done from intuition and experience. WIP should be set such that the %INS (word

insertions) and %DEL (word deletions) are approximately equal. A high %INS indicates that the

WIP is too positive and too many words are being inserted. Instead it should be reduced (made

more negative). The converse is true of a high %DEL, and WIP should be increased. WIP can
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be a positive or negative value, and when it is used as an additive factor for log likelihoods can

be expected to be in the range of -50 to +50.

GSF is much harder to establish and is based on the quality of the LM and the regularity of

the operational environment (i.e. if the LM is highly structured and the operational environment

will have a fairly �xed syntactic structure). The GSF is a strictly non-negative real number,

and practice shows that a value on the order of the number of base coe�cients scales the LM

appropriately to match the AM scores. For example, a system with 12 static MFCC could use a

GSF of 12. This is due to the fact that the summation of the token log-likelihoods is dominated

by the static coe�cients.

In cases where the training data and LM consist of speci�c sentences it is inaccurate to strongly

weight the LM with a high GSF when the test data consists of the same sentences, unless those

sentences represent the entire objective operational environment of the system. This problem can

best be illustrated by an example. Consider two sentences \Today is Tuesday March fourteenth"

and \What would you like to eat?". If a large number of speakers are recorded speaking both

sentences and the objective is to train a LVCSR system from these two short sentences, then

the testing results, even if \unheard" test speakers are used, will be extremely good if the LM is

built from the two sentences. A strong recognition result for any one word in either sentence will

automatically �x the recognition result on that sentence. As an extreme case, if a test sentence

was completely corrupted by noise except for the word \is", then the sentence \Today is Tuesday

March fourteenth" would likely be recognized. It is for this reason that it is very important to

have a representative LM that does not arti�cially have a perfect match to the testing data.

Since the recognition process simply outputs a word sequence, and actual performance mea-

sures are done separately by comparing the output to the actual transcriptions, it is possible to

do post-processing on the recognition results. Recognition of non-speech events (NSE) may be

done by the system, however the actual transcriptions do not consistently list NSEs, so it may

be desirable to remove these markers from the recognition results. An important NSE is the

[SILENCE] event (or equivalent) which is typically placed at the start and end of all utterances

to avoid associating silence with the �rst and last phones of the utterance. This can easily lead

to the recognizer producing [SILENCE] at the start and end of every utterance (especially if it

is built in to the LM), which will exactly match the actual transcriptions, and thereby guarantee

two correct \words" recognized for every utterance. This will decrease WER substantially, and
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with short utterances can lead to highly misleading results (e.g. a set of single word utterances

all incorrectly recognized could report only a 33% WER rather than 100%). For this reason it is

important to consider what is being produced by the recognizer and what is being scored by the

performance analysis software.

The conclusions from these observations suggest that when recognition is performed, the GSF

should be set to the base number of data coe�cients, and the WIP should be set to balance %DEL

and %INS. Pruning should be performed at a level similar to that used in the training (Baum-

Welch re-estimation) phase, and the GSF should be adjusted to take into account the quality of

the LM. As has been illustrated in �gures 5.5 and 5.6, optimal selection of GSF and WIP can

improve the WER by several percent, so it can be bene�cial to vary these two values and repeat

testing to note the e�ect. Section 5.1 and �gures 5.1 and 5.2 discuss and illustrate the importance

of having su�cient test data to generate a meaningful measure of system performance.

5.8.1 N-Best Lists and Lattice Results

As a postscript to the topic of evaluating system performance, it is sometimes valuable to be able

to analyze the recognition process at a �ner level. The Viterbi decoding selects the best word

sequence based on a combination of the AM and LM scores (as weighted by the GSF and WIP)

given by the equation:

(̂w) = argwmax(L(
X
w

AM + (GSF � LM +WIP )jw) (5.1)

While the normal results are only the highest likelihood sequence, it is possible to have most

decoders to output an N-Best list, which contains the alternate word sequences which were not

selected. This can be useful to see if the correct word sequence was \close" to being selected.

Some ASR systems do sequential improvements by re-scoring from the N-Best list rather than

re-computing lattice likelihoods. A further scale of information can be gained by outputting the N-

Best lattice structure, which contains lattice connections, alignment, and likelihood information.

More advanced re�nements can be done with this information than with an N-Best list alone.



Chapter 6

Conclusions

This thesis discusses the development of SI-LVCSR systems using HMMs and for optimisations

to improve recognition results. Speci�c attention is given to the problem of speaker adaptation,

and experimental results for cross-task adaptation using MLLR are presented. The experimental

process in which HMMs are created and trained is reviewed and analysed to establish important

criteria for optimum model design and system performance.

6.1 Adaptation

The task of supervised rapid adaptation from one minute of data was considered. The source

models were generated from a 10 hour subset of the Switchboard corpus which contains continuous

conversational speech. The target task was recognition of the Macrophone corpus, using 1 minute

of supervised adaptation improvements to recognize 1 minute of test data on a speaker by speaker

basis. A set of 41 male speakers was used. Using the unadapted Switchboard HMM set a WER of

24.07% was achieved. The best adaptation results were achieved by performing mean and variance

adaptation using diagonal variances and performing a global mean transform. This resulted in a

WER of 18.21%, or a reduction of 5.86% absolute. Block diagonal transforms were used, and a

total of 4 to 7 adaptation classes were estimated per speaker.

These experiments revealed the coarseness of MLLR adaptation and suggested the need to

capture distinct adaptation features for acoustically similar models. The adaptation classes were

56
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shown to be established primarily by the clustering threshold, rather than the regression tree

size, thus suggesting that a large regression tree should be created and the e�ective tree size set

through the threshold. The cross-parameter correlation was also clearly revealed by the decrease

in performance when parameters were independently adapted. In this case the WER increased

by 4.62% to 22.83%. This has important implications concerning the possibilities for whitening

the parameter space or reducing the number of parameters to increase computation speed.

6.2 Experimental Design

The discussion of experimental design addressed several issues which to date have not been for-

mally covered in the available literature. A presentation on the convergence and variation of

recognition results based on test set size suggests that at least one hour of data is required for

testing LVCSR systems, and ideally a secondary test set should be available to con�rm results.

It was estimated that at one hour of test data the estimate accurancy variance will still be +/-

5% of the estimated error rate.

Analysis of the e�ects of varying WIP and GSF also showed the importance of accurately

estimating these values. Error surfaces revealed several percent variation, but also indicated

smooth surfaces which ease the task of estimating the optimum settings.

6.3 Future Work

Adaptation is an important part of the progression towards improved ASR systems, especially

for speaker independent continuous conversational speech. The work described here has only

experimentally analysed one approach to adaptation, while there are several other options such

as MAP, EMAP, and multi-scale. It would seem that the current MLLR strucutre su�ers from

the requiring at least one minute of data in order to perform coarse adaptations, and the ideal

system will be capable of performing �ne adaptation with only a few seconds of data. Further

investigation into the use of correlated adaptation structures such as multiscale should be pursued.

There are clearly still many outstanding issues in the process of optimal experimental design

and HMM training methodology. While trigram langauge models have shown signi�cant promise
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over bigram models, there is a need to succsefully incorporate the rich information contained in

the syntactic and semantic structure of speech. Clearly a recurring theme is the need to overcome

data sparsity problems while still retaining discrimination between similar acoustic events.
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