
A Grouped Hamming Network

by

Bryan Logan

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Bryan Logan 2010



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

A distributed hash table (DHT) is a type of peer-to-peer (P2P) network that, like

traditional hash tables, maps keys to values. Unlike traditional hash tables, however, the

data is distributed across a network with each node being responsible for a particular range

of keys. Numerous other DHTs have been presented and have become the cornerstone of

wildly popular P2P file-sharing applications, such as BitTorrent. Each of these DHTs

trades-off the number of pointers maintained per node with the overhead and lookup time;

storing more pointers decreases the lookup time at the expense of increased overhead.

A Grouped Hamming Network (GHN), the overlay network presented in this thesis,

allows for the number of pointers per node to be any increasing function of n, P (n) =

Ω (log n). The system presented assumes that nodes fail independently and uniformly at

random with some probability q = 1 − p. Three different schemes for routing in a GHN

are presented. For each routing scheme a theoretical estimate on the probability of failure

is given and optimal configurations in terms of n and P (n) are given. Simulations of

GHNs with various configurations indicate that the given estimates are indeed accurate

for reasonable values of q and that the optimal configurations are accurate.
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Chapter 1

Introduction

A distributed hash table (DHT) is a type of peer-to-peer (P2P) network that, like tradi-

tional hash tables, maps keys to values. Unlike traditional hash tables, however, the data

is distributed across a network with each node being responsible for a particular range of

keys. Thus retrieving the value associated with a specific key involves determining which

node is responsible for the key and requesting the data from that node.

For example, Chord, one of the first DHTs, assigns a random unique identifier (ID) to

each node and arranges the nodes in a ring by increasing ID [18]. In its simplest form each

node maintains a single pointer to the node with the next largest ID, called its successor.

Each node is responsible for the values associated with the range of keys between its ID and

its successor’s ID. Retrieving the value associated with a particular key is then a matter

of walking around the ring until the node responsible for the key is located.

Numerous other DHTs have been presented (e.g. [12, 13, 15, 5, 16, 11, 4]) and have

become the cornerstone of wildly popular P2P file-sharing applications, such as BitTor-

rent. Each of these DHTs trades-off the number of pointers maintained per node with the
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overhead and lookup time; storing more pointers decreases the lookup time at the expense

of increased overhead. Many DHTs require nodes to maintain a logarithmic number of

pointers (e.g. [18, 12, 13, 15]) and therefore also require a logarithmic number of messages

to be sent in order to retrieve a file. Other DHTs (e.g. [5, 4]) have opted to decrease the

lookup time to at the expense of increased overhead by increasing the number of pointers

per node to O (
√
n).

The key observation in this tradeoff is that increasing the number pointers per node

increases the overhead at each node in terms of both memory consumption and bandwidth.

The former occurs as a result of keeping the node’s contact information (e.g. IP address

and port), while the latter occurs as a result of ensuring the integrity of the pointer. Each

node must periodically check that it is able to reach the nodes it points to and perform

some sort of clean-up action if it is unable to do so. Thus as the number of pointers

increases the overhead also increases in terms of bandwidth used.

The authors of Kelips argue that increasing the number of pointers to O (
√
n) per node

does not require an excessive amount of memory [5]. In fact, for a system with 105 nodes

and 107 files only 1.93 MB of memory is used to store the routing information at each node

[5]. Although this is small – especially given that current desktop computers have on the

order of gigabytes of memory – they do not consider the increased overhead in terms of

the bandwidth required to maintain the increased number of pointers.

Accordion, on the other hand, is a Chord-like DHT that adjusts the number of pointers

each node stores based on its maximum available bandwidth – its bandwidth budget –

while maintaining an expected O (log n) lookup time [8]. Since it uses a ring structure

like Chord, nodes do not require pointers to particular parts of the network because, in

the worst case, each node passes a message to its successor. As a result of the relaxed
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constraints on the routing table nodes in an Accordion network choose to store pointers

probabilistically; a node Ni that learns of another node Nj at distance x is stored with

probability proportional to 1
x
.

This thesis proposes a new DHT called a Grouped Hamming Network (GHN) where

each node stores P (n) pointers, and P (n) is allowed to vary as a function of the number

of nodes in the network, n. Storing the same number of pointers at each node, rather

than varying it node by node, is beneficial in two different ways. First, it forces each node

to be responsible for the same amount of work. In Accordion, it is possible for a node

to request the lowest allowed bandwidth budget in order to minimize its own bandwidth,

while simultaneously reducing lookup times by abusing its high-bandwidth neighbours.

In a GHN every node is responsible for the same number of nodes and thus there aren’t

any nodes that can be exploited in this manner. Secondly, an equal number of pointers

per node creates a regularly structured network that naturally lends itself to numerous

possible routing schemes which, because of the straight-forward structure, yield strong

theoretic results.

The remainder of this thesis is broken in to five chapters. Chapter 2 gives some back-

ground on the use of hypercubes in networks. Chapter 3 presents the GHN at a more

detailed level and introduces the constraints on the problem. Chapter 4 introduces three

different routing schemes and gives a theoretical analysis of their probability of routing

success. Chapter 5 gives the results of simulations to support the claims made in chapter

4 and, finally, chapter 6 concludes the thesis.
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Chapter 2

Background

A generalized w, d-hypercube is a hypercube of width w in d dimensions1. Although orig-

inally presented as a topology for VLSI communication networks in multi-processor envi-

ronments [3], the same topology can easily be used to construct an overlay network where

each node is a physical machine rather than a processor. In this situation, however, the

biggest concerns are the bandwidth overhead associated with maintaining pointers to other

nodes, and the non-trivial probability of nodes failing. This is radically different from the

original use where the primary concern is wiring density as a high wiring density results

in a more expensive product [3]. Furthermore, the probability of a processor failing is ex-

tremely small and, except in enterprise and safety-critical applications, results in nothing

more than an inconvenience to the user.

Models of packet routing in hardware are generally quite different than those over wide

area networks. A common model, for example, is one where neither edges nor nodes fail

but only one message can be sent along a connection in any given time step [6]. The

1For the sake of clarity, this has been renamed from a k-ary n-cube as presented in [3]
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problem, then, is to find the minimal number of time steps required to route n messages

to n different nodes. In routing models over wide-area networks, however, more than

one message can usually be sent along a connection, but edges, nodes, or both edges and

nodes may fail with some non-trivial probability. Questions associated with this model

can involve, for example, finding the probability of routing success for a particular routing

algorithm, designing a routing algorithm with a minimal error rate, or determining the

number of messages that need to be sent in order to guarantee routing success.

The network presented in this thesis is intended as a service-based network where there

are multiple nodes providing identical services (e.g. hosting a file, providing CPU cycles)

and clients do not care which node provides the service, as long as the service is received.

This is similar to a DHT where clients are interested in receiving data, but generally not

interested in who is providing it. Thus a message is said to be routed successfully through

the network if it reaches any node that provides the desired service; otherwise the message

is unsuccessfully routed.

Numerous DHTs have been presented (e.g. [12, 18, 13, 15, 5, 16, 11]) and have become

the cornerstone of wildly popular P2P file-sharing applications, such as BitTorrent. Al-

though these DHTs have been extended to improve throughput while reducing latency [2],

improve security [20], improve performance under various levels of churn [22, 14] etc., and

analyzed both theoretically [9] and empirically [17, 7], none have allowed for the number of

pointers per node to vary as a system-wide function, nor have theoretical estimates on the

probability of routing under random node failures been given. In general, different DHT

implementations trade off between the number of pointers each node maintains and the

reliability of the network.

The overlay network presented in this thesis allows for the number of pointers per node
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to be any increasing function of n, P (n) ≥ dlg ne. This flexibility is important as it easily

allows for the network administrators to fine-tune the trade off between reliability and

overhead. Consider, for example, a large private network constructed on a slow connection;

naturally, low-overhead would be important. Now consider what would happen if the

network were upgraded and the bandwidth was no longer an issue. If the overhead were

not adjustable then the choices would be to either rewrite all of the software to use a

different DHT, or deal with unnecessarily low reliability. Using a network that can fine

tune this trade off, however, it would only be a matter of restarting the software with a

modified P (n).

6



Chapter 3

System Overview

As previously described, a Grouped Hamming Network (GHN) is similar to a w, d-hypercube

however each address in the cube maps to a clique of nodes, rather than a single node. A

GHN is completely described by three parameters: k, the number of nodes in each clique,

w, the width of the cube, and d, the number of dimensions; hence the size of the network

is n = kwd, and letting k = 1 and w = 2 gives a traditional binary hypercube. In practice

n, the number of nodes, is given and the remaining parameters are positive integer values

derived from n and P (n). Using a network of cliques significantly improves the reliability

of the network as the probability of routing to a neighbouring clique increases with k.

Additionally, a modest increase in k results in a large improvement in the probability of

success of even the most simple routing schemes. The latter property allows for strong

theoretical results because simpler algorithms still result in high probabilities of success.

A GHN is a service-based network which differs from a general network in that nodes

are looking to receive a service and do not care who provides it. Specifically, each clique

provides a service (e.g. host a file) and nodes within the same clique are indistinguishable
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in terms of the quality of service provided. In a distributed file system, for example, a file

could be mapped to a clique by hashing the file name to a clique ID. Another use – and, in

fact, the original purpose of this network – is to select nodes uniformly and independently

at random from the network in order to perform fair statistical sampling. Assuming that

each clique contains an equal number of nodes, this is easily accomplished by selecting a

clique at random and selecting a node from the clique at random. This thesis does not

address the problem of assigning services to cliques and assumes that nodes are able to

independently determine which clique is responsible for the desired service.

The model of the system presented assumes that nodes fail independently and uniformly

at random with some probability q = 1− p at the time step before the message is sent and

that the state of the network does not change while a message is being routed. Additionally,

it is assumed that failed nodes have failed completely and that a node sending a message

to a failed node is aware that its message was not delivered. This eliminates the possibility

of faulty or adversarial nodes that are able to receive messages, but may route them

incorrectly. Finally it is assumed that links do not fail; that is, if nodes Ni and Nj are

alive and connected they are able to communicate across it.

The remainder of this thesis addresses three different routing strategies and the proba-

bility of a path existing in a GHN. For each routing scheme a theoretical estimate on the

probability of failure is given and optimal configurations for d, w and k in terms of n and

P (n) are given. Simulations of GHNs with various configurations indicate that the given

estimates are indeed accurate for reasonable values of q and that the optimal configurations

are accurate.
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Figure 3.1: The Lambert W function. The solid blue line is the positive branch, W (x),
and the dashed red line is the negative branch, W−1 (x).

3.1 Notation and Conventions

In order to prevent any misunderstandings this section will briefly note all conventions

used in this thesis. The variables d, w, k, and n represent the number of dimensions, the

width, the size of a clique, and the number of nodes in the network, respectively. The

function P (n) represents the number of pointers stored per node. It assumed that n and

P (n) are given. If w = 2 and k = 1 then the GHN is a traditional binary hypercube in d

dimensions and is deonted Qd.

The logarithm of x to the base b is denoted logb x and the special cases of b = e and

b = 2 are denoted ln x and lg x, respectively. The exponential function y = ex will, when

more convenient, be represented by y = exp (x).

The Lambert W function of x is denoted by W (x) [1]. This function is used to solve
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transcedental equations of the form

yey = x

y =


W (x) if x ≥ 0,

W (x) or W−1 (x) if −1
e
≤ x < 0.

The two branches W (x) and W−1 (x) on the interval −1
e
≤ x < 0 denote the positive

and negative branches, respectively (see figure 3.1). All applications of the Lambert W

function will be explicit regarding which branches are valid. Note that if −1
e
≤ x < 0 then

W−1 (x) < y holds when y > −1. The derivative of the Lambert W function can be found

by implicit differentiation and is given by the expression

∂

∂x
W (x) =

W (x)

x (W (x) + 1)
.

The probability of an event E occurring is given by P (E) while the probability of

event E not occurring is Q (E). Naturally these probabilities are related by the expression

P (E) = 1−Q (E) .

The binomial coefficient is denoted

(
n

k

)
=

n!

k! (n− k)!

and represents the number of ways k elements can be selected from a set of n elements.

A node Ni that is a member of clique Cx is denoted using set notation as Ni ∈ Cx.

If multiple nodes and cliques are introduced then, unless otherwise stated, it as assumed

that they are distinct. For example if Ni ∈ Cx and Nj ∈ Cy then it is assumed that i 6= j
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(a) Direct routing. (b) Indirect routing.

Figure 3.2: Two different ways of routing from Ni to Nk where Ni and Nk are in neigh-
bouring cliques. The solid blue lines represent the path taken and the light dotted lines
represent the other connections that are not used.

and x 6= y. The cliquemates of Ni ∈ Cx refers to all nodes {Nj | Nj ∈ Cx, Nj 6= Ni}.

If a clique’s ID must be given then it will be introduced as C〈x1,x2,...,xd〉, where 〈x1, x2, . . . , xd〉

is the d-component ID of the clique. The distance between two cliques C〈x1,x2,...,xd〉 and

C〈y1,y2,...,yd〉 is calculated as the Hamming distance between their clique IDs and is denoted

as H
(
C〈x1,x2,...,xd〉, C〈y1,y2,...,yd〉

)
. The Hamming distance between two vectors is the number

of components in which the vectors differ. For example H
(
C〈1,2,2,1〉, C〈1,5,2,3〉

)
= 2. The

rowmates of a clique Cx refers to all of the cliques {Cy | H (Cx, Cy) = 1} . Geometrically,

this is the set of cliques that are in the same row as Cx in some dimension.

A message is said to be routed directly from Ni ∈ Cx to Nk ∈ Cy if the message is sent

across the connection from Ni to Nk. Figure 3.2(a) illustrates direct routing. Alternatively

a message is said to be routed indirectly from Ni ∈ Cx to Nk ∈ Cy if it goes via some

intermediary node Nj ∈ Cx. Figure 3.2(b) illustrates indirect routing.

A path through a GHN is identified by the cliques traversed, rather than the nodes the

message passed through. For example if a message m1 travels through nodes Ni ∈ Cx and

Nj ∈ Cy, and message m2 travels through nodes Np ∈ Cx and Nq ∈ Cy then messages m1

and m2 are said to have taken the same path, even though they did not pass through any
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of the same nodes.

3.2 Network Layout

Figure 3.3: A row taken from a GHN with width 3. The filled red circles represent nodes
in the network. Nodes in the same clique are surrounded by a black circle and intra-clique
connections are shown as black dashed lines, while connections between adjacent cliques
are shown in green and longer connections are shown in blue.

A GHN is a highly-connected network. Every node maintains a connection to each

of its cliquemates as well as to one node in each clique in each of its rows. Figure 3.3

illustrates a row taken from a network of width 3. If this were taken from a GHN with d

dimensions then each clique would be a member of d similar rows.

In a full GHN where there are exactly kwd nodes, each cliquemate maintains a connec-

tion to a unique node in neighbouring cliques. For example if Ni, Nj ∈ Cx, Nk ∈ Cy, and

Cx and Cy are in the same row, then only one of Ni or Nj will have a connection to Nk.

Figure 3.4 shows a full GHN in two dimensions with width two and a clique size of three.

Handling Partially-Filled GHNs

A partially-filled GHN is when there are not exactly kwd nodes and will occur often in

practice. This results in fractional values for k, w, and d, which must be handled carefully
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Figure 3.4: A full GHN in two dimensions with width 2 and clique size of 3. The filled
red circles represent nodes in the network. Nodes in the same clique are surrounded by a
black circle and intra-clique connections are shown as black dashed lines, while connections
between nodes in adjacent cliques are shown in green.

in order to ensure a correct network structure. If w or d must be rounded then they will

be rounded down as rounding up may result in cliques of size k < 1. If k is fractional then

not all clique sizes will be the same; some are ]emphsmall and contain bkc nodes while

others are large and contain bkc+ 1 nodes.

If a large clique CL is adjacent to a small clique CS then there will be two nodes

Ni, Nj ∈ CL that point to Nk ∈ CS. This is required to ensure that each node is able to

route to its neighbouring cliques both directly and indirectly.
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3.3 Constraints

Since there are numerous parameters used to describe the GHN, this section is intended

to collect all of the constraints on these variables in one place. The parameters are

k the number of nodes in each clique,

w the number of cliques in a row,

d the number of dimensions,

n the total number of nodes in the network,

q = 1− p the probability of a node failing, and

P (n) the number of pointers maintained per node.

These variables are related by the equations

n = kwd, (3.3.1)

and

P (n) = (k − 1) + (w − 1) d ≈ k + wd. (3.3.2)

The approximate value of P (n) is used in much of this thesis as it significantly reduces

the complexity of the solutions.
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Constraints on these parameters are listed here for reference and proved afterwards.

1 ≤n (3.3.3)

1 ≤P (n) < 2
√
n (3.3.4)

2 ≤w ≤ n (3.3.5)

1 ≤k ≤ n (3.3.6)

2 ≤d ≤ lg n. (3.3.7)

Constraint 1. The width of a grouped Hamming network is at least 2.

Proof. Rearranging equation (3.3.1) gives

d =
lnn− ln k

lnw
.

Since setting w = 1 would cause d to be undefined it must be the next largest integer;

therefore w is at least 2.

Constraint 2. If P (n) ≥ 2
√
n then the solution is trivial.

Proof. If P (n) = 2
√
n then the network can be arranged such that k =

√
n and w =

√
n.

This solution is trivial and by forcing P (n) to be less than 2
√
n the solution becomes

invalid.

Since any solutions with P (n) ≥ 2
√
n are trivial, only solutions with P (n) < 2

√
n are

considered. It should be noted, however, that when P (n) = 2
√
n the network takes the

same form as the distributed hash table Kelips [5].
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Since equations (3.3.1) and (3.3.2) form two constraints on three variables, it is possible

to express all of the parameters of the network in terms of the givens, n and P (n), as well

as only one of the other parameters.

Lemma 3.1. The parameters of a GHN can be expressed in terms of k, n, and P (n) as

w =

(1 + P (n)− k)W−1

(
(nk )

1
k−P(n)−1

k−P(n)−1

)
ln k − lnn

d =
lnn− ln k

lnw
.

Proof. Solving equation (3.3.1) for d gives

n = kwd

n

k
= wd

lnn− ln k = d lnw

d =
lnn− ln k

lnw

and (3.3.2) for d yields

P (n) = (k − 1) + (w − 1) d

P (n)− k + 1 = (w − 1) d

d =
P (n)− k + 1

w − 1
.
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Equating these gives

lnn− ln k

lnw
=
P (n)− k + 1

w − 1
w − 1

lnw
=
P (n)− k + 1

lnn− ln k
.

Let

x =
P (n)− k + 1

lnn− ln k

then

w − 1

lnw
= x

w − 1 = x lnw

ewe−1 =
(
elnw

)x
ewe−1 = wx

ew = ewx

eww−x = e

e−
w
xw = e−

1
x

−w
x
e−

w
x = −1

x
e−

1
x

−w
x

=W−1

(
−1

x
e−

1
x

)
w = −xW−1

(
−1

x
e−

1
x

)
.
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Substituting in x and simplifying gives the closed form

w =

(1 + P (n)− k)W−1

(
(nk )

1
k−P(n)−1

k−P(n)−1

)
ln k − lnn

.

Theorem 1. Each node in a GHN stores P (n) ≥ lg n pointers.

Proof. This problem amounts to minimizing P (n). Solving this directly through tradi-

tional calculs techniques proves rather difficult as the derivatives are complex; thus the

argument is done logically.

Increasing k by one has the effect of increasing P (n) by 1 while increasing n by a factor

of

(k + 1)wd

kwd
=
k + 1

k
.

Since limk→∞
k+1
k

= 1, the effect on n as k grows is negligible, while P (n) still increases

by one.

Increasing w by one has the effect of increasing n by a factor of

k (w + 1)d

kwd
=

(w + 1)d

wd
.

With d constant, limw→∞
(w+1)d

wd
= 1 and increasing w by one also results in a negligible

increase to n, while P (n) increases by one.

Finally, increasing d by one has the effect of increasing P (n) by a factor of

kwd+1

kwd
= w.
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Since w ≥ 2, increasing d by one increases n by at least a factor of 2, while increasing

P (n) by one.

Since k and w have have little effect on n and d has a large effect on n, P (n) must be

minimized when w and k are minimized. Hence P (n) is minimzed when k = 1, w = 2,

and d = lg n resulting in

P (n) ≥ (k − 1) + (w − 1) d

P (n) ≥ lg n.

Approximation 1. In a GHN with n nodes, d is minimized when

k ≈ −eW−1

(
−ne

−P(n)
e

e

)
.

Derivation. This derivation is simplified by using the approximate expression for P (n)

from equation (3.3.2). Rearranging for d yields

P (n) ≈ k + wd

P (n)− k ≈ wd

d ≈ P (n)− k
w

.
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Similarly, from equation (3.3.1),

n = kwd

n

k
= wd

lnn− ln k = d lnw

d =
lnn− ln k

lnw
.

Equating gives

lnn− ln k

lnw
≈ P (n)− k

w
w

lnw
≈ P (n)− k

lnn− ln k

elnw (lnw)−1 ≈ P (n)− k
lnn− ln k

e− lnw (lnw) ≈ lnn− ln k

P (n)− k

(− lnw) e− lnw ≈ ln k − lnn

P (n)− k

− lnw ≈ W−1

(
ln k − lnn

P (n)− k

)
w ≈ e−W−1( ln k−lnn

P(n)−k ).
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Thus

d =
lnn− ln k

lnw

≈ lnn− ln k

−W−1

(
ln k−lnn
P(n)−k

)
≈ ln k − lnn

W−1

(
ln k−lnn
P(n)−k

) . (3.3.8)

Let

z =
ln k − lnn

P (n)− k
.

Then

d = − lnn− ln k

W−1 (z)
.

Differentiating with respect to k yields

∂d

∂k
=

∂

∂k

(
− lnn− ln k

W−1 (z)

)
= −

(
0− 1

k

)
W−1 (z)− (lnn− ln k) W−1(z)

z(W−1(z)+1)
∂z
∂k

W−1 (z)2

=
1

kW−1 (z)
+

lnn− ln k

zW−1 (z) (W−1 (z) + 1)

∂z

∂k
.

The derivative of z with respect to k is

∂z

∂k
=

∂

∂k

(
− lnn− ln k

P (n)− k

)
= −
− 1
k

(P (n)− k)− (−1) (lnn− ln k)

(P (n)− k)2

= −P (n) + k ln k − k − k lnn

k (P (n)− k)2 .
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Substituting in z and ∂z
∂k

and simplifying gives

∂d

∂k
=

1− eW−1( lnn−ln k
k−P(n) )

k
(
W−1

(
lnn−ln k
k−P(n)

)
+ 1
) . (3.3.9)

Critical points occur when ∂d
∂k

= 0 or ∂d
∂k

is undefined. The former occurs when n = k,

while the latter occurs when k = 0, or

W−1

(
lnn− ln k

k − P (n)

)
+ 1 = 0

W−1

(
lnn− ln k

k − P (n)

)
= −1

lnn− ln k

k − P (n)
= (−1) e−1

lnn− ln k

k − P (n)
= −1

e

e lnn− e ln k = P (n)− k

k − e ln k = P (n)− e lnn

eke−e ln k = eP(n)e−e lnn

ekk−e = eP(n)n−e

ke−
k
e = ne−

P(n)
e(

−k
e

)
e−

k
e = −ne

−P(n)
e

e

−k
e

=W−1

(
−ne

−P(n)
e

e

)

k = −eW−1

(
−ne

−P(n)
e

e

)
.
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This is valid when

k ≥ 1

−eW−1

(
−ne

−P(n)
e

e

)
≥ 1

W−1

(
−ne

−P(n)
e

e

)
≤ −1

e
.

The inequality holds when

−1

e
≤ −ne

−P(n)
e

e
< 0.

Since the upper bound holds trivially, the expression is valid when

−ne
−P(n)

e

e
≥ −1

e

e−
P(n)
e ≤ 1

n

−P (n)

e
≤ − lnn

P (n) ≥ e lnn.

The first derivative test is used to determine if the critical point is a maximum or

minimum. Equation (3.3.9) is negative when the numerator and denominator have different

signs. Since the exponent in the numerator is between 0 and −1
e
, the entire numerator

must always be positive. Thus the expression is negative if and only if

W−1

(
lnn− ln k

k − P (n)

)
< 0.
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Following the derivation in theorem (1) yields

k < −eW−1

(
−ne

−P(n)
e

e

)
.

Therefore the critical point is a minimum because the first derivative changes from negative

to positive through the point and, since there are no other valid critical points, this must

be a global minimum.
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Chapter 4

Routing

All overlay networks have some non-zero probability of failure that can be a result of,

among other things, hardware failure, network congestion, or malicious users. This section

addresses the probability of failure of three different routing schemes in a full GHN where

n = kwd and n, k, w, d ∈ Z. All of the routing schemes operate by routing through cliques,

rather than through specific nodes, and attempt to make forward progress at each iteration.

If forward progress is not possible then the message is dropped.

A message is said to be routed successfully if it reaches any node in the target clique.

Formally, if node Ni sends a message m to a clique C then it is said to be routed successfully

if and only if a node Nj ∈ C receives m. This section assumes that the node sending the

message is alive, but makes no assumptions about any other nodes in the network. Thus

with probability qk all k nodes in the target clique may have failed and, regardless of the

routing scheme used, the message will not be routed successfully.

Only the longest path in the GHN is considered when calculating the probability of

success. The longest possible path occurs when the source ID differs from the destination
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ID in every component. Specifically the longest path is one from a node Ni ∈ Cx to

Nj ∈ Cy where H (Cx, Cy) = d.

4.1 The Probability of a Path Existing

The probability of any path existing between Ni ∈ Cx and Cy is addressed before consid-

ering the probability of success of a particular algorithm. Much theoretical work has been

done with respect to Qd, the special case where w = 2 and k = 1. As a result, this section

discusses the connectivity results of Qd and suggests that, since each node in a GHN has at

least as many pointers as Qd, a GHN has at least the same probability of a path existing.

Ideally it would be possible to determine the exact probability of a path existing between

Ni and Nj in Qd, however the lack of research addressing this problem directly suggests it is

rather difficult. Indeed, section 4.2 confirms that the expression for the exact probability

of failure for even the simplest of routing algorithms is unwieldly. Thus the problem is

addressed in two different manners: finding the largest connected component after a set of

f nodes have failed from Qd, and finding the number of paths between Ni and Nj given

that f nodes have failed. Although neither address the problem directly, they do provide

a strong indication of the resilancy of hypercubes.

In the first case, if a set of f , |f | ≤ 2d − 3, nodes fail then the largest remaining

component contains at least 2d − |f | − 1 nodes [23]. This leads to the following theorem.

Theorem 2. If Ni is sending a message to Nj in Qd and 2 lg n− 3 nodes fail then a path

from Ni to Nj exists with probability

1− 2 lg n− 3

n− 1
.
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Proof. Since the the initial node Ni is not allowed to fail, there are therefore

(
2d − 1

2d− 3

)

ways that the f nodes could fail. Of these,

(
2d − 2

2d− 4

)

involve the destination node Nj failing and are therefore unrouteable. Thus, assuming that

each configuration of node failures occurs with equal probability, the probability of being

unable to route to the target is

(
2d − 2

2d− 4

)
/

(
2d − 1

2d− 3

)
=

(
2d − 2

)
!

(2d− 4)! (2d − 2− 2d+ 4)!
·

(2d− 3)!
(
2d − 1− 2d+ 3

)
!

(2d − 1)!

=

(
2d − 2

)
!

(2d − 1)!
· (2d− 3)!

(2d− 4)!
·
(
2d − 2d+ 2

)
!

(2d − 2d+ 2)!

=
2d− 3

2d − 1
,

but since this is in Qd where d = lg n,

2d− 3

2d − 1
=

2 lg n− 3

n− 1
.

Thus as n gets large up to 2 lg n− 3 nodes can fail and a message can be sent succesfully

with probability

1− 2 lg n− 3

n− 1
.
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In the second case the number of fault-free paths between Ni and Nj in Qd are counted.

If f ≤ d − 2 nodes fail in Qd then a fault-free path of length l exists for each l satisfying

H (Ni, Nj) + 2 ≤ l ≤ 2d − 2f − 1, where l and H (Ni, Nj) have the same parity [10].

Theorem 3. If d = lg n nodes fail in Qd then there are at least n
2
− lg n− 2 paths between

any two remaining nodes.

Proof. In the worst case H (Ni, Nj) = d. Thus there is a path of length l for each l that

satisfies d + 2 ≤ l ≤ 2d − 2f − 1, where l and d have the same parity. Since d nodes have

failed, f = d and d+ 2 ≤ l ≤ 2d − 2d− 1.

Without loss of generality, assume that d is even. Therefore 2d − 2d − 1 is odd and

since d and l must have the same parity, d+ 2 ≤ l ≤ 2d − 2d− 2. Thus there are

2d − 2d− 2− (d+ 2)

2

=
2d − 2d− 4

2

= 2d−1 − d− 2

paths. Since d = lg n, there are therefore at least n
2
− lg n − 2 paths between any two

remaining nodes.

4.2 The Näıve Algorithm

The näıve algorithm is the simplest possible routing scheme in any Hamming-like network.

Messages are routed by matching the components of the destination ID in consecutive

order and if the message cannot be routed to the desired clique then it is dropped. Thus
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at any step in the routing protocol the sending node has exactly one clique to send the

message to.

Algorithm 1 provides pseudocode for the näıve algorithm. Lines 1 to 3 check if the

message is for the current node and consumes the message if it is. Otherwise lines 5 to 11

find the first component that differs from its own ID, b. The ID of the next hop is found

by taking the current node’s ID and switching component b to match the destination ID.

Algorithm 1 Näıve Routing

1: if message.destination = self.address then
2: consume message
3: return
4: else
5: for b = 0 to message.destination.length do
6: if message.destination[b] 6= self.address[b] then
7: next hop = message.destination[0 : b+ 1] + self.address[b+ 1 :]
8: message.forward to(next hop)
9: return

10: end if
11: end for
12: end if

4.2.1 Calculating the Probability of Failure

Two different methods of calculating the probability of failure are given in this section.

First the exact probability is derived, resulting in a complex summation. Second, a close

upper bound is found. Although it overestimates the probability of failure, chapter 5 shows

that it is close enough to use as an approximation.
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The Exact Probability of Failure

A path through three cliques is first considered then it is extrapolated into a path of length

d. Suppose a message is being routed from Ni ∈ Cx to Cz via clique Cy. Additionally,

assume that of the k nodes in each clique, i0 are alive in Cx, i1 are alive in Cy, and i2 are

alive in Cz. The probability of this configuration occuring is

pi0+i1+i2−1 (1− p)3k−i0−i1−i2 .

Note that the one is subtracted in the first exponent because Ni, the node sending the

message, is guaranteed to be alive. Next the number of ways these nodes can be arranged

such that the message can be sent successfully sent is calculated.

Since Ni is guaranteed to be alive, there are i0 − 1 live nodes that can be placed in

k − 1 possible locations; this can be done in

(
k − 1

i0 − 1

)

ways. In order for the message to be routed successfully, at least one of the i1 alive nodes

in Cy must be adjacent to a live node in Cx.

Suppose i1 ≥ j ≥ 1 nodes in Cy are adjacent to live nodes in Cx. The j live nodes

in Cy that are adjacent to live nodes in Cx can be arranged in
(
i0
j

)
different ways. This

leaves i1 − j live nodes in Cy that are adjacent to the k − i0 failed nodes in Cx; these can

be placed in
(
k−i0
i1−j

)
ways. Thus the total number of ways to place the i1 live nodes in Cy
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such that at least one is adjacent to a live node in Cx is given by the expression

i1∑
j=1

(
i0
j

)(
k − i0
i1 − j

)
.

Following the same derivation, the number of ways that the i2 live nodes in Cz can be

arranged such that at least one is adjacent to one of the i1 live nodes in Cy is

i2∑
j=1

(
i1
j

)(
k − i1
i2 − j

)
.

Thus, given i0 nodes alive in Cx, i1 nodes alive in Cy, and i2 nodes alive in Cz, there

are (
k − 1

i0 − 1

) i1∑
j=1

(
i0
j

)(
k − i0
i1 − j

) i2∑
j=1

(
i1
j

)(
k − i1
i2 − j

)
ways to arrange them such that a message can be sent from Ni ∈ Cx to Cz.

Multiplying this by the probability of this configuration occuring and summing over all

i0, i1, and i2 gives the total probability of a path existing. Hence

P (path|d = 2) =

k∑
i0

k∑
i1

k∑
i2

pi0+i1+i2−1 (1− p)3k−i0−i1−i2
(
k − 1

i0 − 1

) i1∑
j=1

(
i0
j

)(
k − i0
i1 − j

) i2∑
j=1

(
i1
j

)(
k − i1
i2 − j

)
.

Generalizing to a path of length d through d+ 1 cliques gives

k∑
i0,i1,...,id=1

p
Pd
j=0 ij−1 (1− p)(d+1)k−

Pd
j=0 ij

(
k − 1

i0 − 1

) d∏
j=1

ij∑
m=1

(
ij−1

m

)(
k − ij−1

ij −m

)
. (4.2.1)
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Approximating the Probability of Failure

This section derives the probability of routing successfully using the näıve algorithm by

first considering the probability of routing directly or indirectly to a neighbouring clique,

then using these probabilities to determine the probability of routing along a path.

The probability that Ni ∈ Cx is not able to send a message directly to Nk ∈ Cy is the

probability that Nk has failed. Hence

Q (directly) = q. (4.2.2)

Next the probability that a node Ni ∈ Cx is unable to route to a node Nk ∈ Cy indirectly

via a clique-mate Nj ∈ Cx is calculated. This is equal to the probability that either Nj or

Nk has failed. Thus

Q (via clique mate) = q + q − q2

= q (2− q) .

The probability that a node Ni ∈ Cx is not able to route indirectly to any node in Cy via

any cliquemate in Cx is the probability that all k − 1 cliquemates are unable to route the

message. Hence

Q (indirectly) = Q (via clique-mate)k−1

= (q (2− q))k−1 . (4.2.3)

The probability that a node Ni ∈ Cx is unable to route to any node in a neighbouring
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clique Cy is the probability that it is unable to do so either directly or indirectly. Hence,

from equations (4.2.2) and (4.2.3),

Q (neighbouring clique) = Q (directly)Q (indirectly)

= q (q (2− q))k−1 . (4.2.4)

The longest path in the näıve routing algorithm is equal to the number of dimensions.

Assuming that the probability of at each step is independent, then the probability of being

able to route along a path is the probability that the message is able to be passed forward

at each step. Thus

P (forward progress) = 1−Q (neighbouring clique)

= 1− q (q (2− q))k−1 ,

and the probability of being able to route through the entire path is that forward progress

can be made at each of d steps. Hence

P (path) = P (forward progress)d

=
(

1− q (q (2− q))k−1
)d
. (4.2.5)

The independence assumption made results in equation (4.2.5) being a slight overesti-

mate of the actual probability of success. Chapter 5 shows that the overestimate is small

in practice and still makes for a good approximation of the actual value. The following

example illustrates the overestimate for when k = 2, d = 2, and q = p = 0.5.

Figure 4.1 illustrates a path of length two with k = 2. The nodes in this figure are
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Figure 4.1: A sample path through a GHN with k = 2 and d = 2 where the message
originates at the dashed circle in C1 and is destined for C3.

referred to by their clique name and whether they are at the top of the clique or at the

bottom. For example, the dashed circle at the top of C1 is referred to as C1,T . Suppose a

message is being routed from C1,T to C3. Since it is assumed that the starting node is alive,

there are 25 = 32 possible ways the remaining nodes could fail. Each of these combinations

and whether it is possible to route through it is shown in figure 4.2; A or D indicates

whether the node is alive or dead, respectively, and the Route? column indicates whether

it is possible to route through this configuration. If it is assumed that q = p = 0.5 then

each configuration occurs with probability 0.55 = 0.03125. Since there are 12 configurations

that route successfully, the total probability of routing successfully is 12 · 0.03125 = 0.375.

The predicted probability from equation (4.2.5) is

(
1− q (q (2− q))k−1

)d
(
1− 0.5 (0.5 (2− 0.5))2−1)2

=
25

64
= 0.390625,

resulting in an error of 0.390625− 0.375 = 0.015625.

34



C1,T C1,B C2,T C2,B C3,T C3,B Route?

A A A A A A Y
A A A A A D Y
A A A A D A Y
A A A A D D N
A A A D A A Y
A A A D A D Y
A A A D D A N
A A A D D D N
A A D A A A Y
A A D A A D N
A A D A D A Y
A A D A D D N
A A D D A A N
A A D D A D N
A A D D D A N
A A D D D D N
A D A A A A Y
A D A A A D Y
A D A A D A Y
A D A A D D N
A D A D A A Y
A D A D A D Y
A D A D D A N
A D A D D D N
A D D A A A N
A D D A A D N
A D D A D A N
A D D A D D N
A D D D A A N
A D D D A D N
A D D D D A N
A D D D D D N

Total: 12

Figure 4.2: A summary of all configurations of node failures in a path of length three with
k = 2, where A means the node is alive and D means the node is dead. The Route? column
indicates whether it is possible to route a message through this configuration; Y indicates
that it is possible to route a message, while N indicates it is not.
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4.2.2 Minimizing the Probability of Failure

Now that the probability of failure has been calculated, the natural question to ask is how

to minimize this rate of failure. Specifically, given P (n) and n, what configuration of w, k

and d maximizes equation (4.2.5)? This question is answered in the following theorem.

Approximation 2. Given P (n) and n, equation (4.2.5) is maximized when

k ≈ −W−1

(
−ne−P(n)

)
d ≈ lnn− ln k

ln
(
P(n)−k
lnn−ln k

)
w ≈ e−W−1( ln k−lnn

P(n)−k ).

Derivation. Differentiating with respect to k gives

∂

∂k
P (path) = −

(
1− qαk−1

)d ∂

∂k

(
d ln

(
1− qαk−1

))
= −

(
1− qαk−1

)d(∂d
∂k

ln
(
1− qαk−1

)
− dqαk−1 lnα

1− qαk−1

)
=
(
1− qαk−1

)d(dqαk−1 lnα

1− qαk−1
− ln

(
1− qαk−1

) ∂d
∂k

)
.

Since 0 < q < 1, 0 < α < 1 and k is a function of n the term ln
(
1− qαk−1

)
will approach

ln 1 as n grows. This can be approximated by taking the first term of the Taylor series

around the point qαk−1 = 0 to get

ln
(
1− qαk−1

)
≈ −qαk−1.
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Thus

∂

∂k
P (path) ≈

(
1− qαk−1

)d(dqαk−1 lnα

1− qαk−1
−
(
−qαk−1

) ∂d
∂k

)
≈ qαk−1

(
1− qαk−1

)d( d lnα

1− qαk−1
+
∂d

∂k

)
. (4.2.6)

The derivative of d with respect to k is found by solving equations (3.3.1) and (3.3.2)

for w, equating, differentiating with respect to k and solving for ∂d
∂k

. Thus

P (n)− k
d

=
(n
k

) 1
d

∂

∂k

P (n)− k
d

=
∂

∂k

(n
k

) 1
d

−d− (P (n)− k) ∂d
∂k

d2
=
(n
k

) 1
d

(
−

ln n
k

d2

∂d

∂k
− 1

dk

)
∂d

∂k
=

d
(
k −

(
n
k

) 1
d

)
k
((

n
k

) 1
d ln n

k
+ k − P (n)

) .
Substituting this back into equation (4.2.6) and simplifying gives

∂

∂k
P (path) ≈ dqαk−1

(
1− qαk−1

) k −
(
n
k

) 1
d

k
(
n
k

) 1
d ln n

k
+ k2 − kP (n)

+
lnα

1− qαk−1

 .
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This has critical points at

d = 0,

q = 0,

α = 0,

1− qαk = 0, and

k −
(
n
k

) 1
d

k
(
n
k

) 1
d ln n

k
+ k2 − kP (n)

+
lnα

1− qαk−1
= 0.

Of these critical points, only the last is valid. Solving for d gives

d =
lnn− ln k

ln

(
k((P(n)−k) lnα+qαk−1−1)

k lnα ln n
k
+qαk−1−1

) .

Since the additive terms in the denominator are small in comparison to the multiplica-

tive and they are found within a logarithm, it is fair to approximate this term by dropping

the additive terms. Hence

k
(
(P (n)− k) lnα + qαk−1 − 1

)
k lnα ln n

k
+ qαk−1 − 1

≈ k ((P (n)− k) lnα)

k lnα ln n
k

≈ P (n)− k
lnn− ln k

,

and therefore

d ≈ lnn− ln k

ln
(
P(n)−k
lnn−ln k

) .
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From equation (3.3.8)

d ≈ − lnn− ln k

W−1

(
− lnn−ln k
P(n)−k

)
lnn− ln k

ln
(
P(n)−k
lnn−ln k

) ≈ − lnn− ln k

W−1

(
− lnn−ln k
P(n)−k

)
W−1

(
− lnn− ln k

P (n)− k

)
≈ − ln

(
P (n)− k
lnn− ln k

)
− lnn− ln k

P (n)− k
≈ − ln

(
P (n)− k
lnn− ln k

)
e− ln( P(n)−k

lnn−ln k)

lnn− ln k

P (n)− k
≈ ln

(
P (n)− k
lnn− ln k

)
lnn− ln k

P (n)− k

1 ≈ ln

(
P (n)− k
lnn− ln k

)
k ≈ −W−1

(
−ne−P(n)

)
.

This expression for k is larger then the maximum k from lemma 1 and is therefore

invalid. Since there is no critical point between

−eW−1

(
−ne

−P(n)
e

e

)

from lemma 1 and the solution

−W−1

(
−ne−P(n)

)
the function must therefore be increasing through the endpoint. Thus the maximum is
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found at the endpoint, giving the solution

k ≈ −W−1

(
−ne−P(n)

)
d ≈ lnn− ln k

ln
(
P(n)−k
lnn−ln k

)
w ≈ e−W−1( ln k−lnn

P(n)−k ).

4.3 The Always-Forwards Algorithm

The previous section described the näıve algorithm in which messages are routed by match-

ing the components of the destination ID in a specific order. The always-forwards algorithm

is similar in that messages are passed by matching components of the destination ID, how-

ever the node passing the message can choose to send it to any clique that matches the

destination ID in one more component. Thus, if a message being sent to Cy is at some

node Ni ∈ Cx then Ni can choose to send it to any of its H (Cx, Cy) neighbours that match

the destination ID in an additional component.

Algorithm 2 describes the always-forwards algorithm. Lines 1 to 3 check if the message

is intended for the current node and consume the message if it is. Line 4 initializes a

flag that indicates the message has not yet been sent to its destination. Lines 5 to 10 try

forwarding the message to each clique that is closer to the destination than the current node.

Lines 6 to 9 determine the next hop address by first checking if the destination address

differs from the current address at position i. If so, then the next hop address is calculated

by taking the current address and changing component i to match the destination address.
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Algorithm 2 Always-Forwards Routing

1: if message.destination = self.address then
2: consume message
3: end if
4: message sent = False
5: for i = 0 to message.destination.length ∧¬message sent ∧ do
6: if message.destination[i] 6= self.address[i] then
7: next hop = self.address[0:i] + message.destination[i] + self.address[i+ 1 :]
8: message sent = message.forward to(next hop)
9: end if

10: end for

4.3.1 Calculating the Probability of Success

This section calculates the probability of a message being routed successfully. The prob-

ability of success, as opposed to the probability of failure, is used because it significantly

simplifies the calculations.

The probability that a node Ni ∈ Cx is able to route directly to a neighbouring node

Nk ∈ Cy is the probability that Nk is alive. Thus

P (directly) = p.

The probability that a node Ni ∈ Cx is able to route indirectly to any node Nk ∈ Cy

via a specific cliquemate Nj ∈ Cx is the probability that both Nj and Nk are alive. Hence

P (indirectly) = p2.

The probability that a node Ni ∈ Cx is able to route to any Nj ∈ Cy via any of its k − 1
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cliquemates is the probability that not all of them are unable to route the message. Hence

P (any) = 1− (1− P (indirectly))k−1

= 1−
(
1− p2

)k−1
.

Thus the probability that a message is routed from Ni ∈ Cx to any Nj ∈ Cy either directly

or via a cliquemate is

P (specific neighbour) = p+ P (any)− p · P (any)

= 1− (1− p)k (p+ 1)k−1 .

Suppose a message being sent to Cy is at node Ni ∈ Cx such that H (Cx, Cy) = h; node Ni

therefore has h possible cliques to forward the message to. The probability that Ni is able

to forward the message to at least one of h cliques is the probability that it is not the case

that it can’t forward the message to any of them. Thus

P (at least one of | h) = 1− (1− P (specific neighbour))h

= 1−
(

(1− p)k (p+ 1)k−1
)h

Finally, the probability that a message can be passed along a path from node Ni ∈ Cx to

Nj ∈ Cy where H (Cx, Cy) = d is

P (path) =
d∏
i=1

P (at least one of | h = i)

=
d∏
i=1

(
1−

(
(1− p)k (p+ 1)k−1

)i)
. (4.3.1)
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4.3.2 Maximizing the Probability of Success

Ideally this section would find an exact configuration for d, w, and k that maximizes

equation (4.3.1), however this equation proves rather unwieldy. The following lemma gives

an approximation to equation (4.3.1).

Approximation 3. Equation (4.3.1) is approximated by

exp

(
1 +

1

(1− p)k (p+ 1)k−1 − 1

)

for large d and small to moderate p.

Derivation. Let

f (i) =
(

(1− p)k (p+ 1)k−1
)i
.

Therefore, from equation (4.3.1),

P (path) =
d∏
i=1

(1− f (i))

= exp

(
ln

(
d∏
i=1

(1− f (i))

))

= exp

(
d∑
i=1

ln (1− f (i))

)
.

Since

lim
i→∞

f (i) = 0

then a reasonable approximation of ln (1− f (i)) is the first term of the Taylor series around
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f (i) = 0. Thus

ln (1− f (i)) ≈ −f (i)

and

P (path) = exp

(
d∑
i=1

ln (1− f (i))

)

≈ exp

(
−

d∑
i=1

f (i)

)
.

Simplifying gives

P (path) ≈ exp

−(1− p2)
k

((
(1− p)k (p+ 1)k−1

)d
− 1

)
(1− p2)k − p− 1

 .

Since f (i) quickly approaches zero, a lower bound on P (path) comes from the infinite

sum

P (path) ≤ exp

(
−
∞∑
i=1

f (i)

)

≤ exp

(
1 +

1

(1− p)k (p+ 1)k−1 − 1

)
. (4.3.2)

This provides an approximation that is accurate for small f (i) and large d (see section 5.3

for simulation results) . Since f (i) decreases exponentially with respect to k and d, and d

and k are functions of n this approximation becomes more accurate as n gets large.
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Theorem 4. As the network grows, equation (4.3.2)is maximized when

k = −eW−1

(
−ne

−P(n)
e

e

)

Proof. Equation (4.3.2) grows as

(1− p)k (p+ 1)k−1

approaches 0. Since 0 < p < 1 this occurs when k is maximized. This occurs when d is

minimized which, from lemma 1, is when

k = −eW−1

(
−ne

−P(n)
e

e

)

Corollary 1. If a GHN is using the always-forwards routing algorithm and requires a

failure rate of ε, 0 < ε < 1, then

P (n) = −e
(

ln

(
γe−

γ
e
−1

n

)
+ 1

)
,

where

γ =
ln
(

1
ln(1−ε)−1

+ 1
)

+ ln (p+ 1)

ln (1− p) + ln (p+ 1)
.

Proof. Equation (4.3.2) gives the probability of success. If ε gives a maximum failure rate
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then

1− ε = exp

(
1 +

1

(1− p)k (p+ 1)k−1 − 1

)

ln (1− ε) = 1 +
1

(1− p)k (p+ 1)k−1 − 1

ln (1− ε)− 1 =
(

(1− p)k (p+ 1)k−1 − 1
)−1

(ln (1− ε)− 1)−1 = (1− p)k (p+ 1)k−1 − 1

(ln (1− ε)− 1)−1 + 1 = (1− p)k (p+ 1)k−1

ln
(
(ln (1− ε)− 1)−1 + 1

)
= k ln (1− p) + (k − 1) ln (p+ 1)

ln
(
(ln (1− ε)− 1)−1 + 1

)
+ ln (p+ 1) = k (ln (1− p) + ln (p+ 1))

k =
ln
(

1
ln(1−ε)−1

+ 1
)

+ ln (p+ 1)

ln (1− p) + ln (p+ 1)
.

This is the smallest k that will give an error rate of ε. Let this value of k be γ. Then,

from theorem 4, k = −eW−1

(
−ne−

P(n)
e

e

)
. Therefore in order for ε to be the failure rate

γ = −eW−1

(
−ne

−P(n)
e

e

)
.
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Solving for the number of pointers gives

−eW−1

(
−ne−

P(n)
e
−1
)

= γ

W−1

(
−ne−

P(n)
e
−1
)

= −γ
e

−ne−
P(n)
e
−1 =

(
−γ
e

)
e−

γ
e

−ne−
P(n)
e
−1 = −γe−

γ
e
−1

e−
P(n)
e
−1 =

γe−
γ
e
−1

n

−P (n)

e
− 1 = ln

(
γe−

γ
e
−1

n

)
−P (n)

e
= ln

(
γe−

γ
e
−1

n

)
+ 1

P (n) = −e
(

ln

(
γe−

γ
e
−1

n

)
+ 1

)
.

4.4 The Never-Backwards Algorithm

The previous two algorithms have passed messages by forcing them to make forward

progress. This, however, does not take advantage of the variable width of a GHN. With

a width greater than two, a message can be passed along a row – keeping the Hamming

distance to the destination the same – before reaching a node that is closer to the target.

In practice the number of hops along a row is unbounded but, to simplify the analysis,

this section considers a model where the message is allowed at most one hop along a row.

Section 5.4 gives the results of simulating the never-backwards protocol and shows that

this assumption does not result in much error.
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Suppose message m is Hamming distance h from its target. The Never-Backwards

algorithm routes by first checking if it is possible to route directly to a node that is closer

to the target than itself. If such a node exists then the message is sent to it, exactly like

the Always-Forwards algorithm. If such a node does not exist then the message is routed

to one of the h (w − 2) cliques that have the same Hamming distance as the current clique.

Although the issue is not addressed directly in this thesis, it is assumed that there is a

mechanism to prevent messages from being routed to the same clique more than once.

Algorithm 3 describes the never backwards algorithm. Lines 1 to 10 are identical to

the always-forwards algorithm. If the message could not be sent directly to a closer node

then it tries sending it to each of its rowmates. Line 11 iterates over all the dimensions

and lines 12 to 17 try each rowmate in dimension i.

Algorithm 3 Never-Backwards Routing

1: if message.destination = self.address then
2: consume message
3: end if
4: message sent = False
5: for i = 0 to message.destination.length ∧¬message sent do
6: if message.destination[i] 6= self.address[i] then
7: next hop = self.address[0:i] + message.destination[i] + self.address[i+ 1 :]
8: message sent = message.forward to(next hop)
9: end if

10: end for
11: for i = 0 to message.destination.length ∧¬message sent do
12: if message.destination[i] 6= self.address[i] then
13: for w = 0 to width ∧¬message sent do
14: next hop = self.address[0 : i] + w + self.address[i+ 1 :]
15: message sent = message.forward to(next hop)
16: end for
17: end if
18: end for
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4.4.1 Calculating the Probability of Failure

This section calculates an estimate on the probability of a message being successfully routed

through a GHN using the Never-Backwards algorithm. Although an exact formulation of

the probability of failure is ideal, there are numerous statistical dependencies that are

difficult to overcome. These dependencies are ignored and result in a good estimate of the

probability of failure, rather than an exact calculation of it.

The first simplifying assumption made is that a message goes through at most one

rowmate before reaching its destination. This clearly overestimates the probability of

failure as it ignores numerous potential paths, however the probability of a path via two or

more rowmates existing while a path via one or fewer rowmates does not exist is extremely

low.

The probability of a node Ni not being able to route to one of its w − 2 rowmates

directly is the probability that all w − 2 rowmates have failed. Thus

Q (to row mate) = qw−2.

Thus the probability of the initial node Ni ∈ Cx not being able to route to a rowmate

Nk ∈ Cy via a specific cliquemate Nj ∈ Cx is the probability that either Nj has failed or

that Nj has not failed, but all of its w − 2 rowmates have failed. Thus

Q (to any row mate via clique mate) = q +Q (to row mate)− q ·Q (to row mate)

= q − (q − 1) qw−1.

Since there are k − 1 cliquemates, the probability of not being able to route to a specific
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rowmate via any cliquemate is the probability that all k − 1 them are unable to route to

a rowmate. Thus

Q (to row mate indirectly) = Q (to any row mate via clique mate)k−1

=
(
q − (q − 1) qw−1

)k−1
.

The probability of not being able to route to a rowmate must also include the probability

of the initial node not being able to route to a row mate directly, which is qw−2. To

simplify the final expression for the probability of failure, however, the previous expression

is raised to the power of k instead of k − 1. This results in a slight overestimate of the

probability of failure as the calculation assumes an additional point of failure. Note that

the error because of this simplification shrinks as k grows large and, since k is a function

of n, declines as n increases. Thus

Q (to row mate) ≤
(
q − (q − 1) qw−1

)k
.

This calculates the probability of not being able to make the first hop along a row, but the

second hop still remains. The second hop is the probability of not being able to route to

a neighbouring clique and is calculated as

Q (neighbouring clique) = q (q (2− q))k−1 .

in equation (4.2.4). Thus the probability of not being able to route across a row via a
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single row mate is the probability that either the first or second hop fails. Hence

Q (via row mate) =Q (to row mate) +Q (neighbouring clique)

−Q (to row mate) ·Q (neighbouring clique)

=

(
((2− q) q)k + q − 2

)
(q − (q − 1) qw−2)

k − ((2− q) q)k

q − 2
.

The probability of not being able to route to the row mate that is closer the destination

than the current node is the probability that it can’t be reached via a row mate and that

the current clique can’t route it directly. Thus

Q (to closer clique) = Q (via row mate) ·Q (neighbouring clique)

=
((2− q) q)k

(
((2− q) q)k −

(
((2− q) q)k + q − 2

)
(q − (q − 1) qw−2)

k
)

(q − 2)2
.

If a message is at Hamming distance h from its destination then the probability of it

making forward progress is the probability that it can successfully route a message down

any of the h rows that get it closer to the target. Ignoring some independence issues, the

probability of this occurring is approximately

P (forward progress|h) ≈ 1−Q (to closer clique)h .

Finally, the probability of being able to successfully route a message along an entire
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path is the probability that it makes forward progress at each step. Hence

P (path) =
d∏
i=1

P (forward progress|h = i)

= exp

(
ln

d∏
i=1

P (forward progress|h = i)

)

= exp

(
d∑
i=1

lnP (forward progress|h = i)

)

= exp

(
d∑
i=1

ln
(

1−Q (to closer clique)h
))

.

Since Q (to closer clique)h approaches zero quickly,

ln
(

1−Q (to closer clique)h
)

can be approximated by the first term of the Taylor expansion aroundQ (to closer clique)h =

0 to get

ln
(

1−Q (to closer clique)h
)
≈ −Q (to closer clique)h .

Thus

P (path) ≈ exp

(
d∑
i=1

−Q (to closer clique)

)

≈ exp

(
−

d∑
i=1

Q (to closer clique)

)
.

A natural lower bound on the probability of success comes from the infinite sum

P (path) ≤ exp

(
−
∞∑
i=1

Q (to closer clique)

)
.
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Using the Mathematica equation solver, this expression simplifies to

P (path) ≤ exp


((2− q) q)k

(
(q−2)

“
(q−(q−1)qw−2)

k
−1
”

((2−q)q(q−(q−1)qw−2))k−((2−q)q)k+q−2
+ 1

)
((2− q) q)k + q − 2

 . (4.4.1)

The following corollary determines P (path) as w gets large.

Corollary 2.

lim
w→∞

P (path) = exp

((2− q) q)k
(

(q−2)(qk−1)
q2k(2−q)k−((2−q)q)k+q−2

+ 1

)
((2− q) q)k + q − 2

 . (4.4.2)

4.4.2 Maximizing the Probability of Success

Unsurprisingly, the derivative of equation (4.4.1) is large and difficult to find the roots of.

As a result, this section does not minimize the equation by means of finding the roots

of the derivative. Rather, it relies on the intuition formed in the previous two sections:

the probability of success occurs when d is minimized and k is maximized. The following

theorem considers the probability of success when either w or k is maximized.

Theorem 5. In the limit, equation (4.4.1) is maximized when k is maximized.

Proof. Consider the limit of equation (4.4.1) as k grows without bound:

lim
k→∞

P (path) = lim
k→∞

exp


((2− q) q)k

(
(q−2)

“
(q−(q−1)qw−2)

k
−1
”

((2−q)q(q−(q−1)qw−2))k−((2−q)q)k+q−2
+ 1

)
((2− q) q)k + q − 2

 .
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Since

lim
k→∞

((2− q) q)k = 0

the entire numerator goes to zero and

lim
k→∞

P (path) = 1.

Corollary 2 shows that maximizing w results in P (path) < 1 and therefore, in the limit,

equation (4.4.1) is maximized when k is maximized.
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Chapter 5

Simulations

Simulations were run in order to provide empirical evidence in support of the theoretical

results of this thesis. The simulations did not create an actual network; rather a graph was

created in the same structure of a GHN of a particular configuration, nodes were randomly

removed with probability q, and each routing algorithm was run to determine if it was

possible to route between Ni ∈ C〈0,0,...,0〉 to C〈1,1,...,1〉.

Each configuration is defined by five parameters: n, the number of nodes, P (n), the

number of pointers per node, q, the node failure rate, k, the clique size, and the routing

algorithm used. The number of nodes varied from 210 to 220 in powers of two, the num-

ber of pointers varied from 3 lnn to
√
n in powers of two, the clique size varied from 1

to −eW−1

(
−ne−

p
e

e

)
in powers of 2 (see lemma 1), and q was varied from 0.1 to 0.9 in

increments of 0.1. Each configuration was run 1000 times.

In order to simplify the simulations, only full GHNs were used, where a full GHN has

exactly kwd nodes and k, w, d ∈ Z. This limited the possible configurations as it is rarely

possible to get exactly n nodes with integer values for k, w, and d. The configuration to
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use was determined by calculating the exact values for d and w as a function of P (n),

k and n (see lemma 3.1), then the combination of (dde, dwe) , (bdc, dwe) , (dde, bwc) , and

(bdc, bwc) that minimized
∣∣n− kwd∣∣ was selected. Since both w and d have to be rounded

this can result in some large discrepancies between the desired n and the actual n used.

Some error occurs when predicting the success rate of the always-forwards and never-

backwards algorithms for large q. This is largely a result of using the first term of the

Taylor series to approximate the expression ln (1− f (x)) around the point f (x) = 0.

Although f (x) goes to zero quickly, it does so much more slowly as q approaches 1. The

observed error should be considered admissible for two reasons. First, the error tends

towards underestimating the probability of success. Thus the predicted values are actually

lower bounds on the probability of success which, since they are fairly tight, make them

almost as useful as exact values.

Second, the error occurs at unrealistically high values of q. Research focusing on the

properties of churn in P2P networks has shown that the distribution of session-length times

is given by the complimentary cumulative distribution function of a Weibull distribution

with shape parameter 0.34 ≤ k ≤ 0.65 and scale parameter 20 ≤ λ ≤ 165 [19, 17]. Suppose

that nodes in a GHN are configured to synchronously check if their neighbours are alive

every 20 minutes. Thus the worst time to route would be immediately before nodes update

their pointers. Since the cumulative distribution function of a Weibull distribution is given

by 1− e−(x/λ)k [21] the greatest failure rate at x = 20 is 0.63, which occurs when k = 0.65

and λ = 20. Thus in the worst case of nodes infrequently and synchronously checking

their pointers the failure rate is 0.63. This suggests that failure rates greater than 0.7 are

unlikely and that lower bounds for such failure rates are acceptable.

The remainder of this chapter is divided into four sections. Section 5.2 addresess the
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probability of a path existing in a GHN, whuile the remaining sections cover specific results

obtained by simulating each of the routing algorithms described in chapter 4.

5.1 The Probability of Any Path Existing

Before considering the results of specific routing algorithms, this section deals with the

probability of any path existing from C〈0,0,...,0〉 to C〈1,1,...,1〉. This gives a reference point for

the efficacy of the routing algorithms presented in chapter 4. The results in this section

were obtained using the same parameters previously described and the existance of a path

was found using depth-first search.

Figure 5.1 shows the probabiltiy of a path existing as a function of q, the probability

of a node failing, where each chart has a different k. The remaining parameters, w and

d, are ignored, thus producing columns of dots at some locations. Larger values of d and

smaller values of w are found towards the bottom of the columns, while small values of d

and large values of w appear towards the top.

The results show that k has a large influence not only on the probability of a path

existing, but also on how the GHN reacts to increasing node failure rates. Consider figures

5.1(a) and 5.1(f) where k = 1 and k = 32, respectively. When k = 1 the probability of a

path existing decreases linearly as q increases, however when k = 32 the probability of a

path existing drops below one only for the most extreme values of q; in fact, when k = 32

and q = 0.9 the probability of a path existing is greater than 0.8.

Figure 5.2 shows the probability of finding a path in a GHN as a function of k when

d = 3, where each chart shows a different node failure rate, q. The probability of a

path existing clearly increases as a function of k, even for large values of q, although this
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relationship is not nearly as obvious for small values of q. This should be expected as the

probability of a route existing is high when q is small, therefore making the increase less

apparent.

Figure 5.3 shows the probability of a path existing in a GHN as a function of q when

k = 4 where each chart is a different width, w. With the excpetion of w = 4 in figure

5.3(a), it appears that the width of the GHN makes little different in the probability of a

path existing. This is at least partly due to the relationship between w and d; d decreases

as w increases with n held constant. Thus the path length decreases as w increases, making

it more probable that a path exists.

In summary, the probability of a path existing in a GHN is dominated by the clique

size, k, while the width, w, has little impact on the existance of a path. These results are

consistent with the theoretical results from chapter 4 that found the probability of routing

successfully is maximized when k is maximized.

5.2 Simulating the Näıve Algorithm

Simulation results indicate that equation (4.2.5) is a good estimate of the probability

of routing successfully. Figure 5.4(a) shows the probability of success as a function of

the node failure rate for k = 1 and various values of d. The markers, representing the

observed values, are mostly on the prediction curve, indicating that the predicted values

were accurate. The small discrepancies can be attributed to the independence assumption

discussed in section 4.2.1. Notice that the highest rate of success occurs when d = 1 which

supports the claim made in theorem 2.

Figure 5.4(b) shows the routing success rate as a function of the node failure rate when
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d = 3, with each series representing a different clique size. Note that clique sizes up to

29 were tested, however they resulted in d < 3 and are therefore not shown in this figure.

This plot makes the error due to the independence assumption made in section 4.2.1 more

prominent, however this error diminishes as k increases. The reason for this is two-fold:

first, as k increases the contribution of the independence assumption becomes smaller.

Secondly, when n is held constant, d decreases as k increases. Since equation (4.2.5) is

raised to the power of d, this significantly reduces the compounding effect of the error.

Figure 5.4(c) shows the routing success rate as a function of the number of dimensions

when q = 0.5 and with each series representing a different clique size. Note that q = 0.5

was selected because it shows the largest error between the predicted and observed values.

The plot illustrates that the predicted value is still fairly close but, more importantly, that

it follows the same shape as the observed values. The latter is important as it supports

the claims of minimization made in theorem 2.

It should be clear from the simulations that the näıve algorithm is not particularly

effective. For example, consider the points q > 0.6 and k = 32 from figure 5.4(b). Assume

that w = 2 since the width is irrelevant to the näıve algorithm. There are therefore

32 · 23 = 256 nodes in the network maintaining 32 + 2 · 3 = 38 pointers each. Since
√

256 = 16, each node is responsible for more than 2
√
n pointers and the probability of

success drops dramatically when q ≥ 0.6. Since each node is responsible for more than

2
√
n pointers, they could be arranged in one dimension with

√
n cliques of size

√
n and

obtain a much better probability of success.
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5.3 Simulating the Always-Forwards Algorithm

Simulation results indicate that equation (4.3.2) is a tight lower bound on the probability

of routing success for the always forwards algorithm and that the probability of routing is

maximized when k is maximized. Figure 5.5 shows the observed and predicted probability

of success as a function of q and k. The columns of dots occur when trials were performed

with the same q and k, but with varying d; larger values of d occur closer to the curve. In

some cases the predicted lower bound is slightly higher than the observed values. This is a

result of using the Taylor series to approximate ln 1− x around the point x = 0 and only

occurs as q approaches 1.

Figure 5.6 shows the probability of routing success as a function of k when d = 3

for varying values of q. Multiple markers indicate that several trials were run with the

same d, k and q, but w was different. Since the width of the GHN doesn’t influence the

always-forwards algorithm any variation between the markers is purely by chance. The

results indicate that equation (4.3.2) is accurate for small d even though it is calculated

by summing over d from 1 to infinity. This suggests that, aside from q, the largest factor

influencing the performance of the always-forwards algorithm is the clique size.

The always-forwards algorithm shows a dramatic improvement over the näıve algorithm

in terms of probability of success. Consider the observed probability at q = 0.8 in figure

5.5(f) where k = 32 and d is approximately 5. Since the width is irrelevant, assume

it is 2. There are therefore at least 32 · 25 = 1024 nodes in the network maintaining

32 + 2 · 5 = 42 nodes each, or slightly more than
√
n. Even considering the largest d, the

observed probability of success is approximately 0.75, or nearly double that of the näıve

algorithm with the same k and q, but a smaller d and fewer nodes.
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5.4 Simulating the Never-Backwards Algorithm

Simulations of the never-backwards algorithm indicate that equation (4.4.1) is a good

estimate of the success rate for small to moderate q and is a reasonable lower bound for

larger q. Figure 5.7 shows the simulation results for k = 4 and various values of w as a

function of q. In all cases the predicted value appears to be a good estimate q ≤ 0.7 and

forms a lower bound for q ≥ 0.8.

Figure 5.8 shows the probability of routing successfully as a function of k for particular

values of q. The solid line shows the lower bound on the probability of success that occurs

when w = 2 and the dashed line shows the probability of success as w gets large. The

figures suggest that equation (4.4.1) is a close lower bound for the expected probability of

success when w is maximized.

As expected, the never-backwards algorithm shows a large improvement over the always-

forwards algorithm. Figure 5.8(d) shows that when q = 0.8 and k = 32 the probability

of successfully routing is near one. The probability of success using the always-forwards

algorithm with the same configuration is approximately 0.75, as shown in figure 5.5(f).

Thus the probability of success is significantly improved by allowing messages to be routed

across rows before sending to a node that is closer to the target.

61



æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0
q0.0

0.2

0.4

0.6

0.8

1.0

Success Rate

(a) k = 1

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0
q0.0

0.2

0.4

0.6

0.8

1.0

Success Rate

(b) k = 2

æ æ æ æ

æ

æ

æ

æ

æ

æ æ æ æ

æ

æ

æ

æ

æ

æ æ æ
æ

æ

æ

æ

æ

æ

æ æ æ æ

æ

æ

æ

æ

æ

æ æ æ æ

æ

æ

æ

æ

æ

æ æ æ
æ

æ

æ

æ

æ

æ

æ æ æ

æ

æ

æ

æ

æ

æ

æ æ
æ æ

æ

æ

æ

æ

æ

æ æ æ æ

æ

æ

æ

æ

æ

æ æ æ
æ

æ

æ

æ

æ

æ

æ æ æ
æ

æ

æ

æ

æ

æ

æ æ æ

æ

æ

æ

æ

æ

æ

æ æ æ
æ

æ

æ

æ

æ

æ

æ æ æ
æ

æ

æ

æ

æ

æ

æ æ æ
æ

æ

æ æ æ æ

æ

æ

æ

æ

æ

æ æ æ
æ

æ

æ

æ æ æ
æ

æ

æ

æ

æ

æ

æ æ
æ æ

æ

æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0
q0.0

0.2

0.4

0.6

0.8

1.0

Success Rate

(c) k = 4

æ æ æ æ æ æ

æ

æ

æ

æ æ æ æ æ æ

æ

æ

æ

æ æ æ æ æ
æ

æ

æ

æ

æ æ æ æ æ
æ

æ

æ

æ

æ æ æ æ æ
æ

æ

æ

æ

æ æ æ æ æ
æ

æ

æ

æ

æ æ æ æ æ
æ

æ

æ

æ

æ æ æ æ æ æ

æ

æ

æ

æ æ æ æ æ æ

æ

æ

æ

æ æ æ æ æ
æ

æ

æ

æ

æ æ æ æ æ æ

æ

æ

æ

æ æ æ æ æ æ

æ

æ

æ

æ æ æ æ æ
æ

æ

æ

æ

æ æ æ æ æ
æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0
q0.0

0.2

0.4

0.6

0.8

1.0

Success Rate

(d) k = 8

æ æ æ æ æ æ æ

æ

æ

æ æ æ æ æ æ æ
æ

æ

æ æ æ æ æ æ æ

æ

æ

æ æ æ æ æ æ æ

æ

æ

æ æ æ æ æ æ æ

æ

æ

æ æ æ æ æ æ æ
æ

æ

æ æ æ æ æ æ æ

æ

æ

æ æ æ æ æ æ æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0
q0.0

0.2

0.4

0.6

0.8

1.0

Success Rate

(e) k = 16

æ æ æ æ æ æ æ æ

æ

æ æ æ æ æ æ æ æ

æ

æ æ æ æ æ æ æ æ

æ

æ æ æ æ æ æ æ æ

æ

æ æ æ æ æ æ æ æ

æ

æ æ æ æ æ æ æ æ

æ

æ æ æ æ æ æ æ æ

æ

æ æ æ æ æ æ æ æ

æ

0.0 0.2 0.4 0.6 0.8 1.0
q0.0

0.2

0.4

0.6

0.8

1.0

Success Rate

(f) k = 32

Figure 5.1: Simulation results for finding the probability of a path existing in a GHN.
Each chart shows the probability of routing successfully as a function of q and k with
the line representing the predicted lower bound on the probability of success and the dots
representing the mean of 500 trials. The columns of dots occur when numerous trials were
performed with the same q and k, but different d; trials with a larger d value are found at
the bottom of the column, while trials with low d values occur at the top.
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Figure 5.2: Simulation results for finding the probability of a path existing in a GHN. Each
chart shows the probability of routing as a function of k for d = 3 and varying values of q.
Each marker represents the success rate observed over 500 trials. Multiple markers occur
when their values of d, k and q are the same, but w is different.
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Figure 5.3: Simulation results for finding the probability of a path existing in a GHN.
The solid line shows the predicted success rate as a function of the width, clique size, and
node failure rate, while the markers represent the success rate over 1000 trials. Note that
multiple markers in a column occur when when w, k, and q are the same, but d is different.
Higher d values occur towards the bottom of the column.
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Figure 5.4: Simulation results for the näıve algorithm. Markers represent the success rate
over 1000 trials and the dotted line is the expected success rate from equation (4.2.1).
Multiple dots occur when a trial was conducted with d, k, and q were the same, but w was
different. Since the näıve algorithm is not impacted by w the observed variation is purely
by chance.
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Figure 5.5: Simulation results for the always-forwards algorithm. Each chart shows the
probability of routing successfully as a function of q and k with the line representing the
predicted lower bound on the probability of success and the dots representing the mean
of 1000 trials. The columns of dots occur when numerous trials were performed with the
same q and k, but different d; trials with a larger d value are found at the bottom of the
column, while trials with low d values occur at the top.
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Figure 5.6: Simulation results for the always-forwards algorithm. Each chart shows the
probability of routing as a function of k for d = 3 and varying values of q. Each marker
represents the success rate observed over 1000 trials. Multiple markers occur when their
values of d, k and q are the same, but w is different.
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Figure 5.7: Simulation results for the never-backwards algorithm. The solid line shows the
predicted success rate as a function of the width, clique size, and node failure rate, while
the markers represent the success rate over 1000 trials. Note that multiple markers in a
column occur when when w, k, and q are the same, but d is different. Higher d values
occur towards the bottom of the column.
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Figure 5.8: Simulation results for the never-backwards algorithm as a function of k. Each
chart shows the predicted success plotted as a function of k for a particular value of q.
The markers represent the success rate over 1000 trials. Note that multiple markers in
a column occur when k, and q are the same, but d is different. Higher d and w values
occur towards the bottom of the column. The solid line represents the predicted value
from equation (4.4.1) with w = 2 while the dashed line represents the predicted value for
large w from equation (4.4.2).
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Chapter 6

Conclusion

6.1 Future Work

This thesis presented a new type of service-based overlay network that can be tuned to a

varying number of pointers per node. Although this work presents good approximations of

the probability of success and minimization of those functions, there is still much work to

be done. For example, it would be useful to tighten approximations presented in chapter

4, particularly for large values of q, as well as to find tight upper bounds on these expres-

sions. This work would also benefit from mathematically bounding the error in the given

approximations.

Since the probability of failure is given as a function of q, n, and P (n), it would be

useful to find a minimum P (n) that guarantees a particular error rate, ε. Finding such a

function was done for the always-forwards algorithm in corollary 1, however solving this

problem in the general case for specific values of k, w, and d yields difficult non-linear

partial differential equations.
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6.2 Summary

This thesis presented a new service-based overlay network called a Grouped Hamming

Network. Originally intended as an ancillary distributed data structure to select a ran-

dom node in a P2P network, this network can be used as a general purpose service-based

network. The key new feature of the GHN compared to previous networks is its ability to

easily adjust the overhead associated with maintaining the network by means of changing

the number of pointers maintained per node. This allows the probability of successfully

routing under random node failures to increase as the available bandwidth increases. Pre-

viously the overhead associated with a particular P2P network was a property of that

network and often critical when considering which P2P network to use. As a result of the

structure presented in this thesis it is now possible to implement a P2P network as a GHN

and fine-tune the overhead associated with the network.

Three different routing schemes were presented and then analyzed under random uni-

form node failures. Theoretical analysis of each routing scheme gave predictions for the

expected probability of routing success as well as the network configuration that maximizes

the probability of success. The optimal configurations were given in terms of n, the number

of nodes in the network, and P (n), the number of pointers maintained per node. Thus the

optimal configuration of the network is entirely defined by the only two parameters the

user would be concerned about and the remaining parameters are left “under the hood”.

Simulation results support the theoretical analysis both in terms of their predicted

values and in terms of their minimizations. Furthermore the results support previous work

that shows Hamming networks – in particular, hypercubes – are extremely resilient to node

failures. Unlike previous research on hypercubes, the GHN presented in this thesis gives a
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high probability of success even for the simplest of routing algorithms. Thus they can be

easily implemented, yet still have good theoretical behaviour.
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