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Abstract

Abstract harmonic analysis is mainly concerned with the study of locally compact

groups, their unitary representations, and the function spaces associated with them.

The Fourier and Fourier-Stieltjes algebras are two of the most important function

spaces associated with a locally compact group.

The Rajchman algebra associated with a locally compact group is defined to be

the set of all elements of the Fourier-Stieltjes algebra which vanish at infinity. This

is a closed, complemented ideal in the Fourier-Stieltjes algebra that contains the

Fourier algebra. In the Abelian case, the Rajchman algebras can be identified with

the algebra of Rajchman measures on the dual group. Such measures have been

widely studied in the classical harmonic analysis. In contrast, for non-commutative

locally compact groups little is known about these interesting algebras.

In this thesis, we investigate certain Banach algebra properties of Rajchman

algebras associated with locally compact groups. In particular, we study various

amenability properties of Rajchman algebras, and observe their diverse character-

istics for different classes of locally compact groups. We prove that amenability

of the Rajchman algebra of a group is equivalent to the group being compact and

almost Abelian, a property that is shared by the Fourier-Stieltjes algebra. In con-

trast, we also present examples of large classes of locally compact groups, such

as non-compact Abelian groups and infinite solvable groups, for which Rajchman

algebras are not even operator weakly amenable. Moreover, we establish various ex-

tension theorems that allow us to generalize the previous result to all non-compact

connected SIN-groups.
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Finally, we investigate the spectral behavior of Rajchman algebras associated

with Abelian locally compact groups, and construct point derivations at certain

elements of their spectrum using Varopoulos’ decompositions for Rajchman alge-

bras. Having constructed similar decompositions, we obtain analytic discs around

certain idempotent characters of Rajchman algebras. These results, and others that

we obtain, illustrate the inherent distinction between the Rajchman algebra and

the Fourier algebra of many locally compact groups.
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Chapter 1

Introduction

Amenability of a group is a fundamental notion in analysis that was originally

introduced by von Neumann in 1929. This remarkable property has many equivalent

definitions and various interpretations. For instance, one can think of amenability

as a translation-invariant averaging condition for a locally compact group.

In 1972, Johnson defined amenable Banach algebras as those satisfying a certain

cohomological property. The choice of terminology was inspired by Johnson’s well-

known theorem demonstrating the equivalence of amenability for a locally compact

group and its convolution algebra [Joh72].

Since many important Banach algebras in harmonic analysis, e.g. the Fourier-

Stieltjes algebras, are operator spaces as well, it is natural to also define the notion of

operator amenability in order to take the operator space structure into account. The

concept of (operator) amenability turned out to be extremely fruitful in the theory

of (completely contractive) Banach algebras. For example, Connes [Con78] and
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Haagerup [Haa83] showed that for C∗-algebras amenability and nuclearity coincide.

In his influential work, Eymard [Eym64] defined the Fourier and Fourier-Stieltjes

algebras of locally compact groups, and studied many of their properties. For a

locally compact group G, let C∗(G) denote its group C∗-algebra. The Fourier-

Stieltjes algebra of G, denoted by B(G), is defined to be the Banach space dual of

C∗(G). One can show that B(G) is in fact a subalgebra of the algebra of bounded

continuous functions Cb(G). Moreover the Fourier-Stieltjes algebra together with

its norm as a dual space turns out to be a Banach algebra. The Fourier algebra

is defined to be the closed subalgebra of the Fourier-Stieltjes algebra generated by

its compactly supported elements, and is denoted by A(G). The Fourier algebra

is in turn a subalgebra of C0(G), the algebra of all continuous functions on G

which vanish at infinity. In the special case of locally compact Abelian groups, one

can identify the Fourier and Fourier-Stieltjes algebras with the L1-algebra and the

measure algebra of the dual group.

In addition to the Fourier and Fourier-Stieltjes algebras, one can define the

Rajchman algebra associated with a locally compact group G, denoted by B0(G),

to be the set of elements of the Fourier-Stieltjes algebra which vanish at infinity.

It is easy to see that the Rajchman algebra is indeed a Banach subalgebra of the

Fourier-Stieltjes algebra.

We recall that a measure µ in the measure algebra of a locally compact Abelian

group is called a Rajchman measure if

lim
|n|→0

µ̂(n) = 0.
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Consequently, the Rajchman algebra on a locally compact Abelian group can be

identified with the algebra of Rajchman measures on the dual group, denoted by

M0(Ĝ).

The importance of Rajchman measures first became apparent in the study of

uniqueness of trigonometric series. A subset E of T is a set of uniqueness (or a

U -set) if the trivial series is the only trigonometric series which converges to 0 on

every element outside E. Otherwise it is a set of multiplicity. The classical Cantor

1
3
-set is an example of a U -set.

Sets of uniqueness are typically small. In fact, every Borel U -set has Lebesgue

measure 0. However the converse is not true. In 1916, Menshov showed that there

are closed sets of Lebesgue measure zero which are not sets of uniqueness [Men16].

In his proof, Menshov constructs a probability measure µ supported in a set of

Lebesgue measure zero whose Fourier transform vanishes at infinity. This is one of

the earliest examples of measures in M0(T) which do not belong to L1(T). Hewitt

and Zuckerman generalized this result for all non-discrete locally compact Abelian

groups [HZ66].

In the case of non-Abelian locally compact groups, understanding the asymp-

totic behavior of unitary representations turns out to be important due to its ap-

plications in other areas of mathematics such as the theory of automorphic forms

and ergodic properties of flows on homogeneous spaces (e.g. see [HM79], [Moo66],

and [Shi68]).

The Fourier and Fourier-Stieltjes algebras are two of the most important al-

gebras associated with a locally compact group. The study of the structure and
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properties of these algebras have become an essential part of abstract harmonic

analysis. For instance, a major trend in noncommutative harmonic analysis con-

cerns with deep investigation of various amenability properties of the Fourier and

Fourier-Stieltjes algebras. Combining the famous theorems of Johnson [Joh72] and

Ruan [Rua95], one observes that for a locally compact group, the (weak) amenabil-

ity of the L1-algebra and the operator (weak) amenability of the Fourier algebra are

equivalent. This fact leads one to suspect the analogous relation between measure

algebras and Fourier-Stieltjes algebras.

For a locally compact group, it has been shown that the measure algebra is

amenable if and only if the group is discrete and amenable [DGH02]. Since com-

pactness is the dual notion to discreteness, it is natural to conjecture that the

operator amenability of the Fourier-Stieltjes algebra is equivalent to the compact-

ness of the group. In 2007, Runde and Spronk [RS07] found surprising examples of

noncompact operator amenable Fell groups. These examples disproved the conjec-

ture, and left the characterization of the operator amenability of Fourier-Stieltjes

algebras wide open. In the case of non-Abelian locally compact groups, Rajchman

algebras of many locally compact groups seem to have as rich a structure as their

Fourier-Stieltjes algebras, and can be used as a crucial stepping stone in the study

of the Fourier-Stieltjes algebras.

The purpose of this thesis is to investigate B0(G) as a Banach algebra. In partic-

ular, we study its various amenability properties. We show that Rajchman algebras

behave widely in terms of amenability. We first characterize locally compact groups

whose Rajchman algebras are amenable. In fact, we prove that amenability of the
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Rajchman algebra of a group is equivalent to the group being compact and almost

Abelian. On the other hand, we present examples of groups, such as non-compact

Abelian groups and infinite solvable groups, for which Rajchman algebras are not

even (operator) weakly amenable. We then extend these results to all non-compact

connected SIN-groups. A locally compact group is called a SIN-group if it has a

neighborhood basis of the identity consisting of pre-compact neighborhoods which

are invariant under inner automorphisms. This is a very natural class of groups

which contains all Abelian, all compact and all discrete groups.

Our main tool to prove the above-mentioned results is a deep theorem of

Varopoulos [Var66a], where he obtains a direct decomposition of the measure alge-

bra M(G) of a non-discrete locally compact Abelian group G into an L-subalgebra

and L-ideal. Varopoulos constructs the decomposition based on a given compact

perfect metrisable strongly independent subset P of G. A set P is a strongly in-

dependent subset of G if for any positive integer N , any family {pj}Nj=1 of distinct

elements of P , and any family of integers {nj}Nj=1, the equality
∑N

j=1 njpj = 0G

implies that njp = 0 for every p in P and 1 ≤ j ≤ N . The following theorem is an

application of the decomposition theorem:

Theorem Varopoulos. For any non-discrete locally compact Abelian group G,

(i) Mc(G)/M2
c (G) is a non-separable Banach space.

(ii) M0(G)/M2
0 (G) is an infinite-dimensional Banach space.

Note that this theorem implies that if G is a non-compact locally compact Abelian

group then B0(G) cannot be (operator) weak amenable. We also adopt Varopoulos’
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method to obtain similar decompositions for M0(G) using appropriate strongly

independent subsets P of G. These decompositions are used to study the spectral

behaviors of B0(G).

One of the important and fundamental questions in the theory of Banach alge-

bras is the existence and construction of derivations for certain classes of Banach

algebras. In the particular case of the Fourier-Stieltjes algebras, the derivation

problem is of great importance, as it sheds substantial light on the structure of

algebra, and then in turn on the underlying group.

Amongst all derivations, point derivations play a particularly important role.

However, examples of point derivations are rare, and except in a few basic instances

we do not know how to construct them. In this thesis, we investigate the spectral be-

havior of the Rajchman algebra associated with an Abelian locally compact group,

and construct derivations at certain points of the spectrum.

In contrast to the generally complex nature of the spectrum of the Rajchman

algebra, the spectrum of the Fourier algebra is well-understood. In fact Eymard

showed that the spectrum of the Fourier algebra is the group itself [Eym64]. From

a result of Spronk [Spr02] and independently Samei [Sam05], it is also clear that

the Fourier algebra does not admit any point derivations at the elements of its

spectrum. These results illustrate the inherent distinction between the Rajchman

algebra and the Fourier algebra of many locally compact groups.

As a natural continuation of the above discussion, we investigate the spectral

structure of Rajchman algebras and illustrate aspects of the residual analytic struc-

ture of their maximal ideal space. The Rajchman algebra associated with a locally
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compact Abelian group is a commutative convolution measure algebra, i.e. it has

a natural lattice structure which is compatible with its Banach algebra structure.

Taylor [Tay65] showed that one can construct analytic discs around certain non-

idempotent elements of the spectrum of a convolution measure algebra. It is now

interesting to study the possibilities for elements of the spectrum whose modulus

are idempotents. For the special case of the measure algebra of a locally compact

group, Brown and Moran [BM76] constructed nontrivial continuous point deriva-

tions at the discrete augmentation character. In a subsequent paper, they used a

method of Varopoulos to construct analytic discs around the discrete augmenta-

tion character [BM78a]. Having constructed similar decompositions for M0(G), we

have been able to obtain analytic discs around certain idempotent characters of

Rajchman algebras.

The rest of this thesis is organized as follows: In Chapter 2, we provide the

necessary background, and review some basics of harmonic analysis. We finish this

chapter by a brief discussion on induced representations.

In Chapter 3, we introduce the Rajchman algebra associated with a locally

compact group, and briefly discuss its relationship with the Fourier algebra. We

then study the functorial properties of the Rajchman algebras. In particular, we

show that if G is a SIN-group with a closed subgroup H, then the restriction map

from B0(G) to B0(H) is surjective (Theorem 3.2.2).

In Chapter 4, we demonstrate a theorem of Varopoulos regarding certain decom-

positions of the measure algebra of a non-discrete locally compact Abelian group.

We then find similar decompositions of Rajchman algebras associated with such
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groups, which will be used to construct nonzero point derivations on M0(G).

Chapter 5 investigates various amenability properties of Rajchman algebras

using the results of the two preceding chapters. In this chapter, we prove that

amenability of the Rajchman algebra of a group is equivalent to the group being

compact and almost Abelian. We also present examples of large classes of locally

compact groups, such as non-compact connected SIN-groups and infinite solvable

groups, for which Rajchman algebras are not even (operator) weakly amenable.

The final chapter of the thesis studies the Rajchman algebra of the group

SL2(R). Using Kunze-Stein phenomena we show that B0(SL2(R)) has no nonzero

continuous point derivation. On the other hand, we use the results of Repka [Rep78]

and Pukánszky [Puk61] regarding the decomposition of tensor products of unitary

representations of SL2(R) to observe that B0(SL2(R)) is not (operator) weakly

amenable.

8



Chapter 2

Background and literature

The present chapter contains the background necessary for this thesis. Here we

introduce notations and provide some tools used in the following chapters. In

Section 2.1, we review the basic properties of locally compact groups and their

Haar measures. We then define various Banach algebras associated with locally

compact groups such as the Fourier and Fourier-Stieltjes algebras in Section 2.2. In

the final two sections, we overview the procedure of inducing representations from

subgroups of locally compact groups. One can refer to [HR79], [Fol95] and [Eym64]

for more details.
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2.1 Locally compact groups

Let X be a locally compact Hausdorff space. A Radon measure on X is a positive

Borel measure µ which is finite on compact sets, and satisfies

µ(E) = inf{µ(U) : E ⊆ U and U open}

and

µ(U) = sup{µ(K) : K ⊆ U and K compact},

for any Borel subset E and open subset U of X. A locally compact group is a group

G equipped with a locally compact Hausdorff topology which is compatible with

the group structure, i.e. the group product is a jointly continuous map from G×G

to G, and the inverse is a continuous map from the group to itself. A Borel measure

µ on a locally compact group G is called left-invariant if µ(xE) = µ(E) for any x in

G and Borel subset E of G. The following theorem states a fundamental property

of locally compact groups.

Theorem 2.1.1. Let G be a locally compact group. There exists a left-invariant

Radon measure µ on G which attains positive values on nonempty open sets. More-

over, if ν is another left-invariant Radon measure on G with positive values on

nonempty open sets, then there exists c > 0 such that ν = cµ. That is, the measure

µ is unique up to multiplication by a positive constant.

For a locally compact group G, we fix once and for all, a measure µG as in

Theorem 2.1.1. Particularly, if G is a compact group or a discrete group then
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we scale µG to be a probability measure or a counting measure respectively. The

measure µG is called the left Haar measure of G. For f in Cc(G), let
∫
G
f(x)dx

denote its integral with respect to µG. By the left-invariance of the Haar measure,

∫
G

f(yx)dx =

∫
G

f(x)dx,

for every y in G and function f in Cc(G). It is important to note that the left Haar

measure on G need not to be right-invariant in general. However, there exists a

multiplicative R+-valued function ∆G on G such that

∫
G

f(xy)dx =
1

∆G(y)

∫
G

f(x)dx,

and ∫
G

f(x−1)dx =

∫
G

f(x)∆G(x
−1)dx,

for every y in G and µG-integrable function f on G. The function ∆G is called the

modular function of G. The group G is called unimodular if ∆G ≡ 1. Abelian,

compact and discrete groups are examples of unimodular groups. On the other

hand, the group ax+ b of affine transformations of the real line is not unimodular.

The following lemma will be used in the proof of Proposition 2.4.1.

Lemma 2.1.2. Let G be a locally compact group with the left Haar measure µ, and

ϕ : G → G be a topological group isomorphism. Define the measure µϕ on G by

µϕ(E) = µ(ϕ(E)) for every Borel subset E of G. Then µϕ is a constant multiple of

µ.

Proof. The measure µϕ is a Radon measure with positive values on nonempty open
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sets, since ϕ is a topological isomorphism. Moreover, for any y in G and Borel subset

E of G, we have,

µϕ(yE) = µ(ϕ(yE)) = µ(ϕ(y)ϕ(E)) = µ(ϕ(E)) = µϕ(E). (2.1)

Hence µϕ is left-invariant as well. Therefore by uniqueness of the Haar measure,

there exists a positive constant cϕ such that µϕ = cϕµ. �

Let Aut(G) denote the set of all topological isomorphisms of G. The func-

tion ∆ defined as ∆(ϕ) = cϕ is a homomorphism of Aut(G) to the multiplicative

group of positive real numbers. In addition ∆(γx) = ∆G(x) where γx is the inner

automorphism on G defined as γx(s) = x−1sx.

2.2 Banach algebras associated with locally com-

pact groups

Let G be a locally compact group with the Haar measure λ. Let the group algebra of

G, denoted by L1(G), be the Lebesgue space L1(G, λ). Recall that L1(G) equipped

with pointwise addition and convolution is a Banach algebra. In fact, L1(G) is a

Banach ∗-algebra with involution defined as

f ∗(x) = ∆(x−1)f(x−1).
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Let M(G) be the space of complex-valued Radon measures on G. We define the

convolution of two measures µ and ν in M(G) to be

∫
G

f(z)d(µ ∗ ν)(z) =
∫
G

∫
G

f(xy)dµ(x)dν(y),

for every f in Cc(G), the set of compactly supported continuous functions on G.

The measure algebra M(G) equipped with the total variation norm is in fact a

Banach algebra, which contains the L1-algebra as a closed ideal.

Let H be a Hilbert space, and U(H) denote the group of unitary operators

on H. A continuous unitary representation of G on H is a group homomorphism

π : G → U(H) which is WOT-continuous, i.e. for every vector ξ and η in H, the

function

ξ ∗π η : G→ C, g 7→ ⟨π(g)ξ, η⟩

is continuous. Functions of the form ξ ∗π η, for vectors ξ and η in H, are called

the coefficient functions of G associated with the representation π. One can extend

π to a non-degenerate norm-decreasing ∗-representation of the Banach ∗-algebra

L1(G) to B(H) via

⟨π(f)ξ, η⟩ =
∫
G

f(x)⟨π(x)ξ, η⟩dx,

for every f in L1(G) and vectors ξ and η in H. We use the same symbol π to denote

the ∗-representation extension as well. Let π1 and π2 be unitary representations of

G on the Hilbert spaces H1 and H2 respectively. π1 and π2 are unitarily equivalent
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if there exists a unitary operator U : H1 → H2 such that

Uπ1(x) = π2(x)U,

for all x in G.

For a locally compact group G, the Fourier-Stieltjes algebra of G is the set of all

the coefficient functions of G, and is denoted by B(G). Clearly B(G) is a subalgebra

of Cb(G), the algebra of bounded continuous functions on G. Recall that the group

C∗-algebra C∗(G) is the enveloping C∗-algebra of L1(G), i.e.

C∗(G) = L1(G)
∥·∥C∗(G)

,

where for each L1-function f ,

∥f∥C∗ = sup{∥π(f)∥ : π is a continuous unitary representation of G}.

Eymard [Eym64] proved that B(G) can be identified with the Banach space dual

of C∗(G) as following. For u in B(G) and f in L1(G),

⟨f, u⟩ =
∫
G

u(x)f(x)dx.

Moreover, the Fourier-Stieltjes algebra together with the norm from the above

duality turns out to be a Banach algebra. The Fourier algebra of G, denoted

by A(G), is the closed subalgebra of the Fourier-Stieltjes algebra generated by

its compactly supported elements. Clearly, the Fourier algebra is a subalgebra of
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C0(G), the algebra of continuous functions on G which vanish at infinity. In the

special case of locally compact Abelian groups, one can identify the Fourier and

Fourier-Stieltjes algebras with the L1-algebra and the measure algebra of the dual

group respectively.

Let π be a continuous unitary representation of G on a Hilbert space Hπ. Let

Aπ(G) denote the closed subspace of B(G) generated by the coefficient functions

of G associated with π, i.e.

Aπ = spanC{ξ ∗π η : ξ, η ∈ Hπ}
∥·∥B(G)

.

It is easy to see that Aπ(G) is a left and right translation-invariant closed subspace of

B(G). Conversely, by Theorem (3.17) of [Ars76], any closed subspace of B(G) which

is left and right translation-invariant, is of the form Aπ(G) for some continuous

unitary representation π.

Let λ denote the left regular representation of G on L2(G), i.e. for x in G and

f in L2(G),

λ(x)f(y) = f(x−1y) ∀y ∈ G.

For a unitary representation π, let VNπ(G) denote the von Neumann algebra gener-

ated by π(G) in B(Hπ). Note that by Theorem 2.2.1, Aπ(G) is the image in L∞(G)

of the projective tensor product Hπ ⊗γ Hπ under the continuous sesquilinear form

taking ξ⊗ η to ξ ∗π η. Eymard [Eym64] proved that Aλ(G) is just the Fourier alge-

bra A(G), and can be identified with the unique predual of VNλ(G). The following

theorem is a generalization of this result:
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Theorem 2.2.1. [Ars76]

(i) The dual of the Banach space Aπ(G) can be identified with VNπ in the fol-

lowing manner. For u in Aπ(G) and f in L1(G),

⟨u, π(f)⟩ =
∫
G

f(x)u(x)dx.

Moreover, Aπ(G) is the unique predual of VNπ(G).

(ii) The Banach space Aπ(G) is the subset of elements u in B(G) which are of

the form

u =
∞∑
i=1

ξn ∗π ηn,

where ξn and ηn belong to Hπ and
∑∞

i=1 ∥ξi∥∥ηi∥ <∞.

(iii) For every u in Aπ(G),

∥u∥B(G) = inf{
∞∑
i=1

∥ξi∥∥ηi∥ : u represented as above},

and the infimum is attained.

Recall that every unitary representation π of G extends to a non-degenerate

norm-decreasing ∗-representation of L1(G), and in turn C∗(G). By slight abuse

of notation, we denote all of the above representations by π. Let Ker(π) and

KerC∗(π) denote the kernel of the unitary representation π of G and the kernel of

the ∗-representation π of C∗(G) respectively. The following lemma is due to Fell

[Fel60].
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Lemma 2.2.2. Let G be a locally compact group with unitary representations π

and σ. Then the following are equivalent:

(i) KerC∗(π) ⊆ KerC∗(σ)

(ii) ∥σ(u)∥ ≤ ∥π(u)∥ for u ∈ L1(G).

(iii) For every η ∈ Hσ, the positive definite function η ∗σ η can be uniformly

approximated on compacta by functions of the form ξ ∗π ξ with ξ ∈ Hπ.

(iv) Every function u in Aσ(G) can be uniformly approximated on compacta by

functions v in Aπ(G) with ∥v∥Aσ ≤ ∥u∥Aπ .

If any (therefore all) of the above conditions hold, we say that σ is weakly

contained in π.

2.3 Induced representations

The most important method for producing representations is to induce representa-

tions for G from representations of its subgroups H. The resulting representation

is called an induced representation.

2.3.1 When G/H admits an invariant measure

Let H be a closed subgroup of a locally compact group G, and q be the quotient

map from G to G/H. Assume that the quotient space G/H admits a G-invariant
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measure µ. Then from a unitary representation π : H → U(Hπ) of H, we derive a

unitary representation IndGHπ : G→ U(F) of G in the following way.

• We first define the new Hilbert space F as follows.

- F0 := {f ∈ C(G,Hπ) : q(suppf) is compact &f(xh) = π(h−1)f(x) ∀x ∈

G, h ∈ H}.

- For f, g ∈ F0, define ⟨f, g⟩F0 :=
∫
G/H
⟨f(x), g(x)⟩Hπdµ(xH) to be the

inner product.

- For each f ∈ F0, we have ∥f∥2F0
=
∫
G/H
∥f(x)∥2Hπ

dµ(xH).

- F := F0
∥·∥F0 .

• For x in G, define the bounded operator

IndGHπ(x) : F0 → F0, f 7→ xf,

where xf(y) = f(x−1y) for every y in G. Since µ is a G-invariant measure,

IndGHπ(x) is an isometry on F0, and can be extended to a unitary in B(F).

• The map IndGHπ : G → U(F), g 7→ IndGHπ(g) is a unitary representation of

G, called the representation induced from π.

Let H be a closed subgroup of a locally compact group G. Let ∆G and ∆H

denote the modular functions of G and H respectively. Then the quotient space

G/H admits a nonzero positive invariant measure if and only if ∆G|H = ∆H . If

this is the case, then the positive invariant measure is unique up to multiplication
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by a positive constant. Moreover, one can normalize the invariant measure µ on

G/H such that for every f in Cc(G),

∫
G/H

∫
H

f(xh)dhdµ(xH) =

∫
G

f(x)dx, (2.2)

where dx and dh denote the Haar measures of G and H respectively.

Remark. Let G, H, and π be as above. Let Cc(G,Hπ) be the set of continuous

compactly supported Hπ-valued functions on G. Then the mapping

P : Cc(G,Hπ)→ C(G,Hπ), (Pf)(x) =
∫
H

π(h)f(xh)dh

is well-defined, and P(Cc(G,Hπ)) = F0. Moreover, every element of F0 is uniformly

continuous.

Remark. Let G, H, and π be as above. For any ξ in Hπ and v in Cc(G), we

define the compactly supported function fv,ξ : G → Hπ, x 7→ v(x)ξ. Let η and w

be elements of Hπ and Cc(G) respectively, and compute the coefficient function of
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IndGHπ corresponding to Pfv,ξ and Pfw,η.

⟨Indπ(x)Pfv,ξ,Pfw,η⟩F0 =

∫
G/H

⟨Indπ(x)Pfv,ξ(g),Pfw,η(g)⟩Hπdµ(gH)

=

∫
G/H

⟨
∫
H

π(h)(v(x−1gh)ξ)dh,

∫
H

π(h′)(w(gh′)η)dh′⟩Hπdµ(gH)

=

∫
G/H

∫
H

∫
H

v(x−1gh)w(gh′)⟨π(h)ξ, π(h′)η⟩Hπdhdh
′dµ(gH)

=

∫
G/H

∫
H

∫
H

v(x−1gh)w(gh′)⟨π(h′−1h)ξ, η⟩Hπdhdh
′dµ(gH)

=

∫
G/H

∫
H

∫
H

v(x−1gh′h)w(gh′)⟨π(h)ξ, η⟩Hπdhdh
′dµ(gH)

=

∫
G

∫
H

v(x−1gh)w(g)⟨π(h)ξ, η⟩Hπdhdg, (2.3)

where in the last equality, we used the normalized relation stated in Equation (2.2).

2.3.2 General case

Realization I: Let H be a closed subgroup of a locally compact group G, and

π : H → U(Hπ) be a continuous unitary representation. Let q be the quotient map

from G to G/H. We define a linear map P : Cc(G)→ Cc(G/H) by

Pf(xH) =

∫
H

f(xh)dh,

for f in Cc(G). It is easy to see that P is surjective, and maps C+
c (G) onto

C+
c (G/H).

• To define the new Hilbert space, let:
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- F0,I :=

f :
f ∈ C(G,Hπ), q(suppf) is compact,

f(xh) =
√

∆H(h)
∆G(h)

π(h−1)f(x) ∀x ∈ G, h ∈ H

 .

- For each f, g ∈ F0,I , define the inner product

⟨f, g⟩F0,I
:=

∫
G

ψ(x)⟨f(x), g(x)⟩Hπdx,

where ψ is an element of Cc(G) such that

Pψ(w) = 1 ∀w ∈ q(suppf) ∪ q(suppg).

This inner product defines the norm ∥ · ∥F0,I
on F0,I .

- FI := F0,I
∥·∥F0,I .

• For each x in G, define the bounded operator

IndGHπ(x) : F0,I → F0,I , f 7→ xf,

where xf(y) = f(x−1y). It is easy to show that IndGHπ(x) is an isometry on

F0,I , and can be extended to a unitary in B(FI).

• The map IndGHπ : G → U(FI), g 7→ IndGHπ(g) is a unitary representation of

G, called the representation induced from π.

Remark. Let G, H and π be as above. Then the linear map

PI : Cc(G,Hπ)→ C(G,Hπ), (PIf)(x) =
∫
H

√
∆G(h)

∆H(h)
π(h)f(xh)dh
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is well-defined, and PI(Cc(G,Hπ)) = F0,I . Moreover, every element of F0,I is

uniformly continuous.

For α in Cc(G) and ξ in Hπ, we define fα,ξ to be

fα,ξ(x) = α(x)ξ ∀x ∈ G.

Clearly fα,ξ is a compactly supported Hπ-valued function. Let D be a total subset

of Hπ. Then

F ID = {PI(fα,ξ) : α ∈ Cc(G), ξ ∈ D}

is total in FI .

Realization II: Let H be a closed subgroup of a locally compact group G, and π

be a unitary representation of H on the Hilbert space Hπ. One can use the above

method to construct a representation for G induced from π on the Hilbert space FI .

However, it is often useful to modify the Hilbert space FI such that its inner product

is given by integration over G/H against a strongly quasi-invariant measure. A

regular Borel measure µ on G/H is called quasi-invariant if the measures µ and

µx = x ·µ are mutually absolutely continuous for all x in G. Recall that x ·µ(E) =

µ(xE) for Borel subsets E of G/H. A quasi-invariant measure µ on G/H is strongly

quasi-invariant if there exists a continuous R+-valued function λ on G×G/H such

that

dµx(p) = λ(x, p)dµ(p)

for all p in G/H. Strongly quasi-invariant measures on G/H are closely related to

rho-functions on G. A real-valued function ρ on G is a rho-function for (G,H) if
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it is positive, continuous, and satisfies

ρ(xh) =
∆H(h)

∆G(h)
ρ(x)

for all x in G and h in H. The existence of strongly quasi-invariant measures is

guaranteed by the following theorem.

Theorem 2.3.1. Let H be a closed subgroup of a locally compact group G, and

q : G→ G/H be the quotient map. Then

(i) There exists a rho-function ρ for (G,H) on G.

(ii) Given any rho-function ρ for (G,H), there exists a strongly quasi-invariant

measure µρ on G/H such that

∫
G/H

Pf(xH)dµρ(xH) =

∫
G

f(x)ρ(x)dx

for all f in Cc(G). Moreover µρ satisfies

(
d(x · µρ)
dµρ

)
(yH) =

ρ(xy)

ρ(y)
,

where d(x·µρ)
dµρ

denotes the Radon-Nikodym derivative of µρ.

(iii) Every strongly quasi-invariant measure on G/H arises from a rho-function

as in (ii).

(iv) If µ and ν are two strongly quasi-invariant measures on G/H then they are
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strongly equivalent, i.e. µ and ν are mutually absolutely continuous with con-

tinuous derivations.

Fix a strongly quasi-invariant measure µ as in Theorem 2.3.1. Let ρ be the

corresponding rho-function.

• To define the new Hilbert space FµII we proceed as follows.

- Fµ0,II := {f ∈ C(G,Hπ) : q(suppf) is compact &f(xh) = π(h−1)f(x) ∀x ∈

G, h ∈ H}.

- For f, g ∈ Fµ0,II , define ⟨f, g⟩F0,II
:=
∫
G/H
⟨f(x), g(x)⟩Hπdµ(xH) to be

their inner product.

- FµII := F
µ
0,II

∥·∥F0,II . Using a standard measure theory argument, one can

identify FµII with the Hilbert space of (equivalence classes of) measurable

functions η : G → Hπ such that η(xh) = π(h−1)η(x) for all h in H and

almost all x in G, and
∫
G/H
∥η(x)∥2Hπ

dµ(xH) <∞.

• For each x in G, define IndGH,µπ(x) in B(F
µ
0,II) to be

(IndGH,µπ(x)f)(y) =

√
ρ(x−1y)

ρ(y)
f(x−1y).

It is easy to see that IndGH,µπ(x) is an isometry on Fµ0,II , and extends to a

unitary in B(FµII).

• The map IndGH,µπ : G → U(FµII) is a unitary representation of G, called the

induced representation.

24



The multiplication operator M√
ρ extends to a linear isomorphism from FµII to

FI , and provides a unitary equivalence between IndGH,µπ (from the second real-

ization) and IndGHπ (from the first realization). Therefore, a different choice of a

strongly quasi-invariant measure for G/H will result in a new unitary representa-

tion for G induced from π, which is unitarily equivalent to IndGH,µπ. Moreover, if

∆G|H = ∆H , then all three methods explained above will be identified. In other

words, the equivalence class of the representation induced from π is independent

from the method of construction.

The notation IndGHπ denotes the representation of G induced from the represen-

tation π of the closed subgroup H using any of the above methods. One can use

the simpler notation Indπ if by omitting G and H no confusion will arise.

2.3.3 Basic properties of induced representations

Let H be a closed subgroup of a locally compact group G. In the following, we list

some basic properties of the induction process from H to G.

Conjugate representation: Let H be a Hilbert space. The conjugate of H,

denoted by H, is a new Hilbert space defined to be the vector space H together

with the inner product

⟨v, w⟩H = ⟨v, w⟩H,

where v and w in H are the corresponding elements to v and w in H. Let π be a

unitary representation of G on H. Define the conjugate of π, denoted by π, by

π : G→ U(H), π(x)(v) = π(x)(v),
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for x in G and v in H. Clearly π is a unitary representation of G.

Proposition 2.3.2. Let H be a closed subgroup of a locally compact group G, and

π be a unitary representation of H. Then

IndGHπ = IndGHπ.

Quotient: Let N be a closed normal subgroup of G, and qN be the quotient

map from G to G/N . Let H be a closed subgroup of G which contains N , and π

be a unitary representation of H/N . Then π̃ = π ◦ qN |H is a unitary representation

of H, and

IndGH π̃ ∼ (Ind
G/N
H/Nπ) ◦ qN .

Direct sum: Let {πγ}γ∈Γ be a family of unitary representations of H. Then

⊕γIndGHπγ = IndGH(⊕γπγ).

Induction in stages: Let K and H be closed subgroups of a locally compact

group G with K ⊆ H, and π be a unitary representation of K. Then

IndGH(Ind
H
Kπ) ∼ IndGKπ.

Tensor product: LetH1 andH2 be closed subgroups of locally compact groups

G1 and G2, and π1 and π2 be unitary representations of H1 and H2 respectively.

Then

IndG1
H1
π1 ⊗ IndG2

H2
π2 ∼ IndG1×G2

H1×H2
(π1 ⊗ π2).
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2.4 Induced representations in special case:

2.4.1 Semi-direct product of locally compact groups

Let H and N be locally compact groups with identities eH and eN respectively. By

Aut(N) we denote the group of automorphisms of N , i.e. the set of all topological

group isomorphisms of N to itself with composition as the group action. Let α :

H → Aut(N) be a group homomorphism such that the map

ψα : N ×H → N, (n, h) 7→ α(h)(n)

is continuous. Define the locally compact group N oα H to be the set N × H

equipped with the product topology for which the group actions are defined as

(n1, h1) · (n2, h2) = (n1α(h1)(n2), h1h2),

and

(n, h)−1 = (α(h−1)(n−1), h−1).

Clearly, (eN , eH) is the identity element of N oαH. It is easy to see that the group

operations of N oα H are continuous with respect to the product topology. The

locally compact group N oαH is called the semidirect product of N and H over α.

The following proposition states some properties of the semidirect product of two

groups.

Proposition 2.4.1. Let N , H and α : H → Aut(N) be as above. Let µN (or dn)
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denote the Haar measure of N , and µH (or dh) denote the Haar measure of H.

(i) Let δ : H → R>0 be defined as δ(h) = cα(h) where cα(h) denotes the con-

stant obtained in Lemma 2.1.2 with µ
α(h)
N = cα(h)µN . Then δ is a continuous

homomorphism.

(ii) The measure dµ := 1
δ(h)

dµNdµH is the Haar measure of N oα H.

(iii) Let ∆N and ∆H denote the modular functions of N and H respectively. Then

the modular function of N oH is ∆(n, h) = ∆N (n)∆H(h)
δ(h)

.

Proof. (i) Note that µ
α(eH)
N = µN which implies that δ(eH) = 1. For h1 and h2 in

H and a Borel subset E of N we have,

δ(h1h2)µN(E) = µ
α(h1h2)
N (E) = µN(α(h1h2)(E)) = µN(α(h1)(α(h2)E))

= µ
α(h1)
N (α(h2)E) = δ(h1)µN(α(h2)E) = δ(h1)µ

α(h2)
N (E)

= δ(h1)δ(h2)µN(E),

hence δ is a homomorphism. It remains to show that δ is continuous. Note that

δ(h) =

∫
N
f(α(h−1)(n))dn∫

N
f(n)dn

,

where f is any positive continuous compactly supported function on N . Without

loss of generality we can assume that f(eN) = 1. Given ϵ > 0, there exists an open

subset eN ∈ U of N such that |f(x)−f(y)| < ϵ for all x and y in N with y−1x ∈ U .

By continuity of ψα, there exist open neighborhoods eH ∈ V of H and eN ∈ W of
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N such that α(h−1)(W ) ⊆ U for all h ∈ V . In particular W is a subset of U . Let

x ∈ N , w ∈ W and h ∈ V be arbitrary. Then

|f(α(h−1)(xw))− f(α(eH)(xw)| = |f(α(h−1)(x)α(h−1)(w))− f(xw)|

≤ |f(α(h−1)(x)α(h−1)(w))− f(α(h−1)(x))|+ |f(α(h−1)(x))− f(x)|+ |f(x)− f(xw)|

≤ 2ϵ+ |f(α(h−1)(x))− f(x)|.

Since f is compactly supported, there exists a finite set {x1, . . . , xn} in N with

supp(f) ⊆ x1W ∪ . . . ∪ xnW.

Now for each 1 ≤ i ≤ n, by continuity of ψα at (eH , xi), there exist neighborhoods

eH ∈ Vi ⊆ H and xi ∈ Wi ⊆ N such that

α(h−1)(Wi) ⊆ xiW ∀h ∈ Vi,

in particular |f(α(h−1)(xi)) − f(xi)| ≤ ϵ. Let V ′ = V ∩
∩n
i=1 Vi. Then for each

1 ≤ i ≤ n, w ∈ W and h ∈ V ′,

|f(α(h−1)(xiw))− f(α(eH)(xiw))| ≤ 3ϵ.

Hence δ is continuous.
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(ii): Define the positive linear form I on Cc(N oα H) as

I(f) =

∫
N

∫
H

f(n, h)
1

δ(h)
dhdn,

for all f in Cc(N o H). By Riesz representation theorem there exists a unique

Radon measure µ on N oH such that

∫
NoH

f(n, h)dµ =

∫
N

∫
H

f(n, h)
1

δ(h)
dhdn,

for all compactly supported continuous functions f . Let f ∈ Cc(N o H) and

(n1, h1) ∈ N oH be arbitrary. Then,

∫
NoH

f((n1, h1) · (n, h))dµ(n, h) =
∫
N

∫
H

f((n1, h1) · (n, h))
1

δ(h)
dhdn

=

∫
N

∫
H

f(n1α(h1)(n), h)
1

δ(h−1
1 h)

dhdn =

∫
H

∫
N

f(n1α(h1)(n), h)
δ(h1)

δ(h)
dndh

=

∫
H

∫
N

f(n1n, h)
1

δ(h)
dndh =

∫
H

∫
N

f(n, h)
1

δ(h)
dndh =

∫
NoH

fdµ,

which proves that µ is left-invariant.
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(iii) For arbitrary f in Cc(N oH) and (n1, h1) in N oH, we have

∫
NoH

f((n, h) · (n1, h1))dµ(n, h) =

∫
N

∫
H

f(nα(h)(n1), hh1)
1

δ(h)
dhdn

=

∫
H

∫
N

f(α(h)(α(h−1)(n)n1), hh1)δ(h
−1)dndh =

∫
H

∫
N

f(α(h)(nn1), hh1)dndh

=
1

∆N(n1)

∫
H

∫
N

f(α(h)(n), hh1)dndh =
1

∆N(n1)

∫
N

∫
H

f(n, hh1)δ(h
−1)dhdn

=
1

∆N(n1)∆H(h1)

∫
N

∫
H

f(n, h)δ(h−1)δ(h1)dhdn =
δ(h1)

∆N(n1)∆H(h1)

∫
NoH

fdµ,

i.e. ∆NoH(n, h) =
∆N (n)∆H(h)

δ(h)
. �

2.4.2 Mackey machine

Let G be a locally compact group and N be a nontrivial Abelian closed normal

subgroup of G. Then G acts on N by conjugation. Suppose that H is a closed

subgroup of G such that G = N o H, where α : H → Aut(N) is defined as

α(h)(n) = h−1nh. The conjugation action of G on N induces an action of G on the

dual group N̂ via ⟨n, x · ν⟩ = ⟨x−1nx, ν⟩ for n ∈ N , x ∈ G and ν ∈ N̂ . Let Gν and

Oν denote the stabilizer and orbit of ν respectively, i.e.

Gν = {x ∈ G : x · ν = ν} and Oν = {x · ν : x ∈ G}.

We say G acts regularly on N̂ if the following two conditions hold.

(R1) There exists a countable family {Ei}i∈N of Borel sets in N̂ which are G-

invariant and for each ν in N̂ , we have Oν = ∩Oν⊆Ej
Ej.
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(R2) For each ν in N̂ , the natural map G/Gν → Oν defined as xGν 7→ x · ν forms

a homeomorphism.

For each ν in N̂ define the little group Hν to be Hν = Gν ∩ H. It is easy to

show that Gν = N o Hν . Let ν ∈ N̂ , and ρ : Hν → U(Hρ) be an irreducible

representation. Then the tensor product representation ν ⊗ ρ forms an irreducible

representation of N × Hν . Note that ν ⊗ ρ can be viewed as a representation of

N oHν by the definition of Hν .

Theorem 2.4.2. Suppose G = N o H with N and H as above. Suppose that G

acts regularly on N̂ . Let ν ∈ N̂ and ρ be an irreducible unitary representation of

Hν. Then IndGGν
(ν ⊗ ρ) is an irreducible representation of G. Conversely, every

irreducible representation of G is equivalent to one of this form. Moreover, two

representations IndGGν
(ν⊗ρ) and IndGGν′

(ν ′⊗ρ′) are unitarily equivalent if and only

if there exists x in G such that ν ′ = x · ν and the representations ρ : h 7→ ρ(h) and

ρ′′ : h 7→ ρ′(x−1hx) of Hν are unitarily equivalent.
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Chapter 3

Functorial properties of B0(G)

Let G be a locally compact group. The Rajchman algebra associated with G,

denoted by B0(G), is the set of elements of the Fourier-Stieltjes algebra which

vanish at infinity, that is

B0(G) = B(G) ∩ C0(G).

Note that B0(G) is a subalgebra of B(G), since both C0(G) and B(G) are algebras.

It is easy to see that the Rajchman algebra is indeed a Banach subalgebra of the

Fourier-Stieltjes algebra which contains the Fourier algebra as a closed ideal. In the

case of Abelian groups, Rajchman algebras can be identified with the algebra of

Rajchman measures on the dual group. A measure µ inM(G) is called a Rajchman

measure if

lim
|n|→0

µ̂(n) = 0.
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Rajchman was the first who studied the behaviors of these measures in a systematic

manner. Due to their close relation to the question of uniqueness of trigonomet-

ric series, Rajchman measures have been widely studied in the classical harmonic

analysis (e.g. see [Kah64]). On the other hand, Rajchman algebras of many locally

compact non-Abelian groups have as complicated structure as their Fourier-Stieltjes

algebras, and can be used to illustrate the structure of the Fourier-Stieltjes algebras.

In addition, the study of asymptotic behaviors of unitary representations turns out

to be important in other areas of mathematics such as the theory of automorphic

forms, and ergodic properties of flows on homogeneous spaces (e.g. see [HM79],

[Moo66], and [Shi68]).

In the present chapter, we review some basic properties of Rajchman algebras.

Particularly, we illustrate the relations between the Rajchman algebra of a locally

compact group and such algebras associated with its subgroups and quotients. We

show that if H is a closed subgroup of a SIN-group G then the restriction map

from B0(G) to B0(H) is surjective. For a general locally compact group such

restriction maps are not necessarily onto. However, for certain subgroups such as

open subgroups, the connected component of the identity, and the center of a locally

compact group the restriction map is surjective.

3.1 Properties of B0(G)

Let G be a locally compact group. Recall that a linear space A of functions on G

is called translation-invariant if for every function f in A and x in G, the left and

right translations of f by x belong to A.
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Proposition 3.1.1. The algebra B0(G) is a left and right translation-invariant

closed subspace of B(G).

Proof. First note that B0(G) is translation-invariant since both B(G) and C0(G)

are translation-invariant. We only need to show that B0(G) is a closed subspace of

B(G). Let {fn}n∈N be a sequence in B0(G) converging to an element f in B(G),

i.e.

∥fn − f∥B(G) → 0 as n→∞.

Recall that ∥ · ∥∞ on B(G) is bounded above by ∥ · ∥B(G), in particular,

∥fn − f∥∞ ≤ ∥fn − f∥B(G).

Therefore the sequence {fn}n∈N converges to f in C0(G) as well. Now by complete-

ness of C0(G), we conclude that f vanishes as infinity. Hence B0(G) is a closed

subspace of B(G). �

Recall that any closed subspace of B(G) which is left and right translation-

invariant, is of the form Aπ(G) for some continuous unitary representation π. There-

fore by Proposition 3.1.1, the algebra B0(G) admits such a form too.

3.2 Extension problem

Let G be a locally compact group and H be a closed subgroup of G. Then the set

of restrictions B0(G)|H is a subspace of B0(H), which we will show is also closed.
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The extension problem asks whether every function in B0(H) has an extension in

B0(G).

It has been proved that for every closed subgroup H of a locally compact group

G, one has A(G)|H = A(H) (see [TT72] or [Her70]). In fact, every function in the

Fourier algebra of H can be extended to a function of the same norm in the Fourier

algebra of G. Unfortunately, the analogue of this result does not hold in general

for the Fourier-Stieltjes algebra. However, for a locally compact group G and a

closed subgroup H, it has been shown that B(H) = B(G)|H if G is Abelian, or if

H is open, or compact, or the connected component of the identity or the center of

G. Moreover, Cowling and Rodway [CR79] answered the extension problem of the

Fourier-Stieltjes algebras in affirmative for the case of SIN-groups. In this section,

we present the following two theorems which are analogues of results in [CR79].

The proofs herein are motivated by those of Cowling and Rodway [CR79].

Theorem 3.2.1. Let N be a closed normal subgroup of a locally compact group G.

Then

B0(G)|N = {x ∈ B0(N) : ∥xg − x∥B0(N) → 0 as g → e}, (3.1)

where xg(k) = x(g−1kg) for each g in G and x in B0(G). If x is an element of

B0(G)|N then

∥x∥B0(N) = inf{∥u∥B0(G) : u ∈ B0(G) and u|N = x}.

Theorem 3.2.2. Let H be a closed subgroup of a SIN-group G. Then

B0(G)|H = B0(H), (3.2)
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and for each x in B0(H),

∥x∥B0(H) = inf{∥u∥B0(G) : u ∈ B0(G) and u|H = x}.

Before proving Theorem 3.2.1 and Theorem 3.2.2, let us observe examples of

groups for which the restriction map is not onto.

Proposition 3.2.3. The restriction map r : B0(G) → B0(H) is not surjective in

each of the following cases.

(i) G = ax+ b and H =


 1 b

0 1

 : b ∈ R

 ≃ R as its closed subgroup.

(ii) G = SL2(R) and H =


 1 b

0 1

 : b ∈ R

 ≃ R as its closed subgroup.

Proof. (i) Suppose not, i.e. B0(G)|H = B0(H). Khalil [Kha74] showed that

B0(G) = A(G). Hence

B0(H) = B0(G)|H = A(G)|H = A(H),

which is a contradiction with the fact that B0(R) ̸= A(R).

(ii) In Theorem 4.6.2 and Proposition 6.4.1, we will show that B0(R) has a nonzero

continuous point derivation, but B0(SL2(R)) does not have any. Suppose that the

restriction map r from B0(SL2(R)) to B0(H) is surjective. Let d be a nonzero

continuous point derivation of B0(H) at a character ϕ. By Lemma 4.6.3, d ◦ r is a
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nonzero continuous point derivation of B0(SL2(R)) at the character ϕ ◦ r, which is

a contradiction. �

We now review the definition and basic properties of SIN-groups. We also

present Lemma 3.2.6 which will be used in the proof of Theorem 3.2.1 and Theorem

3.2.2.

Definition 3.2.4. Let G be a locally compact group.

• A function ν : G→ C is called central if

ν(gg′) = ν(g′g) ∀g, g′ ∈ G.

• A locally compact group G is a SIN-group if it has a basis of compact neigh-

borhoods {Uα}α∈I of the identity in G with central characteristic functions.

Let [SIN] denote the class of locally compact SIN-groups.

Lemma 3.2.5. Let G ∈ [SIN]. Then

(i) G is unimodular.

(ii) For every neighborhood V of e in G, there exists a non-negative central func-

tion v in Cc(G) with supp(v) ⊆ V.

(iii) If H is a closed subgroup of G then H is a SIN-group as well.

Proof.
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(i) Let U be a compact open neighborhood of the identity in G which is invariant

under inner automorphisms. Fix g′ in G. Then,

∆(g′) =
µ(Ug′)

µ(U)
=
µ(g′U)

µ(U)
=
µ(U)

µ(U)
.

Hence ∆(g′) = 1 for all g′ in G.

(ii) Since G is a SIN-group, there exist relatively compact open neighborhoods

U and W of the identity which are invariant under inner automorphisms and

satisfy UU−1 ⊆ W ⊆ V . Let ϕU be the function on G defined as

ϕU(g) =

∫
G

χU(x)χU(gx)dx.

Clearly ϕU is supported in W . For elements g and h in G, we have:

ϕU(h
−1gh) =

∫
G

χU(x)χU(h
−1ghx)dx =

∫
G

χU(h
−1x)χU(h

−1gx)dx

=

∫
G

χU(xh
−1)χU(gxh

−1)dx =

∫
G

χU(x)χU(gx)dx

= ϕU(g),

where we used part (i) in the last equality. Finally note that ϕU = χ̌U ∗λ χU

belongs to the Fourier algebra, hence it is continuous.

(iii) Let {Uα}α∈I be a family of neighborhoods of the identity in G as in the

definition of a SIN-group. Then {Uα∩H}α∈I is such a family of neighborhoods

of e in H.
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Lemma 3.2.6. Let G be a locally compact group. For an element g in G and a

function u in B(G), define the function ug in B(G) as in Theorem 3.2.1.

(i) For each g in G, the map ϕg : B0(G) → B0(G), x 7→ xg, is an isometric

isomorphism of Banach algebras.

(ii) B0(G)|H is a closed subspace of B0(H), and for each u in B0(G),

∥u|H∥B0(H) ≤ ∥u∥B0(G).

(iii) Fix x in B0(G). Then the map G→ B0(G), g 7→ xg is continues.

Proof.

(i) The map ϕg is clearly an algebra homomorphism. Let x(k) = ⟨π(k)ξ, η⟩ be

an element of B0(G) with ∥x∥B(G) = ∥ξ∥∥η∥. Then for each g in G,

xg(k) = x(g−1kg) = ⟨π(k)π(g)ξ, π(g)η⟩,

which implies that xg belongs to B(G) and

∥xg∥B(G) ≤ ∥π(g)ξ∥∥π(g)η∥ ≤ ∥ξ∥∥η∥ = ∥x∥B(G).

Hence,

∥x∥B(G) = ∥(xg)g
−1∥B(G) ≤ ∥xg∥B(G) ≤ ∥x∥B(G).
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Recall that for each g in G and compact subset K of G, the set gKg−1 is

compact. Therefore xg vanishes at infinity if x does, and the map ϕg is well-

defined.

(ii) Note that any representation ofG restricts to a representation ofH. Therefore

B0(G)|H is clearly a subspace of B0(H). To show that B0(G)|H is closed

in B0(H), it is enough to note that B0(G) is a translation-invariant closed

subspace of B(G). Therefore there exists a unitary representation π of G such

that B0(G) = Aπ(G). We now use the fact that Aπ(G)|H = Aπ|H (H) which is

a corollary of Theorem 2.2.1 (ii). Indeed, let u be an element of B0(G). Then

by Theorem 2.2.1 (ii)

u =
∞∑
i=1

ξn ∗π ηn,

where ξn and ηn belong to Hπ and
∑∞

i=1 ∥ξi∥∥ηi∥ <∞. Therefore

u|H =
∞∑
i=1

ξn ∗π|H ηn,

where π|H is the restriction of the representation π from G to H. This implies

that u|H belongs to Aπ|H (H). On the other hand, let v be an element of

Aπ|H (H). Applying Theorem 2.2.1 (ii) again, we get

v =
∞∑
i=1

ξ′n ∗π|H η′n,
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where ξ′n and η′n belong to Hπ and
∑∞

i=1 ∥ξ′i∥∥η′i∥ <∞. Define

w =
∞∑
i=1

ξ′n ∗π η′n.

Then w belongs to Aπ(G) and w|H = v. Hence Aπ(G)|H = Aπ|H (H), and the

latter is a closed subspace of B(G) by definition.

Finally, for every u in B(G), we can find a representation u(x) = ⟨π(x)ξ, η⟩

such that ∥u∥B(G) = ∥ξ∥∥η∥. Then u|H(h) = ⟨π|H(h)ξ, η⟩, and ∥u|H∥B(H) ≤

∥ξ∥∥η∥ = ∥u∥B(G).

(iii) Fix x in B0(G), and let {gα}α be a net in G converging to g. Let x(k) =

⟨π(k)ξ, η⟩ be a representation of x. Then

∥xgα − xg∥B0(G) = ∥⟨π(·)(π(gα)ξ), π(gα)η⟩ − ⟨π(·)(π(g)ξ), π(g)η⟩∥B0(G)

≤ ∥⟨π(·)(π(gα)ξ), π(gα)η⟩ − ⟨π(·)(π(g)ξ), π(gα)η⟩∥B0(G)

+ ∥⟨π(·)(π(g)ξ), π(gα)η⟩ − ⟨π(·)(π(g)ξ), π(g)η⟩∥B0(G)

≤ ∥(π(gα)− π(g))ξ∥∥π(gα)η∥+ ∥(π(gα)− π(g))η∥∥π(g)ξ∥

≤ ∥(π(gα)− π(g))ξ∥∥η∥+ ∥(π(gα)− π(g))η∥∥ξ∥,

where in the last inequality we used the fact that π is a unitary representation.

Moreover note that ∥(π(gα)−π(g))ξ∥∥η∥+∥(π(gα)−π(g))η∥∥ξ∥ tends to zero

as gα converges to g by strong operator continuity of π, and we are done.

�

In the proof of Theorems 3.2.1 and 3.2.2, we use the following lemma which is
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closely related to the open mapping theorem.

Lemma 3.2.7. Let X and Y be normed spaces and X be complete. Then for every

T in B(X, Y ), if Ds(Y ) ⊆ T (Dr(X)) then Ds(Y ) ⊆ T (Dr(X)), where Dr(X) is the

closed ball in X centered at 0 with radius r.

3.2.1 Proof of Theorem 3.2.1

Proof. (of Theorem 3.2.1) Define the set

A = {x ∈ B0(N) : ∥xg − x∥B0(N) → 0 as g → e}.

Throughout the proof, let dg, dġ, and dn be the Haar measures of G, G/N , and N

respectively, normalized so that

∫
G/N

∫
N

ω(gn)dndġ =

∫
G

ω(g)dg ∀ω ∈ Cc(G). (3.3)

By Lemma 3.2.6, the inclusion ‘⊆’ of (3.1) is clear. To prove ‘⊇’, by Lemma

3.2.7, it is enough to show the following:

∀x ∈ A and ∀ϵ > 0, ∃u ∈ B0(G) s.t. ∥u|N − x∥B0(N) < ϵ and ∥u∥B0(G) ≤ ∥x∥B0(N).

Given such x and ϵ, there exist a neighborhood U of the identity in G, and a
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neighborhood H of the identity in N such that:

∥xg − x∥B0(N) <
ϵ

2
∀g ∈ U and (3.4)

∥λ(h−1)x− x∥B0(N) <
ϵ

2
∀h ∈ H, (3.5)

where λ(h) is the left translation operator by h−1. Now let V be a relatively compact

neighborhood of identity such that

V ⊆ U and V−1 · V ∩N ⊆ H, (3.6)

and v be a continuous R≥0-valued function on G with supp(v) ⊆ V that satisfies

∫
G/N

[

∫
N

v(gn)dn]2dġ = 1.

Note that

1 =

∫
G/N

[∫
N

v(gn)dn

]2
dġ (3.7)

=

∫
G/N

[∫
N

v(gn)dn

∫
N

v(gn′)dn′
]
dġ

=

∫
G/N

[∫
N

v(gn′n)dn

∫
N

v(gn′)dn′
]
dġ

=

∫
G/N

∫
N

∫
N

v(gn′n)v(gn′)dndn′dġ

=

∫
G

∫
N

v(gn)v(g)dndg, (3.8)

where we used Equation (3.3) in the last equality. Next, we define the function u
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by

u(g′) =

∫
G

∫
N

v(g′g)v(gn)x(n)dndg.

We will check the following claims:

Claim 3.2.8. The function u belongs to B0(G). Moreover ∥u∥B0(G) ≤ ∥x∥B0(N).

Proof. Let us first show that x ∈ C0(N) implies that u ∈ C0(G). Let ϵ > 0 be

given, and define ϵ1 =
ϵ

(µ(V)∥v∥∞)2
. There exists a compact subset K of N such that

|x(n)| < ϵ1 for any n in N \K. Let K1 = VKV−1
, and note that since V and K

are compact, K1 is compact as well. If g′ ∈ G \ K1 then v(g′g)v(gn) ̸= 0 implies

that g ̸∈ VK−1 and n ̸∈ K. Hence,

|u(g′)| = |
∫
G

∫
N

v(g′g)v(gn)x(n)dndg| ≤
∫
G

∫
N

v(g′g)v(gn)|x(n)|dndg

≤ ϵ

∫
G

∫
N

v(g′g)v(gn)dndg = ϵ,

which implies that u vanishes at infinity.

Next, we will show that u belongs to B(G). Since x is in B(N), there exists a

unitary representation π of N and vectors ξ and η inHπ such that x(n) = ⟨π(n)ξ, η⟩

with ∥x∥B0(N) = ∥ξ∥∥η∥. Note that

u(g′) =

∫
G

∫
N

v(g′g)v(gn)x(n)dndg

=

∫
G

∫
N

v(g′g)v(gn)⟨π(n)ξ, η⟩dndg

=

∫
G

∫
N

v(g)v(g′−1gn)⟨π(n)ξ, η⟩Hπdndg,
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which belongs to B(G) as shown in (2.3). Moreover,

∥u∥B0(G) ≤ ∥Pfv,ξ∥F∥Pfv,η∥F =

(∫
G/N

∥Pfv,ξ(x)∥2d(xN)

) 1
2
(∫

G/N

∥Pfv,η(x)∥2d(xN)

) 1
2

=

(∫
G/N

∥
∫
N

π(h)(v(xh)ξ)dh∥2d(xN)

) 1
2
(∫

G/N

∥
∫
N

π(h)(v(xh)η)dh∥2d(xN)

) 1
2

≤

(∫
G/N

∥ξ∥2
[∫

N

v(xh)dh

]2
d(xN)

) 1
2
(∫

G/N

∥η∥2
[∫

N

v(xh)dh

]2
d(xN)

) 1
2

= ∥ξ∥∥η∥
∫
G/N

[∫
N

v(xh)dh

]2
d(xN)

= ∥ξ∥∥η∥ = ∥x∥B0(N),

where we used Equation (3.7) in the last equality.

Claim 3.2.9. u|N ∈ B0(N) and ∥u|N − x∥B0(N) ≤ ϵ.

Proof. By Claim 3.2.8, the function u belongs to B0(G). Therefore the restriction

u|N belongs to B0(N). For n′ in N , we have

u(n′) =

∫
G

∫
N

v(n′g)v(gn)x(n)dndg

=

∫
G

∫
N

v(g)v(n′−1gn)x(n)dndg

=

∫
G

∫
N

v(g)v(g(g−1n′−1g)n)x(n)dndg

=

∫
G

∫
N

v(g)v(gn)[λ(n−1)x]gn(n′)dndg.

The map from G×N to B0(N) defined as (g, n) 7→ v(g)v(gn)[λ(n−1)x]gn is a contin-

uous compactly supported map, so the vector-valued integral
∫
G

∫
N
v(g)v(gn)[λ(n−1)x]gndndg
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is well-defined and equal to u|N . Moreover from (3.7), we have

x =

∫
G

∫
N

v(g)v(gn)x,

and therefore,

∥u|N − x∥B0(N) ≤
∫
G

∫
N

v(g)v(gn)∥[λ(n−1)x]gn − x∥B0(N)dndg

≤
∫
G

∫
N

v(g)v(gn)(∥[λ(n−1)x]gn − xgn∥B0(N) + ∥xgn − x∥B0(N))dndg

=

∫
G

∫
N

v(g)v(gn)(∥[λ(n−1)x]− x∥B0(N) + ∥xgn − x∥B0(N))dndg.

To get an estimate, note that v(g)v(gn) ̸= 0 implies that g ∈ V and n ∈ V−1 ·V ∩N .

Hence by (3.4), (3.5) and (3.6), we have:

∫
G

∫
N

v(g)v(gn)(∥[λ(n−1)x]−x∥B0(N)+∥xgn−x∥B0(N))dndg ≤ ϵ

∫
G

∫
N

v(g)v(gn)dndg = ϵ,

which finishes the proof of the claim.

Having Claim 3.2.9 and Claim 3.2.8, the proof of Theorem 3.2.1 is complete. �

3.2.2 Proof of Theorem 3.2.2

Proof. (of Theorem 3.2.2) Let dg and dh denote the Haar measures of G and

H respectively. Note that G/H admits a G-invariant measure dġ, since G is a

SIN-group and therefore G and H are both unimodular by Lemma 3.2.5. Moreover
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assume that these measures are normalized so that

∫
G/H

∫
H

ω(gh)dhdġ =

∫
G

ω(g)dg ∀ω ∈ Cc(G). (3.9)

By Lemma 3.2.6, the inclusion ‘⊆’ of (3.2) is clear. To prove ‘⊇’, by Lemma

3.2.7, it is enough to show the following:

∀x ∈ B0(H) and ∀ϵ > 0, ∃uϵ ∈ B0(G) s.t. ∥uϵ|H−x∥B0(H) < ϵ and ∥uϵ∥B0(G) ≤ ∥x∥B0(H).

Let x and ϵ be given as above. Let Vϵ be a compact neighborhood of identity in G

such that

∥λ(h−1)x− x∥B0(H) < ϵ, ∀h ∈ V −1
ϵ Vϵ ∩H, (3.10)

and let vϵ be a nonnegative continuous central function on G such that

supp(vϵ) ⊆ Vϵ and (3.11)∫
G/H

[∫
H

vϵ(gh)dh

]2
dġ = 1. (3.12)

We now define the function uϵ on G to be

uϵ(g
′) =

∫
G

∫
H

vϵ(g
′g)vϵ(gh)x(h)dhdg (3.13)

We then verify the following claims.

Claim 3.2.10. ∥uϵ|H − x∥B0(H) ≤ ϵ.
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Proof. Note that as in (3.7),

1 =

∫
G/H

[

∫
H

vϵ(gh)dh]
2dġ =

∫
G

∫
H

vϵ(gh)vϵ(g)dhdg.

Moreover, for h′ ∈ H, we have

u(h′) =

∫
G

∫
H

vϵ(h
′g)vϵ(gh)x(h)dhdg

=

∫
G

∫
H

vϵ(g)vϵ(h
′−1gh)x(h)dhdg

=

∫
G

∫
H

vϵ(g)vϵ(ghh
′−1)x(h)dhdg

=

∫
G

∫
H

vϵ(g)vϵ(gh)[λ(h
−1)x](h′)dhdg,

since vϵ is central and H is unimodular. Using the same argument as in proof of

Claim 3.2.9, we have

uϵ =

∫
G

∫
H

vϵ(g)vϵ(gh)[λ(h
−1)x]dhdg,

x =

∫
G

∫
H

vϵ(g)vϵ(gh)xdhdg,

which easily imply that ∥uϵ|H−x∥B0(H) ≤
∫
G

∫
H
vϵ(g)vϵ(gh)∥λ(h−1)x−x∥B0(H) ≤ ϵ,

using the fact that vϵ(g)vϵ(gh) ̸= 0 implies that h ∈ V −1
ϵ Vϵ ∩H. �

Claim 3.2.11. uϵ ∈ B0(G) and ∥uϵ∥B0(G) ≤ ∥x∥B0(N).

The proof of Claim 3.2.11 is identical to Claim 3.2.8, and we are done. �
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Corollary 3.2.12. Let H be a closed subgroup of a locally compact SIN-group G,

and {uα} ⊆ B0(G) be a bounded approximate identity for B0(G). Then {uα|H} ⊆

B0(H) is a bounded approximate identity for B0(H).

Proof. Note that by Theorem 3.2.2, restriction map is a surjective contraction.

Hence {uα|H} ⊆ B0(H) is a bounded net. Moreover, for any y in B0(H) there

exists x in B0(G) such that x|H = y. Hence,

lim
α
∥yuα|H − y∥B0(H) = lim

α
∥x|Huα|H − x|H∥B0(H) = lim

α
∥(xuα − x)|H∥B0(H)

≤ lim
α
∥(xuα − x)∥B0(G) = 0.

Therefore {uα|H} is a bounded approximate identity for B0(H). �

3.3 Quotient

Proposition 3.3.1. Let N be a compact normal subgroup of a locally compact group

G. Then

B0(G/N) = B0(G : N),

where B0(G : N) = {u ∈ B0(G) : u is constant on each coset of N}.

Proof. Let qN be the quotient map fromG toG/N . By Corollary (2.26) of [Eym64],

the map

ι : B(G/N)→ B(G : N), f 7→ ι(f) = f ◦ qN

is an isometric Banach algebra isomorphism. Therefore, we only need to show that
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(i) For each g ∈ C0(G : N), there exists f ∈ C0(G/N) such that g = ι(f).

(ii) If f ∈ C0(G/N) then ι(f) ∈ C0(G : N).

Note that (i) is clear, because qN is continuous and maps compact subsets of G

to compact subsets of G/N . Now for g in C0(G : N), the map f : G/N → C

defined as f(xN) = g(x) vanishes at infinity. To prove part (ii), let ϵ > 0 be given.

Since f belongs to C0(G/N), there exists a compact subset K of G/N such that

|f(xN)| < ϵ for all xN in Kc. In order to show that ι(f) vanishes at infinity,

it is enough to prove that q−1
N (K) is a compact subset of G. Recall that since

K is compact, there exists a compact subset L of G such that σ(L) = K, hence

σ−1(K) = LN is compact as well. �

Note that the assumption of N being compact is essential. For instance, let

G = R × T and N = R. Then G/N = T, and B0(T) = B(T) = B(G : R), but

B0(G : R) = {0}. For G and N as above, let P : C0(G)→ C0(G : N) be defined as

(Pf)(x) =

∫
N

f(xn)dn.

It is well-known that P is a projection of C0(G) onto C0(G : N). If we assume that

the Haar measure on N is normalized, we also have that ∥P∥ = 1.

Lemma 3.3.2. The map P defines a well-defined contractive projection from B0(G)

onto B0(G : N) which maps positive definite functions to positive definite functions.

Proof. Let f be an element in B0(G). Then there exists a unitary representation

π : G → U(Hπ), and vectors ξ and η in Hπ such that f = ξ ∗π η and ∥f∥B(G) =
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∥ξ∥∥η∥. Note that by the above comment, Pf belongs to C0(G : N), and if

P : B0(G)→ B0(G : N) is well-defined then it is a projection. Moreover,

(Pf)(x) =

∫
N

f(xn)dn =

∫
N

⟨π(xn)ξ, η⟩dn =

∫
N

⟨π(n)ξ, π(x−1)η⟩dn

=

∫
N

⟨π|N(n)ξ, π(x−1)η⟩χN(n)dn = ⟨π|N(χN)ξ, π(x−1)η⟩ = ⟨π(x)(π|N(χN)ξ), η⟩.

Hence, Pf belongs to B(G). In addition

∥Pf∥B(G) ≤ ∥π|N(χN)ξ)∥∥η∥ ≤ ∥π|N(χN)∥∥ξ∥∥η∥ ≤ ∥χN∥1∥ξ∥∥η∥ = ∥ξ∥∥η∥ = ∥f∥B(G),

which implies that P : B0(G) → B0(G : N) is a contraction. Note that B0(G :

N) ⊆ B0(G) together with P
2 = P gives the surjectivity. Finally, assume that f is

a positive definite element of B0(G), and let f = ξ ∗π ξ be a representation for f .

By Lemma 2.1.2 and compactness of N , we have

Pf(x) = P 2f(x) =

∫
N

Pf(xn)dn =

∫
N

Pf(xnx−1x)dn =

∫
N

Pf(nx)dn

=

∫
N

⟨π(nx)(π|N(χN)ξ), ξ⟩dn =

∫
N

⟨π(x)(π|N(χN)ξ), π(n−1)ξ⟩dn

=

∫
N

⟨π(x)(π|N(χN)ξ), π(n)ξ⟩dn = ⟨π(x)(π|N(χN)ξ), (π|N(χN)ξ)⟩.

Hence Pf is positive definite.

�

Proposition 3.3.3. Let P : B0(G) → B0(G : N) be defined as in Lemma 3.3.2,

and suppose B0(G) admits a bounded approximate identity {uα}. Then {Puα} is a

52



bounded approximate identity for B0(G : N).

Proof. Clearly {Puα} is a bounded net. Let f be an arbitrary element in B0(G :

N). Then,

(fPuα − f)(x) = f(x)

∫
N

uα(xn)dn− f(x) =
∫
N

(f(xn)uα(xn)− f(xn))dn = P (fuα − f),

where we used the facts that f is constant on each conjugacy class of N , and the

Haar measure on N is normalized so that µ(N) = 1. Therefore,

lim
α
∥fPuα − f∥B(G) = lim

α
∥P (fuα − f)∥B(G) ≤ lim

α
∥fuα − f∥B(G) = 0,

hence {Puα} is a bounded approximate identity for B0(G : N). �

3.3.1 Open subgroups, center, connected component of the

identity

For a general locally compact group, the restriction map from B(G) to B(H) is

surjective if H is open, or the connected component of the identity of G, or the

center of G [LM75]. In Theorem 3.3.5, we show that for the above-mentioned cases,

the restriction map from B0(G) to B0(H) is surjective as well. The proofs herein

are adopted from those of Liukkonen and Mislove [LM75].

Let us begin with the following proposition.

Proposition 3.3.4. Let K be a compact normal subgroup of a locally compact group

G, and π be a representation of G on the Hilbert space Hπ. Let dk denote the Haar
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measure of K, and define the operator Q : Hπ → Hπ to be

⟨Qξ, η⟩ =
∫
K

⟨π(k)ξ, η⟩dk

for ξ and η in Hπ.

(i) Q is a projection.

(ii) For each x in G, Qπ(x) = π(x)Q.

(iii) Let P be the map from B(G) to B(G : K) defined in Lemma 3.3.2. For

vectors ξ and η in Hπ, we have

P (ξ ∗π ξ) = Qξ ∗π Qξ.

(iv) For each vector ξ in Hπ,

ξ ∗π ξ = Qξ ∗π Qξ + (I −Q)ξ ∗π (I −Q)ξ.

Proof. (i) Since K is compact, clearly Q is a bounded linear map. We need to

show that Q∗ = Q2 = Q. For ξ, η in Hπ,

⟨Q∗ξ, η⟩ = ⟨ξ,Qη⟩ = ⟨Qη, ξ⟩ =
∫
K

⟨π(k)η, ξ⟩dk =

∫
K

⟨ξ, π(k)η⟩dk

=

∫
K

⟨π(k−1)ξ, η⟩dk =

∫
K

⟨π(k)ξ, η⟩dk = ⟨Qξ, η⟩,

where we used the fact that the Haar measure of K is unimodular. Hence Q∗ = Q.
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Moreover,

⟨Q2ξ, η⟩ =

∫
K

⟨π(k)Qξ, η⟩dk =

∫
K

∫
K

⟨π(k)π(t)ξ, η⟩dtdk =

∫
K

∫
K

⟨π(kt)ξ, η⟩dtdk

=

∫
K

∫
K

⟨π(t)ξ, η⟩dtdk = ⟨Qξ, η⟩,

using the fact that the Haar measure of K is normalized. Therefore Q2 = Q.

(ii) Let x be an element of G. Since N is compact and normal, by Lemma 2.1.2

the Haar measure is invariant under the inner automorphisms. Therefore, for ξ and

η in Hπ,

⟨π(x)Qξ, η⟩ =
∫
N

⟨π(x)π(n)ξ, η⟩dn =

∫
N

⟨π(nx)ξ, η⟩dn = ⟨Qπ(x)ξ, η⟩.

(iii) For each x in G,

P (ξ ∗π ξ)(x) =

∫
N

(ξ ∗π ξ)(xn)dn =

∫
N

⟨π(xn)ξ, ξ⟩dn =

∫
N

⟨π(n)ξ, π(x−1)ξ⟩dn

= ⟨π(x)Qξ, ξ⟩ = ⟨Qπ(x)Qξ, ξ⟩ = ⟨π(x)Qξ,Qξ⟩ = (Qξ ∗π Qξ)(x).

(iv) It is enough to show that for each vector ξ, the map Qξ ∗π (I − Q)ξ = 0.

Indeed,

(Qξ∗π(I−Q)ξ)(x) = ⟨π(x)Qξ, (I−Q)ξ⟩ = ⟨Qπ(x)ξ, (I−Q)ξ⟩ = ⟨π(x)ξ,Q(I−Q)ξ⟩ = 0.

�

Theorem 3.3.5. Let G be a locally compact group, H an open subgroup, G0 the
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connected component of the identity in G and Z(G) the center of G. Then,

1. The restriction map r : B0(G)→ B0(H) is surjective.

2. The restriction map r : B0(G)→ B0(Z(G)) is surjective.

3. The restriction map r : B0(G)→ B0(G0) is surjective.

Proof. 1. Since H is an open subgroup of G, the restriction map r : C∗(G) →

C∗(H) is norm-decreasing (see [Rie74]). Moreover, it is very easy to see that for

an open subgroup H, the inclusion map i : C∗(H) → C∗(G), f 7→ f◦, is norm-

decreasing, where for f in L1(H), we define f◦ in L1(G) as

f◦(x) =

 f(x) x ∈ H

0 x ̸∈ H
.

However, since r ◦ i = idL1(H), i is an isometry and r is a surjection. Taking the

dual map of r, we get the isometric ∗-homomorphism θ : B(H) → B(G), ϕ 7→ ϕ◦,

which restricts to an isometric ∗-homomorphism from B0(H) to B0(G). Therefore,

in the case of an open subgroup, we can consider B0(H) as a subalgebra of B0(G),

which implies that the restriction map r : B0(G)→ B0(H) is surjective.

2. First note that Z(G) is a closed normal subgroup of G. Moreover for every f

in B0(Z(G)) , g in G, and z in Z(G), we have f
g(z) = f(g−1zg) = f(g−1gz) = f(z);

therefore f g = f . Now by Theorem 3.2.1, B0(G)|Z(G) = B0(Z(G)), hence the

restriction map r : B0(G)→ B0(Z(G)) is surjective.

3. Since G0 is the connected component of the identity, G/G0 is totally discon-

nected, therefore, it contains a compact open subgroup H/G0. Note that H is an
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open subgroup of G, hence by part (1), B0(H) ⊆ B0(G). It is now enough to prove

that r : B0(H)→ B0(G0) is onto. So without loss of generality, we can assume that

G is almost connected. Therefore there exists a net {Ki}i∈N of compact normal

subgroups of G such that Gi = G/Ki is an almost connected Lie group for each i,

and G = lim←−G/Ki where lim←− denotes the projective limit of groups.

Let ϕ be a positive definite function in B+
0 (G0), and ϵ > 0 be fixed. Let π be a

representation of G0, and ξ be a vector in Hπ such that ϕ = ξ ∗π ξ. For each i, let

ωi denote the Haar measure of G0 ∩Ki. Since ϕ is continuous at eG, there exists

an index i such that |ϕ(eG) − ϕ ∗ ωi(eG)| < ϵ. Note that G0 ∩Ki is compact and

normal, hence ∆G0 |G0∩Ki
is identically 1. Therefore,

(ϕ ∗ ωi)(x) =

∫
G0

ϕ(xy−1)∆(y−1)dωi(y) =

∫
G0∩Ki

ϕ(xy−1)dωi(y)

=

∫
G0∩Ki

ϕ(xy)dωi(y) = Pϕ(x(G0 ∩Ki)).

Therefore by Lemma 3.3.2 and Proposition 3.3.1, the function ϕ ∗ωi can be viewed

as a positive definite function on G0/(G0 ∩Ki) ≃ G0Ki/Ki. Moreover G0Ki/Ki is

open in G/Ki, so we can extend ϕ∗ωi to a positive definite function ψ in B0(G/Ki)

by part (1). Let ϕ̃ = ψ ◦ qKi
where qKi

is the quotient map from G to G/Ki. By

Proposition 3.3.1, ϕ̃ can be viewed as a positive definite function in B0(G). In

addition,

∥ϕ̃|G0 − ϕ∥B(G0) = ∥ϕ ∗ ωi − ϕ∥B(G0) = |(ϕ ∗ ωi − ϕ)(eG)| < ϵ,

where we used Proposition 3.3.4. Hence ϕ is a limit point of the closed set B0(G)|G0 ,
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i.e. ϕ belongs to B0(G)|G0 . Therefore B0(G)|G0 is a closed translation-invariant

subspace of B0(G0) which contains each element of B+
0 (G0), hence must be B0(G0)

itself.

�

3.4 When is B0(G) = A(G)?

One of the most natural questions about B0(G) is to characterize the groups G for

which the Rajchman algebra properly contains the Fourier algebra. In 1916, Men-

shov [Men16] constructed a probability measure µ supported in a set of Lebesgue

measure zero whose Fourier-Stieltjes transform vanishes at infinity. This is one of

the earliest examples of measures in M0(T) which do not belong to L1(T). Hewitt

and Zuckerman [HZ66] proved that the inclusion of A(G) in B0(G) is proper for

every non-compact locally compact Abelian group G. On the other hand, in his

study of the representations of ax + b group, Khalil [Kha74] proved that the Ra-

jchman algebra and the Fourier algebra coincide in this case. The question is open

in general.

A locally compact group G is called an AR-group if the left regular representa-

tion of G decomposes into a direct sum of irreducible representations. Clearly R is

not an AR-group. On the other hand, compact groups and ax+ b group are exam-

ples of AR-groups. Figà-Talamanca proved that if G is a unimodular non-compact

locally compact group for which A(G) = B0(G), then G is an AR-group ([FT77]

and [FT77]). In [BT79], Baggett and Taylor showed that the above result holds
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even without the unimodularity condition. This result together with Theorem 3.1

of [MM00] implies that B0(G) is larger than A(G) for any non-compact IN-group

G.

In this section, we prove that for the special case of non-compact connected SIN-

groups, the Rajchman algebra contains the Fourier algebra properly. Our approach

is completely different from [FT77]. In fact, our proof is a concrete application

of the extension result obtained in Theorem 3.2.2. We begin with the following

lemma.

Lemma 3.4.1. Let H be a closed subgroup of a locally compact group G with

∆G|H = ∆H , and π : H → U(Hπ) be a unitary representation of H. If Aπ(H) ⊆

C0(H) then AIndπ(G) ⊆ C0(G).

Proof. Suppose H, G and π are as above. Let dh and dx denote the Haar measures

of H and G respectively. Since ∆G|H = ∆H , the quotient space G/H admits a

nonzero positive left-invariant measure µ such that for every f in Cc(G),

∫
G/H

∫
H

f(xh)dhdµ(xH) =

∫
G

f(x)dx.

Let Indπ be the unitary representation of G on the Hilbert space F induced from

π. Recall that the set

F0 := {x 7→
∫
H

α(xh)π(h)ξdh : α ∈ Cc(G), ξ ∈ Hπ}

is a total subset of F . To prove AIndπ(G) ⊆ C0(G), it is enough to show that

for arbitrary vectors ϕ and ψ in F0, the coefficient function ϕ ∗Indπ ψ vanishes at
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infinity. Let α and β be functions in Cc(G), and ξ and η be vectors in Hπ. Define

the Hπ-valued functions Pfα,ξ and Pfβ,η on G to be

Pfα,ξ(x) =
∫
H

α(xh)π(h)ξdh, and Pfβ,η(x) =
∫
H

β(xh)π(h)ηdh.

We now compute the coefficient function of Indπ associated with Pfα,ξ and Pfβ,η.

For g in G,

Pfα,ξ ∗Indπ Pfβ,η(g) = ⟨Indπ(g)Pfα,ξ,Pfβ,η⟩

=

∫
G/H

⟨Pfα,ξ(g−1x),Pfβ,η(x)⟩Hπdµ(xH)

=

∫
G/H

⟨
∫
H

α(g−1xh)π(h)ξdh,

∫
H

β(xh′)π(h′)ηdh′⟩Hπdµ(xH)

=

∫
G/H

∫
H

∫
H

α(g−1xh)β(xh′)⟨π(h′−1h)ξ, η⟩Hπdhdh
′dµ(xH)

=

∫
G/H

∫
H

∫
H

α(g−1xh′h)β(xh′)⟨π(h)ξ, η⟩Hπdhdh
′dµ(xH)

=

∫
G

∫
H

α(g−1xh)β(x)⟨π(h)ξ, η⟩Hπdhdx

=

∫
G

β(gx)

∫
H

α(xh)⟨π(h)ξ, η⟩Hπdhdx.

Note that by the inclusion Aπ(H) ⊆ C0(H), there exists a sequence {γn}n∈N of

compactly supported continuous functions on H such that

∥ξ ∗π η − γn∥∞ → 0 when n→∞.
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For each n in N, define the function Γn to be

Γn : G→ C, Γn(g) =

∫
G

β(gx)

∫
H

α(xh)γn(h)dhdx.

It is easy to see that Γn is compactly supported and continuous for each n. Moreover

for g in G,

|Pfα,ξ ∗Indπ Pfβ,η(g)− Γn(g)|

=

∣∣∣∣∫
G

β(gx)

∫
H

α(xh)⟨π(h)ξ, η⟩Hπdhdx−
∫
G

β(gx)

∫
H

α(xh)γn(h)dhdx

∣∣∣∣
≤

∫
G

∫
H

|β(gx)α(xh)| · |⟨π(h)ξ, η⟩Hπ − γn(h)|dhdx

≤ ∥πξ,η − γn∥∞
∫
G

∫
H

|β(gx)α(xh)|dhdx

≤ M1M2µG(K1)µG(K2)∥πξ,η − γn∥∞,

where M1 and M2 are the maximum values, and K1 and K2 are supports of α and

β respectively. Therefore ∥Pfα,ξ ∗Indπ Pfβ,η − Γn∥∞ → 0 as n→∞, which implies

that Pfα,ξ ∗Indπ Pfβ,η belongs to C0(G). �

Corollary 3.4.2. If G is a connected non-compact SIN-group then B0(G) ̸= A(G).

Proof. By contradiction assume that G is a connected non-compact SIN-group

with A(G) = B0(G). Then G has a non-compact Abelian closed subgroup H. By

Theorem 3.2.2, the restriction map from the Rajchman algebra of a SIN-group to

the Rajchman algebra of its closed subgroup is surjective. Hence

A(H) = A(G)|H = B0(G)|H = B0(H),
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where we used the fact that for every locally compact group G and its closed

subgroup H, the restriction map from A(G) to A(H) is surjective. This contradicts

with the fact that for any non-compact locally compact Abelian group H, A(H) ̸=

B0(H) (see [HZ66]). Hence A(G) ⊆ B0(G) is proper. �
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Chapter 4

A decomposition of M(G) and its

applications

Throughout this chapter, let G denote a locally compact Abelian group, andM(G)

denote the Banach algebra of complex bounded Radon measures on G. Let Mc(G)

denote the subset of all continuous measures in M(G), i.e. the set of all complex

bounded Radon measures µ on G such that µ({x}) = 0 for every element x in G.

Let Md(G) denote the algebra of discrete measures, i.e.

Md(G) = {µ =
∑
s∈G

αsδs : ∥µ∥ =
∑
s∈G

|αs| <∞}.

Let ∆(G) denoteMc(G)
⊥. Note that ∆(G) is in fact the algebra of discrete measures

Md(G). Recall thatM0(G) is the set of all measures inM(G) whose Fourier-Stieltjes

transforms vanish at infinity. Clearly Mc(G) and M0(G) are closed ideals of M(G).

In [Var66a], Varopoulos obtains a direct decomposition of the algebra of con-
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tinuous measures Mc(G), and hence the measure algebra M(G), of a non-discrete

locally compact Abelian group G into a subalgebra and an ideal. The following

strong theorem has been mentioned in [Var66a] as an application of the decompo-

sition theorem.

Theorem 4.0.3. [Var66a] For any non-discrete locally compact Abelian group G,

(i) Mc(G)/M2
c (G) is a non-separable Banach space.

(ii) M0(G)/M2
0 (G) is an infinite-dimensional Banach space.

In the present chapter, we give a detailed exposition of the proof of Varopoulos’

Theorem which we need in Chapter 5 in order to study the cohomological properties

of B0(G).

We begin this chapter by definition and basic properties of an L-space in Sec-

tion 4.1. We then review strongly independent sets in Section 4.2. Next, we

overview definitions and proofs from [Var66a] that are necessary tools for the sub-

sequent sections.

Section 4.4 presents Varopoulos’s construction of decompositions ofM(G) using

suitable strongly independent subsets of G. We then obtain similar decompositions

for M0(G) in the next section.

Section 4.6 provides us with examples of groups for which B0(G) has nonzero

continuous point derivations. In fact, we show that if G is a non-discrete locally

compact Abelian group then M0(G) has nonzero continuous point derivations. Fi-

nally, we conclude this chapter with a brief discussion on analytic discs in the

spectrum of M0(G).
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4.1 L-spaces

Definition 4.1.1. A subspace B of M(G) is called an L-space if it satisfies the

following conditions.

1. B is a closed subspace of M(G).

2. If µ, ν ∈M(G), ν ∈ B, and µ≪ ν, then µ ∈ B.

The following lemma shows that one can replace the second condition of Defi-

nition 4.1.1 with Condition (2’):

If µ, ν ∈M(G), ν ∈ B, and |µ| ≤ |ν|, then µ ∈ B. (2’)

Lemma 4.1.2. Let B be a closed subspace of M(G). Then B is an L-space if and

only if it satisfies Condition (2’).

Proof. First assume that B is an L-space. Note that for measures µ and ν in

M(G), the inequality |µ| ≤ |ν| implies µ≪ ν. Therefore B clearly satisfies (2’) as

well.

Conversely, assume that B is a closed subspace ofM(G) that satisfies Condition

(2’). Let µ and ν be measures in M(G) such that ν belongs to B. By Condition

(2’), |ν| belongs to B as well. Now assume that µ ≪ ν, i.e. |µ| ≪ |ν|. By Radon-

Nikodym Theorem |µ| ≪ |ν| implies that |µ| = f |ν|, where f is a non-negative

65



Borel integrable function. For each n ∈ N, let fn be defined by

fn(x) =

 f(x) if f(x) ≤ n

n otherwise
.

Note that fn|ν| ≤ n|ν|, which implies that fn|ν| belongs to B. Therefore f |ν|,

being the limit of fn|ν|’s, belongs to B as well. �

It is known that M0(G) is a translation invariant L-subspace of M(G) (for

example see [Gra71]). In the following lemma, we use properties of L-spaces to

prove the well-known fact that M0(G) is a subspace of continuous measures on G.

Lemma 4.1.3. For a locally compact Abelian group G, M0(G) ⊆Mc(G).

Proof. Suppose M0(G) * Mc(G) and let µ ∈ M0(G) \Mc(G). Note that Rµ and

Iµ belong to M0(G) as well, since M0(G) is an L-space. Moreover, at least one of

Rµ or Iµ is not continuous. Hence without loss of generality, we can assume that µ

is a real measure. Let µ = µ1+µ2 be the orthogonal decomposition of µ with µ1 in

Mc(G) and 0 ̸= µ2 in ∆(G). Then µ2 ≪ µ implies that µ2 belongs toM0(G), which

in turn implies that δg belongs to M0(G) for some g in G. But |δ̂g(χ)| = |χ(g)| = 1,

which is a contradiction. �

Remark. Definition 4.1.1 of an L-space is equivalent to the definition of a band,

which has been used by Varopoulos in [Var66a].
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4.2 Strongly independent sets

Let G be a locally compact Abelian group, and P be a subset of G. Let k(P )

denote the smallest positive integer k such that {kx : x ∈ P} = {0G}, if such an

integer exists. Otherwise, set k(P ) = ∞. The integer k(P ) is called the torsion

of P . The set P is called strongly independent if for any positive integer N , any

family {pj}Nj=1 of distinct elements of P , and any family of integers {nj}Nj=1, the

equality
∑N

j=1 njpj = 0G implies that nj is a multiple of k(P ) for each 1 ≤ j ≤ N ,

unless k(P ) =∞, in which case nj = 0 for each 1 ≤ j ≤ N .

Note that if G is a non-discrete locally compact Abelian group then G has a

perfect metrisable subset P which is strongly independent [Var66b]. Recall that

a subset P of an Abelian group G is called an independent set if for any positive

integer N , any family {pj}Nj=1 of distinct elements of P , and any family of integers

{nj}Nj=1, the equality
∑N

j=1 njpj = 0G implies that njpj = 0 for every 1 ≤ j ≤ N . It

is clear that the notions of strong independence and independence are equivalent in

the case of a torsion-free group. In [Rud58], Rudin showed that every torsion-free

locally compact Abelian group contains an independent set P homeomorphic to

Cantor’s ternary set, called an independent Cantor set. For instance, if G is the

additive group of real numbers then one can proceed as follows. First note that for

any positive integer k and any family of k integers {ni}ki=1, the hyperplane

Hn1,...,nk
=

{
(x1, . . . , xk) ∈ Rk :

k∑
i=1

nixi = 0

}

is a closed subset of Rk with empty interior. We now define a collection of compact
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neighborhoods inductively. First, let V1 = (1, 2). To construct V2, observe that the

set ∪
(n1,n2 )̸=(0,0)&|ni|≤1

Hn1,n2

is closed and of empty interior. Therefore one can find disjoint compact neighbor-

hoods V
(1)
2 and V

(2)
2 of diameters less than 1

2
such that

V
(1)
2 × V (2)

2 ⊆ V 2
1 \

∪
(n1,n2 )̸=(0,0)&|ni|≤1

Hn1,n2 .

Let V2 = V
(1)
2 ∪ V (2)

2 . For an integer i in N, suppose Vi = V
(1)
i ∪ . . . ∪ V (ri)

i is

the disjoint union of ri compact neighborhoods of diameters less than 1
ri
, where

ri = 2i−1 for each i. To construct Vi+1, we use a similar argument to find disjoint

compact neighborhoods {V (j)
i+1}

ri+1

j=1 of diameters less than 1
ri+1

such that

V
(1)
i+1×. . .×V

(ri+1)
i+1 ⊆ V

(1)
i ×V

(1)
i ×. . .×V

(ri)
i ×V (ri)

i \
∪

(n1,...,nri+1 )̸=(0,...,0)&|nj |≤i

Hn1,...,nri+1
.

Now define

Vi+1 = V
(1)
i+1 ∪ . . . ∪ V

(ri+1)
i+1 .

It is easy to see that for arbitrary elements xj in V
(j)
i , and any family of integers

{nj} whose modulus are bounded by i+ 1, we have

ri+1∑
j=1

njxj ̸= 0.
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This easily implies that the set P defined as

P =
∩
i∈N

Vi

is a strongly independent Cantor set.

The proof of Theorem 4.0.3 is based on Theorem 4.2.1 of [Var66b] which proves

the existence of certain strongly independent sets. One can refer to [Var66b] for

the proof of Theorem 4.2.1.

Theorem 4.2.1. [Var66b] Let G be a non-discrete metrisable locally compact Abelian

group. Then there exists a perfect strongly independent subset P of G such that

M+
0 (P ) ̸= {0}, i.e. there exists a nonzero positive measure µ in M0(G) which is

supported in P .

The proof of the above theorem is rather difficult and technical. In fact, the

argument in [Var66b] relies on structural theorems and treatment of some special

groups. In what follows, we sketch a proof of Rudin for the special case of T.

Theorem 4.2.2. [Rud60] There exists an independent compact perfect subset P of

T such that M+
0 (P ) ̸= {0}.

Sketch of proof. Let {ξk}k∈N be a sequence of real numbers in (0, 1
2
). We first

construct a compact perfect subset Q of [0, 2π] using the usual Cantor procedure.

First we divide the interval Q1 = [0, 2π] into three intervals Q
(1)
2 , M

(1)
2 , and Q

(2)
2 of

lengths proportional to ξ1, 1− 2ξ1, and ξ1 respectively. Let

Q2 = Q
(1)
2 ∪Q

(2)
2 .
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Next, we split each interval Q
(1)
2 and Q

(2)
2 to three intervals of lengths proportional

to ξ2, 1 − 2ξ2, and ξ2 respectively. Let Q
(1)
3 , M

(1)
3 , and Q

(2)
3 denote the intervals

splitting Q
(1)
2 , and Q

(3)
3 , M

(2)
3 , and Q

(4)
3 denote the intervals splitting Q

(2)
2 . Define

Q3 = Q
(1)
3 ∪Q

(2)
3 ∪Q

(3)
3 ∪Q

(4)
3 .

Repeating the above procedure, we construct a family {Qi}i∈N of subset of [0, 2π].

Note that for each positive integer i, Qi is written as a disjoint union of intervals

Qi = Q
(1)
i ∪ . . . ∪Q

(2i−1)
i ,

where each Q
(j)
i is of length 2πξ1 . . . ξi−1. Let

Q =
∩
i∈N

Qi.

Clearly Q is a compact perfect subset of [0, 2π]. Let f be the classical Cantor-

Lebesgue function associated with Q, i.e. f is the uniform limit of the family

{fk}k∈N of functions defined in the following way. For each positive integer k, let

fk be the continuous function such that

fk(t) =
j

2k−1
for t ∈ Q(j)

k ,

and fk is linear on each interval off Qk. Let µ be the first distributional derivative
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of f , i.e. for every ϕ in C(T),

⟨ϕ, µ⟩ =
∫ 2π

0

ϕ(t)df(t).

Clearly µ is a singular probability measure supported in Q.

In [Sal42], Salem proved that there are sequences {ξn}n∈N for which the associ-

ated set Q is of measure zero, and the corresponding measure µ belongs to M0(Q).

Rudin then constructed certain deformations which transform Q to an independent

set P . Furthermore, he showed that the measure µ is mapped to an element of

M0(P ) via such deformations. �

The following lemma will be used in Theorem 4.6.2 to construct nonzero con-

tinuous point derivations on M0(G).

Lemma 4.2.3. Let G be a non-discrete metrisable locally compact Abelian group.

Then there exists a compact perfect strongly independent subset P of G such that

M+
0 (P ) ̸= {0}.

Proof. By Theorem 4.2.1 there exists a perfect metrisable strongly independent

subset P ′ of G which supports a nonzero Rajchman measure µ0. It is known that

M0(G) is an L-space [Gra71]. Therefore, without loss of generality we can assume

that µ0 is a positive measure. Note that µ0(P
′) > 0 and µ0 is a Radon measure,

therefore there exists a compact subset K of P with µ0(K) > 0. But µ0|K belongs

to M0(K) = M0(G) ∩ M(K), because it is a positive measure supported in K

and dominated by µ0. Note that supp(µ0) is still a perfect set, because µ0 is a

continuous measure by Lemma 4.1.3. Let P = supp(µ0). Clearly P is a strongly
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independent set, since it is a subset of the strongly independent set P ′. Hence P is

a compact perfect strongly independent subset of G with M0(P ) ̸= {0}. �

4.3 Geometric and measure theoretic results on

independent sets

Let G be a non-discrete locally compact Abelian group. Recall that the convolution

of two measures µ and ν in M(G) is defined as

µ ∗ ν(E) =
∫
G

µ(−y + E)dν(y),

and ∫
G

f(z)dµ ∗ ν(z) =
∫
G

∫
G

f(x+ y)dµ(x)dν(y),

where E is a measurable subset of G, and f is an integrable function. It is easy

to see that if µ and ν are elements of M(G) with supp(µ) ⊆ E and supp(ν) ⊆ F ,

then supp(µ ∗ ν) ⊆ E + F .

Let µ and ν be measures inM(G). Then µ and ν are mutually singular, denoted

by µ⊥ν, if there exists a partition A∪B of G such that µ is concentrated in A and

ν is concentrated in B. We say µ is absolutely continuous with respect to ν, denoted

by µ≪ ν, if for every measurable set A, the following condition is satisfied.

|ν|(A) = 0⇒ |µ|(A) = 0.
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For subsets P and Q of G, and an integer n in N, we recall the following

notations:

• P +Q = {x+ y : x ∈ P, y ∈ Q}.

• nP = {
∑n

i=1 xi : xi ∈ P}.

• −nP = {−
∑n

i=1 xi : xi ∈ P}.

• Gp(P ) is the subgroup generated by P in G.

For a positive integer m, define

ωm : Pm → G, ωm((pj)
m
j=1) =

m∑
j=1

pj.

Let ω̌m :M(Pm)→M(G) be the map induced from ωm, i.e.

ω̌m(µ)(E) = µ(ω−1
m (E)) and

∫
G

f(x)dω̌m(µ)(x) =

∫
Pm

(f ◦ ωm)(y)dµ(y),

where µ is a measure inM(Pm), E is a subset of G, and f is a measurable function

on G. Note that if µ and ν are measures in M(Pm) and M(P n) respectively such

that ω̌m(µ) = µ and ω̌n(ν) = ν, then ω̌m+n(µ⊗ ν) = µ ∗ ν.

Lemma 4.3.1. If P is a strongly independent perfect metrisable subset of a locally

compact Abelian group G, then ω̌m maps M(Pm) onto M(mP ).

Proof. First note that the subset P is a metrisable perfect (hence closed) subset

of a locally compact space G. Therefore both P and Pm are Polish spaces. Let
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∼ be the equivalence relation defined as (p1, . . . , pm) ∼ (q1, . . . , qm) if and only if

p1+. . .+pm = q1+. . .+qm. For a permutation s in Sm, let σs : P
m → Pm be defined

as σs((p1, . . . , pm)) = (ps(1), . . . ps(m)). It is clear that (p1, . . . , pm) ∼ (q1, . . . , qm) if

and only if there exists a permutation s such that σs((p1, . . . , pm)) = (q1, . . . , qm).

It is now easy to see that the map Q : Pm → Pm/ ∼ is a closed map, because

Q−1Q(E) = ∪s∈Smσs(E) and each σs is a homeomorphism of topological spaces.

Hence the Polish space Pm contains a Borel set E0 which meets each equivalence

class in exactly one point (see [Par05], Theorem I.4.2.). Now for a measure µ in

M(mP ) define ν to be

ν(B) = µ(ωm(B ∩ E0)),

for Borel subsets B of Pm. It is easy to check that ω̌m(ν) = µ, hence ω̌m is onto. �

A reduced sum on a strongly independent subset P of torsion k(P ) = k is a

formal expression
∑

i∈I ṅipi, where I is a possibly empty finite index set, pi’s are

distinct elements of P , and

0 ̸= ṅi ∈ Z(mod k).

Two reduced sums are said to be equivalent if one can be obtained from a permu-

tation of the other. Let P be a subset of G. For m and k in N, and g in G, define

the following sets.

Dk
m(g) = {ω = (pj)

m
j=1 ∈ Pm : pk = g}.
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Rk
m =

∪
1≤l1<l2<...<lk≤m

{ω = (pj)
m
j=1 ∈ Pm : pl1 = . . . = plk}.

The following two lemmas illustrate interesting properties of strongly indepen-

dent sets which will be used in future. Lemma 4.3.3 is in fact a corollary of Lemma

4.3.2 which in turn has a straightforward proof. One can refer to [Var66a] to see

the details.

Lemma 4.3.2. [Var66a] Let P be a strongly independent subset of an Abelian group

G. Let m,n ∈ Z, m ≥ 1, and m ≥ n ≥ 0.

1. Every x in Gp(P ) can be expressed uniquely (up to equivalence) as a reduced

sum.

2. If g ∈ G \Gr(P ) then mP ∩ (g + nP ) = ∅.

3. If 0 ̸= g ∈ Gp(P ) and g =
∑

i∈I ṅipi is the reduced sum expression of g then:

(i) If k > m > n then mP ∩ nP = ∅, and in particular ω−1
m (mP ∩ nP ) = ∅.

(ii) If m > n and m ≥ k then ω−1
m (mP ∩ nP ) ⊆ Rk

m.

(iii) If k > m then ω−1
m (mP ∩ g + nP ) ⊆

∪
i∈I
∪

1≤j≤mD
j
m(pi).

(iv) If m ≥ k then ω−1
m (mP ∩ g + nP ) ⊆ Rk

m ∪
∪
i∈I
∪

1≤j≤mD
j
m(pi).

Lemma 4.3.3. [Var66a] Let P be a strongly independent perfect metrisable subset

of a non-discrete locally compact Abelian group G. Let µ and ν be measures in

M+
c (G) that satisfy conditions (i) to (iv) listed below.

(i) supp(µ) ⊆ mP .
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(ii) For every g ∈ G and 0 ≤ m′ < m, the set g +m′P is µ-null.

(iii) supp(ν) ⊆ nP .

(iv) For every g ∈ G and 0 ≤ n′ < n, the set g + n′P is ν-null.

Then for every g ∈ G and 0 ≤ r ≤ m + n that satisfy (g, r) ̸= (0G,m + n), the set

g + rP is µ ∗ ν-null.

Let s be a permutation in the symmetric group Sm on m elements. We define

the symmetric operation associated with s as

σs : P
m → Pm, σs[(pj)

n
j=1] = (ps(j))

n
j=1,

and we denote the set of all such symmetric operators on Pm by Σm. Recall that

σs induces a map σ̌s on the measure algebra of Pm. An L-subspace B of M(Pm)

is called symmetric if for all σ in Σm, σ̌(B) is contained in B. Let BΣ denote the

smallest symmetric L-space which contains B, i.e.

BΣ = ∩{S : B ⊆ S, S is a symmetric L-space }.

Note that there is a natural one-to-one correspondence between Σm and Sm which

preserves multiplication. Finally for a measure µ in M(Pm), we define the measure

µΣ =
∑

s∈Sm
σ̌s(µ).

Let Ω be a measurable subset of G. Let B(Ω) be defined as

B(Ω) = {µ ∈M(G) : |µ|(G \ Ω) = 0}.
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It is easy to check that the space B(Ω) is an L-space. Recall that M(Ω) denotes

the subspace of M(G) whose measures are supported in Ω. Note that B(Ω) and

M(Ω) are different. For example, for any continuous measure µ in Mc(G) and any

x in supp(µ), we have µ ∈ B(G \ {x}).

Lemma 4.3.4. [Var66a] Let P be a strongly independent perfect metrisable subset

of a non-discrete locally compact Abelian group G. Let B be an L-subspace of

M(Pm), and m ≥ 2.

(a) If µ belongs to M(mP ) ∩ ω̌m(B) then Rµ belongs to ω̌m(B) as well.

(b) ω̌−1
m (ω̌m[B(R2

m)]) ∩M+(Pm) ⊆ B(R2
m) and

ω̌−1
m (ω̌m[P

m \B(R2
m)]) ∩M+(Pm) ⊆ B(Pm \R2

m).

(c) If µ, ν ∈ B(Pm \R2
m)∩M+(Pm) and ω̌m(µ)≪ ω̌m(ν) then µ ∈ BΣ[ν], where

BΣ[ν] is the symmetric L-space generated by ν.

(d) Let {γα}α∈Γ be a family of measures in B(Pm \R2
m) such that for each index

α, ω̌m(γα) ≥ 0. Then there exists a family {δα}α∈Γ in M+(Pm)∩B(Pm \R2
m)

that satisfies the following properties.

– δα ∈ BΣ[γα] for all α in Γ.

– ω̌m(δα) = ω̌m(γα) for all α in Γ.

– For all α and β in Γ, if ω̌m(γα) ≥ ω̌m(γβ) then δα ≥ δβ.

(e) If B ⊆ B(Pm \ R2
m) is a symmetric L-space then ω̌m(B) is an L-space of

M(mP ).
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Proof.

(a) Let µ be a measure in B such that ω̌m(µ) = µ. Note that ω̌m maps positive

(respectively real) measures to positive (respectively real) measures. Now

consider the decomposition µ = µ1 + iµ2, where µ1 and µ2 are real measures

(the real and imaginary parts of µ). Then ω̌m(µ) = ω̌m(µ1) + iω̌m(µ2), where

ω̌m(µ1) and ω̌m(µ2) are real measures. Hence

R(µ) = R(ω̌m(µ)) = ω̌m(µ1) = ω̌m(R(µ)).

Moreover by the definition of L-space, R(µ) belongs to B, which proves (a).

(b) It is clear that R2
m and G \R2

m are “symmetric sets” i.e.

∀(pi)mi=1 ∈ R2
m ∀π ∈ Sm, (pπ(i))mi=1 ∈ R2

m,

and

∀(pi)mi=1 ∈ G \R2
m ∀π ∈ Sm, (pπ(i))mi=1 ∈ G \R2

m.

Therefore ω−1
m (ωm(R

2
m)) = R2

m and ω−1
m (ωm(G \ R2

m)) = G \ R2
m. Let µ in

M+(Pm) and ν in B(R2
m) be such that ω̌m(µ) = ω̌m(ν), i.e. µ(ω−1

m (E)) =

ν(ω−1
m (E)) for every Borel subset E of mP . Hence

µ(G \R2
m) = µ(ω−1

m (ωm(G \R2
m))) = ν(ω−1

m (ωm(G \R2
m))) = ν(G \R2

m) = 0.

This, together with positivity of µ, implies that µ belongs to B(R2
m). Hence

ω̌−1
m (ω̌m[B(R2

m)]) ∩M+(Pm) is a subset of B(R2
m). The proof of the second
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claim is identical.

(c) The open subspace Pm \ R2
m of Pm is a Polish space, and ∼ is a closed

equivalence relation on Pm \R2
m. Hence the conditions of Borel cross-section

theorem are satisfied, and Pm \R2
m contains a Borel subset A that meets each

equivalence class in exactly one point. For s in Sm, let As denote the Borel

set σs(A). It is easy to see that for permutations s and t in Sm,

– Pm \R2
m = ∪s∈SmAs.

– As ∩ At = ∅ if s ̸= t.

– σs(At) = Ats.

To a measure α inM(Pm \R2
m), we associate the following orthogonal (Riesz-

Lebesgue) decomposition:

α =
∑
s∈Sm

αs where αs(E) = α(E ∩ As).

Clearly αs ≪ α for each s in Sm. Let E and F be Borel subsets of Pm and

mP respectively. For α in M(Pm \R2
m), and permutations s and t in Sm, we

have

[σ̌s(α)]t(E) = α(σ−1
s (At ∩ E)) = α(σ−1

s (E) ∩ Ats−1) = αts−1(σs−1(E)).

Moreover, observe that ω−1
m (F ) is a symmetric set, and σs(ω

−1
m (F )) = ω−1

m (F ).
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Therefore,

ω̌m([σ̌s(α)]t)(F ) = [σ̌s(α)]t(ω
−1
m (F )) = αts−1(σs−1(ω−1

m (F ))) = αts−1(ω−1
m (F )),

which implies that

ω̌m([α
Σ]r)(F ) =

∑
s∈Sm

ω̌m([σ̌s(α)]r)(F ) =
∑
s∈Sm

ω̌m(αrs−1)(F ) = ω̌m(α)(F ).

Let µ and ν be measures as described in (c), r be a permutation in Sm, and

E be a Borel subset of Pm. Then

[νΣ]r(E) =
∑
s∈Sm

σ̌s(ν)(E ∩ Ar) =
∑
s∈Sm

ν(σ−1
s (E ∩ Ar)) = ν(

∪
s∈Sm

σ−1
s (E ∩ Ar))

= ν(ω−1
m (ωm(E ∩ Ar))) = ω̌m(ν)(ωm(E ∩ Ar)), (4.1)

where we used the fact that for distinct permutations s and t in Sm, the sets

σ−1
s (E ∩ Ar) and σ−1

t (E ∩ Ar) are disjoint. Now [νΣ]r(E) = 0 implies that

ω̌m(ν)(ωm(E ∩ Ar)) = 0 which in turn implies that

[µΣ]r(E) = ω̌m(µ)(ωm(E ∩ Ar)) = 0.

Hence [µΣ]r ≪ [νΣ]r for each r ∈ Sm. Therefore µ≪ µΣ ≪ νΣ, and µ belongs

to the symmetric L-space generated by ν.

(d) Let {γα}α∈Γ be a family as in (d), and r in Sm be a fixed permutation. For
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each α in Γ, define

δα = [γΣα ]r.

Note that ω̌m(δα) = ω̌m([γ
Σ
α ]r) = ω̌m(γα). Let E be a Borel subset of Pm.

By Equation (4.1), we have δα(E) = [γΣα ]r(E ∩ Ar) = ω̌m(γα)(ωm(E ∩ Ar)),

therefore δα belongs to M+(Pm). Moreover,

|δα|(R2
m) = δα(R

2
m) = γα(ω

−1
m (ωm(R

2
m ∩ Ar)) = 0,

hence δα belongs to B(Pm \ R2
m). Fix α and β in Γ, and note that δα(E) =

ω̌m(γα)(ωm(E ∩ Ar)). Therefore ω̌m(γα) ≥ ω̌m(γβ) implies that δα ≥ δβ.

Finally, using part (c) and Lemma 4.1.2, we have δα ∈ BΣ[|γα|] = BΣ[γα],

since ω̌m(δα) = ω̌m(γα)≪ ω̌m(|γα|).

(e) This part follows easily from parts (a), (b) and (d).

�

4.4 A direct decomposition of M(G)

Fix a strongly independent perfect metrisable subset P of G, and let

T1 =Mc(P ) = {µ ∈Mc(G) : supp(µ) ⊆ P}.
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For a positive integer n, let

Tn = T1 ⊗γ . . .⊗γ T1

denote the tensor product of n copies of T1, and define

T = ℓ1 ⊕n≥1 Tn.

We equip T with the multiplication defined as

tm · tn = tm ⊗ tn ∈ Tm+n

for tm in Tm and tn in Tn, and extend it to T by linearity and continuity. Let θ be

a continuous function in Cb(P ) viewed as an element of the dual space T ∗
1 . Let θ

n

denote the element θ ⊗ . . .⊗ θ of T ∗
n , and define

Sn = Tn/
∩

θ∈Cb(P )⊆T ∗
1

Ker(θn).

Let S = ℓ1 ⊕n≥1 Sn, and p : T → S be the natural projection. It is easy to see

that Ker(p) is an ideal of T , therefore one can define a multiplication on S using

the multiplication on T . Indeed, for tm in Tm and tn in Tn, let

p(tm) · p(tn) = p(tm ⊗ tn) ∈ Sm+n,
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and extend it to S by linearity and continuity. These multiplications turn T and S

into Banach algebras, and p becomes a surjective algebra homomorphism. Let τ1 be

the inclusion map from T1 =Mc(P ) toM(G). The map τ1 induces τn : Tn →M(G),

τn(µ1 ⊗ . . .⊗ µn) = µ1 ∗ . . . ∗ µn, µ1, . . . , µn ∈Mc(P ).

Let τ = ℓ1 ⊕n≥1 τn : T → M(G). Clearly τ is a Banach algebra homomorphism.

Finally, let i : ∆(G) → M(G) be the inclusion map, and define π = i ⊗ τ from

∆⊗ T to M(G) to be the linear extension of,

π(δg ⊗ (µ1 ⊗ . . .⊗ µn)) = δg ∗ µ1 ∗ . . . ∗ µn.

Then π is a Banach algebra homomorphism as well. In Lemma 4.4.2, we show that

τn(Tn) is the L-space generated by products of n elements of T1, i.e.

{µ ∈M(G) : µ≪ µ1 ∗ . . . ∗ µn for some µ1, . . . , µn ∈ T1}.

Denote πgn = π|δgC⊗Tn , and πn = π|Tn .

Observation 4.4.1. Let ϕm : Tm →M(Pm) be the map defined by

∫
Pm

f(x1, . . . , xm)dϕm(µ1 ⊗ . . .⊗ µm) =
∫
P

. . .

∫
P

f(x1, . . . , xm)dµ1 . . . dµm.

Then,

(a) ϕm is an isometric injection. Moreover, πm = ω̌mϕm.
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(b) ϕm(Tm) is a symmetric L-subspace of M(Pm).

(c) Let g be an element of G, and 1 ≤ l ≤ m. Then for tm in Tm, we have

|ϕm(tm)|(Rl
m) = 0 and |ϕm(tm)|(Dl

m(g)) = 0.

(d) For all g in G, Imπgn = δg ∗ Imπn.

Proof.

(a) Fix an element x in Tm, and ϵ > 0. There exists a representation of x

x =
∑
i∈N

µi1 ⊗ . . .⊗ µim

with
∑

i∈N ∥µi1∥ < ∥x∥ + ϵ and ∥µi2∥ = . . . = ∥µim∥ = 1 for each i in N.

Fix an integer 1 ≤ j ≤ m. The set {|µij|}i∈N is bounded, and Mc(P ) is an

L-subspace of M(G). Therefore νj = sup{|µij|}i∈N belongs to M+
c (P ). By

Radon-Nikodym Theorem

x ∈ ⊗̂1≤j≤mL
1(P ; νj) = L1(Pm;⊗1≤j≤mνj) ⊆M(Pm),

where the last inclusion is an isometric injection. Moreover, for an integrable

function f , and µ1, . . . , µm in T1,

∫
G

f(x)dω̌mϕm(µ1 ⊗ . . .⊗ µm)(x) =

∫
Pm

f ◦ ωm(X)dϕm(µ1 ⊗ . . .⊗ µm)(X)

=

∫
Pm

f(
m∑
i=1

xi)dµ1(x1) . . . dµm(xm),
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which finishes the proof.

(b) We observed that for x in Tm that for each integer j in {1 . . .m}, there exist

νj in M
+
c (P ) such that

x ∈ ⊗̂1≤j≤mL
1(P ; νj) ⊆ Tm.

Hence ϕm(x) belongs to L
1(Pm;⊗1≤m≤mνj) which is a subset of ϕm(Tm), and

ϕm(Tm) is an L-subspace of M(Pm). Moreover,

σ̌rϕm(µ1 ⊗ . . .⊗ µm) = ϕm(µr(1) ⊗ . . .⊗ µr(m))

for every r in Sm, which implies that ϕm is a symmetric L-space.

(c) It follows from Fubini’s theorem.

(d) It is trivial.

�

Lemma 4.4.2. [Var66a] Let Π = Imπ and I = Π⊥ ∩Mc(G).

(a) For g in G and n ≥ 1, Im(πgn) is an L-subspace of M(−g +mP ).

(b) Let g1 and g2 be elements of G, and n1 and n2 be in Z such that (g1, n1) ̸=

(g2, n2). Then Im(πg1n1
)⊥Im(πg2n2

).

(c) Π is a translation invariant L-subspace of Mc(G).

(d) I is a translation invariant ideal of M(G).
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Remark. Notice that to build Π, it is necessary to use components of the form

Im(πn) = {µ ∈M(G) : µ≪ µ1 ∗ . . . ∗ µn for some µ1, . . . , µn ∈Mc(P )}

rather than using all of Mc(nP ). In fact, it is not even true that “Mc(g1 + nP ) ⊥

Mc(g2 + mP ) for (g1, n) ̸= (g2,m)”. For instance, if q is an element of P then

q + P ⊆ 2P and Mc(q + P ) ⊆Mc(2P ).

Proof.

(a) It is very easy to see that Im(πgn) ⊆ M(−g +mP ). The map µ 7→ δg ∗ µ is

an invertible isometric linear map on M(G) which takes positive measures to

positive ones. So B is an L-space if and only if δg∗B is one. Hence it is enough

to show that Imπn is an L-space. By Observation 4.4.1, ϕm(Tm) is a symmetric

L-subspace of B(Pm \R2
m). Therefore by Lemma 4.3.4, πn(Tn) = ω̌n ◦ϕn(Tn)

is an L-space in M(G) as well.

(b) Without loss of generality, we can assume that g1 = oG and n1 ≥ n2. Let x

and y be elements of Im(πg1n1
) and Im(πg2n2

) respectively. By Lemma 4.3.2 and

Observation 4.4.1,

|πn1(x)|(g2 + n2P ) = |ω̌n1ϕn1(x)|(g2 + n2P ) ≤ ω̌n1 |ϕn1(x)|(g2 + n2P )

= |ϕn1(x)|(ω−1
n1
(n1P ∩ g2 + n2P ))

≤ |ϕn1(x)|(R2
m1

) +
∑
r∈Γ

n1∑
j=1

|ϕn1(x)|(Dj
n1
(gr)) = 0,

where g =
∑

r∈Γ γrgr is the reduced sum expansion of g. Now x⊥y follows
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from supp(y) ⊆ g2 + n2P .

(c) Π = Im(π) is an L-space since each πgn is an L-space. Using the above

argument with n2 = 0, we obtain Imπgn⊥∆.

(d) By Observation 4.4.1, Π is translation invariant. Hence I is translation in-

variant as well, and it is enough to show that I is an ideal of Mc(G), i.e.

µ, ν ∈M+
c (G), µ⊥Π⇒ µ ∗ ν⊥Π. (4.2)

For µ in M+(G), we say that µ has property (A) if

∀g ∈ G ∀m ≥ 0, µ(g +mP ) = 0. (A)

Case 1: Assume that µ and ν are elements of M+
c (G) such that µ⊥Π and µ

has property (A). Then for g1 in G and m1 ≥ 0,

µ ∗ ν(g1 +m1P ) =

∫
G

∫
G

χg1+mP (x+ y)dµ(x)dν(y)

=

∫
G

∫
G

χg1−y+mP (x)dµ(x)dν(y) = 0,

which implies that µ ∗ ν⊥Π.

Case 2: Now assume that µ in M+
c (G) does not have property (A). Then

there exist g in G andm > 0 such that µ(g+mP ) > 0. Letm1 be the smallest
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integer such that µ(g1+m1P ) > 0 for some g1 in G. Let µ1 = µ|g1+m1P . Then

supp(µ1) ⊆ g1 +m1P and µ1(g +m′P ) = 0 for all m′ < m, g ∈ G. (B)

A positive measure µ in Mc(G) has property (B) if it satisfies Condition (B)

for some m1 and g1. Note that µ−µ1 ∈M+
c (G) and µ−µ1⊥µ1. By repeating

the above process, we can find measures {µα}α∈I and ν in M+
c (G) such that

µ =
∑
α∈I

µα + ν,

where each µα satisfies property (B), ν has property (A), and µα⊥µβ for

α ̸= β.

Note that the index set I should be countable since the measures are orthog-

onal and µ is a finite measure. Using translation invariance of I, it is enough

to show (4.2) with the further assumption that µ and ν satisfy property (B’),

i.e.

∃m ≥ 1 s.t. µ satisfies property (B) with (m, 0G).

∃n ≥ 1 s.t. ν satisfies property (B) with (n, 0G).
(B’)

Case 3: Let µ and ν be elements of M+
c (G) which satisfy property (B’) as

above, and µ⊥Π.

(i) If g ∈ G and r > m + n then µ ∗ ν⊥Imπgr . Indeed, as we observed

in (c) the set (m + n)P is a null set for every element of Imπgr , but

supp(µ ∗ ν) ⊆ (m+ n)P .

(ii) If g ∈ G and r < m + n then by Lemma 4.3.3 and property (B’) µ ∗
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ν⊥Imπgr .

(iii) If g ̸= 0G then by Lemma 4.3.3 and property (B’) µ ∗ ν⊥Imπgm+n.

(iv) It only remains to show that µ ∗ ν⊥Imπm+n. Let µ ∈ M+(Pm) and

ν ∈M+(P n) be such that ω̌m(µ) = µ and ω̌m(ν) = ν. Note that

ω̌n+m(µ⊗ ν) = µ ∗ ν.

Claim: µ⊥ϕm(Tm).

Let p : Pm+n → Pm be the projection of Pm+n to its first m entries. Define

ι :M(Pm)→M(Pm+n), ι(x)(E) = x(p(E))

for every measurable subset E of Pm+n. Clearly ι identifies M(Pm) isometri-

cally as a subset of M(Pm+n). By the hypothesis, we have µ⊥Imπgm, i.e. for

each x in Tm there are disjoint sets A and B partitioning mP such that

µ(A) = πm(x)(B) = 0.

Hence ω̌m(µ)(A) = µ(ω−1
m (A)) = 0 and ω̌m(ϕm(x))(B) = ϕm(x)(ω

−1
m (B)) = 0,

which implies that µ⊥ϕm(Tm).

Note that µ⊥ϕm(Tm) implies that µ ⊗ ν⊥ϕm(Tm) ⊗ ϕn(Tn) = ϕm+n(Tm+n).

Fix an element x in ϕm+n(Tm+n) ∩M+(Pm+n). Note that µ ⊗ ν⊥xΣ since

ϕm+n(Tm+n) is a symmetric L-space. Therefore, there exists a partition
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Pm+n = A ∪B such that

xΣ(B) = (µ⊗ ν)(A) = 0.

Hence,

xΣ(B) = x(ω−1
m+n(ωm+n(B))) = ω̌m+n(x)(ωm+n(B)) = 0,

and

ω̌m+n(µ⊗ ν)((m+ n)P \ ωm+n(B)) = 0.

Hence µ ∗ ν⊥Im(πm+n), using the fact that ω̌m+n(µ⊗ ν) = µ ∗ ν.

�

We are now ready to state the decomposition theorem of [Var66a]. Recall that

S = ℓ1
⊕
n≥1

Mc(P )
⊗̂n/

∩
θ∈Cb(P )⊆Mc(P )∗

Kerθn

 .
Recall that Π and I are defined in Lemma 4.4.2.

Theorem 4.4.3. [Var66a] Let P be a perfect metrisable strongly independent subset

of G. Then one can decompose Mc(G) in the following way:

1. Mc(G) = Π⊕ I (direct and orthogonal decomposition)

2. Π is a closed subalgebra of Mc(G).

3. Π is an L-space of M(G).
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4. I is an ideal and L-subspace of M(G).

5. Kerτ = Kerp ⊆ T . Therefore Π ≃ ∆(G)⊗̂S (topological and algebraic identi-

fication of Banach algebras)

6. Let j : ∆(G)
⊗̂(

ℓ1
⊕

n≥1Mc(P )
⊗̂n/

∩
θ∈Cb(P )⊆Mc(P )∗ Kerθn

)
−→ Π be the

identification map of part (5). Then

j

δg1 ⊗
Mc(P )

⊗̂n/
∩

θ∈Cb(P )

Kerθn

⊥j
δg2 ⊗

Mc(P )
⊗̂m/

∩
θ∈Cb(P )

Kerθm

 ,

if (g1, n) ̸= (g2,m).

Note that one can decompose M(G) in a similar fashion as

M(G) = (∆(G)⊕ Π)⊕ I.

Proof. We only need to prove (5). By Lemma 4.4.2 (b), we just need to show that

for every positive integer n,

Kerπn =
∩

θ∈Cb(P )⊆Mc(P )∗

Kerθn. (4.3)

To prove “⊇” of (4.3), let α be an arbitrary element of
∩
θ∈Cb(P )⊆Mc(P )∗ Kerθn. For

a character χ on G, define the following bounded continuous function on P :

fχ : P → T, , t 7→ χ(t).
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By Observation 4.4.1 we have,

0 = ⟨α, fnχ ⟩ =

∫
Pn

fχ(x1) . . . fχ(xn)dϕn(α)(x1, . . . , xn)

=

∫
Pn

χ(x1) . . . χ(xn)dϕn(α)(x1, . . . , xn)

=

∫
Pn

χ(x1 + . . .+ xn)dϕn(α)(x1, . . . , xn)

=

∫
Pn

χ(ωn(x1, . . . , xn))dϕn(α)(x1, . . . , xn)

=

∫
nP

χ(x)dω̌nϕn(α)(x)

= ⟨χ, πn(α)⟩,

where we used ω̌nϕn = πn in the last equality. This implies that πn(α) = 0, since χ

is an arbitrary element of Ĝ.

Conversely, let α be an element of Kerπn, and θ be a bounded continuous

function on P . Then the function θn defined as

θn(x1, . . . , xn) = θ(x1) . . . θ(xn)

is a bounded continuous function on P n which is symmetric under permutations,

i.e. for every permutation s in the symmetric group Sn,

θn(x1, . . . , xn) = θn(xs(1), . . . , xs(n)).

By the proof of Lemma 4.3.1, there exists a Borel subset E0 of P n which is home-

omorphic to nP . Therefore there exists a bounded Borel function fθ on nP such
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that θn = fθ ◦ ωn. Hence

⟨α, θn⟩ =

∫
Pn

θn(x1, . . . , xn)dϕn(α)(x1, . . . , xn)

=

∫
Pn

fθ(ωn(x1, . . . , xn))dϕn(α)(x1, . . . , xn)

=

∫
nP

fθ(x)dω̌nϕn(α)(x)

= ⟨fθ, πn(α)⟩ = 0,

which finishes the proof. �

Theorem 4.0.3 is an important corollary of Theorem 4.4.3. Recall that in

[Var66b], Varopoulos showed that if G is a non-discrete locally compact Abelian

group then there exists a perfect metrisable strongly independent subset P of G.

Moreover, if G is metrisable as well then we can assume that the above-mentioned

subset P satisfies the additional condition

M0(P ) = {µ ∈M0(G) : supp(µ) ⊆ P} ̸= {0}.

Proof of Theorem 4.0.3. (i) Let G, P , Π and I be as in Theorem 4.4.3. Then

Mc(G)
2 = (Π⊕ I)2 ⊆ Π2 ⊕ I.

By the construction of Π, it is easy to see that Mc(P ) ⊆ Mc(G)/Mc(G)2. This

implies that Mc(G)/Mc(G)2 is a non-separable Banach space, since Mc(P ) is one.

(ii) First assume that G is metrisable, and let P be a perfect metrisable strongly
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independent subset of G such that M0(P ) ̸= {0}. Since M0(G) is an L-space, one

can easily show that

M0(G) = (Π ∩M0(G))⊕ (I ∩M0(G))

is a nontrivial decomposition of M0(G) to the subalgebra Π∩M0(G) and the ideal

I ∩M0(G) (see the proof of Theorem 4.5.1 for more details). Note that M0(P ) ⊆

Π ∩M0(G). Therefore

L1(P ) ⊆M0(P ) ⊆M0(G)/M0(G)2,

which implies that M0(G)/M0(G)2 is infinite dimensional.

For a general non-discrete locally compact Abelian group G, let H be a compact

subgroup of G such that G/H is metrisable and non-discrete. Let p denote the

quotient map from G to G/H. The map p induces a Banach algebra homomorphism

p̌ from M(G) to M(G/H). Moreover, since H is compact, we have

p̌(M(G)) =M(G/H).

Therefore M(G)/M(G)2 is infinite dimensional, because its image under p̌, i.e.

M(G/H)/M(G/H)2,

is infinite dimensional by part (1). �
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4.5 A direct decomposition of M0(G)

In this section, we obtain decompositions for M0(G) similar to those of M(G)

discussed in Theorem 4.4.3. Our proofs are based on the results of Varopoulos in

[Var66a].

Theorem 4.5.1. 1. For a non-discrete locally compact Abelian group G and a

subset P as in Theorem 4.4.3, we have the orthogonal decomposition

M0(G) = Π0 ⊕ I0,

where Π0 = Π ∩M0(G) is a closed subalgebra and I0 = I ∩M0(G) is an ideal

of the Banach algebra M0(G). In addition, both Π0 and I0 are L-subspaces of

M(G).

2. If G is metrisable as well, there exists a subset P such that the above decom-

position is non-trivial, i.e. Π0 ̸= {0} and I0 ̸= {0}.

Proof.

1. Let µ be an element of M0(G). Since M0(G) is a subset of Mc(G), we can

orthogonally decompose µ to

µ = µ1 + µ2,

with µ1 in Π and µ2 in I. Note that |µ1| ≪ |µ| and |µ2| ≪ |µ|. Therefore µ1

and µ2 belong to M0(G), since M0(G) is an L-space.
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2. Let G be a non-discrete metrisable locally compact Abelian group. Then

there exists a perfect metrisable strongly independent subset P of G such

that

M0(P ) = {µ ∈M0(G) : supp(µ) ⊂ P} ̸= {0}.

Hence

{0} ̸=M0(P ) =M0(P ) ∩Mc(P ) ⊆ Π0,

which implies that Π0 ̸= {0}.

Moreover, I0 = I ∩M0(G) ⊇ IM0(G). Now let µ in I and ν in M0(G) be

nonzero positive measures with µ(E) > 0 and ν(F ) > 0 for compact subsets

E and F of G. Then

µ ∗ ν(E + F ) =

∫
G

∫
G

χE+F (x+ y)dµ(x)dν(y)

≥
∫
G

∫
G

χE(x)χF (y)dµ(x)dν(y) = µ(E)ν(F ) > 0.

Hence µ∗ν ̸= 0 and IM0(G) ̸= {0}. To finish the proof, we just need to show

that such µ and ν exist. Note that M0(G) and I are non-trivial L-spaces,

therefore contain positive measures.

�

4.6 Point derivations on M0(G)

Let G be an Abelian locally compact group. To construct point derivations on

M0(G), we use the decomposition of M0(G) presented in Theorem 4.5.1. We begin
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with the following lemma.

Lemma 4.6.1. Let G be a non-discrete locally compact Abelian group, and P be a

perfect metrisable strongly independent subset of G. Then

1. For each µ in Mc(G), we have
∑

x∈G µ(x+ P ) <∞.

2. If µ, ν ∈Mc(G) then (µ ∗ ν)(P ) = 0.

Proof.

1. First note that if x and y are distinct elements of G then |(x+P )∩(y+P )| ≤ 2.

Indeed, assume that there exist distinct elements z1 and z2 in (x+P )∩(y+P ).

Then there are p1, p2, p
′
1, and p

′
2 in P such that

z1 = x+ p1 = y + p′1 and z2 = x+ p2 = y + p′2,

which imply that x − y = p′1 − p1 = p′2 − p2. Therefore x − y should be an

element of P − P . Note that since z1 ̸= z2 and x ̸= y, we have

p1 ̸= p2, p′1 ̸= p′2, p1 ̸= p′1, p2 ̸= p′2.

By Lemma 4.3.2, the element x−y in P −P can be expressed uniquely (up to

permutation) as a reduced sum on P , i.e. one of the following cases happens:

Case 1: p′1 = p′2 and p1 = p2, which is a contradiction with x ̸= y.

Case 2: p′1 = −p2 and p′2 = −p1, and x − y = −p1 − p2 is the unique

representation of x − y in P − P . Taking permutations into account, there
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are at most two possibilities for p1 and p2, which implies that

|(x+ P ) ∩ (y + P )| ≤ 2.

Since µ is a continuous measure on G, it treats the sets x+P as disjoint sets,

i.e. µ((x + P ) ∩ (y + P )) = 0 for distinct elements x and y in G. Hence for

any finite number of points x1, . . . , xn in G,

n∑
i=1

|µ(xi + P )| ≤ |µ|(∪ni=1(xi + P )) ≤ |µ|(G) <∞.

Finally,

∑
x∈G

|µ(x+ P )| = supI⊂G,|I|<∞

∑
x∈I

|µ(x+ P )| ≤ |µ|(G) <∞.

2. Convergence of the sum in part 1 implies that only for countably many x in

G, µ(x + P ) is nonzero. Therefore the function x 7→ µ(x + P ) is equal to 0

ν-a.e. and the result follows.

�

In [BM76], Brown and Moran constructed a nonzero continuous point derivation

on the measure algebra M(G) of a non-discrete locally compact Abelian group G.

Their construction is based on the decomposition of the measure algebra of a locally

compact group to its discrete and continuous parts. In Theorem 4.6.2, we prove a

similar result for the algebra of Rajchman measures on a non-discrete locally com-

pact Abelian group using the decomposition of M0(G) obtained in Theorem 4.5.1.
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Our construction here is motivated by [BM76].

Theorem 4.6.2. If G is a non-discrete locally compact Abelian group, then M0(G)

has a nonzero continuous point derivation.

Proof. First assume that G is metrisable. By Lemma 4.2.3, there exists a compact

perfect metrisable strongly independent subset P of G which supports a nonzero

Rajchman measure µ0. Using Theorem 4.5.1, we obtain a nontrivial decomposition

M0(G) = Π0⊕ I0 with {0} ̸=M0(P ) ⊆ Π0. For each µ in M0(G), let µ = µΠ0 ⊕µI0

denote its decomposition accordingly. Define the linear functionals χ and d to be

χ :M0(G)→ C, µ 7→ µΠ0(G),

and

d :M0(G)→ C, µ 7→
∑
x∈G

µI0(x+ P ).

First, observe that χ is a nonzero character of M0(G). Indeed, it is clear that

χ is a continuous linear map, and χ(µ0) = µ0Π0
(G) = µ0(G) ̸= 0. Let µ and ν be

elements of M0(G). Then (µ ∗ ν)Π0 = µΠ0 ∗ νΠ0 , since I0 is an ideal and Π0 is a

subalgebra of M0(G). Therefore

χ(µ ∗ ν) = (µ ∗ ν)Π0(G) = (µΠ0 ∗ νΠ0)(G) = µΠ0(G)νΠ0(G) = χ(µ)χ(ν),

i.e. χ is a nonzero character. Next by Lemma 4.6.1, d is well-defined and vanishes

on I20 . Moreover, d is clearly a nonzero linear map which vanishes on Π0. Fix
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arbitrary elements µ in Π0 and ν in I0. Then

d(µ ∗ ν) =
∑
x∈G

(µ ∗ ν)(x+ P )

=
∑
x∈G

∫
G

ν(−y + x+ P )dµ(y)

=

∫
G

∑
x∈G

ν(−y + x+ P )dµ(y)

= (
∑
z∈G

ν(z + P ))

∫
G

dµ(y)

= d(ν)χ(µ).

We are now able to prove that d is a point derivation of M0(G) at the character χ.

Let µ and ν be measures in M0(G). Then

d(µ ∗ ν) = d(µΠ0 ∗ νΠ0 + µΠ0 ∗ νI0 + µI0 ∗ νΠ0 + µI0 ∗ νI0) = d(µΠ0 ∗ νI0 + µI0 ∗ νΠ0)

= χ(µΠ0)d(νI0) + χ(νΠ0)d(µI0) = χ(µ)d(ν) + χ(ν)d(ν),

which finishes the proof for the metrisable case.

For the general case, let G be a non-discrete locally compact Abelian group,

and H be a compact subgroup of G such that G/H is metrisable and non-discrete.

Let p be the quotient map from G to G/H, and p̌ be the surjective Banach algebra

homomorphism from M0(G) to M0(G/H) induced by p. By the above argument,

M0(G/H) has a nonzero continuous point derivation. Hence by Lemma 4.6.3,

M0(G) has a nonzero continuous point derivation as well. �

Let us remark that choosing a different perfect compact strongly independent
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subset P may result in a different decomposition for M0(G). In fact, let P and µ0

be as in Theorem 4.6.2. Let P1 and P2 be disjoint perfect subsets of P such that

µ0 restricts to nonzero measures on P1 and P2 respectively. Then for each x and

y in G and integers m and n, the set (x + mP1) ∩ (y + nP2) is finite. Therefore

Mc(x+mP1) and Mc(y+ nP2) are orthogonal subsets of Mc(G). This implies that

the decomposition of M0(G) based on P1 is different from the one that is based on

P2. We can now apply Theorem 4.6.2 to each decomposition and obtain distinct

nonzero continuous point derivations for M0(G).

One can extend Theorem 4.6.2 to non-compact connected SIN-groups using the

following lemma.

Lemma 4.6.3. Let A and B be Banach algebras, and ϕ : A → B be a Banach

algebra homomorphism with dense range. If B has a nonzero continuous point

derivation then A has one as well.

Proof. Let d : B → C be a nonzero continuous derivation at the character χ :

B → C. Then D = d ◦ ϕ is a nonzero continuous derivation of A at the character

θ = χ ◦ ϕ. Indeed, the function θ is a multiplicative linear map, since it is the

composition of two multiplicative linear maps. Moreover, χ is nonzero and ϕ has

dense range, therefore χ◦ϕ is nonzero as well. Similarly D is a nonzero linear map,

and for elements x and y in A, we have:

D(xy) = d(ϕ(xy)) = d(ϕ(x)ϕ(y)) = d(ϕ(x))χ(ϕ(y)) + d(ϕ(y))χ(ϕ(x))

= D(x)θ(y) +D(y)θ(x).
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Hence D is a nonzero continuous point derivation of A at the character θ. �

Theorem 4.6.4. Let G be a non-compact connected SIN group. Then B0(G) has

a nonzero continuous point derivation.

Proof. Any non-compact connected SIN group has a copy of Rn as a closed sub-

group for some n ≥ 1. Recall that the restriction map r : B0(G) → B0(Rn) is

a surjective homomorphism. By Theorem 4.6.2, B0(Rn) has a nonzero continuous

point derivation, and by Lemma 4.6.3 B0(G) also has one. �

4.7 Analytic discs in the spectrum of M0(G)

Let G be a non-discrete locally compact Abelian group. Let L1(G) and M(G)

denote the group algebra and the measure algebra of G respectively. The maximal

ideal space of L1(G) can be identified with the character group of G. In analogy

with this result, Taylor [Tay65] described the maximal ideal space of M(G) as the

set Ŝ of all semicharacters on a compact topological semigroup S. Moreover, he

showed that for an element ϕ in Ŝ, if |ϕ| is not an idempotent then there exists

an analytic disc around ϕ, and therefore there is a nontrivial continuous point

derivation at ϕ. By an analytic disc in the maximal ideal space ∆, we mean an

injection ψ of the open unit disc in C into ∆ such that µ̂ ◦ ψ is holomorphic for

each µ in M. This method is applicable to a large class of convolution measure

algebras including M0(G).

A convolution measure algebra is a closed subalgebra of M(G) which is an L-

space as well. Recall that M0(G) is a commutative convolution measure algebra.
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Taking the above remark into account, it remains to study the possibilities for

elements ϕ in Ŝ whose modulus are idempotents. For the special case of M(G) and

the discrete augmentation character h, Brown and Moran [BM76] have constructed

nontrivial continuous point derivations at h. Later on, they used a method of

Varopoulos to construct analytic discs around h in the maximal ideal space of

M(G).

Having constructed certain decompositions forM0(G), we will show that similar

results can be obtained for the Rajchman algebra as well. Especially, we construct

analytic discs around idempotent characters ofM0(G) associated with such decom-

positions. Such results will serve as a tool to determine whether those characters are

strong boundary points. Let us recall some definitions and results for convolution

measure algebras.

Definition 4.7.1. Let S be a topological semigroup. A semicharacter on S is a

nonzero continuous function of norm not bigger than 1 such that

f(st) = f(s)f(t)

for every s and t in S. The collection of semicharacters on S is denoted by Ŝ.

Theorem 4.7.2. [Tay65] Let M be a commutative convolution measure algebra

with maximal ideal space ∆. Then there exists a compact Abelian topological semi-

group S and a map

ι : Ŝ → ∆

such that ι is a bijection, and Ŝ separates the points of S.
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The semigroup S of Theorem 4.7.2 is called the structure semigroup ofM. Let

r ≥ 0 be an element of Ŝ, and z be a complex number with strictly positive real

part. Then rz belongs to Ŝ. In fact the map z 7→ rz is a vector valued analytic

function from {z ∈ C : Rez > 0} into Ŝ. Let f be an element of Ŝ. Clearly the map

|f | belongs to Ŝ as well. In [Tay65], it has been shown that there exists a unique

h in Ŝ such that f = |f |h, supp(f) = supp(h) and |h| is an idempotent. If ϕ is a

semicharacter such that |ϕ| is not an idempotent, then there exists an analytic disc

around |ϕ|. Indeed, let ϕ = |ϕ|hϕ be the polar decomposition of ϕ. Then the map

z 7→ |ϕ|zhϕ is a vector-valued analytic map from {z ∈ C : Rez > 0} to Ŝ.

Corollary 4.7.3. Let ϕ be an element of Ŝ such that |ϕ| is not an idempotent.

ThenM admits a point derivation at ϕ.

Proof. Note that for each µ in M, the map z 7→ ⟨µ, |ϕ|zhϕ⟩ is an analytic map

from {z ∈ C : Rez > 0} to C. We then define

D :M→ C, D(µ) =
d

dz
(⟨µ, |ϕ|zhϕ⟩)|z=1.

It is easy to check that D is a continuous point derivation. Moreover, using the

polynomial expansion of z 7→ |ϕ|zhϕ around z = 1 and the Gelfand representation

ofM, we see that D is nonzero. �

To construct analytic discs in the spectrum of M0(G), we use the following

construction which is due to Brown and Moran in the case of measure algebras

[BM78a]. Let M0(G) = I ⊕ A be a decomposition of M0(G) where I is an L-ideal
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and A is an L-subalgebra. Clearly

h(µ) =

 0 µ ∈ I

1 µ ∈ A

is a character onM0(G). Suppose that there exist mutually orthogonal L-subspaces

A = B0, B1, B2, . . . of M0(G) such that

• B1 ̸= {0}.

• If µ ∈ Bn and ν ∈ Bm then µ ∗ ν ∈ Bm+n for all positive integers m,n.

• (⊕∞
n=0Bn)

⊥ is an L-ideal of M(G).

For z in D and µ in M0(G), define

⟨µ, ϕ(z)⟩ =


∫
G
zndµ µ ∈ Bn

0 µ ∈ (⊕∞
n=0Bn)

⊥
.

One can easily verify that ϕ(z) is an element of the maximal ideal space of M0(G),

and ϕ(0) = h. Hence ϕ is an analytic disc around h.

Proposition 4.7.4. Let G be a metrisable locally compact Abelian group. Then

one can construct an analytic disc in the maximal ideal space of M0(G).

Proof. By the above argument from [BM78b], we only need to find a nontrivial

decomposition M0(G) = A ⊕ I and L-subspaces B0, B1, . . . as described above.

Note that in a metrisable space, every perfect strongly independent compact set
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K is totally disconnected, and is homeomorphic to a standard Cantor set. Hence

we can decompose K into K1 and K2 such that each of them are compact, perfect,

and strongly independent. Note that by Lemma 4.4.2,Mc(nK1) andMc(mK2) and

each of their translations are orthogonal for positive integers m and n.

Now we can proceed similar to [BM78b] to construct analytic discs. Let K1 and

K2 be perfect metrisable strongly independent compact subsets of G constructed

as above, such that M0(K1) and M0(K2) are nontrivial. By Theorem 4.5.1, we can

decomposeM0 asM0(G) = A⊕I, where A is constructed using the set K1. Now let

B1 be the translation-invariant L-space generated byM0(K2). For each n, let Bn be

the translation-invariant L-space generated by {µ1∗. . .∗µn : µ1, . . . , µn ∈M0(K2)}.

Then the L-spaces B0, B1, . . . satisfy the desired properties, and we are done. �
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Chapter 5

Amenability properties of B0(G)

In this chapter, we consider the problem of characterizing the groups G for which

B0(G) is (operator) [weakly] amenable. We can assume that our groups are non-

compact. Indeed, if G is compact then B0(G) = B(G) = A(G). Hence B0(G)

is always operator weakly amenable, and it is weakly amenable if and only if the

connected component of the identity in G is Abelian.

In the present chapter, we prove extreme cases for amenability properties of

B0(G). We first characterize locally compact groups for which their Rajchman

algebras are amenable. In fact, we show that the Rajchman algebra of a locally

compact group is amenable if and only if the group is compact and almost Abelian.

On the other extreme, we present many examples of locally compact groups G for

which B0(G) fail to be even operator weakly amenable, hence fail to be weakly

amenable or operator amenable. In particular, in Section 5.2 we show that the

Rajchman algebra of a connected non-compact SIN-group cannot be (operator)
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weakly amenable. Our proofs are derived from the theorem of Varopoulous which

we presented in Chapter 4.

For certain groups such as Fell groups and the ax + b group, the associated

Rajchman algebras are non-amenable, but they are operator amenable. This begs

the question, to which we do not know the answer, if there are any (operator)

weakly amenable examples which are not (operator) amenable.

5.1 Amenability of B0(G)

Let G be a locally compact group. Recall that the Rajchman algebra B0(G) is

a translation-invariant closed subspace of B(G). Therefore there exists a unitary

representation π of G such that B0(G) = Aπ(G), and B0(G) is a complemented

ideal in B(G) [Ars76]. (Complemented and weakly complemented ideals play an

important role in the hereditary properties of amenable Banach algebras).

Let A be a Banach algebra, and X be a Banach space. The space X is a Banach

A-bimodule if it is an A-bimodule whose module actions are continuous, i.e. there

exists a positive constant K such that

∥a · x∥ ≤ K∥a∥∥x∥ and ∥x · a∥ ≤ K∥x∥∥a∥,

for every x in X and a in A. Note that A can be considered an A-bimodule with

usual multiplication as its module actions. For any A-bimodule X, one can equip
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the dual space X∗ with the following module actions. For f in X∗ and a in A,

f · a(x) = f(a · x) and a · f(x) = f(x · a).

Then X∗ is an A-bimodule, called a dual bimodule. A bounded linear map D from

A to an A-bimodule X is called a derivation if for all a and b in A,

D(ab) = D(a) · b+ a ·D(b).

Let x be an element of X, and define

D : A → X, D(a) = a · x− x · a.

The map D is a derivation called the ”inner derivation” associated with x. A

Banach algebra A is amenable if every continuous derivation D from A to a dual

A-bimodule X∗ is inner.

Johnson introduced the concept of amenability for Banach algebras, and showed

that L1(G) is amenable as a Banach algebra if and only if G is amenable [Joh72].

Later, Connes [Con78] and Haagerup [Haa83] showed that for C∗-algebras amenabil-

ity and nuclearity coincide. The concept of amenability turned out to be very im-

portant in the study of Banach algebras. One can refer to [Run02] for a detailed

discussion of amenability of Banach algebras.

Theorem 5.1.1. (Hereditary properties) Let A and B be Banach algebras.

(i) Let ϕ be a surjective homomorphism from A to B . If A is amenable then B
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is amenable as well.

(ii) Let I be a closed ideal of A. If A is amenable then the following are equivalent.

– I is amenable.

– I has a bounded approximate identity.

– I is weakly complemented.

Theorem 5.1.2. Let A be a closed subalgebra of B(G) which contains B0(G). Then

A is amenable if and only if G is compact and has an Abelian subgroup of finite

index.

Proof. Suppose G is compact and has an Abelian subgroup of finite index. Then

B0(G) = A = B(G), and it is amenable by Corollary 4.2 of [LLW96].

Conversely, suppose that A is amenable. Since B0(G) and A(G) are comple-

mented ideals of A, they are amenable as well. Hence, by the characterization

of amenable Fourier algebras by Forrest and Runde [FR05], G is almost Abelian,

i.e. it has an Abelian subgroup H of finite index. Note that H is clearly an open

subgroup. Hence the restriction map r : B0(G) → B0(H) is surjective, which im-

plies that B0(H) is amenable as well. Since H is Abelian, by Corollary 5.2.5 the

amenability of B0(H) implies that H is compact. Therefore G is compact as well.

�
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5.2 Weak amenability of B0(G)

A Banach algebraA is called weakly amenable if every bounded derivationD fromA

to A∗ is inner. If A is a commutative Banach algebra, then A is weakly amenable

if and only if every bounded derivation D from A to A∗ is identically 0. For a

completely contractive Banach algebraA, one can define operator weak amenability

to be the analogue of weak amenability for Banach algebras.

A Banach algebra A is called a completely contractive Banach algebra if A has

an operator space structure for which the multiplication map m : A × A → A is

a completely contractive bilinear map; equivalently if m extends to a completely

contractive map from A⊗̂A to A. Let A be a completely contractive Banach

algebra. An operator space X is called a completely contractive A-bimodule if

X is an A-bimodule, and the left and right module actions extend to completely

contractive maps on A⊗̂X and X⊗̂A respectively. Note that if A is a completely

contractive Banach algebra, then the usual multiplication gives A the structure of

a completely contractive A-module. It is also easy to see that this module action

determines a completely contractive A-module structure on A∗.

Definition 5.2.1. Let A be a completely contractive Banach algebra. Then A is

operator weakly amenable if every completely bounded derivation D from A to A∗

is inner.

One can refer to [ER00] for more information on operator spaces. The fol-

lowing lemma shows that weak amenability and operator weak amenability imply

factorization.
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Lemma 5.2.2. For a Banach algebra A, let A2 = span{ab : a, b ∈ A}.

1. If A is weakly amenable, then A = A2.

2. If A is a completely contractive Banach algebra which is operator weakly

amenable then A = A2.

Proof. 1. Let ϕ be an arbitrary element of A∗ such that ϕ|A2 = 0. In order to

show A = A2, it is enough to prove that ϕ is identically 0. Indeed, let D be defined

as

D : A → A∗ a 7→ ϕ(a)ϕ.

It is easy to see that ϕ|A2 = 0 implies that D is a bounded linear derivation on A.

Since A is weakly amenable, D should be inner. Therefore, there exists an element

f in A∗ such that for every a in A,

ϕ(a)ϕ = D(a) = a · f − f · a.

Applying the above functions to a, we get ϕ(a)ϕ(a) = (a·f−f ·a)(a) = f(a2−a2) =

0. Hence ϕ is identically zero.

2. In this case, we only need to check that the derivation D defined as above

is a completely bounded map. The rest of proof is identical to part (1). Let n be

a positive integer, and consider the nth amplification of D:

D(n) :Mn(A)→Mn(A∗), [ai,j] 7→ [ϕ(ai,j)ϕ].
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Then

∥[ϕ(ai,j)ϕ]∥ = ∥[ϕ(ai,j)]Iϕ∥ ≤ ∥[ϕ(ai,j)]∥∥ϕ∥ ≤ ∥[ai,j]∥∥ϕ∥2,

where Iϕ is the n × n matrix in Mn(A∗) which has ϕ on the diagonal and zero

elsewhere. Note that in the last inequality we have used Smith’s Lemma saying

that any bounded linear functional is a completely bounded map. �

Recall that the continuous homomorphic image of an amenable Banach algebra

is amenable. It is also known that the above fails for weak amenability. However,

in the case of commutative Banach algebras, we have the following result.

Lemma 5.2.3. Let A and B be commutative Banach algebras, and ϕ : A → B be

a bounded homomorphism with dense range. Then weak amenability of A implies

weak amenability of B.

Proof. Let D be a bounded derivation from B to B∗. Then ϕ∗ ◦D ◦ϕ is a bounded

derivation from A to A∗. Hence ϕ∗ ◦D ◦ ϕ is inner by weak amenability of A, i.e.

there exists f in A∗ such that

(ϕ∗ ◦D ◦ ϕ)(a) = a · f − f · a ∀a ∈ A.

Hence for an arbitrary a′ in A,

⟨D(ϕ(a)), ϕ(a′)⟩ = ⟨(ϕ∗ ◦D ◦ ϕ)(a), a′⟩ = ⟨a · f − f · a, a′⟩ = f(a′a− aa′) = 0.

Therefore by the density of ϕ(A) in B and continuity of D, we have D = 0. Hence
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B is weakly amenable. �

Lemma 5.2.4. Let A and B be commutative completely contractive Banach alge-

bras, and ϕ : A → B be a completely bounded homomorphism with dense range.

Then operator weak amenability of A implies operator weak amenability of B.

Proof. First note that since ϕ is a completely bounded map, its dual ϕ∗ : B∗ → A∗

is completely bounded as well. Suppose D is a completely bounded derivation from

B to B∗. Then ϕ∗ ◦D ◦ϕ is a completely bounded derivation from A to A∗ as well.

By operator weak amenability of A, ϕ∗ ◦D ◦ϕ is inner, and by density of the range

of ϕ, we have D = 0. �

5.2.1 Examples of groups with non-weakly amenable Ra-

jchman algebras

Let us recall the important theorem of Varopoulos [Var66a] which we presented in

the previous Chapter. For any non-discrete locally compact Abelian group G, the

quotientMc/M2
c is a non-separable Banach space. Moreover,M0/M2

0 is an infinite-

dimensional Banach space. Note that for an Abelian group G, the algebras B0(G)

and M0(Ĝ) are isometrically isomorphic via the Fourier-Stieltjes transform. The

following facts are immediate corollaries of the above non-factorization theorem.

Corollary 5.2.5. Let G be an Abelian non-compact group. Then, the Rajchman

algebra associated with G is not (operator) weakly amenable. In addition, B0(G)

does not have any bounded approximate identity.
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Proof. Let G be an Abelian non-compact group. Then the dual group Ĝ is non-

discrete. Hence applying Theorem 4.0.3 together with Lemma 5.2.2, we get the

desired result. Moreover, suppose B0(G) has a bounded approximate identity. Then

by Cohen factorization Theorem, B0(G)
2 = B0(G), which contradicts the non-

factorization theorem of Varopoulos. �

Proposition 5.2.6. Let G be a non-compact connected SIN-group. Then,

1. B0(G) is not weakly amenable.

2. B0(G) is not operator weakly amenable.

3. B0(G) does not have a bounded approximate identity.

Proof. 1. Since G is a non-compact connected SIN-group, it is of the form G =

Rn × K, where K is a compact subgroup. Hence Rn is a closed subgroup of the

SIN-group G, and by Theorem 3.2.2, the restriction map r : B0(G) → B0(Rn)

is a surjective bounded algebra homomorphism between two commutative Banach

algebras. Now suppose that B0(G) is weakly amenable. Then by Lemma 5.2.3,

B0(Rn) is also weakly amenable, which contradicts Corollary 5.2.5.

2. Note that the restriction map is a completely bounded surjective homo-

morphism. Moreover B0(Rn) is not operator weakly amenable, so we can proceed

exactly as in part (1) to conclude that B0(G) is not operator weakly amenable

either.

3. Corollary 3.2.12 and the fact that B0(Rn) does not have a bounded approx-

imate identity imply part (3). �
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Proposition 5.2.7. Let G be a discrete group which has an infinite Abelian sub-

group H. Then, B0(G) is not (operator) weakly amenable. In particular, for a

positive integer n, the free group Fn with n generators is not (operator) weakly

amenable. In addition, B0(G) does not have a bounded approximate identity.

Proof. Discrete groups are SIN-groups, and any subgroup of a discrete group is

closed. By Theorem 3.2.2, the restriction map r : B0(G) → B0(H) is a surjective

completely contractive homomorphism. Assume that B0(G) is (operator) weakly

amenable. Then by Lemma 5.2.3 and Lemma 5.2.4 B0(H) is (operator) weakly

amenable as well, which contradicts Corollary 5.2.5, since an infinite discrete group

is non-compact.

Now assume by contradiction that B0(G) has a bounded approximate identity,

and let {uα} be a bounded approximate identity of B0(G). Then by Corollary 3.2.12

{uα|H} is a bounded approximate identity for B0(H) which is a contradiction with

Corollary 5.2.5. �

Let G be a discrete group such that B0(G) is (operator) weakly amenable. Then

by Proposition 5.2.7, G cannot have any infinite Abelian subgroup. In particular,

every element of G has finite order, i.e. G is a periodic group.

Definition 5.2.8. Let G be a discrete group. Then

• The group G is called periodic if for every element g of G, there exists a

positive integer n(g) such that gn(g) = e.

• The group G is called locally finite if every finite subset of G generates a

finite subgroup of G.
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• The group G is called F2 if every two elements of G generate a finite subgroup

of G.

Clearly the class of locally finite groups is contained in the class of F2 groups,

which in turn is contained in the class of periodic groups. It has been shown in

[HK64] that every infinite locally finite group contains an infinite Abelian subgroup.

More generally, every infinite F2 group contains an infinite Abelian subgroup (see

[Str66]). We then have the following corollary.

Corollary 5.2.9. Let G be a discrete group such that B0(G) is (operator) weakly

amenable. Then

1. G is periodic.

2. If G is locally finite, then G is finite.

3. If G is F2, then G is finite.

5.2.2 Center and the connected component of the identity

In Theorem 3.3.5 of Chapter 3, we showed that for a general locally compact group,

the restriction map from B0(G) to B0(H) is surjective for specific subgroups such

as open subgroups, the center, and the connected component of the identity. The

following proposition is a corollary of Theorem 3.3.5 and Lemma 5.2.3.

Proposition 5.2.10. Let G be a locally compact group, and H be an open subgroup.

Suppose B0(G) is (operator) weakly amenable. Then B0(H), B0(G0) and B0(Z(G))

are (operator) weakly amenable as well.
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Corollary 5.2.11. Let G be a locally compact group. If B0(G) is (operator) weakly

amenable then Z(G) is compact.

Proof. By Proposition 5.2.10 B0(Z(G)) is (operator) weakly amenable. In addi-

tion, Z(G) is Abelian. Hence by Corollary 5.2.5, it should be compact. �

As an application to the above corollary, one can note that the centers ofGLn(C)

and the Heisenberg group can be identified with the complex numbers and the real

numbers respectively. Hence their Rajchman algebras are not (operator) weakly

amenable. For the case of a SIN-group, one can study the structure of its con-

nected component of the identity using the characterization in Proposition 5.2.6

for connected SIN-groups.

Proposition 5.2.12. Let G be a locally compact SIN-group such that B0(G) is

(operator) weakly amenable.

1. The connected component of the identity G0 is compact. In addition, if B0(G)

is weakly amenable then G0 is compact and Abelian.

2. If G is a central group (that is G/Z(G) is compact) then G is compact.

Proof. 1. By Proposition 5.2.10, B0(G0) is (operator) weakly amenable. The

group G0 is a connected SIN-group. Hence by Proposition 5.2.6, G0 is compact. In

addition, if B0(G) is weakly amenable then G0 is compact and B0(G0) = A(G0).

Now using the characterization of connected SIN-groups with weakly amenable

Fourier algebra [FSS09], we have that G0 should be Abelian as well.
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2. By Proposition 5.2.10, B0(Z(G)) is (operator) weakly amenable, hence Z(G)

is compact since it is an Abelian group. Therefore G is compact, because G/Z(G)

and Z(G) are both compact. �

5.2.3 Solvable groups

A locally compact group G is solvable if it has a finite series of closed subgroups

{e} = G0 �G1 � . . .�Gn = G

where each subgroup is a normal subgroup of its predecessor, andGi+1/Gi is Abelian

for 0 ≤ i ≤ n− 1.

Theorem 5.2.13. Let G be a solvable discrete group such that B0(G) is weakly

amenable. Then G is finite.

Proof. Suppose G is solvable, i.e. it has a series {e} = G0�G1� . . .�Gk = G such

that Gi is normal in Gi+1 and the quotient Gi+1/Gi is Abelian for i = 0, . . . , k− 1.

we proceed by induction on the length of the subnormal series:

Case 1: If k = 1, then G is Abelian and we are done. So we start with k = 2,

and assume that {e} = G0 � G1 � G2 = G is a subnormal series such that G1

and G/G1 are Abelian. By functorial properties for B0, we have that B0(G1) is

weakly amenable as well. Hence G1 is finite by Corollary 5.2.5. Now let g1, g2 be

two elements in the group G, and let w = gα1
1 gβ12 . . . gαn

1 gβn2 be a word in the group
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generated by g1 and g2. Then

gα1
1 gβ12 . . . gαn

1 gβn2 G1 = (gα1
1 G1)(g

β1
2 G1) . . . (g

αn
1 G1)(g

βn
2 G1)

= (gα1
1 G1) . . . (g

αn
1 G1)× (gβ12 G1) . . . (g

βn
2 G1)

= g
∑
αi

1 g
∑
βi

2 G1,

therefore every word in ⟨g1, g2⟩ is of the form gα1 g
β
2 z for some z in G1. Moreover

g1 and g2 are periodic since the group has weakly amenable Rajchman algebra.

Therefore ⟨g1, g2⟩ is finite, i.e. G is F2. Recall that infinite F2 groups always

have infinite Abelian subgroups, hence their Rajchman algebras are not weakly

amenable. Therefore G is finite.

Case 2: First note that the group is periodic. Suppose that for periodic solvable

groups of subnormal series of length less than n, if B0(G) is weakly amenable then

G is finite (induction hypothesis). Let G be a periodic solvable group with the

subnormal series {1} = G0 ≤ G1 ≤ . . . ≤ Gn = G. Then by functorial properties

and induction hypothesis, Gn−1 is finite. Repeating the same argument as in Case

1, we get that G is finite as well. �

120



Chapter 6

The group SL2(R)

In the present chapter, we study the group SL2(R) as an example of a locally

compact group whose Rajchman algebra has no nonzero continuous point deriva-

tion. Using the Kunze-Stein phenomena, we show that the Rajchman algebra of

SL2(R), and more generally any connected semisimple Lie group with finite center,

has simple spectrum and admits no nonzero continuous point derivations. Note

that SL2(R) is a nontrivial example of such groups. As a trivial example, one can

consider the n’th rigid p-adic motion group, where the Rajchman algebra is the

Fourier algebra itself.

Let us recall the definition of the n’th rigid p-adic motion group. Let p be a

prime number, and define the p-adic absolute value on Q as follows: Let x be a

nonzero rational number. Then there exists a unique integer n such that x = pn a
b
,

where neither of the integers a and b is divisible by p. We define |x|p = p−n if

x ̸= 0, and |0|p = 0. Let dp be the metric defined by the p-adic absolute value
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on Q, and define the p-adic numbers Qp to be the completion of (Q, dp), which is

both a totally disconnected complete metric space and a field. The p-adic absolute

value is a multiplicative non-Archimedean evaluation on Qp, i.e. |rs|p = |r|p|s|p

and |r + s|p ≤ max{|r|p, |s|p}. It can be shown that every element x in Qp may be

uniquely represented as
∑∞

i=k aip
i where k ∈ Z and ai ∈ {0, . . . , p− 1}. This series

converges to x with respect to dp. We also define the p-adic integers Op and the

multiplicative group Tp to be

Op := {r ∈ Qp : |r|p ≤ 1} and Tp := {r ∈ Qp : |r|p = 1}.

For an integer n and a prime p, we define the n’th rigid p-adic motion group Gp,n

to be

Gp,n := GL(n,Op)nQn
p ,

where GL(n,Op) denotes the multiplicative group of n × n matrices with entries

in Op and determinant of p-adic absolute value 1, which act on the vector space

Qn
p by matrix multiplication. Note that Op, and therefore GL(n,Op), are compact.

Each group Gp,n is of the form Gp,n = Kp,n n Ap,n where Kp,n is a compact group

acting on a noncompact Abelian group Ap,n. It has been shown that B(Gp,n) =

A(Kp,n) ◦ q ⊕ℓ1 A(Gp,n) (see [RS05]). Therefore B0(Gp,n) = A(Gp,n), which implies

that B(Gp,n) does not admit any point derivation.

Although both B0(SL2(R)) and B0(Gp,n) admit no nonzero continuous point

derivations, they behave differently as Banach algebras. For instance, we will later

observe that B0(SL2(R)) is not (operator) weakly amenable. However B0(Gp,n)

is operator weakly amenable, since it is just the Fourier algebra of Gp,n. Taking
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Proposition 6.1.1 into account, it is clear that B0(SL2(R)) is an interesting example

regarding its amenability behaviors.

6.1 Point derivations and weak amenability

Proposition 6.1.1. Let A be a (completely contractive) Banach algebra. If A

has a nonzero continuous point derivation, then A is not even (operator) weakly

amenable.

Proof. Let d : A → C be a continuous nonzero point derivation at the character

ϕ : A → C. Suppose by contradiction that A is (operator) weakly amenable. Then

by Lemma 5.2.2, A2 = A. Note that by Smith’s lemma d is completely bounded.

Define the linear map D on A to be

D : A → A∗, a 7→ d(a)ϕ.

For elements a, b, and x in A, we have

D(ab)(x) = d(ab)ϕ(x) = (d(a)ϕ(b) + d(b)ϕ(a))ϕ(x)

= d(a)ϕ(bx) + d(b)ϕ(xa)

= d(a)(ϕ · b)(x) + d(b)(a · ϕ)(x)

= (D(a) · b+ a ·D(b))(x),

hence D is a derivation. Moreover note that the map d is nonzero, therefore D is a

nonzero derivation as well. Next, we observe that D is a completely bounded map.
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Indeed for any m in N and [ai,j] in Mm(A), we have:

∥D(m)[ai,j]∥ = ∥[d(ai,j)ϕ]∥ = ∥[d(ai,j)](ϕ · I)∥ ≤ ∥[d(ai,j)]∥∥ϕ∥ ≤ ∥d∥∥ϕ∥∥[ai,j]∥.

Since we assumed A to be (operator) weakly amenable, the derivation D should

be inner, i.e. there exists an element ψ in A∗ such that D = adψ. Now for every a

and b in A,

d(a)ϕ(b) = D(a)(b) = adψ(a)(b) = (a · ψ − ψ · a)(b) = ψ(ba− ab).

Hence

d(ab) = d(a)ϕ(b) + d(b)ϕ(a) = ψ(ba− ab) + ψ(ab− ba) = 0.

Therefore d vanishes on A2 which is a dense subset of A. This forces d to be iden-

tically zero, which is a contradiction. Hence A is not (operator) weakly amenable.

�

Let us now remark that for any locally compact group G, its Fourier algebra has

no nonzero continuous point derivation. In fact, Spronk [Spr02] and independently

Samei [Sam06] showed that the Fourier algebra of a locally compact group is always

operator weakly amenable, and hence has no nonzero continuous point derivations.

Proposition 6.1.2 proves a similar result for certain closed subalgebras of B(G).

Examples of such algebras are provided in Proposition 6.1.3.

Proposition 6.1.2. Let G be a locally compact group and A be a closed subalge-

bra of B(G) which contains A(G). If σA is just the set of the point evaluations
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with elements of G (denoted by σA ∼ G) then A has no nonzero continuous point

derivation.

Proof. Let D be a continuous point derivation on A at the character ϕ. By our

assumption, there exists an element g in G such that ϕ is the point evaluation at g.

Hence ϕ|A(G) is a character for A(G), and D|A(G) is a continuous point derivation

of A(G) at the character ϕ|A(G). Therefore D|A(G) is identically zero, since A(G)

has no nonzero continuous point derivation. Fix an element h in A(G) with ϕ(h) =

h(g) = 1. For every u in A, we have

0 = D(uh) = D(u)ϕ(h) +D(h)ϕ(u) = D(u).

Hence D is identically zero, and A has no nonzero continuous point derivation. �

Proposition 6.1.3. Let G be a locally compact group. Let A be a closed subalgebra

of B(G) which contains A(G). If the set A0 = {f ∈ A : ∃nf ∈ N s.t. fnf ∈ A(G)}

is dense in A then σA ∼ G.

Proof. Let σ : A → C be a nonzero multiplicative linear functional onA. Note that

σ|A(G) ̸= 0. Indeed, assume σ vanishes on A(G), and let f in A be an element such

that fn belongs to A(G) for some positive integer n. Then |σ(f)| = |σ(fn)| 1n = 0,

and by density of such elements in A, the function σ is forced to be zero everywhere.

Therefore σ|A(G) is a nonzero element of the spectrum of A(G). By Theorem 3.34

of [Eym64], there exists an element g in G such that for every f in A(G),

σ(f) = f(g).
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Now fix an element h in A(G) for which σ(h) = h(g) = 1. For any u in A,

σ(u) =
σ(uh)

σ(h)
= uh(g) = u(g)h(g) = u(g),

since A(G) is an ideal in A. Therefore σ is a point evaluation, and σA ∼ G. �

6.2 B0(SL2(R)) is not (operator) weakly amenable.

In this section, we use the results of Repka [Rep78] and Pukánszky [Puk61] regard-

ing the decomposition of tensor products of unitary representations of SL2(R) to

observe that B0(SL2(R)) is not (operator) weakly amenable. The author would like

to thank Viktor Losert for pointing her attention to the above-mentioned results.

We begin with a brief overview of the theory of direct integrals. The reader may

refer to [Fol95], [Dix69] and [Ars76] for more details.

Let {Hα}α∈A be a family of nonzero separable Hilbert spaces, and µ be a measure

on the index set A. For each Hilbert space Hα, let ⟨·, ·⟩α and ∥ · ∥α denote its inner

product and norm respectively. To define the direct integral of Hilbert spaces

Hα, we need to assume a certain measurability condition on the family {Hα}α∈A.

Indeed, we assume that there exists a countable subset {ej}∞j=1 of
∏

α∈AHα with

the following properties:

(i) The functions α 7→ ⟨ej(α), ek(α)⟩α are measurable for all j and k.

(ii) The linear span of {ej(α)}∞1 is dense in Hα for each α.
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An element f in
∏

α∈AHα is called measurable if the function

α 7→ ⟨f(α), ej(α)⟩α

is a measurable function on A for each index j. The direct integral of the fam-

ily {Hα}α∈A, denoted by
∫ ⊕Hαdµ(α), is the space of measurable elements f in∏

α∈AHα such that

∥f∥2 =
∫
∥f(α)∥2αdµ(α) <∞.

It is not hard to show that
∫ ⊕Hαdµ(α) is a Hilbert space with inner product defined

as

⟨f, g⟩ =
∫
⟨f(α), g(α)⟩dµ(α).

We now define the direct integral of operators. Let {Hα}α∈A and {ej} be as

above. An element T in
∏

α∈A B(Hα) is called measurable if for all indices j and k,

the map

α 7→ ⟨T (α)ej(α), ek(α)⟩α

is a measurable function on A. Suppose that T is measurable, and satisfies

∥T∥∞ = ess supα∈A∥T (α)∥ <∞.

Then T defines the bounded operator
∫ ⊕

T (α)dµ(α) on the Hilbert space
∫ ⊕Hαdµ(α)

in the following way:

[(∫ ⊕
T (α)dµ(α)

)
f

]
(α) = T (α)f(α).
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Moreover one can see that ∥
∫ ⊕

T (α)dµ(α)∥ = ∥T∥∞ = ess supα∈A∥T (α)∥.

Let G be a locally compact group. The net {πα}α∈A is called a measurable net

of unitary representations of G on Hilbert spaces {Hα}α∈A if for every x in G, the

map α 7→ πα(x) is measurable as an element of
∏

α∈A B(Hα). For every x in G,

form the direct integral

π(x) =

∫ ⊕
πα(x)dµ(α).

Then π is a unitary representation of G on
∫ ⊕Hαdµ(α), called the direct integral

of representations πα.

From now on, we assume that G is a second countable locally compact unimod-

ular group which is of type I. This assumption ensures that Ĝ admits a standard

Borel structure induced from the Fell topology (see Theorem 7.6 of [Fol95]). Let µ

be a positive Borel measure on Ĝ, and {Hπ}π∈Ĝ be the family of Hilbert spaces as-

sociated with elements of Ĝ. By L1(Ĝ, µ)⊕, we denote the set of all the measurable

elements {Tπ}π∈Ĝ of
∏

π∈ĜTr(Hπ) that satisfy

∫
Ĝ

∥Tπ∥1dµ(π) <∞.

Let L∞(Ĝ, µ)⊕ denote the set of all the measurable elements {Uπ}π∈Ĝ of
∏

π∈Ĝ B(Hπ)

such that

ess sup∥Uπ∥ <∞.

Arsac proved that if σ =
∫ ⊕
Ĝ
πdµ(π) is a unitary representation of G defined by

µ, then the Banach spaces Aσ and L1(Ĝ, µ)⊕ are isometric (see Theorem 3.53 of
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[Ars76]). In particular, every u in Aσ can be represented uniquely as

u(s) =

∫
Ĝ

Tr(π(s)Tπ)dµ(π),

where {Tπ}π∈Ĝ belongs to L1(Ĝ, µ)⊕ and satisfies

∥u∥B(G) =

∫
Ĝ

∥Tπ∥1dµ(π).

Similarly, every S in VNσ can be isometrically identified with an element {Uπ}π∈Ĝ

in L∞(Ĝ, µ)⊕ such that

⟨u, S⟩ =
∫
Ĝ

Tr(TπUπ)dµ(π).

Proposition 6.2.1. Let µ and ν be positive Borel measures on Ĝ defining unitary

representations τ and σ of G as direct integrals:

τ =

∫ ⊕

Ĝ

πdµ(π) and σ =

∫ ⊕

Ĝ

πdν(π). (6.1)

If µ is absolutely continuous with respect to ν then the matrix space Aτ is a subset

of Aσ.

Proof. Suppose that µ≪ ν, i.e. there exists a ν-measurable function f on Ĝ such

that µ = fν. Let ξ = {ξπ} and η = {ηπ} be vectors in
∫ ⊕Hπdµ(π). Note that

∥ξ∥2 =
∫
Ĝ

∥ξπ∥2Hπ
dµ(π) =

∫
Ĝ

f(π)∥ξπ∥2Hπ
dν(π),
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hence {
√
f(π)ξπ}, and similarly {

√
f(π)ηπ}, belongs to

∫ ⊕Hπdν(π). Now for an

element x in G, we have

ξ ∗τ η(x) = ⟨τ(x)ξ, η⟩

=

∫
Ĝ

⟨π(x)ξπ, ηπ⟩Hπdµ(π)

=

∫
Ĝ

f(π)⟨π(x)ξπ, ηπ⟩Hπdν(π)

=
√
fξ ∗σ

√
fη(x),

which implies that Aτ is a subset of Aσ.

�

Let us consider the case G = SL2(R). We use the notations from [Fol95] and

parametrize the dual space ŜL2(R) through its identification with the following

family of representations:

trivial representation: ι,

principal continuous series: {π+
it : t ≥ 0} ∪ {π−

it : t > 0},

discrete series: {δ±n : n ≥ 2},

mock discrete series: δ±1,

complementary series: {κs : 0 < s < 1}.
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Theorem 6.2.2. If G is the group SL2(R) then B0(G) is not square-dense, i.e.

B0(G)2 ̸= B0(G).

Proof. Let µ denote the Plancherel measure on ŜL2(R). Recall that the Plancherel

measure of the complementary series, mock discrete series, and the trivial represen-

tation is zero. Moreover, by Harish-Chandra’s trace formula the Plancherel measure

on the principal and discrete series is defined as

dµ(π+
it ) =

t

2
tanh

πt

2
dt,

dµ(π−
it ) =

t

2
coth

πt

2
dt,

µ({δ±n}) = n− 1.

Therefore, by Proposition 8.4.4 of [Dix69], the left regular representation λ is quasi-

equivalent with the representation

∫ ⊕

(o,∞)

π+
itdt⊕

∫ ⊕

(o,∞)

π−
itdt⊕

∞⊕
n=2

(δn ⊕ δ−n). (6.2)

Let mĜ denote the renormalised Plancherel measure given in (6.2). Define the new

representations

Π+
0 =

∫ ⊕

(o,∞)

π+
itdt⊕

∞⊕
k=1

(δ2k ⊕ δ−2k),

and

Π−
0 =

∫ ⊕

(o,∞)

π−
itdt⊕

∞⊕
k=1

(δ2k+1 ⊕ δ−2k−1),
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and note that by Proposition 6.2.1, the matrix coefficients AΠ+
0
and AΠ−

0
are con-

tained in A(G). Note that these representations are used in the direct integral

decomposition of tensor products of irreducible unitary representations of SL2(R).

In fact, Repka [Rep78] proved that if π and π′ are irreducible unitary representa-

tions of SL2(R) then

π ⊗ π′ ≃q

 Π+
0 ⊕ κr+s−1 if {π, π′} = {κr, κs} and r + s ≥ 1

Π otherwise,

where Π is a subrepresentation of Π+
0 or Π−

0 , and ≃q denotes the quasi-equivalence

of representations.

For irreducible unitary representations π and π′ of G, let mπ,π′ denote the mea-

sure on Ĝ which appears in the direct integral decomposition of π⊗π′. By [Rep78],

mπ,π′ is absolutely continuous with respect to the Plancherel measure mĜ on Ĝr,

and supp(mπ,π′) contains at most one element from the complementary series. Now

let u and u′ be elements of the coefficient spaces Aπ and Aπ′ respectively, with trace

operators Tπ and Tπ′ such that

u = Tr(π(·)Tπ) and u′ = Tr(π′(·)Tπ′).

Then

uu′ = Tr(π ⊗ π′(·)Tπ ⊗ Tπ′) =

∫
Ĝ

Tr(π′′(·)Tπ,π′;π′′)dmπ,π′(π′′). (6.3)

Finally let u and u′ be elements of B0(G). By Corollary 3.55 of [Ars76], there
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exist positive measures µ and µ′ on Ĝ such that

u =

∫
Ĝ

Tr(π(·)Tπ)dµ(π) and u′ =

∫
Ĝ

Tr(π(·)T ′
π)dµ

′(π),

where {Tπ}π∈Ĝ and {T ′
π}π∈Ĝ are elements of L1(Ĝ, µ)⊕ and L1(Ĝ, µ′)⊕ respectively.

Therefore by (6.3) we have,

uu(·) =

∫
Ĝ×Ĝ

Tr(π ⊗ π′(·)Tπ ⊗ T ′
π′)dµ(π, π′)

=

∫
Ĝ×Ĝ

∫
Ĝ

Tr(π′′(·)Tπ,π′;π′′)dmπ,π′(π′′)dµ(π, π′). (6.4)

For a unitary representation π of G, let π̃ denote the surjective map generated by

π from VNω(G) to VNπ(G), where ω is the universal representation of G. Note that

every unitary representation π of G extends to a nondegenerate norm-decreasing

∗-representation of C∗-algebras from C∗(G) to C∗
π(G), which identifies C∗

π(G) with

a quotient of C∗(G). Then the dual map π∗ identifies Bπ(G) with a subset of B(G),

and we have

π̃ = (π∗|Aπ)
∗.

Hence for every S in VNω(G), we have

π̃(S) = S|Aπ .

Now fix a positive real number t. Then π+
it and ⊕π∈Ĝ\{π+

it}
π are disjoint unitary

representations of SL2(R), and by Proposition 3.12 of [Ars76], Aπ+
it
and A⊕

π∈Ĝ\{π+
it

}π

intersect trivially. Therefore by the Hahn Banach theorem, there exists an element
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S in VNω(G) such that π̃+
it (S) ̸= 0 and π̃(S) = 0 for every other representation π

in Ĝ. Hence by Equation (6.4),

⟨uu′, S⟩ =
∫
Ĝ×Ĝ

[∫
Ĝ

Tr(π′′(S)Tπ,π′;π′′)dmπ,π′(π′′)

]
d(µ× µ′)(π, π′) = 0,

where we used the fact that mπ,π′ is continuous on the principal continuous series.

Therefore S vanishes on B0(G)
2 but does not vanish on Aπ+

it
. Moreover, it is

known that Aπ+
it
is a subset of B0(G) (e.g. an easy consequence of Kunze-Stein

phenomena). Thus we conclude that B0(G) is not square-dense. �

The following corollary is a natural consequence of Theorem 6.2.2 and Lemma

5.2.2.

Corollary 6.2.3. Let G denote the group SL2(R). Then B0(G) is not (operator)

weakly amenable.

6.3 On Kunze-Stein phenomena

This section contains a summary of the Kunze-Stein phenomena for SL2(R). The

reader may refer to [KS60] for more proofs and details. Note that using the Kunze-

Stein phenomena for SL2(R), one observes that the elements of B0(SL2(R)) which

are nilpotent modula A(SL2(R)) form a dense subset. Throughout this section, we

let G = SL2(R).

Definition 6.3.1. Let π be a unitary (not necessarily irreducible) representation

of SL2(R), and p ≥ 1 be a fixed number. We say π is extendable to Lp(SL2(R)) if
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there exists a constant A such that for every f in L1 ∩ Lp(SL2(R)), the inequality

∥π(f)∥ ≤ A∥f∥p holds.

The following lemma, due to Kunze and Stein [KS60], presents equivalent con-

ditions for extendability of a representation of a general locally compact group.

Lemma 6.3.2. Let G be a locally compact group, and π be a unitary representation

of G on the Hilbert space Hπ. Let p ≥ 1 and q be its conjugate. Then the following

are equivalent:

(i) π is extendable to Lp(G).

(ii) ξ ∗π η ∈ Lq(G) for all ξ, η ∈ Hπ.

(iii) Aπ ⊆ Lq(G).

(iv) There is a constant C such that

(a) ∥ξ ∗π η∥q ≤ C∥ξ∥∥η∥ for any ξ, η ∈ Hπ.

(b) ∥π(u)∥ ≤ C∥u∥p, u ∈ L1 ∩ Lp(G).

Proof. (i) ⇒ (iv) Suppose that π is extendable to Lp(G) with the constant factor

A. Let ξ, η ∈ Hπ. Since L1 ∩ Lp is dense in Lp,

∥ξ ∗π η∥q = supf∈b1(Lp)∩L1
|
∫
G

⟨π(x)ξ, η⟩f(x)dx| = supf∈b1(Lp)∩L1
|⟨π(f)ξ, η⟩|

≤ supf∈b1(Lp)∩L1
∥π(f)∥∥ξ∥∥η∥ ≤ supf∈b1(Lp)∩L1

A∥f∥p∥ξ∥∥η∥ ≤ A∥ξ∥∥η∥.

Letting C = A, we get (iv).
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(iv) ⇒ (iii) Assume (iv) holds. Let u be an arbitrary element of Aπ(G). By

[Ars76], there exists sequences {ξi}∞i=1 and {ηi}∞i=1 in Hπ such that

u =
∞∑
i=1

ξi ∗π ηi and ∥u∥Aπ =
∞∑
i=1

∥ξi∥∥ηi∥.

For each N ∈ N define uN :=
∑N

i=1 |ξi ∗π ηi|. Then uN →
∑∞

i=1 |ξi ∗π ηi| pointwise

as N tends to infinity, and

∥uN∥q = ∥
N∑
i=1

|ξi ∗π ηi|∥ ≤
N∑
i=1

∥ξi ∗π ηi∥q ≤
N∑
i=1

C∥ξi∥∥ηi∥ ≤ C∥u∥Aπ .

Hence by Lebesgue monotone convergence theorem,

∥u∥q = ∥|u|∥q ≤ ∥
∞∑
i=1

|ξi ∗π ηi|∥q ≤ C∥u∥Aπ .

(iii)⇒ (ii) Clear.

(ii) ⇒ (i) We use the closed graph theorem to prove this direction. Fix an

element η0 in Hπ. The map

ϕη0 : Hπ → Lq(G), ξ 7→ ξ ∗π η0

is an everywhere defined linear map from the Banach space Hπ to the Banach space

Lq(G). Let (ξn)n∈N be a sequence in Hπ which converges to ξ0, and assume that the

sequence (ξn ∗π η0)n∈N converges to f in Lq. We want to show that ϕη0 has a closed

graph, i.e. f = ξ0 ∗π η0. Note that since ∥ξn− ξ0∥Hπ converges to zero, the sequence

ξn ∗π η0 converges pointwise to ξ0 ∗π η0. Therefore f and ξ0 ∗π η0 are pointwise

136



limits of the sequence (ξn ∗π η0)n∈N. Hence ξ0 ∗π η0 = f , and ϕη0 is a closed map.

Therefore, by closed graph theorem, ϕη0 is bounded, i.e. there exists a constant Aη0

such that ∥ξ ∗π η0∥q ≤ Aη0∥ξ∥ for every ξ in Hπ. Similarly ∥ξ0 ∗π η∥q ≤ Aξ0∥η∥ for

every η in Hπ.

The family {ϕη}η∈b1(Hπ) of bounded operators are uniformly bounded. To see

this, fix an element ξ in Hπ, and note that

∥ϕη(ξ)∥q = ∥ξ ∗π η∥q ≤ Aξ∥η∥ ≤ Aξ <∞

Hence by uniform boundedness principle, there exists a constant A such that for

each η in b1(Hπ), we have ∥ϕη∥ ≤ A. Now for any ξ, η ∈ Hπ, we have

∥ξ ∗π η∥q = ∥η∥∥ξ ∗π
η

∥η∥
∥q ≤ A∥η∥∥ξ∥.

Finally for f ∈ (L1 ∩ Lp)(G),

∥π(f)∥ = supξ,η∈b1(Hπ)|⟨π(f)ξ, η⟩| = supξ,η∈b1(Hπ)|
∫
G

⟨π(x)ξ, η⟩f(x)dx|

≤ supξ,η∈b1(Hπ)∥f∥p∥ξ ∗π η∥q ≤ A∥f∥p.

�

Theorem 6.3.3. (Kunze-Stein phenomena) Let π be a nontrivial irreducible

unitary representation of SL2(R).

(a) The following are equivalent:

- π is unitarily equivalent to an element of the discrete series.
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- π is extendable to L2(SL2(R)).

- ξ ∗π η ∈ L2(SL2(R)) for each ξ, η ∈ Hπ.

- Aπ ⊆ L2(SL2(R)).

(b) The following are equivalent:

- π is unitarily equivalent to an element of the continuous principal series.

- π is extendable to Lp(SL2(R)) for every 1 ≤ p < 2 but not to L2(SL2(R)).

- ”ξ ∗π η ∈ Lq(SL2(R)) for all ξ, η ∈ Hπ” holds for all 2 < q but not for

q = 2.

- Aπ ⊆ Lq(SL2(R)) for all q > 2 and Aπ ̸⊆ L2(SL2(R)).

(c) The following are equivalent:

- π is unitarily equivalent to an element of the complementary series in-

dexed by σ, 0 < σ < 1
2
.

- π is extendable to Lp(SL2(R)) for 1 ≤ p < 1
1−δ but not to L 1

1−δ
.

- “ξ ∗π η ∈ Lq(SL2(R)) for each ξ, η ∈ Hπ” holds for all q > 1
δ
but not for

q = 1
δ
.

- Aπ ⊆ Lq(SL2(R)) for all q > 1
δ
and Aπ * L 1

δ
(SL2(R)).

Let π be a unitary (not necessarily irreducible) representation of SL2(R) on

a separable Hilbert space H. We can find a direct integral decomposition for

H =
∫ ⊕Hλdσ(λ), such that in the corresponding direct integral decomposition

for π =
∫ ⊕

πλdσ(λ), the representation πλ is an irreducible unitary representation
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for almost every λ. Let T ∈ B(H) be an operator that can be decomposed with

respect to the above decomposition of H. We then write T = (T λ). Recall that

∥T∥∞ = esssupλ∥T λ∥∞. The following theorem extends Theorem 6.3.3 for some

non-irreducible representations. The proof is based on the independence of the

constant C, introduced in part (iv) of Lemma 6.3.2, from representations in the

continuous or discrete series.

Theorem 6.3.4. Let π be a unitary representation (not necessarily irreducible) of

SL2(R) on a Hilbert space H, and π =
∫ ⊕

πλdσ(λ) be its decomposition into a direct

integral of irreducible unitary representations πλ.Then the following are equivalent:

(i) For σ-almost every λ, the representation πλ is unitarily equivalent to a rep-

resentation in the discrete or continuous principal series.

(ii) The representation π is extendable to Lp(SL2(R)) for every 1 ≤ p < 2.

(iii) Aπ ⊆ Lq for every 2 < q.

(iv) Every coefficient function of π belongs to Lq for every 2 < q.

Remark. Let G = SL2(R), and Ĝ denote the set of all the (equivalence classes of)

irreducible unitary representations of G. Let π be an irreducible unitary represen-

tation of G. Cowling [Cow78] observed that there exist a constant C independent

of π and a positive integer q such that

∥ξ ∗π η∥2q ≤ C∥ξ∥∥η∥ for all ξ, η ∈ Hπ. (6.5)
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Furthermore, for each positive integer q, the set Ĝq of all the (equivalence classes of)

irreducible unitary representations π of G that satisfy (6.5) forms a closed subset

of Ĝ in the Fell topology.

6.4 B0(SL2(R)) has no point derivations

Proposition 6.4.1. Let G = SL2(R). Then

(i) The elements of B0(G) which are nilpotent modulo A(G) are dense.

(ii) σB0(G) ∼ G.

(iii) B0(G) has no nonzero point derivations.

Proof. (i) By Remark 6.3, Ĝ is an increasing union of closed subsets Ĝq for positive

integers q. Let f be an element of B0(G), and write a direct integral decomposition

f =

∫
Ĝ

j(π)∑
k=1

ξkπ ∗π ηkπdµ(π)

that satisfies ∫
Ĝ

j(π)∑
k=1

∥ξkπ∥∥ηkπ∥dµ(π) <∞.

Let ϵ > 0 be given. Since µ is a regular Borel measure on Ĝ, one can use Remark

6.3 to find q0 in N such that

∫
Ĝ\Ĝq0

j(π)∑
k=1

∥ξkπ∥∥ηkπ∥dµ(π) < ϵ.
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Define fϵ to be fϵ :=
∫
Ĝq0

∑j(π)
k=1 ξ

k
π ∗π ηkπdµ(π). Clearly fϵ lies within ϵ-distance of

f in B(G). Moreover by the definition of Ĝq0 , the function fϵ belongs to L
2q0(G).

Therefore f q0 belongs to B(G) ∩ L2(G) ⊆ A(G), which proves (i).

(ii) This follows from Proposition 6.1.3 and part (i).

(iii) This follows from Proposition 6.1.2. �

Note that B0(SL2(R)) is a subalgebra of B(SL2(R)) of codimension one [Cho80].

The following corollary is a natural consequence of Proposition 6.4.1.

Corollary 6.4.2. For every g ∈ SL2(R), let ϕg denote the character on B(SL2(R))

which acts by evaluating at g. Let ϕ0 denote the unique (nonzero) character on

B(SL2(R)) that vanishes on B0(SL2(R)). Then

(i) σB(SL2(R)) = {ϕg : g ∈ SL2(R)} ∪ {ϕ0} as a set.

(ii) For g in SL2(R), B(SL2(R)) has no nonzero continuous point derivation at

the character ϕg.

(iii) B(SL2(R)) has nonzero continuous point derivations at ϕ0.

Proof. (i) Let σ be a nonzero multiplicative linear functional on B(SL2(R)). Recall

that B(SL2(R)) = B0(SL2(R)) ⊕ℓ1 C1. Clearly σ(1) = 1, since σ is multiplicative

and nonzero. If σ|B0(SL2(R)) ̸= 0 then by Proposition 6.4.1, there exists an element

g in SL2(R) such that σ(u) = u(g) for every u in B0(SL2(R)). Note that 1(g) =

1. Hence σ is the point evaluation at g on B(SL2(R)). On the other hand, if

σ|B0(SL2(R)) = 0 then σ is the unique character satisfying σ(1) = 1 and σ(f) = 0 for

all f in B0(SL2(R)). Hence σB(SL2(R)) = {ϕg : g ∈ SL2(R)} ∪ {ϕ0} as a set.
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(ii) Let g be an element of SL2(R), and suppose that D is a nonzero continuous

point derivation of B(SL2(R)) at the character ϕg. Note that ϕg(1) = 1, hence

D(1) = D(1× 1) = 2D(1)ϕg(1) = 2D(1). Therefore D(1) = 0. Since D is nonzero,

the restriction D|B0(SL2(R)) is a nonzero continuous point derivation of B0(SL2(R))

at the character ϕ|B0(SL2(R)), which contradicts with Proposition 6.4.1.

(iii) Let ϕ0 be the character ofB(SL2(R)) defined by ϕ0(1) = 1 and ϕ0|B0(SL2(R)) =

0. Recall that by Theorem 6.2.2, B0(SL2(R))2 ̸= B0(SL2(R)). Let d be a nonzero

continuous functional on B0(SL2(R)) that vanishes on B0(SL2(R))2. For an ele-

ment f in B(SL2(R)), let f = f0 + λf · 1 denote its decomposition with respect to

B(SL2(R)) = B0(SL2(R))⊕ℓ1 C. Define

d̃ : B(SL2(R))→ C, f 7→ d(f0).

Then d̃ is a nonzero continuous point derivation of B(SL2(R)) at ϕ0. In fact, it is

very easy to see that d̃ is nonzero and continuous. Let f, g ∈ B(SL2(R)). Then

d̃(fg) = d̃((f0 + λf · 1)(g0 + λg · 1)) = d̃(f0g0 + λfg0 + λgf0 + λfλg)

= d(f0g0 + λfg0 + λgf0) = λfd(g0) + λgd(f0) = ϕ0(f)d̃(g) + ϕ0(g)d̃(f),

where we used the fact that d|B0(SL2(R))2 = 0. Hence d̃ is a point derivation of

B(SL2(R)) at ϕ0. �
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6.5 Connected semisimple Lie group with finite

center

Proposition 6.5.1. Let G be a semi-simple connected Lie group with finite center.

(i) The elements of B0(G) which are nilpotent modulo A(G) are dense.

(ii) σB0(G) ∼ G.

(iii) B0(G) has no nonzero point derivations.

Proof. (ii) and (iii) follow from Propositions 6.1.3 and 6.1.2. We only need to prove

(i). Let G be a connected semisimple Lie group with finite center. Then G has a

finite covering group G◦ of the form

G◦ = H◦
0 ×H◦

1 × . . .×H◦
m,

where H◦
0 is compact, and for each 1 ≤ j ≤ m, the subgroup H◦

j is noncompact and

simple. Let π be an irreducible unitary representation of G. Then π can be lifted

to an irreducible representation of G◦, which in turn is the external tensor product

of irreducible representations π0, π1, . . . , πm of the subgroups H◦
0 , H

◦
1 , . . . , H

◦
m re-

spectively. Using the results in [Cow79b], one can observe that for each 1 ≤ j ≤ m,

either πj is the trivial representation of H◦
j or there exists a positive integer pj

with Aπj(H
◦
j ) ⊆ Lpj(H◦

j ). Suppose that the first case happens, i.e. there exists an

index j0 such that πj0 is the trivial representation. This implies that every nonzero

coefficient function of πj0 is constant on the equivalence classes of H◦
j0
, and there-

fore does not vanish at infinity. Hence for an irreducible C0-representation π, there

143



exists a positive integer p such that Aπ(G) ⊆ Lp(G). Moreover, by [Cow78], there

exists a positive integer q and a constant C independent from π such that

∥ξ ∗π η∥2q ≤ C∥ξ∥∥η∥ for each ξ, η ∈ Hπ. (6.6)

Let S be the finite family of subgroups S of G defined in [Cow79a]. Recall that the

only compact subgroup in the family S is the trivial subgroup S0 = {eG}. For each

S in S, let qS denote the quotient map from G to G/S. For each q ∈ N, define ĜS,q

to be the set of all (equivalence classes of) irreducible unitary representations π of

G that are trivial on S and each coefficient function of π satisfy (6.6) as a function

on G/S. Let u be an element of B(G). Recall that any unitary representation of

G on a separable Hilbert space can be written as a direct integral of irreducible

representations. Then we can decompose u as

u =
∑
S∈S

uS,

with uS ∈ B(G) ∩ (C0(G/S) ◦ qS). Each uS can be written as a direct integral of

irreducible representations in ĜS :=
∪
q∈N ĜS,q. Clearly if u belongs to B0(G) then

u =

∫
ĜS0

j(π)∑
k=1

ξkπ ∗π ηkπdµ(π),

with
∫
ĜS0

∑j(π)
k=1 ∥ξkπ∥∥ηkπ∥dµ(π) <∞. Now using an argument identical to the proof

of Proposition 6.1.2, we obtain (i). �
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