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Abstract

The discovery of cosmic acceleration has prompted the need for a new understanding
of cosmology. The presence of this acceleration is often described as the dark energy
problem or the Λ problem.The simplest explanation is that the acceleration is due
to addition of a cosmological constant to Einstein’s equation, but this resolution is
unsatisfactory as it leaves several unanswered questions. Although General Relativity
has been tested in the strong-field limit, the apparent dark energy may be urging us
to consider experimental cosmology as such a test for large scales. In this vein, I
have pursued a study of modifications to Einstein’s gravity as well as possible related
quantum gravity phenomenology.

Not only must the details of modified gravities be worked out, but their impact
on other astrophysics must be checked. For example, structure formation provides a
strong test of any cosmic acceleration model because a successful dark energy model
must not inhibit the development of observed large-scale structures. Traditional ap-
proaches to studies of structure formation in the presence of dark energy or a modified
gravity implement the Press & Schechter formalism. I explore the potential for uni-
versality in the Press & Schechter formalism and what dark matter haloes may be
able to tell us about cosmology.
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CHAPTER 1

Prologue

1.1 The Astrophysical Picture

Observations of Type Ia supernovae [1, 2] and cosmic microwave background anisotropy

measurements [3] seem to have converged on a seemingly simple and yet extraordi-

nary point: the universe is not only expanding – it is accelerating. In other words,

the matter-energy content of our universe is apparently dominated by a strange com-

ponent that can be described as a vacuum energy with negative pressure. While we

traditionally consider attractive gravity to be the dominant force on large-scales, this

“energy” pushes outward, challenging Newtonian gravity’s hegemony. Explaining the

source of this acceleration is the great cosmological question of our era.

Approaches to the cosmic acceleration question are as varied and strange as the

problem itself. The first of these is the introduction of a “simple” vacuum energy

whose value is called the cosmological constant, which is often referred to as Λ.
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However, as discussed in § 2.3, Λ is in fact a problem itself and one that is independent

of the cosmic acceleration issue. This has been known for decades as the cosmological

constant problem. Because both are questions of the energy content of the physical

vacuum, one from the point of view of general relativity (GR) and the other from the

point of view of quantum field theory (QFT), it is expected that they are related.

Thus, a resolution to the one would ideally address the other.

An alternative explanation of cosmic acceleration is quintessence, which posits a

scalar field with negative pressure as an additional stress-energy source. Quintessence

is often used interchangeably with the more general term “dark energy.” There is

also the possibility that while GR is correct, we are not properly applying it to an

inhomogeneous universe. Indeed, Kolb et al. [4] suggest that acceleration of the

universe is due to backreaction of cosmological-scale perturbations. Neither of these

models addresses the cosmological constant problem. Thus, an attractive alternative

is that GR is the culprit and must be modified to properly explain the apparent

presence of dark energy. Such models are known as modified gravities (MGs).

Discovering which of these models best fits the data is now central to the cosmo-

logical research enterprise. Finding tests for these models can be a challenge, since the

evidence for cosmic acceleration that relies on geometric techniques (e.g. supernova

distance measures) assumes a Robertson-Walker background metric and Friedmann’s

equations. While the assumption about the metric is tested and well established,

Friedmann’s equations may not be the correct description [5].

Moreover, depending on one’s assumptions, at a technical level, MGs are indis-

tinguishable from quintessence models because MGs can look like an effective dark

energy [6]. A natural way to distinguish between the MGs and quintessence is to see
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whether the theory looks more “natural” as a modified gravity or a quintessence in

the context of structure formation. In fact, the study of structure formation can pro-

vide a powerful, independent test of models of cosmic acceleration [5]. The cosmology

community has largely exhausted its efforts to study the cosmological constant in this

context [7, 8, 9, 10, 11]. The impact of quintessence models on structure formation

is also fairly well understood [12, 13, 14].

However, despite a wealth of study, efforts to discover methods that differenti-

ate between models of cosmic acceleration using modeling of large-scale structure

continue.

1.2 Fundamental Problem(s)

Even as we worry about the cosmic acceleration problem, we are faced with another

challenge: quantum gravity. The two great accomplishments of the 20th century have

yet to find a way to work comfortably with one another. Einstein’s GR taught us to

see space, time, and matter as inseparable, while quantum mechanics and its eventual

successors, QFT and the associated Standard Model (SM), gave us a new vision of

the fundamental building blocks that compose all visible matter. One might näıvely

assume that in some sense this would have exposed the foundation of the Universe

and its evolution to us.

But this has not turned out to be the case. Despite nearly a century of effort, the

fundamental structure of the universe is still very much a mystery. Although they are

independently enormously successful in the regimes they were designed to describe,

GR (which provides us with gravity) and QFT with the SM (which describes the mat-
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ter but does not include gravitational interactions) continue to be unwilling partners

in the theater of physics research. However willing they are in reality, we cannot yet

clearly elucidate in mathematical or philosophical terms how that is possible.

1.3 Astrophysics and Fundamental Physics

As we consider the cosmic acceleration problem and what many consider to be the

easiest explanation for it, the cosmological constant, we are left to ponder the question

of the vacuum. We tend to think that defining the vacuum in GR is trivial, although

in reality, GR says nothing about a vacuum, at least not the vacuum that we conceive

of in QFT. In GR, the vacuum is an empty premise: space with no matter-energy

content is a vacuum by definition. By contrast, in QFT, the vacuum is similarly

a space with no matter-energy content, but with the caveat that it must account

for quantum behaviors such as rapid fluctuations in matter-energy content. This

divergence in definition leads to incredibly different properties.

What we’ve learned repeatedly is that connecting these two vacuums turns out to

be completely non-trivial. Perhaps it’s not that we don’t have the right tools so much

as our efforts have been focused in the wrong direction. An alternative, creative way

of thinking about this problem is looking at another scenario where we are attempting

to fit GR and QFT into a single framework: the quantum gravity problem. Vacuum

observations and phenomenology could actually be quantum gravity phenomenology.

Much of the work contained in this dissertation is inspired by the possibility that

cosmic acceleration and quantum gravity are intimately tied together.

One possible way to see cosmic acceleration as a quantum gravitational effect on

4



the large-scale evolution and structure of the cosmos is the following. It has been

suggested by Markopoulou [15] and Markopoulou & Smolin [16] that the transition

from an early quantum geometric phase of the universe to a low-temperature phase

that is characterized by an emergent metric might lead to a partially disordered

locality.

We [17] considered the presence of Λ as a consequence of a quantum gravity where

discreteness (and thus some amount of non-locality) is an inherent property. As the

universe transitions to its low-temperature phase, non-locality might survive to large

scales. Assuming this possibility, we find that the energy associated with the presence

of so-called non-local links leads to a small measured vacuum energy, similar in nature

to the cosmological constant.

Afshordi’s gravitational aether [18] provides an example of a novel approach to

cosmic acceleration modeling via a modified energy-momentum contribution to Ein-

stein’s equation. The aether is an example of degravitation, where gravitation is

decoupled from the vacuum. This effectively eliminates the weak and new cosmolog-

ical constant problems by virtue of making the vacuum solely a matter for quantum

field theory. The new gravitation equation satisfies traditional constraints, such as

the Bianchi identity, and leads to a modified Friedmann equation. It can be shown

that in this particular model, Newton’s constant is four thirds its current measured

value during an era of radiation domination.

To better understand this model, Afshordi and I [17] studied solutions for static

black holes in the presence of the gravitational aether. Because of the aether’s fluid-

like properties, we began by considering a static metric that describes the perfect

fluid-like interior of a star. Here the energy-momentum tensor is particularly simple
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because of the absence of a matter density.

The study reveals an interesting so-called UV-IR coupling: aether couples the

spacetime metric near the horizon to the metric at infinity via an integration constant

that appears in both limits. We fix this constant via what we termed the Trans-

Planckian ansatz. By doing so, we can make a connection between the contribution

of the presence of many stellar-mass black holes and the presence of an apparent dark

energy. We can then make a prediction for the equation of state of “dark energy,”

which can be tested by future observational projects such as the Joint Dark Energy

Mission.

As we consider the potential relationship between observations and the universe’s

expansion history, an important parameter whose value we hope to uncover from

data is the equation of state parameter, w ≡ p/ρ. The value of w will help us

distinguish between different models of cosmic acceleration. A simple cosmological

constant model will give w = −1, while dynamical scalar field and modified gravity

theories may give us a more complex, time-dependent relation. The value of w can be

constrained directly by supernova distance-redshift and baryon acoustic oscillations,

as observed through efforts such as the Sloan Digital Sky Survey and Hubble Space

Telescope.

Of course, the interpretation of this data relies on the assumption that GR, as

we know it, is correct. The challenges grow when we consider the possibility of

modified gravity [5]. For example, Ishak et al. [19] note that we run the risk of

misunderstanding our results if we do not disentangle the interpretation of our data

through the lens of dark energy when the reality is a modified gravity, or vice versa.

With this in mind, structure formation comes to the fore. Indeed, an ideal scenario
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is one where we are able to use structure formation data and modeling to distinguish

between cosmological pictures.

The relationship between dark energy and structure formation, i.e. the evolution

of small-scale inhomogeneities, manifests via the cluster mass function (CMF), also

known as the halo abundance mass function. The CMF gives dark matter halo

abundance as a function of mass. It has been noted that the CMF can help to

constrain the vacuum energy density as well as other cosmological parameters [20, 21].

In other words, understanding the correlation between galaxy cluster density and the

dark energy can provide a powerful test of the dark energy as cosmological constant.

In turn, this knowledge may offer hints about the structure of quantum gravity.

Afshordi and I pursued a better understanding of the universality of the cluster

mass function, which gives us a measure of galaxy cluster mass density. We find that

the universal behavior of the cluster mass function allows us to derive the history of

linear structure formation, allowing us to refine how structure formation is used to

understand cosmological dynamics. As in the case of other endeavors mentioned in

this section, the work is extendable and is by no means concluded here.

1.4 Outline

As part of my doctoral research, I have investigated two competing explanations for

the cosmic acceleration and then moved into attempting to develop a better mecha-

nism for using observational information about structure formation to test models of

cosmic acceleration. To make this work as accessible as possible, I provide introduc-

tions to basics in cosmology and quantum gravity so that the original content can be
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read in context.

Chapter 2 will introduce Einstein’s theory of gravitation. I will describe the

general form of cosmology that can be derived from it. I then discuss this cosmology

from the perspective of current astrophysical data, most notably the question of

cosmic acceleration. This introduces us to the cosmological constant and its famous

three problems.

Chapter 3 describes the idea of Quantum Gravity and problems that we might

hope to solve by discovering a model of it. I will discuss some general properties of

non-string theory models of quantum gravity, focusing on ideas about non-locality

and emergence. The chapter also includes a derivation of the Hawking radiation, a

key idea in semiclassical gravity.

Chapter 4 is an updated version of a paper that I co-wrote with Smolin, which

appeared in Physical Review D. The paper, entitled Disordered Locality as an Ex-

planation for the Dark Energy, introduces an alternative approach to resolving the

cosmic acceleration problem that is more directly inspired by ideas in quantum gravity

than the model in Chapter 5.

Continuing along the same lines, Chapter 5 is primarily a reproduction of a paper

that I co-wrote with Afshordi and Balogh and which also appeared in the Physical

Review D. The paper, entitled Stellar Black Holes and the Origin of Cosmic Acceler-

ation, describes a novel approach to resolving the cosmological constant and cosmic

acceleration problems using a novel tie between black holes and semiclassical quantum

gravity phenomenology.

In Chapter 6, I provide a draft of a planned submission for publication in Physical
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Review D with Afshordi on the question of what dark matter haloes can teach us

about cosmic acceleration.

1.5 Conventions

For the purposes of clarity and consistency, I have chosen a few standard conven-

tions for this dissertation. I will use a standard Lorentzian metric with a η =

diag(1,−1,−1,−1) signature in Chapter 4 and with a η = diag(−1,+1,+1,+1)

signature in Chapter 5. Unless it is explicitly stated otherwise, I use natural Planck

units 1: ~ = c = G = kB = 1, where ~ is Planck’s constant mod 2π, c is the mea-

sured speed of light in a vacuum, GN is Newton’s constant and kB is Boltzmann’s

constant.

1Planck units are described in greater detail as part of a larger discussion about quantum gravity
in Chapter 3
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CHAPTER 2

Relativity and Cosmology

In this Chapter, I provide a review of fundamental elements of the Lambda-Cold-

Dark-Matter model (ΛCDM) that is the most generally accepted model in physical

cosmology. This concordance model assumes the presence of a vacuum energy ac-

counting for 70% of the matter-energy content in the universe, cold (as opposed to

hot) dark matter accounting for 26%, and baryonic (normal) matter accounting for

4%.

The unexpected reality that the majority of the universe’s energy content is com-

posed of two components whose properties we mostly do not understand merits some

discussion. This work focuses quite a bit on the cosmic acceleration/cosmological

constant/dark energy problem, starting with Section 2.3. The name “dark matter”

is due to this matter’s lack of an electromagnetic interaction. Its existence is inferred

from observations of galaxy rotation curves, whose velocities suggest the presence of

more gravitationally interacting matter than what is expected due to observations of
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radiation. Most of what is understood about the properties of dark matter is due to

theoretical work or inference from the behavior of surrounding baryonic matter, and

all of it is well-reviewed.1

For the purposes of this section, I will assume a basic familiarity with concepts

in General Relativity up to and including Einstein’s equation. For a more thorough

presentation of many of the topics covered here, Wald [23] and Carroll [24] provide

thorough discussions of the basics of general relativity and Friedmann-Robertson-

Walker theory.

2.1 The Expanding Universe

In 1929, Edwin Hubble made a momentous discovery that would dominate, if not

begin, progress in cosmology for the entirety of the 20th century right into the 21st.

While studying the movements of galaxies, he noted that the recession velocity of a

galaxy was proportional to its distance [25]. The proportionality factor came to be

known as the Hubble Constant, H, and the relation as Hubble’s law:

~v = H0~r (2.1)

In other words, we can describe the expansion of the universe as the increase, in time,

of the proper distance between galaxies. This is not to say that gravitationally bound

systems such as galaxies are expanding. In fact, the tension between the expan-

sion and these gravitational instabilities leads to interesting effects such as structure

formation, which will be discussed more in depth in Chapter 6.

1For example, see Liddle & Lyth [22].
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Figure 2.1: This diagram, from Hubble’s original paper, shows a strong
correlation between the distance of galaxies and their recession velocities.
Edwin Hubble, Proceedings of the National Academy of Sciences, vol. 15 no. 3, pp.168-173
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Although initially rejected by Einstein, Hubble’s observations have been confirmed

repeatedly during the several decades since and are a cornerstone of experimental

evidence for Einstein’s General Relativity. Indeed, as discussed in Chapter 1, in 1998

an interesting twist in the narrative was introduced by Supernova Type Ia data which

seemed to suggest that the universe is not only expanding but that very expansion

is accelerating. The simplest explanation for this acceleration is the presence of a

cosmological constant in Einstein’s equations, describing a non-zero vacuum energy.

But as I describe later, this explanation leaves a lot to be desired.

2.2 Friedmann, Robertson, and Walker

A discussion of the cosmological constant and the problem of the accelerating universe

will be richer in the context of underlying theory. Thus, I will take the opportunity

to describe the Robertson-Walker metric and Friedmann’s equations in order to put

the original work of this document in context. The cosmological principle (CP) forms

the foundation for all models of cosmology. The CP is essentially the statement that

on large scales, the universe looks the same to all observers. There are two immediate

consequences of this idea:

1. Spatial homogeneity at each time slicing

2. Spatial isotropy at each time slicing

Spatial homogeneity implies that there is no such thing as a privileged observer in

the universe, and observables will be the same everywhere. Isotropy implies that this

is the case no matter what direction we look in.
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It can be shown that the assumption of homogeneity and isotropy is a suffi-

cient constraint to discover a general cosmological metric, commonly known as the

Robertson-Walker metric.2

ds2 = −dt2 + a(t)2dΣ2, (2.2)

where a is a dimensionless scale factor and Σ is a three space of constant curvature.

The exact form depends on the internal curvature of the spacetime. It can either

be Euclidean, hyperbolic or spherical in nature. These correspond to flat, open and

closed universes, respectively. We can see this by writing:

dΣ2 =
dr2

1− kr2
+ r2dΩ2, (2.3)

where r has dimensions of distance and k is the curvature parameter with dimensions

[length]−2. k = 0 corresponds to the flat case, k > 0 the closed and k < 0 the open.

The Robertson-Walker metric, when paired with the assumption that matter can

be modeled as a perfect homogeneous fluid as well as with the application of Einstein’s

equation, forms the Friedmann-Roberston-Walker universe. To see what one means

by this, we summarize a portion of Carroll’s discussion. Beginning in a frame where

a perfect fluid’s velocity, U , is at rest with respect to comoving coordinates, Uµ =

(1, 0, 0, 0), we define the energy-momentum tensor:

Tµν = (ρ+ p)UµUν + pgµν , (2.4)

2For example, see Chapter 8 of Carroll [24].
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where ρ and p are the density and pressure, respectively, and gµν is the metric.

When we plug this energy-momentum tensor into Einstein’s equation, given by

Rµν −
1

2
Rgµν = 8πGTµν , (2.5)

along with the Robertson-Walker metric, the µν = 00 equation gives us what is known

as the second-order Friedmann equation:

ä

a
= −4πG

3
(ρ+ 3p). (2.6)

The µν = ij equation gives us another equation:

ä

a
+ 2

(

ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− p), (2.7)

which, when combined with Eqn. 2.6 gives us the well-known first order Friedmann

equation:
(

ȧ

a

)2

=
8πG

3
ρ+

k

a2
= H2. (2.8)

H = ȧ
a
defines the Hubble parameter, which in the present epoch, a(t = today) = 1,

is equivalent to Hubble’s “constant.”

Extending our assumption about the fluid nature of energy content, we assume

that the equation of state for all fluids will be given by p = wρ, where w is a time-

independent constant that is often referred to as the equation of state parameter.

w will take on different values for different forms of matter-energy content. Indeed,

when talking about the problem of cosmic acceleration, the value of w is key. For

a simple cosmological constant, which fits many cosmological observations, w = −1.

15



Quintessence and modified gravity models potentially have dynamical equation of

state parameters, which present certain theoretical challenges that are discussed in

Chapter 6. By contrast, for a dusty universe, w = 0, and we use this to approximate

gravitating (baryonic and dark) matter.

In keeping with the fundamental premise of GR, that matter shapes geometry

while geometry tells matter how to behave, the matter-energy content of the uni-

verse, along with intrinsic curvature, determines the geometry of the universe. This

geometry is defined as open, closed or flat (as discussed above) relative to the critical

density, which is found assuming a zero vacuum energy:

ρc =
3H2

8πG
. (2.9)

For convenience, matter-energy densities of different components such as baryonic/-

dark matter, dark energy/vacuum, radiation and intrinsic curvature are often ex-

pressed as fractions of this critical density:

Ωi =
ρi
ρc
, (2.10)

where Ω is sometimes called the density parameter. The sum of the density parame-

ters for each component is equal to unity:

1 = Ωm + ΩΛ + Ωr + Ωk. (2.11)

If the universe is not flat (k = 0), the total energy density will be a function of time,

i.e. Ωtotal = Ωtotal(t) where Ωtotal = 1− Ωk.

16



Taking into account an equation of state parameter w = 0 for matter, w = 1
3
for

radiation, w = −1 for vacuum energy, and w = −1
3
for spatial curvature, we can

rewrite the Friedmann equation:

(

H

H0

)2

= Ωma
−3 + Ωra

−4 + Ωka
−2 + ΩΛ, (2.12)

where H0 is the value of the Hubble factor today. It is this form that is used for the

codes described in Chapter 6 and found in Appendix A.

2.3 Cosmological Constant

We are most interested in studying the mathematical structures of cosmology because

of the insight they may provide into the cosmic acceleration problem. In the context

of the foundation of Section 2.2, we can näıvely assume that Einstein’s equations

continue to satisfactorily describe the universe’s cosmology if we merely recall his

famed blunder3 the cosmological constant or Λ. Physically, this means we assume the

presence of a vacuum energy whose value is set by experimental evidence, for example

the value necessary to cause observed cosmic acceleration. Relativity cannot tell us

how to deduce this value from theoretical considerations.

This Λ manifests with a fluid equation of state ρ = −p, counterintuitively em-

bodying a negative pressure. Furthermore, it appears in Einstein’s equation as a mere

addition that is not motivated by any theoretical considerations. In the presence of

3This characterization is attributed to Einstein by George Gamow in his memoir. [26]
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a non-zero cosmological constant, Einstein’s equation takes the form:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (2.13)

In addition, the cosmological constant can be added into the FRW framework with

minimal disruption. Friedmann’s equations will take a slightly different form, but are

largely unchanged. For example, the first order equation will have an additional

density contribution4:
(

ȧ

a

)2

=
8πGN

3
(ρ+ ρΛ) = H2. (2.14)

However, the cosmological constant is unsatisfactory because it leaves several ques-

tions unanswered. As outlined byWeinberg [27, 28] and many others, the cosmological

constant comes with its own set of problems that are independent of cosmological is-

sues. Three major questions arise when talking about Λ, with or without the presence

of cosmic acceleration:

1. The Old Cosmological Constant Problem: There is a severe mismatch between

the measured Λ and the expected value due to quantum field theory (QFT).

QFT näıvely predicts an energy density that, in units where ~ = c = G = 1,

will be of order unity.

2. The Weak Cosmological Constant Problem: Just as we do not understand why

the value of Λ is so small, we also do not understand why it is so close to zero

but not exactly zero. Current cosmological observations, paired with relativity

theory, indicate that there may be a vacuum energy density of order 10−120.

4Here, we assume that the curvature constant, k, is zero.
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3. The New Cosmological Constant Problem: Curiously, the current value of the

energy density associated with Λ is comparable to the present mass density.

This is also known as the coincidence problem.

The old cosmological constant problem is so named because its existence predates

observations that indicate the existence of a vacuum energy. In fact, before the discov-

ery of cosmic acceleration, it was a problem that had worried quantum field theorists

for decades. The missing energy could not be accounted for in experiment, and it

was not clear why. The 1998 discovery of cosmic acceleration added an additional

constraint and mystery in the form of the weak cosmological constant problem. The

old problem, instead of being eliminated, was compounded by the discovery of an

apparent vacuum energy that is incredibly close to zero but just large enough to be

noticeably non-zero. It also introduced astrophysical concerns more directly into the

phenomenological discussion about vacuum energy. Reconsidering the old cosmolog-

ical constant problem in the context of the weak problem could be taken to imply

that these questions are tied to the larger discussion of how quantum field theory

is related to general relativity. In other words, it could be seen as one edge of the

multifacted quantum gravity problem.

From a phenomenological perspective, a particularly attractive model of cosmic

acceleration that could better address the aforementioned three issues would sup-

plant Λ in cosmological models. While quintessence could potentially explain the

cosmic acceleration, addressing the weak cosmological constant problem and the new

cosmological constant problem requires fine-tuning of the quintessence field. This is

nearly as unsatisfactory as the cosmological constant itself. Chapter 4 and Chapter 5

describe approaches that seek alternative approaches.
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CHAPTER 3

Quantum Gravity

3.1 What is Quantum Gravity?

Quantum gravity is a theorized self-consistent union of quantum mechanics with

general relativity. It is widely believed that a theory of quantum gravity exists, and

research into models of quantum gravity such as string theory, loop quantum gravity,

spin foams, causal sets and causal dynamical triangulations is part of an active effort

to understand physics at its most fundamental level. Indeed, each model of quantum

gravity inspires passionate advocates who all disagree with one another about the

proposed properties of the unified theory, and it would be impossible to properly

survey all of the ideas here. In view of the broadness and depth of quantum gravity

models and their contents, I will only attempt to provide a brief overview of a few

topics in the field that are relevant to problems presented later in this thesis.
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3.2 Scales and Units in Quantum Gravity

Because general relativity and the standard model have been so successful in the

regimes of study where they naturally arose, gravity and particle physics, respec-

tively, a natural question arises in the discussion of their merger. These two theories

are dominant at scales that are orders of magnitude apart from each other.1 It is

reasonable to therefore wonder about the scale at which must we be concerned with

the need for a quantum gravity. Knowing very little about how the theory is manifest

makes this a unique challenge.

Dimensional analysis has given rise to the expectation that quantum gravity be-

comes not only relevant but necessary at the Planck scale. This is a scale defined

solely by the five universal constants:

1. Newton’s gravitational constant, G

2. The speed of light, c

3. The Planck constant, h, which is often modulated by 2π and denoted as ~.

By combining these constants to achieve the appropriate dimensions, a Planck mass,

Planck length, Planck time, Planck charge, and Planck temperature can be defined,

and from these, other units such as the Planck energy can be extrapolated.

A sense of scale can be gotten by considering the Planck length, lp =
√

~G
c3

= 1.6

x 10−35 m, and the Planck energy, Ep = 1.22 x 1019 GeV. From the point of view

of position space, quantum gravity is relevant at extremely small scales that are far

1This is understood as differences in order of magnitude between the coupling constants associated
with the models, such as Newton’s constant G or Λ, the quantum chromodynamics scale.
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removed from every day human life, while from the point of view of momentum space

we are concerned with extremely large scales.

As we shall see below, dimensional considerations can be further useful in trying

to predict quantum gravity phenomenology. For example, in the case of Hawking

radiation, we consider quantum effects when the curvature of a black hole spacetime

is not comparable to the Planck length. In other words, we expect our approximation

to be effective up to the Planck scale.

3.3 Emergence and Background Independence in

Quantum Gravity

Quantum gravity models, at least in the minds of many of their exponents, tend to

fall into two categories: background dependent and background independent. Back-

ground independence, in physical terms, means independence of the background

space-time’s geometry. More formally, this is known as diffeomorphism invariance

and General Relativity is an example of a background independent/diffeomorphism

invariant theory. On the other hand, the Standard Model of particle physics is an

example of a background dependent theory. It requires a fixed, flat background and

at the moment does not contain gravitational interactions.

String theory takes its cue from the Standard Model and can be construed as

background dependent, whereas models like loop quantum gravity are much more

concerned with respecting background independence from the start.2 I mention these

2It is hoped by theorists, both strings and non- alike, that the background dependence of String
Theory is a temporary concern that can be worked out in the long run.
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ideas with the caveat that it is generally agreed that ideally, a complete model will

be background independent. The disagreement lies more in the question of when

background (in)dependence becomes relevant as a tool in the process of discovering

a complete model for quantum gravity. Rovelli [29] provides a much more thorough

discussion of this topic than I can provide here. Smolin [30] also provides an overview

of background independent approaches to quantum gravity.

It is likely safe to say that those working on background independent formulations

have typically been more immediately interested in the question of “emergence” in

quantum gravity. Whereas String Theory’s approach begins with a background popu-

lated by the Standard Model, background independent approaches seek to begin with

an abstract concept of quantum gravity that in the appropriate limits reproduces

General Relativity and the Standard Model/relativistic quantum mechanics. Hu [31]

provides an overview of different approaches to the emergence of quantum gravity

itself.

3.4 Quantum Gravity Phenomenology

Indeed, background independence does not easily lend itself to low-energy limits. An

example of an effort to resolve this includes that of doubly/deformed special relativity

(DSR).3 A short note by DeDeo & Prescod-Weinstein [32] summarizes some potential

pitfalls, and Hossenfelder [33] pursues this line of thinking in greater detail.

When considering ways to approach the problem of quantum gravity, this can

be done from the point of view of fundamental questions, and String Theory, Causal

3See Smolin [30] for an overview of the current state of DSR.
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Dynamical Triangulations, and Spin Foams are all examples of approaches that seek to

resolve the question by constructing a model from the ground up. Another approach

is from the opposite direction: we consider potential phenomenological behavior of

quantum gravity and guided by those results attempt to trace our way upwards to a

more complete picture.

While the question of emergence in background-independent approaches to quan-

tum gravity raises challenges, it also opens doors to creative speculation and possible

resolution of standing problems in related fields. The work in Chapter 4, which also

appeared as a journal paper [34] is an example of the application of ansatzes motivated

by quantum gravity to the cosmic expansion problem of cosmology.

A major structural test of that particular model will be feasible once the question

of coarse graining from an abstract quantum gravity to classical general relativity is

better understood and/or addressed. In saying so, I do not mean to minimize the

challenge associated with coarse graining. Understanding how to go from microscopic,

as in Planck-level, scales to the relatively macroscopic scale of particle physics and

truly macroscopic scale of general relativity could be said to be one way of framing

the genuine phenomenological challenge of producing a complete model of quantum

gravity. From our elegant stringy and loopy ideas, we must somehow be able to repro-

duce the limits that dominate the scales that are readily observable in astrophysics

as well as in day to day life. The work of Chapter 4 is in part a response to this

consideration.
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3.5 Some Comments on Semiclassical Gravity &

Hawking Radiation

Semiclassical gravity could be said to be slightly more general than quantum gravity

phenomenology typically is. It seeks to study quantum gravity via approximation and

unlike quantum gravity phenomenology, it is grounded in well understood mathemat-

ical and physical constructs. Matter is treated as quantum mechanical fields while

gravity is described classically using GR.

The study of semiclassical gravity generally falls within the purview of quantum

field theory in curved spaces (QFTCS). The study of QFTCS provides an indication

of what results from a more complete theory of quantum gravity might look like. An

immediate result, for example, turns out to be that measuring the number of particles

in the vacuum depends on the path of the vacuum’s observer in spacetime. This is

known as the Unruh effect [35, 36, 37].

The semiclassical result most relevant to the present work is the discovery of a

phenomenon related to the Unruh effect: Bekenstein-Hawking radiation [38, 39, 40,

41] and the associated Hawking temperature. As texts such as Birrell and Davies [42]

describe the Unruh effect and Hawking radiation in great technical detail, I will only

mention a few qualitative facts about the topic.

We assume matter fields obey wave equations with the flat space Minkowski met-

ric replaced by a more general (curved) metric, gµν . The source of Einstein’s equation

is the expectation value of Tµν for these matter fields. Immediately there is trouble

trying to do quantum field theory in such a scenario. We start by considering the

Unruh effect in Rindler space, which is how flat Minkowski space appears to an accel-
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erating observer, where an accelerating observer, as opposed to an inertial observer,

is defined as one who is moving with constant acceleration in Minkowski space.4

Typically, we define a quantum field theory in terms of annihilation and creation

operators. These operators are so named because they reduce or increase the number

of particles, respectively, in whatever state they are applied to. In Rindler space one

tries to decompose them into positive and negative frequencies, curved spacetime does

not allow for invariant definitions of these frequencies. The creation and annihilation

operators for the mass field are therefore not uniquely determined, leading inertial

observer and a Rindler observer to take vacuum measurements that may not agree.

Some mathematical study shows that this leads to the fascinating result that an

accelerating observer will observe a thermal spectrum of particles:

T =
a

2π
, (3.1)

where T is the temperature, and a determines the acceleration of the observer (and

completely unrelated to any cosmological parameters mentioned elsewhere in this

work).

Generalizing to the curved space of a Schwarzschild black hole, the Hawking Tem-

perature will take a slightly more general form:

T =
κ

2π
, (3.2)

4It’s worth mentioning that the structure of Rindler space for radii greater than the Schwarzschild
radius, is very similar to that of a Schwarzschild black hole.
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where κ is the surface gravity. There is an associated entropy given by:

S =
A

4G
, (3.3)

where A is the surface area of a black hole horizon.

Smolin [43] and Ansari’s [44] work connect the study of Planck-scale phenomenol-

ogy with issues relating to black hole radiation. An example of a different nature is

provided in Chapter 5, where the cosmic expansion problem is resolved via what we

termed the Trans-Planckian ansatz that could lead to the entire model being char-

acterized as semiclassical.5 The ansatz relies on relating the Hawking temperature,

as scaled by the Planck temperature, to the maximum redshift at the horizon of a

Schwarzschild-like black hole in the gravitational aether.

5The term “Trans-Planckian ansatz” is inspired by what is known as the trans-planckian problem,
where depending on frame of reference a particle may have energy that is larger than the Planck
energy, which is considered a natural limit.
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CHAPTER 4

Non-Locality, Quantum Gravity and Cosmic Acceleration

4.1 Introduction

In this chapter, we discuss a new cosmological scenario in which the consequences of

the quantum mechanical nature of spacetime contributes to observable phenomena

throughout the lifetime of the universe[45].1 The movitation is, as proposed in [15, 16],

a generic consequence of spacetime having a quantum microscopic structure: that

locality is disordered. In this scenario, there are small departures from the locality

that is typically described by the classical metric occurring on every scale. As we

shall show here, this can happen in such a way that it allows a scenario where these

departures from locality will be very difficult to see in terrestrial experiments, all the

while playing a significant role in the history of the universe on the largest scales.

1The majority of this chapter appeared as a publication with L. Smolin in Physical Review D [34].
I have made changes to the contents involving direct discussion of cosmology as well as minor changes
elsewhere. The fundamental results remain the same.
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As was argued in [15, 16, 46, 47, 48], disordered locality is a natural consequence

of the hypothesis that the classical spacetime geometry described by general rela-

tivity is an emergent, macroscopic description that captures some but not all of the

properties of an underlying microscopic quantum spacetime geometry. This is analo-

gous to the sense in which the continuous description of matter in terms of smooth,

thermodynamic quantities approximates some, but not all, of the properties of the

underlying atomic physics. In that case, we find proof of the existence of the under-

lying atomic physics in fluctuations around the continuum description as well as in

dis-orderings of classical quantities. If macroscopic locality, as defined by the classi-

cal metric, is an approximate and emergent quantity, we may also expect that small

departures from macrolocality2 will be natural indicators of an underlying quantum

geometry [16, 46, 47, 48].

Our considerations are rather general and apply to many of the models of quantum

gravity that are presently under study. What we assume is only the following schema,

which is common to several background-independent approaches to quantum gravity:

• A microscopic model of spacetime, described in terms of states labeled by dis-

crete combinatorial structures, can be represented by graphs. These graphs

may be labeled or not, and they may or may not be imbedded up to topology

in a background topological manifold.

• The dynamics of the theory leads the graph representing the quantum geometry

to evolve by local moves. If there are labels on the nodes or edges of the graph

these also evolve by local moves. Local moves are defined as moves between

nearest neighbors as typically defined on graphs.

2Other possible cosmological consequences of this scenario are discussed in [46, 47, 48, 49].
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• The nodes are associated with regions of Planck scale volume. When the state is

semiclassical then one can define an emergent classical metric qab, slowly varying

on the Planck scale, such that there is an appropriate correspondence between

volumes measured by the classical metric qab and volumes as determined by

counting nodes in the graph that defines the quantum geometry.

• There is some effective description of the dynamics of the labels on the graphs

that gives rise to an effective quantum field theory for matter fields on the

semiclassical spacetime that is given by a metric qab.

We emphasize that in all these models the classical metric is an emergent degree

of freedom. In other words, the classical metric is not specified by the fundamental

kinematics or dynamics of the theory.

In different models of quantum gravity, the microscopic states and their corre-

spondence with an emergent classical geometry are defined differently, but all that

we need for this paper are fundamental states that can be described in terms of graphs

with a correspondence to an emergent classical geometry.

For example, in loop quantum gravity, the state Ψ has support on a basis of graphs

Γ embedded in a bare three manifold Σ with no metric or classical fields. If the state

Ψ is semiclassical, or corresponds to a low temperature phase, it will have a course

graining that defines a metric qab on Σ.

In causal dynamical triangulation models the graph is dual to a triangulation of

a manifold. This is the case also in Regge calculus models. In the recently proposed

quantum graphity models, the graph is an arbitrary subgraph of the complete graph
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on N nodes. In matrix models, the matrices can be thought of as defining graphs,

whose edges are labeled by the values of the corresponding off-diagonal elements.

In this chapter we want to focus on a common feature of how locality is described

in all these models, which is that there are actually two notions of locality. The first

is a microscopic notion of locality, which is defined by the connectivity of the graph,

Γ. This is fundamental because it defines which degrees of freedom are coupled by

the fundamental dynamics and are therefore always present.3

There is a second, macroscopic notion of locality which is present only when the

state is semiclassical so that an emergent classical metric can be defined. We say in

such cases that the emergent metric gives rise to a second notion of locality.

It has been pointed out in [45, 16] that these two notions of locality may not

completely coincide, even in the case when the quantum state defines an emergent

classical metric, qab.

More precisely, we say that locality is ordered when macro-locality is defined and

it coincides with micro-locality. This means that each edge in Γ connect two nodes

whose coarse grained descriptions map to Planck size regions in Σ, that are of the

order of lP l apart, as defined by the classical metric, qab.

On the other hand, we say that locality is disordered when there are links in Γ that

connect nodes which are far apart in Σ, compared to the Planck scale, as measured

by qab. This means that the links in Γ can be divided into a set of local links which

connect nodes of order lP lanck apart in the semiclassical metric qab and the rest, which

are non-local links.

3If the state is composed of a superposition of micro-local states labeled by graphs then micro-
locality is defined seperately for each state in the superposition.
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Sometimes it is helpful to describe a state of disordered locality directly in terms of

the classical geometry. We can do this by considering the two points in the manifold

corresponding to the two ends of a non-local link as being identified in the classical

geometry. From a classical point of view, we may thus regard the topology of the

spatial slice as Σ with many pairs of points identified.

In this chapter we want to consider the possibility that there may be observable

consequences of disordered locality. We find that there are such consequences and

that one consequence gives a possible explanation for the apparent presence of a dark

energy which is causing the recently discovered cosmic acceleration.

We note that given that in such models there may be 10180 nodes to the graph

within the present comoving volume4, there is plenty of room for disordering of locality

to be rare in the sense that a very small subset of these nodes will be ends of non-local

connections. At the same time, the numbers of such non-local connections can still

be very large. Consider for example, the possibility that within the present comoving

volume there are 10100 non-local links. This is still extremely small compared to the

roughly 10180 local links, and even smaller compared to the 10360 possible non-local

links. In this kind of range there can be many non-local links within a comoving

volume and still be an essentially zero probability that there be one both of whose

ends are contained within a terrestrial laboratory. In this case they can be both

common cosmologically and very difficult to detect locally.

We note that any good model of quantum gravity in which the classical metric

is emergent will have to explain why disordered locality is rare enough not to dis-

4We define the comoving volume in the typical fashion, as determined by the length scale asso-
ciated with comoving coordinates and scale factor a.
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rupt local physics. We do not address how this suppression is accomplished in this

chapter and simply assume we are working with a theory in which it is. At the same

time we note that there is plenty of room for disordered locality to be sufficiently

suppressed that we could not yet have detected it, while still leaving very many non-

local connections within a comoving volume. We are interested then in the possible

new phenomena that may come from disordered locality in this range.

Because our concern is for the observational consequences of disordered locality

there are several questions we do not address, because we assume that a successful

model of quantum geometry will provide answers for them. These are:

1. We assume that we are discussing a semiclassical state with an emergent classical

metric which, together with some emergent matter fields, defines a solution to

Einstein’s equations and can be described by classical general relativity.

2. We assume that there is a small amount of disordered locality, small enough

that it does not disrupt the experiments by which local quantum field theory is

confirmed.

Given these assumptions we describe in the next section a simple modification

of the Friedmann-Robertson-Walker (FRW) cosmology in which a small amount of

disordered locality has been applied. In the section following we see that this can,

under two further assumptions, lead to a model of dark energy.
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4.2 A Cosmological Model With Disordered Lo-

cality

Based on the ideas just described we propose a simple model of disordered locality

in cosmology. We start with the standard local model of the universe in general

relativity, the FRW model. The classical metric is as usual

ds2 = −N 2dt2 + a2(t)q0ijdx
idxj, (4.1)

where q0ij is a flat dimensionless metric on R3. This 3+1 splitting is made necessary

by the nature of this particular model.

At each time t, we fix a region of volume a3(t). We pick NNL(t) pairs of points

(xI , yI), for I = 1, ..., NNL, and we identify the members of each pair as being con-

nected by a non-local link.

The selection of pairs of points related by non-local links defines a distribution

P (x, y, t), given by

P (x, y, t) =
1

2

(

∑

I

δ3(x, xI)δ
3(y, yI) + δ3(y, xI)δ

3(x, yI)

)

. (4.2)

This is a density in the points x and y. It follows that

NR1R2
(t) =

∫

R1

d3x

∫

R2

d3y P (x, y, t) (4.3)

is the number of non-local connections between the regions R1 and R2 at time t.
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When we integrate over the comoving volume we have

NNL(t) =

∫

a

d3x

∫

a

d3y P (x, y, t), (4.4)

which are the number of non-local links both of whose ends lie within the comoving

volume at time t.

Below, we study a simple model defined by four assumptions[45].

1. The distribution of non-local connections is scale invariant and can depend only

on the present a(t) and the Planck scale.

2. For simplicity, all the non-local links will be considered to have both ends within

the present comoving volume.

3. The distribution is otherwise random. There is no correlation between the two

ends of a non-local link except that both are within a comoving volume, and no

correlations between non-local links.

4. The time dependence of the distribution is given by

NNL(a) = N0

(

a

a0

)p

(4.5)

for some p.

Below we shall discover that p = 3 is necessary to arrive at a model of dark energy

with equation of state parameter, w = −1. When the equation of state parameter

has this value, the dark energy model “simplifies” to a cosmological constant.5 This

5see Chapter 2 for more in depth discussion of the so-called “simplicity” of the cosmological
constant model.
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means that the number of non-local links within the comoving volume increases in

time proportionately to the comoving volume.

This model follows from the basic assumptions of the scenario. Any dependence

on the initial scale a0 would by now either have scaled away, if it was fixed, or grown

with the comoving flow and so be represented by the present scale factor.6 Any

dependence on any other scale would be unnatural.

4.3 The energetics of non-locality

We now consider the effects of the matter and gravitational degrees of freedom in-

teracting across the non-local links. A simple model of degrees of freedom on the

fundamental graph defining the quantum gravity model is to assume that there are

dimensionless spin variables σn on each node of the graph. These can stand for grav-

itational degrees of freedom such as the labelings on a spin network in loop quantum

gravity, or the orientation of a simplex in causal dynamical triangulations. They may

also stand for matter degrees of freedom.

For the model we are building we do not need to know the nature of these degrees of

freedom. It may not even be possible to distinguish between matter and gravitational

degrees of freedom at this level, as in the quantum graphity models. We only need

to assume that there is a local contribution to the hamiltonian coming from nearest

6While a0 is usually defined to mean the value of the scale factor in the present day, for this
work, we define it to mean the initial scale where the classical metric, and thus a concept of the
scale factor, is emergent.
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neighbor couplings, which are of the simplest possible form:

Hmatter = −ǫ
1

lP l

∑

<mn>

σm · σn. (4.6)

There is one coupling for each nearest neighbor pair < mn > on the graph, and ǫ

is a sign which is + for ferromagnetic coupling and − for antiferromagnetic coupling.

The l2P l = ~G is the gravitational coupling constant of matter to gravity. It is the only

dimensional parameter that appears in the fundamental hamiltonian. There may be

several σn, which we have allowed for by writing the interaction in terms of a product

(·) in an internal space.

Given a graph Γ with non-local links, the sum in eq. (4.6) splits into two sums,

the first over local links in the graph Γ, the second over non-local links.

Hmatter = H local +HNL, (4.7)

where the former is the sum over pairs of nodes connected by local links in the graph

and HNL is the sum over non-local links:

HNL = −ǫ
1

lP l

non-local
∑

<mn>

σm · σn. (4.8)

It is straightforward to show that the local piece H local can be approximated in terms

of a matter field. We can make the identification of a scalar field

φ(xn) =
1

lP l

σn, (4.9)

37



where xn is the position in the manifold of the node vn. In the case that the local

links of the graph form a regular lattice with lattice spacing lP l we can identify

∂aφ(xn) =
1

l2P l

(σn+â − σn) . (4.10)

If we recall also that we can make the replacement

∑

n

l3P l →
∫

d3x
√
q. (4.11)

The local part of the Hamiltonian becomes

H local =
ǫ

2

∫

d3x
√

q(x)
[

qab∂aφ∂bφ− µ2φ2
]

, (4.12)

where the mass is µ2 =
√
2

lPl
.

This is all due to well understood theory, and we have gone through it to ensure

that the normalization of the microscopic Hamiltonian is correct. We must now

consider what becomes of the non-local piece (4.8) in this scenario.

To write the non-local piece, we keep the field dimensionless and write

σ(xn) = σn. (4.13)

The non-local part of the Hamiltonian is then

HNL = − ǫ

lP l

non-local
∑

I

σ(xI) · σ(yI). (4.14)
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The exact positions of the ends of the non-local links cannot, by definition, be

important because we have assumed they are chosen randomly within the comoving

volume. Because of that we would like to perform an average of (4.14) over an

ensemble of possible positions of the end of the non-local links. We will denote this

with an overbar H̄NL.

H̄NL =

〈

− ǫ

lP l

non-local
∑

I

σ(xI) · σ(yI)
〉

non-local edge placement

. (4.15)

To aid the computation of this average we want to define the average value of σ over

a region R

〈σ〉R =

∫

R
√
qσ

∫

R
√
q
. (4.16)

The average energy between two regions R1 and R2 connected by N12 non-local links

is then given by

H̄12 = − ǫ

lP l

N12〈σ〉R1
· 〈σ〉R2

. (4.17)

This step is similar to the annealing approximation used in treatments of small world

networks [50, 51, 52].

We can take the two regions to be the same, and to be the comoving volume. In

that case we have

H̄NL = − ǫ

lP l

NNL(t)〈σ〉a · 〈σ〉a, (4.18)

where 〈σ〉a is the average field over the comoving volume.

To complete the computation of the contribution of the non-local links to the

energy let us recall the assumption made above about the evolution of NNL(t) in
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time, eq (4.5),

HNL = − ǫ

lP l

N0

ap0

(
∫

a

d3x
√
q

)
p

3

〈σ〉a · 〈σ〉a, (4.19)

where the
∫

a
denotes an integral over the comoving volume. We now choose p = 3 so

that

HNL = − ǫ

lP l

N0

a30

(
∫

a

d3x
√
q

)

〈σ〉a · 〈σ〉a. (4.20)

We next write the corresponding contribution to the effective action, which is then

SNL =

∫

dtNHNL = − ǫ

lP l

N0

a30

∫

a

d4x
√−g 〈σ〉2a. (4.21)

This gives rise to a contribution to the effective energy-momentum tensor, which

is given by

T ab =
1√−g

δSNL

δgab
= −gabm4〈σ〉2a, (4.22)

where the effective mass is given by

m4 = − ǫ

2lP l

N0

a30
. (4.23)

We see why p = 3 was necessary to get a contribution to the energy-momentum tensor

with w = −1. Otherwise we would not get an energy momentum tensor proportional

to the spacetime metric, gab.
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4.4 A possible contribution to dark energy

We have derived a contribution to the energy momentum tensor from the presence

of non-local links and the assumption that there are microscopic degrees of freedom

that can be identified with spin like variables on the nodes of the graph representing

the microscopic quantum geometry. Note that we reached (4.23) by assuming that

the spin variable is slowly varying on the comoving scale, hence we can only consider

this as a contribution to the homogeneous approximation of the Einstein equations.

Other approximations will be needed to draw out consequences for smaller scales.

Nonetheless, we would like to see if we get a reasonable contribution to the dark

energy. Before continuing, it is worth taking a moment to say what we mean by

“dark energy.” Fundamentally we are interested in providing an explanation for the

presence of cosmic acceleration. Since the discovery of this phenomenon, there has

been renewed interest in Einstein’s cosmological constant, which for decades remained

a concern of those interested in the details of quantum field theory. Alternatives to the

cosmological constant as an explanation for the acceleration were proposed, including

quintessence [53].

Because the cosmological constant is a special case of all such models, the phrase

“dark energy” is often used to describe proposals to explain the acceleration that

go beyond the constant. In essence, it refers to the percentage of the universe’s

critical density that is composed of the vacuum energy that is pushing our universe

outward. Here, we refer to the dark energy, but will primarily focus on the case

where the equation of state parameter for this mysterious fluid is set as w = −1, i.e.

the cosmological constant case. Future efforts to study models like this one might

41



incorporate attempts to reproduce more complex models, such as dynamical equation

of state parameters.

Note first that the observed dark energy is positive. This suggests that ǫ = −1

which implies that the microscopic couplings are anti-ferromagnetic. Next, since the

σ(x) are dimensionless, we can assume that they are order unity at the present time.

Thus, we want to write (4.22) as

T ab = −gabV (〈σ〉a) (4.24)

with

V (〈σ〉a) = −m4〈σ(xI)〉2a. (4.25)

We want this to be of order Λ
G

≈ 10−120

l4
Pl

. Since the 〈σ〉 are assumed to be of order

unity this tells us that

m4 =
N0

2lP la30
=

10−120

l4P l

. (4.26)

Let us evaluate this at present. This implies that

NNL(now) = 10−120

(

anow
lP l

)3

≈ 1060. (4.27)

That is, to get the present value of dark energy from this model one needs to

assume that there are 1060 non-local links within the present comoving volume of

≈ 10180 Planck volumes. This means that the non-local links are very sparce, i.e.

only one in 10120 nodes is an end of a non-local links. There is only one non-local link

end for every region of radius 100km on a side.

This number is not surprising, because each end of a non-local link contributes
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roughly a Planck energy per this volume and it is easy to confirm that this adds up

to a dark energy with a present value that is comparable to the one that is observed.

However, we should check that this density of non-local links does not easily lead to

contradictions with experiment. One might expect that the effect of an interaction

between an elementary particle and a non-local link end carrying a Planck energy

would be visible – it might cause a proton to decay or mimic the strike of a cosmic

ray carrying a Planck energy of kinetic energy. Initial back of the envelope calculations

indicate that the frequency of decay would be very low and within present bounds

due to the AUGER detector. However, future work is required to better understand

this issue.

4.5 Conclusions

We have proposed a new cosmological scenario in which the consequences of spacetime

being quantum mechanical contribute to observable phenomena throughout the life-

time of the universe. We explore the possibility that disordered microscopic locality

could lead to observable disordered locality at a macroscopic scale, namely cosmolog-

ical scales. The model we presented here is fairly general and some version of it could

be applied to any theory of quantum gravity based on a concept of emergent gravity.

We find that, assuming non-nearest neighbor connections survive coarse graining,

the existence of such objects at a macroscopic scale could lead to a contribution to

the energy-momentum tensor that looks very much like a cosmological constant. In

order to get the present value of the cosmological constant, we need to assume that

there are 1060 non-local links within the present comoving volume of ≈ 10180 Planck
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volumes.

Notable challenges are faced by such a model. No candidate for quantum gravity

successfully describes coarse graining from quantum to classical gravity, making it

impossible to evaluate the assumption that micro-non-locality would lead to macro-

non-locality. Further investigation would also necessitate a more complete description

of the microscopic nature of the non-local links. For example, one question to be

answered is the rate at which these non-local link ends change nodes. Additionally,

there is currently no unique observational signature that would distinguish this model

from other dark energy pictures.

One way to “test” this model in comparison to others is to see how it measures up

in addressing the old, weak and new cosmological constant questions as formulated

in Section 2.3. The weak cosmological constant problem could be addressed by this

model if we are able to discover a motivation for the number of non-local links. This

could come from further work on background independent quantum gravity models,

such as quantum graphity or spin foams. The old cosmological constant problem may

be similarly addressed. Even as gravity is emergent in these kinds of quantum gravity

models, there may be an emergence of quantum field theory that is distinct. This

could explain a mismatch between vacuum measurements from the perspectives of

each model. Future work may attempt to better understand how the presence of such

non-local links could impact structure formation, thus attempting to address the new

cosmological constant problem.
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CHAPTER 5

Stellar-Mass Black Holes and Cosmic Acceleration

5.1 Introduction

This chapter addresses a novel approach to the challenge presented to us by the

discovery of recent acceleration of cosmic expansion, which was one of the most sur-

prising findings in modern cosmology [1, 2].1 The standard cosmological model (also

known as the concordance model) drives this expansion with a cosmological constant

(CC). While the CC is consistent with (nearly) all current cosmological observations,2

it requires an extreme fine-tuning of more than 60 orders of magnitude, known as the

cosmological constant problem [27].

In the context of the concordance cosmological model, there are (at least) three

different aspects of the CC problem. For decades, physicists worried about why the

1This chapter originally appeared as a publication with N. Afshordi and M. Balogh in Physical
Review D [17]. It appears here with very minor changes.

2See [54] for an account of observational anomalies in the standard cosmological model.
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value of the cosmological constant/vacuum energy seemed to be nearly zero by particle

physics standards (known as the old CC problem)[55], and the conventional wisdom

was that it should vanish exactly, as a result of a yet unknown symmetry of nature.

The accelerated cosmic expansion has thus challenged us to address this question on

two new fronts. First is the new CC problem: why is the vacuum energy density so

close to zero, but non-vanishing? Second is the coincidence problem: Why did the

dark energy dominance and structure formation happen at approximately coincident

times?

The race is on to simultaneously address these three questions. A popular al-

ternative approach to the cosmological constant is a model that modifies Einstein’s

theory of gravity. Traditionally, this involves adding higher order curvature terms

to the geometric side of Einstein’s equation. However, in [18], one of us proposed

a novel approach to modified gravity. This model introduces gravitational aether,

as a sufficient ingredient to decouple the quantum field theory vacuum from gravity

while simultaneously satisfying other tests of gravity. Unlike many models of modi-

fied gravity, the gravitational aether model modifies the energy-momentum content

of the spacetime, instead of adding higher order curvature terms.

In this model, the right hand side of the Einstein field equation is modified as:

(8πG′)−1Gµν = Tµν −
1

4
T α
α gµν + p′(u′

µu
′
ν + gµν), (5.1)

where G′ is 4/3 times the Newton’s constant, and p′ and u′
µ are aether pressure and

four-velocity that are fixed by requiring the conservation of the energy-momentum

tensor, Tµν , and the Bianchi identity. As argued in [18], while consistent with precision
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tests of gravity, this theory is preferred to the standard model by the combination of

cosmological observations (with the notable exception of 4He primordial abundance).

In this chapter, we pursue a detailed understanding of static spherical black hole

solutions in the gravitational aether theory. The solution we find is, at first glance,

a perturbed Schwarzschild metric. However, upon closer inspection we find that this

perturbation is divergent both near to and far away from the horizon (where we refer

to an infinite redshift surface as a horizon). Thus the static solution in the presence

of gravitational aether is fundamentally different from Schwarzschild, which can be

characterized as a UV-IR connection: the metric near and far from the horizon is

set by the same integration constant. Here, we will explore possible meanings of this

property, and whether the cosmological behavior is set by a Trans-Planckian ansatz

close to the black hole horizon.

We note that the static black hole solution found here also applies to the cuscuton

models [56, 57] which have the same energy-momentum tensor as the gravitational

aether in the limit of vanishing cuscuton potential.

In Sec. 5.2, we introduce our gravitational aether black hole solution. We describe

the properties of the solution, including a preferred coordinate system and the location

of the event horizon. We also establish asymptotic properties of the black hole, which

are characterized by the same integration constant both close in and far away from

the horizon of the black hole.

Sec. 5.3 explores the Trans-Planckian ansatz, as a way to fix the aforementioned

integration constant, through quantum gravity effects close to the horizon. We suggest

a way to connect the presence of black holes to the existence of a pervasive pressure

that behaves like dark energy on cosmological scales.
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In Sec. 5.4, we present a study of the contribution that many such black holes

would make to the global/cosmological structure of space-time, while Sec. 5.5 provides

a census of average black hole mass through cosmic history, which translates into a

prediction for the history of cosmic acceleration.

Finally, we will discuss open questions and future prospects in Sec. 5.6.

Throughout the paper, we use the natural Planck units: ~ = c = GN = kB = 1.

Moreover, we will replace pressure p′ by 3p/4 in Eq. (5.1), so that the vacuum field

equations for the aether theory resembles general relativity sourced by a perfect fluid

with pressure p and zero density.

5.2 Black Hole in Gravitational Aether

We find a solution for the static black hole in the Gravitational Aether model using

assumptions similar to those that lead to the Schwarzschild solution. Namely, we

assume a spacetime with no matter content, and we assume spherical symmetry.

Given that the aether takes fluid form, the metric in this model is the same as the

general static, spherically symmetric metric that describes the interior of a star, as

modeled by a perfect fluid. The only notable divergence from the star model is the

absence of a energy density (which typically takes form as matter and radiation in

the star), leaving an energy-momentum tensor of the following form:

Tµν = p(uµuν + gµν). (5.2)
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We find the following metric

ds2 = −e2φdt2 +

(

1− 2m

r

)−1

dr2 + r2dΩ2, (5.3)

where m is a constant mass parameter that is defined similarly to the Schwarzschild

mass. The components obey the following differential equation, known as the Tolman-

Oppenheimer-Volkoff equations [24]:

dφ

dr
=

m+ 4πr3p

r(r − 2m)
, (5.4)

dp

dr
=

−p(m+ 4πr3p)

r(r − 2m)
. (5.5)

We see immediately that exp(φ) and p are inversely related:

p = p0e
−φ, (5.6)

where p0 is an integration constant. Notice that Eq. (5.6) is equivalent to the condi-

tion of hydrostatic equilibrium for aether, and is valid independent of the assumption

of spherical symmetry, for any static spacetime. 3 Now, we may rewrite Eqn. 5.4:

dφ

dr
=

m+ 4πr3p0e
−φ

r(r − 2m)
. (5.7)

We can solve this equation by noting that it is a first-order inhomogeneous linear

3This follows from the relativistic Euler equation:(ρ + p)u · ∇u = −∇⊥p, assuming a static
spacetime and zero density, ρ = 0.
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Figure 5.1: Function f(r) [Eq. (5.10)] as a function of the distance from the
Schwarzschild radius (= 2m). The deviation from the Schwarzschild metric is pro-
portional to p0f(r), where p0 is the integration constant. If p0 is small, as we argue
in Section 5.3, the corrections only become important at the horizon, and on cosmo-
logical scales.

differential equation in eφ, with the standard solution:

eφ(r) = 4πp0

(

1− 2m

r

)
1

2

[

∫

(1− 2m
r′
)−1/2r′2

r′ − 2m
dr′ + const.

]

. (5.8)

To put this into more familiar terms, we can set the constant, so that we recover
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the Schwarzschild solution as p0 → 0:

eφ(r) =

(

1− 2m

r

)
1

2

[4πp0f(r) + 1] , (5.9)

where f(r) is given by:

f(r) =
1

2

(

1− 2m

r

)−1/2
(

−30m2 + 5mr + r2
)

+
15

2
m2 ln

[

r

m
− 1 +

r

m

(

1− 2m

r

)1/2
]

, (5.10)

and is shown in Fig. (5.1). In the limit where r is large (r ≫ m):

f(r) =
r2

2
+ 3mr +O[m2]. (5.11)

while close to the “Schwarzschild horizon” we find:

f(r) = −8

√
2m5/2

√
−2m+ r

+O[m3/2(r − 2m)1/2]. (5.12)

Thus the correction to the Schwarzschild metric dominates in both UV and IR

regimes (corresponding to close to and far from the BH horizon). This a nice tie,

even for arbitrarily small values of the integration constant p0. Therefore, a very

suggestive conclusion is that, unlike in general relativity, the gravitational aether ties

the formation of black hole horizons to cosmological dynamics.

But then, is there really an event horizon for this spacetime? Looking at the trace

of the Einstein’s equation, we find that the Ricci scalar is proportional to the pressure
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of aether, p:

−R = 8πG′(T − T +
9

4
p) = 8πG′9

4
p (5.13)

This is, in turn, inversely proportional to the 00 component of the metric, eφ. We

define the surface where eφ → 0 as the black hole horizon. Therefore the pressure

at the horizon, and thus the Ricci scalar, goes to infinity (p ∝ R → ∞) implying

that this surface coincides with a real metric singularity (as opposed to a coordinate

singularity).

It appears that that any static, spherically symmetric event horizon in a theory

of gravitational aether (like the one we have modeled) coincides with a real metric

singularity. In a traditional formulation of general relativity, such a scenario may be

given to ambiguous physical interpretation. However, this may not be too surprising

in few of the fact that a modified relativity will display properties divergent from

traditional relativity. We expect that such a picture is best contextualized by a more

comprehensive theory of quantum gravity.

Indeed, we conjecture that any process (for example, quantum gravity) that alle-

viates/regulates metric singularities will inevitably remove event horizons from the

theory of gravitational aether. In other words, it is possible that static event horizons

cannot exist in a UV completion of gravitational aether. This is independent of the

assumption of spherical symmetry, and only relies on the aether hydrostatic equi-

librium condition (5.6), which directly relates pressure to the Ricci curvature of the

spacetime. However, we note that, as the singularity is a null surface, the spacetime

does not violate the weak cosmic censorship principle.

Back to the spherical aether black hole spacetime (5.9), we now notice that the
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static metric solution is only well-defined for r ≥ 2m, as the solution becomes complex

inside the Schwarzschild radius, r < 2m. More surprisingly, for negative values of p0,

unlike a Schwarzschild black hole, a free-falling observer can reach this boundary

within a finite coordinate time. The reason is that the redshift of a static source at

the Schwarzschild radius is now finite as seen by distant observers:4

1 + z = e−φ ≃
[

(

1− 2m

r

)1/2

− 32πp0m
2

]−1

< 1 + zmax = − 1

32πp0m2
. (5.14)

As to what happens inside r = 2m, it is clear that our current choice of coordinates

do not give us a physical metric for r < 2m, and if the conjectures above are correct,

we may not need such coordinates. However, is it possible that with an appropriate

choice of coordinate, we can analytically continue the static solution beyond the

Schwarzschild radius? Indeed, we can define a new radial coordinate:

λ ≡
∫ r

2m

dr′
√
grr =

∫ r

2m

dr′
(

1− 2m

r′

)−1/2

= 2 [2m(r − 2m)]1/2 +O
[

(r − 2m)3/2m−1/2
]

, (5.15)

which is equivalent to the constant-time proper radial distance. In terms of λ, the

metric takes the form:

ds2 = −e2φdt2 + dλ2 + r(λ)2dΩ2, (5.16)

4Here, distant observers are located at 2m ≪ r ≪ (−p0)
−1/2.
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where

eφ = −32πp0m
2 +

λ

4m
+O[p0λ

2, λ3m−3/2], (5.17)

r(λ) = 2m+
λ2

8m
+O[λ4/m2]. (5.18)

In other words, the metric is analytic and real in terms of the new radial coordinate, λ,

at and beyond the Schwarzschild radius, which now corresponds to λ = 0. Moreover,

a static event horizon, which as we argued corresponds to a real curvature singularity,

now exists for all (small) values of p0, as e
φ = 0 at:

λH ≃ 128πp0m
3. (5.19)

In the next section, we study the implications of this solution for cosmology. How-

ever, we shall postpone a full investigation of the causal structure of this spacetime,

as well as its possible analytic continuations, to future studies.

5.3 Trans-Planckian Ansatz and Cosmic Acceler-

ation

In the last section, we saw that within spherically symmetric spacetimes in the grav-

itational aether theory, the integration constant p0 ties the geometry close to the

horizon to the geometry at infinity. While, in the classical theory, p0 is an arbitrary

integration constant, here we speculate that its value is fixed by quantum gravity

effects, especially since the horizon is now a curvature singularity, where quantum
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gravity effects should become important.

We first note that the temperature of sources that fall through the Schwarzschild

horizon, as seen by distant observers, approaches the Hawking temperature [58]:

TH =
1

8πm
, (5.20)

Furthermore, we assume that the maximum rest-frame temperature of sources is

comparable to the Planck temperature (or one in Planck units):

Tmax = θP = O[1]. (5.21)

Here, θP is a dimensionless constant that measures Tmax in units of Planck tempera-

ture, which we shall call the Trans-Planckian parameter. We then adopt the Trans-

Planckian ansatz, which is the idea that the maximum redshift at Schwarzschild radius

(Eq. 5.14) is roughly set by the ratio of the Planck to Hawking temperatures:

1 + zmax = − 1

32πp0m2
=

Tmax

TH

= 8πθPm, (5.22)

or

p0 = − 1

256π2θPm3
. (5.23)

With this ansatz, we further see that:

λH = − 1

2πθP
= O[1], (5.24)

i.e. the event horizon is roughly a Planck length away from the Schwarzschild radius.
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Figure 5.2: Predicted large distance deviation from the vacuum Schwarzschild solution
for 1, 10, and 100 M⊙ black holes, based on the Trans-Planckian ansatz. Here, we
assumed θP = 100 in Eq. (5.23) for non-rotating black holes to find p0, which is then
plugged into Eq. (5.9) to find the metric. As pointed out in the text, the corrections
become important on today’s cosmological horizon scale for solar/stellar-mass black
holes.
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Equivalently, the short-distance aether corrections to the Schwarzschild metric only

become important at about a planck distance from the horizon/singularity, which is

a reasonable expectation from a possible quantum gravitational mechanism.

While this may imply that tests of strong gravity close to the horizon of a black

hole may have a hard time testing the influence of aether on the spacetime metric,

the Trans-Planckian ansatz has a curious prediction for the numerical value of p0, i.e.

aether pressure far from the black hole. Comparing the scale of p0 with the density

(≃ − pressure) of the cosmological dark energy, ρΛ:

p0
ρΛ

= −2

3
θ−1
P

(

m

85 M⊙

)−3

, (5.25)

where we assumed ΩΛ = 0.7 and H0 = 70 km/s/Mpc. The resulting deviation from

the Schwarzschild metric is shown in Fig. (5.2) for stellar mass black holes.

This leads us to a very interesting possibility, which was first conjectured in [18]:

that the formation of stellar-mass black holes could trigger the onset of cosmic ac-

celeration, especially since aether and dark energy have similar pressures, assuming

that the aether pressure is set by the Trans-Planckian ansatz for stellar mass black

holes. To see this, we can explicitly compare the black hole spacetime (Eqs. 5.3 and

5.11) far from the black hole (r ≫ m):

ds2 = −(1 + 2πp0r
2)2dt2 + dr2 + r2dΩ2, (5.26)

with the de-Sitter spacetime:

ds2 = −(1− 8πρΛr
2/3)dt2 + (1− 8πρΛr

2/3)−1dr2 + r2dΩ2. (5.27)
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We thus notice that non-relativistic particles close to the origin, but far from the black

hole horizon (2m ≪ r ≪ |p0|−1/2) see the same Newtonian potential (or gtt) in both

spacetimes, if p0 = −2ρΛ/3. In other words, close-by non-relativistic test particles

(such as galaxies, stars, or other black holes) accelerate away from the origin/black

hole, similar to a de-Sitter space. Moreover, this acceleration will correspond to the

current cosmological observations, if the mass of the black holes is roughly:

m ≃ 85 θ
−1/3
P M⊙. (5.28)

So far, our solution has neglected the effects of black hole spin. Indeed, spin

is expected in realistic black holes, which are fed by astrophysical accretion disks.

For example, the dimensionless spin parameter, a∗ = a/m was recently measured

for two stellar-mass black holes, to be within the range 0.65 − 0.85 [59]. In order

to include this effect, we conjecture that p0 scales as T 3
H (as suggested in [18]), for

general black hole spins. This is justified, as the Trans-Planckian ansatz is controlled

by the Hawking temperature, TH , while f(r) also depends on the surface gravity close

to the black hole horizon, which is also proportional to TH . With this assumption,

the scale-dependence should go as:

p0(m, a∗)

p0(m, 0)
= 8

[

1 +
(

1− a2∗
)−1/2

]−3

, (5.29)

which is in the range 0.2− 0.6 for a∗ = 0.65− 0.85.

While this paper only deals with static vacuum solutions, it was shown in [18]

that for non-relativistic fluids (e.g. stars, planets): p′ ≈ −T α
α /4+const., i.e. the

local matter density sets the aether pressure up to a constant. One expects that the
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constant term would be set by the boundary conditions at infinity, or by cosmology.

Alternatively, what we suggest in this section is that the boundary condition can be

set at the horizons of the black holes. The fact that this can naturally explain the

onset of cosmic acceleration is certainly very suggestive, but the best way to test this

hypothesis is to see how/if this boundary condition can emerge from the process of

(classical or quantum) gravitational collapse into a black hole. We leave this question

to future studies.

A further implication of this hypothesis is that solar/stellar mass is the minimum

mass of black holes allowed in the model. A discovery of significantly sub-solar mass

black holes (e.g. primordial black holes with M ≪ M⊙) could potentially rule out

the Trans-Planckian ansatz, as it would imply much larger than observed cosmic

acceleration rates for θP ∼ 1.

Of course, we also need to patch together and coarse-grain individual black hole

spacetimes into a de-Sitter space, in order to rigorously prove this correspondence.

However, the above argument is already very suggestive, as long as there are many

black holes within the cosmological/de-Sitter horizon, so that one can trust the above

Newtonian argument. In the next section, we provide an approximation to the cos-

mological spacetime of multiple black holes.

5.4 Global Contribution of Multiple Black Holes

In this section, we will seek an approach to approximately find the spacetime of mul-

tiple black holes with gravitational aether, which can be used to describe an approx-

imate FRW cosmology. Here, for simplicity, we focus on the quasi-static Newtonian
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regime, where we could assume hydrostatic equilibrium for aether in the vacuum

(5.6). For simplicity, we ignore the matter in-between black holes,5 and assume that

black holes are much farther apart than their horizon sizes, but are much closer than

the cosmological horizon. In this limit, using Eq. (5.6) we have:

∇2 ln p = −∇2φ = 0, (5.30)

where the assumption of ∇2φ = 0 is the equivalent of the Poisson equation in Newto-

nian gravity, for zero matter density (which also applies to aether). We thus see that

fixing the aether pressure in the vicinity of black holes, through the Trans-Planckian

ansatz (5.23), is equivalent to solving the Laplace equation (5.30) with Dirichlet

boundary conditions at (or close) to the horizon of the black holes.6

This problem is analogous to finding the electrostatic potential between multiple

conducting spheres, which can be solved using the Green’s function for the appropriate

geometry. For a single sphere of radius at the origin (and in a flat space), there is an

exact expression for the Green’s function, which can be found using the method of

images (e.g. [60]):

GD(x,x
′) =

1

|x− x′| −
a

x′|x− a2

x′2x′|
. (5.31)

For n spheres (black holes) at positions xi and with radii ai (= 2mi), we may expand

5This is not a bad approximation since, as we argued in the last section, the effect of matter on
the aether pressure is localized and does not extend into vacuum in the non-relativistic regime.

6Since pressure approaches p0 at several BH horizon radii for individual black holes, as long as
the distance in-between black holes is much larger than their horizon radii, the exact radius at which
the boundary condition is set is not important.
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this Green’s function, up to first image, as

GD(x,x
′) =

1

|x− x′|

−
n
∑

i=1

ai

|x′ − xi||x− xi − a2i
|x′−xi|2 (x

′ − xi)|
+O

[

a2

|∆x|3
]

,

(5.32)

which is a good approximation, as long as the distance between the spheres/black

holes is much larger than their sizes. Now, using Green’s theorem, we can find aether

pressure in-between the black holes, in terms of the pressure on the surfaces of the

spheres, pi’s:

ln p(x)− ln p̄ = − 1

4π

n
∑

i=1

∮

Si

ds′ · ∂GD

∂x′ [ln pi(x
′)− ln p̄], (5.33)

where ln p̄ is the log of pressure at infinity, and
∮

Si
ds′ are surface integrals over the

horizons of the black holes (assuming a flat geometry), while pi ∝ m−3
i are fixed by

the masses of the blacks holes, using the Trans-Planckian ansatz (5.23). Since the

Green’s function (5.32) is analogous to superposition of electrostatic potentials of

point charges, we can use Gauss’s theorem to evaluate the surface integrals:

ln p(x)− ln p̄ =
n
∑

i=1

ai[ln pi(x
′)− ln p̄]

|x− xi|
. (5.34)

Now, using the assumption of statistical homogeneity, we expect the spatial/ensemble

average of ln p to be the same as ln p̄. If we take ensemble averages of both sides of
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Eq. (5.34), this yields:

ln p̄ =
〈ai ln pi〉
〈ai〉

, (5.35)

or alternatively:

p̄ = −2

3
ρDE,eff = − 1

256π2θPm3
∗
, lnm∗ ≡

〈mi lnmi〉
〈mi〉

, (5.36)

where we used pi ∝ m−3
i and ai = 2mi, as well as Eq. (5.23). In other words, in the

presence of multiple black holes, the mean aether pressure, and thus FRW cosmol-

ogy, is set by m∗, which is the mass-weighted geometric mean of black hole masses.

Subsequently, the correspondence of this mean aether pressure with an effective Dark

Energy or cosmological constant density was demonstrated in the last section.

Furthermore, taking the Laplacian of Eq.(5.34), we can find an equation for the

perturbation of effective Dark Energy, for sub-horizon perturbations (but on scales

larger than the size of the blacks holes):

∇2δDE,eff = −8πρBH ln(pi/p̄), (5.37)

where δDE,eff is the overdensity of the effective dark energy, while ρBH is the black

hole density. Eq. (5.37) can be, in principle, used to track cosmological structure

formation and the impact on CMB anisotropies (through the Integrated Sachs-Wolfe

effect), but we postpone a study of these effects to future work.

In the next section, we will provide a quantitative picture of how the cosmic history

of accretion into stellar and super-massive black holes (or active galactic nuclei) leads

to an estimate of m∗ as a function of redshift, and its implications for the effective
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dark energy scenarios.

5.5 Cosmic History of Black Holes and Cosmic Ac-

celeration

An up-to-date inventory of cosmic energy at the present day, including the contribu-

tion from stellar-mass and supermassive black holes, is provided by [61]. In order to

measure m∗(z) we need to take this a step farther and understand the mass distribu-

tion of such black holes, and their redshift evolution.

The mass distribution of stellar–mass black holes is not well-determined obser-

vationally, but estimates are that it is fairly broad, with a mean of around ∼ 7M⊙

[62, 63]. We base our calculations on the theoretical predictions of [64], which show

that the distribution can be approximately represented by a power-law such that

the number density of black holes decreases by a factor 5 between M = 3M⊙ and

M = 15M⊙. Assuming this distribution, the average black hole mass is 8.2M⊙. We

will treat the uncertainty in this distribution by varying the slope sufficiently to alter

this mean mass by ±1M⊙.

To determine the redshift evolution in black hole abundance, we use observations

of the cosmic star formation history, from [65]. There is significant uncertainty in the

shape of this history. However, it must obey the integral constraint that the total

stellar mass density today be ρ∗ = 0.0027ρcrit = 3.67× 108M⊙Mpc−3, which is known

to a precision of ∼ 30 per cent [61]. We will therefore normalize the black hole number

density at z = 0 to1.46×106 Mpc−3 [61]. The effect of this normalization is to ensure

63



that the integral constraint is satisfied while maintaining the shape of the history.

This is necessary because the conversion of observables into the star formation rate

has several uncertainties that do not necessarily give the correct stellar mass today.

We assume that changes to the initial mass function do not significantly alter the

shape of the star formation rate density evolution, but primarily affect the number of

black holes formed. By default we assume a Kroupa IMF [66], which is the “second

model” considered in [61]. For this choice, 1.9 per cent of stars formed end up as

black holes;7 a more useful number is that for every solar mass of stars formed 0.0025

black holes are created. These numbers change by less than 5 per cent if we assume

a Chabrier IMF [67]; we expect therefore the uncertainty on the normalization of

the black hole mass function to be dominated by the 30 per cent uncertainty in the

present day stellar mass function. Note, however, that a pure Salpeter IMF [68] would

produce significantly fewer black holes, only 0.0013 for every solar mass formed.

In general, there is little observational constraint on the evolution of the IMF.

It may be constant out to z = 2 but at higher z, there are some observations and

theoretical ideas that suggest the IMF may change shape. If this is true it could

change both the shape of the star formation rate-time curve assumed in this model,

since this is derived from observables assuming a constant IMF, as well as the fraction

of mass formed into black holes.

We base our estimate of the supermassive black hole mass distribution on observa-

tions of the quasar luminosity function. This requires assumptions about the lifetime

and obscuring column density of quasars; for this we adopt the model of [69] who

7This is due to [61] and assumes that neutron stars result from stars with initial masses 8−25M⊙.
It also assumes the average mass of a neutron star is 1.35M⊙.
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describe a merger-driven scenario of black hole growth. Using this model, the z = 0

mass density of supermassive black holes is 2.9+2.3
−1.2×105M⊙Mpc−3. This is somewhat

smaller than the value of 5.4×105M⊙Mpc−3 determined from the correlation between

black hole mass and bulge luminosity [70, 71], as computed by [61]. However, the

uncertainty on the latter is a factor of two, and a lower value of 3.4×105M⊙Mpc−3 is

obtained [61] if one uses the correlation with velocity dispersion for early type galaxies

[72, 73] rather than luminosity.

With this in hand we are able to compute the expected m∗(z), and this is shown

in the bottom panel of Figure 5.3. Our best estimate of the local, mass-weighted

geometric mean of black hole masses is m∗(0) = 12.7M⊙. The dashed lines represent

the range of uncertainty on this z = 0 normalization. A larger value of m∗ is obtained

by reducing the contribution of stellar-mass black holes (assuming the local density

is 30% lower than our fiducial model, and assuming the mass distribution is more

steeply weighted to lower masses, so the average mass is 7.2M⊙), and increasing the

contribution of supermassive black holes (by increasing the z = 0 space density within

the 1σ uncertainty, to 5.2 × 105M⊙Mpc−3). This yields m∗(0) = 24.7M⊙. Pushing

the numbers in the opposite direction, we obtain m∗(0) = 10.5M⊙. Using Eq. (5.28)

for the current effective density of dark energy, and ignoring the spin of black holes,

this range in m∗(0) translates to a range for the Trans-Planckian parameter θP :

θP = (0.4− 5)× 102. (5.38)

We can consider spinning black holes, using our scaling argument from Section 5.3

and taking a nominal value of a∗ = 0.75. This implies a lower range for the Trans-

65



Planckian parameter, θP = 20 − 300, in order to match the current rate of cosmic

acceleration. The fact that θP ∼ 1, further justifies a Trans-Planckian, or quantum

gravitational origin for the observed “dark energy phenomenon”.

The evolution of the stellar-mass black hole mass density is dependent upon the

shape of the star-formation-rate density plot from [65]. To consider the effect of this,

we construct two star formation histories that are consistent with those data within

the 1σ error bars, but which produce as many stars as possible at either high redshift

(z > 1) or at low redshift (z < 0). We still renormalize this to match the local

stellar mass density. These extremes are shown in Figure 5.3 as dashed lines. The

evolution of the supermassive black hole distribution is very model dependent, and

not well constrained. We note that the two different predictions shown by [69], which

make different assumptions about the quasar space density evolution at z > 2, have a

subdominant effect on the predictions shown here, relative to the other uncertainties

considered.

Within an effective dark energy description of FRW cosmology, a fixed dark energy

equation of state, w, implies that dark energy density evolves as (1 + z)3(1+w), as a

function of redshift, z. The effective equation of state (which is simply a way to

parameterize cosmic expansion history) is observationally constrained to

w(z) = −1.06± 0.14 + (0.36± 0.62)
z

1 + z
, (5.39)

at 68% confidence level, based on cosmic microwave background, baryonic acoustic

oscillations, and supernovae Ia observations, assuming a spatially flat cosmology [74],

and a linear dependence of w(z) on the cosmological scale factor = (1 + z)−1.

66



Figure 5.3: Bottom panel: The mass-weighted geometric mean of black hole
masses, m∗, in units of M⊙ as a function of redshift. Our fiducial model (solid, black
line) assumes our best estimates of the mass distribution evolution of the black hole
mass distribution. Dashed lines indicate the range of uncertainty expected due to the
unknown relative contribution of supermassive and stellar-mass black holes at z = 0,
while the dotted lines represent the uncertainty in the shape of the star formation
density evolution from [65]. Top panel: The prediction of the equation of state
parameter w̄(< z) from Equation 5.40, for the same models. The dashed area shows
the region excluded at 68% confidence level for this parameter, as measured from
independent observations [74].
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We can define a mean equation of state as:

1 + w̄(< z) ≡ 1

3

ln[ρDE,eff(z)/ρDE,eff(0)]

ln(1 + z)

= − ln[m∗(z)/m∗(0)]

ln(1 + z)
, (5.40)

since, ρDE,eff(z) ∝ m−3
∗ (z), as we saw in the last section. We show this estimate of w

for the models described above, in the top panel of Figure 5.3. Our fiducial model

predicts a value of w that deviates from −1 by less than 5 per cent out to z ∼ 2,

but predicts it should reach w = −0.8 by z = 3. There is considerable uncertainty

on this, however, due both the unknown distribution of black hole masses at z = 0

(dashed lines) and the unknown shape of the star formation rate density evolution

(dotted lines).

While most these models are consistent with the current bounds on the effective

dark energy equation of state (using Eq. 5.39):

w̄(< z) = −1.06± 0.14 + (0.36± 0.62)

[

1− z

(1 + z) ln(1 + z)

]

, (5.41)

stage IV dark energy missions, as quantified by the dark energy task force report

[75], are expected to have percent level sensitivity to w̄(< 1− 3), and thus should be

able to distinguish the aether model with these m∗(z) histories from a cosmological

constant.
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5.6 Conclusions and Future Prospects

We have shown that static black hole solutions exist in the gravitational aether model

of [18]. The model is an attractive alternative to the cosmological constant, which

does not suffer from the tremendous fine-tuning problem of vacuum energy in standard

model. We find that in the presence of a gravitational aether, the Schwarzschild black

hole is sufficiently perturbed so as to result in a Trans-Planckian connection between

physics near the black hole horizon and cosmology. This could be a phenomenological

product of quantum gravity, and it naturally explains the present-day acceleration of

cosmic expansion as a result of formation of stellar/solar-mass black holes.

Indeed, the recent discovery of cosmic acceleration, or dark energy [1, 2] might

be the first concrete evidence for quantum gravity and/or Trans-Planckian physics.

Future work may include an exploration of quantum properties of this black hole

solution. In particular, a natural next step would be to understand how quantum

gravity can resolve the null singularity at the event horizon.

As discussed in Sec. 5.3, another important question yet to be addressed is whether

dynamical evolution could lead to the static solutions found in this work. While prior

to formation of black holes, the integration constant p0 is set by large-scale conditions,

as black hole horizons form, we speculate that the constant is instead set by conditions

at the event horizon. In order to understand the causal transition between these two

boundaries, and how fast the effect will propagate away from the black hole, a more

complete dynamical picture is necessary.

Furthermore, in the presence of multiple black holes with relative motion, the

aether is expected to be locally dragged by different black hole horizons. However, for
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black holes at large separations compared to their horizon sizes and non-relativistic

velocities (as expected in astrophysical situations), the perturbations to the static

solution is expected to be small.

To conclude, we would like to entertain the exciting possibility that the gravi-

tational aether [18] might provide a complete solution to the three aspects of the

cosmological constant (CC) problem, as discussed in the Introduction:

1. Old CC problem: Gravitational aether theory decouples quantum vacuum from

geometry, which allows a nearly flat spacetime even in the presence of large

vacuum energy densities expected from the standard model of particle physics.

The model makes specific predictions for physics at big bang nucleosynthesis and

radiation-matter transition era, which will be tested with precision cosmological

probes over the next decade [18].

2. New CC problem: Formation of black holes leads to a UV-IR coupling, which

connects near-horizon Planck-scale physics to cosmology, and can naturally lead

to cosmic acceleration, even in the absence of a real dark energy component.

3. Coincidence problem: As we showed in Sec. (5.5), the stellar mass black holes

expected in standard star formation, can naturally lead to the observed present-

day acceleration of the Universe. The competition between the contribution of

stellar mass black holes, and super-massive black holes leads to an evolution of

the effective dark energy density, which can be tested with NASA’s future Joint

Dark Energy Mission (JDEM)8 or its European counterpart Euclid9.

8http://jdem.gsfc.nasa.gov/
9http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=42266
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CHAPTER 6

What do dark matter haloes teach us about cosmic

acceleration?

6.1 Introduction

The two previous chapters focus primarily on unique and arguably speculative ap-

proaches to explaining cosmic acceleration and solving the cosmological constant

problem. An important part of the effort to resolve these issues is testing proposed

models in the context of what are, at this stage, better-established physical pictures.

Structure formation could prove to be an incredibly useful phenomenological method

for distinguishing models of cosmic acceleration.

It is currently believed that large-scale structure formation has its seeds in small

quantum fluctuations in the early universe (e.g. [76]). The current model for structure

formation is elegant in its fundamental simplicity. Random inhomogeneities, artifacts
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of cosmic inflation, create a runaway effect in which overdense regions attract more

matter, thus becoming more dense and leading to galaxies, stars, and planets.

Better understanding this process is independently an intriguing enterprise in the

field of cosmology. In this work we focus on the relationship between the cosmic ac-

celeration and structure formation. More specifically, different cosmological pictures

(cosmologies with differing causes of acceleration, such as a cosmological constant,

dark energy, or modifications of Einstein gravity) might have expansion histories that

are similar to one another but leave different imprints on large-scale structures, and

in particular on galaxy clusters. Therefore, structure formation provides a unique

testing ground for models of cosmic acceleration (e.g., [19, 77, 78]). Here we criti-

cally examine some of the assumptions in this program, and develop a framework to

enhance the accuracy of this kind of work.

The first step in this direction is to revisit how the Press-Schechter formalism [79]

(PSF) is used to predict the cluster mass function. Press and Schechter [79] have

argued that the number density of dark matter haloes (or galaxy clusters) of mass M

is given by:

dn(M, z)

dM
= f [σ(M, z)]

ρ̄m(z)

M

∂ ln σ−1(M, z)

∂M
, (6.1)

where σ2(M, z) is the variance of linear overdensity in spherical regions of mass M

at redshift z, while ρ̄m(z) is the mean matter density of the universe. For random

gaussian initial conditions, f [σ] is given by:

fPS[σ] =

√

2

π

δsc
σ

exp

[

− δ2sc
2σ2

]

, (6.2)

where δsc (≃ 1.68 for most ΛCDM cosmologies) is the spherical collapse threshold for
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linear overdensities [80].

While the PSF successfully predicts the broad features of the simulated cluster

mass functions, it proves too simplistic for detailed model comparisons required for

precision cosmology. Consequently, several authors including Sheth & Tormen [81],

Jenkins et al. [82], Evrard et al. [83], Warren et al. [84], and Tinker et al. [85] have

refined the function f(σ) to better match the simulated mass functions in N-body

simulations. For example, [84] and [85] propose a fitting formula of the form:

f(σ) = A

[

(σ

b

)−a

+ 1

]

e−c/σ2

, (6.3)

where (A, a, b, c) = (0.186, 1.47, 2.57, 1.19) give a good fit to simulated haloes of over-

density ∆ = 200, in a concordance ΛCDM cosmology at z = 0 [85] (see Fig. 6.1).

While most of this work is based on fitting formulae to simulated mass functions,

Sheth & Tormen [86] argue that an approximate implementation of ellipsoidal col-

lapse can account for most of the deviations from the PSF.

However, a more pressing question for cosmological applications is whether the

function f(σ) is universal, or rather can vary for different cosmologies or cosmic accel-

eration models. In other words, could the same modified PSF be used to accurately

predict halo abundance in cosmologies with different cosmological parameters? While

earlier studies failed to find such dependence, Tinker et al. [85] first noticed a sys-

tematic evolution of f(σ) with redshift, implying a breakdown of universality at the

10−30% level (also see [87]). Courtin et al. [88] note that universality is limited by the

nonlinearity of structure formation, and the cluster mass function shows some redshift

dependence at higher redshifts that can be (partially) understood in the context of
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Figure 6.1: A comparison of Press-Schechter prediction for the function f(σ) (dotted
line; Eq. 6.2), with a parameterized fit to the numerical simulations (solid line; Eq.
6.3).
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spherical collapse. However, the spherical collapse model falls short of explaining the

10 − 30% deviations from universality in all but the most massive clusters (see Fig.

6.6).

In this work, we contribute to the effort to better understand the role and limits of

universality in the cluster mass function by introducing a new parameter that appears

to be universal across cosmological models.1 In particular, the PSF relies on σ(M),

the root-mean-square of linear density fluctuations at the time of observation, when

in reality, observed clusters are very non-linear objects with overdensities exceeding

200. We thus seek to calculate a universal time in the past when we could make

a connection between the nonlinear structures that we observe in the present and

the linear structures that existed in the past, since all structures go through a linear

phase. Our basic strategy is to find the time in the past at which the linear density of

the structures that collapse today show minimum dispersion, as we vary cosmologies.

In § 6.2, we introduce linear perturbation theory for modeling structure formation

which leads to a linear differential equation.

In § 6.3, we present the complete nonlinear differential equation that governs the

growth of matter perturbations in spherical overdense regions in the presence of a

cosmological constant.

In § 6.4, we describe a numerical code that appears in Appendix A which we de-

veloped in order to solve both the nonlinear and linear structure formation equations

in the presence of a cosmological constant. In § 6.5, we discuss the implications of

1Here we define cosmological models to mean different values of the cosmological constant density
ΩΛ or different values of the dark energy equation of state parameter, w. For now, we do not consider
quintessence models where w is dynamical in nature. Future work will extend our study to this
possibility.
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our study for analyses of structure formation in the presence of a physical factor that

produces cosmic acceleration.

We then seek to generalize from a cosmological constant to models of dynamical

dark energy. § 6.6 presents the results of this study. In § 6.7 we reexamine the idea

of universality of mass functions in light of the results of previous sections, including

the effect of ellipsoidal collapse on the formalism, and propose a new mass function

for general dark energy models.

Finally, in § 6.8, we conclude with an overview of our results and a discussion of

future prospects.

6.2 Background: Linear Perturbations

The linear perturbation theory that is used to describe structure formation can be

derived via a fluid picture. We use a Newtonian treatment because when density

perturbations are small, the gravitational potential will be nonrelativistic [89]. The

standard equations of fluid dynamics are reviewed here. First, the continuity equation:

∂ρ

∂t
+∇ · (ρ~v) = 0, (6.4)

where ρ is the matter density and ~v is the fluid velocity. The Euler equation is:

∂~v

∂t
+ (v · ∇)~v = −∇P

ρ
−∇φ, (6.5)
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where φ is the gravitational potential. Finally, the Poisson equation is:

∇2φ = 4πGNρ. (6.6)

As discussed in Chapter 2, the Universe is in a state of expansion. We recall the

Hubble flow equation describing cosmic expansion:

~v(~r, t) = H(t)~r (6.7)

We introduce comoving coordinates ~x = ~r
a(t)

. We find the velocity in terms of the

comoving coordinates and a(t), which is the familiar scale factor from Chapter 2:

~v =
d~r

dt
= ȧ~x+ ~̇xa =

ȧ

a
~r + ~u(

~r

a
, t) (6.8)

where ~u = ~̇xa(t) is the peculiar velocity. Note that we want a partial time derivative

that respects comoving coordinates, i.e. one that keeps ~x fixed:

(

∂ρ(~r, t)

∂t

)

r

=

(

∂ρ(~r
a
, t)

∂t

)

r

. (6.9)

Note that at constant r, d~r
dt

= 0 so ȧ~x+ a~̇x = 0, giving us ȧ
a
~x = −∂~x

∂t
. This leads us to

the following relation:

(

∂ρ(~r, t)

∂t

)

r

=

(

∂ρ(~r, t)

∂t

)

x

+
∂~x

∂t
· ∂ρ
∂~x

=

(

∂ρ(~r, t)

∂t

)

x

− ȧ

a
~x · ∇xρ(~x, t). (6.10)

We now wish to rewrite equation 6.4 in terms of the comoving coordinates, which

essentially means replacing the partial differential with the modified one from equa-
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tion 6.10. Moreover, what we are really interested in is the development of relative

deviations from the mean density, or the density contrast: δ = ρ
ρ
− 1. Thus, we write

ρ = ρ(1 + δ) and assuming that ρ is regular matter density, we expect ρ ∝ a−3. This

gives:

0 =

(

∂δ

∂t

)

+
1

a
∇ · (1 + δ)~u. (6.11)

We make similar transformations for the Poisson and Euler equations. Next we drop

higher order terms (e.g. O(u2) or uδ). We differentiate the linearized continuity

equation and take the divergence of the linearized Euler equation. This gives us a

differential equation that depends entirely on δ and not on ρ:

δ̈ + 2
ȧ

a
δ̇ = 4πGNρδ. (6.12)

The linear growth factor D(t) is defined as the growing solution for δ in this equation.

6.3 Λ & Non-linear Structure Formation

In § 6.2, we derived the differential equation that governs the growth of linear matter

perturbations. We used a familiar fluid dynamics picture to do so. Here we derive

the full non-linear equation for spherical overdensities using only cosmological con-

siderations. It should be noted that this particular form of the non-linear equation

is only strictly valid for ΛCDM cosmologies, where the inside of a spherical top-hat

overdensity can be considered as a separate universe. More complex models such as

dark energy models with different values of w require additional considerations which

will be described later.
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We consider a physical picture in which structure formation arises due to a uni-

formly positive spherical perturbation away from an average matter density, i.e. a

top-hat matter overdensity. This scenario is similar to considering two cosmologies

with two distinct scale factors: one for the outer universe and another for the over-

dense region. Of course, we are interested in a scenario where a dark energy compo-

nent similar to a cosmological constant is at play, so we will assume the presence of

one as part of our base model.

For the external universe, we write the Friedmann equation with zero curvature:

(

ȧo
ao

)2

=
8πGN

3
(ρ+ ρΛ) = H2. (6.13)

As we did in § 6.2, we can assume ρ ∝ a−3 for ordinary matter, while ρΛ = const.

denotes the cosmological constant density. We also note that the value of the cosmo-

logical constant will be the same inside the overdense region and the background.

In a general scenario with dynamical dark energy models we cannot assume that

curvature, often denoted by k, will be a constant inside the overdense region due to

the presence of pressure gradients. Therefore, Wang & Steinhardt [12] point out that

we are compelled to use the time-time component of Einstein’s equations, as these do

not explicitly involve the curvature term. However, in the presence of a cosmological

constant, or w = −1, we can ignore these considerations and begin with the first

order Friedmann equation. We then calculate k, which can be seen as an integration

constant that arises in going from second to first order Friedmann formulations, using

initial conditions.
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The scale factor in the overdense region is governed by:

(

ȧi
ai

)2

+
k

a2i
=

8πGN

3
(ρi + ρΛ). (6.14)

Again, we define ρi = ρ(1 + δ). A little bit of algebra yields the following full

differential equation for δ:

[ρ(1 + δ)]−
2

3

[

−8πGN

3
δρ− 2

3

Hδ̇

1 + δ
+

1

9

δ̇2

(1 + δ)2

]

+ k = 0 (6.15)

It is important to reiterate the importance of having access to both linear and

nonlinear solutions. As noted by Pace et al. [90] amongst others, although initially

both the complete solution and its linear approximation will track, eventually the

nonlinear solution will grow much faster relative to the scale factor.

Following Lyth and Liddle [91], we can show that knowing nonlinear theory is

necessary. A critical point in the evolution of a structure’s collapse is the turnaround

event in which universal expansion’s dominance over the perturbation is eclipsed by

gravitational collapse. In other words, at the turnaround point, a potential struc-

ture has detached from background expansion, but complete gravitationally-bound

structure formation has not yet begun. This might be thought as the true birth of a

structure within the void. Knowing the nonlinear solution allows us to find out the

value of the scale factor and the overdensity at this so-called “turn-around point.”

Numerically, at the point of complete collapse the nonlinear solution will “blow

up” and approach infinity. The linear density at this point, δsc is the quantity that

enters the original Press-Schechter formalism (see § 6.1) and is used as proxy between

linear and non-linear structures. Physically, we do not expect an actual singularity.
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This “blow up” point is considered to be the beginning of virialization, a process

whereby energy in the bulk infall of matter is redistributed into random motion of

dark matter particles, leading to a system in virial equilibrium, where kinetic energy

T and the potential energy U are related by the virial theorem:

Tvir =
1

2
(R ∂U/∂R)vir, (6.16)

(see Maor & Lahav [92]). For the purposes of this study, more details on this process

are not necessary.

6.4 Numerical Techniques

Although Gunn & Gott [80] showed that the perturbation equation with the assump-

tion of spherical symmetry (also known as the spherical top-hat problem) can be

solved analytically for the case of an Einstein-de Sitter (EdS) universe (Λ = 0), we

are interested in cases where the cosmological constant/dark energy are non-zero.

Therefore, a numerical solution is necessary.

We built a code in C++ that utilizes the Runge-Kutta method for numerical

solutions of ordinary differential equations. The full code can be found in Appendix A.

The code runs an instance of a loop for each value of ΩΛpresent
in the range of 0 to 0.7

(the currently measured value of dark energy density), which solves the second-order

linear differential equation, Equation 6.12, as well as the full non-linear equation,

Equation 6.15. In order to solve both equations, the solution to the differential

equation for the background scale factor, Equation 6.13, is found. The curvature
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Figure 6.2: This plot shows nonlinear vs. linear overdensities in the Einstein-de Sitter
Universe. The code produces, as expected, a δNL that diverges when δL ≈ 1.68.

constant is calculated before proceeding to a solution for both the linear and nonlinear

differential equations. We set the present Hubble parameter to one. In other words,

all time steps are in units of the present value of the Hubble time.

Collapse time is formally defined to be the time at which nonlinear overdensity,

δNL goes to infinity. However, we define collapse numerically by requiring a large ratio

of nonlinear to linear overdensities δNL = 200δL. The initial conditions are calibrated

such that they provide the same results as the analytical EdS model, namely that

δL(tcollapse) ≈ 1.7. This is essentially done by assuming that at early times δ scales

linearly with the scale factor a, as expected for the growing solution to equation (6.12)

in the matter era. 2

2It is important to remember that δ is a ratio of two numbers whose units are that of density.
Therefore, δ is dimensionless.
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Figure 6.3: Relative change in δL(t/tcollapse) in ΛCDM cosmologies (ΩΛ =
0.1, 0.2, ..., 0.7), with respect to the Einstein-de Sitter Universe. tcollapse is calculated
for spherical overdensities. The curves seem to intersect at t/tcollapse ≃ 0.94, and a
calculation of the point of minimum variance between the lines confirms this.
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Figure 6.4: Same as Fig. (6.3), but with varying values of dark energy equation of
state (w = −0.3,−0.4, ...,−1), at ΩΛ(today) = 0.7. Again, curves seem to intersect at
t/tcollapse ≃ 0.94, and, again, a calculation of the point of minimum variance between
the lines confirms this. We begin at the value -0.3 because current data constrains
the parameter to be smaller than this value.
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6.5 Results for Cosmological Constant Models

As stated in the Introduction, we wish to discover the time (as a fraction of the collapse

time) such that the variance of δL(t) is at a minimum, as we vary cosmologies. In

doing so, we find the time in cosmological history where linear theory is most likely

to accurately predict gravitational collapse, independent of cosmology.

For simplicity, we chose to plot the relative difference of δL(t) for different cos-

mologies with respect to the fraction of time to the collapse time in the Einstein-de

Sitter universe. However, it should be noted that the results are independent of this

choice, and one could easily calibrate with respect to a universe with a non-zero Λ

instead. Having found a common ground, all the data was searched for a single point

in time (in units of collapse time) where the variance of δL(Q)
δL(Λ=0)

− 1 was at a mini-

mum, where Q stands for different dark energy models under consideration, whether

a general fluid or a cosmological constant.

The interpolations and variance computations were carried out using a script in

MatLab, which can be found in Appendix A.3. In the case of the simple cosmological

constant models, Fig. 6.3 shows the result that at t
tcollapse

≃ 0.94, the variance in

δL(t/tcollapse) for different cosmological constant models hits a minimum of 1.8035 x

10−9. Values of δL range from 1.602 for Einstein-de Sitter3 to 1.599 in the Λ = 0.7

universe.

3This is below the predicted analytic value of 1.68 at collapse because while δL = 1.68 is expected
as δNL → ∞, we have set the collapse to occur at δNL = 200, resulting in a lowered collapse value.
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6.6 Dynamical Dark Energy & Structure Forma-

tion

Satisfied that our spherical collapse code successfully reproduces cosmologies that in-

clude the presence of a cosmological constant as well as the Einstein-de Sitter universe,

we may now move on to considering cosmologies with a more complex evolutionary

dynamics. Such models are often known as quintessence models, and these are de-

scribed in reviews [93, 14].

As described in § 6.3, in general, we cannot assume that curvature will be a

constant inside the overdense region due to the presence of pressure gradients. Put

differently, in a universe where w = −1, we can assume that the overdense region

and the background universe evolve independently. In a universe where w = w(a),

dynamical pressure gradients will force these two “universes” into a dynamical rela-

tionship.

These considerations force us to arrive at our non-linear equation differently than

before, as the time-time component of Einstein’s equations gives us the second-order

form of Friedmann’s equation. For the external, background universe, we use the

Friedmann equation which gives us the background scale factor:

(

ȧo
ao

)2

=
8πGN

3
(ρ+ ρQ) = H2. (6.17)

As we did in § 6.2, we say that ρ ∝ a−3. Here Q refers to a general form of dark

energy, such as a quintessence.

Referring to the density in the overdense region as ρcluster, we find the time-time
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term gives us the second order Friedmann equation:

R̈

R
= −4πG

(

pQ +
ρQ + ρcluster

3

)

(6.18)

= −4πG

(

ρQ(w +
1

3
) +

1

3
ρcluster

)

, (6.19)

where, treating the system like a fluid, we use the following relation to get the second

form of the equation: pQ = wρQ. R can be thought of explicitly as the radius of the

overdense cluster.

Abramo et al. [94] provides a comprehensive derivation of the full non-linear equa-

tion, which we refer the interested reader to for complete details. For our purposes,

it will suffice to show the final result, which is Equation 7 in [94]:

δ̈j+

(

2H − ẇj

1 + wj

)

δ̇j−
4 + 3wj

3(1 + wj)

δ̇j
2

1 + δj
−4πG

∑

k

ρk(1 + wk)(1 + 3wk)δk(1 + δk) = 0

(6.20)

The subscripts j and k refer to different fluids in the system, e.g. matter and dark

energy. In a scenario where the dark energy can clump, this becomes a system of

equations. As we discuss below, we do not allow this possibility. Therefore, noting

that w = 0 for matter, we get the following non-linear equation governing the behavior

of matter perturbations:

δ̈m + 2Hδ̇m − 4

3

δ̇2m
1 + δm

− 4πGρmδm(1 + δm) = 0. (6.21)

But, why exactly are we allowed to ignore the clumping in dark energy?

The discussion about dark energy perturbations is often cast in terms of the
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effective speed of sound for dark energy (e.g., [95]). Typically one may expect that

for an adiabatic fluid with a constant equation state parameter w, the speed of sound

is given by c2 = δP/δρ = w. However, when wde < 0, clearly this becomes imaginary,

suggesting a catastrophic instability (e.g., see [96]), and thus we must use a more

general definition of the c. In other words, dark energy with constant w cannot be

an adiabatic fluid, implying w = δp
δρ

6= P
ρ
. While the equation of state parameter can

still give us information about the background evolution, the full action of the fluid is

necessary to compute its effective speed of sound: c2eff ≡ δp
δρ
. It turns out that for the

simplest quintessence models ceff = 1, although for more general actions ceff could

essentially take any value (e.g., [97]).

As to the question of dark energy clumping, we know that pressure fluctuations

propagate with the speed of sound ceff . Therefore, dark energy should be smooth on

scales smaller than its sound horizon ∼ ceff/H. As long as ceff ∼ 1, all the collapsed

structures at late times are much smaller than the sound horizon, implying that dark

energy perturbations δDE should be negligible for their formation.

Computing the solution to equation (6.21) requires some modifications to the

code. The altered code can be found in § A.2. Instead of scanning over different

cosmological constant values, this version of the code varies between constant values

of w. Moreover, as current observations (e.g., [98]) set a (very conservative) upper

limit of −1/3 for the value of w , we studied cases where w was smaller than −1/3.

Because the cosmological constant is a special case of this scenario with w = −1,

we are able to check the self-consistency of our methods (Eq. 6.15 vs. Eq. 6.21)

finding that both versions of the code produce the same results for a universe with

ΩΛ = 0.7 (approximately the universe that we live in).
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Fig. (6.4) shows a similar comparison to that of Fig. (6.3), but with different

values of equation of state, w, with ΩDE = 0.7. Interestingly, we can again clearly see

a point of minimum variance at t/tcollapse ≃ 0.94, suggesting that this result might

be quite independent of the dark energy model (at least within the spherical collapse

approximation). The variance at this minimum is 7.5376 x 10−7. In the next section,

we discuss the physical significance of this result.

6.7 What does the Cluster Mass Function teach

us about cosmology?

At first, one might be puzzled by the fact that δL happens to have almost the same

value at 94% of the collapse time, independent of w or Λ, even though the linear

approximation breaks down long before this point. In other words, why should non-

linear collapse show such strong correlation with the linear evolution? This can be

understood as the near cancelation of two different effects with opposite signs:

1. With the exact same initial conditions, the presence of dark energy weakens the

gravitational attraction near the turn around point, which in turn stretches the

collapse time.

2. The linear growth factor D(t), which is the growing solution to equation (6.12),

slows down as dark energy starts to dominate, since the Hubble friction 2Hδ

stops decaying (H → const.), while matter density decays exponentially ρ̄ ∝

a−3 ∝ exp(−3Ht).
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It turns out that for near ΛCDM cosmologies, these two effects nearly cancel each

other, i.e. the linear growth is slowed down, but tcollapse is also longer, resulting in

nearly the same value of δL close to (i.e. at 94% of) the collapse time.

However, we should note that this result is specific to the spherical collapse sce-

nario. On the other hand, real collapsing regions are far from spherical. Even though

very rare peaks of a random gaussian field can be approximated as spheres, more

abundant haloes could significantly deviate from sphericity (e.g., [99]). For Einstein-

de Sitter universe, Sheth & Tormen [86] give a simple numerical fit for the impact of

ellipticity on the linear collapse threshold, δec:

δec ≃ δsc
[

1 + σ(M)1.23
]

, (6.22)

where δsc ≃ 1.686 is the spherical collapse threshold. Since δL ∝ t2/3 in an Einstein-de

Sitter universe, this implies that, for the same initial overdensity, the collapse time

of an elliptical region is longer than that of a spherical region by a factor of:

tcollapse,elliptical
tcollapse,spherical

≃
[

1 + σ(M)1.23
]3/2

. (6.23)

In other words, we need to extrapolate the linear theory predictions in Figs. (6.3-

6.4) farther beyond the point of intersection to actually hit gravitational collapse.

Therefore, combining equation (6.23) with the results of previous sections implies

that the point of minimum variance in δL is shifted to small values of t/tcollapse, i.e.:

t∗
tcollapse

=
0.94

[1 + σ(M)1.23]3/2
, (6.24)
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Figure 6.5: The expected time of minimum variance in linear overdensity, in units of
ellipsoidal collapse time. Observing the cluster number counts at tcol should tell us
the linear overdensity of the collapsing region at t∗, independent of the dark energy
model.
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if we include the impact of ellipsoidal collapse. This result is shown in Fig. (6.5),

and demonstrates how measuring the mass function of clusters at a given era may

tell us about the entire history of linear growth, and not just a snapshot at the time

of observation (as is in the traditional universal mass function hypothesis).

Inspired by the fitting formula Eq. (6.3), Equation (6.24) leads us to propose a

new universal cluster mass function:

f(σ;Q) ≃ g(σ)e−h(σ)/σ2
∗ , σ∗ = σD

[

0.94× t

(1 + σ1.23)3/2

]

, (6.25)

where the actual mass function is related to f(σ;Q) through equation (6.1), and t is

the time of observation at which D(t) is normalized to unity. In other words, equation

(6.25) suggests that the exponential cut-off in the cluster number counts at any time t

is set by the linear density fluctuations σ∗ at an earlier time t∗, which is set by equation

(6.24). As suggested by several recent numerical studies (see Introduction) f(σ;Q)

depends on cosmology (denoted by Q), but we propose the functions g and h to be

universal, while the dependence on cosmology (or dark energy models) only enters

through D(t∗). The explicit dependence of g and h on σ at the time of observation

is justified, as the value of σ acts as a proxy for the asphericity of the collapsing

region [86].

Comparing to Eq. (6.3), we fix g and h as:

g(σ) = A

[

(σ

b

)−a

+ 1

]

, h(σ) = cD2

[

0.94× t

(1 + σ1.23)3/2

]

ΩΛ=0.7

, (6.26)
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Figure 6.6: The relative change in f(σ) at high redshifts, compared to z = 0. The
colored regions show the simulated results from [85]. Curves in left panel show our
analytic prediction without ellipticity corrections, while curves in the right panel
include the ellipticity corrections (Eq. 6.25). The solid, dotted, short-dashed, and
long-dashed curves refer to z=0, 0.5, 1.25, and 2.5 respectively.

where (A, a, b, c) = (0.186, 1.47, 2.57, 1.19) 4.

Fig. (6.6) compares the evolution in the function f(σ;Q) in N-body simulations,

with our prediction from Eqs. (6.25-6.26). We see that while the result from spherical

collapse, t∗ = 0.94×tcollpase, underpredicts the evolution (left panel), Eq. (6.25), which

includes the ellipsoidal correction to the collapse time (Eq. 6.24), can successfully

reproduce the evolution in f(σ;Q).

4We recognize that these choices for g and h are not unique, but as Fig. (6.6) demonstrates,
these are sufficient to fit current simulations
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6.8 Conclusions and Future Prospects

In this chapter, we have presented a study of non-linear gravitational collapse in

different models of dark energy/cosmic acceleration. In particular, we critically ex-

amined the correlation between the linear growth of fluctuations and the emergence

and statistics of collapsed objects (such as dark matter haloes or galaxy clusters).

First, we focused on the collapse of spherical overdensities, and discovered that they

all have the same linear ovderdensity (≃ 1.50), at ≃ 94% of the time of collapse/viri-

alization, independent of the density or equation of state of dark energy. We then

used a simple prescription to include the impact of ellipsoidal collapse in our finding,

and then used this result to propose a new universal mass function for galaxy cluster-

s/dark matter haloes. Our semi-analytic predictions are consistent with the observed

evolution in mass function of haloes in N-body simulations.

Future work will include the adaptation of this prescription to study models with

dynamical equations of state, such as quintessence or modified gravity models. A

particularly challenging application would be to the gravitational aether/black hole

model that is described in Chapter 5. Because of the way dark energy is sourced in

the gravitational aether model, there are unique numerical challenges associated with

properly describing structure formation in its presence.

Finally, we recognize that a more systematic approach to the question of universal

mass functions should be possible, and given the level of theoretical and observational

activities in this field, it is unlikely that the present work provides the last word on

this subject. However, the novel (albeit trivial) observation of this work is that

measuring the cluster mass function will teach us about the entire history of linear
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growth. This is in contrast to many previous cosmological applications of cluster

mass functions, which assume a one-to-one correspondence with the linear σ(M) at

the time of observation. Similar to a multi-level archeological excavation, dark matter

haloes can be thought of as artifacts of linear growth. As Fig. (6.5) and Eq. (6.25)

suggest, the number of smaller haloes (with larger σ(M)) can teach us about the

early evolution of linear growth, while the bigger haloes (with smaller σ(M)) tell us

about its more recent history.

We thus speculate that this perspective can eventually lead to yet untapped infor-

mation about the nature and history of cosmic acceleration, especially as the releases

of several large scale cluster surveys such as Atacama Cosmology Telescope (ACT)

[100], South Pole Telescope (SPT) [101], Planck [102], and Red Sequence Cluster

Sequence 2 (RCS2) [103] are now looming on the horizon.
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CHAPTER 7

Accelerating Forward: Conclusions

The American National Academy of Sciences has completed its decadal survey, and

the cosmic acceleration problem is at the top of the list of enduring questions that

we wish to explore during the next decade. Indeed, the data has become undeniably

intriguing, and multiple efforts such as the Joint Dark Energy Mission and Dark

Energy Survey are part of an endeavor to better understand the tip initially given to

us by Type Ia supernovae.

Many open questions, of course, remain. It is clear that a better understanding of

the cosmological constant problem as a distinct problem that arises in quantum field

theory, as well as its potential connection to the question of cosmic acceleration, will

be necessary for a complete theory of quantum gravity. In recognition of this, we can

investigate the cosmic acceleration problem either directly as quantum gravity phe-

nomenology or at least as motivation for considering a connection between questions

in fundamental physics and those in astrophysics.
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Its worth reconsidering our ideas about the vacuum itself. We often think that

defining the vacuum in general relativity is trivial, although in reality, it says nothing

about a vacuum, at least not the vacuum that we conceive of in QFT, which is, rela-

tively speaking, trivial to define. What we have repeatedly learned is that connecting

these two vacuums is non-trivial. While it’s possible that part of the problem is that

we do not look at spacetime the way we should, maybe we are trying to do the wrong

thing, simply connecting two vacuums from two different models.

It is potentially useful to reconsider this problem in the context of another scenario

where GR and QFT seem unable to share a narrative: the quantum gravity problem.

Perhaps questions of vacuum observations and phenomenology are actually quantum

gravity phenomenology. With this in mind, I have presented original research that

attempts to explain cosmic acceleration by connecting this astrophysical problem with

questions in fundamental physics. I have also offered a new consideration in the effort

to use structure formation to constrain potential explanations for cosmic acceleration.

The results presented in Chapter 5 present one potential cause of cosmic acceler-

ation. It is also an example of the unexpected turns exploratory research can take.

Initially part of an attempt to better understand black holes in a modified grav-

ity theory, this work with Afshordi revealed a unique potential connection between

physics at small scales and physics at large scales. We formulated a picture where

the pressureful presence of a dark energy-like component is sourced on the event

horizon of black holes. This particular approach to the cosmic acceleration problem

divorces the vacuum from gravity, reconfiguring the questions and answers related to

the cosmological constant problem.

Work with Smolin in Chapter 4 shows one way that the cosmic acceleration and
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cosmological constant problems can be approached from the other direction: begin-

ning with quantum gravity considerations. This novel idea involves positing that a

certain level of non-locality survives coarse graining from a quantum gravitational

scale in a model such as spin foams. The distribution of these so-called non-local

links through the universe sources an energy density that is indistinguishable from a

cosmological constant. This work simultaneously answers the question of what phe-

nomenology may result from certain assumptions about the properties of quantum

gravity as well as the question of how cosmic acceleration might arise under such a

quantum gravity.

Having considered possible approaches to the problem, we are also interested in

understanding how to connect these ideas with the data. In the hunt for effective

and independent ways to study the impact of different models on the cosmology

we observe, structure formation presents us with a fruitful arena. Although differ-

ent cosmic acceleration models can present indistinguishable background evolution,

structure formation may be altered. Essentially, the impact on structure formation is

independent of the impact on the background evolution, making structure formation

a useful test of cosmological models.

In Chapter 6, I present an analysis of spherical top-hat model collapse in different

cosmological models, allowing us to better understand universality of the cluster mass

function (CMF) in the Press-Schechter formalism. It is shown that the CMF’s univer-

sal behavior may allow us to learn about the history of linear structure formation. We

expect this knowledge will be helpful when studying the impact of cosmic acceleration

models on structure formation, thus allowing us to refine our understanding of the

universe’s accelerating expansion and its causes. In a scenario where cosmic accelera-
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tion is quantum gravity phenomenology, a better understanding of the mechanism(s)

behind the acceleration will help us formulate a true theory of quantum gravity.
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APPENDIX A

C++ Code for Solving Spherical Collapse Problem

These codes are relevant to the work described in Chapter 6.

A.1 Varying Cosmological Constant

1 // structure_formation will solve the linear and non -linear

differential equations for spherical collapse.

2
3 #include <iostream >

4 #include <cmath >

5 #include <fstream >

6 #include <string >

7 #include <sstream >

8 #include <vector >

9 #include <windows.h>

10
11 using namespace std;

12
13 static double one_sixth = (1/6.0f);

14
15 // Calculation of Adot when A = a. (and lambda = L)

16 double evaluate_Adot( double a, double L) {

17 return sqrt((1-L)*pow(( double)a,( double) -1.0f)+L*pow(( double)a,(

double)2.0f));

18 }

19
20 // calculate the 4 k values for runge -kutta on ’a’, return them in

the passed in pointers.
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21 void get_runge_kutte_k_vals_for_a ( double a, double L, double dt ,

22 double* k1 , double *k2, double *k3 , double *k4) {

23 *k1 = evaluate_Adot( a, L );

24 *k2 = evaluate_Adot( a + 0.5 * dt * (*k1), L );

25 *k3 = evaluate_Adot( a + 0.5 * dt * (*k2), L );

26 *k4 = evaluate_Adot( a + dt * (*k3), L );

27 }

28
29 // calculate the next value of a in a runge_kutta integration

30 double runge_kutta_a( double a, double L, double dt ) {

31
32 double k1, k2 , k3, k4;

33
34 get_runge_kutte_k_vals_for_a ( a, L, dt,

35 &k1 , &k2 , &k3 , &k4);

36
37 return a + one_sixth * dt * ( k1 + 2 * k2 + 2 * k3 + k4 );

38 }

39
40 // evaluate the determinant in the calucation of ndeltadot

41 double evaluate_determinant_in_ndeltadot(fstream & filestra , double

ndelta , double a, double L, double k ) {

42
43 double adot = evaluate_Adot( a, L );

44
45 double d = (1+ ndelta) * (1-L) / (a*a*a);

46 double D = pow( (double)d, (double) -2/3.0f );

47 double c = (D * ndelta * (L-1) / (a*a*a)) + k;

48 double b = D * ( -2/3.0f) * (adot/a) / (1+ ndelta);

49 double A = D * (1/9.0f) * pow( 1+ndelta , (double) -2.0f);

50
51 return pow( b,2 ) - 4*A*c;

52 }

53
54 // calculation of ndeltadot

55 double evaluate_ndeltadot( fstream & filestra , double ndelta , double

a, double L, double k, int &m ) {

56
57 double adot = evaluate_Adot( a, L );

58
59 double d = (1+ ndelta) * (1-L) / (a*a*a);

60 double D = pow( (double)d, (double) -2/3.0f );

61 double c = (D * ndelta * (L-1) / (a*a*a)) + k;

62 double b = D * ( -2/3.0f) * (adot/a) / (1+ ndelta);

63 double A = D * (1/9.0f) * pow( 1+ndelta , (double) -2.0f);

64 double in_sq = pow( b,2 ) - 4*A*c;

65
66 if( in_sq < 0 ) {
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67 in_sq = 0;

68 m = 1;

69 }

70
71 return (-b + m * sqrt(in_sq) ) / (2 * A);

72 }

73
74 // calculate the next value of ndelta using runge -kutta.

75 // Since ndelta depends on a, and we don’t have an explicit formula

for a,

76 // we have to treat this as an integration of a system of equations

using runge -kutta.

77 // We’ve already integrated a, but we still need the runge -kutta k

values from the ’a’

78 // integration in order to calculate the k values for the ndelta

integration.

79 double runge_kutta_ndelta( fstream & filestra , double ndelta , double

a, double L, double k, int &m, double dt) {

80
81 double k1, k2 , k3, k4;

82 double ka1 , ka2 , ka3 , ka4;

83
84 get_runge_kutte_k_vals_for_a ( a, L, dt,

85 &ka1 , &ka2 , &ka3 , &ka4);

86
87 k1 = evaluate_ndeltadot( filestra , ndelta , a, L, k, m );

88 k2 = evaluate_ndeltadot( filestra , ndelta + 0.5 * dt * k1 ,

89 a + 0.5 * dt * ka1 ,

90 L,

91 k,

92 m );

93 k3 = evaluate_ndeltadot( filestra , ndelta + 0.5 * dt * k2 ,

94 a + 0.5 * dt * ka2 ,

95 L,

96 k,

97 m);

98 k4 = evaluate_ndeltadot( filestra , ndelta + dt * k3,

99 a + dt * ka3 ,

100 L,

101 k,

102 m);

103
104 return ndelta + one_sixth * dt * (k1 + 2 * k2 + 2 * k3 + k4 );

105 }

106
107 // calculate the second derivative of delta.

108 double evaluate_deltadubdot( double delta , double ddot , double a,

double L ) {
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109
110 // Stuff for linear equation: second order deriv of lin delta

111 double adot = evaluate_Adot( a, L );

112 return ((3/2.0f)*(1-L)*delta /(a*a*a)) - (2* adot*ddot/a);

113 }

114
115 // returns the next value of delta from runge_kutta integration.

The integrated value of ddot is returned by pointer

116 // in the last parameter.

117 // Here we are integrating a system of 2 equations (delta and ddot),

but again ’a’ is not a known function ,

118 // so we have to treat this as a runge -kutta integration of a system

of 3 equations , but again we don’t need

119 // to explicitly do the integration of ’a’ since we’ve already done

so.

120 double runge_kutta_delta( fstream & filestra , double delta , double

ddot , double a, double L, double dt, double * ddot_ret ) {

121
122 double k1, k2 , k3, k4;

123 double ka1 , ka2 , ka3 , ka4;

124
125 get_runge_kutte_k_vals_for_a ( a, L, dt,

126 &ka1 , &ka2 , &ka3 , &ka4);

127
128 k1 = evaluate_deltadubdot( delta , ddot , a, L );

129 k2 = evaluate_deltadubdot( delta + 0.5 * dt * ddot ,

130 ddot + 0.5 * dt * k1 ,

131 a + 0.5 * dt * ka1 ,

132 L );

133 k3 = evaluate_deltadubdot( delta + 0.5 * dt * ddot + 0.25 * dt *

dt * k2,

134 ddot + 0.5 * dt* k2 ,

135 a + 0.5 * dt * ka2 ,

136 L );

137 k4 = evaluate_deltadubdot( delta + dt * ddot + 0.5 * dt * dt * k3 ,

138 ddot + dt * k3 ,

139 a + dt * ka3 ,

140 L );

141
142 *ddot_ret = ddot + one_sixth * dt * ( k1 + 2 * k2 + 2 * k3 + k4 )

;

143
144 return delta + dt * ddot + one_sixth * dt * dt * ( k1 + k2 + k3 );

145 }

146
147 int main()

148 {

149 int m,alpha;
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150 double adot , ddot , ndelta , nddot , dubdot ,omega; //a, derivative of

a, delta(lin), deriv of deltalin , nonlindelta , deriv of nonlin

151 double d, D;//D and the variables below are all used to simplify

the non -linear delta diff eq

152 double A, b, c, sq;

153 int t,time;

154 double dt =0.000001f,acoll ,tcoll; //time step

155 double L, Lin , Lout , Lstep; //this is lambda , initial for range ,

and final for range , step for moving in range

156 double k; //this is the curvature constant , which is set by the

value of lambda in the background

157 const double Pi = 3.14159265358979323846;

158
159 CreateDirectory ("data" ,0); //the 0 is a security_attributes value

160
161 Lin =0;

162 Lstep =0.1;

163 Lout =0.7;

164
165 vector <double > eds;//this stores linear delta for the Einstein -de

Sitter case

166
167 for(L=Lin; L<=Lout; L+= Lstep)

168 {

169 ostringstream streama;

170 streama << "data\\" << L << ".txt";

171
172 fstream filestra;

173 filestra.open (streama.str().c_str(), fstream ::out);

174
175 ostringstream streamturn;

176 streamturn << "data\\" << L << ".turn.txt";

177
178 fstream fileturn;

179 fileturn.open (streamturn.str().c_str(), fstream ::out);

180
181 // Vector Definitions

182 vector <double > advector;//this vector class stores the

background scale factor

183 advector.push_back (1); //this initializes the 0th element of the

vector , advector [0]=1

184
185 vector <double > z;//this vector class will store the redshift , as

correlated with the values of advector

186 z.push_back(advector [0]-1);//this initializes the redshift at

zero

187
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188 vector <double > delta;//this vector class stores the value of

linear delta

189
190 vector <double > in_sq; //this vector indexes the characteristic

of the non -linear quadratic

191 in_sq.push_back (0);

192
193 vector <double > logdelta; //this vector indexes the logarithm of

linear delta

194 //vector <double > tcoll;

195 //end of Vector definitions

196
197 // Indices

198 int i=0; //i will index our dynamical array , aka vector

199 int j=1; //j will index the characteristic of the non -linear

quadratic

200 int q=0; //q will index the values of linear delta

201
202 cout << "advector [0]: " << advector [0] << endl;

203 cout << "redshift: " << z[0] << endl;

204
205
206 // Background integration. we are integrating backwards in time ,

but i is indexing positively

207 // which is why if you look a few lines down , t=-i

208 do

209 {

210 adot = evaluate_Adot( advector[i], L );

211 advector.push_back( runge_kutta_a( advector[i], L, -dt ) ); //

run a runge -kutta iteration with a negative timestep

212 z.push_back (( advector [0]/ advector[i]) -1.0f);

213 i+=1;

214 } while (0.1* advector[i] > adot*dt); // just looking for when a

goes below zero 0.01* advector[i] > adot*dt

215
216 i--; // i is now the index of the last advector value greater

than 0

217 int maxindex=i; //this records the i-value of the stopping point

of the previous loop

218
219 cout << "advector[i]: " << advector[i] << endl;

220 cout << "adot: " << adot << endl;

221
222 delta.push_back (4.0* advector[i]); // initialize linear delta

223 ndelta = delta[q]; // initialize non -linear delta

224 ddot = delta[q]*adot/advector[i]; // initial value of delta -dot

225 cout << "ddot: " << ddot << endl;

226 cout << "ndelta initial: " << ndelta << endl;
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227 d = (1+ ndelta) * (1-L) / (advector[i]* advector[i]* advector[i]);

228 D = pow( (double)d, (double) -2/3.0f );

229 k = -D*(((1/9.0f)*(ddot*ddot)/(pow (1+ ndelta ,( double)2.0f)))

-((2/3.0f)*(ddot*adot)/((1+ ndelta)*advector[i]))-

230 (ndelta *(1-L)/( advector[i]* advector[i]* advector[i])));

231 omega = L/((1-L)*pow(advector[i],(double) -3.0f) + L);

232
233 //This vector is explained somewhere else!

234 if( L==0 ){

235 eds.push_back(delta[q]);

236 }

237
238 //We want the indexing of the background to not be confusing , so

we are going to switch variables.

239 t=-maxindex;

240 time = t + maxindex + 1; //this is the time variable that goes

forward in time

241 int timemax = time;

242 double linear [5] = {time ,z[i],advector[i],delta[q],omega}; //We

will store the collapse values in this array.

243
244 cout << "k: " << k << endl;

245
246 //m is an integer that will switch signs when the characteristic

of the non -linear equation switches signs , thus allowing

247 //us to use the appropriate solution for delta -dot

248 m=-1;

249 alpha =-1;

250
251 //this loop will use the values of a that we found before to

find the linear and non -linear deltas from the past until the

present time.

252 for(;i>0;i--) //(initial: already have i; exit when false:

when i=0, stop; decrement by -1)

253 {

254 // filestra << "Iteration t: " << t << "\n";

255 adot = sqrt( (1-L) * pow(advector[i],(double) -1.0f) + L * pow(

advector[i],(double)2.0f) );

256
257 omega = L/((1-L)*pow(advector[i],(double) -3.0f) + L);

258
259 // Determine collapse values

260 if(( alpha == -1) && ( ndelta > 200.0f )) {

261 alpha =1;

262 linear [0]= time;

263 linear [1]=z[i];

264 linear [2]= advector[i];

265 linear [3]= delta[q];
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266 linear [4]= omega;

267 cout << "linear delta at collapse: " << linear [3] << "\n";

268 }

269
270 //if (j%10==0){

271 // filestra << time << " , " << z[i] << " , " << advector[i] <<

" , " << delta[q] << " , " << ndelta << " , "

272 // << omega << "\n";

273 //}

274 //" , " << eds[q] <<

275
276 //We want to store the linear delta values for use later

277 if( L==0 ){

278 eds.push_back(runge_kutta_delta( filestra , delta[q], ddot ,

advector[i], L, dt , & ddot ));

279 delta.push_back( eds[q+1] );

280 } else {

281 // push back the next value of delta , and also , ddot will

get updated too.

282 delta.push_back( runge_kutta_delta( filestra , delta[q], ddot

, advector[i], L, dt , & ddot ) );

283 }

284
285
286
287 // logdelta.push_back(log10(delta[q]));

288
289 // calculate the next value of ndelta

290 ndelta = runge_kutta_ndelta( filestra , ndelta , advector[i], L,

k, m, dt);

291
292 if (j%10==0){

293 filestra << time << " , " << z[i] << " , " << advector[i] << "

, " << delta[q] << " , " << ndelta << " , "

294 << omega << "\n";

295 }

296
297 t += 1;

298 time += 1;

299 j++;

300 q++;

301 }

302
303 //This loop transforms t and a to ratios with collapse values

304 j=1;

305 time=timemax;

306 int gamma;

307
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308 //This is simply for the sake of rescaling the linear -delta ,

ensuring that we can do the following calculation.

309 if(delta.size() -1 > eds.size() -1){

310 gamma=eds.size() -1;

311 } else{

312 gamma=delta.size() -1;

313 }

314
315 for(i=maxindex;i>maxindex -gamma;i--){

316 tcoll=time/linear [0];

317 double zcoll=z[i]/ linear [1];

318 acoll=advector[i]/ linear [2];

319 double delratio =( delta[j]/(1.686* pow(tcoll ,( double)2.0/3.0f)

)) -1;

320 // double delratio =( delta[j]/eds[j]) -1;

321 if (j%10==0){

322 fileturn << tcoll << " , " << acoll << " , " << advector[i

] << " , " << delratio << "\n";

323 }

324 time += 1;

325 j++;

326 }

327
328 fileturn.close();

329 filestra.close();

330 }

331
332 cout << "Program is done ...";

333 cin.get();

334 cin.get();

335
336 return 0;

337 }

A.2 Varying w

1 #include <iostream >

2 #include <cmath >

3 #include <fstream >

4 #include <string >

5 #include <sstream >

6 #include <vector >

7 #include <windows.h>

8
9 using namespace std;
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10
11 static double one_sixth = (1/6.0f);

12
13 // Calculation of Adot when A = a. (and lambda = L)

14 double evaluate_Adot( double a, double L, double w) {

15 return sqrt((1-L)*pow(( double)a,( double) -1.0f)+L*pow(( double)a,(

double) -1.0f-(3.0f*w)));

16 }

17
18 // calculate the 4 k values for runge -kutta on ’a’, return them in

the passed in pointers.

19 void get_runge_kutte_k_vals_for_a ( double a, double L, double dt ,

double w,

20 double* k1 , double *k2, double *k3 , double *k4) {

21 *k1 = evaluate_Adot( a, L, w );

22 *k2 = evaluate_Adot( a + 0.5 * dt * (*k1), L, w );

23 *k3 = evaluate_Adot( a + 0.5 * dt * (*k2), L, w );

24 *k4 = evaluate_Adot( a + dt * (*k3), L, w );

25 }

26
27 // calculate the next value of a in a runge_kutta integration

28 double runge_kutta_a( double a, double L, double dt , double w ) {

29
30 double k1, k2 , k3, k4;

31
32 get_runge_kutte_k_vals_for_a ( a, L, dt, w,

33 &k1 , &k2 , &k3 , &k4);

34
35 return a + one_sixth * dt * ( k1 + 2 * k2 + 2 * k3 + k4 );

36 }

37
38 // calculation of ndeltadot

39 double evaluate_ndeltadubdot(double ndelta , double nddot , double a,

double L, double w) {

40
41 double adot = evaluate_Adot( a, L, w );

42 double A, B, C;

43
44 // Stuff for non -linear equation , n2dot = second order non -linear

delta derivative wrt time

45 A = -2.0f*(adot/a)*nddot;

46 B = (3/2.0f)*(1-L)*(1+ ndelta)*ndelta*pow(a,( double) -3.0f);

47 C = (4/3.0f)*( nddot*nddot)/(1+ ndelta);

48 return A + B + C;

49 }

50
51 // calculate the next value of ndelta using runge -kutta.
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52 // Since ndelta depends on a, and we don’t have an explicit formula

for a,

53 // we have to treat this as an integration of a system of equations

using runge -kutta.

54 // We’ve already integrated a, but we still need the runge -kutta k

values from the ’a’

55 // integration in order to calculate the k values for the ndelta

integration.

56 double runge_kutta_ndelta( double ndelta , double nddot , double a,

double L, double dt, double w, double * nddot_ret) {

57
58 double k1, k2 , k3, k4;

59 double ka1 , ka2 , ka3 , ka4;

60
61 get_runge_kutte_k_vals_for_a ( a, L, dt, w,

62 &ka1 , &ka2 , &ka3 , &ka4);

63
64 k1 = evaluate_ndeltadubdot( ndelta , nddot , a, L, w );

65 k2 = evaluate_ndeltadubdot( ndelta + 0.5 * dt * nddot ,

66 nddot + 0.5 * dt * k1,

67 a + 0.5 * dt * ka1 ,

68 L,

69 w);

70 k3 = evaluate_ndeltadubdot( ndelta + 0.5 * dt * nddot + 0.25 * dt

* dt * k2 ,

71 nddot + 0.5 * dt* k2 ,

72 a + 0.5 * dt * ka2 ,

73 L,

74 w);

75 k4 = evaluate_ndeltadubdot( ndelta + dt * nddot + 0.5 * dt * dt *

k3 ,

76 nddot + dt * k3 ,

77 a + dt * ka3 ,

78 L,

79 w);

80
81 *nddot_ret = nddot + one_sixth * dt * ( k1 + 2 * k2 + 2 * k3 + k4

);

82
83 return ndelta + dt * nddot + one_sixth * dt * dt * ( k1 + k2 + k3

);

84 }

85
86 // calculate the second derivative of delta.

87 double evaluate_deltadubdot( double delta , double ddot , double a,

double L, double w ) {

88
89 // Stuff for linear equation: second order deriv of lin delta
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90 double adot = evaluate_Adot( a, L, w );

91 return ((3/2.0f)*(1-L)*delta /(a*a*a)) - (2* adot*ddot/a);

92 }

93
94 // returns the next value of delta from runge_kutta integration.

The integrated value of ddot is returned by pointer

95 // in the last parameter.

96 // Here we are integrating a system of 2 equations (delta and ddot),

but again ’a’ is not a known function ,

97 // so we have to treat this as a runge -kutta integration of a system

of 3 equations , but again we don’t need

98 // to explicitly do the integration of ’a’ since we’ve already done

so.

99 double runge_kutta_delta( double delta , double ddot , double a,

double L, double dt, double w, double * ddot_ret ) {

100
101 double k1, k2 , k3, k4;

102 double ka1 , ka2 , ka3 , ka4;

103
104 get_runge_kutte_k_vals_for_a ( a, L, dt, w,

105 &ka1 , &ka2 , &ka3 , &ka4);

106
107 k1 = evaluate_deltadubdot( delta , ddot , a, L, w );

108 k2 = evaluate_deltadubdot( delta + 0.5 * dt * ddot ,

109 ddot + 0.5 * dt * k1 ,

110 a + 0.5 * dt * ka1 ,

111 L,

112 w);

113 k3 = evaluate_deltadubdot( delta + 0.5 * dt * ddot + 0.25 * dt *

dt * k2,

114 ddot + 0.5 * dt* k2 ,

115 a + 0.5 * dt * ka2 ,

116 L,

117 w);

118 k4 = evaluate_deltadubdot( delta + dt * ddot + 0.5 * dt * dt * k3 ,

119 ddot + dt * k3 ,

120 a + dt * ka3 ,

121 L,

122 w);

123
124 *ddot_ret = ddot + one_sixth * dt * ( k1 + 2 * k2 + 2 * k3 + k4 )

;

125
126 return delta + dt * ddot + one_sixth * dt * dt * ( k1 + k2 + k3 );

127 }

128
129 int main()

130 {
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131 double w, omega;// omega is dark energy fraction as function of a

132 int m,alpha;

133 double adot , ddot , ndelta , nddot , dubdot , n2dot;

134 double A, B, C;

135 int t,time;

136 double dt =0.000001f,acoll ,tcoll; //time step

137 double L; //this is the value of dark energy today

138 const double Pi = 3.14159265358979323846;

139
140 CreateDirectory ("data" ,0); //the 0 is a security_attributes value

141
142 double win =-0.3;

143 double wstep =-.1;

144 double wout =-1.0;

145
146 L=0.7;

147
148 vector <double > eds;//this stores the cosmological constant case

149
150 for(w=win; w>=wout; w+= wstep)//w = w + wstep

151 {

152
153 ostringstream streama;

154 streama << "data\\" << w << ".w.txt";

155
156 fstream filestra;

157 filestra.open (streama.str().c_str(), fstream ::out);

158
159 ostringstream streamturn;

160 streamturn << "data\\" << w << ".w.turn.txt";

161
162 fstream fileturn;

163 fileturn.open (streamturn.str().c_str(), fstream ::out);

164
165 // Vector Definitions

166 vector <double > advector;//this vector class stores the

background scale factor

167 advector.push_back (1); //this initializes the 0th element of the

vector , advector [0]=1

168
169 vector <double > z;//this vector class will store the redshift , as

correlated with the values of advector

170 z.push_back(advector [0]-1);//this initializes the redshift at

zero

171
172 vector <double > delta;//this vector class stores the value of

linear delta

173
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174 // Indices

175 int i=0; //i will index our dynamical array , aka vector

176 int j=1; //j will index the characteristic of the non -linear

quadratic

177 int q=0; //q will index the values of linear delta

178
179 cout << "advector [0]: " << advector [0] << endl;

180 cout << "redshift: " << z[0] << endl;

181
182 // Background integration. we are integrating backwards in time ,

but i is indexing positively

183 // which is why if you look a few lines down , t=-i

184 do

185 {

186 adot = evaluate_Adot( advector[i], L, w );

187 advector.push_back( runge_kutta_a( advector[i], L, -dt , w ) );

// run a runge -kutta iteration with a negative timestep

188 z.push_back (( advector [0]/ advector[i]) -1.0f);

189 i+=1;

190 } while (0.1* advector[i] > adot*dt); // just looking for when a

goes below zero 0.01* advector[i] > adot*dt

191
192 i--; // i is now the index of the last advector value greater

than 0

193 int maxindex=i; //this records the i-value of the stopping point

of the previous loop

194
195 cout << "advector[i]: " << advector[i] << endl;

196 cout << "adot: " << adot << endl;

197 cout << "w: " << w << endl;

198
199 // Initialize deltas , w’s

200 delta.push_back (4.0* advector[i]);

201 ndelta = delta[q];

202 ddot = delta[q]*adot/advector[i];

203 nddot = ddot;

204 omega = L/((1-L)*pow(advector[i],(double) -3.0f) + L*pow(advector

[i],(double) -3.0f*(1+w)));

205
206 cout << "ddot: " << ddot << endl;

207 cout << "delta initial: " << delta[q] << endl;

208 cout << "ndelta initial: " << ndelta << endl;

209
210 //We want the indexing of the background to not be confusing , so

we are going to switch variables.

211 t=-maxindex;

212 time = t + maxindex + 1; //this is the time variable that goes

forward in time
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213 int timemax = time;

214 double linear [5] = {time ,z[i],advector[i],delta[q],omega}; //We

will store the collapse values in this array.

215
216 if( w==-0.3 ){

217 eds.push_back(delta[q]);

218 }

219
220 //m is an integer that will switch signs when the characteristic

of the non -linear equation switches signs , thus allowing

221 //us to use the appropriate solution for delta -dot

222 m=-1;

223 alpha =-1;

224
225 //this loop will use the values of a that we found before to

find the linear and non -linear deltas from the past until the

present time.

226 for(;i>0;i--) //(initial: already have i; exit when false:

when i=0, stop; decrement by -1)

227 {

228 // filestra << "Iteration t: " << t << "\n";

229 adot = sqrt((1-L)*pow(( double)advector[i],(double) -1.0f)+L*pow

(( double)advector[i],(double) -1.0f-(3.0f*w)));

230
231 omega = L/((1-L)*pow(advector[i],(double) -3.0f) + L*pow(

advector[i],(double) -3.0f*(1+w)));

232
233 // Determine collapse values

234 if(( alpha == -1) && ( ndelta > 200.0f )) {

235 alpha =1;

236 linear [0]= time;

237 //cout << "collapse time: " << linear [0] << "\n";

238 linear [1]=z[i];

239 linear [2]= advector[i];

240 //cout << "collapse a: " << linear [2] << "\n";

241 linear [3]= delta[q];

242 cout << "linear delta at collapse: " << linear [3] << "\n";

243 linear [4]= omega;

244 }

245
246
247 if (j%10==0){

248 filestra << time << " , " << z[i] << " , " << advector[i] << "

, " << delta[q] << " , " << ndelta << " , "

249 << omega << "\n";

250 }

251 //" , " << eds[q] <<

252
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253 //get new values of linear and non -linear delta

254
255 //We want to store the linear delta values for use later

256 if( w==-0.3 ){

257 eds.push_back(runge_kutta_delta( delta[q], ddot , advector[i

], L, dt , w, &ddot ));

258 delta.push_back( eds[q+1] );

259 } else {

260 // push back the next value of delta , and also , ddot will

get updated too.

261 delta.push_back( runge_kutta_delta( delta[q], ddot , advector

[i], L, dt , w, &ddot ) );

262 }

263
264 ndelta = runge_kutta_ndelta( ndelta , nddot , advector[i], L, dt

, w, &nddot );

265
266 t += 1;

267 time += 1;

268 j++;

269 q++;

270 }

271
272 //This loop transforms t and a to ratios with collapse values

273 j=1;

274 time=timemax;

275
276 int gamma;

277
278 //This is simply for the sake of rescaling the linear -delta ,

ensuring that we can do the following calculation.

279 if(delta.size() -1 > eds.size() -1){

280 gamma=eds.size() -1;

281 } else{

282 gamma=delta.size() -1;

283 }

284
285 for(i=maxindex;i>maxindex -gamma;i--){

286 //for(i=maxindex;i>0;i--){

287 tcoll=time/linear [0];

288 // double zcoll=z[i]/ linear [1];

289 acoll=advector[i]/ linear [2];

290 double delratio =( delta[j]/(1.676* pow(tcoll ,( double)2.0/3.0f)

)) -1;

291 if (j%10==0){

292 fileturn << tcoll << " , " << acoll << " , " << advector[i

] << " , " << delratio << "\n";

293 }
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294 time += 1;

295 j++;

296 }

297 fileturn.close();

298 filestra.close();

299 }

300 cout << "Program is done ...";

301 cin.get();

302 cin.get();

303
304 return 0;

305 }

A.3 Interpolation and Variance Computations

This is a simple script for Matlab that calculates the variances discussed in Chapter 6.

1 %yi = interp1(x,Y,xi)

2 filename = ’0.turn.txt’;

3 handle = fopen( filename );

4 A00 = fscanf( handle , ’%g , %g , %g , %g’, [4, inf] );

5 fclose( handle );

6
7 filename = ’0.1. turn.txt’;

8 handle = fopen( filename );

9 A11 = fscanf( handle , ’%g , %g , %g , %g’, [4, inf] );

10 fclose( handle );

11
12 filename = ’0.2. turn.txt’;

13 handle = fopen( filename );

14 A22 = fscanf( handle , ’%g , %g , %g , %g’, [4, inf] );

15 fclose( handle );

16
17 filename = ’0.3. turn.txt’;

18 handle = fopen( filename );

19 A33 = fscanf( handle , ’%g , %g , %g , %g’, [4, inf] );

20 fclose( handle );

21
22 filename = ’0.4. turn.txt’;

23 handle = fopen( filename );

24 A44 = fscanf( handle , ’%g , %g , %g , %g’, [4, inf] );

25 fclose( handle );

26
27 filename = ’0.5. turn.txt’;

28 handle = fopen( filename );

29 A55 = fscanf( handle , ’%g , %g , %g , %g’, [4, inf] );
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30 fclose( handle );

31
32 filename = ’0.6. turn.txt’;

33 handle = fopen( filename );

34 A66 = fscanf( handle , ’%g , %g , %g , %g’, [4, inf] );

35 fclose( handle );

36
37 filename = ’0.7. turn.txt’;

38 handle = fopen( filename );

39 A77 = fscanf( handle , ’%g , %g , %g , %g’, [4, inf] );

40 fclose( handle );

41
42 %legend for indices: 1st one is the file home of the delratio , the 2

nd is

43 %the file home of the time or scale factor.

44 ratio10 = interp1(A11(1, :), A11(4,:), A00(1,:));

45 ratio20 = interp1(A22(1, :), A22(4,:), A00(1,:));

46 ratio30 = interp1(A33(1, :), A33(4,:), A00(1,:));

47 ratio40 = interp1(A44(1, :), A44(4,:), A00(1,:));

48 ratio50 = interp1(A55(1, :), A55(4,:), A00(1,:));

49 ratio60 = interp1(A66(1, :), A66(4,:), A00(1,:));

50 ratio70 = interp1(A77(1, :), A77(4,:), A00(1,:));

51
52
53 %plot(A00(1,:),A00(4,:), ’k’);

54 plot(A00(1,:),ratio10);

55 hold on;

56 plot(A00(1,:),A00(4,:));

57 plot(A00(1,:),ratio20);

58 plot(A00(1,:),ratio30);

59 plot(A00(1,:),ratio40);

60 plot(A00(1,:),ratio50);

61 plot(A00(1,:),ratio60);

62 plot(A00(1,:),ratio70);

63 hold off;

64
65 xlabel(’t/t_{collapse , \Lambda =0}’);

66 ylabel(’(\ delta_{NL}/\ delta_{NL , \Lambda =0}) -1’);

67
68 %int1 = gcf;

69 %exportfig(int1 , ’interpolations .eps ’, ’format ’, ’eps ’, ’Width ’, 7,

’Height ’, 3.5, ’Color ’,’cmyk ’, ’FontMode ’, ’Fixed ’, ’FontSize ’,

12, ’LineMode ’, ’Fixed ’, ’LineWidth ’, 1.2);

70
71 %this just copies the data into a new array

72 variancearray = ratio10;

73
74 %this says m a k e a second row and put interp1 in it. There would be
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trouble if interp1 was a different size than interp0.

75 variancearray (2,: ) = ratio20;

76 variancearray (3,: ) = ratio30;

77 variancearray (4,: ) = ratio40;

78 variancearray (5,: ) = ratio50;

79 variancearray (6,: ) = ratio60;

80 variancearray (7,: ) = ratio70;

81 variancearray (8,: ) = A00(4,:);

82
83 variances = var( variancearray , 0, 1);

84
85 %that will give you a 1-d array of the variances at each of your

time points.

86 %If you want the minimum value:

87 minvariance = min( variances )

88 maxvariance = max( variances )

89
90 %if you want the position(s) where this minimum occurs:

91 timeofnearness = find ( variances == min(variances) )

92
93 meanval = mean ( variancearray );

94 meanvalatimeofnearness = meanval( timeofnearness )
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