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Abstract

Software certification is defined as the process of independently confirming
that a system or component complies with its specified requirements and is
acceptable for use. It consists of the following steps: (1) the software pro-
ducer subjects her software to rigorous testing and submits for certification,
among other documents, evidence that the software has been thoroughly ver-
ified, and (2) the certifier evaluates the completeness of the verification and
confirms that the software meets its specifications. The certification process
is typically a manual evaluation of thousands of pages of documents that
the software producer submits. Moreover, most of the current certification
techniques focus on certifying testing results, but there is an increase in using
formal methods to verify software. Model checking is a formal verification
method that systematically explores the entire execution state space of a
software program to ensure that a property is satisfied in every program
state.

As the field of model checking matures, there is a growing interest in
its use for verification. In fact, several industrial-sized software projects
have used model checking for verification, and there has been an increased
push for techniques, preferably automated, to certify model checking results.
Motivated by these challenges in certification, we have developed a set of
automated techniques to certify model-checking results.

One technique, called search-carrying code (SCC), uses information col-
lected by a model checker during the verification of a program to speed up
the certification of that program. In SCC, the software producer’s model
checker performs an exhaustive search of a program’s state space and creates
a search script that acts as a certificate of verification. The certifier’s model
checker uses the search script to partition its search task into a number of
smaller, roughly balanced tasks that can be distributed to parallel model
checkers, thereby using parallelization to speed up certification.

When memory resources are limited, the producer’s model checker can
reduce its memory requirements by caching only a subset of the model-
checking-search results. Caching increases the likelihood that an SCC verifi-
cation task runs to completion and produces a search script that represents
the program’s entire state space. The downside of caching is that it can
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result in an increase in search time. We introduce cost-based caching, that
achieves an exhaustive search faster than existing caching techniques.

Finally, for cases when an exhaustive search is not possible, we present
a novel method for estimating the state-space coverage of a partial model
checking run. The coverage estimation can help the certifier to determine
whether the partial model-checking results are adequate for certification.
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Chapter 1

Introduction

The IEEE Standard Glossary of Software Engineering Terminology [IEE90]

defines certification as “the process of confirming that a system or compo-

nent complies with its specified requirements and is acceptable for operational

use”. This general definition has been widely adopted in the software certifi-

cation literature [AdAdLM07, TC95, WR94, Mai07]. Certification could be

applied to software systems across a wide range of domains, but because of its

high cost, certification is mostly applied to safety-critical systems. For exam-

ple, the Federal Aviation Administration (FAA) requires that any software

used in an airborne environment be certified to be safe and reliable [RTC92].

Similarly, software used in other safety-critical systems, such as medical de-

vices and nuclear power plants, must be certified to be safe and to behave

according to its specified requirements [Mai07].

An implication of the formal definition of certification is that the certifi-

cation process only confirms adherence to the specifications and ensures that

verification has been performed satisfactorily. Thus, prior to certification, a

verification process must establish the software’s adherence to the specified

requirements. In general, verification is performed by the software producer,

whereas certification is done by the software consumer or an independent

body (e.g., a third-party certifier). In this thesis, we refer to the software

1



producer as the entity that is responsible for creating and verifying a software

program, and we refer to the certifier as the entity that receives a software

program and certifies that it complies with its advertised properties.

1.1 Verification

Software verification refers to the process of determining whether the prod-

uct(s) of one software-development phase fulfill the specified requirements

established during the previous phase [IEE90]. Software verification occurs

throughout the evolution of a software product, and a variety of verification

techniques are used in isolation or in combination to show that the software

behaves according to its specifications. Two common techniques to verify

software are software testing and formal verification.

1.1.1 Software Testing

Software testing refers to the activity in which a software system is executed

under specified conditions and the test results are compared to the expected

results [IEE90]. There exist various levels of testing activities, each with

its own specific goals. For example, unit testing involves the testing of a

software module or “unit”. The goal of unit testing is to ensure that the

tested module satisfies its requirements and can be integrated with other

components of the system. System testing, on the other hand, tests the

entire integrated hardware and software system to ensure that it meets its

specified requirements.

Software testing is often the verification method of choice because it pro-

duces results quickly and can handle large software systems. However, testing

is not exhaustive and only covers a subset of all possible execution traces of a

program. Therefore, it is not suitable to show that a given property is satis-

fied in all program states [Dij72]. Testing is more suited to finding execution
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traces that violate a property rather than to demonstrate that a program

satisfies some required property.

1.1.2 Formal Verification

The goal of formal verification is to show that a software component or

system satisfies its correctness criteria. Formal-verification techniques are

in general exhaustive and consider all execution traces of a program for a

given property. The most common formal verification techniques are model

checking [CGP99] and theorem proving [GM93, KM97].

Model checking is an automated method that systematically and exhaus-

tively explores the execution state space of a model M of a system S, and

checks that a specified property P is satisfied in each state of M ’s state space.

Model checkers are implemented using either an explicit [CE81, QS82] or

symbolic representation [BCM+90] of the program’s state space. In explicit

state model checking [CE81, QS82], states are enumerated on the fly and

each visited state is saved in some data structure (e.g., hash table) against

which new states are compared. The purpose of the hash table is to avoid re-

exploration of a previously visited state. Symbolic model checking [BCM+90]

avoids storing states individually and instead uses formulas in propositional

logic to represent sets of states that are explored and reasoned about to-

gether. As a result, symbolic model checking can potentially handle very

large state spaces.

Automated theorem proving involves the development of mathematical

proofs that deductively argue that the system exhibits desired properties.

Given that developing proofs is a hard task and it is generally not possible

to automate the entire proof construction, most theorem provers allow the

user to specify intermediate lemmas to be proved by the automated theorem

prover on the way to the proof of a conjecture.

Model checking and automated theorem proving can often not handle

real-world software because model checking is very memory intensive and
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often runs out of time or memory resources, and theorem proving is compu-

tationally expensive and requires expert human interaction. However, there

are indications that the field of formal verification is maturing and formal

verification techniques can be used to verify large software programs. In

fact, several industrial-sized software projects have used formal methods for

verification [Abr06, BBFM99, tBGKM08, tBML+05].

1.2 Software Certification

In software certification, a third-party certifier confirms that a software com-

ponent or system meets its specified requirements. To ease certification,

certain government and private organizations publish certification standards

[ISO06, RTC92, Und98] that include a set of guidelines that the software

producer should follow in order to create trustworthy and certifiable soft-

ware. These standards often include a list of deliverables that the software

producer must create during development and submit for certification.

Certification standards tend to specify guidelines on either the process

used to develop the software (process-oriented) [Sof07] or the properties of

the final software product (product-oriented) [MW08]. In process-oriented

certification, the certifier evaluates the process and the people that were

used to develop the software. It is believed that following high standards in

development and using highly-qualified developers leads to high-quality soft-

ware [Sof07]. Others [Mai07, DS09] argue that product-oriented certification

should be the main approach when evaluating a software program because it

is possible to follow a high-quality process but still create software that fails.

The focus of this thesis is on product-oriented certification.

Certification standards outline various documents and deliverables that

the software producer must create, in addition to the end product, and sub-

mit for certification. In general, the software producer is required to docu-

ment the different phases of the software’s production, including planning,
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development, verification and management of the system. For example, the

certification standard DO-178B [RTC92], which is used by the Federal Avia-

tion Administration (FAA) to certify software for airborne systems, requires

that the software producer submit, among others: the software requirements

specification, software-design documentation, source code, executable object

code, and test data. As another example, the US Food and Drug Adminis-

tration (FDA) requires that the Software Requirements Specification (SRS),

a deliverable that documents all the requirements for a software system, does

not contain ambiguous, incomplete or unverifiable requirements [US 02]. Test

data submitted for certification must include, among others, documentation

of the test plan, test cases, test results, and test coverage.

The software producer submits the final software product plus other re-

quired documents to the certification authority (certifier) for certification.

The certifier can be the same organization that published the certification

standard or can be a third-party certifier who has been authorized to perform

certifications on behalf of another organization. The certifier’s responsibil-

ity is to confirm that the software producer has taken the necessary steps

to produce trustworthy software and that the software program satisfies its

advertised properties. In the case of the SRS required by the FDA, the cer-

tifier would confirm that the SRS and the evidence regarding its validation

show that the requirements are unambiguous, complete and verifiable. The

certifier would also review the test cases and their results to confirm that the

tests are complete and that the results demonstrate that the new software

component can inter-operate with existing ones.

In general, certification standards do not specify how the evidence sub-

mitted to the certifier should be evaluated [CTvGS98], and in most cases,

the evidence is evaluated manually. However, given the sheer volume of as-

sociated artifacts, this form of certification is very time consuming and can

be error prone because it relies on humans reading thousands of pages of

documents. In fact, in some cases, certification has taken so long that the
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product has become obsolete by the time certification has finished [Wil07].

On the other hand, if more certifiers are used to speed up the process,

then certification becomes prohibitively expensive for smaller software ven-

dors. Thus, there is a push towards automated software-certification tech-

niques [DFS04, LGW07, LPR01].

1.3 Certifying Formal Verification

Advances in formal-verification techniques enable corresponding advances

in certification. A software producer must have some means of creating

and submitting for certification some form of proof or certificate that the

program satisfies its advertised properties; and the certifier must have some

means of using the certificate to check the producer’s claims. In fact, there

have been calls for new techniques, preferably automated, to certify software

that has been verified using formal methods [DFS04, LPR01, WBH+05]. We

believe that any technique for certifying formal-verification results must at

least satisfy the following conditions:

1. Verification should produce an output that serves as a certificate that

verification has been performed, and that can be submitted along with

the final product for certification. The certifier would use the certifi-

cate to check the producer’s claims regarding the software’s advertised

properties.

2. If verification is automated, then certification should also be automated

to decrease the workload of the human certifier and make the certifica-

tion results more dependable and reproducible.

3. In general, certification should be faster than verification, otherwise,

the certifier might just as well repeat the verification process. Specif-

ically, automated certification should be faster than automated verifi-

cation.
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1.3.1 Current Research in Certifying Formal Verifica-

tion

In the research community, the use of formal methods for certification has

not been extensively researched. The first work in this area was the use of

proof-carrying code (PCC) [Ire05, Nec97]. In PCC, the software producer

verifies via theorem proving that his program satisfies a set of predefined

safety properties, and provides as evidence a safety proof. The certifier cer-

tifies the program by checking the validity of the accompanying safety proof

against the code. PCC certification has not been widely adopted because

it can certify only the properties that are substantiated by the safety proof.

Moreover, because many properties of a program are generally undecidable,

PCC verification has so far focused on program-independent security prop-

erties such as memory safety, type safety, and resource bounds. The size of

safety proofs is another shortcoming of PCC.

There has also been some work on certifying model-checking results:

abstraction-carrying code (ACC) [XH04] and model-carrying code (MCC)

[SVB+03]. In both cases, the program to be certified is accompanied by an

abstract model of the program. Since the abstract model is smaller than the

original program, certification of it is faster than verification. ACC and MCC

are property-independent certification techniques, and can be used to certify

any property that is specified in temporal logic [CGP99]. However, their

models are conservative abstractions, which means that they could report

spurious errors.

1.4 Contributions and Scope of the Thesis

In our proposed scenario, a software producer uses model checking to verify

her software and produces and submits for certification a “certificate” of ver-

ification. This certificate is constructed in such a way that it can be used by

the certifier to speed up the automated certification of the model-checking
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results. Because model checking is an exhaustive search of a program’s state

space, its success depends on the size of the program and the available com-

puting resources (e.g., time and memory). We distinguish between three

possible outcomes of verification model checking:

1. A model-checking search runs to completion and produces a definitive

result. A positive result (“true”) means that the property being model

checked is satisfied in all program states.

2. The model checker has insufficient memory to complete the search.

However, the model checker can be modified to cache only a subset of

search results, thereby reducing its memory requirements enough for

the search to run to completion — at the expense of increased search

time because the model checker might search the same states more than

once.

3. The model checker does not have sufficient resources to complete the

search, even with caching. In this case, the goal is to provide partial

results that might be useful for certification.

Thesis Statement: Model-checking based techniques can be used to

facilitate the automated certification of explicit-state model-checking results

for invariants, assertions and deadlocks. We present the following three tech-

niques:

• A model-checking-based certification method that (1) can be used to

automatically certify a invariants, assertions and deadlocks, (2) is faster

than automated verification, and (3) can be parallelized.

• A novel state-space caching technique that achieves an exhaustive model-

checking search, in cases where model checking would otherwise termi-

nate prematurely, faster than existing caching methods;
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• A state-space coverage estimation method that provides more accurate

estimation results than previous approaches when an exhaustive search

is not possible.

We describe each technique in more detail below.

1.4.1 Search Carrying Code

We present a new technique to certify model-checking results called search

carrying code (SCC) [TA10]. A software producer who wants her product

certified conducts a model-checking search of the program. During model

checking, the producer’s model checker creates a search script for the program

to be certified. The search script encodes the search path that the model

checker followed in its exploration of the program’s state space. The search

script acts as a certificate of model checking.

During certification, the certifier’s model checker uses the search script

to direct its search of the program’s state space to speed up re-verification of

the program. In order to protect against a producer who submits a tampered

search script, that perhaps hides problems in the program, the search script

is constructed in such a way so that its veracity can be checked on the fly.

Basic SCC certification achieves only slight reductions in certification

time because the model checker re-explores the entire state space of the

program being certified. However, SCC can be optimized via parallel model

checking. In parallel SCC, the search script, which encodes the certification

search task, is partitioned into multiple scripts, each covering a different

region of the program’s state space. The certifier then uses the collection

of scripts to search the program’s state space in parallel. Because of the

way that the certification task is partitioned, parallel SCC avoids many of

the problems that arise in traditional parallel model checking, such as high

degrees of communication, synchronization among parallel processors, or the

uneven splitting of search spaces.
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1.4.2 SCC with State-Space Caching

One of the main obstacles to successful model checking is the state explosion

problem: the size of a program’s state space grows exponentially in proportion

to the number of variables in the program and the number of concurrently

executing components. The model checker keeps track of each visited state

during the search, and it might run out of memory before completing the

search.

Today’s model checkers employ a variety of techniques to combat the

state-space explosion problem. One such method is state-space caching [Hol87],

where the model checker caches only a subset of the already-visited program

states.

When the cache is full and the search visits a new state, the model checker

replaces a state in the cache with the newly visited state. Model checking

with state-space caching limits the amount of memory that is used to store

already-visited states. As a result, the model checker may explore parts of

the program’s state space if a previously visited state is not found in the

cache and is thus deemed unvisited, causing re-exploration of the state space

that is reachable from it. Thus, a model-checking search that employs state-

space caching uses less memory, but requires more time than a traditional,

non-cached search.

We introduce a new state-space caching technique, referred to as cost-

based caching, that replaces states in the cache according to the cost of re-

exploring the state and the state space that is reachable from it. For acyclic

state spaces, our method can calculate the exact cost for each state and for

cyclic state spaces, our method calculates an under-count of the cost value.

Nonetheless, our empirical evaluation shows that cost-based caching achieves

exhaustive coverage of a program’s state space faster than existing caching

techniques.

Cost-based caching is useful for SCC verification because when memory

resources are limited, it increases the likelihood that a verification task runs
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to completion. However, the resulting search script would record the verifier’s

search path through the program’s state space, including re-explorations.

We describe how to identify and remove from the search script duplicate

transitions that would cause the certifier’s model checker to revisit regions

of a program’s state space. An SCC-certification search that uses a script

produced by SCC verification with cost-based caching has an execution time

comparable to that of a non-cached exhaustive search.

We also introduce a memory-optimization technique that reduces the

memory requirements of SCC certification. In particular, we show how to use

the information in the search script to reduce the number of already-visited

states that the model checker must keep track of. As a result, up to 85% less

memory is needed for SCC certification compared to SCC verification.

1.4.3 State-Space Coverage Estimation

Even with state-of-the-art memory-reduction techniques, there are still cases

where an exhaustive search of a program’s state space terminates prema-

turely due to insufficient memory. In such cases, an estimate of how much

of the program’s state space was covered during verification can be useful

in certification. Such an estimate would be analogous to test-coverage re-

sults in that it reflects the degree to which the verification was complete.

The software producer submits an estimate of the program’s state space that

was covered during verification. The certifier uses the estimate in deciding

whether to (1) accept the partial verification as being sufficient, (2) ask the

software producer to perform a more thorough verification, or (3) re-model

check the software herself and compare the resulting estimated coverage to

the level of coverage reported by the software producer.

We present a new method [TA09] for estimating on the fly, during model

checking, the percentage of the program’s state space that has been covered.

Our estimation method is based on Monte Carlo sampling of the unexplored

state space.
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1.4.4 Thesis Validation

The thesis was validated as follows:

We implemented each of our three techniques in the explicit-state software

model checker Java PathFinder (JPF) [VBHP00, LV01]. To evaluate the

performance of each technique, we used a set of nine Java programs that

were used in previous research studies.

In the case of SCC, we want to evaluate whether (1) certification can

be automated, (2) SCC-based certification is faster than automated verifica-

tion, and (3) SCC-based certification can be parallelized. We use our nine

evaluation programs to show that it is possible to automatically create a

certificate of verification that can be used to automatically certify a specific

class of model checking results, and that the certificate can be used to speed

up certification. We also evaluate the effectiveness of parallelizing SCC such

that there is no overlap between the work performed by each processor. Our

results show that parallel SCC can achieve speed up factors of up to n, for

n processors, when the program comes from an un-trusted source. SCC can

achieve speed up factors of up to 5n when the program comes from a trusted

source

For cost-based caching, the goal is provide the software producer with a

technique that increases the number of cases where she can achieve an ex-

haustive search of the state space and submits an SCC search script that rep-

resents the search of the entire program. For this, we implement six common

caching techniques in JPF and compare the time it takes for an exhaustive

search using these six techniques to the time it takes for an exhaustive search

using cost-based caching. Our results indicate that cost-based caching is up

to 25% faster than existing techniques.

Finally, when an exhaustive search of the state space is not possible, then

the coverage estimation should be accurate enough to (1) help the software

producer to effectively choose the next verification step and (2) provide the

certifier with a clear indication whether to accept or reject the partial model-
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checking results. We evaluate the accuracy of our estimation technique by

estimating the coverage of partial model checking runs, while varying the

actual coverage of the state space. Our empirical studies show that, on

average, our algorithms coverage estimates differ from the actual coverage

by less than 10 percentage points, with a standard deviation of about 5

percentage points regardless of whether the actual state-space coverage is

low (3%) or high (95%).

1.5 Thesis Organization

This thesis is organized as follows. In Chapter 2, we present background

material and related work on software certification, software model check-

ing, state-based caching techniques, and state-space coverage estimation. In

Chapter 3, we present search carrying code (SCC) and describe how the

certification task can be partitioned into multiple search tasks that can be

distributed to parallel model checkers. We evaluate the performance of SCC

and parallel SCC on a suite of Java programs. In Chapter 4, we introduce

cost-based caching applied to a state-space search. We combine cost-based

caching with SCC and compare its performance to existing caching tech-

niques. We also describe how to reduce memory requirements for SCC certi-

fication. In Chapter 5, we describe our algorithm for estimating the coverage

of a partial model-checking search and evaluate its accuracy on a set of Java

programs. Finally, we conclude with Chapter 6 and describe future work.
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Chapter 2

Background and Related Work

In this chapter, we first present background material that is necessary to

understand the model-checking technologies used in our research. We then

describe the state of the art of certification and state-space coverage estima-

tion.

2.1 Model Checking

Model checking is an automated method to systematically explore the ex-

ecution state space of the model of a system and to check that a specified

property is satisfied in each state. The inputs to the model checker are a

model M that represents the behaviour of a system S and a property P to

be checked in every state of M . The model checker exhaustively explores all

the paths through M while checking that P is true at each reachable state.

System models are often represented as a state-transition graph called a

Kripke structure. A Kripke structure M is a four tuple M = (S, S0, R, L)

where

1. S is a finite set of states.

2. S0 ⊆ S is the set of initial states.
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3. (R ⊆ S × S) is a transition relation such that for every state s ∈ S

there is at least one state s′ ∈ S such that R(s, s′).

4. L : S → 2AP is a function that labels each state with a set of atomic

propositions AP that are true in that state.

The paths in a Kripke structure represent all possible computations of the

system.

The property P is often specified as a temporal logic formula. Temporal

logic formulas are used to express properties of temporal orderings of events.

The two most widely used temporal logics are linear-time logic (LTL) [Pnu77]

and computation-tree logic (CTL) [CE82]. LTL formulas are used to express

properties related to all paths in the model, whereas CTL formulas can be

used to discriminate between paths.

Model checkers are implemented using either an explicit-state [CE81,

QS82] or symbolic representation [BCM+90] of the model’s state space. In

explicit-state model checking, states are enumerated on-the-fly and each ex-

plored state is typically stored in a hash table; the model checker checks new

states against the contents of the hash table, to avoid re-examining states.

Explicit-state model checking is generally more memory intensive than sym-

bolic model checking because each state is explicitly represented and stored.

However, this approach can handle dynamic creation of objects and threads,

and thus is the primary choice for model checking software.

Symbolic model checking avoids storing states individually and instead

uses formulas in propositional logic to represent sets of states that are ex-

plored and reasoned about together. The states and transition relation are

often encoded in a variant of Binary Decision Diagrams (BDD) [Bry86]. Sym-

bolic model checking works best with a static transition relation and hence

does not deal well with dynamic creation of objects and threads. It is there-

fore better suited for model checking hardware models rather than program

models.
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2.1.1 Software Model Checking

The input to a software model checker is a software program, such as a

Java program. The goal of the model checker is to search the program’s

execution state space and check that each state satisfies some property P .

Let V = {v1, ..., vn} be the dynamic set of program variables. For an object-

oriented program, such as a Java program, V includes declared variables,

dynamic variables (heap-based objects), and information about concurrent

threads. We assume that the variables in V range over a finite set D. A

valuation for V is a function that maps every variable v in V to a value in

D. A state in a program’s execution represents the current set of program

variables and the valuation of those variables.

Definition 2.1.1. A state S of a program is a valuation d : V → D.

Definition 2.1.2. A program’s initial state S0 is the state of the program

at the start of its execution.

In other words, a state is a snapshot of a program’s execution. The system

transitions between states by executing the statements of the program.

Definition 2.1.3. A transition from one program state to another reflects

the execution of one program statement and shows the effects of that state-

ment as applied to the transition’s source (program) state.

The granularity of the statement that is executed by a transition depends on

the programming language and the model checker. For Java programs, it is

often a single byte-code instruction.

Given the definitions of a state and transition, we can now define the

set of all reachable states of a program and the graph that represents all

executions of the program.

Definition 2.1.4. A reachable state of a program is a state that results

from applying a sequence of program statements to the initial state. The

sequence of program statements must reflect an execution of the program.
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Definition 2.1.5. A program’s state space is the set of all reachable states

in the program.

Definition 2.1.6. A program’s reachability graph is a directed graph

where each of the program’s reachable states is represented by a vertex, and

there is a directed edge from state Si to state Sj if there exists a transition

(program statement) in Si that can be executed in Si and that moves the

program execution from state Si to state Sj.

There is no restriction on the number of incoming transitions into a state

and outgoing transitions from a state.

The software model checker starts its search in the program’s initial state

and performs an exhaustive search of the program’s reachability graph until

all states in the program’s state space have been visited and all transitions

have been explored.

Definition 2.1.7. A visited state is a state that has been reached in a model-

checking search, and has been verified to satisfy property P .

Definition 2.1.8. A partially explored state is a visited state that has at

least one outgoing transition that has not been explored in the model-checking

search.

Definition 2.1.9. A fully explored state is a visited state whose outgoing

transitions have all been explored in the model-checking search.

To ensure that its searches terminate, the model checker keeps two data

structures: a worklist of partially explored states and the set of visited states.

Definition 2.1.10. A model-checking worklist is a list of partially explored

states.

The worklist represents the set of states that have been visited during the

model-checking search and who still have at least one unexplored transition.
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When the model checker visits a new state Si, it inserts Si into the work-

list and into the set of visited states. During each iteration of the search,

the model checker selects a state from the worklist and explores one of its

unexplored transitions. When a state is fully explored, it is removed from

the worklist. In the case of a depth-first search, the worklist is a stack. The

search terminates when the worklist is empty. The list of visited states is

often a hash table.

Currently, there exist a wide variety of software model checkers [BR01b,

LV01, RDH03] that support various programming languages and use different

techniques to handle very large state spaces. Java Pathfinder (JPF) [VBHP00,

LV01], the model checker developed at NASA Ames Center, is one of the

most-widely used software model checkers, mainly because of its rich set

of features and continued support and development. It is a custom-made

explicit-state model checker for Java programs. JPF accepts as input Java

byte code and performs an exhaustive search of the state space to find dead-

locks, invariant violations, and assertion violations. For this thesis, we im-

plemented all our algorithms on top of JPF.

2.2 State-Space Reduction Strategies

One of the main obstacles to model checking is the state-explosion prob-

lem [CGJ+01]: the size of a program’s state space grows exponentially with

the number of variables and components in the program. As a result, an

exhaustive search may not be possible because the model checker runs out

of memory in its effort to keep track of all of the visited states. Also, model

checking typically works on finite-state systems, but dynamically-created ob-

jects and threads may cause a program to be infinite state. For these reasons,

software model checkers use various state-space abstraction techniques to re-

duce the size of the state space and make analyzing programs more feasible.

We describe four commonly used techniques below.
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2.2.1 Partial Order Reduction

The goal of partial-order reduction (POR) [God96] is to reduce the size of

the state space that must be searched by exploiting the commutativity of

concurrently executed transitions. POR identifies transitions whose execu-

tions could be interleaved in any order and whose interleavings result in the

same program state. It then executes only one such interleaving. POR is

suitable only for asynchronous systems. In synchronous systems, concurrent

transitions are executed simultaneously and are not interleaved.

POR searches reduced graphs without ever constructing a program’s full

reachability graph, which might be too big to fit in memory. The reduced

model preserves all of the properties of the original model, except for prop-

erties that include the temporal-logic operator “next”. The “next” operator

checks that a certain property is true after executing one transition from the

current state. Thus, to check such a property, the model must include all

possible transitions.

Finding all transitions of the current state that are independent of others

and can be interleaved in any order is difficult because it requires knowledge

of the entire state space, which is not known in advance. As a result, model

checkers use heuristics and possibly stronger conditions to make POR both

feasible and fast [CGP99, VBHP00]. Java Pathfinder, for example, uses a

transition’s associated byte-code instruction to identify independent transi-

tions. Only about 10% of Java byte-code instructions can have effects across

thread boundaries. For such transitions, all interleavings must be explored,

but the remaining transitions are independent and can be interleaved in any

order.

2.2.2 Abstract Interpretation

Abstract Interpretation [CC77, GS97] is based on the observation that the

specification of a system often depends on simple relationships among data
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values rather than on actual data values. As a result, it may be possible to

model actual data values in the system as a small set of abstract data values.

If we extend the abstraction and apply it to states and transitions that refer

to abstract states, it is possible to obtain an abstract version of the system

under consideration. The idea is to merge together all of the states that have

the same labeling of abstract variable values. In the reduced graph, every

state will have a unique labeling. Simulation [CC77] is used to ensure that

the abstract graph simulates the original one: If model M has a transition

between two states, then in the abstract state space there there must be a

transition between the corresponding abstract states. The abstracted system

is often smaller than the actual system and therefore faster to verify.

As an example, suppose x is a variable and the domain Dx is the set

of all integers. If we are interested in expressing a property involving the

sign of x, then we can create a domain Ax of abstract values for x, with

Ax = {a0, a+, a−}. We define a mapping hx from Dx to Ax as follows:

hx(d) =





a0 if d = 0,

a+ if d > 0,

a− if d < 0

Using this abstraction, we need only three atomic propositions to express

the abstract values of x. It may no longer be possible to express properties

that depend on the actual values of x because by using abstraction, we are

reducing the amount of knowledge about the values of a variable, but in

many cases, knowing just the abstract values is enough. Also, the model

checker cannot always determine a unique abstract value, for example, after

an operation such as x++.
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2.2.3 Symmetry Reduction

The main idea of symmetry reduction [ES96, ID96, CJEF96] is to exploit

symmetries between states and therefore model check a reduced and abstract

state space. Symmetries represent equivalence relations on program states.

During model checking, one can disregard a state if an equivalent state has

already been explored. A canonicalization function usually maps each state

to a unique representative from its equivalence class.

Software systems can exhibit different types of symmetries, but two types

that are unique to object-oriented software, such as Java programs, are class

loading and garbage collection [VBHP00]. Non-determinism, either from a

program’s concurrency or its environmental input, can cause classes to be

loaded or objects to be created in different orders in different executions.

The resulting states may be deemed to be different. Comparing all possible

permutations of the order in which classes are loaded and objects are created

can be very expensive. Thus, modern software model checkers use a canon-

icalization function [VBHP00] that equates states that are identical except

for the order in which classes and objects are loaded.

The second possible source of symmetry is dynamic program variables

(e.g., objects) that are no longer referenced, and are referred to as “garbage”

[VBHP00]. Two states are considered to be equivalent if they are identical

except for any “garbage” that they contain.

2.2.4 Program Slicing

The goal of program slicing [Wei81] is to remove from a program statements

that do not affect the results of a particular test case or analysis. Program

slicing consists of specifying a point of interest in the program, identifying

the set of variables or property of interest, and removing program statements

that cannot affect the values of the specified variables at the given program

point. The idea is that a smaller (sliced) program results in a smaller program
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state space. In general, finding a minimal program slice is an undecidable

problem [Wei81], but approximations are often effective.

A program slice can be computed statically or dynamically [Wei81]. For

static slicing, the slice is computed without executing the program. The

resulting slice includes all program statements that affect the variable(s) of

interest at the point of interest for all possible inputs. In dynamic slicing,

the slice is computed for a given input and the resulting program execution

trace.

A static program slice is often created using a technique called backward

slicing, in which the slice is computed by working backward in the program.

Starting from the point of interest, all program statements that cannot affect

the specified variables are identified and removed. Forward slicing is the

opposite of backward slicing and is often used for dynamic slices to avoid the

recording and storage of very long execution traces.

2.3 State-Space Search Strategies

Another way to combat state-space explosion is to modify the way that the

model checker searches a program’s state space. These methods include

searching the state space in parallel, searching it randomly to find an error

before memory is exhausted, and searching only those parts of the state space

that are more likely to contain errors. Below, we describe these methods in

more detail.

2.3.1 Parallel Model Checking

The goal of parallel model checking is to distribute a model-checking task

among parallel processors. In general, the challenge in parallel model check-

ing is to distribute the workload evenly. Stern and Dill were one of the first

to introduce this idea by parallelizing the Murϕ explicit-state verifier [SD97].

In this initial work, model checking was performed on a set of networked ma-
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chines, each having its own memory and processor. The goal was to reduce

both search time and memory requirements of a model-checking search. A

static hashing function determined in advance how to distribute program

states among the processors during the search. In such an approach, it is

possible that the hashing results in an uneven distribution of states and the

search proceeds at different speeds on different processors. Moreover, state

information must be passed between processors whenever a state is created on

a processor other than its assigned one, creating a significant communication

overhead.

Subsequent works by other researchers investigate how to improve local

and global load-balancing and reduce communication among processors [NC97,

KM05]. Nicol and Ciardo [NC97] present a global load-balancing algorithm

in which all processors communicate with each other to distribute their load.

If a processor has too many states to process, it will try to offload some of that

work to other, possibly idle processors. To reduce communication, Kumar

and Mercer [KM05] propose a heuristic in which each processor communi-

cates only with three neighboring processors when trying to offload some of

its work.

Recently, with the advent of multi-core computers, there has been in-

creased research on reducing the search time of parallel model checking on

shared-memory architectures [BBR07, IB06]. In these systems, the overhead

of communication among processors is greatly mitigated because information

is no longer sent over a network. Nonetheless, the problems of load balancing

and synchronizing of access to shared resources remain. In the latter case,

processors must be able to deposit into each others worklist of partially ex-

plored states, and they share a hash table of state fingerprints. Interestingly,

some works [BBR07, IB06] report that after reaching a certain number of

parallel processors, search time starts to increase again as new processors

are added because the synchronization overhead dominates any benefit from

parallelization.
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Another problem is that an even partitioning of a program’s states into

multiple search tasks does not guarantee that the workloads will be balanced.

Processors are utilized only if they have states to process. If a program’s

reachability graph is spindly rather than bushy, then progress may be ham-

pered by the slow production of new states to be explored as processors wait

for the output of other processors.

2.3.2 Random State-Space Searches

The idea of random walks and randomized state-space search was first sug-

gested by West [Wes86]. In each step of a random walk, the algorithm

randomly chooses an outgoing transition of the current state and explores

it. If the current state does not have any outgoing transitions, the al-

gorithm restarts from the initial state. Since the original random walk

method was introduced, many optimizations have been suggested to im-

prove its effectiveness in finding errors. These optimizations include re-

initializing the search frequently to avoid getting trapped in a strongly con-

nected component [PHvB05], performing local exhaustive searches once a

certain search depth has been reached [SG03], keeping a small cache of vis-

ited states [TPIZ01], and running parallel random walks [TPIZ01, SG03].

The Lurch model checker [OM03] uses random walks to perform partial

searches of large state spaces. Lurch inserts newly discovered states at ran-

dom indices in the worklist to randomize the search. Dwyer et al. [DEPP07]

perform random searches of the state space by randomizing the order in

which child states are explored. They parallelize this method by distributing

the search to multiple non-communicating machines.

2.3.3 Partial State-Space Searches

Stateless model checking [God97, MQ08] is another method for exploring

large state spaces. In stateless model checking, the search does not keep
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track of already-visited states. Instead, there is a bound on the depth of the

search, to keep the model checker from continuously visiting the same states.

The result is a partial search of the state space.

Bounded model checking [BCC+03, BCCZ99] is a partial search that is

exhaustive up to some bound k on the length of execution traces. If no

bug is found, one increases k until either a bug is found or some pre-defined

upper-bound is reached.

2.4 State-Space Caching

The state-space-explosion problem is linked to the requirement for storing

already-visited states during the search to (1) guarantee termination and (2)

save time by avoiding re-exploration of states. State-space caching [Hol87]

combats this problem by limiting the amount of memory used to store visited

states. A cache of visited states is maintained. When the cache is full, states

in the cache are replaced by newly discovered states. Of course, by removing

a state Si from the cache, the model checker commits itself to possibly re-

exploring Si and its children if Si is revisited through a different path in

the reachability graph. For acyclic state spaces, termination and thus a full

state-search are guaranteed [God97, Hol88, DH82]. For cyclic state spaces,

the model checker must be able to detect states that form strongly connected

components to guarantee termination and a full coverage. We describe these

issues in Chapter 4.

State-space caching techniques differ in their cache replacement policies.

A cache replacement policy dictates how states are chosen for replacement

when the cache is full. We explain the most commonly used policies below.

2.4.1 Hit-Based Caching

In hit-based caching [Hol87], states in the cache are replaced based on the

number of times they have been revisited (referred to as the number of cache
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hits). The work in [Hol87] investigates policies that replace states that have

had the most hits and states that have had the fewest hits.

2.4.2 Age-Based Caching

In age-based caching [Hol87], states in the cache are replaced based on the

length of time that they have been in the cache. In particular, a state that

has been in the cache the longest is selected first. The intuition behind this

method is that the longer a state remains in the cache, the fewer cache hits

it will receive in the future.

2.4.3 Stratified Caching

The authors of [Gel04] propose stratified caching, which uses each state’s

distance from the root of the depth-first-search graph (referred to as a state’s

search level) as the criteria for replacement. When the cache is full, the model

checker specifies that all states at search levels k modulo m are available for

replacement. Thus, all states at search levels k, k + m, k + 2m, ... could be

removed.

Stratified caching places an upper limit on the number of descendant

states that must be re-explored if a removed state Si is revisited because it

guarantees that all of Si’s already-visited descendant states are still in the

cache, unless they reside at search levels selected for replacement.

2.4.4 Depth-Based Caching

Depth-based caching [Hol87] also uses a state’s search level as the criteria for

replacement. This technique is similar to stratified caching, but instead of

replacing all states at a certain search level, it replaces the deepest states in

the reachability graph first. The main idea is that the deepest states probably

have fewer reachable descendant states. As a result, replacing states deep in

the reachability graph should result in re-exploring less of the state space if
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the removed state is revisited after its descendant states have been removed

from the cache.

2.5 Software Certification

In this section, we review the state of the art of software certification, fo-

cussing on product-oriented certification. We categorize the research into

three major areas: testing-based approaches, static-based approaches, and

formal-methods-based approaches.

Testing-Based Certification

Current certification standards emphasize the use of testing and test results

to assess the quality of a software system. The software producer tests a

program to build an argument that the program satisfies its requirements.

She submits for certification the program to be certified, along with doc-

umentation of the test cases and their results. For example, the DO-178B

standard [RTC92] requires that a software producer submit, along with other

artifacts, the following documents:

• Software-verification test cases and procedures

• Software verification results, including reviews of all requirements, de-

sign, and code; and test results of executable code.

Because testing exercises only a subset of a program’s execution traces, cur-

rent certification standards require various test-coverage metrics to measure

the adequacy of the test results. These metrics include:

• Statement coverage [Hua75] — the percentage of all program state-

ments that were executed.

• Decision or branch coverage [Hua75] - the percentage of all branches in

the program that were explored.
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• Condition coverage [Mye79] — the percentage of all atomic boolean

sub-expressions that have been tested for both their true and false

value.

• Condition/decision coverage [Mye79] — combination of decision and

condition coverage.

• Modified condition/decision coverage (MC/DC) [RTC92] — extends

condition/decision criteria with the requirement that each condition

should affect the decision outcome independently. For avionics soft-

ware, testing is required to achieve MC/DC coverage [RTC92].

Many certification standards require only a manual inspection of the test

cases and their results, but research suggests that re-running of some or all

of the test cases should be used to automate certification [WR94, MLP+01,

Gho99]. In this scenario, the test cases and their results are submitted to the

certifier in some standard format (e.g., XML). The certifier either manually

inspects the documents or uses automated tools to re-run the test cases and

compare the results to the expected results. It might still be necessary to

manually inspect the test cases to ensure that they achieve the necessary

coverage and that they actually check the desired properties.

User-based certification [Voa00, YJ03] is based on the assumption that

testing is a somewhat artificial evaluation of software quality and does not

exercise a program in the manner that it will be used in operation. User-

based certification proposes to use information collected during operational

use as a measure of the quality of a program. In one approach [Voa00], the

certifier distributes instrumented code to a select set of users and collects

information about any errors that occur while they use the software. A

second approach [YJ03] uses some other form of initial certification (such

as a static approach, described below) and then updates the results of the

certification as new errors are discovered during the program’s use. The main
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argument against this kind of certification is that uncertified or partially-

certified code is distributed to users — a scenario that we want to avoid in

the first place. This approach may be applicable only to non-safety-critical

software.

Static-Based Certification

Researchers [OWB05, ABJ10] have shown that there is a correlation between

static properties of a software program and the quality of the program. Static

properties refer to any information about the software that does not require

its execution.

The work in [OWB05] uses the structure of the program files and their

change history to predict the number of errors in each program file. For

example, the size of a program file (in terms of lines of code) and its type (e.g.,

SQL file) can be used to predict the number of errors in the file. Arisholm et

al. [ABJ10] build models that predict faults in a program based on the static

properties of the program such as the number of instance variables, number

of methods called by each class, and the number of super- and subclasses.

The models are built using historical information about the program under

investigation and other analyzed programs.

Formal-Methods-Based Certification

Even though formal methods focus on the question of software correctness,

very little is said about them in most certification standards. The certifica-

tion standard DO-178B [RTC92] simply proposes that the results of formal

methods, if they are used at all, be inspected. In the research community,

the use of formal methods for certification has not been extensively studied.

The first work in this area was the use of proof carrying code (PCC) [Nec97].

The premise of PCC is that proof checking is faster and simpler than the-

orem proving. In PCC, the software producer verifies via theorem proving

that his program satisfies a set of predefined safety properties, and provides
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as evidence a safety proof. The certifier certifies the program by checking the

validity of the accompanying safety proof against the code.

However, PCC certification can only (re)verify the properties that are

substantiated by the safety proof. Moreover, PCC requires significant in-

frastructure, including inference rules for reasoning about code, efficient rep-

resentations of safety proofs, and efficient and trustworthy proof checkers

that can quickly validate safety proofs about programs. Because reasoning

about general properties of programs is complex, PCC has so far been ap-

plied to only program-independent security properties (e.g., memory safety,

type safety, resource bounds). Most research on PCC focuses on reducing

the size of proofs [BJT07] and generalizing the kinds of properties that can

be proved [AAR+10, NS06].

There has also been some work on certifying model checking results:

abstraction-carrying code (ACC) [XH04] and model-carrying code (MCC)

[SVB+03]. In both cases, the program to be certified is accompanied by an

abstract model of the program. In ACC, this abstract model is an abstract

interpretation [CC77] of the program. In MCC, the model is an extended

finite-state automaton over the alphabet of system calls, and is synthesized

from the program’s execution traces. In both cases, certification is a two-

step process: (1) certifying that the model is a faithful abstraction of the

program and (2) certifying that the model respects the desired properties.

In ACC, certification is done offline. In MCC, model fidelity is checked at

runtime by monitoring the program, which incurs a performance penalty of

2% to 30% [SVB+03]. ACC and MCC can both accommodate infinite-state

programs and both are property-independent, which means that they can

be used to check additional properties. However, ACC and MCC models

are conservative abstractions, which means that a model may have more be-

haviours than the program it is modeling. As a result, errors reported by the

model checker may not be actual errors of the program.
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2.6 State-Space Coverage Estimation

When memory and time resources are limited, a model-checking search might

end prematurely without exploring a program’s entire reachable state space.

For such cases, an estimate of the state-space coverage can help a certifier to

determine how much confidence to have in the partial model-checking results.

In previous work [Tal07], we suggested that it may be possible to sam-

ple unexplored transitions as a means to estimating the size of a program’s

state space, but we did not explore this idea further. Other researchers

have investigated the problem of state-space coverage estimation. Pelánek

et al. [Pv08] propose two techniques for estimating state-space coverage. In

the first technique, the model checker executes two random partial searches

of a program’s state space and uses the overlap between the two searches to

estimate coverage. The second technique uses breath-first search (BFS) level

graphs for state-space coverage estimation. A BFS level graph plots for each

level of a breath-first search the number of states in the BFS worklist. At the

end of a partial model-checking search, the corresponding BFS level graph is

only a partial plot because the model checker did not explore all BFS levels.

The authors use the partial BFS level graphs to predict the shape of the full

BFS level graph, and thus estimate coverage. The authors evaluated both

algorithms on 160 randomly generated reachability graphs and measured the

accuracy of both coverage estimation algorithms in terms of whether they

could classify the actual coverage of a search into the correct coverage range:

< 3%, 4%-25%, or 26%-100%. The algorithm that estimated coverage based

on two random partial searches performed best. This algorithm was able to

classify the coverage of a search into the correct range for 72% of the 160

example reachability graphs.

Dingle et al. [DK08] try to estimate the actual size of a program’s state

space by applying least-squares fitting to partial BFS level graphs. The main

assumption of this work is that BFS level graphs have regular, parabola-shape

curves that can be described by a quadratic formula: y = ax2 + bx for some
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a and b. Given a partial BFS level graph from a partial model-checking

search, the authors try to solve for the values a and b, and thereby obtain a

representation of the complete BFS level graph. The authors evaluated their

approach on three programs whose state-space searches ended prematurely

after 25%, 50%, and 75% of the programs’ state spaces had been explored.

Their results show that their algorithm can estimate the size of a program’s

state space with an accuracy from 66% to 93%, on their examples.

Others have explored how a state-space search relates to code coverage

or to specification coverage [RDHR04, GV04]. Rodrguez et al. [RDHR04]

describe and implement a framework for the Bogor model checker [RDH03]

that supports branch coverage and specification coverage. Branch coverage

judges how many of the branches in the program have been exercised and

its results can be used to adjust the environment used to run the program

if the environment does not exercise a satisfying percentage of branches in

the program. Specification coverage describes how much of the program

code a specification exercises and can be used to modify the specification

in situations where the specification is satisfied without ever exercising the

intended program segments. Gore et al. [GV04] describe a branch-coverage

module for JPF that tries to exercise all branches of a program and reports

the percentage of branches covered. None of these works estimate state-space

coverage.
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Chapter 3

Certification by Search

Carrying Code

In this chapter, we introduce the concept of search-carrying code (SCC),

a technique that uses information collected during successful verification of a

program (via explicit-state model checking) to ease subsequent certification

(via explicit-state model checking) of the same program. Ideally, it should be

faster to certify a program than it was to verify it in the first place because

the certifier could otherwise just re-verify the program.

Our approach focuses on paths through a program’s reachability graph.

During verification, a software producer uses her model checker to explore a

program’s reachability graph and record the search paths as a search script.

Because the search script records the search of the program’s entire reach-

ability graph, it effectively acts as a certificate of model checking: it is a

sound and complete representation of the program’s reachability graph for

the purpose of model checking. The software producer submits the software

program with the associated search script for certification. The certifier’s

model checker takes the search script as input and uses it to speed up the

task of re-examining the program. We describe SCC certification in Chap-

ter 3.1.

33



Basic SCC achieves only modest time savings because the certifier’s model

checker must still search the program’s entire reachability graph. But SCC

certification can be parallelized much more effectively/ than traditional par-

allel model checking. The main challenge in parallel model checking is bal-

ancing the workload among parallel processors. This challenge is mitigated

in SCC certification because the search task is known in advance and is en-

coded in the search script. The search script can be partitioned in such a

way that parallel processors perform roughly the same amount of work and

the processors need not communicate or synchronize with each other. The

time savings are roughly proportional to the number of parallel processors.

We describe parallel SCC in Chapter 3.2.

3.1 Search-Carrying Code

Explicit-state software model checking exhaustively examines a program’s

state space, checking for conformance with desired properties. During verifi-

cation of a program, the emphasis is on finding bugs and ultimately showing

that a program is free of certain classes of errors. For certification, the goal

is to confirm that a program behaves as advertised, and possibly to check for

additional non-advertised properties. The goal of search-carrying code

(SCC) is to use information collected during model-checking-based verifi-

cation of a program to speed up model-checking-based certification of the

program. The main idea of SCC is as follows.

A software producer’s model checker performs a traditional exhaustive

search and verification of a program’s state space. At the same time, the

model checker constructs a search script that encodes the sequence of all

transitions and their destination states that the model checker explored.

Definition 3.1.1. An SCC search script of a program is a sequence of

transitions (i.e., program statements) and their resultant target states. The

sequence corresponds to a depth-first search of the program’s entire reacha-
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bility graph.

During SCC certification, a certifier’s model checker uses the provided

search script to direct its search of the program’s state space and certifies

that verification was performed. In general, SCC can be used to certify

safety properties of programs (e.g., program invariants or assertions), and

to confirm absence of deadlocks. We discuss properties in more detail in

Section 3.3.

SCC certification can detect if a provided search script deviates from a

program’s state space. Deviations may be intentional in the case of tam-

pering, or may be accidental if a program has changed since the script was

created. There are three types of deviation: (1) the script includes a nonexis-

tent transition, (2) the script omits a transition, or (3) the script incorrectly

claims that a transition leads to an already-visited state. The first two types

of deviation are easily detected: in the first case, the program has no pro-

gram statement that matches the script’s transition instruction; and in the

second case, the script instructs the model checker to end the exploration of

a state before it is fully explored. In both cases, the model checker detects

the discrepancy and the certification fails. The third type of deviation is

more menacing because, if undetected, it results in a partial search of the

program’s state space: the mislabelled state is deemed to have already been

visited, so the model checker does not test the state and does not explore the

state space that is reachable from it. To detect this third type of deviation,

SCC certification must re-explore the program’s entire reachability graph: it

must not only visit and verify all states in the state space, it must also ex-

plore all transitions emanating from those states to check whether they lead

to new, unvisited states. Thus, the search script encodes the full reachability

graph, i.e., every transition between program states.

Given that SCC certification entails searching a program’s entire reacha-

bility graph, it might seem surprising that SCC achieves any savings at all.

As will be seen, modest savings come from being able to confirm the script’s
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encoding of the reachability graph, rather than determining the reachability

graph, as is the case in traditional model checking. More significant sav-

ings come from parallelizing SCC certification. We describe parallel SCC in

Section 3.2.

In the special case of trustful SCC certification, the software producer and

the verification results are trusted. However, the certifier wants to certify

additional properties of the program, and the software producer is unable

or unwilling to check these. Because the software producer is trusted, the

certifier may choose not to check the veracity of the script. As a result,

we can aggressively optimize the certification task for speed. We describe

trustful certification in Section 3.1.3.

3.1.1 Search Script Construction

An SCC search script records all transitions in a program’s reachability graph

and each transition’s destination state. In order to reduce the size of the

search script, the script records a destination state’s ID instead of some form

of state encoding.

Definition 3.1.2. A state ID in the search script is a unique identifier. Its

value reflects the order in which a state was visited during the SCC verifica-

tion search.

The model checker assigns state IDs starting with identifier S1, incrementing

the state ID by 1 each time a new state is discovered. During certification,

the model checker keeps a mapping between state IDs and state encodings.

We describe this in more detail below.

Consider Figure 3.1, which depicts the reachability graph of an artifi-

cially simple program. Transition labels abstractly represent the program

statements being executed. The numbering of transitions reflects the order

in which transitions were explored relative to other transitions from the same

source state. The script for this program’s reachability graph is:
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Figure 3.1: Sample reachability graph of a program

Trans instr: – t1 t1 B t2 t1 B t2 t1 B B t3 t1 B B B B t2 B

State ID: S1 S2 S1 S2 S3 S1 S3 S4 S2 S4 S3 S5 S4 S5 S3 S2 S1 S4 S1

where the tis encode program statements (e.g., the byte-code instruction;

or a combination of byte code and thread ID) and Bs represent backtracks.

Reading the script from start to end, the search starts in the program state

labelled S1; it explores the program statement represented by transition t1,

which results in a program state labelled S2; and so on.

SCC uses encodings of program statements in the script, so that the

certifier’s model checker can choose any ordering for executing transitions.

The script must include the transition’s byte code instruction and arguments,

plus the thread ID of the executing thread. Below is an example partial script

in which transition instructions are expressed as byte-code instructions:

Trans instr: – aload 0(0) aload 1(1) B getfield#5(0)
State ID: S1 S2 S1 S2 S3

For the remainder of this thesis, we will abstract instructions in scripts to

transition IDs for clarity of presentation.

3.1.2 Search Script Usage

During SCC certification, the software producer’s model checker follows the

instructions given in the provided search script, checking properties and au-
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thenticating the search script on-the-fly. In particular, the model checker

confirms that the program’s reachability graph matches the encoding in the

search script by checking that each destination state in the search script

matches the destination state discovered during model checking. To facili-

tate this check, the model checker creates a unique numerical representation

(referred to as a fingerprint) of each state and stores a mapping of state IDs

to fingerprints in a map FP .

Definition 3.1.3. A fingerprint is a numerical encoding of a state.

Fingerprints are used to check whether two discovered states are the same.

We assume that repeated searches by the same model checker generate for

each state the same fingerprint, independent of the model checker’s search

strategy or the order in which states are discovered. In JPF, fingerprints

are 32 Bit Long Integers and the model checker uses a hashing function to

hash all of a state’s data into a fingerprint. We use state IDs in the search

script, rather than fingerprints, to reduce the size of the search script. State

IDs must be mapped back to fingerprints in order to compare states in the

script against states discovered by the model checker during certification.

Fingerprints are not submitted to the certifier as part of the search script.

Definition 3.1.4. A map FP is a mapping of state IDs to fingerprints.

Algorithm 3.1 describes our certification algorithm. The inputs to the

algorithm are the search script Script, a Stack that holds partially explored

states, and a map FP that stores at FP [IDi] the fingerprint of the state

whose ID = IDi. The search starts at the program’s initial state S0.

For each transition instruction and destination-state ID pair < ti, IDi >

in the search script, the algorithm follows the instruction ti and expects the

result to be the program state corresponding to IDi. If the instruction is

a backtrack transition, then the algorithm backtracks to the previous state

(line 11). Otherwise, the model checker executes the transition instruction

ti resulting in state next (line 15) and pushes next on the Stack (line 20).
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If next is a newly visited state (indicated in Script by a destination state

IDi that is higher than the highest ID seen so far), then the algorithm stores

next’s fingerprint at FP [IDi] (line 17).

Algorithm 3.1 also checks the veracity of the search script on the fly.

There are three possible sources of discrepancy between the search script

and the program being certified:

1. The script instructs the model checker to backtrack but state current

is partially explored (line 8);

2. transition ti is not one of state current’s enabled transitions

(current.enabled) (line 12);

3. state next is a previously visited state (indicated in the script by a des-

tination state IDi that is lower than the highest ID seen so far), but the

fingerprint stored at FP [IDi] does not match state next’s fingerprint

(line 19).

For any of these three discrepancies, the search stops with a veracity error.

Note that FP can be implemented as a fixed-size map and is slightly

more efficient than a hash table of visited states because its size is known in

advance. In JPF, for example, the size of the hash table must be increased

(by creating a larger hash table) whenever the hash table is full, all states in

the hash table must be re-hashed and re-inserted into the new, larger hash

table. Our results show that the use of map FP in lieu of a hash table of

visited states results in time savings of about 5% during SCC certification.

Theorem 3.1.1. Algorithm 3.1, which model checks a program’s state space

using an SCC search script to direct its search, is tamper-proof: If the

provided search script does not represent the search of the entire reachability

graph, certification will fail.

Proof There are three possible discrepancies between a provided search

script and the program being certified:
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Algorithm 3.1: Certification Algorithm
1 Input : Script ; /∗ search s c r i p t encoding r e a c h a b i l i t y graph ∗/
2 Input : Stack ; /∗ wo r k l i s t o f p a r t i a l l y exp lo red s t a t e s ∗/
3 Input : FP ; /∗ mapping between s t a t e IDs and f i n g e r p r i n t s ∗/
4 push (S0 ) onto Stack ;
5 for each < ti, IDi > in Script{
6 current = top s t a t e on Stack ;
7 i f (ti == B ){
8 i f (current == p a r t i a l l y exp lored )
9 throw ve r a c i t y e r r o r ;

10 else
11 pop (current) from Stack ;
12 else i f (ti /∈ current.enabled)
13 throw ve r a c i t y e r r o r ;
14 else {
15 next = succ(current, ti)
16 i f (IDi h ighe s t ID scanned so f a r )
17 FP [IDi] = next.fingerprint ;
18 else i f (FP [IDi] 6= next.fingerprint)
19 throw ve r a c i t y e r r o r ;
20 push (next) onto Stack ;
21 }
22 }

1. The script instructs the model checker to explore a transition ti (i.e.,

a program statement) at a particular point in the search, but that

transition does not exist in the program’s reachability graph. Line 12

in Algorithm 3.1 detects this discrepancy and the search stops.

2. The script instructs the model checker to backtrack from a partially

explored state Si, that is, the script instructs the model checker to

not explore one or more transitions that emanate from Si. Line 8 in

Algorithm 3.1 detects this discrepancy and the search stops.

3. The search script states that two transitions ti and tj have the same

destination state with the same state IDi. However, in the program’s

reachability graph, the two transitions lead to different program states.

Line 19 in Algorithm 3.1 detects this discrepancy and the search stops.

When ti is explored, the fingerprint of its destination state is stored at

FP [IDi]. When tj is subsequently explored, the model checker com-
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pares Sj’s fingerprint to Si’s fingerprint stored at FP [IDi]. Certifica-

tion fails because the two fingerprints do not match.

Because the model checker detects all three discrepancies, the search is

tamper-proof.

Note that it is possible that the script instructs the model checker to

explore a new state Si which is in fact a previously visited state. In this case,

the model checker would simply do duplicate work because it has explored Si

before. We do not include this case in the above theorem because the model

checker would still explore the entire reachability graph.

3.1.3 Trustful Certification

In cases where a program comes from a trusted source and the certifier trusts

the results of the software producer’s verification, SCC can still be useful

to check additional properties. Perhaps the program is stored in a trusted

software repository, but there are some additional properties to be checked

about the program. The software producer might not be available or willing

to perform additional checks.

When the certifier trusts the source of the program, she might also trust

the veracity of the search script. If so, the certification need only examine the

program’s states, to test properties. It need not explore all of the transitions

in the program’s reachability graph, checking whether any reachable state

has been missed.

To see the difference, consider again the reachability graph in Figure 3.1.

An exhaustive search of the graph explores all nine transitions, visiting the

same states multiple times. In contrast, a perfect search traverses a span-

ning tree of a program’s state space by executing only transitions that lead

to unvisited states, thus visiting each state exactly once.

Definition 3.1.5. A productive transition is a transition that leads to

an unvisited state.
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Figure 3.2: Perfect search of a state space

Definition 3.1.6. A perfect search of a program explores only productive

transitions of the program’s reachability graph. The resulting search traverses

one possible spanning tree of the reachability graph.

Figure 3.2 depicts a depth-first, perfect search of the graph from Fig-

ure 3.1. Solid lines represent productive transitions and dashed lines repre-

sent backtracks to parent states. Backtracking does not constitute “visiting”

a state because the work of constructing and testing the state is already done.

Thus, each state is visited exactly once. The corresponding search script is:

Trans instr: t1 t2 t2 B t3

The script need not record the transitions’ target state IDs because trustful

certification does not check the veracity of the script.

In this manner, trustful SCC effects a perfect search of a program’s state

space. The software producer provides a program and matching trustful

search script. During certification, the certifier’s model checker uses the

search script to direct its search of the program’s state space. Thus, there

is no need to create or maintain state fingerprints or a hash table of visited

states, resulting in additional savings.

42



3.1.4 Evaluation of SCC

We implemented SCC certification in Java Pathfinder (JPF) [CGJ+00]. JPF

is an explicit-state model checker for Java byte-code programs. We refer to

the resulting model checker as JPF-scc. For convenience, we implemented

SCC verification and SCC certification in the same model checker but, in

practice, these tasks might be performed by separate tools to allow the code

producer and certifier to use the model checker of their choice. JPF, and our

modified variants, employ partial-order reduction and two types of symmetry

reduction: (1) states that are identical except for unreferenced objects (i.e.,

garbage) are considered to be equivalent, and (2) states that are identical

except for the order in which classes and objects are loaded are considered to

be equivalent. We discuss the compatibility of SCC with various state-space

reduction techniques in Section 3.3.

We evaluated our work on a suite of nine Java programs that have been

used in previous empirical studies. Table 3.1 lists each program and includes

its source, the parameter values that we used (e.g., instantiating 8 dining

philosophers), the numbers of invariants and assertions1 that we checked for

each program, the number of states in the reachability graph, the ratio of

transitions to states, and the time to model check the program using unal-

tered JPF. We also checked each program for deadlock violations. We ran our

experiments on an Intel Pentium 4 3.2 GHz machine with 1.5 GB of mem-

ory, running Windows XP. We used this evaluation setup for all algorithms

described in this thesis.

We evaluated the utility of SCC on the basis of how long it takes to

perform SCC certification, compared to the time it would take a certifier

to reverify a program using JPF. We ran each experiment 10 times and

report the average of the 10 runs. Table 3.2 shows the results for SCC

certification using JPF-scc. Column Verification shows the time incurred

1In this thesis, invariants are checked in each program state whereas assertions are
checked only where they occur in the program.
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by the software producer to model check the program and create the search

script, including the time to write the script to disk. Column Certification

reports the time incurred by the certifier to certify each program, including

the time to read the search script from disk. Column Speed-up shows the

speed-up of a certification search compared to a traditional JPF search, as

reported in Table 3.1. For example, the time to certify the Sleeping Barber

program and to check the script is 1245 seconds, which is 1.05 times faster

than JPF verification of the same program. The standard deviation for our

results was 0.005. The time to write the script to the disk and to read the

script from the disk was between 0.5% and 1.50% of the verification time,

for each operation.

The speed-ups of SCC are small and are mainly due to keeping a map

of fingerprints (FP ) instead of a hash table. Because of the way that JPF

maintains hash tables and resizes tables as needed, the savings increase with

the size of the program’s state space. For our set of programs, we report an

overhead of 2% to 5% for keeping and maintaining a hash table.

Table 3.2 also shows the runtime performance of trustful SCC certifica-

tion. For example, the time to certify the Pipeline program is 15 seconds,

which is 6.7 times faster than traditional JPF verification of the same pro-

gram. The speed-up of trustful SCC certification is proportional to the ratio

of the number of transitions to the number of states in the program’s reach-

ability graph; this is also the ratio of unproductive to productive transitions.

The speed-up is slightly better than the ratio because of the savings from

not creating and comparing fingerprints.

3.1.5 Search Script Size

The feasibility of SCC depends not only on runtime performance but also on

the size of the search script. Given a program whose reachability graph has

S states and T transitions, SCC will produce a search script containing at

most 2T instructions (T forward transitions and at most T backtracks) and
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trustful SCC will produce a search script that has at most 2S instructions.

Because the number of states and transitions are exponential in the size of

the program, one might expect that script size is an issue.

Fortunately, search scripts contain lots of replication (e.g., byte-code in-

structions, backtrack commands), which makes them good candidates for

compression. ZIP data compression [IEE90] reduced the sizes of our search

scripts by factors of 550 to 650. Table 3.2 shows the size in KB of the

compressed search script for each program, for both SCC and trustful SCC

certification. It also shows the size of each program’s class files along with the

program name. The sizes of compressed scripts are on the order of (T×10−4)

KB for SCC and (S × 10−4) KB for trustful SCC. Extrapolating to larger

programs, with 100 million states and a billion transitions, the script sizes

might be on the order of 100MB for SCC and 10MB for trustful SCC. Such

script sizes are large but are manageable.

3.2 Parallel SCC

The promise of parallel model checking [SD97] is that we can reduce search

times by distributing the search among multiple parallel processors. It is

difficult to balance a model-checking task evenly among processors because

the size of the search space is not known in advance. Attempts to partition

the workload in advance (e.g., assigning states to processors based on state

information) have resulted in substantial communication overheads, due to

the need to transfer new states to their designated processors. Even on a

shared-memory architecture, this style of parallel model checking can suffer

considerable overhead because processors need to coordinate their shared

access to each others’ worklists.

In SCC, the certification workload is known in advance, in the form of a

search script. As such, it is possible to partition the workload into multiple

search tasks of roughly equal size. In the following sections, we first describe
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how to partition an SCC search script and then explain the optimizations

for trustful certification.

3.2.1 Partitioning the State Space

The goal of parallel SCC is to partition the SCC search script into multiple

non-overlapping search tasks, each of which covers a contiguous region of the

program’s reachability graph that can be searched separately.

Let Script be the full search script of a program, as described in Sec-

tion 3.1.1, and let |Script| be the size of the script in terms of the number of

transitions. Prior to certification, the certifier’s model checker constructs a

partition P = {p1, ..., pk} of Script into k search tasks. Each partition region

pi ∈ P corresponds to a subgraph in the program’s reachability graph, and

to a partial search script Scripti that is a substring of Script.

Definition 3.2.1. A partition region pi of a program’s reachability graph

consists of all states that can be reached via productive transitions from pi’s

root state and all transitions, productive and unproductive, originating from

those states.

For example, consider the reachability graph in Figure 3.3, in which thick

edges represent productive transitions. In this example, the partition region

rooted at state S4 consists of the states S4, S5 and S6; the partition region

would not include S3 because it is reached via an unproductive transition

from S6.

Definition 3.2.2. The size of a partition region pi is the total number of

transitions emanating from states in pi.

To facilitate script partitioning, SCC verification generates, along with

the search script, a list Subgraphs that records for each program state Si the

number of transitions in the partition region rooted at Si, i.e., it records the

size of the partition region pi rooted at state Si. The list Subgraphs could

48



S2

S3 S4 S5

S6

S7

S8 S9S10

S1

t1

t1

t1

t1

t1

t1

t2

t1 t1 t2

t1
t2

t2

t2

t3 t3

16

15

7

4

0

2

1

4

1

1

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

Subgraphs

S1 S10S7S10S2S8S9S5S9S8S4S8S3S8S2S3S7S6S7S3S4S6S3S6S5S6S4S5S4S3S2 S1S2

t2 Bt1t1 t1t1 t1t1t1t1t1 t2t2t2t2 t3t3BBBBBBBBBB B B B B B-

Script

(16)

(15)

(7) (4)

(4)(1) (1)

(1) (0)

(2)

Figure 3.3: Reachability graph with its script and Subgraphs

be generated during certification from the search script. We ask the code

producer to provide Subgraphs in order to reduce certification time. Ba-

sically, during verification, the model checker performs a depth-first search

of the program state space. As each new state Si is encountered, an entry

indexed by state ID is added to Subgraphs. As Si’s child states are explored

and the sizes of their subtrees are computed, the size of Si is updated. The

Subgraphs list is provided to the certifier, along with the program and search

script. In SCC certification, the size of a Subgraphs list is less than 10% of

the size of the search script, and in trustful SCC certification, the size of

Subgraphs is less than 20% of the size of the search script. The percent-

ages are different because the size of Subgraphs is the same for trustful and

tamper-proof certification, but their script sizes are different.

Figure 3.3 shows an example reachability graph with its corresponding

Script and Subgraphs. The Subgraphs table shows for each state Si (left

column) the size of the partition region (right column) rooted at Si. For ex-

ample, the partition region rooted at state S4 consists of the states S4, S5, S6
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Algorithm 3.2: Partitioning Algorithm
1 Input : Script ; /∗ search s c r i p t encoding r e a c h a b i l i t y graph ∗/
2 Input : Subgraphs ; /∗ root and s i z e o f subgraphs in Script ∗/
3 Input : k ; /∗ number o f p a r t i t i o n reg ions to generate ∗/
4 i = 0 ;
5 while {i < k−1}{
6 Search Subgraphs for pi whose s i z e i s c l o s e s t to

|Script|
k−i

;

7 Remove search s c r i p t for pi from Script ;
8 Remove a l l s t a t e s in pi from Subgraphs ;
9 Update the s i z e s o f subgraphs l e f t in Subgraphs ;

10 Compute path to i n i t i a l s t a t e o f pi ;
11 i++ ;
12 }

and the transitions emanating from these states, and has size four (i.e., the

four transitions originating from those states). The value in parentheses be-

low each state identifier in the reachability graph in Figure 3.3 shows the

same information.

Algorithm 3.2 gives an overview of our partitioning algorithm. It takes

as inputs the search script Script and the Subgraphs list that are provided

by the software producer, and the number of partitions k to generate (based

on the number of available parallel processors). In the ith iteration, the

algorithm searches Subgraphs for a partition region whose size is closest to

1/k−i of the number of transitions not yet assigned to a partition region (line

6); this subgraph becomes a new partition region pi. Next, the partial search

script Scripti for partition region pi is extracted from Script (line 7). The

algorithm also removes all states in pi from Subgraphs (line 8). We describe

both processes in the section Updating Data Structures. The algorithm then

updates the sizes of the remaining subgraphs in Subgraphs (line 9). Note

that only the sizes of ancestor states of pi need be modified, and their sizes

are reduced by the size of pi. We describe how ancestor states are identified

in the section Constructing Initial States. Finally, the algorithm constructs

the path from the program’s initial state to the initial state of search task

Scripti (line 10). We discuss the rationale and process for constructing this

initialization path in the section Constructing Initial States.
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Figure 3.4: Result of partitioning after one iteration of algorithm

Figure 3.4 shows the result after one iteration of our partitioning algo-

rithm as applied to the reachability graph in Figure 3.3, for k = 3 partitions.

The partition region p1, rooted at state S4, is selected for extraction and its

subscript is removed from Script (the dark line in Script shows from where

the subscript was extracted). All of the states in p1 have been removed from

Subgraphs and the sizes of S4’s ancestors (S1, S2, S3) have been reduced by

S4’s size. The initialization path for p1 is a sequence of transitions from the

program’s initial state to the subgraph’s initial state. Dashed states in each

of the resulting partition regions represent states that do not belong to the

region but that are still reached as part of that region’s search task; they

are reached when exploring transitions that emanate from states within the

region.

Figure 3.5 shows the final partition of the graph from Figure 3.3 into

three regions. The scripts for p1 and p2 contain initialization paths to their

respective root states. The resultant search scripts represent the certification

tasks to be distributed among parallel processors.

The complexity of our partitioning algorithm is O(k(S + T )): steps 6, 8

and 9 each have running times of O(S) for a reachability graph with Si states,

and steps 7 and 10 each have running times of O(T ). In practice, these steps
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are much quicker because each iteration of the algorithm removes a substring

from the script and the states of the partition region from Subgraphs. Thus,

in each iteration, the algorithm scans fewer states and transitions than in

the previous iteration. In our experiments, we noticed that this overhead

translates into approximately 0.5% to 3% of the total certification time.
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Figure 3.5: Subgraphs with scripts and initialization paths

Updating Data Structures

In this section, we discuss how Script and Subgraphs are updated as our

partitioning algorithm extracts each partition region pi. We remove from

Script the subscript Scripti that represents the search of region pi. Let Si be

the ID of the root state of pi (i.e., S4). Because Script records a depth-first

search of the reachability graph, and because state IDs reflect the order in

which the states are discovered in this search, the Scripti starts after the

leftmost instance of Si and ends before the subsequent backtrack from Si (to

a state ID less than Si). Thus, the Script1 for region p1 in Figure 3.4, with

start state S4, is
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p1: t1 B t2 t1 B t2 B B

S5 S4 S6 S5 S6 S3 S6 S4

Note that Scripti must have the same number of forward transitions as the

size of pi in Subgraphs. Otherwise, there is a discrepancy between Script

and Subgraphs and the partitioning of Script fails. After discarding trailing

backtrack commands, we obtain a search script Script1 that specifies the

search of region p1, starting from the initial state of p1:

p1 (S4): t1 B t2 t1 B t2

S5 S4 S6 S5 S6 S3

Given a partition region pi, updating Subgraphs entails removing all

entries that correspond to states in the region (line 8 in our partitioning

algorithm). Again, let Si be the ID of the root state of pi. Any state in

Scripti whose ID is greater than or equal to Si refers to a state in the region

pi and must be removed from Subgraphs. For example, in Script1, states

S4, S5, and S6 are removed from Subgraphs.

Each iteration of the partitioning algorithm produces a script for a differ-

ent partition region. When the algorithm terminates, what remains of Script

forms a search script for the kth region. Figure 3.5 shows the search scripts

for each partition region.

“Constructing” Initial States

Each Scripti starts at the root state of a partition region pi. We could at-

tempt to construct the corresponding “initial” program state for each search

task, but JPF program states are complex and are difficult to construct

and restore: they comprise not only the variable valuation but also informa-

tion about threads and the progress of the search. Instead, we prefix each

search script with an initialization path: a sequence of transitions from

the program’s initial state to the start state of the search task. We discuss

in Section 3.2.5 the overhead incurred by this decision.
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To construct the initialization path, the original Script is scanned from

start to end. Every time a transition is reached, it is pushed onto a stack.

Every time a backtrack command is read, the top transition is popped off the

stack. When a state ID Si is first encountered, the transitions in the stack

make up the initialization path from the program’s initial state to state Si.

For example, the initialization path to p1’s root state is: t1 t1 t1. Note that

this algorithm does not construct the shortest path to a given state, but it

does construct the shortest path with respect to the given script.

The states along the initialization path are all ancestor states of Si in the

reachability graph. Thus, we can use the same process to update the sizes of

the subgraphs remaining in Subgraphs after removing all states of pi from

Subgraphs (line 9 of the algorithm).

3.2.2 Parallel Certification

The program and search scripts are distributed to parallel processors, which

run the certifier’s model checker. Each processor creates its own local copy

of FP , which maps state IDs to program-state fingerprints. If a processor

detects any discrepancy between its search script and the program, it raises

an error. In addition, once all processors have finished their certification

tasks, the processors’ FP maps are compared to ensure that all processors

map state IDs to the same fingerprints. Any mismatch is reported as an

error. This final check on the veracity of the search scripts performs at most

nS comparisons, where n is the number of processors and S is the total

number of states.

3.2.3 Correctness

Our partitioning algorithm divides a search script in such a way that the

resulting subscripts cover all states and transitions of the original script.

Theorem 3.2.1. Given a search script Script of a program’s reachability
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graph, Algorithm 3.2 divides Script into k subscripts such that each result-

ing subscript represents a depth-first search of a subgraph of the reachability

graph.

Proof We show that (1) each extracted subscript Scriptj records a depth-

first search and (2) the subscript Scriptk that remains after all Scriptjs have

been extracted from Script, also represents a depth-first search.

Each iteration of the partitioning algorithm extracts a search subscript

Scriptj that corresponds to a leaf subgraph pj of a program’s reachability

graph, and is rooted at state Sj.

Let ti,j be a productive transition from state Si to state Sj (i.e., the first

transition in Script that leads to Sj), and let Bj,i be a backtrack transi-

tion from state Sj back to state Si. Because Script represents a DFS of

the program’s reachability graph, the subscript Scriptj between ti,j and Bj,i

represents a depth-first search of all states reachable from Sj via productive

transitions, and all transitions emanating from those states. Thus, Scriptj

represents a depth-first search.

After the extraction of Scriptj from Script (line 7), the source state of

ti,j, Si, is the same as the destination state of Bj,i. Thus, the removal of

the sequence does not affect the continuity of the search script, and after the

(k−1)th iteration of the algorithm, Scriptk represents a depth-first serch.

Theorem 3.2.2. Given a search script Script of a program’s reachability

graph, Algorithm 3.2 divides Script into k subscripts such that the resulting

subscripts cover all states and transitions of the reachability graph.

Proof By construction, Script represents a DFS of a program’s entire reach-

ability graph. Each iteration of the partitioning algorithm extracts a search

subscript Scripti that corresponds to a leaf subgraph pi of the reachability

graph. The subgraph is rooted at state Si and it includes all of the states

that are reachable from Si via productive transitions and includes all transi-
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tions originating from those states. By Theorem 3.2.1, Scripti is a depth-first

search and explores all transitions and visits each state in pi.

When the algorithm terminates, what remains of Script is a search sub-

script Scriptk for a kth subgraph. The subgraph is rooted at the program’s

initial state S1, and includes all of the states that are reachable from S1 via

productive transitions up to and excluding the root states of the extracted par-

tition regions, and all of the transitions originating from those states. Again,

by Theorem 3.2.1, Scriptk is a depth-first search and explores all transitions

and visits each state in pk. In this manner, the algorithm splits Script with-

out removing any states or transitions (except backtrack transitions).

Theorem 3.2.3. Parallel SCC certification is tamper-proof: If the pro-

vided search scripts do not match the program’s reachability graph, certifica-

tion will fail.

Proof By Theorem 3.1.1, the search of Scripti on processori would fail if

there is a discrepancy between a subscript Scripti and the corresponding

subgraph pi of the reachability graph.

We have also to show that parallel SCC detects discrepancies between

transitions in different scripts. It is possible that transition ti in subscript

Scripti and transition tj in Scriptj have the same destination state with

the same state ID. However, in the program’s reachability graph, the two

transitions lead to different program states.

When ti is explored on processori, the state ID and fingerprint of its

destination state Si are stored in FPi. When tj is explored on processorj,

the state ID and fingerprint of its destination state Sj are stored in FPj.

Once both processors have completed their search tasks, a master processor

compares Si’s fingerprint in FPi to Sj’s fingerprint in FPj. Certification fails

because the two fingerprints do not match.

Given that the software producer provides the list Subgraphs, we must en-

sure that tampering of the provided Subgraphs does not adversely affect the
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partitioning of the script in such a way that it influences the certification

results

Theorem 3.2.4. Given a search script Script of a program’s reachability

graph and a list Subgraphs that is not accurate with respect to the program’s

reachability graph, Algorithm 3.2 either fails or still produces subscripts that

cover disjoint regions and, taken together, cover the program’s entire reach-

ability graph.

Proof There are three possible cases of discrepancy between Subgraphs and

the reachability graph.

• Subgraphs lists an incorrect size for the subgraph rooted at some state

Si: If Algorithm 3.2 chooses state Si as the root state of a region, then

line 8 of Algorithm 3.2 will fail because the number of transitions in the

subscript does not match the size of the subgraph listed in Subgraphs.

If Algorithm 3.2 does not choose state Si as the root state of a region,

then the algorithm may choose different partition regions in line 6 than

it would have chosen if it had been given correct Subgraphs sizes. Al-

gorithm 3.2 (line 6) uses the sizes in Subgraphs to select the subgraph

that partitions the reachability graph into equal-sized subgraphs us-

ing a greedy algorithm. If there is a large discrepancy between the

provided Subgraphs sizes and the subgraphs’ actual sizes, then, in the

worst case, there will be a larger standard deviation in the sizes of the

resulting subscripts.

• Subgraphs is missing the entry for a state Si: Let pj be the region to

be extracted and let Sj be the root state of pj. If state Si belongs to pj,

then line 8 of Algorithm 3.2 will fail because the algorithm does not find

Si in Subgraphs when extracting the states within pj from Subgraphs.

If Si is an ancestor state of Sj, then line 9 of Algorithm 3.2 will fail

because the algorithm does not find Si in Subgraphs when updating
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the sizes of Sj’s ancestor states. Otherwise, the algorithm will produce

partitions whose sizes have a larger standard deviation, as explained in

the previous case.

• Subgraphs includes an additional entry Sk: If Algorithm 3.2 chooses Sk

as the root state of a subgraph, line 7 of Algorithm 3.2 will fail because

the algorithm does not find Sk in Script. Otherwise, the algorithm may

choose different partition regions, and there may be a larger standard

deviation in the sizes of the resulting subscripts.

3.2.4 Parallel Trustful Certification

The algorithm for partitioning a search script for trustful certification is simi-

lar to the algorithm presented in Figure 3.2, but is applied to a trustful Script

(which contains no unproductive transitions). The only difference between

the algorithms is that the partitioning algorithm for trustful certification re-

moves the productive transitions that span regions (e.g., the transition from

S3 to S4 in Figure 3.4). Figure 3.6 shows the partitions that we obtain for

parallel trustful certification of the sample reachability graph given in Fig-

ure 3.3. The regions represent spanning subtrees of the original reachability

graph.

Theorem 3.2.5. Given a trustful search script Script of a program’s reach-

ability graph, Algorithm 3.2 divides Script into k subscripts such that each

resulting subscript represents a perfect search of a subgraph of the reachability

graph.

Proof We show that (1) each extracted subscript Scriptj records a perfect

search and (2) the Scriptk that remains after all of the Scriptjs have been

extracted from Script represents a perfect search.
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Figure 3.6: Script partition for trustful SCC

Let ti,j be a productive transition from state Si to state Sj (i.e., the first

transition in Script that leads to Sj) , and let Bj,i be a backtrack transi-

tion from state Sj back to state Si. Because Script represents a DFS of

the program’s reachability graph, the subscript Scriptj between ti,j and Bj,i

represents a perfect search of all states reachable from Sj.

After the extraction of Scriptj from Script (line 7), the source state of

ti,j, Si, is the same as the destination state of Bj,i. Thus, the removal of

the sequence does not affect the continuity of the search script, and after the

(k − 1) iteration of the algorithm, Scriptk represents a perfect search.

Theorem 3.2.6. Given a trustful search script Script of a program’s reach-

ability graph, Algorithm 3.2 divides Script into k subscripts such that the

resulting subscripts cover all states of the program’s reachability graph.

Proof By construction, Script represents a perfect search of every state of

a program’s reachability graph. Each iteration of the partitioning algorithm

extracts a search subscript Scripti that corresponds to a leaf subgraph pi of a

program’s reachability graph. The subgraph is rooted at state Si, it include

all states that are reachable from Si via productive transitions. By Theorem

3.2.5, Scripti is continuous and visits each state in pi.
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When the algorithm terminates, what remains of Script is a search sub-

script Scriptk for a kth subgraph. The subgraph is rooted at the program’s

initial state S1 and includes all of the states that are reachable from S1 via

productive transitions up to and excluding the root states of the extracted

partition regions. By Theorem 3.2.5, Scriptk is continuous and visits each

state in pk. In this manner, the resulting partitioning covers all states of the

program’s reachability graph.

3.2.5 Implementation and Evaluation

We implemented parallel SCC in Java Pathfinder and refer to the resulting

model checker as JPF-pscc. For convenience, JPF-pscc supports both verifi-

cation and certification modes. In the verification mode, JPF-pscc generates

a search script to be used during certification. In certification mode, JPF-

pscc can be used to partition the search script into k scripts or to model

check the program using one of k scripts to direct its search. At the end of

a certification task, JPF-pscc outputs its FP map. At present, a separate

program is needed to compare the FP s from all certification tasks.

To evaluate the performance of parallel SCC, we used JPF-pscc to parti-

tion each program’s state space into 10, 50 and 100 certification tasks (i.e.,

sub-search scripts). Because the sizes of the resulting scripts are not exactly

equal, we report for each program the time it takes to examine the largest

subscript. To this time we have added (1) the time it takes to partition the

search script and (2) the time it takes to compare all FP maps sequentially.

In practice, the actual time of this latter task would be less because the

search tasks would finish at different rates and FP maps could be compared

against a current master map as tasks complete.

Table 3.3 shows the results for parallel SCC certification and parallel

trustful SCC certification. For each certification method and the number of

subscripts (10, 50, or 100), the column Max task lists the size of the largest

sub-search script for each program; size is reported as a percentage of the
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Table 3.3: Results for Parallel SCC Certification
SCC tamper-proof certification

# subscripts 10 50 100
Program Max task Speed up Max task Speed up Max task Speed up

Dining Phil 13% 8 4% 22 2% 38
Bounded Buffer 11% 9 4% 25 3% 30
Nasa KSU Pipe 12% 8 4% 22 3% 25
Nested Monitor 11% 9 5% 18 3% 28

Pipeline 12% 8 6% 15 2% 39
RWVSN 11% 9 4% 22 3% 27

Replicated Workers 12% 8 5% 18 2% 40
Sleeping Barber 11% 9 4% 23 3% 28

Elevator 10% 10 4% 23 2% 45
Average 11% 9 4% 21 3% 33

SCC trustful certification
# subscripts 10 50 100

Program Max task Speed up Max task Speed up Max task Speed up
Dining Phil 11% 39 4% 103 3% 133

Bounded Buffer 12% 48 4% 140 2% 270
Nasa KSU Pipe 11% 30 5% 64 3% 104
Nested Monitor 10% 56 4% 136 3% 175

Pipeline 13% 39 5% 96 3% 155
RWVSN 11% 38 5% 80 2% 194

Replicated Workers 12% 34 4% 100 3% 130
Sleeping Barber 11% 31 4% 85 2% 164

Elevator 12% 57 5% 132 4% 160
Average 11% 41 4% 104 3% 165
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Table 3.4: Average and Maximum Lengths of Initialization Paths
# subgraphs 10 50 100

Program Avg Max Avg Max Avg Max
path path path path path path

Dining Phil 11 16 13 16 12 18
Bounded Buffer 75 615 217 6742 139 6678
Nasa KSU Pipe 14 19 14 24 15 26
Nested Monitor 14 77 24 119 33 114

Pipeline 12 20 14 25 19 29
RWVSN 50 495 57 785 101 845

Replicated Workers 35 50 45 74 45 75
Sleeping Barber 12 25 17 35 25 31

Elevator 50 68 71 75 71 78
Average 31 153 53 877 53 876

size of the full search script. For each certification method and number of

subscripts, the column Speed-up reports the speed-up in certification time

over the time to verify the entire program using unmodified JPF, as reported

in Table 3.1.

The speed-up factors reported in Table 3.3 are not simply the product of

the speed-up factors reported for nonparallel SCC certification (in Section 3)

and the number of parallel processors employed. This is partly because of

the time needed to compare FP maps at the end of certification, and partly

because the search tasks vary in size and we report the timings associated

with the largest task. Most certification subscripts carry an initialization

path prefix, which adds to the size of the script. Table 3.4 reports the av-

erage (column Avg path) and longest (column Max path) initialization paths

for the scripts generated for parallel SCC certification for our evaluation pro-

grams. Most path lengths are relatively short, and JPF-pscc can explore

approximately 1000 transitions per second. The results for the Bounded

Buffer program show that the subscripts generated for this program have

much longer initialization paths than the other evaluation programs. After
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evaluating these results, we noticed that this program has a deeper reach-

ability graph compared to the other programs and thus, several subgraphs

end up having long initialization paths. The lengths of initialization paths

for trustful SCC certification are similar.

In SCC certification, the size of the largest subscript determines the op-

timum number of processors to use during certification. For example, when

partitioning the search script of the Dining Philosophers program into 10

subscripts for SCC certification, the size of the largest resulting subscript is

13% of the size of the full script. For this program and partitioning, the

optimum number of parallel processors is 10. Taking this into consideration,

the results show that the speed up for parallel SCC certification is on average

a factor of n, for n processors. Trustful SCC certification can achieve a speed

up of up to a factor of 5n, for n processors.

3.3 Discussion

In this section we discuss some outstanding issues with SCC, including some

of our design decisions, restrictions on the properties that can be checked,

scalability, requirements on the model checker(s) used, and compatibility

with search-space reduction techniques.

3.3.1 Transition- vs. State-Based Certificates

Our SCC search script encodes all of the transitions of a program’s reacha-

bility graph. It might seem more efficient to generate, instead, a state-based

certificate that encodes the states because (1) there are fewer states than

transitions and (2) properties are ultimately checked on states, rather than

on transitions. The problem with this approach is that it is less resistant

to tampering. A malicious software producer could doctor the certificate,

omitting states from the certificate or adding nonexistent states. Thus, the
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certifier would still need to explore the program’s reachability graph (and the

destination states of all transitions) to check the veracity of the certificate.

3.3.2 Properties

Safety properties play an important role in formal verification because they

assert that the system stays within required bounds and does not perform any

“wrong” actions [ES96]. SCC can be used to certify invariants and program

assertions, and can also check for deadlocks. For example, an interesting

invariant for a safety critical system that could be checked with SCC would

be:

safety switch on → system off

Because the search script encodes all transitions of a program’s reachability

graph, SCC can also be used to check invariants over consecutive states, such

as the property

(x = 5) → next(x = 8)

which states that if the value of x is 5, then in the next state its value will be

8. Even when certification is parallelized, each SCC search task is responsible

for covering a set of contiguous states and all of their outgoing transitions.

Thus, every pair of consecutive states is captured in a search script, making

it possible to certify invariants over consecutive states. In contrast, trustful

SCC does not cover all transitions, so it does not cover all pairs of consecutive

states. Thus, trustful SCC can soundly certify only state properties.

3.3.3 Scalability

A number of factors affect the scalability of search carrying code. For one,

SCC certification is limited to finite-state programs. However, this limitation

applies in general to explicit-state model checking. Thus, if a program can

be verified using explicit-state model checking, then it can be verified and
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certified using SCC. If the software producer uses abstractions to produce a

finite state space for SCC verification, then the certifier must use the same

abstractions and must check that the abstractions preserve the properties

being proven.

Another factor is that the results of our experiments (reported in Ta-

ble 3.3) suggest that the benefits of parallelization diminish as we increase

the number of subscripts we divide an SCC script into. Our partitioning

algorithm does not partition a script into subscripts of exactly equal size,

plus the resulting subscripts are prefaced by initialization paths of varying

lengths. As such, the speed up in certification time is bounded by the amount

of time it takes to certify the largest subscript. In the worst cases, when a

script is partitioned into 50 or 100 subscripts, the largest subscript is 2 to 3

times the size that would be expected if the subscripts were truly equal sized.

We do not know whether the observed diminishing of returns is due to the

small sizes of the programs in our test suite, or is inherent to our approach.

More experiments on larger programs are needed to answer this question.

A more serious issue is the size of the search script that the software

producer provides, likely over a network, to the certifier. The size of a com-

pressed script, in number of bytes, is on the order of the number of states

in the program’s state space — which could be very large in the worst case,

where the program’s state space is at the limit of what can be model checked.

In this thesis, we assign the responsibility of partitioning the script to the cer-

tifier, on the assumption that she knows how many processors are available

and thus knows how many subscripts to create. However, in cases where the

script is large, it may be prudent for the software producer to partition the

search script. This would certainly be the case if it turns out that there is a

limit to how evenly the script can be partitioned into subscripts, as discussed

above. When the producer partitions the search script, then the certifier’s

model checker must ensure that it has received the collection of all states

and transitions in the reachability graph. For this, one master processor
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must keep track of each state processed on each processor and ensure that if

a transition leads to a state that belongs to another region then that state is

indeed processed by another processor.

3.3.4 Parallel Model Checking

One of the main challenges of traditional parallel model checking is to evenly

distribute the work among parallel processors. In most techniques, the pro-

gram’s state space is partitioned in advance (e.g., based on hash values of

state IDs or fingerprints); thus, during model checking, states must often be

transferred to their assigned processors for processing [BR01a, KM05, NC97,

SD97].

On a distributed memory architecture, this strategy results in substantial

communication overhead. On a shared memory architecture, communication

among processors is negligible, but the processors must synchronize their ac-

cess to shared variables: processors must be able to deposit into each other’s

worklist of unprocessed states, and they share a hash-table of state finger-

prints. Interestingly, some researchers report [BBR07, IB06] that, beyond

an optimal number of processors, the search time starts to increase with

the number of additional processors because the synchronization overhead

dominates any benefit from parallelization. Parallelized SCC does not suffer

from this overhead because the reachability graph is partitioned in advance

in such a way that no communication or synchronization among processors is

necessary. Each processor works independently of others, and shares informa-

tion with an administrator process (which collects and compares fingerprint

maps) only at the end of its search task.

Another problem with traditional approaches is that workload balance

does not depend solely on an even distribution of the state space. Processors

are utilized only if they have states to process. If a program’s reachability

graph is spindly rather than bushy, then progress is hampered by the slow

production of new states, and processors sit idle waiting for the output of

66



other processors. In contrast, parallelized SCC partitions the search script

based on the shape of the reachability graph, and assigns whole subgraphs,

not single states, to processors. All scripts can be processed in parallel and

no processor waits for the output of another processor.

3.3.5 Using Different Model Checkers

In our work, we augmented JPF for use in both SCC verification and SCC

certification. Currently, the software producer and certifier must use the

same model checker to use SCC. This might seem like a restriction, however,

certification is a confirmation that verification was performed and that it was

thorough. Certification is not a reconfirmation that the advertised properties

hold. As such, it is reasonable to expect the certifier to use the same model

checker as the software producer because the certifier is simply checking that

verification is complete.

3.3.6 Model-Dependent Reduction Techniques

A key question of any new model checking technique is whether and how

it works in conjunction with existing search-reduction techniques, especially

those described in Chapter 2. We discuss model-dependent reduction tech-

niques in this section and property-dependent techniques in the next section.

We expect SCC to complement model-dependent reduction techniques,

as long as (1) the reduction techniques are applied first so that the search

script encodes the reduced reachability graph, and (2) the verifier and cer-

tifier model checkers agree on the abstractions applied. We consider only

automatic reduction techniques; techniques that rely on user-input (e.g., ab-

straction functions [GS97]) are not safe, because a malicious software pro-

ducer could specify an unsound abstraction.

Symmetry Reduction [ES96] reduces the size of the state space by ex-

ploiting symmetries among states. There are a number of different techniques
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for identifying symmetries [MDC06], but the ultimate effect with respect to

JPF model checking is that symmetric states are assigned the same finger-

print.

In SCC verification, symmetries result in a reduced reachability graph

being explored, and a smaller search script being generated. If the same

model checker is used during SCC certification, then it identifies the same

symmetries, symmetric states are assigned the same fingerprint, and the

shape of the reduced reachability graph matches the search script. If the

software producer and consumer use different model checkers, the checkers

must implement the same reductions.

Currently, it is not realistic to expect different model checkers to use the

exact same symmetry reductions. But if model checkers were parameterized

with respect to their state-space reduction techniques and algorithms, then

requiring both model checkers to use the same symmetry reductions would

not be a limitation. In fact, there has already been some work [DHJ+01,

HDPR02] in parameterizing model checkers with respect to their state-space

reduction strategies.

Partial Order Reduction (POR) [God96] tries to identify independent

transitions and execute only one of the possible interleavings. During SCC

verification, the model checker detects independent transitions, explores only

one interleaving, and records only that interleaving in the search script. The

entire interleaving is recorded as a single transition in the search script (i.e.,

ti is one complete interleaving). If the same model checker is used during

SCC certification, then the certifier model checker identifies the same sets of

independent transitions, chooses the same interleavings (as long as decisions

are deterministic), and disables the other interleavings. As a result, the POR

interleavings chosen during certification match the search script.

Because a POR interleaving is treated as a single, long transition, it

is never partitioned among different subscripts and during certification, an

entire interleaving is assigned to a single processor. Thus, POR does not

68



interfere with SCC, even after parallelization.

If different model checkers are used for SCC verification and SCC certifi-

cation, they must both use the same POR heuristics to (1) determine which

transitions are independent, (2) select which interleaving to explore, and (3)

check that the interleaving reduction is correct. It might seem unrealistic for

both model checkers to use the same heuristics, but we believe a parameter-

ized approach to state-space reductions, as described above, could address

this limitation.

3.3.7 Property-Specific Reduction Techniques

The goal of property-specific reduction techniques is to reduce the search

space (and search script) to those program states that are relevant to the

property being checked. Such reductions are problematic for SCC because

the software producer does not know in advance which properties are of

interest to the certifier and thus cannot apply the appropriate reductions.

Moreover, the certifier cannot simply apply the reduction techniques herself

because the resulting reduced program would no longer correspond to the

supplied search script. Such techniques can only be useful if they can be

applied to the search script rather than to the program.

Consider program slicing [Wei81], which is a commonly used property-

specific reduction technique that reduces the size of the search space by

ignoring program statements that are not relevant for a given property. Tra-

ditional program slicing cannot be used in conjunction with SCC for the

reasons given above, but it might be possible for the certifier to slice the

search script instead, given that the script’s transition instructions (which

are bytecodes) literally encode the program statements. The certifier model

checker would need to be able to determine from a transition instruction

in the search script whether the transition is relevant to the property being

checked. It would also need to perform a definition-use analysis on the script,
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which is a much larger artifact to analyze than the original program2. Lastly,

not all irrelevant transitions can be removed from the search script because

the sliced script must still be a valid path in the program’s reachability graph.

We are still investigating the problem of script slicing. Although it seems

to be possible, it is not clear whether the resulting reductions will be signifi-

cant. In general, the savings achieved by program slicing cannot be predicted

in advance, and it is possible that slicing provides no significant savings at

all — especially when checking a large collection of varied properties, such

as during certification. This is not the case for SCC — we can predict the

achievable time savings accurately based on (1) the number of transitions

that were eliminated during script slicing and (2) the number of processors

available for parallel certification.

3.4 Summary

In this chapter, we presented search carrying code (SCC) as a technique

to certify software from an untrusted source. The search script in SCC

represents a sound and complete exploration of the reachability graph of

the program to be certified, and can be used to speed up certification and

perform veracity checks of the provided search script.

The time savings of basic SCC are small, but the ideas of SCC can be

applied to parallel model checking. Using a combination of SCC and parallel

model checking, we were able to speed up the certification of model-checking

results by a factor of up to n for n parallel processors for tamper-proof

certification, and by a factor of up to 5n for n parallel processors for trustful

certification

2The analysis would be linear in the size of the script.
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Chapter 4

State-Space Caching

4.1 Introduction

In the previous chapter, we introduced SCC, a technique for certifying a pro-

gram that had been verified using software model checking. SCC requires

that the software producer’s model checker perform an exhaustive search of

the program’s state space and create for certification a search script that

represents a search of the program’s entire reachability graph. However,

one of the main obstacles to model checking is the state-explosion prob-

lem [CGJ+01]: the size of a program’s state space grows exponentially with

the number of variables and components in the program. As a result, an

exhaustive search may not be possible because the model checker runs out

of memory as it keeps track of all visited states.

There exist numerous approaches to combat the state-explosion problem

(see Chapter 2), and one of these methods is state-space caching. The goal of

state-space caching is to perform an exhaustive search of the state space but

to use less memory than a traditional model-checking search uses. Instead of

keeping track of all of the visited states, the model checker stores in a cache

only a subset of visited states. When the cache becomes full, the model

checker replaces states in the cache with newly discovered states. Which
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state to replace next depends on the cache-replacement policy that the model

checker uses. There exist several cache-replacement policies including age-

based caching [Hol87], stratified caching [Gel04], hit-based caching [Hol87]

and depth-based caching [Hol87]. For a detailed description of these replace-

ment policies, refer to Chapter 2.

If a state Si is removed from the cache and is subsequently revisited, it is

deemed a new state and, as a result, the model checker re-explores Si and any

of Si’s descendant states that have also been removed from the cache. Thus,

although state-space caching reduces memory requirements by limiting the

cache size, it increases search time because states may be visited and tested

more than once.

State-space caching is useful in SCC when an exhaustive verification of a

program’s state space is not possible given the available memory resources.

In such situations, the software producer’s model checker can use state-space

caching to achieve a complete search of the program’s state space and output

a search script that covers the program’s entire reachability graph. In gen-

eral, a depth-first search of an acyclic state space is guaranteed to terminate

with an exhaustive search when the model checker uses state-space caching.

For cyclic state space, the model checker must detect a cycle in order for the

search to terminate. We describe these issues in this chapter. Of course, be-

cause the search time could increase significantly, the verifier’s model checker

might still not achieve an exhaustive coverage within a reasonable period of

time.

In this chapter, we introduce a novel cache-replacement policy, called

cost-based caching. Cost-based caching replaces states in the cache based

on the potential cost of re-exploring the state space that is reachable from

the state to be removed. Our evaluation of cost-based caching shows that it

achieves exhaustive coverage of a program’s state space in a shorter amount

of time than existing cache-replacement policies and thus is more likely to

terminate within a given time frame.
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The downside of state-space caching is that the model checker may explore

sections of the state space more than once. A literal recording of the resulting

search produces a search script in which states and transitions are repeatedly

explored. In Chapter 4.3, we describe how to detect and remove replicated

parts of a search script before SCC certification. As a result, the time it

takes to perform SCC certification using a script created by a model checker

that employed state-space caching is the same as the time it would take to

perform a regular SCC certification.

Finally, in Chapter 4.4, we describe a memory-optimization technique for

SCC certification in which the certifier’s model checker removes any entry

from the FP map if it is known that the state will not be revisited during the

model-checking search. Removing such entries reduces the memory needs of

SCC certification by up to 89%.

4.2 Cost-Based Caching

In general, for any state-space caching technique, when the cache is full

then the model checker must remove states in the cache to store newly-

discovered states. Due to eviction, some replaced states might need to be

revisited later in the search, causing re-exploration of the replaced states and

their descendant states. The goal of current cache-replacement policies is to

identify states in the cache that have a low chance of being revisited and to

select them for replacement when new states are discovered. For example,

one current approach employs an age-based replacement policy, in which

the states chosen for replacement are those that have been in the cache the

longest. However, consider a state S1 that has been in the cache for the

longest period of time and that has many descendant states. It might be

unwise to replace S1 because if its descendant states are also removed from

the cache and if S1 is revisited, then all of its descendant states will also be

re-explored.
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Existing cache-replacement policies for state-space caching do not con-

sider the “cost” of removing from the cache a state that might be later revis-

ited. Informally, the cost of replacing a state Si is the work that the model

checker must redo if Si is revisited. We propose a cost-based replacement

policy that selects for replacement a state Si based on the cost, in the worst

case, of revisiting Si later in the search. The worst-case cost of replacing a

state is the maximum number of states that would have to be re-explored if

Si were later revisited. In practice, the actual cost may be lower if, when Si

is revisited, some of its descendant states are in the cache and thus need not

be re-explored.

4.2.1 Cost-Based Caching Algorithm

Cost-based caching is similar to other caching techniques in that it performs

a depth-first search of the program’s reachability graph and maintains (1)

a stack of partially explored states and (2) a cache of visited states. The

replacement policy selects for removal from the cache the state with the

lowest cost. Note that the cost of replacing Si is not necessarily the number

of Si’s descendant states. For example, consider the sample reachability

graph in Figure 4.1, which shows in parentheses below each state identifier

the cost of replacing that state. The cost of replacing state S3 is 3 because the

model checker will re-explore a maximum of three states (S3, S5, S6) if S3 is

revisited. In this case, the cost of replacing S3 is equal to the number of its

descendant states plus 1. However, consider state S2 in the same reachability

graph. The cost of replacing S2 is 7 even though it has only 4 descendant

states. Because S2 is part of a directed acyclic graph (DAG), some of its

descendant states (S5, S6) might be visited more than once if they are not

found in the cache either time they are visited during the re-exploration of

the states reachable from S2. Thus, they are counted more than once when

calculating the cost of replacing S2.

Definition 4.2.1. Given a program whose reachability graph is finite and
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contains no strongly connected components, the cost of a leaf state in the

reachability graph (i.e., a state with no descendant states) is 1. The cost of

a non-leaf state is the sum of the costs of its descendant states plus 1.

S2

S3 S4

S5

S6

S1

(1)

(2)

(3) (3)

(7)

(8)

Figure 4.1: Sample reachability graph with each state’s associated cost in
parentheses

Algorithm 4.1 shows an overview of our cost-based cache-replacement

strategy. Throughout the search, the algorithm maintains two data struc-

tures: Stack, which is a work list of partially explored states, and Cache,

which is a cache of visited states. The procedure cost-based-search starts at

the program’s initial state S0 and continues while the Stack is not empty

(line 8). In each iteration of the loop, the algorithm examines the state at

the top of the stack (current). If state current has unexplored transitions,

then the model checker executes one transition and constructs the resulting

program state next (line 11). If state next is found in the Cache (line 12),

then next is known to have already been explored and tested, and the search

continues with another of current’s unexplored transitions. Otherwise, next
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Algorithm 4.1: Cost-based caching algorithm
1 Input : Stack − Workl i st o f p a r t i a l l y exp lored s t a t e s
2 Input : Cache − L i s t o f v i s i t e d s t a t e s
3 Input : S0 − I n i t i a l s t a t e o f the program to be searched
4 cost−based−search {
5 add (S0 , Cache)
6 push (S0) onto Stack
7 while (Stack not empty ){
8 current = top s t a t e on Stack
9 i f (current has an unexplored t r a n s i t i o n t){

10 next = succ (current , t)
11 i f (next in Cache){ // cache h i t
12 current.cost += next.cost
13 }
14 else {
15 next.cost = 1
16 add (next , Cache)
17 push (next) onto Stack
18 }
19 }
20 else { //no more unexp lored t r a n s i t i o n s
21 i f (current not the program root s t a t e ){
22 current.parent.cost += current.cost
23 pop (current) from Stack
24 }
25 }
26 }
27 }
28

29 add (next , Cache){
30 i f (Cache i s f u l l ){
31 R = se t o f f u l l y exp lored s t a t e s
32 Si = s ta t e in R with minimum cos t
33 remove (Si , Cache)
34 }
35 i n s e r t (next) i n to Cache
36 }
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is deemed an unvisited state: it is added to the Cache using the procedure

add (line 16) and is also pushed onto the top of the Stack (line 17). As each

state current is fully explored (line 20), it is popped off the Stack and the

algorithm continues with the next partially explored state at the top of the

Stack.

For each state in the cache, the algorithm keeps a variable cost whose

value represents a state’s cost as calculated so far in the search. Leaf states

are assigned a cost of 1. For any other state, the cost is the sum of the costs

of its descendant states plus 1. Algorithm 4.1 updates a state’s cost under

three conditions:

• When a state next is first visited (line 15), then the model checker

initializes its cost to 1.

• When a state next is revisited (line 12), then the model checker adds

the value of next’s cost to the cost value of its parent state (current).

• When a state’s exploration finishes (i.e., it has no unexplored outgoing

transition) (line 22), then the value of the state’s cost is added to the

cost of its parent state. The parent state is the previous state on the

Stack.

The procedure add (line 29) selects the state to be removed from the Cache,

on the basis of our cost-based replacement policy. If the cache is full, then

procedure add removes, from among all fully-explored states in the cache, the

state with the smallest cost and inserts state next into the Cache. If more

than one state have the same cost value, then add randomly chooses one for

replacement. The procedure add selects among fully-explored states only,

because the cost of a partially explored state is still being determined. We

discuss the requirement that R must be non-empty in Chapter 4.2.5. For a

fully-explored state Si, its cost correctly represents the maximum number of

states that must be re-explored if Si is revisited.
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Theorem 4.2.1. Given a program whose reachability graph is finite and

contains no strongly connected components, Algorithm 4.1 correctly calculates

the cost of each state in the reachability graph.

Proof We prove this theorem by induction: a newly visited state is assigned

the cost of 1 (line 15) and its cost does not change if it has no descendant

states. Thus, leaf states are correctly assigned the cost of 1.

For a non-leaf state Si, its cost can change when (1) Si is visited for the

first time, (2) when Si leads to a descendant state that is found in the Cache,

and (3) when Si leads to a descendant state that is not found in the Cache.

When Si is visited for the first time, its cost is set to 1 (line 15). Let

us assume that the descendant states of Si have the correct cost values. A

state Si’s cost value will be correctly updated with the cost values of its

descendant states: if Si’s descendant state Sd is found in the Cache, we

know that its value of cost is final. If the value of cost were not final, then

the search is still exploring the state space reachable from Sd. If this search

is now revisiting Sd, then there must be a strongly connected component

in the reachability graph. But the reachability graph contains no strongly

connected components. Thus, Sd’s cost is added to Si’s cost (line 13); if Sd is

not found in the Cache, then Sd is deemed an unvisited state and its cost is

added to the cost of Si, once Sd has been fully explored (line 22). Thus, all

states of the reachability graph will be assigned a cost value that corresponds

to the definition of cost.

4.2.2 State Spaces with Strongly Connected Compo-

nents

In general, strongly connected components in a reachability graph pose no

problem for an explicit-state search because the model checker keeps track

of all visited states and detects when a program state is revisited. When

state-space caching is used, however, the search may re-explore states that
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are not found in the cache. If states that are re-explored are part of a

strongly connected component in the reachability graph, then it is possible

for the search to continually revisit states and continually not find them in

the cache.

The method that other caching techniques use to guarantee termination

of a search is to keep a state in the Cache until the state is fully explored and

removed from the Stack. Algorithm 4.1 already implements this strategy:

procedure add replaces only fully-explored states (i.e., states no longer on the

Stack) whose cost values have been fully determined. Thus, Algorithm 4.1

eventually terminates, and the search covers the program’s entire state space.

Definition 4.2.2. A strongly connected component in the reachability

graph is a set of states C such that there exists a path between any two states

in C.

Theorem 4.2.2. Given a program that has a finite reachability graph whose

depth is smaller than the available memory, Algorithm 4.1 terminates having

searched the entire reachability graph.

Proof It has been shown [God97, Hol88, DH82] that a stacked search (a

search that keeps a stack as a worklist of partially explored states) of a pro-

gram whose reachability graph is finite and contains no strongly connected

components is guaranteed to terminate and to cover the program’s entire

state space if the depth of the reachability graph is smaller than the avail-

able memory. Thus, we only have to show that our algorithm is guaranteed

to terminate if the reachability graph is finite and has strongly connected

components.

Let C be a set of states that form a strongly connected component in the

reachability graph, and let Si be the first state in C that is revisited. We

have to show that the algorithm does not re-explore any state in C when Si

is revisited.
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State Si is guaranteed to be in the Stack because the strongly connected

component from Si to Si represents part of the exploration of a transition

emanating from Si. This exploration has not yet finished and thus Si is still

in the Stack. Because Si is in the Stack, it is also guaranteed to be in the

Cache (line 31). Thus, the model checker will deem Si as visited and the

search will backtrack without re-exploring the states in C.

For state spaces that have strongly connected components, we cannot

use the Definition 4.2.1 for a state’s cost value because states in a strongly

connected component can all be reached from each other so each state in

the strongly connected component can reach the same set of states of the

reachability graph. As a result, states in a strongly connected component

must share the same cost value.

Definition 4.2.3. Given a program whose reachability graph is finite and

contains strongly connected components, the cost of a state Si is as follows:

• If Si is a leaf state, then the cost of Si is 1.

• If Si is a non-leaf state and is not part of a strongly connected compo-

nent, then the cost of Si is the sum of the costs of its descendant states

plus 1.

• If Si is part of a strongly connected component C, then the cost of Si

is the number of states in C plus the sum of the costs of all of the

descendant states not in C of the states in C.

Unfortunately, Algorithm 4.1 does not accurately compute state costs when

the reachability graph contains strongly connected components. Consider

the sample reachability graph in Figure 4.2a. We list in parentheses the cost

values that Algorithm 4.1 would compute for each state in this graph. In this

simple example, the state sequence S2, S3, S4, S5 forms a strongly connected
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component in the reachability graph. When S2 is revisited after the search

traverses the strongly connected component, state S2 is in the Cache and

on the Stack. The cost value of S2 when it is revisited is 1, and this cost

value is added to the cost value of S5 (line 12 of 4.1). The problem is that

the cost of S2 has not yet been fully computed when its value is propagated

to the cost of state S5. As a result, the final computed cost of S5 is lower

than the actual cost. This is true for all states along the strongly connected

component1. As a result, the cost of any state Sj that reaches states in a

strongly connected component C and is explored after the states in C have

been explored would also have an under-count. Figure 4.2b shows the actual

cost values for each state of the same reachability graph.

S1

S3

S4

S5 S6

S2

(2)

(3)

(4)

(5)

(3)

(9)

(a) Cost values calculated by Algorithm 4.1

S1

S3

S4

S5 S6

S2

(4)

(4)

(4)

(4)

(5)

(10)

(b) Correct cost values

Figure 4.2: Sample reachability graphs with cycles. Values in parentheses
show each state’s cost value.

We could modify Algorithm 4.1 to wait until all states in a strongly

connected component C are fully explored before updating each state’s cost

value. That means that all states in C would have to stay in the Cache until

the last state in C is fully explored. As a result, many states in the cache

1The exception is the first state Si that is visited (and revisited) in a strongly connected
component, which does have the correct cost value (minus 1) because the cost of each
individual state in the strongly connected component is correctly propagated back to Si.
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would not be available for replacement which would make the replacement

policy less effective. We chose not to implement this alternate approach

to computing the costs of states and accept the inherent inaccuracy of cost

values that arise in state spaces with strongly connected components. Despite

the inaccuracies, we show empirically that cost-based caching is effective.

4.2.3 Implementation

We implemented our cost-based replacement policy in Java Pathfinder (JPF),

by modifying JPF’s depth-first search implementation. We refer to the re-

sulting model checker as JPF-cache.

JPF-cache uses a stack to keep track of partially-explored states and a

cache to keep track of visited states. For efficiency, the cache is implemented

using two data structures: a hash table that stores the fingerprints of visited

states (as before) and a list that stores cost values for each state in the cache.

Corresponding fingerprint and cost values have pointers to each other. The

list of cost values is divided into two sections:

• A priority queue Q which holds the cost values of fully-explored states,

which are candidates for replacement. The model checker keeps Q

sorted throughout the search, such that the first element always holds

the smallest cost value.

• A list L that holds the cost values of partially-explored states, which

are currently on the search stack. List L can remain unsorted.

When JPF-cache visits a new state Si and the cache is full, it removes the

first element of Q and its corresponding fingerprint from the cache’s hash-

table. The model checker then inserts Si at the top of the search stack,

inserts Si’s fingerprint into the cache’s hash-table, and adds Si’s cost value

(which is initially 1) to L. The model checker creates pointers that relate

the fingerprint and cost data elements. Once all of Si’s transitions have been
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explored and Si is removed from the stack, Si’s cost value is transferred from

L to Q, and Q is re-sorted with the new element.

Performance

Only the tasks associated with updating cost values and adding and removing

them from the cache incur a performance overhead. Adding a newly visited

state (with cost value 1) to L takes constant time because list L is unsorted.

As long as the cost value remains in L, it can be located in constant time (by

following the pointer from the state’s entry in the hash table) and updated

in constant time. When a state is fully-explored, its cost value must be

transferred from L to Q and Q must be re-sorted. The time for this operation

is O(log S), for a priority queue Q with S states. Once a state has been added

to Q, its cost value no longer changes because it is fully explored.

4.2.4 Experiments and Results

In our experiments, we evaluated how well our cost-based replacement strat-

egy performs, compared to other types of replacement strategies. This eval-

uation assesses whether cost-based caching enables a model-checking search

to run to completion in cases where there was insufficient memory for a

traditional non-cached model-checking search.

In these experiments, we compared the performance for JPF-cache to im-

plementations of cost-based (column Cost), random (column Random), age-

based (column Age), hit-based (column Hits), stratified (column Stratified),

and depth-based (column Depth) caching in JPF. We evaluated JPF-cache

and the implementations of the other five caching techniques on our nine

evaluation programs as described in Chapter 3.1.4. The reachability graphs

of all our evaluation programs contained strongly connected components.

To simulate different cache sizes, we imposed an artificial memory limit on

the size of the cache, limiting it to 15%, 25%, 50%, 75%, and 95% of the total
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state-space size of each program. For each program, caching technique, and

cache size, we allowed the model-checking search to run until it terminated

(with full state-space coverage) or until its execution time exceeded 25 times

the amount of time needed for a traditional non-cached search. We measured

performance in terms of the time (CPU time) that the model checker takes

to achieve full coverage. We repeated each experiment 10 times and report

the average results.

Table 4.1 and Table 4.2 show the results for our experiments, with each

table reporting the results for a different cache size. There are two columns

of data for each caching method. The first column (Time) reports the time

to search each program as a factor of the time needed for a non-cached,

traditional model-checking search. A value of TO means that the search

did not terminate in its allocated time. The second column (RW ) reports

for each program the amount of redundant work performed by the model

checker; this number represents the total number of transitions explored as a

factor of the total number of transitions in the program’s reachability graph.

We report a value of N/A when the search timed out, i.e., for TO values.

For example, when model checking the Dining Philosophers program with a

state space cache that can store only 25% of the program’s states using the

random cache-replacement policy, the search takes approximately 14 times

longer than a non-cached search of that program, and explores about 13

times more transitions than are in the program’s reachability graph.

The results show that cost-based caching is up to 25% faster than the

other five caching techniques (except in one case) for the cache sizes of 15%,

25%, and 50%. Cost-based caching is as fast or faster than the other five

caching techniques for the remaining two cache sizes. The advantage of cost-

based caching seems to improve as the cache size decreases. Random caching

almost always performs second best on all programs and cache sizes. We did

not observe any specific pattern among the performances of the other caching

methods.
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Table 4.1: Comparison of Cost-Based Caching to Other Caching Techniques
at Cache Sizes of 15%, 25% and 50%

15% Cache Size
Program Cost Random Age Hits Stratified Depth

Time RW Time RW Time RW Time RW Time RW Time RW
Dining Philosophers 23 21 TO N/A TO N/A TO N/A TO N/A TO N/A

Bounded Buffer TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A
Nested Monitor TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

Nasa KSU Pipeline TO N/A 24 23 TO N/A TO N/A TO N/A TO N/A
Pipeline 24 21 24 24 25 24 TO N/A 25 25 TO N/A
RWVSN 24 21 TO N/A TO N/A 25 23 TO N/A TO N/A

Replicated Workers TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A
Sleeping Barber 23 20 TO N/A TO N/A TO N/A TO N/A 25 24

Elevator TO N/A TO N/A TO N/A TO N/A TO N/A TO N/A

25% Cache Size
Program Cost Random Age Hits Stratified Depth

Time RW Time RW Time RW Time RW Time RW Time RW
Dining Philosophers 11 10 14 13 17 15 17 13 18 17 16 13

Bounded Buffer 12 11 14 13 16 15 TO N/A 18 17 17 14
Nested Monitor 14 12 16 14 TO N/A 16 11 17 16 15 13

Nasa KSU Pipeline 13 11 16 14 18 16 TO N/A TO N/A TO N/A
Pipeline 12 11 16 15 15 15 TO N/A 18 17 16 15
RWVSN 12 10 16 14 14 13 14 10 18 17 TO N/A

Replicated Workers 14 11 16 16 15 14 TO N/A 19 18 15 15
Sleeping Barber 12 12 15 13 TO N/A TO N/A 20 18 15 14

Elevator 13 9 15 14 14 12 16 12 TO N/A 16 15

50% Cache Size
Program Cost Random Age Hits Stratified Depth

Time RW Time RW Time RW Time RW Time RW Time RW
Dining Philosophers 7 7 10 9 13 12 13 10 14 14 12 12

Bounded Buffer 8 8 10 9 12 13 14 9 15 13 14 11
Nested Monitor 9 7 11 11 13 12 14 9 13 12 12 11

Nasa KSU Pipeline 9 6 12 11 14 10 14 9 14 14 13 13
Pipeline 9 8 10 10 13 12 13 9 14 13 13 11
RWVSN 9 7 11 9 11 11 12 8 15 13 14 13

Replicated Workers 10 8 11 12 13 11 13 8 14 13 13 11
Sleeping Barber 8 9 11 9 12 11 13 9 15 14 12 12

Elevator 9 6 11 10 11 12 12 10 16 13 13 12
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Table 4.2: Comparison of Cost-Based Caching to Other Caching Techniques
at Cache Sizes of 75% and 95%

75% Cache Size
Program Cost Random Age Hits Stratified Depth

Time RW Time RW Time RW Time RW Time RW Time RW
Dining Philosophers 4 3 5 5 8 7 8 6 8 8 7 6

Bounded Buffer 4 4 5 5 8 7 8 6 9 8 8 7
Nested Monitor 5 4 5 6 8 7 8 5 8 7 7 6

Nasa KSU Pipeline 5 4 6 5 8 6 8 6 8 9 8 7
Pipeline 5 4 6 5 7 7 8 6 8 8 8 7
RWVSN 5 3 6 5 7 6 7 5 9 8 8 7

Replicated Workers 5 4 6 6 7 7 8 5 9 9 8 7
Sleeping Barber 4 4 5 5 7 6 7 6 9 8 7 7

Elevator 5 4 5 5 6 7 8 5 9 8 8 7

95% Cache Size
Program Cost Random Age Hits Stratified Depth

Time RW Time RW Time RW Time RW Time RW Time RW
Dining Philosophers 2 2 2 3 4 5 5 4 4 4 4 4

Bounded Buffer 2 2 2 3 5 4 4 3 6 5 4 4
Nested Monitor 3 2 3 3 5 4 5 4 5 5 4 3

Nasa KSU Pipeline 3 2 3 3 5 3 4 3 4 6 4 4
Pipeline 2 2 3 3 4 4 5 4 4 4 4 5
RWVSN 3 2 3 2 5 3 5 3 4 5 5 3

Replicated Workers 3 2 3 3 4 4 5 3 5 5 4 4
Sleeping Barber 2 2 2 3 5 3 5 3 4 5 3 4

Elevator 2 2 3 3 4 4 4 4 5 4 4 4
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Analysis of the amount of redundant work done because of caching also

shows an interesting pattern. In most cases, the factor of increase in execution

time is comparable to the factor of the amount of redundant work done,

but for cost-based caching, the redundant-work factor is considerably lower

than the additional-time factor. This suggests that, for cost-based caching,

considerable search time is spent on maintaining the priority queue.

4.2.5 Discussion of Cost-Based Caching

In this section, we discuss some issues regarding cost-based caching.

Ratio of Transitions to States and Applicability of Caching

The ratio of the number of incoming transitions to the number of states in a

program’s reachability graph can play an important role in the performance

of any state-space caching technique. A high ratio means that many states

have several incoming transitions and thus will be visited several times during

the search. Therefore, there is a higher chance that large parts of the state

space could be repeatedly explored. When the ratio is close to 1 (i.e., low),

then most states will be visited only once and the running time of the search

is linear in the number of transitions.

Many works on caching assume that the reachability graph has a low ratio

of the number of transitions to the number of states. In [Gel04, Hol87], for

example, most of the evaluation programs have a transition-to-state ratio of

1.2 to 2.1. The programs in our evaluation suite are taken from the model-

checking literature and the transition-to-state ratio is much higher: the col-

umn (T/S) in Table 3.1 shows that this ratio for our evaluation programs

ranges between 4.1 and 8.4. Thus, state-space caching techniques need to be

optimized for and evaluated on programs that have high transition-to-state

ratios.
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Memory Requirements

The memory overhead of cost-based caching is similar to that of other state-

space caching techniques. In cost-based caching, an additional count variable

is maintained for each state in the cache. The memory overhead of other

caching techniques is similar as each method requires, for each state in the

cache, the state’s fingerprint plus some additional piece of information (e.g.,

the number of hits to a state, the age of a state, the depth of a state in

the reachability graph) that is used in the implementation of the cache-

replacement policy. Only the random-replacement policy does not require

any additional data.

One of the requirements of any cache-based search is that there be enough

memory available to hold the search stack (i.e., the worklist of partially-

explored states). Otherwise, the search may terminate prematurely, without

achieving full state-space coverage if states in the stack must be replaced, or

there exist no fully explored states in the cache for replacement. It might

be necessary to swap parts of the stack between the hard disk and main

memory, or to grow and shrink the cache size dynamically to accommodate

a large stack. This topic is beyond the scope of this thesis.

Combining SCC and State-Space Caching

Remember that during SCC verification, the model checker assigns an in-

teger state ID to each newly discovered state. State IDs start at 0 and

are incremented by one each time a new state is reached. This number-

ing scheme does not work if the producer’s model checker uses state-space

caching because each revisited state that has been removed from the cache is

considered to be a new state and is assigned a new ID. An SCC search script

that records state IDs cannot be used to check the veracity of the search

script, because the same state might have been assigned two different IDs.

Thus, SCC verification with state-space caching records states’ fingerprints

rather than state IDs. The software producer’s model checker then performs
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some post-processing of the search script, replacing fingerprints with state

IDs. The script is scanned, and each fingerprint is replaced by a correspond-

ing state ID, such that monotonically increasing state IDs are assigned to

newly encountered fingerprints. The complexity of this post-processing step

is O(|Script| ∗ log S), where |Script| is the size of the script and S is the

number of unique fingerprints in the script (which is equal to the number

of states). The memory requirements of this process is O(S) for S states in

the program’s state space. The software producer might need to use memory

optimization techniques for this step if not enough memory is available. How-

ever, since this process is done after the model checking search, there might

be additional memory available that was occupied by the model checking

search stack.

4.3 Eliminating Duplicate Transitions

When state-space caching is used during SCC verification, the search script

might include multiple occurrences of the same transitions because parts of

the state space might be re-explored. Consider the sample reachability graph

in Figure 4.3. The search script of this reachability graph produced by an

SCC verification search without state-space caching would be as follows:

Trans instr: – t1 t1 t1 t1 B B t2 B B B t2 t1 B B

State ID: S1 S2 S3 S4 S5 S4 S3 S6 S3 S2 S1 S7 S3 S7 S1

As an extreme example of state-space caching, suppose that the model checker

caches only one state at a time, always replacing the state in the cache im-

mediately with the next visited state. Such a model checker would output

the following search script for the same reachability graph:

Trans instr: – t1 t1 t1 t1 B B t2 B B B t2 t1 t1 t1 B B t2 B B B

State ID: S1 S2 S3 S4 S5 S4 S3 S6 S3 S2 S1 S7 S3 S4 S5 S4 S3 S6 S3 S7 S1
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Figure 4.3: Sample reachability graph

The gray-colored cells reflect duplicate transitions and backtrack commands

that the software producer’s model checker executes as a result of state-space

caching. If such a script is submitted for SCC certification, the certifier’s

model checker would follow the instructions in the search script and per-

form the same redundant work that was performed during verification. To

speed up certification, these duplicate transitions should be removed from

the search script.

4.3.1 Eliminating Duplicate Transitions

In the following, we describe an algorithm that identifies and removes du-

plicate transitions from an SCC search script, such that the resulting script

represents a continuous search of the entire reachability graph.

Our algorithm is based on the observation that any sequence of transi-

tions that represents the re-exploration of a state Sj and some (or all) of its

descendant states will have the following form2:

2A productive exploration of Sj would also have this form.
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ti,j − tj,k − ...−Bx,j −Bj,i (4.1)

where

• ti,j represents a previously-unexplored transition from state Si to an

already-visited state Sj;

• tj,k represents a previously-explored transition from state Sj to one of

state Sj’s child states, Sk;

• Bx,j represents the backtrack transition from the last fully-explored

child state of state Sj back to state Sj;

• Bj,i represents the backtrack transition to state Sj’s parent state.

The goal of our algorithm is to remove from the search script the sub-

sequences tj,k − ... − Bx,j that record a re-exploration of state Sj and its

descendants, leaving the transitions ti,j−Bj,i, which are the transition to the

already-visited state Sj and the backtrack transition back to the parent state

of Sj. For example, given the reachability graph in Figure 4.3, our algorithm

identifies the following sequence which represents revisiting Sj, re-exploring

Sj and all its descendant states, and finally backtracking to Sj’s parent state

Si:

tS7,S3 − tS3,S4 − tS4,S5 −BS5,S4 −BS4,S3 − tS3,S6 −BS6,S3 −BS3,S7

The algorithm then removes the sequence that represents exploring Sj and

its descendant states.:

tS3,S4 − tS4,S5 −BS5,S4 −BS4,S3 − tS3,S6 −BS6,S3
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Algorithm 4.2: Algorithm for removing duplicate transitions from the search
script

1 Input : Script − Search s c r i p t o f the program to be c e r t i f i e d
2

3 Scan Script from s t a r t to end
4 For each t r a n s i t i o n tj,k in Script{
5 i f tj,k has been p r ev i ou s l y scanned{
6 remove tj,k and a l l t r a n s i t i o n s up to , but not inc lud ing ,
7 f i r s t backtrack from Sj to a s t a t e whose ID i s l e s s than j
8 }
9 }

The pseudo-code of our algorithm is shown in Algorithm 4.2. The model

checker scans the script from start to end and keeps track of the transitions

scanned. If a duplicate transition tj,k is discovered, then the model checker

removes tj,k and all transitions in the script up to but not including the

backtrack transition from Sj.

Theorem 4.3.1. Given a search script that was obtained from an SCC veri-

fication search that used state-space caching, Algorithm 4.2 correctly removes

duplicate transitions such that the resulting script does not contain any dupli-

cate transitions and represents a depth-first search of the entire reachability

graph.

Proof Algorithm 4.2 removes only duplicate transitions. Consider line 6 of

Algorithm 4.2, which removes a subsequence tj,k, ..., Bk,j. The search script

records a DFS of the program’s state space. Thus, the subsequence being

removed starts with duplicate transition tj,k, and records the search of a

subset of the states reachable from the transition’s source state Sj. Suppose

by way of contradiction that this subsequence contains a transition tl,m that

is not a duplicate transition. Then the source state of tl,m, state Sl, is not

fully explored. However, state Sl is reachable from state Sj. State Sj has

been fully explored: if tj,k is a duplicate transition, then its source state

was previously fully explored, removed from the Cache, and subsequently

revisited. If Sj was fully explored, then Sl was fully explored.
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When Algorithm 4.2 terminates, the resulting script is continuous because

Algorithm 4.2 removes only subsequences of the form tj,k, ..., Bk,j. The source

state of tj,k, Sj, is the same as the destination state of Bk,j. Thus, the removal

of the sequence does not affect the continuity of the search script.

4.3.2 Implementation and Evaluation

We implemented the above duplicate-transition-elimination algorithm in JPF-

cache (i.e., the implementation of cost-based caching in JPF) and refer to

the resulting model checker as JPF-cache-rem. At the end of SCC verifica-

tion, JPF-cache-rem scans the script from start to end and keeps track of

already-scanned transitions. The model checker maintains an array trans

of linked lists and stores at index i all transitions that emanate from state

Si. When a new transition ti,j is scanned, the model checker traverses the

list of transitions stored at trans[i] to determine whether ti,j is a duplicate

transition.

The running time of the algorithm is O(k∗|Script|), where |Script| is the

size of the script in terms of the number of forward and backtrack transitions,

and k is the maximum number of transitions emanating from a state. For

JPF-cache-rem, the time to remove duplicate transitions was between 0.5%

to 2% of the time of SCC verification with cost-based caching. The memory

requirement for Algorithm 4.2 is O(T ) for T transitions in the reachability

graph.

4.4 Memory Optimization for Certification

Caching reduces memory requirements during SCC verification. It is, how-

ever, possible that memory usage is also a concern during certification, for

example, if the certifier’s model checker has less memory than the software

producer’s model checker.
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During SCC certification, the certifier’s model checker maintains a map-

ping FP of state IDs to fingerprints for all states in the state space. The

size of FP is comparable to the size of the hash table that the software pro-

ducer’s model checker keeps. Our method for reducing memory requirements

for certification is based on the observation that at any point during certifi-

cation, the map FP needs to store only the fingerprints for those states that

are still to be (re)visited. Recall that the map FP is used to check that all

occurrences of a state ID in the search script correspond to the same state

with the same fingerprint in the model-checking search. Thus, once a state,

with ID Sk, has be visited for the last time (i.e., there are no future references

to Sk in the search script), its entry can be safely removed from FP .

4.4.1 Memory Optimization Algorithm

Our goal is to identify when it is safe for the certifier’s model checker to

remove a state ID and its associated fingerprint from FP . By removing

mappings that are no longer required, we should be able to reduce the mem-

ory requirements for SCC certification.

The search script is preprocessed before certification: the search script is

scanned backwards from end to start and the first occurrence of each state

ID Sk as the destination state of a transition is marked in the script. Since

during certification, the model checker processes the script in the opposite

direction (from start to end), this preprocessing marks the last transition

whose target state is Sk.

This preprocessing of the search script requires almost3 as much memory

as a complete FP . Thus, instead of performing this step during certification,

we ask the software producer to mark the script before submitting the script

for certification.

Theorem 4.4.1. Asking the software producer to mark the last occurrence

3It requires less memory because only state IDs need to be stored.
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of each state ID in the search script does not affect the tamper-proofness of

certification.

Proof If the software producer’s model checker marks the script such that a

state ID Si is removed too early from FP , certification will fail because the

certifier’s model checker fails to find Si in FP .

The running time of this algorithm is O(|Script|), where |Script| is the

size of the search script in terms of the total number of forward and backtrack

transitions that appear in the script. The memory usage of the algorithm is

O(S) for S states in the program’s state space.

4.4.2 Evaluation

We implemented the above algorithm in JPF and measured the degree of sav-

ings in memory usage during certification. In particular, we were interested

to see how much memory this algorithm could save compared to a search

that uses a FP that maintains entries for all states.

For each program, we measured the maximum number of entries in FP

needed for SCC certification and compared this value to the total number

of states in the state space. Table 4.4.2 shows the results of our evaluation.

For each program, column Memory Usage shows the maximum size of the

map FP during certification, expressed as a percentage of the number of

entries in FP in a non-optimized certification search. The results show that

by removing no-longer needed entries from FP , certification requires only

11% to 30% of the amount of memory normally required.

Note that this optimization only works for sequential SCC certification

and not for parallel SCC because at the end of parallel certification, the

entries of all FP s have to be compared and thus entries cannot be removed

before the end of certification.
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Table 4.3: Memory Usage During Certification after Optimization
Program Memory Usage

Dining Philosophers 26%
Bounded Buffer 23%
Nested Monitor 30%

Nasa KSU Pipeline 17%
Pipeline 11%
RWVSN 27%

Replicated Workers 14%
Sleeping Barber 20%

Elevator 29%

4.5 Summary

In this chapter, we presented novel ways to tackle the state-space explo-

sion problem, with techniques that mildly reduce memory usage during SCC

verification and SCC certification. In particular, we presented cost-based

caching, a novel cache-replacement policy that replaces states in the cache

based on the cost of re-exploring them and their descendant states. In addi-

tion, we described a strategy to remove duplicate transitions from the search

script that are a consequence of using a cached-based verification search.

Finally, we presented a memory-optimization strategy for SCC certification

that removes entries from the map FP once the are no longer needed.
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Chapter 5

State-Space Coverage

Estimation

In Chapter 4, we described how cost-based caching could decrease the mem-

ory requirements for SCC verification and increase the likelihood that the

verification task runs to completion. Yet, it is still possible that, even after

applying state-of-the-art memory-reduction techniques, many programs are

too large to be searched exhaustively and the search ends prematurely due

to insufficient memory.

When a program’s state space is too large for an exhaustive search, an

estimate of how much of the state space is covered during verification can be

useful in certifying the adequacy of the partial model-checking results. Such

coverage information is similar to test coverage, where exhaustive coverage

is not attainable [PM00] and the certifier must assess the correctness of a

software program based on partial test-coverage results.

When a program is too large to be model checked exhaustively, the soft-

ware producer might submit for certification an estimate of the percentage

of the program’s state space covered during verification. The certifier might

accept the partial results as being adequate for certification, or reject them

and demand higher or full state-space coverage. Alternatively, the certifier
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might opt to re-verify (via model checking) the program, and compare the

estimated state-space coverage of her search to the reported state-space cov-

erage of the software producer’s verification.

In this chapter, we propose a new method [TA09] for estimating the

state-space coverage of a model-checking search, when the search terminates

prematurely due to insufficient memory. Our approach uses Monte Carlo

techniques to sample unexplored transitions in the reachability graph of the

program being model checked. The algorithm counts the number of unvis-

ited states that are reachable via sampled transitions and extrapolates from

this an estimation of the number of states still unvisited when the search

terminates. Given that the sampling of unexplored transitions is random1,

the resulting search covers a random set of states and thus the probability

that the model checker visits an error state are not affected.

This chapter is organized as follows. In Section 5.1, we outline our ap-

proach to estimating state-space coverage. In Section 5.2, we describe our

implementation in JPF, and we report our evaluation of the accuracy of the

state-space coverage estimation. In Section 5.3, we discuss some alternate

approaches.

5.1 Coverage Estimation

Some programs are too large to be exhaustively model checked, in which case

we would like to have an estimate of the percentage of the program’s state

space that a model-checking search covered. In general, it is possible to use

the number of variables in a program and the number of parallel executing

components to obtain the total possible number of states in a program’s state

space. This number, however, is in most cases a gross over-estimation because

in practice many of these states would not be reachable in the execution of

the program. In fact, one of the purposes of model checking is to determine

1We use Java’s mechanism for obtaining random generated numbers for this step.
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the program’s set of reachable states.

When there is insufficient memory for an exhaustive search, the software

producer’s model checker has two goals: (1) to explore and examine the

program’s state space and (2) to estimate the percentage of the program’s

state space covered by the search. It may be that, for these two goals, the

best strategy for searching the state space is different. In general, we would

expect a verification search to be a systematic exploration of a program’s

entire state space, whereas an estimation search should cover different parts

of the program’s state space to collect as much information as possible about

the shape and size of the state space. Thus, we divide a model-checking

search into two phases: The first phase focuses on a systematic search of

the program’s state space, and the second focuses on collecting information

needed to estimate state-space coverage.

S1

S2 S3 S4

S5 S6 S7 S8

S9 S10
S11

S12

exhaustive 

phase

S13random 

phase

random 

phase

1
65432

Figure 5.1: Schematic example of our estimation algorithm
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Definition 5.1.1. The exhaustive-search phase of a model-checking search

is a (possibly partial) breadth-first search of a program’s state space, starting

from the program’s initial state.

A percentage of the memory available to the model checker is reserved

for this phase. We program the model checker to keep track of the amount of

memory utilized as a percentage of total memory available. If this memory

limit is reached before the model checker completes its search, then the model

checker switches strategy and uses the remaining memory for the random-

search phase.

Definition 5.1.2. The random-search phase of a model-checking search

is a collection of depth-first searches, each starting from a randomly chosen

set of transitions in the program’s reachability graph for which the model

checker has discovered the starting state but not the destination state.

During the random-search phase, the model checker uses the remaining

memory to search regions of the program’s state space that are reachable

from transitions that were unexplored during the exhaustive-search phase. As

explained in Chapter 2, the model checker maintains a worklist of partially-

explored states. When the exhaustive-search phase ends, the model checker

uses the worklist as a source of unexplored transitions from which to ran-

domly select starting points of the random-search-phase searches. Figure 5.1

shows how a program’s reachability graph might be searched by this two-

phased search. The states within the lighter-shaded region labelled “exhaus-

tive phase” are those covered during the algorithm’s exhaustive-search phase,

and the states within the darker-shaded regions labelled “random phase” are

those visited during the random-search phase.

We note that the random-search phase continues to search and test the

program’s state space. Thus, even if we set aside some memory for the

purpose of estimation, that memory will be used to explore and test new

states. The random-search phase ends when either all of the memory is

exhausted or the state space is fully explored.
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We employ Monte Carlo techniques to estimate the number of unexplored

states. The model checker counts the number of new states discovered during

the searches of randomly chosen transitions, and extrapolates an estimate of

the number of new states that would be discovered if all of the unexplored

transitions left over from the exhaustive-search phase were explored.

We assume that the ratio of (a) the number of new states discovered

during the random-search phase to (b) the number of transitions sampled

from the worklist during that phase is comparable to the ratio of (c) the

total number of unvisited states that remain at the end of the random-search

phase to (d) the total number of unexplored transitions in the worklist that

remain at the end of the random-search phase:

(a)#states found during random-search phase
(b)# sampled transitions from worklist

≈ (5.1)

(c)# unvisited states
(d)# unsampled transitions from worklist

The estimation algorithm measures the italicized values in Equation 5.1 and

solves for the number of unvisited states.

During experimentation, we discovered that we obtain more accurate re-

sults if (1) we sample only productive, unexplored transitions (where a tran-

sition is productive if it leads to an unvisited state), and (2) we count only

the productive transitions that remain unexplored at the end of the random-

search phase:

(a)#states found during random-search phase
(b)# sampled productive transitions from worklist

≈ (5.2)

(c)# unvisited states
(d)# unsampled productive transitions from worklist
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It is important to mention that by considering productive transitions only,

our algorithm deviates from traditional Monte Carlo techniques. Normally,

sampling is performed on the full data set and it is assumed that the data set

does not change as a result of sampling. In our case, however, the data set

(unexplored productive transitions in the worklist) changes throughout the

random-search phase because the exploration of a sampled transition may

cause other transitions in the worklist to become unproductive. Similarly,

the number of productive transitions that remain in the worklist at the end

of the random-search phase might be an overestimate, since not all transi-

tions would be deemed productive if the sampling were exhaustive. Still,

the number of productive, unexplored transitions in the worklist at the end

of the random-search phase is a smaller overestimation than the number of

productive, unexplored transitions in the worklist at the start of the random-

search phase. Also, our algorithm assumes that the reachability graph is

well-connected and that the sampling can reach into a large portion of the

reachability graph.

In the example shown in Figure 5.1, for example, the exhaustive-search

phase ends with three states in the worklist (S2, S3, S4) that together have

six unexplored transitions emanating from them (numbered 1 to 6). Suppose

that during the random-search phase, the model checker samples two tran-

sitions, 1 and 5, and discovers a total of six new states before it runs out of

memory. At the end of the random-search phase, four transitions remain un-

explored (dashed transitions), of which only two transitions are productive.

Using these values in Equation 5.2, the estimated number of unvisited states

is (6÷ 2)× 2 = 6.

Once we obtain the estimated number of unvisited states, we compute

the estimated state-space coverage using Equation 5.3. UnV isited is the

estimated number of states in the unexplored portions of the program’s state

space: this value is obtained from Equation 5.2. V isited is the number of

unique states discovered during the combination of the exhaustive-search and
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random-search phases:

%Coverage =
V istited

V isited + UnV isited
∗ 100 (5.3)

To complete the example shown in Figure 5.1, the estimated state-space

coverage would be (10) ÷ (10 + 6) = 63%. The actual state-space coverage

in this example is 77%.

In the next sections, we describe the exhaustive-search and random-search

phases in more detail.

5.1.1 Exhaustive-Search Phase

The main purpose of the exhaustive-search phase is to verify the program

and to discover any property violations. If the exhaustive-search phase ends

without achieving full state-space coverage, we want a large sampling pool of

partially-explored states whose unexplored transitions can be sampled during

the random-search phase.

We use a breath-first search (BFS) for this phase and continue exploring

the state space until the memory allocated to exhaustive searching has all

been utilized. A BFS is less efficient than a depth-first search (DFS) because

there is more context switching with respect to the state currently being

explored. However, a BFS is more effective than a DFS at populating the

worklist because the worklist of a DFS (stack) contains only the state cur-

rently being explored and all of its ancestor states, whereas the worklist of

a BFS (queue) contains all of the partially-explored child states of any state

visited so far. Another advantage of using BFS during the exhaustive-search

phase is that it ensures that the model checker tests all execution paths up to

some length, where the length is determined by the exhaustive-search-phase

memory limit. Thus, the exhaustive-search phase can be thought of as a

form of bounded model checking [WR94].

103



5.1.2 Random-Search Phase

The goals of the random-search phase are to (1) sample unexplored pro-

ductive transitions to estimate the ratio of unvisited states per unexplored

transition (left-hand side of Equation 5.2) and (2) count the number of pro-

ductive transitions that remain unexplored at the end of the random-search

phase (value for (d2) on the right-hand side of Equation 5.2). We describe

how to obtain both values below.

Number of Unvisited States per Unexplored, Productive Transition

The model checker samples the unexplored transitions in the worklist, one

at a time, and counts the number of unvisited states that are reached from

each. If a sampled transition leads to an already-visited state, then it is

deemed unproductive and we pick another transition. Each sample is an

exhaustive search of the state space that is reachable from a productive

transition. Either BFS or DFS can be used in these state-space searches. We

chose to use DFS because it is generally faster.

To obtain an accurate coverage estimation, it is desirable to sample the

reachability graph as uniformly as possible. Thus, to improve the breadth of

sampling during the random-search phase, the model checker randomly se-

lects unexplored transitions from the worklist. Selecting transitions randomly

has an additional benefit for certification: if the program contains errors, the

chances that the model checker visits an error state are not hindered.

Productive, unexplored transitions are randomly selected and explored

until either no more unexplored transitions remain in the worklist or the

memory allocated to the random-search phase is exceeded. The former case

corresponds to an exhaustive search of the state space. In the latter case,

the model checker calculates the average number of unvisited states that each

sampled, productive transition discovered.
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Number of Remaining Unexplored Productive Transitions

At the end of the random-search phase, the model checker counts the number

of unexplored productive transitions that remain in the worklist. For that,

the model checker traverses the worklist, executes every unexplored transition

of every state in the list, and checks whether the destination state is unvisited.

The model checker does not explore beyond the destination states. This step

requires only negligible additional memory: the model checker discards all of

the destination states that it creates during this step and retains only unique

integer representation (fingerprint) of each states in a hash table of visited

states, in order to recognize repeat visits to the same state.

5.1.3 Memory Management

The exhaustive-search phase and random-search phase both require memory

to execute: in both phases, the model checker stores partially-explored states

in a worklist and separately maintains fingerprints of visited states in a hash

table. How the available memory is divided between the two phases can

affect the accuracy of the estimation results.

In general, we might expect to obtain a more accurate coverage estimate

if the exhaustive-search phase reached deeper into the program’s state space

before the random-search phase starts. This is because the shape of the

reachability graph may not be regular and may contain bottlenecks or regions

that can be reached via only a few transitions. If the exhaustive-search phase

progresses through these bottlenecks, then the unexplored portions of the

reachability graph that remain are more strongly connected and are more

equally reachable via searches of randomly selected unexplored transitions.

On the other hand, when the amount of total available memory is very

small compared to the amount of memory needed for an exhaustive search,

it is important that there be enough memory available during the random-

search phase so that the individual depth-first searches can reach enough
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states to return a large value for the average number of new states per

sampled transition. Thus, in these cases, allocating more memory to the

random-search phase may be more effective.

We experimented with allocating different percentages of available mem-

ory to each phase of a model-checking search and we report the results in

Section 5.2.1.

5.2 Evaluation

We embedded our search algorithm with state-space coverage estimation into

Java Pathfinder and refer to the resulting model checker as JPF-coverage.

We evaluated the accuracy of our algorithm’s coverage estimations by model

checking the nine evaluation programs described in Chapter 3.1.4 and ar-

tificially constraining the model checker’s memory resources, such that the

searches terminate prematurely. We then compare JPF-coverage’s reported

state-space coverage estimates against the actual percentages of the pro-

grams’ state space covered by the model checker. We used the first four

programs of our evaluation suite as tuning programs to fine-tune our search

algorithm, with respect to how memory is allocated between search phases.

We used all nine evaluation programs to evaluate the accuracy of our coverage

estimations.

To simulate constrained memory environments, we varied the percentage

of program states that the model checker can search during each phase.

Specifically, we limited the total amount of memory available to a model-

checking search to be 3%, 10%, 25%, 50%, 75% or 95% of a program’s state

space. We refer to these six memory thresholds as coverage limits. We used

JPF-coverage to model check each of the evaluation programs in the context

of each coverage limit. We then compared coverage estimates reported by

JPF-coverage against the actual percentages of state space covered (i.e., the

coverage limit) by the model checker.
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In practice, the size of a program’s state space is not known in advance.

However, one could use JPF’s facilities for keeping track of memory usage to

determine when the exhaustive-search phase has utilized the percentage of

total memory that is allocated to it. Such a memory-tracking facility could

easily be incorporated into other model checkers by simply keeping track of

the available system memory.

5.2.1 Experiments and Results

In this section, we present the experiments for evaluating JPF-coverage and

report our results.

In the first set of experiments, we varied the amount of memory allo-

cated to the exhaustive-search and random-search phases, and we compared

the resulting coverage estimations with respect to their accuracy. We used

coverage limits of 10%, 25%, and 75% (referred to as tuning limits), and

the percentage of memory allocated to the exhaustive-search phase ranged

between 40% and 90% of the available memory (artificially restricted by the

tuning limit), in 10% increments. The rest of the memory (minus a small

amount to compute the estimation at the end) is allocated to the random-

search phase. We performed this experiment for all tuning programs and

tuning coverage limits.

The results show that for low coverage limits, where a search terminates

before a significant fraction (10% to 25%) of a program’s state space is ex-

plored, it is best to allocate 50% of available memory to the exhaustive-search

phase. For higher coverage limits (75% and higher), it is best to allocate 70%

of available memory to the exhaustive-search phase. Because we do not know

ahead of time whether a model-checking search is likely to achieve low, high,

or complete coverage of a program’s state space, we allocate 60% of available

memory to the exhaustive-search phase. This is the allocation that we used

in all of our subsequent experiments, for all coverage limits.

To assess the accuracy of JPF-coverage in estimating state-space cov-
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erage, we model checked each program with respect to each coverage limit

10 times and report the results in Table 5.2.1. The first four rows, which

are shaded, show the results for the four tuning programs. The deviation be-

tween a coverage estimate and a search’s actual coverage (set by the coverage

limit) is expressed in terms of percentage points: the absolute value of the

difference between the estimated percentage of state space covered and the

actual percentage of state space covered. We report the smallest deviation

(column Best), the largest deviation (column Worst), and the average devi-

ation (column Avg) of ten runs; we also report the standard deviation of the

deviations (column σ). For example, consider a search of the Pipeline pro-

gram with a coverage limit 25%. A perfect estimate would report that 25% of

the program’s state space had been covered by the search. The best estimate

(out of ten) reported by our algorithm was off by 2 percentage points, the

worst estimate was off by 18 percentage points, the average deviation was

10 percentage points, and the standard deviation from the average estimate

was 7 percentage points.

The standard deviation illustrates the variability of our results: one stan-

dard deviation indicates the range of values, centered around an average,

within which 60%-70% of estimates fall, assuming a normal distribution.

Thus, a standard deviation of 5 percentage points indicates that most of our

estimates fall within ±5% of the reported average coverage estimate. Our

worst coverage estimate (of nine programs and six coverage limits, with each

combination run ten times) was off by 37 percentage points.

To evaluate the performance overhead of our approach to estimating

state-space coverage, we compared model checking with coverage estimation

to model checking without coverage estimation. Model checking with cover-

age estimation allocates 60% of available memory to the exhaustive-search

phase. Thus, in our first performance evaluation, model checking without

coverage estimation also searches a program’s state space using a BFS un-

til the search utilizes 60% of available memory and then switches to a DFS
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for the remainder of the search. The results showed that, for all programs

and coverage limits, our model checking with state-space coverage estima-

tion is not slower than normal model checking. This was expected because

our approach does not include any2 steps that would affect its performance

compared to a model checking run without estimation.

In the second performance evaluation, we compared the search time of

JPF-coverage with the search time of model checking without coverage esti-

mation, where the latter employed a DFS for the entire search. The results

showed that the overhead was between 12% and 38%, depending on the

evaluation program.

5.3 Discussion

Throughout our work, we experimented with various coverage-estimation

techniques and optimizations of our current algorithm. In this section, we

describe lessons learned with respect to the most important experiments.

5.3.1 Rate of Discovering New States

It seems intuitive that the rate of discovering new states would decrease dur-

ing the course of a search and that we can use this information to improve our

coverage estimate. In particular, the algorithm could keep a running total of

the ratio of the number of transitions to the number of states, and could com-

pare the current rate of newly-discovered states (measured at fixed intervals)

against the overall ratio. To test this hypothesis, we performed exhaustive

searches of our tuning programs and counted, for fixed intervals, the fraction

of transitions that are productive (i.e., that lead to new states). Figure 5.2

shows the rate of discovering new states for one of our tuning programs. The

2Random selection of unexplored transitions and the estimation calculation add only
a negligible amount of time.
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Figure 5.2: Rate of discovering new states for the Dining Philosopher Pro-
gram

x-axis shows the progress of the search in terms of the percentage of all tran-

sitions explored, and the y-axis shows the fraction of explored productive

transitions so far.

As can be seen, the rate of discovering new states drops quickly at the

start of the search and then decreases slowly for the rest of the search. All

evaluation programs exhibit similarly shaped graphs, although the steep drop

occurs at different stages of the search for different programs. Given that the

rate does not noticeably vary throughout most of a search, including up to

the end of a search, we were not able to deduce any particular properties

that could be used to improve coverage estimation.

5.3.2 BFS Level Graphs for Estimation

We might expect that a BFS of a program’s state space would produce a

worklist whose size varies regularly and predictably over the course of a

complete model checking run. That is, in early phases of the search, the size
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Figure 5.3: BFS level graph for Elevator program

of the worklist grows and during later phases of the search, the size of the

worklist shrinks.

The authors of [DK08, Pv08] assume that the size of the worklist, mea-

sured after searching each level of the reachability graph, has a normal dis-

tribution. In [Pv08], the authors plotted the number of partially-explored

states that are in the worklist at each BFS level and showed partial BFS

level graphs to human subjects, who tried to guess the shape of the full

graph. Given the results from the human experiments, the authors then

deduced some parameters that were used to estimate state-space coverage

based on the shape of a search’s BFS level graph. The authors of [DK08] use

least-square fitting of partial BFS level graphs to estimate the total number

of states.

Our own experiments, however, indicate that the size of a BFS worklist

does not necessarily have a normal distribution and thus may not be a reliable

basis for coverage estimation. Figures 5.3 and 5.4, for example, show the BFS

level graphs for the elevator and RWVSN programs, respectively. Neither of

these graphs have regular or parabola-shaped curves. For our evaluation

suite, six programs had a normal distribution and three did not. In general,

we expect diamond-shaped reachability graphs to have regular, parabola-

shaped BFS level graphs.
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Figure 5.4: BFS level graph for RWVSN program

5.3.3 BFS vs. DFS During the Exhaustive-Search Phase

In our approach, an important design decision is the search strategy used

during the exhaustive-search phase. DFS is popular because it is fast: the

program stack can be used to store the worklist of partially explored states,

so there is less context switching when the next state is explored. However,

we use BFS because we hypothesize that having a larger worklist at the start

of the random-search phase results in a more accurate estimation.

To test this hypothesis, we experimented with using DFS rather than BFS

during the exhaustive-search phase. We ran both versions of JPF-coverage

on all nine programs and six coverage limits (54 cases), running each case 10

times.

Using DFS during the exhaustive-search phase produced estimation re-

sults in 44 cases that were inaccurate between 11 and 21 percentage points

(average of 14 percentage points); produced estimation results in 3 cases that

were inaccurate between 0 and 2 percentage points (average of 1 percentage

point); and produced estimation results in 7 cases that were inaccurate be-

tween 5 and 10 percentage points (average of 7 percentage points). The

results confirm that using BFS during the exhaustive-search phase is likely

to improve the accuracy of our algorithm’s coverage estimates.
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5.3.4 Round-Robin Execution of Random-Search Phase

Searches

One risk of the current design for the random-search phase of our algorithm

is that the remaining memory is exhausted while searching the first sampled

(unexplored) transition, and that this can result in estimates that are wildly

off base: the estimate may be way too high (or way too low) if the number of

new states that are reached from this one transition is much higher (or much

lower) than the average number of new states per unexplored transition.

We hypothesized that we could improve the accuracy of our estimates by

sampling multiple unexplored transitions at once.

To test this hypothesis, we modified the random-search phase of our pro-

totype to sample several unexplored transitions in parallel in a round-robin

fashion: exploring a fixed number of transitions of a DFS of some unexplored

transition before switching to another DFS of another unexplored transition.

The model checker keeps a separate DFS stack (worklist) for each sampled

transition, and stores partially-explored states for each DFS in that DFS’s

local worklist. There is one shared global hash table that stores fingerprints

of visited states. If a DFS finishes before the search runs out of memory,

then the model checker picks a new unexplored transition from the worklist

and starts a new DFS.

To evaluate this technique, we varied the number of transitions that are

sampled in parallel and evaluated the accuracy of the resulting estimation.

We observed that when our algorithm samples five to ten unexplored transi-

tions in parallel, the accuracy of its coverage estimate improves for the tuning

limits of 10% and 25% but worsens for the tuning limit of 75%. When the

number of parallel searches is above 15, then estimation accuracy improves

for the coverage limit of 75% but worsens for the coverage limits of 10% and

25%.

It seems that when state-space coverage is low, it is better to sample a

smaller number of transitions so that the searches of the sampled transitions
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finish. If too many transitions are sampled, then the number of new states

discovered per sampled transition is low (because the counts do not finish)

and the algorithm underestimates coverage. The opposite is true when state-

space coverage is high.

In general, we do not know in advance whether state-space coverage will

be low, high, or complete, and thus we do not know how many transitions

to sample. This method may become more applicable if there is a way to

determine on-the-fly whether the coverage is likely to be low or high. We

are exploring the possibility of performing the random-search phase of our

algorithm more than once, in which case the estimated coverage from one ex-

ecution could be used to tune the estimation algorithm in the second random-

search phase.

5.4 Summary

In this chapter, we have presented a strategy for estimating the state-space

coverage of a model-checking search that terminates prematurely due to in-

sufficient memory. Our strategy would provide useful feedback to the certifier

for deciding how much confidence to place in partial verification results. We

have implemented our algorithm in Java Pathfinder and have evaluated the

implementation on a suite of Java programs.
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Chapter 6

Conclusion and Future Work

In this thesis, we have presented a set of techniques for certifying software

that was previously verified using model checking. Below, we summarize each

contribution and describe limitations and future work for each technique.

Search Carrying Code

In Chapter 3, we present search carrying code (SCC), a novel model-checking-

based method to certify model-checking results. In SCC, the software pro-

ducer submits with her program a search script that represents a search path

through the program’s reachability graph. The certifier’s model checker uses

the search script to direct and speed up its search of the same program.

SCC certification is property-independent. Rather than encoding the ver-

ification results for the program’s advertised properties, like a PCC certifi-

cate, an SCC search script encodes instructions for searching the program’s

entire state space. The script can be used to re-model check the program

for any program invariant or safety assertion, whether it is an advertised

property or an additional property of interest to the certifier (or the software

consumer).

SCC certification is amenable to efficient parallel model checking: the cer-

tifier’s model checker partitions the search script into a collection of mutually-
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disjoint search scripts, and the scripts are distributed to parallel executing

processors. In our evaluation, we have shown that parallel SCC speeds up

certification up to 5n, for n parallel processors, when the source of the pro-

gram is trusted, and SCC speeds up certification up to n, for n parallel

processors, when the source of the program is un-trusted.

Future Work: We implemented SCC verification and SCC certification

in the same model checker, JPF. However, it is desirable that search scripts

are model-checker independent so that the software producer and certifier

can use any explicit-state model checker of their liking. In Chapter 3.3, we

discussed an outline for using different model checkers for verification and cer-

tification. In the future, we have to determine how different model checkers

interpret transition statements and whether it is possible to match state-

ments in the scripts to statements in the program. In addition, we have to

survey different state-space reduction techniques that model checkers employ

and compare the implementation of each technique in each model checker. It

may be possible to identify commonalities among the implementations and

thus, parameterize reduction techniques. In case certain reduction techniques

must be disabled to use SCC, we must determine whether the benefit of SCC

outweighs the benefit of the reduction technique.

Another limitation of SCC is the size of the search script that the software

producer provides, likely over a network, to the certifier. We show that, for

our evaluation programs, the size of the search script, in number of bytes,

is on the order of the number of states in the program’s state space. For

industrial-sized programs where the program’s state space is at the limit of

what can be model checked, the size of the search script could be very large.

Thus, the amount of time it would take to download it over the network would

make any time savings achieved by SCC certification seem insignificant. It

is an open problem whether the size of the search script can be further

reduced. It may be possible to use alternative representations and encodings

of the information in the search script in order to reduce its size. Also, it
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may be possible to eliminate some information (e.g., backtracks) from the

search script altogether, but still be able to partition the script and check its

veracity.

State-Space Caching

In Chapter 4, we introduce a new cache-replacement strategy, cost-based

caching, for use in explicit state-space searches. State-space caching is useful

during SCC verification when memory resources are limited and the goal is

a full coverage of the state space (i.e., to produce a search script for SCC

certification). Our evaluation shows that state-space caching using a cost-

based cache-replacement strategy can achieve a full coverage of our evaluation

programs in a shorter time than caching using other replacement strategies,

and thus is more likely to terminate.

We also presented a memory-optimization technique that reduces the

memory requirements for SCC certification by removing state information

from the model checker’s table of visited states, if it is known that a state

will not be visited again for the remainder of the search. Using this method

in SCC certification, we reduced the memory requirements for certifying our

nine evaluation programs by 70% to 89%.

Future Work: Our experiments show that for our evaluation programs,

there is a significant increase in the time it takes to complete a search when

the model checker uses state-space caching. Without significant search-

time reductions, the software producer might be unwilling to use state-space

caching techniques. An open problem is whether the search time of a cached

search using our cost-based replacement policy can be significantly decreased

by optimizing how cost information is computed, stored, and kept sorted.

Also, future work can investigate how to calculate accurate cost values for

state spaces with strongly connected components. For that, we must keep

track of all states in a strongly connected component and update their cost

values once the last state in such a component has been fully explored. It re-
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mains to see whether keeping absolutely accurate cost values decreases search

time significantly.

Our method for optimizing memory for certification can currently only

be used only with non-parallel SCC because at the end of parallel certifi-

cation, the entries of all FP s have to be compared. Because non-parallel

SCC certification does not achieve significant time savings, it is important

to explore ways to extend this optimization technique to parallel SCC. On

a distributed-memory architecture, reducing memory for certification might

not be an issue because in total, there is more memory available than on a

single processor. On a shared-memory architecture, memory could be opti-

mized by using a shared FP between all processors.

State-Space Coverage Estimation

When it is not possible to perform an exhaustive search of a program’s state

space, then an estimate of the amount of the state space that is covered

by a search can help the certifier to determine whether the partial model-

checking results are adequate for certification. In Chapter 5, we presented

an algorithm that estimates the percentage of a program’s state space that is

covered in a model-checking search when the search terminates prematurely

due to insufficient memory. Our method is based on Monte-Carlo sampling

of the unexplored portion of the state space.

Future Work: With any estimation, more research is needed to improve

the accuracy of the estimation. One possible approach would be to explore

strategies that employ multiple estimation runs, such as merging the results

from independent estimations or using the results of one estimation run to

incrementally refine a second estimation run. Another approach would be

to investigate whether state-space properties (e.g., ratio of discovering new

states) can serve as preliminary indicators of state-space coverage. Such

indicators could be used to tune our estimation algorithm on-the-fly (e.g.,

tuning the percentage of memory allocated to the exhaustive-search phase
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versus the memory allocated to the random-search phase, based on early

indications as to whether the state space coverage will be low or high).
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