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Abstract

This thesis will present research that studies the role of disorder, geometric frustration
and the long-range dipolar interaction on the collective behaviour of several insulating, rare
earth magnets. Experiments were performed at low temperatures to measure the specific
heat and magnetic susceptibility of several materials. Susceptibility was measured with a
SQUID magnetometer that has been designed and constructed primarily for the study of
slow dynamics in glassy systems. Specifically, this thesis will discuss three distinct topics.

The first is the series of materials LiHoxY1−xF4, which are manifestations of the dilute,
dipolar coupled Ising model. The low-x portion of the phase diagram has become a rather
contentious issue in recent years with both theoretical and experimental groups disagreeing
on the existence of a spin glass freezing transition and one experimental group arguing for
the existence of an exotic “antiglass” or spin liquid state resulting from quantum entangle-
ment at x = 0.045. We present specific heat and dynamical susceptibility measurements
on four stoichiometries in this series: x = 0.018, 0.045, 0.080 and 0.012. No evidence of an
unusual antiglass state is observed. Instead, our results show evidence, at all dilution levels
studied, of a spin glass freezing transition. Interpretation of experimental data is found
to be complicated by the anomalously slow dynamics in these materials. The relaxation
time scales are found to increase as the concentration of Ho3+ ions is reduced, an effect
which can be attributed to single-ion physics and the importance of the nuclear hyperfine
coupling in this system.

A second set of materials studied here is a series of several Gd garnet materials, the
most famous of which is Gd3Ga5O12 (GGG), a material previously argued to be a disorder-
free spin glass. Our specific heat experiments reproduce previous experiments on GGG and
show that the homologous Gd garnets Gd3Te2Li3O12 and Ga3Al5O12 do not share the same
glassy physics but exhibit sharp ordering features. By experimenting with the introduction
of random site dilution, it is concluded that a 1-2% off-stoichiometry inherent in GGG is
likely a special kind of disorder that is particularly effective in inducing random frustration
and the formation of a spin glass.

Finally, specific heat measurements on the pyrochlore antiferromagnet Gd2Sn2O7 (GSO)
are presented. While GSO has generally been found to be a well behaved and well un-
derstood model magnet, with long range order developing at around 1 K, like many other
geometrically frustrated magnets, it has been discovered to possess persistent spin dy-
namics down to very low temperatures as measured by µSR and Mössbauer spectroscopy.
Measurement of the low temperature limit of the specific heat when compared with linear
spin-wave theory, however, presents a consistent picture of gapped magnon excitations that
freeze out at low temperatures and make the existence of the proposed dynamic ground
state unlikely.
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Chapter 1

Introduction

The work of physicists might be divided into two main categories or approaches to the
solving of physical problems. In one, perhaps the one most commonly associated with the
field of physics, the aim is to discover the underlying physical principles on which nature
is based. Essentially a ‘top-down’ approach, one aims to describe the building blocks of a
physical system. From the discovery of the atom to the development of quantum mechanics
and further down to the development of the standard model, this approach has dominated
the more historically famous discoveries in physics. The goal is always to find the simplest
and most beautiful theories to describe the basic elements of the world around us.

Another broad segment of physics, however, recognizes that even if nature, at its roots,
is described by the simplest most elegant of laws, the resulting behaviour of a collection
of millions of building blocks can be incredibly complex or can demonstrate its own set of
elegant physical laws. It is this part of physics, that realizes that more can be different [1].
The assembly of a mole of atoms or more can take on many forms, from the complexity of
life to the elegant universality of phase transitions.

Condensed matter is typically a fusion of these two ideas. One uses the material
properties of a sample to deduce a valid description of the material’s underlying model.
Or, one uses the assumed model of a material to predict what critical behaviour or many-
body physics may result. Magnetic systems have long been used as the purest exemplar
of the bottom-up approach to condensed matter physics. Simple magnetic models, such
as the Ising, XY and Heisenberg models, have allowed theorists to study what otherwise
could be an immensely complex system. With certain select materials, so-called ‘model
magnets’, those theoretical predictions can be tested, with relative confidence that the
systems are representative of the theoretical models. Through the universality of critical
behaviour, for example, one can then easily use these model magnets as analogies for very
different physical systems.

1



Compared to many condensed matter systems, insulating magnets have easily defined
effective Hamiltonians that can often be summed up in a concise set of equations. As
a counter example, consider the exhaustively studied high temperature superconductors,
the cuprates, where one must consider the dopant impurities, band structure, itinerant
magnetism and phonons as a starting point for simulations. Magnetic systems allow us,
as physicists, to study many-body physics and complexity in their cleanest realizations.
Later, we can hope to extend these discoveries to understanding the more convoluted sys-
tems which show more promise for direct applications. As a specific example, the super-
conductivity of the cuprates is thought to result, at least partly, from magnetic excitations,
and possibly exotic spin-1/2 excitations known as spinons [2]. But without (at least until
very recently [3]) a clean example of a quantum spin liquid with spinon excitations that is
not masked by superconductivity and plagued by sample quality issues, how can physicists
hope to fully understand the inner-workings of the cuprates?

Insulating rare earth magnets (as opposed to those containing magnetic transition metal
ions) are arguably the best kind of model magnets. The spin-orbit interaction creates states
of total angular momentum |J mJ〉 (rather than decoupled orbital angular momentum
and spin), often with large values of J . The crystal electric field can then mould these
magnets into a variety of magnetic species such as Ising, Heisenberg and XY models. The
lack of conduction electrons greatly simplifies the physics, making the consideration of
band structure and other complexities unnecessary. The same crystal structure can often
accommodate a number of different rare earth ions, so different magnetic species, without
a significant change to the unit cell, and these magnetic R3+ ions can often be replaced,
randomly, with non-magnetic Y3+ (or sometimes Lu3+ ions) to test the effects of random
site dilution.

However, not all is straightforward with such systems. The small magnitude of the
simple, isotropic exchange interactions tends to expose other more complicated effects. In
particular, one of the more unique aspects of rare earth magnets is the importance and
sometimes dominance, therein, of the dipolar interaction. The dipolar interaction adds
complexity to these systems since it is both anisotropic and long range (1/r3) in nature.

Subsequent to a general introduction and a chapter discussing our experimental appara-
tus, this thesis will describe the study of three main, distinct magnetic rare earth systems.
These subjects will touch on three general themes, which are currently quite important in
the field of magnetism: disorder, geometric frustration and the dipolar interaction.

The first system to discuss and the largest component of this work, is the series of
materials LiHoxY1−xF4. Thought to be a good realization of the dilute, dipolar Ising
model, this material has seen a great deal of attention over the past two decades and
much controversy in recent years. We will concentrate here on the low x end of the phase
diagram and the question of the existence of a dipolar spin glass state versus the notion of
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an exotic quantum “antiglass” state, observed by one research group [4, 5]. Experiments
have been performed measuring the specific heat and ac magnetic susceptibility of several
stoichiometries in this series.

Following that, we will turn to the material Gd2Sn2O7: a geometrically frustrated,
isotropic magnet on the pyrochlore lattice. Our aim was to investigate the low temperature
spin excitations of this material with specific heat to better understand some unexplained
results seen in studies of the spin dynamics [6]. Once again, the dipolar interaction is
seen to be crucial to the physics of this system and to understanding the results of our
experiments.

Finally, we combine all three themes with the study of the exotic material Gd3Ga5O12 or
GGG and a series of similar materials. The unusual physics of this geometrically frustrated
garnet material, including spin glass properties [7], extended short range order [8] and
persistent spin dynamics [9], has evaded explanation for many years. Through specific heat
measurements on a set of homologous Gd garnets, we address the question of whether the
glassiness observed in GGG is the result of sensitivity to small levels of disorder or whether
there is an inherent competition between the local, frustrated exchange interactions and
the long range dipolar interaction that results in an intrinsic glass-like state.

1.1 Hamiltonian of Insulating, Rare Earth Magnets

1.1.1 Hund’s Rules for Rare Earth Ions

In the rare earth ions, generally R3+, the 4f states are typically the valence electrons
and therefore are the most physically important electrons to be considered [10]. Through
much of this discussion, we will use the example of the Ho3+ ion which has the electronic
configuration [Xe].4f 10. To understand the structure of the electronic states, we turn
to Hund’s rules or more formally, to the Russel-Saunders angular momentum coupling
scheme [11]. Essentially, one has n valence electrons with orbital angular momentum l = 3
and spin s = 1/2 in states |ml ms〉 that are coupled to form an n-electron wavefunction.
Naturally, the Pauli exclusion principle demands that these electrons not all exist in the
same state, but that they occupy the n lowest energy levels and form a properly anti-
symmetrized wavefunction. The Russel-Saunders coupling scheme involves the following
intra-atomic interactions, in order of importance: the spin-spin coupling HSS, the orbital-
orbital coupling HOO and then the spin-orbit coupling HSO. These three interactions
correspond to Hund’s three rules for deciding the n-electron angular momentum state.

The spin-spin coupling is strongest and is driven by the exchange interaction between
the electrons. It is found that the state of maximum multiplicity or the state with the
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highest total spin S is the lowest energy state. This can be qualitatively attributed to the
Coulomb interaction and the cost of overlapping wavefunctions. If the electrons are all in
different orbital angular momentum states, and therefore have maximal multiplicity, there
will be less overlap of the spatial wavefunctions. For the case of Ho3+, this gives us a total
spin of S = 2.

The orbit-orbit coupling or Hund’s second rule, demands that one should maximize the
total orbital angular momentum. Loosely speaking, this rule is derived from the logic that
if all the electrons are orbiting in the same direction, they will meet less often and again,
there will be less overlap of wavefunctions, thus less Coulomb repulsion. For the case of
the Ho3+ ion, this results in L = 6.

For free ions, the next most important term in the Hamiltonian is certainly the spin-
orbit coupling

HSO = ζL · S. (1.1)

This is a relativistic effect that is more pronounced in heavier, higher-Z elements. In fact,
in some very heavy elements it can become comparable to or even more important than the
spin-spin and orbit-orbit couplings resulting in so-called jj-coupling [10]. In that situation,
each electron’s spin and orbital angular moment are coupled first to create states |j mj〉
and these are then coupled together by HSS and HOO. This jj-coupling or intra-orbital
spin-orbit coupling may not be dominant but can be an important correction as will be
discussed in the case of Gd3+ ions.

On the other hand, in the transition metal ions, the spin-orbit coupling can be less
important than the crystal field energy [11]. In rare earths, with which we are dealing
in this work, relativistic effects are important and the 4f electrons are tightly bound so
do not interact as strongly with the surrounding ions in a crystal structure. Thus it is
generally accurate to make spin-orbit coupling the next most important interaction and
obey Hund’s third rule [12]. The result is a state of total angular momentum so that the
good eigenstates with which to work are

|L S J mJ〉

states. The sign of ζ depends on whether the 4f shell is more or less than half filled.
If under half-filled, J should be minimized and we should have J = |L − S|. If over
half-filled, J should be maximized and J = L + S. Ho3+ falls into the latter category so
J = L+S = 8. In spectroscopic notation, we can write the state of Ho3+ as 5I8 and it can
be roughly illustrated as follows:

↑↓ ↑↓ ↑↓ ↑ ↑ ↑ ↑
-3 -2 -1 0 1 2 3
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though obviously the actual wavefunction is a properly antisymmetrized combination of
different single-electron combinations.

Another rare earth ion to be studied in this thesis is the Gd3+ ion which possesses
a [Xe].4f 7 electronic configuration. This is an exactly half filled shell. Maximizing the
multiplicity or the spin leads to a configuration with one electron in each orbital angular
momentum state and S = 7/2. This forces the angular momentum to add up to L = 0.
The spin-orbit coupling then tells us simply that J = S = 7/2 or that the ground states
of Gd3+ are 8S7/2 states.

↑ ↑ ↑ ↑ ↑ ↑ ↑
-3 -2 -1 0 1 2 3

As a final example, the Yb3+ ion, with electronic configuration [Xe].4f 13, will have S = 1/2,
L = 3. The ground state of the spin-orbit coupling will then be a 2F7/2 state, or J = 7/2.

↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑
-3 -2 -1 0 1 2 3

Once we have the relevant angular momentum states |L S J mJ〉 for the rare earth
ions, we can move to lower energies and discuss their interaction with surrounding ions or
external magnetic field. Since many interactions will be based on the operators L or S or
some combination thereof and not directly connected to J , the Wigner-Eckardt theorem
becomes quite useful [12]. For the interaction with an external magnetic field, one has the
Zeeman energy

HZ = µBH · (L + 2S) (1.2)

where the gyromagnetic ratio of the electron spin is taken to be exactly 2, a very good
approximation. But if we are treating the Zeeman energy as a perturbation to the good J
states of the spin-orbit interaction, we should use the Wigner-Eckardt theorem to write

〈L S J mJ |L + 2S|L S J m′
J〉 = gJ〈J mJ |J |J m′

J〉 (1.3)

where the Landé g-factor is given by

gJ = 1 +
J(J + 1)− L(L + 1) + S(S + 1)

2J(J + 1)
(1.4)

Then the Zeeman term in the magnetic Hamiltonian will simply be written as

HZ = −µBgJH · J (1.5)

thus making it energetically favourable for the magnetic moments to align with the external
magnetic field.
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1.1.2 Crystal Field

Following the spin-spin, orbit-orbit and spin-orbit interactions, the next most important
energy in rare earth ions is typically the crystal field Hamiltonian [11]. The crystal field is
simply an electrostatic interaction with the surrounding ions and has a symmetry depen-
dent on the crystal structure of the material in which the magnetic ion is situated. In the
absence of a crystal field, there are 2J + 1 states described as |L S J mJ〉 all degenerate
in energy. However, removing the spherical symmetry of the problem with a crystalline
electric field splits those 2J + 1 states in energy. The most important effect of the crystal
field is to introduce anisotropy, be it easy-axis or easy-plane anisotropy.

To first order, the crystal field can be approximated by assuming that the surrounding
ions (labeled with index i) are point charges. Then the potential is given as

V (r) =
∑

i

qi

|Ri − r| (1.6)

The energy contribution can be evaluated by performing integrals in cartesian coordinates,
but it is much more convenient to expand this crystal field in spherical harmonics [12]:

V (r, θ, φ) =
∞∑

n=0

∑

α

rnγnαZnα(θ, φ) (1.7)

where

γnα =
∑

i

4πq

(2n + 1)

Znα(θi, φi)

Rn+1
i

(1.8)

and the Znα’s are the tesseral harmonics – spherical harmonics containing sinφ or cos φ.
Thus relative to the usual spherical harmonics, the tesseral harmonics are defined as

Zn0 = Y 0
n

ZC
nα =

1√
2

[
Y −α

n + (−1)αY α
n

]

ZS
nα =

1√
2

[
Y −α

n − (−1)αY α
n

]
(1.9)

To get the crystal field Hamiltonian, one must sum this energy over all of the valence
electrons of the rare earth ions (labeled with index j) so

HCF = −e
∑

j

V (rj) = −e
∑

ij

qi

|Ri − rj|
. (1.10)
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or
HCF = −e

∑

j

∑

nα

rn
j γnαZnα(θj, φj) (1.11)

This calculation is best accomplished by using the Stevens’ operator equivalents Oα
n [12,

13], defined as ∑

j

rn
j Znα(xj, yj, zj) ≡ cnαθn〈rn〉Oα

n . (1.12)

so that, after taking a radial integral, one has

HCF = −e
∞∑

n=0

∑

α

γnαcnαθn〈rn〉Oα
n . (1.13)

Here cnα is a constant which is contained in Znα. θ2 ≡ αJ , θ4 ≡ βJ and θ6 ≡ γJ are
reduced matrix elements. In the case of transition metal ions, the crystal field energy
is often more significant than the spin-orbit coupling, thus the operator equivalents are
expressed in terms of the orbital angular momentum operators Lz, L+ and L−. In the rare
earth ions, the appropriate states are states of total angular momentum, yet the crystal field
affects only the orbital momentum, not the spin. Nevertheless, applying the Wigner-Eckart
theorem, the Stevens’ operators can be written in terms of the total angular momentum
operators Jz, J+ and J−, in the same way provided the reduced matrix elements θn are
included [12]. These reduced matrix elements can be derived or found in tables, for example
in Ref. [12]. For Ho3+, for example, αJ = −1/(2 · 32 · 52), βJ = −1/(2 · 3 · 5 · 7 · 11 · 13) and
γJ = −5/(33 · 7 · 112 · 132).

The crystal field Hamiltonian can finally be expressed in terms of Steven’s crystal field
operators [13] as

HCF =
∑

nα

Bα
nOα

n . (1.14)

The summation should include both the OαC
n (containing cosφ) and OαS

n (containing sin φ)
operators. Certain operators will be disallowed by symmetry. For example, the crystal field
surrounding Ho3+ ions in LiHoF4 has S4 symmetry and will have the following non-zero
terms (after an arbitrary rotation in the ab-plane) [14]:

HCF = B0
2O

0
2 + B0

4O
0
4 + B4C

4 O4C
4 + B0

6O
0
6 + B4C

6 O4C
6 + B4S

6 O4S
6 . (1.15)

The Bα
n coefficients are defined (in the point charge model) as

Bα
n = −eqθnγnαcnα〈rn〉 (1.16)
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These could be easily calculated except for q and the radial integral1 〈rn〉 which present
more of a challenge and are often left as fitting parameters. Thus the symmetry of the
potential determines which operators are not present, but the relevant crystal field param-
eters must be determined experimentally. In principle, they can be calculated, though in
practice the results are highly unreliable [16, 17].

Those relevant operator equivalents for LiHoF4 are given in terms of angular momentum
operators (Jz, J+, J−, J2) by [18]

O0
2 = 3J2

z − J2

O0
4 = 35Jz4 − 30J2J2

z + 25J2
z − 6J2 + 3J4

O4C
4 =

1

2
(J4

+ + J4
−)

O4S
4 =

i

2
(J4

+ − J4
−)

O0
6 = 231J6

z − 315J2J4
z + 735J4

z + 105J4J2
z − 525J2J2

z + 294J2
z − 5J6 + 40J4 − 60J2

O4C
6 =

1

4
(J4

+ + J4
−)(11J2

z − J2 − 38) +
1

4
(11J2

z − J2 − 38)(J4
+ + J4

−)

O4S
6 =

1

4i
(J4

+ − J4
−)(11J2

z − J2 − 38) +
1

4
(11J2

z − J2 − 38)(J4
+ − J4

−) (1.17)

The use of operator equivalents and symmetry arguments gives us an understanding of
what energy splittings will occur and, most importantly, what single-ion anisotropies may
result. The single-ion anisotropy can tell us whether we should be dealing with an Ising
(spins up or down along an axis), XY (spins confined to a plane) or Heisenberg (isotropic)
magnet. The energy splittings can tell us in what temperature range or to what strength of
perturbation does the single-ion anisotropy hold. One of the exciting prospects of studying
rare earth magnets is the freedom to create many different kinds of magnetic species, and
study them in the same geometric structure.

According to Kramers’ theorem, rare earth ions that have an odd number of valence
electrons, such as Dy3+, Er3+ and Yb3+, must be split, at most, into doublets, until a
magnetic field breaks time-reversal symmetry [19]. Non-Kramers ions, including Ho3+, on
the other hand, are able to split into a collection of doublets or singlets, depending on the
crystalline environment [20]. Ho3+ in the LiYF4 lattice, for example, does form a ground
state doublet. However, introduction of a small lattice strain, for example, will split this
doublet in energy.

In some non-Kramers ions, the crystal field can result in singlets as the lowest energy
eigenstates. Since 〈Jµ〉 = 0 for each singlet energy level, in that case there is no magnetic

1The radial integrals 〈rn〉 can in principle be calculated accurately, at least for free rare earth ions [15]
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moment in the ground state [21, 22]. This means that at the single-ion level, there will be
no magnetism. However, interactions between the magnetic moments of sufficient strength
in such a “singlet-singlet” magnet can induce a magnetic moment by mixing the the two
lowest lying energy levels. There will be a critical value of the interaction strength between
the ions above which magnetism will be found and below which one will observe van
Vleck paramagnetism [22]. An important example of such behaviour is the magnetic ion
Tb3+ in the LiYF4 lattice [23]. Despite a singlet-singlet ground state, LiTbF4 orders
ferromagnetically as a result of an induced moment. In LiTbxY1−xF4, there is found to
be a critical concentration at x = xC below which the interactions are no longer strong
enough to induce magnetism and the material ceases to order. A similar case occurs in the
material Pr3Tl for example [22].

1.1.3 Exchange and Dipolar Interactions

As with most magnetic systems, in rare earth magnets there are usually exchange interac-
tions

HEx =
∑

〈i,j〉

JijJ i · J j (1.18)

with neighbouring spins. In this convention, a positive value of Jij is an antiferromag-
netic interaction and a negative value of Jij is ferromagnetic. In some cases the nearest-
neighbour interaction J1 may be sufficient to describe the magnetic behaviour and in
others, more distant exchange interactions must be considered. Because of the tightly
bound nature of the 4f electrons, the exchange interactions can be quite small in rare
earth magnets (relative to most transition metal magnets). For example, in LiHoF4, the
nearest-neighbour exchange is only about 0.1 K in strength [24]. This lowers the tempera-
ture of relevance. In the materials studied in this thesis, all of the important physics occurs
below 2 K.

This small exchange interaction, as well as the large magnetic moments, then expose
the dipole-dipole interaction, which would otherwise be much less significant. The dipolar
interaction is quite simple in fact: each dipole moment creates a magnetic field around
it which is ‘felt’ by other magnetic dipoles. However the form of the interaction is more
complicated than isotropic exchange and is given by

HD =
∑

〈i,j〉

Dαβ
ij Jα

i Jβ
j =

∑

〈i,j〉

µ0

4π
g2

Jµ2
B

[
Ji · Jj

r3
ij

− 3(Ji · rij)(Jj · rij)

r5
ij

]
. (1.19)

In certain rare earth magnets, this dipolar interaction is just as important as the nearest-
neighbour exchange (for example in Gd2Sn2O7 and Gd3Ga5O12 to be discussed in Chapters
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4 and 5). In LiHoxY1−xF4, it turns out that the dipolar interaction is overwhelmingly dom-
inant (as will be discussed in Chapter 3). An energetically significant dipolar interaction
has several important implications.

First, it is important to note that the dipolar interaction is anisotropic. It can be an-
tiferromagnetic (positive) or ferromagnetic (negative) depending on the orientation of the
spins relative to the vector connecting the spins. For example, if one considers Ising spins
that are on top of each other along the Ising axis, they will be found to be ferromagnet-
ically coupled by the dipolar interaction. If they reside in the same plane perpendicular
to the Ising axis, however, they will be antiferromagnetically coupled. Thus, depending
on the lattice in question, the dipolar interaction could favour either ferromagnetism or
antiferromagnetism.

Furthermore, dipolar systems have inherent frustration – an inability to minimize all
pairwise interactions – due to the inevitable competition between ferromagnetic and anti-
ferromagnetic dipolar interactions. In a pure crystalline lattice, either ferromagnetism or
antiferromagnetism will be energetically favourable. However, if the system is diluted, as
in the case of LiHoxY1−xF4, this competition can be exposed as random frustration. This
random frustration is one of the key ingredients for a spin glass state [25, 26] and is what
is thought to give rise to a spin glass state in dilute LiHoxY1−xF4. This will be explained
in more detail in Chapter 3.

In otherwise isotropic Heisenberg systems, the dipolar interaction plays an important
role by creating an anisotropy. As a simple example, imagine a linear chain of Heisenberg
spins with the length of the chain along x. If the interactions are completely isotropic,
all that matters is the relative orientation of the spins. Let us assume that they are
ferromagnetically coupled by nearest-neighbour exchange. They all want to point in the
same direction, but that could be any arbitrary direction. However, if we introduce the
dipolar interaction, things change appreciably. With all the spins pointing perpendicular
to the x-axis, only the first term of Equation 1.19 will play a role and the dipolar energy
will be a positive

ED ∝ +
1

4

∑

〈i,j〉

1

r3
ij

. (1.20)

If the spins are, on the other hand, all pointing along the length of the chain, the dipolar
energy becomes

ED ∝
(

+
1

4
− 3

4

) ∑

〈i,j〉

1

r3
ij

= −1

2

∑

〈i,j〉

1

r3
ij

. (1.21)

Thus it is clearly energetically favourable for the moments to lie along the x-axis. This
creates an anisotropy energy. Even if the dipolar interaction is not strong enough to alter
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the ordering wavevector which is selected by stronger interactions, it will certainly affect
the low energy spin excitations, in particular by introducing an anisotropy gap [27]. The
nature of this anisotropy is much more complicated in a 3-dimensional antiferromagnet,
than in the simple example above. Such an effect on Gd2Sn2O7 will be discussed extensively
in Chapter 4.

We also note that the dipolar interaction is long range. Whereas exchange interactions
beyond third nearest neighbour are rarely important, the dipolar interaction drops off only
as 1/r3

ij, which means that it can have very unique effects. As we mentioned above, in
LiHoxY1−xF4, dilution of the dipole moments introduces random frustration which may
result in a spin glass transition. What happens as we continue to dilute the system by
removing Ho and lowering x? If the system were dominated by short range interactions, we
would eventually hit a percolation threshold xC . This critical concentration would be the
point at which our system was no longer fully connected by exchange interactions. Below
that point, the system could be subdivided into many smaller, isolated subsystems. In
such instances, the thermodynamic limit is lost and a true thermodynamic phase transition
becomes impossible [28].

In a dipolar system, however, there is no percolation threshold [29]. Certainly the
average interaction strength in the system will become smaller as x is decreased, but the
system can never be subdivided into smaller isolated pieces at some critical xC . Only
at x = 0 should the spin glass temperature drop to 0 [29]. This effect is central to our
discussion of LiHoxY1−x F4 in Chapter 3.

The long range nature of the dipolar interaction is also predicted to have an impact on
the critical behaviour of a continuous phase transition. For a magnetic system coupled with
short range interactions, it is found that d = 4 is the upper critical dimension meaning that
for dimensions higher than 4, such a system will exhibit mean-field critical exponents [30].
In dimensions less than 4, one will find critical behaviour but with non-mean-field critical
exponents. Precisely at d = d∗ = 4, one should expect to find mean-field critical behaviour
with logarithmic corrections [31]. However, when the interactions become long range, like
the dipolar interaction, this can shift the upper critical dimension. For the dipolar coupled
Ising ferromagnet, theory predicts that the upper critical dimension will be d∗ = 3 [31, 32].
This allows for the possibility of observing mean-field critical behaviour with logarithmic
corrections in a realistic system. Several experimental [33, 34, 35, 36] and numerical [37, 38]
studies have shown evidence of such behaviour. For dipolar antiferromagnets, however, it
is not expected [39] or observed [40, 41] that the critical behaviour close to the transition
is altered from that of a short range model.

Finally, we note that the dipolar interaction, owing to its long range nature, can make
the pursuit of a theoretical description of a system rather challenging. Truncating calcu-
lations to a finite distance, for example, can have disastrous effects on the accuracy of the
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theoretical results. Thus complex methods such as Ewald summation must be employed
to properly include the dipolar interaction [27].

1.1.4 Hyperfine Interactions

Hyperfine interactions with nuclear moments are rarely important to the collective be-
haviour exhibited by the electronic moments in a system. The dipole moment of a nucleus
is a great deal smaller than the dipole moment of an electronic spin thus nuclear ordering
generally only takes place at very low temperatures, often 100 µK or lower [42]. Nuclear
hyperfine interactions are, however, frequently important for the interpretation of certain
experimental results. Generally the important nuclear moments to consider are the mag-
netic dipole moment and the electric quadrupole moment [20].

The nuclear dipole moment interacts with the electronic magnetic moments via what is
usually just referred to as the hyperfine interaction. It is usually taken to be an isotropic
interaction

HHF = AI · J . (1.22)

In principle, this hyperfine coupling can affect the electronic moments. However, the en-
ergy of interaction is generally so tiny (several mK) that it becomes completely irrelevant.
Holmium is a rare exception and as we will see in Chapter 3, the nuclear hyperfine interac-
tion is so large (relatively speaking) that it can influence the collective magnetic behaviour
of the electronic moments in the system!

The nuclear electric quadrupole moment, on the other hand, interacts with the electric
field gradient. This Hamiltonian is given by

HQ = P

[
I2
z −

1

3
I(I + 1) +

1

3
η(I2

x − I2
y )

]
(1.23)

where

P =
3eQ

4I(2I − 1)

(
∂2V

∂z2

)
. (1.24)

The electric field gradient at the nucleus ∂2V/∂z2 has contributions from the crystal field
and from the electronic valence orbitals. For axially symmetric systems, η = 0 [43]. This
is the case for the materials in this thesis for which we will want to consider the nuclear
electric quadrupole interaction.

Most often, nuclear hyperfine interactions are at a low enough energy that they have
a negligible effect on the collective behaviour of the electronic magnetic moments in a
system. These hyperfine interactions can, however, frequently be observed with various
experimental methods. The specific heat of a material, for example, will show a Schottky
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anomaly2 as a result of the nuclear hyperfine interaction. Often, since this interaction hap-
pens at very low temperature, one observes only the tail of the anomaly which has a 1/T 2

dependence. In nuclear magnetic resonance (NMR) [44] and Mössbauer [45] experiments,
one often directly observes the nuclear moments and the corresponding hyperfine energy
levels. Thus one can essentially be studying the electronic magnetism through hyperfine
interactions.

1.2 Spin Glasses

In a nutshell, a spin glass is a magnetic analog to a real, structural glass, like amorphous
SiO2 for example. An antiferromagnet or ferromagnet is, in the same way, analogous to a
crystalline material (like quartz or crystalline SiO2 for example). Loosely speaking, a spin
glass state is a magnetic “solid” where the spins are largely frozen, but that is “amorphous”
in that it has no long range periodic order and the spins are seemingly randomly oriented.

More precisely, though, a spin glass is thought to have a thermodynamic transition [25].
In fact, much of the research into spin glasses (and into structural glasses) has aimed at
determining whether there is a sharp (spin) glass phase transition at some finite temper-
ature Tg. While it is clear that some materials relax very slowly at low temperatures and
are unable to find an ordered state, are they truly frozen at some precise, non-zero temper-
ature or is this merely a failure to obtain equilibrium measurements in experiment? The
current consensus is that there is indeed, in some materials, a strange second-order phase
transition at a temperature Tg to a random but largely “frozen” state where any remaining
dynamics are irreversible [25].

The prevailing picture of spin glasses is one of a complicated free-energy landscape with
many energy barriers and energetically favourable valleys. As one approaches the glass
transition at Tg, the energy barriers diverge, leaving the system trapped in a particular
valley with a random configuration of spins. While some dynamics remain, as the system
is allowed to explore that particular valley, ergodicity is lost and the system is not able to
explore all possible states [26].

It is found that rather diverse physical systems, for example dilute magnetic alloys
such as CuMn [46] as well as magnetic insulators such as EuxSr1−xS [47], show very similar
spin glass behaviour. This suggests a degree of “universality”, in that the details of the
magnetic interactions seem not to be so important to the end result, that is collective spin
glass behaviour [25].

2A Schottky anomaly is the specific heat form resulting from a single energy level splitting ε, given by
C/kB = (βε)2e−βε/(1 + e−βε)2. Often times, a Schottky-like feature results, as a result of several, evenly
spaced energy levels.
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The view at this time, is that there are two principal ingredients that are necessary to
give rise to a spin glass state. First, the system must have a sufficient level of quenched
randomness or disorder and second, there must be competing interactions between pairs of
spins, otherwise known as frustration. These ingredients can be generated in a variety of
ways, often through either random dilution of the magnetic moments, or through random
interactions between the moments, or some combination thereof.

Spin glass theory is an extremely complex and numerically intensive subject and the
experimental side of this subject also presents many technical and interpretive challenges.
The body of research on spin glasses is absolutely enormous so this section of the thesis
will attempt only to summarize some of the more important aspects of the topic and will
concentrate especially on the phenomenology associated with spin glass systems.

1.2.1 Phenomenology

The discovery of spin glasses came about while studying a dilute alloy of magnetic man-
ganese (Mn) in copper (Cu). It was initially noticed that at low temperatures, there
was an anomalously large linear component to the specific heat [46]. It was suggested
by Anderson [48] that this low-temperature linear specific heat could be resulting from a
distribution of two level systems (TLSs) coming from a random ordering of the magnetic
moments. This randomly frozen ground state begat the term ‘spin glass’, an analogy for
structural glasses which are a solid (frozen) state of matter without conventional long range
order. Otherwise, the spin glass specific heat showed a broad feature which did not seem
to indicate a phase transition of any kind [49]. Much of the history of spin glasses has
involved and still involves, the question of weather there is a sharp, finite temperature spin
glass transition of some kind.

Initial measurements of the ac magnetic susceptibility noted a relatively sharp peak,
suggestive of a phase transition [50, 51]. This peak was later found to be somewhat
rounded and frequency dependent (see Figure 1.1) with the position of the peak or freezing
temperature (Tf ) shifting to lower temperatures with lower frequencies of measurement [52,
53, 54]. In some cases [55] it is obvious that the limit of ω = 0 gives a non-zero freezing
temperature which can be thought of as a true transition temperature or glass temperature
which we will call Tg throughout this thesis.

As the in-phase component of the susceptibility χ′ is freezing out and dropping at Tf ,
the out-of-phase component or dissipation χ′′ becomes relevant as well, showing that the
magnetic moments are lagging or phase shifted relative to the oscillating magnetic field.
Studies of the frequency dependence of χ′ − iχ′′ find an exceptionally broad maximum in
χ′′(ω) with a peak position that shifts to lower frequencies with lower temperatures [56,
57, 58]. This wide absorption spectrum is indicative of a broad distribution of time scales
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in the system.
In measuring the ‘dc’ susceptibility or magnetization, a divergence between the field-

cooled (FC) susceptibility and the zero-field-cooled (ZFC) susceptibility is encountered
in the vicinity of Tg [59]. Of course there is no such thing as a truly ‘dc’ measurement.
This is particularly important in glassy systems possessing sharply diverging time scales.
However, in most spin glasses, there is a fairly well defined point at which FC and ZFC
susceptibility diverge on the time scale of a typical experiment.

Critical slowing down, or a diverging time constant, also takes place in more conven-
tional magnetic systems such as ferromagnets and antiferromagnets. However, the time
scales are generally much shorter until very close to the transition temperature and the
dynamical critical exponent z is smaller. For example, z = 2 for an anisotropic FM
and z = 5/2 for a Heisenberg FM [60], as compared with z > 5 often observed in spin
glasses [61]. This leads to a much less dramatic effect that is not easily observed with ac
magnetic susceptibility measurements. Studies of critical slowing down in antiferromagnets
and ferromagnets have employed faster experimental techniques such as neutron scattering,
electron spin resonance (ESR) and nuclear magnetic resonance (NMR) [62, 60]. There are
also other reasons why the peak in χ of a ferromagnet might also be rounded including
demagnetization and disorder.

While for many years, the idea of a true spin glass transition was debated, this debate
is currently mostly settled, in large part due to the discovery (theoretical [63] and experi-
mental [64]) that the nonlinear susceptibility χ3 diverges at Tg, as shown in Figure 1.1(c).
The magnetization can be written as a Taylor series in the applied magnetic field H as

M(H) = χH + χ3H
3 + χ5H

5 + . . . (1.25)

There are various ways to then extract χ3. If one has a measurement, such as a SQUID
magnetometer, capable of measuring the magnetization rather than the susceptibility, one
can directly measure M(H) to extract χ3. Often the nonlinear susceptibility is simply
defined [65] as

χnl = −(M/H − χ) (1.26)

leaving a quantity that is, at least, dominated by −χ3 and diverges at the transition
temperature. Alternatively [66], with a susceptometer, one can apply a constant magnetic
field plus a sinusoidal magnetic field H0 + h cos(ωt). Then the signal observed in the
susceptometer at frequency ω will be proportional to

χ + 2H2
0χ3 + . . . (1.27)

A final method is to use a large oscillating magnetic field and to observe the 3rd
harmonic of the magnetization, which will be proportional to the nonlinear susceptibility
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χ3 [61]. Even though χ3 diverges in spin glass materials, it is quite small at temperatures
far away from Tg and inevitably, the transition is rounded by dynamical effects [61], thus a
larger ac magnetic field is often required to measure the nonlinear susceptibility than the
linear susceptibility. In Ref. [61], the balance of the susceptometer is deliberately spoiled
in order to cancel some of the linear susceptibility and therefore make χ3 more easily
apparent.

Below the spin glass transition temperature, the system is not in fact completely frozen
and one can still observe dynamics and fluctuations. However, the dynamics are highly
irreversible as there are significant energy barriers to relaxation. If, for example, the sample
is field cooled below the transition and the field is turned off, the magnetization will quickly
fall to what is known as the thermo-remanent magnetization (TRM) which will very slowly
decay towards, but never reach, zero magnetization [44]. There is also significant history
dependence and hysteresis in the magnetization below Tg as either the temperature or the
magnetic field is changed [44]. Ocio et al. [67], among others, have observed 1/f fluctuations
in the spin glass state. The often linear (or close to linear) variation of the specific heat
below Tg has been interpreted as resulting from quantum tunneling of a collection of nearly
degenerate two-level systems, as is also seen in structural glasses [48]. Alternatively, it has
been suggested that the linear specific heat can be explained with delocalized modes, not
unlike spin waves, at least in Heisenberg spin glasses [68].

There are several other measurements that can be used to identify a spin glass mate-
rial [44]. In dilute magnetic alloys like CuMn, the resistivity shows an anomaly near the
spin glass transition. Clearly such a measurement would not be applicable to insulating
spin glasses, however. In neutron scattering experiments, the structure factor S(ω, q) can
be broken up into a static part SS(ω, q) and a dynamic part SD(ω, q). The static part
provides at least a null result – magnetic Bragg peaks will not be seen in a spin glass,
thereby ruling out a conventionally long range ordered state. The dynamic part of the
structure factor permits the observation of spin relaxation, though on a rather short time
scale ∼ 10−7 to 10−8 s [44]. Longer time scales (smaller energy) can be probed with neutron
spin echo (NSE) experiments.

The local probe muon spin resonance or µSR (also known as muon spin rotation or
relaxation) is also quite useful in spin glass measurements [44]. As a dynamical tool, it
is able to interpolate between high frequency neutron scattering experiments and low fre-
quency ac susceptibility measurements. This technique also probes low enough frequencies
to track the critical slowing down of the system, to a certain point. Alternatively, µSR can
provide information about the distribution of internal fields in the material [44].
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Figure 1.1: (a) Linear susceptibility χ′ of EuxSr1−xS (x = 0.4) for different measurement
frequencies [55]. (b) The corresponding location of the maximum in χ′ or Tf as a func-
tion of frequency showing a transition temperature in the static limit. (c) The nonlinear
susceptibility of CuMn showing critical behaviour with an exponent γ = 2.3 in zero field
(open blue circles) and in 90 G (closed green circles) [61].

1.2.2 Spin Glass Materials

The first spin glasses to be studied were dilute magnetic alloys such as CuMn, AgMn and
AuFe.3 The magnetic ions in these materials interact via the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction

Jij = J0
cos(2kF rij + φ)

(2kF rij)3
. (1.28)

where kF is the Fermi wavevector and rij is the distance between the magnetic moments i
and j. This interaction is a result of magnetic impurities creating a damped oscillation in
the susceptibility of the conduction electrons and a corresponding interaction between the
impurities [44]. Most importantly, the oscillation causes a sign change in the interaction
depending on the distance rij between spins. This creates competing interactions or frus-
tration, since some interactions will be ferromagnetic and others will be antiferromagnetic.

While initially study of spin glasses was confined to dilute magnetic alloys, later very
different types of spin glasses were discovered. EuxSr1−xS is the first insulating magnetic
material to exhibit spin glass physics (see for example Refs. [69, 47, 70]). In this site-
disordered system, the nearest-neighbour (n.n.) interaction J1 is ferromagnetic whereas the
next-nearest-neighbour (n.n.n.) interaction J2 is antiferromagnetic. At high concentration

3The elements in italics are the dilute sites on which magnetic moments are found.
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of Eu, this material is a ferromagnet. Dilution of the magnetic moments, however, exposes
random competition between J1 and J2, leading to a spin glass state. The discovery of
spin glass ordering in EuxSr1−xS with many of the same properties as the dilute magnetic
alloys suggested that spin glass physics possesses a certain level of “universality” and can
manifest itself in a similar way in very diverse physical systems.

Another class of materials to consider is one where the individual spins are replaced by
much larger magnetic moments. These can take on various forms and may be referred to
by different names, including mictomagnets, cluster glasses [44] and superspin glasses [71].
Mictomagnetism (cluster glasses) may take place in the vicinity of ferromagnetism, where
large ferromagnetic clusters form. These clusters then act like very large magnetic moments
and interact with each other in such a way that they develop glassy physics and may freeze
at a glass transition. Cluster glasses may be at the heart of the counterintuitive idea of
spin glass reentrance, where certain systems seem to order ferromagnetically and then, at
lower temperatures, give way to a spin glass state.

Superspin glasses are collections of nanomagnets, that by virtue of their disordered
positioning and therefore random interactions, mimic the behaviour of spin glasses [71].
These systems are found to generally have a much longer overall, intrinsic time constant
τ0 than most spin glasses, perhaps because the larger magnetic moments have significant
internal barriers to spin reversal.

A related concept that is important to mention is superparamagnetism [44]. Super-
paramagnets are related in that they demonstrate similar ‘glassy’ behaviour, characterized
by slow relaxation in the susceptibility for example. However, superparamagnets, often
consisting of magnetic clusters, do not have a freezing transition. The individual moments
or clusters have significant random anisotropy barriers to spin flipping and therefore relax-
ation. This results in a very slow response at low temperatures and so seemingly glassy
dynamics. However, the clusters in a superparamagnet are largely non-interacting. Thus
the anisotropy energies are temperature independent. The dynamics of the system are
therefore thermally activated and the time scales generally follow an Arrhenius law

τ = τ0e
−Ea/kBT (1.29)

In a spin glass, the energy barriers to relaxation are highly temperature dependent, leading
to diverging time scales at the spin glass transition temperature Tg.

1.2.3 Theory of Spin Glasses

The theory of spin glasses is challenging indeed, exemplified by the difficulties in establish-
ing even a simple mean-field, toy model of spin glass behaviour! Some of the ideas that go
into forming such a mean-field theory are discussed here.
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The starting point for such a theory must, of course, be a model that is simple enough
to work with and extract some meaningful results. We have discussed several different
examples of real spin glasses that seemed to have very little in common. What does seem
to be (almost) universal in spin glasses is the requirement of randomness and frustration.
A set of very simple models which provide those requirements are known as Edwards-
Anderson (EA) models [72]. Such models consist of spins on a regular lattice in some
dimension, interacting with other spins by Jij where the Jij’s are random variables with
probability distribution P (Jij). This probability distribution might, to be more realistic,
depend on the vector between spins Rij. The distribution is often chosen to be either
Gaussian or a double δ-function distribution (taking on values +Jij or −Jij) [26].

The Sherrington-Kirkpatrick (SK) model [73] is a particularly simple version of the EA
model. The interactions are taken to be independent of distance. Thus it is equivalent to an
infinite-dimensional model. The concept of a lattice becomes completely irrelevant since
every spin is interacting with every other spin with a common probability distribution.
That distribution is again often taken to be Gaussian, centred about J0/N with variance
J2/N . Thus

P (Jij) =

√
N

2πJ2
exp

[
−N(Jij − J0/N)2

2J2

]
(1.30)

The normalization by N must be taken to ensure that quantities such as the average
internal energy do not diverge in the thermodynamic limit [26].

In addition to a simple Hamiltonian with which to model spin glass behaviour, it is
also important to have in mind a concise description of spin glass ordering in the form of
an order parameter. The order in a ferromagnet, for example, is easily described with an
order parameter m, the magnetization. The magnetization on each site is obtained through
the thermal or statistical average of the spin: mi = 〈Si〉. The order parameter m is then
the average magnetization across the whole sample m = [mi]av. For an antiferromagnet
it is also straightforward to define an order parameter, taking a staggered magnetization
instead. For a spin glass, it is less clear what the order parameter should be. How does one
characterize a state that is randomly frozen? A strong contender is the Edwards-Anderson
order parameter qEA [72] given by

qEA = lim
t→∞

lim
N→∞

[〈Si(t0)Si(t0 + t)〉]av (1.31)

This order parameter essentially characterizes the ergodicity of the system. If the system is
ergodic, it will visit all possible states and clearly qEA will be zero. One can imagine a very
complicated free-energy landscape in the space of the mi’s resulting from the disorder in
the system, which can have many local valleys in which the system would prefer to reside.
The notion of a spin glass transition, is the point where the mountains in the energy
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landscape become infinitely high and the system is ‘stuck’ in one of the valleys. At this
point it will no longer be ergodic as it is restricted to exploring a single valley and not the
entire phase space. There is broken ergodicity in ferromagnets as well, though of a simpler
variety. In that situation, the system finds itself magnetized and to change the direction
of the magnetization requires the traversal of an energy barrier that is proportional to the
size of the sample, hence the time to surpass that barrier diverges in the thermodynamic
limit. In spin glasses, one has broken ergodicity where the restricted phase space is not
simply related to a broken symmetry of the Hamiltonian [25].

Much of the challenge in developing a coherent theory of the spin glass transition comes
from the difficulties associated with averaging over disorder [26]. In normal statistical
mechanics, one performs weighted averages over all the possible states of a system to form
a partition function Z. Now, if this partition function

Z[J ] = TrS exp {−βH[S, J ]} (1.32)

depends on some random configuration of bonds Jij, we must somehow average over dif-
ferent possible configurations of such bonds, symbolized by [ ]av. But [Z]av is not the
appropriate average to perform, since this would be equivalent to annealing out the disor-
der rather than quenching in the disorder [26]. Instead, one should average the free energy
with [F ]av or equivalently average the logarithm of the partition function [lnZ]av. This
average turns out to be a difficult one to perform, a problem that commonly arises in
studying disordered systems.

A method commonly used to get around this problem is known as the replica trick. It
uses the identity

lnZ = lim
n→0

Zn − 1

n
(1.33)

to change the average over lnZ to an average over n replicated partition functions

Zn[J ] = TrS1,S2,...,Sn exp

{
−β

n∑

α=1

H[Sα, J ]

}
. (1.34)

Of course, after taking the average over the disorder, one must somehow take the limit
n → 0. It is not at all intuitive how this should be accomplished and is an issue that
inhibited a correct solution to the mean-field SK model for many years.

The disorder average of an EA model is obtained through

[Zn]av = TrS1,S2,...,Sn

∏

ij

∫
dJijP (Jij) exp

(
−β

n∑

α=1

JijS
α
i Sα

j

)
(1.35)

20



which is fairly easily evaluated with a Gaussian integral if P is taken to be Gaussian. For
the SK model that we discussed above, this disorder average results in [26]

[Zn]av = TrS1,S2,...,Sn exp

(
β2J2

4N

∑

ij

∑

αβ

Sα
i Sβ

i Sα
j Sβ

j + βJ0

∑

α

Sα
i Sα

j

)

= TrS exp(−βHeff). (1.36)

The disorder has been taken care of but the resulting effective Hamiltonian now includes
4-spin interactions between replicas. A sort of order parameter can be identified as

q = qαβ = 〈Sα
i Sβ

i 〉 (1.37)

and with some work (which we will not describe here), in a mean-field approximation, the
SK equation [73] in zero magnetic field can be extracted:

q =

∫
dz√
2π

e−z2/2 tanh2(βJ
√

qz). (1.38)

This is a self-consistent equation for the order parameter q originally determined by Sher-
rington and Kirkpatrick [73] giving a spin glass transition Tg. It turns out that it is not
correct, however, and it gives some unphysical results, in particular a negative entropy at
T = 0. The error is in the n → 0 limit and the assumption that there is replica symmetry.
The assumption that all replicas are equal must be true for an integer number of replicas,
but the n = 0 limit is highly non-intuitive and allows for the system to not be invari-
ant under permutation of the replicas. The problems with the mean-field solution of the
SK model were finally fixed by Parisi [74, 75] by introducing replica symmetry breaking.
Instead of a single order parameter q, one is left with a distribution of order parameters
P (q). This concept of replica symmetry breaking is intimately connected with broken
ergodicity [26].

Perhaps some of the best “theoretical” evidence of spin glass physics comes from Monte
Carlo simulations [25]. A vast set of simulations have been performed on various spin glass
models since the introduction of the EA model in 1975 [25]. These numerical simulations
provide an important link between theory and experiment, but, like experiments on spin
glasses, can also suffer from very slow dynamics and long equilibration times [26]. Many
simulations, such as those of Ref. [76], have provided a standard by which to judge critical
exponents and dynamics in spin glass experiments. A distinct advantage of Monte Carlo
simulations is their ability to study the same model in different dimensions, hopefully
permitting the determination of the lower critical dimension, for example [26]. Where it
currently seems rather conclusive that there is a sharp, finite-temperature phase transition
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in 3D Ising spin glasses [77], for Heisenberg systems the lower critical dimension is likely 3
or higher [26]. In real systems like the RKKY spin glasses, small anisotropies may become
very important, however, and lead to Ising behaviour [26].

This brief discussion has barely scratched the surface of spin glass theory. It is an
immense field of research with connections to diverse subjects such as structural glasses
and neural networks. It is, however, sufficient to conclude that, after much theoretical and
experimental effort, a true thermodynamic phase transition to a spin glass state is believed
to exist in a great many systems. In this thesis we will consider two magnetic systems
that show glassy physics. In Chapter 3 we consider a system, LiHoxY1−xF4 in which the
existence of a spin glass state has been put in doubt and is now a matter of considerable
debate. And in Chapter 5, we consider a system, Gd3Ga5O12, in which the spin glass
physics has defied explanation for well over a decade.

1.2.4 Critical Exponents and Scaling

While unusual in nature, the spin glass transition is understood to be a continuous phase
transition and should therefore have certain (possibly universal) critical exponents near
the transition temperature [26, 25]. The main difference is that the order parameter of a
spin glass is not as clearly observable as say the magnetization in a ferromagnet. The usual
magnetic susceptibility is not the susceptibility of the order parameter so does not exhibit
critical behaviour at Tg and does not show a sharp peak or divergence. Instead, theory
shows that the nonlinear susceptibility χ3 is directly related to the spin glass susceptibility
χSG which characterizes fluctuations in the spin glass order parameter, just as χ1 or χ is
representative of fluctuations in magnetization [76]. Thus the scaling relation

χ3 ∼ χSG ∼ t−γ (1.39)

is observed, where t = (T/Tg − 1) is the reduced temperature. A number of works have
investigated scaling of the nonlinear susceptibility experimentally, in some of the canonical
spin glasses, including Refs. [61, 78, 79, 47]. The exponent γ is found in the range from 2 to
4, with most results sitting close to 3. One of these seminal results is shown in Figure 1.1(c)
from Lévy [61]. This is well matched to simulations which find γ = 2.9 ± 0.3 [76]. The
higher harmonics or terms in the M(H) expansion, χ5, χ7, etc. are also expected to diverge
at the transition, though with modified critical exponents [61].

While, as in other continuous phase transitions, the specific heat is also predicted to
exhibit a scaling relation

C ∼ |t|−α, (1.40)

the exponent α is generally found to be in the range −2 to −4 which makes for an extremely
small signature at the glass transition, one not typically observable in experiments [26].
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For example, from scale invariance and other critical exponents, α = −1.9 ± 0.3 is found
in numerical simulations [76]. One particular experimental work claims to have discovered
this signature by making careful heat capacity measurements, fitting spline curves and
taking derivatives with respect to temperature until a small peak becomes noticeable [80].
This result is shown in Figure 1.2(c). Generally, however, the specific heat is not regarded
as a dependable indicator of the position of Tg and is, rather, more representative of
excitations above the transition. As a rule of thumb, the specific heat is found to show a
broad maximum at a temperature roughly 20% above the glass temperature [25].

Other critical exponents should apply as well. The order parameter q, below the tran-
sition, should obey the law

q ∼ |t|β (1.41)

The correlation function of the order parameter should behave as

G(r) ∼ r2−d−ηe−r/ξ, (1.42)

with critical exponent η and spatial dimension d. The correlation length ξ should behave
in temperature as

ξ ∼ |t|−ν (1.43)

A particularly important scaling relation in spin glasses that is not so often dealt with
in other systems is scaling of the dynamics. Historically, several ways of parameterizing
the behaviour of Tf (ω) have been tried. The Arrhenius law

τ = τ0e
−E0/kBTf (1.44)

(where τ = 1/ω) has been successful in some cases. It exhibits a divergence of time
scales at zero temperature and so does not imply a finite temperature phase transition.
Alternatively, the Vogel-Fulcher law

τ = τ0e
−E0/kB(Tf−T0), (1.45)

drawn from the study of structural glasses, predicts a divergence of time scales at some
temperature T0. Currently, however, numerically and experimentally, spin glasses are un-
derstood to exhibit a power law divergence of the time constant τ at the glass temperature
Tg:

τ = τ0(T/Tg − 1)−zν = τ0t
−zν , (1.46)

where ν is the exponent applying to the correlation function and z is a new dynamical
critical exponent [26].
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Specific heat of a spin glass computed by Monte Carlo simulations from Ref. [76]. (c)
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The intricacies of how τ and z should be defined are quite complicated and have been
discussed at length by Ogielski [76]. In numerical simulations, for example, one observes
the relaxation of the autocorrelation function or order parameter q. The relaxation is
characterized by a distribution of relaxation times ρ(τ). One then has different ways of
parametrizing this distribution, such as

τ =

∫ ∞

0

y2ρ(y)dy

/∫ ∞

0

ρ(y)ydy (1.47)

or

τav =

∫ ∞

0

yρ(y)dy. (1.48)

These two different ways of defining the intrinsic time constant should give rise to different
critical exponents

τ ∼ |T − Tg|−zν and τav ∼ |T − Tg|−zavν (1.49)

In numerical simulations Ogielski finds zν = 7.9 ± 1.0 and zavν = 7.0 ± 0.8 [76]. The
critical exponent for the correlation length is ν , 1.3. Similar results are found in other
numerical simulations [81].

Experimentally, the definition of τ or τav is somewhat ambiguous. The susceptibility
should be defined as [25, 76]

χ(ω) = χ′(ω)− iχ′′(ω) = χ0

∫ ∞

0

dτ ′ρ(τ ′)

1 + iωτ ′
(1.50)

Then, in principle, one can obtain the characteristic time constants by

τ = lim
ω→0

χ0 − χ′(ω)

ωχ′′(ω)
(1.51)

and

τav = lim
ω→0

χ′′(ω)

ωχ′(ω)
(1.52)

However, in practice, these limits are very difficult to take, as we shall see later in Chapter
3. Historically Tf (ω), given by the maximum in χ′(T ), has often been used [44]. In other
cases, researchers have used the peak or inflection point of χ′′ [70]. We mention several
experimental dynamical scaling results that have obtained good agreement with numerical
simulations, determining critical exponents: zν = 7.2 [70], zν = 8.2 [82], zν = 6.9±0.9 [83]
and zν = 7.0± 1.1 [84].

25



With so many successful scaling studies performed either numerically or experimentally,
particularly those observing a divergence of the nonlinear susceptibility, it seems very likely
that there is indeed a sharp (though unusual) thermodynamic transition to a spin glass
state. There is certainly a range of values of zν found in experiment and theory, though
considering the error bars and the complexities of how one defines τ(T ), this is perhaps
not surprising.

1.2.5 Glassiness and Percolation

Consider a system of spins on a lattice that are site diluted, so that the probability of a
given site being occupied by a magnetic ion is x, where the spins are interacting via short
range interactions. If we start from x = 0 and gradually increase x, the size of clusters that
are completely connected by these short range interactions will grow. If the system size is
taken to be infinite (the thermodynamic limit), there will be a critical x = xC at which
the cluster size will diverge [28]. At this point and above, the entire system is connected
by interactions.

The notion of a ‘percolation’ threshold comes from fluid flowing through a porous
material. If the density of the pores in the material is too low, they will not all be
connected together, hence inhibiting the flow of fluid. However, there is a critical density
where the spaces in the material will form one large, interconnected space. At this point,
the material will permit liquid to flow through it.

In the case of diluted spins on a lattice, the percolation threshold depends on the type
of lattice and on the range of the interactions in the system. Take for example the system
EuxSr1−xS. The magnetic Eu2+ ions interact with a nearest-neighbour (n.n.) ferromag-
netic interaction J1 and a next-nearest-neighbour (n.n.n.) antiferromagnetic interaction
J2. At 100% Eu, the system is a ferromagnet. As Eu is diluted with non-magnetic Sr, the
transition temperature TC drops. At around x = 0.5 and below, there is sufficient random
frustration resulting from the competition between n.n. and n.n.n. interactions, so that a
spin glass transition results. However, at xC , 0.1, there is a percolation threshold. The
interactions J1 and J2 no longer cover the entire system and it is broken up into finite
clusters. At this point, the spin glass transition temperature seemingly drops to zero tem-
perature (or at least drops well below the temperature that corresponds to the n.n. and
n.n.n exchange interaction strengths) [47, 85]. The phase diagram of EuxSr1−xS is shown
in Figure 1.3.

For a long range interaction such as the RKKY interaction or the dipole-dipole interac-
tion, however, there is no percolation threshold. The magnetic moments are all connected
to each other by some interaction strength, no matter how small. This means that we
should expect critical behaviour to persist all the way to zero concentration, rather than
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Figure 1.3: The phase diagram of the dilute Ising magnet EuxSr1−xS. Data points are taken
from Refs. [85, 47]. The square symbols are spin glass freezing transitions obtained from
a dynamical scaling analysis and the circles are paramagnetic to ferromagnetic transition
temperatures found from the position of the cusp in susceptibility.

drop to zero temperature at some critical xC . This likely applies to EuxSr1−xS below
the percolation threshold for short range interactions, where the dipolar interaction still
connects the entire system.

Percolation with Long-Range Interactions

In this section, we will discuss the mean-field theory that was developed by Stephen and
Aharony [29] which suggests that a spin glass should occur at low concentrations of mag-
netic moments in the presence of certain long range interactions, including the dipolar
interaction. The bond distribution in this situation will be Jij with a probability of p and
0 with a probability of 1−p. Since we have a site-diluted system rather than a bond-diluted
system, we should expect p = x2. The Hamiltonian is

H[S, P ] =
∑

〈i,j〉

PiPjJijSiSj =
∑

〈i,j〉

PiPjJ0

(
r2
ij − 3z2

ij

r5
ij

)
SiSj. (1.53)

The z superscript is not written since we are only concerned with Ising spins. Pi can take
on either 1 or 0, depending on whether the bond labeled by ij is occupied or not. Using
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the replica trick, which was introduced earlier, one can write

[Zn]av = Tr
∏

ij

[
1 + ν exp

(
βJij

n∑

α=1

Sα
i Sα

j

)]
= Tr exp(−βHeff) (1.54)

where ν = p/(1− p). This effective Hamiltonian can be written as an expansion in higher-
order spin interactions between the different replica indices, so

Heff =
∑

ij

∑

k

βKk
ijQ

k
ij (1.55)

The index k labels the order of the expansion. Kk
ij must be determined from x, T and the

Jij’s. We will have terms containing interactions such as

Qk
ij =

n∑

α=1

Sα
i Sα

j , Qk
ij =

∑

α<β

Sα
i Sα

j Sβ
i Sβ

j (1.56)

This expansion then contains a number of competing order parameters. For example

mi = µα
i = 〈Sα

i 〉 (1.57)

is the magnetization, so the order parameter for the ferromagnetic regime, whereas

qαβ
i = µαβ

i = 〈Sα
i Sβ

i 〉 (1.58)

is the order parameter for the spin glass regime. The Fourier transforms of these order
parameters are σα

q , σαβ
q , etc. Fourier transforming the effective Hamiltonian yields

Heff = −1

2

∑

k

∑

q

(K̂k
q − 1)|σα1...αk

q |2 +O(σ3) (1.59)

The critical temperature at which a certain kind of ordering will take place is then found
by

rk = 1− K̂k
0 = 0 (1.60)

For the ferromagnetic order parameter, this gives

r1 = 1− pβJ0a3 − p
∑

j

(tanh βJij − βJij) = 0. (1.61)
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The coefficient a3 is defined [86], through a low-momentum expansion of the Fourier trans-
form of Jij:

Ĵ(q) =
∑

j

exp(iq · rij)Jij , J0

[
a3 + a4q

2 + a2q
2
z − a1(qz/q)

2
]

(1.62)

and therefore depends on the lattice in question. Alternatively, for the spin glass order
parameter,

r2 = 1− p
∑

j

(tanh βJij)
2 = 0 (1.63)

gives the ordering temperature. The level of percolation is related to the ordering temper-
ature Tg as

p =
1

∑
j [tanh(Jij/kBTg)]

2 (1.64)

If there are circumstances where r2 < r1, we should expect spin glass ordering. This,
in fact, occurs at low values of p or x. What is important is that this spin glass ordering
persists all the way to x = 0. There is no critical point xC -= 0 below which we lose the
spin glass transition. As Tg → 0, p → 0. On the other hand, if there is a finite number, z,
of exchange interactions in the system, it can be seen from Equation 1.64 that as Tg → 0,
p → 1/z. Thus there is a percolation threshold at pC = 1/z.

As we will see later in the thesis, this issue is very important to the system LiHoxY1−xF4

which is dominated by dipolar interactions. As suggested earlier, this idea should also
apply to EuxSr1−xS below its percolation threshold. At that point, it has been suggested
that the long range dipolar interaction should take over from the short range interactions
and continue to generate spin glass physics, albeit at a much lower temperature than the
temperature at which the short range exchange interactions resulted in glassiness [87].

1.3 Geometric Frustration

Frustration is the inability of a system to minimize all pairwise interactions simultaneously.
Geometric frustration, therefore, is frustration resulting purely from the geometric config-
uration of a crystal lattice. This could be contrasted with random frustration, which is
generally at play in spin glasses, where random interactions or random site dilution result
in competing interactions. As with spin glasses, the study of geometric frustration is a
rather large topic and just a small summary of this area of research is given here, entirely
in the context of geometrically frustrated magnets. There is considerable current interest
in the subject, primarily as a result of the myriad of interesting and exotic states of matter
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Figure 1.4: A simple example of geometric frustration: antiferromagnetically coupled Ising
spins on an equilateral triangle. It is possible to satisfy one pair of bonds, but the third
spin will always be frustrated.

(a) (c)(b)

Figure 1.5: Three lattices that are networks of corner sharing simplexes. (a) The kagome
lattice in 2-dimensions. (b) The pyrochlore lattice and (c) the hyperkagome garnet lattice,
in 3-dimensions.
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that have either been observed experimentally or predicted theoretically, resulting from
this effect.

The simplest (and perhaps most often employed) illustration of geometric frustration
is a triangle with Ising spins on the corners, as shown in Figure 1.4. If the spins are
coupled antiferromagnetically, only two pairs, two bonds, can be satisfied completely. One
of three spins is unable to choose its orientation. Indeed, the best way to realize geometric
frustration in real-life materials, seems to be to use triangles, or their higher-dimension
equivalents, tetrahedra. Three important lattices in the field are shown in Figure 1.5. The
kagome lattice, in 2-dimensions, consists of a lattice of corner sharing triangles, named for
a Japanese basket weaving pattern. In 3-dimensions, we have the pyrochlore lattice, which
is based on corner sharing tetrahedra, and the garnet lattice, an example of a hyperkagome
lattice of corner sharing triangles.

An often discussed situation is one of isotropic Heisenberg spins, antiferromagnetically
coupled, on one of the lattices mentioned above. If we assume that these are purely
classical spins, it can be seen that the ground state is one where the total magnetization
Ms on each simplex s (triangle or tetrahedron) is 0. However, this is not just one ground
state. The system is heavily underconstrained and there can be a macroscopic number of
degenerate ground states available. The existence of this potentially macroscopic ground
state degeneracy D can be argued with a simple Maxwellian counting argument [88]: D =
F−K, where F is the number of degrees of freedom and K is the number of constraints. For
spins on q-corner simplexes, each with n components (i.e. Heisenberg spins have n = 3),
we have D/N = [n(q− 2)− q]/2, where N is the number of simplexes in the system. This
argument applies particularly well to the pyrochlore lattice, resulting in a macroscopic
degeneracy D = N . This counting argument is too simplistic in the case of the kagome
lattice, giving D = 0 when in fact it should be D = N/9 [88].

A macroscopic ground state degeneracy prevents the system from finding long range
order, and thus it is left in some sort of ‘spin liquid’ or cooperative paramagnetic state. That
is, until other interactions or order-by-disorder come into play. Generally speaking, other
interactions beyond nearest-neighbour antiferromagnetic interactions will select, from that
degenerate ground state manifold, a unique state of long range order. Dipolar interactions
are particularly unavoidable for example. Even in the complete absence of other, symmetry-
breaking interactions, an order-by-disorder mechanism may favor a certain ground state.
There will inevitably be fluctuations around the degenerate manifold of ground states and
often these modes will be particularly soft in the vicinity of a certain high-symmetry point
on that manifold. Those soft excitations are more often occupied, thus more time is spent
in that region of the manifold. This leads to a selection of that particular point, resulting
in long range order [89].

In frustrated magnets, this long range order may occur at a temperature much lower
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SRO

LRO?

Figure 1.6: A cartoon of the behaviour of the magnetic susceptibility χ(T ) in geometrically
frustrated magnets. The temperature can often be decreased well below the Curie-Weiss
temperature with only short range order (SRO). At some point, most systems still find
a way to order at TC , often with long range order (LRO), though sometimes with more
exotic kinds of order.

than the magnitude of the Curie-Weiss temperature |θCW |, which is representative of the
strength of the nearest-neighbour interactions. This concept is shown in Figure 1.6. In
the region between TC and θCW there are often indications of short range order (SRO) or
cooperative paramagnetism. The ratio

f = θCW /TC , (1.65)

called the frustration parameter or frustration index [90], has been used as a representation
of the degree of frustration in a system. Systems that exhibit such behaviour include several
of the materials studied in Chapters 4 and 5 of this thesis.

The pyrochlore lattice is often regarded to be the one that is most likely to have a
macroscopic ground state degeneracy and withstand order-by-disorder [88]. Consequently,
materials with the pyrochlore lattice have received a great deal of attention and have also
demonstrated a plethora of interesting ground states [91]. Without going into any level of
detail, we will outline some of the more interesting varieties of highly frustrated magnets
that have been observed to date.
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Spin Ice

If spins on a pyrochlore lattice have a strong [111] easy-axis anisotropy (that is they prefer
to point in or out of a tetrahedron) and are coupled ferromagnetically, a different sort
of macroscopic ground state degeneracy can arise. In this case, the net spin on each
tetrahedron should be maximized. This is accomplished by having two spins point out of
the tetrahedron and two spins point into the tetrahedron. Again, this “two-in, two-out”
state can be tiled about the lattice in a macroscopic number of ways [92]. It turns out that
this problem is directly analogous to the problem of hydrogen bonds in water ice. There,
the oxygen atoms reside on a diamond lattice and the hydrogen bonds between them cover
a dual pyrochlore lattice. Each oxygen must have two hydrogen atoms close to it, and two
hydrogen atoms more weakly connected, in direct analogy to the two-in, two-out state of
what is therefore named spin ice. Hence these are referred to as the ice rules [91]. Pauling
originally came up with the idea of a residual ground state entropy in water ice [93] and this
same residual entropy, S0 = (NkB/2) ln(3/2) has been found in spin ice, in the materials
Dy2Ti2O7 [94] and Ho2Ti2O7 [95]. These materials are known as dipolar spin ice, because
the nearest-neighbour ferromagnetic interaction is a result of dipolar interactions rather
than exchange [95].

In addition to its cooperative paramagnetic ground state, spin ice exhibits a number
of other exotic effects. Particularly important in recent years is the discovery of excita-
tions analogous to magnetic monopoles. The ground states of spin ice, satisfying the ice
rules, can be thought of as divergence-free, ∇ · M = 0, where M is the magnetization.
However, flipping one of the spins effectively excites two magnetic monopoles, one with
positive magnetic charge and the other negative. If one considers nearest-neighbour inter-
actions only, these monopoles are able to move about on the diamond lattice of tetrahedra
without any energy cost. With more distant dipole-dipole interactions included, however,
the monopoles feel a Coulomb force between them. Applying magnetic field along the
[111] direction allows one to tune the density of monopoles in the system and eventually
results in a phase transition where there is no broken symmetry, comparable to a liquid-gas
transition [96]. There has been a frenzy of activity on magnetic monopoles in spin ice in
recent years, with several results confirming the idea [97, 98, 99].

Geometrically Frustrated Spin Glasses

Since the seminal paper of Villain [100], it has been understood that geometrically frus-
trated materials may be highly sensitive to the effects of small amounts of random disorder.
Indeed, in recent years, the idea that a spin glass state can develop in such materials de-
spite very small quantities of quenched randomness, has been put on more solid ground,
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particularly in the context of pyrochlore antiferromagnets [101] and the anisotropic kagome
Heisenberg antiferromagnet [102]. Several geometrically frustrated materials have shown
stoichiometric or low-disorder spin glass states, including the pyrochlore Y2Mo2O7 [103],
the kagome hydronium jarosite [104] and the garnet Gd3Ga5O12 (GGG) [7]. This idea will
be discussed in more detail in Chapter 5, particularly for the case of GGG.

Spin Liquids

The idea of a spin liquid is a system that remains dynamic and disordered down to temper-
atures well below the Curie-Weiss temperature. Spin ice might also be referred to as a type
of spin liquid or cooperative paramagnet, since it remains disordered at low temperature
and does not undergo a spin glass freezing transition, but the dynamics certainly do slow
appreciably as a result of significant energy barriers [105]. In quantum spin liquids, how-
ever, the spins can remain truly dynamic down to the lowest temperatures. Such systems
possess ground states that exhibit a high degree of entanglement as a result of quantum
fluctuations [105] and are more likely to manifest in systems with low spin, particularly
spin-1/2, where quantum fluctuations can be as large as the spins themselves. Geometric
frustration and low dimensionality are expected to aid in the development of a quantum
spin liquid state. Originally proposed by Anderson, referred to as a resonating valence bond
(RVB) state [106], quantum spin liquids may result in an exciting kind of fractionalized
excitation known as the spinon: a pair of spin-1/2 excitations instead of the usual spin-1
magnon [107]. One of the hopes in this field of research is that it could lend insight to
the pairing mechanism in high-TC superconductors, which is thought to, at least partially,
involve coupling with magnetic excitations, possibly from a RVB state [2].

In addition to spin ice, the pyrochlore lattice can also play host to the spin liquid
Tb2Ti2O7, a pyrochlore which remains disordered down to the lowest temperatures stud-
ied [108]. The pyrochlore Yb2Ti2O7 [109] and garnet Yb3Ga5O12 [110] show sharp phase
transitions at ∼ 250 mK and ∼ 50 mK respectively, but appear to have disordered ground
states, suggestive of another analogy to the liquid-gas transition. The hyperkagome system
Na4Ir3O8 [111] and the kagome system ZnCu3(OH)6Cl2 (Herbertsmithite) [3], to name a
couple, have received a great deal of attention as of late for their possible quantum spin
liquid ground states.
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Chapter 2

Experimental Methods and
Apparatus

2.1 Cryogenics and Thermometry

2.1.1 The Dilution Refrigerator

The most conventional method of refrigeration is to make use of the latent heat of cooling
of an evaporating liquid. This method applies for normal kitchen appliance refrigerators
to progressively lower temperatures that require more exotic cooling fluids. By the time
one obtains a temperature of 20 K or so, one is forced to turn to helium, as all other
compounds and elements will be frozen. Liquefying helium allows one to obtain a stable
bath of liquid at 4.2 K. From there, one may pump on 4He to get to just above 1 K (in
a so called 1K pot). The reason for this temperature limit is that the cooling power is
directly related to the vapour pressure of the liquid, which becomes infinitesimally small
by 1.2 K or so. In order to go to lower temperatures with cryogenic fluids, one needs to
use the lighter and much rarer isotope 3He, which has a lower vapour pressure than 4He.
Pumping on 3He allows one to obtain temperatures just under 250 mK, with an apparatus
therefore referred to as a 3He refrigerator.

Finally, to achieve any lower temperatures with a continuous cycle, one uses a very
different mechanism, that is a circulating mixture of 3He and 4He in what is known as
a dilution refrigerator. This is the cryogenic device that was used for the experiments
embodied in this thesis and which I will now briefly describe, drawing from Ref. [42]. The
dilution refrigerator depends on two critical properties of 3He-4He mixtures. First, there is a
higher enthalpy H for 3He diluted in 4He, than for pure 3He. Second, at temperatures below
∼ 0.7 K, a 3He-4He mixture phase separates into dilute and concentrated 3He phases. At
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zero temperature the dilute phase will contain a finite concentration (6.6%) of 3He whereas
the concentrated phase, at absolute zero, will consist of pure 3He.

The first property is that which is used to generate cooling power. In the mixing
chamber of the dilution refrigerator, 3He is absorbed into mostly 4He, resulting in an
increase in enthalpy H and therefore cooling. When the dilute and concentrated phases are
in chemical equilibrium, their chemical potentials are equal, µD = µC . Since µ = H − TS,
we can obtain ∆H through

∆H = T

∫ T

0

(
CD

T ′ −
CC

T ′

)
dT ′ (2.1)

Since the specific heat of 3He diluted in 4He, CD , (106 J/K2 mol)T is much larger than
the specific heat of pure 3He, CC , (22 J/K2 mol)T , there is a ∆H , (84 J/K2 mol)T 2

between the two phases (in the low temperature limit, below approximately 40 mK, where
C/T is largely constant) [42].

If one were to imagine liquid helium as a classical liquid, one would expect that at
zero temperature, the third law of thermodynamics would require that the two isotopes of
helium should separate entirely in order to have S = 0. The cooling power of the dilution
refrigerator is given by Q̇ ∝ x∆H ∝ xT 2. If x (the concentration of 3He) were ever
decreasing, for example exponentially as does the vapour pressure of helium, the fridge
would be fighting a losing battle. However, there is in fact a finite solubility of 3He in
4He even at zero temperature, thus the cooling power drops out as T 2, quite a shallow
temperature dependence compared to other processes such as evaporative cooling.

This finite solubility at absolute zero does not violate the third law because these
isotopes of helium form quantum fluids at such low temperatures. 4He is a Boson and is
basically completely Bose condensed into a single superfluid ground state at temperatures
well below 0.5 K. 3He is a Fermion, so will not form a superfluid until lower temperatures
than even a dilution refrigerator can provide. It can, however, fill up all the lowest lying
states available to it quite independently of whether there is a 4He superfluid surrounding
it, thereby having 0 entropy. The reason that 3He ‘wants’ to mix with 4He is that there is
an increased binding energy – with less zero point motion, 4He atoms are, in some sense,
easier to get close to than 3He atoms, making them more attractive. Thus the first 3He
atom to enter 4He is at an energy ε3,d lower than the chemical potential of pure 3He. As
more Fermions enter the dilute phase, however, they must pile on top of each other, unable
to occupy the same energy levels. They will pile up to the Fermi temperature, which
depends on concentration x. Then once ε3,d = kBTF (x) and the highest occupied energy
levels have reached the chemical potential of the concentrated phase, there is no reason for
the concentration to continue to increase (except for thermal fluctuations). This limiting
fraction is found to be x = 6.6%.
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Figure 2.1: A diagram of the dilution unit from the S. H. E. dilution refrigerator used for
the measurements contained in this thesis, taken from Ref. [112]. The base temperature is
roughly 13 mK, depending on heat load.

37



The way that a dilution refrigerator is implemented can be very roughly thought of
as a U-tube. The system pumps on one side of the U-tube (the side known as the still)
and returns what was pumped away into the other side (the mixing chamber). When the
mixture phase separates, the lighter concentrated phase floats on top of the dilute phase.
Quantities of the different isotopes should be adjusted such that the phase separation line
is inside the mixing chamber. Since the vapour pressure of 3He is so much larger than that
of 4He, predominantly 3He is pumped away at the still. This removal of 3He at the still
creates an osmotic pressure that pulls 3He from the mixing chamber toward the still. This
then makes ‘space’ in the mixing chamber for more 3He to be returned into the dilute phase.
This results in cooling because of the enthalpy difference ∆H between the concentrated
and dilute phases.

While this description sounds very simple, much of the challenge to making a good
dilution refrigerator comes from properly precooling the returning 3He. It is first precooled
with a 1K pot and condensed into liquid (this must be followed by a high impedance line
to build up suitable pressure). It is then further cooled with the still, which is generally
run at around 0.7 K. Finally it is run through heat exchangers with the dilute phase, so
that when it enters the mixing chamber, it is already very cold and does not waste valuable
cooling power. It is the manufacture of very effective heat exchangers that makes for a high
performance dilution refrigerator, with the most successful reaching a base temperature of
∼ 2 mK [42].

The particular dilution refrigerator used for this work, is a S. H. E. Corporation DRP-
36 system from 1975. It can circulate at 200 µmoles/s per second and is capable of
reaching a base temperature of just under 13 mK. In its current configuration, its minimum
temperature is just over 20 mK, a likely result of increased heat load from a large amount
of wiring for various experiments. In any case, a base temperature of 20 mK is more than
adequate for the work contained in this thesis. A diagram of the dilution unit of the S.H.E.
refrigerator is shown in Figure 2.1.

2.1.2 Thermometry

Thermometry is one of the most challenging aspects of low temperature physics, often
requiring several different methods for different temperature ranges or applications. Re-
sistive thermometry is by far the most convenient technique. For the main thermometer
on the cryostat, we employ a commercial LakeShore germanium resistance thermometer
(GRT). This thermometer is contained inside a small copper container filled with 4He to
create a strong thermal link while being carefully strain relieved so that it will be largely
insensitive to thermal cycling and will have excellent reproducibility from one cool-down
to the next. This thermometer comes calibrated down to a temperature of 50 mK.
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At very low temperatures, 50 mK and below particularly, resistive thermometry can
become quite difficult due to noise pickup. This ‘self-heating’, as it is known, can make
resistive thermometers unpredictable and impossible to work with at the lowest tempera-
tures. Careful attention must be paid to avoiding noise pickup by shielding and filtering
signal lines. At the feedthroughs to our cryostat, we employ π-filters (an inductor in line
with capacitors to ground on either side of it) to reduce high frequency noise. Furthermore,
the pairs of voltage or current leads are run in twisted pairs, which also assists in noise
cancellation.

In order to measure the temperature of the fridge below 50 mK (where the commercial
GRT is no longer calibrated) we have employed two other thermometry techniques: CMN
thermometry and nuclear orientation thermometry. The material Ce2Mg3(NO3)12 · 24H2O
is a paramagnetic salt that does not order magnetically down to about 2 mK. Its suscepti-
bility can be well approximated by a Curie-Weiss law χ ∝ 1/(T−θ) with θ = −0.004 mK in
the temperature range of 7 to 200 mK [42]. Our CMN thermometer consisted of a SQUID
susceptibility measurement, similar to the one described in Section 2.3.1, using silver foil
as a heat sink for the CMN. Since no leads are affixed to the sample, a CMN thermometer
does not suffer the same self-heating problems as resistive thermometers. However, the
apparatus required for this thermometer is much bulkier and significantly more complex
than a 4-wire resistance measurement.

Nuclear orientation thermometry [42] makes use of a cobalt single crystal containing
radioactive 60Co. One particular decay process of 60Co involves anisotropic emission of
a gamma ray, predominantly away from the axis of orientation of the nuclear magnetic
dipole moment. The electronic moments in a Co crystal are ferromagnetically aligned and
below 50 mK, the nuclear moments begin to align with the electronic moments. As this
happens, the gamma ray emission becomes anisotropic. One can place a detector outside
the cryostat, aligned with the ferromagnetic axis of the crystal and monitor the count rate
referenced to the isotropic, high-temperature count rate. As the temperature drops below
50 mK, this count rate drops, providing a indicator of the temperature. Once again, there
are no leads attached to this sample so no self-heating occurs. The main downside to this
type of thermometry is the long integration time required to get a precise measurement of
the temperature. It also has very little applicability above 50 mK.

Nuclear orientation thermometry has a particular advantage in that it is a primary
thermometer. It requires no predefined fixed temperature points. Calibration of the ther-
mometer is accomplished by measuring the count rate at high temperatures / 50 mK,
where the emission of radiation is completely isotropic. The count rate relative to this
high-temperature, isotropic count rate then has a well-defined temperature dependence
below 50 mK [42]. Nuclear orientation was used in conjunction with CMN thermometry
(to provide overlap) to extend the calibration of the GRT to the base temperature of the
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fridge. No self-heating was noticed in the GRT.
For specific heat measurements, we require a very portable thermometer with very

little heat capacity. For this application, therefore, we employ thick film RuO2 chip resis-
tors, on alumina substrates manufactored by Dale electronics. Resistors of this kind are
frequently used for such applications and their heat capacity has previously been charac-
terized [113]. In a certain temperature range, from several hundred mK down to 50 mK,
these thermometers have been fit by the simple form

R = R0 exp(T0/T )β (2.2)

often with β , 1/4, but in other cases choosing β to be as high as 0.345 [42]. This form is
a reasonable approximation for our thermometers as well, though not sufficient to use as
a calibration. It is, however, a good check that our thermometers are not self-heating in
the temperature range of our data. A plot of log R versus T−β of our various thermometer
calibration data, reveals good linear behaviour (with exponent β , 0.3) to the lower
temperature limit of our data and consistent slopes between various thermometers. A
more reliable and universal fit is given [42] by

ln T =
3∑

n=0

An(ln R)n (2.3)

which has been used to calibrate our thermometers for specific heat experiments. These
thermometers are not known for their reproducibility. It is expected that thermal cycling
causes micro-cracks to form, which, over time, alter the calibration of the thermometers.
However, in our applications, we use a new chip thermometer for each sample studied,
calibrating it in place on the experiment. Thus each thermometer would only be exposed
to a handful of thermal cycles and we generally do not notice significant changes in the
calibration from one run to the next. There is much similarity between the calibrations of
different resistors, but not enough to use one common T (R) fit for all experiments – each
new thermometer used, must be calibrated.

The GRT resistance is measured and the fridge temperature is controlled using a
LakeShore 370 ac resistance bridge and temperature controller. The temperature stability
is highly dependent on the temperature (therefore the heater resistance), the excitation
used and the PID temperature control settings. However, some typical values of the tem-
perature stability are ±50 µK at 80 mK and ±300 µK at 500 mK (relative stability of
roughly 5 × 10−4). The RuO2 thermometers for specific heat experiments, on the other
hand, were measured with a much lower noise Linear Research LR700 ac resistance bridge.
For reasonable excitation voltages, a relative temperature resolution as good as 4× 10−5
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was achieved, for example ±10 µK at 250 mK. At lower temperatures, it is generally nec-
essary to lower the excitation voltage in order to avoid heating the thermometer, which
sacrifices some temperature resolution. For all resistive thermometers, the current and
voltage leads were twisted pairs that were heat sunk at several points (at least at the 1K
pot, still and mixing chamber). All leads were filtered with π-filters at the feedthroughs to
the internal vacuum space of the cryostat (at room temperature).

2.2 Specific Heat Measurements

2.2.1 Design of Apparatus

As we are studying, in this work, insulating materials, some of which are polycrystalline
samples, we must be ever cognizant of the potential for slow relaxation and thermal gra-
dients within our samples and heat capacity apparatus. This has led us to implement a
measurement scheme that, while more laborious to prepare, is much more reliable in such
situations.

A typical heat capacity apparatus would consist of a substrate (often sapphire) on
which a thermometer and heater are fixed and which is thermally linked with a known
thermal conductance to the cryostat. Samples to be measured are then fixed with grease
to the substrate. Such an apparatus, while enabling rapid switching of samples, makes for
complicated heat flow and can lead to systematic errors. For example, if the sample is not
well linked to the substrate, or has a particularly large heat capacity, much of the heat from
a heat pulse may warm up the substrate then flow out through the thermal link, without
possibly penetrating into the sample itself. This would likely lead to an overestimate of
the sample temperature and therefore an underestimate of the heat capacity.

Our set-up, however, does away with the substrate. Thermometer, heater and weak
thermal link are directly glued to the sample. This greatly simplifies the heat flow diagram
and reduces systematic errors in temperature measurement, since heat flowing through the
thermal link, must first flow through the sample. Unfortunately, this approach necessitates
constructing a new heat capacity cell for each sample to be measured. Since an additional
path for heat to flow is through the electrical leads to heater and thermometer, we have
also made significant efforts to reduce the thermal conductivity of those leads.

An analysis of the potential effects of using a substrate for such measurements was
performed in the author’s M. Sc. thesis [114] and clearly illustrates that one can easily
develop serious, systematic errors as a result of heat leaks. Such an analysis was performed
assuming perfect thermal conductivity within the sample. Certainly adding a finite thermal
conductivity to the sample, as discussed in Appendix C, could exacerbate these errors.
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We are therefore confident that our apparatus, while cumbersome to make ahead of each
experiment, is optimally designed to reduce systematic errors.

Specifically, our apparatus is made with the following design and materials. The outer
support structure is a copper ring. This ring can be inserted into a hole on the inside of a
copper box and held in place with a set screw. The copper box can be sealed up to block
out blackbody radiation from higher temperatures, and screwed into the mixing chamber
of the refrigerator. To support the sample without allowing it to be thermally linked to
the cryostat, we use four, very thin nylon threads tied across the copper support structure.
The sample is secured to these threads with General Electric (GE) varnish (an adhesive
commonly used for low temperature physics applications).

For a thermometer, we use a 1 kΩ thick-film RuO2 chip resistor on an alumina substrate
from Dale Electronics. The heater is made from a metal-film chip resistor which has a
largely temperature independent resistance, chosen to be in the range of 10 to 20 kΩ.
The heater and thermometer are both fixed directly to the sample with GE varnish. No
substrate is used.

A weak thermal link is made from either PtW (92% Pt, 8% W) or Manganin wire.
It is connected to the sample on one side and the copper ring on the other, with silver
epoxy. Manganin has a magnetic Schottky anomaly in its specific heat which can lead to a
significant addendum if the sample’s heat capacity is small. In that case, PtW is a better
choice of weak link. The length and diameter of this link is chosen, with an estimate of
the sample’s heat capacity, to provide a time constant C/K, of our choosing. The thermal
conductance K of the weak link can be calculated using the Wiedemann-Franz law knowing
the resistivity of the wire. Since these metals are ‘dirty’ alloys, their residual resistance
ratio (RRR) will be close to 1, thus their resistivities are not likely to change significantly
from room temperature to 1 K and below. This will result in K ∝ T . Of course, since we
are typically dealing with insulating samples, there is also a Kapitza boundary resistance
between the weak link and sample. This is difficult to predict and has a sharp temperature
dependence T 3 or greater [42].

Electrical leads to the thermometer and heater are made with superconducting NbTi
filaments that are roughly 6 µm in diameter. Such incredibly thin wires are obtained by
etching the copper cladding away from multifilamentary NbTi magnet wire, with nitric
acid. Contacts are made on either side of the leads with silver epoxy. Since these filaments
are made from an alloy, and superconduct at ∼ 10 K, they are incredibly poor thermal
conductors at 1 K and below. This allows for a well controlled heat flow in the system,
with essentially all of the heat that enters the sample flowing out through the weak link
and not through the electrical leads.

When performing a specific heat measurement, we apply quasi-adiabatic heat pulses
of size Q (typically in the range of 10 nJ to 1 µJ) to our sample, via the heater, and
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Figure 2.2: (a) A schematic diagram of the heat capacity cell used for these experiments.
(b) A photo of a constructed heat capacity cell. This particular sample was single crystal
Yb2Ti2O7 although the construction of other heat capacity experiments was very similar
with slight changes in sample geometry. The outer diameter of the copper support ring
is 2.5 cm. (c) A diagram of relevant heat links and heat capacities in the system. Our
apparatus design possesses a particularly simple version of such a diagram due to a lack of
substrate.

monitor the change in sample temperature. For single crystal samples with very high
thermal conductivity, it is often sufficient to perform linear fits to the data before the pulse
and after the pulse and extrapolate to the mid point to find ∆T . The heat capacity is
simply given by C = Q/∆T . The linear fits are reasonable if the period of time over which
the fit is performed is much smaller than the time constant of relaxation to the cryostat
temperature, τ0. Since we choose to work with time constants of 1 hour or more, this is
easily achieved.

Often there is some relaxation within the sample with a time constant τ1. In single
crystals, τ1 1 τ0 and we can simply apply our fit after that internal relaxation has finished
and extrapolate back to the heat pulse. In polycrystalline samples, however, the inter-
nal relaxation can become quite slow and we may even see more than one internal time
constant, so τ2, τ3, etc. In that case, we have applied a double exponential fit to the τ1

and τ0 parts of the relaxation (avoiding the faster time constants). The longer exponential
can then be extrapolated to the heat pulse to obtain ∆T . This double exponential fitting
and internal time constants are discussed in more detail in Appendix C, where the error
associated with poor thermal conductivity is analyzed and this method is justified.

A diagram and photo of one of our heat capacity cells is shown in Figure 2.2(a) and (b)
respectively. In (c) we show the heat flow diagram of the experiment design. In a circuit
diagram analogy, the thermal links may be thought of as resistors with heat capacities as
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capacitors, temperature as voltage and heat flow as current. As can be seen in this heat
flow diagram, our apparatus is quite simple and it is therefore very easy to understand
where heat enters and exits the system. Whereas the thermometer-sample and heater-
sample connections should be as good as possible (assisted by polishing down the alumina
substrates of the chip resistors), the leads to the thermometer and heater should be as
weak (thermally) as possible.

2.3 SQUID Magnetometry

The superconducting quantum interference device or SQUID is currently the most sensitive
magnetic field sensor available. Use of a SQUID is a natural choice for studying glassy
magnetic materials because of its high magnetic field sensitivity and because it responds
directly to the magnetic field, rather than to the rate of change of the field, as in standard
magnetic induction, so can therefore be used to very low frequencies. In Appendix D,
an in-depth discussion of the theory of Josephson junctions and SQUIDs is presented.
For a more detailed theoretical treatment of SQUIDs, see References [115, 116]. It is
sufficient to mention here, that the dc SQUID (the variety used in this work) consists of a
superconducting loop or washer interrupted by two tunnel junctions, known as Josephson
junctions. Essentially the SQUID forms a Cooper pair interferometer and is, as a result,
immensely sensitive to the flux threading the SQUID washer.

The SQUID is current-biased with a current I and the voltage V is amplified and
measured. If biased at the correct current, the voltage varies sinusoidally with the external
flux Φe, and therefore the applied magnetic field. The sinusoidal dependence of V (Φe) has
a period of one flux quantum or Φ0 = h/2e, where h is Planck’s constant and e is the charge
of an electron [115]. Steep parts of the V −Φ curve allow for very high sensitivity, sometimes
as good as 1 µΦ0/

√
Hz [117]. More precisely, in order to handle such a severely non-linear

gain, one must operate the SQUID in a feedback mode, which is also described in more
detail in Appendix D. In the ensuing section is a detailed description of the construction
and operation of our particular SQUID magnetometer. The SQUIDs and SQUID controller
electronics used in this work were obtained from Michael Mück, ezSQUID.

2.3.1 Magnetometer design and operation

Our magnetometer has been designed, in particular, to study the susceptibility of glassy
materials with slow magnetic relaxation. Thus, our aim was to create a magnetometer that
would be sensitive to a wide range of frequencies. High sensitivity is also desirable, though
for LiHoxY1−xF4, for example, it is often not particularly necessary since the large magnetic
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moment of Ho3+ ions provides a large signal. In order to achieve high sensitivity and a
flat frequency response, we decided on a design using a SQUID and a superconducting
flux transformer to input the signal to the SQUID. A superconducting flux transformer is
simply a continuous loop of superconducting wire formed into the secondary or pickup coil
on one side and the input coil to the SQUID on the other. The use of a SQUID and a flux
transformer has two main advantages: flat frequency response and high sensitivity.

In standard inductive susceptometers (for example [118, 119, 58, 5]) one measures the
electromotive force (emf) generated by inductive pickup in a coil. The resulting signal is
unfortunately proportional to the rate of change of magnetic flux and will therefore drop off
as the frequency of the excitation. A flux transformer, on the other hand, makes use of the
Meissner effect, where the total flux through the superconducting loop is conserved. Thus
if the flux in the pickup coil changes, so must the flux in the input coil near the SQUID.
This effect is frequency independent so does not degrade the signal at low frequencies.
Additionally, the high sensitivity of a SQUID permits the use of pickup coils that have few
windings and therefore low inductance and will not exhibit resonances until very high fre-
quencies, well above the frequency range in which we are working [117]. This flat frequency
response over many decades of frequency is crucial to the study of glassy magnetic systems
with slow dynamics and extremely broad frequency spectra (see for example Ref. [61] for
the application of a similar device to the study of spin glasses).

Our work has been primarily concerned with measuring susceptibility at very low mag-
netic fields. This has allowed us to use a great deal of shielding to avoid noise pick-up and
further increase our sensitivity. The SQUID itself is contained in a small superconducting
lead (Pb) shield and the magnetometer apparatus as a whole is contained in a cylindrical
lead shield. Beyond that, the radiation shield of the cryostat (which is attached to the
1 K pot) is plated with lead. A cryogenic µ-metal shield positioned in the liquid helium
bath and another room temperature µ-metal shield placed around the dewar, are used to
eliminate Earth’s magnetic field and additional noise that might couple into the electrical
leads.

To-scale diagrams of the apparatus that we designed and implemented are shown in
Figure 2.4. The coils are built concentrically, on coil forms made of phenolic (bakelite).
The primary coil consists of 375 turns of NbTi wire. Inside that is the secondary or pick-up
coil, a second-order gradiometer. A first-order gradiometer would consist simply of two
counter-wound coils, that would normally sum to zero signal in a uniform magnetic field.
Placing a sample into one leg of the gradiometer perturbs the balance and results in a
non-zero signal. A second order gradiometer, consists of three coils, the middle wound
opposite to the others and with a larger inductance such that zero signal will result from
both a uniform magnetic field and a linear gradient magnetic field, providing improved
noise cancellation. Higher order gradiometers are conceivable. Our specific gradiometer
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consists of 5-7-5 turn niobium coils, with the sample placed in the middle coil. A small
niobium input coil is hand wrapped and fixed above the SQUID. The leads to this input
coil are passed through a small hole in the lead shield and a superconducting contact to
the secondary is made by embedding the bare wire ends in beads of PbSn solder.

The balance is never perfect on hand-wound coils and is further distorted by the super-
conducting shields, which are not symmetric about the secondary windings, thus we have
added a ‘trim’ coil inside the far end of the pick-up coil consisting of 10 turns of NbTi wire
which can be used to fine tune the balance. Otherwise, the system will have a significant
frequency-independent offset signal which reduces the dynamic range and sensitivity of the
measurement. The trim and primary coils are connected to the excitation voltage source
in parallel, with current limiting resistors chosen such that the magnetometer is balanced.

The leads to the excitation and trim coils are twisted pairs, Manganin running from
room temperature to the 1 K pot, and superconducting NbTi, clad with CuNi from the 1 K
pot to the mixing chamber. These leads are filtered with π-filters at the feedthroughs to the
internal vacuum space, to reduce high frequency noise that might impede the functioning
of the SQUID. The lines for the SQUID bias current and feedback coil are rigid beryllium-
copper coax for most of their length, but with a section of NbTi twisted pairs from the 1 K
pot to the mixing chamber, to reduce heat load on the dilution refrigerator. The SQUID
feedback coil is a small, 10-turn, hand-wrapped, copper coil placed behind the SQUID
wafer.

Much effort has been made to reduce the amount of normal metal inside the mag-
netometer as it introduces a frequency dependent signal. The coil forms and structural
supports for the magnetometer are made out of phenolic, or bakelite. Where screws are
necessary near the coils, nylon screws are employed. The sample is heat sunk to the mixing
chamber of the dilution refrigerator via a sapphire rod, one of the more thermally conduc-
tive options that is not metallic and will not affect the signal. The sapphire rod is clamped
into a copper end cap which is fastened to the mixing chamber. The end cap and sapphire
rod can be removed as one piece without taking apart the remainder of the apparatus, so
as to quickly and easily change samples without perturbing the balance and calibration of
the system. The sample is fixed to the sapphire rod with General Electric (GE) varnish.

The susceptibility measurements are performed by applying a sinusoidal current through
the current limiting resistors and the excitation and trim coils with a Stanford Research
830 lockin amplifier’s output. The SQUID controller is run in a flux locked loop (FLL)
and the feedback signal is sent to the input of the lockin amplifier. Generally the cryo-
stat is temperature controlled at a specific temperature for a long period of time (at least
several hours) while the frequency of excitation is altered to obtain a frequency spectrum
χ(ω) = χ′(ω)− iχ′′(ω). In other cases, the frequency has been held fixed and the cryostat
temperature adjusted very gradually in steps. For every data point sampled, care is taken
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to ensure that the sample and measurement have reached equilibrium. Often spectra are
taken multiple times to ensure that the signal is not still evolving in time. Multiple exci-
tation amplitudes are also tested and the results compared to ensure that a suitably small
amplitude is chosen so that the sample or surrounding apparatus are not being heated.

Calibration of the magnetometer has been performed in two different ways. In some
cases, the calibration was determined by measuring two samples of different geometries
then choosing the calibration factor such that the results match when the demagnetization
effect is taken into account. The demagnetization correction and this method of calibration
will be discussed in more detail in Appendix A. In the most recent measurements, the
magnetometer was calibrated by measuring the signal of a superconducting Pb prism in
place of the sample, which should be perfectly diamagnetic thus will have a susceptibility
of 1 (in SI units) or 1/4π emu/cm3/Oe (in CGS units).

The primary success of our apparatus is its ability to measure signals at extremely
low frequencies. Good temperature stability, low noise and flat frequency response are
all required to achieve such a result. Specifically, measurements have been performed
successfully down to a frequency of 1 mHz, with no loss of signal. In other words, we have
a perfect flux transformer. Measurements of an empty and misbalanced magnetometer or
of χ′ at low frequency show that from several hundred Hz down to 1 mHz, there is no drop
in the signal to better than one part in 2000.

Our frequency scans are limited at the high end by a frequency dependent background
signal which comes primarily from phase shifts in the SQUID feedback electronics, and
partly from capacitance in the lines and π-filters. This has led us to present data only up
to a maximum frequency of 500 to 2000 Hz, depending on the configuration (gain setting)
and therefore bandwidth of the system. This small background has therefore had no impact
on the analysis of our data and the conclusions drawn. The high-frequency background is,
for the most part, not inherent to the magnetometer design; the inductance of the primary
and trim coils are small enough that they do not cause significant phase shifts below 100
kHz, with the chosen current limiting resistors. In future work, the π-filters can be removed
and a higher frequency SQUID controller can be employed in order to extend the upper
frequency limit of the system, if such a frequency range is useful or desirable. So far, we
have been concerned with achieving the lowest possible frequencies of measurement rather
than pushing to higher frequency.

The other main advantage to our apparatus is the possibility of working at very low
magnetic fields and still obtaining ample signal strength. These extremely low fields (under
20 mOe) ensure that we are not heating the sample in any significant way. Furthermore,
the samples that we study do not need to be extremely large, providing a better ratio of
contact surface area to volume, again reducing the effects of heating.
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Figure 2.3: A circuit diagram of the magnetometer and balancing circuit. The sinusoidal
excitation voltage is applied across current limiting resistors, chosen such that the mag-
netometer is balanced in the absence of a sample. The sample is placed in one leg of the
secondary gradiometer which is placed concentrically inside the primary. The secondary is
connected to the input coil of the SQUID by a superconducting link. There are also leads
to the SQUID for bias current and voltage measurement and to the feedback coil, which is
hand wrapped below the SQUID wafer. The current limiting resistors for both the primary
and trim coils are ∼ 30 kΩ. The primary coil has an inductance of approximately 600 µH.
Thus the high frequency cut-off is above 1 MHz.
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Figure 2.4: Diagram of the magnetometer apparatus used for this work. The magnetometer
separates into three main parts: the external shielding, the sample mount and the interior
including the coils, SQUID, signal lines, etc.
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2.3.2 Future design considerations

While this magnetometer has served its purpose well, there is always room for improvement.
Future designs of a similar magnetometer should incorporate several important ideas. First,
the mechanical rigidity of the magnetometer structure is quite important. As pieces are
pressed together in this initial model, the tolerances are not extremely high and when the
magnetometer is taken apart and reassembled, the balance and calibration change.

Second, the flux transformer used here has been found to be vulnerable to thermal
cycling. Even a small resistive contact breaking the superconducting loop will lead to a
dramatic loss of signal, since the coils employed are of such low inductance. It is likely that
thermal cycling causes the solder joints, most likely the interface between the niobium and
the PbSn solder, to become Ohmic or even open circuited. It is possible that a different
kind of solder, or perhaps pure lead, might be softer and more able to withstand thermal
stresses and would be a more dependable method of making a flux transformer in future
designs. It is most practical to use a material with a superconducting transition above
4.2 K so that the apparatus may be tested quickly and conveniently in a bath of liquid
4He.

While a second-order gradiometer is, in principal, better at cancelling noise (that might
manifest as a field with a linear gradient), it is much more difficult to balance – precise
matching of inductances is not easy. With a first-order gradiometer, this task is made
easier since one needs only to wrap two similar coils. It is not necessary to calculate the
precise inductance for n turns of wire for example. It may be best in future designs to
use a simpler and more robust first-order gradiometer, at least for similar applications.
However, it is possible that applications requiring much higher sensitivity (for example the
study of much smaller samples or samples with much lower susceptibility) would demand
the improved noise cancellation provided by a second-order gradiometer. Pushing to higher
frequencies (than those employed here) could also be inhibited by improperly canceling
noise and thereby reducing the bandwidth of the SQUID. The use of a trim coil to adjust
the balance is already, without a doubt, a detriment to noise cancellation. Allowing the
primary coil to be translated relative to the secondary, sample and superconducting shields,
would facilitate balancing of the magnetometer and might obviate the need for a trim coil.
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Chapter 3

The Dilute Dipolar-Coupled Ising
Magnet LiHoxY1−xF4

The series of materials LiHoxY1−xF4 has long been viewed as a “model magnet” whose
Hamiltonian is simple and well understood1 and allows one to experimentally test several
very fundamental theories in condensed matter physics. The magnetic moments are well
approximated as Ising moments, owing to the crystalline electric field and the interactions
between the moments are overwhelmingly dipolar in nature, with only a small nearest-
neighbour exchange interaction. Finally the magnetic Ho3+ ions may be diluted with
non-magnetic Y3+ ions with out any significant change to the crystal structure, providing
a mechanism to study the effects of chemical disorder [58].

At x = 1, or 100% Ho, the ground state of the material is ferromagnetic and has been
studied extensively in transverse magnetic field, as a realization of the transverse field
Ising model (TFIM), a simple model that exhibits a quantum phase transition [121]. As
the moments are diluted, the transition temperature is reduced [122]. Below x , 0.25,
the material enters a glassy, disordered phase [58]. There is sufficient randomness and
frustration resulting from competing dipolar interactions that one expects a spin glass state
to occur here [29]. It is this disordered region that we primarily discuss here and that has
been the subject of a tremendous amount of debate, both theoretically and experimentally,
in the last few years [4, 5, 123, 65, 124, 125, 126, 127, 128].

There are two main components to this debate. The first is one that is largely theo-
retical; that is the question of whether idealized Ising spins coupled with the long range
dipolar interaction, randomly placed on the LiHoxY1−xF4 lattice, will exhibit a finite tem-

1The recent discovery of a persistent mismatch between theory and experiment in the parent compound
LiHoF4 has called into question the authenticity of the simple Hamiltonian that has been long held to
apply to this material [120]
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Figure 3.1: The crystal structure of LiHoxY1−xF4.

52



perature glass transition [128]. The second question under debate is whether the real
physical system LiHoxY1−xF4 exhibits a spin glass transition and for what values of x.
The real physical system, while uniquely close to ideal, is not a perfect toy model and does
have other effects to consider such as off-diagonal interactions, nuclear moments, phonons,
etc. Assuming that the toy model does give rise to spin glass behaviour, these material
effects may preclude a spin glass state in the real system.

First we discuss the crystal structure and magnetic Hamiltonian of LiHoxY1−xF4. Fol-
lowing that, we review some of the previous experimental and theoretical work that has
been done on this series of materials, starting with the high x, ferromagnetic phase and
working our way down to the surprising “antiglass” phase at x = 0.045. Finally, we intro-
duce our specific heat and ac susceptibility results at low Ho concentrations and discuss
them in the context of theoretical work on this material and other experiments.

3.1 Crystal Structure and Magnetic Hamiltonian

As discussed in Chapter 1, the 4f -valence electrons in Ho3+ (and rare earth ions in gen-
eral) have strong spin-orbit coupling, so that they prefer to be in states of total angular
momentum J = 8. This leaves 17 degenerate states for the free ion. In the crystal struc-
ture, however, these energy levels will be split by the next most important term in the
Hamiltonian, that is the crystal field, HCF . The crystal structure of LiHoF4, shown in
Figure 3.1, is of the CaWO4 variety [58]. The point-group symmetry is S4, which means
that the structure is invariant under a rotation of 90 degrees about the c-axis followed by
a reflection in the ab-plane. The crystal field, created principally by the surrounding F−

ions, can be written as [14]

HCF =
∑

nα

Bα
nOα

n = B0
2O

0
2 + B0

4O
0
4 + B4C

4 O4C
4 + B0

6O
0
6 + B4C

6 O4C
6 + B4S

6 O4S
6 . (3.1)

There is some disagreement on the precise values of the Bα
n crystal field parameters. In

a point-charge model, the crystal field parameters can be easily calculated, to within an
overall proportionality factor (involving the size of the charges and the radial integral 〈rn〉).
However, the point-charge model is quite a large assumption – the charges on the F− ions
come from the nuclei and the surrounding screening electrons thus the potential is probably
quite far from ∼ 1/r. Generally speaking, one must turn to experimental data in order
to accurately determine the crystal field parameters. Several different sets of crystal field
parameters have been determined from various spectroscopic data [14, 129, 130, 131, 132],
although the differences are unlikely to have significant effects on the physics of the material
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Parameter Ref. [14] Ref. [130] Ref. [133]
B0

2 (K) −6.96× 10−1 −7.54× 10−1 −6.09× 10−1

B0
4 (K) 4.06× 10−3 4.94× 10−3 3.26× 10−3

B4C
4 (K) 4.18× 10−2 5.26× 10−2 4.30× 10−2

B0
6 (K) 4.6× 10−6 1.2× 10−6 8.36× 10−6

B4C
6 (K) 8.12× 10−4 9.92× 10−4 8.18× 10−4

B4S
6 (K) 1.137× 10−4 1.96× 10−4

Table 3.1: Crystal Field parameters from different references

below 1 K for example. For this work we will use those taken from Rønnow et al. [14].
Three example sets of experimentally determined Bα

n parameters are listed in Table 3.1.
The crystal field has the effect of splitting the J = 8 moments into a collection of

doublets and singlets (since Ho3+ is a non-Kramers ion). Most important are the low lying
states which consist of a doublet ground state and an excited singlet state at ∼ 10 K. If
the crystal field is diagonalized on its own (treating other parts of the Hamiltonian as a
perturbation), the two ground states are given by

| ↑〉 = 0.7945ei105o|7〉+ 0.6052e−i68.6o|3〉+ 0.0411e−i3.13o| − 1〉 − 0.0295| − 5〉
| ↓〉 = 0.0295ei105o|5〉+ 0.0411e−i71.8o|1〉+ 0.6052e−i6.41o| − 3〉 − 0.7945| − 7〉 (3.2)

It is easy to notice that these two states do not share any |Jz〉 components. Furthermore,
all the Jz contained in | ↑〉 differ from the Jz in | ↓〉 by at least 2. And within the states
| ↑〉 and | ↓〉, the Jz components are separated by 4. In other words, there are no matrix
elements of J+, J−, Jx, Jy in the ground state manifold. Thus

〈↑ |Jx| ↑〉 = 〈↓ |Jy| ↓〉 = 0. (3.3)

and
〈↑ |Jx| ↓〉 = 〈↑ |Jy| ↓〉 = 0. (3.4)

Hence, if only these two states are considered, LiHoxY1−xF4, is a perfect Ising model with
magnetic moments only up or down along the c-axis with 〈↑ |Jz| ↑〉 = −〈↓ |Jz| ↓〉 = 5.15.
The effective g-factor of the Ho3+ (defined by its interaction with magnetic field) is

geff ≡ 2〈Jz〉gJ = 13.8. (3.5)

Reduction of the Ising character of the system occurs either through the introduction of
coupling with the next excited state singlet |γ〉,

|γ〉 = 0.575e−i43.4◦|6〉+ 0.411ei142.1◦|2〉+ 0.411ei174.6◦| − 2〉+ 0.575| − 6〉, (3.6)
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(most often accomplished with a magnetic field transverse to the z-axis of the material)
or by reaching high enough temperatures such that the population of that excited level
is not negligible. Much of the experimental work on LiHoxY1−xF4 has revolved around
understanding how the system behaves after introducing quantum fluctuations by applying
a transverse magnetic field [121, 66]. Alternatively, one could break the symmetry of the
lattice, for example with random strain which would introduce a B2

2 term in HCF .
Now we turn to interactions between the magnet ions. There is a relevant nearest-

neighbour antiferromagnetic exchange interaction JExJ i · J j where JEx , 0.1 K as was
determined by fitting to the high temperature 1/T 2 tail of the specific heat of the parent
compound, taking the dipolar contribution out to a distance of 200 Å [24]. In theoretical
treatments it has been left as a free adjustable parameter, with similar results, such as
JEx = 0.12 K obtained [127]. However, the most important interactions in this system are
the dipole-dipole interactions. Quite simply, the magnetic field generated by one ion is felt
by the dipole moment of all other ions. The dipole interaction takes the form

HD =
∑

〈i,j〉

∑

αβ

Dαβ
ij Jα

i Jβ
j =

∑

〈i,j〉

µ0

4π
g2

Jµ2
B

[
Ji · Jj

r3
ij

− 3(Ji · rij)(Jj · rij)

r5
ij

]
. (3.7)

If we are in the range of temperature and magnetic field where the system is a good Ising
model, then we can simplify this expression to

HD =
∑

〈i,j〉

µ0

4π
g2
effµ2

B

(
r2
ij − 3z2

ij

r5
ij

)
Sz

i S
z
j (3.8)

where the Sz
i quantities are taken as spin-1/2 entities and geff is given by Equation 3.5.

It is important to take into account two peculiarities of the dipolar interaction: its long
range nature, and its angle dependence. The dipolar interaction presents somewhat of a
challenge to theorists because of its 1/r3 decay and the fact that the distance of interaction
cannot be safely truncated. It also makes the idea of a percolation threshold meaningless
in this system, as discussed in Chapter 1. The angle dependence of the dipolar interaction
results in interactions that can be either ferromagnetic (FM) or antiferromagnetic (AFM).
For example, the nearest-neighbour spins in LiHoF4 sit largely on top of each other along
the c-axis, meaning that this interaction is ferromagnetic with an energy ENN = −318 mK.
On the other hand, the second-nearest-neighbour spins are found in the same xy-plane
thus the interaction is antiferromagnetic of strength ENNN = +214 mK. The nearest-
neighbour (NN) and next-nearest-neighbour (NNN) sites are shown on the crystal structure
in Figure 3.1. In the parent compound, the ferromagnetic interactions win out. This would
not necessarily be true of a different crystal structure. As the moments are diluted, more
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competition between FM and AFM interactions (frustration) is exposed and this random
frustration is what may give rise to a spin glass state.

The holmium nucleus has an especially large magnetic moment of 4.173µN . Because
of this and the fact that Ho3+ ions have 4f valence electrons which are tightly bound, the
hyperfine interaction is very important. This interaction takes the form

HHF =
∑

i

A Ii · Ji. (3.9)

Once again, if we are in an appropriate range of temperature and magnetic field, we can
make the assumption that our electronic moments are fully Ising in nature and express our
hyperfine Hamiltonian in the effective spin-1/2 model as

HHF =
∑

i

A||S
z
i I

z
i (3.10)

where A|| = 2〈Jz〉A. The nuclear spin is I = 7/2 thus there will be 8 electronuclear energy
levels per electronic ground state corresponding to the mI values of the nuclear spin.

Various values for A have been determined experimentally. One method used to deter-
mine this constant is electron paramagnetic (or spin) resonance (EPR/ESR). Resonances
are found when the Zeeman energy µBgJB · J is equal to the energy of other interactions
in the system. For every crystal field level, there are therefore 8 resonances associated
with the 8 nuclear levels. The field splitting between these resonances can then give the
energy of the nuclear hyperfine interaction: A = µBgJ∆H. Assuming a J = 8, L = 6,
S = 2 manifold, the Landé g-factor for Ho3+ is 5/4. For a free Ho3+ ion, EPR experiments
find A/kB = 38.975 mK [20]. For a Ho3+ ion in the LiHoF4 lattice, EPR experiments find
A/kB = 39.799 mK [134] and for dilute ions in the LiYF4 lattice, A/kB = 40.210 mK [135].
Calculations here will use the latter value A/kB = 40.210 mK as the lattice is most similar
to that studied in this work.

Also important to consider is the nuclear quadrupole interaction with the electric field
gradient at the nucleus. This interaction is described [20] by

HQ =
eQVzz

4I(2I − 1)

[
3I2

z − I2 +
η

2
(I2

+ + I2
−)

]
(3.11)

where

η =
Vxx − Vyy

Vzz
and Vαβ =

∂2V

∂α∂β
. (3.12)

Many of the parameters involved are difficult to calculate and we will just replace
them with a single experimentally determined parameter P . The nuclear moments will be
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strongly coupled to the up or down Ising spins so it is likely that the off-diagonal x and y
components will have a small effect. Thus we will assume η to be 0 as is often done [24].
The quadrupolar interaction then becomes

HQ =
∑

i

P (Iz
i )2 (3.13)

plus an irrelevant constant term. The value of P determined by EPR is only 1.7 mK [24],
but since this term is dependent on the square of Iz, it is significant enough with respect
to the hyperfine interaction energy that it will be just noticeable in calculations of the
specific heat. Otherwise, this term is not expected to be important enough to have any
impact on the physics of LiHoxY1−xF4. Thus, aside from including it in the calculation of
the non-interacting specific heat, we will herein ignore the quadrupole interaction.

As in any magnetic system, the application of a magnetic field, H is important, con-
tributing the Zeeman energy

HZ = gJµBH · J. (3.14)

This is particularly important in the case of transverse (perpendicular to the c-axis or
ẑ) magnetic field H⊥, which introduces mixing with the excited state |γ〉 and therefore
induces quantum fluctuations. Much of the work on LiHoxY1−xF4 has been dedicated
to understanding the impact of quantum fluctuations, as tuned by H⊥, on the magnetic
ordering. The coupling with the next excited state can be expressed as a term ΓSx in the
effective spin-1/2 Hamiltonian where Γ is the effective transverse field (as opposed to the
real transverse field H⊥) [18]. With the addition of this term, Equation (3.8) becomes the
dipolar transverse field Ising model (TFIM):

HTFIM =
∑

〈i,j〉

JijS
z
i S

z
j − Γ

∑

i

Sx
i . (3.15)

Γ is not the real transverse field H⊥, but is a splitting of the ground state doublet that is
projected onto a spin-1/2 effective Hamiltonian as an effective transverse field.

To summarize, the important contributions to the total magnetic Hamiltonian of the
material LiHoxY1−xF4 are given by

H = HCF + JEx

∑

〈i,j〉nn

Ji · Jj +
∑

〈i,j〉

∑

αβ

Dαβ
ij Jα

i Jβ
j + A

∑

i

Ii · Ji − gJµB

∑

i

H · Ji (3.16)

consisting of crystal field, exchange, dipolar, hyperfine and Zeeman interactions, respec-
tively. The crystal field gives us an excellent Ising model at low temperature. That Ising
character can be degraded by the introduction of transverse magnetic field H⊥. While
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there is a small nearest-neighbour exchange, the dominant interactions in the system are
dipolar in nature. Finally, the nuclear hyperfine coupling will be found to be an important
component of the Hamiltonian in the vicinity of quantum critical points and in the physics
of the low-x end of the phase diagram.

3.2 Previous Work on LiHoxY1−xF4

3.2.1 Ferromagnetic Stoichiometries

Parent Compound: LiHoF4

Pure LiHoF4 is an excellent example of a dipolar coupled Ising magnet with a transition
temperature of 1.53 K. Renormalization group (RG) theory finds that the upper critical
dimension of a dipolar-coupled system is d∗ = 3 instead of the usual 4 for short range
interactions, so that the critical behavior at the transition is expected to have logarithmic
corrections to mean-field critical behaviour, thus χ ∼ t−1| ln t|1/3 or C ∼ | ln t|1/3 [31, 32].
For higher dimensions above the upper critical dimension, the usual mean-field exponents
are expected to apply. Since this is one of the rare cases where the upper critical dimension
is physical, LiHoF4 and the related compound LiTbF4 have been studied in various ways as
a test for these predicted corrections, in some cases successfully. Logarithmic corrections
were observed successfully in the specific heat [33] and magnetization [34] of LiTbF4 and
later in the specific heat [36] and magnetization [35] of LiHoF4. In other studies using
neutron scattering [136] and measuring magnetic susceptibility [137], it was not possible
to resolve the difference between logarithmic corrections and ordinary mean-field theory.
In the case of Ref. [136], however, some universal amplitude relations also predicted with
RG theory to apply at marginal dimensionality [138], were observed. Mean-field critical
behaviour with logarithmic corrections has also been observed in Monte Carlo simula-
tions [37, 38].

More recently, this material has been studied as an example of the transverse field Ising
model (TFIM) whose effective Hamiltonian is given by

H =
∑

ij

JijS
z
i S

z
j − Γ

∑

i

Sx
i . (3.17)

The transverse field Ising model is one of the simplest models that exhibits a quantum
phase transition. A quantum phase transition is a zero-temperature transition that occurs
as some parameter of the Hamiltonian is adjusted, be it the dilution x, pressure P or
magnetic field H. In this case the parameter which is being tuned is the transverse magnetic
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field Γ. Before the introduction of Γ, the Hamiltonian was diagonal in the | ↑ 〉i, | ↓ 〉i basis.
The transverse field, however, is an off-diagonal term (Ŝz and Ŝx do not commute). This
allows tunneling events between the up and down Ising states or quantum fluctuations.

The quantum phase transition results from non-analytical behaviour of the ground state
energy at a critical value of the parameter Γ, or at Γc [139]. For very low Γ and T the
system is ordered ferromagnetically, but for very large Γ it is a quantum paramagnet as
the dipolar coupling is weak compared to the transverse field term. In the ferromagnetic
phase, the magnetization is gradually reduced by increasing Γ as quantum fluctuations
allow spins to flip. At the transition Γc, the quantum fluctuations completely destroy the
ferromagnetic order so that the longitudinal magnetization is 0, just as thermal fluctuations
destroy order in a classical phase transition. For Γ > Γc the system has an exponentially
decaying correlation function 〈Sz

i S
z
j 〉 ∼ e−|xi−xj |/ξ where ξ is the correlation length. As Γ

is lowered towards Γc, this correlation length gets larger and diverges at the transition.
Quantum phase transitions in d dimensions may generally be mapped onto classical

phase transitions in d + 1 dimensions [139, 140]. Thus the quantum phase transition in
the 3-dimensional dipolar TFIM is equivalent to the classical phase transition in the 4-
dimensional dipolar Ising model.

In the case of LiHoF4, a field H⊥ applied perpendicular to the c-axis (easy axis) intro-
duces coupling between the ground state Ising doublet and the next nearest excited state
|γ〉. This leads to a splitting ∆ in the ground state doublet, thus corresponding to an
effective transverse field Γ = ∆/2 in the transverse field Ising model [120]. This coupling
leads to quantum fluctuations which eventually destroy or ‘melt’ the ferromagnetic order.
At zero temperature, there is a quantum phase transition or quantum critical point at
H⊥ = 4.9 T [121].

The critical behaviour of the material in transverse field was studied by Bitko et al. [121]
by measuring the ac susceptibility of the material using a conventional susceptometer. In
zero field, χ′(T ) is found to diverge with the power law t−γ where γ = 1. In other words,
it is very close to mean field theory as was seen previously [137] and the logarithmic
corrections to scaling are not observed. At constant temperature, χ′(H⊥) also shows a
sharp cusp at the transition from ferromagnet to paramagnet. At all temperatures studied,
the critical behaviour is χ ∼ h−γ where γ = 1 and h = (H⊥ − HC

⊥ )/HC
⊥ . There are no

signs of logarithmic corrections in the quantum critical behaviour thus the d = 3 quantum
transition appears to behave as a d = 4 classical transition, as is expected theoretically
since quantum phase transitions can be mapped onto classical phase transitions in 1 higher
dimension [63, 139].

This method also allows one to map out a (T,H⊥) phase diagram of the material which
is shown in Figure 3.2. Bitko et al. present a theoretical phase diagram generated by
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Figure 3.2: (a) The T -H⊥ phase diagram of the 44% sample taken from Refs. [122, 141],
showing paramagnetic (PM) and ferromagnetic (FM) phases, as well as a region found
to exhibit glassy dyanmics (G). (b) The T -H⊥ phase diagram of the parent compound
LiHoF4, taken from Ref. [121]. The dotted line is the expected behaviour without the
nuclear hyperfine interaction.

solving the mean-field Hamiltonian

HMF = HCF + AI · J− gJµBB⊥Jx − 2J0〈Jz〉Jz (3.18)

self-consistently. This phase diagram is found to fit the data well though only if J0 is used
as a fitting parameter. The nuclear hyperfine interaction is found to be fundamental to
the low-temperature physics of this system near the quantum critical point.

Chakraborty et al. [18] are more rigorous in their treatment of the phase diagram. They
develop the effective spin-1/2 Hamiltonian from the crystal field energies and then develop
a mean-field theory and quantum Monte-Carlo simulations. Without leaving any fitting
parameters, they reproduce qualitative features of the experiment but see a quantitative
mismatch between theory and experiment as the critical field is much higher in experiment
than in theory. Furthermore, even in the regime of small transverse field, near the classical
critical point, theoretical results differ significantly from experiment [18]. The experimental
results show a much shallower approach to the classical critical point, with TC(H⊥) quite
flat at H⊥ < 0.5 T [121].

This mismatch between experiment and theory has been further researched by Tabei et
al. who have applied several varieties of perturbative Monte Carlo to the problem [142, 143].
All the theoretical methods agree roughly with one another, but do not accommodate the
experimental data. Very recently, the experimental phase diagram of Bitko et al. [121]
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at low transverse field was confirmed with dilatometry measurements [144]. To date this
mismatch between experiment and theory remains an unsolved problem.

Inelastic neutron scattering studies of the quantum critical point reinforce the idea
that the system is highly influenced by the nuclear hyperfine interaction, at least in certain
regimes [145, 14]. As the 4.9 T quantum phase transition is approached, the energy gap
to spin excitations gradually gets smaller. However, there is an incomplete softening of
this mode (it never drops below 0.2 meV) which is directly attributed to the interaction
with the nuclear moments. Rønnow et al. [145] relate this effect to the difficulties of
attaining quantum coherence when coupled to a nuclear spin bath in quantum computing
experiments.

Diluted Ferromagnetic Stoichiometries

Initially, dilution of the Ho moments simply seems to lower the TC of the system. At x =
0.44, this material is found to be a ferromagnet with a sharp cusp in the ac susceptibility
at 0.68 K [58]. This result was approximately reproduced by our research group [114],
showing a phase transition at 0.68 K for an x = 0.45 sample (see Figure 3.3). In zero
field, but at lower temperatures (∼ 0.1 K) there is a peak in χ′′ which may indicate some
reentrant behaviour where degrees of freedom not locked away in ferromagnetic order freeze
as a spin glass [146].

If a transverse field is applied, the system becomes much more complicated. There is a
region where glassy dynamics are observed from the frequency response of the ac suscep-
tibility [122, 141]. The system’s behaviour shows a dependence on the way in which it is
cooled. If it is cooled in a high transverse field where there are strong quantum fluctuations
and the field is then turned off, the system is “annealed” quantum mechanically. If the
system is cooled in zero field, on the other hand, the system is annealed classically. As a
glassy system, it can be thought of as having a very complex free energy surface. Classi-
cally it must be thermally excited out of valleys in this free energy surface in order to find
its ground state. Quantum mechanically, it can tunnel through barriers resulting in a very
different end state. A proposed (H⊥, T ) phase diagram is shown in Figure 3.2 [122, 141].

In a later reference [147], the primary conclusion is that the glassy dynamics stem from
domain-wall tunneling. The ferromagnetic domain walls can be thought of as particles
sitting in a potential energy surface. The transverse field tunes the mass of this particle
and allows it to tunnel between minima in the potential energy surface. In zero field,
thermal excitations are required to move the domain walls.

In a recent paper Silevitch et al. [148] compare results on x = 1.0, x = 0.67 and x = 0.44
samples in transverse magnetic field H⊥. In the vicinity of the classical critical point, they
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Figure 3.3: The magnetic susceptibility χ(T ) of an x = 0.45 sample of LiHoxY1−xF4 from
Ref. [114].

find that the susceptibility is described by a modified Curie law:

χ′ ∝ (α′µB|H⊥|+ (T − TC) + γ′Γ)−1 (3.19)

where Γ is the coupling with the next excited state ∝ H2
⊥ which controls quantum fluctu-

ations. They suggest that this slightly unusual parametrization and the mismatch of the
experimental phase diagram with theory are a result of Griffiths singularities.

3.2.2 The Spin Glass Regime

As the magnetic Ho3+ ions are diluted with non-magnetic Y3+ ions, random frustration
begins to develop as a result of competition between the various ferromagnetic and antifer-
romagnetic interactions produced by the dipolar coupling. At sufficient levels of dilution,
the system is found to lose its ferromagnetic order and a glassy state characterized by slow
dynamics emerges [58]. This glassy state, particularly at the concentration x = 0.167, was
assumed for some time, to have a finite temperature spin glass transition as predicted by
theoretical work [29] and indeed experiments suggested that this was true [58]. With the
zero-field physics of this stoichiometry seemingly well understood, much of the ensuing
work on this assumed spin glass regime has been done in transverse magnetic field in an
attempt to understand the effects of quantum fluctuations on a spin glass [149, 66].

At zero magnetic field, the frequency-dependent ac susceptibility has been measured
in this sample for many frequencies and temperatures [58]. At a given frequency χ′(T )
shows a rounded cusp at the temperature Tf (ω) which moves to lower temperatures as the
measurement frequency is lowered. This cusp appears to obey an Arrhenius law over the
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Figure 3.4: Results of Reich et al. [58] on an x = 0.167 sample of LiHoxY1−xF4 in zero
magnetic field. (a) Absorption spectra. (b) Absorption spectra superimposed by dividing
by the peak frequency on the abscissa and dividing by the peak in χ′′ on the ordinate. A
clear broadening with lower temperature is observed.

temperature range studied in Ref. [58], which is in fact not generally indicative of a spin
glass transition. A power law divergence at a finite Tg is now held to be a property spin
glasses (see Chapter 2 or Section 3.4).

The absorption spectrum χ′′(ω) is a broad curve (several decades wide) as shown in
Figure 3.4, which is well fit by a distribution of energy barriers to relaxation [58]. As
the temperature is reduced, the spectrum shifts to lower frequency and the distribution of
energy barriers becomes wider (so therefore the width of the absorption spectrum becomes
wider). This is typical of other spin glasses and the dielectric susceptibility of structural
glasses [150, 55]. The specific heat has also been measured, and after subtraction of the
large nuclear component (which will be discussed in detail later), has been found to be a
broad curve also typical of spin glasses [58].

In the work of Wu et al. [149, 66], it is found that application of a sufficiently large
transverse field H⊥ appears to destroy the spin glass ordering. The transverse field allows
quantum fluctuations to occur (as in the pure material), opening up new routes to relax-
ation and basically preventing the spins from freezing. This apparent transition in H⊥
has been measured in two ways: with the frequency dependence of χ′′ [149] and with the
non-linear susceptibility χ3 [66].

Above the spin glass transition Tg, the effect of a transverse field is simply to narrow
the absorption spectrum χ′′(ω) and to shift the maximum of the absorption spectrum
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fMax to higher frequencies as the quantum fluctuations allow the moments to relax more
easily [149]. Below Tg, as H⊥ is lowered, the low frequency behaviour of χ′′(f) ∼ fα is
altered with α becoming smaller and eventually reaching 0 [149]. Theories have suggested
that the spin glass state should be characterized by α = 0 [151] and other experiments (on
EuxSr1−xS) have found a very small value < 0.1 for α in the spin glass regime [55]. Thus
the point (H⊥, T ) at which α , 0 is taken as the spin glass transition (Hc, Tg) [149].

Applying a larger, oscillating longitudinal field h (1.5 Hz and up to 150 Oe in this
case), one can observer the field dependence of the susceptibility χtot(h) = ∂M(h)/∂h. In
a Taylor series expansion χtot = χ1 − 3χ3h2 + . . .. Thus a quadratic fit to χtot(h) will give
the quantity χ3 which is directly related to the spin glass susceptibility χSG.

In this system, χ3(H⊥, T ) is found to be a maximum at the transition [66] which is
found to be roughly at the same point as was seen using χ′′ [149]. As one moves to lower
temperatures, the peak in χ3 becomes much smaller and very rounded. At a temperature
of 25 mK, the maximum in χ3 is found at a field H⊥ , 1.2 T. Thus this suggests a critical
transverse field (at zero temperature) that is equivalent to a ground state energy splitting
of Γc , 1.0 K. At zero transverse field, the spin glass temperature is Tg , 0.13 K, thus,
interestingly, the thermal fluctuations seem to destroy the spin glass order much more
easily than quantum fluctuations.

In recent years, theorists have come to a good understanding of this portion of the
LiHoxY1−xF4 phase diagram in transverse magnetic field [152, 153, 154, 142, 155, 143]. In
particular it is found that the nuclear hyperfine interaction and random fields are funda-
mentally important to this system. Taking into account nuclear hyperfine coupling (both
transverse and longitudinal) and adding an adjustable parameter (the random transverse
field coming from the dipolar interactions) allows the determination of an accurate theo-
retical H⊥-T phase diagram. [152]. More rigorously incorporating induced random fields
into the model results in an immediate destruction of the spin glass state at any non-zero
transverse field H⊥ [153, 154]. Thus, what was considered to be a quantum phase transi-
tion previously [149, 66], is actually a crossover from a state of spin glass ordered domains
to a quantum paramagnet. The smearing of the peak in χ3 is a natural consequence of the
random fields and is well reproduced numerically [153]. This is shown in Figure 3.5.

One of the main effects of the nuclear hyperfine coupling is that it blocks quantum fluc-
tuations since the two lowest lying electronuclear states | ↑, Iz = −7/2〉 and | ↓, Iz = +7/2〉
are not coupled by transverse magnetic field. The transverse part of the hyperfine interac-
tion A(I+J− + I−J+) must be included in order for quantum fluctuations to occur [155].
Schechter and Stamp [155] suggest that this effect leads to an increase in the critical trans-
verse field HC

⊥ (at which the crossover from spin glass-like state to quantum paramagnet
occurs), particularly as x is decreased, a fact recently observed in experiments on x = 0.167
and x = 0.20 samples [125].
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Figure 3.5: Numerical simulations of χ3(T,H⊥) considering induced random fields. Figure
adapted from Tabei et al. [153]. Smearing of the peak in χ3(H⊥) is well reproduced. The
experimental data [66] is shown in the top inset.

3.2.3 The “Antiglass” State

In many physical systems, at sufficient dilution of the magnetic moments, one will even-
tually reach what is known as the percolation threshold. The percolation threshold for a
given system depends on the lattice structure and the extent of the interactions between
the magnetic moments. Below that threshold, the system is essentially no longer macro-
scopic and is broken up into small disconnected domains. Above that threshold the system
is, at least in some small way, completely connected by exchange interactions. A prime
example is the system EuxSr1−xS [47, 85] which is dominated by a nearest-neighbour fer-
romagnetic interaction and a next-nearest-neighbour antiferromagnetic interaction. The
system is ferromagnetic at high concentrations of Eu. As it is diluted, it enters a spin
glass phase. The spin glass transition temperature gradually drops to zero temperature at
the percolation threshold, below which there is no longer a finite temperature spin glass
transition.

The dipolar interaction, however, is a long range interaction, dropping off as 1/r3. Thus
there is no level of dilution at which the sample is broken up into disconnected domains,
so no percolation threshold. One would expect, therefore, that the spin glass transition
temperature in LiHoxY1−xF4 would only go to zero temperature at zero concentration of
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magnetic moments. Certainly this is the result of theory carried out many years ago by
Stephen and Aharony [29] as described in Chapter 1. This is likely true of EuxSr1−xS below
its percolation threshold, as well, but should take place at temperatures much lower than
the energies of the exchange interactions in that system [87].

It was thus quite surprising that Reich et al. [58] and later Ghosh et al. [4, 5] discovered
magnetic behaviour, summarized in Figure 3.6, that is quite far removed from that of spin
glass phenomenology at x = 0.045. The first observed peculiarity of a 4.5% Ho sample,
was a narrowing absorption spectrum χ′′(ω) as the temperature was lowered [58]. The
specific heat, after subtraction of the nuclear component, was found to have unusually
sharp peaks and accounted for only a very small portion of the expected ln 2 entropy,
roughly 15% [58, 5]. Later, even more exotic behaviour was found in the susceptibility.
The absorption spectra were found to narrow appreciably and develop strong asymmetry
at low temperatures, even exhibiting something resembling a low frequency gap [4]. The
dc limit of the susceptibility was reported to obey the power law χDC ∼ T−0.75 [5].

Furthermore, Ghosh et al. performed some very interesting experiments to look for
nonlinear dynamics [4]. Applying a fairly high power excitation up to 0.5 Oe, they found an
eventual saturation of the signal at that frequency. Applying ‘pump/probe’ measurements
where they apply a large 0.5 Oe pump excitation in addition to a variable frequency, small
amplitude probe excitation (both along the c-axis), they found that the pump burns a
hole in the spectrum as measured with the probe excitation. They also noted an overall
frequency shift of the spectrum as a result of the high power pump excitation. Though a
similar effect could be explained by heating of the sample from 110 mK up to 150 mK,
a different shape to the spectrum is found, suggesting that it is not simply a result of
heating [4].

Most unusually, Ghosh et al. observed slowly decaying coherent oscillations after the
0.2 Oe, 5 Hz excitation was turned off [4]. All of this exotic physics pointed to something
very different from a spin glass state and in fact to a state that was fundamentally quantum
mechanical. In Reference [5], a theory based on quantum entanglement of the magnetic
dipoles is formulated and simulations show good agreement with the experiments. More
recent investigations of this idea of hole burning and nonlinear dynamics have included the
effects of transverse magnetic field [157].

It is worth mentioning now that the existence of this so-called “antiglass” has since
been called into question and this is one of the central themes of this chapter. There is, in
fact, a fair degree of inconsistency in the experimental papers proposing this novel state
of matter at x = 0.045 [158, 58, 4, 5]. First and foremost, the dynamical measurements
of Refs. [158, 58] show very different frequency dependence from those in Ref. [4], despite
the fact that both sets of measurements were performed by the same research group and
using the same single crystal of material [159]. While the peak frequency of the absorption
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Figure 3.6: Summary of the “antiglass” physics observed by Ghosh et al. [4, 5]. (a) The
absorption spectra as a function of frequency at different temperatures, showing an asym-
metry developing at lower temperatures, taken from Ref. [4]. (b) A spectrum without a
pump field and with a pump field applied, showing a hole being burnt into the spectrum [4].
(c) The temperature dependence of the dc susceptibility following a T−0.75 law [5]. (d) Su-
perimposed absorption spectra showing a narrowing of the spectrum as the temperature
is lowered, opposite to what would be expected of a spin glass [156]. (e) The specific
heat (after subtraction of the nuclear component) showing unusually sharp peaks [5]. (f)
Coherent oscillations of the magnetization decaying after the probe is stopped [4].
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spectrum fMax roughly obeys an Arrhenius law in Refs. [158, 58], it takes on quite a
different form in the later work Ref. [4]. The dc limit of the susceptibility is also found to
be quite different between these articles. In particular, Reich et al. [158, 58] do not see a
T−0.75 dependence. The specific heat data of these works is also surprising, as it implies
an extremely high residual entropy of 85% of R ln 2. Thus, even before doing comparison
experiments, the antiglass physics observed by Reich et al. and Ghosh et al. does not
seem to be completely resolved experimentally. This point is discussed in more detail after
presenting our own results on dilute LiHoxY1−xF4.

3.2.4 Spin Glass, Antiglass or Superparamagnet?

As of 2003, it was established, largely by one research group [158, 58, 4, 5], that at a
concentration x = 0.167, the material is a spin glass and that at a lower concentration of
x = 0.045, the material becomes an exotic antiglass. However, in recent years, this has
become a very contentious issue, with both experimental and theoretical groups debating
the existence of the antiglass state and even a spin glass state.

Theoretical work has been largely dedicated to the determination of whether a perfect
dipolar Ising model in zero magnetic field does or does not have a spin glass transition.
As shown in the last section, mean-field theory suggests that there should be a spin glass
transition and that it should persist all the way to zero concentration of magnetic mo-
ments [29]. However, Monte Carlo simulations should be a more authoritative method
with which to tackle such a problem. Snider and Yu first suggested, theoretically that
there might not be a spin glass transition in a dilute, dipolar Ising model, although their
work was done on a simple cubic (SC) lattice [160]. Using the Wang Landau Monte Carlo
technique, they found no spin glass transition for any concentration of magnetic moments.

Later Biltmo and Henelius applied Monte Carlo simulations directly to Ising spins on
the LiHoxY1−xF4 structure and found that the spin glass susceptibility χSG did not diverge
and that the Binder ratio did not exhibit scale invariance at any temperature, again for any
value of x [127, 161]. Most recently, however, Tam and Gingras have performed extensive
computer simulations of the dilute dipolar Ising model on the appropriate lattice using
parallel tempering and argue that there is indeed a spin glass transition, at 47 mK and
109 mK for values x = 0.0625 and x = 0.125 respectively [128]. Obtaining equilibrium
in these experiments is found to be very challenging as the dynamics are very slow, and
interpretation of the results are also complicated. In particular, it seems that a standard
procedure of looking for a critical point by scale invariance of the Binder ratio B does not
work here. However, the spin glass correlation length ξL/L (for different system sizes L)
does show scale invariance at a finite temperature, strongly suggesting that there is a spin
glass transition [128].
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Thus, with the tentative conclusion that the ideal, dipolar, Ising model exhibits spin
glass freezing, one is left wondering whether this is an accurate representation of the real
system. One could imagine, for instance, that quantum effects would inhibit the forma-
tion of a spin glass state. The real system includes at least two additional effects: the
nuclear hyperfine coupling (specifically the transverse part of that coupling) and trans-
verse components of the dipolar interaction. Both of these effects have the potential to
introduce coupling with the higher energy crystal field level |γ〉 and therefore induce quan-
tum fluctuations. However, as analyzed by Schechter and Stamp [155], these terms in the
Hamiltonian are not nearly strong enough to impinge upon the spin glass ordering that
one should expect.

Another possibility to consider is the effect of strain in the crystal structure [143].
As discussed in Chapter 1, since the Ho3+ ion is a non-Kramers ion, the ground state
doublet is not protected and is only present by virtue of the symmetry of the crystal field.
Random strains that introduce a B2

2O
2
2 term to the crystal field Hamiltonian, for example,

will split the ground state doublet. Such a random strain should therefore be equivalent
to random transverse fields, which have been shown to theoretically destroy spin glass
order [153]. Indeed such random strains have been observed in very dilute samples of
LiHoxY1−xF4 [162, 163] so we might expect that at some critical level of dilution, spin
glass physics will be lost. However, the effects of a small transverse field on the dynamics
of LiHoxY1−xF4 have previously been found to be subtle and not strikingly different from
spin glass phenomenology [149]. Thus it seems likely that random strains would also not
give rise to such an exotic set of dynamics as seen in “anti-glass” physics [4]. Furthermore,
the nuclear hyperfine interaction may block the quantum fluctuations created by random
strains, restoring spin glass physics [152, 155].

From the experimental side of the debate, there are several view points. The first is
that there is a spin glass state at 16.7% Ho [58] that gives way to an unusual antiglass
state at 4.5% Ho [58, 4, 5]. The second view, recently suggested by Jonsson et al., is
that neither of those samples, 4.5% nor 16.7%, show a spin glass transition or an unusual
antiglass state [65]. They find, in linear and nonlinear susceptibility measurements, that
there is very little difference between those two stoichiometries, making the antiglass state
unlikely. Furthermore, they argue that since the nonlinear susceptibility χ3 does not show
a true divergence, or even a very sharp peak, there must not be a spin glass transition.
Instead, they parametrize their data with a model based only on thermal activation, rather
than complicated many-body spin glass physics. Thus they seem to interpret the system to
be a sort of superparamagnet – a disordered, glassy system with a T = 0 glass transition.
Jonsson et al. [65] thereby opened a debate, largely dealing with the interpretation of
experimental data [125, 126].

As discussed in more detail in presenting our results, we take a third distinct view:
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that all samples with approximately x < 0.25 have finite temperature spin glass transitions.
Specifically, we find evidence for glass transitions in samples of x = 0.08, x = 0.045 and x =
0.018. We find no evidence for the unusual antiglass state, in both ac susceptibility [124]
and specific heat measurements [123]. Furthermore, we provide some insight as to why the
experimental results of Refs. [58, 65, 125, 126] have not been easily and unambiguously
interpreted as spin glass physics.

3.2.5 Very Dilute Limit

In samples of LiHoxY1−xF4 with 0.1% Ho or less, the Ho3+ ions can be considered to
be virtually isolated. Of course, they can never truly be isolated by virtue of the long
range dipolar interaction, but the average interaction strength for such a sample is much
smaller than that for the stoichiometries discussed above and interactions should not play
a significant role until temperatures well below those obtained by a dilution refrigera-
tor, for example. Such a very-dilute sample provides an ideal system in which to probe
the single-ion physics of Ho3+ in the appropriate crystal field environment. Several very
interesting experiments have been performed in such a configuration using SQUID magne-
tometry [129, 164, 165], µSR [166] and NMR [167, 168]. Here, we concentrate on describing
the magnetometry experiments as they are likely most applicable to understanding our own
results.

Hysteresis loops taken at different sweep rates and different temperatures show a great
diversity of behaviour [129]. At temperatures above 200 mK, the loops tend to be rather
smooth, with some small wiggles. At temperatures as low as 50 mK, however, pronounced
steps in the magnetization are visible. The steps in the magnetization are understood to
result from quantum relaxation (tunneling) at avoided level crossings or resonances. The
magnetic field at which these steps occur can be connected to level crossings obtained
by diagonalizing the single-ion Hamiltonian including the nuclear hyperfine interaction.
Different amplitudes of the steps are indicative of different sizes of level crossings. Some
of these crossings are directly caused by the transverse hyperfine coupling.

Faster sweep rates are found to result in an adiabatic process due to the long spin-
lattice relaxation time [129]. If the field is swept too quickly, the nuclear spins are not able
to relax and one is no longer just probing the lowest lying energy levels. As a result, many
more resonances are observed in these adiabatic measurements. Additionally, application
of a transverse magnetic field is found to assist tunneling, leading to large magnetization
steps.

In a different work [165], ac susceptibility measurements are made on a very dilute
sample above 1 K. χ′ and χ′′ are measured at 163 Hz while scanning the longitudinal
magnetic field. The result is a set of peaks and dips once again corresponding to energy
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level crossings where tunneling becomes easier. It is noticed that some of the peaks and
dips are smaller than others. The large ones are assumed to be a result of single-ion
relaxation whereas the smaller ones are a result of co-tunneling of pairs of interacting
Ho3+ ions. Frequency scans of the susceptibility are also presented. At particular values
of the longitudinal magnetic field Hz = 80 and 380 Oe, surprisingly slow relaxation is
observed. Even at 1.75 K, the peak frequency in the absorption spectrum is under 200 Hz.

These experiments provide a great deal of information about the inner workings of a
Ho3+ ion in the YLiF4 lattice and may be very valuable for interpreting our results in
much more concentrated samples. Clearly the hyperfine interaction is very important in
controlling the rate of relaxation of the spins through quantum tunneling. As we shall
discuss later, this may be seen in our experiments in a much less obvious way.

3.3 Experimental Parameters and Samples

AC susceptibility measurements were performed on three stoichiometries of the LiHoxY1−xF4

series using the SQUID magnetometer apparatus described in Chapter 2. The measure-
ments on the 4.5% sample are described in Ref. [124]. For x = 0.018, 0.045 and 0.080
frequency scans at various temperatures were obtained. Additionally, temperature scans
at several different frequencies were obtained for the x = 0.045 sample. For the x = 0.045
and x = 0.080 samples, calibration of the magnetometer was achieved by matching data on
different geometries of sample using the formulae described in Appendix A. The x = 0.018
sample was calibrated by measuring a superconducting (perfectly diamagnetic) Pb sample
of the same dimensions mounted in precisely the same way. The various sample dimensions
measured are listed in Table A.1.

Initially, frequency scans at constant temperature were performed. These measurements
were performed with frequencies ranging from 1 mHz up to several kHz. The data presented
here are limited to frequencies below which a background frequency dependence becomes
significant. This background is also present in an empty magnetometer thus is not a
property of the samples. Instead, it is the result of phase shifts in the excitation coil
lines and in the SQUID feedback electronics and is dependent on the SQUID gain setting
employed. In cases of lower SQUID bandwidth, where the background was more significant,
data has been restricted to lower frequencies. The temperature ranges of our frequency
scans were set so that we could always resolve the peak frequency in χ′′ within our reliable
frequency range. In some cases, the demagnetization correction ended up shifting the peak
frequency out of our range of data, adding a further limitation to our accessible temperature
range.

When temperature was changed, we waited for a period of an hour or more before
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taking data. In many cases, at the lower temperatures, multiple scans were taken with
a period of several hours in between to check for reproducibility and therefore thermal
equilibrium of the sample.

We also checked for heating of the sample from our excitation field by varying the input
power by more than an order of magnitude and checking for consistency between scans. All
data presented here were taken using an excitation power at least four times lower than the
excitation power where heating was observed (seen as a shift of the absorption spectrum
to higher frequencies). The applied magnetic field was kept under 20 mOe in magnitude
for all of the susceptibility measurements presented here. Even when much higher power
was applied to look for heating effects, the result was uniform heating for all frequencies.
This suggests that it was heating in the leads to the magnetometer rather than heating
within the sample itself since we would expect the latter situation to depend on χ′′ and
change with frequency.

Temperature scans at fixed frequency were also performed at four frequencies: 0.001,
0.01, 0.1 and 1 Hz. These measurements are more time consuming as each temperature
point sampled required thermal equilibration time. In fact, the time constant of thermal
equilibration was found to be at most 350 s, at the lowest temperatures (around 70 mK).
However, at the lower temperatures and frequencies we generally waited more than an
hour at each temperature to ensure that both the temperature came into equilibrium and
a suitable number of periods of the measurement frequency had passed. The results of
temperature scans are found to be perfectly consistent with the results of frequency scans,
further establishing the fact that our data are taken only once the system has obtained
equilibrium.

We have also performed specific heat measurements on the LiHoxY1−xF4 series. Most
of our specific heat results (on x = 0.018, 0.045 and 0.080 samples) have been presented
previously [123, 114]. However, this work contains one new specific heat result on an
x = 0.12 sample. The specific heat measurements were performed with the quasi-adiabatic
heat pulse method, with a very long time constant of relaxation (> 1 hour). Our specific
heat measurement technique is described in detail in Chapter 2 and in Ref. [114].

Samples

The LiRxY1−xF4 series of materials, also known as R:YLF, where R is a rare earth ion,
are frequently used as laser crystals in optical physics. As a result, they are commercially
available as very high quality single crystals. We have obtained samples of LiHoxY1−xF4 or
Ho:YLF from the company Tydex, J. S. Co. in St. Petersburg, Russia. The samples were
grown by the Bridgeman technique and any ratio of Ho to Y is possible, with negligible
change in the lattice parameter, as the Ho3+ and Y3+ ions have very similar ionic radii.
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Figure 3.7: The 220 X-ray diffraction peak of the 8% LiHoxY1−xF4 sample showing a
width of less than 0.03 degrees, limited by instrument resolution, indicating extremely
high sample quality.

Seven different stoichiometries were purchased to cover the more interesting regions of the
phase diagram, with concentrations x = 0.02, 0.045, 0.08, 0.12, 0.25, 0.45 and 1.

Sample characterization on the 2%, 4.5% and 8% samples was performed in collabora-
tion with Stefan Kycia and Ariel Gomez at the University of Guelph and with Jim Britten
at McMaster University. Crystalline quality was verified by high resolution diffraction on
a fine focus Cu rotating anode generator equipped with a high resolution Ge (220) four-
crystal monochromator and a Huber 4-circle diffractometer. The measurements revealed
extremely sharp Bragg peaks (θFWHM < 0.015◦) for all reflections, indicating high crys-
talline perfection. No twinning was observed. Extensive diffuse scattering measurements
revealed no diffuse scattering near or away from the Bragg peaks or satellite peaks that
could be associated with any disorder or short range ordering. Small ∼ 100 µm fragments
were taken from each sample, and crystallography data sets were measured using a molyb-
denum rotating anode, kappa diffractometer, and CCD area detector. All three data sets
refined well with Ho substituting for Y in the expected tetragonal (I41/a) structure 2.

However, a precise determination of the holmium concentration (at the lower concentra-
tions) with X-ray measurements was found to be prohibitively difficult. Instead, we found
that the most precise way to establish the Ho concentration was through specific heat mea-
surements (described in more detail in Section 3.5) and the contribution of the hyperfine
coupling to the I = 7/2 nuclear moments. Fitting the specific heat to the ‘high’ temper-
ature tail of the calculated hyperfine contribution around 1 K with a 1/T 2 contribution
from the electronic moments was more successful in precisely determining x. Specifically,

2Information communicated by Stefan Kycia, University of Guelph and contained in Ref. [123].
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this was performed by adjusting the Ho concentration x such that, after subtraction of the
nuclear hyperfine contribution, the high temperature tail of C was best fit by a 1/T 2 power
law. In the case of the nominally 2% sample, the specific heat showed the actual concen-
tration to be closer to 1.8%. Such a change ∆x = 0.002 is nearly impossible to resolve with
X-ray spectroscopy whereas the nuclear contribution to the total specific heat is quite well
understood and is proportional to the number of holmium ions. Determination of x could
also have been accomplished using the high-temperature magnetic susceptibility, though
susceptibility is a more challenging measurement to calibrate accurately than specific heat
(especially given demagnetization effects for example). The samples with 4.5%, 8.0% and
12.0% Ho were found to have the correct, quoted stoichiometry.

3.4 AC Susceptibility Results on Dilute LiHoxY1−xF4

Temperature Scans

Temperature scans of the susceptibility of a 4.5% sample are presented in Figure 3.8 along
with results from other research groups. Seen is an increase in the susceptibility until a
frequency dependent freezing temperature Tf (ω) at which point there is a sharp drop in
the susceptibility. This freezing temperature moves to lower temperatures as the frequency
of measurement is reduced. This behaviour is typical of spin glasses. As one approaches
a spin glass transition, the dynamics of the moments slow down considerably. When
the frequency of measurement is brought above the time constant of relaxation of these
moments, the magnetization begins to lag behind the applied field, and eventually the
magnetic susceptibility disappears entirely.

The temperature dependence of this sample is seen to match quite well with several
other results. The results of Reich et al. [158, 58] are fairly close to our results. Certainly
the differences could be explained by slight misbalance of a susceptometer or an incorrect
demagnetization correction for example. Our results do not match the T−0.75 power law
proposed by Ghosh et al. [5], however.

The results of Jonsson et al. [65] match well with our results at temperatures above
∼ 200 mK (after applying a correction for demagnetization based on the geometry of
their sample). Below roughly 200 mK, their results begin to deviate from ours. This
is easily explained by the fact that, below that point, the measurements are no longer
in the dc limit, so that the magnetization is lagging behind the applied magnetic field.
They are using a method that involves linearly sweeping the magnetic field and tracking
the magnetization and dividing to obtain the magnetic susceptibility χ. However, this is
equivalent to measuring the susceptibility with a spectrum of probe frequencies, rather
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than at a single probe frequency. Since their exact sweep rate and starting position are
not explained, it is impossible to determine exactly what frequencies their measurement
corresponds to and thus it is not possible to objectively compare with our data. Their
sweep rate is cited as in the range of 1 to 50 Oe/s. The field range over which they analyze
the magnetization data for obtaining χ′ at 200 mK is roughly 25 Oe. Thus we can see
that their measurement is corresponding to, at best, a measurement frequency of 40 mHz.
While at first seemingly a very low frequency, it can be seen from our data that such
a frequency can only be considered to be a “dc” measurement down to roughly 100 mK.
Since Jonsson et al. are essentially measuring with a triangular wave probe, there are many
higher harmonics that would be damped out at higher temperatures making it reasonable
to see a deviation of their results and ours around 200 mK. Certainly we do not question
the accuracy of the results of Jonsson et al., but do disagree with the intimation that their
results are taken in the dc limit over the entire range of their data.

Finally, we have also shown Monte Carlo simulation results from Biltmo and Henelius [161]
in Figure 3.8 which appear to match very well with our results. Interestingly, the conclu-
sions drawn from these Monte Carlo simulations was that there is no divergence of the spin
glass susceptibility at finite temperature, thus that there is no spin glass transition in this
material, for any value of x.

Frequency Scans

Initially, we pursued measurements on a 4.5% sample of Ho:YLF in hopes of reproducing
and advancing the exotic and unusual antiglass physics that was seen by Reich et al. [158,
58] and Ghosh et al. [4, 5]. Since the main signature of the antiglass was a narrowing of the
absorption spectrum χ′′(ω) with lower temperature, performing frequency scans of χ′ and
χ′′ was an obvious choice of measurement. The results we obtained on a 4.5% sample are
published in Ref. [124]. Since then, we have extended our measurements to two adjacent
concentrations in our available series of samples: 8% and 1.8% Ho:YLF.

The resulting frequency scans on LiHo0.045Y0.955F4 (see Figure 3.9) reveal broad features
in the absorption spectra χ′′(f) with a temperature dependent peak position defined to be
fMax(T ). At a given temperature, the in-phase component of the susceptibility χ′ is 0 at
high frequencies (where the spins are too slow to respond to the perturbing magnetic field)
and tends towards a constant value (the dc limit) at low frequency, which we will refer to
as χDC .

Unsurprisingly, the peak frequency shifts to lower frequency with lower temperatures.
χDC and χ′′Max both appear to be monotonically increasing with a decrease in temperature
(at least in the range of our data). It is not immediately obvious in Figure 3.9 how the
widths of the absorption spectra change with temperature. To facilitate this observation,
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Figure 3.8: Temperature scans of the in-phase ac magnetic susceptibility χ′ at different
frequencies of an x = 0.045 sample. Shown for comparison is data from other experimental
and theoretical research groups: experimental data from Reich et al. [158, 58] (black dots),
experimental data from Jonsson et al. [65] (blue x’s, corrected for demagnetization) and
Monte Carlo data from Biltmo and Henelius [161]. Also shown is the proposed T−0.75

power law of Ghosh et al. [5].
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Figure 3.9: In-phase χ′(f) and absorption χ′′(f) spectra at various temperatures for the
concentrations x = 0.018, x = 0.045 and x = 0.080.
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we show a plot superimposing the spectra by plotting χ′′(f)/χ′′Max against f/fMax. It then
becomes obvious that the widths of the spectra are increasing with lower temperature.
Additionally there is no development of a significant asymmetry in the spectra. Clearly,
antiglass behaviour is not observed in our measurements and the results are, instead,
consistent with spin glass physics.

In principle, a good but quick and simple analysis to determine whether a material is a
spin glass or not is to calculate the ratio ξ = ∆Tf/(T̃f∆ ln ω), also known as the Mydosh
parameter [44]. This is typically done from temperature scans of the susceptibility at
different frequencies, taking Tf as the maximum in χ′. Then ∆Tf is the change in freezing
temperature obtained by changing the measurement frequency by an amount ∆ lnω. Here
we normalize by T̃f , the average of the values of Tf used. It is important to note that the
parameter ξ is not well defined [44], and we might equally use Tg or the lowest achieved Tf

instead of the average T̃f . Essentially, this parameter expresses the fractional rate of change
in freezing temperature with respect to the logarithm of the measurement frequency.

We could equally apply this analysis to frequency scans using τMax, thus writing the
Mydosh parameter as ξ = −∆T/(T̃∆ ln τMax). This gives a value of ξ ∼ 0.138 if we
concentrate on the data near the bottom end of our temperature range. This is certainly
higher than is typically expected of spin glasses. Canonical spin glasses have values of ξ
around 0.005 to 0.06 [44]. As a counter example, a particular material, a-(Ho2O3)(B2O3),
that is known to be a superparamagnet or a kind of glassy material that does not have
a finite temperature spin glass transition, has ξ = 0.28 [44]. With a value of ξ higher
than other spin glasses studied, this simple analysis might suggest that our sample is
a superparamagnet, or at least borderline between a superparamagnet and spin glass.
However, this is merely a rough comparative analysis and as we shall see, not universally
relevant. In fact the Mydosh parameter does not provide a good indication of whether
there is a spin glass transition. Rather it provides a measure of how close one is to the spin
glass transition (if it exists). It depends greatly on what temperature range is taken and,
most importantly, how close to the glass transition one is able to measure in the frequency
window accessible by a particular experimental probe. For example, if one were to measure
the canonical spin glasses (such as CuMn and EuxSr1−xS) with a measurement probe in
the MHz or GHz frequency range, one would obtain much larger values of ξ.

Recently, our measurements of a 4.5% Ho sample, have been extended to two other
stoichiometries in the series: 1.8% Ho and 8.0% Ho. Frequency scans of the susceptibility
of all three materials are presented in Figure 3.9. The results are all qualitatively similar,
again showing broad spectra, indicative of glassy relaxation and a trend toward lower
frequencies as the temperature is reduced. Of course, the magnitude of the susceptibility
is much larger for higher values of x, as there is higher density of magnetic moments and
larger average interaction strengths.
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Again, superimposing the absorption spectra for the 1.8% and 8.0% samples, there
is clear broadening of the absorption spectra with lower temperatures, consistent with
spin glass physics (see Figure 3.10). One can also see quite easily that the absorption
spectra are generally broader for higher values of x. This could be explained simply by
the temperature range of our measurements (which is similar for all three samples) being
progressively closer to the spin glass transition temperature as x is increased and Tg is
therefore increased. The lower end of our temperature range is actually defined not by
cryogenics but by the characteristic frequency fMax(T ) reaching 1 mHz, which is the lowest
frequency at which we have attempted measurements. The fact that this lower limit is at
77 to 80 mK for all three samples (before the demagnetization correction), where Tg should
be roughly proportional to x, is quite surprising.

Thus far, we have shown a complete lack of “antiglass”-like behaviour in all three stoi-
chiometries studied and instead qualitative spin glass behaviour, particularly a broadening
absorption spectrum with lower temperature. However, the Mydosh parameter tends to
suggest that these materials might be superparamagnets rather than true spin glasses. To
rigorously and quantitatively demonstrate whether these materials are spin glasses or not,
we must turn to a dynamical scaling analysis.

Dynamical Scaling Analysis

As discussed in Chapter 1, if the material is a spin glass, one expects to see a divergence
of the dynamical exponent at the glass temperature, thus

τ = τ0

(
T − Tg

Tg

)−zν

= τ0t
−zν (3.20)

where ν is the correlation function critical exponent, z is the dynamical critical exponent
and t is the reduced temperature. Monte Carlo simulations [76] have found zν , 8.0 and
this has been roughly confirmed in various experimental spin glass systems (as discussed
in Chapter 1).

Thus to state more assertively whether we are dealing with a spin glass, or not, we must
perform such a dynamical scaling analysis. To do so, we have taken the peak frequency
in χ′′, fMax and the corresponding time constant τMax = 1/2πfMax as indicators of the
relevant time scale of the material at a given temperature. We then use this time constant
as a function of temperature τMax to search for critical behaviour that would prove or deny
the existence of a finite temperature spin glass transition.

It is important to note that in other works, such as Refs. [70, 82, 83], the relevant time
constant has been chosen differently. For example, in some cases, groups have looked at the
freezing temperature, defined as the maximum in χ′(T ) for a given measurement frequency
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tures studied here. However there is very noticeable deviation at the lower temperatures.
The resulting fitting parameters are τ0A = 0.32 µs and EA = 1.57 K. Shown for comparison
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scaling law is very successful below 200 mK and gives a reasonable value of the critical
exponent zν = 7.8±0.2 and glass transition temperature Tg = 42±2 mK. The τ0 = 16±7
s so obtained is surprisingly long, however. (c) Residuals (on a log scale) for the Arrhenius
law and dynamical scaling law fits.
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f , as a function of frequency so Tf (f). This method has two major disadvantages. First,
it is much more time consuming to change temperature than to change frequency, making
it more difficult to narrowly pin down Tf as compared to fMax. Secondly, Tf (fLower), where
fLower is the lower bound on one’s measurement frequency, is at a higher temperature than
the temperature at which fMax = fLower. Thus using fMax allows us to move to lower
temperatures, closer to the possible spin glass transition temperature, picking up more of
the associated critical behaviour. Although the Tf (f) method has been used quite often
historically, there is no theoretical basis on which to favour it over the fMax(T ) method
used here.

Alternatively, it has been theoretically proposed [76] that one should define the time
constant as

τ = lim
ω→0

χ′′(ω)

ωχ′(ω)
. (3.21)

While potentially the most reliable choice of τ , this is highly impractical in experiment.
The spectra are too broad and the frequencies too low to reach this limit for any useful
temperatures (see Appendix B for more details and an illustrative plot). So, for the above
reasons, we have employed τMax in performing our dynamical scaling analysis.

For the 4.5% sample, the dynamical scaling has been performed by choosing a glass
temperature Tg, applying a linear fit to ln τ as a function of ln(T/Tg − 1) and evaluating
the goodness of fit. This is done for many different possible glass temperatures and the
temperature with the best fit is chosen (this method is outlined in further detail in Ap-
pendix B). While the fits are universally poor for the whole temperature range studied,
restricting ourselves to temperatures below 200 mK, permits good agreement with a scaling
law. Moreover, the exponent that is thereby determined, is zν = 7.9, which is very close
to the value determined from Monte Carlo simulations of zν = 8 [76].

In all, the determined parameters in the case of x = 0.045, are zν = 7.8±0.2, Tg = 42±2
mK and τ0 = 16 ± 7 s. While zν is a very standard critical exponent and Tg is in the
expected range of temperatures based on the Tg of other samples in the series, τ0 is found
to be many orders of magnitude larger than is seen in most spin glasses. For example, in
EuxSr1−xS for x = 0.4, this intrinsic time constant is τ0 , 2× 10−7 s [70].

It can be seen from our data, that we are only able to resolve fMax down to a tem-
perature of 77 mK for the 4.5% sample (working at frequencies as low as 1 mHz). This
is a temperature almost twice the glass temperature or a reduced temperature of just un-
der 1. Clearly we are unable to successfully perform equilibrium measurements anywhere
close to the transition temperature. Our dynamical scaling analysis holds up to about
200 mK, which is a reduced temperature of almost 4. It is not surprising that critical
behaviour is lost above that point, as it is quite far from the critical temperature. The
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higher temperature range of the data can be fit with an Arrhenius law

τ = τ0Ae−EA/T (3.22)

with the parameters τ0A = 0.32 µs and EA = 1.57 K. Fitting to the scaling and Arrhenius
laws are shown in Figure. 3.11 as was published in Ref. [124].

This long τ0 explains the unusually low Mydosh ratio, ∆ ln τ/∆T , in this system, which
would surely be higher if we could move to much lower frequencies and therefore much closer
to the glass transition. If one were to study the canonical spin glasses at frequencies in the
MHz or GHz, for example, one would also expect an unusually low Mydosh parameter.

What is the explanation for such an unusually high τ0? There are two possible (though
not mutually exclusive) scenarios. First, it might be concluded that the many body physics
of the dipolar, Ising spin glass leads to much slower relaxation when compared to other
systems. Cluster glasses, for example, have been found to have higher time constants than
spin glasses. Thus the answer could lie in the proximity of the system to ferromagnetism
and the formation of large ferromagnetically correlated regions within the sample, for
example. Alternatively, the explanation may come from single-ion physics. If the time to
flip a single, isolated spin is already relatively long then the overall time constant must
inevitably be very long as well. It turns out that the dynamics of the other stoichiometries
studied may help provide a solution to this problem.

Concentration dependence

Dynamical scaling for the 8% sample is fairly straightforward and is just as successful as in
the 4.5% sample. The result is a glass temperature Tg = 65 mK, critical exponent zν = 7.8
and intrinsic time constant τ0 = 0.11 s. Error bars are similar to the 4.5% fits, roughly
±3 mK on Tg. One can notice immediately that τ0 is more than two orders of magnitude
smaller in the 8% sample. This dynamical scaling fit is shown in Figure 3.12 along with
that of the other stoichiometries.

In the case of the 1.8% sample, the analysis is not so simple. With no free parameters,
the results of the fit are zν , 7.3, Tg , 41 mK. The critical exponent is somewhat small
and the glass temperature is extremely high, almost identical to that obtained for the
4.5% sample. On closer inspection (see Appendix B), it can be seen that the fit is highly
unconstrained, so that a large range of critical temperatures and exponents are able to
satisfactorily fit the data. With the exponent fixed at zν = 8.0, we obtain an adequate
fit and a glass temperature of 35 mK. This is the result plotted in Figure 3.12. Thus for
1.8%, there remains quite a lot of ambiguity surrounding the transition temperature. This
is likely related to the distance away from the glass temperature that we are measuring,
making it much more difficult to extract critical behaviour. A reliable determination of Tg
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Figure 3.12: Dynamical scaling fits for all three stoichiometries studied.
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Figure 3.13: The time constant τMax plotted as a function of temperature T for three differ-
ent stoichiometries. The solid lines are dynamical scaling law fits. At high temperatures,
the time constant is inversely correlated with x.
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for x = 0.018 may be impossible without much lower frequencies of measurement (which
become prohibitively difficult).

Ambiguity aside, the 1.8% sample seems to exhibit a rather high glass temperature if we
expect that, roughly, Tg ∼ x. The mean-field model of Stephen and Aharony [29] predicts
a Tg(p) function that will be slightly steeper than linear, though that is a bond-diluted
model and p is the bond dilution probability (see Section 1.2.5). Monte Carlo work of
Tam and Gingras [128] on LiHoxY1−xF4 suggests a Tg(x) that scales close to linearly. The
canonical RKKY spin glasses like CuMn are found to have a concentration dependence
close to Tg(x) ∼ x0.7 [53]. The data here on our 1.8% sample does not appear consistent
with any of those results or predictions.

For lower glass temperatures to fit the x = 0.018 data, higher values of the critical
exponent zν are required. We could speculate that there is some physical reason that
Tg(x = 0.018) is quite a bit higher than expected or that the exponent zν(x = 0.018) is quite
a bit larger than in other stoichiometries and simulations. Even with the underconstrained
dynamical scaling fits, the glass transition (if it exists) of this 1.8% sample does seem to
be at an anomalously high temperature and therefore more work is perhaps required to
fully understand the behaviour of this particular sample. However with such a long time
constant, this will not be an easy task.

What is quite clear is that τ0(x = 0.018) , 540 s, is much larger than in the other
samples. Clearly τ0(x) is inversely correlated with x! Time constants as a function of
temperature are shown in Figure 3.13 for the different stoichiometries studied. Toward the
higher temperature limit of the data, the time constants (as with τ0(x)) are found to be
inversely correlated with x. So at 150 mK, for example, the x = 0.018 sample is much
slower than the x = 0.045 sample which is in turn slower than the x = 0.08 sample. When
the temperature is lowered, to ∼ 140 mK, the curves for 4.5% and 8.0% cross, as the time
constant for the 8.0% sample begins to diverge. Presumably there would be a crossover
for 1.8% and 4.5% as well, but it is not quite accessible in our measurements.

Above 200 mK or so, the dynamical scaling laws no longer seem to hold. Perhaps, in
this regime, one is actually dominated by single ion physics rather than many body spin
glass physics. Yet even in a temperature range where many body physics is not at play,
the dynamics are very slow. Again, we ask the question, what could cause such a long time
constant of relaxation? Furthermore, what is it that causes this inverse correlation of τ0

with x?
Based on the above observations, a likely explanation involves largely single ion physics

and the nuclear hyperfine coupling as suggested recently by Schechter and Stamp [155] and
earlier by Atsarkin [169]. The nuclear hyperfine interaction splits the normally degenerate
nuclear energy levels into 8 different energies that depend on whether the electronic moment
is up or down, as is illustrated in Figure 3.14.
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Tunneling

Figure 3.14: Adding the nuclear hyperfine interaction to the crystal field Hamiltonian has
the effect of splitting the ground state doublet into 8 pairs of degenerate electronuclear
states. Transverse field and transverse dipolar interactions relieve the degeneracy and
allow for tunneling between these pairs.

The energy splitting between these levels is roughly 200 mK. Thus reducing the tem-
perature appreciably below 200 mK depopulates all but the lowest energy electronuclear
states leaving | ↑, Iz = −7/2〉 and | ↓, Iz = +7/2〉. The tunneling matrix element between
the pairs of electronuclear states is 0 if one considers only the crystal field and nuclear
hyperfine energies. This degeneracy will, in practice, be relieved by other perturbations,
in particular by transverse magnetic field or transverse dipolar couplings. However, for the
lowest energy levels, the degeneracy is not so easily lifted and remains small even for fairly
large transverse fields [155]. With near-degeneracy of these energy levels comes a very slow
transition rate between them, making it a very slow process to flip the electronic spins.
Hence, the entire system is severely slowed down by this single-ion effect.

A possible scenario is that

τ = τSI(T )× (1 + NSG(T )) (3.23)

where τSI is the time scale for flipping a single spin and NSG is a dimensionless time
constant, a number of spin flips required to get to a fraction exp(−1) away from equilibrium.
If one imagines a Monte Carlo simulation on a spin glass, one would express the time
constant as a dimensionless number, for example the number of metropolis algorithm trials
required to reach equilibrium. The actual time the simulation took would depend on the
processing time required of the computer to perform each spin flip times this dimensionless
number. To get a physical time constant τ , one must take this single-ion spin flip time τSI

and multiply by that dimensionless number NSG. We could expect τSI to be somewhat
Arrhenius-like, coming largely from thermal excitations, whereas NSG should be a power
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Figure 3.15: Following the work of Schechter et al. [155], calculations of the lower single-ion
energy levels in transverse magnetic field H⊥. (a) The lowest 16 energy levels in transverse
field. Time reversed states are shown in the same colour, one solid and one dashed. (b)
The energy splittings between the four lowest time reversed states, mI = ±7/2,±5/2,±3/2
and ±1/2. The energy splitting for m = ±7/2 remains very small even out to relatively
large transverse fields.
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law divergence at the glass transition (the dynamical scaling fits we performed earlier). As
we leave the range of critical behaviour, and NSG gets very small, we cannot expect our
dynamics to get infinitely fast. Rather, the single-ion relaxation time should take over at
these higher temperatures.

We should expect two important things to be observed in the data from this proposed
nuclear effect. (1) We should expect to see a large increase in τ0 with lower dilution.
Because Tg will be shifted down in temperature for lower x, the critical behaviour will kick
in at lower temperatures where τSI will be longer, due to the depopulation of nuclear levels.
(2) At higher temperatures, where critical behaviour is no longer observed, one should see
a faster time constant in higher concentration samples. At higher x, the random transverse
fields resulting from the transverse dipolar interaction terms will be stronger, leading to
more significant tunneling matrix elements and therefore faster dynamics.

Indeed, this is exactly what we observe in the data, providing strong evidence that
the hyperfine coupling is playing an important role in the dynamics. One could imagine
other explanations for extremely slow dynamics, for example the idea of a cluster glass
resulting from large ferromagnetic clusters resulting from proximity to the ferromagnetic
phase. However, in this scenario it seems likely that larger x would have slower dynamics
as it is closer to ferromagnetic and has on average stronger interactions.

Scaling and Shape of the Absorption Spectra

The slow dynamics in these materials make it prohibitively difficult to approach the glass
transition. While this certainly makes these materials difficult to study, it in fact provides
one important benefit. In all other spin glasses studied to date, the typical frequency
window of an ac susceptibility experiment sits very close to Tg. As a result, the absorption
spectra χ′′(ω) found are extremely broad and there is no way to discuss the shape of such
spectra for example. However, in LiHoxY1−xF4, that frequency window is far away from Tg

making χ′′(ω) a manageable width (about 3.5 decades at most). This allows us to compare
the widths at different temperatures and comment on the shape of the spectra

It is easy to see from Figure 3.10 that the width of the absorption spectra gets broader
as the glass temperature Tg is approached. At higher temperatures, the absorption spectra
approach a constant shape. We can speculate that the change in width of the spectra
from the high temperature limit will be inversely proportional to the ratio T/Tg. Thus, we
introduce a simple scaling law where we plot χ′′/χ′′Peak as a function of

(f/fPeak)
1−Tg/T

and we find that all the curves overlap on top of each other. There is some disagreement
in the low and high frequency tails, though in the rest of the data the agreement is really
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Figure 3.16: Universal scaling plots achieved by compressing the ln(f/fMax) axis by an
amount inversely proportional to the ratio Tg/T , or equivalently, raising f/fMax to the
exponent 1 − Tg/T . This is shown for the 8% sample alone in (a) and for all three sto-
ichiometries studied (b). For the 1.8% sample, Tg = 30 mK was used. There is some
disagreement at the high and low frequency limits, but otherwise the scaling is quite suc-
cessful.

quite good for the 4.5% and 8.0% samples. This scaling law is only successful with the
1.8% sample if we choose Tg = 30 mK, which is quite a bit lower than the results of
the dynamical scaling best fit. However, a glass temperature of 30 mK is not obviously
inconsistent with a dynamical scaling law (see Appendix B). Again, this highlights the
difficulties of determining Tg when unable to measure at temperatures close to Tg. In the
4.5% and 8.0% samples, the overlap in such a scaling plot is optimized by choosing the
same glass temperatures that were obtained in the dynamical scaling analysis (42 mK and
65 mK respectively), lending further evidence that those are the correct values of Tg.

Even more impressive is the fact that this simple scaling law applies to all three samples
together. This is shown in Figure 3.16(b). To our knowledge, such a scaling law has not
been previously proposed either theoretically or experimentally. Experimentally, this is
not surprising, since other spin glasses do not have suitably slow dynamics necessary to
undertake such a study, at least not with ac susceptibility.
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Similarly, we plot the full-width and half-widths at half maximum in Figure 3.17 as a
function of Tg/T (again taking Tg = 30 mK for the 1.8% sample) in the range of tempera-
tures where it is possible to resolve enough of the spectrum. There is very little asymmetry
seen from the comparing the width of the high frequency side log f+/fMax with the width
of the low frequency side log fMax/f−. There certainly is observable asymmetry in the
spectra, but it seems to reside mostly in the tails of the spectrum.

We see that (Figure 3.18) in the high temperature limit of our data, the low frequency
and high frequency tails tend to ω1 and ∼ ω−0.7 respectively. Thus there is already some
noticeable asymmetry at higher temperatures. As the temperature is lowered, the spectra
broaden and the power laws of these tails become less steep. The disagreement in the tails
of the data shown in Figure 3.16 is a result of not properly accommodating this changing
power law. Thus the scaling relation described above is unfortunately not quite perfect.
The high frequency limit of the spectra becomes less steep as the temperature is lowered.
At around 80 mK, for example, the power law appears to be roughly f−0.65 (also shown in
Figure 3.18).

As for the precise shape of the spectra, we have been so far unsuccessful in finding a
satisfactory fitting form. A commonly employed method [58, 76, 170] for analyzing spectra
of this variety is the Debye model

χ(ω) = χ0

∫ ∞

−∞

ρ(τ)d ln(τ)

1− iωτ
(3.24)

If ρ(τ) is taken to be a δ-function, one has a single characteristic time constant. In general,
this will result in too narrow a spectrum, especially in glassy systems. Thus a distribution
ρ(τ) of relaxation times which broadens as the temperature is lowered can be employed.
However, we have not been able to find a form of ρ that reliably fits the data.

Another fitting function that has been used in the case of structural glasses and spin
ice [171], is the Davidson-Cole form [172, 173]:

χ(ω) =
χ0

(1− iωτ)β
(3.25)

This form is almost successful in fitting the highest temperature data with β = 0.7 (see Fig-
ure 3.18). However there is still a small discrepancy, which is not within the expected error
bars of the measurement. The Davidson-Cole form can be generated from Equation 3.24
with an appropriate distribution of time scales:

ρ(τ) =

{
sin(βπ)

π

(
τ

τc−τ

)β

τ < τc

0 τ ≥ τc

(3.26)
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Figure 3.17: The full width at half maximum (FWHM) and half widths at half maximum
of the absorption spectra (on a log scale) plotted against Tg for all three stoichiometries
studied. The high frequency midpoint is f+ and the low frequency midpoint is f−. Triangles
are the FWHM, whereas circles and squares are the widths of the low and high frequency
sides of the spectrum, respectively. The solid lines are guides to the eye. Only a certain
range of data could be accommodated because of the strong frequency dependence of χ′′.
Most of the asymmetry in the spectra is seen further out in the low and high frequency
tails.
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Figure 3.18: The superimposed absorption spectra of 4.5% sample shown on a log-log plot.
The solid black curve is the Davidson-Cole form with β = 0.7, showing that it almost fits
the high temperature limit of the data. The dashed lines are various power laws. The low
frequency limit appears to be well fit by χ′′(f) ∝ f (blue). The high frequency tail varies
from f−0.7 (red) at high T to f−0.65 (green) at low T . A 1/f power law (magenta) that
would result from the Debye model with a single energy barrier to relaxation is far from
fitting the data.

This distribution has a cut-off at τc and a long tail for short τ (high frequency). Thus
even if the Davidson-Cole form is not a completely successful fit, we can at least see the
importance of a long, high frequency tail in the distribution of relaxation times for this
system.

3.5 Specific Heat of Dilute LiHoxY1−xF4

Much of our measurements of the specific heat of dilute LiHoxY1−xF4 have been presented
in an earlier thesis of the author [114]. Here we discuss those results on the concentrations
x = 0.018, 0.045 and 0.080 and include a measurement of an additional stoichiometry
x = 0.120. The low temperature specific heat is found to be dominated by a large nuclear
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Figure 3.19: (a) The measured total specific heat of four different stoichiometries, x =
0.018, 0.045, 0.080 and 0.12, of LiHoxY1−xF4. The solid line is the calculated single-ion
specific heat. (b) The specific heat of those same four stoichiometries after subtraction of
the single-ion specific heat.

component, resulting from the strong hyperfine coupling with the I = 7/2 Ho nuclear
moments.

This specific heat is given roughly as

CNuclear/R =

(∑
m xme−xm

∑
m e−xm

)2

−
∑

m x2
me−xm

∑
m e−xm

(3.27)

where
xm = (A〈Jz〉mI + Pm2

I)/kBT. (3.28)

However, this makes the assumption that the moments are entirely Ising-like and in-
cludes no excited state at 10 K. A more accurate single-ion specific heat, CSI can be
calculated by diagonalizing the entire single-ion Hamiltonian including crystal field and
hyperfine energies, a 136× 136 matrix [123]. That calculation is shown as the solid line in
Figure 3.19(a).

The measured specific heats are all broad features, slightly above this single ion specific
heat, with their peaks at roughly the same position. To more carefully analyze these
results, we have subtracted the underlying nuclear component of the specific heat. This
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subtraction is justified to first order. If the moments are completely Ising, there is a
symmetry between |Jz,−Iz〉 and | − Jz, +Iz〉 states which means that the nuclear specific
heat can be separated from the electronic specific heat. However, if there is any admixing
with the the next excited state at 10 K (which there is in small amounts), this symmetry no
longer holds and the subtraction is not exact. We have performed this subtraction under
the assumption that it is largely accurate and for better comparison with previous work
from other groups in which such a subtraction was also assumed to be justified.

The results of the subtraction are shown in Figure 3.19(b) and show similar, broad
features for all the stoichiometries studied. Broad features are consistent with spin glass
behaviour, as the predicted specific heat critical exponent α is quite negative, in the range
of -2 to -4 and would not present as a sharp feature. What is unusual about the specific
heat is the lack of change of peak position with concentration. Typically in spin glass
systems, the peak position of the specific heat scales linearly with Tg [44]. Here, the peaks
all lie roughly on top of each other, where Tg(x) is certainly not flat as seen in susceptibility
measurements. For example, in Monte Carlo simulations, the peak in C is found to roughly
scale with x [161].

Although the peak position is independent of x, the overall size of the “bump” in C
is larger as x is increased. At higher temperatures it is easy to see that the specific heats
should not line up on top of each other, even when normalized by the number of holmium
atoms studied. The specific heat at high temperature should scale as E2/T 2 and one would
expect the energy scale of interactions E to be proportional to x. Thus we should expect
the normalized specific heat (in units of J/K mol Ho) to scale as x2. This is roughly what
is observed.

The entropy of a system can be obtained by doing a numerical integral of the specific
heat:

S(T ) =

∫ T

0

C(T ′)

T ′ dT ′ (3.29)

At temperatures well above the Curie-Weiss temperature ∼ xTc(x = 1) but still below
10 K, it is certain that the electronic moments will possess an entropy of R ln 2. One would
generally expect all of that R ln 2 entropy to be released by zero temperature, although in
some situations, namely spin ice [94], one sees a residual entropy S0 at zero temperature.
Such a numerical integral has been performed on our specific heat data (after subtraction
of the nuclear component) and is shown in Figure 3.20. The results of the integral have
been shifted so that they approach the necessary high temperature limit for an Ising system
R ln 2.

In order to fully capture the entropy in the material, one must do the integral from
zero temperature, or at least from a temperature at which much of the specific heat has
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Figure 3.20: The entropy as a function of temperature, S(T ), of four samples of
LiHoxY1−xF4, obtained by performing a numerical integral of C/T from the lowest tem-
peratures studied to T . The result is then shifted such that it tends towards the necessary
R ln 2 at the higher temperatures. Thus we can see the remaining entropy that has not
been picked up in the range of our experiments. This quantity varies significantly from the
1.8% sample up to the 12% sample.
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dropped away. Since our specific heat results extend down to 80 mK and much of the
curve remains unexplored below that temperature, we cannot reliably determine the total
entropy associated with the electronic moments. In the Ref. [123], we dealt with this
problem by making a linear extrapolation to T = 0, based on the fact that spin glasses
frequently show linear temperature dependence below Tg. With this extrapolation, we saw
that there was an increasing residual entropy S0 as the concentration x was lowered. At
x = 0.08, the linear extrapolation gave S0 = 0. This was connected to the simulations of
Snider and Yu [160] where a lack of spin glass transition was seen in dipolar Ising moments
in conjunction with a residual entropy.

Since then, it has come to light that these materials likely have spin glass transition
temperatures below the lowest temperature that we have measured with specific heat.
This makes it highly unlikely that we have observed all of the physics that there is to
observe with our heat capacity measurements and that more is expected to happen at
lower temperatures. Our recent measurements of a 12% sample (see Figure 3.19) shows an
even larger specific heat than that of the 8% sample implying that the linear extrapolation
cannot hold or there would be more than R ln 2 entropy in the 12% sample, a physical
impossibility. Finally, specific heat measurements may at some point succumb to the
same problems of achieving equilibrium as susceptibility measurements. Although we have
always done these experiments with very long time constants of relaxation, > 1 hour, as
one approaches Tg the time constants diverge, so there will always be a point at which
measurements may be out of equilibrium. It is seen in the susceptibility measurements
that the intrinsic time constant in these materials is extremely long and that even by
T = 1.5Tg, it becomes nearly impossible to obtain equilibrium measurements.

Our specific heat data is puzzling for two reasons. First, the peak in the specific heat
is at a temperature much higher than the spin glass transition, where in most spin glass
systems it is within 20% of Tg [25]. Second, the peak position is essentially concentration
independent, where Tg is not independent of x. It has been proposed by Schechter et
al. [155], that such a result is suggestive of the importance of single ion physics and the
connection between the nuclear and electronic moments.

Past research on spin glasses has shown the specific heat to not be dominated by a
feature at the spin glass transition [25]. The free energy landscape of a spin glass is very
complex with many local maxima and minima and eventually, at low enough temperatures
the system tends to get “stuck” in one of the valleys, eventually losing ergodicity altogether.
The specific heat as one gets near to the transition is thus largely representative of the
excitation spectrum of the material. In most spin glasses, it is reasonable to postulate that
the height of energy barriers ∆E would scale proportionally to x. This would give rise to a
heat capacity with a peak position that also scales roughly as x. However, in LiHoxY1−xF4

at low temperatures, directly flipping a spin simultaneously with a nuclear moment is an

96



incredibly slow process. To flip a spin quickly, it must be excited into a higher energy
nuclear spin state first. So, even if ∆E is very small, the specific heat maximum may be
pinned to a temperature related to the nuclear hyperfine interaction. As x is increased,
∆E should eventually surpass the nuclear energy and at that point one would expect
∆E to be the dominant barrier to excitations and the peak in C might begin shifting to
higher temperatures. However, the above argument is essentially a dynamic one and should
depend on measurements being performed out of equilibrium. In our experiments, we see
no evidence of such a loss of equilibrium. This is particularly true as high as 150 mK, where
the dynamics are still quite fast compared to the time scales of our measurement. Below
70 mK or so, where the time constant is close to 1 hour or longer, a loss of equilibrium
might occur.

Alternatively, we could speculate that the subtraction of the nuclear contribution might
be incorrect. For the subtraction to be valid, the moments must be true Ising moments.
Any transverse, off-diagonal contributions to the Hamiltonian break the degeneracy be-
tween the | ↑, mI〉 and | ↓,−mI〉 states, meaning that the nuclear specific heat is connected
to the electronic states. There are such off-diagonal contributions to the Hamiltonian
coming from the transverse dipole-dipole interaction and the transverse nuclear hyperfine
interaction [155]. If the collective behaviour of the electronic moments in the system is
somehow very sensitive to those off-diagonal components, then it could be difficult to dif-
ferentiate between the nuclear and electronic contributions to the specific heat. Essentially,
the system would consist of electronuclear objects interacting with one another rather than
a set of interacting electronic spins, with an irrelevant nuclear moment following. It is im-
portant to note that these ideas are speculative. Our specific heat results remain poorly
understood and a quantitative explanation is yet to be provided.

3.6 Comparison with Other Research Groups

Monte Carlo Simulations and Theory

For the most part, our results agree very well with the current theoretical understanding of
LiHoxY1−xF4. The temperature dependence of our susceptibility agrees well with Monte
Carlo results [161]. Our glass transition temperatures Tg(x) line up well with those deter-
mined in Monte Carlo [128] as can be seen from Figure 3.23. Furthermore, the notion of
dynamics slowing with smaller x, related to the nuclear hyperfine coupling, matches the
prediction of Schechter and Stamp [155].

One unresolved problem is the mismatch between Monte Carlo [161] and our specific
heat experiments, as shown in Figure 3.22(a). While all theories developed so far suggest
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that the peak in C(T ) should scale with x, our measurements show a concentration inde-
pendent maximum at around 150 mK. We propose that this effect is somehow related to
the importance of single-ion properties and the nuclear hyperfine interaction to the physics
at large of this system. However, that conjecture remains to be proven and the behaviour
of the specific heat of LiHoxY1−xF4 remains a mystery.

Experimental Susceptibility and Specific Heat

Clearly, our results show no evidence of the exotic “antiglass” state that was proposed by
Ghosh et al. [4, 5] and Reich et al. [158, 58]. This is indeed a major disagreement and it
is important to at least suggest possible reasons for this discrepancy. Thus, we shall now
analyze in further detail the differences between our data.

In fact, many of our results are quite consistent with the research performed by Reich
et al. [158, 58]. Our τMax(T ) dependence for the 4.5% Ho sample is very similar to theirs
(as shown in Figure 3.11). The χDC(T ) behaviour presented in Ref. [58] is also fairly close
to the dc limit of our data, shown in Figure 3.8. Both could be very roughly approximated
by a similar power law around T−1.2 as seen in Figure 3.8. There is some discrepancy at
higher temperatures, but this may be related to an offset or phase shift for example, since
the signal is much smaller in that range.

Our main disagreements with the susceptibility measurements of Reich et al. is their
observation that the absorption spectrum narrows as T is decreased. Our results extend to
lower temperatures and show clearly that it does not narrow. If we plot our data directly
with that of Reich et al. [58], we see that our spectra agree remarkably well with theirs
at 120 and 150 mK, the lowest temperatures at which Reich et al. measured χ(ω) (see
Figure 3.21(b)). Below those temperatures, our spectra broaden considerably. Surprisingly,
it is at higher temperatures that our results differ: Reich et al. see their spectra start to
broaden where we see the width remain roughly constant. It seems that, for the most part,
the initial idea of the “antiglass” state came from an interpretation of data that was not
extended to low enough temperatures (frequencies).

Our specific heat is also at odds with that of Reich et al. [58]. They find a fairly sharp
peak at ∼ 300 mK and later [5] lower temperature data is published that reveals another
peak at roughly 100 mK. Our measurements, on the other hand, find one broad peak with
a maximum at around 150 mK. We reproduce most of the expected entropy, whereas their
specific heat accounts for only about 15% of R ln 2. Our electronic specific heat approaches
the noninteracting specific heat roughly as 1/T 2 at temperatures close to 1 K, where very
little in the way of collective behaviour should be expected. The electronic specific heat
of Reich et al. continues to rise just above 1 K, without any clear cause. Furthermore,
after measuring four different stoichiometries, we find a consistent trend with none of the
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Figure 3.21: (a) Direct comparison of χ′′(ω) at 120 mK from our work (blue circles), Reich
et al. [58] (green triangles) and Ghosh et al. [4] (red squares). Our agreement with Reich
et al. is quite good in fact. Ghosh et al. disagree completely, however, not matching
our results or results from their own research group [58]. (b) Comparison of our work
with Reich et al. [58] at three different temperatures. Surprisingly, it is at the higher
temperatures where disagreement is seen.

samples exhibiting anything close to what Reich et al. find. Note that thermal conductivity
experiments also did not find any sharp features reminiscent of antiglass physics [174].

Disagreement with more recent results [4, 5] by that same research group is even more
disconcerting however. The same research group has discovered rather more exotic physics
in recent years that is inconsistent with their earlier work. The behaviour of τMax(T )
is very different, as shown in Figure 3.11(a), with much higher frequencies for a given
temperature [4] and the temperature dependence of the dc limit of χ is very different:
Ghosh et al. claim a χdc ∼ T−0.75 power law [5] where Reich et al. have temperature
dependence closer to T−1.2 [58]. In Figure 3.21(a), we can see clearly that the spectrum of
Ref. [4] is centred at much higher frequencies than in previous work, and also exhibits a
very strong asymmetry that was not there in previous work.

We can say with certainty that we see no evidence of any “antiglass” physics. There
is no narrowing or pronounced assymetry of the absorption spectrum. There is no T−0.75

power law. Most importantly there is no dynamic ground state dominated by quantum
entanglement. Instead we provide strong evidence of spin glass behaviour.

Many of the discrepancies between Ghosh et al. and our work, may possibly be ex-
plained by heating. Ghosh et al. show results that have higher frequencies at a given
temperature than what we see, which can easily be explained by poorly heat sinking the
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Figure 3.22: Specific heat of LiHoxY1−xF4 measured by our research group [114, 123] on
x = 0.018, 0.045 and 0.080 compared with (a) Monte Carlo simulations at the same value
of x performed by Biltmo and Henelius [161] (lines) and (b) with the specific heat of an
x = 0.167 sample measured by Reich et al. [58] and an x = 0.045 sample as published by
Ghosh et al. [5]. There is very little agreement between any of our results and the ‘antiglass’
physics of Ghosh et al.. Monte Carlo simulations show a peak that scales roughly with the
concentration x, where the peak position in our data is largely concentration independent.

sample, applying overly large excitations or not waiting sufficiently long to attain equilib-
rium. The pronounced asymmetry seen in their data, however, is not so easily explained.
Although heating from an ac magnetic field should be proportional to χ′′ and therefore
will not be the same for all frequencies, it is not clear that this is a strong enough effect to
create such an asymmetry in the data. Increasing the power as the frequency is lowered, to
compensate for loss of signal in their conventional susceptometer, could certainly result in
increased heating at low frequencies, causing χ′′ to drop and making the spectrum appear
asymmetric. Unfortunately, without more information, we can only speculate as to the
explanation for the unusual results of Ghosh et al. [4, 5].

Most recently, Jonsson et al. also measured the susceptibility of a 4.5% Ho (and 16.7%
Ho) sample. Instead of a sinusoidal probe field, they ramp the magnetic field linearly and
track the magnetization with a SQUID magnetometer. Fitting M(H) over a certain range
of field ∆H allows them to extract χ and χ3. This different method of taking data makes
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it difficult to directly compare our results to theirs. As with our measurements, below a
certain temperature, they are no longer taking equilibrium data. One can roughly approx-
imate the effective frequency of their measurement by f ∼ (dH/dt)∆H. From the range
of parameters quoted in their article, this leads to frequencies of at least 40 mHz. While
seemingly a very low frequency, it can be seen from Figure 3.8, that their measurement
does eventually suffer from slow relaxation. Because ramping the field linearly should be
equivalent to applying a range of frequencies, their susceptibility does not drop out at low
T in precisely the same way that ours does. In the range of data where both of our sets
of data can be considered to be in the dc limit, our data sets agree very well in fact, with
only a slight, overall mismatch in susceptibility. Thus any disagreement between Jonsson
et al. and our work [124], is related to the interpretation of experimental results, rather
than mismatch of those experiments.

Implications of Slow Dynamics

While there is a large set of experimental signatures of spin glass behaviour, the ultimate
proof of a spin glass transition is generally considered to be a divergence of the nonlinear
susceptibility, χ3. The question of whether χ3 diverges at a finite Tg or not in a 16.7%
sample of LiHoxY1−xF4 has become the subject of much debate in recent publications [65,
125, 126]. While a peak at finite temperature is observed in χ3(T ), it has been argued
by Jonsson et al. [65], that this peak is not representative of true spin glass behaviour.
Certainly the data do not show a divergence. However, there is a very strong reason why
the peak should be rounded, and that is to do with dynamics. There is no reason to
believe that the nonlinear susceptibility should not respond to an increase in the frequency
of measurement in a similar way to the linear susceptibility χ. In other words, one should
expect that χ3 should be a complex and frequency dependent quantity or χ′3 − iχ′′3.

Let us assume for the moment that χ3 will have a similar frequency dependence to χ.
In the regime where f < 2π/τMax, one would expect χ3 to be saturated and frequency
independent. Then in that regime, we would expect the scaling relation

χ3 ∼ (T/Tg − 1)−γ = t−γ (3.30)

However, when f > 2π/τMax, at constant temperature, the susceptibility scales roughly as
(fτMax)−λ where this new exponent λ falls in the range of 0.75 at low temperatures to 1 at
higher temperatures. Thus in that range, we should expect the temperature dependence
to be

χ3 ∼ t−γ(fτMax)
−λ ∼ f−λt−γ+λzν (3.31)

Since zν , 8 and γ , 3 we should expect a crossover from the behaviour

χ3 ∼ t−3 (3.32)
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at high temperatures to the rough behaviour

χ3 ∼ t5 (3.33)

at low temperatures. The temperature at which this crossover takes place is when f ,
1/2πτMax. For most spin glasses, where τ0 , 10−7 s, this crossover will take place very close
to the actual glass temperature Tg for typical frequencies of measurement (for example on
the order of 1.5 Hz [125]). However, in the LiHoxY1−xF4 system, as our measurements have
shown, τ0 is much longer and this crossover ought to take place much further from the glass
temperature. With a measurement frequency of 1.5 Hz, in the 4.5% sample, the crossover
should happen at ∼ 120 mK, almost three times the glass temperature! The 16.7% sample
should be faster than the 4.5% sample, making this error somewhat less severe, but this idea
should, in principal, explain the lack of a truly sharp peak or divergence in the nonlinear
susceptibility.

This is precisely the reason why we have not yet worked towards measurements of χ3

on the samples studied in this work. It is our opinion that the priority in studying these
materials must be to understand the dynamics. As seen from the work of Jonsson et al. [65],
interpretation of χ3 measurements is very difficult without a complete understanding of
the relevant time scales in this system, and in particular, without the realization that τ0

is exceptionally long in these materials as compared to the canonical spin glasses.

µSR Experiments

It is important to mention recent µSR experiments which were performed by Rodriguez
et al. [175, 176] on pieces of the same single crystals that were used for our work on
LiHoxY1−xF4. Surprisingly, the µSR experiments do not find typical spin glass physics in
this system. The experiments were performed in the longitudinal field configuration, but
note that this meant aligning the field parallel to the µ+ polarization and perpendicular to
the Ising axis of the Ho3+ moments.

These measurements discover that the relaxation rate λ increases below 20 K as the
fluctuation rate slows down suitably, and λ continues to increase monotonically down to
around 100 mK. A noticeable change in the relaxation rate around 200 mK, particularly in
a 25% Ho sample, is attributed to the nuclear hyperfine interaction. They fit a stretched
exponential with exponent β to their relaxation data and conclude that β does not drop
below ∼ 0.8 where it would be expected to drop to ∼ 1/3 in a spin glass. Furthermore, be-
low 100 mK, where Tg is anticipated, there is very little change in the spectra. Determining
the spin fluctuation rate ν based on a dynamical Kubo-Toyabe model, shows temperature
independent fluctuations below ∼ 100 mK, also not consistent with spin glass physics.
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One commonality between our measurements and those of Rodriguez et al. is the obser-
vation of slowing dynamics as the concentration x is decreased, again possibly highlighting
the importance of random transverse fields. Otherwise, there is quite a surprising disagree-
ment between the natural interpretations of the µSR data [176] and our ac susceptibility
data. It is difficult to reconcile the clear observation of dynamics as slow as 1 mHz at ∼ 80
mK observed in our experiments with fluctuation rates of 1 MHz or more seen in µSR.
One of the main differences between our configurations is the application of magnetic field
transverse to the Ising axis or lack thereof. The magnetic fields applied by Rodriguez et
al. are all under 0.2 T, while the critical field, above which spin glass-like physics is lost
in an x = 0.167 sample is HC , 1.2 T [66] and HC might be expected to be similar or
even higher as the concentration is reduced [155]. The question becomes: is a field of 0.2
T large enough to significantly alter the dynamics of the system? Certainly we should
expect some acceleration of the dynamics in any transverse field. This question could be
answered more quantitatively in future work with the application of a transverse field to
our susceptibility measurements.

3.7 Conclusions

There are several conclusions that we would have the reader draw from the work pre-
sented in this chapter. First, it should be clear that at low concentrations x in the series
LiHoxY1−xF4, there is no exotic antiglass state as was proposed by Reich et al. [158, 58]
and Ghosh et al. [4, 5]. None of our experiments have shown the slightest hint of antiglass
physics. This is true of other experimental groups, who have found results that do not
change qualitatively between the higher concentration spin glass regime and the supposed
antiglass stoichiometry at 4.5% Ho [65, 176]. Theoretical work also shows that in an ideal
dipolar Ising model, all that should result is a spin glass [128] and that quantum effects
from random fields and the hyperfine interaction, are not sufficient to preclude such a spin
glass [155].

The source of disagreement between our results and those of Ghosh et al. [4, 5], in
particular, is not clear at this time. While sample quality has been considered as a possible
explanation, the fact that Refs. [158, 58] and Refs. [4, 5], from the same research group
on the same sample [159], are very inconsistent with each other points to an issue of
experimental error.

Instead of an exotic “antiglass”, we have shown that the physics of the x = 0.018,
0.045 and 0.080 samples is consistent with that of spin glasses. Our dynamical scaling
analyses have provided a fair degree of evidence that there is a finite temperature spin
glass transition in each of these samples (though Tg in the x = 0.018 sample is very
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difficult to determine accurately). The spin glass transition temperatures that we have
obtained match well with theory [128] and allow for a more complete picture of the phase
diagram of LiHoxY1−xF4 as is shown in Figure 3.23 and Table 3.2.

Despite the discovery of spin glass behaviour in these materials that was predicted to
exist almost 30 years ago [29], this system has still managed to surprise us with some
new and interesting physics. Unlike the canonical spin glasses, this system is found to
be immensely slow. While this may simply be a property of Ising moments at very low
temperatures, there is an interesting correlation between the intrinsic time scale τ0 and
the concentration x, with the low concentration materials slowing down immensely. We
have proposed that this is a direct consequence of the nuclear hyperfine interaction and
random fields generated by the off-diagonal part of the dipolar interaction, as suggested
by Atsarkin [169] and by Schechter and Stamp [155].

This very slow behaviour makes for challenging measurements. Surprisingly it also
brings an advantage in that the frequency window of our measurements corresponds to
temperatures relatively far from Tg. This leads to relatively narrow absorption spectra and
therefore allows us to resolve more information about the spectra than has been resolved
in most spin glass systems. In other words, we can say a great deal more about the spectra
than simply that they have a broad frequency dependence. This is highlighted by the very
interesting, though not quite complete, scaling law shown in Figure 3.16. Certainly there
is room for much conceptual work on understanding these spectra and the quantitative
effects of the nuclear hyperfine interaction and random transverse fields. Additionally, the
specific heat and its concentration independent maximum, remains a mystery that may also
be solved through a better understanding of how single-ion physics affects this material.

Finally, we note that the results of this work may provide a valuable lesson. In some
materials, it can be very important to take into account slow relaxation and not to fall into
the trap of thinking that a measurement that seems slow on usual human time scales of
seconds or minutes, is always sufficiently slow to be considered an equilibrium measurement
in the dc limit. The uniquely slow dynamics in LiHoxY1−xF4 make it incredibly difficult to
achieve a successful nonlinear susceptibility measurement [65, 125, 126], for example. Just
as theorists must worry about finite size scaling, experimentalists working in this area of
research must worry about and take into account dynamical scaling.
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Figure 3.23: (a) The full x-T phase diagram of LiHoxY1−xF4 as it is currently understood.
Note however that the region of the phase diagram showing reentrance is only speculation
and has not been studied at this point. (b) A zoomed-in view of the spin glass region of
the phase diagram. Ferromagnetic data points are from Refs. [121, 58, 114, 177]. Spin
glass transition points are taken from Refs. [125, 128] and this work. The 1.8% sample
is included with an error bar reflecting the large uncertainty in Tg. For a detailed list of
transition temperatures and corresponding references see Table 3.2. The solid lines are
guides to the eye and are not fits based on a theoretical model. The region of reentrance
from FM to SG, at 0.25 < x < 0.4, is merely hypothesized [58], based on the behaviour of
many other spin glass systems, and has not been demonstrated to exist in this particular
series of materials.
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Concentration Transition Temperature Reference
x = 0.045 Tg = 42 mK This work, [124]
x = 0.0625 Tg = 47 mK Tam and Gingras [128]
x = 0.080 Tg = 65 mK This work
x = 0.125 Tg = 109 mK Tam and Gingras [128]
x = 0.167 Tg = 129 mK Anconna-Torres et al. [125]
x = 0.20 Tg = 148 mK Anconna-Torres et al. [125]
x = 0.30 Tc = 360 mK Kjaer et al. [177]
x = 0.45 Tc = 680 mK Quilliam et al. [114]
x = 0.44 Tc = 680 mK Reich et al. [58]
x = 0.67 Tc = 980 mK Reich et al. [58]
x = 1 Tc = 1.53 K Bitko et al. [121]

Table 3.2: Summary of transition temperatures for LiHoxY1−xF4 as determined experi-
mentally in this work and elsewhere [124, 125, 177, 114, 58, 121] and with Monte Carlo
simulations [128].
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Chapter 4

Gapped Spin Waves in Gd2Sn2O7

In this chapter, we will discuss measurements of the specific heat of the geometrically
frustrated material Gd2Sn2O7, published in Ref. [178]. While from most points of view, this
material appears to be the quintessential isotropic, dipolar, pyrochlore antiferromagnet,
with the theoretically expected ground state ordering, the observation of spin dynamics
persisting to the lowest temperatures studied makes for a puzzling situation. Here we
show specific heat results that, when compared with linear spin wave calculations, paint
a picture of a very conventional low temperature behaviour consisting of gapped magnon
excitations that are at odds with the idea of a persistently dynamic ground state.

4.1 Persistent Spin Dynamics in Rare Earth Magnetic
Pyrochlores

In the insulating, magnetic pyrochlores, R2M2O7, the rare earth ions (R3+) occupy a lattice
of corner sharing tetrahedra. This geometric configuration results in strong frustration in
some instances, for example in the case of antiferromagnetic nearest-neighbour exchange
between Heisenberg spins [179, 88] and in the case of ferromagnetically coupled Ising mo-
ments with the easy-axis along the local [111] direction (in or out of the tetrahedra) [95].
As a result of this geometric frustration, a wide variety of magnetic behaviours, some
very interesting and unusual, are observed in rare earth pyrochlores, ranging from long
range ordered antiferromagnets to randomly frozen spin glass states to several varieties of
cooperative paramagnet [91].

The cooperative paramagnets are perhaps the most exciting and exotic states observed.
The ferromagnetically coupled [111] Ising systems tend to form what is known as spin
ice [95]. Such a state consists of two spins in and two spins out on each tetrahedron,
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but this is far from a unique configuration, exhibiting a macroscopic degeneracy of states.
The system is therefore unable to find long range order (LRO) and remains a cooperative
paramagnet. The name ‘spin ice’ is derived from a direct analogy to the hydrogen bonds in
water ice. Specific materials that exhibit spin ice physics are Dy2Ti2O7 [94], Ho2Ti2O7 [95]
and Ho2Sn2O7 [180] as well as the more recently discovered Pr2Sn2O7, a possible dynamic
spin ice [181].

The material Tb2Ti2O7, meanwhile, avoids ordering down to the lowest temperatures
studied, maintaining a dynamic spin liquid state [108]. Yb2Ti2O7, while exhibiting a sharp,
first-order transition at ∼ 250 mK, does not show any signs of a conventionally ordered
state at low temperatures [109], suggesting that it too possesses a spin liquid ground state
or at least some kind of “hidden order”. This material will be discussed in more depth in
Appendix E.

Surprisingly, several stoichiometric magnetic pyrochlore oxides have shown a tendency
to develop a spin glass state. Such materials include Y2Mo2O7 [103] and Tb2Mo2O7 [182],
which were originally thought to be largely free of quenched randomness. It has since been
realized that these materials do possess a certain level of disorder (on the order of 5%) in
the bond lengths between magnetic ions. While this is a small level of disorder relative
to what is required for many other spin glasses [47, 85], it has become understood that
geometrically frustrated materials can be very sensitive to quenched randomness and the
formation of a spin glass state [100, 101].

There is also a set of rare earth pyrochlores that show much more conventional be-
haviour, that is a transition to long range antiferromagnetic order. Materials in this class
include Gd2Ti2O7 [183, 184], Gd2Sn2O7 [6, 185] and Er2Ti2O7 [186]. Typically these ma-
terials have a critical temperature TC that is depressed relative to their Curie-Weiss tem-
perature θCW , by the effects of geometric frustration. The level of frustration is often
parametrized by the frustration index f = θCW /TC .

A common trend that has been observed in essentially all of these systems, is an appar-
ent persistence of spin dynamics down to the lowest temperatures [187, 188, 189, 190, 109,
183, 191, 192, 193]. Low temperature fluctuations in these sytems were discovered by three
experimental techniques that are often used to differentiate between static and dynamic
spins: muon spin relaxation/resonance (µSR), Mössbauer spectroscopy and neutron spin
echo (NSE) experiments. Together, these measurements are able to cover a range of time
scales from more than a THz down to 100 kHz or lower [194] and are therefore very well
suited to differentiating dynamic magnetism (expected in paramagnets and spin liquids)
from frozen ground states (as would generally be seen in spin glasses and long range ordered
magnets such as ferromagnets and antiferromagnets).

µSR is a local probe that works in a similar way to NMR. Instead of using one of the
nuclear isotopes found in the sample, however, µSR experiments deposit a polarized muon
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(µ+) inside the sample (it will come to rest in sites of low electric potential) and await
its decay and the emission of a β-particle. The angle and time at which the positrons are
emitted gives information on the precession of the muon, which gives information on the
local fields inside the material. The relaxation rate of the muon precession can be used
to determine the fluctuation rate of the magnetic moments inside the material in a wide
range of frequencies, in principal from over 100 GHz to less than 100 kHz [194].

Mössbauer spectroscopy takes advantage of the Mössbauer effect, where, for select
isotopes, absorption and emission of a gamma ray (through certain nuclear events) can be
recoil-free, permitting resonance to occur [45]. The recoil energy of emitted photons from
the source must be smaller than the linewidth of the relevant nuclear event or else there will
be no reabsorption of the gamma rays by the isotopes in the sample. The photons can be
Doppler shifted by oscillating the source to allow these resonances to occur. The transition
will occur between the ground state of a nuclear isotope (with spin Ig, nuclear magnetic
dipole moment µg and nuclear electric quadrupole moment Qg) and a metastable excited
state (with different spin Ie and moments µe and Qe). The nuclear spin states will be split
in energy by the interactions with their environment and these must be matched by the
Doppler shift in order to meet the resonance condition and for absorption to occur. Thus a
Mössbauer spectrum can be used to determine these energy splittings. Hyperfine splittings
indicate “static” magnetic order, or at least that fluctuations are slower than the lower
frequency limit of Mössbauer spectroscopy (the Larmor frequency of the particular nuclear
isotope used). When fluctuations are faster, the hyperfine couplings can be “motionally
narrowed”, giving a measure of the fluctuation rate of the surrounding spins. The typical
frequency range of applicability of Mössbauer spectroscopy covers roughly 100 MHz to 10
GHz [194].

Finally neutron spin echo experiments use polarized neutrons and magnetic fields to
greatly enhance the energy resolution of inelastic neutron scattering. This permits the
observation of relatively low frequency (therefore low energy) spin excitations.

Perhaps it is not too surprising to discover PSDs in a spin liquid ground state like that
of Tb2Ti2O7 or in the hidden order ground state of Yb2Ti2O7, as there is no reason to
believe that these are not reasonably dynamic ground states. The spin ice materials are
also cooperative paramagnets, though the observation of glassy relaxation on much slower
time scales [195] (with ac susceptibility) makes the observation of low temperature spin
fluctuations fairly surprising [196, 193]. Still more unusual is the discovery that the spin
glass ground states of Tb2Mo2O7 (TMO) and Y2Mo2O7 (YMO) possess PSDs [187]. A spin
glass ground state typically has temperature dependent fluctuations and is eventually, at
low enough temperatures, static on the time scale accessible by µSR. Yet, the pyrochlore
spin glasses YMO and TMO show evidence (more pronounced in TMO), of a temperature
independent relaxation rate in µSR, well below the glass transition temperature [187]. It
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Figure 4.1: The magnetic ions of the pyrochlore lattice sit on a network of corner sharing
tetrahedra.

would not be inconceivable to imagine that while much of the system is freezing randomly
below the spin glass transition temperature, there are regions that remain dynamic down
to the lowest temperatures.

The observation of PSD’s in some pyrochlores such as Gd2Ti2O7 (GTO) [190, 183],
Gd2Sn2O7 (GSO) [192, 6, 191] and Er2Ti2O7 (ETO) [186] is most perplexing as these
materials have been found in neutron scattering measurements [184, 185, 197] to display
long range magnetic order below temperatures of 1.0 K, 0.74 K and 1.1 K, respectively.
Conventional wisdom suggests that collective spin wave excitations, hence spin dynamics,
should freeze out in the limit of zero temperature in such magnets, particularly in the
presence of single-ion anisotropies and the long range dipolar interaction. The origin of
the persistent spin dynamics (PSDs) in these ordered materials remains a major open
question in the study of highly frustrated insulating magnetic oxide materials [6].

While not a pyrochlore, it is worth noting that the antiferromagnetic garnet Gd3Ga5O12

(GGG), which shows spin glass physics [7] as well as rather extended magnetic correlations
below 140 mK [8] that are now theoretically rationalized [198], also exhibits PSD’s below
100 mK [199]. Much more of the physics of GGG will be discussed in Chapter 5.

The material Gd2Sn2O7 (GSO) seems an obvious system in which to investigate these
unusual spin dynamics as it has shown mostly conventional behaviour. It is seen to be a
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good realization of a Heisenberg antiferromagnet on the pyrochlore lattice, with relatively
small single-ion anisotropy [200]. It shows a single phase transition [6, 188] to a long
range ordered state found in neutron scattering experiments [185] to be the theoretically
predicted Palmer-Chalker (PC) ground state [201]. Nonetheless, the observation of PSDs
in GSO calls into question this simple picture. Furthermore, previous measurements of the
magnetic specific heat Cm(T ) on this material between 350 mK and 800 mK (see Fig. 4.6)
were found to be parametrized by a Cm(T ) ∼ T 2 law [6]. Such a temperature dependence
of Cm is unusual since conventional antiferromagnetic magnon excitations, with or without
an anisotropy energy gap ∆, lead to Cm(T ) ∼ T 3 or Cm(T ) ∼ exp(−∆/T ) respectively
for T < Tc. Such an unconventional Cm(T ) behaviour further argues for the existence of
unusual low-energy excitations in GSO. Quite interestingly, the related material Gd2Ti2O7,
which also exhibits PSD’s, displays Cm(T ) ∼ T 2 for 100 mK < T < 500 mK [183].

In contrast, del Maestro and Gingras [27] argue that the lowest temperature ∼ 350 mK
considered in Ref. [6] for GSO corresponds to the upper temperature limit above which
multi-magnon excitations become important. Their calculations show that in the tem-
perature range where the specific heat was measured by Bonville et al. [6], multi-magnon
excitations obscure the true low temperature limit of the specific heat. Calculations using
the microscopic spin Hamiltonian [201, 185, 27] that describes the experimentally observed
ground state of GSO [185] predict that Cm should begin to drop away exponentially ex-
actly at or just below 350 mK as gapped magnetic excitations are quenched with lower
temperature [27].

Here we discuss an investigation of the nature of the low-energy spin excitations in GSO
through measurements of specific heat down to 115 mK. The results show an exponentially
dropping specific heat at low temperature and, when compared with theoretical calcula-
tions [27, 178], confirm the picture of conventional, gapped antiferromagnetic magnons in
Gd2Sn2O7.

4.2 Previous Work on Gd Pyrochlores

Because the Gd3+ ion has a half filled 4f shell, Hund’s rules imply that it will have
maximized the spin to S = 7/2 and it will therefore have zero orbital angular momentum
L = 0. Of course this only applies as a first approximation. In reality, there will be
some intermixing with other states of finite orbital angular moment as a result of intra-
orbital spin-orbit coupling. However, the Gd3+ moments do have very little orbital angular
momentum and they are therefore only weakly affected by the surrounding crystalline
electric field. This makes the moments largely isotropic S = 7/2 (large spin) moments
with a rather small single ion anisotropy, hence well approximated as classical Heisenberg
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Figure 4.2: Three equivalent manifestations of the Palmer-Chalker ground state [201] (three
others are obtained by flipping all the spins), a 4-sublattice Néel state which is understood
to be the magnetic ground state of Gd2Sn2O7 [185].

spins.
The nearest-neighbour exchange is found to be antiferromagnetic in these systems.

Dipolar interactions are very significant and further exchange interactions such as J2 and
J31 are generally assumed to be important [27]. The theoretically predicted behaviour of
the dipolar Heisenberg pyrochlore antiferromagnet has been an issue of much debate. One
of the main contenders is a single transition to the k = 0 Palmer-Chalker (PC) state [201].
Other behaviours have also been proposed [202, 203, 204, 205]. Notably, a k =

[
1
2 ,

1
2 ,

1
2

]
or

k = π state has been proposed to be important and possibly to exist in certain situations,
though calculations often indicate that the eventual ground state should be the Palmer-
Chalker state [204, 203].

The M4+ ion in the Gd2M2O7 materials can take several different forms. Here we
will discuss four variants, all with non-magnetic M -ions: Ti4+, Sn4+, Hf4+ and Zr4+.
While Gd2Ti2O7 appears to be the most exotic of these materials, we are concentrating
primarily on Gd2Sn2O7 in this work. In all four compounds, there are transitions to
long range order, though the case of Gd2Ti2O7 is a fair bit more complicated. These
transitions are all at roughly 1/10 of the Curie-Weiss temperature giving a frustration
index of f = TN/θCW , 10.

4.2.1 Gd2Sn2O7

The stanate pyrochlores R2Sn2O7 are, as of yet, not available as good quality single crystals
since the growth process tends to result in evaporation of tin. Thus all the work done on
Gd2Sn2O7 (GSO), including our own, has been performed with polycrystalline or powder
samples. High temperature susceptibility measurements of Gd2Sn2O7 give a Weiss constant
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of θCW , −10 K. This can be used to determine a nearest-neighbour antiferromagnetic
exchange interaction as

J1 =
3θCW

zS(S + 1)
= −0.273 K (4.1)

where z = 6 is the number of nearest neighbours (or coordination number of the lattice) [6].
Glazkov and coworkers performed ESR experiments on polycrystalline samples of very

dilute GSO or (Gd0.005Y0.995)2Sn2O7 in order to probe the single ion or crystal field Hamil-
tonian [200]. Using the single ion Hamiltonian

HSI = gµBH · S + B0
2O

0
2 + B0

4O
0
4 + . . . (4.2)

they were able to effectively simulate the ESR spectra and determine crystal field parame-
ters. This is clearly an oversimplified Hamiltonian as symmetry allows for O3

4, O0
6, O3

6 and
O6

6 terms to exist as well. It is likely, however, that those two crystal field terms are dom-
inant and apparently sufficient. They determined B0

2 = 47 ± 1 mK and B0
4 = 0.05 ± 0.02

mK. The second term in equation 4.2 may also be written, more transparently, as DS2
z ,

with D = 3B0
2 . Then the single ion anisotropy is D = 140 mK.

Gd2Sn2O7 is characterized by a large and very sharp peak in C indicative of a first-
order phase transition [188]. This transition is superimposed on a large, broad feature in
the specific heat, which could signal the onset of short-range correlations, as is common in
geometrically frustrated materials [188]. Alternatively, it may be related to the crystal field
energies. This broad feature is responsible for a large part of the entropy in the system,
with only 40% of the total R ln 8 entropy accounted for by the transition and below.

Below the phase transition, Bonville et al. found a specific heat that drops out as
T 2 [188]. This is to be contrasted with the T 3 behaviour expected of spin waves in a short
range antiferromagnet, T 3/2 expected of ferromagnetic magnons or exponential behaviour
that should be expected when the long range dipolar interaction is predominant, making
T 2 a fairly unexpected temperature dependence. At the lower end of their data, a down-
turn is visible, though they have attributed this to experimental uncertainty (specifically
thermometry issues). The specific heat data of Bonville et al. is shown in Figure 4.6.

The results of Mössbauer spectroscopy and µSR experiments, also call into question
the notion of a conventionally ordered ground state in Gd2Sn2O7 [192, 188]. A Mössbauer
spectrum taken by Bertin and coworkers [192] at a temperature of 27 mK is shown in
Figure 4.3(a). The four distinct nuclear energy levels, resulting from the hyperfine interac-
tion HHF and the nuclear quadrupole electric interaction HQ, are found to be at 0, 0.05,
12.1 and 15.9 mK. The spectrum taken at 27 mK, indicative of the population of different
energy levels, is best fit with an effective hyperfine temperature THF = 90 mK, rather
than the temperature of the sample itself. This suggests that the nuclear moments are out
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Figure 4.3: (a) Mössbauer spectrum of Gd2Sn2O7. The solid line is the best fit employing
an effective hyperfine temperature of 90 mK, whereas the sample is held at 27 mK [192].
(b) The µSR relaxation rate λZ as a function of temperature for Gd2Sn2O7 showing a
temperature independent relaxation rate of 0.6 MHz at low temperatures [6].

of equilibrium with the lattice. Bertin et al. [192] propose that the electronic spins are
fluctuating on a time scale τ , and the nuclear moments relax on a time scale T1 and that
these two time scales are quite similar: τ , T1. This makes it difficult for the nuclear spin
to come into equilibrium with the lattice temperature and implies a dynamic magnetic
ground state.

The µSR relaxation rate λZ , is also somewhat surprising. Above the transition tem-
perature, the relaxation rate is roughly constant at 2 MHz. The relaxation rate peaks at
around 1 K and then drops down to a temperature-independent value of 0.6 MHz [6] (data
shown in Figure 4.3(b)). There are some oscillations in the µSR asymmetry at very short
times which comes about from static order. However, it is the exponential relaxation, that
likely results from interaction with spin waves, and its lack of temperature dependence
which is most surprising. Bonville et al. suggest that this is likely explained by Gd2Sn2O7

having an unusual spin wave spectrum possessing spin waves with a finite density of states
at zero energy [188].

Thus the work of Bertin, Bonville and coworkers [192, 188], seems to imply a somewhat
unusual ground state as characterized by PSDs and an unusual T 2 dependence of the
specific heat. However, Wills et al. [185] have performed neutron diffraction experiments
on Gd2Sn2O7 and found that the results are perfectly refined to the Palmer-Chalker (PC)
or cΓ7+ state [201]. In the PC state, the spins sit in the local xy-plane (the local z-
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axis points out of the tetrahedra) and are parallel to certain edges of the tetrahedra.
For nearest-neighbour antiferromagnetic Heisenberg exchange on the pyrochlore lattice,
one expects high frustration and a spin liquid ground state. However, when the dipolar
interaction is included, the system is predicted to order in the PC state [201]. Thus
Gd2Sn2O7 appears, through neutron scattering, to be the quintessential dipolar Heisenberg
pyrochlore antiferromagnet. The Palmer-Chalker state is also largely consistent with the
Mössbauer results which suggest that the spins are oriented perpendicular to the electric
field gradient along the local z-axis [192]

4.2.2 Gd2Ti2O7

In the study of magnetic pyrochlore oxides, the titanates have generally been studied
first, with the stannates receiving more recent attention [91]. This is likely a result of
the problems with growing good single crystals of R2Sn2O7 materials. Thus, Gd2Ti2O7,
available in single crystal and powder form, was the first material in which research groups
attempted to study the ideal dipolar Heisenberg pyrochlore antiferromagnet [202]. As it
turns out, Gd2Ti2O7 exhibits more complicated physics than does Gd2Sn2O7, suggesting
that it is described by a more complex model.

Initially, only one transition was observed at ∼ 1 K in a polycrystalline sample [202].
However, there were likely problems of sample quality, since, more recently, groups have
observed two phase transitions at TC1 = 1.02 K and TC2 = 0.74 K in both polycrystalline
and single crystal samples (see for example Refs. [206, 183] and data plotted in Figure 4.4).
The lower transition is particularly sharp, likely a first-order phase transition, where the
higher transition is consistent with a continuous or weakly first-order phase transition [183].
Below 0.7 K, the specific heat appears to follow a T 2 power law [206, 183].

Application of a magnetic field yields a rather complicated phase diagram, presumably
with various ordering wavevectors [206, 207]. See Figure 4.4 for the phase diagram obtained
on a powder sample [206]. For a given orientation of applied field there are three ordered
phases [207], whereas in the polycrystalline case, it appears that there are four ordered
phases in total [206]

Early neutron scattering studies of Gd2Ti2O7 by Champion et al. found the ground
state in zero field to be ordered with a k =

[
1
2 ,

1
2 ,

1
2

]
magnetic propagation vector [208].

They concluded that the spins are fully ordered in the (111) kagomé planes, with the spins
at 120◦ angles to each other and tangent to the local [111] axes. The interstitial spins in
between the kagomé planes, however, were found to have no net magnetic moment. In a
later work, Stewart et al. have pointed out that the 1-k structure selected by Champion et
al. cannot be distinguished from more complex multi-k structures (2-, 3- and 4-k) by Bragg
diffraction [184]. They use diffuse neutron scattering to determine that the ordering is a
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Figure 4.4: (a) The phase diagram of polycrystalline Gd2Ti2O7 in magnetic field, taken
from Reference [206]. (b) The specific heat of single crystal Gd2Ti2O7 in zero field, showing
transitions at 1.0 K and 0.7 K, taken from Reference [183].

4-k structure which can be constructed from all four symmetry related 1-k structures. In
this 4-k structure, the disordered interstitial spins are combined into disordered tetrahedra.
Furthermore, below ∼ 0.7 K, a weak

[
1
2 ,

1
2 ,

1
2

]
reflection indicates that the lower transition

TC2 is the result of very weak ordering of those interstitial spins [184].
Clearly GTO does not order in the Palmer-Chalker state (a k = 0 ordering), sug-

gesting that this material is not well modeled as an ideal dipolar Heisenberg pyrochlore
antiferromagnet model. In between the two transitions a full 1/4 of the Gd3+ moments are
completely disordered and below TC2 they are only partially ordered. It seems that there
must be more at play, additional important interactions, for example.

µSR experiments performed by Yaouanc et al. on GTO, also show unusual behaviour [183].
At high temperature, as expected, the µSR spectra are found to be described by a sin-
gle exponential decay at high temperature in the paramagnetic state. Approaching 1 K,
the relaxation rate increases as fluctuations of the magnetic moments slow. Below TC1,
the relaxation is better described by a stretched exponential with exponent α ∼ 0.75 and
below TC2, α ∼ 0.5. Oscillations do develop below TC1, indicative of static order, but
a stretched exponential relaxation, largely temperature independent, persists to very low
temperatures. The relaxation rate seems to plateau at about 0.4 MHz, a lower frequency
than the 0.6 MHz seen in Gd2Sn2O7 but nonetheless indicative of persistent spin dynamics
(PSDs). Yaouanc et al. propose a phenomenological density of states of spin excitations
to account for the µSR results as well as a T 2 specific heat [183].

In contrast to Gd2Sn2O7, Mössbauer spectroscopy results on Gd2Ti2O7 are quite well
behaved. The effective hyperfine temperature that is obtained from fitting the spectrum
at low temperatures matches well the temperature of the sample [192]. The Mössbauer ex-
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periments show the existence of two distinct Gd3+ moments for TC2 < T < TC1, consistent
with 1/4 of the spins remaining disordered in that temperature range [6].

4.2.3 Gd2Hf2O7 and Gd2Zr2O7

The materials Gd2Zr2O7 (GZO) and Gd2Hf2O7 (GHO) have not received very much atten-
tion and Durand et al. [209] are one of very few groups to have investigated their magnetic
properties at low temperature. The specific heat of each was found to exhibit a large,
broad feature centred at about 1 K, giving way to a single sharp ordering transition at
0.769 K (in GZO) and 0.771 K (in GHO). Durand et al. [209] have extracted the nearest-
neighbour exchange interaction (neglecting further neighbour interactions except for the
dipolar interaction) in these two materials from the higher temperature specific heat and
from susceptibility measurements. In the case of GZO, they obtain J1 = −112 mK from
specific heat and J1 = −122 mK from susceptibility (which shows a Weiss constant of
θW = −7.7±0.5 K). In the case of GHO, they obtain J1 = −117 mK from the specific heat
and J1 = −116 mK from the susceptibility (θW = −7.3 ± 0.8 K). In both these materials
(and in GSO and GTO) the frustration index f = TN/θW is roughly 10.

Thus the two materials are extremely close in behaviour. One notable difference be-
tween the two is that the peak in the specific heat of GZO is a fair bit larger than that
of GHO. While these materials have ordering temperatures closer to that of Gd2Ti2O7,
there is no indication of a double transition, suggesting that the physics of these mate-
rials is more similar to that of Gd2Sn2O7. The magnitude of the ordering transitions is
also smaller in these systems so that the transitions could be continuous where GSO has
a clearly first-order, discontinuous phase transition, with a very large specific heat peak.
Lutique et al. also measured the specific heat of GZO, though they did not measure to
low enough temperatures or with high enough resolution to observe the ordering feature
around 1 K [210].

4.3 Spin Wave Theory

When magnetic materials are treated in mean-field theory, the spins are taken as essentially
classical entities, and the ground state consists of spins fully magnetized along particular
directions. However, spins are quantum mechanical and this classical picture is only ac-
curate in certain situations. Take for instance, an antiferromagnetic chain, interacting via
nearest-neighbour interactions. The classical ground state would be written as

| ↑↓↑↓↑↓↑↓ . . .〉

117



However, acting on this state with the Hamiltonian

H = J
∑

〈i,j〉

Si · Sj = J
∑

〈i,j〉

[
Sz

i S
z
j +

1

2
(S+

i S−
j + S−

i S+
j )

]
(4.3)

does not return that classical ground state, as a result of the S+ and S− operators. Since
this classical ground state is not even an eigenfunction of the Hamiltonian, it clearly cannot
be the quantum mechanical ground state of the system. Essentially, the off-diagonal part of
the Hamiltonian, the raising and lowering operators, have introduced quantum fluctuations.
In the 1- and 2-dimensional cases, the Mermin-Wagner-Hohenburg theorem tells us that
there is no spontaneous broken symmetry at some finite temperature. However, in 3-
dimensions, there is a transition to long range order and the classical ground state will
at least be a good approximation of what results. The system is divided into sublattices,
each magnetized along a certain direction. For example, in a cubic lattice, there are two
sublattices and the respective spins are either up or down along the z-direction. In the
classical picture the sublattice magnetization would be maximized at zero temperature,
but when quantum fluctuations are introduced, there is a deviation of the spins away from
the z-axis and the thermal average of the sublattice magnetization is decreased [211].

In ferromagnetic systems, the classical ground state (all spins aligned or a single sublat-
tice) is in fact an eigenstate of the Hamiltonian. Thus ferromagnets do not suffer the same
reduction in magnetization due to quantum fluctuations at zero temperature. Nonetheless,
in both ferromagnets and antiferromagnets, finite temperature results in excitations away
from the ground state. Take for instance a ferromagnetic spin chain with ground state

| ↑↑↑↑↑↑↑↑ . . .〉

Simply flipping one of the spins to obtain

| ↑↑↑↓↑↑↑↑ . . .〉

does not result in an eigenstate of the Hamiltonian. Through the off-diagonal parts of the
Hamiltonian (S+

i S−
j + S−

i S+
j ), the flipped spin propagates through the lattice like a wave.

Thus these excitations are known as spin waves, and they are quantized in units of energy,
called magnons.

To treat such a problem exactly is generally impossible. The standard approach to
defining the spin excitations in a magnetically ordered material [212] is to define Boson
operators that represent excitations away from the ground state, via a Holstein-Primakoff
transformation. It is then often necessary to perform an expansion of the Hamiltonian in
linearized Boson operators. This is often justified provided that the spin quantum number
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S is relatively high. The spin fluctuations must be small relative to S and one must be in
a regime where magnon-magnon interactions are not important.

Let us take a lattice of spins where the spin at position ri on a lattice is in spin state
|sz

i 〉. The entire lattice can be represented by states of the form

ψ =
∏

i

|sz
i 〉 (4.4)

though as mentioned above, such states will not always be eigenstates of the Hamiltonian.
One such state will be our mean-field ground state. Spin wave theory consists of considering
small deviations and fluctuations away from that “ground state”. Essentially, the number
of steps away from sz = S is given by a new quantum number

ni = S − sz
i (4.5)

thus we can also define our basis states with

ψ =
∏

i

|nz
i 〉. (4.6)

Standard creation and annihilation operators can be defined as

c†|n1 . . . ni . . . nN〉 =
√

ni + 1|n1 . . . (ni + 1) . . . nN〉
c|n1 . . . ni . . . nN〉 =

√
ni|n1 . . . (ni − 1) . . . nN〉 (4.7)

Now it is practical to introduce the Holstein-Primakoff transformation [213] which con-
sists of a mapping from the spin operators S+, S− and Sz to these new Boson creation
and annihilation operators c and c†. The transformation is defined as

S+
i =

(
2S − c†

ici

)1/2

ci

S−
i = c†

i

(
2S − c†

ici

)1/2

(4.8)

Sz
i = S − c†

ici

chosen to obey the correct commutation relations.
Particularly in the case of systems with large S, one may employ a 1/S expansion and

linearize the Holstein-Primakoff transformation as

Sx
αi =

√
S/2(c†

αi + cαi)

Sy
αi =

√
S/2(c†

αi − cαi) (4.9)

Sz
αi = S − c†

αicαi
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Here, I have added the subscript α to refer to the different sublattices of the magnetic order.
For standard ferromagnetic ordering, for example, there would be only one sublattice. For
an antiferromagnet on a square or cubic lattice, one would have two sublattices. In the case
of the pyrochlore lattice and Gd2Sn2O7, one will have a 4-sublattice Néel state [201]. This
formulation now allows us to write the magnetic Hamiltonian formerly defined in terms of
spin operators in terms of these Holstein-Primakoff Bosons. Finally, Fourier transforming
the operators and diagonalizing the Hamiltonian permits one to discover the dispersion
relations ε(k) of different spin wave modes.

The remainder of this section will be a summary of the theoretical calculations done
by Del Maestro et al. specific to Gd2Sn2O7 and related systems, contained in Refer-
ences [214, 215, 27] and applied to our experiments in Ref. [178]. The magnetic Hamiltonian
employed [27]

H = Hex +Hdd +Hcf (4.10)

incorporates exchange interactions J1, J2 and J31 (J32 is assumed to be negligible and is
set to 0), the long range dipolar interaction and the crystal field anisotropy, using only the
lowest-order, B0

2 term [27].
The first step in the process of understanding the low temperature spin excitations

in a magnetic system is to identify the ground state of the system. The Néel state of
Gd2Sn2O7 is known to be the Palmer-Chalker state [185, 201] shown in Figure 4.2. Thus
the Hamiltonian is defined using four sublattices, each with a particular local coordinate
system. The interacting part of this Hamiltonian is encapsulated in the interaction matrix
J ij

αβ(Rµν
αβ). The subscripts α, β are labels for the sublattices, i, j label the spins on those

sublattices and µ, ν are the local cartesian coordinates.
Fourier transformed, linearized Holstein-Primakoff Bosons c†

α(k) and cα(k) are defined
through

c†
α(Rµ) =

1√
N

∑

k

c†
α(k)eik·(Rµ+rα)

cα(Rµ) =
1√
N

∑

k

cα(k)e−ik·(Rµ+rα) (4.11)

where rα is the position of sublattice α and Rµ is the position of the µ’th spin relative to
rα.

It is also necessary to take the Fourier transformation of the interaction matrix, which
is a highly non-trivial process because of the long range nature of the dipolar interaction.
This is accomplished [214, 215, 27] using the method of Ewald summation. For a given
wavevector k, one is left with a Hamiltonian that is defined in terms of pairs of Boson
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FIG. 4: (Color online) The spin wave excitation spectrum in
kelvin for (J2/|J1|, J31/|J1|) equal to (0.0, 0.0), (0.03,−0.03)
and (−0.03, 0.03) plotted along a high-symmetry path in the
first Brillouin zone of the FCC lattice. For the three parame-
ter sets shown there exists a finite gap to spin wave excitations
throughout the zone.

The spin wave energy gap can be analyzed more quan-
titatively by defining

∆(k) ≡ min
a

[εa(k)] (12a)

∆ ≡ min
k

[∆(k)] . (12b)

The value of ∆(k) can be investigated as a function of J2

and J31 at each of the high symmetry points described
above. As we vary J2 and J31 through some critical
values, instabilities first appear at these wavevectors of
high symmetry. The resulting gap values are shown in
Fig. 5. Although ∆(Γ) > 0 for all values of J2 and J31

studied here, the region of stability of the PC states is
defined by the observed appearance of soft modes, at
k = K = 2π/a(3/4, 3/4, 0) for ferromagnetic J2 and an-
tiferromagnetic J31. Performing a search for the mini-
mum value of the gap over the entire Brillouin zone (∆)
at each value of J2 and J31 confirms that the instability
first appears at the K-point. The effect of perturbative
second and third NN exchange interactions on the global
minimum energy gap (Eq. (12b)) along with the corre-
sponding magnitude of spin fluctuations ∆S/S (Eq. (9))
is shown in Fig. 6. Here we observe that upon reaching
a pair of critical values for J2/|J1| and J31/|J1|, the ex-
citation gap is suppressed to zero (top panel), and diver-
gent spin fluctuations ensue (bottom panel). The values
of J2 and J31 corresponding to ∆ → 0 can be identi-
fied, and are best described by the linear relationship
J31 = 0.750J2 − 0.077|J1|. This line defines the phase
boundary between a sector of stability for the k = 0 PC
ground states, and a region characterized by instabilities
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FIG. 5: (Color online) The magnitude of the lowest spin wave
excitation energy ∆(k) in kelvin at various high symmetry
points in the first BZ plotted in the J2−J31 plane. All panels
are plotted with the same color scale making the slight vari-
ations in the gap at Γ = (0, 0, 0) difficult to discern. A soft
mode instability occurs only for antiferromagnetic third NN
coupling J31

at finite wavevector. In addition, this line corresponds
to the white regions in Fig. 5 where ∆ → 0, and thus
defines the limit of applicability of the spin wave calcu-
lation around the PC ground state described in Section
III.

Plotting ∆(k) along Γ → X → W → L → K → Γ with
J31 pinned to this phase boundary leads to the spectrum
shown in Fig. 7. It is apparent from this result, that
once the value of the third NN exchange constant has
been set at a suitably antiferromagnetic value, altering
the second NN exchange constant, has a relatively limited
effect on the gap and on the consequential proliferation
of quantum fluctuations about the classical ground state.

The effects of perturbative second and third NN ex-
change interactions on the appearance of soft modes and
their accompanying quantum fluctuations in a model
of a dipolar coupled antiferromagnetic Heisenberg py-
rochlore with single-ion anisotropy is globally illustrated
in Figs. 4-7. Such a model should well characterize the
low temperature behavior of Gd2Sn2O7, and we next ap-
ply these tools with the goal of searching for the uncon-

Figure 4.5: Dispersion relations ε(k) calculated for different values of the exchange interac-
tions (left), taken from del Maestro and Gingras [27]. A diagram of the pyrochlore lattice,
with exchange interactions J1, J2, J31 and J32 labelled (also adapted from Ref. [27]).

operators. However, one would like, specifically to express the Hamiltonian as a collection
of harmonic oscillators or as a Bose gas of noninteracting spin waves given by

H +H(0) +
∑

k

∑

α

εα(k)

[
1

2
+ a†

α(k)aα(k)

]
. (4.12)

These new Boson operators aα and a†
α are obtained from the c†

α and cα operators by di-
agonalizing the Hamiltonian using a generalized Bogoliubov transformation [214]. Once
these dispersion relations have been calculated, the results may be used to calculate vari-
ous thermodynamic (and dynamic) quantities in order to compare with experiment. The
comparison of this model to our experimental results will be described in Section 4.5.

The specific heat resulting from spin-wave excitations is calculated with

C(T ) = kB

∑

k

∑

a

[
βεa(k)

eβεa(k) − 1

]2

eβεa(k) (4.13)

where εa(k) is the dispersion relation for mode a and β = 1/kBT . The denominator is the
Bose-Einstein distribution function.

For short-range antiferromagnetic interactions, the low-temperature limit of the specific
heat will be C ∼ T 3. For a ferromagnet, the low temperature limit is T 3/2. An important
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consequence of the dipolar interaction in this system is that it results in an anisotropy
and this leads to gapped spin waves. The low temperature limit of the specific heat then
becomes

C ∼ 1

T 2
e−∆/T (4.14)

which at low enough temperatures, will drop out much more rapidly than T 3. This is
indicative of spin waves ‘freezing out’ at low temperatures. With no soft modes available,
spin waves become heavily depopulated as the system temperature gets well below the gap
temperature ∆.

At much higher temperatures, one eventually finds that there is a high density of
magnons excited in the system and thus they begin to interact with one another. Thus
above a certain temperature, linear spin wave theory begins to lose its descriptive power.

4.4 Experiment

Polycrystalline samples of Gd2Sn2O7 were obtained from Linton Corruccini at the Uni-
versity of California, Davis. They were prepared by solid state reaction as is detailed in
Reference [216]. Gd2O3 and SnO2 were mixed in stoichiometric ratio, pressed into pel-
lets, and then fired in air for 48 hours at 1350◦C. The pellets were then reground and
the process repeated. Powder X-ray diffraction spectra taken after the two firings, were
indistinguishable. All peaks were indexed to space group Fd3̄m, with the size a of the
cubic unit cell a = 10.460 Å, with no impurity peaks detectable at the 1% level. High
temperature susceptibility measurements were also performed at UC Davis and yielded a
magnetic moment of 7.95µB for Gd3+ in GSO, close to the expected free-ion moment of
7.94µB.

Our specific heat measurements were performed at the University of Waterloo, using the
quasi-adiabatic technique. A 1 kΩ RuO2 resistor was used as thermometer and calibrated
to a commercially calibrated, LakeShore germanium resistance thermometer (GRT). A
10 kΩ metal-film resistor was used as a heater. The sample was suspended from thin
nylon threads and the heater and thermometer were fixed directly to the sample. Leads to
the thermometer and heater were made from 6 µm diameter, 1 cm long NbTi wires. The
sample was weakly heat-sunk to the mixing chamber of a 3He/4He dilution refrigerator with
Pt0.92W0.08 wire, chosen for its insignificant contribution to the addendum. The addendum,
due to other components such as heater and thermometer, was determined to be less than
2% of the sample’s heat capacity in the worst case at around 120 mK and thus does not
affect the results of our analysis.

122



Slow thermal relaxation within the sample was observed (with a relaxation time con-
stant τInt ∼ 120 s at 200 mK). The thermal link to the cryostat was chosen so that the
relaxation time of the sample temperature to cryostat temperature, τExt, would be much
longer than τInt, thereby minimizing the temperature gradient within the sample. A double
exponential form was fit to the sample’s temperature as a function of time after a heat
pulse and the longer exponential was extrapolated to zero time, giving a measure of the
sample’s heat capacity. The data presented here was taken using a long time constant
τExt , 20τInt. Another experiment performed with τExt , 5τInt resulted in a slightly noisier
measurement, yet the specific heat in both measurements overlapped within the estimated
error bars of the data, ruling out significant inaccuracies due to the slow thermal relax-
ation in the sample. More details on the experimental set-up and error analysis are given
in Chapter 2 and Appendix C.

4.5 Results and Analysis

Our specific heat results, shown in Fig. 4.6, are largely consistent with previous work [6],
though there is a 10 to 15% systematic discrepancy between the data sets. Our measure-
ments, however, extend to considerably lower temperature (∼ 115 mK) and allow us to test
the proposal of gapped magnon excitations [27]. We observe below ∼ 350 mK a deviation
from the T 2 behaviour describing the data between 350 mK and 800 mK as previously
reported [6]. The specific heat decreases also faster than the T 3 power-law expected for
conventional gapless antiferromagnetic magnons. This already suggests that the specific
heat may be dropping out exponentially, indicating a gapped spin-wave spectrum.

At the lowest temperatures an upturn in C(T ) becomes apparent and can be ascribed
to a nuclear contribution, CN(T ), stemming largely from the nuclear electric quadrupole
interaction and, to a much lesser extent, to the nuclear hyperfine interaction. By properly
parametrizing this term and subtracting it from the total specific heat, we can isolate the
contribution from the electronic moments.

Our first attempt to understand this term is through a calculation based on 155Gd
Mössbauer spectroscopy experiments [43, 192]. Those experiments find a nuclear quadrupole
electric splitting of -4.0 mm s−1 [43, 192]. More specifically, the four nuclear states (for this
isotope, I = 3/2) are split with energies 0, 0.05, 12.1 and 15.9 mK as a result of both nuclear
quadrupole and nuclear hyperfine interactions [192]. There is one other naturally occurring
isotope of Gd that should also contribute to the nuclear specific heat, 157Gd, which, like
155Gd, has spin I = 3/2. The ratio of the nuclear dipole moments is µ157

N /µ155
N , 0.8 and

the ratio of quadrupole moments is Q157
N /Q155

N , 1.1 [217]. The quadrupole interaction is
expected to be proportional to QNI2

z where the local [111] z-direction points to the center
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Figure 4.6: Specific heat of Gd2Sn2O7 as a function of temperature from this work (blue
circles) between 115 and 800 mK. Previously measured data at higher temperatures is
plotted for comparison (green diamonds) [6]. The T 2 power law previously proposed (dot-
ted red line) and a T 3 power law (dashed blue line) are also plotted for comparison. The
upturn seen below 150 mK (solid line, see text) results from the nuclear electric quadrupole
interaction.

of the Gd tetrahedra. While generally, the nuclear electric quadrupole Hamiltonian is

HQ ∝ (3I2 − I2
z ) + η(I2

− + I2
+) (4.15)

there are no Ix and Iy (or I−, I+) terms in the nuclear electric quadrupole interaction due
to axial symmetry of the Gd magnetic site [43]. The component I2 affects all energy levels
equally since both 155Gd and 157Gd have I = 3/2.

The nuclear hyperfine interaction is proportional to µNI · J . However, in the Palmer-
Chalker ground state of GSO [201], the electronic moments are ordered perpendicular to
the local z-direction, so to a good approximation, we can simply write the nuclear hyperfine
term proportional to µNIx. Thus the total nuclear Hamiltonian can be assumed to take
on the simple expression

HN = aµNIx + bQNI2
z (4.16)
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Figure 4.7: log(CT 2) plotted versus 1/T . The low temperature limit of the magnetic
specific heat is parametrized by a phenomenological form Cm ∝ (1/T 2)e−∆/T , which
appear as a straight line on the above plot. The specific heat is plotted after a subtraction
of a nuclear contribution A/T 2 where A = 1.63 × 10−4 JK/mol Gd (circles). The total
specific heat before subtraction of the nuclear contribution is also shown (squares). The
linear fit is performed between the lowest temperature measured and 250 mK and gives
∆ = 1.40± 0.01 K.

which contains only two unknowns, a and b. We have calculated the nuclear contribution,
CN(T ), to the total specific heat by choosing coefficients a and b such that the resulting
eigenvalues of HN come closest to matching the above energy splittings for 155Gd obtained
by Bertin et al. [192]. The interactions are then scaled by the ratios of nuclear moments
to obtain the coefficients for the nuclear Hamiltonian of 157Gd. Thus, from the nuclear
Hamiltonians for each isotope H155

N and H157
N , we can obtain energy levels and specific heat

contributions form each isotope, C155
N and C157

N . Finally, we multiply these specific heats
by the respective natural isotopic abundances and add to obtain the total nuclear specific
heat CN(T ).

At temperatures much higher than 16 mK, the nuclear contribution CN(T ) to C be-
haves as CN = AT−2 with, based on the calculation above, A , 1.35× 10−4 JK/mol Gd.
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Perhaps due to uncertainties in the nuclear energy levels determined by Mössbauer spec-
troscopy [192], this value of A does not result in a good parameterization of the nuclear
contribution to the specific heat. In an alternative analysis, we keep A as a free parameter.
CN(T ) can be quite reasonably subtracted from the total C(T ) at these temperatures since
the hyperfine coupling between the nuclear and electronic moments is only a few mK. As
a first rough indicator of a gapped excitation spectrum, we note that the electronic part
of C can be parametrized at low temperature by

Cm(T ) ∝ (1/T 2)e−∆/T (4.17)

as in, for example, conventional colinear antiferromagnets with single ion anisotropy or
compared with the low-temperature limit of the theory in Section 4.3.

A plot of log(CT 2) versus 1/T should then give a straight line and this appears to
be the case if A is chosen to be 1.63 × 10−4 JK/mol Gd as shown in Fig. 4.7. This phe-
nomenological value of A is quite close to the “calculated” value of 1.35×10−4 JK/mol Gd.
The discrepancy is likely reasonable considering the uncertainty on the parameters in the
calculation and the limited amount of data in the temperature range where the nuclear
contribution becomes dominant. Alternatively, since the Mössbauer experiments on which
this calculation was based are some of the same experiments that show persistent spin dy-
namics, this anomalous quadrupole splitting may be directly related to the effect of PSDs
in this system, which remains to be explained.

The phenomenological “gap” ∆ obtained from the linear fit of log(CT 2) to 1/T is
∆ =1 .40 ± 0.01 K (see Figure 4.7). In order to quantitatively confirm that the specific
heat measured here is consistent with gapped spin waves, a theoretical analysis of the
magnetic excitations in Gd2Sn2O7 as is described in Section 4.3 and Ref. [27] has been
applied to our data1. This allows for refinement of the Hamiltonian of GSO, in particular
the second- and third-nearest-neighbour interactions J2 and J31.

As stated previously, Gd2Sn2O7, and the related material Gd2Ti2O7, are well approx-
imated as isotropic, Heisenberg antiferromagnets as the Gd3+ ions have half-filled shells
(L = 0, S = 7/2). Neutron scattering experiments have identified a k = (0, 0, 0) ordered
ground state [185] otherwise known as the Palmer-Chalker state [201]. Thus Gd2Sn2O7 is
particularly well suited to the standard protocol, described in Section 4.3, of computing
the low-lying spin excitations (magnons) about a previously identified magnetic ground
state [215, 27]. The nearest-neighbour exchange interaction is estimated from the Curie-
Weiss constant θCW = −8.6 K by J1 = 3θCW /zS(S + 1) = −0.273 K [6] where z = 6 is the
number of nearest neighbours. The strength of the dipolar interaction is derived from the

1Spin wave calculations and fitting were performed by Adrian del Maestro and Michel J. P. Gingras for
the manuscript [178]
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size of the magnetic moments and the geometry of the lattice [201, 185, 215, 27]. Though
the moments are fairly isotropic, there exists a small crystal field anisotropy resulting from
second order admixing from the electronic L=0 state to excited manifolds [200]). The
crystal field parameter B0

2 = 47 mK was used in this calculation as discussed in Ref. [27].
A general two-body spin interaction Hamiltonian was employed including interactions

up to third nearest neighbours (J1, J2 and J31), dipole-dipole interactions and single-ion
anisotropy. The techniques of linear spin-wave theory [215, 27] were employed to express
the Hamiltonian as a non-interacting Bose gas of magnons created and annihilated by
operators a†

a(k) and aa(k), respectively,

H = H(0) +
∑

k

∑

α

εα(k)

[
a†

α(k)aα(k) +
1

2

]
, (4.18)

where H(0) is the classical ground state energy and εa(k) are the spin-wave dispersion
relations. The pyrochlore lattice can be viewed as a face-centred cubic lattice with a 4-site
(the four corners of a Gd tetrahedron) basis. The summation runs over all wavevectors k
in the first Brillouin zone of the FCC lattice and the subscript α labels the four sublattice
sites. Cm(T ) is obtained from standard thermodynamic relations [215, 27]

Cm(T ) = kBβ2
∑

k

∑

a

[εa(k)]2
exp[βεa(k)]

[exp[βεa(k)]− 1]2
(4.19)

where β = 1/kBT , kB the Boltzmann constant and T the temperature.
Using a maximum likelihood estimator as in Ref. [27], the specific heat is confirmed to fit

quantitatively well by a model that includes weak ferromagnetic second-nearest-neighbour
and antiferromagnetic third-nearest-neighbour interactions (J2/|J1| = 0.01, J31/|J1| =
−0.01) as seen in Fig. 4.8. Qualitatively good fits are observed for a substantial region
of the J2 − J31 plane, and there can be little doubt about the presence of a gap to spin
excitations at low temperatures. With the above values of J2 and J31, the calculated
dispersion relation shows a true spin wave gap, ∆SW ≈ 1.24 K, at the Γ point (k = 0). The
difference between this ∆SW value and the ∆ = 1.40 K value above arises from the fact that
∆ is obtained on the basis of a phenomenological parametric form Cm(T ) ∝ (1/T 2)e−∆/T

while ∆SW is a truly physical and microscopic gap. With the values of J1, J2, J31 above,
the reduction of the classical order parameter 〈S〉 = 7/2 due to quantum fluctuations is
〈δS〉 ≈ 0.11 [215, 27].

Later work of Sosin et al., [218] has reproduced our result that the specific heat shows
gapped magnon excitations below 350 mK or so. Above 200 mK, their data are found to
match extremely well with our data. Below 200 mK, the agreement with our data is not

127



0.01

0.1

1

0.80.70.60.50.40.30.20.1

 

Figure 4.8: Theoretical curve predicted by linear spin-wave theory fit to experimental
magnetic specific heat Cm(T ) (C(T ) with nuclear contribution subtracted) of Gd2Sn2O7

with resulting values of the exchange interactions. The best fit gives J2/|J1| = 0.01 and
J31/|J1| = −0.01. Deviation from the theoretical occurs at higher temperatures, close to
the transition, where magnon-magnon interactions become important.
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perfect with our specific heat appearing to drop out more quickly. The nuclear contribution
in the data of Sosin et al. also seems to be somewhat different. If their data is used to
determine the nuclear coefficient A, in the same way, it is found to be appreciably less than
the calculated value of 1.35 × 10−4 JK/mol Gd. It seems that there may be an issue of
long equilibration times in measuring the specific heat at those low temperatures that is
leading to slightly conflicting results. Sosin et al. [218] present two different measurements
of C(T ) with different rates, slow and fast. There is slight disagreement between these two
data sets. The trend observed suggests that our measurements are slower than those of
Sosin et al. making them likely very reliable. However, there is no quantitative measure
of the speed of measurement given with which to directly compare our experiments [218].

Sosin et al. [218] also undertake a linear spin wave calculation, very similar to that
carried out by Del Maestro and Gingras [27]. Their results are slightly different in that
two of the four spin wave modes are degenerate in energy. They attribute this to a different
treatment of the single-ion anisotropy. The conclusions, however, are the same, that there
are fully gapped spin waves in Gd2Sn2O7, that manifest as an exponential drop in C(T ).
Electron spin resonance (ESR) data are also presented, finding further evidence of gapped
spin waves and results consistent with their spin wave theory [218].

4.6 Conclusion

In conclusion, the experimental results presented here, in conjunction with those from a
microscopic theoretical calculation that builds on a model that characterizes the long range
ordered ground state of Gd2Sn2O7 [201, 185, 215, 27], leave very little doubt that the bulk
excitations in this system are conventional gapped collective magnons. The following
question therefore arises: what is the microscopic origin of the temperature-independent
µSR relaxation rate [188] and the higher than expected hyperfine temperature observed
with Mössbauer spectroscopy [192]? Such gapped spin-wave excitations would typically be
expected to lead to a sharply dropping spin relaxation rate.

The peculiar T 2 behaviour of the specific heat of GTO also remains a mystery for,
in contrast to GSO, it does not exhibit a gap down to 100 mK [183] as might be näıvely
expected. It would be valuable to investigate the possibility that the T 2 power law in GTO
also gives way to an exponentially decaying specific heat at lower temperature. GSO and
GTO are perhaps at this time the two pyrochlore materials most amenable to matching
theory with experiment [215, 27]. Hence determining the cause of PSDs in these pivotal
systems may provide insight into the cause of persistent spin dynamics in other more
exotic, highly frustrated systems such as Tb2Ti2O7 [189], Tb2Sn2O7 [219], Yb2Ti2O7 [109]
and Gd3Ga5O12 (GGG) [199].
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Figure 4.9: Specific heat versus temperature of Gd2Sn2O7. More recent results of Sosin
et al. [218] also find a clear exponential drop in C(T ), confirming our conclusion that the
system possesses a long range ordered state with gapped spin waves. Two data sets from
Ref. [218] are shown, taken with two different sweep rates as well as a theoretical fit using
linear spin wave theory.
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Chapter 5

Long Range Order and Glassiness in
Gd Garnets

5.1 Disorder Free Spin Glasses

The question of whether a system can undergo a true finite temperature freezing transition
without some degree of quenched random disorder, is one that that is fundamental to many
diverse systems in condensed matter physics, including geometrically frustrated magnets,
continuously frustrated Josephson junction arrays [220, 221], structural or orientational
glasses [222] and even folding proteins [223]. As many magnetic systems are used as simple
analogies for more complicated physical systems, spin glasses provide a simple and elegant
starting Hamiltonian that results in a very unusual transition into a frozen random state,
analogous to a non-crystalline, glassy material. It has long been thought that spin glasses
require two ingredients to exist: frustration (an inability to minimize all pair-wise inter-
actions) and some form of quenched randomness [26, 25]. However, in structural glasses,
for example, the glass transition arrises out of a liquid that is largely free of imperfections,
thus there is no quenched randomness. While much about the glass transition is still not
fully solved, one important theory suggests that frustration is responsible for driving the
freezing [222]. Similarly, Josephson junction arrays, for certain values of the applied flux,
can be mapped onto a continuously frustrated XY -model and show a glass-like transition
in experiment and theory, which does not appear to require disorder [220, 221]. Thus the
discovery of a magnetic equivalent in a truly disorder-free spin glass has become a highly
attractive problem in condensed matter physics. Most of the promising candidates for such
a system have come in the form of geometrically frustrated magnetic systems.
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Figure 5.1: The garnet structure of GGG, GTLG and GAG consisting of two interpene-
trating lattices of corner sharing triangles.

5.1.1 Theory

Theoretically, there is fairly limited evidence for truly disorder-free spin glasses. For some
time, it has been recognized that geometrically frustrated materials should be quite sensi-
tive to disorder and the formation of a spin glass [100]. Starting from a perfect nearest-
neighbour Heisenberg exchange Hamiltonian H0 on a network of corner sharing triangles
or tetrahedra, it is found that the system is fully frustrated. In other words, the bonds
cannot be simultaneously satisfied pairwise. In a simple classical model, the lowest energy
states are found by cancelling out the total magnetization M s on each simplex s (triangle
or tetrahedron), so that M s =

∑
i∈s Si = 0. However, this ground state is far from unique,

possessing a macroscopic degeneracy. At the classical level, this prevents the system from
finding a long range ordered ground state and leads to a sort of spin liquid [179]. The
most famous lattice of this type is the two-dimensional network of corner sharing triangles
known as the kagome lattice. In three dimensions, examples include the pyrochlore lattice
of corner sharing tetrahedra and the garnet lattice (and other hyperkagome lattices) of
corner sharing triangles.

Introduction of perturbing terms in the Hamiltonian H′ will generally allow the system
to fall into a long range ordered state. An order-by-disorder phenomenon where fluctua-
tions select a preferred ground state may be necessary. The ensuing long range ordered
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state is known to be very sensitive to quenched disorder, however. Villain anticipated
the formation of spin glasses in geometrically frustrated systems with arbitrarily small
amounts of disorder [100]. Recent theoretical work and numerical simulations have more
firmly established the verity of this idea [101], particularly with regard to the pyrochlore
lattice.

Thus very small amounts of quenched disorder have the potential to create an almost
disorder-free spin glass in highly frustrated systems, but can a truly ideal, clean system
freeze? There is one theoretical toy model, the anisotropic Heisenberg model on the kagome
lattice, which has been shown to undergo a kind of finite temperature spin glass freezing
transition without any quenched disorder necessary [102, 224, 225]. The Hamiltonian of
this material

H = J
∑

〈i,j〉

[Sx
i Sx

j + Sy
i Sy

j + (1 + ε)Sz
i S

z
j ] (5.1)

permits coplanar solutions either with staggered chirality (the
√

3×
√

3 state) or uniform
chirality (the q = 0 state), which are favoured by the mechanism of order-by-disorder.
These two ground states permit excitations known as spin folds, where either a closed
loop of spins (weathervane modes) or an infinite line of spins rotate together out of the xy
plane, respectively. Rotating by 180◦ (a π-fold) costs zero energy, but requires the system
to overcome an energy barrier (because of the anisotropy). It turns out that as such a
system is cooled, it cannot be annealed into one of the favoured ground states since in
order to do so, it must create a thermodynamic number of π-folds, so traverse an infinite
energy barrier. Thus, the system is locked into a disordered configuration by diverging
energy barriers, as is the case for a spin glass. The freezing transition, a type of Kosterlitz-
Thouless transition, occurs at a finite temperature, making this model a truly “disorder
free” spin glass [102, 224]. This transition and glassy ground state have more recently been
verified numerically [225].

It is important to distinguish between systems that simply get very slow to respond as
the temperature is lowered and true spin glasses with a finite temperature glass transition.
Spin ice, for example, also shows glassy relaxation, in that there is relaxation observed in
the susceptibility on a scale that is “slow” by human standards [195]. However, there is
not known to be a finite temperature at which the relevant time scales diverge. Aside from
the anisotropic kagome Heisenberg model, no successful theoretical models of disorder free
spin glasses exist at this point in time.

A tantalizing possibility is that a theory of spin glasses can be found that parallels
the frustration-based approach to supercooled liquids and the glass transition [222]. This
approach is based on the idea that locally preferred order in a liquid is frustrated in the long
range by an inability to tile space. For example, one can see situations where the preferred
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structure of small numbers of molecules is icosahedral. However those icosahedral bond
angles cannot be built up into a periodic tiling of space, thereby introducing frustration.
A simple toy model for such an approach, used for numerical simulations, is known as the
Coulomb frustrated lattice model [222], the Hamiltonian of which is given by

H = −J
∑

〈i,j〉

Si · Sj +
Q

2

∑

i+=j

Si · Sj

|ri − rj|
. (5.2)

The summation over 〈i, j〉 refers to a summation over nearest neighbours whereas the long
range Coulomb part of the Hamiltonian is taken over all spins. The spins Si can be taken
as different types of spins, be it XY , Ising or others. In the absence of the Coulomb
interaction, these models would undergo ferromagnetic transitions. However, a finite Q
prohibits a net magnetization which would lead to a diverging energy in the thermodynamic
limit. Numerical simulations on such a model have shown behaviour reminiscent of glass-
forming liquids, notably stretched exponential relaxation and super-Arrhenius τ(T ) [226,
227].

The question becomes: is it possible that an analogous situation could occur in a
geometrically frustrated material? One could imagine that such a scenario could occur in
the case of corner sharing tetrahedra or triangles. The local Hamiltonian H0 consisting of
nearest-neighbour antiferromagnetic Heisenberg exchange would be satisfied by spin liquid
order with zero net magnetization on each tetrahedron or triangle. However, this locally
satisfied order would be in competition, or frustrated, over long length scales by the long
range dipolar interaction or H′. The Hamiltonian of such an imaginary system, written in
an analogous way, would be

H = J
∑

〈i,j〉

Si · Sj +
D

2

∑

i+=j

Si · Sj − 3(Si · r̂ij)(Sj · r̂ij)

r3
ij

(5.3)

We suggest, that a good candidate for such physics is the garnet Gd3Ga5O12 or GGG, a
material that is a good example of an isotropic Heisenberg antiferromagnet with an impor-
tant dipolar interaction on a geometrically frustrated network of corner sharing triangles.
The focus of this chapter will be to try to explain the unconventional glassiness that has
been seen in GGG.

5.1.2 Experimental Systems

One of the best studied “disorder free” spin glasses is the pyrochlore Y2Mo2O7. It is a sto-
ichiometric material and initially seemed to be largely free of disorder, yet it demonstrates
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completely conventional spin glass behaviour [103]. Though it has a Curie-Weiss constant
of ∼ −200 K, a spin glass transition is found at Tg = 15 K. Later work showed that there
was in fact a rather high level of randomness in the Mo-Mo bond lengths [228, 229], on
the order of 5% of the mean distance. While 5% seems a rather small percentage disorder
compared to standard spin glasses (for example in EuxSr1−xS, a dilution level of x = 0.5 is
required to induce spin glass ordering [47, 85]), the high degree of geometric frustration is
expected to make the system particularly sensitive to disorder [100, 230, 231]. The theory
and simulations performed by Andreanov et al. have verified that such a small amount
of disorder is indeed adequate to give rise to a spin glass state in Y2Mo2O7 [101]. The
pyrochlore material Tb2Mn2O7 also shows a spin glass transition [182] and has been shown
to have small amounts of bond length disorder [228]. There is a long list of other systems,
for example URh2Ge2 [232], that have been suggested to be stoichiometric or disorder-free
spin glasses at one time, but have later been found to possess important levels of quenched
disorder.

Recently, the stoichiometric material PrAu2Si2 has been discovered to show spin glass
physics without an appreciable amount of quenched disorder [233]. Irreversibility of the
susceptibility, on typical time scales of a measurement, is seen at around 3 K [233]. The
frequency dependence of χ would suggest a spin glass transition temperature closer to
∼ 2.4 K. Most interestingly, increasing disorder, by substituting Ge for Si, leads to the
opposite behaviour of what one might expect – that is, the spin glass transition is sup-
pressed and gives way to antiferromagnetic ordering [234]. A more recent work, based on
neutron scattering results, argues that the origin of the spin glass transition in this material
is “dynamical frustration” [235]. They note that the magnetic ion, Pr3+, does not have
a magnetic ground state, but rather has a singlet ground state with an excited magnetic
doublet. This makes these materials induced moment systems wherein there is a critical
exchange interaction energy Jex below which the system is a van Vleck paramagnet. It
appears that the pure Si containing compound is quite close to this threshold, whereas
PrAu2Ge2 clearly does have an induced moment, and therefore is able to order convention-
ally. Their final explanation for the spin glass freezing involves the relaxational broadening
of the singlet to doublet transition which introduces a level of dynamical frustration [235].

Perhaps some of the the most promising candidates for true, disorder-free or topological
spin glasses, are materials with large spin magnetic ions that sit on a kagomé lattice. As
discussed above, with anisotropy, such materials are predicted to exhibit unconventional
spin glass freezing [102, 224, 225]. A prime example is SrCr8Ga4O19 which shows spin glass
freezing at a temperature well below its Curie-Weiss temperature and an unconventional
T 2 power law in the specific heat below the transition [236]. Additionally, introducing site
dilution by creating SrCr8−xGa4+xO19, raises the glass temperature, despite reducing the
average strength of interactions in the system [236].
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Another example is hydronium jarosite or (H3O)Fe3(SO4)2(OH)6 [104]. Here the mag-
netic Fe3+ ions have large spin S = 5/2 and sit on a kagomé lattice. Again, unconventional
spin glass ordering is found, including a T 2 power law in the specific heat [237, 238, 239,
240]. Bisson and Wills [104] have shown that the distortion of the oxygen octahedra sur-
rounding the iron atoms, represented by distortion parameter ∆, is linearly related to the
spin glass freezing transition temperature. Under different crystal growth conditions, this
parameter is varied and Tg can be tuned from roughly 12 to 18 K. They argue that this
distortion parameter is related to the anisotropy energy felt by the Fe3+ ions and suggest
that the spin glass ordering may be that theoretically predicted for the anisotropic, kagome
system [102, 224, 225]. However, the exact origin of the anisotropy is not clear since Fe3+

is expected to have S = 5/2, L = 0. Various possible mechanisms for the generation of an
anisotropy are suggested, including anisotropic exchange, the dipolar interaction and the
Dzyaloshinsky-Moriya interaction [104].

Finally, the primary subject of this chapter, is the material Gd3Ga5O12 or GGG. This
geometrically frustrated material is known to exhibit exotic properties including uncon-
ventional spin glass behaviour [7], extended short range antiferromagnetic correlations [8]
and persistent spin fluctuations [9]. The spin glass behaviour is surprising given the small
amounts of disorder in the system, largely consisting of a 1-2% off-stoichiometry of Gd3+

ions on the Ga3+ sites.
One might jump to the conclusion that GGG, like Y2Mo2O7, exhibits a sensitivity

to small levels of disorder that results in a spin glass transition. However, Y2Mo2O7

has been seen to possess rather conventional spin glass behaviour, where GGG has much
more unusual properties. We would like to consider a more exciting possibility: that the
glassiness in GGG may be intrinsic to the system and independent of quenched disorder.
We consider that the glassiness might be a result of the locally favoured spin liquid order
being frustrated at long length scales by the dipolar interaction in analogy to the frustration
based approach to glass-forming liquids [222].

5.2 Past Work on GGG

The earliest low temperature measurements on GGG were performed by Kinney and
Wolf [242]. From susceptibility measurements they estimated that the important exchange
interactions in the system were J1 = 0.107 K, J2 = −0.003 K and J3 = 0.010 K. Of
course, because these exchange interactions are small, yet the Gd3+ moments are quite
large, there is a very significant dipolar interaction. Because Gd3+ has a half-filled valence
shell, there is very little orbital angular momentum component to the moments, making it
very insensitive to crystal field effects. In reality, there will be some mixing with states of
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Figure 5.2: The phase diagram in magnetic field of GGG. Phase boundaries are taken from
Ref. [241]. Shown are regions of paramagnetic (PM), spin glass (SG), spin liquid (SL) and
antiferromagnetic (AFM) behaviour. The dashed lines are indicators of short range order
from specific heat and susceptibility measurements [241].).

finite L resulting in some single ion anisotropy. This anisotropy is small and is thought to
be fairly insignificant [243, 244]. Thus it has been accepted for some time that the relevant
Hamiltonian of GGG is

HGGG =J1

∑

〈i,j〉′
J i · J j + J2

∑

〈i,j〉′′
J i · J j + J3

∑

〈i,j〉′′′
J i · J j

+
µ0g2

Jµ2
B

8π

∑

i+=j

J i · J j − 3(J i · r̂ij)(J j · r̂ij)

r3
ij

. (5.4)

In the specific heat, Kinney and Wolf [242] found no ordering feature down to a tem-
perature of ∼ 350 mK, only a broad feature centered at 800 mK, despite the fact that the
Curie-Weiss temperature was θCW = 2.25 K. Clearly the material exhibits a fair degree of
frustration. Since then, no indication of a sharp ordering feature has been found down to
temperatures as low as 50 mK [7].

Many of the low temperature bulk measurements taken on GGG in zero field point
to some kind of unconventional spin glass transition. Schiffer et al. have measured ac
susceptibility (χ), nonlinear susceptibility (χ3) and specific heat [7]. The ac susceptibility
shows glassy relaxation with a frequency dependent peak in χ′. If one fits a scaling law
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of the form f = f0(Tf/Tg − 1)zν to the peak (or freezing) temperatures Tf as a function
of measurement frequency, assuming a dynamical exponent of zν , 8, one obtains a glass
temperature of roughly 140 mK. This quick analysis is based only on 3 data points and
assumes a zν that is found in many, but not all, spin glasses. The value of f0 so determined
is 4×105 Hz, which is fairly slow when compared to most conventional spin glass materials
(see for example Ref. [70]).

The nonlinear susceptibility exhibits a reasonably sharp peak at 175 mK [7]. It is
not surprising that this peak temperature is higher than the 140 mK determined from
dynamical scaling as the nonlinear susceptibility was measured at a frequency of 36.7 Hz.
Likely, with a lower probe frequency the peak would increase in height and shift to slightly
lower temperatures. The nonlinear susceptibility, however, is slightly unconventional as it
shows an additional smaller and broader feature at ∼ 414 mK [7].

The specific heat was also found to be different from what one would typically expect
of a spin glass. There is a very broad maximum at about 800 mK, below which the
specific heat decreases monotonically [241, 7]. Rather than a “bump” in C near the spin
glass transition, Schiffer et al. observe a maximum in C/T (or a maximum in the rate of
entropy release) at roughly 120 mK. One can discern the presence of a broad feature in
C/T near 400 mK which corresponds to the broad peak in χ3 [7].

There are additional measurements by other groups that are quite inconsistent with spin
glass physics. µSR measurements, for example, find persistent spin dynamics (PSDs) down
to very low temperatures [9, 245]. Dunsiger et al. find a fluctuation rate of roughly 2 GHz at
the lowest temperatures, ∼ 25 mK, which is very inconsistent with static magnetic order [9].
Marshall et al., also using µSR, find the Gd fluctuation rate to be linear in temperature
until around 100 mK, below which point it is saturated at 1.5 GHz [245]. Finally Bonville
et al., using Mössbauer spectroscopy, find a quadratic temperature dependence of the Gd
fluctuation rate [246] and significantly slower fluctuations below 100 mK than what were
found in the µSR experiments [9, 245]. It is suggested [246] that this discrepancy is the
result of assuming a constant root mean square, ∆, of the distribution of dipolar fields in
analyzing the µSR data and that the data sets can be found to be consistent if ∆ drops
out significantly at low T with the development of spin correlations. Nonetheless, they
suggest that the Gd fluctuation rate must saturate, though at a lower value of ∼ 10 MHz
where one is in a regime of quantum tunneling and below the lower frequency limit of the
Mössbauer experiments [246].

Perhaps, the most conflicting results with the spin glass interpretation of GGG, are
neutron scattering results [247, 8, 248, 249]. Studying Gd containing compounds with
neutron scattering is made very challenging by the high neutron absorption of 157Gd, one
of the naturally abundant isotopes. Thus the neutron scattering experiments on GGG
were carried out using polycrystalline samples grown with isotopically enriched 160Gd,
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which does not absorb neutrons [8].
The neutron powder diffraction data, so obtained, show quite complex and surprising

behaviour. At higher temperatures, around 1 to 3 K, the spectrum is comprised of diffuse
scattering peaks, attributed to the nearest-neighbour exchange interaction. As the tem-
perature is lowered, these peaks increase in strength and a third diffuse peak is seen. Most
strangely, below 140 mK, sharp peaks begin to appear, superimposed on the diffuse scat-
tering. While not sharp enough to indicate true long range order, these peaks do indicate
extended short range order with a correlation length on the order of 100 Å. Rather than
spin glass freezing, this is suggestive of a change from a liquid-like phase to a solid-like
phase [8]. It has also been suggested to be a sort of mixed liquid-solid state [8], perhaps a
kind of “spin slush”. Certainly it is difficult to reconcile the complete lack of an ordering
transition in specific heat with the sudden onset of extended correlations.

Yavors’kii et al. have attempted to understand the neutron scattering peaks in the
context of mean-field theory (MFT) [250, 198, 251]. Fixing the nearest-neighbour exchange
strength and dipolar interaction (treated with Ewald summation), based on experimental
data, they tuned the more distant interactions J2 and J3 and determined the MFT ordering
and Gaussian fluctuations, thereby simulating the neutron scattering signal. For particular
values of the interaction strengths, they were able to find excellent agreement between
theory and experiment. A particular ordering wave-vector is selected, though a quasi-
degeneracy of modes is observed where a large distribution of modes is very close to critical,
making for a much more complex diffraction spectrum. Yavors’kii et al. suggest that this
quasi-degeneracy of modes could lead to an increased sensitivity of the system to small
amounts of disorder.

In magnetic field, a very complex phase diagram is observed [252, 241], as is shown
in Figure 5.2. The paradoxical spin glass state does not survive well the application of a
magnetic field, giving way to a spin liquid of sorts by 30 mT. At higher field (the specific
value of which depends on the crystallographic orientation) a “bubble” of antiferromagnetic
ordering is found. Above that bubble, one enters another, apparent cooperative param-
agnetic state. The antiferromagnetic phase is quite interesting for the low field boundary
exhibits reentrance. In other words, as the temperature is lowered at specific values of mag-
netic field, the material enters the antiferromagnetic phase and then exits back into a spin
liquid phase. The analogy has been drawn to the 4He melting curve [253, 254, 255, 256].
Petrenko et al. have recently discovered that the idea of one contiguous region of anti-
ferromagnetism does not appear to be correct as neutron scattering shows very complex
behaviour and multiple ordering wavevectors within that region [257].
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Figure 5.3: (a) The powder neutron diffraction spectra taken at different temperatures,
taken from Ref. [8]. (b) Numerical simulations, from Ref. [198], of the powder diffraction
intensity, I(q), using mean-field theory and Ewald summation showing excellent agreement
with experiment for particular values of exchange interactions J2 and J3. (c) The volume
of quasi-critical modes that contribute to the calculated I(q), at 3% (gold coloured surface)
and 0.7% (orange coloured surfaces) above the MFT critical temperature. An arrow shows
one of the MFT ordering wavevectors. Figure taken from Ref. [250].

5.3 Other Rare Earth Garnets

The rare earth garnets have received very little attention, compared to say the pyrochlore
materials. This is perhaps because the bulk of them seem to exhibit fairly mundane
behaviour, i.e. the expected long range order. There are however, exceptions, the most
notable being Gd3Ga5O12 or GGG. In many cases, experimental studies have failed to
identify the ground state ordering simply for lack of suitable base temperature (see for
example [258, 259]). A summary of three types of rare earth garnets that have been
measured is given in Table 5.2. We have ignored several other types of rare earth garnets,
particularly the rare earth iron garnets or R3Fe5O12, since they should be expected to show
rather different physics – for one, the iron ions are also magnetic. For the most part, those
rare earth garnets studied to low enough temperatures exhibit antiferromagnetic ordering
although there are a few cases that exhibit some fairly unique physics.

The in-field phase diagram of the material Dy3Al5O12 received quite a bit of attention
in the past [260, 261, 262]. It displays antiferromagnetic ordering in zero field, but also
exhibits a phase of mixed antiferromagnetic and paramagnetic ordering between the fields
along the [111] direction of roughly 0.4 T and 0.7 T (though this depends on the demag-
netization factor of the crystal studied). The materials Tb3Ga5O12 and Ho3Ga5O12 have
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been suggested to have antiferromagnetic order that is induced by the nuclear hyperfine
coupling [263].

More recently, Ho3Ga5O12 has been shown to have an exotic ground state with neutron
scattering experiments [181]. As with many geometrically frustrated systems, there is
a higher temperature onset of short range antiferromagnetic order, in this case around
0.6 K. Then at a lower temperature of 190 mK [264] or possibly as high as 300 to 400
mK [181], there is a transition to a state consisting of mixed short range order and long
range order [181].

In close competition with GGG for the most unusual rare earth garnet is Yb3Ga5O12.
This material shows a sharp first-order phase transition at 54 mK [265]. Surprisingly,
below this transition, no long range magnetic order is found, suggesting that it is a state of
hidden order or a spin liquid [110]. Similar behaviour is observed in the pyrochlore material
Yb2Ti2O7 which shows a sharp transition at 214 to 250 mK [266] yet also does not exhibit
long range magnetic order even at very low temperatures. The authors of Ref. [110] have
noted that the first-order phase transitions in Yb2Ti2O7 and Yb3Ga5O12 account for a very
small percentage (less than 20%) of the total entropy R ln 2, with the remainder accounted
for by the higher temperature short range ordering. In contrast, the materials Gd2Sn2O7

and Gd2Ti2O7 for example, which have LRO ground states, have transitions accounting for
a much larger percentage of the total entropy, in that case R ln 8. Thus Dalmas de Réotier
et al. suggest that there is a direct correlation between the entropy of the transition in
geometrically frustrated magnets and the ground state ordering, or lack thereof [110].

Finally, it is worth mentioning the material Na4Ir3O8. While not a garnet, it consists
of a related lattice of corner sharing triangles known as the hyperkagome lattice. This
material has recently been found to possess a spin liquid ground state [267, 111].

5.4 Experimental Parameters

In order to further explore the unusual phenomenology of GGG, we have undertaken mea-
surements of the specific heat, C, of three different Gd garnet compounds, which while
similar in model, show very different magnetic behaviour. We have measured the spe-
cific heat of an isotopically pure sample of GGG to investigate two possible explanations
for its paradoxical properties: first, that the formation of order might be unique to the
isotopically pure sample which might therefore show an ordering transition in C where a
non-isotopically pure sample would not and second that previous experiments might have
missed a particularly small or narrow feature in C indicative of a phase transition. We have
also measured the heat capacity of the materials, Gd3Te2Li3O12 (GTLG) and Gd3Al5O12

(GAG) which possess the same lattice symmetry and magnetic ion as GGG, but naturally
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Table 5.1: Ordering types and transitions for rare earth garnet materials.

R3+ R3Ga5O12 R3Al5O12 R3Te2Li3O12

Pr3+ ? [258] ? [259]

Nd3+ TC = 0.514 K [268]

Sm3+ TC = 0.960 K [268]

Eu3+ ? [258]

Gd3+ Spin glass [7] TC = 175 mK ∗ TC = 243 mK ∗†

Tb3+ ? TC = 0.25 K [264, 269] † TC = 1.35 K [270, 263, 271] ? [259]

Dy3+ TC = 0.373 K [272, 268] TC = 2.53 K [260, 261, 262] TC , 2 K [259]

Ho3+ Mixed LRO/SRO [181] TC = 0.839 K [273] ? [259]
TC = 0.19 K [264] TC = 0.95 K [263]

Er3+ TC = 0.79 K [270, 268] ? [259]

Yb3+ Hidden order [110] † ? [259]
Tλ = 54 mK [265, 272]

Table 5.2: Compilation of results in zero field on various rare earth (R3) garnets with
either Al5, Ga5 or Te2Li3. If not otherwise stated, the ordering is found or assumed to
be antiferromagnetic. Materials labeled with a question mark (?) have been studied but
not to low enough temperatures to determine the ground state ordering (or lack thereof).
Materials marked ∗ are results from this work. Materials marked † show clear first-order
phase transitions observed whereas the others are either continuous phase transitions or
weakly first-order.
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Figure 5.4: Specific heat (C) and C/T of isotopically pure GGG measured with coarse
temperature resolution. Results match well with previous work [7]. The temperature
region marked with a red box has been remeasured with a high temperature resolution
shown in the inset and again does not find evidence of an ordering transition.

have different exchange interactions. The magnetic susceptibility of GTLG has been mea-
sured previously and an ordering transition was observed at around 250 mK [259]. Finally,
in order to test the effects of chemical disorder on GTLG, we have measured a sample of
GTLG where the Gd3+ ions have been slightly diluted with 2% non-magnetic Y3+ ions, or
Y0.06Gd2.94Te2Li3O12.

A single crystal of Gd3Ga5O12 (GGG) was obtained from Oleg Petrenko at the Univer-
sity of Warwick. This material is somewhat unique in that it was made with isotopically
enriched 160Gd to avoid the high neutron absorption of other isotopes of Gd and to thereby
enable neutron scattering studies.

The synthesis of the GGG sample is described in Ref. [257]. First, polycrystalline
samples were grown by a solid diffusion reaction of Gd2O3 and Ga2O3 at a temperature
of 1400◦C for 12 hours then regrinding. The regrinding process was repeated until X-
ray diffraction showed no impurity peaks. 99.98% isotopically pure 160Gd (supplied by
Oak Ridge National Laboratory) was used to create a sample that would have negligible
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neutron absorption. The single crystal GGG that we have studied, was grown form the
polycrystalline GGG with the floating zone method in a two mirror infrared image furnace.

The polycrystalline garnet samples that are studied in this work were obtained from
Linton Corruccini at the University of California-Davis. Those samples include the garnets
Gd3Te2Li3O12 (GTLG), Gd2.94Y0.06Te2Li3O12 (dirty GTLG) and Gd3Al5O12 (GAG).

The polycrystalline samples of GTLG and GTLG diluted with Y, were prepared through
solid state reaction in air. The Te and Gd (Y) oxides and Li carbonate were mixed, pressed
into pellets and fired at 850◦C for 10 hours. They were then reground and fired a second
time. Once again, powder x-ray spectra were taken and indexed to the expected space
group Ia3̄d, with no impurity peaks visible at the 1% level. The preparation of these
samples is also described in Ref. [259].

The GAG sample was prepared using the sol-gel method, as described in Ref. [274]. It
was heated to 1350◦C for one hour, then removed from the furnace and rapidly quenched
to room temperature, to minimize the formation of the perovskite phase GdAlO3 [275]. In
x-ray spectra taken on GAG, two impurity peaks were visible at the 3% level, which are
attributed to GdAlO3.

In the case of GGG, an initial measurement of the specific heat was made over a large
temperature range (from 80 mK to 930 mK) using temperature steps of roughly 5 mK
below 200 mK and temperature steps of 10 mK above 200 mK. A later measurement
with a much higher temperature resolution of 1 mK was performed over the temperature
range 130 mK to 230 mK to search for small or narrow features near where the neutron
scattering peaks were discovered. This choice of resolution is based on scaling results of
well characterized antiferromagnets (such as in Ref. [276]) to a transition temperature of
140 mK, suggesting one might expect a peak in C with a width of only several mK. GTLG
and GAG were measured with variable temperature resolution, depending on the features
observed.

5.5 Results

Results of our specific heat measurements on GGG, shown in Fig. 5.4, agree remarkably
well with the previous specific heat measurement (on a single crystal containing naturally
abundant Gd) of Schiffer et al. [7]. This suggests that the isotopically pure sample measured
here exhibits the same physics as do naturally abundant Gd containing samples. We find a
broad feature with a maximum at around 800 mK. This feature seems to drop out at lower
temperature roughly as T 0.8 until around 125 mK, at which point there is a maximum in
C/T and C(T ) becomes steeper. The high-resolution scan of C also did not reveal any
anomalies that might be interpreted as an ordering transition, as shown in the inset of
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Figure 5.5: The specific heat measured in this work compared with that previously mea-
sured by Schiffer et al. [7]. The agreement is excellent for the most part. At the lowest
temperatures, the specific heat of Schiffer et al. drops out slightly faster than our specific
heat.

Fig. 5.4. The specific heat measurement of Dunsiger et al. on a naturally abundant Gd,
powder sample is very similar, though the peak in C/T is found to be more pronounced [9].

Taking into account higher temperature data of other groups [9, 242], we can see that
much, if not all, of the entropy (R ln 8 = 17.29 J/K mol Gd) is accounted for in this system.
Roughly 16 J/K mol Gd is picked up by integrating C/T from low temperature to about
2 K but more would be accounted for with an extension to higher temperature. Thus, if
there is any residual entropy in this system, it is a very small fraction of the total R ln 8
and would be quite difficult to precisely evaluate.

In stark contrast to GGG, GTLG shows a sharp ordering transition at 243 mK as shown
in Fig. 5.6. The transition is clearly first-order, exhibiting a much larger feature in C than
could be expected for a continuous phase transition and impossible to fit with any reason-
able critical exponents. With a Curie-Weiss temperature θCW , −2.7 in GTLG [259], this
ordering temperature gives a frustration index f = θCW /TC = 11. Below the transition, C
drops out faster than T 3 suggesting that it is exponential and that there are gapped spin
wave excitations, as would be expected from LRO with a strong dipolar interaction [178].
Gapped spin waves should result in the low temperature limit C ∝ T−2e−∆/T , thus we
have shown a plot of CT 2 vs. 1/T in inset (b) of Fig. 5.6 and the resulting fit which gives
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Figure 5.6: (a) Specific heat of GTLG showing a sharp first-order phase transition. The
specific heat drops out more quickly than T 3 below Tc. (b) A plot of CT 2 as a function of
T−1 and a linear fit suggestive of spin waves with a gap of ∆ = 0.62 K. (c) The entropy as
a function of T compared with the total R ln 8 entropy in the system.

∆ , 0.62 K.
For the material Gd2Sn2O7 (GSO), discussed in Chapter 4, which shows a similar

exponential drop in specific due to gapped spin waves, an upturn becomes noticeable at
temperatures close to 100 mK, resulting from the nuclear electric quadrupole interaction.
Why is that same upturn not seen in the GTLG data presented here? This can be easily
explained by the fact that GTLG has a much lower transition temperature than GSO
which orders at around 1 K. Thus by the time one reaches temperatures close to 100 mK,
the exponentially dropping electronic specific heat of GSO has gotten very small, exposing
the high temperature tail of the nuclear specific heat. In GTLG, 100 mK is not so much
lower in temperature than TC , thus the electronic specific heat is much larger at that point,
obscuring the nuclear contribution.

Above the transition in GTLG, there is a broad feature centred around roughly 1.0 K,
similar to the broad feature in GGG centred at ∼ 0.8 K. This is likely a signature of
the development of short range correlations. Obtaining the entropy (S) from a numerical
integral of C/T shows that only about 14% of the total R ln 8 entropy in the system is
accounted for by the transition, as shown in inset (a) of Fig. 5.6.

The third material studied here, GAG, may represent a point in between GGG and
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Figure 5.7: Comparison of the specific heat of GGG (blue squares), GTLG (green triangles),
GAG (red diamonds) and a sample of 2% diluted GTLG (violet x’s).

GTLG with a smaller and broader transition at a lower temperature of 175 mK (shown
in Fig. 5.7). With θCW , −3.0 K [277], it is more antiferromagnetic than the other two
garnets, but seemingly more frustrated than GTLG, with a frustration index f = 17.
Otherwise, it shows similar features to GTLG, with a broad maximum centred around 1 K
and a steeply dropping specific heat at lower temperatures. As in GTLG, the transition
in GAG accounts for only a small percentage of the total R ln 8 entropy in the system.

Lastly, the 2% diluted GTLG sample showed a significantly broadened peak at a slightly
lower temperature than that of the pure material, as shown in Fig. 5.7. At temperatures
well below and well above the transition, the heat capacities of the pure and diluted samples
match up, and the transition accounts for the same amount of entropy in both systems,
suggesting that the ground state ordering is not appreciably altered by the 2% impurity.
A broadening of the peak in specific heat is an expected consequence of weak disorder.

5.6 Discussion

In conclusion, despite their similar models, we find GTLG and GAG to in fact behave
entirely differently from GGG. The only commonality in all three systems is the broad
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feature signaling short range correlations at around 0.8 K in GGG and 1.0 K in GAG and
GTLG. The lower temperature of the broad feature in GGG is consistent with its smaller
nearest-neighbour exchange interaction J1 = 0.107 K [242] as compared to J1 = 0.126 K
for GTLG [259] and J1 = 0.142 K for GAG [277].

The sharp features observed in GTLG and GAG are in all likelihood signatures of
transitions to long range order. As discussed above, the majority of insulating rare earth
garnets studied [268, 261, 269] exhibit transitions to long range order. The notable excep-
tion is Yb3Ga5O12, which, like Yb2Ti2O7, has a sharp transition to some kind of spin liquid
or “hidden order” ground state, perhaps analogous to a liquid-gas transition. Similar to
those materials, the transitions in GTLG and GAG account for less than 14% of the total
R ln 8 entropy available. Thus the conjecture of Dalmas de Réotier et al. [110] mentioned
in Section 5.3, would imply a spin liquid ground state for GTLG and GAG. However, indi-
cations of well-defined excitations below the transitions (characterized by an exponential
drop in the specific heat) provide strong evidence of long range order. The Yb pyrochlore
and garnet are most likely exceptions to the rule – a sharp peak in the specific heat of a
magnetic material is almost universally an indication of a transition to an ordered state.
These Gd garnets are very reminiscent of the Gd pyrochlore material Gd2Sn2O7 which
also shows a sharp first-order phase transition to a ground state exhibiting static magnetic
order and well-defined excitations as seen by neutron scattering [185] and specific heat
experiments [178], which is discussed in Chapter 4.

The materials GTLG and GAG clearly do not share the same glassy physics as GGG
since spin glasses are universally found to not exhibit a sharp peak in C [25]. These results
prove that the glassy physics of GGG is not a ubiquitous property of Gd garnets and we are
therefore left with two possible conclusions. First, a very precise tuning of the parameters
of the Hamiltonian may be required in order to produce the necessary competition between
local and long range interactions to give rise to a magnetic analog of the glass transition,
even without quenched disorder. GTLG and GAG may be outside this narrow “window” of
required parameter space. However, in many glass forming liquids (see for example [278])
it is found that tuning interaction strengths, for instance by altering the substituents of
molecules, without changing the overall symmetry of those molecules, does not tend to
preclude a glass transition.

A strong and likely alternative is that it is indeed a sensitivity of the system to small
levels of disorder that results in a spin glass transition in GGG. However, since the ordered
ground state of GTLG appears to be robust against small levels of random dilution, it
seems that the type of disorder may be the crucial ingredient in the exotic behaviour of
GGG. In other words, the off-stoichiometry found in GGG may be a much more powerful
way to introduce random frustration and trigger a spin glass transition than simple dilu-
tion of the magnetic moments. Certainly this would be a valuable hypothesis to investigate
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theoretically and experimentally in future work. Obtaining a quantitative understanding
of how the off-stoichiometric defects interact with the other spins would be key to de-
termining how important that type of disorder truly is. Finding a way to eliminate the
off-stoichiometry in GGG or introduce it to other Gd garnets would be ideal, though it is
unclear at this time, how such results could be achieved.
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Chapter 6

Conclusion

While this thesis may seem to be composed of three isolated results on disparate sys-
tems, as a whole it demonstrates just how many interesting and unusual results can come
about in magnetic systems that are, at their core, some of the simplest materials possible.
LiHoxY1−xF4 is a nearly perfect Ising model and the Gd3+ containing compounds studied
here are some of the best possible realizations of the isotropic Heisenberg model. Yet,
numerous surprises have come about in studying these simple materials and much remains
to be explained. These systems are exemplary demonstrations of the complexity that can
arise from very simple building blocks, the understanding of which is one of the main goals
of physics.

Much of the exotic antiglass physics of LiHoxY1−xF4 may have been found to be erro-
neous through our measurements of the ac susceptibility and specific heat, but it has been
replaced by a number of other interesting results and questions. What is the explanation
for such long time scales and why do they increase at low concentration? What is the cause
of a concentration independent peak in the specific heat? Why have experimental groups
seen so many different results and made such different conclusions about this system? We
have given qualitative arguments for what we think may be the origin of these effects, but
hopefully quantitative explanations will arrive in the near future.

In Gd2Sn2O7, our measurements show an excellent agreement with theory and portray
a very simple picture of a classical Heisenberg system, with conventional long range order
and gapped magnon excitations as a result of the dipolar interaction. However, this simple
picture makes the observation of PSDs in Mössbauer and µSR measurements all the more
confusing. How can a system that clearly exhibits gapped spin waves have temperature
independent spin dynamics?

In studying GGG and related materials, we have reproduced physics of a very exotic ma-
terial and found several others that behave completely conventionally. Again, the discovery
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of fairly ordinary physics in these new Gd garnets makes the unconventional glassiness in
GGG all the more puzzling. Specifically, the resilience of GTLG and GAG in the face
of quenched disorder imply that the off-stoichiometry in GGG is a very special type of
disorder, or that GGG is a very special material with the perfectly tuned Hamiltonian to
give rise to intrinsic glassiness.

These three systems (chapters) have touched on some of the most important themes
in the study of magnetism. We have dealt with strong disorder in the case of Ho:YLF
and weak disorder in the case of the garnets. In fact, disorder may yet play a role in
the eventual explanation of PSDs in GSO as it is becoming realized how important it
can be in rare earth pyrochlore oxides (see Appendix E for example). Our second theme,
geometric frustration, is at the heart of the physics of the pyrochlore GSO and the Gd
garnets. Although GSO eventually overcomes its geometric frustration, with the aid of the
dipolar interaction, the unusual ground state seen with local probes may be a remnant of
those competing interactions. The physics of GGG is entirely dependent on frustration,
either through a sensitivity to disorder or through a frustration induced glass state. Of
course frustration of the random variety also plays an important role in spin glasses like
LiHoxY1−xF4.

Finally, we come to the theme of dipolar interactions, that could be more broadly
defined as the issue of long range interactions. This theme applies quite significantly to
all three problems that we have tackled in this thesis. Clearly, it is most essential to the
physics of LiHoxY1−xF4, which is, after all, a dipolar magnet. In the garnets studied, it
is of comparable importance to the nearest-neighbour exchange interaction and we have
hypothesized that it could be the frustrating influence that creates a glassy state analogous
to that of structural glasses and supercooled liquids. In Gd2Sn2O7, the dipolar interaction
is also crucial, selecting the particular Palmer-Chalker ground state of the system and
creating an anisotropy to spin wave excitations that we have indirectly observed.

6.1 Future Work

LiHoxY1−xF4

The work in this thesis has raised a number of conceptual questions regarding the low
concentration limit of LiHoxY1−xF4. The observation of very slow dynamics, the charac-
teristic time constant of which is inversely correlated with x, has indicated the importance
of single ion physics. While a number of theoretical works have delved deeper into un-
derstanding the impact of the hyperfine interaction and random fields in transverse field
Ising models, there have not been many quantitative calculations regarding the low x limit
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in zero field. It would be very useful, for example, to develop some quantitative under-
standing of relaxation time scales, even for small clusters or isolated ions. From a more
phenomenological point of view, it would be exciting to be able to make use of the added
information available in the relatively narrow absorption spectra of these materials, to test
various ways of parametrizing the data.

Of course experimentally, there is still much exploring to do. On the x-axis of the phase
diagram, we still have 12% and 25% Ho samples available for study. The 12% sample is not
expected to present any qualitatively different physics from what we have already seen, but
would certainly add a useful data point. The 25% sample, on the other hand, may show
some very interesting physics indeed as it is uncertain whether it should be a spin glass
or a ferromagnet. Even once that is discovered, it is likely that it will possess some exotic
properties by virtue of its proximity to xC . If it is to the left of xC , for example, it may be
more of a cluster glass than a spin glass. If it is on the FM side of xC , it may still exhibit
a fair bit of glassiness or even reentrance into a spin glass state at low temperatures.

Applying a transverse field to LiHoxY1−xF4 has never failed to unearth very interesting
physical problems, and could likely do so again. While the group of Rosenbaum and
Aeppli [149, 121, 141, 148, 157] have left very few parts of the phase diagram unexplored,
it seems that we could still make an impact with transverse field measurements in the
low-concentration regime. One advantage of transverse field measurements is that they
significantly speed up the dynamics [125], making experiments less time consuming.

Finally, we could consider in future work, cementing our conclusion that 1.8%, 4.5% and
8.0% samples have spin glass transitions, with measurements of the nonlinear susceptibility.
Caution is merited, however. As discussed in Chapter 3, such a measurement would be
very difficult to either achieve in the proper dc limit or to interpret correctly, owing to
extremely slow dynamics.

Gd2Sn2O7

As far as our measurement capabilities are considered, Gd2Sn2O7 is largely resolved. It
seems that a second look at the ground state of this material with those techniques that
originally found PSDs, or a complementary technique, is warranted. The same analysis
could be carried out on the related materials Gd2Ti2O7, Gd2Zr2O7 and Gd2Hf2O7. GTO
would be particularly interesting, but the experiment is more challenging as a T 2 depen-
dence already persists to much lower temperatures. The last two Gd pyrochlores mentioned
have not been studied with µSR or Mössbauer experiments to look for PSDs at this point
in time.

It is worthwhile mentioning, as well, that GSO has not been studied in magnetic field.
GTO has quite a rich H-T phase diagram, even powder samples, thus it would be inter-
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esting to see if that is also the case for GSO.

Gd Garnets

Having studied a homologous series of Gd garnets and some of the effects of disorder, we
are left with two possible conclusions: either the off-stoichiometry of GGG is a special kind
of disorder or the Hamiltonian of GGG is perfectly tuned to give an intrinsic spin glass
state or an increased sensitivity to disorder. Obviously we would suggest that future work
on these materials should attempt to differentiate between these two possibilities.

In principle, it should be possible to analyze theoretically what the effects of an off-
stoichiometry would be. However, it is likely that some additional information would be
required: that is, how does a Gd ion interact with other Gd ions when it is residing on a Ga
site? It is certainly reasonable to assume that the exchange interactions may be different
and this information would be crucial to performing any calculations. The determination
of such a number from 1% of the spins may be difficult though might be achievable with
a probe such as ESR.

Otherwise, testing these conclusions might require finding a way to either eliminate the
off-stoichiometry in GGG or introduce it to the other materials GTLG and GAG. There
may be other Gd garnets available that might help clear up this problem. Gd3Sc2Ga3O12

(GSGG) certainly exists [279] and has not, to our knowledge, been studied at low temper-
atures. It might provide a slightly different off-stoichiometry or, even more interestingly,
a similar ground state to GGG without any off-stoichiometry.
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Appendix A

Demagnetization Correction and
Effects of Sample Geometry

Measurements of the magnetic susceptibility are complicated by the so-called demagnetiza-
tion effect [280]. Essentially, the magnetization of the sample is a result of both the external
magnetic field and the demagnetizing field which is, somewhat cyclically, generated by the
magnetization. Suppose we have a sample, which is magnetized with magnetization M .
This magnetization will lead to a magnetic field BD, known as the demagnetizing field,
according to (in CGS units)

BD = −4πNM

where N is the demagnetization factor of the sample. This demagnetizing field will only be
uniform if the sample is an ellipsoid. Now the total magnetic field ‘felt’ by the sample is the
sum of the external, applied magnetic field and the demagnetizing field, so BExt.+BD. But
if our applied magnetic field is relatively small and if we are not dealing with a ferromagnet
which might have spontaneous magnetization, we can assume that the magnetization will
be proportional to the total magnetic field in the sample, with a proportionality factor
that is defined as the magnetic susceptibility χ. Thus, we have

M = χ(BExt. + BD). (A.1)

Our measurement apparatus is really measuring M and if we naively assume that there
is no demagnetization effect, we would determine an apparent susceptibility χA given by

χA = M/BExt. (A.2)

Combining all these equations, we obtain the relation

1

χ
=

1

χA
− 4πN (A.3)
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or
χA =

χ

1 + 4πNχ
. (A.4)

Thus it can be seen that if the demagnetization factor N is large and χ is large, then the
apparent susceptibility will be reduced quite significantly. This effect will, for example,
round peaks in the susceptibility at phase transitions. If χ is very large or diverges, the
apparent susceptibility will asymptotically approach the demagnetizing limit of 1/4πN .

The demagnetization factor, N , is dependent on sample geometry. For ellipsoids with
semi-major axes of a, b and c, the demagnetizing field is constant throughout the sample
and the demagnetizing factor can be related to the ratios a/c and b/c. There is no closed
form expression for the demagnetization factor of an arbitrary ellipsoid. For a sphere,
however, N = 1/3. As the z-axis of the crystal (the axis along which the magnetic field is
applied) gets much longer than the other axes, N → 0.

For rectangular prisms (which are used in this work) with sides of length a, b and c
(the side along which the field is applied) and volume V , an analytic expression for the
demagnetization factor is available [281]:

πN =
b2 − c2

2bc
ln

(
V − a

V + a

)
+
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2ac
ln

(
V − b
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)
+
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+
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2c
ln

(
A + b

A− b

)
+

c
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c
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)

+ 2 arctan

(
ab

cV

)
+
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3abc
+
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3abc
V

+
c

ab

(√
a2 + c2 +

√
b2 + c2

)
− (a2 + b2)3/2 + (b2 + c2)3/2 + (c2 + a2)3/2

3abc
. (A.5)

The field distribution within the sample will, however, not be uniform. This is not
expected to cause any problems in our measurements which are exclusively at low magnetic
field, where the susceptibility is quite linear. Certainly, in spin glasses, as one approaches
Tg, χ becomes quite nonlinear as χ3 diverges. χ3 only becomes significant relative to χ1

very close to Tg or for large magnetic field. It is seen in our measurements that obtaining
equilibrium near Tg requires extremely low frequencies. Thus in all of our measurements,
our susceptibility is seen to be quite linear. In measurements of χ3, the demagnetization
effect may be quite important.

When studying glassy magnetic materials in particular, one must be concerned with
the full complex susceptibility χ = χ′− iχ′′ which contains both the in-phase susceptibility
χ′(ω, T ) and the out-of-phase susceptibility or dissipation χ′′(ω, T ). The demagnetization
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correction should now be written as

1

χ′ − iχ′′
=

1

χ′A − iχ′′A
− 4πN (A.6)

The real and imaginary parts of this equation can be separated such that we should apply
the following correction [57]:

χ′ =
χ′A − 4πN(χ′2A + χ′′2A )

(1− 4πNχ′A)2 + (4πNχ′′A)2
(A.7)

χ′′ =
χ′′A

(1− 4πNχ′A)2 + (4πNχ′′A)2
(A.8)

It can be see from the above equations that the demagnetization factor mixes the real
and imaginary components of χ resulting in a phase shift. For glassy systems, χ′(ω) is
found to be 0 at high frequency and to saturate at some positive value at low frequen-
cies. Meanwhile, χ′′(ω) shows a broad maximum around a frequency ωMax. The apparent
susceptibility will be altered by the demagnetization correction such that the peak in χ′′

is pushed to higher frequencies and the overall magnitude of the susceptibility is lowered.
This effect becomes more pronounced as the temperature is lowered and the overall suscep-
tibility increases. Thus, it is clearly quite important to take into consideration the effects
of demagnetization on the observed susceptibility of spin glasses if one is to attempt to pin
down a glass temperature through dynamical scaling. It should be expected that demag-
netization corrections should play just as significant a role, if not more, in measurements
of the nonlinear susceptibility.

A.1 Calibration

For the 4.5% and 8.0% samples studied in this work, multiple sample geometries were
studied. This was done partially to check for sample geometry effects beyond the expected
demagnetization effect and partially to calibrate the susceptibility of the materials. For
the 4.5% sample, temperature scans of two sample geometries were compared (shown
in Figure A.1). The overall calibration factors used to determine the susceptibility for
the two data sets were adjusted such that the two curves matched after correcting for
demagnetization. The same method was used for the 8.0% sample, except that a frequency
scan at a single temperature (120 mK) was used. Later modifications to the magnetometer
made this labour intensive calibration procedure unnecessary. The magnetometer was
changed so that the sample holder could be removed without taking anything else apart and
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Figure A.1: The method of calibration used for the 4.5% sample. The susceptibility of two
sample geometries was studied as a function of temperature, yielding two slightly different
curves. The calibration factor was chosen such that the two curves matched after correcting
for the demagnetization effect.

altering the calibration. Hence we could replace the sample with a perfectly diamagnetic
superconducting Pb sample at 4.2 K in order to calibrate the system. This simpler method
was performed for the 1.8% sample.

A third geometry of the 4.5% sample was studied to test the suggestion that differences
between our data and those of Ghosh et al. could be a result of different sample geometries.
Previously, we had worked with samples where Lz > Lx,y. This new sample was almost
cubic: 1.2 mm on the c-axis, 0.57 and 0.77 mm on the other sides. Note the sample
measured by Ghosh et al. [4] had a 2×1×1 aspect ratio. Still, our results are very different
from theirs, as shown in Figure A.2. Table A.1 shows the different sample geometries used
in our work.

Reversing the demagnetization correction on the needle-shaped 4.5% sample to simulate
what we should expect for our least elongated sample, we find that the results are very
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x Lz (mm) Lx (mm) Ly (mm) 4πN
0.080 7.44 0.94 0.66 0.60
0.080 2.59 0.94 0.66 1.61
0.045 7.7 0.77 0.57 0.49
0.045 3.3 0.77 0.57 1.11
0.045 1.2 0.77 0.57 2.68
0.018 5.84 0.89 0.61 0.71

Table A.1: Sample geometries of LiHoxY1−x studied in this work.

close, but not perfect. This mismatch suggests that the overall calibration of our 4.5%
data could be 10% too high. However, reducing the calibration by 10% does not impact
the resulting glass temperature to within the error bars meaning that this slight mismatch
does not affect the final analysis. Slight misalignment of the sample cut with respect to the
c-axis could be responsible for the mismatch. The moments are very strongly Ising-like,
thus the magnetization of the sample will always point along the c-axis. This means that
rotation of the sample in the magnetometer, with respect to the applied magnetic field, will
only reduce the overall signal, but will not affect the frequency or temperature dependence
of the measured susceptibility. The overall signal would be dealt with in our calibration
method so the alignment of the sample in the magnetometer is largely inconsequential.
However, if the long axis of the sample is cut at an angle of several degrees away from
the c-axis, the shape of the sample, relative to the magnetization axis, will be different
resulting in a different (larger) demagnetization factor and leading to a mismatch between
samples of different geometries.

A.2 Uncorrected Data

Since the calibration procedure described above, may not be perfect, we present here raw
data that has not been corrected for demagnetization effects, shown in Figure A.4. We
also show the change in the dynamical scaling analysis that results from not correcting
for the demagnetization effect, in Figure A.3. For the 1.8% sample, there is very little
change from the demagnetization correction, since the overall susceptibility is quite low.
The 4.5% sample does have a noticeable change and different parameters are obtained in
the dynamical scaling analysis: Tg = 40 mK, zν = 7.9 and τ0 = 40 s. Once the data is
corrected, these values become Tg = 42 mK, zν = 7.9 and τ0 = 16 s. Thus there is a
noticeable but not dramatic change in the results, with the exception of the time constant.
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Figure A.2: The absorption spectrum χ′′(f) at 95 mK for two different sample geometries
measured by our group (raw data, not corrected for demagnetization). One sample (blue
curve) is closer to needle-shaped, with dimensions ∼ 0.57 × 0.77 × 7.7 mm3, whereas the
other sample (green curve) is less elongated with dimensions ∼ 0.57× 0.77× 1.2 mm3. A
shift toward lower frequencies is observed as the sample geometry becomes more needle-
like. Shown for comparison (red curve) is data from Ghosh et al. [4] on a sample with an
aspect ratio of roughly 1×1×2. The differences are remarkable and show that disagreement
between our data sets are not related to sample geometry.

The error bars on the time constant are quite large to begin with (±7 s) since the analysis
is performed using ln τ . In fact the glass temperature is still the same within estimated
error bars of ±2 mK, and the exponent has not been altered. The shift in τ0 is a result of
the phase shift caused by the demagnetization effect.

The 8.0% sample is affected quite a bit more significantly. Without correction, the
dynamical scaling analysis gives Tg = 54 mK, zν = −8.2 and τ0 = 1.0 s. These can be
compared with the values Tg = 65 mK, zν = −7.8 and τ0 = 0.12 s obtained after correcting
for demagnetization. The question becomes, just how dependent are we on the accuracy
of the calibration and the demagnetization correction? Clearly for the 1.8% and 4.5%
samples, there is very little change in the end results even if no demagnetization correction
is considered. In the 8% sample, there is a significant change. To provide an idea of how
sensitive the 8.0% sample is to demagnetization, increasing the overall magnitude of χ by
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Figure A.3: The effect of the demagnetization correction on the peak positions τMax and
therefore on the dynamical scaling analysis. Because of its small overall susceptibility, the
1.8% sample is barely affected by the demagnetization correction. The 4.5% sample shows
a slight effect. The uncorrected data gives Tg = 40 mK and τ0 = 40 s, but with no change
in exponent. The 8% sample shows quite a significant effect. The uncorrected data gives
Tg = 54 mK, zν = 8.2 and τ0 = 1.0 s.

20% increases Tg by 5 mK and decreasing the magnitude of χ by 20% does not change the
resulting Tg. Thus even the 8.0% results are fairly insensitive to errors in the calibration
of the magnetometer. It is, nonetheless, very important to perform this correction as the
raw data gives very different results.

It is clear that higher concentration samples must become very heavily affected by
demagnetization. It is not clear whether Reich et al. [58] and Wu et al. [149] applied the
same correction or not when measuring an x = 0.167 sample. It would certainly make a
large difference in the determined glass temperature Tg.
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Figure A.4: Raw ac susceptibility data that has not been corrected for demagnetization
(though does have the calibration applied as is described in the text). Note the 8% sample
is close to reaching its demagnetizing limit, as seen by the leveling off of the maximum in
χ′′. The data shown here is taken on the samples that are close to needle-shaped.
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Appendix B

Dynamical Scaling Fitting Procedure

The dynamical scaling analysis of LiHoxY1−xF4 was performed using the peak frequency
fMax of the absorption spectrum χ′′(f) to define the relevant time scale τMax = 1/2πfMax.
An alternative method of choosing τ , suggested by Ogielski [76], is through the limit

τ = lim
f→0

χ′′(f)

fχ′(f)
. (B.1)

However, this limit is found to be very difficult to achieve for temperatures anywhere
close to the glass transition. This is a result of the overall slowness of the dynamics in
LiHoxY1−xF4 as well as the breadth of the absorption spectra. In Figure B.1, we show
χ′′/fχ′ as a function of frequency, towards the low frequency end of our data (for a 4.5%
sample). It is clear that to a frequency of 1 mHz, we are not able to obtain this limit for
temperatures below 120 mK which is roughly 3Tg. Using the τMax method, we are able to
approach to slightly lower than 2Tg. This is still far from Tg, but significantly closer than
with other methods.

More precisely, fMax was obtained by fitting a quadratic curve to a 1 decade wide range
of frequencies around the maximum sampled data point. This provides increased precision
over simply choosing the maximum sampled value of χ′′ (which would be only as precise
as the data density, typically 1/10 of a decade).

Data 200 mK and below were used for the dynamical scaling fits. Above that temper-
ature, τMax(T ) was no longer found to be adequately fit by a power law. This is perhaps
not surprising given how far away from Tg it is. The fitting procedure involved defining
an array of trial glass temperatures Tg. For each possible Tg, a linear least squares fit was
performed to ln(τMax as a function of ln(T − Tg). This linear fit yielded τ0 and zν for a
given Tg. The χ2 statistic (not to be confused with the susceptibility) for each fit (each
trial Tg) was determined, using error bars on the quadratic fits discussed above.
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Figure B.1: A plot of χ′′/fχ′ versus frequency for a 4.5% sample of LiHoxY1−xF4. It can
be seen that it is leveling off at the lowest frequencies studied only for temperatures above
120 mK.

The resulting χ2(Tg) is plotted in Figure B.2 for the three different stoichiometries
measured. Minimizing χ2 allows us to choose the best fitting Tg, τ0 and zν. The fit is,
therefore, done with three free parameters. For the 4.5% and 8.0% samples, this gives an
exponent zν , 8, which is theoretically expected [76], and commonly observed in other
spin glass experiments [26].

Using the values of χ2 and the number of degrees of freedom permits estimation of the
error bars on the fits. For the 4.5% and 8.0% fits, the error bars are similar, at around
±2 mK and ±3 mK on Tg, respectively (with a 68% or 1 σ confidence interval shown by
the shaded regions). The 1.8% sample, however, results in a severely underconstrained fit,
meaning that the data can be fit very well, but by a wide range of glass temperatures. This
is clear from the plots in Figure B.2 given that the number of data points and therefore
degrees of freedom are quite close between the different samples studied.

To further illustrate the fact that a dynamical scaling law is underconstrained in the
case of the 1.8% sample, several fits to τ(T ), constrained to different values of Tg, are
shown in Figure B.3. The results are, at least visually, equivalently adequate. The reason
that the 1.8% sample is so badly constrained may be related to curvature in the function
τMax(T ). The more that function is curved, the closer one is to the glass temperature.
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Figure B.2: The estimated χ2 statistic as a function of trial glass temperature Tg. The glass
temperature that minimizes χ2 is chosen as the best fit Tg. The shaded areas correspond
to the statistically relevant range of glass temperatures based on the number of degrees
of freedom of the fits, choosing a confidence interval of 68% (roughly corresponding to 1
σ). Thus for the 4.5% and 8.0% samples, the error on Tg is roughly ±2 mK and ±3 mK,
respectively. The 1.8% sample is much less constrained however, with a wide range of Tg

adequately fitting the data (from perhaps 33 mK up to as high as 46 mK).
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Figure B.3: The experimental data τMax(T ) is shown, along with several fits, constrained
to different glass temperatures, Tg. Tg = 41 mK is the best fit, Tg = 35 mK is obtained
by fixing zν = 8.0 and Tg = 30 mK is obtained from the best overlap of a scaling plot
(Figure 3.16). In all cases, the fits are visually quite good, demonstrating that the best fit
is rather unconstrained.

Thus if one is far from the glass temperature, there is less curvature and it is difficult to
pin down a glass temperature. Even, given that argument, the range of acceptable glass
temperatures for the 1.8% sample seems anomalously high, if one assumes that Tg ∝ x.
This is not necessarily a valid assumption. However with Tg > 30 mK for x = 0.018, it
appears almost as if Tg will not go to 0 as x → 0, an impossibility.
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Appendix C

Modelling Thermal Relaxation in
Powder Samples

When working with materials that have particularly poor thermal conductivity, as do
polycrystalline insulators, and/or especially large heat capacity, it becomes important to
consider heat diffusion [282] that manifests as thermal gradients and slow thermal relax-
ation within the sample. For example, one could simply imagine the sample to be a thin
wire with one end weakly linked to the cryostat; as heat flows out of the sample, there will
therefore be a gradient in the temperature from one end to the other. This is clearly a
dramatic oversimplification. A sample with heat capacity density c (i.e. total heat capacity
per volume) and thermal conductivity κ, will be governed by the heat equation [283]

∂T

∂t
=

κ

c
∇2T (C.1)

If the sample is isolated and so has no sources or sinks of heat, the sample’s temperature
distribution will behave in time as

T (r, t) = T̃ +
∞∑

n=1

ane
−t/τnfn(r) (C.2)

where T̃ is the average temperature of the sample. The functions fn are the various
functions that satisfy the equation ∇2fn = −(c/κτn)fn and then the values of τn are
determined based on boundary conditions. While the values of τn and the form of fn are
easily determined in certain shapes of sample, such as prisms and cylinders, more unusually
shaped samples cannot be modeled analytically. What is clear, however, is that for a given
geometry τn ∝ c/κ, illustrating the problems associated with samples of poor thermal

167



conductivity and high heat capacity. Furthermore, the τn’s will increase roughly as V 2/3

where V is the volume of the sample, allowing the time constant to be significantly reduced
by going to smaller sample size.

The parameter n is some arbitrary index chosen such that as n is increased, τ is
decreased. Thus τn for large n will be very short and so fairly unobservable. Generally one
will only notice at most, the first three or four time constants. When a heat pulse is given
to the sample at t = 0, the shape of the heater and its location on the sample, roughly
defines the initial temperature distribution and therefore selects the values of an. Again,
for high n, an will be very small, unless the heater is tiny relative to the sample, since fn

will have a very small wavelength. The n = 0 eigenfunction could be thought of as simply
constant or f0 = 1, a0 = T̃ with τ0 = ∞.

Connecting the sample to the cryostat via a weak thermal link, can be thought of
as introducing a drain or sink. The power flowing through that drain, however, will be
proportional to the temperature difference between the point on the sample to which it
is connected and the cryostat. This will therefore alter the fn’s, the τn’s and will make
τ0 finite therefore giving the sample an ‘external’ time constant of relaxation to the fridge
temperature. There will also be an f0(r) distribution of temperature in the sample after all
the faster relaxations have concluded. Finally the temperature will, as t → ∞, approach
the temperature of the refrigerator T0. Thus the new behaviour of the sample will be

T (r, t) = T0 + a0e
−t/τ0f0(r) +

∞∑

n=1

ane
−t/τnfn(r) (C.3)

In the limit τ0 / τ1, the function f0(r) , 1 almost everywhere on the sample. In that
case, a0e−t/τ0 will be a good representation of the average temperature of the sample.

To see this more rigourously, let us write the heat equation including a source/drain

c
∂T (r, t)

∂t
= κ∇2T (r, t) + q(r, t) (C.4)

We can now say that the heat flow through the weak link ought to be proportional to
the difference of the temperature of the sample where the link is connected and the fridge
temperature T0. For simplicity, T will just be considered relative to the cryostat tempera-
ture. Let us represent the contact of the link with the sample as occurring over a contact
volume VC and define a function M(r) that acts as a mask so that it is equal to 1 inside
that contact volume and 0 outside that volume. Then we can write the heat equation as

c
∂T (r, t)

∂t
= κ∇2T (r, t) +

K

VC
M(r)T (r, t) (C.5)
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As usual, one can still apply separation of variables. The solution becomes the same as
before, only the new spatial functions, call them gn, are solutions of the equation

Lgn(r) =

(
∇2 − KM(r)

κVC

)
gn(r) = − c

κτ ′n
gn(r) (C.6)

The most straightforward way to solve this equation is to take the fn’s, the solutions
to the source-free heat equation in the relevant geometry, as our basis functions. We can
then define matrix elements Lmn = 〈fm|L|fn〉 and diagonalize that matrix to obtain the
eigenfunctions, the gn’s, and the eigenvalues, which will be equal to −c/κτ ′n. In the limit of
an extremely poor connection to the cryostat, L will be diagonal with the entries −c/κτn.
Introduction of a link of finite conductivity introduces the elements −K〈fm|M(r)|fn〉/κVC .
Thus, to first order, we end up with L00 = −K/κV where V is the volume of the sample.
This equates to a finite external time constant of

τ0 =
C

K
(C.7)

where C is the total heat capacity of the sample. This is what we should expect to have for
a perfectly conductive sample that is weakly linked to a heat bath with a link of thermal
conductance K.

Now, depending on where the heater power is applied to the sample, where the weak
link is positioned on the sample and where the thermometer measures the temperature of
the sample, we can have different errors in our temperature measurement.

Our polycrystalline samples were cut as rectangular prisms, to a good approximation,
so we shall model them as such. The prism will have sides Lx, Ly and Lz, taking one of
the corners to be at (0, 0, 0). We must replace our single subscript n with three indices
j, k, l = 0, 1, . . .. The unperturbed basis functions must satisfy the conditions that no heat
can flow through the boundaries, thus

fjkl = cos(jπx/Lx) cos(kπy/Ly) cos(lπz/Lz) (C.8)

The matrix elements of L and the initial condition a0
jkl are then defined by the integrals

over the regions where the weak link and heater are attached to the sample, respectively.
Diagonalizing L gives the time constants τ ′n and the eigenstates, the gn’s. We will be most
interested in g0 since this will be the distribution of temperature within the sample after
the other states have decayed. The form of g0 will tell us how accurate our temperature
measurement is by integrating it over a region where the thermometer is attached to the
sample. If g0 is close to f000, i.e. almost constant, then our thermometer will be measuring
something close to the average sample temperature. However, if g0 has a large gradient,
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Figure C.1: A plot of the specific heat of Gd2Sn2O7, including estimated error bars.

we may not have our thermometer optimally positioned to measure the average sample
temperature.

This calculation has been performed for the sample geometry used for measuring a
polycrystalline Gd2Sn2O7 sample. For the PtW weak link that we employed, the external
time constant τ0 was approximately 20 times longer than the next longest time constant
τ1. This was determined through a double exponential fit of the data, ignoring earlier time
data where faster time constants were significant. The sample was cut with sides of lengths
0.42 × 0.52 × 0.23 cm3. Using the positioning of the weak link and thermometer on the
sample, and the procedure described above, we obtain the following results. When all of
the internal time constants have subsided, leaving the distribution of heat in the sample
well described by g0 (the lowest eigenstate), the estimated, maximum temperature error
can be expressed as

σT

T − T0
, ζ

τ1

τ0
(C.9)

where ζ is dependent on the sample geometry. The temperature T0 is the fridge tempera-
ture. In the case of this particular configuration, ζ = 0.53. Alternatively, one can think of
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the error in temperature measurement for a given cooling (heating) rate, so that

σT , ζτ1
∂T

∂t
. (C.10)

This must be applied to our data before and well after heat pulses, to determine the error
bars of our measurement. If the temperature is stable before a heat pulse and τ0/τ1 , 20,
a conservative estimated error on the specific heat will be about 2.5%. Estimated error
bars for our Gd2Sn2O7 measurement are shown in Figure C.1.

A large number of approximations have been made in the above error estimate. Fur-
thermore, these errors are systematic, not random (although inconsistency in the sample
temperature before the heat pulses can make the errors appear random). The result that
the error due to thermal gradients is proportional to τ1/τ0 is quite clear, however. Thus
a true test of whether our measurement is not being seriously affected by this issue is to
repeat the measurement with a different ratio of time constants. This was performed with
Gd2Sn2O7, using the ratios τ0/τ1 , 5 first and τ0/τ1 , 20 later. The results of these two
measurements were the same to within the scatter in the data. This served as a testing
ground for our technique of measuring specific heat using powder samples. Since then, we
have applied this method to other polycrystalline samples (discussed in Chapter 5), using
a similarly high ratio of τ0/τ1.

If this error were a significant problem, one could, for example, mix the powder sample
with silver powder and press it or encapsulate it in epoxy. This would improve the thermal
conductivity of the sample, thereby greatly improving the ratio τ0/τ1. This would have the
disadvantage of introducing an addendum that might be difficult to characterize. Since our
measurement has been configured with a long τ0, we have not found this to be necessary.
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Appendix D

SQUID Theory and Practicalities

In this Chapter, we present a minimal overview of the theory of Josephson junctions
and SQUIDs, followed by a discussion of how a SQUID is employed, particularly in our
experiments. Much of the theory of the Josephson effect and SQUIDs is sourced from
Refs. [116, 115] and we would refer the reader there for a much more in depth discussion.
Value information on the practicalities of SQUIDs can be found in Ref. [117].

D.1 The Josephson Effect

Josephson was the first to derive some of the very interesting behaviour that occurs when
Cooper pairs are allowed to tunnel from one superconducting electrode to another. The so-
called Josephson effect, is described by two important equations known as the Josephson
relations. Such a tunneling experiment can be set up in a variety of ways, but is most
commonly implemented with either a narrow superconducting bridge or a thin insulating
barrier in between bulk superconducting regions.

In the bulk superconducting electrodes, the wavefunction (at low enough temperatures)
will simply be described as

ψ =
√

ρe−iϕ (D.1)

where ϕ will typically be an arbitrary value. However, when they are brought close together
and tunneling is permitted, the phases become related. The Schroedinger equation for the
two superconducting electrodes can be written simply as

ih̄
∂ψ1

∂t
= E1ψ1 + Kψ2 (D.2)

ih̄
∂ψ2

∂t
= E2ψ2 + Kψ1 (D.3)
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where K describes the coupling between the superconductors as a result of Cooper pair
tunnelling. If there is a voltage V between the electrodes, one can substitute E1 = eV and
E2 = −eV (since Cooper pairs have charge 2e). Incorporating the phase we obtain

[
i

2ρ1
ρ̇1 − ϕ̇1

]
h̄
√

ρ1e
iϕ1 = eV

√
ρ1e

iϕ1 + K
√

ρ2e
iϕ2 (D.4)

[
i

2ρ2
ρ̇2 − ϕ̇2

]
h̄
√

ρ2e
iϕ2 = −eV

√
ρ2e

iϕ2 + K
√

ρ1e
iϕ1 (D.5)

Now multiplying those equations by ψ†
1 and ψ†

2 respectively, we obtain

ih̄ρ̇1/2− h̄ρ1ϕ̇1 = eV ρ1 + K
√

ρ1ρ2e
i∆ϕ (D.6)

ih̄ρ̇2/2− h̄ρ2ϕ̇2 = −eV ρ2 + K
√

ρ1ρ2e
−i∆ϕ (D.7)

Subtracting the equations and taking the imaginary parts, we have the first Josephson
relation as

ρ̇1 − ρ̇2 =
2K
√

ρ1ρ2

h̄
sin ∆ϕ (D.8)

or, since
√

ρ1ρ2 is largely constant, we can define a critical current I0, such that

IS = I0 sin ∆ϕ (D.9)

Here, the current is written as IS since this is the super current only. It is possible to have
additional current flowing between the electrodes, but it will be dissipative or normal.

Taking the real parts instead, one obtains the second, ac Josephson relation:

ϕ̇1 − ϕ̇2 =
2eV

h̄
(D.10)

or
∂∆ϕ

∂t
=

2eV

h̄
(D.11)

In fact, when discussing Josephson junctions and SQUIDs in magnetic field, one must
work with the gauge-invariant phase difference γ defined as

γ = ∆φ− 2π

Φ0

∫
A · ds (D.12)

where Φ0 = h/2e is a flux quantum. Thus the Josephson relations may finally be written
as

IS = I0 sin γ (D.13)
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∂γ

∂t
=

2eV

h̄
(D.14)

A realistic Josephson junction, however, is more correctly modeled as a tunnel junction
in parallel with a capacitor and possibly a resistor (often by design). In that case, one
obtains the resistively and capacitively shunted Josephson junction model or RCSJ model,
the circuit diagram of which is shown in the inset of Figure D.1(a). The total current I is
given by

I = I0 sin γ + V/R + CdV/dt (D.15)

Incorporating the ac Josephson relation, one obtains

I = I0 sin γ +
h̄

2eR

∂γ

∂t
+

Ch̄

2e

∂2γ

∂t2
(D.16)

then transforming to dimensionless variables, we can write

∂2γ

∂τ 2
+

1

βC

∂γ

∂τ
=

I

I0
− sin γ. (D.17)

This equation can easily be compared to the equations governing a particle on a tilted
washboard potential with mass m = (h̄/2e)2C. The plasma frequency is ωP =

√
2eI0/h̄C

and the damping parameter is

βC =
2eI0R2C

h̄
. (D.18)

This tilted washboard analogy allows one to easily visualize the behaviour of the phase
γ. If there is a low current bias, or the washboard is slightly tilted, the phase particle will
remain trapped in a local minimum. If the current exceeds the critical current, however, the
particle will escape and tumble down the washboard, hence a voltage will develop across the
junction. At this point, the behaviour of the phase particle depends heavily on the value of
the damping parameter βC . If βC < 1, then the junction is overdamped or non-hysteretic.
This means that the phase particle will reach a terminal velocity (or voltage) depending on
the current bias. If the current is dropped back below I0, the particle will be immediately
retrapped and the voltage will go to zero. A hysteretic or underdamped junction, where
βC > 1, on the other hand, will not reach a terminal velocity. Instead, the voltage will
increase until the gap voltage is reached and Cooper pairs are broken. On decreasing the
current bias, a much lower current is required to slow down and trap the particle, thus
there is hysteresis in the I-V curve. The behaviour of these distinct Josephson junctions
is illustrated in Figure D.1.

In the design of SQUIDs, one generally wishes to use non-hysteretic junctions. If an
insulating barrier is employed for the junction, R can end up being very large (thereby
greatly reducing the damping). Often it is necessary to add a shunt resistor made of normal
metal in parallel with the junction.
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(a) (b) (c)

Figure D.1: (a) The tilted washboard potential and circuit diagram of the RCSJ model.
(b) The I-V curve of a hysteretic or underdamped Josephson junction. (c) The I-V curve
of a non-hysteretic or overdamped Josephson junction. Figure is based on Refs. [116, 115].

D.2 Physical Principles of SQUIDs

The superconducting quantum interference device (SQUID) is a device that makes use of
Josephson junctions to make the superconducting equivalent of an interferometer that is
an extremely sensitive magnetic field sensor. SQUIDs consist of a loop of superconducting
material interrupted by one or two tunnel junctions, described as an rf-SQUID or dc-
SQUID respectively. Historically, rf-SQUIDs were first employed as it was relatively easy
to create one junction but is a technical challenge to create two, very similar junctions for
a dc-SQUID [117]

In the rf-SQUID configuration, there is only one junction in the superconducting loop
so there is always a superconducting shunt. Thus affixing leads to the rf-SQUID is quite
ineffective. To read out the rf-SQUID one must couple it to a radio-frequency tank circuit
(or LC resonator), hence the name. This makes for rather complicated read-out electronics.

The dc-SQUID consists of a loop with two junctions and leads can be connected between
them. This is the type of SQUID used here, thus it is the one to which we will restrict our
attention. Both SQUIDs are based on the idea of quantization of flux in a superconducting
loop which results from the fact that the phase ϕ of the wavefunction must be single valued
at any point. Thus if we take an integral of ∇ϕ around the loop, we must get an integer
multiple of 2π. ∮

∇ϕ · dl = 2πn (D.19)
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In the Ginzburg-Landau theory of superconductivity [115],

∇ϕ =
2π

Φ0

(
A +

m

2e2ρ
JS

)
(D.20)

where Φ0 = h/2e is the magnetic flux quantum, A is the magnetic vector potential, and
JS is the supercurrent density. The superconductor is assumed to be large enough that the
integration can be constrained to the interior where the supercurrent density JS should be
almost nonexistent. Then we have, converting our loop integral into an integral over the
surface area of the SQUID loop,

2πn =
2π

Φ0

∮
A · dl =

∫∫

A

B · σ = 2π
Φ

Φ0
(D.21)

with B the magnetic field and Φ the corresponding flux through the SQUID. If we interrupt
the superconducting loop with two Josephson junctions with phase differences ∆ϕ1 and
∆ϕ2, we will have

2πn = ∆ϕ1 −∆ϕ2 +

∫

Γ

A · dl (D.22)

where Γ refers to the portion of the loop not taken up with junctions. Substituting the
gauge invariant phase differences γ1 and γ2 completes the loop integral:

2πn = γ1 − γ2 + 2π
Φ

Φ0
. (D.23)

The current bias I is split between the two junctions, which we will assume have the same
critical current I0. This is certainly not always a good assumption. Incorporating the first
Josephson relation, I is given by

I = I0(sin γ1 + sin γ2) (D.24)

The flux through the loop Φ consists of an applied or external portion Φe and a part
that results from a screening current iS, which is half the difference between the junction
currents, thus

Φ =Φ e + LiS (D.25)

iS =
I0

2
(sin γ1 − sin γ2) (D.26)

where L is the inductance of the SQUID loop. So far, we have only considered the SQUID
in the zero-voltage regime, but that is not the way a dc-SQUID is generally employed.
There will be a critical IC that depends on the applied flux Φe and in practice, one biases
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(d)(c)(a) (b)

Figure D.2: (a) The circuit diagram of a SQUID showing the junctions with gauge invariant
phases γ1 and γ2, the bias current I and the screening current iS. (b) A sketch of the I-V
curves at different values of flux Φ for an ideal SQUID. The green line shows modulation
of the flux at constant bias current I. (c) A sketch of Φ(Φe) for a hysteretic SQUID with
βM > 1. (d) A sketch of the single-valued Φ(Φe) of a non-hysteretic SQUID with βM < 1.
Figure is loosely adapted from Refs. [116, 115].

the SQUID with a current I that is always above IC . There will then be a non-zero voltage
V across the SQUID leads which depends on IC which in turn depends on Φ0.

Thus it would be desirable to calculate IC as a function of Φe, though because of the
screening current iS, this is quite challenging. If we make the approximation that L is very
small, we can say that Φ = Φe and ignore the screening current. Using this approximation,
a simple trigonometric identity and letting (γ1 + γ2)/2 = γ, we can write

I = 2I0 sin(γ) cos(πΦe/Φ0 + nπ) (D.27)

Recall that this I is only supercurrent at this point. Thus to determine the critical current
IC for the dc-SQUID, we want to maximize I as a function of γ. Beyond that point, we
will have exceeded the critical current and then normal electrons must flow to make up the
difference, resulting in a finite voltage V across the device. Maximizing the above equation
will result in

IC = 2I0

∣∣∣∣cos

(
πΦe

Φ

)∣∣∣∣ . (D.28)

Once we have exceeded the critical current, we must include the second Josephson
relation dγ/dt = 2eV/h̄. The current I will now be a sum of the supercurrent from before
and a new normal current given by V/R from each junction (which we will assume to have
the same resistances). We are ignoring the capacitance of the junctions at this point for

178



the sake of simplicity.

I = 2I0 cos(πΦe/Φ) sin(γ) +
h̄

eR

dγ

dt
(D.29)

For a given value of Φe, this looks rather similar to the equation of motion for a very
overdamped junction, but with a critical current IC = 2I0 cos(πΦe/Φ). This equation is
analytically solvable and results in a time averaged voltage of

V̄ = (R/2)
√

I2 − [2I0 cos(πΦe/Φ0)]2 (D.30)

Thus, if we current bias our dc-SQUID above the critical current, we will have a sinusoidal
dependence of V (Φe), with a periodicity of Φ0, which provides a great deal of sensitivity
to small changes in magnetic field.

If we now consider the case of zero applied current, implying that γ1 = −γ2 but allow
for a non-negligible inductance L, we can see that

Φe = Φ− LiS = Φ− LI0 sin

(
γ1 − γ2

2

)
cos(0) = Φ− LI0 sin(πΦ/Φ0) (D.31)

Using dimensionless values of flux φ = Φ/Φ0 and φe = ΦeΦ0 we have

φe = φ +
LI0

Φ0
sin(πφ) (D.32)

φe = φ +
βM

π
sin(πφ) (D.33)

where we have introduced a new β-parameter

βM =
πLI0

Φ0
(D.34)

If one plots φ against φe, it can be seen that for βM < 1, φ(φe) is single valued. However,
for βM > 1, it is multi-valued and hysteresis will result. These scenarios are depicted in
Figure D.2(c) and (d). Thus just as βC told us whether the I-V curve of a junction would
be hysteretic, βM tells us whether a SQUID will have magnetic hysteresis or not. For most
practical purposes, it is best to choose SQUID parameters such that magnetic hysteresis
does not occur.

Clearly, including both SQUID inductance and applied current, as well as erasing a
number of other approximations such as perfectly symmetric junctions, negligible capac-
itance and magnetic field effects on the junctions themselves, makes for a very complex
problem and equations that cannot be solved analytically. Nonetheless, the important
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qualitative aspects of SQUID theory do not change. The parameters βC and βM must be
chosen appropriately to avoid hysteresis. There is a critical current IC(Φe) that is periodic
in Φ0. Biasing the device above that point results in a voltage V (Φe) which is also periodic
in Φ0. This periodic V -Φ curve provides a great deal of sensitivity to magnetic field, but
also makes for tricky readout electronics as will be described in the next section.

D.3 Application of SQUIDs

While SQUIDs are the most sensitive magnetic field sensor currently possible, the read-
out of the SQUID is highly non-trivial and requires some complex electronics. The main
challenges to overcome are (1) the small voltages on the SQUID that must be measured
and (2) the very nonlinear V -Φ curve that one obtains.

For best results (lowest noise), the SQUID voltage should be amplified with a cryogenic
transformer. However, this is certainly not the most convenient route to go as it is difficult
to troubleshoot cryogenic apparatus. For many applications, including those in this work,
it is sufficient to use a room temperature transformer (for impedance matching) followed
by a room temperature semiconductor amplifier, both of which are incorporated into the
SQUID controller [284].

To deal with the complicated V -Φ curve of the SQUID, it is necessary to either count the
number of Φ0 or linearize the transfer function. Counting flux quanta is dramatically less
sensitive as the ideal sensitivity of a SQUID is on the order of 10−6 Φ0/

√
Hz. Linearizing

the transfer function is performed with feedback or what is known as a flux-locked loop
(FLL). Essentially the electronics are set up to feed back an additional flux, through the
feedback coil, to keep the flux in the SQUID (and therefore the voltage) constant. Then
the feedback voltage is used as the signal as it should be proportional to the flux created
by the input coil.

In practice, the feedback system is more complicated than that and there are vari-
ous schemes used. I will describe the scheme employed in the SQUID controllers used
here [284]1. In order to reduce errors caused by drift in the dc-voltages from the SQUID
lines or amplifying electronics, a sinusoidal modulation is sent through the feedback coil
in addition to the feedback current. This modulation is typically in the range of 100
kHz to several MHz in frequency and with an amplitude of approximately half of a flux
quantum. In our specific apparatus, the modulation frequency is 100 kHz. The resulting
modulation in the SQUID voltage is then amplified and read with a lock-in amplifier and
phase-sensitive detector (PSD).

1SQUIDs and SQUID controllers were obtained from Michael Mück, ezSQUID

180



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2 0

10

20

30

40

50

60

-1

0

1

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

Figure D.3: Left: A surface plot of the different V −Φ curves obtained from tuning the bias
current showing more complex behaviour than simple models of a SQUID would predict.
While not perfect sine waves, the curves are nonetheless periodic in Φ and provide regions
of steep gain on which to apply feedback. Right: selected V -Φ curves, shifted up with
increasing bias current for ease of view.

In the simplest set-up, this signal is sent through an integrating circuit, compared with
a voltage corresponding to the desired position on the V -Φ curve and then fed back to
the feedback coil through a feedback resistor Rf such that it opposes any change in flux
through the SQUID. The feedback resistor chooses the closed-loop gain of the system –
larger Rf will result in larger gain since the voltage drop across Rf is taken as the signal.
Higher gain can have consequences, however, in reducing the bandwidth of the apparatus
and making it difficult to lock the feedback loop onto large signals. Smaller gain will have
higher bandwidth, but can then become overly sensitive to noise feeding into the SQUID
or electronics, making it difficult to maintain lock.

A slightly more complex approach, that is less sensitive to certain fluctuations, is em-
ployed in our SQUID electronics. Instead of fixing the amplitude of the modulation signal,
the amplitude of the second harmonic of the modulated signal is minimized. This has the
effect of maintaining the modulation about one of the steepest points of the V -Φ curve,
thus providing the best open-loop gain. If the modulation was centred about the shallowest
part of the V -Φ curve (at the maxima or minima of the sine wave) where the curvature is
largest, the amplitude of the second harmonic would be largest. This feedback mechanism
is insensitive to drifting offset voltages (since it uses an ac modulation). It also reduces the
sensitivity to fluctuations in the critical current (these are already very small in magnitude)
of the SQUID. Fluctuations in the amplitude of the V -Φ curve may change the amplitude
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of the second harmonic, but the position of the minimum amplitude will not be shifted.
The SQUIDs employed here were made with thin-film technology using Nb-AlO-Nb

tunnel junctions, with Pd shunt resistors. They include a lithographically patterned input
coil on top of the SQUID washer, but we have used our own hand-wrapped input coil.
While in theory, the V -Φ curve of a SQUID is close to a clean sine wave, in practice, it
is often much more complicated, though still periodic in Φ0. V -Φ curves at different bias
currents for the SQUID used here are shown in Figure D.3. Clearly, these curves are quite
a bit more complicated than the simple theory of Equation D.30. Because the feedback
circuit linearizes the transfer function, these unusual curves do not result in any difficulties
or errors.

In practice, the SQUID used for much of this work was found to have a noise floor of
9 to 12 µΦ0/

√
Hz. This is more than adequate for our applications here, as our signal is

generally quite large. However, in some cases, SQUIDs may show a sensitivity as good as
1 µΦ0/

√
Hz [117]. The bandwidth of the SQUID in lock can be as high as 10 kHz when a

low value of feedback resistor (lower gain) is used and the frequency response is completely
flat at low frequencies.
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Appendix E

Specific Heat of Yb2Ti2O7

While perhaps not a sufficiently in-depth study to stand as a full chapter, measurements
on the material Yb2Ti2O7 (YTO) are nonetheless important to mention and are thus
presented in this appendix. YTO is expected to be described by the XY (easy local
(111) plane anisotropy) model on a pyrochlore lattice [285]. In contrast with the case of
local [111] Ising anisotropy with ferromagnetic interactions on the pyrochlore lattice which
can lead to the exotic spin ice state [95], the case of XY anisotropy with ferromagnetic
interactions has a non-degenerate classical ground state [286]. Nonetheless, this material
has been observed to manifest a spin liquid or hidden order state at low temperatures and
has eluded explanation to this point.

Here, we discuss specific heat measurements on both single crystal and polycrystalline
samples of YTO. Though initially intended as a characterization study to complement
neutron scattering experiments, the results are both dramatic and interesting, and will
hopefully improve our understanding of this enigmatic material.

E.1 Background

As far back as 1969, Blöte et al. measured the specific heat of polycrystalline Yb2Ti2O7

and found a sharp, first-order phase transition at 214 mK [266]. Above that was a broad
feature centred around 2 K. With today’s understanding of magnetism, this appears to be
rather standard behaviour for a geometrically frustrated system in fact: a broad feature
near the Curie temperature indicative of short range correlations and then a sharp ordering
transition that has been pushed down to a lower temperature by the geometric frustration.
Later experiments have found the transition temperature to be higher than that of Blöte
et al., in the range of 240 to 250 mK. This indicates a possible sample quality dependence.
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Interestingly, much more recent neutron diffraction experiments (again on powder sam-
ples) found no indications of static magnetic order below the transition with no magnetic
Bragg peaks visible [287, 109]. On the other hand, µSR and Mossbauer experiments found
a very sudden, first-order, drop in the spin fluctuation rate at the transition. Below the
transition, the system remains dynamic, with a temperature independent fluctuation rate
of ∼ 1 MHz [109], which is below the frequency window of Mössbauer measurements but
within range of µSR. This transition, thus, is a very unusual kind of phase transition. It
seems to be dynamical in nature, without any long range ordering. Excitingly, it bears
many similarities to the liquid-gas transition – it is first-order, consists of a drop in relax-
ation rate (similar to an increase in viscosity) and does not appear to be associated with
a broken symmetry.

This system is quite unique among magnetic materials, though the garnet material
Yb3Ga5O12 (YGG) does seem to be related, also showing some kind of spin liquid or
hidden order state at low T [110]. In Ref. [110], it was noticed that both YTO and YGG
have first-order phase transitions that account for only a small percentage (∼ 20%) of
the total entropy R ln 2. This is because much of the entropy is already tied up in short-
range correlations well above the transition temperature. However, other geometrically
frustrated systems, such as Gd2Ti2O7 and Gd2Sn2O7 have first-order phase transitions that
account for a larger percentage (40% or more) of their total R ln 8 entropy. The authors
of Ref. [110] propose that this low amount of entropy associated with the transition is
somehow connected to the existence of an exotic, hidden-order ground state below the
transition.

Neutron scattering experiments [6] performed on single crystal samples of Yb2Ti2O7

have added richness to this problem, with the discovery of ‘rods’ of scattering. These rods,
along the [111] and symmetry related directions, are indicators of 2-dimensional character.
The rods increase in intensity with lower temperature (results are shown down to 1.4 K [6])
and seem to be connected to the broad feature in the specific heat. The question becomes,
does this 2-dimensional character stem from strains in the crystal structure that locally
destroy the 3-dimensional symmetry or is it possible for a perfect, 3D pyrochlore magnet
to exhibit such 2D magnetic correlations?

Yasui et al. [288], have measured the ac susceptibility of and performed neutron scat-
tering measurements on a single crystal of YTO. They find an anomaly at 240 mK in
χ′(T ) (near the specific heat peaks found by other groups), which they attribute to fer-
romagnetic ordering due to the large magnitude of the susceptibility which approaches
the demagnetizing limit of their sample. Their neutron scattering measurements are re-
ported to find extra magnetic scattering around the nuclear Bragg peaks consistent with
a collinear ferromagnetic state, though with a greatly reduced magnetic moment. The
polarized neutron-scattering measurements of Gardner et al. [289] are, however, inconsis-
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tent with this picture of a ferromagnetic state, showing that the vast majority of the Yb
moments remain dynamic and disordered below 240 mK.

It has been known for quite some time that the crystal field Hamiltonian of YTO leads
to a planar anisotropy or a model close to XY -like [290, 285]. The ratio g⊥/g‖ is roughly
2.4 [285]. Recently, neutron scattering experiments [291] have been used to show that, even
though the single-ions are XY -like, the dominant interaction between nearest neighbours
is not an isotropic exchange but is in fact dominated by an Sz

i S
z
j interaction. This may

offset the planar anisotropy and make for a more isotropic, Heisenberg-like model.
Recently Ross et al. [286] have successfully observed these diffraction rods. They con-

clude that they are 2-dimensional correlations within the kagome planes of the crystal
structure. Interestingly, at the lowest temperatures studied (30 mK), the rods have largely
disappeared and given way to more 3-dimensional correlations. Thus, they have concluded
that the transition seen in the specific heat and dynamics is a crossover from 2-dimensional
to 3-dimensional correlations. Again, there are no indications of long range order down to
the lowest temperatures studied.

Application of a suitably large magnetic field along [11̄0] appears to induce long-range
magnetic order, as evidenced by sharp spin waves. This transition takes place at HC , 0.5
T as the lowest temperatures studied. Complementing their neutron scattering measure-
ments with SQUID magnetization measurements, Ross et al. define an H − T phase
diagram with the critical field at which LRO occurs, HC , increasing as the temperature is
increased. In low fields and below 240 mK, is situated a 3D short range ordered (SRO)
region of the phase diagram and above that in temperature is a region of 2D SRO.

As a complement to the neutron scattering results of Ross et al. [286], we have performed
specific heat measurements on single crystal and powder samples of Yb2Ti2O7, taken from
the same crystal growth used for the neutron scattering experiments.1

E.2 Specific Heat Results

Measurements of the specific heat of a single crystal of YTO have brought a significant
surprise to this subject. Instead of a sharp peak, we observe a broad feature at a lower
temperature around 180 mK. This seems unlikely to simply be a smeared phase transition
as it is in fact at quite a different temperature from the transitions measured in the poly-
crystalline samples. This single crystal sample was from the same growth used for neutron
scattering experiments in Ref. [286], which showed rods of scattering suggestive of 2D cor-
relations. The fact that the rods of scattering are present at 200 mK and absent at 30 mK
is consistent with a gradual crossover below 200 mK to more 3-dimensional correlations

1Samples were provided by Kate Ross and Bruce Gaulin at McMaster University
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Figure E.1: A plot of measurements from this work of a single crystal of Yb2Ti2O7 (blue),
compared with measurements from this work on polycrystalline Yb2Ti2O7 (black) and with
previous measurements of a polycrystalline sample taken from Blote et al. [266].

and the loss of 2-dimensional correlations, signaled by this broad feature that we observe
at 180 mK.

In contrast, the polycrystalline sample from which the single crystal was grown, shows
a sharp phase transition as was seen previously [266, 292]. However, the transition tem-
perature in our sample is slightly higher, close to 270 mK. This can be compared to the Tc

of 214 mK from Blöte et al. [266] and 250 mK from de Réotier et al. [292]. This suggests
that even in powder samples there is a significant sample quality effect.

At the lowest temperatures studied, one begins to observe an upturn in the specific heat,
likely resulting from the nuclear moments of the various Yb isotopes. This contribution is
expected to be a combination of the nuclear hyperfine coupling (from the nuclear magnetic
dipole moment) and the nuclear electric quadrupole interaction with the electric field gra-
dient in the vicinity of the nucleus. It is interesting to note that the nuclear contributions
from the powder sample (similar to that of Blöte et al.) and the single crystal (near 100
mK) are not identical in magnitude. This is a likely indicator of different ground states
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of the Yb3+ electronic moments in the powder and single crystal samples. Depending on
whether the electronic moments are ordered or dynamic, and depending on the direction of
the electric field gradient, we should expect different perturbing nuclear Hamiltonians and
eigenvalues. This will give rise to different nuclear contributions to the specific heat. Thus
in principle, the nuclear contribution to the specific heat can act as a microscopic probe
of the magnetic fields inside the sample. Gd is reasonably amenable to calculation, as in
Ref. [178], possessing only two isotopes with nuclear moments, both I = 3/2. It may be
more challenging to do such an analysis here because of the likely dynamic ground states.
It would also be severely complicated by the fact that the nuclear isotopes with magnetic
moments are 171Yb (with I = 1/2) and 173Yb (with I = 5/2) and Mössbauer experiments
are performed on 170Yb [109].

Susceptibility measurements on a single crystal by Yasui et al. [288] do show a reason-
ably sharp feature around 240 mK, suggesting that a sharp phase transition is possible
in single crystal Yb2Ti2O7. Our specific heat measurements are the first reported on sin-
gle crystals of YTO. Work is continuing, using neutron scattering, to try to explain the
differences between these single crystals and the powder samples, both structurally and
magnetically. It is clear, that the single crystal and polycrystalline samples are fundamen-
tally different in their magnetic behaviour and it seems likely that there are important
structural differences that cause such changes. As has been discussed in Chapter 5, geo-
metrically frustrated materials (rare-earth pyrochlores in particular) are considered to be
quite sensitive to small amounts of disorder.
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