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Abstract

The purpose of this thesis is to provide an exposition of the modular theory of von Neumann
algebras. The motivation of the theory is to classify and describe von Neumann algebras
which do not admit a trace, and in particular, type III factors. We replace traces with
weights, and for a von Neumann algebraM which admits a weight φ, we show the existence
of an automorphic action σφ : R→ Aut(M). After showing the existence of these actions we
can discuss the crossed product construction, which will then allow us to study the structure
of the algebra.
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1 Introduction

This thesis is an exposition of the modular theory of von Neumann algebras. The moti-
vation of the theory is to classify and describe von Neumann algebras which do not admit
a trace, and in particular, type III factors. We replace traces with weights, and for a von
Neumann algebra M which admits a weight φ, we show the existence of an automorphic
action σφ : R → Aut(M). These automorphism groups will then allow us to study the
structure of the algebra.

In Section 2 we provide the necessary background on unbounded operators. Unbounded
operators are useful for their connection with one-parameter unitary groups given in Stone’s
Theorem. They allow us to define a broader functional calculus, providing a powerful tool
in the study of abelian von Neumann algebras.

In Section 3 we study the representation theory of weights, generalizing the theory of
traces. In particular, we are interested in the (generally unbounded) involution on the rep-
resentation space obtained from the adjoint operation. Section 4 provides an abstract char-
acterization of this representation space given by left Hilbert algebras. We prove Tomita’s
Theorem, which states that the involution yields one-parameter automorphism group on the
von Neumann algebra. Then in Section 5 we study in depth the connection between weights
and their associated automorphism groups. This is done by showing that a weight φ satisfies
a trace-like condition, called the modular condition, with respect to the action σφ, the mod-
ular automorphism group. In turn, the modular condition completely determines the action.
Section 6 gives the reverse construction of a weight from a left Hilbert algebra.

We begin the study of von Neumann algebra crossed products in Section 7. After providing
some technical background on the construction, we show how to obtain a weight on the
crossed product algebra coming from the original von Neumann algebra. In the case of the
crossed product with the modular automorphism group, we obtain a weight which can be
perturbed by a (generally unbounded) positive operator to obtain a trace on the crossed
product. In Section 8 we shed more light on the structural implications of this trace. We
do this by generalizing the Pontryagin duality of locally compact abelian groups to duality
of crossed products by locally compact abelian groups, and construct an action of the dual
group on the crossed product for which this trace satisfies a semi-invariance property. Finally
in Section 9 we use this semi-invariance to give a structure theorem for type III von Neumann
algebras.
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All Hilbert spaces are complex, and unless otherwise stated, infinite dimensional. For a
Hilbert space H, B(H) denotes the space of all bounded linear operators on H. On a von
Neumann algebraM we will use the abbreviations SOT, WOT, and σ-WOT for the strong-
operator, weak-operator, and σ-weak operator topologies respectively. For a von Neumann
algebra M we denote the center by CM. Unless otherwise indicated, all integration of
Banach space valued functions are to be understood with respect to the definition of the
Pettis integral.
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2 Unbounded Operators

In this Section we summarize some of the basics of the theory of unbounded operators.
In particular, we attempt to recover as much of the workable theory of bounded operators
as possible, and we will extend the Spectral Theorem for normal operators to a nice class of
unbounded operators, which are also called normal. In the interest of keeping this Section
to within a reasonable size, most proofs will not be given. The material is taken from
Chapter 10 of [2], except for the Polar Decomposition Theorem from page 401 of [7], and
the Generalized Polar Decomposition Theorem and Lemma 2.30 which are respectively on
pages 43 and 22 of [13].

Definition 2.1. By an operator on a Hilbert space H we mean a linear function A : K → H
where K ≤ H is a not-necessarily closed linear subspace. We write D(A) for the domain of
A.

We say that an operator A is densely defined if D(A) is dense in H. We say that A
is closed if its graph G(A) is closed in H ⊕H, and define C (H) to be the set of all closed
densely defined operators on H. We note that if A is closed and D(A) = H then by the
closed graph theorem, A will be bounded. Hence the content of this Section is the study of
operators with proper domains. More generally we say that an operator is closeable if the
closure G(A) is the graph of an operator, and we call this operator the closure of A denoted
by A. Let A be a closed operator, and let K ≤ D(A) be a linear manifold. We say K is a
core for A if A = A|K. Lastly, if A is an operator, we define the graph norm of A to be
the norm on D(A) given by the inclusion ξ ∈ D(A) 7→ (ξ, Aξ) ∈ G(A).

Definition 2.2. Let A be a densely defined operator on H. If ξ ∈ H is such that the function
η 7→< Aη, ξ > is bounded on D(A), then there exists a unique element A∗ξ ∈ H such that
for all η ∈ D(A) we have < Aη, ξ >=< η,A∗ξ >. This defines the adjoint operator A∗ on
H.

Note that for the above definition it is important that A be densely defined since otherwise
the adjoint would not be uniquely definable.

Lemma 2.3. Let A be a densely defined operator. Then

1) A∗ is closed;
2) A∗ is densely defined if and only if A is closable;
3) if A is closeable, then A = A∗∗ and A∗∗∗ = A∗;
4) (ran A)⊥ = ker A∗, and if A is closed then (ran A∗)⊥ = ker A.
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It is therefore convenient for the development of the theory to assume that all operators
are densely defined and closeable.

We now define operations. Let A,B be operators on H. We define their sum by setting
D(A + B) = D(A) ∩ D(B) and define (A + B)ξ = Aξ + Bξ for ξ ∈ D(A + B). We define
the product AB by setting D(AB) = {ξ ∈ D(B) : Bξ ∈ D(A)}, and define ABξ = A(Bξ)
for ξ ∈ D(AB). Of course, neither A + B nor AB need be densely defined or closable even
if A,B are, so care will be taken accordingly. We write A ⊆ B to mean D(A) ⊆ D(B) and
Aξ = Bξ for all ξ ∈ D(A). For λ ∈ C we write λ to denote the operator λ · I, where I is the
identity operator.

The usual notion of invertibility is too restrictive since we will not in general expect an
inverse to be surjective. Instead we consider the following.

Definition 2.4.

1) A closed operator A is non-singular if there exists a closed operator B such that
D(B) = ran A,D(A) = ran B and AB ⊆ 1 and BA ⊆ 1.

2) An operator A is boundedly invertible if there exists an operator B ∈ B(H) such
that AB = 1 and BA ⊆ 1.

3) We define the spectrum of an operator A, denoted σ(A), to be the set of λ ∈ C such
that A− λ is not boundedly invertible.

We note that the inverse B of the operator A for A non-singular or boundedly invertible,
is unique and write B = A−1. The requirement in 1) that A is closed was made partly for
this reason.

Lemma 2.5.

1) A closed operator A is non-singular if and only if ker A = 0 and ran A is dense.
2) An operator A is boundedly invertible if and only if it is non-singular, and ran A = H.

Lemma 2.6. The spectrum σ(A) is a closed subset of C.

Note that if an operator A is closed if and only if A− λ is closed for all λ ∈ C so that if
A is not closed, σ(A) = C.

We now define the natural generalizations of normal and self-adjoint operators.

Definition 2.7. Let A be an operator on H. Then,
1) A is called normal if A is closed and A∗A = AA∗.
2) A is self-adjoint if A = A∗.
3) A is symmetric if A ⊆ A∗

4) A is positive, and we write A ≥ 0, if < Aξ, ξ >≥ 0 for all ξ ∈ D(A).
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Note that if A is symmetric then since A ⊆ A∗, it is closeable, and if A is self-adjoint, A
is closed since A∗ is. We also have the following.

Lemma 2.8. An operator A is symmetric if and only if < Aξ, ξ >∈ R for all ξ ∈ D(A)

Hence a positive operator is automatically symmetric. The following theorem summarizes
the spectral properties of symmetric and self-adjoint operators.

Theorem 2.9. Let A be a closed symmetric operator.

1) The following are equivalent:

a) A is self-adjoint;
b) σ(A) ⊆ R;
c) ker (A∗ − i) = ker (A∗ + i) = {0}.

2) If σ(A) does not contain R, then A is self-adjoint.

3) If A is positive and self-adjoint, then σ(A) ⊆ [0,∞).

If H is a Hilbert space it is a well-known fact that the positive operators T ∈ B(H) are
those of the form T = A∗A for some operator A ∈ B(H). We have a partial analogue of this
result for closed operators.

Theorem 2.10. If A is closed then A∗A is positive self-adjoint, and D(A∗A) is a core for
A.

We note one last result about normal operators, which separates self-adjoint operators
from general symmetric operators.

Lemma 2.11. If N is normal then D(N) = D(N∗) and ‖Nξ‖ = ‖N∗ξ‖ for every ξ ∈ D(N).
Therefore a closed symmetric operator A is normal if and only if A is self-adjoint.

We now come to the spectral theory of unbounded operators.

Definition 2.12. Let X be a set, Ω be a σ-algebra on X and let H be a Hilbert space.
A projection valued function E : Ω → B(H) is called a spectral measure for the triple
(X,Ω,H) if it satisfies the following:

1) E(∅) = 0 and E(X) = 1;
2) for any S1, S2 ∈ Ω we have E(S1 ∩ S2) = E(S1)E(S2);
3) for any countable collection of disjoint sets {Sn} ⊆ Ω we have E(∪nSn) =

∑
nE(Sn),

where this sum convergences in the SOT.
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For ξ, η ∈ H and a spectral measure E, we define the measure Eξ,η ∈M(X) by

Eξ,η(S) =< E(S)ξ, η > .

For short we write Eξ for Eξ,ξ. If φ is a bounded Ω-measurable function we can define∫
φdE ∈ B(H) to be the unique operator satisfying

<

(∫
φdE

)
ξ, η >=

∫
φdEξ,η, for ξ, η ∈ H.

The following result allows us to pass to the unbounded case.

Lemma 2.13. Let {Hn}∞n=1 be Hilbert spaces and let An ∈ B(Hn). Define the operator
⊕∞n=1An with domain D = {(ξn) ∈ ⊕∞n=1Hn : (Anξn) ∈ ⊕∞n=1Hn} by ⊕∞n=1An(ξn) = (Anξn).
Then ⊕∞n=1An is a densely defined closed operator. Moreover, ⊕∞n=1An is normal if and only
if each An is normal.

Now suppose we have a spectral measure E on the measurable space (X,Ω,H). If
φ : X → C is an Ω-measurable function, set Xn = {x ∈ X : n − 1 ≤ |φ(x)| < n} for
n ≥ 1 so that X is the disjoint, measurable union of the Xn. Define Hn = E(Xn)H so that
H = ⊕∞n=1Hn, and set Ωn = {S ∩ Xn : S ∈ Ω}. We define a spectral measure En on the
measurable space (Xn,Ωn,Hn) by restriction of E. We define the operator∫

X

φdE =
∞⊕
n=1

∫
Xn

φndEn

where φn = φ|Xn . Then
∫
X
φdE is a normal operator and has domain

Dφ = {ξ ∈ H :
∑∞

n=1 ‖(
∫
X
φndEn)E(Xn)ξ‖2 <∞}.

Theorem 2.14. Let E be a spectral measure on the measurable space (X,Ω,H) and let
φ : X → C be an Ω-measurable function. Then,

1) Dφ = {ξ ∈ H :
∫
X
|φ(x)|2dEξ <∞};

2) if ξ ∈ Dφ, η ∈ H, then

a)

∫
|φ|d|Eξ,η| ≤ ‖η‖

(∫
|φ|2dEξ

)1/2

;

b) <

(∫
X

φdE

)
ξ, η >=

∫
X

φdEξ,η.
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From 1) we see that the domain Dφ can be determined intrinsically in terms of the spectral
measure E without requiring us to look at a specific decomposition of X. Moreover, from
2)a) we see that for ξ ∈ Dφ, η ∈ H we have the inequality∣∣∣∣∫ φdEξ,η

∣∣∣∣ ≤ ‖η‖(∫ |φ|2dEξ)1/2

,

so that η 7→
∫
φdEξ,η is a well-defined, bounded linear functional on H. Moreover, by b),

(
∫
φdE)ξ is the unique element of H which satisfies

<

(∫
X

φdE

)
ξ, η >=

∫
X

φdEξ,η.

Hence we have the following more natural definition.

Definition 2.15. Let φ : X → C be Ω-measurable, and E be a spectral measure on (X,Ω,H).
Then for ξ ∈ Dφ = {η ∈ H :

∫
|φ|2dEη < ∞} we define (

∫
φdE)ξ ∈ H to be the unique

vector satisfying

<

(∫
φdE

)
ξ, η >=

∫
φdEξ,η

for all η ∈ H. This defines a normal operator
∫
φdE with domain Dφ.

Theorem 2.16 (The Spectral Theorem). Let N be a normal operator on a Hilbert space H.
Then there exists a unique spectral measure E on the Borel subsets of C supported on σ(N)
such that N =

∫
zdE and such that if G 6= ∅ is open in σ(N) then E(G) 6= 0. Moreover,

we have the following properties.

1) For A ∈ B(H), we have AN ⊆ NA and AN∗ ⊆ N∗A if and only if AE(S) = E(S)A
for every Borel set S.

2) If φ : C → C is Borel and if {Xn} is an increasing sequence of Borel sets such that
φ|Xn is bounded for each n ≥ 1, and if E(Xn) converges to I in the SOT as n → ∞,
then M =

⋃∞
n=1E(Xn)H is a core for

∫
φdE.

3) If {φi} is an increasing net of real-valued Borel functions such φ = supi φi is finite
valued, then (

∫
φdE)ξ = limi(

∫
φidE)ξ for every ξ ∈ Dφ.

4) If φ is continuous, we have σ(
∫
φdE) = φ(σ(N)).

The proof of the main statement of the Spectral Theorem can be found in [2]. We will
just verify properties 1), 2), 3), and 4). First we consider what sort of functional calculus
the spectral decomposition allows.
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Theorem 2.17. Let E be a spectral measure on the measurable space (X,Ω,H), and let
Φ(X,Ω) be the set of all Ω-measurable functions φ : X → C. Define ρ : Φ(X,Ω) → C (H)
by ρ(φ) =

∫
X
φdE. Then we have the following properties:

1) ρ(φ) = ρ(φ)∗;
2) ρ(φψ) ⊇ ρ(φ)ρ(ψ) and D(ρ(φ)ρ(ψ)) = Dψ ∩ Dφψ;
3) if ψ is bounded then ρ(φ)ρ(ψ) = ρ(φψ);
4) ρ(φ)∗ρ(φ) = ρ(|φ|2).

Proof.

Let φ, ψ ∈ Φ(X,Ω). First note that there exists a sequence of measurable sets {Xn} such
that X = ∪nXn, and the functions φ, ψ are bounded on each Xn. This follows after choosing
partitions {Yn}, {Zn} such that φ, ψ are respectively bounded, and then letting {Xn} be the
set of all non-empty intersections of the form Yn ∩Zm, which is clearly countable, partitions
X, and for which both φ, ψ are bounded.

Let {ρn} be the respective representations of Φ(Xn,Ωn) on B(E(Xn)H), where Ωn is the
restriction of Ω to Xn, and where B(E(Xn)H) is viewed as a subspace of B(H) and φn, ψn
the restrictions of φ, ψ to Xn. Let ξ ∈ D(ρ(φ)ρ(ψ)). Then

∞ > ‖ρ(φ)ρ(ψ)ξ‖2

=
∑
n

‖ρn(φn)[E(Xn)ρ(ψ)ξ]‖2

=
∑
n

‖ρn(φn)[ρn(ψn)E(Xn)ξ]‖2

=
∑
n

‖ρn(φnψn)E(Xn)ξ]‖2,

which says that ξ ∈ D(ρ(φψ)) and ρ(φψ)ξ = ρ(φ)ρ(ψ)ξ. Hence ρ(φψ) ⊇ ρ(φ)ρ(ψ), and
D(ρ(φ)ρ(ψ)) ⊆ D(ρ(ψ))∩D(ρ(φψ)). On the other hand, if ξ ∈ D(ρ(ψ))∩D(ρ(φψ)) then the
last two sums above are finite, and hence ξ ∈ D(ρ(φ)ρ(ψ)). Therefore 2) follows. Moreover,
by the functional calculus for bounded operators we have ρn(φ)∗ = ρn(φ) so that

ρ(φ)∗ = ⊕∞n=1ρn(φ)∗ = ⊕∞n=1ρn(φ) = ρ(φ),

so we have 1). If ψ is bounded, then Dψ = H so that D(ρ(φ)ρ(ψ)) = Dφψ = D(ρ(φψ)) and so
3) follows. Lastly by 1) we have ρ(φ)∗ = ρ(φ) so that by 2), ρ(φ)∗ρ(φ) = ρ(φ)ρ(φ) ⊆ ρ(|φ|2)
and D(ρ(φ)∗ρ(φ)) = Dφ ∩ D|φ|2 = D|φ|2 , so the result follows.

By 2) we fail to have ρ(φ)ρ(ψ) = ρ(φψ) precisely when the domain of ρ(ψ) is not large
enough. In other words, there has to be some vector ξ ∈ H such that

∫
|ψ|2dEξ = ∞
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and
∫
|φ|2|ψ|2dEξ < ∞. For instance, this will happen when φ is a characteristic function

of a bounded set and ψ is continuous and unbounded, so that ψ is unbounded, but φψ is
bounded.

proof of the Spectral Theorem. As mentioned earlier, we will only verify properties 1), 2), 3),
and 4) and assume the existence of a spectral decomposition N =

∫
zdE of N .

1) Let A ∈ B(H). Choosing an integer n ≥ 1, let Xn = {α ∈ C : n− 1 ≤ |α| < n}. Then
N |E(Xn)H is bounded, so that by the bounded version of the Spectral Theorem, we have

AN |E(Xn)H = N |E(Xn)HA,

and
A(N |E(Xn)H)∗ = (N |E(Xn)H)∗A

if and only if
AE(S ∩Xn) = E(S ∩Xn)A

for every Borel set S ⊆ C. Since N = ⊕∞n=1N |E(Xn)H and E(S) = ⊕∞n=1E(S ∩Xn), property
1) follows.

2) Let φ be a Borel function on C, let {Xn} be a sequence of Borel sets such that φ|Xn is
bounded and such that E(Xn) converges to I in the SOT as n→∞. If ξ ∈ Dφ, then

ξ = lim
n→∞

E(Xn)ξ,

and by 2) and 3) of Theorem 2.17 we have(∫
φdE

)
ξ = lim

n→∞
E(Xn)

(∫
φdE

)
ξ

= lim
n→∞

(∫
φdE

)
E(Xn)ξ,

so that ∪∞n=1E(Xn)H is a core for
∫
φdE.

3) Let {φi} be a bounded, increasing net of real-valued Borel functions such φ = supi φi
is finite valued. By the Monotone Convergence Theorem, for ξ ∈ H we have

0 = lim
i

∫
(φ− φi)2dEξ

= lim
i
<

(∫
(φ− φi)dE

)2

ξ, ξ >

= lim
i
‖
(∫

φdE −
∫
φidE

)
ξ‖2,
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and the result follows.

4) Let φ be a continuous function, and for n ≥ 1 let Xn = {α ∈ C : n − 1 ≤ |α| < n}.
Then we have N = ⊕∞n=1N |E(Xn)H. For each n, by the Spectral Mapping Theorem we have
σ(φ(N |E(Xn)H)) = φ(Xn). Clearly σ(φ(N |E(Xn)H)) ⊆ σ(φ(N)) so that

σ(φ(N)) ⊇ [∪∞n=1φ(Xn)]− = [φ(X)]−.

On the other hand, suppose that for some λ ∈ C, there exists δ > 0 such that |λ − α| > δ
whenever α ∈ φ(X). Then if ξ ∈ Dφ we have∥∥∥∥(∫ φdE − λ

)
ξ

∥∥∥∥2

=

∫
|φ− λ|2dEξ

≥ |λ|2‖ξ‖.

Therefore,
∫
φdE − λ is injective and has close range. Moreover, by part 1) of Lemma 2.17

and part 4) of Lemma 2.3 we have [ran (
∫
φdE − λ)]⊥ = ker (

∫
φdE − λ)∗. But

∫
φdE − λ

is normal, so that by Lemma 2.11, we have ker (
∫
φdE − λ)∗ = ker (

∫
φdE − λ) = {0}. By

Lemma 2.5,
∫
φdE − λ is boundedly invertible. Therefore λ /∈ σ(

∫
φdE), completing the

proof.

We state the following unbounded version of the Fuglede-Putnam Theorem.

Theorem 2.18. If A is a bounded operator, and N,M are normal operators such that
AN ⊆MA, then AN∗ ⊆M∗A.

In particular, 1) of the Spectral Theorem can be replaced by the following:

1′) for A ∈ B(H), we have AN ⊆ NA if and only if AE(S) = E(S)A for every Borel set S.

We now begin the study of the relation between unbounded operators and von Neumann
algebras.

Definition 2.19. We say a closed, densely defined operator A is affiliated with a von
Neumann algebra M if for all T ∈M′ we have AT = TA.

Of course if A is bounded this says precisely that A ∈ M. The next lemma clarifies to
what extent A belongs to M in the case where A is normal and unbounded.

Lemma 2.20. Let N be a normal operator affiliated to a von Neumann algebra M with
spectral decomposition N =

∫
zdE. If φ : C → C is Borel we have that

∫
φdE is affiliated

with M.

10



Proof.

Claim: If A is closed, M is a core for A, and T ∈ B(H) is invertible such that TAξ = ATξ
and T−1Aξ = AT−1ξ for every ξ ∈M then TA = AT and T−1A = AT−1.

Let ξ ∈ D(A) and let {ξn} be a sequence in M converging to ξ in the graph norm of A.
Then

lim
n
ATξn = lim

n
TAξn = TAξ,

so that Tξ ∈ D(A) and ATξ = TAξ. Therefore TA ⊆ AT . On the other hand, if
ξ ∈ D(AT ) = T−1D(A) so that ξ = T−1η for some η ∈ D(A), then choosing a sequence {ηn}
in M converging to η in the graph norm of A we have

lim
n
A(T−1ηn) = lim

n
T−1Aηn = T−1Aη = T−1ATξ.

Hence ξ ∈ D(A) and Aξ = T−1ATξ so that TAξ = ATξ. Therefore, TA = AT and by
symmetry we also have T−1A = AT−1.

Returning to the normal operator N , we define for each n ≥ 1, Xn = {z ∈ C : |φ(z)| ≤ n}.
Then by 2) of the Spectral Theorem M = ∪∞n=1E(Xn)H is a core for

∫
φdE. Therefore, by

the claim, to show that
∫
φdE is affiliated with M it suffices to show that for any unitary

U ∈ M′ and for every ξ ∈ M we have U(
∫
φdE)ξ = (

∫
φdE)Uξ. But UN = NU so that

by the unbounded Fuglede-Putnam Theorem UN∗ ⊆ N∗U , and hence U commutes with
the spectral projections of N . Then writing ξ = E(Xn)ξ, setting En to be the restricted
spectral projection on Xn and φn = φ|Xn it follows from the bounded Spectral Theorem that
U(
∫
φndEn) = (

∫
φndEn)U , proving the lemma.

As an application we now give the polar decomposition for unbounded, closed operators.
We start with two lemmas, the first of which recovers some of the usual anticommutation
of the adjoint operation, and the second gives the existence and uniqueness of nth roots of
positive operators.

Lemma 2.21. Let A,C be closed operators on H, and B ∈ B(H). If A = BC then
A∗ = C∗B∗.

Proof. Let ξ ∈ D(A∗). Then for η ∈ D(A) = D(C) we have

< Aη, ξ >=< BCη, ξ >=< Cη,B∗ξ >,

so that B∗ξ ∈ D(C∗) and C∗(B∗ξ) = A∗ξ. Hence A∗ ⊆ C∗B∗. On the other hand, the exact
same calculation says that if ξ ∈ D(C∗B∗) and η ∈ D(A) then ξ ∈ D(A∗) and A∗ξ = C∗B∗ξ,
and we have the reverse inclusion.
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Lemma 2.22. If A is a positive self-adjoint operator then for each integer n > 1 there exists
a unique positive self-adjoint operator B such that A = Bn.

Proof. Let A =
∫
zdE be the spectral decomposition of A. Since σ(A) ⊆ [0,∞), the existence

follows by letting B =
∫
z1/ndE. On the other hand, if C is another positive self-adjoint

operator such that A = Cn, then since AC = CnC = CCn = CA, part 1) of the Spectral
Theorem implies that C commutes with the spectral projections of A. In particular, for each
r > 0 we have CE([0, r]) = E([0, r])C and so

(C|E([0,r])H)n = (Cn)|E([0,r])H = A|E([0,r])H.

By the uniqueness of positive nth root for bounded operators we have C|E([0,r])H = B|E([0,r])H.
By 3) of the Spectral Theorem, ∪∞r=1E([0, r])H is a core for B so that B ⊆ C. But then
C = C∗ ⊆ B∗ = B and hence B = C.

Theorem 2.23 (The Polar Decomposition Theorem). Let A be a closed operator on H and
write |A| = (A∗A)1/2. Then there exists a unique partial isometry V such that A = V |A| =
|A∗|V . If A = UB where B is positive, self-adjoint and U is a partial isometry with initial
space ran (B) then U = V and B = |A|. Moreover, if A is affiliated with some von Neumann
algebra M, then |A| is also affiliated with M and V ∈M.

Proof. Define an operator V0 : |A|D(A∗A)→ AD(A∗A) by V0|A|ξ = Aξ. Since

‖|A|ξ‖2 =< |A|ξ, |A|ξ >=< A∗Aξ, ξ >= ‖Aξ‖2,

it follows that V0 is a well-defined isometry, and so extends to a partial isometry V with
initial space ran (|A|) and final space ran (A). It has already been shown that D(A∗A) is a
core for A, and by 2) of the Spectral Theorem it is easy to see that it is also a core for |A|.
If ξ ∈ D(A) we can choose a sequence {ξn} in D(A∗A) converging in the graph norm of A
to ξ. Then

lim
n→∞

|A|ξn = lim
n→∞

V ∗Aξn = V ∗Aξ,

and since |A| is closed, we have ξ ∈ D(A) and |A|ξ = V ∗Aξ, so that V |A|ξ = Aξ. Therefore
A ⊆ V |A|. On the other hand, if ξ ∈ D(|A|), and we choose a sequence {ξn} converging to
ξ in the graph norm of |A| so that

lim
n→∞

Aξn = lim
n→∞

V |A|ξn = V |A|ξ.

Since A is closed we have ξ ∈ D(A) and Aξ = V |A|ξ so that A ⊇ V |A|. Therefore
A = V |A| and by construction V is unique. By Lemma 2.21 we have A∗ = |A|V ∗ and so
AA∗ = V (A∗A)V ∗. But since we also have (V |A|V ∗)2 = V (A∗A)V ∗ the uniqueness of posi-
tive self-adjoint square roots we have |A∗| = V |A|V ∗ = V A∗ so that A∗ = V ∗|A∗|. Applying
Lemma 2.21 again we have A = |A∗|V .
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If we also have A = UB where B is positive self-adjoint operator and U is a partial isome-
try with initial space ran (B), then by Lemma 2.21 we have A∗ = BU∗ and by assumption on
U we have A∗A = BU∗UB = B2. By uniqueness of positive self-adjoint square roots we have
B = |A|, and so we must also have U = V , giving uniqueness of the polar decomposition.

Now suppose that A is affilated with a von Neumann algebra M, and let U ∈ M′

be a unitary. Then A = UAU∗ = (UV U∗)(U |A|U∗). But U |A|U∗ is a positive self-adjoint
operator and UV U∗ is a partial isometry with initial projection (UV U∗)∗(UV U∗) = UV ∗V U∗

which has range Uran (|A|), so coincides with the range projection of U |A|U∗. By uniqueness
of the polar decomposition. we have U |A|U∗ = |A| and UV U∗ = V , so that |A| is affiliated
with M and V ∈M.

We will mention briefly here the use of conjugate linear operators. If A is a conjugate
linear operator, we can linearize it by considering it as an operator from H to the dual
Hilbert space H∗. To be more precise, we define D(A∗) to be the set of ξ ∈ H such that the
conjugate-linear functional η 7→< Aη, ξ > is bounded on D(A), and define A∗ξ ∈ H to be
the unique vector such that for all η ∈ D(A)

< Aη, ξ >= < η,A∗ξ > =< A∗ξ, η > .

Then A∗ is a closed conjugate-linear operator, and we note furthermore that A∗A is a self-
adjoint linear operator onH. We define a conjugate linear partial isometry to be a conjugate-
linear operator V that linearizes to a partial isometry.

Theorem 2.24. If A is a closed conjugate-linear operator on H, then the conclusions of
the Polar Decomposition Theorem hold with the linear partial isometry V replaced by a
conjugate-linear partial isometry.

We turn now to bounded operators to offer a more generalized polar decomposition for
operators in a von Neumann algebra.

Theorem 2.25 (The Generalized Polar Decomposition Theorem). LetM be a von Neumann
algebra acting on a Hilbert space H.

1) If x, y ∈ M such that y∗y ≤ x∗x then there exists a unique s ∈ M such that y = sx,
and ker s ⊇ (ran x)⊥. Moreover, ‖s‖ ≤ 1.

2) Let {xi}i∈I be a family in M such that
∑

i x
∗
ixi converges to an operator a ∈M in the

SOT. If we let si ∈M be as in 1) such that xi = sia
1/2, then

∑
i s
∗
i si converges in the

SOT to the range projection p of a.

13



Proof.

1) Define a map s0 : ran x → ran y by s0(xξ) = yξ. The map is well-defined since if
xξ = 0, then ‖yξ‖2 =< y∗yξ, ξ >≤< x∗xξ, ξ >= 0. Moreover, this calculation implies that
s0 is bounded and that ‖s0‖ ≤ 1. We then extend this map by continuity onto the closure
of ran x and finally extend it to a bounded operator on H by setting s ≡ 0 on (ran x)⊥.
The uniqueness is by construction, and it remains to prove that s ∈ M. Now if u ∈ M′ is
unitary, then y = uyu∗ = usxu∗ = (usu∗)x. Since the range projection p of x lies inM, the
subspace (1 − p)H is invariant under u∗, so usu∗(1 − p)H = {0}. By uniqueness we have
usu∗ = s, so that s ∈M.

2) For each finite subset J ⊆ I set pJ =
∑

i∈J s
∗
i si. Then {pJ} is an increasing net in

M+, and moreover, if ξ ∈ H, η = a1/2ξ we have

< pJη, η > =< a1/2
∑
i∈J

s∗i sia
1/2ξ, ξ >

=<
∑
i∈J

x∗ixiξ, ξ >

≤< aξ, ξ >

=< pη, η > .

Since si(ran a1/2)⊥ = 0, it follows that pJ ≤ p. Hence {pJ} converges to some p0 ∈ M+ in
the SOT such that p0 ≤ p. But then if we let ξ, η be as above, then

< p0η, η > =< a1/2
∑
i∈I

s∗i sia
1/2ξ, ξ >

=<
∑
i∈J

x∗ixiξ, ξ >

=< aξ, ξ >

=< pη, η > .

Therefore p0 = p.

We end the exposition of unbounded operators by giving an application of unbounded
operators to one-parameter unitary groups.

Theorem 2.26. Let A be a self-adjoint operator, and set U(t) = exp(itA) for t ∈ R. Then
we have the following:

1) the function U : R→ U(H) is a group homomorphism and is continuous in the SOT;
2) if ξ ∈ D(A) then limt→0

1
t
[U(t)ξ − ξ] = iAξ. Moreover, if ξ ∈ H and this limit exists,

then ξ ∈ D(A). Consequently D(A) is invariant under each U(t).
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We have the following relation to von Neumann algebras.

Corollary 2.27. Let A be a self-adjoint operator and for each t ∈ R let U(t) = exp(itA).
Let M be the von Neumann algebra generated by {U(t)}t∈R. Then A is affiliated with M.

Proof. Let ξ ∈ D(A), and let T ∈ M′. By 2) of Theorem 2.26 we have that
iAξ = limt→0

1
t
[U(t)− 1]ξ and since U(t), T commute,

lim
t→0

1

t
[U(t)− 1]Tξ = T lim

t→0

1

t
[U(t)− 1]ξ.

Hence by 2) of Theorem 2.26 we have that Tξ ∈ D(A) and ATξ = TAξ. Hence AT ⊆ TA,
and the reverse inclusion follows automatically sinceD(TA) = D(A). Therefore A is affiliated
with M.

It is a remarkable fact is that the converse of Theorem 2.26 also holds.

Theorem 2.28 (Stone’s Theorem). If {U(t)}t∈R is a one-parameter group of unitaries which
is continuous in the SOT, then there exists a self-adjoint operator A such that
U(t) = exp(itA). Moreover, if M is a von Neumann algebra acting on H, then A is af-
filiated with M if and only it U(t) ∈M for all t.

The operator A given above is often called the infinitessimal generator of {Ut} or just the
generator. We note the following result relating the continuity of the unitary group, and the
boundedness of the operator.

Theorem 2.29. If A is a self-adjoint operator, then A is bounded if and only if the family
of unitaries {exp(itA)}t∈R is norm continuous.

We will be applying these results in the following way. If A is a self-adjoint, positive,
injective operator, then we can define the operator log(A), where log is the principal branch
of the logarithm, and we define log(0) = 0. This will yield a well-defined self-adjoint operator
since ker (A) = {0}. Then we have Ait = exp(it log(A)) by the composition rule and the
family {Ait} is a one-parameter group of unitaries which is continuous in the SOT. Lastly,
we give a result about the analyticity of such automorphism groups.

Lemma 2.30. Let H be a positive, self-adjoint, injective operator on a Hilbert space H. For
a vector ξ ∈ H the following are equivalent:

1) ξ ∈ D(H);
2) the function t 7→ H itξ can be extended from R to the closed strip D ⊆ C bounded by −i

and 0, yielding a bounded, continuous function which is holomorphic on the interior.
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Proof.

1)=⇒2). The extension we are going to be considering is the function ξ(α) = H iαξ. If
H =

∫
λdE(λ) is the spectral decomposition then∫

|λiα|2dEξ ≤
∫
|λ|2dEξ <∞

which says that ξ ∈ D(H iα) and ‖H iαξ‖ ≤ ‖Hξ‖ so that ξ(·) is well-defined and bounded.
Moreover, if β → β0 then

‖H iβξ −H iβ0ξ‖2 =

∫
|λiβ − λiβ0|2dEξ(λ).

This converges to 0 by the Lebesgue dominated convergence theorem with dominating func-
tion λ 7→ |λ|2.

Set M =
⋃∞
n=1 E[1/n, n]H. Then E[1/n, n] → I SOT so M is dense, and it is con-

tained in the domain of φ(H) for every continuous function φ on C. In particular, if
η ∈ E[1/n, n]H, ζ ∈ H we have

< H iβη, ζ >=

∫ n

1/n

λiβdEη,ζ(λ),

which says that the function η(β) = H iβη is entire. Then if α belongs to the the interior of
D we have

< ξ(α), η > =< H iβξ, η >

=< ξ,H−iαη >

=< ξ, η(−α) >,

so ξ(·) is holomorphic on the interior.

2)=⇒1). Suppose that the function t ∈ R 7→ H itξ has such an extension to a function F
on D. By the implication 2)=⇒1) we have that for η ∈ D(H), the function η(α) = H iαη
is defined with domain D(H), is bounded, continuous and holomorphic in the interior of its
domain. Then the two function g1, g2 defined on D by

g1(α) =< F (α), η >, g2(α) =< ξ, η(−α) >,

are bounded, continuous, homorphic on the interior of their domain, and agree on the real
line R. By the Schwarz Reflection Principle we infer that they must agree everywhere. In
particular we have

< F (i), η >=< ξ,Hη > .

Therefore ξ ∈ D(H).
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3 Weights on a von Neumann Algebra

In this Section we consider a certain unbounded analogue of a positive linear functional on
a von Neumann algebra, which is called a weight. We will first apply the GNS construction
using weights. After mentioning some of the highlights of the theory of traces, we will study
the topological properties of the adjoint operation on the GNS representation space. The
material for this Section is from Chapter 7 of [13], except for the subsection on traces which
is from Chapter 5 of [12] and Theorem 3.5 which is from Chapter 1 of [8].

Definition 3.1. A weight on a von Neumann algebra M is a function φ : M+ → [0,∞]
satisfying, for x, y ∈M+, λ > 0,

φ(x+ y) = φ(x) + φ(y); φ(λx) = λφ(x).

If we have that for any x ∈M,
φ(x∗x) = φ(xx∗),

then we say that φ is a trace. In addition we say that:

a) φ is faithful if φ(x) = 0 only if x = 0;

b) φ is normal if φ(sup
i
xi) = sup

i
φ(xi) whenever {xi} is an increasing bounded net;

c) φ is finite if φ(1) <∞.
d) φ is semifinite if the ∗-algebra generated by the set {x ∈M+ : φ(x) <∞} generates M.

Let φ be finite. Since for x ∈ M+ we have x ≤ ‖x‖1, it follows from additivity that
φ(x) < ∞. In this case, the normality condition is equivalent to saying that φ can be
uniquely extended to an element of the predualM∗. If φ, ω are weights onM then we write
ω ≤ φ if for all x ∈ M+ we have ω(x) ≤ φ(x). The next Theorem says that in general, a
normal weight is just the pointwise limit of an increasing net of positive elements fromM+

∗ .

Theorem 3.2. For a weight φ on a von Neumann algebra M the following are equivalent:

1) φ is normal;
2) Setting Φ = {ω ∈M+

∗ : ω ≤ φ} we have for x ∈M+

φ(x) = sup
ω∈Φ

ω(x).
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We now begin to study the GNS representation ofM with respect to a weight φ. For this
purpose we must first extend the weight φ to a positive linear functional, also denoted by φ,
acting on a ∗-subalgebra of M. We consider the following spaces:

nφ = {x ∈M : φ(x∗x) <∞};

mφ = n∗φnφ =

{∑
i

x∗i yi : xi, yi ∈ nφ

}
.

Lemma 3.3. The set nφ is a left ideal, and mφ is hereditary ∗-subalgebra linearly spanned
by m+

φ = {x ∈M∗ : φ(x) <∞}. Hence φ extends uniquely to a positive linear functional on
mφ.

Proof. If a ∈M, x ∈ nφ then the inequality (ax)∗ax ≤ ‖a‖2x∗x shows that nφ is a left ideal.
Suppose z =

∑n
j=1 x

∗
jyj with xj, yj ∈ [nφ

⋂
M+]. Then by polarizing,

z =
1

2
(z + z∗)

=
1

8

n∑
j=1

3∑
k=0

[ik(xj + ikyj)
∗(xj + ikyj) + (−i)k(xj + ikyj)

∗(xj + ikyj)]

=
1

4

n∑
j=1

[(xj + yj)
∗(xj + yj)− (xj − yj)∗(xj − yj)]

≤ 1

4

n∑
j=1

(xj + yj)
∗(xj + yj),

so φ(z) < ∞ and it follows that m+
φ ⊆ {x ∈ M+ : φ(x∗x) < ∞}. The reverse inclusion is

clear, so we have equality. For z ∈ mφ, the equality

z =
1

4

n∑
j=1

3∑
k=0

ik(xj + ikyj)
∗(xj + ikyj)

implies that mφ is spanned by its positive elements and the lemma follows.

Now set Nφ = {x ∈M : φ(x∗x) = 0}, and let qφ : nφ → nφ/Nφ be the canonical quotient
map. Define an inner product on qφ(nφ) by < qφ(x), qφ(y) >= φ(y∗x). The representation
space Hφ is the completion of qφ(nφ) and we obtain a representation πφ : M → B(Hφ) by
πφ(a)qφ(x) = qφ(ax).
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Definition 3.4. Let π be a representation of a von Neumann algebra M on a Hilbert space
H. Then we say that π is normal if it is σ-weakly continuous. Equivalently, whenever {xi}
is a bounded increasing net of self-adjoint elements in M we have

π(sup
i
xi) = sup

i
π(xi).

Theorem 3.5. If π is a non-degenerate normal representation of a von Neumann algebra
M, then π(M) is a von Neumann algebra.

We now have the following result on the representation πφ.

Proposition 3.6. If φ is a semifinite normal weight, then (πφ,Hφ) is a non-degenerate,
normal representation. In particular, πφ(M) is a von Neumann algebra. If φ is faithful,
then so is πφ.

Proof. Since we have πφ(1) = 1Hφ , πφ is non-degenerate. Let {xi} be an increasing net in
M+ with x = supi xi, let y ∈ nφ and consider the functional ωy(T ) =< Tqφ(y), qφ(y) >
which belongs to πφ(M)+

∗ . Then

lim
i
ωqφ(y) ◦ πφ(x− xi) = lim

i
< πφ(x− xi)qφ(y), qφ(y) >

= lim
i
< qφ((x− xi)1/2y), qφ((x− xi)1/2y) >

= lim
i
φ(y∗(x− xi)y)

= 0.

Hence ωqφ(y) ◦πφ is normal, and since the set {ωy : y ∈ nφ} is total in πφ(M)+
∗ it follows that

πφ is normal.

If φ is faithful and 0 6= x ∈M, and if we choose a net {yi} in nφ which converges to 1 in
the SOT, then (xyi)

∗(xyi) converges weakly to x∗x. In particular, there exists some i such
that y∗i x

∗xyi 6= 0. Then
‖πφ(x)qφ(yi)‖2 = φ(y∗i x

∗xyi) > 0,

so πφ is faithful.

Before continuing the general discussion we now summarize some of the key features of
the theory of traces. Since the purpose is mainly to motivate the development of the theory
of weights, full proofs will not be given.
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Let τ be an faithful, normal, semifinite (fns) trace on M and let nτ be as before. If
x ∈ nτ , we have

τ(xx∗) = τ(x∗x) <∞,

so that x∗ ∈ nτ . Therefore nτ is a self-adjoint left ideal, and consequently, also a right ideal.
It follows that we can consider an (anti-homomorphic) representation π′τ of M on Hτ given
by

π′τ (a)qτ (x) = qτ (xa).

As before, this defines a bounded operator since

‖qτ (xa)‖2 = τ((xa)∗(xa)) = τ((xa)(xa)∗) ≤ ‖a‖2τ(xx∗) = ‖a‖2‖qτ (x)‖2.

Moreover, since
‖qτ (x∗)‖2 = τ(xx∗) = τ(x∗x) = ‖qτ (x)‖2,

the involution on nτ induced by the adjoint extends to a conjugate linear unitary on Hτ ,
denoted by J . For a ∈M, we have

(Jπτ (a)J)qφ(x) = qτ ((ax
∗)∗) = qτ (xa

∗) = π′τ (a
∗)qφ(x)

so that Jπτ (a)J = π′τ (a
∗). Hence J induces an anti-isomorphism between πτ (M) and π′τ (M),

and in particular, π′τ (M) is a von Neumann algebra. Moreover, we note that if a, b ∈ M,
x ∈ nτ , we have

πτ (a)π′τ (b)qτ (x) = qτ (axb) = π′τ (b)πτ (a)qφ(x),

so that the representations πτ , π
′
τ commute. Therefore π′τ (M) ⊆ πτ (M)′. In fact, we also

have the reverse inclusion. The above is summarized in the following theorem.

Theorem 3.7. The representations πτ , π
′
τ of M obtained by left and right multiplication

operators on the Hilbert space completion Hτ of nτ are faithful, normal and satisfy the
following:

Jπτ (M)J = πτ (M)′ = π′τ (M).

The condition that a weight be a trace is quite restrictive, and the existence of a trace
turns out to be dependent on the type of the algebra.

Theorem 3.8. LetM be a von Neumann algebra. Then there exists a unique decomposition
of M into a direct sum

M =MI ⊕MII1 ⊕MII∞ ⊕MIII ,

where each Mj is of type j.
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We say that a von Neumann algebraM is semifinite if the type III summand is trivial.
Suppose that M admits an fns trace τ . If we choose any projection e ∈ M such that
τ(e) < ∞, it follows that τ restricts to a faithful finite trace on the corner algebra eMe.
Then if we choose any isometry u ∈ eMe, we have 0 = τ(e − u∗u) = τ(e − uu∗) so that
e = uu∗. Therefore the algebra eMe is finite, so that e is a finite projection. On the other
hand, if e ∈ M is an arbitrary projection, then the semifiniteness of τ ensures that there
exists a non-zero element x ∈ (eMe)+ such that τ(x) < ∞. If we let x =

∫
λdE(λ) be the

spectral decomposition of x, and if we choose a number ε satisfying 0 < ε < ‖x‖ we have
that ε · E[ε, ‖x‖] ≤ x, so that τ(E[ε, ‖x‖]) ≤ ε−1τ(x) < ∞. Therefore E[ε, ‖x‖] ≤ e and
E[ε, ‖x‖] is a non-zero finite projection. Since e was arbitary, M is semifinite. In fact, the
converse is also true.

Theorem 3.9. A von Neumann algebra is semifinite if and only if it admits an fns trace.

For a von Neumann algebra that does not admit a trace we can still obtain a similar
picture to the one above, and which is in fact more useful. To begin, we state the following
result from [13].

Theorem 3.10. Every von Neumann algebra admits an fns weight.

Now let M be a von Neumann algebra with an fns weight φ. We note that if φ is not a
trace, the difference between the GNS representation (πφ,Hφ, qφ) and that of a trace is that
we no longer have a conjugate unitary J on Hφ coming from the adjoint operation. However,
we define Uφ = qφ(nφ ∩ n∗φ), and give it an involution ] by

qφ(x)] = qφ(x∗).

In the sequel we begin a more in depth study of this involution by showing that it has a
closed extension S. This allows us to take the polar decomposition S = J∆1/2, yielding as
before a conjugation J which relates the represented algebra to its commutant, and more
importantly a positive self-adjoint non-singular operator ∆, which will be used to define a
one-parameter automorphism group on the von Neumann algebra.

We can now state the main theorem of this Section.

Theorem 3.11. The pre-Hilbert space Uφ = qφ(nφ ∩ n∗φ) is dense in Hφ. We define an
involution and product by

qφ(x)] = qφ(x∗), qφ(x)qφ(y) = qφ(xy).

For ξ ∈ Uφ, denote by π`(ξ) the operator on the closure Hφ extending left multiplication by
ξ. Then the set of left multiplication operators generate πφ(M). Moreover, the involution ]

is a densely defined, closeable, conjugate linear operator on Hφ.
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First we want to show that Uφ is dense in Hφ. Since φ is semifinite the subalgebra
πφ(nφ ∩ n∗φ) generates πφ(M) so that in particular it acts non-degenerately on Hφ. But if

qφ(x) ∈ U⊥φ ∩ qφ(nφ), then for any y, z ∈ nφ we have

< πφ(y)qφ(x), qφ(z) >=< qφ(x), πφ(y)∗qφ(z) >=< qφ(x), qφ(y∗z) >= 0,

and so qφ(x) = 0. Therefore U⊥φ = {0}, and so the left multiplication operators π`(qφ(x))
coincide with the operators πφ(x). It now suffices to show that the involution is closeable.
Recall that an operator is closeable if and only if it has a densely defined adjoint. We will
use the characterization of normality given in Theorem 3.2 to show that the domain of the
adjoint is large enough.

Theorem 3.12. Set Eφ = {ω ∈ M+
∗ : ω ≤ λφ for some λ > 0}. Then for ω ∈ Eφ there ex-

ists a vector ηω ∈ Hφ and a positive operator hω ∈ πφ(M)′ such that h
1/2
ω qφ(x) = πφ(x)ηω and

ω(x) =< πφ(x)ηω, ηω >.

Proof. Let ω ∈ Eφ. Since ω ≤ λφ for some λ > 0, this gives that for x, y ∈ nφ,

|ω(y∗x)| ≤ ω(x∗x)1/2ω(y∗y)1/2

≤ λφ(x∗x)1/2φ(y∗y)1/2,

so that there exists an operator hω ∈ B(Hφ) such that < hωqφ(x), qφ(y) >= ω(y∗x). More-
over, for any a ∈M we have

< hωπφ(a)qφ(x), qφ(y) = ω(y∗ax) >

= ω((a∗y)∗x)

=< hωqφ(x), qφ(a∗y) >

=< πφ(a)hωqφ(x), qφ(y) >,

so that hω ∈ πφ(M)′. Now let (πω,Hω, ξω) denote the cyclic representation associated to ω.
Then the same inequality ω ≤ λφ implies that the function qφ(x) 7→ πω(x)ξω is well-defined
and extends to a bounded operator tω : Hφ → Hω. That is, we have

‖πω(x)ξω‖2 = ω(x∗x) ≤ λφ(x∗x) = λ‖qφ(x)‖2.

Note that for any a ∈M we have

tωπφ(a)qφ(x) = tωqφ(ax)

= πω(ax)ξω

= πω(a)tωqφ(x),
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so that tωπφ(a) = πω(a)tω. Also note that for x ∈ nφ
< tωqφ(x), πω(y)ξω > =< πω(x)ξω, πω(y)ξω >

= ω(y∗x)

=< hωqφ(x), qφ(y) >

=< qφ(x), hωqφ(y) >,

so t∗ω(πω(y)ξω) = hωqφ(y) and t∗ωtω = hω. Now let tω = uωh
1/2
ω be the polar decomposition of

tω. For a ∈M, the above commutation relation for tω gives

πω(a)uωh
1/2
ω = uωh

1/2
ω πφ(a)

= uωπφ(a)h1/2
ω ,

so that πω(a)uω, uωπφ(a) agree on [h
1/2
ω H]. But uω vanishes on [h

1/2
ω H]⊥ and this space is

invariant under πφ(a) so that uωπφ(a) also vanishes on [h
1/2
ω H]⊥. Hence, πω(a)uω = uωπφ(a).

Set ηω = u∗ωξω ∈ Hφ. Then for x ∈ nφ, we have

πφ(x)ηω = πφ(x)u∗ωξω

= (uωπφ(x∗))∗ξω

= (πω(x∗)uω)∗ξω

= u∗ωπω(x)ξω

= u∗ωtωqφ(x)

= h1/2
ω qφ(x).

Moreover, if x = z∗y for y, z ∈ nφ, we have

< πφ(x)ηω, ηω > =< πφ(y)ηω, πφ(z)ηω >

=< h1/2
ω qφ(y), h1/2

ω qφ(z) >

= ω(x),

which completes the proof.

proof of Theorem 3.11. Retaining the notation from Lemma 3.12 we have that for
x ∈ nφ ∩ n∗φ, b ∈ πφ(M)′, ω1, ω2 ∈ Eφ,

< qφ(x)], h1/2
ω1
bηω2 > =< b∗h1/2

ω1
qφ(x∗), ηω2 >

=< b∗πφ(x)∗ηω1 , ηω2 >

=< b∗ηω1 , πφ(x)ηω2 >

=< b∗ηω1 , h
1/2
ω2
qφ(x) >

=< h1/2
ω2
b∗ηω1 , qφ(x) > .
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Therefore letting F denote the adjoint of ] we have that h
1/2
ω1 bηω2 ∈ D(F ) and

F (h
1/2
ω1 bηω2) = h

1/2
ω2 b

∗ηω1 . Hence to show that ] is closeable it suffices to show that the
set

{h1/2
ω1
πφ(M)′ηω2 : ω1, ω2 ∈ Φ}

is total in Hφ.

Claim: The net {hω : ω ∈ Φ} converges to 1 in the SOT. Hence for fixed ω2 ∈ Φ, the set

{h1/2
ω1 πφ(M)′ηω2 : ω1 ∈ Φ} is total in πφ(M)′η2.

Since the map ω 7→ hω is additive, the net {hω : ω ∈ Φ} is increasing. Then by Theo-
rem 3.2,

‖qφ(x)‖2 = φ(x∗x)

= sup
ω∈Φ

ω(x∗x)

= sup
ω∈Φ

< hωqφ(x), qφ(x) >,

proving the claim.

Claim: The set {πφ(M)ηω : ω ∈ Φ} is total in Hφ.

Let e be the projection onto the closed span of {πφ(M)ηω : ω ∈ Φ}. Then e ∈ πφ(M) and
(1 − e)ηω = 0 for every ω ∈ Φ. Now let f ∈ M be the projection such that πφ(f) = 1 − e.
Then

φ(f) = sup
ω∈Φ

ω(f)

= sup
ω∈Φ

< (1− e)ηω, ηω >

= 0.

Since φ is faithful, f = 0 so 1− e = 0, which completes the proof of the theorem.
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4 Left Hilbert Algebras and Tomita’s Theorem

In Section 3 we studied the GNS construction corresponding to an fns weight, and obtained
the important result that the adjoint acting on the representation space is closeable. In
this Section we continue the study of this representation space by considering the following
abstract characterization. The material for this Section is from Chapter 6 of [13].

Definition 4.1. Let U be a an associative algebra with a scalar-valued inner product < ·, · >
and an involution denoted ]. Let H be its Hilbert space completion. We say that U is a
left (right) Hilbert algebra if it satisfies the following.

1) For each ξ ∈ U the map η ∈ U 7→ ξη ∈ U (respectively, η ∈ U 7→ ηξ ∈ U) is continuous.
2) For ξ, η, ζ ∈ U , < ξη, ζ >=< η, ξ]ζ > (respectively, < ηξ, ζ >=< η, ζξ] >).
3) The involution ] is closable.
4) The set {ξη : ξ, η ∈ U} is total in H.

For each ξ ∈ U denote by π`(ξ) the extension of the left multiplication operator to
H. By property 2) we have < π`(ξ)η, ζ >=< η, π`(ξ

])ζ > so that π`(ξ)
∗ = π`(ξ

]). Con-
sequently π`(U) = {π`(ξ) : ξ ∈ U} is a ∗-subalgebra of B(H). Moreover, since the set
{ξη : ξ, η ∈ U} is total in H, the left-multiplication operators act non-degenerately on H,
and so π`(U)′′ = π`(U)−SOT . We call π`(U)′′ the left von Neumann algebra associated
to the left Hilbert algebra U , and denote it by R`(U). Analogously, if U is a right Hilbert
algebra, we write πr(ξ) for right multiplication operator, πr(U) for the set of all right mul-
tiplication operators, and write Rr(U) = πr(U)′′ the right von Neumann algebra associated
to U .

It was shown in Theorem 3.11 that if φ is an fns weight on a von Neumann algebra M,
then the the space Uφ = qφ(nφ ∩ n∗φ) is dense in the representation space Hφ, the set of left
multiplication operators generate πφ(M), and the adjoint is closeable. Therefore, Uφ is a
left Hilbert algebra.

Let U be a left Hilbert algebra, and let S be the closure of the involution. In the following
lemma we introduce two important operators arising from S. First we make a remark on
the use of the word involution. If a conjugate linear closed operator T satisfies T 2 = 1|D(T ),
and M ≤ D(T ) is a core for T such that M admits an algebra structure for which T |M is
an involution on M in the usual sense, then we will also say that T is an involution. The
context will make it clear what definition we are using.
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Lemma 4.2. The operator S is an involution and admits polar decomposition
S = J∆1/2 = ∆−1/2J where J is an isometric involution and ∆ is non-singular.

Proof. Let D] be the domain of S. If ξ ∈ D], then by definition there exists a sequence
{ξn} ⊆ U such that ‖ξ − ξn‖ → 0 and ‖Sξ − Sξn‖ → 0. But this immediately implies that
the sequence {(Sξn, ξn) = (Sξn, S

2ξn)} is Cauchy in the graph norm of S, so Sξ ∈ D] and
S2ξ = ξ.

Since S is non-singular, it follows immediately from the polar decomposition S = J∆1/2

that ∆ is non-singular and J is unitary. Moreover, since

J∆1/2 = S

= S−1

= (∆−1/2J)−1

= J−1∆1/2,

by the uniqueness of the polar decomposition we infer that J = J−1.

We call J,∆ respectively the modular conjugation and modular operator associated
with U . As noted at the end of Section 2, the fact that ∆ is injective means that we can unam-
biguously define the operator log(∆), and so obtain a one-parameter unitary group {∆it}t∈R
in H. This implements an automorphism group {σt}t∈R, on B(H) by σt(x) = ∆itx∆−it,
and we will show that this restricts to an action on R`(U). Moreover, the conjugation J
implements a ∗-anti-ismorphism between R`(U) and its commutant by a 7→ Ja∗J . As a first
step towards proving this we will come up with a description of the commutant of R`(U).

Definition 4.3. A vector η ∈ H is called right bounded if there exists x ∈ B(H) such that
xξ = π`(ξ)η for all ξ ∈ U . We write x = πr(η) and denote the subspace of all right bounded
vectors by B′.

The use the prime symbol in B′ is made in direct analogy to the commutant of a von
Neumann algebra. As to be expected, we will at some point define a set B of left bounded
vectors. Note that the operators π`(ξ), πr(η) where ξ ∈ U , η ∈ B′ commute, and since
π`(U) acts non-degenerately we conclude that πr(B′) ⊆ R`(U)′. For convenience, we extend
multiplication by defining

ξη = π`(ξ)η, for ξ ∈ U , η ∈ H;

ξη = πr(η)ξ, for ξ ∈ H, η ∈ B′.
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While the set πr(B′) might not be self-adjoint we can fix this dificiency if we consider the
operator F = S∗. Note that if η ∈ B′ ∩ D(F ), ξ, ζ ∈ U then

< πr(η)ξ, ζ > =< π`(ξ)η, ζ >

=< η, ξ]ζ >

=< η, S(ζ]ξ) >

=< ζ]ξ, Fη >

=< ξ, π`(ζ)Fη >,

so that πr(η)∗ζ = π`(ζ)Fη. Hence Fη is right bounded and πr(Fη) = πr(η)∗. By analogy
with the involution S we write D(F ) = D[, and set U ′ = B′ ∩ D[.

Lemma 4.4. The operator F = S∗ satisfies F 2 = 1|D[.

Proof. If η ∈ D[, ξ ∈ D] then

< Sξ, Fη > =< η, S2ξ >=< η, ξ >,

so that Fη ∈ D[ and F 2η = η.

Theorem 4.5. The set U ′ is a right Hilbert algebra with involution given by F |U ′. Moreover,
U ′ is dense in H and Rr(U ′) = R`(U)′.

This theorem will follow from a series of lemmas. To simplify notation we will often write
ξ], η[ in place of Sξ, Fη for ξ ∈ D], η ∈ D[.

Lemma 4.6.

1) For a ∈ R`(U)′, η ∈ B′, we have that aη ∈ B′ and πr(aη) = aπr(η). Hence B′ is
invariant under R`(U)′ and πr(B′) is a left ideal in R`(U)′.

2) For η1, η2 ∈ B′ we have πr(η1)∗η2 ∈ D[ and (πr(η1)∗η2)[ = πr(η2)∗η1. Hence,
πr(B′)∗B′ ⊆ U ′.

Proof.

1) Let a ∈ R`(U)′, η ∈ B′. Then for any ξ ∈ U we have

π`(ξ)aη = aπ`(ξ)η = aπr(η)ξ.

It follows that aη is right bounded and πr(aη) = aπr(η).

27



2) If η1, η2 ∈ B′ then for ξ ∈ U we have

< πr(η1)∗η2, ξ
] > =< η2, πr(η1)ξ] >

=< η2, π`(ξ
])η1 >

=< π`(ξ)η2, η1 >

=< πr(η2)ξ, η1 >

=< ξ, πr(η2)∗η1 > .

Since U is a core for S the result follows.

Since πr(U ′) is self-adjoint, part2) from Lemma 4.6 implies that

πr(U ′)U ′ ⊆ πr(B′)∗B′ ⊆ U ′,

and that for η, ζ ∈ U ′ we have (ηζ)[ = ζ[η[ so that U ′ is an involutive algebra with involution
given by [. Property 2) of Definition 4.1 also follows easily. We now want to show that U ′2
is dense in H. The strategy is to obtain a larger class of not necessarily bounded operators
affiliated to R`(U)′ by extending the definition of πr(η) to vectors η ∈ D[. We then apply
the functional calculus developed in Section 2.

Lemma 4.7. Let η ∈ D[. Define the operators a0, b0 on U by

a0ξ = π`(ξ)η, b0ξ = π`(ξ)η
[.

Then a0, b0 are preclosed and a0 ⊆ b∗0, b0 ⊆ a∗0. We denote their closures respectively by
πr(η), πr(η

[) and note that they are affiliated with R`(U)′. Moreover, η ∈ πr(η)H.

Proof. If ξ, ζ ∈ U , then we have

< a0ζ, ξ > =< π`(ζ)η, ξ >

=< η, π`(ζ)∗ξ >

=< η, (π`(ξ)
∗ζ)] >

=< π`(ξ)
∗ζ, η[ >

=< ζ, π`(ξ)η
[ >,

which is clearly bounded on U as a function in ζ. Hence ξ ∈ D(a∗0) and a∗0ξ = π`(ξ)η
[ = b0ξ.

Hence, b0 ⊆ a∗0 so that a0 is closable. Similarly, we have that b0 is closeable.

Note that if a∗0 is affiliated with R`(U)′, then since πr(η) = (a∗0)∗ and πr(η
[) = (b∗0)∗, for

any self-adjoint x ∈ R`(U), we will have

xπr(η) = x(a∗0)∗ = (a∗0x)∗ = (xa∗0)∗ = (a∗0)∗x = πr(η)x,
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and so πr(η) is also affiliated with R`(U)′. Then if ζ ∈ D(a∗0), x ∈ R`(U), ξ1, ξ2 ∈ U we have

< a0ξ1, π`(ξ2)ζ > =< π`(ξ1)η, π`(ξ2)ζ >

=< π`(ξ2)∗π`(ξ1)η, ζ >

=< a0ξ
]
2ξ1, ζ >

=< ξ1, π`(ξ2)a∗0ζ > .

Hence, π`(ξ2)ζ ∈ D(a∗0) and a∗0π`(ξ2)ζ = π`(ξ2)a∗0ζ. Now let x ∈ R`(U) and let {ξi} ⊆ U be
chosen such that π`(ξi)→ x in the SOT. Then for ζ ∈ D(a∗0) we have

lim
i
a∗0π`(ξi)ζ = lim

i
π`(ξi)a

∗
0ζ = xa∗0ζ

Since a∗0 is closed, xζ ∈ D(a∗0) and a∗0xζ = xa∗0ζ. On the other hand, if ζ ∈ H is chosen such
that xζ ∈ D(a∗0) and x is unitary, then ξ ∈ x∗D(a∗0) ⊆ D(a∗0), so that the above calculation
yields xa∗0ξ = a∗0xξ.

The last claim follows by choosing a net {π`(ξi)} in π`(U) converging to 1 in the SOT, so
that η = limi π`(ξi)η = limi πr(η)ξi.

Lemma 4.8. Let η ∈ D[, and let πr(η) = uh = ku be the left and right polar decompositions
of πr(η). If f ∈ Cc(0,∞) then f(h)η[, f(k)η are right-bounded and

πr(f(h)η[) = hf(h)u∗,

πr(f(k)η) = kf(k)u.

Proof. Let ξ ∈ U . Since πr(η) is affiliated with R`(U)′, by the Polar Decomposition Theorem
so are h, k and u ∈ R`(U ′). By Lemma 2.20, f(h), f(k) belong to R`(U)′. Then

π`(ξ)f(h)η[ = f(h)π`(ξ)η
[

= f(h)πr(η
[)ξ

= f(h)πr(η)∗ξ

= f(h)hu∗ξ

= hf(h)u∗ξ.

But hf(h) is bounded, and it follows that f(h)η[ is right-bounded and πr(f(h)η[) = hf(h)u∗.
The other part follows similarly.

Lemma 4.9. Both U ′,U ′2 are cores for F .

Proof.

Claim: Let f ∈ Cc(0,∞). With η, h, k be as before, we have f(h)η[, f(k)η ∈ U ′2.
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If p is any polynomial, it is clear that hp(h) = u∗kp(k)u. Then if K = supp f , we can
choose a sequence of polynomials pn such that f = lim χKpn. By the functional calculus it
follows that hf(h) = u∗kf(k)u. Then

hf(h) = u∗kf(k)u

= u∗πr(f(k)η)

= πr(u
∗f(k)η),

and similarly, kf(k) = πr(uf(h)η[) so that hf(h), kf(k) ∈ πr(B′).

Choose a function g ∈ Cc(0,∞) such that for any λ in the support of f we have
f(λ) = λg(λ)f(λ). Then f(h) = g(h)hf(h) and f(k) = g(k)kf(k), both of which lie in
πr(B′) since it is a left ideal in R`(U)′.

Now choose f1, f2 ∈ Cc(0,∞) such that f = f1f2. Then

f(h) = f1(h)∗f2(h) ∈ πr(B′)∗πr(B′) ⊆ πr(U ′).

Hence, we also have that f1(h), f2(h) ∈ πr(U ′) so that f(h) ∈ πr(U ′2). Moreover,

πr(f(h)η[) = πr(f 1(h)f2(h)η[)

= f 1(h)πr(f2(h)η[)

∈ πr(B′)∗πr(B′)
⊆ πr(U ′),

so f(h)η[ ∈ U ′. Repeating the last argument (noting that we now have that
f 1(h), πr(f2(h)η[) ∈ πr(U ′)) we see that f(h)η[ ∈ U ′2, and similarly f(k)η ∈ U ′2.

Let {fn} be a sequence of non-negative functions in Cc(0,∞) which increases pointwise to
χ(0,∞). By the Spectral Theorem, fn(h), fn(k) converge in the SOT to the range projections
p, q of h, k respectively. Then p and q are respectively the range projections for πr(η)∗ and
πr(η), and as shown in Lemma 4.7 we have η[ ∈ πr(η)∗H and η ∈ πr(η)H so that qη = η
and pη[ = η[. Hence η = qη = limn fn(k)η and η[ = pη[ = limn fn(h)η[, and by the claim we
have fn(k)η ∈ U ′2, fn(h)η[ = (fn(k)η)[, which completes the proof.

proof of Theorem 4.5. First note that since U ′2 is dense in H the operators πr(η) for η ∈ U ′
are precisely the operators obtained by right multiplication on U ′. We have πr(U ′) ⊆ R`(U)′,
so that Rr(U ′) = πr(U ′)′′ ⊆ R`(U)′. But by Lemma 4.9, πr(U ′) acts non-degenerately on H,
so it contains a bounded net {ai} which converges to 1 in the SOT. Then if x ∈ R`(U)′+,
we have that x1/2ai converges to x1/2 in the SOT, so that (x1/2ai)

∗(x1/2ai) converges to x
in the WOT. But (x1/2ai)

∗(x1/2ai) ∈ πr(B′)∗πr(B′) ⊆ πr(U ′), so that x ∈ Rr(U ′). Hence
R`(U)′ ⊆ Rr(U ′), completing the proof.
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The following lemma shows that our choice of U ′ is in fact as large as possible.

Lemma 4.10. We have that πr(U ′) = πr(B′) ∩ πr(B′)∗. That is, πr(U ′) is the set of right-
multiplication operators whose adjoint is also a right multiplication operator.

Proof.

Claim: The subspace U2 is a core for S.

Since U is a core for S it suffices to approximate ξ ∈ U in the graph norm of S. Assume
WLOG that ‖π`(ξ)‖ ≤ 1. Then setting pn(t) = 1− (1− t)n we have that

pn(π`(ξ)π`(ξ)
]) = pn(ξξ])

converges to the range projection of π`(ξ) in the SOT. Then

ξ = lim
n→∞

pn(ξξ])ξ,

and
ξ] = lim

n→∞
pn(ξ]ξ)ξ] = lim

n→∞
(pn(ξξ])ξ)],

which proves the claim.

Now suppose η1, η2 ∈ B′ such that πr(η1)∗ = πr(η2). Then for ξ1, ξ2 ∈ U , we have

< η1, ξ
]
1ξ2 > =< π`(ξ1)η1, ξ2 >

=< πr(η1)ξ1, ξ2 >

=< ξ1, πr(η2)ξ2 >

=< ξ]2ξ1, η2 >

=< (ξ]1ξ2)], η2 > .

But since U2 is a core for S, it follows that η1 ∈ D[ and η[1 = η2. Hence,

πr(B′) ∩ πr(B′)∗ ⊆ πr(U ′).

But by part 2) of Lemma 4.6, the reverse inclusion holds, so that πr(U ′) = πr(B′) ∩ πr(B′)∗.

We now have the dual version of Definition 4.3.

Definition 4.11. A vector ξ ∈ H is called left bounded if there exists x ∈ B(H) such that
xη = πr(η)ξ for all η ∈ U ′. We write x = π`(ξ) and denote the space of all left bounded
vectors by B.
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Setting U ′′ = B ∩D] the above arguments can easily be adapted to show that U ′′ is a left
Hilbert algebra containing U , and that

R`(U ′′) = Rr(U ′)′ = R`(U).

Moreover, U ′′ = U ′′′′. We say that a left Hilbert algebra is full if U = U ′′.

Let φ be an fns weight on a von Neumann algebra M. We have already seen that
Uφ = qφ(nφ ∩ n∗φ) is a left Hilbert algebra such thatM∼= R`(Uφ). Retaining the notation of

Lemma 3.12 we note that each vector ηω, ω ∈ Φ is right-bounded with πr(ηω) = h
1/2
ω . Then

if ξ ∈ Hφ is left-bounded, x = π`(ξ) we have

φ(x∗x) = sup
ω∈Φ

ω(x∗x)

= sup
ω∈Φ
‖πφ(x)ηω‖2

= sup
ω∈Φ
‖πr(ηω)ξ‖2

= sup
ω∈Φ
‖h1/2

ω ξ‖2

= ‖ξ‖2

<∞,

so x ∈ nφ. It follows that U ′′φ ⊆ nφ ∩ n∗φ = Uφ, so Uφ is full.

It will be convenient for the rest of this Section to assume all left Hilbert algebras are full.
We now come to the main theorem of this Section.

Theorem 4.12 (Tomita’s Theorem). Let U be a full left Hilbert algebra with associated left
von Neumann algebra R`(U), modular operator ∆, and modular conjugation J . Then we
have the following:

1) for all t ∈ R, ∆itR`(U)∆−it = R`(U), and ∆itU = U ,∆itU ′ = U ′;
2) JR`(U)J = R`(U)′ and JU = U ′.

The proof will follow from a series of Lemmas. We begin by showing how the operator ∆
acts as a map from U ′ into U .

Lemma 4.13. Let ω ∈ C− [R+ ∪ {0}] and set γ(ω) = 1√
2(|ω|−Re ω)

. Then (∆− ω)−1U ′ ⊆ U

and for η ∈ U ′ we have ‖π`((∆− ω)−1η)‖ ≤ γ(ω)‖πr(η)‖.

Proof. First note that ξ = (∆− ω)−1η ∈ D(∆− ω) ⊆ D]. Now let π`(ξ) = uh = ku be the
left, right polar decompositions of π`(ξ) respectively, and let h =

∫
λdE(λ) be the spectral

decomposition of h. As shown in the proof of Lemma 4.9, for any f ∈ Cc(0,∞) we have
f(k)ξ ∈ U and (f(k)ξ)] = f(h)ξ].
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Claim: We have the estimate ‖hf(h)ξ]‖2 ≤ γ(ω)2‖πr(η)‖2‖‖f(h)ξ]‖2, and therefore the
measure Eξ] is supported on the interval [0, c], where c = γ(ω)‖πr(η)‖. In particular,
ξ] ∈ E([0, c])H.

To see this we note that

‖hf(h)ξ]‖2 =< hf(h)ξ], hf(h)ξ] >

=< ξ], hf(h)hf(h)ξ] >

=< ξ], (kf(k)kf(k)ξ)] >

=< kf(k)kf(k)ξ,∆ξ >

=< kf(k)ξ, kf(k)∆ξ > .

Since the last term must be a real number, we have

2(|ω| − Re(ω))‖hf(h)ξ]‖2

≤ 2‖kf(k)ωξ‖‖kf(k)∆ξ‖ − 2Re(< kf(k)ωξ, kf(k)∆ξ >)

= ‖kf(k)(ω −∆)ξ‖2 − (‖kf(k)ωξ‖+ ‖kf(k)∆ξ‖)2

≤ ‖kf(k)(∆− ω)ξ‖2

= ‖kf(k)η‖2

= ‖f(k)kη‖2

= ‖f(k)uπ`(ξ
])η‖2

= ‖f(k)uπr(η)ξ]‖2

= ‖πr(η)u∗f(h)ξ]‖2

≤ ‖πr(η)‖2‖f(h)ξ]‖2,

and so we have the inequality. But this means precisely that for any f ∈ Cc(0,∞),∫ ∞
0

λ2f(λ)2dEξ](λ) ≤ c2

∫ ∞
0

f(λ)2dEξ](λ),

and hence, the measure Eξ] must be supported on the interval [0, c]. In particular, we have

‖ξ]‖2 =< E[0,∞]ξ], ξ] >=

∫ ∞
0

1dEξ] =

∫ c

0

1dEξ] =< E[0, c]ξ], ξ] >= ‖E[0, c]ξ]‖2

so that E[0, c]ξ] = ξ].
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But E([0, c]) ∈ R`(U) and since ‖h|E([0,c])H‖ ≤ c, for ζ ∈ U ′ we have

‖πr(ζ)ξ]‖ = ‖πr(ζ)E([0, c])ξ]‖
= ‖E([0, c])πr(ζ)ξ]‖
= ‖E([0, c])π`(ξ

])ζ‖
= ‖E([0, c])hu∗ζ‖
= ‖hE([0, c])u∗ζ‖
≤ c‖ζ‖.

Thus ξ] is left-bounded. Hence ξ ∈ U .

The above lemma shows that for fixed η ∈ U ′ we have a function s ∈ R 7→ (∆ + es)η ∈ U .
We now show how the operators πr(η) ∈ R`(U)′ and π`((∆ + es)η) ∈ R`(U) are related.

Lemma 4.14. Let η ∈ U ′, s ∈ R. Setting ξ = (∆ + es)−1η ∈ U , we have that for any
ζ1, ζ2 ∈ D] ∩ D[,

< πr(η)ζ1, ζ2 >=< (Jπ`(ξ
])J)∆−1/2ζ1,∆

1/2ζ2 > +es < (Jπ`(ξ
])J)∆1/2ζ1,∆

−1/2ζ2 > .

Proof. First suppose ζ1, ζ2 ∈ U ∩ D[. Then

< πr(η)ζ1, ζ2 > =< πr((∆ + es)ξ)ζ1, ζ2 >

=< π`(ζ1)∆ξ, ζ2 > +es < π`(ζ1)ξ, ζ2 > .

Working with the first term, we have

< π`(ζ1)∆ξ, ζ2 > =< ξ][, ζ]1ζ2 >

=< ζ]2ζ1, ξ
] >

=< ζ1, ζ2ξ
] >

=< ζ1, (ξζ
]
2)] >

=< ζ1,∆
−1/2Jπ`(ξ)∆

1/2ζ2 >

=< Jπ`(ξ
])J∆−1/2ζ1,∆

1/2ζ2 >,

and similarly, we have

< π`(ζ1)ξ, ζ2 >=< (Jπ`(ξ
])J)∆1/2ζ1,∆

−1/2ζ2 > .

Therefore, in order to complete the proof we need to be able to approximate an arbitrary
vector ζ ∈ D] ∩ D[ with a sequence {ζn} in U ∩ D[ converging to ζ simultaneously in the
graph norms of ∆1/2 and ∆−1/2. First, note that

JU ′ = JFU ′ = J(J∆−1/2)U ′ = ∆−1/2U ′,
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so that ∆−1/2U ′ is dense in H. Hence, we can choose a sequence {ηn} in U ′ such that

(∆1/2 + ∆−1/2)ζ = lim
n→∞

∆−1/2ηn.

Then ζn = (1 + ∆)−1ηn ∈ U ∩ D[, and simple calculations show that we have

ζ = lim
n→

ζn, ∆1/2ζ = lim
n→

∆1/2ζn, ∆−1/2ζ = lim
n→

∆−1/2ζn.

To avoid issues of domain, for the moment we will suppose that ∆ is bounded and invert-
ible. Then the above relation implies

πr(η) = ∆1/2(Jπ`(ξ)
∗J)∆−1/2 + es∆−1/2(Jπ`(ξ)

∗J)∆1/2.

For α ∈ C consider the operator σα ∈ B(B(H)) given by

σα(x) = ∆iαx∆−iα.

The above calculation says that

πr(η) = [σ−i/2 + esσi/2](Jπ`(ξ)
∗J.)

In other words, we have the equation

π`(S(es + ∆)−1η) = J [(σ−i/2 + esσi/2)−1(πr(η))]J.

The following proposition sheds some light on the nature of this equation.

Proposition 4.15. Let A be a unital Banach algebra, and let u : C → GL(A) be a holo-
morphic group homomorphism such that supt∈R ‖u(t)‖ = M <∞. Then for any s ∈ R, the
element e−s/2u(−i/2) + es/2u(i/2) is invertible and

[e−s/2u(−i/2) + es/2u(i/2)]−1 =

∫ ∞
−∞

e−ist

eπt + e−πt
u(t)dt.

Proof. Set f(α) = eisα

eπα−e−παu(α). Then f is holomorphic on its domain D = C − iZ and if
α = t+ ir we have the following estimate:

‖f(α)‖ = ‖ eiste−sr

eπteiπr − e−πte−iπr
u(t)u(ir)‖

≤Me−sr
1

|eπteiπr − e−πte−iπr|
‖u(ir)‖.
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For t 6= 0, this gives

‖f(α)‖ ≤Me−sr
1

||eπt| − |e−πt||
‖u(ir)‖.

Now let R > 0 and consider the boundary of the rectangular region

cR = {α ∈ C : |Re(α)| ≤ R, |Im(α)| ≤ 1/2}

given a counterclockwise orientation. From the above estimate, we have

‖
∫ 1/2

−1/2

f(R + ir)dr‖ ≤MKe−s
1

||eπR| − 1||
,

and

‖
∫ −1/2

1/2

f(−R + ir)dr‖ ≤MKe−s
1

||eπR| − 1||
,

where K = sup−1/2≤r≤1/2 ‖u(ir)‖. Letting R → ∞, the integral of f on the left/right sides
of the rectangle converges to 0. Moreover, from the above estimate it is easy to see that the
integrals

∫∞
−∞ f(t+ i/2)dt,

∫∞
−∞ f(t− i/2)dt exist and are finite, and that∫ ∞

−∞
f(t− i/2)dt−

∫ ∞
−∞

f(t+ i/2)dt = lim
R→∞

∫
cR

f(α).

Now, since

lim
α→0

eπα − e−πα

α
= πeπ0 − (−πe−π0) = 2π,

we have

lim
α→0

αf(α) = lim
α→0

α
e−isα

eπα − e−πα
u(α) = 1/2π.

Hence f has a simple pole at 0, with residue 1/2π. By the residue theorem, for any R > 0,
we have

∫
cR
f(α) = i, and so∫ ∞

−∞
f(t− i/2)dt−

∫ ∞
−∞

f(t+ i/2)dt = i.

But writing this out, we have

i =

∫ ∞
−∞

eis(t−i/2)

eπ(t−i/2) − e−π(t−i/2)
u(t− i/2)dt−

∫ ∞
−∞

eis(t+i/2)

eπ(t+i/2) − e−π(t+i/2)
u(t+ i/2)dt

=

∫ ∞
−∞

[
eistes/2

(−i)(eπt + e−πt)
u(t)u(−i/2))− eiste−s/2

i(eπt + e−πt)
u(t)u(i/2)]dt

= i[es/2u(−i/2) + e−s/2u(i/2)]

∫ ∞
−∞

eistu(t)

eπt + e−πt
dt.

Replacing s with −s gives the desired result.

36



Corollary 4.16. If x, y ∈ B(H), s ∈ R are chosen such that for all ζ1, ζ2 ∈ D] ∩D[ we have

< xζ1, ζ2 >=< y∆−1/2ζ1,∆
1/2ζ2 > +es < y∆1/2ζ1,∆

−1/2ζ2 >,

then

y = e−s/2
∫ ∞
−∞

e−ist

eπt + e−πt
∆itx∆−itdt.

In particular, if η ∈ U ′, we have

π`((∆ + es)−1η)∗ = e−s/2
∫ ∞
−∞

e−ist

eπt + e−πt
J∆itπr(η)∆−itJdt.

Proof. Let ∆ =
∫
λdE(λ) be the spectral resolution of ∆, and for each r > 0 set

E(r) = E[1/r, r]. Consider the one-parameter holomorphic subgroup {σα : α ∈ C} of
B(B(E(r)H)) given by σα(a) = ∆iαa∆−iα. Then since E(r)ζ1, E(r)ζ2 ∈ D] ∩ D[, we have

< E(r)xE(r)ζ1, ζ2 > =< xE(r)ζ1, E(r)ζ2 >

=< y∆−1/2E(R)ζ1,∆
1/2E(r)ζ2 > +es < y∆1/2E(r)ζ1,∆

−1/2E(r)ζ2 >

=< ∆1/2E(r)yE(R)∆−1/2ζ1, ζ2 > +es < ∆−1/2E(r)yE(r)∆1/2ζ1, ζ2 >

=< [σ1/2(E(r)yE(r)) + esσ−1/2(E(r)yE(r))]ζ1, ζ2 > .

Hence,

E(r)xE(r) = σ1/2(E(r)yE(r)) + esσ−1/2(E(r)yE(r))

= es/2(e−s/2σ1/2 + es/2σ−1/2)(E(r)yE(r)),

or equivalently,

es/2E(r)yE(r) = (e−s/2σ1/2 + es/2σ−1/2)−1(E(r)xE(r)).

By Proposition 4.15,

(e−s/2σ1/2 + es/2σ−1/2)−1 =

∫ ∞
−∞

e−ist

eπt + e−πt
σtdt,

so that

es/2E(r)yE(r) =

∫ ∞
−∞

e−ist

eπt + e−πt
∆itE(r)xE(r)∆−itdt.

Taking the limit in the SOT as r →∞ gives the desired result.
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We can now prove part of Tomita’s Theorem. Corollary 4.16 says that for any η ∈ U ′,
ζ1, ζ2 ∈ D] ∩ D[, we have

< Jπ`((∆ + es)−1η)∗Jζ1, ζ2 >= e−s/2
∫ ∞
−∞

e−ist

eπt + e−πt
< ∆itπr(η)∆−itζ1, ζ2 > dt.

Since D] ∩D[ is dense in H, the linear functionals of the form ωζ1,ζ2 for ζ1, ζ2 ∈ D] ∩D[ are
total in B(H)∗. Hence, if ω ∈ B(H)∗, the above calculation implies that

ω(Jπ`((∆ + es)−1η)∗J) = e−s/2
∫ ∞
−∞

e−ist

eπt + e−πt
ω(∆itπr(η)∆−it)dt.

In particular, if ω ∈ B(H)∗ vanishes on JR`(U)′J , then∫ ∞
−∞

e−ist

eπt + e−πt
ω(∆itπr(η)∆−it)dt = 0.

By the uniqueness of the Fourier transform, and since the function t 7→ 1
eπt+e−πt

is non-

vanishing, it follows that ω(∆itπr(η)∆−it) = 0. Since πr(U ′) is σ-weakly dense in R`(U)′ we
also have ω(∆itx∆−it) = 0 for all x ∈ R`(U)′. Therefore,

∆itR`(U)′∆−it ⊆ JR`(U)J.

For t = 0, this gives R`(U)′ ⊆ JR`(U)J . By symmetry, we also have that

∆itR`(U)∆−it ⊆ JR`(U)′J.

Again, using t = 0, this gives that R`(U) ⊆ JR`(U)′J , and therefore R`(U) = JR`(U)′J ,
and ∆itR`(U)∆−it ⊆ R`(U). Since this holds for all t, we have in fact have

∆itR`(U)∆−it = R`(U).

To finish the proof, we need to look at what is happening at the level of the Hilbert space,
and for that we consider the following result.

Corollary 4.17. Let s ∈ R. Then

es/2∆1/2(∆ + es)−1 =

∫ ∞
−∞

e−ist

eπt + e−πt
∆itdt.
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Proof. Letting u be as in Proposition 4.15, we first note that

e−s/2u(−i/2) + es/2u(i/2) = es/2u(−i/2)(u(−i) + es).

Let E(r) be as in the proof of Corollary 4.16. Then ∆|E(r) is a positive, bounded, injective
operator on B(E(r)H), so that {(∆E(r))iα : α ∈ C} is a one-parameter, holomorphic
subgroup of GL(B(E(r)H)) satisfying the conditions of Proposition 4.15. Hence,

es/2(∆|E(r))
1/2(∆|E(r) + es)−1 =

∫ ∞
−∞

e−ist

eπt + e−πt
(∆|E(r))

itdt.

Since E(r)H is reducing for ∆iα, we in fact have

E(r)es/2∆1/2(∆ + es)−1 = E(r)

∫ ∞
−∞

e−ist

eπt + e−πt
∆itdt.

Since E(r) converges to 1 in the SOT as r →∞, the result follows.

We now finish the proof of Tomita’s Theorem. Recall that for fixed η ∈ U ′, we have a
function s ∈ R 7→ S(∆+es)−1η ∈ U . We can rewrite this as S(∆+es)−1η = J∆1/2(∆+es)−1η,
so that by Corollary 4.17, for ζ ∈ U ′ we have

π`(J∆1/2(∆ + es)−1η)ζ = πr(ζ)J∆1/2(∆ + es)−1η

= e−s/2
∫

e−ist

eπt + e−πt
πr(ζ)J∆itη.

On the other hand, from before we had

π`(J∆1/2(∆ + es)−1η)ζ = e−s/2
∫ ∞
−∞

e−ist

eπt + e−πt
J∆itπr(η)∆−itJζdt.

We conclude by the uniqueness of the Fourier transform, and from the fact that t 7→ 1
eπt+e−πt

is non-vanishing, that
πr(ζ)J∆itη = J∆itπr(η)∆−itJζ.

Therefore, J∆itη is left-bounded and π`(J∆itη) = J∆itπr(η)∆−itJ . Moreover, since
π`(J∆itη)∗ = J∆itπr(η

[)∆−itJ = π`(J∆itη[), it follows that

π`(J∆itη) ∈ πr(B) ∩ πr(B)∗ = πr(U),

so that J∆itU ′ ⊆ U . By replacing the roles of U and U ′, we have J∆itU ⊆ U ′. Setting
t = 0, and combining these containments, gives JU ′ = U which in turn gives ∆itU = U and
∆itU ′ = U ′.

We summarize below some useful computational formulas that arose in the proof.
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Corollary 4.18. For ξ ∈ U , η ∈ U ′, t ∈ R we have:

1) π`(∆
itξ) = ∆itπ`(ξ)∆

−it;
2) π`(∆

itη) = ∆itπ`(η)∆−it;
3) πr(Jξ) = Jπ`(ξ)J ;
4) π`(Jη) = Jπr(η)J .

These equations will be useful in Section 5 when we look at analytic functions coming
from this one-parameter automorphism group. More specifically, we can derive a relation
between holomorphic functions of the form α 7→ ∆iαξ for ξ ∈ U , and those of the form
α 7→ σα(x) for x ∈ R`(U).
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5 Modular Condition of a Weight

Let M be a von Neumann algebra with an fns weight φ. Then we can identify M
isomorphically with the left von Neumann algebra R`(Uφ) of the full left Hilbert algebra
Uφ = qφ(nφ∩n∗φ). If we let ∆ be the modular operator associated with Uφ, then by Tomita’s
Theorem, for all t ∈ R, x ∈ M we have ∆itx∆−it ∈ M so that we can define an action on
M by t ∈ R 7→ σφt = Ad(∆it). We call σφ the modular automorphism group associated
to the weight φ. In this Section we explore the relationship between φ and σφ. The material
follows Chapter 8 of [13]. Lemma 5.20 follows the proof given in Section 3.6 of [9].

Let D = {α ∈ C : 0 ≤ Im(α) ≤ 1}, and define A(D) to be the set of functions which are
bounded, continuous on D and holomorphic on the interior of D.

Definition 5.1. Let φ be an fns weight on M, and let {αt : t ∈ R} be a one-parameter
automorphism group of M. Then φ satisfies the modular condition with respect to α if
the following conditions hold.

1) The weight φ is invariant under α. That is, φ = φ ◦ αt for every t ∈ R.
2) For each x, y ∈ nφ ∩ n∗φ there exists Fx,y ∈ A(D) satisfying the boundary condition for
t ∈ R,

Fx,y(t) = φ(αt(x)y), Fx,y(t+ i) = φ(yαt(x))

Condition 2) says that φ satisfies a trace-like condition with respect to the action in the
sense that the function Fx,y relates φ(αt(x)y) with φ(yαt(x)).

The importance of the modular condition in applications lies in the following theorem.

Theorem 5.2. Let M be a von Neumann algebra and let φ be an fns weight on M. Then
the modular automorphism group {σφt } is the unique one-parameter automorphism group on
M satisfying the modular condition with respect to φ.

Proof. By Tomita’s theorem we know that σφt (nφ ∩ n∗φ) = nφ ∩ n∗φ, and since

mφ = n∗φnφ = (nφ ∩ n∗φ)2,

we also have that σφt (mφ) = mφ. If x, y ∈ nφ ∩ n∗φ, we have

φ(σφt (y∗x)) =< ∆itqφ(x),∆itqφ(y) >

=< qφ(x), qφ(y) >

= φ(y∗x),
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and so φ is σφ-invariant.

Let ξ, η ∈ Uφ and set x = π`(ξ), y = π`(η). Then by Corollary 4.18,

φ(σφt (x)y) = φ(π`(∆
itξ)π`(η))

=< η,∆itξ] >

=< ∆it+1ξ, η] >

=< ∆
−i
2

(−t+i)ξ,∆
i
2

(−t−i)η] >,

φ(yσt(x)) = φ(π`(η)π`(∆
itξ))

=< ∆itξ, η] >

=< ∆
−i
2

(−t)ξ,∆
i
2

(−t)η] > .

Therefore the function F (α) =< ∆
−i
2

(−α+i)ξ,∆
i
2

(−α−i)η] > satisfies the necessary bound-
ary conditions. The fact that F ∈ A(D) follows from Lemma 2.30 and the fact that
ξ, η ∈ D(∆1/2).

Now suppose that {αt}t∈R is another one-parameter automorphism group satisfying the
modular condition with respect to φ. For t ∈ R, x ∈ nφ, define utqφ(x) = qφ(αt(x)). Then
since φ is αt-invariant it follows that αt(nφ) = nφ, and

‖qφ(αt(x))‖2 = φ(αt(x
∗x)) = φ(x∗x) = ‖qφ(x)‖2,

so ut is well-defined and extends to a unitary on Hφ, also denoted by ut. Let x ∈ nφ ∩ n∗φ,
and let Fx∗,x ∈ A(D) be the function satisfying the modular condition for x∗ and x. Then

lim
t→0
‖utqφ(x)− qφ(x)‖2 = lim

t→0
[Fx∗,x(0)− Fx∗,x(t)− Fx∗,x(t+ i) + Fx∗,x(i)] = 0.

Hence utqφ(x) → qφ(x) for any x ∈ nφ ∩ n∗φ, and since the {ut} are uniformly bounded and
qφ(nφ ∩ n∗φ) is dense in Hφ, we conclude that the family {ut}t∈R is SOT continuous. By
Stone’s Theorem, there exists a self-adjoint operator K on Hφ such that ut = eitK . To finish
the proof, we need to show that ∆ = eK , for then we will have that for x ∈ nφ ∩ n∗φ,

αt(x) = π`(qφ(αt(x))) = π`(utqφ(x)) = σφt (x).

The result then follows since σφt and αt are continuous in the σ-WOT.

Claim: Each ut commutes with S, J and ∆. Therefore ∆ commutes with the spectral
projections of K.

For x ∈ nφ ∩ n∗φ, we have

Sutqφ((x)) = Sqφ(αt(x))

= qφ(αt(x
∗))

= utSqφ(x).
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Since Uφ is a core for S, Sut = utS as shown in the proof of Lemma 2.20. By polarizing we
have

< ∆1/2utqφ(x),∆1/2utqφ(y) > =< Sutqφ(y), Sutqφ(x) >

=< utSqφ(y), utSqφ(x) >

=< Sqφ(y), Sqφ(x) >

=< ∆1/2qφ(x),∆1/2qφ(y) >,

so again we have ∆1/2ut = ut∆
1/2. By Corollary 2.27, ∆1/2 is affiliated with the von Neumann

algebra generated by the spectral projections of K, so that by Lemma 2.20, ∆ is as well.
Lastly,

Jutqφ(x) = JS2utqφ(x) = ∆1/2utSqφ = ut∆
1/2Sqφ = utJS

2qφ(x) = utJqφ(x),

completing the proof of the claim.

For x, y ∈ nφ ∩n∗φ let Fx,y ∈ A(D) be the function satisfying the modular condition for α.
By definition we have

Fx,y(t) = φ(αt(x)y)

=< qφ(y), Sutqφ(x) >

=< qφ(y), utSqφ(x) >

=< u∗t qφ(y), Sqφ(x) >,

Fx,y(t+ i) = φ(yαt(x))

=< utqφ(x), Sqφ(y) >

=< JSqφ(y), Jutqφ(x) >

=< ∆1/2qφ(y), utJqφ(x) >

=< u∗t∆
1/2qφ(y),∆1/2Sqφ(x) >

=< ∆1/2u∗t qφ(y),∆1/2Sqφ(x) > .

Then for elements ξ, η ∈ D], we choose sequences {ξn}, {ηn} ⊆ Uφ which converge to ξ, η in
the graph norm of S and functions Fn ∈ A(D) satisfying the boundary conditions

Fn(t) =< u∗tηn, ξ
]
n >, Fn(t+ i) =< ∆1/2u∗tηn,∆

1/2ξ]n > .

The sequence {Fn} is uniformly Cauchy on the boundary and these functions are bounded
on the strip, so by the Phragmen-Lindelof Theorem they converge uniformly everywhere to
some function Fξ,η ∈ A(D) satisfying the boundary conditions

Fξ,η(t) =< u∗tη, ξ
] >, Fξ,η(t+ i) =< ∆1/2u∗tη,∆

1/2ξ] > .
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Now let K =
∫
λdE(λ) be the spectral decomposition of K, and set En = E[−n, n]. Let

D0 =
⋃∞
n=1EnD]. Then for ξ ∈ D], η ∈ EnD], we have

Fξ,η(t) =

∫ n

−n
e−itλdEη,ξ] .

Hence Fξ,η has a unique entire extension satisfying

Fξ,η(t+ i) =

∫
e−i(t+i)λdEη,ξ]

=< eKu∗tη, ξ
] > .

With t = 0, this gives < ∆1/2η,∆1/2ξ] >=< eKη, ξ] >, so that D0 ⊆ D(∆) and for any
η ∈ D0, we have ∆η = eKη. If we can show that D0 is a common core for both operators,
it will follow that ∆ = eK . From the claim we have that ∆ commutes with each En. Then
since En → 1 in the SOT, for any ξ ∈ D(∆), we have

lim
n→∞

Enξ = ξ, lim
n→∞

∆Enξ = lim
n→∞

En∆ξ = ∆ξ,

so ξn → ξ in the graph norm of ∆. Therefore D0 is a core for ∆. From the Spectral Theorem
we know that ∪∞n=1EnH is a core for eK . Since 1 + eK is self-adjoint and injective, it follows
that (1 + eK)EnD] is dense in EnH. Then given ξ ∈ EnH we can choose a sequence {ξm} in
EnD] such that (1 + eK)Enξm → ξ. Moreover, (1 + eK)|EnH is bounded, invertible, so that
ξm → ξ, and consequently we also have eKξm → eKξ. Hence D0 is also a core for eK .

The uniqueness coming from the modular condition immediately gives the following corol-
lary.

Corollary 5.3. Let φ be an fns weight on M, θ ∈ Aut(M). Then σφ◦θt = θ−1 ◦ σφt ◦ θ.

Proof. By the σφ-invariance of φ, for x ∈M+, we have

φ ◦ θ(θ−1 ◦ σφt ◦ θ(x)) = φ ◦ (σφt ◦ θ(x))

= φ ◦ θ(x),

so φ ◦ θ is θ−1 ◦ σφt ◦ θ-invariant. If x, y ∈ nφ◦θ = θ−1nφ, and if Fθ(x),θ(y) ∈ A(D) satisfies the
boundary conditions for θ(x), θ(y) with respect to σφ, then for t ∈ R,

Fθ(x),θ(y)(t) = φ(σφt (θ(x))θ(y)) = φ ◦ θ(θ−1σφt θ(x)y),

Fθ(x),θ(y)(t+ i) = φ(θ(y)σφt (θ(x))) = φ ◦ θ(yθ−1σφt θ(x)),

so Fθ(x),θ(y) satisfies the boundary conditions for x, y with respect to θ−1σφθ. By Theorem 5.2,

σφ◦θt = θ−1 ◦ σφt ◦ θ.
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We will now explore various applications of the uniqueness of the modular condition. We
continue by considering the problem of relating the modular automorphism groups of two
fns weight φ, ψ on M, which results in the Connes Cocycle Derivative Theorem. Roughly
speaking, it is a uniqueness result for modular automorphism groups which will become
crucial when we study von Neumann algebra crossed products in Section 7.

Consider the von Neumann algebra N = M⊗M2(C) and define the function ρ on N+

by

ρ

(
x1,1 x1,2

x2,1 x2,2

)
= φ(x1,1) + ψ(x2,2).

Lemma 5.4. The function ρ defines an fns weight on N such that

nρ = {
(
x1,1 x1,2

x2,1 x2,2

)
∈ N : x1,1, x2,1 ∈ nφ, x1,2, x2,2 ∈ nψ}.

Proof. Let x ∈ N be as above and note that the (1, 1)-entry of x∗x is x∗1,1x1,1 + x∗2,1x2,1 and
the (2, 2)-entry is x∗1,2x1,2 +x∗2,2x2,2, which immediately give the identification of nρ as above.
Moreover we infer that ρ(x∗x) = 0 if and only if x∗x = 0 by the faithfulness of φ, ψ, so that
ρ is faithful.

To see that ρ is normal, note that by Theorem 3.2,

ρ(x) = φ(x1,1) + ψ(x2,2)

= sup
ω≤φ

ω(x1,1) + sup
ω′≤ψ

ω′(x2,2)

= sup
ω≤φ,ω′≤ψ

ω(x1,1) + ω′(x2,2)

≤ sup
ω′′≤ρ

ω′′(x).

Since the reverse inequality is clear, we have that ρ is normal.

To see that ρ is semifinite, let {xi} ⊆ mφ, {yj} ⊆ mψ be monotone increasing nets which
converge to 1M in the SOT. Then for each i and j, we have xi ⊗ e1,1 + yj ⊗ e2,2 ∈ mρ and
the net {xi ⊗ e1,1 + yj ⊗ e2,2} converges to 1N in the SOT.

We will now identify the operators S, F,∆, J associated to the left Hilbert algebra
Uρ = qρ(nρ ∩ n∗ρ), with the goal of finding an intertwining operator for the representations
πφ, πψ. Using the previous lemma,

nρ ∩ n∗ρ = {
(
x1,1 x1,2

x2,1 x2,2

)
∈ N : x1,1 ∈ nφ ∩ n∗φ, x2,1 ∈ nφ ∩ n∗ψ, x1,2 ∈ n∗φ ∩ nψ, x2,2 ∈ nψ ∩ n∗ψ}.
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Note that if x, y ∈ nρ, then

< x, y > = ρ(y∗x)

= φ(y∗1,1x1,1) + φ(y∗2,1x2,1) + ψ(y∗1,2x1,2) + ψ(y∗2,2x2,2),

so that we have an orthogonal direct sum

Hρ = [nφ ∩ n∗φ ⊗ e1,1]− ⊕ [nφ ∩ n∗ψ ⊗ e2,1]− ⊕ [nψ ∩ n∗φ ⊗ e1,2]− ⊕ [nψ ∩ n∗ψ ⊗ e2,2]−

= H1 ⊕H2 ⊕H3 ⊕H4.

Hence we can represent operators on Hρ using 4 × 4 matrices preserving the above decom-
position. Now the involution S is the closure of the operator on nρ ∩ n∗ρ given by(

x1,1 x1,2

x2,1 x2,2

)
7→
(
x∗1,1 x∗2,1
x∗1,2 x∗2,2

)
,

so that the involutions have matrices of the form

S =


Sφ 0 0 0
0 0 Sφ,ψ 0
0 Sψ,φ 0 0
0 0 0 Sψ

 , F =


S∗φ 0 0 0
0 0 S∗ψ,φ 0
0 S∗φ,ψ 0 0
0 0 0 S∗ψ

 .

The modular operator and modular conjugation associated to ρ are then given by

∆ =


S∗φSφ 0 0 0

0 S∗ψ,φSψ,φ 0 0
0 0 S∗φ,ψSφ,ψ 0
0 0 0 S∗ψSψ

 =


∆φ 0 0 0
0 ∆ψ,φ 0 0
0 0 ∆φ,ψ 0
0 0 0 ∆ψ

 ,

J =


Jφ 0 0 0
0 0 Jφ,ψ 0
0 Jψ,φ 0 0
0 0 0 Jψ

 .

For x ∈ N , we can write

πρ(x) =


πφ(x1,1) πφ(x1,2) 0 0
πφ(x2,1) πφ(x2,2) 0 0

0 0 πψ(x1,1) πψ(x1,2)
0 0 πψ(x2,1) πψ(x2,2)

 ,
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so that in particular,

Jπρ

(
0 1
1 0

)
J =


Jφ 0 0 0
0 0 Jφ,ψ 0
0 Jψ,φ 0 0
0 0 0 Jψ




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



Jφ 0 0 0
0 0 Jφ,ψ 0
0 Jψ,φ 0 0
0 0 0 Jψ



=


Jφ 0 0 0
0 0 Jφ,ψ 0
0 Jψ,φ 0 0
0 0 0 Jψ




0 0 Jφ,ψ 0
Jφ 0 0 0
0 0 0 Jψ
0 Jψ,φ 0 0



=


0 0 JφJφ,ψ 0
0 0 0 Jφ,ψJψ

Jψ,φJφ 0 0
0 JψJψ,φ 0 0

 .

But this operator belongs to πρ(N )′, so that for x ∈ N we have

JφJφ,ψπψ(x1,1) = [(Jπρ

(
0 1
1 0

)
J)πρ(x)]1,3 = [πρ(x)(Jπρ

(
0 1
1 0

)
J)]1,3 = πφ(x1,1)JφJφ,ψ.

Therefore Uφ,ψ = JφJφ,ψ is an isomorphism of Hψ onto Hφ such that for x ∈M we have

πφ(x) = Uφ,ψπψ(x)U∗φ,ψ.

Identifying these representations, we write

πρ(x) =


x1,1 x1,2 0 0
x2,1 x2,2 0 0
0 0 x1,1 x1,2

0 0 x2,1 x2,2

 .

In particular we have a diagonal representation of N of multiplicity 2, and since the op-
erator ∆ is diagonal, we only need to consider the first two diagonal entries to define the
automorphisms σρt . That is, if we write σφ,ψt (x) = ∆it

φx∆−itψ,φ and σψ,φt (x) = ∆it
ψ,φx∆−itφ , we

have

σρt

[(
x1,1 x1,2

x2,1 x2,2

)]
=

(
σφt (x1,1) σφ,ψt (x1,2)

σψ,φt (x2,1) σψt (x2,2)

)
.

Set ut = σφ,ψt (1). Since (
x 0
0 0

)
=

(
0 1
0 0

)(
0 0
0 x

)(
0 0
1 0

)
,

it follows that σφt (x) = utσ
ψ
t (x)u∗t . Since(

0 xy
0 0

)
=

(
0 x
0 0

)(
0 0
0 y

)
,
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we have that
σφ,ψt (xy) = σφ,ψt (x)σψt (y),

and hence,
us+t = σφ,ψs (1σφ,ψt (1)) = σφ,ψs (1)σψs (σφ,ψt (1)) = usσ

ψ
s (ut).

We now have 1) and 2) of the following Theorem.

Theorem 5.5 (Connes Cocycle Derivative Theorem). If φ, ψ are weights on M then there
exists a unique family of unitaries {ut}t∈R inM which is continuous in the SOT and satisfies
the following:

1) for each t ∈ R we have σφt (x) = utσ
ψ
t (x)u∗t ;

2) for each s, t ∈ R we have us+t = usσ
ψ
t (ut);

3) for each x ∈ nφ∩n∗ψ and y ∈ n∗φ∩nψ there exists an F ∈ A(D) satisfying the boundary
conditions

F (t) = φ(utσ
ψ
t (y)x), F (t+ i) = ψ(xutσ

ψ
t (y)).

Proof.

3) Let x ∈ nφ ∩ n∗ψ, y ∈ n∗φ ∩ nψ. Then by the modular condition for σρt , there exists an
F ∈ A(D) such that

F (t) = ρ(σρt (y)x), F (t+ i) = ρ(xσρt (y)).

Then σρt (y) ∈ n∗φ ∩ nψ, so σρt (y) = σφ,ψt (y) = utσ
ψ
t (y). Therefore, ρ(σρt (x)y) = ψ(utσ

ψ
t (y)x)

and ρ(xσρt (y)) = φ(xutσ
ψ
t (y)). The proof of uniqueness can be found in [13].

Definition 5.6. If φ, ψ are fns weights and {ut} a family of unitaries satisfying 1), 2),
3) of the theorem, we call {ut} the Connes cocycle derivative of σφt with respect to σψt
and write ut = (Dφ : Dψ)t. Condition 3) in the theorem is called the relative modular
condition.

The Connes cocycle derivative satisfies the following chain-rule property.

Lemma 5.7. Let φ, ψ, χ be fns weights on a von Neumann algebra M. Then for t ∈ R we
have

(Dφ : Dψ)t = (Dφ : Dχ)t(Dχ : Dψ)t.

The following elaborates on Corollary 5.3.

Corollary 5.8. For any automorphism θ ∈ Aut(M) we have

(Dψ◦θ : Dφ◦θ) = θ−1[(Dψ : Dφ)].
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Proof. Let (Dψ : Dφ) = ut. By Corollary 5.3, for x ∈M, we have

σψ◦θt (x) = θ−1 ◦ σψt ◦ θ(x)

= θ−1(utσ
φ
t ◦ θ(x)u∗t )

= θ−1(ut)θ
−1 ◦ σφt ◦ θ(x)θ−1(u∗t )

= θ−1(ut)σ
φ◦θ
t (x)θ−1(ut)

∗.

Hence, to prove the claim it suffices to check the relative modular condition. Now if we
let x ∈ nψ◦θ ∩ n∗φ◦θ, y ∈ nφ◦θ ∩ n∗ψ◦θ and let Fθ(x),θ(y) ∈ A(D) be the function satisfying the
relative modular condition for θ(x), θ(y) with respect to ut, we have

Fθ(x),θ(y)(t) = ψ(utσ
φ(θ(y))θ(x))

= ψ ◦ θ ◦ θ−1(utσ
φθ(y)θ(x))

= ψ ◦ θ(θ−1(ut)θ
−1 ◦ σφ ◦ θ(y)x)

= ψ ◦ θ(θ−1(ut)σ
φ◦θ
t (y)x),

Fθ(x),θ(y)(t+ i) = φ(θ(x)utσ
ψ(θ(y)))

= φ ◦ θ ◦ θ−1(θ(x)utσ
ψθ(y))

= φ ◦ θ(xθ−1(ut)θ
−1 ◦ σψ ◦ θ(y))

= φ ◦ θ(xθ−1(ut)σ
ψ◦θ(y)),

proving the claim.

We state here a converse of the Connes Cocycle Derivative Theorem.

Theorem 5.9. If φ is an fns weight on M, and if {ut}t∈R is a family of unitaries in M
which is continuous in the SOT and satisfies us+t = usσ

φ
s (ut) for all s and t, then there exists

an fns weight ψ on M such that (Dψ : Dφ) = ut for all t ∈ R.

For the remainder of the Section we will work towards a characterization of semifinite von
Neumann algebras in terms of modular automorphism groups. Note that if τ is a trace on a
von Neumann algebraM, then the modular operator ∆τ is just the identity, so that modular
automorphism group στ is trivial. In general, we will see that the modular automorphism
groups of semifinite algebras are inner, with implementation given by the Connes cocycle
derivative with respect to the trivial action.

We continue the study of weights by fixing an fns weight φ and characterizing those
weights ψ which are invariant under the action σφ. Let h ∈M+, and consider a new weight
φh : M+ → [0,∞] given by φh(x) = φ(h1/2xh1/2). This weight is clearly normal because φ
is, and if we require furthermore that h be invertible, then φh will be faithful and semifinite.
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We may initially be tempted to consider the automorphism x ∈M 7→ hitσφt (x)h−it, however,
there is no guarantee that φh is invariant under such an automorphism. We define

Mφ = {x ∈M : σφt (x) = x for all t ∈ R}.

Note that the weights of the form φh for h ∈ Mφ are automatically invariant under the

automorphisms x 7→ hitσφt (x)h−it, and moreover, are σφt -invariant. In order to make sure we
consider a large enough class of weights, we also want to define weights of the form φh where
h is positive self-adjoint injective and affiliated with Mφ. Ideally, these weights will be of
the form

φh = sup
hi

φhi ,

where {hi} ⊆ M+
φ is an increasing net converging pointwise to h on its domain. It is not yet

clear that this makes sense, so to this end we will take a diversion into analytic subalgebras,
which leads to the following characterization of elements of Mφ in terms of the weight φ.

Theorem 5.10. An element a ∈ M belongs to Mφ if and only if the following conditions
hold:

1) amφ ⊆ mφ,mφa ⊆ mφ;
2) φ(az) = φ(za) for all z ∈ mφ.

The proof of the Theorem will follow after Lemma 5.16 below.

Definition 5.11. An element x ∈ M is said to be analytic if the funtion t 7→ σφt (x)
extends to an entire function α ∈ C 7→ σα(x). Equivalently, for all ω ∈ Mφ the function

t 7→ ω(σφt (x)) has an entire extension. We denote by Mφ
a the set of all analytic elements.

It is immediate that Mφ ⊆ Mσφ

a , with the obvious extension σα(x) = x. Now let U be
the full left Hilbert algebra associated with φ, and define

U0 = {ξ ∈ ∩α∈CD(∆α) : ∆αξ ∈ U for all α}.

We have the following result on analyticity of left multiplication operators.

Lemma 5.12. For a full left Hilbert algebra U , the subspace Mφ
a ∩ π`(U) coincides with

π`(U0).

Proof. The claim is that for ξ ∈ U , the function t ∈ R 7→ π`(∆
itξ) has an entire extension if

and only if the function t ∈ R 7→ ∆itξ has an entire extension. For ξ, η ∈ H we have

ωη,ζ(π`(∆
itξ)) =< π`(∆

itξ)η, ζ >=< πr(η)∆itξ, ζ >=< ∆itξ, ζη[ >,

so the function t 7→ ωη,ζ(π`(∆
itξ)) has an entire extension if and only if the function

t 7→< ∆itξ, ζη[ > has an entire extension. Since the sets {ωη,ζ : η, ζ ∈ U ′},U ′2 are re-
spectively total in M∗,H∗, the claim follows. By Lemma 2.30, t 7→ ∆itξ has an entire
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extension if and only if ξ ∈ ∩α∈CD(∆α), in which case the extension is α ∈ C 7→ ∆iαξ.
Consequently, if π`(ξ) ∈Mφ

a ∩ π`(U), for η, ζ ∈ U ′,

< σφα(π`(ξ))η, ζ >=< ∆iαξ, ζη[ >=< πr(η)∆iαξ, ζ >,

so that ∆iαξ is left-bounded and π`(∆
iαξ) = σφα(π`(ξ)). Since ∆iαξ ∈ D(∆1/2) = D] it follows

that ξ ∈ U0.

Theorem 5.13. Let U be a full left Hilbert algebra and let U0 be as defined above. Then U0

is a left Hilbert algebra satisfying U ′0 = U ′ and JU0 = U0. Moreover, {∆iα}α∈C acts on U0 as
a one-parameter group of automorphisms.

Combining Lemma 5.12 and Theorem 5.13 gives the following corollary.

Corollary 5.14. The analytic subspace Mφ
a ∩ π`(U) is SOT-dense in M.

proof of Theorem 5.13.

Claim: We have U0 ⊆ U ∩ U ′ and JU0 = U0.

By definition, we have that U0 ⊆ D(∆−1/2) and ∆−1/2U0 = U0, so that

JU0 = S∆−1/2U0 = SU0 = U0.

Moreover, if ξ ∈ U0, then (1 + ∆−1)ξ ∈ U , so that by the dual form of Lemma 4.13, we have
ξ = (1 + ∆−1)−1(1 + ∆−1)ξ ∈ U ′, proving the claim.

By definition, each ∆iα gives an automorphism on U0. Moreover, if ξ, η ∈ U0, then the
function α 7→ (∆iαξ)(∆iαη) is entire and extends the function t ∈ R 7→ ∆itξη, so that ξη ∈ U0

and ∆iα is multiplicative.

Claim: The subalgebra U2
0 is a core for S.

Let ξ ∈ U . Then for r > 0 set

ξr =

√
r

π

∫
R
e−rt

2

∆itξdt.

We note that ξr ∈ D(∆iα) for all α ∈ C by considering the entire function

ξr(α) =

√
r

π

∫
R
e−r(t−α)2∆itξdt,

which, by uniqueness of the extension, defines ∆iαξr. If η ∈ U ′, then

πr(η)∆iαξr =

√
r

π

∫
R
e−r(t−α)2πr(η)∆itξdt

=

√
r

π

[∫
R
e−r(t−α)2σφt (π`(ξ))dt

]
η,

51



so that ∆itξr is left-bounded, and hence, belongs to U . Therefore ξr ∈ U0. Lastly, note that
as r → 0, ξr → ξ and ∆1/2ξr = (∆1/2ξ)r → ∆1/2ξ, so ξr → ξ in the graph norm of S. Since
U is a core for S, it follows that U0 is also a core for S. Lastly, note that if ξ, ζ ∈ U then
U0 ⊆ U ∩ U ′ implies that we have that ξrζr → ξζ in the graph norm of S, so that U0 is also
a core for S. Therefore U0 is a left Hilbert algebra.

Since JU0 = U0, we also have that U2
0 is a core for F . Moreover, note that for all

r, ‖π`(ξr)‖ ≤ ‖π`(ξ)‖. Hence π`(ξr) → π`(ξ) in the SOT. Let η ∈ H be right-bounded with
respect to U0, so that for some c > 0, ζ ∈ U0, implies that ‖π`(ζ)η‖ ≤ c‖ζ‖. Then for ξ ∈ U ,

‖π`(ξ)η‖ = lim
r→0
‖π`(ξr)η‖

≤ lim
r→0

c‖ξr‖

= c‖ξ‖,

so that η is right-bounded with respect to U . Since the closure of the involution [ coincides
for U ′ and U0, it follows that U ′0 = U ′.

We now turn to prove the characterization of the subalgebraMφ given in Theorem 5.10.
The strategy is to use analytic elements to define functions which satisfy a modular conditon
and apply this to the special case that a ∈Mφ.

Lemma 5.15. The analytic subset Mφ
a is a ∗-subalgebra of M and for x, y ∈Mφ

a , α, β ∈ C
we have the following:

σφα(xy) = σφα(x)σφα(y);

σφα+β(x) = σφα(σφβ(x));

σφα(x∗) = σφα(x)∗.

Moreover, the subalegbras π`(Uφ),mφ are Mφ
a-bimodules, and π`(U0) is two-sided ideal in

Mφ
a.

Proof. Let x, y ∈Mφ
a . Note that by the usual argument for the product of analytic functions,

the function α 7→ σφα(x)σφα(y) is entire. Since this extends the function t 7→ σφt (xy) on R,
this implies that xy ∈ Mφ

a , and that σφα(xy) = σφα(x)σφα(y) by the uniqueness of an entire
extension from R. To see that Mφ

a is self-adjoint, we note that the function α 7→ σφα(x)∗ is
entire by considering the series representation of the function α 7→ σφα(x). Since this is an
entire extension of the function t 7→ σφt (x∗), it follows that x∗ ∈Mφ

a and σφα(x∗) = σφα(x)∗.

Claim: If a ∈Mφ
a , s ∈ R, and ξ ∈ B ∩ D(∆s), then we also have aξ ∈ B ∩ D(∆s).
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To see this consider the function t ∈ R 7→ ξ(t) = ∆itaξ. Then π`(ξ(t)) = σφt (a)π`(∆
itξ)

so that ξ(t) = σφt (a)∆itξ. By Lemma 2.30, this extends to the function α 7→ σφα(a)∆iαξ,
with domain {α : −s ≤ Im(α) ≤ 0}, and which is bounded, continuous on its domain, and
analytic on the interior. Therefore aξ ∈ B ∩ D(∆s) and ∆iαaξ = σφα(a)∆iαξ.

From the claim we easily derive the bimodule properties. Moreover, we note that for
x ∈ Mφ

a , α ∈ C we have πφ(σφα(x))|D(∆−iα) = ∆iαπφ(x)∆−iα. The composition rule easily
follows.

Lemma 5.16.

1) If a ∈ M such that amφ,mφa ⊆ mφ, then for any x, y ∈ π`(U2
0 ) there exists an entire

function F ∈ A(D) such that

F (t) = φ(σφt (a)xy∗), F (t+ i) = φ(xy∗σφt (a)).

2) If a ∈ Mφ
a and z ∈ mφ, then the function Fz(α) = φ(σφα(a)z) is entire and satisfies

F (t+ i) = φ(zσφt (a)).

Proof.

1) Consider the function F (α) =< a∆−iαqφ(x),∆−iα+1qφ(y) >. By choice of x and y, it
is entire and belongs to A(D), and by the assumption on a, we have

F (t) =< a∆−itqφ(x),∆−it+1qφ(y) >

=< σφt (a)qφ(x),∆qφ(y) >

=< ∆1/2σφt (a)qφ(x),∆1/2qφ(y) >

=< Sqφ(y), Sσφt (a)qφ(x) >

= φ(σφt (a)xy∗),

F (t+ i) =< a∆−it+1qφ(x),∆−itqφ(y) >

=< ∆1/2qφ(x),∆1/2σφt (a∗)qφ(y) >

=< Sσφt (a∗)qφ(y), Sqφ(x) >

= φ(xy∗σφt (a)).

2) Assume z = xy∗ where x = π`(ξ), y = π`(η) ∈ U . Then from the proof of Lemma 5.15,

Fz(α) = φ(σφα(a)π`(ξ)π`(η
]))

=< Sη, Sσα(a)ξ >

=< ∆1/2σφα(a)ξ,∆1/2η >

=< σφ−i/2(σφα(a))∆1/2ξ,∆1/2η >

=< σφα−i/2(a)∆1/2ξ,∆1/2η > .

53



Hence,

Fz(t+ i) =< σφt+i/2(a)∆1/2ξ,∆1/2η >

=< ∆1/2ξ, σφt−i/2(a∗)∆1/2η >

=< ∆1/2ξ,∆1/2σφt (a∗)η >

=< Sσt(a
∗)η, Sξ >

= φ(π`(ξ)π`(η
])σφt (a))

= φ(xy∗σφt (a)).

proof of Theorem 5.10. Suppose a ∈ Mφ. Then a is analytic so part 1) of Theorem 5.10
holds by Lemma 5.15. If z ∈ mφ and we let Fz be the function as in part 2) of Lemma 5.16,
then Fz is constant and satisfies Fz(0) = φ(az) and Fz(i) = φ(za). Therefore, part 2) of
Theorem 5.10 follows.

Now suppose the conditions hold. Let ξ, η ∈ U2
0 , x = π`(ξ), y = π`(η) and let F be as in

2) of Lemma 5.16. Since xy∗ ∈ mφ and mφ is σφt -invariant, by condition 2) we have

F (t) = φ(σφt (a)xy∗)

= φ(aσφ−t(xy
∗))

= φ(σφ−t(xy
∗)a)

= φ(xy∗σφt (a))

= F (t+ i).

Since F is entire and the holomorphic extension is unique it follows that F satisfies
F (α) = F (α + i) for α ∈ C. Since F ∈ A(D), tF must be bounded, and so it is con-
stant by Liouville’s Theorem. Therefore for all t, φ(σφt (a)xy∗) = φ(axy∗). Equivalently

0 =< a∆−itξ,∆−it+1η > − < aξ,∆η >

=< (σφt (a)− a)ξ,∆η > .

The result will then follow if we can show that ∆U2
0 is dense in H. We already know

that ∆U0 = U0 = ∆−1U0. Moreover, since ∆α is multiplicative for every α it follows that
∆αU2

0 = U2
0 and the claim follows since U2

0 is dense in H.

We can now begin to characterize the weights invariant under a fixed modular automor-
phism group action σφ. Let h be a positive, self-adjoint operator affiliated with Mφ. For
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ε > 0 the operator hε = h(1 + εh)−1 belongs to M+
φ and moreover if δ < ε we have hδ ≥ hε.

The following lemma says that the set of normal weights {φhε}ε>0 with the reverse ordering
on R+ is increasing, so that we can define φh as the pointwise limit as ε→ 0. If h is bounded
then hε → h in the SOT so that by normality of each φhε , these definitions will be consistent.

Lemma 5.17. The map h ∈M+
φ 7→ φh is additive, and its range consists of normal semifi-

nite weights.

Proof. If x ∈ m+
φ then h1/2xh1/2 is also in m+

φ since mφ is aMφ-bimodule, so φh is semifinite.
The normality of φh follows from the normality of φ.

Let h, k ∈ M+
φ . Since h, k ≤ h + k, by the Generalized Polar Decomposition Theorem

there exists u, v ∈ Mφ such that h1/2 = u(h+ k)1/2, k1/2 = v(h+ k)1/2 and u∗u+ v∗v is the
range projection for h+ k. If x ∈ mφh+k , then by Lemma 5.15, the elements

u(h+ k)1/2x(h+ k)1/2, v(h+ k)1/2x(h+ k)1/2

belong to mφ, and by Theorem 5.10,

φh(x) + φk(x) = φ(h1/2xh1/2) + φ(k1/2xk1/2)

= φ(u(h+ k)1/2x(h+ k)1/2u∗) + φ(v(h+ k)1/2x(h+ k)1/2v∗)

= φ((u∗u+ v∗v)(h+ k)1/2x(h+ k)1/2)

= φ((h+ k)1/2x(h+ k)1/2)

= φ(h+k)(x).

Now suppose φh(x), φk(x) <∞. Then

(h+ k)1/2x(h+ k)1/2

= lim
ε→0

(h+ k + ε)−1/2(h+ k)x(h+ k)(h+ k + ε)−1/2

≤ 2(h+ k + ε)−1/2(hxh+ kxk)(h+ k + ε)−1/2

= 2(h+ k + ε)−1/2(h+ k)1/2(u∗h1/2xh1/2u+ v∗k1/2xk1/2v)(h+ k)1/2(h+ k + ε)−1/2

= u∗h1/2xh1/2u+ v∗k1/2xk1/2v.

Since the element in the last line belongs to mφ, it follows that φh+k(x) < ∞. By the
previous argument, φh+k(x) = φh(x) + φk(x). Therefore, φh + φk = φh+k.

Lemma 5.18. Let h be a positive self-adjoint operator affiliated with M. If for x ∈M+ we
define

φh(x) = lim
ε→0

φhε(x),

then the function φh is a semifinite normal weight. It is faithful if and only if h is injective.

55



Proof. If h =
∫
λdE(λ) is the spectral decomposition of h, note that since h is affili-

ated to Mφ, the spectral projections En = E[0, n] for n > 0 belong to Mφ. Then⋃
n(EnmφEn) ⊆ mφ is dense in M in the SOT, and for any x ∈ m+

φ , Enh is bounded, so
φh(EnxEn) = φEnh(x) <∞. Hence, φh is semifinite.

The operator h is injective if and only if its range projection p is equal to 1. Since p is
also the range projection for h

1/2
ε we have φhε(1− p) = 0 so that φh(1− p) = 0. Thus φh is

faithful only if h is injective. On the other hand, for x ∈M+ we have φh(x) = 0 if and only

if φ(h
1/2
ε xh

1/2
ε ) = 0 for all ε > 0. Suppose that h is injective, so that each hε is also injective

with dense range. Then for any ε, h
1/2
ε xh

1/2
ε = 0 only if x = 0, so that φh is faithful.

By Lemmas 5.17 and 5.18, whenever we choose a positive self-adjoint injective operator
affiliated with Mφ, we obtain an fns weight φh. We can now identify its modular automor-
phism group.

Theorem 5.19. If h is a positive self-adjoint injective operator affiliated with Mφ, then

σφht (x) = hitσφt (x)h−it.

Moreover, we have (Dφh : Dφ)t = hit.

Proof. First we assume that h is bounded and invertible. It suffices to check the modular
condition for the automorphism group {γt = Ad(hit)σφt }t∈R. First note that by the invert-
ibility of h1/2, we have mφh = mφ. The invariance of φh under γ follows easily from the fact
that h ∈ Mφ. Now suppose that ξ ∈ U0, η ∈ U . Using Lemma 4.6, and the fact that ∆it, h
commute we have

φh(h
itσφt (π`(ξ))h

−itπ`(η)) = φ(π`(∆
ithit+1ξ))π`(h

−itη))

=< h−itη, S∆ithit+1ξ > .

But from the proof of Lemma 5.15, we have that hit+1ξ ∈ U0. In particular, ∆ithit+1ξ ∈ D(∆).
Hence,

φh(h
itσφt (π`(ξ))h

−itπ`(η)) =< ∆it+1hit+1ξ, Sh−itη > .

By Theorem 5.10, we have

φh(π`(η)hitσφt (π`(ξ))h
−it) = φ(π`(h

−it+1η)π`(∆
ithitξ))

=< ∆ithitξ, Sh−it+1η > .

Setting G(α) =< hiα+1∆iα+1ξ, Sh−iαη >, the above calculations give

G(t) = φh(γt(π`(ξ))π`(η)), G(t+ i) = φh(π`(η)γt(π`(ξ))).
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Moreover, by choice of ξ and η, G is entire and bounded on D. Then applying a similar
argument as in the proof of Theorem 5.2, we can remove the condition that ξ ∈ U0. Hence,
the theorem holds in this special case.

Now let h be an injective, positive, self-adjoint operator affiliated with M∗. Let h =∫
λdE(λ) be the spectral decomposition of h, and let en = E[1/n, n]. Then φn = φ|Men

is an
fns weight and by checking the modular condition, we see that the modular automorphism
group for φn is just σφ|Men

. Since h|EnH is bounded, invertible, by the special case above we
have for x ∈Men ,

σφ◦ht (x) = (hen)itx(hen)−it = hitxh−it.

The result follows since σφ◦ht , σφt are continuous the σ-WOT. The last assertion can be easily
verified using the construction of the Connes cocycle derivative.

Now that we have identified a large class of weights which come from perturbing a fixed
weight φ, we use the Connes Cocycle Derivative Theorem to characterize the σφ-invariant
weights. We begin with the following uniqueness result for cocycle derivatives.

Lemma 5.20. If φ, ψ, χ are fns weights on M, and if for all t ∈ R we have

(Dψ : Dφ)t = (Dχ : Dφ)t,

then ψ = χ.

Proof. First note that by Lemma 5.7, and the fact that (Dψ : Dφ)−1
t = (Dφ : Dψ)t, it suffices

to prove that if for all t ∈ R we have (Dψ : Dφ)t = 1, then φ = ψ. But if we let ρ be

the weight on N = M⊗M2(C) as before, this condition implies that the element

(
0 1
1 0

)
belongs to the fixed point algebra Nρ. By Theorem 5.10, we have for x ∈M+,

φ(x) = ρ

(
x 0
0 0

)
=

(
0 1
1 0

)(
0 0
0 x

)(
0 1
1 0

)
= ψ(x),

completing the proof.

Theorem 5.21. For two fns weights φ, ψ on a von Neumann algebra M, the following are
equivalent:

1) ψ is σφ-invariant;
2) ψ = φh for some non-singular, positive, self-adjoint operator affiliated with Mφ.

Proof.
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1)=⇒2): Combining Corollary 5.8 with the invariance assumption on ψ, we have

(Dψ : Dφ)−s(Dψ : Dφ)s+t = σφs [(Dψ : Dφ)t]

= (Dψ◦σφ−s
: Dφ◦σφ−s

)t

= (Dψ : Dφ)t.

Therefore, {(Dψ : Dφ)t} is a one-parameter group of unitaries belonging to Mφ which is
continuous in the SOT. By Stone’s Theorem there exists a positive, injective, self-adjoint
operator h affiliated withMφ such that for all t ∈ R, (Dψ : Dφ)t = hit. By Lemma 5.20 and
Theorem 5.19 we have that ψ = φh.

2)=⇒1): By Theorem 5.10, we have for x ∈ mφh ,

ψ(x) = ψ ◦ hitσφt (x)h−it

= ψ ◦ σφt (x).

Finally, we can apply the above results to semifinite von Neumann algebras.

Theorem 5.22. For a von Neumann algebra M the following are equivalent:

1) the algebra M is semifinite;
2) every modular automorphism group {σφt }t∈R is inner;
3) there exists a weight φ such that {σφt }t∈R is inner.

Proof.
1)=⇒2): Let τ be an fns trace onM, φ an fns weight. Then the automorphism group στ is
trivial so that φ is στ -invariant. By Theorem 5.21, it is the form τh for some positive self-
adjoint operator h affiliated withMτ =M. Hence hit ∈M and σφt =Ad(hit)◦στt =Ad(hit).

2)=⇒3) is trivial.

3)=⇒1): Let φ be an fns weight such that σφt = Ad(ut), where {ut} is a unitary group in
M continuous in the SOT. Since {ut} ⊆ Mφ, by Stone’s theorem there exists a positive
injective self-adjoint operator h affiliated with Mφ such that ut = hit. Then

σ
φh−1

t = Ad(h−it)Ad(hit) = id,

so that φh−1 is a trace.

To give an idea of the significance of this theorem, in Section 7 we are going to look at the
crossed product von Neumann algebra M oσφ R with respect to modular automorphisms.
As it turns out, the relationship between the algebras M and M oσφ R is interesting only
when σφ is not inner.
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6 Equivalence of Hilbert Algebras and Weights

In Sections 3 and 4, it was shown that if φ is an fns weight on a von Neumann algebra
M, then M can be realized as the von Neumann algebra generated by left multiplication
operators on the full Left Hilbert algebra Uφ = qφ(nφ ∩ n∗φ). We summarize this in the
following Theorem.

Theorem 6.1. Let M be a von Neumann algebra, let φ be an fns weight on M, and set

Uφ = qφ(nφ ∩ n∗φ).

Define an involution and product on Uφ by

qφ(x)] = qφ(x∗), qφ(x)qφ(y) = qφ(xy).

Then Uφ is a full left Hilbert algebra. If we let (πφ,Hφ) be the GNS representation of M
coming from φ, then πφ(M) is unitarily equivalent to R`(U).

In this Section we complete the picture by showing that full left Hilbert algebras char-
acterize the GNS representation spaces corresponding to fns weights. Let U be a full left
Hilbert algebra with Hilbert space completion H, and let M = R`(U). Let B ⊆ H to be
the set of left bounded elements and let n` = π`(B) so that π`(U) = n` ∩ n∗` . Finally, let
m` = n∗`n` = {

∑n
i=1 x

∗
i yi : xi, yi ∈ n`}. Define a function φ` :M+ → [0,∞] by

φ`(x) =

{
‖ξ‖2 if x1/2 = π`(ξ) for ξ ∈ U ,
∞ otherwise.

In this Section we prove the following Theorem. The proof follows that given in Chapter 7
of [13].

Theorem 6.2. The function φ` is an fns weight onM with domain of definition m` and for
which n` corresponds to the left ideal nφ`. Moreover the GNS representation (πφ` ,Hφ` , γφ`)
is unitarily equivalent toM = R`(U) via the unitary U satisfying Uξ = qφ`(π`(ξ)) for ξ ∈ B.

We will prove the Theorem by a series of Lemmas.

Lemma 6.3. The function φ` is a semifinite weight, and m+
` = {x ∈M+ : φ`(x) <∞}.

Proof.
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Claim: If x ∈ m+
` then x1/2 ∈ n`. Hence m+

` = {x ∈M+ : φ`(x) <∞} and m+
` is

hereditary.

First, assume that x is of the form
∑n

i x
∗
ixi for xi ∈ n`. Then by the Generalized Polar

Decomposition Theorem there exists si ∈ M such that xi = six
1/2 and

∑n
i=1 si is the range

projection of x. For each i, let ξi ∈ B be chosen such that xi = π`(ξi) and set ξ =
∑n

i=1 s
∗
i ξi.

Then ξ ∈ B and

π`(ξ) =
n∑
i=1

s∗iπ`(ξ) =
n∑
i=1

s∗ixi =
n∑
i=1

s∗i six
1/2 = x1/2.

Now suppose that x ∈ m+
` is of the form

∑n
i=1 y

∗
i zi for yi, zi ∈ n` and that y ∈ M+ such

that y ≤ x. Then

y ≤ x =
1

2
(x+ x∗) =

1

2

n∑
i=1

(y∗i zi + z∗i yi) ≤
1

2

n∑
i=1

(y∗i yi + z∗i zi).

As shown above, the right hand side is of the form π`(ξ) for some ξ ∈ B, and by the
Generalized Polar Decomposition Theorem there exists s ∈M such that

y1/2 = sπ`(ξ) = π`(sξ),

so y1/2 ∈ n`. Hence y ∈ m+
` , and the claim follows.

It is clear that φ` is homogeneous for positive scalars. Suppose that x, y ∈ m+
` so that

z = x+ y ∈ m+
` . Let z1/2 = π`(ξ) for x ∈ B and let s, t ∈M be such that

x1/2 = sz1/2 = π`(sξ), y
1/2 = tz1/2 = π`(tξ),

and s∗s+ t∗t is the range projection of z. We then have

φ`(x) + φ`(y) = ‖sξ‖2 + ‖tξ‖2 =< (s∗s+ t∗t)ξ, ξ >= ‖ξ‖2 = φ`(z),

where the second last equality follows from the fact that ξ ∈ [π`(ξ)H]. On the other hand,
let x, y ∈ M+, let z = x + y, and suppose that φ`(z) < ∞ so that z ∈ m+

` . Since m+
` is

hereditary we also have x, y ∈ m+
` so that φ`(x), φ`(y) < ∞. By the above work, we have

φ`(z) = φ`(x) + φ`(y). Therefore, φ` is a semifinite weight.

Let U be the unitary as defined in Theorem 6.2. For ξ ∈ B, we have

‖Uξ‖2 = ‖qφ`(π`(ξ))‖2 = φ`(π`(ξ)
∗π`(ξ)) = ‖ξ‖2,
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so that U extends to a unitary U : H → Hφ` . If ξ, η ∈ U , we have

(Uπ`(ξ)U
∗)qφ`(π`(η)) = Uπ`(ξ)η

= Uξη

= qφ`(π`(ξη))

= qφ`(π`(ξ)π`(η))

= πφ`(π`(ξ))qφ`(π`(η)).

Since qφ`(π`(U)) is dense in Hφ` we have Uπ`(ξ)U
∗ = πφ`(π`(ξ)). Since π`(U) is SOT-dense,

we can conclude that this will hold for all a ∈ M if we can show that πφ` is a normal
representation. This will then follow by Proposition 3.6 once we show that φ` is normal,
which is what we now turn to prove.

For η ∈ B′ define ωη ∈M+
∗ by ωη(x) =< xη, η >. Define

Φ`,0 = {ωη : η ∈ B′, ‖πr(η)‖ < 1}.

We analogously define set nr,mr for the right hilbert algebra U ′.

Lemma 6.4. There exists a positive map θ : mr →M∗ such that

θ(π`(ζ)∗π`(η)) = ωη,ζ , for η, ζ ∈ B′

and θ maps the open unit ball of m+
r onto Φ`,0.

Proof. By the dual form of Lemma 6.3, every element of m+
r is of the form x∗x for some

x ∈ nr, so consider the map θ given by x∗x 7→ ωη where x = πr(η), η ∈ B′. We check that this
map is well-defined. If x, y ∈ nr are such that x∗x = y∗y, and if we let s ∈M′ be such that
x = sy and ker s ⊆ (ran y)⊥, then by construction s will be a partial isometry such that s∗s is
the range projection of y, and ss∗ is the range projection of x. If x = π`(η), y = π`(ζ), ξ ∈ U ,
then

< π`(ξ)η, η > =< πr(η)ξ, η >

=< sπr(ζ)ξ, η >

=< πr(ζ)ξ, s∗η >

=< π`(ξ)ζ, ζ >,

which proves the claim.

We now show that θ can be extended to a linear map on mr. Since mr is spanned by
its positive elements, is suffices to show that θ is additive and positive scalar homogeneous
on m+

r . We just prove additivity. Let x, y ∈ nr and let z = x∗x + y∗y. Then there exists
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s, t ∈ M′ such that x = sz1/2 and y = tz1/2 and p = s∗s + t∗t is the range projection of z.
Let z1/2 = πr(η) for η ∈ B′, so that x = πr(sη), y = πr(tη). Then for ξ ∈ U ,

< π`(ξ), θ(x
∗x) > + < π`(ξ)θ(y

∗y) > =< π`(ξ)sη, sη > + < π`(ξ)tη, tη >

=< πr(sη)ξ, sη > + < πr(tη)ξ, tη >

=< (s∗s+ t∗t)πr(η)ξ, η >

=< πr(η)ξ, η >

=< π`(ξ), θ(z) >,

so taking limits in the WOT, we have θ(z) = θ(x∗x)+θ(y∗y), and the claim follows. Moreover,
by polarizing we find that for η, ζ ∈ B′,

θ(π`(ζ)∗π`(η)) = ωη,ζ ,

and the last claim follows immediately by construction of θ.

Lemma 6.5. For x ∈M+, φ`(x) = supω∈Φ`,0
ω(x). Hence φ` is normal.

Proof. Define ψ : M+ → [0,∞] by φ(x) = supω∈Φ`,0
ω(x). If a ∈ m+

` , then by Lemma 6.3,

a1/2 = π`(ξ) for some ξ ∈ U , so that φ`(a) = ‖ξ‖2. By definition, we have

ψ(a) = sup
ω∈Φ`,0

ω(a)

= sup
η∈B′,‖πr(η)‖<1

ωrη(a)

= sup
η∈B′,‖πr(η)‖<1

‖πr(η)ξ‖2

≤ ‖ξ‖2.

But πr(B′) ∩ πr(B′)∗ acts non-degenerately so that there exists a net {πηi} in the unit ball
of πr(B′) which converges to 1 in the SOT, so that ‖ξ‖2 =limi‖πr(ηi)ξ‖2 ≤ ψ(a). Hence,
φ`(a) = ψ(a).

Now suppose that ψ(a) < ∞ and define a linear functional ωa on mr by
ωa(x) =< a, θ(x) >. Since θ is positive we have that ωa is positive, and since θ(x) ∈ Φ`,0,
if ‖x‖ ≤ 1 we have ωa(x) ≤ ψ(a) < ∞. Let x ∈ mr be self-adjoint, and let Ax be the von
Neumann algebra generated by x. Then mr ∩ Ax sits as an ideal in Ax so that in particu-
lar, if we write x = x+ − x−, the positive and negative parts of x, with range projections
p+, p− ∈ Ax, then x+ = xp+, x− = xp− both belong to mr. If x ∈ mr is arbitrary we can
write x = h+ ik, where h = 1

2
(x+ x∗), k = 1

2
(ix− ix∗) ∈ mr are self-adjoint. Then

|ωa(x)| ≤ ωa(h+) + ωa(h−) + ωa(k+) + ωa(k+)

≤ ψ(a)(‖h+‖+ ‖h−‖+ ‖k+‖+ ‖k+‖)
≤ 4ψ(a)‖x‖.
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Hence ωa is bounded, so extends to a bounded positive linear functional, also denoted ωa,
on the norm closure Ar of mr such that ‖ωa‖ ≤ 4ψ(a). For x ∈ Ar, using an approximate
identity and the Cauchy-Schwartz inequality, we see that |ωa(x)|2 ≤ ‖ωa‖ωa(x∗x). Then for
any η ∈ U ′, we have

|ωa(πr(η))| ≤ 2ψ(a)1/2ωa(πr(η))∗πr(η))1/2

= 2ψ(a)1/2 < aη, η >1/2

= 2ψ(a)1/2‖a1/2η‖.

Therefore the linear functional a1/2η → ωa(πr(η)) is bounded, so there exists ξ ∈ [a1/2H]
such that for all η ∈ U ′, ωa(πr(η)) =< a1/2η, ξ >. If ζ, η ∈ U ′,

< a1/2η, πr(ζ)ξ > =< πr(ζ
[)a1/2η, ξ >

=< a1/2πr(ζ
[)η, ξ >

=< a1/2ηζ[, ξ >

= ωa(πr(ηζ
[))

= ωa(πr(ζ)∗πr(η))

=< aη, ζ >

=< a1/2η, a1/2ζ > .

If we know that πr(ζ)ξ ∈ [a1/2H], then the above calculation shows that πr(ζ)ξ = a1/2ζ, so
that ξ is left bounded and π`(ξ) = a1/2. But ξ ∈ [a1/2H] and a1/2 commutes with πr(ζ) so that
by continuity πr(ζ)ξ ∈ [πr(ζ)a1/2H] = [a1/2πr(ζ)H] ⊆ [a1/2H] and the claim follows. Hence
a1/2 ∈ n` which implies that a ∈ m`. Then as shown above, this implies that φ`(a) = ψ(a).
Therefore, φ = ψ.

With the above identification, suppose {xi} is an increasing net in M+ with x = supi xi,
and let ε > 0. Let ω ∈ Φ`,0 such that ω(x) > φ(x)− ε. Since ω is normal, there exists i such
that j ≥ i implies ω(xj) > ω(x) − ε. Then φ(xj) ≥ ω(xj) > ω(x) − ε > φ(x) − 2ε, and so
supi φ(xi) ≥ φ(x). Since the reverse inequality is trivial, φ is normal.
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7 Crossed Products and Dual Weights

In this Section we introduce the von Neumann crossed product as a tool to construct
new von Neumann algebras. Given an action α : G → Aut(M) where G is a locally
compact group G, M is a von Neumann algebra, we would like to generalize the notion of
the semidirect product of groups to construct a von Neumann algebra which is an extension
ofM by the subgroup α(G) ≤ Aut(M). The material of this Section is from Chapter 10 of
[13].

We require that all G-actions are continuous in the sense that if x ∈M, then the function
t ∈ G 7→ αt(x) is SOT-continuous, and we say (M, G, α) is a covariant system. Recall
that if φ is an fns weight on a von Neumann algebra M then the modular automorphism
group is of the form σφt = Ad(∆it) where ∆ is a positive self-adjoint operator. In particular,
the one-parameter unitary group t 7→ ∆it is SOT-continuous, and hence for fixed x ∈ M,
the map t 7→ σφt (x) is also SOT-continuous. Hence (M,R, σφ) is a covariant system.

Definition 7.1. Let (M, G, α) be a covariant system. Then a normal representation
ρ :M→ B(K) ofM together with a SOT-continuous unitary representation U : G→ B(K)
are said to be covariant if ρ ◦ αt = Ad(Ut) ◦ ρ.

Let (ρ, U) be a covariant representation of a covariant system (M, G, α) and defineMρ[G]
to be the set of all operators of the form∑

s∈G

ρ(xs)Us, xs ∈M, xs = 0 for all but finitely many s.

Then Mρ[G] is a ∗-subalgebra of B(K) since we have(∑
s∈G

ρ(xs)Us

)(∑
s∈G

ρ(ys)Us

)
=
∑
s,t∈G

ρ(xs)Usρ(yt)Ut

=
∑
s,t∈G

ρ(xs)ρ(αs(yt))Ust

=
∑
r∈G

ρ(
∑
s∈G

xsαs(ys−1r))Ur,
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and (∑
s∈G

ρ(xs)Us

)∗
=
∑
s∈G

U∗s ρ(x∗s)

=
∑
s∈G

Usρ(x∗s−1)

=
∑
s∈G

ρ(αs(xs−1)∗)Us.

Therefore it is natural to think of the von Neumann algebra generated by Mρ[G] as an
extension of M by α(G). We will now show that this can always be done in a canonical
fashion.

Let π : M → B(H) be a normal representation, and let Cc(G,H) be the space of all
compactly supported continuous function ξ : G → H. For ξ, η ∈ Cc(G,H) define the inner-
product

< ξ, η >=

∫
< ξ(t), η(t) > dt.

Let L2(G,H) be the Hilbert space completion of Cc(G,H) with respect to this inner product.
For ξ ∈ Cc(G,H), x ∈ M consider the function s ∈ G 7→ π(α−1

s (x))ξ(s). This will again
belong to Cc(G,H) by the continuity assumption on α, and moreover,∫

‖π(α−1
s (x))ξ(s)‖2ds ≤ ‖x‖2‖ξ‖2,

so that we obtain an operator πα(x) ∈ B(L2(G,H)). Suppose that π is a faithful represen-
tation. For non-zero x ∈M, we choose ξ ∈ H such that π(α1(x))ξ 6= 0. If we let f ∈ Cc(G)
be chosen such that f(1) 6= 0, we can define the function fξ ∈ Cc(G,H) by fξ(s) = f(s)ξ.
Then we have (πα(x)fξ)(1) = π(α1(x))f(1)ξ 6= 0, so that πα(x)fξ 6= 0. Therefore πα is also
a faithful represenentation. We now show that πα is normal. Let {xi} be an increasing net
in M+ with x = supi xi. Let ξ ∈ H, f ∈ Cc(G). Then

< πα(xi)fξ, fξ >=

∫
|f(s)|2 < αs−1(xi)ξ, ξ > ds.

The functions s 7→< αs−1(xi)ξ, ξ > are continuous and monotone increasing, so by Dini’s the-
orem converge uniformly on the support of f . Hence < πα(xi)fξ, fξ >→< πα(x)fξ, fξ >, and
since the elements fξ span a dense subspace of L2(G,H), it follows that πα(x) = supi πα(xi),
and therefore, πα is normal.

Now for ξ ∈ Cc(G,H), t ∈ G, define

(λH(t)ξ)(s) = ξ(t−1s).
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Then it is easy to check that λH extends to an SOT-continuous unitary representation of G
in L2(G,H). Moreover, for x ∈M, we have

(λH(t)πα(x)λH(t)∗)ξ)(s) = (πα(x)λH(t)∗ξ)(t−1s)

= αs−1t(x)(λH(t)∗ξ)(t−1s)

= (πα(αt(x))ξ)(s),

so (πα, λH) is a covariant representation. We have the following uniqueness result.

Lemma 7.2. Let (π,H), (ρ,K) be faithful representations of M. If we let (πα, λH), (ρα, λK)
be covariant representations as above, then there exists a unique isomorphism

Φ : (πα(M) ∪ λH(G))′′ → (ρα(M) ∪ λK(G))′′

such that Φ ◦ πα = ρα and Φ ◦ λH = λK.

Proof. By Theorem 5.5 on page 222 of [12], there exists a Hilbert space H0 and a unitary
U : H0 ⊗K → H0 ⊗H such that for x ∈M,

U(1H0 ⊗ ρ(x))U∗ = 1H0 ⊗ π(x).

Then Ũ = U ⊗ 1L2(G) : L2(G,H0 ⊗K)→ L2(G,H0 ⊗H) is a unitary such that

Ũ(1H0 ⊗ ρα(x))Ũ∗ = 1H0 ⊗ πα(x),

Ũ(1H0 ⊗ λK(s))Ũ∗ = 1H0 ⊗ λH(s),

and the proof easily follows.

Now let φ and ψ be fns weights defined on M. This yields covariant systems (M,R, σφ)
and (M,R, σψ). The Connes Cocycle Derivative Theorem says that there exists an SOT-
continuous family of unitaries {ut} such that us+t = usσ

ψ
s (ut) and σφt = Ad(ut)σ

ψ
t . We now

consider the implications of this result to the study of covariant representations.

Definition 7.3. A SOT-continuous family {ut}t∈G of unitaries is called an α-cocycle if
ust = usαs(ut). We denote by Z1(M, α) the set of all α-cocycles.

If u ∈ Z1(M, α), we define a new action β : G→ Aut(M) by βt(x) = utαt(x)u∗t . We say
that β is cocycle conjugate to α and write β =u α. This defines an equivalence relation
of G-actions on M, called cocycle classes, for if β =u α the family u∗ = {u∗t}t∈G is a
β-cocycle and α =u∗ β. In particular, the Connes Cocycle Derivative Theorem together,
with its converse, says that the cocycle class of the modular action σφ of an fns weight φ is
precisely the actions of the form σψ where ψ is an fns weight.
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Lemma 7.4. For u ∈ Z1(M, α)m, define a unitary U on L2(G,H) by (Uξ)(s) = us−1ξ(s).
Then

U(πα(M) ∪ λH(G))′′U∗ = (πuα(M) ∪ λH(G))′′.

The proof is a simple computation. With Lemmas 7.2 and 7.4 the following definition
makes sense.

Definition 7.5. Let (M, G, α) be a covariant system and assume that M is standard in the
sense that it acts on the Hilbert space H = Hφ via the normal representation πφ for some
fns weight φ. Let (πα, λ) be the associated covariant representation on L2(G,Hφ). Then the
von Neumann algebra crossed product Moα G, defined up to unitary equivalence, is the
von Neumann algebra generated by πα(M) ∪ λ(G).

We now shall fix an fns weight φ on M and normal representation (πφ,Hφ), with left

Hilbert algebra Uφ and modular automorphism group {σφt }t∈R. For convenience we will
supress the representation πφ and write H for Hφ. We now want to find a weight onMoαG
in terms of the weight φ and for that we need another way to construct the crossed product.
As a motivating example, note that we have two ways to view the left group von Neumann
algebra R`(G). The first way is as the crossed product Coid G, where id denotes the trivial
action of G. The other way is as the algebra generated by the left multiplication operators
π`(ξ) for ξ ∈ Cc(G). But this is really just the restriction to Cc(G) of the representation
λ : L1(G) → B(L2(G)) obtained from the left regular representation λ : G → B(L2(G)).
The advantage is that we can introduce the theory of left Hilbert algebras to obtain a weight
on R`(G) by

φ`(π`(ξ)
∗π`(ξ)) = ‖ξ‖2 =

∫
G

|ξ(t)|2dt.

Moreover, in this case, the weight φ is just φ(x) = |x|, so we have

φ`(π`(ξ)
∗π`(ξ)) =

∫
G

φ(ξ(t)∗ξ(t))dt.

In fact, the above can be generalized.

Define Cc(G,M) to be the space of all bounded, compactly supported, strong∗-continuous,
functions x : G → M. We write ‖x‖∞ = sups∈G‖x(s)‖. Let µ be a left Haar measure on
G and write ds in place of dµ(s) for integration with respect to µ. Let δG be the modular
function of µ. For x ∈ Cc(G,M) consider the function s 7→ αs(x(s)). If ξ ∈ H, then

‖(αs(x(s))− αs0(x(s0)))ξ‖ ≤ ‖αs(x(s)− x(s0))ξ‖+ ‖(αs − αs0)(x(s0))ξ‖
≤ ‖(x(s)− x(s0))ξ‖+ ‖(αs − αs0)(x(s0))ξ‖,

so as s → s0, both terms on the right converge to 0 by the continuity assumptions on x
and α. Since each αs is ∗-preserving, we also have lims→s0 ‖(αs(x(s)) − αs0(x(s0)))∗ξ‖ = 0,
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so that s 7→ αs(x(s)) is strong∗-continuous, and hence belongs to Cc(G,M). Moreover, if
x, y ∈ Cc(G,M), then x, y are bounded so it follows that s 7→ x(s)y(s) also belongs to
Cc(G,M). Then for t ∈ G, the integral

x ∗ y(t) =

∫
G

αs(x(ts))y(s−1)ds

belongs to M, and for ξ, η ∈ H,

| < x ∗ y(t)ξ, η > | =
∣∣∣∣∫
G

< αs(x(ts))y(s−1)ξ, η > ds

∣∣∣∣ ≤ ‖x‖∞‖y‖∞‖ξ‖‖η‖µ(supp y−1),

where y−1 is the compactly supported function s 7→ y(s−1). It follows that that x ∗ y is
bounded. We note the following inequality for t, t0 ∈ G,

‖x ∗ y(t− t0)ξ‖ = ‖
(∫

G

αs(x(ts)− x(t0s))y(s−1)ds

)
ξ‖

= sup
η∈H,‖η‖≤1

∣∣∣∣∫
G

< αs(x(ts)− x(t0s))y(s−1)ξ, η > ds

∣∣∣∣
≤
∫
G

‖αs(x(ts)− x(t0s))y(s−1)ξ‖ds.

Since for each s ∈ G we have limt→t0 ‖αs(x(ts)− x(t0s))y(s−1)ξ‖ = 0, and since

‖αs(x(ts)− x(t0s))y(s−1)ξ‖ ≤ 2‖x‖∞‖y‖∞‖ξ‖,

and vanishes off supp y−1, by the Lebesgue Dominated Convergence Theorem, it follows
that the above integrals converge to 0, so that x ∗ y is continuous in the SOT. A similar
argument show that x ∗ y is Strong∗-continuous. We can therefore give Cc(G,M) a product
and involution as follows.

x ∗ y(t) =

∫
G

αs(x(ts))y(s−1)ds, x](t) = δG(t)−1αt−1(x(t−1)∗)

We make Cc(G,M) into an M-bimodule by defining for a ∈M, x ∈ Cc(G,M),

(x · a)(t) = x(t)a, (a · x)(t) = αt−1(a)x(t).

We note the following properties.

a · (x ∗ y) = (a · x) ∗ y, (x ∗ y) · a = x ∗ (y · a);

(a · x)] = x] · a∗, (x · a)] = a∗ · x].

Lemma 7.6. We obtain a ∗-representation π̃ of Cc(G,M) by

π̃(x) =

∫
λ(s)πα(x(s))ds

and we have that Moα G = π̃(Cc(G,M))′′. Moreover, for a ∈ M, x ∈ Cc(G,M), we have
π̃(a · x) = πα(a)π̃(x) and π̃(x · a) = π̃(x)πα(a).
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Proof. The proof that π̃ is a ∗-representation and satisfies the module properties is routine,
so we will just show that the von Neumann algebra generated by the image isMoαG. We
can view Cc(G) as a subalgebra of Cc(G,M) by identifying the function f ∈ Cc(G) with
the function s 7→ f(s)1. Then by definition, π̃(f) is just λ(f) where λ is the representation
of L1(G) obtained from the representation λ of G so that λ(G)′′ = π̃(Cc(G))′′. Therefore
λ(G) ⊆ π̃(Cc(G,M))′′. Now let {fi} be a bounded approximate identity in Cc(G). Then for
a ∈ Cc(G,M) we have π̃(fi)πα(a) = π̃(fi · a), the left side of which converges in the SOT
to πα(a) so that πα(M) ⊆ π̃(Cc(G,M))′′. Hence, M oα G ⊆ π̃(Cc(G,M))′′. On the other
hand, if y ∈ (πα(M) ∪ λ(G))′ and x ∈ Cc(G,M), then for ξ, η ∈ Cc(G,H), we have

< π̃(x)yξ, η > =

∫
< λ(s)πα(x(s))yξ, η > ds

=

∫
< yλ(s)πα(x(s))ξ, η > ds

=

∫
< λ(s)πα(x(s))ξ, y∗η > ds

=< π̃(x)ξ, y∗η >

=< yπ̃(x)ξ, η >,

so that π̃(x) ∈Moα G, completing the proof.

We can now begin to construct a left Hilbert algebra forMoαG. We define bφ to be the
(non self-adjoint) algebra generated by the set

L = {x · a : x ∈ Cc(G,M), a ∈ nφ}.

Note that for each t, (x · a)(t) = x(t)a ∈ nφ, and since nφ is a left ideal, it follows that bφ
consists of functions G → nφ. Then for x ∈ bφ, we define the function q̃φ(x) : G → Hφ by
(q̃φ(x))(s) = qφ(x(s)). In fact, we have that q̃φ ∈ Cc(G,H). To see this, we note that if
x ∈ Cc(G,H) and a ∈ nφ, then for s ∈ G, we have q̃φ(x · a)(s) = qφ(x(s)a) = x(s)qφ(a), so
that q̃φ(x · a) ∈ Cc(G,H) by the continuity assumption on x. Moreover, if we have x, y ∈ bφ
such that q̃φ(y) ∈ Cc(G,M), then by the following lemma we have q̃φ(x ∗ y) = π̃(x)q̃φ(y),
which also belongs to Cc(G,H), proving the assertion.

Lemma 7.7. With the notation above, set Ũφ = q̃φ(bφ ∩ b]φ), and define multiplication in Ũφ
by

q̃φ(x)q̃φ(y) = q̃φ(x ∗ y).

Then Ũφ is dense in L2(G,Hφ), and for x, y ∈ bφ we have π̃(x)q̃φ(y) = q̃φ(x ∗ y). Therefore,
left multiplication is bounded in Ũφ and the left multiplication operator for x coincides with

π̃(x). Moreover, π̃(bφ ∩ b]φ) generates Moα G.
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Proof. Let x, z ∈ Cc(G,M), a ∈ nφ, y = z · a. Then for s ∈ G, we have

q̃φ(x ∗ y)(s) = qφ(x ∗ y(s))

= qφ(x ∗ z(s)a)

= x ∗ z(s)qφ(a)

=

∫
αt(x(st))z(t−1)qφ(a)dt.

But if we set ξ(s) = z(s)qφ(a), then

(π̃(x)ξ)(s) =

∫
λtπ(x(t))ξ(s)dt

=

∫
(π(x(t))ξ)(t−1s)dt

=

∫
αs−1t(x(t))ξ(t−1s)dt

=

∫
αt(x(st))ξ(t−1)dt

=

∫
αt(x(st))z(t−1)qφ(a)dt,

so that π̃(x)q̃φ(y) = q̃φ(x ∗ y).

To see that bφ ∩ b∗φ generates M we note that for a, b ∈ nφ, x ∈ Cc(G,M) we have

π̃α(a∗xb) = πα(a)∗π̃(x)πα(b) ∈ π̃(bφ ∩ b]φ), and that nφ, Cc(G,M) respectively generate
M,M oα G. Lastly, for a, b ∈ nφ, f ∈ Cc(G) consider the element a∗ · f · b ∈ bφ ∩ b∗φ.
We have for s ∈ G,

q̃φ(a∗ · f · b)(s) = qφ(f(s)αs−1(a)∗b) = f(s)αs−1(a)∗qφ(a) = [πα(a∗)(qφ(a)⊗ f)](s).

Since nφ generates M and since qφ(nφ) ⊗ Cc(G) is dense in Hφ ⊗ L2(G) = L2(G,Hφ), it
follows that q̃φ(bφ ∩ b∗φ) is dense in L2(G,Hφ).

Now let Ũφ be as in Lemma 7.7, and define an involution ] by

q̃φ(x)] = q̃φ(x]).

Then by Lemmas 7.6 and 7.7, Ũφ with the involution ] and product as in Lemma 7.7 satisfies
1), 2), and 4) of Definition 4.1, and the left multiplication operators generate Moα G. To
show that Ũφ is a left Hilbert algebra we just have to show that the involution is closable.
First we define potential candidates for a modular operator and modular conjugation. Using
the notation of Section 5, for t ∈ R, we define a unitary ut on L2(G,H) by

utξ(s) = δG(s)it∆it
φ◦αs,φξ(s),
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where ∆it
φ◦αs,φ = (Dφ◦αs,φ : Dφ)t∆

it. By Lemma 2.10 on page 245 of [13], the map
(s, t) ∈ G × R 7→ (Dφ◦αs : Dφ)t is continuous in the SOT, so it follows that the family
{ut} is a one-parameter group of unitaries continuous in the SOT. By Stone’s Theorem,
there exists a positive self-adjoint operator ∆̃ such that ut = ∆̃it for all t ∈ R.

Lemma 7.8. For x ∈ Cc(G,M) define

[ρφt (x)](s) = δG(s)itσφ◦αs,φt (x(s)).

Then {ρφt } defines a one-parameter group of automorphisms for Cc(G,M) which leaves bφ∩b∗φ
invariant. Moreover, for x ∈ bφ ∩ b∗φ, we have

∆̃itq̃φ(x) = q̃φ(ρφt (x)).

Proof. Writing σφ◦αs,φt = (Dφ◦αs : Dφ)tσ
φ
t , we see that ρφt (x) ∈ Cc(G,M) for x ∈ Cc(G,M),

and moreover, that {ρφt } is a one-parameter group of tranformations. Let x, y ∈ Cc(G,M).
By Lemma 5.7, we have

[ρφt (x) ∗ ρφt (y)](s)

=

∫
G

αr(ρ
φ
t (x)(sr))ρφt (y)(r−1)dr

=

∫
G

αr(δG(sr)itσφ◦αsr,φt (x(sr)))δG(r−1)itσ
φ◦αr−1 ,φ
t (y(r−1))dr

= δG(s)it
∫
G

αr((Dφ◦αsr : Dφ)tσ
φ
t (x(sr)))(Dφ◦αr−1 : Dφ)tσ

φ
t (y(r−1))dr

= δG(s)it
∫
G

(Dφ◦αs : Dφ◦αr−1 )tαr ◦ σφt (x(sr))(Dφ◦αr−1 : Dφ)tσ
φ
t (y(r−1))dr

= δG(s)it(Dφ◦αs : Dφ)t

∫
G

(Dφ : Dφ◦αr−1 )tσ
φ◦αr−1

t αr(x(sr))(Dφ : Dφ◦αr−1 )∗tσ
φ
t (y(r−1))dr

= δG(s)it(Dφ◦αs : Dφ)t

∫
G

σφt αr(x(sr))σφt (y(r−1))dr

= δG(s)it(Dφ◦αs : Dφ)tσ
φ
t

(∫
G

αr(x(sr))y(r−1)dr

)
= δG(s)it(Dφ◦αs : Dφ)tσ

φ
t (x ∗ y(t))

= [ρφt (x ∗ y)](s),
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Also,

[ρφt (x)]](s) = δG(s)−1αs−1([ρφt (x)](s−1)∗)

= δG(s)−1−itαs−1(σφt (x∗)(Dφ◦αs−1 :Dφ)∗t )

= δG(s)−1−itαs−1((Dφ◦αs−1 :Dφ)∗tσ
φ◦αs−1

t (x∗))

= δG(s)−1−it(Dφ◦αs : Dφ)tαs−1(σ
φ◦αs−1

t (x∗))

= δG(s)−1−it(Dφ◦αs : Dφ)tσ
φ
t (αs−1(x∗))

= [ρφt (x)]](t),

so that ρφt is a ∗-automorphism of Cc(G,M).

Let x ∈ Cc(G,M), a ∈ nφ. Then

[ρφt (x · a)](s) = δG(s)it(Dφ◦αs : Dφ)tσ
φ
t (x(s)a)

= δG(s)it(Dφ◦αs : Dφ)tσ
φ
t (x(s))σφt (a)

= [ρφt (x)](s)σφt (a),

so that ρφt (x · a) = ρφt (x) · σφt (a). Since nφ is σφt -invariant, it follows that ρφt (x · a) ∈ bφ.

Moreover, if we choose x, y ∈ bφ such that ρφt (x), ρφt (y) ∈ bφ, then

ρφt (x ∗ y) = ρφt (x) ∗ ρφt (y),

which is also in bφ. Since the set {x · a : x ∈ Cc(G,M), a ∈ nφ} generates bφ, it follows that

ρφt (bφ) ⊆ bφ. The reverse inclusion holds replacing t with −t, so that ρφt (bφ) = bφ. Since ρφt
is a ∗-automorphism, this also shows that ρφt (bφ ∩ b]φ) = bφ ∩ b]φ. Lastly, if x ∈ bφ ∩ b]φ,

q̃φ(ρφt (x))(s) = qφ([ρφt (x)](s))

= δG(s)it(Dφ◦αs : Dφ)tqφ(σφt (x(s)))

= δG(s)it(Dφ◦αs : Dφ)t∆
itqφ(x(s))

= [∆̃itq̃φ(x)](s).

To find the modular conjugation we need some background on automorphisms. Let θ ∈
Aut(M), and for x ∈ nφ, define

Vθqφ(x) = qφ◦θ−1(θ(x)).
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This is well-defined since nφ◦θ−1 = θ(nφ), and so extends to a unitary Vθ : Hφ → Hφ◦θ−1 .
Identifying the representations πφ, πφ◦θ, πφ◦θ−1 , for a ∈M, x ∈ nφ, we have

VθaV
∗
θ (x) = Vθaqφ◦θ(θ

−1(x))

= Vθqφ◦θ(aθ
−1(x))

= qφ(θ(a)x)

= θ(a)qφ(x),

so that θ = Ad(Vθ). Moreover, for x ∈ nφ ∩ n∗φ we have

VθSφqφ(x) = Vθqφ(x∗)

= qφ◦θ−1(θ(x)∗)

= Sφ◦θ−1qφ◦θ−1(θ(x))

= Sφ◦θ−1Vθqφ(x)),

so VθSφ = Sφ◦θ−1Vθ. Then

Sφ◦θ−1 = VθSφV
∗
θ = (VθJφV

∗
θ )(Vθ∆

1/2
φ V ∗θ ),

so by uniqueness of the polar decomposition, we have Jφ◦θ−1 = VθJφV
∗
θ and ∆φ◦θ−1 = Vθ∆φV

∗
θ .

Identifying the conjugations Jφ, Jφ◦θ−1 with the operator J under the unitary equivalence of
the representations πφ, πφ◦θ−1 (see Chapter 9, Section 1, of [13]), we can write JVθ = VθJ .

Setting Vαs = U(s) we define a conjugate linear operator J̃ on L2(G,H) by

(J̃ξ)(s) = δG(s)−1/2U(s−1)Jξ(s−1).

Lemma 7.9. The operator J̃ satisfies J̃ = J̃∗ = J̃−1, and the involution ] has closure S̃φ
which admits polar decomposition S̃φ = J̃∆̃

1/2
φ .

Proof. For s ∈ G, we have

J̃2ξ(s) = δG(s)−1/2U(s−1)J(J̃ξ)(s−1)

= U(s−1)JU(s)Jξ(s)

= ξ(s),

so that J̃2 = 1. For x ∈ bφ ∩ b]φ, we have

(J̃ q̃φ(x]))(s) = δG(s)−1/2U(s−1)Jqφ(x](s−1))

= δG(s)−1/2JU(s−1)qφ(δG(s)αs(x(s)∗))

= δG(s)1/2JSφ◦αsqφ◦αs(x(s))

= δG(s)1/2JSφ◦αs,φqφ(x(s))

= δG(s)1/2∆
1/2
φ◦αs,φqφ(x(s))

= ∆̃1/2q̃φ(x)(s),
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so q̃φ(x)] = J̃∆̃1/2q̃φ(x). Hence, ] has closure S̃φ such that S̃φξ = J̃∆̃1/2ξ for
ξ ∈ D(S̃φ) ⊆ D(∆̃1/2). But by Lemma 7.8, q̃φ(bφ ∩ b∗φ) is invariant under each ∆̃it so

that by Appendix 4 of [13], q̃φ(bφ ∩ b∗φ) is a core for ∆̃1/2, completing the proof.

Theorem 7.10. The algebra Ũφ is a left Hilbert algebra such that R`(Ũφ) =MoαG. There
exists a unique fns weight φ̃ on Moα G satisfying the following:

1) for x ∈ bφ,

φ̃(π̃(x)∗π̃(x)) =

∫
G

φ(x(t)∗x(t))dt;

2) for x ∈M,σφ̃t (πα(x)) = πα(σt(x));

3) σφ̃t (λ(s)) = δG(s)itλ(s)πα((Dφ◦αs : Dφ)t).

We say that φ̃ is the weight on Moα G dual to φ.

Verification of 1), 2), and 3) are routine, and the proof of uniqueness can be found in [13].
We finish this Section with an application to the case that α is the modular automorphism
group of φ.

Corollary 7.11. Let φ be an fns weight on a von Neumann algebra M, and let φ̃ be the

weight on Moσφ R dual to φ. Then σφ̃t = Ad(λ(t)).

We conclude by Theorem 5.22 that Moσφ R is semifinite. In Section 8 we expand upon
this by constructing a new action on the crossed product algebra.
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8 Duality of Crossed Products

Let (M, G, α) be a covariant system where M acts on a Hilbert space H. We assume
throughout that G is a locally compact abelian group, with group operation written addi-
tively, and with dual group Ĝ. In this Section we generalize the notion of Pontryagin duality
to von Neumann algebras. The material follows the exposition given in Part 1, Section 4 of
[4].

Let λ and ρ respectively denote the left and right regular representations of G on L2(G).
Define a unitary representation ν : Ĝ→ B(L2(G)) by (νγξ)(s) = γ(s)ξ(s).

Lemma 8.1. The von Neumann algebra generated by λ(G) ∪ ν(Ĝ) on L2(G) is all of
B(L2(G)).

Proof.

Claim: The von Neumann algebra generated by ν(Ĝ) is L∞(G).

Let ν : L1(Ĝ)→ B(L2(G)) be the representation given by

ν(f) =

∫
Ĝ

f(γ)νγdγ.

Then the von Neumann algebra generated by ν(Ĝ) coincides with that generated by ν(L1(Ĝ)).
But for f ∈ L1(Ĝ), ξ ∈ L2(G), we have

ν(f)ξ =

∫
f(γ)νγξdγ

=

∫
f(γ)γξdγ

= f̂ ξ.

That is, ν(f) is just multiplication by f̂ . Since the set {f̂ : L1(Ĝ)} is dense in C0(G) and
C0(G) is WOT-dense in L∞(G), the claim follows.

The algebra L∞(G), and the group von Neumann algebra R`(G) are maximal abelian, so
that

[L∞(G) ∪R`(G)]′ ⊆ L∞(G)′ ∩R`(G)′ = L∞(G) ∩R`(G).
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But if f ∈ L∞(G) acts by the multiplication operator ν(f) ∈ B(L2(G)), then for ξ ∈ L2(G),
x ∈ G,

(λsv(f)λ∗sξ)(t) = (ν(f)λ∗sξ)(s
−1t) = f(s−1t)(λ∗sξ)(s

−1t) = f(s−1t)ξ(t).

Hence if ν(f)λs = λsv(f), then we have f(t) = f(s−1t) almost everywhere. If
ν(f) ∈ λ(G)′, f must be constant almost everywhere. Therefore L∞(G) ∩ R`(G) = C
so that [L∞(G) ∪R`(G)]′′ = B(L2(G)).

It was shown in the proof of Lemma 8.1 that for s ∈ G, γ ∈ Ĝ we have the relation

λsνγλ
∗
s = γ(s)νγ.

We say that the pair (λ, ν) satisfy the Heisenberg-Weyl commutation relation. We have
the following uniqueness result, which will be useful in a later Section, from page 257 of [13].

Lemma 8.2. Let U, V respectively be unitary representation of G, Ĝ on a Hilbert space H
which satisfies the Heisenberg-Weyl commutation relation. Then there exists a Hilbert space
H0 and an isomorphorphism Ω : L2(G)⊗H0 → H such that

U = λ⊗ id, V = ν ⊗ id.

Returning to the covariant system (M, G, α), we define unitary representations λH, νH of
G, Ĝ on L2(G,H) as follows:

(λH(r)ξ)(s) = ξ(s− r), (νH(γ)ξ)(s) = γ(s)ξ(s)

so that λH(r) = 1 ⊗ λr and νH(γ) = 1 ⊗ νγ. We then define an action α̂ of Ĝ on L2(G,H)
by α̂γ = Ad(νH(γ)). In fact, α̂ restricts to an action on M oα G, which we will call the
action dual to α. Unless the context requires clarification, we will just refer to it as the
dual action.

We now check that α̂ defines an action onMoα G. If x ∈M, γ ∈ Ĝ, ξ ∈ L2(G,H), then
we have

(νH(γ)πα(x)νH(γ)∗ξ)(s) = γ(s)(πα(x)νH(γ)∗ξ)(s)

= γ(s)αs−1(x)(νH(γ)∗ξ)(s)

= γ(s)αs−1(x)γ−1(s)ξ(s)

= αs−1(x)ξ(s)

= (πα(x)ξ)(s),
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so α̂ fixes πα(M). Now if t ∈ G,

(νH(γ)λH(t)µ∗γξ)(s) = γ(s)(λH(t)µ∗γξ)(s)

= γ(s)(νH(γ)∗ξ)(s− t)
= γ(s)γ−1(s− t)ξ(s− t)
= γ(t)(λH(t)ξ)(s)

so α̂γ(λH(t)) = γ(t)λH(t), which belongs to M oα G. Hence α̂γ maps the generators of
MoαG intoMoαG, so the claim follows. We now state the main Theorem of this Section.

Theorem 8.3. There exists an isomorphism π : (M oα G) oα̂ Ĝ → M⊗B(L2(G)) which
transforms the bidual action ˆ̂αt to {αs ⊗ Ad(ρs)}s∈G. Moreover, the fixed point algebra
(Moα G)α̂ is precisely πα(M).

We prove the Theorem with a series of Lemmas. First we consider the following definition.

Definition 8.4. We say that the covariant systems (M, G, α), (N , G, β) are conjugate if
there exists an isomorphism π :M→N such that for x ∈M, t ∈ G, we have

π(αt(x)) = βt(π(x)),

and we say that π is a conjugating isomorphism.

The following is proven in [4].

Lemma 8.5. Let (M, G, α), (N , G, β) be conjugate covariant systems with conjugating iso-
morphism π : M → N . Then π̃ = π ⊗ 1 is a conjugating isomorphism for the covariant
systems (Moα G, Ĝ, α̂) and (N oβ G, Ĝ, β̂).

Returning to the covariant system (M, G, α), let (πα, λH) be the covariant representation
on L2(G,H) constructed in Section 7. Then we obtain a new covariant system (π(M), G, α′)
where α′t = πα ◦ αt ◦ π−1

α . Note that by the covariance condition, for x ∈ M we have
α′t(πα(x)) = πα ◦ αt(x) = λtπα(x)λ∗t so that α′ is unitarily implemented. Moreover, these
systems are conjugate. To prove Theorem 8.3 it suffices to work with the covariant system
(π(M), G, α′) in place of (M, G, α). Hence, for the remainder we will assume that α is
implemented by a one-parameter unitary group {us}s∈G which is SOT-continuous.

Define a unitary W on L2(G,H) by (Wξ)(s) = usξ(s). We have

(Wπα(x)W ∗ξ)(s) = us(πα(x)W ∗ξ)(s)

= us(u
∗
sxus)(W

∗ξ)(s)

= xusu
∗
sξ(s)

= xξ(s),
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and

(WλtW
∗ξ)(s) = us(λH(t)W ∗ξ)(s)

= us(W
∗ξ)(s− t)

= usu
∗
s−tξ(s− t)

= utξ(s− t),

so that Wπα(x)W ∗ = x⊗ 1 and WλtW
∗ = us ⊗ λt. In particular,

W (Moα G)W ∗ = {x⊗ 1, us ⊗ λs}′′x∈M,s∈G.

Lemma 8.6. The algebra (MoαG)oα̂Ĝ is spatially isomorphic to the von Neumann algebra
M1 acting on H⊗ L2(G)⊗ L2(Ĝ) with generating set

{x⊗ 1⊗ 1, us ⊗ λs ⊗ 1, 1⊗ νγ ⊗ λγ}x∈M,s∈G,γ∈Ĝ,

where λγ comes from the left regular representation of Ĝ. Moreover, this isomorphism leaves

the bidual action ˆ̂α unchanged.

Proof. We define the unitary W̃ on L2(Ĝ, L2(G,H)) by (W̃ ξ)(γ) = νH(γ)ξ(γ) so that for
x̃ ∈Moα G,

W̃πα̂(x̃)W̃ ∗ = x̃⊗ 1

and for γ ∈ Ĝ,
W̃λL2(G,H)(γ)W̃ ∗ = νH(γ)⊗ λγ.

We then define the unitary W on L2(G,H) by (Wξ)(s) = usξ(s) so that for x ∈M,

Wπα(x)W ∗ = x⊗ 1,

and for s ∈ G,
WλH(s)W ∗ = us ⊗ λs.

Then,

(W ⊗ 1)(W̃πα̂(πα(x)))W̃ )(W ∗ ⊗ 1) = W ⊗ 1(πα(x)⊗ 1)W ∗ ⊗ 1

= x⊗ 1⊗ 1,

and

(W ⊗ 1)(W̃πα̂(λH(s))W̃ )(W ∗ ⊗ 1) = W ⊗ 1(λH(s)⊗ 1)W ∗ ⊗ 1

= us ⊗ λs ⊗ 1.
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Moreove, since

(WνHW
∗ξ)(s) = us(νHW

∗ξ)(s)

= γ(s)us(W
∗ξ)(s)

= γ(s)ξ(s)

= (νHξ)(s),

we have that

(W ⊗ 1)(W̃λL2(G,H)W̃ )(W ∗ ⊗ 1) = W ⊗ 1(νH(γ)⊗ λγ)W ∗ ⊗ 1

= νH(γ)⊗ λγ
= 1⊗ νγ ⊗ λγ.

Lastly, we note that the unitary (W ⊗ 1)W̃ commutes with the unitaries {νL2(G,M)(s)}s∈G
implementing the bidual action, which completes the proof.

Lemma 8.7. The algebra M1 of Lemma 8.6 is spatially isomorphic to the von Neumann
algebra M2 acting on H⊗ L2(G)⊗ L2(G) with generating set

{x⊗ 1⊗ 1, us ⊗ λs ⊗ 1, 1⊗ νγ ⊗ νγ}x∈M,s∈G,γ∈Ĝ.

The isomorphism transforms the bidual action ˆ̂α to the action β implemented by the one-
parameter unitary group {1⊗ 1⊗ ρs}s∈G.

Proof. Let F : L2(Ĝ) → L2(G) be the isomorphism extending the Fourier transform on
L1(Ĝ) ∩ L2(Ĝ). If γ ∈ Ĝ, f ∈ Cc(G), we have

(FλγF
∗f)(t) =

∫
Ĝ

γ′(t)(λγF
∗f)(γ′)dγ′

=

∫
Ĝ

γ′(t)(F∗f)(γ−1γ′)dγ′

= γ(t)

∫
Ĝ

γ′(t)(F∗f)(γ′)dγ′

= γ(t)F(F∗f)(t)

= νγf(t),

so that the desired isomorphism is given by the unitary 1⊗1⊗F. A simple calculation yields
for s ∈ G, FνγF

∗ = ρs, completing the proof.
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Lemma 8.8. The algebraM2 of Lemma 8.7 is isomorphic to the von Neumann algebraM3

acting on H⊗ L2(G) with generating set

{x⊗ 1, us ⊗ λs, 1⊗ νγ}x∈M,s∈G,γ∈Ĝ.

The isomorphism transforms the action β of Lemma 8.7 to the action µ implemented by the
one parameter unitary group {1⊗ ρs}s∈G.

Proof. Identify L2(G × G) with L2(G) ⊗ L2(G) by extending the map which identifies the
element f ⊗ g with the function (s, t) 7→ f(s)g(t), and define a unitary U on L2(G×G) by
Uf(s, t) = f(st, t). Then,

U∗(νγ ⊗ νγ)Uf(s, t) = (νγ ⊗ νγ)Uf(st−1, t)

= γ(st−1)γ(t)Uf(st−1, t)

= γ(s)f(s, t)

= (νγ ⊗ 1)f(s, t),

and

U∗(λr ⊗ 1)Uf(s, t) = (λr ⊗ 1)Uf(st−1, t)

= Uf(r−1st−1, t)

= f(r−1s, t)

= (λr ⊗ 1)f(s, t).

Hence,

(1⊗ U∗)(x⊗ 1⊗ 1)(1⊗ U) = x⊗ 1⊗ 1,

(1⊗ U∗)(us ⊗ λs ⊗ 1)(1⊗ U) = us ⊗ λs ⊗ 1,

(1⊗ U∗)(1⊗ νγ ⊗ νγ)(1⊗ U) = 1⊗ νγ ⊗ 1.

Therefore, 1⊗ U∗ gives the desired isomorphism. Lastly, we note that for s ∈ G,

(1⊗ U∗)(1⊗ 1⊗ ρs)(1⊗ U) = 1⊗ ρs ⊗ ρs,

completing the proof.

Lemma 8.9. The algebra M3 of Lemma 8.8 is spatially isomorphic to M⊗B(L2(G)), and
transforms the action µ into α⊗ ρ.
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Proof. Let W be the unitary on H⊗ L2(G) as before satisfying

W (Moα G)W ∗ = {x⊗ 1, us ⊗ λs}′′x∈M,s∈G.

We will show that
W (M⊗L∞(G))W ∗ =M⊗L∞(G).

For x ∈M, ξ ∈ H ⊗ L2(G), t ∈ G, we have

(W (x⊗ 1)W ∗ξ)(t) = (W 2πα(x)W ∗2ξ)(t)

= u2
t (πα(x)W ∗2ξ)(t)

= u2
tαt−1(x)(W ∗2ξ)(t)

= u2
tαt−1(x)u∗2t ξ(t)

= αt(x)ξ(t).

If y ∈M′, γ ∈ Ĝ, then

[(W (x⊗ 1)W ∗)(y ⊗ νγ)ξ](t) = αt(x)[(y ⊗ νγ)ξ](t)
= αt(x)yγ(t)ξ(t)

= (y ⊗ νγ)[αt(x)ξ](t)

= [(y ⊗ νγ)(W (x⊗ 1)W ∗)ξ](t),

so W (x ⊗ 1)W ∗ ∈ [M′⊗L∞(G)]′ = M⊗L∞(G). On the other hand, we have that
W ∗(x⊗ 1)W = πα(x), and if y ∈M′, γ ∈ Ĝ, ξ ∈ H ⊗ L2(G), then

[πα(x)(y ⊗ νγ)ξ](t) = αt−1 [(y ⊗ νγ)ξ](t)
= αt−1yγ(t)ξ(t)

= (y ⊗ νγ)αt−1ξ(t)

= [(y ⊗ νγ)πα(x)ξ](t),

so W ∗(x⊗ 1)W ∈M⊗L∞(G). Lastly, since W ∗(1⊗ νγ)W = 1⊗ νγ, the claim follows.

Now W ∗(us ⊗ λs)W = 1 ⊗ λs, so that W ∗{us ⊗ λs}′′s∈GW = C⊗R`(G). Therefore, by
Lemma 8.1,

W ∗M3W = [M⊗L∞(G) ∪ C⊗R`(G)]′′ =M⊗B(L2(G)).

Lastly, we note that for s ∈ G,

W ∗(1⊗ ρs)W = us ⊗ λs,

completing the proof.
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Combining Lemmas 8.6, 8.7, 8.8, 8.9 and the discussion preceding Lemma 8.6 we have that
(MoαG)oα̂ Ĝ is isomorphic toM⊗B(L2(G)), and that the bidual action ˆ̂α is transformed
into {αs ⊗ Ad(ρs)}s∈G. To finish the proof of Theorem 8.3 we need to show that the fixed
point algebra (Moα G)α̂ is πα(M).

We already know that πα(M) ⊆ (M oα G)α̂. Note that πα(M oα G) is a subalgebra of
{us ⊗ ρs}′s∈G. Hence if x̃ ∈ (Moα G)α̂, we have that

x̃ ∈M⊗B(L2(G)) ∩ {us ⊗ ρs}′s∈G ∩ {1⊗ νγ}′γ∈Ĝ.

Let W be the unitary on H⊗ L2(G) as before such that

W (Moα G)W ∗ = {x⊗ 1, us ⊗ λs}′′x∈M,s∈G.

Since W (us ⊗ λs)W ∗ = 1⊗ λs and W (1⊗ νs)W ∗ = 1⊗ νs, we have that by Lemma 8.1,

x̃ ∈M⊗B(L2(G)) ∩W ∗(B(H)⊗C)W.

Therefore, x̃ = W ∗(x ⊗ 1)W for some x ∈ B(H). If we can show that x ∈ M, then
x̃ = W ∗(x⊗ 1)W = πα(x) and we are done. But if y ∈M′,

y ⊗ 1 ∈M′⊗C = (M⊗B(L2(G)))′,

so that x⊗ 1,W ∗(x⊗ 1)W commute. Thus, for ξ ∈ Cc(G,H), we have

(u∗sxusy − yu∗sxus)ξ(s) = 0,

and if we choose ξ such that ξ(e) 6= 0, this gives xy = yx, finishing the proof.

We have the following application to modular automorphism groups.

Corollary 8.10. Let φ be an fns weight on a von Neumann algebra M, let φ̃ be the weight
on Moσφ R dual to φ, and let σ̂φ be the action on Moσφ R dual to σφ. If we let h be the
positive self-adjoint injective operator affiliated with M oσφ R such that λ(t) = h−it, then
τ = φ̃h is a trace such that τ ◦ σ̂φs = e−sτ .

Proof. By Corollary 7.11, we have that σφ̃t = Ad(λH(t)). Let h be a positive self-adjoint
operator affiliated with M oσφ R such that λ(t) = h−it. Then the modular automor-
phism group for τ = φ̃h is trivial so that τ is a trace. Since θ is dual to σφ we have that
θs(h

it) = e−isthit. Hence, for x ∈Moσφ R+,

τ ◦ θs(x) = lim
ε→0

φ̂(h(1 + εh)−1θs(x))

= lim
ε→0

e−s(1 + ε · e−s)−1φ̂ ◦ θs(h(1 + εh)−1x)

= e−sτ(x).

In Section 9 we will apply the results of Sections 7 and 8 to properly infinite von Neumann
algebras.
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9 Structure of Properly Infinite von Neumann

Algebras

We now derive some structural implications for a von Neumann algebra M which comes
from the existence of an fns weight φ and associated modular automorphism group σφ. To
this end we will apply the crossed product construction as developed in earlier Sections. We
begin by proving that there is a relatively simple relation between M and Moσφ R in the
case that M is semifinite. The material for this section is from Chapter 12 of [13], except
for Lemmas 9.1 and 9.4 which are from part 2, Section 4 and Appendix C of [4].

Lemma 9.1. Let M be semifinite, and let φ be an fns weight on M. Then there exists an
isomorphism of Moσφ R onto M⊗L∞(R) which transforms the dual action σ̂φ onto id⊗µ,
where µ is the action of R on L∞(R) by translation.

Proof. Retaining the notation in Sections 7 and 8, let W be the unitary on H⊗L2(G) such
that Wπα(x)W ∗ = x ⊗ 1 and WλH(t)W ∗ = ∆it ⊗ λt. Since M is semifinite, ∆it ∈ M, so
that

∆it ⊗ λt ∈ {x⊗ 1, 1⊗ λs}′′x∈M,s∈R,

and
1⊗ λt ∈ {x⊗ 1,∆is ⊗ λs}′′x∈M,s∈R.

Consequently,
W (Moσφ R)W ∗ = {x⊗ 1, 1⊗ λs}′′x∈M,s∈R.

The dual action on M oσφ R is implemented by the unitaries {νH(s)}s∈G, which commute
with W so that the dual action remains unchanged. Lastly, if we let F : L2(R)→ L2(R) be
the isomorphism coming from the Fourier transform, then by Lemma 8.7, we have

(1⊗ F)λH(s)(1⊗ F)∗ = νH(s).

By Lemma 8.1, {νH(s)}s∈R generates C⊗L∞(R), so that

(1⊗ F)W (Moσφ R)W ∗(1⊗ F)∗ =M⊗L∞(R).

Also, by Lemma 8.7, we have

(1⊗ F)λH(s)(1⊗ F)∗ = 1⊗ ρs,

which is clearly conjugate to the desired system.
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Recall that a von Neumann algebra M has a canonical decomposition of the form

M =Ms ⊕MIII ,

whereMs is semifinite andMIII is type III. Using this fact we will obtain a characterization
of Type III algebras given in Theorem 9.3. First we start with a definition.

Definition 9.2. Let (N ,R, θ) be a covariant system and let τ be an fns trace on N . Then
we say θ scales τ if for s ∈ R, we have

τ ◦ θs = e−sτ.

Recall that if M is a von Neumann algebra then CM denotes the center of M.

Theorem 9.3. Let M be a properly infinite von Neumann algebra. Then there exists a
covariant system (N ,R, θ) such that N admits a trace τ scaled by θ and M is isomorphic to
N oθ R. Furthermore, M is type III if and only if the central covariant system (CN ,R, θ)
does not admit an invariant subsystem conjugate to (L∞(R),R, µ), where as before µ is the
translation action.

To prove the Theorem we need the following Lemma. First we recall that by Corollary
8.10, if φ is an fns weight on M, and θ is the action on M oσφ R dual to σφ, then there
exists an fns trace τ on M oσφ R which is scaled by θ. The following Lemma allows us to
say a bit more.

Lemma 9.4. If M is a properly infinite von Neumann algebra and K is a separable Hilbert
space then M∼=M⊗B(K).

Proof.

Claim: There exists a sequence of pairwise othogonal projections {en}∞n=1 such that
en ∼ 1 for all n, where ∼ denotes Murray-von Neumann equivalence of projections. If we let
e =

∑∞
n=1 en, then M is isomorphic to eMe =Me.

Since M is properly infinite there exists a projection f ∈ M such that f ∼ (1− f) ∼ 1.
Let u, v ∈M such that

u∗u = 1, uu∗ = f,

and
v∗v = f, vv∗ = 1− f.

Then for n ≥ 1 if we set tn = vnu, we have that t∗ntn = f , and {tnt∗n}∞n=1 is a family of
non-zero, pairwise orthogonal projections such that tnt

∗
n ≤ f for all n. Set en = fn and

e =
∑∞

n=1 en, then e � 1 and 1 � e so that e ∼ 1. Finally, if we let w ∈ M such that
w∗w = 1, ww∗ = e, then x ∈M 7→ wxw∗ ∈Me is the desired isomorphism.
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By the claim, we can assume that
∑∞

n=1 en = 1. Let {fi,j}∞i,j=1 be matrix units for B(K),
and let {vi}∞i=1 be elements in M such that v∗i vi = 1 and viv

∗
i = ei. Then, if we set

uk =
k∑
i=1

vi ⊗ fi,1,

we have that uk converges in the SOT to an element u ∈M⊗B(K), that u∗k converges in the
SOT to u∗, and that u∗u = 1⊗f1,1, uu

∗ = 1⊗1. Then x ∈M⊗B(K) 7→ u∗xu ∈M⊗(C ·f1,1)
is an isomorphism, and the result follows.

proof of Theorem 9.3. The existence of such a system follows immediately from Lemma 9.4
and the discussion preceding it.

Let (N ,R, θ) be a covariant sytem with trace τ on N scaled by θ and such that
M ∼= N oθ R. Let φ be the weight on M dual to τ . Let (πθ, λ) be the covariant sys-
tem generating the crossed product as in Section 7. By Theorem 7.10 we have that for
x ∈ N ,

σφt (πθ(x)) = π(στ (x)) = πθ(x),

and for s ∈ R,
σφt (λ(s)) = λ(s)(Dτ◦θs : Dτ )t = e−istλ(s).

Therefore σφ is precisely the dual action θ̂, and it follows by Theorem 8.3 that πθ(N ) =Mφ.

Claim: Identifying N with πθ(N ) ⊆M and the action θ with the action πθ ◦ θ ◦ π−1
θ , the

center CM coincides with the fixed point algebra Cθ
N .

We have that CM ⊆Mφ∩CN , and since λ(s) ∈M we have that CM commutes with each
λ(s) so that CM ⊆ Cθ

N . On the other hand, if x ∈ Cθ
N , this says precisely that x commutes

with N and each λ(s), so that x commutes with the generators of M. Therefore x ∈ CM.

Now suppose that there exists an injective ∗-homomorphism π : L∞(R)→ CN such that
for t ∈ R, f ∈ L∞(R), we have

π(µtf) = θtπ(f).

Let e = π(1) so that e is a non-zero projection in Cθ
N . We will show that the subalgebra

Me = Ne oθ R is semifinite, which shows that M is not type III.

Define a one-parameter unitary group {wt}t∈R in L∞(R) by

wt(s) = eist,

and set vt = π(wt). By assumption we have θs(vt) = eistvt. If x ∈ Ne, then since vt ∈ CN ,
we have

vtxv
∗
t = x = σφt (x),
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and for s ∈ R, we have
vtλ(s)v∗t = e−istλ(s).

Therefore, Ad(vt) and θ̂t = σφt agree on Me, and since e ∈ CM, we have that φ|Me is
semifinite and that σφ|Me = σφ|Me . It follows by Theorem 5.22 that Me is semifinite.

On the other hand, writeM =Ms⊕MIII as in the paragraph following Lemma 9.1, and
let e be the projection corresponding to the identity inMs. Then e is central, so belongs to
Cθ
N . ThereforeMs = Ne oθ R, so without loss of generality we will assume e = 1. SinceM

is semifinite, by Theorem 5.22 there exists a one-parameter SOT-continuous unitary group
{vt}t∈R in Mφ = N such that σφt = Ad(vt). Then we have for s ∈ R,

vtλ(s)v∗t = σφ(us) = e−istλ(s),

so that (λ, v) satisfies the Heisenberg-Weyl condition. By Lemma 8.2 the von Neumann
subalgebra generated inN by {vt}t∈R is isomorphic to L∞(R) and the isomorphism translates
the action Ad(λ), which we have identified with θ, to the translation action µ.

We finish this Section with the remark that in the case of a type III algebra, the covariant
system (N ,R, θ) is actually canonical. We state the following Theorem [13] (See Chapter
12, Section 1 of [13]).

Theorem 9.5. Let M be a type III von Neumann algebra. Then there exists a covariant
system (N ,R, θ), unique up to conjugacy, such that N admits an fns trace τ scaled by θ,
and such that M is isomorphic to N oθ R. Moreover, N is type II∞.

It is at this point that the theory becomes interesting. For it turns out that in the case
that M is a type III factor, the covariant system (CN ,R, θ) is an isomorphism invariant,
called the flow of weights associated withM. For this system, we let T > 0 be the period
of the action (where T = 0 if the action is trivial, and T = ∞ if the action has no period),
and we say that M is a factor of type IIIλ where λ = e−T (where λ = 0 if T =∞). Lastly,
we state the following particularly nice decomposition of type IIIλ factors for 0 < λ < 1 (see
Chapter 12, Section 2 of [13]).

Theorem 9.6. Let M be a type III factor. Then M is of type IIIλ for 0 < λ < 1 if and
only if there exists a type II∞ factor N , an automorphism θ ∈ Aut(N ), and an fns trace τ
on N such that τ ◦ θ = λτ and such that M is isomorphic to N oθ Z.

This theorem is particularly interesting because in order to construct non-isomorphic type
III factors, we just need to find automorphisms which scale a fixed trace by different degrees.
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10 Concluding Remarks

In Section 9 it was noted that a type III factor can be classified by the kernel of the action
of the flow of weights. We mention here another method to obtain this same classification. In
[1], Arveson discusses a notion of spectrum for an action of a locally compact abelian group
G on von Neumann algebra M. This is achieved by taking the associated representation of
L1(G), and defining the spectrum to be the closed subset in Ĝ (the hull) associated with
the kernel. In the case of the modular automorphism group σφ of an fns weight φ, the
spectrum coincides with the set σ(∆φ) ∩ R+ (see Section 3.4 of [11]). In [3], Connes noted
that the spectrum decreases when we restrict the action to the corner algebras Me, where
e is a non-zero projection fixed by the action. The intersection of the spectra of the corner
algebras, called the Connes spectrum, is invariant under cocycle conjugacy (see Section 3.3
of [11]). Therefore, by the Connes Cocycle Derivative Theorem, we can define the spectrum
of a von Neumann algebraM, denoted Γ(M), to be the Connes spectrum of the action σφ,
where φ is any fns weight on M. It turns out that Γ(M) coincides with the kernel of the
dual action σ̂φ restricted to CMo

σφ
R (see Chapter 11, Section 2 of [13]). In particular, if M

is a type III factor, then the spectrum ofM is the kernel of the action of the flow of weights
(see Chapter 12, Section 1 of [13]). The advantage of this viewpoint is that by Theorem 5.9
we obtain the same classification of type III factors in terms of the spectra of the modular
operators. In Section 3.4 of [11], factors of type IIIλ are constructed by measure theoretic
methods and using the the above picture of the invariant. As an area for further study, it
would be interesting to explore in detail the connection between this picture and that given
in Section 9 of the invariant for type III factors.
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