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Abstract

Boundary control systems are an important class of infinite dimensional control systems. A
key question is whether the mappings from input/state. input/output. state/input and initial
state/final state are well-defined bounded linear maps. When all four mappings are well-defined
and bounded. the problem is said to be well-posed. This thesis examines boundedness of the
input/output map.

Continuity of the input /output map for a boundary control system is shown through the system
transfer function. Our approach transforms the question of boundedness of the input/output
map of a boundary control system into boundedness of the solution to a related elliptic problem.
Boundedness is shown for a class of boundary control systems with Dirichlet. Neumann or Robin

boundary control. Use of the transfer function in approximations is also demonstrated.
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Chapter 1

Introduction

Many control systems involve control on the boundaries. We shall refer to these systems as
boundary control systems. For instance many structures are supported by cables. which are
relatively light in weight with respect to the whole structure. hence they tend to vibrate. Qutside
influences (such as wind) further magnify this vibration. Thus one might wish to apply some
control at the end of the cable (i.e. the boundary) to counter this effect. Another example is
noise reduction in commercial aircraft. For both safety and comforts of passengers and crews. it
is important to keep the noise to a minimum.

A key question is whether the state and output is continuously dependent on its initial state and
input. Hence we wish to determine when are the linear mappings from input/state. input/output.
state/output and initial state/final state are well-defined and continuous. (When all four mappings
are well-defined and bounded. the system is said to be well-posed.) This is important since not
every system arriving from a physical model is well-posed. Thus it is important for application
purposes to distinguish between them. The concept of well-posedness under an abstract setting
was unified in [Salamon. 1987]. In a later paper (Salamon. 1989]. he showed that boundedness
of the input/output map implies well-posedness of the boundary control system with respect to
some state space. Thus showing boundedness of the input/output map of a boundary control

system is important. This is the topic of discussion in this thesis.
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In Chapter 2. we give some mathematical preliminaries and a detailed introduction to the con-
cept of well-posedness. Examples are given throughout for clarification. In Chapter 3. we show
that boundedness of the input/output map for a boundary control system can be shown through
the system transfer function. This approach allows us to show boundedness of the input/output
map for a large class of boundary control systems. Finally in Chapter . we examine the use of
direct transfer function approximations for controller design as opposed to state-space approxi-
mations. This may be useful in practice since state-space approximations for multi-dimensional

systems are usually of very high order while the number of inputs and outputs is relatively low.



Chapter 2

Infinite Dimensional System

Theory

The theory of linear ordinary differential equations allows one to examine the solution to finite-

dimensional time-invariant equations of the form
£(t) = Az(t) + Bu(t). r(0) =g € R"” (2.1)

where 4 € R"*". B € R"*™ are constant matrices with underlying state space R". Assuming

that u(t) is sufficiently smooth, say Lebesgue measurable, then the above equation has solution
t
r(t) = exp(At)zo +/ exp(A(t — s))Bu(s) ds. (2.2)
0

An infinite-dimensional time-invariant system may aiso be represented as equation (2.1). However.
the operators A and B are now on an infinite dimensional state space. Moreover. they need not
be bounded operators on the underlying state space.

It is tempting to claim that the solution is still given by equation (2.2). but this is not quite

correct. Let M be the underlying state space and suppose B is unbounded with respect to H.
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Then the integral above is not necessarily well-defined in X hence r{t) as given by equation (2.2)
need not be in H. Immediately, we can conclude that certain "unboundedness’ restrictions must
be placed on B. This problem shall be the subject of discussions in Section 2.2.

For the remainder of this section we shall consider the solution to the homogeneous initial
value problem.

o(t) = Ax() r(0)=1rg €H. (2.3)

[s the solution given by

r(t) = exp(At)ro (2.4)

even when A is an operator on a possibly infinite-dimensional state space H7 There is a difficulty
in expressing exp(.At) since the traditional power series representation is no longer valid in cases
where - is an unbounded operator.

Instead. we seek a solution of the form
z(t) = T(t)ro. (2.5)

where T(t) is a bounded linear operator on #. Thus we may view T(t) as a generalization of
exp(.it).

For this solution to be valid. it must satisfy the initial condition z(0) = ro. Thus T(0) = [I.
Next. the system at any time ¢ is time-invariant. It can be shown that this condition trans-
lates to T satisfving T(t +s) = T(t)T(s) for all t.s > 0. Finally. we note that in the study of
elementary differential equations (i.e. when # = R"). we seek solutions z(t) continuously de-
pendent on initial conditions. Thus it is natural to seek continuous solutions r(t) even in this
general setting. This can be accomplished if we impose certain continuity assumption on 7°(t).
Since equation (2.5) must also describe the solution to equation (2.3) in the finite-dimensional
case and ‘l_i‘r& || explAt) — || is uniform so one might try to impose such a condition on 7(¢) as
well. However it can be shown (e.g. [Pazy. 1983. Theorem 1.2]) that this holds if and only if A

is bounded. Hence for unbounded operators 4. we cannot make such assumption. Instead we
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weaken the uniform continuity assumption to strongly continuous. That is. ,l_l.%L Tz -r|j=0
for all r € H.

Faniilies of linear operators 77(t) that satisfy the above conditions are known as strongly
continuous semigroups. We shall look at some of their basic properties in the next section. The

materials presented can be found in [Pazy. 1983] or [Curtain and Zwart. 1995].

2.1 Semigroup Theory

The theory of semigroups is an important tool in the study of infinite-dimensional systems. [t
allows one to describe the solution to abstract partial differential equations in a rigorous manner.

In such a context. one can regard it as a generalization to the exponential function.

Definition 2.1.1: Let X be a Hilber: space. A family. {T(t).¢ > 0}. of bounded linear opera-

tors in H is called a strongly continuous semigroup or Co-semigroup. if it satisfies the following

properties:

L. T(0)=1.

IT(Neg —xoll =0 as t = 0% Voo € H.
L T(t+s5)=T)T(s) t.s>0.

Example 2.1.2: [EXPONENTIAL FUNCTION] Let 4 be a bounded linear operator on

ac

1
some Hilbert space H. Set exp(At) = Z ;'-(At)". We claim that T(t) = exp(At) is

n=0
a Cp-semigroup on H. For each fixed t. 7(t) is linear and bounded on H. Moreover

T(0) = I. For any rg € H.

”E.-\t n

zo = 2o = Szl = (141~ 1) fzolL

=, (At
2

Since ef4ll* is continuous. lim+ e zo - zo| — 0. Finally for any t.s > 0 we have
t—0 -

— 1
[-‘(t+$ n—. t+5

n=0

WE
:I._-

3
1]
=}
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= Z ZL' n—k)’ =it

n—O
n!
- — 4" n. sn l_L !."-V
Z .4 +Zn’ (n—l Z n—)!’
n=0 n=1 n=2
- Z 1n S _“Z 1n .n _' lt.’zm:{nsn_*__”
—0 n=0
— n;n n.n
n=0 n=0
- = 1 . :
Thus T(t +s) = T()T (s). By definition. T(t) = Z ;7(.41)" is a Co-semigroup. @
n=0

Example 2.1.3: [LEFT SHIFT OPERATOR] Let H = L*(0. x) and consider the shift
operator on H

(T(Oh)(r) = hlt + 7). t.

)
v
=3

Clearly T(0) = I. Also.
(T{t+3)h)(7) = h(r + t +5) = (T(OA)(7 + 5) = [(T()T(s)) k] (7).

For each fixed t. T(t) is a bounded linear operator on H. [t remains to show that

lim T(t): =z forall : € H.

t—0+

Let W denote the set of continuous function with compact support. Let A € W. then

have for any ¢ > 0. there exists § > 0 such that if0 < ¢ < 4.

L

1Tk = hll, = (/0 lh(r + t) — h()[? d.r) <

But W is dense in H. so for any = € H, there exists A € W such that ||z — A||, < 5

Hence

IT(@):—=ll, = WT(t)z~h)+T(thh=h+h -z,

IN

iz = hll: + IT()A = Alla+ Iz = Al (since ||T(t)|| < 1)
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~

Thus T(t) is a Cg-semigroup on H.

Example 2.1.4: {1-D HEAT EQUaTION] One of the simplest examples of a well-posed

boundary control system is the problem of regulating heat flow in a one-dimensional

rod of length 1. through one end of the rod.

a:

It

:(r.0) =
(0.t) =

Ql@

ar

QO

(1.¢t)

ar

Q

INFINITE DIMENSIONAL SYSTEM THEORY

ref0.1]
re (0.1
t>40

t>40

Let H = L*(0.1). Define A\, = —n®=* and €, = V2cosnrr n = 0.1.2..... Then An

are the eigenvalues to the eigenvalue problem

F-T = Az
20 = 0
(1) = 0

with corresponding normalized eigenfunctions e,. Moreover {e,} forms an orthonor-

mal basis for H.
Define the linear operator T{1): = Zexp(/\nt)(:.e,,) en forall - € H and t > 0.

n=0
Then clearly 7(0) = /. moreover for any {.s >0 and - € H.

T)T(s)z

Zexp(/\nt)(’l'(s):.e,,) €n

n=0

= Z exp(Ant) <Z exp(Ams){z.em) em.e,,> €n
n=0 m=0

= Z exp(An(t + s))(z.€n) €

n=0
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7 4

= T(t+s):.

[t remains to show that 7 satisfies the strong continuity assumption.
Let € > 0. and T > 0 be fixed but arbitrary. Define
M= sup (exp(Ant) - 1)°.

n>t
tefo.T]

Thus M = 1. Foreach = € H there exists N € [!such that forallk > N, Z zoen)* < 5)
n=k -
For this .V, we can choose t; € [0. T] such that (exp(Ant,) = 1)* < W for all A,,.
1<n< V. Thusif 0 <t <ty
. 2
ITW: == = || (exp(Aat) = 1){z.e0) en
n=0
AY ~x
= Y lexpdnt) = 1P| (zoea) P+ D (exp(Ant) = 1)) (ze0) 1
n=0 n=V+1
N <
< Do(=expat))¥|(zen) P+ Y [ (zeen) I
n=0 n=N+1
€ 2 €
< simEllEllf + 5
2= 2
= e
Hence T generates a Cg-semigroup on H. |

Since our motive is to use the Co-semigroup T(¢) to solve a homogeneous initial value problem, we
must relate it to the operator A that appears in the differential equation (2.3). This relationship

is established via the following definition:

Definition 2.1.5: Let {T(t).t > 0} be a Cq-semigroup on a Hilbert space H. The infinitesimal



CHAPTER 2. INFINITE DIMENSIONAL SYSTEM THEORY 9

generator of the semigroup is the operator A defined by

. Th)r-r
Ar = lim ———,
h=0+

and the domain of 4. D(A). is the set of all vectors £ € H for which this limit exists.

To compute the infinitesimal generator of a Co-semigroup. we often need series representations of

the semigroup and state space elements. First. let’s recall the following theorem.

Theorem 2.1.6: [FOURIER SERIES THEOREM| Let {r,} be an orthonormal basis in a Hilbert

space H. Then any r € M can be represented by

= Z(z.zn)zn.l (2.6)

A similar representation is possible if the eigenvectors form a Ries: Basis in the space H.

Definition 2.1.7: A sequence of vectors {0,.n > 1} in a Hilbert space H forms a Ries: Basis

for # if the following two conditions hold:
1. SNP;" {on} = H:

2. There exist positive constants m and M such that for arbitrary A € [ and arbitrary scalars

ak. k€ {1.2.....K}.

K 2 K
mY laal® < <MY el
n=1 n=1

K
D_ anon
n=l

Definition 2.1.8: Twosequences {o,}. {vn}. n > 1 are said to be biorthogonal if (6n. t'm) = dmn.

Theorem 2.1.9: [REPRESENTATION THEOREM| Suppose that the closed. linear operator A on
the Hilbert space H has simple eigenvalues {A,.n > 1} and that its corresponding eigenvectors

{on.n > 1} form a Ries: basis in M.

L. If {wn.n > 1} are the eigenvectors of A* corresponding to the eigenvalues {An.n > 1}. then

the {vn} can be suitably scaled so that {on}. {wn} are biorthogonal.
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2. Every r € H can be represented uniquely by

[+
-1
—

r= Z\:(l Un)On. (2.
n=1

3. Forall r € D{A). A has the representation

Ar = Z An(z. tn)on. (:

n=1

[
(72
~—

4. The Co-semugroupT (t) generated by A is given by

T(t) = Zexp(,\nz)(~.u-n)o,,. (2.9)
n=1

Example 2.1.10: [EXPONENTIAL FUNCTION CONTINUED]

Let T(t) = exp(C't). where C is a n x n constant matrix. Using Definition 2.1.5 we

obtain
Ar = lim M =Crz,
h=sQ+ h
for all r € R™. Thus as expected. the infinitesimal generator of exp(Ct) is C. |

Example 2.1.11: [SHIFT OPERATOR CONTINUED] Consider the shift operator given

in Example 2.1.3. Using Definition 2.1.5 we have

(T{t)h)(r) — h(7) = lim h(r +t) = h(r) _dh

Ah= 1 = —
o t—0+ t dt

t—+0+

~1

for all differentiable A. Thus 4 = (%and D(4)={heL*[0.T]| A" € L*)[0.T].h(T)=0}.M

Example 2.1.12: [I-D HEAT EQUATION CONTINUED] Consider the Co-semigroup in



CHAPTER 2. INFINITE DIMENSIONAL SYSTEM THEORY 11

Example (2.1.4). By Theorem (2.1.9) we can write
T(t): = Zexp(z\nl)(:.en)f,, vz e L3(0.1).

n=0

Using Definition 2.1.5 we have

t): -z
Az =  lIm T()——-
=0+
" S o (exp(Ant){z.en)en = (z.€n)en)
= lim
t—0+ t
~
= {l_i.%L z—:o,\n exp(Ant){z.en)en

X
= Z An{z.en)en
n=0

& (=
= F(HZ:O(:J,,)@,)

-y

Bl i- B3 )
for all z € H*(0.1). Thus 4 = (;-I— and D(A) = { h € L*[0.T] | h'.h" € L3[0.T] }. Of

course. we could also have used Theorem (2.1.9) to obtain

Az = Z An{z.€n)en Yz € D(A).
=0

The next theorem gives a series of elementary properties of a Co-semigroup and its infinitesimal
generator. These properties justify the solution representation of equation (2.3) given in (2.3).
Theorem 2.1.13: [ELEMENTARY PROPERTIES] Let A be the infinitesimal generator of the strongly

continuous semigroup 7 (t) on a Hilbert space H. Then the following hold:

(i) For ro € D(A). and all £ > 0.
T(t)zo € D(A).
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(ii) For ro € D(A) and all ¢t > 0.
d
E(T(I)IO) = AT (t)xg = T{t)Axo.

(iii) For r € H.
ot

/ T(s)r ds € D(A).
0
and
t
.-l/ T(s)eds=T(t)r - r.
0

(iv) D(A) is dense in H.
(v) Ais a closed linear operator.

(vi) Ifwo = :gg % log [iT(t)||. then wq = ‘lim (tl logllT(t)I[) < x. The constant «q is called the
bada
growth bound of the semigroup.

(vii) Forall w > wq. there exists a constant M, such that ¥t > 0. !IT(t)“ < M, exp(«t). n

Given any Co-semigroup T with infinitesimal generator A. parts (i) and (1f) imply equation

(2.5} is the solution to the homogeneous IVP:
I(t) = Ar(t) r(0) =0 €. (2.10)

More importantly. given the homogeneous IVP (2.10). the solution exists and is given by (2.5)
provided that A is the infinitesimal generator of a Co-semigroup. Part (iv) and (v} of Theorem
2.1.13 state necessary conditions on A to be an infinitesimal generator of a Co-semigroup.
Existence of a solution to (2.3) relies on whether A generates a Co-semigroup on H. The
Hille-Yosida Theorem below gives conditions for this in terms of the resolvent operator defined by

R(A. A) = (Af — A)~L. Before stating the theorem. we first give some properties of the resolvent

operator.

Lemma 2.1.14: (e.g. [Curtain and Zwart. 1995. Lemma 2.1.11)) Let T(t) be a Co-semigroup
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with infinitesimal generator A and growth bound yu. Then for all : € H and Re(A)> = > u the

Jollowing results hold:

a. A € p(4) and

M
Re(A) — .

b. RO )| <
Theorem 2.1.15: [HILLE-Y0sIDA](e.g. [Curtain and Zwart, 1995, Lemma 2.12]) 4 necessary
and sufficient condition for a closed. densely defined. linear operator A on a Banach space Z to

be the infinitesimal generator of a Co-semigroup is that there erist real numbers M. such that

for all A with Re(\) > « we have

M

IR\ A < m

va>1. ® (2.11)

The beauty of the Hille-Yosida theorem is that no assumption is made on the boundedness of A.
However in general. equation (2.11) is non-trivial to justifv. For practical purposes. the following

corollary is much more useful.

Corollary 2.1.16: [LUMER-PHILLIPS] Sufficient conditions for a closed. densely defined operator
on a Hilbert space to be the infinitesimal generator of a Co-semigroup satisfying T ()] < expiwt)

are:

Re(40.0) < «llol|* Vo € D(A). (2.12)
Re(A*v.v) < «lwf? Ve e D(A%). (2.13)
[

Example 2.1.17: [EXPONENTIAL FUNCTION CONTINUED] Let A € R"*" be a con-
stant matrix with D(4) = {o € R"}. The adjoint operator is simply AT with

D(AT) = {v € R").
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Let H = R™ with |[-{l% = || - |]>. Then
Re (10.0) < omax (AT 4)loll3
Re (.4TL‘. L‘> < Omax (-’1T-") “"“..E
where 0max denotes the largest singular value. [ ]

Example 2.1.18: [SHIFT oPERATOR] Consider the first derivative operator A =

on H = L*[0.T) with domain

di

do

D(4) = {o € L*[0.T) | = € L20.T).o(T) = o}.

One can easily show that the adjoint operator A" and its corresponding domain are

given by

d

-2 DA = {:. € L2[0.7] —eL 0. TJ. Lw)_o}

Clearly D(A) is dense in #. Consider {0,} € D(A) such that o, — o and Ao, — y.
T

Let o(t) = —/ y(v)} dv. Thus o € D(A4) and do = y.
t

We shall show that ¢ = o.

dt

llo — onll

/;T!—/rry(”)dr—on(t)
= /T -/T y(r) + o, (7) d7
< / / (7) — oL (7)|? dr dt

= VT / 140n — I, dt
Q

9
-

dt

Thus o, — o©. Hence 6 = o. So A is closed. Finally consider o € D(A) and

14
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v € D(A"). Then

(Ao, o) —lo(0)]* = (Ho. o).

(A"vw) = =D = (4. v

Hence Re(Ado.0) = —3]o(0)]* < 0 and Re(A" v v) = —%|L"(T)|"’ < 0. Corollary 2.1.16
is satisfied with »+ = 0. Hence A is the infinitesimal generator of a Cy-semigroup on
H. From Example 2.1.11. we see that the corresponding Co-semigroup is the left shift

operator. ]

Example 2.1.19: [1-D HEAT EQUATION CONTINUED]

B3

Let H = L3(0.1). and set 4 = d—, with
dr?
D(A)={oe€ L*0.1)| 0. 0" € L*(0.1). o'(0) = 0.0'(1) =0 }.

In this case. A° = A and D(A") = D(A). As in the previous example. we can show

that .l is a closed operator with D(4) = H. Let 0 € D(A) and v € D(A") then

(do.v) (Orr. t)

= O:C'lé - (O;. L':)
= —ou; |(l, + {0, vrz)
= (o.vrz)

= (o.Av).

Now for any = € D(A) we have (Az.:) = (Az.2) so (A=, ) is real. Also

(Az.2) = =(zr 22) = =[] ]I* < 0.

Hence Re(A:z.:) = Re(A4"z.z) < 0. By Corollary 2.1.16. A generates a Co-semigroup
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on H. | |

Thus far. we see that if 4 is an infinitesimal generator of a Cig-semigroup. then the homogeneous

IVP has a unique solution. Next. we wish to examine the solution to the inhomogeneous I\'P

z(t) = Ar(t) + f(D). r(0)=ro e H. (2.14)

where - is assumed to be the infinitesimal generator of a Cp-semigroup in H.

The nature and existence of solutions to equation (2.14) depends on the smoothness of f(t).
In elementary differential equations. we seek a function r € C'([0. T]. R") such that r(t) € R" for
all ¢ > 0 and r(t) satisfies equation (2.14). This solution is referred to as the classical solution.

Suppose such a solution. r(t). exists and let f € L'([0.T].H). For0 < s < ¢

d .
(E(T“ - s]:(a)) —AT(t = 5)2(5) + Tit = s} (s)

=AT(t = s)r(s) + T(t — s} (Az(s) + f(5))

Tt - s)f(s). (Property (ii) of Theorem 2.1.13)
Since f € L'([0. T]. H). we can integrate the above equation from 0 to ¢ giving

() =T ()xg +/ T(t —s)f(s) ds.
0

—_—
(B
—
(a1}

—

Any z(t) defined by (2.15) is in C([0.T]. H). If £o ¢ D(A) then T(f)ro need not be in D(A) so
it may or may not be differentiable. If ro € D(A) then 7(¢)zo € D(A). hence it is differentiable.
Thus in this case. whether (2.15) is differentiable or not on [0. T] rests upon the differentiability
of f()' T(t - s)f(s) ds and whether fé T(t—-s)f(s)ds e D(A) forall 0 <t < T. In the case z(t)
is not differentiable on [0.T]. it is natural to consider solution (2.15) as a generalized solution to

the inhomogeneous [VP (2.14).

Definition 2.1.20: Let A be the infinitesimal generator of a Co-semigroup 7'(t) and f € L!([0. T]. H).



CHAPTER 2. INFINITE DIMENSIONAL SYSTEM THEORY 17

Then (2.15) is a mild solution to the initial value problem (2.14) on [0. T).

The concept of mild solution is the same as the concept of a weak solution in the study of partial

differential equations.
Definition 2.1.21: Let f € L'([0.T]. #). We say that z(t) is a weak solution of (2.14) on [0.T)
if 2(t) is continuous on (0. T} and for all 0 € C'([0. T]. H)

-T T
[ tetowy e [0y s i) gt = o. (2.16)
0 0

T
where g(t) = —/ T (s = o(s) ds.
t
Substituting the expression of g(f) into equation (2.16) we have

T T T T
/) {z(t).o(t)) dt—/o <f(t)‘/‘ T (s = Yo(s) u's> dt — <J:o./0 T (s)o(s) ds>

T

-T T T
/O(r(t).o(t))dt—/o /I(T(s—l)f(t).o(s)) d.s‘dt—/o (T(s)ro. o(s)) ds.

5]
!

T T T T
t). o)) dt — Tt =3s)f(s). o)) dt ds — T(t)ro. dt
/0<"'”°( ) /0 [( (t = $)£(s). (1) [0< ()20, 0(1))

where the last line was obtained by interchanging the dummy variables s and ¢ in the second term
and replacing the dummy variable s by ¢ in the third term. Changing the order of integration of

the second we have

)
I

T T ,t T
/0 (2(t). o(t)) dt—/o /O(Tu—s)f(s).ou))dsdt-/o (T(t)zo.0(t)) dt

T 4
/ <(r(t)—7'(t).ro—/ Tt —s)f(s) ds) .g(t)> dt.
0 0 .

Hence the mild solution given by (2.15) is a weak solution and vice versa.
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2.2 Well-Posed Systems

A system is said to be well-posed when both the state and output depend continuously on the
initial state ro and the input u. This statement will be made precise below. We shall describe well-
posedness of a linear time-invariant control system under three formulations: well-posed system.

o Talel

A well-posed system is described through four linear maps. (7. B.C.G):

z(t) T(t)xo + B{t)u(-). (2.17a)

y(t)

Clt)ro + G(t)u(-). (2.17b)

Any linear time-invariant control system can be described through equation (2.17). Let H. U
and Y denote the state. input and output space respectively. Then mathematically, well-posed

means that for any ¢t > 0. there exist constants b,.c, > 0 such that for all zo € X and u € U.

l=6)

2 t 9
s (ool + [ Nutoll as). (2.13)
Q
t \ ) t
Jstsil ds < e (ol + [ futs
0

We now give the formal definition of a well-posed system with respect to the four linear maps

(T.B.C.G).

M ds). (2.19)

Definition 2.2.1: Let X be a Hilbert space. Suppose u.r € L*([0.>).H) and let 7 > 0. We

define the r-concatenation of u and v by
u(s se0.7
(u: v) (s) = (s) (0.7)

vis — 1) s>

Definition 2.2.2: Let the input. state and output Hilbert spaces be denoted by &. H. ¥. A

well-posed system on L?([0.>).U). H and L?([0.).)) is a quadruple £ = (7. B.C.G). where

[WO0] T is a Co-semigroup of bounded linear operators on H.
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[W1] B is a family of bounded linear operators from L*([0.x).i) to H such that for any

u.v € L*([0.<).U)and 7.t >0

Br+[(llc- l') = 7;8?“ + Bg [AN (').20)

[W2] C is a family of bounded linear operators from H to L*([0.>).Y) such that for any r € X

and 7.t >0

Crpe2 =Cr2o G Toxr. Co =0. (2.21)

[W3] ¢ is a family of bounded linear operators from L*([0. a¢}).U) to L*([0. x).)) such that for
any u.v € L*([0.x).U) and .t >0

g,-+z(ug v) = Grug (C:Bru+Ger), Go=0.

—_
[ 8
.

o
(2]
-

A state space realization for an infinite-dimensional system (on some appropriate spaces to be

made precise later) is described through four linear operators . (4. B.C. D):

£(t)

Ar(t) + Bu(t). z{0) = zo. (2.23a)

y(t)

Cz(t) + Du(t). (2.23b)

A boundary control system (on some appropriate spaces to be made precise later) is described

through three linear operators. (A.[. A)!:

) = Az(). z(0) = zo. (2.24a)
Cz{t) = ult). (2.24b)
y(t) = Kz(t). (2.24c)

We shall see that under certain conditions a boundary control system (BCS) can be reformulated as

! When no output equation is given, we denote the boundary control system by the pair (A, ).
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a state space realization on an infinite-dimensional state space of a well-posed system. Moreover.
any well-posed system has a state-space realization.

Justification of well-posededness is non-trivial even in simple cases. We shall illustrate this
point through the one dimensional heat equation with Neumann boundary control. Moreover. we
will rewrite it as a boundary control system and give a state-space representation. Finally we are
going to show the equivalence of these representations by transforming it from a BCS to a SSR.

For a finite-dimensional systen in state space form. we have 4 € R**"?, B € R"*xm_( g Rrxn
and D € R™*™. The input. output and state space are R™. R" and R" respectively. The solution

to (2.23) is

2]
—_

~
—_

t
exp(At)rg + / exp(A{t — s5))Bu(s) ds
0

<

—_
~

—~—

C (exp(.—{t).to +/ exp(-({t — s))Bu(s) ds) + Du(t).
o

Clearly. the state x(t) and output y(t) depend continuously on the initial state rg and the input

u(t). For rg € R" and u(t) = 0.

(]

wn < exp(llAlit) ] zo] g

”y(')“L’([o.z]:Rr) < HCHe-‘P(H-“””“‘tO”R"'

Thus the mappings from initial state/final state and state/output are bounded. Similarly, for

ro =0 and u€ L*([0.¢t]: R™)

L

t F]
181 ([ exptate =51 ds) ot sopam
bt ” U(

IA

”/ exp(A(t — s))Bu(s) ds
0

Rn

')“Ln[o.:];ﬁm )

Set ¢, = ||C]|6 + || D|| then

“y(')"uuo.z]:nr) < Cl||“(')“z.2([o.z1:£mr
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Thus the input/state map and input/output map are also bounded. Hence any linear time-
invariant system on a finite-dimensional state space is well-posed.

For a linear-time invariant system on an infinite-dimensional state space. 4. B and C need
not be bounded operators in the underlying state space. What conditions are necessary on these
operators to ensure that the system is well-posed? For the moment. we shall concentrate on the
state equation (2.23a) only.

Let & and H denote the input and state space. both assumed to be Hilbert spaces. For ro € H
and u(t) = 0. equation (2.23a) is simply a homogeneous IVP. We know from Section 2.1 that if
A is the infinitesimal generator of a Co-semigroup 7 (¢). then it has solution z(t) = T(t)zo. Since

T(t) is a bounded linear operator on H. we have

=@l < IT@ 20l

Hence the mapping from initial state to final state is well-defined and bounded if A generates a

Co-semigroup on H. If B € L(U.H) we can write the weak solution to (2.23a) as
t
z(t) = T{t)ro +/ T(t - s)Bu(s) ds. (2.23)
0

Since B € L(U.H). ||BIl < Mp for some constant Mp. Let = denote the growth bound of T(t).
Choose any positive « > wq. then there exists some constant M. such that ”7’([)” < M, exp(«t)

for all ¢ > 0. Setting ro = 0. we see that for all u € L?([0.t].4) we have

t t
/ T(t — s)Bu(s) ds < / Mo Mpexp(w(t - s))|u(s)ll ds
/o H 0
¢ ‘17 t .}
< M. Mg (/ exp(2w(t ~ 5)) ds> (/ lfu(s)| ds)
0 0
< b "u(')”[_?([o.t].u)'

for some constant ;. Hence the input/state map is well-defined and bounded. But we are most

interested in problems with boundary control. This generally leads to a state-space realization
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with B € L(U.H). So for any u € U. Bu is not necessarily in X hence the term T(t — s)Bu(s)
in (2.23) is no longer necessarily well-defined and certainly j0' T(t — s)Bu(s) ds need not be in
H. To resolve the first problem. we define an extension of the operator T(t) to some larger
Hilbert space V so that the term 7 (¢t — s)Bu(s) is now well-defined on V. This extension must
be a Cg-semigroup on V. To distinguish between 7(¢) and its extension we shall denote the (-
semigroup and its infinitesimal generator on X by Ty(t) and A%. The extended Cy-semigroup
and its infinitesimal generator is denoted by 7y (t) and Ay.

Let ¥ be a Hilbert space such that B € L(i.V) and H < V. That is. there exists a bounded
linear and injective map ty : H = V and H is dense in V. The inverse map iy : Range iy — K

exists since iy is injective. So for r € H. we have
tyr = I,

where on the right hand side r is viewed as an element in V' and on the left hand side it is seen
as an element in M. For clarification. when r € H but we wish to view it as an element in V. we
will write tyr. The Co-semigroups T3 (t). Ty(t) and infinitesimal generators A%. Ay can now be
related as follows:

For r € H we have,

wTy(t)r = Tv () r. (2.26)

And for r € D(Ay)

wAAyr = Ayyr. (2.27)

By introducing the space V. we can now describe the solution to (2.23a) meaningfully. In partic-

ular.

r(t) = Ty(t)eyro +/ Tv(t — s)Bu(s) ds (2.28)
0

is well-defined in V and satisfies

2(t) = Ayz(t) + Bu(t) H(0)=r9€H
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almost everywhere for all + > 0 in V. However our desired solution state space is . hence we

t
need the range ot'/ Tv(t — s)Bu(s) ds 1o lie in iyH. If so. then
o

r(t) t

ty tyr(t)

t
L;‘Tv(l)zuzo + [;1/ Tv(t — s)Bu(s) ds
o

t
Ta(t)rg + L;l/ Tv(t — s)Bu(s) ds (by (2.26)).
i
If the integral does have range in (yH then we usually write
t
r(t) = Ty(t)xo +/ Tv(t — s)Bu(s) ds.
0

Certainly this range condition is not satisfied for all B € L£(U.V). Thus we have the following

definition.

Definition 2.2.3: [ADMissiBLE CoNTROL OPERATORs| Let 4. H and V be Hilbert spaces
satisfying H < V and T(t) be a Cih-semigroup on H. The control operator B € L(U.V) is said
to be an admissible control operator for T(t) if for some (and hence any) ¢ > 0 the operator

Be : L*([0.x).U) = V defined by
t
Biu:= / Tv(t — s)Bu(s) ds
0

has its range in K.

With an admissible B we can assign boundedness assumption on the input/state map:

[S1] B € L(U.V) and there exists a constant b, > 0 such that for all u € H'({0.t].U):

/ Tt — s)Bu(s) ds
0

u <b ”“(')”u([o.:]u)' (2.29)

We shall now rewrite the heat example 2.1.4 with Neumann boundary control at r = 1 (i.e.

zz(1.t) = u(t)) in state-space form. and show that condition [S1] is satisfied.
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Example 2.2.4: [1-D HEAT EQUATION] Consider

gz 3

d—; = 3-;—3. J.‘G[O.l]
H{Ll0y = 0. ref0.1]
2(0.t) = 0. t>0
RANE TR IR . ~
grit-t) = uge). t>u

03

Let # = L*(0.1) as before. Define 4 = i—;

with
DiAy={o€eH |0 0" € H.0'(0) =0.0'(1) =0 }.

Then A generates a Cp-semigroup on H. (Example (2.1.19)) Moreover. A is self-

adjoint. Let 0o € D{A") = D(A) and = be a solution. Then

(z.0) = (zrr.0)
= z0ly—(z.0")
= o(lu(t) - z0'|g+(. 0.x)
= (3(z - lu.o) + (z. Ao).

= (d(xr - Du.o) + (Az.0).

holds true for all © € D(4) in the sense of a distribution. If we set Bo = o(1). then

B & L{U.H). Let [D(A)] denote the D(A) equipped with the graph norm
=13 = H=lg + 1Azl

and define V = [D(A)]" to be the dual space of [D()]. Since [D(A)] < H this implies
that # < V. (e.g. [Curtain and Zwart. 1995. Lemma A.3.33]) Thus B is in LU.Vv)
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[
ot

although Bu is not an element of H. The differential equation

2(t) = Ay:z + Bu.

is only satisfied on V. The operator Ay takes an element = € H and maps it into a

iinear functional =" € V. That is. :* : D(4) — .

We now show that B is an admissible control operator. From Example (2.1.12), the

Co-semigroup can be represented as

N
Tu(t): = Z exp(Ant)(z.€,)en Vz€EH
n=0
where
en = V2cosnrwr.
A = —n*rmi.

The extension of 73 into V. denoted by Ty. is the Cp-semigroup generated by 4y and

it satisfies equation (2.26). Thus

i

/ Tv(t — s)Bu(s) ds

H

“/ Ze\p(A t — s} (Bu.eg)e,
H

= </ Ze\p (t = 5))(Bu.en)V2cos xr ds. /( Zexp(z\n(t — 5))(Bu.e,)V2cos 7z ds>
H

0 n=0

= '.’E
n=0
ac

= 2)

n=0

2 xp(An(t — 1 d.
g’(/ole\p( (t = s)u(s) | )

B
-

/ exp(An(t — 5)}{Bu.€,) ds
0

g

/ exp(An(t — s))u(s) ds
0

IN
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3

< {(/le\p(\ (t = s)) ) (/|u(s)|da> }
= .')HU(')”'Z’.:{[OJ];R) Z/ | exp(,\n([ - a)) ]'.’ ds
S -||u ||L 0.2 ):R) Z/ e‘(p nlt = s)) ds

o=

t

-1
= 2o, pm) Z TCKP(-’\nU =)
n=0 =77 0

5 = (exp(2Ant) = 1)
= JuC Mz 0.~ pm) z S W
n=0 n

= 1\'1”“(‘)||Z2([0.x):R)'

t
for some constant KA,. So / T (t — s)Bu(s) ds is bounded from L*([0. x<)./) into H.
0

Hence we can define for all ¢ > 0. the input/state map B, as
t
Biu =/ Tt - s)Bu(s) ds.
0

Again. we must remind ourselves that although the range of B, is in H. the integral

above is carried out over the space V. |

Now let’s consider the output equation (2.23b) with u(¢) = 0 and output space Y. If C € L(H.))

then

y(t) = CTul(t)ro

is well-defined for all zg € H. Moreover, there exists constant ¢, such that for all ro € H.

“CT(')"'”L:([O.:I,,V) S "I”H

For many problems C ¢ L£(H.)Y). so CTx(t)zo is not necessarily well-defined. To resolve this
problem. we define a restriction of the operator T(t). denoted by Tiw(t). to some smaller Hilbert

space W so that CTw(t)zo is well-defined. Hence the restriction operator should also be a Co-
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(89
-1

semigroup on W and its infinitesimal generator is denoted by A .
Let WV be a Hilbert space such that " € £(W.)') and W — H. That is. there exists a bounded

linear and injective map t3 : YV = H and W is dense in . So for + € W' we have
tnTwit)r = T (t)in L. (2.30)
And for r € D(4Aw) we have
tyAwr = Ayinr. (2.31)

For r € W. we can thus describe the output by
y(t) = CTwit)zo.

But we need to be able express the output for any o € H. This is possible if the following

operator Cr : W — L*([0.T).))

CTw(t)r. ¢ 0.T
(Cro)(t) = wite. te0.T) (2.32)
0. t>T.

has a continuous extension to . This certainly is not satisfied for all C'. we thus have the following

definition:

Definition 2.2.5: [ADMIssIBLE OBSERVATION OPERATORS] Let . 3V and H be Hilbert spaces
satisfying W — H and T(t) be a Co-semigroup on H. The observation operator C € L(W.))
is said to be an admissible observation operator for T (t) if for some (and hence any) t > 0. the

operator Cr defined by (2.32) has a continuous extension to all of K.

With an admissible C' we can assign boundedness assumption on the state/output map:

[S2] C € £{W.)) and there exists a constant ¢, > 0 such that for all £ € W:

"CT(')I"L?([Q:],)J) <ee Hf”n (2.33)
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We now show that Example (2.2.4) with point observation satisfies [S2].

Example 2.2.6: [1-D HEAT EQUATION WITH NEUMANN BOUNDARY CONTROL CON-
TINCED] Let H. A. e, and A, be as defined in Example {2.2.4). Given £y € (0. 1). set

y(¢) = z(xry.t). then Co = o(r,). Recall that

~

Tn(t): = Z exp(Ant){z.en)en VzEH

n=0

and Tw(t) = Tx () w

|}CTw(-)¢L‘I|i=({o.11:y)
= (CTw()w. CTwi()w) H{o.T1:3)

T
= / | CTw(t)w |? dt
0

-y

T =~
= / ’ZC'exp(z\.,l)(w(z).e,,(.r))en(.r) dt
0 ,n:O
Tl ~ :
< -.)/ lZexp(/\nt)(w(z).en(.t)) dt
0 n=0
T a0 S '
< ‘.2/ (Z exp(2A,t) (ZKu’(r)en(:))l") dt
0 rn=0 n=0
2 o= (exp(2A.T) = 1)
< 1= —_—
< el =
n=0
= Rrilull
for some constant A'r. Thus. C is an admissible observation operator. |

Since C'x(¢) is not well-defined for all z(t) equation (2.23b) does not describe the input/output
map appropriately. A logical extension to the output equation was given in [Salamon. 1984] as

follow: Let u € p(A). then

(t) = (p=A)"Hp-A)z(t)



CHAPTER 2. INFINITE DIMENSIONAL SYSTEM THEORY 29
= (p= A7 pz(t) - FO) + (p = )" Bu(t).

For sufficiently smooth r(t). the first term is in D(A) thus we may apply the operator C to the
first term. However Bu(t) € H in general thus we have that C(z — A)~!But) is not well-defined.
This suggests defining

y(t) = Clp = A)~Hpr(t) - £(1)) + GLu(t). (2.34)

for some G, € L{U.)).
We now state the formal definition of well-posedness with respect to the operators A. B. C and

G ,. This concept was first introduced in (Salamon, 1937].

Definition 2.2.7: [WELL-POSEDNESS OF STATE-SPACE REALIZATIONS] Let W. H. V be Hilbert
spaces so that W — H — V. Consider A € L(W.H). B € L(U.V). C € LOWV.)Y) and
Gu € L(U.Y). The state-space realization (2.23) on K is said to be well-posed if the following

four assumptions hold for all ¢ > 0:

S0} A generates a strongly continuous semigroup on all three spaces W. X and V.
g g

(S1] There exists a constant b, > 0 such that for all u € H'([0.t].U):

< befluC) L agqo.eraey- (2.35)

t
/ T(t —s)Bu(s) ds
o] H

{S2] There exists a constant ¢, > 0 such that for all r € W

HCT (el oy < cellz)|a- (2.36)

[S3] There exists a constant g, > 0 such that for all u € H*([0.¢].4) with u(0) = 0:

lyCHlz2qo.e1.3 < gellel-lL2o.e20). (2.37)

Any well-posed system (7.B.(C.G) has a state space realization (4. B.C. G,) (Salamon. 1989:
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Weiss. 1989a: Weiss. 1989b]. Also. (A. B.C) is a state-space realization of a well-posed system if
the realization (A. B. (.G ,) is well-posed.

Aside from [SO] there are no restrictions on the choice of VW and V. However it was shown
in[Weiss. 19%9a] that if [S1] holds. then B has an extension to a bounded operator from U to V.

Here V* := [D(A3,)] is the domain of 43, equipped with the graph norm. i.e.

ellpiasy = llziln + HAZ

[D(A3)]". So may we choose V = [D(A3%)]". In [Weiss. 1989b]. it was shown that if [S2] holds.
then " has a restriction to a bounded operator from D(A)} to Y. hence we can set W = D(A)
equipped with the graph norm.

The Hilbert spaces WV and V satisfy W «s H < V. The restriction and extension of 7 (¢) and
Ay are defined as follow: Let Ty(t) be a Co-semigroup on H with generator Ay : D(An) — H.
Then T3, (¢) is a Co-semigroup on M with generator Ay D(Ay) = H. Then V* — H — V and
A3 is a bounded linear operator from V" into H where V* = [D(A},)]. If we identify the dual of
H with itself. then by duality. (43)" is a bounded linear operator from H into V. This dual is
identified as an extension of 43 and it is denoted by 4y. The Ch-semigroup generated by Ay on
V is denoted by Ty(t) and is identified as the extension of Ty(t).

Define W = D(Ay). for £ € W.Ty(t)r € W. We thus define Tw(t) = Tx(t) w’ The
infinitesimal generator of Tw(¢) is denoted by . So far. we have discussed well-posedness
conditions [S0]-[S2]. Condition [S3] which corresponds to boundedness of the input/output map

will be discussed in Chapter 3.

2.3 Boundary Control Systems

In this section. we discuss well-posedness of a boundary control system. That is. a system that
involves control on the boundaries. The state equation is described through a partial differential
equation which can be rewritten into the form :(t) = A= for appropriate choice of A. The operator

I' can be defined naturally as the operator that maps =z(t) to where the boundary condition is



CHAPTER 2. INFINITE DIMENSIONAL SYSTEM THEORY 31

applied. Similarly. the operator A can be defined naturally as the operator that maps :(t) to
where the output is to be observed. Hence any boundary control system can be described by the

triple (A.T. KA’). That is.

() = Az(e. 2(0) = 2.
Fz(t) = u(t)
y(ty = K:(1).

We denote the state. input and output spaces by H. & and ) respectively. [t is assumed that
A€ L(ZH). Tel(Z.U)and K € L(Z.Y) where Z.H. U. Y are Hilbert spaces. Ve assume
that 2 C H with continuous dense injection and the operators [ and A satisfy the following

additional assumption:

[B+] T is onto. ker [ is dense in H. there exists a u € R such that

ker(ul — A)N ker I' = {0} and (uf - A) is onto.

Later on. we shall show that under certain conditions a boundary control system can be refor-
mulated as a state-space realization and vice versa. We begin by rewriting the 1-D heat exam-
ple (2.1.4) with Neumann boundary control (Example (2.2.4)) and point observation (Example

(2.2.6)) as a boundary control system.

Example 2.3.1: [I-D HEAT EQUATION WITH NEUMANN BOUNDARY CONTROL CON-

TINUED| Let H = L?(0.1). &4 = Y = R and set
Z={o€eH|o.0"€eH. o'(0)=10}.

with norm

(0.0)z = (0.0)n +(0'. 0"V + (0".0")n

2

d .
For 0 € Z. define Mo = EI—Z.FO =¢'(l) and Ao = o(r,). Note that Z C H?(0.1).
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Thus.
Il = sup [[dolly = sup [lo"|jn < x.
llellz=1 Hellz=1
T = sup [Follr= sup [lo'(})]| < =x.
{lel|z=1 Holjz=1
1Kl = sup llRollg = sup [lo(l)fj < x.
lojjz=i jloj|z =t
Hence AT and A are bounded linear operators on the desired spaces. ]

Well-posedness of a boundary control system is defined with respect to the triple (M. . &). This

concept was introduced by Salamon in [Salamon. 1987].

Definition 2.3.2: [WELL-PoseDNESsS ofF BCS] The boundary controi system (2.24) is said to

be well-posed if the following set of hypotheses are satisfied.

[BO] For every z9 € Z with ['zg = 0 there exists a unique solution.

:(t) € C([0. T]. ZYN C'([0. T]. H). of (2.24) depending continuously on zo.

(B1] For all 20 € Z. and u(-) € H'([0. T].&) with Tzg = u(0). there exists a unique solution.

:(t) € C{0. T]. Z)N C'([0. T]. H). of (2.24) depending continuously on zo and u(-).

[B2] Assumption [BO] is satisfied and there exists a constant ¢ > 0 such that

T
/ 1K =(t: z0. )13 dt < el o]l
1]

for all z0 € W with I'zg = 0.

[B3] Assumption [BO] is satisfied and there exists a constant ¢ > 0 such that

T \ T
/ (0. )|} dt < ¢ / lu()3 1.
0 0

for all u(-) € H3([0.t}: ).
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One sees that hypothesis [B2] ensures the state/output map is bounded while [B3] ensures the
boundedness of the input/output map. Thus they are equivalent to [W2] and [W3]. Condition
[BO] assumes uniqueness of solution of the homogeneous I\VP and is equivalent to [W0). Finally
[B1] is equivalent to [W1].

In Section 2.2 and Section 2.3, we have formulated the heat example as a boundary control
system and as a state space realization. We know that if the state-space realization is well-posed
then it is the realization of some well-posed system (T(t).B(t).C(t).G(¢t)). It is natural to ask
when a boundary control system is representable as a state space realization of a well-posed system
and vice versa. The following two theorems show how this can be accomplished.

The first theorem states that if a boundary control system (A.T. A') satisfies (B+]. then we
may rewrite the boundary control system as a state-space realization. The second theorem states

that the reverse can also be accomplished if an additional condition is satisfied.

Theorem 2.3.3: ([Salamon. 1987])

Suppose the triple (A.T.K') with Hilbert spaces Z, H. U. Y defines a boundary control sys-
tem. Assume that the operators M. T and K satisfy [B+]. Then the space W and the operators
A€ LW.H) and C € LOW.)) are given by

W = {(reZ|lr=0} (2.38)
Ar = A, (2.39)
Cr = Kz (2.40)

where ¢ denotes the canonical injection from W to Z. Furthermore. if we let V be the dual space
of V* = [D(A")]. Then the operator B € L(L'.V') can be obtained as follou::

For any given u € U. choose £ € Z such that Tr = u. (r erists since [ is onto.) Define

Bu =:Ar - Ayr.
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Finally, for y € p(A) the function G, € C{U.Y) is given by

G, =RKul - A)"'B. |

Theorem 2.3.4: ([Salamon. 1987]) Let the operators (A. B.C. Gy) with Hilbert spaces W. H,
V. U. Y define a state-space reafization of a well-posed system. Assume there erists y € R such

that ul — A : W — N is boundedly invertible. Moreover, assume that B is injective and that
Range{B} NH = {0}.
Define the Hilbert space
Z={reH|Avr € H +range B)

with norm

lellz = llell3 + llulli + 1142 + Bullf,

where u € U is the unique input vector with Ar + Bu € H. Forr € Z and u € U uwith
Axr+Bu € H, the boundary control system operators N € L(Z.H). T € L(Z.U) and Kk € L(Z.))

can be obtained as follow:

Ar = AdAr+ Bu
[r = u.
Kr = C(pl-A)"Ypr-2Ar)+G,Tr.

Example 2.3.5: [HEAT EQUATION WITH NEUMANN BOUNDARY CONTROL CONTIN-

CED] Let A.T.A.H.Z be as defined in Example 2.3.1. Then by the above theorem

W={veZ|u'(0)=0. v'(1)=0}.
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-y

Moreover 4 = 7# with D(4) = W. and Co = o(1). It remains to construct the
dr?

operator B. Let o € Z such that T'o = u(t). Then for any v € D(A") = D(4) we

have

(Bu. v)

(Ao — Ayo. v)
= (" v)y-(v".0)
’ 1 s 1
= ofufi-vol,
= o' (l}e(D

= uo(l)

= (3(z - 1)u.o).

Hence Bo = o(l). We note that although Bu ¢ H. Ayr + Bu= Ar € H. [ ]

Theorem 2.3.3 shows that any well-posed boundary control system satisfying [B+] can be written
as a state-space realization of a well-posed system. Theorem 2.3.1 shows that a state-space
realization of a well-posed system can be written as a boundary control system provided the
control cperator is injective and strictly unbounded. Thus under these additional hypotheses. the
well-posedness assumptions [Bi] must be equivalent to [Si] (i=0,- - - 4). This is summarize in the

following theorem.

Theorem 2.3.6: ([Salamon. 1987]) Let (A. K. T) be a boundary control system with correspond-
ing equivalent state-space realization (4. B.C.G,). Then the boundary control system satisfies
hypothesis [Bi] if and only if the state-space realization (A. B.C. G,) satisfies hypothesis [Si]
(i=0,--- 4). n



Chapter 3

Input/Output Maps

In Chapter 2 we introduced the concept of well-posedness for infinite-dimensional systems. We

demonstrated through a one dimensional heat equation that justification of well-posedness is a
non-trivial matter. The input/output map describes the relationship between the inputs and the
outputs in the time domain. It is also possible to describe the relationship using the Laplace

transform.

Definition 3.0.7: Suppose that an input-output map is given by the convolution of f(t) and
u(t). denoted by y(t) = f(t) = u(t). We define the system transfer function to be the Laplace

transform of f(t). denoted by F(s). when it exists.

The following theorem shows that if the input/output map of a system is bounded then it can
be realized by a well-posed system in state-space form. thus we concentrate on the study of
boundedness of this map. In particular. we develop sufficient conditions for boundedness of the

input/output map for several classes of boundary control systems.

Theorem 3.0.8: ([Salamon. 1989]) Every bounded. time incariant. causal. linear input-output

operator has a well-posed state space realization. ]

REMARK 38.0.9: Salamon’s proof involves giving an explicit representation for each of the four

36



CHAPTER 3. INPUT/OUTPUT MAPS 37

operators A.B.C and G,. An alternative proof was given in [Jacob and Zwart. 1998]. Their

proof makes use of frequency domain analysis.

The following theorem [Curtain and Weiss. 1989] shows that the boundedness of the input/output

map can be examined through the system transfer function.

Theorem 3.0.10: ([Curtain and Weiss. 1989]) IfU.H.Y are Hilbert spaces and (A,B.C) is a

triple of operators such that
[CW1] A is the generator of a Co-semigroup T on H.
[CW2] B is an admissible control operator for T.
[CW3] C is an admissible observation operator for T.
then the input/output map of the system is bounded if and only if there erists a real number &

such that the system transfer function. G(s). satisfies

sup || G(s) [lean < x.

Res D> d

The function Gi(s) is said to be proper if the above inequality holds. |

For the remainder of this section. we study the meaning of transfer functions. Consider a finite

dimensional state-space realization

e
—_—
~
~—

Ar(t) + Bu(t). x(0) = zq.

Cr(t).

w2

—_
~

—

where 4. B and C are constant matrices of appropriate dimensions. (For simplicity we assume

the system is strictly proper) The input/output map is well defined and given by

¢t
y(t) = C/ exp(A(t — o)) Bu(o) do. (3.1)
0
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Let f(t) = Cexp(-At)B then the output is simply the convolution of f(t) and u(t). For s € p(A).

f(t) is Laplace transformable. Taking the Laplace transform on both sides of equation (3.1) gives
yis) = Fs)u(s). (3.2)

The function F(s) is the sysiem iransfer funciion.

For bounded linear operators B and C. the input-output map is described by
t
y(t) = C/ T(t — s)Bu(s) ds. (3.3)
0

The output is the convolution of CT(¢t)B. with the input and the system transfer function is
simply the Laplace transform of CT(¢)B.
When B and C are unbounded operators, the input-output map stated above is no longer

well-defined. From equation (2.34). we know that the output equation can be described by
y(t) = Clp = A)~Hpz(t) = £(1) + Gau(l). (3.4)

where G, € L(U.Y). If (4.B.C) satisfy [S0]-[S2]. it was shown in {Curtain. 1988a] that for
sop € p(A). (sI = A)"'B e LWU.H) and C(ul — A)~' € L(H.)). The operator (s/ — 4)~'B
describes the input/state map in frequency domain and the operator C(uf — 4)~! describes the
state/output map in frequency domain. Hence we may take the Laplace transform from both

sides of equation (3.4) to obtain
§(s) = C(ul = A)~Yu = s)(sI = A)"'Ba(s) + G a(s).
The system transfer function is defined to be

F(s)=C{ul - A) Y u=s)(sl — A)"'B+G,.
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From the above equation we see that if (A. B. (') satisfy the assumptions of Theorem 3.0.10 then
F(s) = G,. It was also shown in [Curtain. 1933a] that there exist real constants m,.m» and ¢

such that for all Re s > ¢ we have

_ my
(s = 4) lB”uu.H) = VRes
' ) ms
IC(sT = 4) ey < VRe s

Hence there exists a real constant M such that ||F(s)|[cu.y) < Mls| for all Re s > ¢. F(s).

Theorem 3.0.11: ([Zemanian. 1972. Theorem 6.5-1]) A necessary and sufficient condition for a
function F(s) € L(U.Y) to be the Laplace transform of a distribution [ with support of f C [0.x)
are that there erists some half plane Re s > c on which F is a Y-valued analytic function and

there be a polynomial P for which

NE(sMlewy) < P(ls]) Res>c¢ (3.3)

where P(|s]) is some polynomial in |sj. ]

Since F(s) is the Laplace transform of a distribution f(¢). hence y(t) is simply the convolution of
this distribution and the input.

in the above argument. we assumed that (A. B. (') satisfy assumptions [S0]-[S2]. This results
in a transfer function that is well-defined on some half-plane.

The remaining question is then how can we describe the input/output map when we don't
know that (4. B. C) satisfy [S0]-[S2]. As we shall see later. this is of particular importance since
our methodology centers on the boundary control system formulation and not the state-space

realization.
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Let L} _([0.>):U) denote the space of locally square-integrable functions on {/. For any real

2
loc

o. define the space L2 ([0.3c):U) to be u € L} _([0.>):) such that

flullz =/0' exp(—2at)|lu(t)||? dt < x.

Suppuse au wpui/ouiput wap § is linear. shift-invariant and causai and the output is given by
y = Gu. If G is a continuous mapping on Cg°(R") into C>(R") then by [Yosida. 1971. Theorem
2] there exists a unique distribution f such that Gu = f = u. That is. the input-output map is the
convolution of a distribution with its input. If this distribution is Laplace transformable then we
define the transfer function of the system to be the Laplace transform of this distribution.

In the next section. we discuss previous results for showing boundedness of the input/output
map. [n Section 3.2 we give a representation for the system transfer function purely in terms of
the boundary control formulation (Theorem 3.2.2). This result justifies taking the formal Laplace
transform of the system of differential equations. This method has a few advantages. First. our
representation does not require the computation of (A. B.C). Second. this method is particularly
useful for boundary control systems in more than one spatial dimension where the system transfer
function is hard to obtain. It also has consequences for controller design since the transfer function
rather than the state-space representation can be used. Our approach transforms the question
of boundedness of the input/output map of a boundary control system to boundedness (in some
sense defined later) of the solution to a related elliptic problem (Theorem 3.2.6). In Sections 3.5
- 3.8 we show boundedness of the input/output map for a large class of problems with either

Dirichlet. Neumann or Robin boundary control.

3.1 Previous Results

One of the main techniques used in establishing well-posedness conditions uses spectral expansion
of the underlying semigroup. This technique is applicable to showing boundedness of input/state.
state/output and input/output maps. For example. in [Curtain. 1988b] it was shown that the

state/output map of an Euler-Bernoulli beam with velocity sensing of the transverse beam vi-
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brations is bounded. In the same paper. it was also shown that an undamped wave equation
with Neumann boundary control and pointwise velocity observation is well-posed. In [Curtain
and Weiss. 1989). it was shown that the one dimensional heat equation with Dirichlet boundary
control and point observation is well-posed under a suitable choice of state space. In [Morris.
1992]. well-posedness of an accelerometer control system was shown. In [Avalos et al.. 2000:
Avalos et al.. 1999] the boundedness of the input/output map of a structural acoustics control
system is studied with several different types of observation. Pritchard and Salamon [Pritchard
and Salamon. 1987] showed that if the spectral expansion of the control operator B and observa-

tion operator (" satisfy certain assumptions. then the system

£(t) = Az(t) + Bu(t). y=Cr(t)

satisfies well-posedness assumptions [S1] and [S2]. In the same paper. they obtain similar results
for the system

I(t) = Az{t) + Bu(t). y=C:(1t).

The spectral expansion method requires the availability of the eigenvalues of the system (or at
least estimates of them ) and also that the corresponding eigenvectors must form a Riesz basis.
For multi-dimensional problems it is difficult to calculate the eigenfunctions and eigenvalues of
the underlying semigroup. Hence this methodology doesn’t seem promising for a large class of
problems.

Another method for justifying boundedness of the input/output map is through Theorem
3.0.10. That is. the input/output map is bounded if and only if the system transfer function is
proper. In fact. most existing results on boundedness of the input/output map. e.g. [Curtain and
Weiss. 1989: Morris. 1992]. for boundary control systems do so by showing that the system transfer
function is well-defined and bounded in some right-half of the complex-plane. The difficulty is that
the transfer function has only been rigorously obtained for a few one-dimensional systems with
an explicit Riesz basis. Moreover, the three linear operators (A, B. C) that govern the state-space

realization are difficult to obtain.
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In [Banks and Morris. 1994]. boundedness of the input/output map was shown for a class of
structural control systems with point measurement of acceleration by showing that the system
transfer function is proper. However, unlike the examples given above. justification of properness
for the transfer function was not computed directly. Instead. they show that the infinitesimal
generator A generates a uniformly bounded analytic semigroup on some appropriate space hence
implying properness of the system transfer function. This result is generalized in Section 3.3.

For completeness we mention that several other authors have used different techniques to
study boundedness of the state/output map and input/state map. For more details see for exam-
ple [Lasiecka and Triggiani. 1991]. [Lasiecka and Triggiani. 1999].(Grabowski. 1990]. (Grabowski.
1995]. [Grabowski and Callier. 1996b] and [Grabowski and Callier. 1996a).

Thus our objective is to derive conditions that guarantee boundedness of the input/output

map for a general class of boundary control systems without computing a state space realization

3.2 Boundedness of Input/Output Map

In this section. we present a general technique to obtain the transfer function of a boundary control
systermn and present some preliminary results on properness. We first give a formal resuit explicitly
defining the transfer function in terms of an elliptic problem associated with the boundary control
system. Recall that a boundary control system (without the output equation) is described through
the double (A. ') where A € L{Z.H). T € L(Z.U). The corresponding abstract elliptic problem

is defined below:

Definition 3.2.1: The abstract elliptic problem (A.T), corresponding to the boundary control
system (A, T), is
A: =s:. sel

(3.6)
Il =u. ueld

where z(s) € Z and input u € /4. We denote the soluticn by z(s).

Let p indicate the growth bound of the semigroup associated with A. The elliptic problem (3.6)

has a unique solution z(s) for all u and Re s > u. In fact. the system transfer function may be
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described through the solutions to the abstract elliptic problem (3.6).

Theorem 3.2.2: Let (A.T. K) define a boundary control system. Suppose T is onto and that
ker T is dense in H. Define W. A and D(A) as in Theorem 2.3.3. Then there erists a i € R such

that the transfer function. G(s). of the boundary control system (A.T. K) is given by

G(s)u= KNz(s) Vs € Z. with Re s > u. (3.7)

where :(s) is the solution to the abstract elliptic problem (3.6) with input u.

Proof: Let p denote the growth bound of the Co-semigroup generated by 4. By Lemma 2.1.14a.
for all s € T with Re s > u. s € p(4). Let ¢ denote the canonical injection from W to Z and
define the linear operator C € £{W.)) by C = K. For any given u € U. choose : so that [z = u.
Then G(s) € L(U.Y) and by Remark 2.7 in [Salamon. 1987] we have Theorem 2.3.4 it is defined
by

G(s)Te:= Kz =C(sl = A)" Y (sz = Ax). {3.8)

Now for any u € U and any s € Z. with Re s > p. let = solve the associated elliptic problem.

That is. Az(s) = sz(s) and [z(s) = u. From equation (3.8) we have

Gislu = K:=C(sl = A)""(sz - A2)

= K:z(s).

This is precisely (3.7). ]
That is. the solution to (3.7) gives a representation of the transfer function of a boundary control
system. The representation of G(s) obtained above is not surprising as the abstract elliptic
problem (3.6) is simply the ~formal Laplace transform™ (with respect to t) of the boundary control
system. We say that it is the “formal Laplace transform™ since I' € £(Z.H) and A € £(Z.H).
Thus it is unclear whether the Laplace transform of I'z is simply ['? and A= = A2 Theorem 3.2.2
is a justification of such a process.

As an example. we compute the transfer function for a 1-D system using equation (3.7).
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Example 3.2.3: [1-D HEAT EQUATION WITH NEUMANN BOUNDARY CONTROL CON-

TINUED| Let the output be temperature measurement at a point r;. 0 <rn <L

We have shown in Chapter 2 that the input/state map and state/output map is

bounded. For ease of reference. we recopy the system equations

£ = ref0.1] ]
H{r.0) = 0. r€0.1]
2£0.t) = 0 t>0 (3.9)
L) = u(e). t>0
wit) = z(r.t)

The elliptic problem corresponding to (3.9) is

43z —_ -
EF -— \ Judiy
20) = 0 (3.10)
() = a
with output equation y = R’z = z(x;). The solution to the abstract elliptic problem

is

& cosh(/s r)

(L) = ————

Vs sinh /s
Using the definition of growth bound. we see that u = 0. By Theorem 3.2.2 we have

for all s € C with Re s > 0. the transfer function of the system is given by

. . {u cosh(y/s )
. = [\ —— 7
Gl (%7 )
i cosh(\/s r;)
Vs sinh /s.
This is exactly the transfer function one would obtain by formally taking the Laplace

transform of (3.9). Moreover the transfer function is clearly proper hence the in-

put/output map is bounded ]

44
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The following example shows that if the boundary condition is not chosen correctly, it leads to
an improper system transfer function. Hence examining the nature of the input/output map is

useful in determining whether the mathematical model of the system is physically reasonable.

Example 3.2.4: [EUCLER BERNOULLI BEAM WITH KELVIN-VOIGT DAMPING] Con-
sider the Euler-Bernoulli beam with Kelvin-Voigt damping. The beam is assumed to
be fixed at r = 0 and free at r = |. Then a mathematical model for the motion of the

transverse displacement is

Sir GBS vedgs] = o0 re(.) |
:0.6) = 0. t>0
,%—;(O't) = 0. t>0 a.11)
(L) = 0. t>0
T = a(). t>0
yit)y = SH(Lo). )

where £ and cq4[ are physical constants. We shall compute the system transfer

function via Theorem 3.2.2. The elliptic problem associated with (3.11) is
(E[+sc.;1)% = —s2: |
0y = 0
#(0) = 0. (3.12)
1) =0
(1) = u )

with output equation y = R'z(1) = sz(1). The solution to the abstract elliptic problem
is

z(z) = Acosh(mz) + Bsinh(mzs) — A cos(mz) — Bsin(mz).
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where

1

—s? 3

mo= (51+ scdl)

1 —u(sinh(m) + sin(m))

) 2m3(1 + cosh(m) cos(m)’
__1(rn;h(yn) +r0:(rn)\

B = \ /

sinh(m) + sin(m)

Thus the system transfer function is given by

s(sinh(m) cos(m) — cosh(m)sin(m)) u

Gls)u=s:z(1) =

m3 (1 + cosh(m) cos(m))

One can show that

[ llim‘ sinh(m) cos(m) ~ cosh(m)sin(m) = ¢ exp(2|mj)
| llim I + cosh(m)cos(m) = cyexp(2im]|)
S|—Q

for some constants ¢y and ¢a. So

(sinh(m) cos(m) — cosh(m)sin(m)) €1 >0

-

lim

fsj—eoc (1 + cosh(m) cos(m))

.. . . s
Thus G(s) is improper since lim — = oc.
|s|l—=acm

The boundary conditions imposed on the beam are supposed to reflect the conditions
that the moment force is zero at z = | and the shear force is equal to u(t) at r = 1.
That is we want.

M =0, M. =0.

where M denotes the moment (See [Banks et al.. 1995] for details).

The original set of boundary conditions are incorrect since the moment M is equal to

46
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2:; only when there is no damping in the system. The correct boundary conditions

are

3*: 3
E[F'FC‘{[W(L()—O >0
= iz

Elﬁ'*":“l;sm(l 1) = u(t) t>0

With these boundary conditions. the resulting transfer function is

s(sinh(m) cos(m) — cosh(m) sin(m)) u

e ) perepee

Now ((s) is proper since |sl|Tm;:’(l§'l:-_sc‘dl) — 0. a

For a given observation operator A, the properness of the transfer function depends entirely on
the behavior of the solution to (A.T), as s varies. More importantly by Theorem 3.0.10. the
boundedness of the input/output map of a boundary control system is dependent entirely on the
properness of the system transfer function. The following theorem provides a sufficient condition
for the properness of the transfer function of a boundary control system. Consequently. it provides

a means of establishing boundedness of the input/output map of a boundary control system.

Definition 3.2.5: Let (V.|| -|ly) be a normed linear space with V C H. We say that the
solution. z(s). to the abstract elliptic problem (3.6) is uniformly bounded with respect to the V

norm if there exist constants u; € R and M € R* such that

lI=(sMlv < Milulle (3.13)

for all u € U and for all s € T with Re s > p;.
This result is now immediate.

Theorem 3.2.6: [SUFFICIENT CoNDITION FOR PROPERNESS OF SYSTEM TRANSFER FuNc-
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TION] Suppose (A.T.K) defines u boundary control system. Let V be a normed linear space
satisfying Z CV C H. If the solution to (A.T), is uniformly bounded with respect to the V norm,
then for all observation operators K € L(V.)Y). the transfer function, G(s). associated with the

boundary control system (A.T.R) is proper.

Proof: By assumption there exist constants u; and VM such that inequalitv (3.13) holds. Let 4
be as defined in Theorem 3.2.2 with growth bound «g. Choose y¢ = max{u,.x0} and the result
follows. [ ]

Thus. boundedness of the input/output map of a boundary control system can be proven by
showing uniform boundedness of the solutior, :(s). to a family of elliptic problems. We mention
a few advantages of our approach. First. boundedness of the input/output map can be justified
without constructing z(s) or the transfer function. Second. Theorem 3.2.6 states that uniform
boundedness of the solution to the elliptic problem (A.T), in the ¥ norm implies boundedness
of the input/output map for the class of boundary control systems {(A.T.R)| A € L(V.))}.
Third, there exist a large number of results on solutions to elliptic partial differential equations,
although not on uniform boundedness of solutions. Finally. we avoid the computation of the linear

operators {4, B.C) required in the state space realization formulation.

Example 3.2.7: [1-D HEAT EQUATION WITH NEUMANN BOUNDARY CONTROL CON-

TINUED] The solution to the corresponding elliptic problem is

u cosh(/s r)
\/; sinh \/.;.

Hr.s) =

Let V=H'(0.1).4 =R and u, = 1. Then for all s € T with Re s > 1 we have

”“"2 < |u|2COSh2 Iul2
TiLioy = 16 sinh 2 8sinh®2’
d: ||? |u|2 cosh 2 lu)?
dzll a0y =  2sinh2 7 2sinh?2.

2cosh 2

Hence ”:"H,(o.l) < - lu|. Thus by Theorem 3.2.6. the input/output map is

bounded for all K € L(H!(0. 1), R). In particular, this holds for A’z = =(z},1). [ |
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We now provide some conditions for uniform boundedness of the solution to (\.T). with respect

to V by rewriting (A. ['). as two subproblems.

Proposition 3.2.8: Let (A.T) define a boundary control system and V be as defined in Theo-

rem 3.2.6. For some real p and Re s > p. define the problems (A.T)., and (A.T)., by:

Af =0,

(A.T)e, == (3.14)
[f =u.
Auw = suw+ sf. se’

(A T)er = (3.15)

Fwe =0.

The solution to (M. T). is uniformly bounded with respect to the V norm if the following two

conditions hold:

[C1] There exists f € V such that f solves (A.T)., and

1y € Cilullee. (3.16)

for some positive constant C,.

[C2] Let f €V denote the solution to (N.T).,. There exists w € V such that w solves (A.T).,
and

lwliv < C2f| fllv (3.17)
for some positive constant C;. independent of s.

Proof: The result is immediate by noting that w+ f solves the original elliptic problem (A.T).. R
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3.3 Sesquilinear Forms

In this section we consider problems where the operator A is defined via a coercive sesquilinear

form.

Definition 3.3.1: A sesquilinear form u : V x V — T is said to be coercive if it satisfies the

following two conditions: there exist constants ¢;.c2 > 0 and k > 0 such that
[Q1] |afo.v) | L aillollvilellv.  VYo.w eV,
[(Q2] Re a(o.0) + k||o||3, > c2lloll?. YoeV.

In particular. we show that given a boundary control system (\.T). if the solution to the sub-
problem {A. ['},, satisfies [C1] of Proposition 3.2.8 in V notm, then the solution to the abstract
elliptic problem corresponding to (A.T) is uniformly bounded with respect to the V norm.

Each a(-.:) on V defines a unique A € L(V.V") given by

2

(Ao)(-) 2 ~a(o. ). (3.18)

From Equation (3.18). we define A in . also known in the literature as the realization of A in

H. by

D(4) {o€eV | Ao € H}.

"o

4o Ao for o€ D(A). (3.19)

[t is well-known that A generates an analytic Co-semigroup in H. Here we establish a bound for
A in the V norm.

Definition 3.3.2: Let V be a reflexive Banach space and H be a Hilbert space. Suppose that

V< H <= V" Then (V.H.V") is called a Gelfand triple.

Lemma 3.3.3: Suppose (V.H.V") defines a Gelfand triple. Let a(o. ) be a sesquilinear form
defined on V x V — C satisfying [Q1] and [Q2]. Define the linear operators A. A as in equations
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(3.18) and (3.19). Then there erists a positive constant C' such that for all A\ € T with Re X\ > k

we have

_ C : .
AT =49 Iy < llallv. Vg eV (3.20)

Proof: Let ty and 1% denote the embeddings from V — ¥ and from H — V*. Denote the inner

product on M by {. }&. By the definition of iy we iave forally € Voaud i € 7.
(tah)(g) = (evg. A)x. (3.21)

Assume without loss of generality that ||o||y. < ||olls < |lol|v. It is well known that the sesquilin-

ear form associated with A" is —a”(v.0) = —afo.v) and it also satisfies [H1] and [H2]. By

Theorem 8.5 in (Tanabe, 1997] it follows that for any A with Re A = Re A > &

l+¢,
BY

N = AT ey < I

Ve. Y € V*

The remainder of the proof is similar to (Banks and Morris. 1994. Thm 3.1]. Let ¢y denote the
natural embedding of V' in V*°. Note that A:V = V* and A" : V"* = V*. Hence. for all v € V"
and g € V.

((AF = At (9) = (eewe 3t (AL =A%)~ (g).

For any v € V" and g € V. set o = txtyg € V. Then from the definition of dual operators we

have

e((M=A)lg) = w((M=-A)"o)
= (M = A )" Y(w) (o)
= o (A =A%) M)
= (tutvg) (AT = A7) M)
= (g e A — A7) )y

= (tmvigt(A =A%) ) (g)
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Since v is arbitrary we have the desired result.

The following result is an immediate consequence of Theorem 3.2.6 and Lemma 22321

w
[

Theorem 3.3.4: Let (V. H.V") define a Gelfand triple. Suppose (A.T. K) defines a boundary

control system where \ is derived via a coercive sesquilinear forma: VxV — Cand K € £(V.)).

Assume the solution to (A.T)., satisfies inequality (3.16). Then the system transfer function is

proper.

Proof: Write (A.T). as (A. T),, and (A.T)., as in Proposition 3.2.8. The result follows by setting

g =sf in Lemma 3.3.3.

We can use this result to show that the input/output map of a class of second order systems is

bounded.

Example 3.3.5: Consider a second order system in a Hilbert state space M of the

form

0 r €,

E + Ap &+ Ase(t)

[w = u r €99

t>0.,
(3.22)
t>0.

where Ap and A5 are assumed to have been derived from the coercive sesquilinear

formsap : VxV = Candas:V xV — C Let z = [v, %]I. =[u 0. T =[l. 0]
0 !
and A = . We can rewrite {3.22) as a first order system
-As -4Ap

= A: reQ. t>0
[e = . eI t>0

We assume that there exists a constant C; such that the solution to (A.T)., satisfies
assumption [C1] of Proposition 3.2.8. In (Banks and Morris. 1994] it was shown that

A is also derived from a coercive sesquilinear form a : (V x V) x (V x V) = T hence
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by Lemma 3.3.3 there exists a constant C; such that the solution to (. )., satisfies
assumption [C2] of Proposition 3.2.8. Hence the solution to (3.22) is uniformly
bounded with respect to the V norm. So the input/output map is bounded for all

observation operators A € £{V.)).

Many mathematical models of physical problems fit into this framework. One ex-
ample is the Euler-Bernoulli beam with Kelvin-Voigt damping. Here the operators

.-\50: E[V"O and .-‘DO :ddlv‘o. |

3.4 Uniformly Elliptic Boundary Value Problems

In the remaining sections. we shall look at boundedness of solutions to uniformly elliptic boundary
value problems. We concentrate on linear second order differential operators. We begin with some
background theory and then show that under certain standard assumptions. solutions to uniformly
elliptic boundary value problems of order 2 with either Dirichlet, Neumann or Robin boundary
control are uniformly bounded. Finally in Section 3.8 we generalize the results for Neumann and

Robin boundary control problems to higher order uniformly elliptic operators.

3.4.1 Uniformly Elliptic Operators

In many mathematical models of physical problems the resulting operator A is uniformly elliptic
thus it is important to analyze the boundedness of the input/output map to uniformly elliptic
boundary value problems. There exist a large number of results on solutions to uniformly elliptic
boundary value problems. Of importance to us are the a priori estimates to the solution. Un-
fortunately. the existing results do not explicitly give conditions on uniform boundedness to the
abstract elliptic problem. thus our focus lies on obtaining such results.

The existing estimates theorem generally makes various smoothness assumptions on the coef-
ficients of the differential operator. the coefficients of the boundary operator and the domain of

interest. We do the same here:
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Let Q be an open set in R™ and let D' = (Dy. Da..... D,) denote the differential operator. A
linear second order differential operator in Q is defined by

L(r.D) =YY ay(z)Dij + Y _ ci(x)D; +d(x). (3.23)
1=1

i=1 =1

where the coefficients a;;(r).c;(r).d(r) are real coeflicients. We assume that the coefficients are

are sufficiently smooth and that the operator L is uniformly elliptic in Q. More precisely.

[H1a] (Smoothness Condition 1) The coefficients u,;(r) are bounded and uniformly continuous in

Q and the remaining coeflicients are bounded and measurable in Q.

[Hib] (Uniform Ellipticity)Define the principal part of L by

L°(z.D)=)_ Y a;j(z)Di; = D' A(z)D.

=1 =1

where A(r) is an n x n positive definite matrix with components a;;(r). Then L is uniformly

elliptic in Q if there exists a positive constant ¢; such that for all £ € Q.£ € R",
L0z.€) > cLlél

Since our analysis is based on the boundary control system formulation. we shall no longer refer
to the state-space realization. We shall now use the symbol B to define our boundary operator.
This is consistent with convention in the elliptic partial differential equation literature.

The boundary operator B is defined by
B(zx. D) = bo(z) + Z byi(x)D; = bo(z) + Bj(z)D. {3.24)

=1

where Bi(r) = (b11{z)..... bin(z)) and D’ = (Dy..... Dy). So Bi(z) = 0 for Dirichlet boundary
control and bg(z) = 0 for Neurnann boundary control. Let dQ indicate the boundary of Q. We

impose
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o

[H2] (Smoothness Condition 2) The coefficients of B are real. Also. bg(z) € C*(9Q) and by,(r) €
CYoQ). fori=1..... n.

Estimates of the solution to a uniformly elliptic boundary value problem depend on regularity
properties of the region Q. We use a regularity property known as C™ regularity. a concept first

introduced bv [Browder. 1961].

Definition 3.4.1: Let 2 be an open set in R” with boundary dQ2. Then Q is said to be uniformly
regular of class C™ if there exists a family of open sets {O;} of R" and of homeomorphisms {®;}

of O; onto the unit ball {y: |y| < 1} in R", an integer .V and a constant M such that the following

conditions are satisfied:
[UR1] Let O = &' ({y € R" : ly| < 1/2}). Then |5z, O! contains the 1/N neighborhood of Q.

[UR2] For each i.

b, (O, N Q)

{y : vl < Loy >0}

@, (0, = {y: |yl <l.y =0}

[UR3] Any (V¥ + 1) distinct sets of {O;} have an empty intersection.

(UR4] Let ¥; = &'. Then ¥,.®; are mappings of class C™. Let ®,;. ¥;; be the kth components
of @,. ¥; respectively. Then

Dy ()| < M. |D*Wi(y)| < M. [®:1(c)] < Mdist(z. dQ)

for lal=<m.r€O;. lyy < l.k=1.---.n.and i = 1.2.--- where a = (a;.aa..... a,) and

la] =" ai.
)
In general. it is non-trivial to show that a region is uniformly regular of class C™. For our work.
we are only concerned with bounded sets Q in R™ and cylinders of the form Q x R in R"+L. It
was stated without details in [Treves. 1975. p.237] that for bounded sets with sufficiently smooth

boundary. there exist mappings {®;} such that [UR2] holds. We give a more complete discussion
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of these points below. If Q is bounded then there is a finite open cover for the boundary. If
the boundary is sufficiently smooth then it is possible to choose a covering such that [UR1] and
[UR2] hold. Conditions [UR3] and {UR4] hold trivially since the covering is finite. If Q is
bounded with sufficiently smooth boundary. then Q x R is also uniformly regular.

As an example. we show that the unit disk in ®? is uniformly regular.

Example 3.4.2: Let U := {(r,.1;3) : £} +r} < 1}. (See Figure 3.1.)

Consider the point on the boundary of the disk. (—1.0) and define

b (). 12) = (2, + vi- I%..l'g).

The inverse mapping is
Ty ) = (1 - /1 - 43 p2).

Let D be the disc of radius 1. Define O, = &7 '(D). This region is shown in Figure 3.1. We now
show that [URZ2] is satisfied for i = I.

{(yhy'l)}
{(1’1 +\/l—-.rl§..r2) : .tf-&-z;:: < land (r;.z2) € Ol}.

Since (r1.r2) € Oy. £1 < 0. Thus. r{ + r} < 1 implies that /I =z > |z,|. Hence y; > 0. By a

¢ (O, N0

similar argument. for points (y1.y2) € (0, NAL). yy = 0.

All the remaining O,’s are simply a shift and rotation of O,. They are constructed so that
they overlap as shown in Figure 3.1. Let Ri(z.r;) denote the mapping that shifts and rotates
O; to Oy. Define ®,(r,.z3) = &y(z,.22)R,(x1. £2). We have constructed a finite set of regions 0;
and maps ®; so that [UR1]} and ([UR2] hold. Since the maps are C? and there are only a finite
number of them. [UR3] and [UR4] hold. ]

Theorem 3.4.3: Let Q € R* be uniformly regular of class C™. Then Q = Q x R is uniformly

regular of class C™.
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Figure 3.1: Open sets around boundary for unit circle in R*

Proof: Let the sets O;.i = l..n and maps 0,.i = l..n be such that [UR1]-[UR4] are satisfied for

Q. Let the sets O] be as in [UR1]. Choose h > 0 so that the set in R*+!

{{oi(z). ).z € 0.t € [~h.h]}

lies inside the disc of radius .

For each integer k. define the set Qx = Q x [ -h+ kh.h+kh]. Then Q= U Q. Note
k==~

that (r.t) € AQx is also a boundary point of Q if and only if r € Q. We shall call such boundary

points of Q« true boundary points. We see that dQ = U true boundary points of Qx
k=—2c

Consider first & = 0 so we have Qg = Q x [—h, h} and define ¢ ;(r.t) = (o;(z).t). i = l.....n.
Then &5} (y.7) = (0] '(y). 7). Define Og;(z.t) = &5 (D) where D is the unit ball in R**'. By
construction of o;. and definition of k condition [UR1]} is satisfied. Condition [URZ2] is satisfied
for the true boundary points of Qg.;.

For non-zero k., Qi is simply a translation of Qo along the t-axis. We define the sets O ;
and maps $x,, as for Qo and obtain that [UR1] is satisfied. and [URZ2] is satisfied for the true
boundary points of Q.

Thus. the entire set of sets Oi; and maps &, satisfy [UR1],[UR2] for Q. Condition [UR3]

is satisfied for some .V since only a finite number of Q; intersect with any Qx. Condition [UR4]
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follows since the full set of maps was constructed by shifting a finite set. Hence Q = Q x R is

uniformly regular of class C*. [

In addition to [H1a], {H1b] and [H2]. we assume throughout. unless stated otherwise, that

Q2. L and B also satisfy the following:
[H3] Q is uniformly regular of class C*.

[H4] (Root Condition) Let L°(r.D) denote the principal part of L(x.D). For every pair of
linearly independent real vectors £ and n. the polynomial L%(z.£ + rn) in = has an equal

number of roots with positive and negative imaginary parts.

[H5] (Complementing Condition) Let B°(r. D) denote the principal part of B(r. D). Let r be
an arbitrary point on 9Q and n be the outward normal unit vector to JQ2 at r. For each
tangential vector £ # 0 to 99 at r. let 7 be the root of the polynomial Lo(z.¢ + rn) with

positive imaginary part. Then # is not a root of B%(r.£ + rn).

If n > 3. then the Root Condition is satisfied for all uniformly elliptic operators [Tanabe. 1997.
pl130]. If the coefficients of L are real. then the Root Condition is also satisfied when n = 2. (see

Appendix A for detail)

3.5 Uniformly Elliptic Operators With Dirichlet Boundary
Control

Let L be a second order differential operator as defined in Equation (3.23) with d(z) < 0.
B(r.D) = bo(z) and Q@ C R". n = 1.2.3. We shall show that if Q. L. B satisfy hypotheses
[H1]-[H5] and Q satisfies an additional assumption . then the solution to the abstract elliptic
problem

L: = sz in

B: = u on df)

(3.25)
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is uniformly bounded with respect to the sup|-| norm. This implies boundedness of the in-
refN

put/output map for the corresponding boundary control system.

The following definition is also due to Browder {Browder. 1961].

Definition 3.5.1: Let Q be an open set in R". Then Q is said to be locally regular of class C*™
if for each point £ on the houndary dQ. there exists a neighborhood O. and a homeomorphism

&, of O, onto the unit ball {y: jy| < 1} in R™ such that

‘b:(O:nQ):{y syl < Lo >0}° (br(ornaQ):{y Dyl < l.y1=0}.

and so that each component of both &, and ®;! is 2m times continuously differentiable.
In addition to uniformly regularity of class C*, we further assume that
[H6] Q is locally regular of class C*.

The following result in [Tanabe, 1997] shows that the solution to the subproblem (L. B)., satisfies

assumption [C2].

Theorem 3.5.2: Let Q C R™ be bounded and F € C(). For : € H*(Q) solving

L: = s:+F. in Q
= 0. on dQ
we have
C , o
sup [(z)] < = sup | F(z}I- (3.26)
ren |s| zen

To prove boundedness of the input/output map we also require the Maximum Principle and

existence of a solution to Lf = 0 with a Dirichiet boundary condition.
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Theorem 3.5.3: (e.g. [Gilbarg and Trudinger. 1977. Theorem 8.1])
Let Q C R" be bounded and f € H'(Q) satisfy Lf >0 (< 0) in Q. Then

jggf(.r) < :s;xap;lmax{f(.r).O}. (jrelgf(.r) > 1.ienofnmin{)’(r).l)})l

The fuilowing theoretn is a combination of Theorems 8.0. 8.5 and 8.1 in |Gilbarg and [rudinger.

1977].

Theorem 3.5.4: Let Q C R” be bounded and L and Q satisfy assumptions [H1]}-[H6] and
u € H*(Q). then there erists a unique f € H*(Q) that solves

Lf = 0. in Q
f = u on JQ

Proof: Theorem 8.6 says that given u € H'(Q). the partial differential equation

Lf = 0. in Q
f = u on dQ?

(3.27)

is uniquely solvable with f € H!(Q) provided that L is uniformly elliptic in Q and the coefficients
of L is bounded. Theorems 8.8 and 8.12 state that if the coefficients a;j(r) are uniformly Lipschitz
and if Q is of class C? then the solution f to equation (3.27) is in H%(f2). Thus these assumptions

are weaker than those assumed in {H1]-[H6]. and the result holds. a

We can now state our main theorem for this section.

Theorem 3.5.5: Let Q C R" be bounded and suppose {Q2. L. B} be as defined above and satisfy
assumptions [H1]-[H6]. Then the input/output map to the boundary control system (3.25) is
bounded for all observation operators K € L(C(Q).Y).

Proof: Write (L. B) as (L. B).; and (L, B).; as in Proposition 3.2.8. Then the solution to the

abstract elliptic problem (L. B) is uniformly bounded in the sup | - | norm if there exist constants
€N



CHAPTER 3. INPUT/OUTPUT MAPS 61

C1 and C» such that inequalities (3.16) and (3.17) holds.
By Theorem 3.5.4. the subproblem (L. B).; is uniquely solvable. So there exists f such that

Lf=0(L(-f)=0)inQ and f = u on #Q. Hence by Theorem 3.3.3

sup |f(r)| < sup |f(z)] = sup |u(z)].
ren reanN redfN

Thus inequality (3.16) holds with Cy = L and V = C{Q). U = C(IQ). The existence of C» is evi-
dent from inequality (3.26). Therefore by Theorem 3.2.6 the system transfer function associated
with (L. B. K’} is proper for all observation operators A" € L{C(£).)). That is. the input/output

map of the boundary control system (L. B. K') is bounded. a

Let A denote a point observation operator. For a general bounded domain Q C R". : € H3*(Q)
does not necessarily imply that = € C(Q) hence A’z is not well-defined. However, for regions

Q C R™ where n < 3. we may use the Sobolev Imbedding Theorem to show that = € C(Q).

Theorem 3.5.6: (e.g. [Taylor. 1996. Corollary 1.4]) If s > n/2+ k. then H*(R*) C C*(R"). &

For s=2k=0and n = 1.2 0or 3. s > n/2. Hence : € H*(Q) implies : € C(R) thus point
evaluation is valid. So the input/output map to the boundary control system (3.25) with point

observation is bounded.

3.6 A priori Estimates Theorems

We now list a series of estimate theorems that are needed to prove our main results in the next two
sections. These two theorems from Tanabe (for the special case m = p = 2) are vital for showing

uniform boundedness of solutions to Neumann/Robin boundary control problems.

Theorem 3.6.1: ([Tanabe. 1997. Theorem 4.10]) Let Q be uniformly regular of class C? and
L(z. D). B{z.D) be as defined in Equations (3.23) and (3.24). Suppose that L(r.D). and

B(z. D) satisfy assumptions [H2]-[H5]). Then there erists a positive constant m, such that for
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all : € H*(Q) the following inequality holds:

=iz ) € ™1 [”L:”L-‘(m + [Bzlyaan + Izl )| - (3.28)

For u € H'(Q). the norm [-]1/2.5q is defined by
(u(£)]1/2.00 = inf{||zllg1n): = € HYQ).: = u on 3Q}. (3.29)

Theorem 3.6.2: ([Tanabe. 1997. Lemma 5.7])) Let L. B and Q be as defined above and satisfy

assumptions [H1}-[H5]. Let 8 € [—n. =) be fired but arbitrary and t be a new real variable. Set

Q = QxHR

Le(x.D) = Ly(z. D;. D) L(z.D:) + exp(i6) D?.

and B(z. D;) to be the extension of B(r. D;) to 8Q = 90 x R.
If £4.B.Q also satisfy [H1]-[H5] then there erists a constant My such that for any : € H*(Q).
u € H'=™1(Q)! satisfying Bz = u on 9Q and any s satisfying arg s = 8. |s| > My the following

inequality holds:
s W=l + Wllaragay < Mo [IL = $)zlliay + 1817 lull oy + ullga=m, ] - (3:30)

‘mj =0 if B is a Dirichlet b.c. and m, = 1 if B is a Neumann or Robin b.c.
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3.7 Uniformly Elliptic Operators With Neumann/Robin Bound-
ary Control

Let L and B be as defined in Equation (3.23) and (3.24) with Bi(r) # 0. Hence B represents a
Neumann boundary control when bg(r) = 0 and a Robin boundary control otherwise. We shall
show that if Q is bounded and {Q. L. B} satisfy hypotheses [H1]-[H5]. then the solution to the
abstract elliptic problem
Lz = s: in €.
(3.31)
B: = u on JQ,
is uniformly bounded with respect to the H'(Q) norm. This implies boundedness of the in-
put/output map for the corresponding boundary control system. For the remaining of this chapter

we shall assume that Q is a bounded subset of R".

For any 8 € [—=. 7). define Q. L4 and B by

Q@ = QxR
Lo(r. D) = Ly(£.D;. D) := L(r.D,;)~+exp(if)D?. (3.32)
and B(r.D:) := the extension of B(r.D.) to dQ = dQ x R.

From Theorem 3.6.2 we know that given 6 € (—=. ). if {L.B.Q} and {L4.B.Q} both satisfy
(H1]-[H5]. then there exists a constant My such that the following a priori estimate holds for

any : € H*(Q). u € H'(Q) satisfying Bz = u on dQ and any s satisfying arg s = 0. [s| > Mp:
is|*/? ”:”mm) + ”:”H’(ﬂ) < M, [”(L - 5)5”1,2((1) + |s(l/2 ”“”L’(m + ““”H‘(m :

In particular. if = solves Lz = sz then the above inequality implies

1
I=llzrq) < Ms (“"”L:(m + TS| ”“”Hl(m) :
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If in addition |s| > | then

lIZHHl(m < 2M, “”Hf{‘(m‘

Now by Theorem 3.0.10. the input/output map is bounded if and only if G(s) is bounded on
some open right half plane. Thus we seek to prove that for § € [—=/2. 7/2]. there exists My such
that the q priori estimate holds and moreover that this constant can be chesen independent of
6. This will then imply that the solution to (3.31) is uniformly bounded with respect to the H!
norm and thus the input/output map is bounded for any observation operator A € L(H!(9).)).

First we show that Q is uniformly regular of class C* and for each 8 € [—7/2. 7/2]. £4.8.Q

satisfy assumptions [H1],[H2],[H4)] and [H5]. This ensures the existence of .M.

Lemma 3.7.1: Let L(r. D;). B(z. D;) and Q satisfy assumptions ([H1)-[H5]. Forany@ € [-=/2.7/2].
define L4.B and Q be as in Equation (3.32). Then Q is uniformly regular of class C* and {L,y. B}
satisfy assumptions [H1],(H2],(H4)] and [H5] in Q.

Proof: Since 2 satisfies [H3]. Q is uniformly regular.
Next we show that £, is uniformly elliptic. That is. there exists a positive constant ¢, such

that for all (£.7) € R" x R and r € Q the following inequality holds:
1L3(2. &)l > er (1€ +07).
By assumption. there exists a positive constant c; such that forall r € Q.£ € R",
IL%(z.9)] > cclél®.
Since the matrix 4 associated with L° is positive definite. this means L%(z.&) > 0 for all £ € Q

and § € R". Let ¢ = min{cj.1}. Then for any (z.t) € Qx R. (&.n) € R" x R. and 0 € [—=/2. /2]

we have

C3((z. 0. €m)F = IL%.6) +exp(iO)*?

IL%(2. &)1 + 2 cos(8)LO(z.€)n® + 1
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> il + 0t

> c(lft+nY)

> 3 (e + 208 + ')
= S0+’

This implies the inequality

1L3(=.Em)| >

S

(1€ + n*).

c
2

which proves that £ is uniformly elliptic in Q.

Clearly {[H2] holds. Also since n > 2. n+1 > 3. the Root Condition holds. It remains to show
that [H5] is satisfied.

Let (z.t) be an arbitrary point on JQ. n, be the unit outward normal vector to 49 at r
and &, be any non-zero tangential vector to dQ at r. The outward normal unit vector to aQ at
(z.t) is then n = (n}.0) and any non-zero tangential vector has the form & = (£1.0). Let + be a
root of B%(r.£ + rn). Then 7 is a root of B°(z.&; + rny) which by assumption is not a root of

L%z. & + rny). This implies that
L(z.&+ n) = L(r.& + 7ny) +exp(i)(E2 + 7na)? = L(2. & + 7ny) £ 0.

Hence 7 is not a root of L{r.§ + #n). So {Ly. B} satisfies [H5]. [ ]

For each 0 € [—7/2.7/2]. L4.B.Q satisfy [H1],[H2],(H4] and[H5] thus the hypotheses of
Theorem 3.6.2 have been verified. It remains to show that My may be chosen independent of 8

in this range. The following lemma is needed to prove this claim.

Lemma 3.7.2 Let Ly(z. D) be as defined above. Then Lg is continuous in 6. That is. for any

€ > 0. there erists § > 0 such that whenever [0, — 63| < 4. 6,.0; € [—7/2. =/2] we have

1Co,v — Lo,vllLaq) < ellvllaag). Ve € HYHQ).
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Proof: For any 0 < ¢ < /2. choose § = arccos (1 - ‘T) where arccos denotes the principal
9

branch, then if |§, — 62| < J and 6,.6: € [—7/2.7/2] we have

(Lo, v = Ly, vllL20)

IN

lexp(ifly) — exp(if2)|||vllH2q)
= V(2= 2cos(6, — 82))|fe]l52(0)

V(2 = 2cos(161 — 82))l|vl 120y

Since ¢ < V2.4 < 7/2 hence the function f{r) = 2 — 2cos(r) is non-negative and monotone

increasing on the interval [0.4]. Thus

I£o,v = Lo,ellzag < V(2= 2cos(d))]lvllma)

= flll'llf{’(Q)-

For any € > /2. choose § = =/2. then if |6y — 82| < 7/2 and 6,.6; € [-7/2.7/2] we have

1o v = Lovileag) < V(2= 2cos(|r — 6a]))|tll =g
< Vel
< ellellgaq)-

o
Due to Theorem 3.6.1. for each 8 € [—x/2.7/2]. there exists a constant my such that for any
v € H*(Q).

lelltra@) < me (l|CevllLaiq) + [Brlijz.aq + llvliLaq)) - (3.33)

For each §. define m(8) = inf{my : inequality (3.33) holds.}. The infimum exists since clearly 1

is a lower bound for my. The next theorem proves that m(f) is bounded above.

Theorem 3.7.3 Let m(0) be as defined above. Then {m(8): —x/2 < 0 < =/2} is bounded

above. Hence there ezists a positive constant m such that the following inequality holds for all
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6e[-x/2.7/2:
ltell =@y < M (|1LavliLaq) + [Brliy2.00 + lltllLgy) - (3.34)

Proof: Suppose not. Then for each n. there exists 8, € [~7/2.5/2] such that m(6,) > n. The

sequence {f,} is bounded thus it contains a convergent subsequence {6k, } which converges to

[ (= f—rl/"), f’/._)]

Theorem 3.6.1 ensures that m(f) is positive and finite. thus there exists some n such that

m(f) < n. Let e = # — 1> 0. By Lemma 3.7.2. there exists N > n such that for all &, > V.

(kn are the indices of the convergent subsequence)

[Lgv = Lo, vllraq) < elltlimiq)- Ve e H*(Q).

Pick a kn such that m(6k,) — 1 > n. By definition m(fy, ) is the smallest constant such that for

all v € H?(Q). inequality (3.33) holds. Thus there exists some ro € H?*(Q) such that

lvollaqy > (mey, = 1) (I[Ls., vollL2@) + [Brali/2.0q + llvellr2(q)) -

But then

1 1
ellvollaagy = m@ " n lrollr2(q)

1 I
(m(o) ~ m(B,) - 1) ralla=ia)
< (lI€svollLq) + [Broli/2.00 + lvollLa))

= (1€s., vollL2(Q) + [Broli/2.aq + llvollL2(@))

IN

1L4v0 — La,, vollL2q)

< ellvollaag)-

a contradiction. Thus m(6) is bounded above. Let m = sup{m(8). —=/2 < 8 < x/2}. Then for
any 8 € [-7/2.7/2] and v € H?(Q). inequality (3.34) holds. [ |

We now state a modification of Theorem 3.6.2.
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Theorem 3.7.4: Let L. B and Q be as defined above and satisfy assumptions [H1]-[H5].
Then there crists a positive constart R such that for any = € H*(Q). u € HYQ) satisfying
2 = u on dQ and any compler number s on the open right half plane Zg: := {5 : Re s > R*}
the following inequality holds:

- -

ls[l/-' ||Z“”x(9' + ”:”H:(Q) S m Ul(L -— 3):HL3(Q) + |5|‘“||““L=1m -+ “uHHl(Q)J! . (-;.3-))

where m s a positive constant dependent only on L and .

Proof: The proof is along the lines given in Tanabe except that we show the constant is indepen-
dent of 6.

Let ¢ be a function in ("™ (—x. x) such that {(t) = 0 for |t} > 1. {(t) = 1 for |t} < 1/2. Let
my be a constant chosen such that ||¢|| 2.5, < m1. Let m = max{m(#). -=/2 < 0 < 7/2} and

my = max{m.my}. Define

R := largest root of the quadratic r* — 6m2r — 6m2.
g q 2 2

. . . .. Bm3 + may/36ms + 24
We note that R is necessarily positive and real. In fact R = = > =

. Moreover
since m(8) is bounded below by 1. m and hence m; is always greater than 1. Thus R > 6.
For any : € H*(Q) and any s € Cgs set 8 = arg s, r = |s|"/? and v(zr.t) = ((t) exp(irt)=(z).

Clearly v € H*(Q) hence equation (3.34) implies

A

lelluaygy < m{||CorllLaq) + [Brlijz.00 + lltllLag))

< ma ([ILevllLaqy + [Brliyaq + llvllzaiq)) - (3.36)

Now a lower bound for |lv||H,(Q). an upper bound for [Br],/2 s and an upper bound for || 4 vllL2(Q)

need to be computed. The final inequality is then obtained via simple algebra.
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First we compute a lower bound for |lv}] 42(o,- By definition of Il g2y we have

g, = 3 '/;./Q|D;'D,*'v(x.t)|2dzdt

for any k = 0. 1. 2. Hence

for any k = 0.1.2.

Thus

jal+k<2
2 Z /- /!D?Dfe.rp(irt):(t”z drdt
. -iJn
lal|+k<2 K
= S ¥ /iogz(rn'-’,u
k=0 laj+k<2?
= > (" *Hllfa-via
k=0
Z (r)zk”:”;{l-k‘n).
el 2 () izl gamn q -
3Mell sy 2 D0 ellpemvia - (3.37)
=0

Next we compute an upper bound for [Bv]y/2,a¢. By definition of [']1/':.an we have for B: € H*(Q)

such that = = u on 9.

2
[B"]l/‘z.aq

IA

() exp(irt) B2(2)]} 2.0
[c(t)exp(irt)u]f/wq
liC(t) exp(irt)ull q)

> / /|D;'ch(z)exp(irt)u|2dzdt
- J

laf+k<1

/x / IC(¢) exp(irt)ul? dzdt+/m / [¢(t) exp(irt) Du|? drdt
-~ J0 - J0

+/x / I¢'(t) exp(irt)u + ir((t) exp(irt)ul® drdt
—dn

2 2 2 . : 2 . 2 2 2.2 2
mf ”“”[_=(m + mj ”D“”L?(n) a mf ”“”pm) + 37’"‘; ”“”L:m + "Omx ”"”Ll(n)
)
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= 2millull gy + mi 1 Dullgsq, + 2r + r)m? flullfa(q, -
Since r = |s|"/2 > R > 6. 2r < r?. Hence
2 9002 2 2002
[B"]l/-:.aQ < IZmg (”““me +r H“”L?(ﬂ))
< 2my k"”“”[_:(m + ”"”H‘(m)
< 2md (rflulls + lully g,
Thus
[B"]1/2.aq < V2my ("”"”L:m, + HUIIHx(m) . (3.38)
This is the upper bound on [B"]u'z.aQ' Now we calculate an upper bound on Lyv.
Substituting the expression for v(r.t) into L4v. we find
Lov = t)exp(irt)(L — r?exp(if)): + 2irexp(iB)C'(t) exp(irt) s + exp (i) () exp(irt):.
Therefore
Iotllsgy < NG explint)(L = r® exp(i8))=]], . g, + 2IIr exp(i) (¢) exp(irt)2]| gy
+ HeXp(iG)C"(t)exp(irt):”,_;(Q)
< mu (0 = exp(iO))z] gy + 20 ol + 1=l
< ms (”(L = 2 exp(i0))z]| 2y, + 27 12l Lagqy + ||.~||L,m,) . (3.39)
Also.
”"HU(Q) <me ||~'”L2(n) . (3.40)
Substituting inequality (3.37) into (3.36) we obtain.
=l agy + Flllgyay + 1l gy < 3m2 (1€avliag) + Brlynog + vlicag) . (3.41)
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Next. substitute inequalities (3.38). (3.39) and (3.40) into inequality (3.41) obtain

r’ ”:“Ll(m + r”:“H‘lQ) + ||:”H3(0)
< 3”‘:: (”(L -r? exp(i())):”l_”m + °-”'”~'H1_2(m + ”5”1_:(9)

+ VI ull sy + V2 lullir gy + 1320 ) - (3.42)

After rearrangement we obtain

Bl

(r= - 6’":;" - 6’"§) ”:“L:m; + "”:“Hl(n) + ”:”filqm

< 2mi (|2 - exp(i0)):]| gy + +r lullagay + lullyny) - (3:43)
By definition of R we have r* — 6mjr — 6m3 > 0. Hence Equation (3.43) implies
gy + Uzl g2ga < 3V2m3 (ll(L = r?exp(i0))z |, q) + rliullLagq) + “U“Hx(m> C(3e44)

Substituting back s = r? exp(if) above and defining m = 3\/§m§. we have the desired result. H

The boundedness of the input/output map for

i—: = L: reQ. t>0.
B: = u red. t>0, (3.43)
y = K=

is now immediate.

Corollary 3.7.5: Let L.Q and B be defined as above and satisfy [H1]-[H5). Then the in-

put/output map to the boundary control system (3.45) is bounded for all observation operators
R e C(HY(Q).)).

Proof: By Theorem 3.7.4. the solution to the abstract elliptic problem (L. B) is uniformly bounded
with respect to the #!(Q) norm. Hence by Theorem 3.2.6. the system transfer function associated

with (L. B. K} is proper for all observation operators A" € L(H!(Q). ). Thus by Theorem 3.0.10
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-1
[

the input/output map to the boundary control system (L. B. ') is bounded. n

REMARK 3.7.6 We note that if B is Dirichlet boundary control then m; = 0. Using the same
technique as Theorem J.7.4 we can show that there exists a positive constant R such that for any
: € H*(Q). u € H*(Q) satisfving Bz = u on 4Q and anv complex numher s an the apen right
half plane Cg: := {s: Re s > R?} the following inequality holds:

J12. " . ;

Isf*/ I=llgeim) + ”-”H:m) <m [”(L = 3)zllpaq) + sl ull2q) + H““i{-'(m} .
where m is a positive constant dependent only on L and Q. Unfortunately this only implies that
the solution to L: = sz in Q and Bz = u on 99 satisfies

1/2

H:”Hum < mjs} ”“”H'Jm) .

So we cannot conclude that the solution is uniformly bounded in the 4! norm.

3.8 Higher Order Uniformly Elliptic Operators with Neu-
mann/Robin Boundary Control

The results in Section 3.7 can be generalized to higher order uniformly elliptic operators with
appropriate adjustments to assumptions [H1]-[H5].
Let €2 be a bounded open set in R" and L be a linear differential operator of order m. m even.

in Q defined by:
L(z.D)= ) aq(x)D". (3.46)

lai<m

where a = (aj.a;3..... an) and D* = (D7'.D*..... D3~). Here. m takes the form 4k or 4k + 2
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where & a natural number. Define the m/2 boundary operator by

[HH1a)

[HH1b]

[(HH2]

[HH3]

[HH4]

[HHS)

B,(x.D) = Z bis()D*.  j=1..... m/? (3.47)
[31<)
(Smoothness Condition 1) The coefficients a,, are bounded and uniformly continuous in Q

and the remaining coefficients are bounded and measurable in Q.

Uniform Ellipticity) Let LY denote the principal part of L. There exists a positive constant
p

¢y such that for all r € Q.£ € R",
LO(r.8) > crl€™.

(Smoothness Condition 2) Let Bj(r. D) be given by Equation (3.47) with real coefficients.
For{d| <j.j=1..... m/2. b;3(r) € C™~4(IN) and all its derivatives of order up to m — j

are all bounded and uniformly continuous on 9Q.
Q is uniformly regular of class C™.

(Root Condition) For every pair of linearly independent real vectors £ and 7. the polynomial,

LO%r.€ + 7). in  has equal number of roots with positive and negative imaginary parts.

(Complementing Condition) Foreach j = 1..... m/2, let B?(.r. D) denote the principal part
of B,(r. D). Let r be an arbitrary point on d92 and n be the outward normal unit vector to
g9 at r. For each tangential vector £ # 0 to dQ at r. let 7y (£.£)..... Tm/2(z. &) be the roots
of the polynomial L%z, & + rn) with positive imaginary part. Then a linear combination of

{BY(r.£+ rn)};"zll2 is divisible by l'l_',»';/f(r— 7;(£.€)) if and only if all the coefficients vanish.

REMARK 8.8.1 Since L satisfies the Root condition. the order of m is necessarily even.

To prove our result we rely on a more general case of Theorems 3.6.1 and 3.6.2.

Theorem 3.8.2: ([Tanabe. 1997. Theorem 4.10}, p = 2) Let Q be uniformly regular of class C™

and L(z. D). Bj(r. D) be as defined in Equations (3.46) and (3.47). Suppose that L(x.D). and
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B;(r. D) satisfy assumptions [HH1]-{HH5]. Then there erists a positive constant m, such that
for all - € H™(Q) the following inequality holds:

(%)

m/

“:”H"'(m S m HL:||L3(Q| + {Bj:]m_J_l/z_aQ + ”:”L-‘(n) . (3-‘[8)
=1

For u € H(). the norm [-],_ /2,30 is defined by
[u(z)]g=172.00 = inf{||z||gey: = € HI Q). : = u on Q). (3.49)

Theorem 3.8.3: ([Tanabe. 1997, Lemma 5.7]), p = 2) Let L. B; and Q be as defined above and
satisfy assumptions [HH1]-(HHS5]. Let 8 € [~r.7) be fired but arbitrary and t be a new real
variable. Define Lg. B, and Q by

Q = QxR
Lo(z. D) = Lo(x.D:. D) = L(x.D;)—(=1)"/?exp(if) D", (3.50)
B,(x.D;) = extension of B;(z.D;) to 3Q = 9Q x R.

Suppose Lg. {B; };’;’f Q dlso satisfy [HH1]-[HHS5]. Then there erists a constant My such that for
any : € H™(Q). u; € A"/ (Q).j = 1L..... m/2., satisfying B,z = u, on dQ and any s satisfying

arg s = 0. |s) > My the following inequality holds:

m m/2 mj2
. - - e
20w el gy < Mo [IICE = $)=llagny + 3 15K ) gl oy + 3 sl e | -
J=0 j=1 j=t
(3.51)
n

Lemma 3.8.4: Let L(x.D:). Bj(z. D;) and Q satisfy assumptions [HH1]-[HH5] and L. B;
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and Q be as defined in Equation (3.50). Then Q is uniformly regular of class C™. Moreover

-1
(1)

(1) If m = 4k, then for each 6 € [—x.—=/2]U[z/2. 7] {[:g.{[v'j};”;l} satisfy assumptions

(HH1],[HH2},[HH4) and [HHS5] in Q.

(i) If m = 4k+2. then for each 8 € [-x/2.z/2). { L4.{B; }jl;{l} satisfy assumptions [HH1],[HH2],[HH4]

and {HH5] in ().

Proof: Since Q satisfies [HH3]. Q is uniformly regular. Next we show that £, is uniformly elliptic.

That is. there exists a positive constant ¢; such that for all (€. ) € R" x Rand r € Q the following

inequality holds:

m/2

1£3(2.&n)1 > ey (1€ + n?)

First we note that for any two real numbers a.b > 0 and natural number m.

2 3 = m 3 ) 3
- b- m = -rn—.nb.n
(a= +6°) ,,2_:0 ( n )a

max{a. b}*™ i (':)

n=0

I/

Now by assumption. there exists a positive constant ¢z such that for all r € Q. EeR,

|L%(x. &) > cLl€l™.

Let (r.1) € 2 x R. (§&. n) € R™ x R be fixed but arbitrary and set ¢ = min{c3.1}.

If m = dk. then for § € [—x. —7/2]U [7/2. ] we have

1L3((z. 0. (&) = |L%z.€) — exp(if)n'|?

|L%(z.£)|* - 2cos(6) LO(z.&)n* +

v

ci &3k + o (since cos(f) < 0)

e (613 4+ %)

v
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This implies the inequality

1£9(. & n)] >
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4k
c 1k 8k
> —I——Z(n)max{ IEIY)}
Z (‘{k) n=0
n
n=0
I " 5 £
s (i)

\ g (4:)

which proves that for m = 4k and 6 € [-#. —7/2J U [z/2. 7). L4 is uniformly elliptic in Q.

Similarly. if m = 4k + 2 then for any and 6 € [-7/2. 7/2] we have

1£3((z.00. (&)

This implies the inequality

L3z Sm)] >

[AVAE AV 1 ]

v

v

|L%(z. &) + exp(if)n**+2[*
[LO(z.&)|* + 2cos(B)LO(r. E)ptk+3 4+ pBk+d
Cii£|8k+4 + nSk+4

c (JgI+ 4 )

k2

c & k42 ¢ 8k +4
T E—— max{ |].n }
Z (4k+2) n=0 n

n
n=0
$h+2
- (|£~’+ ") *

which proves that for m = 4k + 2 and 6 € [-7/2. 7/2]. Ls is uniformly elliptic in Q. Assumption
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[HH2] cleariy holds as does [HH4] for n > 2. It remains to show that [HHS] is satisfied.

Let (r.{) be an arbitrary point on Q. n; be the unit outward normal vector to 9 at r
and &, be any non-zero tangential vector to dQ at r. The outward normal unit vector to aqQ
at (z.t) is then n = (n{.0) and any non-zero tangential vector has the form § = (£1.0). By
definition B; = B,. moreover the roots of £{r.£ + rn) are exactly the roots of Lir.& + ™ny).
Since {L.{B,}]'} satisfy [HH5] so must {L. {B,};;/f}. [ |
Foreach 6 € {—=/2.=/2]. Lq. {BJ}J"‘;l @ satisfy [HH1]-[HHS5] and for each 8 € [—=. —x/2] U [=/2. 7],
L. {B; }]"';l Q satisfy [HH1]-[HH5]. Thus the hypotheses of Theorem 3.8.3 have been verified.
One can generalize the results in Lemma 3.7.2 and Theorem 3.7.3 with obvious modifications.

Thus My may be chosen independent of 6 in this range. We state the generalizations without

proof below.

Lemma 3.8.5 Let Ly(r. D) be as defined above. If m = 4k, then for any € > 0 there ezists & > 0

such that whenever |6y — 02| < d. 6,.8; € (—x. -7/2) U [7/2. 7] we have,

”L:gll‘ - Eg_,l‘“[_:(Q, < (”P”H“(Q) Yr e fl‘“(Q)

I[fm = 4k+2. then foranye > 0 there erists & > 0 such that whenever |0 — 03] < 8, 6,.02 € [~=/2. 7/
we have

1Lo,e = Lorellizg) < ellellgmengy  Vr€ H¥*(Q).  m

Due to Theorem 3.8.2 (inequality (3.48)). for each 6 € [—7. —x/2]U [7/2. =], there exists a con-

stant my such that for any v € H¥(Q).

2k

”"”H“(Q) < my ”L:GL'”LJ(Q) + Z (B; "]4k_1-1/2,aq + ”:“LHQ) . (3.52)
J=1

Theorem 3.8.6: Let Lq(z. D) be as defined above with m = k. For each 8. define m(8) =
inf{my : inequality (3.52) holds.}. Then {m(6):0 € [~=.-=/2]U[r/2. 7|} is bounded above.

Hence there erxists a positive constant m. independent of 0 such that the following inequality
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holds:
2k
Hellges gy < M ||z:,,u||L;‘Q,+Z[5,v]4k_)_”mQ+||vuL_.‘Q, .on (3.33)
=1

Similarly. for each § € [—7/2.7/2]. there exists a constant my such that for any v € H*+2(Q).

(53

k+

1
el pransz (@) S Mo |-||‘C""“L=(Q) + ). 185t gkprmy—1j200 T |]:HL_V(Q)‘| . (3.34)
J

=1

Theorem 3.8.7 Let Ly(z. D) be as defined above with m = 1k + 2. For each 9, define m(0) =
inf{ms : inequality (3.54) holds.}. Then {m(8): —z/2 < 8 < =/2} is bounded above. Hence there
erists a positive constant m. independent of 0 such that the following inequality holds:

2k+1

ellsessi@) < v {Lstll Loy + 3 B, Likrzms-1r200 + 1¥llLaq) | - (3.53)
J=1

We now state the generalization of Theorem 3.7.4. one for m = 4k and another for m = 4k + 2.

Theorem 3.8.8: Let L.B; and Q be as defined above with m = k. k a natural number, and
satisfy assumptions [HH1]-{[HHS]. Then there erists a positive constant R such that for any
€ H¥Q) . u, € H¥-1(Q), j=1..... 2k, satisfying B,: = u, on dQ and any compler number

5 on the open right half plane Cpa := {s: Re s > R} the following inequality holds:
ik 2k
-l s
DT el < m I + 902l + 31510 %) (i
1=1 J=1

2k
pre) o
+ D 1) g pranes (3.56)
J=t

where m is a positive constant dependent only on L and Q.

Proof: Let { be a function in C™(—ac. x) such that {(t) = 0 for |t| > 1. ¢(t) = 1 for |t| < 1/2. Let

m be a constant chosen such that [[(}| 53z, < mi1. Let 2 = max{m(8).8 € [~=. —7/2}U [#/2. =}
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and m» = max{sm.m,}. Define the polynomial P(r) of degree 4k by

k=1
P(r) = r** — (4k + 1)m3 Z (4ll~) rl— (4k + 1ym3.
{=0

Choose R to be a positive real number such that P(r) > 0 for all » > R. Since m(6) is bounded
below by L. m and hence m; 1s always greater than 1. Observe that since Z;‘;g‘ () > 1 and

mé > 1

thk-1 -U:
= 1- (4 3 - (4k + 1)m3
P(1) 1 — (4 +l)m_§(l) (4k + 1)m3
< —Rk-1

< 0

thus R > 1. Forany : € H*(Q) and any s € Cga set ~ = arg s — sign(arg s)m.% r = |s|//14)
and v(z.t) = {(t)exp(irt)z(r). Clearly v € H¥*(Q) and ~ € [-=. ~7/2]U [z/2. 7. hence equation

(3.53) implies

P4

el < [ICsellaggy + D 1Byl —1/200 = It L2
=1
2k
< my |Lavllpaigy + D 1Bitls, 2 1jnsq T HellLao | - (3.57)
J=1

Now a lower bound for H"“Hu(Qy an upper bound for {B;t]4x-,-1/2.0¢ and an upper bound for
[I£~tllL3(q) needs to be computed. The final inequality is then obtained via simple algebra.

By definition of |||} ;74 (o) we have

ellwg = Y /_Alogof:»u.zﬂ%mr

fal+3< 1k
b .
> Y / /|D;’Dfe:p(irt):(:)|ld:dt
lal+3<4k Y =370

2sign(r) denotes the sign of r
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4k .

= Z(r)” Z /]D?:(r)[')d.t
3=0 lal+3<k &
1k

= Y (1) zllFaee i

=0

v

05
(r)7 =l on-aq -

forany 3 =0.1..... 4k. Hence

”l'”HwQ) 2 (r)? l|5”Hu-dm) .

forany 3=0.1..... 4k. Thus

£ 1
(k= Dol granggy > D0 1zl jpanmsyqy - (3.58)

i=0

By definition of []

Ulm e~y —1/2.00 we have

[BJ"]jk-J-l/laq = [CU)exP(ir‘)BJ:(I)]ik-J-l/laQ
=[SO explirtyuloe_ i _1 /200

< ISt explirt)u; -y )

= Z / » /Q|D§.’ng'(t)exp(irt)uj|2 drdt

la|+3<4k -,

1k} ~ \ )
< > 3 / /|Dgu,-|'|ch(z)exp(irt)[2d:dt

3=0 |a|<ik—y-37 —= /0

1k - a R 3 3 -y
= Z Z / /ng“jl. Z( )C“"”(t)(ir)lexp(irt) drdt

-x J0Y {

3=0 ja|<4k-;-3 =0

k- SN 3 3 2 3 "
<y X el [ 3(0) Sl

3=0 [a|<tk=j-3 =0 (=0

k7 3 3 2 \
< m§(3+1)zr.’l(l) )3 /Q!Dgu,-| dr

=0 =0 laj<4k~j-3
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where

Thus

[51‘ l’]4k-,- 1/2.2Q

IN

IN

IN

IA

IA

k1) kg 3\ 2
(4k+l—j)mf Z ri Z (1) ““jn;{u—r—ﬂm)

1=0 d=i
Fy AL
(Hk+1 - j)m Z ety an 1=40) Z ( >
=0

L]

(k4 1= )mid > ol lrc e

2]

4k -y )
(4k + 1 ~ jimi3? (Z ! HUJ”H“""'Q))

=0

4k —;

Ynlj\/ 1k + 1~ Z r ”uJHHUt =)
"h.j\/4k + 1 - ( Ak J”“J”[_ Eel) -+ lL —j) —J—IHU‘]“Hu-”n))

(3.39)

This is the upper bound on [B; Ul-tk—;—l/'.‘.aQ for each j = l.....2k. Now we calculate an upper

bound on Lyv.

Let 8 = arg s. then substituting the expression of v{r.t) and 8 into £, v, we find

Liv = ((t)exp(irt)Lz —exp(iv)zD* (¢(t) exp(irt))

= ((t)exp(irt)Lz +exp(if)= D’“‘(C( t) exp(irt))

= ((t)exp(irt)L: +exp(if)= ( )'“‘ Deyir)! exp(irt)

k-1

= ((t)exp(irt)(L + r** exp(if)) = + exp(if): Z (4[k)g'“k‘”(t)(ir)‘ exp(irt).

=0
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Therefore

“C* PIIL"(Q)

Also.

IN

IN

IN

”C(t}exp(irt)([, * exp(i6))

+ llexp(i6):
i

)l s

Rl [
> ([)g'”k'”(t)(ir)' exp(irt)
=0

L3Q)

{ -t 1k %
iy (L + 1% exp(i6) ]y - {l ) (,)r‘}u:nu(m

e e+

Il

=0
k-1

1k
r* exp(if)) ”L qm T [Z (1 )rl] ”:||L=(m}'
1=0

'||1_2(Q; <my “:”L-‘M) .

Substituting inequality (3.33) into (3.37) we obtain.

ak 2k
Z P el gpan-s.q) < (4k + 1)m, [“L‘”L Q) '*‘Z By tlgo, o 1yn00 * Il
3=0 1=l

Substitution of inequalities (3.539). (3.60) and (3.61) into inequality (3.62) gives

4k

3=0

2P e € (k+1) rm{ll (L +r* exp(i0)) ]| g,

k-1

% (1)

=0

2%
+ Y VAT (P Yyl
J=1

+

+(4k - j)"“-"-l ”“J’”Hu-y(n)) + “:“L’(R)}‘

(3.60)

(3.61)

(3.62)

{3.63)



CHAPTER 3. INPUT/OUTPUT MAPS 33

After rearrangement we obtain

kol k-1
1k . 2 1 . 20 . J.
r - (dk+1jm; § ( | )" = (kb + l)'"'z} =l a) + ;)(r) =l frox-9(q)

< (4k+1)m3 [“(L e exp(i())):”L;‘m

*Zj T+ 1= ( 4k - “ugll, . 2 (4k_j),Ak—J-l||uJ]|Hu_,m)) .

(3.64)

By definition of R. we have

1k ~1

P~ (k+ mi Y (4k> = (4k + )m3 > 0.

l
=0

Also. we can re-index ;k;)l(r)j ”:”H“-’(m as Zjil(r)"“” Hzllgg1qy- Hence Equation (3.64)

implies

A

(L + r** exp(if)) ”“(m

Ak
Z(r)w-d“:””,'m < (4k+l)m§l:

J=1

+Y k1= j(r**'-f sl sy +

8 A ptk=g~1
(’1‘ —J)I‘ ! ”uJ”HM-y(Q’)]

IN

(4 + 12m33 [ (L + %+ exp(i6)) ] o 0,

o .
+Z W Mgl 2y + 1||uj||”.._,‘m].

Substituting back s = r** exp(if) into the above inequality and defining m = (4k + 1)/ §J we

have the desired result. (]
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Thus if - € H*(Q) satisfies Lz = —5 and B,z = uj on 99. we see {rom equation {3.56) that

1k 2k 2%

- L T JEpL 2%
Z |s|(l *) ”:”H'(Q) <m +Z lsl“ ) Hl‘jllLl(Q) + Z is‘(l T )Hll;‘”Hu-y(Q)
=1

i=1 =1

Hence Theorem 3.8.8 implies that for sufficiently smooth u,’s. say u; € H*(Q) for all j =

l..... 2k. then the input/output map of the boundary control system
= = -L: red t>0
Bi: = u. Yi=1..... W, red,. t>0
y = KN:.

is bounded for all observation operators K € L(H(Q).)).

Theorem 3.8.9: Let L. B, and Q be as defined above with m = 4k + 2, k a natural number,
and satisfy assumptions [HH1]-[HHS5]. Then there erists a positive constant R such that for any
€ H¥+4HQ). v, € H¥+2-1(Q), j = 1..... 2k + 1. satisfying Bjz = u, on dQ and any compler

number s on the open right half plane Cgau+s := {5 : Re s > R¥**2} the following inequality holds:

Rl \ 2k+1
(- -t
YT el < om|ICE = s)zllpam + D s (1= w53) sl 2 q)
J=1 =1
2k+1 -
- 1 -
":‘ Z |5|(l 4t+2) “u]HH4i+J-y(n) (.3,().‘))
=1

where m is a positive constant dependent only on L and Q.

Proof: The proof follows the same structure as that of Theorem 3.3.8. thus we shall only
highlight the important steps. Let ¢ be a function in C™(—x.x) such that ¢(t) = 0 for
ft| > 1. ¢(t) =1 for [t] < 1/2. Let m; be a constant chosen such that IS gr2(m) < mi. Let

m

max{m(f). -7/2 < 0 < 7/2} and my = max{m.m;}. Thus m; is always greater than l.
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Define the polynomial P{r) of degree 1k + 2 by

Ak +1
P(r) := r¥**2 — (4k + 3)m} z (

=0

4k +2

| )r-’ — (4k +3)m3.

Choose R to be a positive real number such that P(r) > 0 for all r > R. Observe that
P(l)y< =8k -5<0.

thus R > 1. For any : € H¥**(Q) and any s € Cgrue: set 8 = arg s, r = |s|//146+2) 4pd
v(r.t) = ¢(t) exp(irt)z(r). Clearly v € H**2(Q) hence equation (3.53) implies

k41

Nellzroessi) € ma | ICa0lliag) + D (Bitlysac, 1200 + 1l 20 | - (3.66)
1=1

Lower bound for ||v[|H..+_.(Q,. and upper bounds for [B;t]yks2-,-1/2.0¢ and |Lotl|L2(q) can be

obtained using the same technique as in Theorem (3.8.8). The resulting bounds are given below:
k42

(k4 3 el ez = D (M Nzllgarescs gy - (3.67)

3=0

Foreach j =1..... 2k + 1 we have

[B)tliksa-j-1/20q S M2IVHAK+3 ("“H-J sl sy + (4 +2 = jyrieri=s=t H“J”H"“"‘.m) )
(3.68)

where
) th+1 3\ 2
3° = E .
(l>
3=0

Also.

1k+1 gk +9
1CoellLaq) < m2 {][(L - r"k""exp(iG)):“L,(m + [Z ( . )r‘] ||:(|L,m,}. (3.69)

=0
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and
”"”L-'(Q) <malfzll g, - (3.70)
Substituting inequality (3.67) into (3.66) we obtain.
k42 k41
D e ey 1 2, L”A’-"“L*«Q) DIt “lke2oy-1/209 T “"“LHQ)J RCARY
3=0 =1

Next. substitute inequalities (3.68). (3.69) and (3.70) into inequality (3.71) gives

k42
Z (r)? l=llggansa-sgny < (Hk+ 3)m§{ (L~ rte*? e-‘p(io)):”u'm
J=0
sk+1
4k +2
[E (4] b
=0

2h+1
+Y) Wk +3- j(r*"*"’" sl aq)
J=1

+(4k + 2 = jrtkrio-t ““JHH“"""’IH)) + <]

LUQ)'}

(3.72)
After rearrangement we obtain
4l ke k41
ka2 4 2 md - SR TYe 2 T 3
r (4k +3)m3 Y ( | )r‘ — (4k +.3)m._,} 21l 2y + ;O(r) =l gansa-a(q

(=0

< (4k +3)mi {:”(L — pik*2 exp(iG)):[]L,(m

2k+1
+ Z 34k +3 - j(r4k+2-1 ”ui”[_ﬂ(n) + (dk + 2 = jypik+2-u-t ”uj||Hu+2-y(n;)] .
=1

(3.73)
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"
-1

By definition of R. we have
1k +1
o a k+2 R
P2 4k + 3)ym3 Z (4 + )# — (4k + 3)m3 > 0.

Also. we can re-index Z:,k;)l(r)j =il gyansa-a(q, as Zji‘:;’(r)“"“” l=llg2q)- Hence Equation

(3.73) implies

Hh+2
(r)ik+2= Nellgsqr < (Hhk+3)ym3 (L = r**+2exp(if)) |,
L
=1
2kl
+ Z Ik +3 —j("‘kyzﬂ uyilp o +
J=1
(4h + 2= )= )
< (4k+ 3)5/2m§3[” (L — rik+2 exp(i())):”“(m
2k +1 1
+ Z pik2-y 1 2 + #2701 |i“1[|uu+2-r(mJ
=1

Substituting back s = r***2exp(if) above and defining m = (4k + 3)3/2m23 we have the desired
result. [

Hence if u, € H**+3(Q) forall j = 1..... 2k + 1. then the input/output map of the boundary

control system

£ = [ reQ. t>0
Bj: = uj. Yj=1..... 2k + 1. red;. t>0
y = K=z

is bounded for all observation operators A" € L(H!(Q).)).



Chapter 4

Controller Design

To approximate multi-dimensional systems numerically. one makes use of finite-dimensional state-
space approximations. To obtain good accuracy. often a high order state-space approximation is
necessary. These approximations require a lot of computer memory and controller design is
difficult. The availability of the transfer function can be advantageous for multi-dimensional
systems since typically the number of inputs and outputs is relatively low. Knowing the poles and
zeros of the system allows us to determine the system response. thus it is important that they
be approximated correctly. Although traditional approximation schemes generally vield good
approximations of the poles of the transfer function. this is not the case for the approximations
of the zeros of the system. Thus direct approximation of the transfer function can vield an
approximation that is more representative of the true dvnamics. particularly the zero dvnamics.

In this chapter we investigate the prospect of using pole/zero estimates to approximate the
transfer function and use these approximates to compute a finite-dimensional controller. We

compare our results with those obtained using finite element approximations.

33
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4.1 Transfer Function Approximations

Given the transfer function of the open loop systeni. the closed loop transfer function of the
feedback control system in Figure 4.1 is (1 + KG(s))~'. where A is assumed to be a constant.
Suppose that A'G(>x) # —1.(that is 1 + A'G(s) is not strictly proper) and that G(s) is stable.

- - - . ~

g 3 S ~ £ .l S I I I T ST & U [T A SV | R w1 [ AGES ]
i U CIO3Ch 100D SYSULCTL alt Wif uile ZCTud L T A U(o). LUl Sitall vatues ut v, Lue

hieii the poles ¢
roots of | + N'(7(s) approach the poles of G(s}. While for large values of A, the roots of | + KG{s)
approach the zeros of (7(s). For a given constant A if any of the poles are on the right half plane
then the closed loop system will be unstable. a scenario that a designer would not waat. The root
locus is a plot of the closed loop poles with constant proportional gain A, varving from 0 to x.
and unity feedback. Hence. we can obtain the range of allowable feedback gain A for which the
resulting closed loop system will be stable. Thus any finite-dimensional approximation for the
open loop transfer function should have a root locus plot that resembles that of the exact closed
loop system. We first examine transfer function approximation by revisiting Example 3.2.3 with
1
O K Gs)
I S |

|

Figure 4.1: Block Diagram of A Feedback Control System

. . h(L . .
observation at ry = 3. The transfer function is G(s) = %%(‘7’5 The exact transmission zeros

and poles are —3(2n + 1)?x? and —n*n respectively where n = 0.1.2,.... By plotting the exact
zeros and poles we see that there are 3 poles between any two successive transmission zeros (see
Figure {.2a). Figure 4.2b and 4.3 shows the root locus plot using the first 20 poles with 6 zeros
and 30 poles with 10 transmission zeros of G(s). Both plots give a similar pattern. In particular.
if we restrict the axes of Figure 4.3 to be those of Figure 4.2b, we see that both plots have the
same number of branches (four) going into the right half plane. Thus we suspect that the root

locus plot of the exact transfer function G(s) also possess the same pattern as well.
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Figure 4.3: Pole/Zero and Root Lccus Plot for G(s) =

cosh( )
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with 10 zeros. 30 poles



CHAPTER 4. CONTROLLER DESIGN 91

To use these approximating systems for finite-dimensional controller design. it is necessary to
ensure that the resulting controller will vield closed loop convergence since the controller needs
to stabilize the infinite-dimensional system. This is attained by ensuring that the approximation
converges in the graph topology. For details on the graph topology. we refer the reader to Appendix
AL

We seek to find approximations of (7{s) whose root locus plot qualitatively resembles that of
Figure 4.3. First we consider finite element methods with linear splines (see Appendix A for
detail). We know that this approximation scheme converges in the graph topology [Morris. 1994]
and so any controller design scheme will yield closed loop convergence. Figures 1.4 and 4.5 show
the root locus plot with approximation orders 5.10 and 30 respectively. Although 5 elements is
sufficiently high for simulation of a one-dimensional heat equation. the corresponding root locus
plots for n = 5. 10 are poor. It isn't until an order of 30 that the plot appears qualitatively similar

to the root locus plots in Figures 4.2and 4.3. Next we consider approximating G;(s) using direct

Feste Elament wh Nad Foag Eioment wh Na 10
20 200 -
1 -
b . :
‘ /\ ) 1S3} /——\ 1
: y \ P |
2 / N ; ! ,
[ '/ v ! ook // \‘
/ .
"ne / . . .
1 / ’ ; i ‘ /
@9 ‘L /.‘ sm!» ; p /—\ /
3 | / /—\ /. : 3 | ; \
BT O—a A 4 3 I—— ) e —d—a
P \ \ ; ‘
13 i \ v . I E \
-0k \\ ) \_/
i \ . 50

8
.8

i _H B
g» b b b -
E 8

&

{a) N=5 {b) N=10

Figure 4.4: Root Locus Plot for Heat Example Using Finite Element Approximation
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10t Roct Locus Pict for Acorox System via Fete Element with NaX)

2 T
) /
/
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S R E 3 5 ! 18 2 25
Roal Atss e

Figure 4.5: Root Locus Plot for Heat Example Using Finite Element Approximation with N=30

pole/zero estimates. Consider the following system where the roles of input u(t) and output y(¢)

have been reversed and y(t) is set to zero.

P 2. A
‘;—; = S?" J:E[O.%]
:(r.0) = 0. refo.}
[0-5] > (4.1)
(3 =0 t>0
2(0.t) = 0. t>0 |

The transmission zeros are the poles of the zero dynamics system {4.1). Hence we can approximate
the poles and zeros directly by applving the finite element method to systems (3.9) and (4.1)
respectively.

The number of zeros and the number of poles one should use in approximating G(s) are not
obvious. In other words. what should the (#ofpoles) be with respect to (#of:zeros)? Unfortu-
nately at present. there is no known methodology to obtain this answer. We therefore resort to

trial and error.
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By observing the placement pattern of the exact zeros and poles. ( Figure 4.2a) one speculates
that good root locus plots may be obtained if we choose the relationships between number of poles

and zeros to be one of the following:
1. (Number of poles) = 3x (Number of zeros)
2. (Number ot poles) = 3§ x (Number ot zeros) + |

3. (Number of poles) = 3 x (Number of zeros)+2

- [1. 2 ~P .
The gain is chosen to be % where p; and :, denotes poles and zeros and m is the number

=1
1,20

of zeros in order to match the residue at s = 0. The root locus plots corresponding to each of
them were plotted and numerical results indicate that the best choice is relation 3. The results
are shown in Figure 1.6. Thus if the relative degree of the approximation is chosen correctly, a
much lower order of approximation is needed to vield a root locus plot that is qualitatively more

comparable to that given in Figure 41.3. Since the finite element approximations converge in the

XX N . \\
Y N
- / o> \\
i —_— L . ! \ N L
? T > —-— — s e .
' \\ ! — - ‘
@r \
L3 N
‘ \
. .
- 7 \
™
= m 26 IR h L 3 t ] © it 3 an - - - = m
L ] on Ay
(a) 1 zero. 5 poles (b) 3 zeros. 11 poles

Figure 4.6: Root Locus Plot for Heat Example Using Pole/Zero Estimates : # of poles = 3(# of
zeros) + 2

graph topology. we can use a sufficiently high order of approximation to represent the ‘exact’

transfer function. For our example. we picked 30 elements. As a final comparison. we plot the
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error between the approximated transfer function and G(s). The result is shown in Figure 4.7. We

k] Pomy Zoncs £3mmam . 3 o lov0 Eswram i
. e Emran J Fewp Bamans
!
i
|

ese o oo

o am

(a) Magnitude Error (b} Phase Error

Figure 4.7: Error plot between Approximated and Exact Transfer Function (0.1 < « < 100) for
the Heat Example

see that the pole/zero approximations give better approximations than low order finite element
approximations. However. the finite element approximations perform better if .\ > 5. Thus
this example did not give us any conclusive results. Since both approximation scheme converges
quickly. it was difficult to examine which methodology. if any. is superior. To further investigate
our hypothesis. we study another example. a one-dimensional acoustic duct.

Consider one-dimensional plane waves in a duct where a controlled pressure P, is applied at

a point r,. If one neglects nonlinear terms. then one can model the particle displacement in

state-space form as follows: (for complete discussion. see [Grad. 1997} and [Morris. 1993])

-g;—: = czg;—;-i-d(.t—.ra)ﬂm (4.2a)
:(r0) = 0. (4.2b)
oz
(=0 = 0. (4.2¢)
=00 = o (4.2d)
: K d:
a—r(L.t) = —?E(L.t) (4.28)
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Values in Table 4.2 were used for our simulations. The resulting transfer function is

z(x.t) | particle displacement (m)

r | position of the particle along the duct (m)

time (s)

L § length of duct (m)

¢ | wave speed (m/s)

p { density of the medium in the duct (kg/m*)

r, § position where the pressure is sensed or measured and

fed back through the controller (0 < z, < L)

I, || position where the pressure generated by the controller is

applied to the duct (0 < r, < L)!

P.(t) § control pressure applied at r = r,

Table 4.1: One-dimensional duct: variable definitions

¢ | 331lm/s. the speed of sound in air
1.29 kg/m3

P
A ] 0.7, une end of duct is partially reflective/absorptive
L

4m
I, 2m
La 0m

Table 4.2: Values of ¢, p. K. L. r,.x, used in simulation

(4.3)

where a = (1 + A}/(1 — R). It has transmission zeros at 33_1 (lnl :i:‘anri) and poles at
a

E% <ln al + 2mri) .n=10.1.2.... Soany infinite strip of the form {(z.y) | t € R and — 4n% < y < 4n7.n € N}

contains 2n + | zeros and 4n + | poles. (see Figure 1.8a)
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We first consider finite element methods with linear splines (see Appendix A for detail). The

exact root locus plot using the first 41 poles and 21 zeros is shown in Figure 4.3b. The root locus

Srec won e Y 30t ATaate Dl

- - >
¢ | e —_— .
an 3 : ' -
M . H —_—
v : ' e
3
ey ——"
Rl e
ame E] ] q——————.——ﬁ
: ; «amp
oo 3
|
3 ‘
1 xn *”® it °
= s = bl 4 ben
(a) Pole/Zero {b) Root Locus
Figure -1.3: Pole/Zero and Root Locus Plot using 41 poles and 21 zeros of

exp(322) (exp () ~ a)

Gis) = -
( 2(exp (F) - a).

plot with vV = 8 and .V = 15 are given in Figure 1.9. As discussed in {Grad. 1997]. the finite
element method gives a number of zeros and poles that do not lie on the line r = 3‘,:;—lln% and
r = 3—3—' ln;‘; respectively. If we view the root locus plot only on an interval around the exact
zeros and poles location then it does resemble that of Figure 4.8, For direct approximations
we approximate the poles and zeros in the same manner as before. Again we need to choose a

suitable relationship between the number of poles and zeros.

Through trial and error. we arrive at the relationship

{Number of Poles) = 4 x (Number of Zeros) — 3.

n-%m—S -

.. p; .

The gain is chosen to be —[_I—-— where p; and z; denotes poles and zeros and m is the number
m =i

of zeros. The corresponding root locus plot is given in Figure 4.10. The error plot is shown in

Figure 1.11. It is evident that the pole/zero estimates gives much better results for low orders.
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Figure 4.9: Root Locus Plot for Duct Example Using Finite Elements Method

We shall compare the different approximation methods in controller design in the next section.

4.2 Finite Dimensional Controller Design

One of the most well-known controller design methods is to use linear state feedback together with
a state estimator. One example is the Linear Quadratic Regulator method (LQR). Estimators are
very common in practical situations as the full state r(t) is not always available for measurement.

The discussion in this section assumes that the system can be written as a finite-dimensional

system in state-space form. Consider a linear time-invariant (LTI) system given by

£(t) = Az(t) + Bu(t)
(4.4)
yit) = Cr(t).
where A. B and C are constant matrices of appropriate dimensions. From Figure 1.12 we see that
in essence. the estimator takes the plant input u{t) and output y(¢) as inputs and determines an
estimate £(t) for r(t). The error between z(t) and z(t) should shrink as time progresses. Thus

we should incorporate some error information as input to the estimator to ensure that a proper
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Figure 4.10: Root Locus Plot for Duct Example Using Pole/Zero Estimates

correction can be made to z(t). A logical choice is the output y(t). But there are some underlying
assumptions one must have on the system in order for y(t) to be =useful”. If the matrix C in (4.4)

is the zero matrix. then measuring y(¢) will give us no information' Suppose the estimator is of

the form

dr

= A0 + Bu(t) + FC(z(t) - j(z)) (4.5)

where F is some constant matrix and can be thought of as possibly a magnification of the er-
ror C(i’(t) - J:(t)). We see that if £{t) = r(t) then equation (4.5) is just the first equation of

System (4.4). Subtracting Equation (4.3) from the first equation of System (4.4) gives.
% elt) = (A = FO)e(t
dte = (. e(t).

where the error e(t) = z(t) — £(¢).

So £(t) tends to £(t) provided the eigenvalues of (4 — FC) have negative real parts.

Definition 4.2.1: A matrix A is Hurwit: if all eigenvalues of A have negative real parts.

Definition 4.2.2: System 4.4 is detectable if there exists F such that 4 — FC is Hurwitz.
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Figure 4.11: Error plot between Approximated and Exact Transfer Function (0 < « < 2500)

If the system is detectable then its estimation can be accomplished by suitable choice of F. In
practice. F is often chosen so that the system behaves in some ~best possible™ manner.

We now turn to the discussion of linear state feedback. The argument is similar to that above.
Let r denote the reference input and K be some constant gain vector. Suppose for the moment
that all the states are available for measurement. (We will discuss what happens when we use
both state estimator and state feedback on a system later.) Then from Figure 4.12. we have

u(t) = r(¢) = Kr(t). So the realization of the feedback system is

#(1)

(A - BR)x(t) + Br{t)

y(ty = Cr(t). (4.6)

Definition 4.2.3: System 4.4 is stabilizable if there exists A such that 4 — BR is Hurwitz.

The goals of controller design are to obtain a stable closed loop system and also to improve
the performance in some sense of the overall system. As in the estimator case. if we can choose
K such that the eigenvalues of 4 — BR have negative real parts then the closed loop system will

be stable. This is possible if the system is stabilizable. This choice of KA. like the choice of F.
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Figure 1.12: Block diagram of estimator with constant state feedback of a LTI system

is non-unique. A common method is to choose A" and F so that they solve a linear quadratic
regulator problem. This is the topic of discussion in the next section.

The discussions on state estimator and state feedback were done independentiy. One might ask
what happens when we use the estimator to find £ and then use it to obtain the state feedback
u =r— KZ. It turns out that design of the state feedback and state estimator can be done
separately. To see this, assume we are designing a state feedback and a state estimator for the

LTI system given in equation (4.4). then

)= Az(t)+ B(r(t) = Ki(1))
% = (A= FC)i(t) + FCr(t) + B(r(t) - K#(T))

u(t)y = r(t)— Kz(t).

Hence
#(t) Kl ~BK r(t) B
5 = + r(t)
= FC (A-FC)-BK 2(t) B

~

4
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The eigenvalues for A are given by the solutions to

A -4 BN
E(\) = det = 0.

-FC A -(A-FC)+BK

Now let
I 0 I 0
P= so P7'=
-1 1 I 1
Then since det(P) =1
Al — (4 - BR) BN

E(\) = de[(P“(,\I - .i)P) = det
0 M= (4= FC)

The eigenvalues of 4 are just the eigenvalues of state feedback and state estimator! This is known

as a Separation Principle.

4.3 Linear Quadratic Regulator

The linear quadratic regulator (LQR) problem can be stated as follows. Consider a linear time-
invariant system,
I(t) = Az(t) + Bu(t)

(4.7)
y(t)y =Cz(t).

Let Q and R be symmetric positive semi-definite and positive definite matrices. Define the cost

function as

J(u) =/: T (6)Qx(t) + u” (t)Ru(t)dt. (4.8)

The objective is to minimize [J subject to

#(t) = Az(t) + Bu(t).
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The role of Q and R can be thought of as a weight on the state variables r(¢) and the control
input u(t). The weight on r(t). that is the matrix Q. can be best thought of as weighting the
importance of each state r(t). If each state is equally important. then a possible choice of Q is
the identity matrix.

The LQR problem as given above cannot always be solved. To see this consider the following

example given in Anderson and Moore [Anderson and Moore. 1990}.

Example 4.3.1: Consider the system

F(t) 1 0 £ (t) 0 £4(0) 1
= -+ u =
Fa(1) 0 1 £2(t) 1 £1(0) 0
D e
4 B

with performance indices R = | and Q = [. With the given initial conditions. the
cost is

J(u) = /N w?(t) + exp(2t) de.
0

Clearly J(u) > fox exp(2t) dt = x. So for any choice of u(t). J is always infinite.

To see what the problem is here, note that for any choice of A" = [A} A'3] we have

0
A - BRK =
—[\.1 |l - [\.2

Hence A = | is always an eigenvalue of 4 — BK. That is the pair (4. B) is not stabi-

lizable. |

We are now ready to state the theorem regarding the optimal solution to the LQR problem.

Theorem 4.3.2: (e.g. [Anderson and Moore. 1990]) Given a stabilizable system

2{t) = Az(t) + Bu(t).
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a positive semi-definite matrir Q and positive definite matrir R. the optimal solution to

J(u) = /x T ()Qr(t) + uT (t)Ru(t) dt
0

subject to

rit) = Azr(t) + Bult).

is given by u*(t) = =K*°r(t) where

KR =R"'BTP,

and P denotes the unique positive semi-definite solution to the Algebraic Riccati Equation

PA+ATP+Q- PBR™'BTP=0.

This gives us the solution to our state feedback problem. What about the state estimator? How

can we find a suitable F? Since the dual of system (4.7) is

Ht) ==ATr(t) + CTu(t) (19)
y(t) = BTr(1).
Thus the pair (A. C) is detectable if and only if the pair (A7.CT) is stabilizable. Hence again we
can use Theorem 4.3.2 to obtain the solution to a state estimator problem.

There exist a number of techniques to solve the Riccati equation. For a brief discussion. see
Grad [Grad. 1993]. The Matlab program CARE was used to solve our algebraic Riccati equations.
High accuracy of the algebraic Riccati equation solution is essential to ensure exactness in the
design of the finite dimensional controller. We use Newton's Method and Newton's Method with
exact line search to improve the solution obtained by CARE. Pseudo codes for the two methods

were given in [Benner and Byers. 1998].
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4.4 1-D Heat Equation With Neumann Boundary Control

In this section. we use the LQR method to find a controller for system (4.10) using the ap-

proximating system resulting from the finite elements or pole/zeros estimate. For details on the

computation of the approximating system see Appendix A.

gt~ 9r?’
(r.0) = 0
d:
a—(O.t) = 0
a——;(L.t) = u(l)

(4.10a)
(4.10b)
(4.10c)
(4.10d)

(4.10e)

Let the choice of performance index be denoted by f and R{ They must be chosen so that the

weighting on the state and the control doesn’t vary from one approximating system to the next.

Since each state w in this finite element method corresponds to the value of the approximation

at position r = k/N, we can determine Qf» as follows: Let

Wn(c) =[volr) vi(r) ... exvog(r) vy ()]

Note that

Sirt) v t) = VOU(2)Un(z) Vv ()

= WLONMGWY ()N (2)VMT Wy (t),

Integrating both sides with respect to r from 0 to | gives
1
/ Lz t)zv(z.t) dr = WL ()N MG Wy (t).
a

A suitable choice of Q¥ is therefore VM '. Ris set to be 1.
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We also need to determine an appropriate choice of Qf. from computing the state estimator.

Note that the constraint of the LQR problem for the state estimator is
i= AT 4 (T

| N I JENCEES 2 ]
Livil cyuatiull | .2}, we lave

1

My Uv(t) = VSV (t) + byu(t).

Hence

Uv(t) = N2MGISvin() + NMZ byu(t)

ATV () + NV MS by u(e).

So

1 1
/ :I-(:.t):y(r.t) dr = / VoW (o) v () ()
0 0

" 1 .
“\-(I)T:.”.\' Vv ().

Therefore we must choose Qf- = %J[.\-. The choice of R is again 1.

Figures 4.13-4.16 show the m;agnitude/phase plot®of the resulting controller and its resulting
closed loop sensitivity. Not surprisingly (since the approximate transfer functions from both
methods converge quickly) both controllers converge very rapidly. with the direct approximation

converging slightly faster. so we cannot conclusively decide which method is preferable.

2\Ve note that linear scale was used in the magnitude plot
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Figure 1.13: Magnitude and Phase Plot of LQR Controller for Heat Example Using Pole/Zero
Estimates

4.5 1-D Acoustic Duct

From Section 1.1 we see that the pole/zero estimates transfer function converges faster those the
finite elements transfer function of the same order. We suspect that the controllers resulting from
pole/zero estimates will converge faster than those obtained from finite elements approximation.
For details on computation of the approximating system see Appendix A.

Again we use the LQR method to find a controller for system (4.2). We choose Q¥ = C‘f:'Cﬁ:
for the feedback estimator and Q¥ = Bf}Bﬁ’ for the state estimator. The choice of R = 1.

We use the controller obtained from using the finite element approximations with 46 elements
as a benchmark comparison. The results are shown in Figures 4.17. 4.13 and 4.19. One can
clearly see that the controller obtained using the pole/zero estimates converges much faster than
that obtained from using the finite elements one. In particular, note the huge difference in the
phase convergence and that although the approximating schemes gives slight difference in G,

{(Figure 4.11). it results in a significant difference in controllers.
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Figure 4.14: Magnitude and Phase Plot of LQR Controller for Heat Example Using Finite Element
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Magrutude and Phase Plot of LOR+LQE controller using Sole/Zero estimate transfer unction
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Figure 4.17: Magnitude and Phase Plot of LQR+LQE Controller for Duct Example Using
Pole/Zero Estimates
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Magnitude and Phase Plot of LOR+LQE controller using Finute Elements approxmate transter function
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Figure 4.18: Magnitude and Phase Plot of LQR+LQE Controller for Duct Example Using Finite
Elements
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Chapter 5

Conclusions and Future Research

Continuity of the input/output map for boundary control systems has traditionally been justified
via either the definition or through properness of the system transfer function. These techniques
require explicit expressions for either the input/output map or the system transfer function. In
this thesis. we propose an alternate method. In particular. we derived a sufficient condition for
properness of the system transfer function. This in turn implies boundedness of the input/output
map. Our method transformed properness of the system transfer function to boundedness of
solutions to a related elliptic problem. Our technique has the advantage that no explicit expression
for the system transfer function is required. Moreover. we avoid the computation of a state space
realization.

Although there exist a large number of a priori estimates to solutions of uniformly elliptic
problems. none addresses the question of uniform boundedness of its solutions. Thus a good
portion of this thesis was to establish such bounds. As a consequence. we were able to show
boundedness of the input/output map for a class of second order uniformly elliptic operators
with Dirichlet. Neumann or Robin boundary control in a general bounded spatial region with
varying coefficients. The result was generalized to higher order operators with Neumann or Robin
boundary control. Immediate future research includes extending our result on Dirichlet boundary

control to higher order operators. Also. we would like to generalize our results to more general

112
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operators and also systems that are second order in time. Also of interest are necessary conditions
for boundedness of the input/output map.

Although traditional approximation methods generally give good system poles approximations.
the approximations for the system zeros are generally quite poor. Thus in Chapter 4 we examine
the convergence of transfer function approximation through direct approximations. With this
method. the poles of the system are approximated using finite element while the zeros of the
system are approximated by the poles of the corresponding zero dynamic system using finite
elements. This produces better approximations to the zeros.

Next we investigated the usefulness of direct approximation of the transfer function for con-
troller design. The one-dimensional acoustic duct example indicated that direct approximation of
the transfer function can give much faster convergence of the controller sequence than traditional
approximation methods. This result is very encouraging although much more research still lies
ahead.

Since the poles and zeros are computed independently. we need to determine the correct
relationship between number of zeros and number of poles of the exact system. In both of our
examples. the relationship between the zeros and poles was obtained through study of the exact
zeros and poles of the system and a certain degree of trial and error. How to determine an

appropriate relationship between the number of poles and number of zeros is an open question.
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Appendix

A.1 Graph Topology

In this section we introduce the concept of the graph topology. It gives a way of measuring
closeness of two transfer function. For a complete discussion see [Vidyasagar. 1983]. We begin

with a few notations and definition:

I. The notation H, denotes the set of functions f that are analytic in the open right half

plane Re(s) > 0 with norm
1 fllx = sup liméa(f(z + jw)).
~ER 0

The set of matrices whose elements are in H, is denoted by M(H.~). The norm of a

function in M (H) is the induced matrix norm
| Fll = sup lima(F(z + ju)).
~ER TL0

where & denotes the largest singular value of the matrix F.

2. The set of proper rational functions in H~ with real coefficients is denoted by S. The set
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of matrices whose elements are in S is denoted by M(S).

Definition A.1.1: [CoPrRIME FacToRrizaTioN] Given G(s) € .M(H..). an ordered pair (.V. D).

N.D.€ M(H) isa right coprime factorization (rcf) of G if

(Y det D#£0,
(i XV+YD=I forsome X.Y € M(H).
(i) G=ND"!',

Similarly. an ordered pair (.N. D). .V. D, € M(Hx,) is a left coprime factorization (lcf) of G if

(1) det D # 0.
() NXY + DY =1, forsome X.Y € M(H),
(i) G=D-'N.

We shall denote the set of GG(s) that have a right and left coprime factorization over M(H~) by
R(H~). A coprime factorization is not unique: however it is unique up to multiplication by a

certain matrix called a unimodular matrix. (see e.g. [Vidyasagar. 1983])

Definition A.1.2: A square matrix I € M(S) is called a unimodular matriz if its determinant
is nonzero and independent of s and {'~! € M(S). The set of all unimodular matrices whose

elements are in S is denoted by '(S).

Closeness of two transfer function can be studied through closeness of their respective coprime
factorizations. We define a basic neighborhood of G(s) te be one that consists of all transfer
functions whose rcf's are “close™ to a rcf of G(s). More precisely, let G(s) has an ref (V. D)
and let (.X.Y) be such that X.V+ YD = [. Set p = pu(V.D) = 1/||[X Y]|lec . then whenever

N - N

< p. we have
D\-D

x

I XM+ YD =Tl = || X(VM1=N)+Y¥ (D1 - D)~
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L=V
= vy
D\-D )
.. 1—N
< LY Vi
Dy-D
< 1

This shows that X.V| + Y D; has an inverse in M (H .} so we can write

XVi+YDy=u u € l(S)
then

(u='X)Vy + (u~'YVYDy = 1,

so the pair (.Vy. D) is also a right coprime. We can define neighborhoods of G as follows:

Definition A.1.3: [Basic NEIGHBORHOOD]| Let 0 < ¢ < u(.V. D) be fired. A basic neighborhood
of G is defined as the set N'(P.N. D.¢) given by
N -V

NMG.N.D.e)={ G, = .\'ID;l : <e.
D,-D

~x

By varying ¢ over all possible positive values less than y and varying (.V. D) over all ref of G.
where G ranges over all elements of R(H.). we obtain a collection of basic neighborhoods. This
collection of neighborhoods together with the set R(H.,) generates a topology. We refer to it as
the graph topology.

Using the concept of basic neighborhoods we can define what is meant by a convergent sequence

in the graph topology.

Definition A.1.4: Suppose G; is a sequence in R(H~) and that G € R(Hy). Then G;
converges to G in the graph topology if and only if every basic neighborhood of G contains all but

a finite number of terms of the sequence G;.

Theorem A.1.5: ([Vidyasagar. 1985]) Let G, be a sequence in R(H~) and use S(G) to denote
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the set of controllers that stabilize G.

(1) Suppose G, converges to G € R(H..) and C € S(G). Then there erists an N such that
C € S(Gn) foralln > N. Moreover, the closed loop transfer matrir H(G,.C) converges to
H(G.C) in M(H).

(2) Conversely. suppose there erists a C € S(G) and an N such that C € S(G,) for all n >N,
and the closed loop transfer matrir matriz H(Gn.C) converges to H(G.C) in M(Hy). Then

Gn converges to G in the graph topology. a

A.2 Root Condition

Here we show that all second order uniformly elliptic operators L with real coefficients satisfy the
Root Condition.

First note that

L%:.D)y = i ia,_, D; D,

1= p=1

D' A(r)D.

where D' = (Dy. Da.---. D,) and A(r) is the n x n matrix with components a;j(r). Since L
is uniformly elliptic and the coefficients a;;’s are real, the matrix A4 is positive definite. Let &
and n be two linearly independent real vectors. then the roots of the polynomial Lor.&+mp) =
Py An+ v(&An+ n AE) + &AL, in T has an equal number of roots with positive and negative
imaginary parts if 4(n’ ASn' A& - ' An€’ A€) < 0.

Let A; and v; denotes the eigenvalues and normalized eigenvectors of A. Write np = Y eivi and
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f = Zd,‘ Uy, Then

ALY AE— ' Ang'AS

118

(0 A&)? - ' Ang' AL
= ZC,‘L‘fAZd,‘U,‘ -

20! Ap. 2, g
Yefvide Y dF el Ary

= (Y cidiNv! l'x')2 -3 C;',,\gL'fL'i 3 d;",\, vy
= (T eadi\)’ = T e T d2),
= Yot L migr 6] + cFdf — 2eidicid A,

= Z?:l Z;‘=l+l =(

ngj - de,’)zz\.,\.,.

Since A; and \; are eigenvalues of A. they are positive. So 5’ A&n' A& — i A€’ A€ < 0. That is.

the root of L9z, D) occurs in conjugate pairs.

A.3 1-D Heat Equation with Neumann Boundary Control

[n this section we derive the state space approximation of Example 3.2.3 with observation at

ry = % Let

sv(zot) =

i

where A, = 1/.V and r, = k.. Observe that

. 1 if k=1
(i) ve(0) =
0 otherwise

and

. 1 if k=N
(i) we (1} =

0 otherwise.

[t is easy to verify that

eel{t)uk(x).

Th-1 S 2 < Iy
(A.1)
Lk << Ipyy
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Bz §f iz iFON
2 jf t=J.1=0..N
(iii) fo (L)ej(e) dr = 3
A §f |i-j|=1
[ 0 otherwise
and
= i i=ji#0N
1 . . .. .
— f i=ji=0.)%
{iv) fo vi(z)e)(z) dr = ¢ S
= if li-jl=1
. 0 otherwise.

The exact solution z(r.t) € Ly(0. 1) is such that for all v € H'(0. 1) we have

<a: ) _ (a% )
a ) T \art

- "_=,.1_("’_: Q)
- o' |, \ar or

d: dv
(1) - [ =.=).
ue(l) (6: 31:)
For all j. the approximation :y(r.t) satisfies
v Fox o
ot ¢ 97z "t

oo - (22, 2)
0 dr  Or

ar -’

dzy du;
- (52.42)

Substituting zx(r.t) by its sum series representation we obtain

Al 1
v,'\.(t)/- vr(z)wjfe) de = uej(l) — Lk(t)/ vk J.’)L () dr.
k=0 0 k=0
So.
Ar Ar 1 1
'3—{"0(‘)4‘?1'1(‘) = -A—:vo(f)*‘z—;m(t)
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Al’ ’ ; AI !
Tv,\'_x(t)*'TU.\'(f) =

and forall j=1......

.y
[

Let Vy(t) = { ro(t).....

1 .
—Wyby(t
v Ivin(t)

yit)

-.‘l';‘..l(t) +

Ar

V — 1 we have

A

-—

NSV VN (t) +byu(t)

(3-8)

"
k4

E

L‘k(t)t'k(1/3)

k=0

|

ex(vg(d)

vaon (B)waos (5) + vxes (8) v xa
3 3 ¥ 3

\ txoa (t)ena (§) + vaw (e xa
vy (t)
¢ bexa(t) Fraea(t)
L., 2p
{ 3‘-":3(t)+3ll':'_l(t)

i

’ 12 [ - l
= () + Tt = ) = () + 5

—_—

3)

)

i

1 1
u+ —oey_y(t) - 1—1'.\’(1)‘

r

vj+1(t).

—_—

ey (t) ]T. Then we can represent the above in matrix form

if mod(.V.3) =0
if mod(.V.3) =1
if mod(V.3) =1
if mod{.V.3) =0
if mod(.V.3) =1
if mod(.V.3) =1

120

(A.2)

(A.3)

where MWy, Sy are (.V + 1) x (.V + 1) matrices. by is a (.V + 1) column vector and cy is a (.V + 1)

row vector given by

/3 1/6

1/6 2/3

0
My =

0

0 -1
0 1
0
Sy =
0
t/6 2/3 1/6
¢ 1/6 1/3 0
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by = (0----- )7
(0---010---0)  ifmod(:V.3) =0
v o= ¢ (0---0 210---0) if mod(.V.3) =1
N=i
(8.8 5300 Fuod{V.3)=2

l

Let Wy (t) = —MyVy(t). and define A5 = V3Sy W3 B = by and C§ = Ney M. Then

<,

Equations (.4.2). (.1.3) become

(]
~—

Wyit) = AWy () + BSu(t) i
(A.3)
y(ty = CEWw(t).

This enables us to compute the finite element approximations of order .\. It also allows us to

compute the poles for the direct approximations.
We know that the zeros of system (-1.10) are the poles of the zero dynamics system. That is.
(4.10a) together with tnitial condition (4.108). boundary conditions {(4.10c¢) and :(%.t) =0. To
obtain the zeros for the direct approximations. we need to obtain its corresponding state space

approximations. Let v (r) be the linear splines defined in (4.1) but with Ar = Lv Then the

[#]

exact solution z(r.t) € L2(0.1) is such that for all v € H'(0.1) we have

(a_: ) _ (d_ )
FTh - o2t

o) _(200)
£=1/3 dr’ dr

U
ar

So if v(1/3) = 0 then the above becomes

(2953
a )= dr dr )’
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(8]

Forallk =0...... Y — 1. vx(1/3) = 0. hence we obtain

l - -, B ,".i’,
ﬁ-‘ vV N (8) =3NSy Vv (1),

where .‘-1‘\; and S’y denote the .V x .V submatrices of Wy and Sy with the {.V + 1)th row and
column removed and f",\;(l) = [ vo(t)..... vv-1(t) ]7. This allows us to compute zeros for the

direct approximations by computing the eigenvalue of the matrix 9.V3Sy My L

A.4 1-D Acoustic Duct

Let vi(r) be as defined in Equation {.A.1) (with Ar = L/.V) and set
N
() =) enlt)en(s)

k=0

The exact solution z(r.t) € L3(0. L) is such that for all v € H'(0. L) we have

9 ) T 5 P)
<FL ¢ (()2 )+((J.‘—.L‘a) > .L-)

L 2(a_z @)+P(m( )

h drL “\or ar p

. d_. iy (0s Jelza) | Palt)e(ed)
= [\cat(L.t)L([.) c (6: EP )+ p p

Thus for all j. the approximation :y(z.t) must satisfy
32:_\' N KN a:‘\' d:v dv P.(t)uv(r,)
(at'-’ “)"c at “‘”"‘”'(aT'a;)* PR

Substituting :y(x.t) by its sum series represeniation we get

N L N N

L ‘.
z v,’"(t)/ vk(r)uj(r)de = —-I\'cz e (e (L)wj(L)=c* Z v (¢ / e (20 () dr+&t):i‘ta—).

k=0 Y k=0 k=0
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So.
A«l‘ " A: 7" C2 62 Pc(t)wO('ta)
Iy Iy = ——ro(t) + — g (1) + =
3 volt) + 5 vy (t) ArLO()+—\:Ll()+ .
A, AL, ., c? c? Pt un(xs)
el + T:U.\I:(’) = =NKery + Il'.\'-l(t) - _\—rl’.‘i(t)) + =
and forall j = 1...... V — 1 we have
A 27, A, c? 2c? c? P.()vj(r,)
b—_rv;'_l(t) + ——3—:1'1'(t) + —S{UJH(!) = Itvj_l(t) e vi(t) + _\—:vﬂ.l(l) + TJ-
Let Viv(t) = [ vo(t)..... vy (t) ]T. Then we can represent the above in matrix form
L -, .- AN . .
7'"'\' Veit) = RyVv(t) + —L-S.v".v(f) + by P(t). (A.6)
where My .Sy are as defined in Equation (4.4) and
0 . . 0 -
Ky = Nx.N (b, = L](.L'(,).
0 -Ke
Set u{t) = P.(t) and define
Walt) = "".\'(l) T 10(';\'+l)x(.v+l) 1(.~f+nx(.v+n . BE = Ov+nyx1
Vv(t) SEMFISy My FMI'Ry M3'by
Then Equation (.A.6) can be written in the standard form
Wy(t) = AWy (t) + B u(t). (A.7)

Define [cx]; = v(r,) and C§ = (e O1x(v+1) )- Then the output equation is given by

y(t) == CHW(t). (A.8)



Appendix B
Program Listings

B.1 Source Code For LQR design of 1-D Heat Equation
with Neumann Boundary Control

FINITE DIMENSIONAL APPROXIMATIONS

function [NZZ,NP,RZ,RP,sys_N,H_N]=Heat-felinear(N,estzeros,estpoles,rz,rp,obpt)
A HEAT_FELINEAR : Finite element approximations using linear splines for
% 1-D heat equation with Neumann boundary control at x=1 and point

% observation at either 1/3, 1/2 or 1.

%

Al A l B el T A Tl t T Tl Ll At e A e
%% LIST OF REQUIRED INPUTS: %
Wh N --> order of approximations %
%% estzeros --> # of estimated zeros to keep from the approximations Y
% estpoles --> # of estimated poles to keep from the approximations Y
WA obpt --> Point observation pos, either 1/3, 1/2 or 1 %

R Ll I A Al Al l A o L L L L At e oA Fo e
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BRI ANl Rl N AN D AN NSRRI LS LA AL AT IAL RN I DD AANLLLN N,
W% LIST OF RETURN OUTPUTS: %
W NP --> corrsponding ‘estpoles’ no of poles, col. vector yA

WA NZZ --> corr ‘estzeros’ no of poles from zero dyn,col. vector %

W RP --> Real value of the first estpoles of system %
W RZ --> Real value of the first estzeros of system A
W% sys_N --> state space realization of order N in sys form %
W4 M_N --> resulting stiff matrix of order N 4

W N I Il BRIl N NI IR D NN SR AL DI LA DA AT IR I AN I LR DANL LD,

% Written by Ada Cheng on Apr. 28th, 2000.

format long

ni=nargin;
if ni~=6
disp(’Incorrect number of inputs. Please type help Heat_felinear.');
end
% STEP 1

YA S AN N AN YN AN AN AN AN AN YA AA A
% Set up the real zeros and real poles %
Y AN AN Y Y AN NSNS YA NN NS Y YA Y YA AN
RZ=(1;
RP=(J;
for loop=0:rz-1

YA AN YN SN AN YA NN A Y Y YA AN S

% Measurements taken at x=1/3 %

PA AN AN YA NSy Y Y AN AN Ay S AN A

if (obpt==1/3)

RZ=(RZ; -9/4*(2+loop+1)~2#pi~2];
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end
YA A A A YA AN Y Y Y YAy YA
% Measurements taken at x=1/2 Y
WRRRIR RN RAALRA LRI DRAARAALAT
if (obpt==1/2)
RZ=[RZ;-(2+loop+1) "2*pi~2];
end
(AN Y AN AN AN AN YA YN YA A YA A
% Measurements taken at x=1 ¥
VYA Y YA AN AN AN YA YA Y Y YA NS YA
if (obpt==1)
RZ=(RZ;-1/4+(2*1loop+1) "2«pi~2];
end
end
for loop=0:rp-1

RP=[RP;-loop-2+pi~2];

end

RZ=sort(RZ); % sort poles and zeros,

RP=sort(RP); % since all real, doesn’t
% need esort

h=-—--- STEP 2

A A S AN AN SR AN AR YA AN A A VA A AR A AN A A AN AR

% Matrix Setup For Heat Equation With Neumann B.C. yA

% System is in the form 1/N*M_N \dot z = N*S_N z + b_N u, %
A y=cNz %
AN AN YA A NSy A Y Y YA AN S SN AN Y YN AT AN AN S Y S YTAN A NS AR S
A Initialize all matrices as the zero matrix

M_N=zeros(N+i,N+1); S_N=M_N; b_N=zeros(N+1,1); c_N=b_N’;
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M_N(1,1)=1/3; M_N(1,2)=1/6;
S_N(1,1)=-1; S_N(1,2)=1;
for j=2:N
M_N(j,j-1)=1/6; M_N(j,j)=2/3; M_N(j,j+1)=1/6;
S_N(j,j-1)=1; S_N(j,j)=-2; S_N(j,j+1)=1;
end
M_N(N+1,N)=1/6; M_N(N+1,N+1)=1/3;
S_N(N+1,N)=1; S_N(N+1,N+1)=-1;
b_N(N+1,1)=1;
XYY YNy AN AN A NS YN Y YA YA A
% observation at x=1/3 x \in [0,1] %
W BUR RO IIIRADIN LD RDLAAARNAADA DN N
if (obpt==1/3)
if mod(N,3)==0
c_N(1,N/3+1)=1;
end
if mod(N,3)==1
c_N(1,(N-1)/3+1)=2/3;
c_N(1, (N+2)/3+1)=1/3;
end
if mod(N,3)==2
c.N(1,(N+1)/3+1)=2/3;
c_N(1,(N-2)/3+1)=1/3;
end
end
YA A A AN AN A YA AN AN A A YA
% observation at x=1/2 x \in [0,1] %

P AN Y AN Y Y Y AN NSNS VAN AN A YA VAT AN A
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if (obpt==1/2)
if mod(N,2)==0
c_N(L,N/2+1)=1;
end
if mod(N,2)==1
c N(1,(N+1)/2+1)=1/2;
c_N(1,(N-1)/2+1)=1/2;
end
end
VYA AN AN A SN YN Y YA A YA
% observation at x=1 x \in (0,1] ¥%
YA A A AN Y YA SN Y Y YA A AN
if (obpt==1)
c_N(1,N+1)=1;

end

LYY A A AN AN A Y Y YA AN YA AA

% Transform System To Standard form:

% set w= M_N z

% System becomes \dot w

% y=CNuwu

%
A

ANw+BNu, %

A

VYA YN N YA SY AN AS A YA S Y AN YA A YA

invM_N=inv(M_N);
A_N=N"2+S_N+invM_N;

B_N=b_N;

C_N=N*c_N+invM_N;

D_N=0;
sys_N=ss(A_N,B_N,C_N,D_N);
YA Y YNNI T YA A AAA

% ss. output data
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% Find poles of approx system %
% p - poles %
PN AN AN NSNS A A NS A A AN YA

p=eig(A_N); p=sort(p);

% - - STEP 3
Il Al l Il A A AT AT Lt ALl AL Ll AL L S,
% Poles of zero dynamics system --> zeros of real system %
% zz - poles from zero dynamics system A
% boundary conditions are z’'(0)=0 and z(1/3)=0 %
VYA Y Y YA NS YN SN A AN YN A NS AN A S YA Y SN AN SO AN N YA S AA YA
“The (N+1i)th row is always invalid, therefore it is removed
M_zdyn=M_N(1:N,1:N);
S_zdyn=S_N(1:N,1:N);
Y Y Y AN YA AN AN Y S Y YA AAA
% observation at x=1/3 x \in [0,1] %
VYA AN SN AN Y SN AN S A AN Y Y YN A A VAN A
if (obpt==1/3)
% \Delta x = 1/(3*N) instead of 1/N
A_zdyn=(3*N)"2*S_zdyn*inv(M_zdyn);
end
VYA A AN AY AN S AN YA YA Y AN S
% observation at x=1/2 x \in [0,1] %
VYA AN NN AN RS YN N A A AN Y YA N Y YA
if ( obpt==1/2 )
% \Delta x = 1/(2#*N) instead of 1/N
A_zdyn=(2#N) “2*S_zdyn*inv(M_zdyn);
end

DRI IA IR ARIOR LRI IDRAL A ANLAARL N
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% observation at x=1 x \in (0,1] %
YA Y A AN AN AN Y NS AN N YA
if (obpt==1)

% \Delta x is 1/N

A_zdyn=N"2+S_zdyn*inv(M_zdyn);

end
zz=eig(A_zdyn); zz=sort(zz); % poles of zero dyn. system
A - ~ STEP 4

VYA AN S AN AN SN A S AN AN Ay YA YN S YA Y YN NYY AN AN AN YA

% Record required number of system poles,zeros dynamics poles %

% and put them into desired output format. A

I R I T A L N T W NI DAL I LI AR NI LA AR LA L LAA DS

if estzeros== % this corresponds to N=1
NZ2Z=[];

else
% all zeros are negative. zz is sorted in ascending order so the
% first ‘estzeros’ zeros is from length(zz)-estzeros+1:length(zz)
NZZ=zz(length(zz)-estzeros+1i:length(zz),1);

end

NP=p(length(p)-estpoles+i:length(p),1);

return

B.2 Source Code For LQR design of 1-D Acoustic Duct

FINITE DIMENSIONAL APPROXIMATIONS

function [message,sys_N,H_N.zz,p]=Duct_approx(N.felement,polezero,x_s,x_a,c,rho,K.L)
% Give state space model of Finite Elements approx, relevant outputs

% are (sys_N,M_N). The resulting sys_N has dimension 2N+1i.
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Give zeros/poles of direct approx, relevant outputs are (zz,p).

The length of zz is N and the length of p is 2N+1.

Written by Ada Cheng May t2th, 2000.
format long

ni=nargin

if ni==2 | ni==3

c=331;

rho=1.29;

K=0.7;

if ni==2
pclezero='no’;
end
if floor(N+x_s/L) == N*x_s/L & x_s "=0 & x_s =L
s=sprintf(’x_s corresponds to element, cannot compute approximations’);
message='abort’; sys_N=[]; M_N=([]; N2Z=([1; NP=(];
disp(s);
return
end

Deltax=L/N;

% STEP 1

131

A Il B I Al A Lt I Ll A T T ol AR AR Ll AL Ll e
% Matrix Setup For Acoustic Duct %

% System is in the form %
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% 1/N M_N \ddot z = K_N \dot z + ¢"2N/L S_N z + b_N_1 u, %
% y=cNz A
W L R R LRl LR AR IO D N DN RILLRNS SRR NLLA NN
% Initialize all matrices as the zero matrix
M_N=zeros(N+1,N+1); S_N=M_N;
b_N_i=zeros(N+1,1); c_N=zeros(1,N+i);
M_N(1,1)=1/3; M_N(1,2)=1/6;
S_N(1,1)=-1; S_N(1,2)=1;
for j=2:N
M_N(j,j-1)=1/6; M_N(j,j)=2/3; M_N(j,j+1)=1/6;
S_N(j,j-1)=1; S_N(j,ji=-2; S_N(j,j+1)=1;
end
M_N(N+1,N)=1/6; M_N(N+1,N+1)=1/3;
S_N(N+1,N)=1; S_N(N+1 ,N+1)=-1;
K_N(N+1,N+1)=-K=c;
% Set up b_N_1
j=floor(Nsx_a/L);
if j==Nex_a/L

b_N_1(j+1,1)

]
[N

else

b_N_1(j+1,1) = j+1 -x_a/Deltax;

b_N_1(j+2,1)

x_a/Deltax - j;

end

b_N_1=b_N_1/rho;

% Set up c_N

j=floor(N*x_s/L); %x_s doesn’t correspond to element
c_N(1,j+1)=-1/Deltax;

c_N(1,j+2)=1/Deltax;
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c_N=-rho*c~2*c_N;

A STEP 2
YA A AN NS A AN NSNS YA SN Y YA

% Transform System To Standard form: %

% set w= [v \dot v]’ %

% System becomes \dot w = AN w + B_N u, %

% y =CNuw %

VYA A A YA AN AN N AN AN S AN AN Y YA Y A Y i A

M=L/N+*M_N; D=-K_N; G=-c~2sN/L*S_N; %#Janet’s Setup

A_N=[zeros(N+1,N+1), eye(N+1,N+1); -inv(M)*G, -inv(M)=D];

B_N=[zeros(N+1,1) ; inv(M)*b_N_1];

C_N=(c_N, zeros(i,N+1)];

D_N=0;

tempp=eig(A_N);

if strcmp(felement,’'yes’)==1
[A_N,B_N,C_N,D_N]=minreal(A_N,B_N,C_N,D_N);
sys_N=ss(A_N,B_N,C_N,D_N);

else
sys_N={1;

end

%p=eig(A_N);

p=tempp(find(abs(real(tempp))>10-(-8)));% p is sorted in ascending

p=esort(p); % order by real part.

p=p(length(p):-1:1);

if strcmp(polezero,’yes’)==1

% STEP 3
YN AN S AN AN S NN NS S AN AN S AN YA AN Y YN S AN YA AN AN Y Y YA A

% Poles of zero dynamics system --> zeros of real system %
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% 2z - poles from zero dynamics system %
% boundary conditions are z’(0)=0 and z’(x_s)=0 %
A I Il l l f Ll t Rl t L L A AR AT LA L L DL DA
M=x_s/N*M_N; G=-c~2s*N/x_s»*S_N; % Delta x = x_s/N

A_zdyn=[zeros(N+1,N+1), eye(N+1,N+1); -inv(M)*G, -inv(M)+*D]:
zz=eig(A_zdyn);
zz=myminreal (zz, tempp) ;
else
zz=01;p=03;
end
message='continue’;

return

ZERO/POLE TO STATE SPACE MODEL

function sys=Duct_zp2ss(z,p,k)

%
%
%

[a,b,c,d]=myzp2ss(z,p,k,choice) computes a state space form for
SISO system with poles at p,zeros at z ( number of zeros must be
less than number of poles ) and gain k. The inputs p

and z are assumed to be column vectors.

Written by Ada Cheng April 26th, 2000.

if length(z) >= length(p)

disp({’'The number of zeros are greater than or equal to the number’ ...

' of poles, cannot use this program to find state space form.'])
return
end
(r,cl=size(p);
ifr>18&c>1

disp(’Error: Input poles is not a vector’)

134
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return
end
{r,cl=size(z);
ifr>1&c>1
disp('Error: Input zeros is not a vector’)
return
end
if imag(k) "=0
disp([’Gain is not real, cannot use this method to find state’
' space form’]);
return v
end
len_z=length(z);
len_p=length(p);

if mod(len_z,2)==1 & mod(len_p,2)==0

s=sprintf(’'Error! No. of zeros is odd, but no. of poles is even.’);

disp(s)
return
end

if mod(len_z,2)==0 & mod(len_p,2)==1

s=sprintf(’Error! No. of zeros is even, but no. of poles is odd.’);

disp(s)
return
end
if mod(len_z,2)==0 % all paired up
no_group_zero=len_z/2;
single='n’;

else % one group of 1

135
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no_group_zero=1+(len_z-1)/2; % remaining paired up
single="y’;
end
kbar=abs (k)" (1/no_group_zero);
if len_z==1
no_poles_per_group=len_p-1;
else
no_poles_per_group=floor((len_p-1)/(no_group_zero));
if mod(no_poles_per_group,2)°=0
no_poles_per_group=no_poles_per_group-1;
end
end
no_group_poles_remain=( (len_p-1) - no_poles_per_group*no_group_zero)/2;
sys=ss({1,01,03,03);
=1
zj=3;
PI=Ji
test_z=[];
test_p={];
while zj <=length(z)
if zj==j
tz=z(zj,1);
tp=p(pj,1);
zZj=zj+1;
PI=Pj+1;
tp={tp;p(pj:pj+no_poles_per_group-1,1)];
Pj=pjtno_poles_per_group;

if no_group_poles_remain > 0
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tp=[tp;plpj:pj+1,1)1;
PJ=Pi+2;
no_group_poles_remain=no_group_poles_remain-1;
end
test_z=[test_z;tz];
test_p=[test_p;tp];
sysi=zpk(tz,tp,sign(k)*kbar);
else
tz=z(zj:zj+1,1);
z2j=zj+2;
tp=p(pj:pj+no_poles_per_group-1,1);
Pj=pjtno_poles_per_group;
if no_group_poles_remain > 0
tp=ltp;p(pj:pj+1,1)];
Pi=P3+2;
no_group_poles_remain=no_group_poles_remain-1;
end
test_z=[test_z;tz];
test_p=[test_p;tp];
sysi=zpk(tz,tp,kbar);
end
if isempty(find(real(tp) >0)) ==1 Ydo balreal
sysi=balreal(sysi);
end
tsys=sys;
sys=Wave_series(sys,sysl);
(a,b,c,d)=ssdata(sys);

(Z,P]=ss2zp(a,b,c,d);
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if length(Z) =length(test_z) | length(P) =length(test_p)
disp(’Incorrect length \n’)
keyboard
else
zeros_err=(esort(test_z)-esort(Z))./esort(test_z)*100;
poles_err=(esort(test_p)-esort(P))./esort(test_p)=*100;
if ( max(abs(zeros_err)) > 1 )
disp(’Zeros inaccuracy'’)
max(abs(zeros_err))
keyboard
end
if ( max(abs(poles_err)) > 1)
disp(’Poles inaccuracy’)
max(abs(poles_err))
end
end
end
fa,b,c,d]=ssdata(sys);
(z,P)=ss2zp(a,b,c,d);
“Check to make sure ss form correct
if (length(Z) “= length(z)) | (length(P) "= length(p))
disp(’ERROR!!!Length of Zeros or Poles not correct from ss realization!!'!’)
keyboard
else
zeros_err=(esort(z)-esort(Z))./esort(z)*100;
poles_err={esort(p)-esort(P))./esort(p)*100;
if ( max(abs(zeros_err)) > 1)

disp(’Zeros inaccuracy’)
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max(abs(zeros_err))
keyboard

end

if ( max(abs(poles_err)) > 1)
disp(’'Poles inaccuracy’)
max(abs(poles_err))

end

end

return

B.3 Misc Source Code

ALGEBRAIC RICCAT!I EQUATION SOLVER !

function X=myare(A,B,C,Q,R,tol)

% X=-myare(4,B,C,Q,R) improves the accuracy (via Newton’s Method or

% Exact Line Search) of the solution to the continuous-time algebraic

s Riccati equation
% -1
% A'X + X’A - XBR B'X +Q =0
% obtained my CARE. The default value of tol is 10°(-12)
% List of additional non-standard matlab file required: myfmin
A
% Written by Ada Cheng May 24th, 2000.
format long
omaxj=50; maxj=omaxj; tol=10-(~12);
{X,garb,garb,RR_carel=care(A,B,Q,R);

for exact=0:1 %run NM (exact=0) and ELS (exact=1)

1 The algorithm was given by {Benner and Byers, 1998]
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TicX=X*A+A’'*sX-X*B*inv(R)*B’*X+Q;
RR_care=norm(ricX,’'fro’)/max(1,norm(X, fro’));
RR=RR_care;
t=1;
3=0;
while RR > tol & j <max(omaxj,maxj) & t~=0
K=inv(R)sB'*X;
Abar=A-B=*K;
Cbar=ricX;
N=lyap(Abar’,Cbar);
V=N+B*inv(R)*B'sN;
alpha=trace(ricXx~2);
beta=trace(ricX*V);
gamma=trace(V-2);
if exact==1
if abs(gamma) < eps
t=1;
else
t=myfmin(alpha,beta,gamma);

end

X=X+t=*N;

J=i+L

ricX=X*A+A'*X-X*B*inv(R)*B’*X+(Q;
RR=norm(ricX, ’'fro’)/max(1,norm(X,’fro’));

if j==maxj %option to

increase maxj
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s=sprintf(’\n Original Error is %0.S5g\n’,RR_care); disp(s);
s=sprintf(’Error after Yd iterations with Exact=%d is %0.5g’,j,exact ,RR);
disp(s);
if exact==1 & RR_NM < tol
s=sprintf(’\nStopping ELS Iterations. Use NM result’);disp(s);
else
keyboard
end
end
end
if exacts= % Save NM RR,j and X
RR_NM=RR;
J-NM=j;
X_NM=X;
else % Save ELS RR,j and X
RR_exact=RR;
j-exact=j;
X_exact=X;
end
end % end of for loop

s=sprintf([’\n b,

it ’1);disp(s);
s=sprintf([’ CARE Newton Method No. of iter Exact Line Search ..

'No. of iter’]);disp(s);

s=sprintf ([’ L
Pommm e '1);disp(s);
s=sprintf([’%0.5¢ %0.5g %d %0.5g ’

"%4d’ ,RR_care,RR_NM, j_NM,RR_exact,j_exact]);disp(s);
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s=sprintf([’~-
fmmm e '1):disp(s);

if RR_NM < RR_exact

X=X_NN;

RR=RR_NM;
else

X=X_exact;

RR=RR_exact;
end

if RR > RR_care
X=origX;
RR=RR_care;
end

return

function t=myfmin(alpha,beta,gamma)

% minimize the function alphas(1-t)-2-2#¢betas*(1-t) t~2+gamma=t-4

% over the interval [0,2]

%

/% Written by Ada Cheng May 24th, 2000.
format long
soln=roots{[4sgamma 6sbeta 2*alpha-4+beta ~2+alphal);
rsoln=soln(find(imag(soln)==0));
rsoln=rsoln(find(real(rsoln)>=0 & real(rsoln)<=2));
test_pt=[0;2;rsoln];
func_eval=f_eval(alpha,beta,gamma,test_pt);
(garb,index]=min(func_eval);
t=test_pt(index);

return
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