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Abstract

Software certification is defined as the process of independently confirming
that a system or component complies with its specified requirements and is
acceptable for use. It consists of the following steps: (1) the software pro-
ducer subjects her software to rigorous testing and submits for certification,
among other documents, evidence that the software has been thoroughly ver-
ified, and (2) the certifier evaluates the completeness of the verification and
confirms that the software meets its specifications. The certification process
is typically a manual evaluation of thousands of pages of documents that
the software producer submits. Moreover, most of the current certification
techniques focus on certifying testing results, but there is an increase in using
formal methods to verify software. Model checking is a formal verification
method that systematically explores the entire execution state space of a
software program to ensure that a property is satisfied in every program
state.

As the field of model checking matures, there is a growing interest in
its use for verification. In fact, several industrial-sized software projects
have used model checking for verification, and there has been an increased
push for techniques, preferably automated, to certify model checking results.
Motivated by these challenges in certification, we have developed a set of
automated techniques to certify model-checking results.

One technique, called search-carrying code (SCC), uses information col-
lected by a model checker during the verification of a program to speed up
the certification of that program. In SCC, the software producer’s model
checker performs an exhaustive search of a program’s state space and creates
a search script that acts as a certificate of verification. The certifier’s model
checker uses the search script to partition its search task into a number of
smaller, roughly balanced tasks that can be distributed to parallel model
checkers, thereby using parallelization to speed up certification.

When memory resources are limited, the producer’s model checker can
reduce its memory requirements by caching only a subset of the model-
checking-search results. Caching increases the likelihood that an SCC verifi-
cation task runs to completion and produces a search script that represents
the program’s entire state space. The downside of caching is that it can
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result in an increase in search time. We introduce cost-based caching, that
achieves an exhaustive search faster than existing caching techniques.
Finally, for cases when an exhaustive search is not possible, we present
a novel method for estimating the state-space coverage of a partial model
checking run. The coverage estimation can help the certifier to determine
whether the partial model-checking results are adequate for certification.
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Chapter 1
Introduction

The IEEE Standard Glossary of Software Engineering Terminology [IEE90]
defines certification as “the process of confirming that a system or compo-
nent complies with its specified requirements and is acceptable for operational
use”. This general definition has been widely adopted in the software certifi-
cation literature [AdAdLMO07, TC95, WR94, Mai07]. Certification could be
applied to software systems across a wide range of domains, but because of its
high cost, certification is mostly applied to safety-critical systems. For exam-
ple, the Federal Aviation Administration (FAA) requires that any software
used in an airborne environment be certified to be safe and reliable [RTC92].
Similarly, software used in other safety-critical systems, such as medical de-
vices and nuclear power plants, must be certified to be safe and to behave
according to its specified requirements [Mai07].

An implication of the formal definition of certification is that the certifi-
cation process only confirms adherence to the specifications and ensures that
verification has been performed satisfactorily. Thus, prior to certification, a
verification process must establish the software’s adherence to the specified
requirements. In general, verification is performed by the software producer,
whereas certification is done by the software consumer or an independent

body (e.g., a third-party certifier). In this thesis, we refer to the software



producer as the entity that is responsible for creating and verifying a software
program, and we refer to the certifier as the entity that receives a software

program and certifies that it complies with its advertised properties.

1.1 Verification

Software verification refers to the process of determining whether the prod-
uct(s) of one software-development phase fulfill the specified requirements
established during the previous phase [IEE90]. Software verification occurs
throughout the evolution of a software product, and a variety of verification
techniques are used in isolation or in combination to show that the software
behaves according to its specifications. Two common techniques to verify

software are software testing and formal verification.

1.1.1 Software Testing

Software testing refers to the activity in which a software system is executed
under specified conditions and the test results are compared to the expected
results [IEE90]. There exist various levels of testing activities, each with
its own specific goals. For example, unit testing involves the testing of a
software module or “unit”. The goal of unit testing is to ensure that the
tested module satisfies its requirements and can be integrated with other
components of the system. System testing, on the other hand, tests the
entire integrated hardware and software system to ensure that it meets its
specified requirements.

Software testing is often the verification method of choice because it pro-
duces results quickly and can handle large software systems. However, testing
is not exhaustive and only covers a subset of all possible execution traces of a
program. Therefore, it is not suitable to show that a given property is satis-

fied in all program states [Dij72]. Testing is more suited to finding execution



traces that violate a property rather than to demonstrate that a program

satisfies some required property.

1.1.2 Formal Verification

The goal of formal verification is to show that a software component or
system satisfies its correctness criteria. Formal-verification techniques are
in general exhaustive and consider all execution traces of a program for a
given property. The most common formal verification techniques are model
checking [CGP99] and theorem proving [GM93, KM97].

Model checking is an automated method that systematically and exhaus-
tively explores the execution state space of a model M of a system S, and
checks that a specified property P is satisfied in each state of M’s state space.
Model checkers are implemented using either an explicit [CE81, QS82] or
symbolic representation [BCM™90] of the program’s state space. In explicit
state model checking [CE81, QS82|, states are enumerated on the fly and
each visited state is saved in some data structure (e.g., hash table) against
which new states are compared. The purpose of the hash table is to avoid re-
exploration of a previously visited state. Symbolic model checking [BCM*90]
avoids storing states individually and instead uses formulas in propositional
logic to represent sets of states that are explored and reasoned about to-
gether. As a result, symbolic model checking can potentially handle very
large state spaces.

Automated theorem proving involves the development of mathematical
proofs that deductively argue that the system exhibits desired properties.
Given that developing proofs is a hard task and it is generally not possible
to automate the entire proof construction, most theorem provers allow the
user to specify intermediate lemmas to be proved by the automated theorem
prover on the way to the proof of a conjecture.

Model checking and automated theorem proving can often not handle

real-world software because model checking is very memory intensive and



often runs out of time or memory resources, and theorem proving is compu-
tationally expensive and requires expert human interaction. However, there
are indications that the field of formal verification is maturing and formal
verification techniques can be used to verify large software programs. In

fact, several industrial-sized software projects have used formal methods for

verification [Abr06, BBFM99, tBGKMO08, tBML*05].

1.2 Software Certification

In software certification, a third-party certifier confirms that a software com-
ponent or system meets its specified requirements. To ease certification,
certain government and private organizations publish certification standards
[ISO06, RTC92, Und98] that include a set of guidelines that the software
producer should follow in order to create trustworthy and certifiable soft-
ware. These standards often include a list of deliverables that the software
producer must create during development and submit for certification.

Certification standards tend to specify guidelines on either the process
used to develop the software (process-oriented) [Sof07] or the properties of
the final software product (product-oriented) [MWO8]. In process-oriented
certification, the certifier evaluates the process and the people that were
used to develop the software. It is believed that following high standards in
development and using highly-qualified developers leads to high-quality soft-
ware [Sof07]. Others [Mai07, DS09] argue that product-oriented certification
should be the main approach when evaluating a software program because it
is possible to follow a high-quality process but still create software that fails.
The focus of this thesis is on product-oriented certification.

Certification standards outline various documents and deliverables that
the software producer must create, in addition to the end product, and sub-
mit for certification. In general, the software producer is required to docu-

ment the different phases of the software’s production, including planning,



development, verification and management of the system. For example, the
certification standard DO-178B [RTC92|, which is used by the Federal Avia-
tion Administration (FAA) to certify software for airborne systems, requires
that the software producer submit, among others: the software requirements
specification, software-design documentation, source code, executable object
code, and test data. As another example, the US Food and Drug Adminis-
tration (FDA) requires that the Software Requirements Specification (SRS),
a deliverable that documents all the requirements for a software system, does
not contain ambiguous, incomplete or unverifiable requirements [US 02]. Test
data submitted for certification must include, among others, documentation
of the test plan, test cases, test results, and test coverage.

The software producer submits the final software product plus other re-
quired documents to the certification authority (certifier) for certification.
The certifier can be the same organization that published the certification
standard or can be a third-party certifier who has been authorized to perform
certifications on behalf of another organization. The certifier’s responsibil-
ity is to confirm that the software producer has taken the necessary steps
to produce trustworthy software and that the software program satisfies its
advertised properties. In the case of the SRS required by the FDA, the cer-
tifier would confirm that the SRS and the evidence regarding its validation
show that the requirements are unambiguous, complete and verifiable. The
certifier would also review the test cases and their results to confirm that the
tests are complete and that the results demonstrate that the new software
component can inter-operate with existing ones.

In general, certification standards do not specify how the evidence sub-
mitted to the certifier should be evaluated [CTvGS98], and in most cases,
the evidence is evaluated manually. However, given the sheer volume of as-
sociated artifacts, this form of certification is very time consuming and can
be error prone because it relies on humans reading thousands of pages of

documents. In fact, in some cases, certification has taken so long that the



product has become obsolete by the time certification has finished [Wil07].
On the other hand, if more certifiers are used to speed up the process,
then certification becomes prohibitively expensive for smaller software ven-
dors. Thus, there is a push towards automated software-certification tech-
niques [DFS04, LGW07, LPRO1].

1.3 Certitfying Formal Verification

Advances in formal-verification techniques enable corresponding advances
in certification. A software producer must have some means of creating
and submitting for certification some form of proof or certificate that the
program satisfies its advertised properties; and the certifier must have some
means of using the certificate to check the producer’s claims. In fact, there
have been calls for new techniques, preferably automated, to certify software
that has been verified using formal methods [DFS04, LPR01, WBH*05]. We
believe that any technique for certifying formal-verification results must at

least satisfy the following conditions:

1. Verification should produce an output that serves as a certificate that
verification has been performed, and that can be submitted along with
the final product for certification. The certifier would use the certifi-
cate to check the producer’s claims regarding the software’s advertised

properties.

2. If verification is automated, then certification should also be automated
to decrease the workload of the human certifier and make the certifica-

tion results more dependable and reproducible.

3. In general, certification should be faster than verification, otherwise,
the certifier might just as well repeat the verification process. Specif-
ically, automated certification should be faster than automated verifi-

cation.



1.3.1 Current Research in Certifying Formal Verifica-
tion

In the research community, the use of formal methods for certification has
not been extensively researched. The first work in this area was the use of
proof-carrying code (PCC) [Ire05, Nec97]. In PCC, the software producer
verifies via theorem proving that his program satisfies a set of predefined
safety properties, and provides as evidence a safety proof. The certifier cer-
tifies the program by checking the validity of the accompanying safety proof
against the code. PCC certification has not been widely adopted because
it can certify only the properties that are substantiated by the safety proof.
Moreover, because many properties of a program are generally undecidable,
PCC verification has so far focused on program-independent security prop-
erties such as memory safety, type safety, and resource bounds. The size of
safety proofs is another shortcoming of PCC.

There has also been some work on certifying model-checking results:
abstraction-carrying code (ACC) [XH04] and model-carrying code (MCC)
[SVB103]. In both cases, the program to be certified is accompanied by an
abstract model of the program. Since the abstract model is smaller than the
original program, certification of it is faster than verification. ACC and MCC
are property-independent certification techniques, and can be used to certify
any property that is specified in temporal logic [CGP99]. However, their
models are conservative abstractions, which means that they could report

spurious errors.

1.4 Contributions and Scope of the Thesis

In our proposed scenario, a software producer uses model checking to verify
her software and produces and submits for certification a “certificate” of ver-
ification. This certificate is constructed in such a way that it can be used by

the certifier to speed up the automated certification of the model-checking
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results. Because model checking is an exhaustive search of a program’s state
space, its success depends on the size of the program and the available com-
puting resources (e.g., time and memory). We distinguish between three

possible outcomes of verification model checking:

1. A model-checking search runs to completion and produces a definitive
result. A positive result (“true”) means that the property being model

checked is satisfied in all program states.

2. The model checker has insufficient memory to complete the search.
However, the model checker can be modified to cache only a subset of
search results, thereby reducing its memory requirements enough for
the search to run to completion — at the expense of increased search
time because the model checker might search the same states more than

once.

3. The model checker does not have sufficient resources to complete the
search, even with caching. In this case, the goal is to provide partial

results that might be useful for certification.

Thesis Statement: Model-checking based techniques can be used to
facilitate the automated certification of explicit-state model-checking results
for invariants, assertions and deadlocks. We present the following three tech-

niques:

e A model-checking-based certification method that (1) can be used to
automatically certify a invariants, assertions and deadlocks, (2) is faster

than automated verification, and (3) can be parallelized.

e A novel state-space caching technique that achieves an exhaustive model-
checking search, in cases where model checking would otherwise termi-

nate prematurely, faster than existing caching methods;



e A state-space coverage estimation method that provides more accurate
estimation results than previous approaches when an exhaustive search

is not possible.

We describe each technique in more detail below.

1.4.1 Search Carrying Code

We present a new technique to certify model-checking results called search
carrying code (SCC) [TA10]. A software producer who wants her product
certified conducts a model-checking search of the program. During model
checking, the producer’s model checker creates a search script for the program
to be certified. The search script encodes the search path that the model
checker followed in its exploration of the program’s state space. The search
script acts as a certificate of model checking.

During certification, the certifier’s model checker uses the search script
to direct its search of the program’s state space to speed up re-verification of
the program. In order to protect against a producer who submits a tampered
search script, that perhaps hides problems in the program, the search script
is constructed in such a way so that its veracity can be checked on the fly.

Basic SCC certification achieves only slight reductions in certification
time because the model checker re-explores the entire state space of the
program being certified. However, SCC can be optimized via parallel model
checking. In parallel SCC, the search script, which encodes the certification
search task, is partitioned into multiple scripts, each covering a different
region of the program’s state space. The certifier then uses the collection
of scripts to search the program’s state space in parallel. Because of the
way that the certification task is partitioned, parallel SCC avoids many of
the problems that arise in traditional parallel model checking, such as high
degrees of communication, synchronization among parallel processors, or the

uneven splitting of search spaces.



1.4.2 SCC with State-Space Caching

One of the main obstacles to successful model checking is the state explosion
problem: the size of a program’s state space grows exponentially in proportion
to the number of variables in the program and the number of concurrently
executing components. The model checker keeps track of each visited state
during the search, and it might run out of memory before completing the
search.

Today’s model checkers employ a variety of techniques to combat the
state-space explosion problem. One such method is state-space caching [Hol87],
where the model checker caches only a subset of the already-visited program
states.

When the cache is full and the search visits a new state, the model checker
replaces a state in the cache with the newly visited state. Model checking
with state-space caching limits the amount of memory that is used to store
already-visited states. As a result, the model checker may explore parts of
the program’s state space if a previously visited state is not found in the
cache and is thus deemed unvisited, causing re-exploration of the state space
that is reachable from it. Thus, a model-checking search that employs state-
space caching uses less memory, but requires more time than a traditional,
non-cached search.

We introduce a new state-space caching technique, referred to as cost-
based caching, that replaces states in the cache according to the cost of re-
exploring the state and the state space that is reachable from it. For acyclic
state spaces, our method can calculate the exact cost for each state and for
cyclic state spaces, our method calculates an under-count of the cost value.
Nonetheless, our empirical evaluation shows that cost-based caching achieves
exhaustive coverage of a program’s state space faster than existing caching
techniques.

Cost-based caching is useful for SCC verification because when memory

resources are limited, it increases the likelihood that a verification task runs

10



to completion. However, the resulting search script would record the verifier’s
search path through the program’s state space, including re-explorations.
We describe how to identify and remove from the search script duplicate
transitions that would cause the certifier’s model checker to revisit regions
of a program’s state space. An SCC-certification search that uses a script
produced by SCC verification with cost-based caching has an execution time
comparable to that of a non-cached exhaustive search.

We also introduce a memory-optimization technique that reduces the
memory requirements of SCC certification. In particular, we show how to use
the information in the search script to reduce the number of already-visited
states that the model checker must keep track of. As a result, up to 85% less

memory is needed for SCC certification compared to SCC verification.

1.4.3 State-Space Coverage Estimation

Even with state-of-the-art memory-reduction techniques, there are still cases
where an exhaustive search of a program’s state space terminates prema-
turely due to insufficient memory. In such cases, an estimate of how much
of the program’s state space was covered during verification can be useful
in certification. Such an estimate would be analogous to test-coverage re-
sults in that it reflects the degree to which the verification was complete.
The software producer submits an estimate of the program’s state space that
was covered during verification. The certifier uses the estimate in deciding
whether to (1) accept the partial verification as being sufficient, (2) ask the
software producer to perform a more thorough verification, or (3) re-model
check the software herself and compare the resulting estimated coverage to
the level of coverage reported by the software producer.

We present a new method [TA09] for estimating on the fly, during model
checking, the percentage of the program’s state space that has been covered.
Our estimation method is based on Monte Carlo sampling of the unexplored

state space.
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1.4.4 Thesis Validation

The thesis was validated as follows:

We implemented each of our three techniques in the explicit-state software
model checker Java PathFinder (JPF) [VBHPO0O, LV01]. To evaluate the
performance of each technique, we used a set of nine Java programs that
were used in previous research studies.

In the case of SCC, we want to evaluate whether (1) certification can
be automated, (2) SCC-based certification is faster than automated verifica-
tion, and (3) SCC-based certification can be parallelized. We use our nine
evaluation programs to show that it is possible to automatically create a
certificate of verification that can be used to automatically certify a specific
class of model checking results, and that the certificate can be used to speed
up certification. We also evaluate the effectiveness of parallelizing SCC such
that there is no overlap between the work performed by each processor. Our
results show that parallel SCC can achieve speed up factors of up to n, for
n processors, when the program comes from an un-trusted source. SCC can
achieve speed up factors of up to 5n when the program comes from a trusted
source

For cost-based caching, the goal is provide the software producer with a
technique that increases the number of cases where she can achieve an ex-
haustive search of the state space and submits an SCC search script that rep-
resents the search of the entire program. For this, we implement six common
caching techniques in JPF and compare the time it takes for an exhaustive
search using these six techniques to the time it takes for an exhaustive search
using cost-based caching. Our results indicate that cost-based caching is up
to 25% faster than existing techniques.

Finally, when an exhaustive search of the state space is not possible, then
the coverage estimation should be accurate enough to (1) help the software
producer to effectively choose the next verification step and (2) provide the

certifier with a clear indication whether to accept or reject the partial model-
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checking results. We evaluate the accuracy of our estimation technique by
estimating the coverage of partial model checking runs, while varying the
actual coverage of the state space. Our empirical studies show that, on
average, our algorithms coverage estimates differ from the actual coverage
by less than 10 percentage points, with a standard deviation of about 5
percentage points regardless of whether the actual state-space coverage is
low (3%) or high (95%).

1.5 Thesis Organization

This thesis is organized as follows. In Chapter 2, we present background
material and related work on software certification, software model check-
ing, state-based caching techniques, and state-space coverage estimation. In
Chapter 3, we present search carrying code (SCC) and describe how the
certification task can be partitioned into multiple search tasks that can be
distributed to parallel model checkers. We evaluate the performance of SCC
and parallel SCC on a suite of Java programs. In Chapter 4, we introduce
cost-based caching applied to a state-space search. We combine cost-based
caching with SCC and compare its performance to existing caching tech-
niques. We also describe how to reduce memory requirements for SCC certi-
fication. In Chapter 5, we describe our algorithm for estimating the coverage
of a partial model-checking search and evaluate its accuracy on a set of Java

programs. Finally, we conclude with Chapter 6 and describe future work.
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Chapter 2

Background and Related Work

In this chapter, we first present background material that is necessary to
understand the model-checking technologies used in our research. We then
describe the state of the art of certification and state-space coverage estima-

tion.

2.1 Model Checking

Model checking is an automated method to systematically explore the ex-
ecution state space of the model of a system and to check that a specified
property is satisfied in each state. The inputs to the model checker are a
model M that represents the behaviour of a system S and a property P to
be checked in every state of M. The model checker exhaustively explores all
the paths through M while checking that P is true at each reachable state.

System models are often represented as a state-transition graph called a
Kripke structure. A Kripke structure M is a four tuple M = (5, Sy, R, L)

where

1. S is a finite set of states.

2. Sy C S is the set of initial states.
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3. (R €S xY9) is a transition relation such that for every state s € S
there is at least one state s’ € S such that R(s,s’).

4. L : S — 247 ig a function that labels each state with a set of atomic

propositions AP that are true in that state.

The paths in a Kripke structure represent all possible computations of the
system.

The property P is often specified as a temporal logic formula. Temporal
logic formulas are used to express properties of temporal orderings of events.
The two most widely used temporal logics are linear-time logic (LTL) [Pnu77]
and computation-tree logic (CTL) [CE82]. LTL formulas are used to express
properties related to all paths in the model, whereas CTL formulas can be
used to discriminate between paths.

Model checkers are implemented using either an explicit-state [CE81,
QQS82] or symbolic representation [BCM190] of the model’s state space. In
explicit-state model checking, states are enumerated on-the-fly and each ex-
plored state is typically stored in a hash table; the model checker checks new
states against the contents of the hash table, to avoid re-examining states.
Explicit-state model checking is generally more memory intensive than sym-
bolic model checking because each state is explicitly represented and stored.
However, this approach can handle dynamic creation of objects and threads,
and thus is the primary choice for model checking software.

Symbolic model checking avoids storing states individually and instead
uses formulas in propositional logic to represent sets of states that are ex-
plored and reasoned about together. The states and transition relation are
often encoded in a variant of Binary Decision Diagrams (BDD) [Bry86]. Sym-
bolic model checking works best with a static transition relation and hence
does not deal well with dynamic creation of objects and threads. It is there-
fore better suited for model checking hardware models rather than program

models.
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2.1.1 Software Model Checking

The input to a software model checker is a software program, such as a
Java program. The goal of the model checker is to search the program’s
execution state space and check that each state satisfies some property P.
Let V = {vy,...,v,} be the dynamic set of program variables. For an object-
oriented program, such as a Java program, V includes declared variables,
dynamic variables (heap-based objects), and information about concurrent
threads. We assume that the variables in V range over a finite set D. A
valuation for V' is a function that maps every variable v in V' to a value in
D. A state in a program’s execution represents the current set of program

variables and the valuation of those variables.
Definition 2.1.1. A state S of a program is a valuation d : V — D.

Definition 2.1.2. A program’s initial state Sy is the state of the program

at the start of its execution.

In other words, a state is a snapshot of a program’s execution. The system

transitions between states by executing the statements of the program.

Definition 2.1.3. A transition from one program state to another reflects
the execution of one program statement and shows the effects of that state-

ment as applied to the transition’s source (program) state.

The granularity of the statement that is executed by a transition depends on
the programming language and the model checker. For Java programs, it is
often a single byte-code instruction.

Given the definitions of a state and transition, we can now define the
set of all reachable states of a program and the graph that represents all

executions of the program.

Definition 2.1.4. A reachable state of a program is a state that results
from applying a sequence of program statements to the initial state. The

sequence of program statements must reflect an execution of the program.
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Definition 2.1.5. A program’s state space is the set of all reachable states

in the program.

Definition 2.1.6. A program’s reachability graph is a directed graph
where each of the program’s reachable states is represented by a verter, and
there is a directed edge from state S; to state S; if there exists a transition
(program statement) in S; that can be executed in S; and that moves the

program execution from state S; to state S;.

There is no restriction on the number of incoming transitions into a state
and outgoing transitions from a state.

The software model checker starts its search in the program’s initial state
and performs an exhaustive search of the program’s reachability graph until
all states in the program’s state space have been visited and all transitions

have been explored.

Definition 2.1.7. A visited state is a state that has been reached in a model-

checking search, and has been verified to satisfy property P.

Definition 2.1.8. A partially explored state is a visited state that has at
least one outgoing transition that has not been explored in the model-checking

search.

Definition 2.1.9. A fully explored state is a visited state whose outgoing

transitions have all been explored in the model-checking search.

To ensure that its searches terminate, the model checker keeps two data

structures: a worklist of partially explored states and the set of visited states.

Definition 2.1.10. A model-checking worklist is a list of partially explored

states.

The worklist represents the set of states that have been visited during the

model-checking search and who still have at least one unexplored transition.
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When the model checker visits a new state .5;, it inserts S; into the work-
list and into the set of visited states. During each iteration of the search,
the model checker selects a state from the worklist and explores one of its
unexplored transitions. When a state is fully explored, it is removed from
the worklist. In the case of a depth-first search, the worklist is a stack. The
search terminates when the worklist is empty. The list of visited states is
often a hash table.

Currently, there exist a wide variety of software model checkers [BRO1b,
LV01, RDHO3] that support various programming languages and use different
techniques to handle very large state spaces. Java Pathfinder (JPF) [VBHPOO,
LVO01], the model checker developed at NASA Ames Center, is one of the
most-widely used software model checkers, mainly because of its rich set
of features and continued support and development. It is a custom-made
explicit-state model checker for Java programs. JPF accepts as input Java
byte code and performs an exhaustive search of the state space to find dead-
locks, invariant violations, and assertion violations. For this thesis, we im-

plemented all our algorithms on top of JPF.

2.2 State-Space Reduction Strategies

One of the main obstacles to model checking is the state-explosion prob-
lem [CGJT01]: the size of a program’s state space grows exponentially with
the number of variables and components in the program. As a result, an
exhaustive search may not be possible because the model checker runs out
of memory in its effort to keep track of all of the visited states. Also, model
checking typically works on finite-state systems, but dynamically-created ob-
jects and threads may cause a program to be infinite state. For these reasons,
software model checkers use various state-space abstraction techniques to re-
duce the size of the state space and make analyzing programs more feasible.

We describe four commonly used techniques below.
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2.2.1 Partial Order Reduction

The goal of partial-order reduction (POR) [God96] is to reduce the size of
the state space that must be searched by exploiting the commutativity of
concurrently executed transitions. POR identifies transitions whose execu-
tions could be interleaved in any order and whose interleavings result in the
same program state. It then executes only one such interleaving. POR is
suitable only for asynchronous systems. In synchronous systems, concurrent
transitions are executed simultaneously and are not interleaved.

POR searches reduced graphs without ever constructing a program’s full
reachability graph, which might be too big to fit in memory. The reduced
model preserves all of the properties of the original model, except for prop-
erties that include the temporal-logic operator “next”. The “next” operator
checks that a certain property is true after executing one transition from the
current state. Thus, to check such a property, the model must include all
possible transitions.

Finding all transitions of the current state that are independent of others
and can be interleaved in any order is difficult because it requires knowledge
of the entire state space, which is not known in advance. As a result, model
checkers use heuristics and possibly stronger conditions to make POR both
feasible and fast [CGP99, VBHPO00]. Java Pathfinder, for example, uses a
transition’s associated byte-code instruction to identify independent transi-
tions. Only about 10% of Java byte-code instructions can have effects across
thread boundaries. For such transitions, all interleavings must be explored,
but the remaining transitions are independent and can be interleaved in any

order.

2.2.2 Abstract Interpretation

Abstract Interpretation [CC77, GS97] is based on the observation that the

specification of a system often depends on simple relationships among data
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values rather than on actual data values. As a result, it may be possible to
model actual data values in the system as a small set of abstract data values.
If we extend the abstraction and apply it to states and transitions that refer
to abstract states, it is possible to obtain an abstract version of the system
under consideration. The idea is to merge together all of the states that have
the same labeling of abstract variable values. In the reduced graph, every
state will have a unique labeling. Simulation [CC77] is used to ensure that
the abstract graph simulates the original one: If model M has a transition
between two states, then in the abstract state space there there must be a
transition between the corresponding abstract states. The abstracted system
is often smaller than the actual system and therefore faster to verify.

As an example, suppose x is a variable and the domain D, is the set
of all integers. If we are interested in expressing a property involving the
sign of x, then we can create a domain A, of abstract values for z, with

A, ={ag,ay,a_}. We define a mapping h, from D, to A, as follows:

Qo lfd:O,
ho(d) =4 ay, ifd>0,
a_ ifd<0

Using this abstraction, we need only three atomic propositions to express
the abstract values of z. It may no longer be possible to express properties
that depend on the actual values of x because by using abstraction, we are
reducing the amount of knowledge about the values of a variable, but in
many cases, knowing just the abstract values is enough. Also, the model
checker cannot always determine a unique abstract value, for example, af