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Abstract 

Automatic Vehicle Location (AVL) and Automatic Passenger Counting (APC) systems can be 

powerful tools for transit agencies to archive large, detailed quantities of transit operations data. 

Managing data quality is an important first step for exploiting these rich datasets.  

 

This thesis presents an automated quality assurance (QA) methodology that identifies unreliable 

archived AVL/APC data. The approach is based on expected travel and passenger activity 

patterns derived from the data. It is assumed that standard passenger balancing and schedule 

matching algorithms are applied to the raw AVL/APC data along with any existing automatic 

validation programs. The proposed QA methodology is intended to provide transit agencies with 

a supplementary tool to manage data quality that complements, but does not replace, 

conventional processing routines (that can be vendor-specific and less transparent).  

The proposed QA methodology endeavours to flag invalid data as “suspect” and valid data as 

“non-suspect”. There are three stages: i)  the first stage screens data that demonstrate a violation 

of physical constraints; ii) the second stage looks for data that represent outliers; and iii) the third 

stage evaluates whether the outlier data can be accounted for with valid or invalid  pattern. Stop-

level tests are mathematically defined for each stage; however data is filtered at the trip-level. 

Data that do not violate any physical constraints and do not represent any outliers are considered 

valid trip data. Outlier trips that may be accounted for with a valid outlier pattern are also 

considered valid. The remaining trip data is considered suspect. 

The methodology is applied to a sample set of AVL/APC data from Grand River Transit in the 

Region of Waterloo, Ontario, Canada. The sample data consist of 4-month’s data from 

September to December of 2008; it is comprised of 612,000 stop-level records representing 

25,012 trips. The results show 14% of the trip-level data is flagged as suspect for the sample 

dataset. The output is further dissected by: reviewing which tests most contribute to the set of 

suspect trips; confirming the pattern assumptions for the valid outlier cases; and comparing the 

sample data by various traits before and after the QA methodology is applied. The latter task is 

meant to recognize characteristics that may contribute to higher or lower quality data. Analysis 

shows that the largest portion of suspect trips, for this sample set, suggests the need for improved 

passenger balancing algorithms or greater accuracy of the APC equipment. The assumptions for 

valid outlier case patterns were confirmed to be reasonable.  It was found that poor schedule data 

contributes to poorer quality in AVL-APC data. An examination of data distribution by vehicle 

showed that usage and the portion of suspect data varied substantially between vehicles. This 

information can be useful in the development of maintenance plans and sampling plans (when 

combined with information of data distribution by route). 

A sensitivity analysis was conducted along with an impact analysis on downstream data uses. 

The model was found to be sensitive to three of the ten user-defined parameters. The impact of 

the QA procedure on network-level measures of performance (MOPs) was not found to be 

significant, however the impact was shown to be more substantial for route-specific MOPs. 
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Chapter 1 

Introduction 

There is a mutual relationship between the ability of a region to move goods and people and the 

region’s economic well-being. As cities grow, travel demand increases from the need to connect 

workers to their workplaces, suppliers to customers, and trade within and between regions. A 

comprehensive transportation network is needed to meet this demand and governments are 

recognizing the need to invest in sustainable transportation infrastructure. An efficient public 

transportation system is a necessary part of a comprehensive network; it is a practical solution for 

urban mobility needs because transit makes more effective use of the limited public space in 

urban areas.  

Efficient transit operation can be achieved when transit agencies can monitor their operations, 

report performance and plan for future demand.  Some transit agencies have adopted Automatic 

Vehicle Location (AVL) and Automated Passenger Counting (APC) systems as useful tools to 

achieve these tasks.  

1.1 Introduction to AVL and APC Systems 

AVL technologies allow transit agencies to monitor vehicle movements through the transmission 

of geographic location data to a central controller. There are three primary methods of tracking 

vehicles: signpost technique, LORAN C technology, and global positioning system (GPS). 

Signposts determine position via a fixed installation of electronic beacons located at various 

bus stops or traffic signals. LORAN C is land-based technology that consists of radio 

transmissions relayed through land connections (Perk & Kamp, 2003). Modern AVL systems 

use global positioning systems (GPS) technology, which rely on satellite tracking, for time and 

location stamps. AVL systems have historically been developed for real-time applications, such 

as support tools for dispatchers (Furth et al., 2004) and these applications continue to be the 

primary use of AVL systems (Parker, 2008).  Other real-time uses include communication to 

traffic control systems for transit signal priority and integration to traveller information systems, 

such as next bus notification.  

APCs automatically count the number of boarding and alighting passengers by door and stop. 

They can be useful for estimating ridership, passenger miles and peak loads without the need of 

farebox data or manual count surveys. Legacy APC systems are comprised of treadle mats to 

count passengers as they step onto or off of transit vehicles, however modern APCs use infrared 
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sensors mounted at each door. The configuration and placement of multiple detectors allow the 

APC units to determine the number of people and direction of movement. The counts are usually 

stored to an on-board computer and later downloaded at a garage for off-line analysis. The need 

to associate passenger activity to designated stops means that most standalone APCs also have 

independent location referencing; stand-alone APC units were more expensive and were 

generally less popular during their earlier deployments (Furth et al., 2006). 

The recognition of offline applications for AVL data led transit agencies to merge the two 

technologies into a hybrid AVL/APC system. Another advantage of a hybrid system is reduced 

marginal costs for APC installation by relying on the AVL component for location referencing. 

Hybrid systems commonly resulted from the upgrade of an AVL system to include APC features 

or vice versa, or as part of a broader Intelligent Transportation System (ITS) deployment. ITS 

refers to the use of information technology to advance and improve transportation systems.  

Therefore transit agencies and the literature sometimes refer to a hybrid AVL/APC system 

simply as an AVL or APC system. Such hybrid systems typically are comprised of both location 

data transmitted by radio for real-time applications and on-board event recording for data 

archives. Real-time AVL data is generally polled on a time recursive cycle (typically every 40 to 

120s) also known as “location-at-time” and events records are generally triggered only at 

scheduled and unscheduled stops also known as “time-at-location” (Furth et al, 2006).  

Archived AVL/APC data is most commonly of interest to transit planning and operation groups; 

rich datasets of vehicle movements and passenger activity information leads to more 

opportunities to monitor performance, analyse service deficiencies and plan routes.  As 

AVL/APC systems advance, more uses for these archived data are being recognized by other 

transit business units. Some examples are the investigation of rider complaints by the customer 

service department and tracking of vehicle mileage and/or equipment malfunctions by 

maintenance crews. The transition from a data-poor to data-rich environment is transforming 

how transit agencies are monitoring their operations; on-going research is very active for the 

most effective methods to exploit archived AVL/APC data.  For transit directors, data quality 

management is a key requisite for sound business decisions supported from these data.  

1.1.1. Data collection process 

Figure 1 depicts a modern AVL/APC system configuration. Modern AVL/APC systems 

generally employ GPS technology to track time and location. Recurring location-at-time data are 

transferred to a central computer via radio transmission for real-time applications.  

Mounted on each door is an infrared sensor that counts the number of passengers boarding and 

alighting the vehicle. Counting sensors are generally triggered when the bus stops and doors 

open. The on-board computer processes information from the APC sensors and AVL equipment 

to generate a stop event record. Basic information contained in a stop record are the arrival and 

departure times, number of passengers boarding and alighting for each door (if the doors 

opened), the odometer distance travelled and GPS time and location coordinates.  
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Figure 1 Physical components of an AVL-APC system (Source: Infodev) 

Stop event records (time-at-location data) are stored on-board and later downloaded at the 

garage.  Data stored on-board may be downloaded automatically via infrared (IF) or radio 

frequency (RF) modems or manually with a handheld data collector.  

Once the data are downloaded, matching algorithms relate stop event records to schedule data. 

Schedule data may typically contain route identifiers and information about designated stops 

such as stop name, location, the distance between designated stop and an expected arrival and/or 

departure time. Not all stops are associated with a scheduled time; schedule planners often do not 

design routes at this level of detail. Therefore, a designated stop associated with a schedule time 

is called a time point.  

To demonstrate the type of data collected by AVL/APC systems, Figure 2 is an example bus 

route and Table 1 demonstrates how the data might look within an archived database. The round 

points in Figure 2 represent terminal stops and the square points represent designated bus stops 

along the route. Time points are depicted by larger square points. Scheduled departure time is 

shown at Terminal A and scheduled arrival time is shown at Terminal B. Most schedule data will 

have the same arrival and departure time for stops without any planned dwell time.  
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Figure 2 Example trip route 

Table 1 Example stop-level view of AVL/APC data 

 

Table 1 shows the AVL/APC data at the stop-level detail after passenger counts are balanced and 

the stop events records are matched to the schedule. Stop event records are not always associated 

with a route-designated stop (see EventID 12346, 12349, 12350 etc.). This type of stop event 

record is sometimes identified as a disturbance stop or an interstop record related to intersection 

or traffic delay.  

Aggregated information and route attributes may also be stored at the trip-level and linked to the 

stop-level data in a relational database (Table 2).  

Table 2 Example trip-level view of AVL/APC data 

 

Note that Tables 1 and 2 are example views of archived AVL/APC data. Additional columns 

may display the time in other formats to facilitate analysis. Both raw and balanced passenger 

counts can be included. (More information on passenger balancing algorithms is available in 

EventID TripID Stop Name Act Arr Act Dep Odom Sch Arr Sch Dep Sch Dist Board Alight Load

12345 2222 Terminal A 07:01:00 07:05:23 2391 07:05:00 07:05:00 0 14 0 14

12346 2222 07:07:48 07:07:54 2393

12347 2222 Stop 1 07:10:30 07:10:54 4091 1600 8 7 15

12348 2222 Stop 2 07:11:58 07:12:12 4791 07:10:00 07:10:00 2250 16 4 23

12349 2222 07:13:02 07:13:10 4791

12350 2222 07:14:06 07:14:12 4791

- - - - - - - - - - - -

- - - - - - - - - - - -

12360 2222 Stop 7 07:33:24 07:33:30 11591 07:28:00 07:28:00 8900 5 11 10

12361 2222 07:34:36 07:34:40 11591

12362 2222 07:34:02 07:35:00 11591

12363 2222 Stop 8 07:35:26 07:37:42 12991 10200 3 7 14

12364 2222 07:38:45 07:38:51 12992

12365 2222 Terminal B 07:40:12 07:40:36 14091 07:30:00 07:30:00 11200 0 14 0

TripID RouteID Direction VehID Act Start Act End Dist Sch Arr Sch Dep Sch Dist Board Alight

2222 X Outbound 332 07:01:00 07:40:12 12362 07:05:00 07:30:00 11200 71 71

2223 Y Inbound 225 08:07:48 09:02:54 24092 08:10:00 09:00:00 23900 38 38

2224 X Outbound 231 10:30:12 11:24:34 11243 10:30:00 11:20:00 11200 28 28

2225 X Inbound 432 18:33:00 19:12:56 10923 18:30:00 19:05:00 11200 55 55

2226 Z Inbound 342 14:11:20 14:35:02 10232 14:10:00 14:35:00 10000 21 21

2227 Y Inbound 231 13:21:00 14:35:00 23952 13:20:00 14:40:00 23900 12 12
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Section 2.1). Load can be derived from the boarding and alighting counts, therefore some 

database designs would omit load. Odometer readings may be processed into travel distances 

referenced from the first or previous stop. GPS coordinates may be included for mapping 

capabilities. 

Differences in ITS architecture, hardware and software vendors and in-house IT (information 

technology) support result in variations to the data collection and processing routines.  For 

example, some AVL/APC systems store only a series of sensor signals on-board and then 

aggregated into stop event records offline. Some AVL/APC systems record stop events only at 

designated stops or only at time points. Advanced systems are capable of identifying the route 

and run in real-time; an example is buses with next stop announcement or estimated arrival times 

at stations. There are several approaches to schedule matching that may rely on operator sign-in, 

vehicle to run assignment files and/or spatial analysis in geographic information systems (GIS). 

Built-in quality checks may occur before or after stop events processing and schedule matching; 

these processes can also fluctuate between vendors. 

1.1.2. Data quality issues 

Different data quality needs for different purposes 

As transit agencies began to incorporate AVL data for offline analyses, practitioners recognized 

the contrasting data quality needs from real-time applications. In real-time, erroneous data may 

appear as just a small blip in a continual data stream transmitted to the controller; no lasting 

impact is made to the immediate operations. However in off-line analysis, errors in data archives 

could results in poor performance analysis results (Kemp, 2002). An example of this impact may 

be demonstrated with schedule adherence.   

Schedule adherence measures state how often buses arrive within a given threshold from the 

scheduled stop time (i.e. 85% of the time, buses arrive within 5mins of the schedule). Temporary 

malfunctioning clocks will minimally disturb real-time applications but can render large schedule 

deviations during offline analysis. Even where recorded time and location are correct, matching 

algorithms may associate a stop event with another designed stop or route, rendering the schedule 

adherence measures invalid.  

Among offline uses, differences in data quality requirements also vary based on the intended 

purpose. When adjusting the schedule based on expected travel times, planners may not be 

interested in data resulting from severe weather events that can skew a runtime analysis. 

(Runtime analyses examines the travel times of in-service transit vehicles between two 

designated stops).  However data from exceptional events would still be considered valid for 

performance reporting. Along the same note, applications of archived AVL/APC data also often 

rely on extreme values such as: identifying routes with the highest or lowest ridership, analysing 

run times of routes with poor schedule adherence (i.e. large schedule deviations). Business 

decisions allocating limited resources become more prone to invalid extreme data.  
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More opportunities to introduce error 

Automatic data collection is computationally more complex than traditional methods. In a 

manual survey, a ride checker can easily identify the route, direction, stop location, time and 

number of boarding and alighting passenger by visual inspection. Error may be introduced by 

poor visual inspection and improper documentation due to human limitation. In an AVL/APC 

system, passengers are detected first by breaks in the APC sensor beams. Active sensors and 

passive sensors are two types of infrared sensors, they each work differently. Active sensors rely 

on the reflection of passing objects dark colors do not reflect well; passive sensors are based 

on detecting change in body heat. Some manufacturers combine the two types for improved 

accuracy (Perk & Kamp, 2003).  Systematic under or over-counting (bias) and random counting 

error can present themselves in APC collected data; bias is considered a more serious 

measurement error (Furth, Strathman, & Hemily, 2005). 

Next, an APC analyzer must process these beam breaks into a count and direction. The on-board 

computer must aggregate the stream of stop, door open/close and APC sensors signals into a 

single stop event record. At the garage, the on-board data is downloaded to an offline computer. 

Matching algorithms parse the data into separate trips, identify the route and link event record to 

designated stops. While some studies have shown raw counts from APC equipment to be more 

accurate that ride checkers (Kemp, 2002), more opportunities inherently exist to introduce error 

in the final archived AVL/APC database. Multiple routines are required to process the data 

before it is in a useable format. (Figure 3) 

 

Figure 3 Data collection flow and potential for error 

Error introduction opportunities are shown in Figure 3. Mechanical errors such as malfunctioning 

equipment can lead to the miscounting of passengers. Recording errors such as the loss of a door 

open signal can deactivate the APC sensor. Operational errors may cause incorrect segmentation 

of the data (identification of start of new trips) such as the replacement of an AVL/APC equipped 

bus with a non-equipped bus while in service. Poor matching algorithms can classify the wrong 

schedule or designated stop when the matching process is conducted offline. These algorithms 

further rely on good schedule and bus stop data; bad vehicle-to-route assignment files or 



7 

 

incorrect operator sign-in can affect the results. Chapter 2 provides more details on current data 

management practices for their types of errors.  

 

Larger scope of data 

Another barrier to validating the APC/AVL data is that a larger scope of data is now available 

through automation. Transit agencies must adjust their analysis methods, which were originally 

designed for a data-poor environment. Oftentimes, there is a large learning curve and more 

training is needed (Boyle, 2008, Stratham et al, 2008, Parker, 2009). This adjustment period can 

require further data management expertise that can exceed agency resources. The tools for this 

data management can be developed in-house. However many agencies rely on vendor-supplied 

software because it is less onerous than exhausting agency resources (Kimpel et al, 2003). 

1.2 Motivation 

The popularity of archived AVL/APC data is growing, yet some transit agencies still hesitate to 

readily accept these technologies (Boyle, 2008). Transit agencies often face the challenge of 

getting staff to readily accept automatically collected data as “valid enough” for their uses 

(Parker, 2008).  For example, some transit agencies still frequently rely on manual surveys or 

revenue data for ridership estimates even when an APC system is employed.  The general 

problem appears to be that the level of routine data processing has not advanced to the point that 

AVL/APC data can be used with confidence, without an analyst carefully checking and adjusting 

it (Furth et al., 2005) and without the frequent need for external data.  

Transit systems that have strived for data quality have been most successful in the 

implementation of APC/AVL systems (Boyle, 2008).  Implementing quality assurance processes 

is an important first step towards maximizing the utility of archived data. However, most 

research of archived AVL/APC systems focuses on the development of tools for service analysis 

such as determining schedule adherence, run times, ridership and peak loads. TRCP Synthesis 77 

Passenger Counting Systems calls for further research on the evaluation of techniques for data 

cleaning and validation. This study is intended to contribute to AVL/APC data quality research 

by addressing some common problems: 

Though internal validation studies are common in transit agencies with AVL/APC deployment 

(Boyle, 2008), they are often unpublished. Transit agencies still frequently rely on manual 

surveys or external data sources to validate their AVL/APC data and focus more on the accuracy 

of raw measurements. The larger scope of data also makes validation difficult. An automated 

validation program is a powerful tool for data quality management. However many programs are 

developed by vendors or third-party contractors and these tests are not always transparent nor 

understood by the user. Through the development of an automated quality assurance (QA) 

procedure, this research intends to improve the availability of resources for data quality 

management of archived AVL/APC system. 
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1.3 Research goals and objective 

The goal of this research is to develop a framework for identifying unreliable data collected from 

AVL/APC systems based solely on information contained within the archived database. This 

thesis has the following objectives: 

1. Define an analytical methodology to apply the quality assurance (QA) framework and 

mathematically define the process steps; 

2. Perform the QA  methodology on a sample of archived APC/AVL dataset from Grand 

River Transit in the Region of Waterloo, Ontario, Canada;  

3. Evaluate the output of the QA methodology and model robustness; and 

4.  Assess the impact of this QA methodology on further applications of the archived 

AVL/APC data. 

All of these objectives help service providers and planners apply a quality assurance framework 

within their respective transit agencies and enhance the quality of their archived AVL/APC 

databases for other uses such as performance assessment, monitoring and future planning. It is 

important to note that the proposed procedure is meant to complement, not replace, current data 

processing and quality control routines. 

1.4 Thesis Outline 

Chapter 2 is a literature review of the current approaches to quality assurance of archived 

AVL/APC data. Chapter 3 describes and defines the proposed QA methodology. Chapter 4 

describes the application of the methodology to a sample AVL/APC database. Chapter 5 

evaluates the results of the quality assurance analysis and discusses study limitations. Chapter 6 

summarizes the conclusions of this study and identifies potential future extensions to the work. 
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Chapter 2 

Literature Review 

Section 1.2 discusses data quality issues related to archived data from AVL/APC systems. This 

chapter discusses some of the current practices associated with the management of data quality. 

The first section is an overview of the current quality control and quality assurance practices by 

transit agencies. The second section investigates data quality management practices in other ITS 

examples. A summary of the findings is provided at the end with a discussion of the limitations 

to current practices.  

2.1 Current quality management practices 

Methods described below are several data quality assurance practices available to manage 

archived AVL/APC data quality.  

 

Appropriate System Design 

Following the recognition of different quality needs of archived transit data, new data collection 

processes and databases structures were proposed for AVL systems to integrate them with APC 

systems. Furth et al. (2004) categorize different uses for archived AVL/APC data and the 

necessary data requirements (Tables 3 and 4).  

The quality of downstream analysis from AVL/APC data can be improved and facilitated 

through a proper system design, thus providing transit data with sufficient detail for practical 

database structure. Data detail levels are: (A) round robin polling, (B) timepoint records, (C) stop 

records, (D) level segment performance summary and (E) finest level of detail . Level A refers to 

collection at recursive time intervals (usually 40 to 120s).  Level C may refer to a record at 

designated transit stops.  



 

10 

 

Table 3 Decision tools and data needs (Source: Furth et. al. 2005) 
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Table 4 Decision tools and data needs continued 

 
 

Timepoints (B) are a subset of designated stops (or it can also be an alternate location) associated 

with a scheduled arrival and departure time. Performance summaries in Level D refer to the 

inclusion of additional travel information in the preceding segment to a stop; time spent below 

crawl speed is an example performance summary. Lastly, Level E refers to a finer disaggregation 

of events below a stop record such as door open/close events or wheelchair lift use. The sample 

AVL/APC data shown in Table 1 may be considered between Level C and D, instead of 

assigning segment performance characteristics to the subsequent stop record, non-designated 

stops are recorded separately.   
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Manual Surveys and comparison to external data sources 

Many transit agencies base their data validation on ensuring the accuracy of the AVL/APC 

equipment hardware and software.  The general technique to address this quality perspective is to 

verify APC counts with another source. Comparison to manual counts remains the most common 

method of validation. Even where APC/AVL systems are already deployed, manual surveys are 

still predominantly used to supplement ridership estimates (Boyle, 2008). However manual 

surveys are time and labour-intensive and are often limited in sample size. Results may also be 

readily influenced by extreme events such as traffic accidents or severe weather conditions.  The 

customary assumption that manual counts are 100% accurate has been challenged by some APC 

vendors, which insist on video surveillance verification for passenger counts (Furth et al., 2006).   

Another external data source is ridership generated from revenue data (farebox), however TCRP 

Synthesis 34 concluded that farebox counts are shown to be less accurate than conventional APC 

systems. With the gradual proliferation of special fare programs using various fare media, 

boarding estimates using revenue-based models are becoming increasingly suspect (Kimpel et al, 

2003).  

Test criteria for APC equipment often fail to distinguish between random error and bias 

(systematic error). Bias is more serious than random measurement error, and accuracy tests 

should specifically check for bias. However few agencies can afford the research needed to 

establish the level of systematic over- or undercount (Furth et al., 2005). Instead most agencies 

rely on choosing a vendor with high accuracy rates or apply vendor-supplied correction factors. 

State-of-the-art APC systems guarantee count accuracy in the two to three percent range (Boyle, 

2008). 

The reliance on external data sources for validation ultimately requires additional resources and 

leads to increased workload for the transit agency.  For example, annual validation by manual 

counts is required by the Federal Transit Agency (FTA) for ridership submissions based on 

APC/AVL systems. For a smaller to medium sized transit agency that already collects annual 

ridership data by manual methods, further deployment of AVL/APC systems for ridership data 

collection may be discouraged and instead viewed as an additional expense.  Techniques of data 

validation that preclude external data collection efforts are more easily adopted by resource 

constrained agencies. Some cost data is available for manual versus APC/AVL methods, 

however it is difficult to compare these numbers because APC/AVL systems are often 

incorporated in to a larger ITS package.  Boyle (2008) estimates a median capital cost of $6,638 

per APC unit based on a survey of 26 transit agencies. TRCP 29 reports a median operating cost 

of $650,000 annually for manual methods and $90,000 annually for APC methods based on 

incomplete data and does not fully reflect differences among agencies in terms of size and/or 

varying labour cost (Boyle, 1998) 

 

Passenger Balancing Algorithms 

Passenger balancing algorithms are another technique to correct of counting error. Raw APC 

counts are subjected to a set of rules; counts are adjusted where the rules identify inconsistent 

data. A most basic test is to check for a discrepancy between the total number of boarding and 
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alighting passengers at the trip level and block level. A block is a set of trips that is assigned to a 

transit vehicle. The algorithm may also apply rules to the derived load values. For example, load 

balancing adjusts raw counts to correct to a zero or positive load where negative loads are 

detected. Commonly used load balancing approaches can result in error propagation when 

applied at the block level. Furth et al. (2005) provide a good overview of the errors associated 

with APC systems and a detailed discussion about balancing algorithms.  Included in their report 

are some key management decisions related to the storage of raw values, whether load is derived 

on-the-fly or on-board the transit vehicle, and when an algorithm is applied.  

Each transit agency may apply a different set of rules based on assumptions about vehicle 

behaviour at the end of the line, zero load locations and the tolerance level for on-off 

discrepancies. Even if the same basic rules apply, the methods to adjust the raw values can be 

different between transit agencies. TRCP Report 113 provides some suggested correction 

methods including assigning the correction to the end (or start) of the trip, to the largest count or 

to distribute the correction proportionally among all stops (Furth et al., 2006) 

The majority of agencies rely on the system vendor for data processing (Boyle, 2008), which 

frequently include passenger counting algorithms. While some more advanced agencies have 

developed their methods in-house , often passenger balancing algorithms are proprietary to an 

APC vendor. More information about transit agencies with advanced APC/AVL systems are 

provided at the end of this section. 

 

Statistical analysis 

Statistical summaries of ridership by route, street, stop, trip, time of day, timepoint arrival and 

municipalities is an advanced feature in some AVL/APC systems (Hwang et al., 2006). These 

summaries are sometimes useful for a data analyst to quickly identify possible errors by flagging 

unexpected values. For example at STM, in Montreal, each Operations Chief has the 

responsibility of verifying collected data. Passenger load and running time summary reports are 

processed within 48 hours of data download; the chiefs have the ability to temporarily set aside 

data that he/she believes is invalid for reasons that must be justified (Furth et al, 2003).  

Where sampling plans exist, missing data can be identified by comparing planned and actual 

percentage of runs for data collection. Missing data is often simply omitted from the database; 

however Furth (2006) discusses imputed values as an alternate approach. Imputed values may be 

based on historical averages or on values from “similar” trips, allowing analyst to not have to 

deal with missing data or varying sampling rates. While imputation is practiced in other ITS 

databases (e.g. automatically collected traffic data), not much literature discusses its application 

to AVL/APC data.  

 

Database management systems and enterprise data 

AVL/APC systems for archived transit data is one example of an ITS application for public 

transportation; other ITS applications among the multiple business units of a transit agency are 

web-based trip planners and automated timesheets for human resources. These different 

applications typically need to receive and share data with other transit agency information 
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technology (IT) and ITS systems and databases. Duplicative data maintenance efforts and data 

inconsistencies reduce efficiencies within a transit agency.  

By integrating and maintaining a set of core service and operation data at the enterprise-wide 

perspective, a transit agency can more cost effectively realize the benefits of ITS investments 

(Hwang et al., 2007). Enterprise data is the name of that core service and operational data; 

examples of enterprise data components are schedule and stop inventory information. Proper 

maintenance of enterprise data is expected to increase data quality in connected ITS systems such 

as AVL/APC systems. For example, higher quality schedule data would result in more effective 

matching algorithms. Higher quality stop data would reduce errors associated with poor location 

attribution.  The concept of enterprise data is to progress transit ITS architecture from 

application-centric to data-centric depicted in Figure 4 (Hwang et al., 2007).  The integration of 

various data sources into a single transit data warehouse complements data quality management 

by streamlining cross-validation and facilitating the development of new quality control 

techniques. Data ownership for each data source is recommended to the business units most 

interested in its accuracy.  

 

Figure 4 Evolution of transit data from application-centric to data-centric (Source: APTA) 

The FTA recommends that enterprise data in transit needs to have the key technology elements in 

place, including: core data sets that are shared; a transportation network; commonly shared 

database management and reporting tools to minimize multiple learning curves and maintenance 

needs; a distributed logical data model; and well communicated policies and procedures (Hwang 

et al, 2007).  

Luao & Liu (2010) develop a data processing framework specifically for transit performance 

analysis. The framework proposes processing APC/AVL and electronic fare payment data to 

exclude outliers and then cross-validating both data sources into an integrated data warehouse 

(Figure 5). Improved data quality is implied through use of data mining and fusion; though no 

details are provided on the cross-validation methods.  
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Figure 5 Data Processing Framework for Transit performance (Source: Luao & Liu, 2010) 

An example of the influence enterprise data management (i.e. controlling quality of core data 

sets) has on archived AVL/APC data is shown for NJ Transit; it was found that if stops were 

within 300 ft of actual stop (determined with high quality aerial maps in GIS), then the ability to 

match trips increased to 81% from 65% (Furth et. al 2006).  High quality GIS maps may also be 

a transportation network component for enterprise data. Stop inventory maintenance is 

considered a state-of-the-art quality management technique for transit planning and operations 

data. Robinson (2009) demonstrates a method to validate bus stop data for London Bus before 

the implementation of the current AVL system. GIS maps are used to determine bus headings 

and the travel distances between stops (required tracking information by the AVL system) by 

snapping bus stops to route on the road network. Inconsistencies between GIS-derived route 

information to previous schedule data are detected and corrected before AVL implementation.  

Management of enterprise data demonstrates improved ITS data quality downstream; however 

maintenance efforts still rely on cross-validation and data ownership by individual units to ensure 

high quality data. Automated validation programs are an example of the processing modules 

applied to archived AVL/APC data to improve data quality for other planning and/or operations 

applications.  

 

Automated validation programs 

By looking for internal inconsistencies, validation of the archived AVL/APC data can be 

automated. Automated validation programs are similar to passenger balancing algorithms; a set 

of rules are applied to the AVL/APC data to detect suspect data. In fact, vendor-supplied 

automatic validation programs often include passenger balancing algorithms within their 

software package. In a 2008 study, 52% of surveyed transit agencies reported using an automated 

program to analyze APC data. Agencies reported various thresholds for determining validity; 

example rules are shown in Table 5 (Boyle, 2008). 

The most common test shown in Table 5 is to compare total boardings against total alightings by 

the block or trip level.  Note that if the threshold is crossed, discarding the data is recommended. 

However adjustments can be made to the passenger counts if below the threshold. Adjustments 

resulting from the first and second test are examples of how passenger balancing algorithms are 
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typically incorporated into automated validation programs, especially when it is vendor-

provided. Unfortunately, vendor software is not always transparent to the user, and it is important 

to understand how the validation checks work.  

Table 5 Examples of automated validation program rules 

 
 

Another feature of the automated validation programs is that most tests shown in Table 5 are 

based on block- or trip-level summaries. Kimpel et al. (2003) recommend that data quality flags 

be applied to estimates of passenger activity at each summary level, not just the route by trip 

summary level. Schedule matching is sometimes considered a form of validation; some matching 

algorithms are based on identifying probable route based on spatial comparison of the raw 

AVL/APC data to schedule data.  

In addition to matching and balancing algorithms, automated validation programs may also 

integrate other advanced AVL/APC features to authenticate the data. For example, Tri-Met 

reports exception events (i.e. when a trip deviates significantly from schedule) with real-time 

messages that are eventually stored. Metro transit has an automated sign-in protocol set up in 

their AVL/APC system, which requests manual verification of the route and run by the operator 

before service (Furth et al., 2006).  Kings County Metro (Seattle) continuously monitors data 

quality as it is collected and does not store data that fall outside of defined parameters (FWHA, 

2007). More examples of transit agencies with advanced AVL/APC systems are shown in the 

next section. 
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Transit Agencies with advanced AVL/APC systems 

The data quality control practices of transit agencies with advanced AVL/APC systems are 

highlighted in TRCP Web document 23 and are summarized below. Canadian examples are 

Societe du Transport Montreal (STM) and OC Transpo in Ottawa. Other leading transit agencies 

are NJ Transit in New Jersey and TriMet in Portland, Oregon.  

 

OC Transpo 

OC Transpo is one of the earliest adopters of APC technology, first employing the technology in 

1975. In 1987, a major custom-designed upgrade of the APC system with AVL technology 

resulted in a whole set of new tools and procedures for data matching and enhanced quality. 

These tools include: hardware diagnostics, automatic generation of bus-to-run assignment at 

start-of-day, and automatic nightly processing and checks. 

Each bus is equipped with: infrared light technology; an on-board microprocessor to store 

passenger activity and other progression logs; a microwave receiver; and a radio control module 

to transfer data to the central computer. On-street, 35 microwave signposts help locate the buses 

accurately. The system includes 80 instrumented buses (reported in 2006). The data are 

transferred at night automatically from the buses to a central computer through the radio system, 

and a number of automatic procedures take place to sort and validate the downloaded data 

overnight. 

Bus-to-run assignment files are used to split the data into individual trips. Nightly processing 

procedures check the following items against pre-set user-defined tolerance criteria a) actual 

versus scheduled pull-out time b) actual versus scheduled pull-in time c) total versus scheduled 

run length d) number and sequence of signposts passed e) difference between total ons and offs. 

The nightly processing also identifies suspected malfunction in a diagnostics report. More 

information is available in Appendix F of TRCP web document 23.  

 

STM 

The STM has a long history of using sophisticated methodologies and computerized tools for 

activities like scheduling and planning. The STM first became interested in using APC 

technology to gather service planning-related data in the early 1990s. The APC system, named 

SCAD, converted to infrared technology in 1996 after the legacy treadle mats were found to 

result in insufficient accuracy rates for low floor buses.  

Automated data collection at STM has been institutionalized over many years. Sampling plans, 

prepared by Service Planning department are carefully reviewed by Operations Management. 

Processed data are posted within 48 hours to database in the form of the Passenger Load / 

Running Time Reports which include scheduled and real departure times, arrival times and 

passenger loads by timepoint. Each Operations Chief has the responsibility of verifying the 

collected data, and has the ability to temporarily set aside data that he/she believes are invalid for 

reasons that must be justified. 
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Data collected are downloaded every night and a first set of validation procedures are conducted 

automatically. These include the following routines: vehicle assignment (initial match of raw 

data to real runs), validation of signpost sequence, matching to stop inventory data and passenger 

balancing. One of STM’s tests is that at the trip level, the average absolute deviation between 

automated and manual counts of boardings should be less than 5% of average trip boardings. 

Manual count surveys by ride checks are conducted once a year. Because it uses absolute 

deviations, this test masks systematic error. However, the strict criterion of 5% effectively forces 

both random and systematic error to be small. STM defines limits to the maximum measurement 

of count errors for a trip to be valid.  Other criteria are used to reject suspect data including: +/- 

10% for inter-signpost distance; over +/- 20 minutes from scheduled departure from garage; over 

+/- 10 passengers at terminals.  However rejected data are not discarded and are later analyzed to 

test new balancing and matching algorithms. More information is available in Appendix E of 

TCRP Web document 23.  

 

NJ Transit 

NJ Transit is widely considered to have the most advanced APC system in the US (Furth et al. 

2006); in addition to passenger counting, travel time analysis is enabled by inter stop events 

recorded at a set polling rate as well as expandable “smart-bus” on-board architecture. This 

design allows for future integration of other on-board technologies with a vehicle area network 

communication. Unlike other transit agencies, its AVL/APC system does not currently include 

real-time radio communication. An on-board computer serves as the event recorder and stamps 

stop records with time and location through its GPS receiver. The on-board computer is also 

connected to the APC analyser, odometer and speedometer and wireless LAN transmitter to 

upload data to computers at the garage. 

Data are automatically uploaded nightly, matched to the schedule, and loaded into a database. 

Instead of operator sign-in or vehicle assignment files, schedule matching relies on externally 

developed APC software called “correlator” which identifies potential routes/runs by pull-in and 

pull-out time and the number of stops; the correlator interprets their sequence to assign trips to 

the appropriate route. The use of spatial analysis for matching highlights the need for good stop 

and schedule data.  

NJ Transit applies the enterprise data concept by adopting its APC applications in a transit data 

warehouse. The AVL/APC data is “cleansed” by over 70 quality checks related to business rules, 

missing data and problem data are flagged before they are loaded into the warehouse.  Though 

the details of the 70 quality checks are not published, it is likely that most quality checks involve 

cross-validation between the many related datasets within the transit data warehouse or the tally 

of quality checks include schedule matching and passenger balancing routines 

Hardware problems are detected by reviewing the time it takes to upload and process data. When 

the processing time is longer or shorter than usual, a message is automatically sent to the project 

manager, vendor and maintenance contractor. Imbalances between on-offs of more than 5 or 10% 

of the total trip are automatically screened and balancing algorithms are applied.  Other tests 

include comparing GPS displacement and odometer distances and discrepancies between GPS 

and clock data. More information is available in Appendix D of TRCP web document 23.  
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TriMet 

Tri-Met has an extensive history with APC technology and successful deployment of AVL 

technology; many reporting and data-processing programs have been developed in-house. APC 

units were first installed on Tri-Met buses in 1982. In the late 1990s, AVL components were 

combined with a bus dispatching system upgrade.  A hybrid AVL/APC system was implemented 

with on-board data storage of stop-referenced data. The APC component uses infrared beam 

technology; the AVL component uses satellite GPS units to identify location and stop-generated 

records for on-board storage. Schedule deviation is monitored in real-time, with an exception 

report automatically transmitted whenever the bus deviates from the route and when the bus is 

behind or ahead of schedule based on a predetermined value.  At the garage, data is transferred 

from memory cards to an archived AVL/APC database. TriMet screens its bus APC data and 

deletes trip block records where the aggregate difference between boardings and alightings 

exceeds 10%, which should improve accuracy. For the data that pass through this initial screen, 

another postrecovery data processing activity involves load balancing. Load balancing corrects 

for the remaining differences in boarding and alighting counts to “zero out” passenger loads, 

usually at the trip or block level. 

Partnerships with Portland State University led to numerous research efforts using APC data.  

Kimpel et al. (2003) assessed the validity of APC boarding, alighting and load count related to 

data collected from on-board cameras. The study uncovered count biases introduced by the APC 

equipment; a correction factor to raw counts is used to adjust for this bias.  

Table 6 is a summary of the transit agencies presented in this section. More information for each 

transit agency is available in the Appendices of TRCP web document 23. 

2.2 Other QA practices for automated data 

collection 

While data quality issues related to AVL/APC systems are well cited, literature regarding the 

development of quality management plans, tools and procedures is limited. Researchers can look 

towards other realms of automated data collection with more advanced quality control practices 

for guidance.  Two examples of automated data collection are ITS-generated traffic data and 

pavement distress data. This section describes these examples in more detail.  

 

Quality control procedures for traffic operations data 

Traffic operation systems automatically collect traffic data from network ITS sensors along high 

volume roads. Similar to AVL systems, ITS sensors throughout the transportation network were 

initially installed for monitoring or “real-time” purposes. The recognition of uses for the data in 

an archived format led to the development of archived data management systems (ADMS) for 

traffic data.  
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Table 6 Summary of transit agency with advanced AVL/APC systems 

 

In 2007, the Federal Highway Administration (FWHA) published a synthesis of practices and 

recommendation for the quality control procedures of archived traffic data (Turner, 2007). The 

report summarizes quality control procedures suggested in the literature as well as those that are 

used in numerous ADMSs. It was found that most validity criteria can be broken down into three 

main groups: uni- and multivariate range checks, spatial or temporal consistency and detailed 

diagnostics. The synthesis suggests a basic set of validity tests and the use of flags or codes to 

indicate failed criteria.  A key recommendation from that study is to provide metadata on quality 

control procedures and results; the ASTM standard E2468 (Standard Practice for Metadata to 

Support Archived Data Management Systems) is cited as reference material. Additional related 

standards are ASTM E2259-03, a guide for Archiving and Retrieving ITS-Generated Data, and 

ASTM WK7604, specifications for a data dictionary of archived traffic data. The guide stresses 

thorough practices for the development information systems and maintenance of data quality 

through mechanisms such as retaining original source data, correcting data at the source, and 

constructing an audit trail. Other recommendations included: metadata on traffic sensor 

configuration and/or historical status; further development of spatial and temporal consistency 

within the ADMS; and the ability to visualize data post-validation.  

Agency Technology
Data collected and 

frequency
Purpose

Quality Criteria and 

Control Practices
APC - infrared sensors Level segment performance Actual vs. Schedule pull-out time

AVL - microwave signposts Total vs. Scheduled run length

Radio control data transfer

Automatic nightly download

Difference between total on/offs

Annual service planning Staff verifies cause of poor data and 

9% of fleet equipped

Sampling plan implemented

Complaint program in custormer 

APC - infrared sensors Increase data aceess Automated validation include:

AVL - radio signposts, GPS Reduce data collection time

"Idle" operation Passenger load/run-time reports

12-15% of fleet equipped Schedule adherence checking signpost sequence

Sampling plan implemented Ridership profiles Passenger balancing algorithms

Service adjustment proposals Annual manual count survey

Actual vs. Schedule pull-out time

Difference between total on and offs

APC - infrared sensors                           

No real-time data collection Difference between total on/offs

Polling between stop events                                   Potential vehicle maintenance tool

 Change in direction

10% of fleet equipped

APC - infrared sensor Quarterly performance reports Schedule deviation monitored in real-

time

AVL - GPS satelittle Exceptional events recorded

Manual download nightly Fleet-wide deployment Difference between total on/offs

passenger balancing algorithms 

Equipment bias adjustment

Schedulers - running time  analyses 

Operation - schedule adherence

Customer service - investigate 

complaints

500,000 stop and event 

records/day

Integrated with Bus Dispatch 

System

Spatial analysis for schedule 

matching Operations - running time and on-

time performance analyses

Expandable "smart-bus" 

architecture

Comparing GPS vs. Odometer  

distances        

 Marking unusual processing time

Diagnostics report on hardware 

malfunctions

Schedule adherence and high load 

vehicle assignment (trip parsing)/stop 

matchingAutomatic download nightly

Finest detail level (E),  each event 

records include time/location 

stamps:

Reduce data collection costs for NTD 

passenger miles

Archived data management system         

 Automated validation with 70 

business rules:

Identifying locations for shelter 

installation

Stop-level detail (D) with 

passenger counts

Planning - ridership and 

underutilized routes

Stop and Go log - identifies 

segments of low average speed

Ridership - identify 

overcrowding/underutilized routes

 AVL - GPS for time/location 

coordinates                                                      

Multiple in planning, operation, 

schedule and management

Service performance by route (on-

time and revenue generation)

OC 

Transpo

STM

Idle log - stop even more than 45s 

with more passenger activity

Number and sequence of signposts 

passed

Tri-Met

NJ 

Transit 

Stop-level detail (C) with 

passenger counts

Passenger log - counts by door 

plus time at stop, time with doors 

Door open/close, passenger 

counts, Stop events and and 

"crawl" speed 
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Additional support tools for ADMSs from the FWHA are the publication of cross-cutting 

findings of several case studies and lessons learned. Quality assurance strategies from several 

ADMS deployments are discussed. Various quality assurance practices are represented in the 

study: rejection of out-of-range data for storage; imputation of missing values; detector 

diagnostics to flag suspect data; the ability to choose whether or not to include corrected data in 

user queries; and using ownership policies to manage data accuracy from multiple sources. One 

example of quality control criteria for a traffic ADMS is demonstrated for Kentucky.  

 

Kentucky ADMS and quality control criteria 

The Kentucky Archived Data Management Service (ADMS) was developed under the 

framework of the archived data user service (ADUS). The Kentucky ADMS disseminates traffic 

data from two earlier ITS deployments, ARTIMIS and TRIMARC.  The ADMS applies a set of 

quality control criteria to the archived data; records that fail the criteria are flagged (Table 7). 

Quality control criteria are based on logical rules such as physical constraints on the roadway and 

duplicate records. Imputation is performed to correct missing or erroneous values flagged by the 

quality control criteria. Several methods of imputation are adopted by the Kentucky ADMS: 

historical average, temporal interpolation, spatial interpolation, hybrid algorithm and artificial 

neural networks. A decision workflow was developed to help select appropriate imputation 

methods based on data characteristics. An additional feature of the Kentucky ADMS is that users 

can select whether corrected or original data is included in their query (Chen & Xia, 2007). 

Table 7 Example quality control criteria used to screen traffic data (Source: Chen, 2007) 
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Quality assurance programs for pavement distress data 

Essentially all North American highway agencies are collecting and using pavement condition 

data through some automated means. For example, digital image technology is used to conduct 

surface distress surveys and electronic sensors collect longitudinal and transverse profile, 

roughness indices, rut-depth and joint-faulting measurements. Automation in the context of 

pavement cracking data involves the use of digital recognition software capable of recognizing 

and quantifying variations in grayscale that relate to striations (sometimes cracks) on a pavement 

surface (McGhee, 2004). 

The main techniques used for pavement data quality management are: calibration of equipment 

before data collection; control site testing before data collection; and software routines for 

checking the reasonableness, consistency, and completeness of the data (Flintsch & McGhee, 

2009).  However due to the temporal nature AVL/APC data, calibration and control testing 

before each data collection session is infeasible; this technique is more appropriate for the entity-

based pavement infrastructure. 

Instead quality assurance practices with respect to software processing errors are relevant to 

AVL/APC systems. Some automated validation programs exist for pavement condition data 

among several state DOTs. Software programs used for quality management usually search for 

data that are missing, misidentified, incorrect with respect to segment size, improperly formatted, 

and/or outside of expected ranges (Flintsch & McGhee, 2009). Wolters, McGovern & Hoerner 

(2006) discuss the development of an automated quality assurance (QA) tool for pavement 

condition data in the Oklahoma Department of Transportation. As with many state DOTs, 

collection of pavement condition data is outsourced to vendors with automated data collection 

technology. The QA tool helps identify potential data quality problems to the vendor before the 

data is accepted within the pavement management database.  

Another important lesson that can be learned from the pavement data example is the progressive 

approach to developing formal data quality management plans. Based on a NCHRP Synthesis 

401 Quality Management of Pavement, the majority of highway agencies (62%) in the US have a 

formal data quality management plan. In addition to providing a list of quality control 

tools/techniques, a plan describes the quality policies and procedures; areas of application; and 

roles, responsibilities, and authorities.   

2.3 Summary 

Hybrid AVL/APC systems came about when transit agencies began to recognize different offline 

uses for AVL systems combined with APC technology. Along with the merger of these two 

technologies came the realization of different data quality needs. Design guidelines for archived 

AVL/APC systems were proposed to address some of these issues.  

The transition from a data-poor to a data-rich environment prompts many public transportation 

groups to adjust their current operations and planning practices. However the main problem 

seems to be getting agency staff to accept automatically collected data as “valid enough” for their 
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purposes (Parker, 2008). Many transit agencies tend to focus on assessing the accuracy of 

AVL/APC equipment as a form of validation. Unfortunately, this approach requires an external 

data source to verify AVL/APC collected data; manual surveys are the most common validation 

technique. Though calibration or periodic assessment of AVL/APC equipment is recommended, 

manual data collection is resource intensive and undermines the value provided by AVL/APC 

systems. Alternative methods exist such as: passenger balancing algorithms and cross-validation 

through route matching. Both processes are commonly incorporated parts of automatic validation 

programs along with other logical tests. One limitation of automatic validation programs is that 

the routines are often proprietary to suppliers. Vendor software is not always transparent to the 

user, and it is important to understand how the validation checks work (Boyle, 2008). 

Another higher-level approach to improving data quality of AVL/APC systems is its integration 

within an archived data management system (ADMS) and the development of enterprise data. 

Enterprise data consist of a shared set of core transit data such as schedule and stop inventory 

data. Proper maintenance of enterprise data leads to improved data quality of all applications 

within the ADMS, including AVL/APC data. Other features of enterprise data include a 

transportation network; management and reporting tools; a logical data model; and related 

policies and procedures (Hwang et al., 2007). In this perspective, automated validation programs 

are part of the AMDS as a data quality management tool.  

Advancement of data quality concepts and quality control practices may be guided by examining 

other examples of automated data collection. Two examples are discussed: archived ITS-

generated traffic data and automated pavement condition data. From the traffic data example, test 

criteria for automated validation programs are well developed and basic tests are suggested by a 

FWHA synthesis of quality control procedures. Other key recommendations are metadata on 

quality control processes. Standards and guidelines have already been developed for the archived 

of ITS-generated traffic data.  Although imputation is a common data correction practice, its 

application for archived AVL/APC data is limited and not included in this research. 

From the pavement data example, proper documentation is emphasized for the development of 

automated quality assurance procedures. Turner (2007) points out that automated validation (QA 

checks) are just one component to a comprehensive quality plan.  

This research aims to develop an automated quality assurance procedure to flag suspect data 

from archived AVL/APC systems without the need of external data. The procedure is meant to 

complement, not replace, automated validation programs provided by the vendors (or developed 

in-house) by providing users with auxiliary quality tests based on expected data patterns. The 

rationale and mathematical definitions of each test are to be documented clearly and 

transparently. The user has indirect control over the resulting data by specifying the parameter 

values or by disregarding certain tests. 



 

24 

 

Chapter 3 

Quality Assurance 

Methodology 

The purpose of this chapter is to describe the quality assurance (QA) methodology of archived 

AVL/APC data. This methodology is constructed on the following principles: 

1. Decrease dependence on vendor automatic validation programs through supplementary 

QA quality tests; 

2. Increase transparency to users by providing more detailed documentation of QA tests; 

3. Reduce the need for external data sources for data validation by building a method based 

solely on data contained within a standard AVL/APC archive; and 

4. Maintain a general QA framework by designing the method based on universal or 

common database attributes of archived APC/AVL systems. 

 

This methodology is intended to complement, not replace, existing validation methods. Schedule 

matching and passenger balancing algorithms should already be applied to AVL/APC data before 

this QA procedure. 

3.1 Approach and rationale 

Many data quality issues may arise from the transformation of raw sensor data to stop-level and 

trip-level data records. The proposed method was developed by evaluating how errors in the data 

collection process would present themselves in the archived AVL/APC database. These errors 

are assumed to propagate in the data collection process and manifest themselves in three forms:  

1. data is missing or unavailable; 

2. attributes appear as outliers; or  

3. erroneous data remains undetectable in current database structure.  
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Missing data 

Without a sampling plan, missing data at the block or trip level is not easily detectable within a 

standard APC/AVL setup. Identifying missed trip records would require the scheduled trip plan 

of equipped vehicles, then matching it to imported data. Most systems conduct schedule 

matching in the reverse direction; recorded data are linked to a schedule after it is downloaded 

from equipped vehicles and imported to the archived database.  Therefore, block or trip-level 

missing data are not identified by this methodology. 

Stop-level missing data are sometimes conveyed in a matching quality attribute; the number of 

recorded scheduled stops is compared to the designated number of stops on a route. However, 

this trip-level attribute does not convey a corrective action. This methodology intends to classify 

data as suspect or non-suspect only at the trip-level; the distinction of data quality as either good 

or bad suggests a clear instructive on which data to include or reject for analytic purposes.  

 

Outlier data 

This methodology concentrates on identifying erroneous data by screening for outliers because 

they are more readily visible in the database. The concept is that if errors exist in the data; then 

these errors are anticipated to result in outliers of key attributes of the database.  

Errors in the recorded travel time (arrival or departure) and distance values are anticipated to 

result in outliers of travel pattern characteristics. Passenger count errors are anticipated to result 

in outliers of passenger activity or count corrections from balancing algorithms. (Balancing 

algorithms are assumed to be applied to passenger count data during standard AVL/APC data 

processing software). Poor schedule matching results may stem from incorrect attribution of stop 

type, designated stop or specified route. Validation of these data attributes is based on analyzing 

schedule deviation outliers.  

Based on the errors discussed above, the methodology focuses on validating these general stop-

level data attributes: 

1. Type of stop (scheduled stop versus non-scheduled) 

2. Time of stop (arrival times and departure times) 

3. Distance travelled (derived from odometer readings) 

4. Passenger count (e.g. boarding, alighting and load) 

5. Location (identified scheduled stop) 

 

Instead of simply removing outlier data, further pattern identification is used to determine if a 

valid explanation exists to justify an outlier. Another distinguishing feature of the proposed 

methodology is the use of stop-level tests to screen for outliers; suspect data are then flagged at 

the trip level. Existing automated validation programs more often use trip or block-level 

thresholds.  
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Non-outlier erroneous data  

There is likely no way to identify the data as erroneous when outliers cannot be detected without 

the need for external data. However if the erroneous data do not result in outliers, there is little 

consequence to including those erroneous data within the AVL/APC database. Most service 

analysis depends on identifying exceptional activity in transit operations data (high ridership and 

poor performing routes).  

Even in analyses that do not depend on exceptional data, the inclusion of non-outlier erroneous 

data is not expected to greatly impact the analysis results. Or, the impact of the erroneous data is 

not considered too severe (e.g. run time analysis: average travel time calculations are not 

expected to change significantly when a portion of the sampled trips have non-extreme, but 

incorrect travel time data). Therefore, the methodology can only recognize erroneous data with 

extreme values. 

 

User input 

The approach of this methodology is to identify outliers and assume these data are erroneous 

unless a valid explanation can be found to explain the data. The degree to which this approach is 

conservative is determined by parameter values; these values can be modified by the user. There 

are four potential outcomes of applying the QA procedure (Figure 6). 

The objective of the QA procedure is to classify erroneous data as “suspect” and non-erroneous 

data as “non-suspect” (i.e. maximize the trips associated with Case A and D); thus suspect data 

can be rejected for analytical purposes. Type I errors occur when non-erroneous data are 

considered suspect (Case B), also known as a false positive. Type II errors occur when erroneous 

data are considered non-suspect (Case C); also known as false negative.  

 

Figure 6 Potential outcomes of QA procedure 

Conservative users are typically more concerned about excluding Type II errors within their 

sample data; these users can apply more stringent parameters for identifying outliers. Users 

whom are aggressive for a larger data sample tend to focus on avoiding Type I errors; less 

stringent parameters may be applied to satisfy these needs. 
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3.2 Outline of the methodology 

While individual tests are conducted on a stop-level, data are flagged as suspect at the trip-level. 

Recall Section 1.1.1 where the data collection process is described. Table 1 and Table 2 are 

examples of stop-level and trip-level data, respectively. Many automated validation programs 

apply tests at the trip-level (as shown in Table 5). A trip-level test is applied to data at the trip-

level. For example, the the recorded start and end times may be compared to the schedule and the 

trip-level test can screen those with large discrepancies. Stop-level data may also be aggregated 

over the trip (e.g. total boardings and total alightings) and the trip-level summaries may be 

examined in a trip-level test.  

Stop-level tests are applied to individual records such as the passenger count, distance travelled 

or arrival and departure times for each stop event. One limitation of this methodology is that the 

behaviour of previous and subsequent trips is not incorporated in the tests because they cannot be 

easily identified in a standard AVL/APC database. 

The QA methodology is broken down into three stages shown in Figure 7:  

i) Base Checks  

ii) Outlier Identification and  

iii) Valid Outlier Identification.  

 

 
Figure 7 High-level schematic of the QA procedure 
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Base checks tests for physical constraints in the travel characteristics of a trip.  If a trip fails any 

test in the Base Check (BC) stage, it is immediately flagged as a suspect trip. Outlier 

Identification (OI) screens key attributes in the APC/AVL database for outliers. If no stop-level 

outliers are found then the QA procedure is complete for the given trip. Trips identified in the OI 

stage continue to the third step: Valid Outlier Identification (VOI). In this step, the stop-level 

travel patterns are examined for valid case options. If a valid case is found, then a screened trip 

may be considered “non-suspect”.  However, if no valid case is found for a screened trip, then its 

status is set to “suspect”.    

This methodology identifies and investigates outliers associated with a divergence from expected 

travel or passenger activity patterns. The rationale and definition for each individual QA test is 

described in Sections 3.2.2 to 3.2.4. Detailed data definitions are shown in the next section.  

As mentioned, suspect data is flagged at the trip level although the QA tests are conducted at the 

stop-level. A binary variable may be defined to represent the individual tests at the stop-level and 

trip-level, respectively: 

δ�,�� = �0  fail 1 pass�      ( 1 ) 

 δ�� = �1  if δ�,�� = 1 ∀  i 0        otherwise �     ( 2 ) 

where  δ represents the binary variable (0 means fail and 1 means pass); 

k represents the test (e.g. BC1, OI3, VOI5 etc.); 

 i represents a stop record starting from 1 to nj (number of stops for a given trip j); and  

j represents a trip from 1 to Nk
T (total number of trips being tested in a given test).  

 

The set of trips that pass or fail a given test may be defined by the following: S�� = {set of j where δ�� = 1}     ( 3 ) 

S�� = {set of j where δ�� = 0}     ( 4 ) 

S�� and S�� are mutually exclusive and therefore the relationship between the number of trips 

subject to a given test and the number that passes or fails is given by: N � = N�� + N��       ( 5 ) 

N�� = ∑ δ��#$%�&'        ( 6 ) 

where  Nk
T is the number of trips that are subject to test k; 

Nk
P is the number of passing trips; and  

Nk
F is the number of failing trips.  

 

3.2.1. Data Definition 

The passenger count components of AVL/APC data are defined by the following variables: 
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PBi,j   = number of passengers boarding at stop i, trip j; 

PAi,j  = number of passengers alighting at stop i, trip j; and 

PLi,j  = load derived from balanced passenger counts for stop i, trip j. 

Figure 8 depicts the passenger data components in a passenger profile. 

 

Figure 8 Passenger profile depicting AVL/APC data 

It is assumed that standard data processing routines include balancing algorithms; available raw 

count data  (i.e. not subject to balancing algorithms) is defined by: 

P’Bi,j  = raw number of passenger boarding for stop i, trip j; and 

P’Ai,j  = raw number of passengers alighting for stop i, trip j j. 

 

The travel characteristic components of the AVL/APC data are defined by the following 

variables: 

Ai,j  = actual arrival time at stop i , trip j, measured in seconds from midnight of the start date; 

Di,j  = actual departure time at stop i , trip j, measured in seconds from midnight of the start 

date; and 

Disti,j  = actual cumulative distance traveled at stop i , trip j, in metres from first stop. 

An example of arrival time of a transit vehicle arriving at 1:32:24 pm is 13h × 3600s + 32 × 60s 

+ 24s = 48,744s. For the case when trips occur through midnight, time is associated relative to 

the start date. Therefore a trip ending at 12:02:32AM the following day would have arrival time 

= 24h× 3600s + 2 × 60s + 32s = 86,552s. Cumulative distance for each stop can be derived by 

odometer readings by subtracting the value from the first stop.  

Expected travel activity is depicted generally by a time-space diagram; Figure 9 depicts the travel 

component data for a trip in red along with its associated schedule in black.  
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Figure 9 Time-space diagram depicting AVL/APC data 

The AVL/APC data attributes shown in Figure 9 can in defined for the schedule associated with 

a trip: 

A’i,j  = scheduled arrival time at stop i , trip j, in total seconds of the day; 

D’i,j = scheduled departure time at stop i , trip j, in total seconds of the day; 

Dist’i,j  = scheduled cumulative distance travelled at stop i , trip j, in metres; 

TDev
A

i,j = Ai,j – A’i,j , scheduled arrival time deviation, in seconds; 

TDev
D

i,j = Di,j – D’i,j, scheduled departure time deviation, in seconds; and 

DDevi,j  = Disti,j – Dist’i,j, scheduled distance deviation, in metres. 

 

Except for terminal and layover stops, schedule data often list the arrival and departure as the 

same time due to the level of detail involved in planning route schedules. These attributes are 

shown at same time in Figure 9, however they are defined separately. Appendix A contains time-

space diagrams of the expected travel patterns for trips that fail BC tests and for trips that are 

screened for outliers in OI tests. Expected travel patterns are also shown for valid cases as tested 

in the VOI stage. 

3.2.2. Base Checks (BC) 

Tests incorporated into the Base Checks (BC) stage involve examination of the travel 

characteristics for each trip (Figure 10). There are four tests:  

1. BC1 tests recorded time values for increments in a positive direction;  

2. BC2 tests recorded distance values for increments in a positive direction;  
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3. BC3 checks each that the time increment and distance increment between subsequent 

stops do not exceed physical constraints; and  

4. BC4 checks that the transit vehicle does not exceed speed constraints.  

 

All four tests are applied to the entire data set because if a trip fails any of the four base checks, 

then it is considered suspect. Each test is described in more detail below.  

In Figure 10, the rectangles represent each test and the cards represent the results of each test. 

Bolded cards represent the set of trips that pass (Sk
P); recall k signifies the specified test (BC1, 

BC2, BC3 or BC4). Dashed cards represent the set of trips that fail (Sk
F). Each test in the BC 

stage is applied to all the trips in the database (i.e. NT
BC= {|S|}).  The mathematical expressions 

for each individual BC tests are discussed below.  

 

Figure 10 Schematic of Base Checks 

BC1 

Test BC1 checks that subsequent time records increase. Figure A1 in Appendix A demonstrates a 

trip failing BC1. The binary test variable for BC1 is: 

δ�,�()' =
*+,
+- 0    if  .A�,� − D�2',�3 < 0 567 1 < 8 ≤ n�       OR .D�,� − A�,�3 < 0 567 1 < 8 ≤ n�

      OR .A�,� − A�2',�3 < 0 567 1 < 8 ≤ n�    OR .D�,� − D�2',�3 < 0 567 1 < 8 ≤ n�1                                                       otherwise =+
>+
?

    ( 7 ) 

Equation 7 implies that subsequent recorded arrival and departure times should be larger 

(later) than previous arrival and departure times for the same trip; any stop record that shows a 
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backwards (or negative) increment is invalid.  The first stop (i.e. i = 1) is excluded from the test 

because no previous stop record exists. 

BC2 

Test BC2 checks that recorded distances increase in following records. Figure A2 in Appendix A 

shows an example of a failed trip for test BC2. The test variable for BC-2 is defined as: 

δ�,�()@ = �0 if .Dist�,� − Dist�2',�3 < 0 567 1 < 8 ≤ n�1                                                          otherwise �    ( 8 ) 

Equation 8 implies that the recorded distance at a stop should be larger (farther) than previous 

distance stop records for the same trip; any stop record that shows a decrease in distance 

travelled is invalid.  

 

BC3 

Test BC3 applies constraints to the travel time and distance between consecutive stops. (See 

Figure A3 in Appendix A). The BC3 test variable is: 

δ�,�()A = B
   

 0   if          .A�,� − D�2',�3 ≥ DE AND 1 < i ≤ n�OR .Dist�,� − Dist�2',�3 ≥ DF AND 1 < 8 ≤ n�1                                                              otherwise    G    ( 9 ) 

where  P1 = Max Time Increment, maximum reasonable travel time between stops* (seconds); 

and 

P2 = Max Distance Increment, maximum reasonable travel distance between stops* 

(metres). 

*Note that between stops refers to two consecutive stop events for scheduled stops on the route; 

the scheduled stop events include passing a scheduled stop without physically stopping. Values 

must be specified for parameters P1 and P2; the selection for values of the parameters is 

discussed in the Chapter 4. In general, it would be reasonable to assume that the upper bound for 

travel time between consecutive stops (P1) should be less than the one-way cycle time for a route 

because for each route, trips are separated for each direction (previous or subsequent trips cannot 

be easily identified as mentioned in Section 3.2). 

Though travel time between stops can greatly vary, the recorded travel distance between two 

stops is not expected to change significantly even via alternate paths to the next designated stop. 

The AVL/APC database is expected to contain an event record for each designated stop of a 

route even if the bus skips stops. Therefore, trips failing the distance component of test BC3 

would suggest a missed event record. Missed event records constitute incomplete trip data that 

would be unsuitable for analysis (e.g. missing stop records can alter passenger load, which is 

derived from the on-off differences at each stop). 

Therefore, the upper bound for P2 is not set to the one-way route distance of the route. It is 

instead set to the longest distance travelled between any two stops on the route. If a travel time or 

distance is greater than the given parameter thresholds, it is considered invalid. 

 



 

33 

 

BC4 

Test BC4 checks the travel speeds between stops and compares them to a given threshold (Figure 

A4 in Appendix A): 

δ�,�()H = I0    if .J�KLM,N2J�KLMOP,N3.QM,N2JMOP,N3 ≥ DR AND .A�,� − D�2',�3 > 0 AND 1 < 8 ≤ TU 1                                                                                                        otherwise V  ( 10 ) 

where  
.J�KLM,N2J�KLMOP,N3.QM,N2JMOP,N3  = travel speed for the segment previous to stop i; 

 .A�,� − D�2',�3 > 0 screens for undefined values of travel speed; and 

P3 = Maximum Speed, the limiting speed of the transit vehicle (m/s). 

 

Equation 10 shows that the speed of a transit vehicle is physically constrained; records are 

invalid if it shows a travel speed greater than the given threshold.  

 

BC Output 

In combination with Equation 2, a trip may fail any of the BC tests if at least one stop-level test 

fails according to Equations 7-10; the result is the set of trips that fail the BC stage: S�() = {set of trips j where ∏ δ�� = 0 ∀ j()H�&()' }   ( 11 ) 

where SF
BC = the set of trips which fail the BC stage. Alternately, for trips to pass the BC stage, 

they must pass all BC tests. This rule can be represented by: S�() = {set of trips j where ∏ δ�� = 1 ∀ j()H�&()' }   ( 12 ) 

where S�() = the set of trips that pass the BC stage. This set of passing trips at the end of the BC 

stage is the set used as the input to the next stage (OI) and the set of failing trips is included into 

the set of suspect trips. 

3.2.3. Outlier Identification (OI) 

Outlier identification (OI) focuses on 4 attributes of travel and passenger activity of the transit 

vehicles: passenger counts, schedule time deviation, schedule distance deviation and passenger 

count correction. These attributes are derived from data fields: passenger boardings, passenger 

alightings, load, recorded arrival and departure times, scheduled arrival and departure times, and 

raw boarding and alighting counts. Figure 11 is a schematic of the OI sub-procedure. 
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Figure 11 Schematic of Outlier Identification 

Figure 11 shows that inputs of data into the OI stage are the set of trips that pass the BC stage 

(SP
BC). Each trip in this set is screened for outliers according to the following four tests:  

1. OI1 filters trips where the passenger counts are greater than the bus capacity;  

2. OI2 filters trips that observe a large schedule deviation in time;  

3. OI3 filters trips that observe a large schedule deviation in distance travelled; and  

4. OI4 filters trips with large corrections to the raw passenger count value.  

 

OI1 

Test OI1 examines passenger counts (Figure A5 in Appendix A) and is defined by the variable: 

δ�,�XY' =
*+,
+-0    if  P(�,� ≥ D[     OR PQ�,� ≥ D[     OR P\�,� ≥ D[1       otherwise =+>

+?
       ( 13 ) 

where   

P4 = Maximum Passenger Count, maximum value for a reasonable passenger count (persons). 

P4 is synonymous with the maximum bus capacity; therefore the selection of P4 is associated 

with maximum loads. However it is also not expected that the number of passengers that board or 

alight the transit vehicle should exceed the bus capacity (i.e. it would require that some boarding 

passengers then alight due to space constraints or that more passengers alight then can be situated 
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on the bus); it is considered an unusual and highly unlikely event.  Therefore boarding and 

alighting counts are also incorporated in test OI1. Any stop with passenger counts larger than P4 

is considered invalid.  

 

OI2 

Figure A6 in Appendix A demonstrates how outliers in schedule time deviation are detected. Test 

OI2 looks at the schedule time deviations of both arrival and departure times:  

δ�,�XY@ = ]0 if ^TDevQ�,�^ ≥ Da AND 1 <  i ≤ n� AND i ∈  {icL }OR^TDevJ�,�^ ≥ Da AND 1 ≤  i < n� AND i ∈  {icL }1                                                                       otherwise d   ( 14 ) 

where  TDevA
i,j, DevD

i,j = arrival and departure time deviations, respectively, as previously 

defined in Section 3.2.1 at stop i and trip j; 

P5 = Max Time Deviation, maximum reasonable schedule time deviation (metres); and 

 it-
R = set of all time points on bus route R. 

Since schedule time deviation can only be calculated where scheduled times are available, this 

test can only be applied to time points signified by it. Schedule information is considered 

irrelevant for the arrival time at the first stop and the departure time at the last stop; these cases 

are excluded from test OI2.  

 

OI3 

Figure A7 in Appendix A demonstrates how outliers in schedule distance deviation are detected. 

The test for OI3 is defined by this variable: 

 δ�,�XYA = �0 if ^DDev�,�^ ≥ De)1              otherwise �    ( 15 ) 

where P6 = Max Distance Deviation, maximum reasonable schedule distance deviation (metres). 

 

OI4 

The last OI test, OI4, screens stop records where “large” corrections were applied during 

passenger count balancing: 

δ�,�XYH = B0    if  gP(�,� − P′(�,�g ≥ Di     OR gPQ�,� − P′Q�,�g ≥ Di1                         otherwise G    ( 16 ) 

where  P7 = Max Count Correction, maximum reasonable passenger count correction (persons). 

It is considered suspicious when there is a substantial difference between the raw and balanced 

passenger counts. It is important to apply this test at the stop-level because large stop-level 

corrections can be masked by trip-level aggregation. Load values were not tested in OI4 because 
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they are calculated and not part of the raw data set. Secondly, differences between the balanced 

load and the load derived from raw count may be artificially larger as a result of additive 

corrections in the boarding and alighting count. 

 

OI Output 

Similar to the BC stage, the set of trips that pass the outlier identification stage is: S�XY = {set of trips j where ∏ δ�� = 1 ∀ jXYH�&XY' }    ( 17 ) 

If a trip passed all tests in the BC and OI stages, no other tests are applied and they are included 

in the set of non-suspect trips. Those set of trips that fail an OI test (screened due to a stop-level 

outlier) continue to the third VOI stage. 

3.2.4. Valid Outlier Identification (VOI) 

The VOI stage investigates specific valid case options based on the type of outlier identified. 

This sub-procedure targets those trips that contain schedule deviation outliers by time (test OI2) 

and/or distance travelled (test OI3). Currently the methodology does not account for potential 

valid cases of outlier passenger activity (test OI1) or passenger count correction (test OI4). No 

valid patterns were recognized for these two outlier types during the development of the QA 

procedure. Therefore, the set of trips that fail tests OI1 or OI4 are immediately incorporated into 

the set of suspect trips.   

For trips identified with outliers in scheduled time deviations (i.e. fail test OI2), valid cases are: 

1. congestion or operational delay occurring over the entire trip; 2. congestion or operational 

delay over a portion of the trip; and 3. “incidents” involving the transit vehicle such as traffic 

accident or break-downs.  

For trips identified to have distance deviation outliers (i.e. fail test OI3), there is one valid case: 

detours. The VOI procedure also checks for 3 invalid data patterns: trips mis-matched to the 

wrong schedule; trips that contain mis-matched stop locations; and trips that contain a single stop 

event record and results in a schedule deviation. The first option is associated with time deviation 

outliers, the second option is associated with distance deviation outliers and the last option may 

occur for both. Figure 12 is a schematic of the VOI sub-procedure. 

In Figure 12, bolded boxes represent the tests that identify valid case options. The dashed line 

represent suspect trips: those in white are suspect due to a specific invalid case pattern and those 

highlighted in grey are suspect due to the lack of valid case identification. The tests included in 

the VOI procedure are generally numbered in sequence of test order. The tests applied to trips 

with time deviation outliers are: VOI0 to VOI5 inclusive. The tests applied to trips with distance 

deviation outliers are: VOI6 and VOI7. The following sections describe the VOI tests and their 

mathematical form. 
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Figure 12 Schematic of the VOI Procedure 

 

Time deviation outliers 

There are six tests available for time deviation outlier trips. Each test involves analysing the 

pattern of schedule time deviations over the progression of the trip. Therefore, these tests can 

only be applied at the timepoint-level.  Test VOI0 first checks for trips with a single timepoint. 

Unlike all other test, this can test can be applied directly at the trip-level instead of applying 

Equation 2: 

δ�jXYk = �0   if n�L = 1    1   otherwise �     ( 18 ) 

where nt
j = the number of time points for trip j.  

It is assumed that a trip with only 1 timepoint that is also a time deviation outlier is suspect 

because no further tests can be applied to determine if it is a valid case.  

Figure 13 depicts some of the patterns associated with potential valid and invalid cases of time 

deviation outliers. VOI2 checks for a possible mis-match of the recorded data to the wrong 

schedule (the dashed line signifies that this type of pattern represents an invalid case and the 

solid line represents a valid case). VOI3 examines the trip pattern to identify congestion or 

operational delay over the entire trip. VOI4 is similar to VOI3 except it focuses on trips where 

time deviations only occur during a portion of the trip; and VOI5 examines the trips pattern for 

vehicle incidents. 
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Figure 13 Time deviation outlier types 

Figure 13 shows that VOI2-VOI5 can be separated into 2 classes: trips with time deviations that 

occur over the entire trip or trips with time deviations that occur over a portion of the trip. The 

plot on the left shows the former associated with tests VOI2 and VOI3. The plot on the right 

shows the latter associated with tests VOI4 and VOI5. The orange curve on the left hand side 

plot depicts a valid case of delay where it is dissipating over the course of the trip, where the 

previous trip likely experienced dealy. This case is not included in the VOI methodology because 

it requires confirming that the previous trip experienced a delay pattern. This trip chaining 

process requires that the AVL/APC database contains an identifier that links the sequence of 

trips; however this data is not always available in a conventional system.  

 

VOI1 

Test VOI1 is used to determine which valid case tests can be applied downstream.  Recalling 

Equation 2, trips can be separated in the classes described in Figure 13 with the VOI1 test 

variable: 

δ�,�jXY' = ] 0        if TDevQ�,� ≤ Dl AND 1 < 8 ≤ n� AND i ∈ {icL }          OR TDevJ�,� ≤ Dl AND1 ≤ i < n� AND i ∈ {icL }1                                                                           otherwise  d        ( 19 ) 

where  it
R = the subset timepoint stops for route R; and 

P8 = Min Time Deviation, user-defined minimum time deviation value (seconds). 

P8 is a lower bound for the schedule time deviation to be considered a real difference between 

the recorded and scheduled time.  Trips that fail VOI1, meaning that a real time deviations occurs 

for only a portion of the trip, are next checked by test VOI5. Trips that pass VOI1, meaning that 

a real time deviation occurs throughout all time points in the trip, are sent to VOI2 to be tested. 

The arrival time at the first stop and departure time at the last stop are excluded from the test.  
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VOI2 

Test VOI-2 checks if the trip pattern suggests a mis-match to the wrong schedule. It is assumed 

that a mis-match would results in a pattern of relatively uniform time deviations through-out the 

entire trip (Figure A8 in Appendix A). A direct comparison of time deviation, which is measured 

in seconds, would be difficult to implement; a new attribute is defined based on the growth or 

increase of the time deviation between stops. The test variable for VOI2 is: 

δ�,�jXY@ = ]0  if ^TIncrQ�,�^  > Do AND 2 < 8 ≤ TU AND i ∈ {icL }   OR^TIncrJ�,�^ > Do AND 1 ≤ 8 < TU AND i ∈ {icL }1                                                                         otherwise d  ( 20 ) 

where TIncrA
i.j =  

 JqrsM,N2 JqrsMOP,N JqrsMOP,N ×100%, increase in schedule arrival time deviation from 

previous time point (%); and  

TIncrD
i.j =  

 JqrtM,N2 JqrtMOP,N JqrtMOP,N × 100%, increase in schedule departure time deviation 

increase from  previous time point (%); 

P9  = Max Time Increase, user-defined threshold to define growth of schedule time 

deviation (%).  

The uniformity of the time deviation is tested by comparing the growth (or decline) of the time 

deviation value to a given threshold, P9.  The increase for arrival time deviation is tested from 

the third stop onwards; the attribute is based on growth from the previous time point and arrival 

time at the first stop is considered irrelevant. If the trip fails VOI2 (i.e. it is not a schedule mis-

match) then it may be tested for congestion or operational delay via test VOI3.  

 

VOI3 

Test VOI looks for a valid case pattern of congestion or operation delay; the expected pattern is 

increasing time deviation values in consecutive time points (Figure A9 in Appendix A). Test 

VOI3 variable checks that the time deviation between time points increases or remains the same; 

the fail condition is triggered when time deviations decline between time points as detected by a 

given threshold: 

δ�,�jXYA = ]0      if .TIncrQ�,�3 <  DEw AND 2 < 8 ≤ n�i AND i ∈ {icL }          OR .TIncrJ�,�3 < DEw AND 1 ≤ i < n�i AND i ∈ {icL }1                                                                                  otherwise d  ( 21 ) 

Where P10 = Max Time Decrease, the user-defined threshold to detect decline in time deviation 

(%). Note the absence of absolute brackets because positive growth is expected with congestion 

and negative growth (decline) is expected to trigger a fail condition. The schedule time deviation 

may increase or remain the same for trips with a congestion or delay pattern; P10 is 

recommended to be a negative value. Trips that pass VOI3 are identified as valid cases for a 

detected time deviation outlier. Trips that fail continue to test VOI4.  
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VOI4 

It is recognized that congestion or operational delay may not occur over the entire trip, VOI4 

tests for congestion or operational delay occurring during a portion of the trip. (Figure A10 in 

Appendix A). The test variable for VOI4 is: 

δ�,�jXYH = ]0      if TIncr�,�Q < DEw AND i∗ < 8 ≤ n� AND i ∈ {icL }             OR TIncr�,�J < DEw 567 i∗ < 8 < n� AND i ∈ {icL }1                                                                            otherwise d    ( 22 ) 

where i* = the earliest timepoint where a time deviation outlier is identified. 

P10 is defined in test VOI3, a similar criteria as test VOI3 is used except it is only applied to time 

points after i*. 

 

VOI5 

For the trips that failed VOI1, they are tested for the vehicle incident valid case with test VOI5. 

The expected pattern for a vehicle incident is split into 2 segments: before and after time point i* 

(See Figure A11 in Appendix A). The test variable is: 

yz,{|}~a =
*+
,
+-0      if TDev�,�Q ≥ Da AND i <  i∗AND i ∈ {icL }                          OR TDev�,�J ≥ Da AND i <  i∗ AND i ∈ {icL }                     OR ^TIncr�,�Q ^ ≥ Do AND i∗ + 1 < 8 ≤ n� AND i ∈ {icL }OR ^TIncr�,�QJ^ ≥ Do AND i∗ < 8 < n� AND i ∈ {icL }1                                                                                    otherwise =+

>
+?

  ( 23 ) 

For the segment before the outlier stop, no large time or distance deviations are expected. 

Therefore a fail condition is triggered if a time or distance deviation outlier is found before the 

timepoint i*.  After the outlier stop, the schedule deviation pattern should remain uniform 

(similar to VOI2). Therefore the parameters P5 and P9 are previously defined in test OI2 and 

VOI2, respectively. Trips that pass VOI5 are considered valid cases of a time deviation outlier 

trip. Trips that fail this test are sent to VOI4 to check for congestion or operational delay patterns.  

 

Distance deviation outliers 

The next two tests are applied to distance outliers as identified by the set of trips failing test OI3. 

Figures A12 and A13 in Appendix A demonstrate the expected data patterns for test VOI6 and 

VOI7, respectively. VOI6 examines the trip patterns to identify mis-matched to schedule stops or 

a “shift” in the distance deviation value; and VOI7 examines trip patterns to identify detours. 

 

VOI6  

Test VOI6 is similar to test VOI2; however the parameter is applies to the distance deviation.   

The following variable checks for an expected pattern of uniform distance deviations:  
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yz,{|}~e = �0 if ^DIncr�,�^  ≥ DEE AND 1 < 8 ≤ n� AND i ∈ {icL }1                                                                        otherwise �    ( 24 ) 

where  DIncr = 
JJqrM,N2JJqrMOP,NJJqrMOP,N , increase or growth in distance deviation in the segment before 

time point i; and 

P11 = Max Dist Increment, user-defined threshold to detect increase of growth of 

distance deviation (%). 

Test VOI7 follow similar logic as test VOI2 for uniformity except applied to distance deviations. 

A side effect of the VOI6 test design is that trips with one record, which show a distance 

deviation, will pass as a stop mis-match. The first record will not have a DIncr value because it 

requires a previous designated stop, the default value is zero. Trips that pass VOI6 are considered 

suspect, trips that fail are sent to VOI7. 

 

VOI7 

Similar to the vehicle incident pattern in test VOI5, detours will show a shift of distance 

deviation for all stops after the first distance deviation outlier point, i*. Figure A13 in Appendix 

A demonstrates this pattern. The test variable for VOI7 is: 

yz,{|}~i = ]0  if ^DDev�,�^ > �e AND              8 < i∗       OR ^DIncr�,�^ ≥ DEE AND i∗ < 8 ≤ n� 1                                                      otherwise d  ( 25 ) 

All stops before the outlier stop are expected to remain within a reasonable range P6, as defined 

in test OI3. After the deviation point the increase in distance deviation between subsequent stops 

is expected to remain under a given growth threshold, P11, as defined in VOI6. 

 

VOI Output 

The set of trips that failed the VOI stage move into the set of suspect trip: S�����) = S�() ∪ S�jXY       ( 26 ) 

where the VOI-stage failed set of trips (SF
VOI) is defined as a union of: 

• the outliers without a valid case (i.e. fail OI1, OI4),  

• the set of trips identified as an invalid case (i.e. pass VOI0, VOI2, VOI7); and  

• the sets of trips where no valid case option is identified (i.e. fail VOI4 and VOI7).  S�jXY =  �S�XY' ∪ S�XYH � ∪ �S�jXYk ∪ S�jXY@ ∪ S�jXY�� ∪ �S�jXYH ∪ S�jXY��  ( 27 ) 

The remainder trips in the database that have not been flagged during the QA procedure are 

considered non-suspect:   

 S#X#2�����) = S − S�����)     ( 28 ) 

where S = the initial set of trips in the APC/AVL database that is inputted into the QA procedure. 

An alternate way to express the non-suspect trips is:  
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 S#X#2�����) = S�()�XY + Sj����jXY − SY�r����jXY     ( 29 ) 
where the set of non-suspect trip consist of set of trip which passed all BC and OI tests (Equation 

31), the set of trips with valid case outliers (Equation 32) minus the set with an invalid case 

outliers (Equation 28): S�()�XY = S�() ∩ S�XY    ( 30 ) Sj����jXY = �.S�XY@3 ∩ .S�jXYA ∪ S�jXY� ∪ S�jXY'@3� ∪ �.S�XY@3 ∩ .(S�XY@3� ( 31 ) 

Valid case outlier trips are not mutually exclusive of invalid case outliers because there are 

multiple outlier types. For example, a trip with a time deviation outlier may be identified with a 

valid case option of experiencing congestion; however the same trip may have distance deviation 

outliers without a valid explanation.  

3.3 Summary of QA methodology 

The summaries of tests at each stage are shown in Tables 8 to 10. Table 11 is a summary of the 

parameter definitions.  

Figure 14 is a detailed summary of the QA procedure. Tests are labelled in rectangles  Each test 

output (denoted by the cards) is associated with a set variable, SP
k and SF

k, respectively for 

passing and failing sets for test k. Parameters are bolded and shown in brackets with their 

associated tests. The decisions to identify suspect and non-suspect trips are shown in the 

diamonds.

Table 8 Summary of BC tests 

 
 

Table 9 Summary of OI tests 

 
 

Name Test Question Parameter (s)
BC1 Does time increment? None

BC2 Does distance increment? None

BC3 Are time and distance steps within reasonable thresholds? P1, P2

BC4 Is the travel speed within a reasonble threshold? P3

Name Test Question Parameter (s)
OI1 Are the passenger counts within a reasonble range? P4

OI2 Is the schedule time deviation within a reasonble range? P5

OI3 Is the schedule distance deviation within a reasonble range? P6

OI4 Are the raw count corrections within a reasonable range? P7
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Table 10 Summary of VOI tests 

 
Table 11 Summary of Parameter 

Name Test Question Parameter (s)
VOI0 Is there more than 1 time points? None

VOI1 Does a time deviation occur at every time point? P8

VOI2 Does the trip pattern imply a mis-match to time schedule? P9

VOI3 Does the trip pattern imply congestion or operational delay 

through entire trip?

P10

VOI4 Does the trip pattern imply congestion or operational delay for 

part of trip?

P10

VOI5 Does the trip pattern imply a vehicle incident? P5, P9

VOI6 Does the trip pattern imply a mis-match to stop locations? P11

VOI7 Does the trip pattern imply a detour? P11

Ref. Name Definition Unit Tests
P1 Max Time 

Increment

Threshold of reasonable time step 

between subsequent stops

seconds (s) BC3

P2 Max Distance 

Increment

Threshold of reasonable distance step 

between subsequent stops

metres (m) BC3

P3 Max Travel Speed Threshold of reasonable travel speed 

between subsequent stops

metres per 

second m/s

BC4

P4 Max Passenger 

Count

Threshold to identify an outlier 

passenger count (board, alight or load)

persons (prs) OI1

P5 Max Time 

Deviation

Threshold to identify an outlier schedule 

time deviation

seconds (s) OI2, 

VOI5

P6 Max Distance 

Deviation

Threshold to identify an outlier schedule 

time deviation

metres (m) OI3, 

VOI7

P7 Max Count 

Correction

Threshold to identify an outlier 

correction to raw count (board or alight)

persons (prs) OI4

P8 Min TIme 

Deviation

Minimum time difference from schedule 

to be considered a deviation

seconds (s) VOI1

P9 Max Time 

Increase

Threshold of time deviation growth 

between subsequent stop to be 

considered uniform

Percent (%) VOI2, 

VOI5

P10 Max Time 

Decrease

Threshold of time deviation decline 

between subsequent stop to be 

considered decreasing

Percent (%) VOI3, 

VOI4

P11 Max Distance 

Increase

Threshold of distance deviation growth 

between subsequent stop to be 

considered uniform

Percent (%) VOI6, 

VOI7
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Figure 14 Detailed Summary of the QA Procedure 
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As mentioned in the methodology outline (Section 3.2), the QA procedure flags suspect data at 

the trip-level while the individual tests are applied at the stop-level.  The binary test variables 

together with Equations 2 and 7 can be used to derive the number of trips failing each stage of 

the QA procedure: N�() = N − N�()     ( 32 ) N�XY = N�() − N�XY − N��XY    ( 33 ) N�jXY=N��XY − N�jXY      ( 34 ) N�����) = N�() + N�XY + N�jXY    ( 35 ) N#��2�����) = N − N�����)     ( 36 ) 

where N represents the total number of trips; the superscripts BC, OI and VOI signify the associated 

QA stage subset; the subscripts P, F and F` signify pass, fail and conditional fail, respectively. 
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Chapter 4 

Case Study: Grand River 

Transit 

The QA procedure was applied to a sample of archived APC/AVL data for Grand River Transit 

(GRT), based in the Region of Waterloo (the Region). The data spanned four months, or one 

service period, and was collected between September 1, 2008 and December 31, 2008. This 

chapter describes the Region, the transit agency characteristic and its APC/AVL database, the 

calibration of the QA parameters for the GRT data and a sample manual survey comparison of 

the archived data. 

4.1 The Region of Waterloo and GRT 

The Region of Waterloo is a regional municipality located in southwest Ontario, Canada, 

approximately 100 km southwest from Toronto, 150 km northwest from the United States 

border-crossing at Niagara, and 300 km northeast of the Detroit-Windsor border crossing (Figure 

15). The Region has a population of roughly 534,900 people (2008 census) and is comprised of 

three municipalities and four rural townships: the cities of Cambridge, Kitchener and Waterloo 

(also known as the Tri-City) as well as the townships of Wilmot, Woolwich, Wellesley and North 

Dumphries. Grand River Transit services the Tri-City area, where approximately 90% of the 

population live.  The annual GRT ridership in 2008 was 15.8 million trips over 60 regular routes 

with a fleet of 208 buses (Beniston, 2009). 

4.2 The APC and AVL System  

In 2005, the Region of Waterloo began service of the iXpress route, a Federal Transit Showcase 

Program for a central transit corridor express service. The central transit corridor denotes key 

passage areas of the transportation network that represents a large portion of trips; therefore, 

strategic transit service development is focused in these areas.   
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Figure 15 Map of the Region of Waterloo (Source: Regional Municipality of Waterloo, 2009) 

As part of the showcase program, APC and AVL technology was featured and integrated as part 

of a larger Intelligent Transportation System (ITS) package that included: transit signal priority, 

dispatch and controller support, and real-time passenger information. The APC and AVL system 

components became fully operational on GRT vehicles in 2007. 

Equipped buses are mounted with infrared passenger counters on each door and a GPS antennae 

to record stop times and locations; these instruments are linked to an on-board computer that 

stores the data while the transit vehicle is in service and communicates the information to 

controllers. Of the 208 buses in the fleet, 34 vehicles are equipped with APC/AVL technology 

during the data collection period for this study; 15 are fully dedicated to the iXpress route and the 

19 remaining buses are circulated among the other routes. 

One key objective of the ITS deployment was to enhance data collection and information 

processing; these goals help improve service planning and market research initiatives by 

archiving APC and AVL data. The database structure and data collection processes are explained 

in the next section, followed by a description of the sample data. 

4.2.1. Data collection  and storage 

The APC/AVL system logs different events such as when the bus stops, opens or closes its doors, 

passenger boarding and alighting at each door, time of arrival and departure at the stop and 

location. An on-board computer processes this information into stop-level records. There are six 

events that trigger a stop record in the GRT system (Table 12). 
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Table 12 Events that generate a record in the GRT APC/AVL system 

 

When a transit vehicle reaches the garage, a wireless link enables download of the on-board data 

to an ORACLE database where matching algorithms link the stop-records to schedule data. For 

some vehicles, the data must be uploaded manually.  Some data are lost in the matching phase 

due to lack of necessary information (i.e. missing data) to match to the schedule or due to 

ambiguous matching rules. The QA procedure is applied after schedule matching has occurred. 

Due to confidentiality issues, a limited view of the relevant components in the ORACLE 

database is shown in Figure 16; a full description of the ORACLE structure would require 

proprietary information from the system vendor.  

Each rectangle in Figure 16 represents a separate table in the ORACLE database, the solid lines 

signify the direct relationships between each table and the dashed line represents a pseudo-

linkage through other relationships.  

 

 

Event
Transit 

stop?

Transit 

timepoint?

Doors 

opened?
Event Trigger Possible Cause

Stop with 

schedule time
✓ ✓ ✓ when the vehicle stops at a 

designated stop location with a 

scheduled timepoint and the doors 

are opened

passenger boarding 

or alighting 

requested

Drive through 

with schedule 

time

✓ ✓ X

when the vehicle passes a designated 

stop location with a scheduled 

timepoint and the doors do not 

opened

no passenger 

boarding or 

alighting requested

Stop without 

schedule time
✓ X ✓ when the vehicle stops at a 

designated stop location without a 

scheduled timepoint and the doors 

are open

passenger boarding 

or alighting 

requested

Drive through 

without schedule 

time

✓ X X

when the vehicle passes a designated 

stop location without a scheduled 

timepoint and the doors  do not open

no passenger 

boarding or 

alighting requested

Stop without 

doors
X X X

when the vehicle stops at an un-

designated stop location without a 

scheduled timepoint and the doors do 

not open

vehicle delayed by 

traffic signals, 

congestion, yielding 

right-of-way etc.

Stop with doors X X ✓ when the vehicle stops at an un-

designated stop location without a 

scheduled timepoint and the doors 

are opened

passenger request 

due to safety, 

accessibility etc.

(Source: Mandelzys, M.,  2010)
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`  

Figure 16 Snapshot of the ORACLE database structure 

The methodology described in Chapter 3 is based on the analysis of data at the stop-level and the 

identification of suspect data at the trip-level. These tables are imported into an MS Access 

database and a combination of queries and VBA code are used to implement the QA tests. Tables 

13 to 15 show the fields within the selected tables; fields associated with the QA tests are 

highlighted.  

Table 13 Relevant fields in the Trip-level records 

 

Field Type Description

Trip ID NUMBER Index, (primary key) related to stop-level records

Operation Date DATE Date of record

Line No NUMBER Route name 

Route ID NUMBER Reference to specific route pattern in route definition 

Route direction NUMBER Reference to route direction

Vehicle ID NUMBER Reference to transit vehicle

Actual start time NUMBER Actual trip start time in seconds past midnight

Actual end time NUMBER Actual trip end time in seconds past midnight

Scheduled start time NUMBER Scheduled trip start time in seconds past midnight

Scheduled end time NUMBER Scheduled trip end time in seconds past midnight

Stop sequence STRING Order of stops by stop no. according to reference route 

Odometer NUMBER Odometer reading at start of trip
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The events listed in Table 13 describe the records in the trip-level table. Table 14 describe stop-

level data and Table 15 show relevant fields from route definitions.   

Table 14 Relevant fields in the stop-level records 

 

Table 15 Relevant fields from schedule definitions 

 

4.2.2. Sample Data 

The sample data were collected between September 1, 2008 and December 31, 2008; this time 

span represents one of three annual service periods for the GRT. The sample data are comprised 

of 612,400 stop-level records, representing 25,021 trips. The distributions of data at the trip-level 

are shown by route-type, month, day of the week and start time Tables 16 and 17 and Figures 16 

and 17, respectively. 

Field Type Description Variables

Event ID NUMBER Index (primary key) used to assigni, i =1...nj, for a given j

Trip ID NUMBER Reference to trip-level record used to assign j

Operation Date DATE Date of record

Vehicle No NUMBER Reference to transit vehicle

Stop No. NUMBER Reference to transit stop definition

Stop Name STRING Name of designated stop location

Stop Type NUMBER Type of event triggering stop (refer to Table 5)

Previous Event ID NUMBER Reference to previous event ID i-1, for given j

Stop Index NUMBER Reference to stop pattern in route definition

Scheduled arrival time NUMBER Scheduled arrival time in seconds past midnight A' i ,j  where i ∈ i
t
R 

Scheduled departure time NUMBER Scheduled departure time in seconds past midnight D' i ,j  where i ∈ i
t
R 

Actual arrival time NUMBER Actual arrival time in seconds past midnight A i ,j

Actual departure time NUMBER Actual departure time in seconds past midnight D i ,j

Odometer NUMBER Odometer reading used to derive Dist i ,j

Boardings NUMBER Number of passengers boarding, balanced PB i ,j

Alighting NUMBER Number of passengers alighting, balanced PA i ,j

Load NUMBER Number of passengers, balanced PL i ,j

Raw Boardings NUMBER Number of passengers boarding, raw P'B i ,j

Raw Alighting NUMBER Number of passengers alighting, raw P'A i ,j

Field Type Description Variable

Route ID NUMBER Index (primary key) i =1...nj, for a given j

Line No. NUMBER Reference to trip-level record j

Index No. DATE Date of record

Stop ID NUMBER Reference to transit vehicle

Distance to start NUMBER Reference to transit stop definition Dist' i ,j

Distance to next STRING Name of designated stop location

Stop Name NUMBER Type of event triggering stop (refer to Table 5)
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   Table 16 Distribution of trips in sample data by route type 

 

Since iXpress trips are fully operated by equipped vehicles, they represent a substantial portion 

of the sample data. Regular routes refer to all other regular stop, full-day service routes and 

special routes refer to school specials or custom routes for special events.  

     Table 17 Distribution of trips in sample data by month 

 

The larger portion of sample trips in October is somewhat unexpected; this trend is most apparent 

for regular routes. iXpress trips show the most even distribution of trips by month. December 

service may be less frequent due to holiday schedules.  

Figure 17 shows a large majority of the sample data representing weekday trips. Upon closer 

inspection of the distribution by route-type, only iXpress trips contain weekend data.  

 

 

Figure 17 Distribution of trips in sample data by day of the week and by route 

Route Type No. of Trips Percentage

Regular 15,124 60.4%

iXpress 9,608 38.4%

Special 289 1.2%

Total 25,021 100.0%

Month Ixpress Regular Special All trips Percentage

September 2478 3769 73 6320 25%

October 2735 5148 79 7962 32%

November 2372 3453 85 5910 24%

December 2023 2754 52 4829 19%

Total 9608 15124 289 25021 100%

0

1,000

2,000

3,000

4,000

5,000

6,000

Sun Mon Tues Weds Thurs Fri Sat

N
o

. 
O

f 
T

ri
p

s

Day of the Week

All trips

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000

Sun Mon Tues Weds Thurs Fri Sat

N
o

. 
O

f 
T

ri
p

s

Day of the Week

Regular routes

0

500

1,000

1,500

2,000

Sun Mon Tues Weds Thurs Fri Sat

N
o

. 
O

f 
T

ri
p

s

Day of the Week

iXpress

0
10
20
30
40
50
60
70
80

Sun Mon Tues Weds Thurs Fri Sat

N
o

. 
O

f 
T

ri
p

s

Day of the Week

Special routes



 

52 

 

Figure 18 shows that both AM and PM peak periods (6-9AM and 3-6PM, respectively) are 

slightly more visible in the sample. It is likely that more frequent service during the weekday and 

peak periods results in a greater representation in the sample data. This trend is exaggerated in 

regular routes. Special routes are comprised mostly of school specials, early and late night trips. 

iXpress service frequency is constant for most of the day; therefore the sample data is evenly 

distributed except after 6pm, when service frequency decreases. There is also no weekend 

iXpress service after 6pm.  

 
Figure 18 Distribution of trips in the sample data by start time and by route 
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4.3 Calibration of QA parameters for GRT 

Before the methodology can be applied to the sample data, the parameters in Table 10 need to be 

calibrated for the GRT system. For example, the vehicle capacity (P4) and maximum vehicle 

speed (P3) would change as a result of the type of transit vehicle. The maximum time (P1) and 

distance increments (P3) would be a function of the network characteristics. Thresholds for 

schedule deviations in time (P4) and distance (P6) may depend on historical performance. The 

maximum acceptable count correction can depend on proven accuracy levels of the specific APC 

equipment.  

To determine the appropriate parameter values, the stop-level attribute associated with each 

parameter is evaluated for each stop record in the database. For parameters related to a maximum 

threshold, the largest stop-level attribute was assigned to each trip; for minimum thresholds, the 

smallest stop-level attribute was assigned to each trip. The parameter is selected based on trip-

level distribution of the assigned stop-level attribute. The cumulative distribution represents the 

portion of trips that would pass the given test for a range of parameter values.  

An example of the parameter selection process is depicted for P1 (maximum time increment) for 

test BC3. For each stop record, the time increment from the previous stop is calculated; each trip 

is associated with the largest time increment among its stops.  Figure 19 shows the distribution of 

trips by largest time increment, which is compared to P1 in test BC3. 

 

Figure 19 Trip distribution by largest stop-level time increment (Selection of P1) 

Figure 19 shows a distribution with two peaks: one peak ranges from 5-10 minutes and the 

second ranges from 15-20 minutes. The second peak likely represents a majority of iXpress trips 

where limited stop service results in longer travel times between stops. Test BC3 checks that the 
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time increments remain within a reasonable time range; P1 represents the threshold for a 

reasonable time step. It is assumed that a reasonable upper bound for the time increment is the 

maximum one-way cycle time for a route. The two peaks suggest that this parameter should 

ideally be set by the route or route-type. For the proposed QA procedure, only one network-level 

value is chosen to simplify the application. The selected value for P1 is depicted by the dashed 

line: 60min (1hr).  The cumulative percentage on the right side of P1 shows the portion of trips 

that have a maximum time increment less than P1; that portion represents more than 99.6% of 

trips. 

Appendix B shows the distributions and cumulative percentage plots for all the parameters. The 

calibrated values were chosen based on the shape of the distribution, engineering judgement and 

local knowledge of the GRT route network as demonstrated for the selection of P1 above. Table 

18 is a summary of the calibrated parameters.  

Table 18 Summary of QA parameters calibrated for the GRT system 

 

It is important to note that the parameters were chosen with the quality assurance of service 

journey trips in mind. Deadhead runs to the garage may result in transit vehicles travelling 

greater than 100km/hr and with distance steps much greater than 15km.  

4.2.1. User preferences 

As noted in section 3.1, the selection of the methodology parameters can be tailored to the user 

goals. An aggressive user may calibrate the QA procedure with the intention of maintaining a 

Ref. Name Calibrated Value Tests
P1 Max Time Increment 1hr (3600s) BC3

P2 Max Distance Increment 15km (15,000m) BC3

P3 Max Travel Speed 100 km/hr (27.8m/s) BC4

P4 Max Passenger Count 80 persons OI1

P5 Max Time Deviation 20min (1200s) OI2, VOI5

P6 Max Distance Deviation 2km (2,000m) OI3, VOI7

P7 Max Count Correction 6 persons OI4

P8 Min TIme Deviation 1 min (60s) VOI1

P9 Max Time Increase 10% VOI2, VOI5

P10 Max Time Decrease -5% VOI3, VOI4

P11 Max Distance Increase 5% VOI6, VOI7
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larger dataset that presents less risk of throwing out valid data. Conservative users will generally 

be more concerned with including erroneous data, thus setting more stringent parameters.  

A similar concept can be applied to inclusion of tests outputs from the VOI stage within the set 

of suspect or non-suspect data. The transit agency can decide not to include certain valid outlier 

cases within their set of useable or “non-suspect” data. For example, GRT expressed concerns 

regarding the inclusion of vehicle incidents and detours within the input data for service planning 

purposes. Although these data are still considered valid and useful for performance reporting, 

these data should not be included in the input for travel time analyses (for example) of future 

route planning because these routes should not be designed to anticipate accidents and detours. 

This preference can be corrected by simply including those output of test VOI5 (vehicle 

incidents) and VOI7 (detour) within the set of suspect trips. 

For the application demonstrated in this thesis, performance monitoring is the focus for 

downstream data uses. Therefore, vehicle incidents and detours are still included as valid trip 

outliers.  

4.4 Manual survey comparison 

Although the QA methodology was designed to preclude the need for external data, manual 

surveys were previously conducted by GRT staff in October 2008 to assess passenger counter 

accuracy. The author also conducted a separate survey of a two-way cycle of an iXpress trip on 

November 13, 2008 to observe and assess potential error sources to the data collection process of 

the GRT APC/AVL system. The results of these efforts are presented in this section.  

The passenger count accuracy was calculated using four error definitions for the passenger count, 

boarding count, alighting count and unbalanced count (Equations 37 to 41). These equations are 

provided by the system vendor, INIT Inc (Goetz, 2006): 

ε =  ��2���� × 100%     ( 37 ) 

where  ε = total passenger count error; and  

 P = total passenger count (from all doors for each stop over all trips). 

Superscripts R and M denote the raw APC counts and manual counts, respectively. The total 

passenger count is determined by:  

P =  ∑ ∑ ��M,�����P�M�P �∑ ∑ �sM,�����P�M�P@     ( 38 ) 

where  N = number of stop observations when passengers are counted (i = 1 to N);  

nd = number of doors (d=1 to nd); and 

PB, PA = boarding and alighting passengers, respectively. 

INIT stipulates that at least 700 passengers must be counted before the error equations apply. The 

total number of stop observations, N, is the sum of stops over all trips required to reach the 700 

passenger count threshold (i.e. error is not calculated for each trip, one error value for the raw 
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APC counts is calculated for all observations by stop and door in the survey). The passenger 

boarding and passenger alighting errors may be calculated separately: 

ε( = ∑ ∑ ��M.������P�M�P 2∑ ∑ ��M.������P�M�P∑ ∑ ��M.������P�M�P × 100%   ( 39 ) 

εQ = ∑ ∑ �sM.������P�M�P 2∑ ∑ �sM.������P�M�P∑ ∑ �sM.������P�M�P × 100%   ( 40 ) 

where εB and εA are the boarding and alighting errors, respectively. Lastly the unbalanced error 

describes the number of absolute errors in the counts: 

ε� = ∑ g∑ ���M,�� 2��M.�� �����P g�M�P  �  ∑ g∑ ��sM,�� 2�sM,�� �����P g�M�P∑ ∑ ��sM,�� ���M.�� �����P�M�P × 100%  ( 41 ) 

where ε’ represents the unbalanced error for the passenger count. Table 19 represents the results 

of the GRT survey. Table 20 displays the results of the individual survey. Typical values 

represent average results from other transit agencies with the same APC technology; these values 

are provided by the vendor (Goetz, 2006). 

Table 19 Results of GRT Manual Survey 

 

Table 20 Results of Individual Manual Survey 

 

The results in Table 19 are based on a sample size of 1099 observations; the GRT survey 

observed two doors for 551 stops over eight two-cycle trips to reach the 700 passenger count 

target. The results in Table 20 are based on a small sample size of 52 observations: two doors for 

13 stops over one two-way trip cycle. Despite the difference between the two surveys, both 

boarding and alighting count errors remain below the +/-10% vendor guarantee.  

Raw APC counts are often adjusted as a result of passenger balancing algorithms. Based on the 

accuracy assessment, it is reasonable to assume that most count corrections fall within 10% of 

the count value. Considering bus capacity, the results are useful in the selection of P7 (maximum 

count correction). GRT estimates that the bus capacity is 50 persons. Although the error value 

Error
Survey 

Results

Typical 

Values

Vendor 

Guarantee

Balanced Total Passenger Count      (ε) 7.7% +/-4 % ≤ 5%

Balanced Total Boarding Count     (εB) 8.9% +/-5 % ≤ 10%

Balanced Total Alighting Count     (εA) 6.4% +/-5% ≤ 10%

Unbalanced (absolute) Total Passenger Count     (ε') 11.7% 15% -

Error
Survey 

Results

Typical 

Values

Vendor 

Guarantee

Balanced Total Passenger Count      (ε) -5.3% +/-4 % ≤ 5%

Balanced Total Boarding Count     (εB) -5.9% +/-5 % ≤ 10%

Balanced Total Alighting Count     (εA) -4.8% +/-5% ≤ 10%

Unbalanced (absolute) Total Passenger Count     (ε') 8.9% 15% -
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represents a global mean, above-average errors would likely result in relatively low count 

corrections because most passenger counts are expected to be below bus capacity. For example, 

count corrections greater than 5 would imply that a boarding or alighting passenger count is both 

at capacity (50 persons) and error is greater than or equal to 10% or both the passenger count is 

below capacity and error is much greater 10%.  

Another exercise during the second survey was to track the bus trajectory using external GPS 

units; this trajectory is compared to the trajectory produced from AVL stop records to assess the 

system capability for identifying appropriate stops and schedule matching. Figure 20 is a sample 

trajectory comparison between two consecutive route-designated stops on an iXpress route. 

 

Figure 20 Sample Trajectory Comparison 

From Figure 20, the survey bus speeds verify that AVL stop events are triggered when the bus 

speed is zero; low or crawl speeds do not trigger event records as shown at 14:05 and 14:08. 

Despite the lack of records for these events, the AVL trajectory, which is a straight line 

interpolation (i.e. constant speed), sufficiently agrees with the survey trajectory. The black points 

on the AVL trajectory represent scheduled stops; comparisons between the schedule and AVL 

odometer distances demonstrate adequate matching capabilities of the system.  
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Chapter 5 

Results and Discussion 

This chapter presents the results in three parts; the first section examines the outputs of the QA 

procedure; the second section evaluates the sensitivity of the QA output to different parameter 

values and changes in the QA structure; and the third section discusses the impact of the QA 

procedure on transit performance measures.  

5.1 Analysis of Output  

The QA procedure presented in Chapter 3 and using the parameter values in Table 18 flagged 

3,583 suspect trips in the four months of GRT AVL/APC data; Table 21 shows the impact of the 

suspect data on the available data for service monitoring and performance analysis. 

    Table 21 Number of non-suspect records before and after QA 

 

The next sections further examine the results by: reviewing the causes for flagging data as 

suspect; re-evaluating the original pattern assumptions developed in the VOI stage of the 

methodology; and observing the characteristics of the remaining non-suspect data. 

5.1.1. Analysis of suspect trips 

The purpose of this section is to determine the extent of which each test contributes to the 

identification of suspect data and to confirm that suspect trips do represent unreliable data.  

 

Suspect data by test 

Table 22 is a summary of the reasons why trips are flagged as suspect (Note: it is possible for a 

trip to be flagged for multiple reasons). 

Records
Without 

QA
With QA 

% 

Suspect 

DataTrip-level 25,021 21,438 14.3%

Stop-level 612,400 509,938 16.7%
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Table 22 Summary of suspect reasons 

 

 

The top three reasons to flag a trip as suspect are: unreasonable time or distance step (BC3 fail), 

raw passenger count over-corrected (OI4 fail) and unknown reason for large distance deviation 

(VOI7 fail). Unfortunately, test BC3 checks time and distance steps simultaneously and 

therefore, it is not possible to segregate the two causes. Trips failing test OI1 and OI4 reflect trips 

with unreliable passenger counts. The greater portion failing due to raw count over-correction 

may suggest that the passenger balancing algorithm may be improved.  

Trips failing test BC3 in effect flag trips with unreliable arrival and departure times or distance 

travelled. There are several reasons why a large time or distance step (fail BC3) might be 

recorded: malfunction in the on-board computer may miss a stop-record, assignment the bus 

stop-time and start-time events to another record, or improperly processing the sequence of stop 

events. Incorrect time and distance values might also be logged due to malfunctioning 

instruments.  

The only valid case for distance deviation outliers is detours, which is not expected to be a 

common occurrence in the sample data. Therefore, the majority of distance outliers are flagged 

as suspect. Trips in VOI6 pass and VOI7 fail represent trips with unreliable stop-type 

identification or poor matching to designated stops. In contrast there are several valid cases 

identified for time deviation outliers. Table 22 shows that there are fewer suspect trips identified 

due to time deviation outliers (VOI0 pass, VOI2 pass and VOI4 fail), suggesting that the 

schedule matching algorithm works adequately. It is also possible that the smaller subset of 

timepoints subject to stop-level VOI tests and more valid case options results in more positive 

outcomes for non-suspect trips.   

 

 

 

Reason to suspect data Test No. Trips % Total

Time does not increment forward BC1 Fail 92 2.6%

Distance does not increment forward BC2 Fail 1 0.0%

Unreasonable time or distance step BC3 Fail 1326 37.0%

Unreasonable travel speed BC4 Fail 96 2.7%

Passenger count greater than bus capacity OI1 Fail 18 0.5%

Raw passenger count over-corrected OI4 Fail 1511 42.2%

Single outlier timepoint deviation VOI0 Pass 4 0.1%

Suspected mis-match in schedule VOI2 Pass 10 0.3%

Suspected mis-match in stop locations VOI6 Pass 133 3.7%

Unknown reason for large schedule time deviation VOI4 Fail 11 0.3%

Unknown reason for large schedule distance deviation VOI7 Fail 577 16.1%

Total number of suspect trips 3,583
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Confirming suspect data patterns 

The first seven tests in Table 22 use straightforward thresholds to identify suspect trips. For 

example Figure 21 is an example trip for which passenger counts exceed P4 (maximum 

passenger count). Boarding and alighting counts are depicted by the blue and red bars, load is 

represented by the solid green line and P4 is shown in the dashed purple line. Test OI1 stipulates 

that all passengers count values (boarding, alighting and load) should be below the value of P4, 

which represents a maximum capacity.  

 

Figure 21 Example suspect trip due to passenger counts over bus capacity 

Figure 21 shows that boarding and alighting counts at the Saginaw stop were recorded at 234 and 

228, respectively. Although the load count remains below P4, this data is suspicious because it 

highly unlikely to observe these boarding and alighting counts during a service journey. 

Ridership statistics derived from boarding counts would be impacted from this data.  

Data flagged with BC and OI tests are similar to the example in Figure 21 in that a simple 

threshold is applied: these tests are straightforward to visualize. Instead, the analysis focuses on 

suspect data associated with an invalid pattern; to confirm pattern assumptions in the VOI tests. 

VOI tests identify suspect trips in four ways: schedule mis-match (VOI2 pass), stop mis-match or 

unreliable odometer values (VOI6 pass), unknown time deviation pattern (VOI4 fail) or unknown 

distance deviation pattern (VOI7 fail). The first two represent assumed patterns for invalid data 

and the latter represent unexplained patterns for outliers.  

 

Known error patterns (VOI2 pass and VOI6 pass) 

Figures 22 and 23 demonstrate some suspect trips with assumed error patterns. In the following 

four figures, the black line represents the scheduled trip with labels on the right side identifying 

timepoints locations. The red line represents the recorded trips with labels on the left side 

identifying the locations of all designated stops. Time is shown relative to the scheduled trip start 

time.  

Figure 22 shows a suspect trip flagged in test VOI2, mis-matched schedule. According to the 

APC/AVL database, this trip was scheduled to start at 2:28pm but it is recorded to have started 

20 minutes early. However, it is highly unlikely that the operator would start a trip 20 minutes 

early; if the bus was at the terminal early, it likely waits at the terminal until the scheduled 
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departure time. Furthermore, this route has a 15 minute headway before 2:28pm and a 30 minute 

headway after 2:28pm adding to the likelihood that the trip recorded in the database has been 

matched to the 2:28 trip and should have been matched to an earlier scheduled trip. 

 

Figure 22 Example suspect trip flagged as schedule mis-match 

The pattern used to identify this trip as a mis-match is a uniform schedule time deviation at each 

timepoint. Figure 22 shows a time deviation of approximately 20 min at each timepoint on the 

route. The consistency of the time deviations at each timepoint is measured by the percent 

change in the time deviation value from the previous timepoint. Sample calculations for the 

arrival time deviation are shown on Figure 22, however departure time deviation is also 

incorporated into test VOI2. Recall the maximum time deviation increase (P9) is set to 10%.  

Figure 23 shows the patterns characteristics of a suspect trip flagged for stop mis-match.   

According to the APC/AVL data, the trip completed Route 8 in half the scheduled trip distance 

(the schedule route is 13km long). The error is visible at the second stop where the archived data 

suggests that only 300m is travelled to reach Charles Street terminal from Fairview Mall; the 

actual distance is about 6.5km. As a result, there is a uniform distance deviation among all stops 

of approximately 6.5km. Figure 23 displays the distance deviation and percent increase only 

timepoints to avoid overcrowding the plot; however data for all designated stops are subject to 

test VOI7 because a schedule distance is available for all stops.  Both examples in Figure 22 and 

23 demonstrate how known error patterns can screen out invalid data. 

HOLIDAY INN TERMINAL

SMART!CENTRES 

CAMBRIDGE

CAMRIDGE CENTRE 

TERMINAL

AINSLIE STREET TERMINAL

HOLIDAY INN TERMINAL

SMART!CENTRES 

CAMBRIDGE

HESPELER / EAGLE
HESPELER / LANG'S

HESPELER / LANG'S
HESPELER / BISHOP

CAMRIDGE CENTRE 

TERMINAL

HESPELER / ISHERWOOD

HESPELER / WAUCHOPE

HESPELER / JAFFRAY

WATER / AUGUSTA
WATER / DANDO

AINSLIE / SIMCOE
AINSLIE / PARK HILL

AINSLIE / DICKSON

AINSLIE STREET TERMINAL

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

D
is

ta
n

ce
 (

m
e

tr
e

s)

Time (minutes)

Route 51, September 10, 2008 departing at 2:28 pm 

Arrival time deviation = 20.2min (-1210s)

Arrival time deviation = 19.8min ( -1185s)

Time increase = 2.1%

Arrival time deviation = 19.7min ( -1183s)

Time increase = 0.2%

Arrival time deviation = 21.3min ( -1274s)

Time increase = 7.7%



 

62 

 

 

Figure 23 Example trip with a mis-match to stop locations 

 

Unknown error pattern 

When an outlier trip fails all tests associated with a valid case option, it is considered to have an 

unknown error pattern. The proposed QA procedure identifies these trips in VOI4 fail and VOI8 

fail. Figure 24 shows a trip that results in VOI4 fail, unknown time deviation. 

At first glance, the trip in Figure 24 appears to be a valid case of congestion or operational delay 

that should be recognized by test VOI3. The test assumes that the time deviation either increases 

or remains the same and uses a maximum time decrease (P10= -5%) threshold to identify when 

the time deviation gets smaller. For this trip, the time deviation decreases beyond the time 

decrease threshold at Shantz Hill/Preston from Sportsworld. Although a change in P10 may 

include this trip, not many trips have an unexplained time deviation outlier as shown in Table 21. 

The trade-off of a more relaxed parameter value is the potential to allow more invalid data to 

pass as valid case trips. This trip is an example of the limitations of the proposed QA procedure 

for recognizing valid from invalid data; ambiguous trip patterns make it difficult to assess 

whether some trips constitute a schedule mis-match or valid case of congestion/operational delay. 

Figure 25 shows a suspect trip with an unknown explanation for distance deviation outliers. The 

first distance deviation outlier occurs at Charles Street terminal where the recorded distance lags 

the scheduled distance by 2.9km; however this trip does cannot represent a detour where excess 

kilometres is coupled with uniform deviation.  
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Figure 24 Example suspect trip flagged due to unknown time deviation 

 

Figure 25 Example trip without explanation for distance deviation outlier 
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The trip in Figure 25 shows the vehicle arriving at Charles Street terminal from Fairview within 

3km; the scheduled distance between these two stops is about 6.5km. Even if the vehicle 

travelled along a shortcut the minimum travel distance required is 6km. Therefore this trip is a 

good example of how unexplained patterns for distance deviations do suggest unreliable data. 

 

5.1.2. Analysis of Valid Case Trips 

Table 23 is a summary of trips identified as having a valid case. Without the VOI stage, these 

trips would be considered suspect.   

Table 23 Summary of valid case outliers 

 

 

The valid case options explain the majority (92.1%) of time deviation outliers however, not many 

(1.8%) distance deviation outliers are explained by valid cases. One potential reason is that the 

stop identification algorithm is less accurate than the schedule matching algorithm. Another 

explanation is that the time deviation tests are applied to a smaller sample of timepoints; distance 

deviation tests are conducted at each designated stop because scheduled distances are available 

for each stop. Figures 26 to 30 show example trips of valid case outliers. 

The iXpress trip in Figure 26 is supposed to travel from Conestoga Mall to Ainslie Terminal, 

however no records appear after Ottawa. Before the deviation point, all previous stops are within 

schedule time and distance deviation thresholds. The trajectory shows the bus remaining at 

Ottawa for 22 minutes. This dwell time is a result of the given departure time for the Ottawa stop 

event record, which was likely assigned when the AVL/APC system was shut off or departed for 

the garage. The GRT keeps track of “change-offs”; these are instances of when in-service 

vehicles are replaced with spare vehicles. Supervisors write reports about notable operational 

events.  According to the change-off records, the vehicle servicing this trip was changed-off at 

Ottawa with a non-equipped bus after steering problems were identified. 

 

Valid case Test No. Trips % Total

Total number of time deviation outliers OI-2 Fail 252

Vehicle incident VOI-5 Pass 10 4.0%

Congestion or operational delay throughout trip VOI-3 Pass 141 56.0%

Congestion or operational delay during part of trip VOI-12 Pass 83 32.9%

232 92.1%

Total number of distance deviation outliers OI-3 Fail 747

Detour VOI-8 Pass 64 1.8%
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Figure 26 Example trip of a vehicle incident 

Figure 27 is another example of an iXpress trip travelling in the other direction; a change-off was 

also recorded at Charles Street terminal. After the deviation point, the vehicle incident test 

(VOI5) looks for a continued uniform time deviation. However, most trips identified as a vehicle 

incident show the deviation point at the last recorded stop; this pattern is likely due to change-

offs of in-service equipped vehicles with non-equipped vehicles. Since change-off records are 

recorded internally but not integrated with the AVL/APC database, future development of the 

QA procedure could include them as a confirmation of VOI5 results.  

Figures 28 and 29 show trips identified as congestion or operation delay. The former figure 

demonstrates this valid case for the entire trip (pass VOI3) and the latter figure shows delay for 

only part of the trip (pass VOI4). Since there are no available records of traffic conditions 

experienced by transit vehicles, it is difficult to confirm whether these trips actually encountered 

congestion. Instead, the patterns in Figures 28 and 29 can be compared to the intended patterns 

that tests VOI3 and VOI4 are meant to capture.  

Figure 28 follows the congestion pattern assumptions for test VOI3, the time deviation either 

increases or remains the same. The smaller slopes represent lower average speeds between stops 

and imply more delays. External weather data on December 19, 2008 reveal exceptional weather 

events; there was 8.5 cm of snow (16.6 mm precipitation equivalent) reported at the University of 

Waterloo weather station. Additional investigation of the weather data shows that most of the 

snowfall occurred from 9am to 1pm. This weather data further suggests that this trip likely 

experienced congestion or operational delay on the given date and time. 
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Figure 27 Second example trip of vehicle incident 

 

Figure 28 Example valid trip due to congestion/operational delay 
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Figure 29 Example valid trip due to partial congestion/operational delay 

 

Figure 29 demonstrates a similar pattern as Figure 28 after the deviation point. This trip was 

flagged by test VOI4. After the deviation point (Fairview), time deviations at the following stops 

either increase or remain the same (i.e. no decline is experienced below P10 = -5%). The segment 

from Smart Centre to Fairview Mall requires the vehicle to travel on Highway 401 and Highway 

8; those highways are prone to congestion during peak AM and PM periods. The fact that this 

trip started at 5:15pm (i.e. conventionally considered rush hour) further suggests that this trip is 

indeed a valid case of congestion or operational delay. 

Figure 30 shows an example valid trip identified as a detour. Similar to the congestion or 

operational delay cases, there are no records for transit vehicles when they detour. Again, the 

intended pattern is instead reviewed. Detours are generally expected to travel a longer distance 

than the scheduled distance, therefore excess kilometres is expected in a detour pattern. In the 

trip shown in Figure 30, the last stop is the deviation point and all previous stops are within time 

and distance deviation threshold.  
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Figure 30 Example trips of a detour 

 

Confirmation of the example trip in Figure 30 as a detour can be seen by plotting the GPS 

coordinates on a map (Figure 31).  

In Figure 31, the red line represents the scheduled route path and the points represent recorded 

stops (orange signify stops in the schedule and green represent non-scheduled stops). Note that 

the coordinates for the segment from Queens/Westheights to Rolling Meadows/Westheights go 

off the route path; the route path shows that the bus should travel north on Westheights Dr past 

Blackwell Dr to west on Highland Rd W, south again on Westhights Dr, followed by a counter-

clockwise loop on Rolling Hills and Driftwood Dr. However, the coordinates for the 

Westheights/Blackwell stop shows that the bus was actually south on Elm Ridge Dr.  

Based on the distance travelled at subsequent recorded stops, the bus likely detoured via south on 

Elm Ridge Dr to east on McCarry Dr to north on Westheights Dr and continued it scheduled path 

north of Queen Blvd (coordinates are missing for the Highland/Westforest stop). This detour is 

approximated 2.2km and may be the result of an obstruction along Queen Blvd from Elm Ridge 

Dr to Westheights Dr.  
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Figure 31 Route path of detoured trip 
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5.1.3. Analysis of non-suspect trips 

Table 24 breaks down the trip-level data availability by route-type.  

Table 24 Impact of QA procedure on data availability by route-type 

 

 

Table 24 shows that iXpress routes have a better penetration rate through the QA procedure than 

regular and special routes. Table 25 is a breakdown of the suspect trips by route type.  

 

Table 25 Summary of suspect trips by route type 

 

 

Recall Table 16 in Section 4.2.2; the distribution of trips in the database is 60/39/1 for regular, 

iXpress and special routes. A similar distribution should be expected for the suspect trips if the 

data for each route-type has an equal penetration rate through the QA procedure. Table 25 shows 

that regular route trips appear to contribute a larger share of suspect trips for most tests (BC1, 

BC3, BC4, OI4, VOI7 and VOI8). Special routes show a greater than 1% share in tests OI1 and 

VOI8. Overall the distribution of suspect trip by route-type seems to suggest that iXpress trips 

produce higher quality data.  

Without QA With QA % Suspect

Total number of trip records

Regular 15,124 12,309 18.6%

iXpress 9,608 8,949 6.9%

Special 289 180 37.7%

Average number of trips per route, both directions

Regular 297 241 18.8%

iXpress (1) 9,608 8,949 6.9%

Special
7 4 38.1%

Reason to suspect data Test Regular iXpress Special All trips

Time does not increment forward BC1 Fail 91 0 1 92

Distance does not increment forward BC2 Fail 1 0 0 1

Unreasonable time or distance step BC3 Fail 1108 206 12 1326

Unreasonable travel speed BC4 Fail 94 2 0 96

Passenger count greater than bus capacity OI1 Fail 2 12 4 18

Raw passenger count over-corrected OI4 Fail 1102 335 74 1511

Single outlier timepoint deviation VOI0 Pass 1 3 0 4

Suspected mis-match in schedule VOI2 Pass 4 5 1 10

Suspected mis-match in stop locations VOI6 Pass 117 13 3 133

Unknown reason for large schedule time deviation VOI4 Fail 9 2 0 11

Unknown reason for large schedule distance deviation VOI7 Fail 407 136 34 577
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One potential explanation for the higher iXpress penetration rate is the quality of schedule data. 

The AVL/APC system was initially designed to be implemented for the iXpress route as part of a 

larger ITS package. Limited stops also allow for less stop records per trip to be tested and all 

designated stops are also time points; this detail makes stop and schedule matching simpler and 

could result in a more successful matching algorithm. Alternately, the low penetration rate for 

special route trips is likely due to poor schedule data quality in special routes. Maintenance of 

special route schedule data is usually less thorough due to low priority. One management strategy 

to increase post-QA sample size by route is to improve the quality of schedule data.  

Regular and special routes are already at a disadvantage with respect to sample size due to a lack 

of equipped vehicles servicing those routes; however service planners are generally more 

interested in regular route trips for performance monitoring and future service planning. 

Performance of iXpress trips is already well-documented by GRT staff. Therefore, the lower 

penetration rate for regular routes is of particular relevance for GRT management (Figures 32 

and 33 show the sample sizes for each regular route).   

 

 

Figure 32 Sample size by route (Routes 1-26) 

 

Figure 33 Sample size by route (Routes 27-111) 
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It is apparent from Figures 32 and 33 that the sample size and penetration rate varies 

considerably by route; higher frequency routes tend to have larger sample sizes and two routes in 

particular have unusually high suspect data rates (Route 65 and 67). Figure 35 demonstrates why 

most Route 67 trips are flagged by the QA procedure (Figure 34 shows the route configuration).  

 

Figure 34 Configuration of Route 67 (Source: Grand River Transit, 2010) 

 

On closer analysis, the single direction loop route matches the last stop to the first stop in the 

schedule data. In a loop route, the last stop has the same location as the first; however the 

schedule data should still have separate stop definition for the last stop of this route with a 

different schedule distance. Instead the last stop is matched with the first stop definition as shown 

in Figure 35 (the black line represents the scheduled trip and the red line represents the recorded 

trip).  The matching of the last stop to the wrong stop definition is associated with a problem in 

the schedule or stop location data; schedule matching processes occur before the QA procedure is 

applied. Higher quality schedule data could avoid this problem.  

Another sample management strategy is better coordination with operations to increase use of 

equipped vehicles in service. Figures 36 and 37 show the distributions of trips by vehicle. 

Figure 36 shows an even distribution of equipped buses among iXpress routes; however Figure 

37 shows that some equipped vehicles are under-utilized for data collection.  
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Figure 35 Example Route 67 trip 

 

Figure 36 Distribution of trip sample by vehicle for iXpress buses 
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Figure 37 Distribution of trip sample by vehicle for regular route buses 

 

Sampling plans may be useful to more effectively utilize APC/AVL equipped buses. In fact, 

information from Figures 36 and 37 in conjunction with the information from Figure 32 and 33 

(sample size by route) may be useful in formulating a sampling plan.  

Figure 37 shows a larger percentage of suspect data for vehicles No. 924 and No. 931. Figure 38 

is a distribution by route for the sample data from these vehicles. The figure shows that the 

vehicles usage was distributed among various regular and special (9000-series) routes, therefore 

the higher rate of suspect data cannot be attributed to a specific route with poor schedule data. 

The dashed line represents the vehicle-average percentage of suspect data from Figure 37.  The 

vehicle-specific suspect data rate in Figure 38 varies by route and is higher than the rate shown in 

Figure 36 (average from all vehicles).  

For example, for vehicle No. 924, the largest portion of the data comes from routes 7 and 12 and 

these trips show a suspect rate of 54% and 50%, respectively. Figure 36 shows a lower 21% 

suspect data for both these routes from all vehicles. Similarly in vehicle No. 931, the largest 

portion of trips comes from routes 62 and 71 and the suspect rates shown in Figure 38 are 78% 

and 62%, respectively. However the route-average from all vehicles is 19% and 55%, 

respectively. Therefore, poor quality AVL/APC data (shown by a higher percent of suspect data) 

is more likely contributed by the vehicle and not specific to the route. The recognition of higher 

suspect data rates for vehicles No. 924 and No. 931 (as shown in Figure 37) is an example of 

how this information can be used to identify maintenance needs of equipped vehicles; these 

vehicles are likely contributing to poor data quality due to poor calibration or defective 

equipment.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

200

400

600

800

1000

1200

1400

9
2

2

9
2

3

9
2

4

9
2

5

9
2

6

9
2

7

9
2

8

9
3

0

9
3

1

9
3

2

9
3

3

9
3

4

9
3

6

9
3

7

9
3

8

9
3

9

%
 S

u
sp

e
ct

 d
a

ta

N
o

. 
O

f 
T

ri
p

s

Vehicle No

Without QA With QA % Suspect data



 

75 

 

 

Figure 38 Sample size by route for vehicles No. 924 and 931 

 

Lastly, the distribution of trips by time period and day of the week are reviewed. Figure 39 is the 

trip distribution by time period and Figure 40 shows the distribution by day of the week. There 

does not seem to be any discrepancies in the percent of suspect data by time. The 10pm & later 

time period may show a slightly lower suspect rate, but there are less routes operating during this 

time period possibly leading to a better schedule matching result.  

Figure 38 shows higher suspect data rates for weekday trips. Since regular and special routes are 

only sampled on the weekday, it is likely due to the contribution of suspect data from regular and 

special route, which average at 20% and 29%, respectively. The average weekend failure rate is 

close to the iXpress rate of 7%. 
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Figure 39 Distribution of trips by time of day before and after QA 

 

Figure 40 Distribution of trips by day of week before and after QA 

5.2 Sensitivity Analysis 

A sensitivity analysis was performed to determine the impact of changing parameter values and 

changes in the QA structure. The analysis was conducted by comparing the QA procedure output 

in terms of the number of suspect trips identified versus the change in parameter value. 

Additionally, a no-test value was generated to determine the impact on the QA output if the given 

test was not included in the QA procedure. Since most tests are based on a maximum threshold, 

the common pattern for the sensitivity plots are an increase in the number of suspect trips for 

smaller (more stringent) parameter values and a decrease in the  number of suspect trip for larger 

(less stringent) parameter values.  
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Figure 41 demonstrates common sensitivity plot pattern for P2, maximum distance increment.  

 

 

Figure 41 Example sensitivity plot for P2, maximum distance increment 

 

Although the slope between the tests points appear large in the plot, the range for percentage 

change of suspect trips remains between +/- 5% for most parameters. Figures 42 to 44 show 

parameters with greater ranges suggesting increased sensitivity.  The no-test curve in Figure 41 

represents the number of suspect trips that would be otherwise identified if the QA procedure did 

not test for large distance increments. Another interpretation of the no test curve is that the 

parameter value is set high (or low) enough such that no trip would fail the test.  

For most tests, the no-test curve is below the sensitivity plot because a removal of a QA test 

would generally result in fewer suspect trips identified. For parameters related to valid case tests, 

the no-test curve is above the sensitivity curve because those valid cases outliers would otherwise 

be considered suspect. Figure C9 in Appendix C demonstrates this pattern for P10, maximum 

distance increase, which is used to identify detours. One parameter that did not follow this trend 

for the no-test curve (i.e. to be above or below the sensitivity curve) is P9, maximum time 

increase. P9 is used in both tests VOI2 and VOI5, where the former represents an invalid case 

(i.e. schedule mis-match) and the latter represents a valid case (i.e. vehicle incident). Ten trips 

were identified for each these tests; therefore the no-test curve is zero because the exclusion of 

both tests results cancel each other. However, relative changes the results of test VOI2 and VOI5 

with respect to P9 is associated with the sensitivity curve of P9 (Figure C8 in Appendix C). 

Although P10 also represents both a valid and invalid case (i.e. VOI6 and VOI7), the removal of 

these tests would results in all trips with a distance outlier to be considered suspect.  
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Figure 42 Sensitivity plot for P4, maximum passenger count 

 

Figure 42 shows that the methodology is highly sensitive when P4 is less that the chosen value of 

80 persons, but not for larger values. As mentioned, Figure 42 adopts a pattern related to the 

parameter selection distributions in Appendix B.  Figure B3, which is the trip distribution of the 

largest passenger count, is closely related to the sensitivity plot in Figure 42. The difference 

between the two plots is that Figure 42 incorporates the impact of test sequencing; BC tests 

remove some data during the QA procedure before OI tests are applied.  Therefore the resulting 

number of suspect trips may be different from those identified in Figure B3 in Appendix B. The 

heightened sensitivity for lower P4 values means that there are many trips with maximum trip-

level passenger counts between 50 to 80 persons and these trips would otherwise not be 

identified as suspect if not for test OI1.  

Figure 43 shows a heightened sensitivity to the value of parameter P6. If the value of P6 is 

increased from 2km to 5km, there would be an almost 15% decrease in suspect trips. 

In Figure B6 in Appendix B, the proportion of trips with largest distance deviation greater than 

2km was relatively small (approximately 5%). Therefore, it is unexpected that the QA procedure 

is sensitive to increasing the value of P6 from 2km to 5km. However, it was also found that most 

distance deviation outliers were not found to have a valid case during the analysis of suspect 

trips. Therefore, the sensitivity to P6 is probably due to the fact that most trips with distance 

deviation outliers end up identified as suspect.  
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Figure 43 Sensitivity plot for P6, maximum distance deviation 

Figure 44 shows that the QA procedure is most sensitive to P7, maximum correction count.   

 

Figure 44 Sensitivity plot for P7, maximum count correction 

The right-hand tail of the trip distribution of largest count correction (Figure B7 in Appendix B) 
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Figure 44 is more linear and less comparable to a negative exponential shape. Since unacceptable 

count correction was the top reason to flag a suspect trip (and there are no valid case options for 

this outlier), it is intuitive that the number of suspect data changes nearly proportionally to P7. 

Although Figure B7 in Appendix B shows that only 4.9% of all trips have would fail if P7 is 

greater than or equal to 6 persons, the Figure 44 represents the impact of the change in P7 to the 

suspect trips. If P7 is changed to 5 persons, Figure B7 shows 6.5% of all trips fail; the difference 

of 1.6% translates to 414 trips (1.6% × 25,051trips) as shown on the right-hand vertical axis.  

Sensitivity plots for each parameter is available in Appendix C. Overall, most sensitivity plots 

demonstrated a negative exponential shape where the rate of change for suspect trips increases 

from smaller parameter values and decreases for larger values. The pattern is related to a 

maximum threshold; most parameter values represent a maximum threshold. Despite the 

sensitivity to lower parameter values, most sensitivity plots shows change for the number of 

suspect trip within ±5%. 

The QA procedure is most sensitive to changes in P7 (maximum correction count) followed by 

P6 (maximum distance deviation) and lower values for P4 (crush-load capacity). It is noticed that 

the test associated with these parameters tend to have no or few valid cases for outlier data. The 

sensitivity to these parameters can potentially be reduced if more valid case tests are developed.  

5.3 Impact on Performance Measures 

To assess the cumulative impact of the QA procedure on service monitoring, some performance 

measures were calculated for the dataset before and after QA is applied. Several parameter sets 

were created to represent different data consumers, the scenarios range from very data aggressive 

to very data conservative. Table 26 shows the parameter values associated with each scenario. 

Table 26  Parameter values sets for various QA scenarios 

 

 

Aggressive refers to a more relaxed set of parameters values; this scenario would reflect a data 

consumer whom is more concerned with obtaining larger sample size of usable APC/AVL data. 

Conservative refers to a more stringent set of parameter values; this scenario would reflect a 

consumer whom is more concerned with removing invalid data and is more willing to discard 

Parameter values
No QA 

Applied

Very 

Aggressive

Moderately 

Aggressive
Control

Moderately 

Conservative

Very 

Conservative

P1. Max Time Increment 7200 5400 3600 2700 1800
P2. Max Distance Increment 30000 20000 15000 15000 15000
P3. Max Travel Speed 36.1 33.3 27.8 27.8 27.8
P4. Max Bus Capacity 100 90 80 70 60
P5. Max Time Deviation 2400 1800 1200 900 600
P6. Max Distance Deviation 5000 4000 2000 2500 1000
P7. Max Count Correction 12 8 6 5 4
P8. Min Time Deviation 60 60 60 60 60
P9. Max Time Increase 5% 10% 10% 10% 10%
P9b Max Time Decrease -10% -5% -5% -5% -3%
P10 Max Distance Increase 10% 5% 5% 5% 20%
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extreme, yet perhaps valid data. Table 27 shows the output of the QA procedure for each 

scenario. 

Table 27 QA output for parameter sets 

 

 

As expected, the data aggressive scenarios identify less suspect data due to more relaxed 

parameter values and data conservative scenarios flag more suspect data.  

Three performance measures were evaluated for the sample data set: % time bus is not “on-

time”, the % sampled trips “under-capacity” and the % sampled trips “over-capacity”. The not 

“on-time” percentage is based on the fraction of not on-time timepoint observations over the total 

number of timepoint observations. The GRT definition of “on-time” is within zero minutes early 

and three minutes late. Since the standard is not defined in seconds, an early threshold of 30 

seconds is used. The under-capacity percentage is the fraction of trips where the stop-level load 

was observed to be less than 25% of the seated capacity (9 persons) for 75% of the time before 

6pm or less than 10% of the seated capacity (4 persons) for 75% of the time after 6pm. The over-

capacity percentage is the fraction of trips where the stop-level loads was observed to be greater 

than the bus capacity (50 people) for more than 5% of the time. Table 28 is a summary of the 

network performance for each parameter set. 

Table 28 Overall network performance based on parameter sets 

 

 

On the network level, the change to the schedule adherence measure is not very large. However, 

there is more variation when viewing the route-level changes. Figure 45 is a scatter plot of the 

schedule adherence values by route before and after the QA procedure. The difference in the % 

not “on-time” measures in Figure 45 before and after QA is small for most routes, however there 

are substantial differences in some other routes. For example in Route 33, there is a 6% 

difference between the before and after cases for one direction and a 31% difference in the other 

direction. Without the QA procedure, this route might be overlooked at the monitoring stage and 

not considered for service improvements at the planning stage.  

Parameter values
No QA 

Applied

Very 

Aggressive

Moderately 

Aggressive
Control

Moderately 

Conservative

Very 

Conservative

Totaltrips 25,021 25021 25021 25021 25021 25021

0 1937 2508 3583 4054 5395

Non-suspect 25,021 23,084 22,513 21,438 20967 19626

Failure rate 7.7% 10.0% 14.3% 16.2% 21.6%

Suspect

Impact on Performance Measures
No QA 

Applied

Very 

Aggressive

Moderately 

Aggressive
Control

Moderately 

Conservative

Very 

Conservative

Schedule Performance Measures

% not "on-time"(bus perspective) 26.7% 26.32% 26.11% 25.7% 25.56% 25.01%

∆ On-time measure (bus perspective) 0.0% -1.5% -2.2% -3.9% -4.3% -6.4%

Passenger Performance Measures

% sampled trips "under capacity" 15.5% 14.3% 14.2% 13.9% 13.9% 13.8%

% sampled trips "over capacity" 5.7% 13.5% 13.6% 13.7% 13.3% 3.6%

∆ Under capacity measure 0.0% -8.0% -8.8% -10.5% -10.5% -11.0%

∆ Over capacity measure 0.0% 138.8% 139.6% 141.9% 135.2% -36.6%



 

82 

 

 

 

Figure 45 Route-level impact of schedule adherence measure 
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The impacts to passenger activity measures are more apparent. Figures 46 and 47 show the 

change in the under-capacity and over-capacity measures, respectively. For most routes, the 

under-capacity measure was changed moderately for most routes. Some route observed a 

reduction to zero percent under-capacity after the QA.  In some cases, the QA procedure 

removed all samples data for a given route (e.g. Route 29 inbound, Route 66 northbound, Route 

111 southbound and some special routes). 

Figure 45 shows increased observations of over-capacity trips (except for one observation) after 

the QA procedure is applied. It is possible that the balancing algorithm tends to decrease 

boarding counts and increase alighting counts when there is a discrepancy in the counts. This 

removal of these over-corrected counts would results in higher average loads, thus identifying 

more over-capacity trips.  Though network-level performance measures tend not to change 

substantially after QA is applied; route specific measures are impacted.  

Passenger kilometres are another measure that can be used to assess the impact of the QA 

procedure on performance analysis. Since the sample data represents (almost) all iXpress trips 

and only a portion of the regular and special route trips, a method is needed to expand the sample 

data for the entire network. Currently, no such method exists that is easily implemented; 

therefore this measure is not evaluated. However, it is expected that this measure would change 

significantly for quality assured data due to the large contribution of schedule distance deviation 

and unreliable passenger counts to the suspect dataset. 

5.4 Limitations  

Some limitations to the QA methodology are outlined below: 

• Several components of the QA procedure require schedule matching and passenger balancing 

algorithms to be included in the standard AVL/APC data processing. This feature is a result 

of the intention to complement, but not to replace, current validation techniques.  

• The proposed methodology relies on erroneous data to generate outliers in the passenger 

activity or travel activity. Erroneous data that does not result in an outlier cannot be detected 

by the proposed QA procedure.  

• Missing data is not directly addressed by the proposed methodology, however the impact of 

missing stop-level attributes are indirectly detected through the outlier identification 

structure. 

• The methodology relies on the expected patterns to categorize the data at the trip-level into 

suspect or non-suspect. Ambiguous trip patterns are difficult to classify as valid or invalid.  

• The application of the QA procedure to GRT is based on network-level parameters. However 

route-level parameters are more suitable for some tests.  
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Figure 46 Impact of QA on under-capacity monitoring 
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Figure 47 Impact of QA on over-capacity monitoring 
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• No methods are suggested to “correct” suspect data; suspect data is rejected from the 

database at the trip-level for tests associated with both passenger activity and travel patterns.  

The intent of this approach is to provide a clear directive on how to manage suspect data; 

however it may also lead to a smaller size of sample data for analysis. For records where 

only the passenger-related test screened the data as suspect, useful travel pattern data may be 

discarded and vice versa.  

• The proposed methodology does not consider previous trips in the assessment of valid case 

patterns. For example, schedule mis-match trips are potentially a valid trip following a trip 

that experiences congestion. The structure of the AVL/APC database makes this case 

difficult to assess and previous trip is not always unavailable when only a portion of the fleet 

is equipped. 
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Chapter 6 

Conclusions 

The availability of archived AVL/APC data generates multiple opportunities to enhance transit 

operations and planning activities; however quality assurance is an important prerequisite for 

business decisions supported by these data. An automated quality assurance (QA) procedure was 

developed to improve the reliability of archived AVL/APC data. The procedure is intended to 

complement current quality control techniques.  

The proposed methodology is described fully in this thesis. Calibration methods are discussed for 

a sample application to Grand River Transit in Waterloo Region, Ontario. The output of the QA 

procedure is examined and a sensitivity analyses is conducted to assess the impact of changes to 

the user-defined parameters on the output of the procedure. Further impacts to downstream 

applications of the archived data are also examined. 

The development and testing of this methodology led to the following findings: 

• The use of expected pattern analysis proved useful in identifying both valid and invalid trip 

data. 

• The inclusion of valid case outliers can “save” AVL/APC data that would otherwise be 

considered suspect. The development of more valid cases can help improve the penetration 

rate of data through the QA procedure and the sensitivity to key parameters. 

• Analysis of the vehicle usage and route-sample distributions can provide useful information 

for management such as the preparation of sampling plans and vehicle maintenance 

programs. The lower penetration rate for regular route is a problem for service planners 

attempting to amass a significant sample size; for the GRT system, fewer equipped vehicles 

are available for regular routes than for iXpress routes.  

• Quality assured data can change the results of performance analyses. Although the impact is 

less apparent at the network-level, route-level performance measures are necessary to target 

poor performing routes. The over-capacity performance measure for GRT is most impacted 

by the application of the QA procedure.  

• Limited-stop express route data appear to have a better penetration rates through the QA 

procedure than regular service and special routes. The quality of the schedule data and the 

availability of timepoint data at each designated stop seem to improve the results of schedule 

matching algorithms.  
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It is recognized that the quality of schedule data, passenger balancing algorithms and database 

structure impact the outcome of the QA procedure. Therefore the development of an automated 

validation program should be considered just one component to a proper data quality 

management plan. Other considerations for the development of a comprehensive data quality 

plan are provided in the next section. 

6.1 Future Work and Recommendations 

Several limitations suggest the need for future work following this study. Regarding further 

improvement of the proposed QA procedure, the following works are recommended: 

• Develop more valid case options for outliers to reduce the possibility of losing valid, yet 

exceptional data. For example: 

o passenger count outliers might be valid for surge boardings and a valid test can 

be to check counts by key stops; 

o higher count corrections might be expected on higher load trips; a valid test can 

be to compare the count correction as a percentage of the highest trip load; and 

o large schedule deviations may result from a previously delayed trip and a valid 

test can check for dissipating time deviations over the trip; 

• Include available external data to confirm valid case options (e.g. weather data for trips 

with congestion and delay patterns and change-off records for vehicle incident trips) 

• Calibrate the QA parameters at the route-level where applicable; and 

• Separate the identification of suspect data by data type (e.g. suspect passenger count 

data, suspect time and distance values). 

Other data quality management considerations related to the QA procedure are: 

• Sample size for regular routes is smaller than for iXpress due to the less available 

equipped buses and lower penetration rate through the QA procedure. Limited sample 

size restricts the utility of AVL/APC systems for operations and planning.  Sampling 

plans can be developed from route sample distributions and vehicle usage statistics. 

• Improvements to the database structure can facilitate analysis of the AVL/APC data (e.g. 

separate identifiers to sequence interstop, designated stop and timepoints would be useful 

for the application of this QA procedure as well as other service analyses.) A thorough 

investigation of database structural concerns can help develop recommendations for 

improvement.  

• The application of the QA procedure has identified upstream contributors to poor data 

quality (e.g. poor schedule data is found to result in poor penetration rates in the QA 

procedure). Examination of the specific design elements that constitute high quality 

schedule data can help improve schedule matching results. 
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Appendix A 

Expected data patterns 



Appendix A – Expected data patterns  Note that the following plots are  

  based on hypothetical trips 
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Figure A 1 Trip failing BC1 (Time increasing) 

 

Figure A 2 Trip failing BC2 (Distance increasing) 



Appendix A – Expected data patterns  Note that the following plots are  

  based on hypothetical trips 
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Figure A 3 Trip failing BC3 (Time and  distance increment constraints) 

 

Figure A 4 Trip failing BC4 (Travel speed constraint) 



Appendix A – Expected data patterns  Note that the following plots are  

  based on hypothetical trips 
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Figure A 5 Trips failing OI1 (Passenger count outlier) 

 

Figure A 6 Trip failing OI2 (Time deviation outlier) 
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Appendix A – Expected data patterns  Note that the following plots are  

  based on hypothetical trips 

 

95 

 

 

Figure A 7 Trip failing OI3 (Distance deviation outlier) 

 

Figure A 8 Trip passing VOI2 (Suspected mis-match to schedule) 



Appendix A – Expected data patterns  Note that the following plots are  

  based on hypothetical trips 
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Figure A 9 Trip passing VOI3 (Valid time deviation outlier by congestion or operational delay) 

 

Figure A 10 Trip passing VOI4 (Valid time deviation outlier by partial congestion or operational delay) 



Appendix A – Expected data patterns  Note that the following plots are  

  based on hypothetical trips 
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Figure A 11 Trip passing VOI5 (Valid time deviation outlier by transit vehicle-related incident) 

 

Figure A 12 Trip passing VOI6 (Suspected shift in stop matching) 



Appendix A – Expected data patterns  Note that the following plots are  

  based on hypothetical trips 
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Figure A 13 Trips passing VOI7 (Valid distance deviation by detour) 

 

 



 

99 

 

Appendix B  

Parameter selection 



Appendix B – Parameter selection 
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Section 4.3 discusses the approach to calibrating parameters for the proposed QA procedure. This 

appendix provides distribution plots and a description for the selection of P2 through P11. 

The second parameter for BC3 is P2, maximum distance increment. The trip distribution of the 

largest distance step is shown in Figure B1.  Similar to the trip distribution for largest time 

increment, there are two peaks for the distribution of largest distance increments. The second 

peak likely represents mostly iXpress trips because the longest inter-stop distance on the iXpress 

route is 12.6km from Cambridge Centre to Fairview Mall. P2 should be assigned by route or 

route type. Unlike the P1, a reasonable upper bound for the distance increment is not the longest 

one-way cycle, but the longest distance between any two stops for the route. The AVL/APC 

system is expected to generate an event record for all stops on a route even when it is skipped. 

Missing stop-level event records constitute incomplete data for a trip-based analysis such as the 

derivation of load values from stop-level on-off differences. Like P1, one network-level 

parameter is selected instead of several for each route or route type. P2 is set to 15km; more than 

95% of trips are shown to be below this threshold.  

 

Figure B 1 Selection of P2 

Figure B2 shows the selection of P3 in test B4. The distribution in Figure B2 represents the trip-

level maximum calculated speed between two stops. Again, there appears to be two peaks. 

However the selection of this parameter should not be route-based. The speed constraint in test 

BC4 is based on the physical limitations of the transit vehicle and operational limits. Though 

some GRT routes travel along the highway, transit buses are expected to oblige all posted speed 

limits. The highest posted speed limit in the Region of Waterloo is 100km/hr on the 401 

highway. Therefore, P3 is set to 100km/hr. The cumulative percentage plot shows that 99.7% of 

the trips are below this threshold.  
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Figure B 2 Selection of P3 

Figure B3 shows the selection of P4 in test OI1. Similar to P3, the maximum passenger count 

(P4) in test OI1 is meant to test a physical constraint: the space limitations on a bus. The number 

of passengers boarding, passengers alighting and load is capped by the capacity of the bus. While 

it is possible that there can be an infinite number of the passengers boarding so long as an 

equivalent number of passengers are alighting; however this occurrence is an unexpected pattern.  

The test is included as part of the Outlier Identification stage because it is based on expected 

patterns in the data. P4 is set to 80 passengers; the cumulative percentage plot shows that 99.1% 

of trips are below this range. P4 not only represents a vehicle capacity, but a crush load capacity 

should the vehicle be over-capacity. 

 

Figure B 3 Selection of P4 
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Figure B4 shows the selection for P5 in test OI2.   The distribution shown in Figure B4 

demonstrates the largest stop-level arrival or departure time deviation for each trip. Outlier 

values are screened when they exceed the 95th percentile; the cumulative distribution graph 

shows that a P5 value of 20 minutes is required to identify these outliers.  

 

Figure B 4 Selection of P5 

Figure B6 shows the selection for P6 in test OI3. Similar to the logic used to select P5, P6 is set 

to 2km and this represent threshold represents the approximately the 95th percentile.   

 

Figure B 5 Selection of P6 
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Figure B6 shows the selection for P7 in test OI4. Again similar logic is used for the selection of 

P7 as for the selection of P5 and P6. However additional consideration is taken from the results 

of the manual count surveys in Section 4.4. The surveys show an error of 8.9% and 6.4% for the 

total boarding counts and alighting counts. The vendor guarantees these errors to be less than or 

equal to 10%. In other words, the discrepancy between the raw APC count and the manual count 

(i.e. assumed to be the true value) should be less than or equal to 10% of the manual count. 

Typical bus capacity is 50 passengers. Therefore a 10% ‘maximum’ discrepancy, as backed by 

vendor guarantee, and demonstrated by the manual survey, should be roughly 5 passengers.  The 

10% guarantee might not be defendable for count corrections on buses with crush load (i.e. near 

80 passengers). Literature notes that low floor buses are subject to greater error related to bus 

configuration and proximity of passengers near the doorways (Kimpel et al, 2003). Therefore, P7 

is set to 6 passengers assuming typical bus capacity is 50 passengers (a value of 6 passengers 

provides a buffer to an assumed 10% error). 

 

Figure B 6 Selection of P7 

Figure B7 shows the selection of P8, the minimum time deviation required on all stops to 

classify between trip with time deviations occurring over the entire trip (group A) or trips with 

time deviations occurring over only a portion of the trip (group B). The distribution of the 

minimum time deviation is affected by the threshold to identify time deviation outliers in test OI2 

(P5). The trips in group A are further tested by test VOI3, congestion or operational delay of the 

entire trip and the trips in group B are further tested for vehicle incident patterns (VOI5). The 

selection of this parameter may be slightly arbitrary because trips that fail VOI3 and VOI5 are 

further tested for congestion or operational delay over a portion of the trip (VOI4).  

The value of this parameter impacts the sequence of tests that are applied to a given trip; the 

resulting outcome decides which valid or invalid pattern should be tested. P8 is set to 60s (1min). 
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Figure B 7 Selection of P8 
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Figure B8 shows the selection of P9, the maximum time deviation increase. This parameter is 

used in test VOI2 to find schedule mis-matches. Schedule mis-matches are considered to be a 

rare occurrence by the GRT staff. Test VOI2 is designed to find trips with an outlier time 

deviation and a pattern of consistent time deviation values throughout the trip. This consistent 

pattern is identified by monitoring the time deviation increase between stops. A threshold (P9) is 

set to flag if the deviation increase constitutes a growing pattern of time deviation values.  

Because the expected pattern is comprised of both a large time deviation and a consistent pattern, 

the test relies on the outcome of previous test OI2 (P5) to screen trips with time deviation outlier. 

P9 is set to 10%, this value represents a small portion of trips identified with both a outlier time 

deviation and a significant deviation value at each time point. So if a deviation increases by more 

than 10%, the trip is not a mis-match. The value also coincides with the inflection point on the 

cumulative percentage plot.  

Figure B9 demonstrates the selection of P10, which is incorporated in test VOI3 and VOI4 

(valid delays trips). Just like for P9, the outcome of test OI2 (P5) impacts the distribution shown 

in Figure B9, a higher outlier threshold results in fewer trips in the distribution. The difficulty 

with the distribution in Figure B10 is that is includes time deviation increases from the first 

arrival and last departure time deviation, which are generally considered irrelevant.   The 

distribution to the right of the dashed line represents trips that may constitute a congestion or 

operational delay pattern, if they are not already identified as a mis-match pattern. Since P10 is 

also used in test VOI4 (congestion or operational delay pattern over a portion of the trip), 

minimum time deviation declines are not relevant before the turning time point i*.  

Although P10 impacts which trips with distance deviations are considered valid or invalid, the 

selection of P10 is somewhat arbitrary because it is difficult to estimate what portion of trips with 

time deviation outliers are expected to experience delay. The tests VOI3 and VOI4 expect the 

time deviation to increase between time points (time deviation increase should stay positive) or at 

the very least, not decrease (only a small negative decrease can be tolerated as a slight variation). 

Therefore P10 is set to -5%. 

Lastly,  Figure B10 shows the selection of P11, the maximum distance deviation increase. P11 is 

used as the threshold in test VOI7 and VOI8. In test VOI7, a uniform pattern of distance 

deviation among all stops represent a “shift” in the matched location or improper resetting of the 

odometer; thus unreliable distance values. P11 is used to cap the distance increase to identifiy a 

uniform pattern. In test VOI8, a uniform pattern of distance is expected after the detour segment 

for a trip.  

The distribution in Figure B10 shows that more that 50% of the trips tend to have very large 

distance deviation increases. Many of these trips results from a small absolute change in the 

distance deviation from zero, but results in a large percentage change. However, these trips are 

not the target for test VOI7. Instead, a “shift” in distance values likely result from a mis 

identification of the first stop. The selection of P11 is based on the population on the left side of 

the plot. P11 is set to 5%.  
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Figure B 8 Selection of P9 
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Figure B 9 Selection of P10 
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Figure B 10 Selection of P11 
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Figure C 1 Sensitivity to P1 

 

Figure C 2 Sensitivity to P2 
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Figure C 3 Sensitivity to P3 

 

Figure C 4 Sensitivity to P4 
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Figure C 5 Sensitivity to P5 

 

Figure C 6 Sensitivity to P6 
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Figure C 7 Sensitivity to P7 

 

Figure C 8 Sensitivity to P9 
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Figure C 9 Sensitivity to P10 

 

Figure C 10 Sensitivity to P11 
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