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Abstract

Coherent states in the harmonic oscillator have long been thought of as a bridge
from quantum mechanics to classical mechanics. Many of their important properties
(most notably those involving time evolution) are only valid in the harmonic oscil-
lator and are at best approximations elsewhere. This thesis is an investigation into
several means of generalizing coherent states for other systems and examines the
resultant states for some systems. One system of interest is the harmonic oscillator
with centripetal barrier for which coherent states of several disparate definitions co-
incide. Also studied is the spherical rotator. a system which is particularly amenable
to defining annihilation operator coherent states. A third system under investiga-
tion is the hydrogen atom. This system serves as an arena for the development
of an extension to a generalization due to Klauder [J. Phys. A, 29(12):L293-1298.
1996]. Klauder's construction is only applicable to systems without energy degen-
eracies and must be extended for application where degeneracies are present. The
author provides a means for this extension and applies the complete construction to
the hydrogen atom problem. As a demonstration of how this construction may be
adapted, the author constructs Rydberg wave packets which are initially localized

and exhibit full and fractional revivals in the long time evolution.
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Chapter 1

Introduction

1.1 Context

he content of this thesis rests within the larger context of quantum classical
R4 N

’@ correspondence. For the present purposes, quantum classical correspon-

dence is concerned with how classical mechanics arises from quantum mechanics
when moving continuously from the quantum to the classical regime. The vari-
ous aspects of this thesis are concerned with this relationship, using generalized
coherent states as a means of elucidating the connection.

Quantum mechanics first appeared as a physical theory in early part of the last
century. For some time, physicists had been aware that the physical theories of
the time failed to predict certain experimental results. Two prominent examples
were blackbody radiation and the spectrum of light radiated from atoms. The most
successful early theories to describe these phenomena involved assuming, by Planck

in the case of blackbody radiation, that certain oscillators of frequency v only take
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on energies of values nhv with h some universal constant in units of action (energy
times time) now known as Planck’s constant, and by Bohr in the case of radiated
light, that electrons take on values of angular momentum equal to nh/2x. These
two theories are united by assuming that the action of periodic orbits (i.e. the
area enclosed by orbits in phase space) may only take on integer multiples of h,
rather than values in the continuum as supposed by classical theory. In terms of
modern quantum theory, this remains the basis of Bohr-Sommerfeld quantization.
a semi-classical means of approximating energy levels.

By 1930. much of the skeleton of modern quantum theory had been established.
though the theory continues to be fleshed out through the development of tech-
niques and extensions. The spine of this skeleton is that given a particular system.
experimentally amenable “observables” may be represented by linear, Hermitian
operators on a Hilbert space, and a measurement of such an observable may re-
sult only with an eigenvalue of the operator. From this comes a Hamiltonian. an
operator corresponding to a measurement of energy, whose eigenvalue spectrum in
many cases is discrete, leading to the quantized energies and angular momenta of
the previous paragraph.

As it turns out. Planck’s constant is very small in terms of human experience
(h ~ 6.626 x 1073 Js, whereas the action of a grandfather clock pendulum is about
0.1 Js.). Accordingly, at the energy levels of our usual experience, the effects of
quantization are seldom noticeable. It is only when the parameters of the system
are on the order of h that quantization becomes important.

This notion of scale introduces an important question. Given a system, should
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the architecture of classical mechanics or quantum mechanics be used? A simple-
minded answer comes quickly and is alluded to above. If the parameters of the
system are on the order of A, then use quantum mechanics: otherwise use classical
mechanics. This is far from a perfect solution, and particularly in the case of sep-
arable systems in which the parameters in one separated set of variables are large
and in another, small. Further, there is experimentally no corresponding “cutoff
point.” In the laboratory, the effects of quantization. which are large for experi-
ments on a small scale. gradually disappear as the scale is increased. We demand
the same of the theory.

In fact, this demand is an underlying principle of quantum mechanics introduced
by Bohr in 1918 [64] and subsequently dogmatized: In some limit. depending on the
system in question, the familiar classical laws emerge in some way from quantum.
even though the treatment remains fully quantum. This is the so-called correspon-
dence principle.

As an example, consider the double slit experiment. In this experiment. a beam
of electrons at a certain energy is fired at a barrier in which there are two fine slits
very close together. On a screen on the far side of the barrier. an interference pattern
emerges with the passage of many electrons where one would classically expect a
smooth distribution. As it turns out, the spacing between the slits determines
how strongly the quantum behaviour is expressed. If this spacing is on the order
of the wave length of the electrons (which is determined by Planck’s constant),
then quantum interference patterns will dominate the pattern on the screen. If

this spacing is much larger, then the interference becomes too fine to resolve, and a
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classical distribution emerges. Hence, quantum mechanical effects are not restricted
to energy, action, or angular momentum quantization. In fact, this experiment
involves a fixed energy within the continuum spectrum of the Hamiltonian. Also.
the parameter of interest is not always an action variable.

Few general comments may be made about quantum classical correspondence.
Depending on the system involved, the nature of the measurements involved, or the
fundamental conception of what quantum classical correspondence means, different
conclusions may be drawn. Thus, it is of foremost importance to be initially clear
of what quantum classical correspondence means, and then be clear of how that
relates to the system and how the system is manipulated. Not surprisingly. this is

strongly entangled in the deeper question of quantum mechanical interpretation.

1.2 The Interpretation of Quantum Mechanics

A physical theory consists of elements and rules. These rules may be roughly
divided into two categories: rules for combining elements of the theory and rules for
relating elements of the theory to experiment. With respect to quantum mechanics.
an example of the former is that the wave function |1) evolves according to the time
dependent Schrodinger equation. An example of the latter is that a measurement
of an observable z corresponding to the operator Z results in an eigenvalue of Z.
Different authors categorize some rules differently. However, the mathematical
formalism belongs to the former, and the interpretation of the theory, which in tke
case of quantum mechanics is mostly concerned with the physical meaning of the

wave function, belongs unambiguously in the latter.
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Many books have been written about the interpretation of quantum mechanics.
This is a controversial issue which in some circles takes on a flavour more of religion
than of philosophy or physics. The present work is not intended to be a detailed
presentation and comparison of many different interpretations, though some obser-
vations and ramifications will be discussed. Primarily, this section is intended to
outline the interpretation within which the content of this thesis is set.

The underlying motivation for the interpretation used in this thesis is to be sure
that conclusions are not overstated, to err on the side of caution. Thus. in some
cases. a reader may wish to extend the present claims, to form conclusions which
are beyond those herein contained, but the author will not do so since these issues
remain open to debate.

The extreme view in this approach is that physical theories do not explain why
systems behave the way they do: they only provide a means of predicting that
behaviour. As an illustration. consider the classical principle of least action: A
baseball traveling from point A at time ¢, to point B at time ¢, does not explore all
paths or even just the neighbourhood of its actual path to ensure it is a path of least
action. The action is only a tool introduced by theorists to permit a prediction of
the path. To say otherwise is to suggest that while the ball is in flight, it explores all
phase space but is only observed where the action is minimized. It is preposterous
to suggest that baseballs explore all space while in flight, so we remove this aspect
of the theory with Occam’s razor and are left with the action as a tool for making
predictions.

The early history of quantum mechanics does not depart from this approach
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significantly. In Planck’s description of blackbody radiation and Bohr’s description
of the atom, certain quantization assumptions lead to correct predictions of black
body and hydrogen spectra respectively. It was not until Schrédinger published
his wave equation that some physicists began to attach a greater meaning to their
physical theories. This occurred with Born's exposition on the interpretation of
quantum mechanics which developed into the Copenhagen Interpretation through
the work of Bohr and Heisenberg.

There are two chief aspects to the Copenhagen Interpretation. First, the wave
function is a complete, exhaustive description of an individual particle or system.
Second, the wave function undergoes a discontinuous. unpredictable change at the
instant of measurement from some initial state to an eigenstate of the operator cor-
responding to the property being measured. Different authors flavour these aspects
differently. For example, some hold that the wave function physically represents
the particle, so that the requisite spread due to uncertainty relations results in a
particle physically spread out accordingly. Others say that the wave function is a
representation of the knowledge of the experimentalist regarding the position (etc.)
of the particle. However, even with these differences, all interpretations involving
these two ideas will be, for the present purposes, considered as possible realizations
of the Copenhagen Interpretation.

Now consider a few consequences of these ideas, some of the “paradoxes” of
quantum mechanics. As part of the mathematical formalism, the sum of any
two possible states for the system is also a possible state for the system (since

Schrodinger’s equation is linear). This is the so-called superposition principle, and
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leads to the Schrodinger's cat paradox. This thought-experiment was introduced
by Schrodinger to demonstrate how quantum superpositions may be amplified to
yield counterintuitive superpositions of macroscopic states. A cat is put in a box
with a vial of cyanide. Incorporated in the vial is a small radioactive substance,
a Geiger counter, and a hammer. If the radioactive substance decays and triggers
the Geiger counter, the hammer breaks the vial releasing the cyanide, killing the
cat. After a certain interval at which there is an even chance that the substance
has decayed, the wave function of the substance is in a superposition of decayed
and not decayed. so that the cat’s wave function is in a superposition of dead and
not dead.

According to the Copenhagen Interpretation, prior to opening the door. the
superposed state is an accurate and complete description of the state of the cat.
so the cat is simultaneously dead and alive. The act of opening the door and
“measuring the cat” collapses the wave function of the cat onto one of the familiar
classical states of alive or dead. Though this example is often used by subscribers
to the Copenhagen Interpretation as a means of demonstrating quantum weird-
ness, Schrodinger’s original purpose was as an argument against the Copenhagen
Interpretation.

Another important thought experiment was introduced by Einstein, Podolsky
and Rosen [26] (EPR), and improved upon by Bohm in his textbook [18] who used
spins rather than position and momenta. The experiment, briefly, is as follows.
An initial, unstable state is prepared with a total spin and linear momentum of

zero. The state decays and two particles emerge, traveling in opposite directions.
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The particle which moves to the right (say) passes through an apparatus (a Stern-
Gerlach machine) oriented in the z direction, performing a measurement of the spin
in this direction without disturbing the particle moving to the left due to spatial
separation. From the conservation of angular momentum, if spin up is detected
on the right, the particle which went to the left is in a spin down state, and vice
versa, with a perfect correlation. The z spin of the particle to the left is thus what
Einstein et ai. term an element of reality since it may be predicted with certainty.

Without changing how the initial state is prepared, the Stern-Gerlach machine
may be reoriented to measure spin in the y direction, allowing one to predict with
certainty the spin of the particle moving to the left if measured in the y direction:
The y spin of the particle to the left is also an element of reality. However, both the
z spin and y spin cannot be elements of reality since their corresponding operators
do not commute. unless the measurement on the right affects the particle on the left.
Thus, demanding the completeness of the wave-function introduces dependencies
between spatially separated objects, what Einstein referred to as “spooky action at
a distance.” Admitting the incompleteness of quantum mechanics removes action
at a distance.

To say that quantum mechanics is incomplete suggests that one has something
in mind intended to “complete” the theory. This is not precisely the case. The
most obvious means of completing quantum mechanics is through hidden variable
theories. A hidden variable theory would say, for example, that an individual par-
ticle in an EPR experiment has an actual well defined spin prior to measurement.

There have been several impossibility theorems intended to rule out different vari-
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eties of hidden variable theories. The first was von Neumann's which turned out to
be flawed in that one of the fundamental hypotheses was overstated (81]. A later
theorem by Bell (involving “Bell's inequalities™) ruled out local hidden variables. A
theory which survives both of these theorems, due to Bohm [19, 20], is a non-local
hidden variable theory, an extension of standard quantum theory. Certain features
and implications of this theory are problematic (discussed later) leading the author
to reject Bohm'’s theory, leaving him in the embarrassing situation of asserting the
incompleteness of quantum mechanics without a suggestion on how to complete it.

An interpretation which permits this approach to quantum mechanics is the
Statistical Interpretation. held by Einstein and formalized by Ballentine [6]. The
distinguishing feature of this interpretation is that the wave function represents
a conceptually infinite ensemble of similarly prepared systems. As an example of
this identification, if the system in question is an electron bound to a proton, then
the ensemble is the set of all such electrons that have been subjected to the same
experimental procedures: heated, trapped, illuminated by laser light, and so forth.
That is, the ensemble is a reflection of the preparation procedure. Just as with any
collection, the properties of the collection as a whole may not be identified with
the properties of an individual member of the collection or vice versa: The wave
function need not provide a complete description of the individual system.

This relaxation does away with many of the paradoxes thought to be inherent
in quantum mechanics. For an example, consider again the double slit experiment.
A single electron coming through the apparatus and appearing on the screen at

the far side represents an element of the ensemble, where the ensemble represents
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all possible scenarios of electrons passing through the apparatus. In the Statistical
Interpretation, the wave function has very little to say of the single event. In-
stead, after many electrons are sent through and the interference pattern becomes
apparent, the statistical frequencies begin to approximate the probabilities as cal-
culated from the wave function. So, according to this interpretation, one says. after
many electrons have passed through the apparatus, “About half the electrons went
through slit A and half went though slit B.” After all, any wave like property of
massive matter can only be seen by observing a large number of events.

The Statistical Interpretation is indeed a relaxation from the Copenhagen In-
terpretation. in the sense that the wave function may well represent an individual
system. The author is prepared to entertain that possibility, though not prepared
to admit its necessity. Also, this interpretation, though certainly not a hidden vari-
able theory itself. admits the possibility of such theories such as that of Bohm not

ruled out by Bell's inequalities.

1.3 Quantum Classical Correspondence

The Statistical Interpretation also illuminates the quantum classical correspondence
principle. This principle states that, according to Bohm [18] “the laws of quantum
physics must be so chosen that in the classical limit, where many quanta are in-
volved, the quantum laws lead to the classical equations as an average.” According
to the Statistical Interpretation, the classical limit of the quantum wave packet is
an ensemble of classical trajectories [7]. Take the harmonic oscillator for exam-

ple, and the specific case of energy eigenstates in position space. In the limit of
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quantum numbers, the probability distribution associated with these states become
the time average of a single classical trajectory [50], i.e. the distribution which de-
scribes the probability of finding the particle at a given position at a random time.
This classical distribution is equivalent to an ensemble of classical trajectories each
at the given energy, distributed evenly in phase space, so that this limit may be
equally well described by an appropriately chosen ensemble of classical trajectories.
Going back to the strict positivist approach, the purpose of the theory is to
make predictions, even if those predictions are only of a statistical nature. The
wave function is a reflection of the preparation of the system. and by evolving
that wave function over a one second interval. one only obtains the probabilities
associated with possible outcomes of a measurement one second later, and nothing
else. That is, the calculations do not indicate what happened between preparation
and measurement. only the result of the measurement. One must ask. therefore.
what is the meaning of evolving a wave function continuously over an interval?
Keeping within the strict positivist sense, given a preparation. the evolved wave
function yields the probabilities associated with possible outcomes if a measurement
were to be made. The measurement in this sense is conceptual, since the effect of the
measurement on the system is not addressed. That is, a continuum of measurements
may be considered without addressing the problem of successive measurements.
An actual measurement would disturb the system somehow, whether or not one
accepts the idea that a measurement collapses the wave function into an eigenstate
of the operator associated with the measurement. To relate the system with actual

measurements to the system with conceptual measurements, therefore, the exper-
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imental procedure becomes a repetitive process. The system is prepared in some
prescribed manner and allowed to evolve for a certain duration until a measure-
ment is made. Once the measurement is made the system continues to evolve, but
without considering successive measurements, subsequent evolution is not relevant.
Starting again, the preparation process begins and the newly prepared system is
allowed to evolve for a slightly longer duration until a measurement is made. The
system is repeatedly prepared and allowed to evolve for successively longer dura-
tions. Collectively, the results of these experiments give a sense of how the system
evolves without the perturbing effects of measurement. In fact, this is a rough de-
scription of how actual experiments in the laboratory are carried out, such as the
observation of wave function collapses and revivals [88].

Now, with regard to the Copenhagen Interpretation, consider the distinguishing
feature, that the wave function is an exhaustive description of a single system.
in connection with the correspondence principle, that the familiar classical laws
emerge from the quantum equations in the so-called classical limit. What this
suggests is that given an initial quantum state involving large quantum numbers
(what Ballentine terms Ehrenfest’s regime (7]), successive conceptual measurements
in the above sense should yield the classical evolution of a single particle. It is clear
that this is not the case: In the specific case of an eigenstate with large quantum
number, this is a stationary state with stationary probabilities in time, whereas
classical trajectories of large energy (or action) tend to move about somewhat.
With more general initial states, the identification of the evolution of the state

with the evolution of a single classical system is also seldom valid. The only states
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which satisfy this requirement are the harmonic oscillator coherent states and states
like them which satisfy minimum uncertainty in position and momentum jointly.
Therefore. imposing in this context the quantum classical correspondence principle
seems to select for coherent states in the large quantum number regime, even though
there is no physical mechanism presupposed to make such a selection. Nor is such
a selection necessarily unique.

This is the point at which it becomes necessary to relax the interpretation, to
invoke Occam'’s razor and no longer demand that the wave function be a complete
description of a single system, leading to the Statistical Interpretation of quantum
mechanics [6]. In this interpretation the wave function represents a statistical de-
scription of the conceptually infinite set of similarly prepared systems. Then, when
moving into the large quantum number regime, one deduces from this interpreta-
tion of the wave function that the classical limit of the wave function is an ensemble
of classical trajectories. Thus, the quantum classical correspondence is not envi-
sioned by identifying the Schrodinger equation with the Hamilton-Jacobi equation
in the classical limit. but rather with the Liouville equation which describes the
time evolution of distributions on classical phase space.

This identification has met with a great deal of success. First proposed by
Wigner (82], the connection between phase space distributions evolved through the
Liouville equation and the time evolution of the Wigner function lies at the heart
of quantum-classical correspondence as seen through the Weyl-Wigner-Moyal for-
mulation of quantum mechanics [52]. More recent proponents include Ballentine (7]

and Fox and Elston [30] both of whom study the chaotic kicked pendulum. In both
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studies, excellent agreement between classical and quantum evolution is observed
when a classical distribution is compared to the quantum wave function. This agree-
ment includes an initial phase of exponential growth of Az at a rate corresponding
to the relevant Liapunov exponent. In a more pedestrian example, in the harmonic
oscillator (that is, for polynomial potentials of order less than three), quantum evo-
lution may be described exactly by classical evolution in the Weyl-Wigner-Moyal
formulation of quantum mechanics: Few researchers bother with this system in
this formulation since the behaviour is essentially classical. (See also the discussion
involving Ehrenfest’s equations in Section 2.1.)

Each interpretation of quantum mechanics has its own version of the quan-
tum classical correspondence principle. A third version, quite distinct from the
above versions, is associated with Bohmian mechanics. This hidden variable the-
ory, published by Bohm in the early 1950's, is not subject to such “impossibility
theorems” due to von Neumann or Bell since it is a non-local theory: Action at
a distance remains. In Bohm'’s theory. one writes the wave function as an am-
plitude function multiplied by a phase function. Substituting this into the time
dependent Schrodinger equation and separating real and imaginary parts yields
two equations: one which is a conservation equation for wave function normaliza-
tion, and the other which takes on the form of the Hamilton-Jacobi equation. The
phase function becomes Hamilton’s principal function in a potential consisting of
the original potential plus the so-called quantum potential which is proportional
to A*. Bohmian particles then describe Bohmian trajectories which are classically

evolved in this combined potential, classical plus quantum.
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The Bohmian version of quantum classical correspondence is envisioned as some
limit in which % becomes insignificant as compared to some characteristic action of
the system. This limit is not particularly controversial since it is often invoked in
many different systems. The difficulty comes with the assertion that the quantum
potential therefore disappears in the classical limit and the evolution becomes sim-
ply classical evolution in the classical potential. As an example of this. consider
the classical limit of the harmonic oscillator coherent states. This is certainly the
oldest and arguably the best understood example of a classical limit. After all. the
harmonic oscillator is not particularly quantum to begin with. In this case. the
quadratic parts of the quantum and classical potentials cancel one another out, re-
sulting in a linear total potential whose slope which oscillates in time in such a way
that the total potential is a tangent line to the classical potential at the position of
the peak of the coherent state. This is as true for states with low quantum numbers
as in the classical limit. The quantum potential does not disappear in the classical
limit even in the best understood case.

To compare quantum and classical time evolution according to the Statistical
Interpretation, one identifies with the quantum wave function a distribution of
classical trajectories in the classical limit. This is the principal thrust of Ballen-
tine et al. {7} who observe that it is possible to construct a classical ensemble in
comparison with a quantum wave function such that the difference between quan-
tum evolution through the time dependent Schrédinger equation and classical time
evolution through the Liouville equation is only seen in third and higher order cor-

rections to Ehrenfest’s equations. Most textbooks assume the difference to lie in
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the second order term. This order of discrepancy may be attributed to the fact
that the centroid of a classical distribution does not necessarily follow a classical

trajectory.

1.4 The Use of Coherent States in Quantum Clas-
sical Correspondence

We now bring our attention to bear upon the question of how coherent states enter
into the situation if we reject the assertion that a single classical trajectory neces-
sarily emerges in the classical limit. Indeed. the useful classical limits of coherent
states render the state a single classical trajectory in the classical limit (that is.
d-function distributions in position and momentum) so that expressing particular
interest in the classical limit of coherent states may even be considered contradic-
tory to the notion that ensembles emerge in general. However, we shall see that
with additional properties attributed to the coherent states, classical distributions
arise from the classical limits of arbitrary coherent states.

The specific mathematical tools necessary are that the states be complete and
that in the appropriate classical limit, the overlap between distinct coherent states
goes to zero, or more strongly, that the individual coherent states describe individ-
ual classical trajectories. With completeness, arbitrary states may be described as
a superposition of coherent states. This is what leads to the Husimi distribution, a
quantum mechanical phase space distribution function. In the classical limit, where

the individual states take on the behaviour of individual classical trajectories, the
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collection of states contributing to the arbitrary state form the members of the
ensemble of classical trajectories, the classical limit of the arbitrary wave function.

This use of coherent states in connecting classical mechanics to quantum me-
chanics is by no means new. This was envisioned by Husimi [43] when the concept of
the completeness of coherent states was still new. This was also used by Yaffe [84]
in his discussion of quantum classical correspondence. (Yaffe's demonstration of
how the Poisson brackets arise from the commutator in a £ — 0 limit remains the
clearest. and relies upon the completeness of coherent states.) Fox and Elston [29]
promote this use of coherent states in a study of the kicked top. More recently,
Fox [28] makes similar statements in terms of his Gaussian coherent states discussed

in Chapter 5.



Chapter 2

(Generalizations of Coherent

States

2.1 The Harmonic Oscillator

NEE he harmonic oscillator has many special and unique properties, which are

Y

&) responsible for why coherent states were first discussed for this system [70],
and why it remains perhaps the most important simple model in physics. When-
ever any smooth potential well is encountered, the simplest approximation is the
harmonic oscillator with corrections handled through perturbation theory. Accord-
ingly, one finds the harmonic oscillator in descriptions of both clock pendula and
in the study of vibrational modes of diatomic molecules.

This model is particularly alluring due to the simple physics it exhibits. Classical
periods are independent of amplitude, and distributions in classical phase space

evolve in time by clockwise rotation. The quantum energy eigenlevels are equally

18
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spaced (a property which, though rare, is not unique to the harmonic oscillator),
which guarantees time-periodic behaviour of wave functions. In quantum optics,
the harmonic oscillator arises in descriptions of the electromagnetic field. This role
has little to do with the shape of the potential, but rests in the algebraic properties
of the quantum system.

The harmonic oscillator is also one of the most dangerous models known fo
physics. The danger is in assuming that the many simple features it possesses are
found elsewhere, and that when searching for simple behaviour (i.e. coherent states)
the temptation is to search for the harmonic oscillator.

The harmonic oscillator Hamiltonian is given by

=2
P
m

H="—+ -muw?s*, (2.1)

o
(SN

where p and z are the momentum and position vectors respectively. In position

space, the time independent Schrodinger equation is!

( Ly +5mw’a‘=’) (zlp) = Blzlp). (2:2)

" 2mdz? " 2

and the equation in momentum space is given by

1 g, d p’ _
(~gmet s + ) (61%) = o). 23)

!Regarding notation: Throughout this thesis, Dirac’s bracket notation [76] is used with |¢)
denoting a vector in the Hilbert space, (| denoting its dual, and their inner product denoted by
(¥|¢). Operators are “hatted” (£) and c-numbers are plain (z).
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making it completely symmetric in position and momentum. Any behaviour ob-
served in position space will also be manifested in momentum space. For example,

the eigenstates [n) in position space are given by

/ \ 1/4

(z|n) = (E{;?T')z) H, (\/——nﬁﬁ—z) exp (-——T;l—:-zz) . (2.4)

and in momentum space by

i h L/4 P p®
(pln) = == (n’hmw(2"n!)2) Ha (—mz) P (“m) - (29)

in which the A, are the Hermite polynomials. The overall phase factor is retained
to keep (p|n) the Fourier transform of (z|n).

The energies corresponding to these eigenstates are E,, = fiw(n+ 1), so that the
energy levels have equal spacings, AE = hw, which has far reaching ramifications
with respect to time evolution. In general, the time evolution of a state is obtained
through the time evolution operator, which for a time-independent Hamiltonian is
written

U(t) = exp(—iHt/h). (2.6)
The time evolution of a state represented by energy eigenstates |n) is given by
[#(8) = U@)W(©)

= Y el(t)n)

= 3 cne Bt /Rin), (2.7)
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so that if E, = Eq + nAE,
I‘tll(t)) = e_iEO‘/ﬁche-inAEt/hln>, (28)
and at a time kT = 2knh/AE later with k integer,

|1/)(t + kT)) = e—iEot/he—iEokT/hche-inAEt/he—mknnIn)

= e By (t)). (2.9)

The overall phase difference (equal to €** = (—1)* in the harmonic oscillator)
has no measurable effect. Otherwise, all wave functions in a system with such a
spectrum are periodic with period T. In the harmonic oscillator, the period is given
by T = 27 /w, equal to the classical period so that w is equal to the classical angular
frequency.

Another apparently classical property of arbitrary states in the harmonic oscil-
lator is the time evolution of quantum expectation values. Given an initial state

|%(0)) expressed as a superposition over Hamiltonian eigenstates.

(z) = (PE)zl¥(2)

= Y chcne BnmBmltihim zin). (2.10)

n.m=0

(2.11)
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Recalling the expression of Z in terms of the creation and annihilation operators,

[ &
(mlzln) = | s=— (VAbmn-1 + V2 + Lmns1) . (2.12)
2mw

so that

(:‘B) = Hzm Zc _1Cne€ —i(Bn- Eu_l)t/h\/—+zcn+1cne i(Bn~Bns1)t/h /n+1]

n=0
\/ Re (e"“" Z CoCns1 VT + 1)
= \/ |A| cos(wt + @). (2.13)

with the summation written as some complex number A, with some phase angle ¢.

With the appropriate initial conditions, a classical particle will evolve according to

this expression. A similar calculation gives

(p) = \/_Im( “‘ch+1cn\/ﬁ+—)

n=0

= —V2mwh|A|sin(wt + ¢). (2.14)

This also represents classical evolution and should not be a surprise due to the
Ehrenfest’s relation [76]

(p) = m%(z). (2.15)

The other of Ehrenfest’s relations is more significant in this case,

d dv
=) = <_E>‘ (2.16)
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Classical evolution would arise if the expectation value on the right was inside the
evaluation of the derivative of the potential, so it is worthwhile to see how much
the expression differs as a result. Since this is suggestive of a classical force, let

F(z) = —dV/dz and expand with a Taylor series about z = (z),
F() = F((#) + S(e — (@) + 2 oy (e~ @)+, (21)

where the derivatives of the force function are evaluated at £ = (z). Now taking
expectation values, the linear term in z vanishes and the quadratic term leads to

(Az)? which is defined by (Az)? = ((Z — (z))?) so that

%(p) = F((z)) + %(A:n)2 (F) (2) 4o (2.18)

In the harmonic oscillator, the force is linear with position so the second derivative
vanishes. This leaves purely classical equations of evolution for the expectation
values of Z and p, irrespective of the structure of the wave function in configuration
space or any other consideration.

As a brief aside, note that in other systems where %F,'- # 0, Eq. (2.18) leads to
initial classical behaviour if (Az)? is small. This has led to, among other things,
generalizations of coherent states which minimize uncertainty [58]. Also, it is not
wholly accurate to say that the corrections in Eq. (2.18) are “quantum corrections”
since similar corrections arise from purely classical calculations of classical distribu-
tions evolved in phase space through the Liouville equation as shown by Ballentine

et al. (7].



CHAPTER 2. GENERALIZATIONS OF COHERENT STATES 24

The preceding comments are only the most prominent aspects of the harmonic
oscillator rendering it singular in quantum and classical comparisons. Before em-
barking on any investigation of quantum classical correspondence it is important
to initially establish precisely by how much they differ. In the harmonic oscillator,
that difference is much smaller than it first appears. For this reason, particular
caution must be exercised when generalizing from the harmonic oscillator to other

systems when concerned with quantum classical correspondence.

2.1.1 The Harmonic Oscillator Coherent States

From Egs. (2.13) and (2.14), it is already known that in the harmonic oscillator the
time evolution of expectation values of arbitrary states follows classical trajectories.
There is a significant discrepancy between the quantum and classical to be noted
however: No consideration has been given to the energy of the classical trajectory
as compared to the expectation value of the Hamiltonian in the quantum state. For
a coherent state, the expectation values follow the classical trajectory of a particle
whose energy is equal to (H) — Eq.

In position space, the harmonic oscillator coherent states are given by [39]

_ 1 < z —(z) 2 i(p)z
(z|a) = (W) exp (— [ 2(Az) J + n ) . (2.19)

Parameterized by the complex valued a,

o % (ﬁ;_i + iZ;)) , (2.20)
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an expansion over eigenstates is given by

- laf? {Z ol 2.21
Ia) = €xp _T \/1?|n> (2.2 )

n=0

Here, it appears that the uncertainties and expectation values enter as parameters
of the state. Although they may be regarded as such, explicit calculations of these

quantities through
(z) = (altla). (Az)* =(al(2 - (z))*|a), (2.22)

and likewise for p. yield the expected results. Eq. (2.21) follows not only by taking
the direct product (n|a) through Egs. (2.4) and (2.19). but also by taking the
Gaussian of Eq. (2.19) as the generating function of the Hermite polynomials found
in Eq. (2.4).

Consider the time evolution of an individual state. Recall that the time evolu-

tion of an eigenstate |n) of the Hamiltonian H with energy E, is given by

U(t)in)

exp (—iHt/k) n) (2.23)

= exp (—iEqt/h)[n), (2.24)

where U (t) is the time evolution operator. With the harmonic oscillator eigenstate
energies

E. = hw (n + 3) , (2.25)
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and Eq. (2.21), the time evolution is given by

Ut)la) = exp (_|a_|2_) i o U(t)ln) (2.26)
2 n=0 \/1? .
2 o) n
= exp(\—li?l—)é.;;exp(—iw (n-{-;) t) In) (2.27)
2 o0 —iwt\"
= e "“/2exp (—Jo;—l) ngo gaeﬁ)—ln) (2.28)
e~ Wt/ ety (2.29)

so that the time evolution of a coherent state may be expressed (up to an overall
phase factor) by evolving the parameter a. This property follows from the a™ por-
tion of the expansion Eq. (2.21) jointly with the evenly spaced energy eigenvalues.

Now, given that under time evolution @ — ae™* from Eq. (2.20). the time

evolution of the expectation values is given by

(z(t)) = zocoswt+ L2 sinwt. (2.30)
mw
(p(t)) = pocoswt—mwzysinwt. (2.31)

which are identical with the trajectory of a classical particle with initial position and
momentum zo and pg. Accordingly, the classical energy. given initial conditions, is
given by

E=F Lo (2.32)

(H) = () lnu.ﬂa,-)’ + Zhw, (2.33)
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differing from the classical expression by the ground state energy.
Furthermore, though the simplest calculations of uncertainties are through the
annihilation operator definition of the coherent states given below, from Eq. (2.19)

one can calculate uncertainties of £ and p and find
(Az)*(Ap) = . (2.34)

That is, the state is a minimum uncertainty state and follows a classical trajectory
for all time. This combination of properties prompted Schrodinger {70} to submit
these as “quasiclassical” states, as some sort of bridge between from quantum to
classical mechanics.

Another important property of the harmonic oscillator coherent states is that

they satisfy a resolution of the identity. The resolution of the identity is given by
1 2 2
I=- / fala)(al.  d®a = dRe(a)dIm(a), (2.35)

where Re(a) and Im(a) stand for the real and imaginary parts of a respectively,
and the integration is over the entire complex plane. Expressing the state as sums

over eigenstates, Eq. (2.35) becomes

% / &ala)(al (2.36)

= —Z/dzaexp lal]\/——\/—-l m)(n|
- Z \/_ v / d|a| /0 df exp [—[al?] |a|™* ™+ €™ ) m) (]
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= -Z ( )]n Vn| = I. (2.37)

Eq. (2.35) renders the set of harmonic oscillator coherent states a convenient
basis for a representation of arbitrary states in the harmonic oscillator. Any state
|%) may then be expressed using Eq. (2.35) as a superposition over the coherent

states:

- % [ dala)ials). (2.38)

Then, as with representations in terms of Hamiltonian eigenstates. the time evolu-

tion of |¢) may be expressed via the time evolution of the coherent states.

(t) = U(t)y) (2.39)
—iwt/2 )
= € - /d2a|a)<aexwt!,¢,>' (240)

The particular value of this comes with the one to one correspondence between
points in classical phase space and complex scalars a via Eq. (2.20). Indeed.
2|(aj®)|* is the Husimi distribution. a means of representing quantum states on
classical phase space. Note that a distribution given by 1|(ae™*|$)|? rotates coun-
terclockwise on the a plane with time, identical to how a classical distribution on

phase space evolves in the harmonic oscillator through the Liouville equation.

2.1.2 Definitions of the States

When Schrédinger presented his quasiclassical states in 1926 [70], he merely gave

their position space and eigenstate representations and worked out some of their
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properties. It was not until 1963 that coherent states were defined by Glauber {39].
Motivated by their usefulness in quantum optics, Glauber gave three definitions for
the coherent states, which all of which result in the same set of states.

They may be described as annihilation operator coherent states, whereby they

are eigenstates of the harmonic oscillator annihilation operator (see Appendix C),

ila) = aja). (2.41)

Assuming an expansion in terms of Hamiltonian eigenstates and taking the inner

product with (n yields the recurrence relation

Ca+1Vn + 1 = acy. (2.42)

which is solved to yield

= CQZ \/__ln (2.43)

Normalization yields the expansion already given above. Eq. (2.21).
The harmonic oscillator coherent states may also be defined as the result of
the application of a displacement operator on the ground state. To develop this

construction, consider translation operators in position and momentum,

T.(z0) = exp(—ipzo/h). Tp(po) = exp(izpo/h). (2.44)
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In the case of the operator T,

@ifale) = [ dplalfulp)ol) (2.45)
= [ dp(alp)e™ /N pl) (2.46)
o giplz=zo)/h

= /:oc dp\/—m—(PW’) (2.47)

= /_ - dp(z — zolp){p|¥) (2.48)

= (z - zoly). (2.49)

Similarly,

(I To(po)l¥) = (p — polth)- (2.50)

Applying T,(zo) followed by Tp(po) thus results in translations in position and

momentum by z¢ and pg respectively. This product is given by

i 2 i . iz
To(po)Tz(zo) = exp (E(po;z: — zop) — 5_0:_2) .

The third term in the exponential follows from the Baker-Campbell-Hausdorff for-
mula: In the case that [[A, B], A] = [[4, B], B] =0,

ee

Since the current system of interest is the harmonic oscillator, it is convenient to
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express the operator in terms of the annihilation operator

a= 2 (:z: + ;—wﬁ) , (2.53)

T (po)T(z0) = exp (aa* _atd- %”‘;f“) . (2.54)

The complex scalar a is given by

mw 3
a= 22 (:1:0 + ——po) (2.55)

The third term in the exponential is an overall phase factor which does not affect
whether the operator is unitary and so may be dropped in the definition of the

displacement operator D(a),

a

D(a) = exp (ad! - a%a) . (2.56)

The harmonic oscillator coherent states defined as displacement operator coher-

ent states are simply the ground state acted upon by the displacement operator,

la) = D(a)|0). (2.57)

To see that the displacement operator definition corresponds to the annihilation
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operator definition, note that

[&, D(a)] = aD(a). (2.58)

Applyving a4 to both sides of Eq. (2.57) vields

dla) = aD(a)|0) (2.59)
= (D(a)a +aD(a)) |0) (2.60)
= aD(a)|0) (2.61)
= ala), (2.62)

where the second step follows from a|0) = 0. This reproduces the defining equation
for annihilation operator coherent states.

The harmonic oscillator coherent states are also defined as minimum uncertainty
coherent states. If two operators A and B commute according to [4, B] = iC.
then all states must satisfy the expectation value inequality (uncertainty relation)
(AA)*(AB)? > (C)*/4 [58]. Moreover. states |1) which satisfy equality in this

relation must also satisfy the eigenvalue equation {58]

s (i) = (52 +:3) w. (2:63)

In this equation, (A), (B), AA and AB stand for four parameters defining the state
|) which will have those expectation values. Note that AA and AB are related

by the equality in the uncertainty relation leaving three independent parameters.
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Since [£,p] = ik, letting A = # and B = p in the above yields (Az)*(Ap)? >
h?/4, the infamous Heisenberg uncertainty relation. Since the momentum oper-
ator is realized as a first order differential operator in position space, Eq. (2.63)
becomes a first order differential equation when projected into position space with

the normalized Gaussian solution

(z|) = (2m(Az)?) " * exp (— (zg—A(:))- + i”ép)) : (2.64)

where equality in the uncertainty relation was used to eliminate (Ap)%. Eq. (2.64)
serves to define what some authors call “squeezed states™ since these states satisfy
minimum uncertainty but are squeezed more in one uncertainty and less in the
other than the traditional coherent states. The more general set of squeezed states
(which depend on three parameters) are restricted to the coherent states (which
depend on two parameters) by demanding that the state corresponding to (z) = 0.
(p) = 0 is the ground state. This condition is motivated physically by demanding
that coherent states of any energy may be obtained. down to and including the
ground state energy. Any state with the ground state energy must be the ground

state. Recall that the ground state of the harmonic oscillator is given by

1/2
a 1 ™
(z[0) = (\/—‘7’?) exp (—gagzz), a0 =52, (2.65)

which imposes the restriction

1
2a?

(Az)® =

(2.66)

_h
2mw’
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Accordingly, the equality in the uncertainty relation yields

Vo (24 =) ) = 22 (@) + —(p)) 1) (2.68)

The operator on the left hand side corresponds to the annihilation operator. and
the scalar on the right hand side corresponds to a. This then repeats the earlier
definition of the coherent states as eigenstates of the annihilation operator.

In addition to the three definitions of Glauber, a possible fourth has recently
emerged in the form of Klauder's temporally stable construction [45]. This con-
struction prescribes the eigenstate expansion in such a way that completeness and
“temporal stability™ follow immediately. To define the harmonic oscillator coherent
states in this manner would be to simply state the eigenstate expansion Eq. (2.21),

and hence discussion of this generalization is left to the next section.

2.2 Generalizations of Coherent States

There are many generalizations of the harmonic oscillator coherent states in the
literature. Many approaches are as annihilation operator coherent states. A few

general comments may be made regarding this variety of generalization.
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2.2.1 Annihilation Operator Coherent States

In a discrete system, it is frequently possible to define operators to “jump” between
Hamiltonian eigenstates. The creation and annihilation operators of the harmonic
oscillator are the foremost examples. The second most common occurrences are
the angular momentum ladder operators. Both of these examples have the useful
property of being independent of the states upon which they act. In other systems.
an operator that jumps from the state |n) to [n — 1) may be dependent on n. Then.
annihilation operator coherent states are defined as eigenstates of the operator that
annihilates the ground state. Generalized annihilation operator coherent states of
this description have been discussed by Nieto [58] and Ghosh [38].

With respect to the angular momentum ladder operators. these operators are
the ladder operators associated with the Lie algebra so(3). In fact, Lie algebras with
discrete representations generally have ladder operators. However. since SO(3) is a
compact group. it has finite-dimensional unitary irreducible representations. mean-
ing a finite number of angular momentum eigenstates pertaining to a particular
representation. Hence, the ladder operators are nilpotent in the sense that J* =0
for a finite k, and a nilpotent operator has no non-trivial eigenstates. The eigen-
states of an operator closely related to the angular momentum ladder operators
which is not nilpotent is discussed in Appendix F.

The situation is not so bleak with respect to non-compact algebras. The stan-
dard coherent states in fact arise as eigenstates of the annihilation operator of the
Heisenberg-Weyl algebra, the dynamical algebra of the harmonic oscillator. The

concept of coherent states arising as eigenstates of Lie algebraic ladder operators of
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a non-compact algebra dates back to Barut and Girardello {9] who discuss in their
paper the details of SO(2,1) annihilation operator eigenstates.
Note that creation operator eigenstates cannot exist. In the harmonic oscillator,

consider the eigenstate equation

3'|B) = BIB). (2.69)

If on the right, the nth state is lowest occupied state, on the left, the lowest occupied
state is the (n + 1)st, which can only happen if @ = 0. That is, there are no non-

trivial eigenstates of &', even though &' is not nilpotent.

2.2.2 Displacement Operator Coherent States

The most common generalization of harmonic oscillator coherent states seems to be
as displacement operator coherent states. generalized by Perelomov for arbitrary
Lie groups (67, 68]. (See, for example. the review article by Zhang, Feng and
Gilmore [90], and papers collected by Klauder and Skagerstam [46].) Given the
dynamical group of a Hamiltonian. this generalization provides a set of coherent
states with much of the structure of the group coming through into the set of
coherent states.

The concept of dynamical group is treated differently by different authors.
Presently, the dynamical group [65] of a system is a group (usually a Lie group)
such that all the states (of interest) are contained in a single irreducible represen-
tation of the group. The qualifier “of interest” is used because of cases such as the

hydrogen atom for which SO(4,2) is the dynamical group: Ome irreducible repre-
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sentation is valid for the bound portion, and a different SO(4,2) is appropriate for
the scattering portion of the spectrum. A weaker sense of dynamical group requires
that the Hamiltonian be expressible in terms of the generators of the dynamical
group (elements of the associated Lie algebra).

Suppose the dynamical group G of the system in question is known. Let |0)
be a fixed vector and T'(g) the irreducible unitary representation of g € G. Then,

according to the Perelomov construction [68], the coherent states are given by

lg) = T(g)|0). (2.70)

for g € G. For some elements h of G. |0) may remain unaltered up to an overall
phase factor. The collection of all such elements h of G forms the isotropy subgroup
H C Gof |0). The set of coherent states is then restricted to the set {|z) = T'(z)[0)}.
for z in the quotient space X = G/H.

These coherent states admit a resolution of the identity built upon the Haar

measure. Let dg denote the normalized Haar measure {75] on G. The operator

B =/Gdg|g)(gl (2.71)

can be shown to commute with T'(s) for all s € G, so that by Schur's Lemma. B is
proportional to the identity,
B =51, (2.72)

for some constant b. If G is a compact group (for example, as for the degeneracy

group of a bound system) then b = dim(T'), which may be shown by taking the
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trace of Eq. (2.71) over the finitely numerous eigenstates. Since the coherent states
of interest are only those |z) for z € X, the action of the subgroup H may be
separated from G in Eq. (2.71) via [10]

| dgladsl = [ dnlgH) [ dhigh)gh]

= vol(H) [ dn(gH)lg)(gl. (2.73)

in which vol(H) stands for the volume of H. The resolution of the identity is then
given by
i, = bvol(H)/Y dn(z)|z){(zl. (2.74)

In the harmonic oscillator, the dynamical group is the Heisenberg-Weyl group.
The elements of the group may be labeled by the complex number a given in
Eq. (2.55). and represented through D(a) given by Eq. (2.56). Accordingly. this
generalization provides the standard coherent states when applied to the harmonic

oscillator.

2.2.3 Minimum Uncertainty Coherent States

Generalizations based upon the concept of minimum uncertainty usually stem from
the (Az)? term in the second of Ehrenfest’s relation, Eq. (2.18). Without it (as in
the harmonic oscillator) (z) and (p) evolve classically. However, if it is present, then
d(p)/dt at least approximates classical evolution so long as (Az)? is small. Also,

recall the general expression pertaining to the time evolution of the expectation
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value of any operator O [76],

Z(A2) = (& - (@) - ) + G- NG (=) (276)

From this expression comes the order of magnitude result

iAz = -l—O(Ap). (2.77)
dt m

so that the smaller Ap. the longer Az remains small. Therefore. to provide for
the longest interval of classical behaviour for (z) and (p). Az and Ap must jointly
be small. Of course. the best case of this is equality in Heisenberg's uncertainty
relation, satisfied by the harmonic oscillator coherent states.

Nieto's generalization [57, 58, 59, 60. 55, 41, 61] follows this argument. This
generalization. applied to potentials with one local minimum. defined operators
through which the system appears (in senses described below) like the harmonic
oscillator. In cases where the potential has more than one local minimum, the pro-
cedure may be adapted to produce several sets of coherent states. one corresponding
to each minimum.

Classical trajectories about the minimum will be simple closed orbits in z-p

phase space. There exists a one-to-one map from these orbits to elliptical orbits in
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new coordinates X, and P. = mXc. With A and B denoting amplitudes in X, and
P,

X p?
2 + EE = 1, (2.78)
sc that
2 - )2 2 X2
P?=(mX.)'=B (1 - ﬁ) . (2.79)

Eq. (2.79) is a first order differential equation for X.(¢) yielding
X. = Asin(wt + ¢) (2.80)

in which the angular frequency is given by w = B/Am. Elliptical orbits yield
sinusoidal evolution. The mapping X.(z) itself may be found by constructing a
differential equation as follows. Substitute P, = mX. = mzdX./dz into Eq. (2.78)

with B = Amuw to obtain

m(A? - X?))”2 (2.81)

%= (F5 v

in which E is the energy of the classical trajectory, brought about by using mz =
2(E - V(z)).

Having developed the classical map X.(z), quantum operators are now given by

X =X(3), and P= %(X;(:i:)ﬁ +5X(2)). (2.82)
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Define G as the commutator of these operators,
G = —-i[X, P, (2.83)
and note that any state must satisfy the uncertainty relation
(AX)*(AP)* > i(G)’. (2.84)

Indeed. a state |3) which satisfies equality in the above also satisfies

1(X . P _1{(X)  .(P)
(o )o@ o

These above states |i) are the generalized minimum uncertainty coherent states
by Nieto's construction. There are four parameters in the above expression: the
expectation values and uncertainties for X and P. One is eliminated by equality
in the uncertainty relation Eq. (2.84). A further constraint is imposed whereby
the ground state must be a possible coherent state, leaving the coherent states
depending on two continuous parameters.

No resolution of the identity exists in general for coherent states by this construc-
tion. In at least one specific example besides the standard harmonic oscillator {56]
(see Section 3.2), a resolution of the identity has been found though this is an iso-
lated case. Several plausibility arguments exist that these states are complete, the
strongest of which is that in all cases where the harmonic oscillator is the result
of a certain limit, the same limit applied to these states results in the harmonic

oscillator coherent states which are themselves complete.
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This generalization applied to the harmonic oscillator trivially leads to the stan-
dard set of coherent states: Since orbits are already elliptical the appropriate map
is the identity. Though this construction is generally applicable, it may be quite
difficult to carry through to completion in a given system if the map X, is depen-
dent upon the energy E. In finding this map by solving Eq. (2.81), an arbitrary
constant arises which in some cases may be chosen in such a way as to eliminate
the energy from the map, but if this is not possible, the Hamiltonian H must be

used in its place in the quantum operators X and P.

2.2.4 Klauder’s Construction

Recently. a construction of coherent states has been proposed by Klauder [45].
which attacks the two properties of time evolution and completeness on a more
basic level. This is the so-called temporally stable construction. though it should
be emphasized that this stability only means that the coherent states evolve in time
among themselves and has no bearing on their behaviour in configuration space.
Suppose the Hamiltonian is free of energy degeneracies, and the eigenstates |n)
have energies E,, n = 0,1,2,.... Following Klauder, let p(u) > 0 be a positive
density function defined on the positive real axis such that all the moments p, of

p(u) exist. Then, the coherent states are given by

) = M(sh) S LR Ea/R) 2.86
18, 7) (s )nz;; 75 In) (2.86)
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where s > 0 and 7 is real, and M(s?) preserves normalization,

Implicitly, a second condition on p{u) appears such that all ¢
Such functions exist: p(u) = e~* leads to the standard harmonic oscillator coherent
states.

This construction builds coherent states from discretely labeled eigenstates. If
the Hamiltonian has both discrete and continuous portions of the spectrum. then
this construction applies only to the discrete portion. If there are only a finite
number of discrete states (such as the bound states of the finite square well). then
the upper limit on n may be changed to nn,a.. as necessary. In this case. the
conditions on p(u) are relaxed considerably.

The time evolution of these states may be expressed by

U(t)ls.v) = 8,7 +1¢). (2.88)

which follows directly from Eq. (2.7). Note that this property of these states rests
entirely in the exp(—iyE,/h) portion of the eigenstate expansion.

Further, defining k(u) by

k(u) M (u) = p(u), (2.89)
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these states satisfy the resolution of the identity

i=

—~

du(s,7)|s,7)(s,7l, (2.90)

. 1 o r
/dp(s,‘y) = rlir‘;if/o dszk(sz)/_r dv, (2.91)

where the limit is introduced to handle possibly incommensurate energy levels. Of
course, if a continuous portion of the spectrum has been excluded. the so-called
resolution of the identity should be regarded as a projection operator onto the

discrete portion of the spectrum.

2.3 The Harmonic Oscillator Coherent State Clas-
sical Limit

2.3.1 The Limit

One of the more important aspects of the harmonic oscillator coherent states is seen
through the so-called classical limit. An early use of this limit was by Bhaumik and
Dutta-Roy [17] who used the limit in a comparison of quantum and classical time-
dependent perturbation series in an anharmonically perturbed harmonic oscillator.
Their calculations were only to first order, but they postulated that in principle

higher orders are straightforward to cbtain. Benoit, McRae and Vrscay [14], and



CHAPTER 2. GENERALIZATIONS OF COHERENT STATES 45

McRae and Vrscay [50] expanded upon this work, carrying out calculations to
higher orders and in so doing, pointed out that the details are not as clear as earlier
supposed.

In any case, the classical limit of a coherent state |a) is taken by fixing the
quaantity J = |a|?h, and taking i — 0. Of course, here we are not entertaining the
possibility of manipulating a physical constant (%) over which we have no control.
we are merely considering how a system of a certain characteristic action behaves in
relation to the size of h. In other words, this is a limit of large characteristic action.
((characteristic length)?/(characteristic time)), or a limit of increasing scale.

The effect of this limit on a coherent state is the following. Note firstly that
Az Ap = O(h) and that Az/Ap = 1/mw, so that Az = O(VR) and Ap = O(VH).
Therefore, both uncertainties disappear in the limit. Not surprisingly. with the

limit symbol standing for this classical limit,

| =
TN
]
DI
e
(3 3
=
~——
()
~—

1 1/2
Jdm el = () e (—

= 4z - (z(¢))), (2.92)

where (z(t)) follows the classical motion of a particle with the same initial position

and momentum. Similarly.

: : 1 \!2 (p - (p(t)))*
clyu%lwl@la)lz = clashfnncal (n’mwﬁ) =P (_ ( mwh ))
= 4§(p - (p(t))), (2.93)

where (p) also follows the appropriate classical trajectory. These distributions in
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position and momentum are the distributions which describe the classical motion of
a single particle. That is, the classical limit of a coherent state is a single classical
trajectory.

Note that distinct coherent states are non-orthogonal. The inner product is
given by

(ala’) = exp (—%(Ial2 + |a'? - 2a'a')) . (2.94)

Taking the simultaneous classical limit on these states, that is, with a?h = J;
and o2k = J, (note that for this purpose, J;, are complex to preserve phase

information), one finds with a # o'

1 Ja
: nie2 - : - 2 -9 _-_ 2
clgsalgal’(a'a >| clz]tluni:léalexp ( 2 (lal + 'J ‘ I | 1 Ial ))
Ja J
_ - 2
- clashgléalexp ( lal (1 + J1 -2 Jl))
= 0. (2.95)

since the limit involves taking |@| — oo and the real part of the remainder of the
exponent is positive. This result is also not surprising since. after all, this is the

overlap of two non-coincident d-functions.

2.3.2 The Limit in Phase Space

To be more precise, the d-functions just mentioned must be J-functions of some
description on phase space, not in just position or momentum space since the
classical limit of the overlap of two coherent states at the same position but with

different momentum should still be zero. The initial urge is to take the product of
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the two distributions, é(q — (q(¢)))é(p — (p(t))), and use this, but this lacks deeper
underlying motivation. (In this section, the variable ¢ will be used rather than z,
due to the comparisons implied with classical mechanics.) Of course, this raises the
topic of phase space distributions in quantum mechanics.

The topic of quantum mechanical distributions in phase space is large enough in
its own right. Without going too deeply into things, there are three obvious choices
at one’s disposal. Given a wave function |¢), one possibility is using p(q,p) =
l{ql¥)*|{pl¥')|? termed the “joint probability distribution” for the present purposes.
The advantage of this is that the marginal distributions equal the distributions in
one of the variables. That is, integrating out the momentum distribution leaves the

position distribution:

[ pta.pde =g} [ Ielw)idp = gl (2.96)

and similarly with ¢ and p exchanged. The disadvantage is that this distribution
does not allow one to build up areas in phase space independently: Classical distri-
butions are seldom separable. (For example, if one tries to construct a state with
only two localized populated areas in phase space in the first and third quadrants,
one ends up with populations also in the second and fourth.) Despite this problem.
this is a popular choice in the literature due to its simplicity.

Another popular choice is the Wigner distribution. This is the distribution
which takes the place of the wave function in the Weyl-Wigner-Moyal formulation

of quantum mechanics. Given an arbitrary state |¢) Wigner [82] introduced the
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function

pw(@.8) = 5= [ (a=n/200)(wla + n/2)e# /P (297)

as a means to calculate quantum corrections to virial coefficients. Weyl [80] in-
troduced a correspondence scheme between functions on classical phase space and
quantum mechanical operators, and Moyal [52] used this correspondence as ap-
plied to the density operator (of a pure state) p = |9)(¢|, thereby obtaining the
Wigner function, as a basis for a new formulation of quantum mechanics. The
difficulty with Wigner’'s function as a distribution function is that, although it is
always real, it may take on negative values, making it difficult to interpret as a
probability distribution. However, the areas of these negative regions are always on
the order of fi. Some authors regard this as non-negative “almost everywhere” and
hence ignorable, whereas others regard negative values of the Wigner function as a
“quantum signature.” In any case, the Wigner function does recover the position
and momentum distributions as marginal distributions.

The negative regions of the Wigner function are always coincident with regions
of interference. Not surprisingly, then, if one smoothes the Wigner function by
convolution with a Gaussian on phase space of minimum uncertainty, then positive
values are regained. In fact, by “coarse graining” in this manner, one obtains the
Husimi distribution [43], the third possibility. This connection to the Wigner func-
tion is surprising since the Husimi distribution is alternatively given by the overlap

with coherent states: Given the completeness of harmonic oscillator coherent states,

W == [Falajelp) = 5 [ da[" dplaaly).  (298)
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the Husimi distribution of an arbitrary state |¢) is defined by
(.0) = 5 l(als) (2.99)
pH Q-P - 2775 ] .

where @ depends ¢©

g and p through Eq. {2.20). Thc advantage of this distribution

4]

function is that it leads quickly to simple pictures in phase space. The principal
disadvantage of this distribution is that the marginal distributions become only
approximately true.

Now consider the phase space distributions of harmonic oscillator coherent

states. Firstly, given that

1\ 1 ,
(qla)|* = (27r Aq)._,) exp (—Q(Aq)z(q— (9)) ) (2.100)

—

and that

1/2
ol = (5roas) o (-gaamte - 0F)  2aon

the first joint probability distribution given above is given by

1 1 1
p(g.p) = —exp (-2(Aq),(q —(q))* - W(P - (p))’) . (2.102)

which is a Gaussian on phase space of minimum uncertainty. It is not difficult to

see that in the classical limit, this becomes

Jm p(g.p) = 8(g - (g)é(p — (p))- (2.103)
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The Wigner function of a coherent state is given by

1 poo .
- = _ ipn/h
pw(g,p) = 2”,‘/_& (g — n/2|a){alg + n/2)e™" dn

- L 1 ) 1 2\’
- EGXP(\‘:,(Aq)z(q—(q)) ~ A e, (2.104)

/

identical to the one given earlier. Note that this Wigner function takes on no
negative values. Indeed, this is the only strictly positive Wigner function. Since
many authors consider this to be a classical state, the connection between “classical”
and “positive” is made leaving negative values of the Wigner function characterizing
“quantum.” In the classical limit, the Wigner function is also the product of 4-
functions.

The Husimi distribution of a coherent state |a) is given by
1 : re
pul(q.p) = 7 &P (— (lczl2 + |&|? = 2Re(aa ))) . (2.105)

With

(@) , .(p)

g ,.P (@, . )
(Aq + LAP) (2.106)

Ck'—l +i1-— a—l
“a\aq " 'ap)” =3

the distribution becomes

pula.p) = oz esp (~gAla - @F = o= GIF) . (2107

(Ag)?

This is not a minimum uncertainty Gaussian on phase space: The width is scaled
upwards by a factor of v/2. After all, this represents the convolution of a Gaussian
with itself, which has this effect. Even so, the classical limit of this distribution is
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still the product of §-functions on phase space. Note that this classical imit should
be expected since it has already been pointed out that the overlap of distinct states
disappears in the classical limit.

We now turn to phase space distributions of superpositions of coherent states.
The simplest collection (besides the singleton) consists of two distinct states. By
examining in detail the nature of distributions of pairs of coherent states, a great
deal may be extrapolated to general ensembles of coherent states.

If |¥) = N(|lay) + |az)), with N securing normalization, (a complex factor

applied to the second coherent state does not change matters appreciably) then

Kql)* =
1

1/2
o (2w(zlxq)2) [exp ("2(Alq)2(q - <‘h>)’) + exp (—2( A <qz>)’)
 2Re (exp (s (0 (a0 + (0= (@) + iallp) = (o))

2 1 12 1 ) 1 \
= N (——271'(/-\*1)’) [exp (———2(Aq)2(q - {q1)) ) + exp (- 2(Aq)2(q - {g2)) )
* 2e ("2(431.(1): (3= as)* + qi)) cos (q((p1) — (Pz))/ﬁ)] : (2.108)

where ¢+ = ({q1) £ (g2))/2. Unless (¢;) = (q2), the interference term disappears in
the classical limit, and what remains in the limit are two é-functions positioned on
the locations of the contributing coherent states. If (q;) = (q2), then by hypothesis,
(p1) # (p2). In this case, the exponential part of the interference term equals one
at ¢ = g4+ but the cosine part rapidly oscillates. In the usual sense, the limit does

not exist, but asymptotically the oscillations render this term null.



CHAPTER 2. GENERALIZATIONS OF COHERENT STATES 52

The entire preceding paragraph is equally valid for momentum, if one makes the
appropriate substitutions of momenta for positions. Thus, for the simple approach
to a joint probability distribution, one finds that the classical limit of two distinct

coherent states becomes

lm pla.p) = 7(5(a~(@))3p— () + 8(a~ (a2))é(p ~ (ps)
+ (g = (91))d(p — (p2)) + 8(q — (92))d(p — (p2))) -(2.109)

classical

This distribution will have four peaks in phase space rather than the intended two.
unless (q1) = (g2) or (p1) = (p2). Clearly this is not a desirable feature.
The Wigner function for two coherent states is a little more complicated. Again

with [¢) = N(ja1) + |az)). the Wigner function is given by

pw(2:p) = N*(pa;(2.P) + pas(q:P))

+ 27r;z / (g = n/2lar){aalg + n/2)e" dy + c.c.. (2.110)

in which pq,(q.p) is here intended to stand for the Wigner function of the state

|ay) and mutatis mutandis elsewhere. The interference term written out above is

2
I—VE exp [—(—Alﬁ(q -q4)’ - 2(Alp)2 (p—ps+)? (2.111)

+ (2((p1) = (P2))g — 2({q1) — (g2))p + ({@1) — (@2))({p1) + (P2)))

Note that at the midpoint between the coherent states in phase space (i.e. at

(¢++p+)), the interference term takes on its maximum amplitude, as seen through
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the real part of the exponential. The imaginary part gives rise to oscillations only
observed in the complete Wigner function at this midpoint. In the classical limit
of this state, the interference term does not disappear at the the midpoint, but the
(phase-spatial) frequency of the oscillations diverges: Strictly speaking, the classical
limit of this Wigner function does not exist. With a small amount of averaging,
this interference pattern is smoothed out, leaving d-functions at the locations of the
coherent states.

The Husimi distribution of the sum of coherent states is much simpler. Again

with [9) = N(|ay) + |az)), one finds

"

pu(a.p) = =l(al(le) + laz))P

2

= ;—ﬁ(Kalcn)lz-i-|(a|az)|2+2Re((a|al)(ag|a))). (2.112)

The interference term disappears in the classical limit and J-functions remain at
the locations of the component coherent states in phase space.

Summarizing these calculations. the classical limit of a coherent state is a 4-
function on phase space irrespective of how the identification to a phase space
distribution function is made from the wave function. If a state is constructed
consisting of two distinct coherent states, the view in phase space depends on the
phase space probability distribution used. If the distribution used is the product
of the position and momentum distributions, then additional peaks arise. If the
Wigner function is used, then only two peaks are found, each of which is one of
minimum uncertainty (roughly speaking), but an interference term arises which

takes on negative values, and in the classical limit does not converge. If the Husimi
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distribution is used, the peaks are no longer of minimum uncertainty, but the
interference term vanishes in the classical limit.

If more than two distinct coherent states contribute to the wave function, then
the behaviour may be described in terms of the two-coherent state situation. The
product distribution gives rise to a great deal of additional structure, the Wigner
function gives interference terms between coherent states which take on negative
values and (possibly) has no classical limit, and the Husimi distribution widens
peaks and has a classical limit. Among these three possibilities, and with the
criteria of an acceptable classical limit, the Husimi distribution appears to be of the
greatest use, even though it only provides approximations to marginal distributions.

Thus we approach the concept of the classical limit of an arbitrary wave func-
tion. Recall that in the Statistical Interpretation of quantum mechanics the wave
function describes an ensemble of similarly prepared systems. Given that arbitrary
wave functions may be represented in terms of basis functions, or elements of some
complete set of states. it is wrong to identify elements of the ensemble with basis
vectors. In particular, using a representation in terms of coherent states, elements
of the ensemble may not be identified with individual coherent states.

According to the Statistical Interpretation, the classical limit of a wave function
is an ensemble of classical trajectories [7]. This concept has met with a great deal of
success. The coherent states are somewhat anomalous, then, in that they describe
individual classical trajectories in the classical limit. Thus when the classical limit
is applied to an arbitrary wave function, the result is a state represented in terms of

non-overlapping coherent states, each of which describes a single classical trajectory.
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That is, the arbitrary state becomes an ensemble of classical trajectories.

95



Chapter 3

Some Comparisons

3.1 Annihilation Operator Coherent States and

Minimum Uncertainty

@\? erator definition of coherent states. Why is this so? Glauber’s original
motivation [39] was involved in the representation of electric field operators pro-
viding considerable calculational convenience, but this does not necessarily carry
over into other systems. The construction can be convenient in terms of calculating
properties, but, as with any other state construction, the method must be recon-
ciled to the purpose in mind. That is, calculational convenience should not override

physical motivation. Bearing this in mind, a few general comments may be made.

Suppose O is a non-Hermitian operator. Suppose also that the Hermitian and

36
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anti-Hermitian parts of O, found through

A=2(0+0YY, B=--(0-0", (3.1)

I =
N | e,

do not commute,

[A,B] = --[01,0] =iC, (3.2)

N e

which stands as a definition for the Hermitian operator C. The operators O and

O may be recovered from A and B through

O=A+iB. O'=A-iB. (3.3)

According to the usual custom, since A and B do not commute. all states must

satisfy the uncertainty relation

(AA)*(AB)* > =|(C)]. (3.4)

Lol Rl

Now suppose that O has eigenstates |w) with (in general) complex eigenvalues w,
Olw) = wlw). (3.5)
With expectation values calculated in such states,

(A) =Re(w), (B) =Im(w), (3.6)
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and

(A7) = 302+u?0+(@¥+4é)=ndwy+%«», (3.7)
(B%) = —%Oz—ﬂ?0+mﬁﬁ—ﬂé)=hmwf+%«3. (3.8)

The uncertainties of AA and AB are given by

(A4) = (4% - (4)" = 5(C). (39)
(AB) = (BY)~(B)' = 5(C). (3.10)

rendering the uncertainty product minimized.
(AAV(ABY = IO (3.11)

With O possibly standing for an annihilation operator, the relationship between
annihilation operator coherent states and minimum uncertainty coherent states
becomes apparent.

Working in the opposite direction, start with two Hermitian operators A and

B. and construct the operator O by considering

O=A+inB, (3.12)

with n some real parameter. The eigenvalues of O for an eigenstate |w) must be
given by
Olw) = ((A) + in(B)) |w) (3.13)
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where (A) and (B) enter as two more parameters to describe the state [w). Again
with € = —i[A, B], one finds

1

(AA)? = 1(C) and (AB)2=-2—5(C) (3.14)

N3

where expectation values are calculated in the eigenstate |w) of O, so that the

uncertainty relation between A and B is again saturated,

(AA)}(AB)? = =(C). (3.15)

| -

Thus, to find states which minimize the uncertainty product of a certain pair of
operators, it is sufficient to form an eigenvalue-eigenstate problem with Eq. (3.13).
The eigenstates in Eq. (3.13) minimize the uncertainty product.

To compare the minimum uncertainty and annihilation operator constructions
of the harmonic oscillator coherent states, in Eq. (3.13), take A = \/,_,Eh:i: and
B= p/V2hmw where w is here the parameter to the harmonic oscillator potential.
Then. any value of n in Eq. (3.13) yields a minimum uncertainty state in £ and
p- This defines what some authors call squeezed states [62]. The coherent states

are regained when n = 1. This casts the operator O precisely into the form of the

annihilation operator.

3.1.1 SO(2,1) as an Example

The above derivation is valid for any operator 0 provided it meets the given criteria,

but gains import in the context of annihilation operator constructions of coherent
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states. The two most obvious sets of operators for which this applies are those of
the harmonic oscillator and those of the Lie algebra so(2,1). In fact, as noted by
Barut and Girardello [9], annihilation operator coherent states may be constructed
in association with any non-compact Lie algebra. The standard ladder operators
for angular momentum are very useful but do not have eigenstates due to the finite
spectrum, so the above derivation does not apply.

From Appendix A, the algebra so(2,1) is spanned by the operators T} .3, and,
as in the case of so(3), the ladder operators are given by T = Ty + iT. With b
standing for the lowest eigenvalue of T the action of T on an eigenstate [b) of T5

is given by

T_[bo, b) = /(b — bo) (b + bo — 1)bo, b — 1), (3.16)

for b # by and T |bo, bo) = 0.

Suppose the coherent state |bo, t) is an eigenstate of T'_,
T_{bo.t) = tlbo,t). (3.17)
and that |b,t) may be represented by a summation over the eigenstates of T,

bo,t) = 3 calbo,B). (3.18)
b=by

Eqgs. (3.16) and (3.18) jointly lead to the recursion relation

csr1/(b— bo + 1)(b + by) = tas. (3.19)
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Leaving ¢, as a normalization constant, this recursion relation is solved to yield

r 1/2

Demanding normalization yields

|t|'.’bo—1 1/2 #k
Ay = b bo+ K), 3.21
o, ) (Izb.,-l(2ltl)) 2 k!I‘(2bo+k)|° ot k) (3.21)

where [,(z) is the modified Bessel function [40].
By virtue of the construction at the beginning of this section, the annihilation

operator coherent states Eq. (3.21) satisfy the minimum uncertainty criterion

(ATY)*(AT2)? = =|(Ts))% (3.22)

| -

Of course. whether Eq. (3.22) may be given physical significance is another story,
depending on the realization of so(2,1) under consideration.

In any case, regarding the distribution of the eigenvalue of Ts, one finds

8] T2bo-2 + Tony

3.23
2" It (3.23)

(T = 3 +

and

1 3, Iopg-2+ 1. 1 Ipy—3 + I
(T2) = = + 2|¢| 260-2 1 {28 w2+ 2bg—-3 T {2bg+1 ‘ (3.24)
4 4 Iopg—y 4 Ippg-1

where the arguments of all the modified Bessel functions are 2(t|. These follow from
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the relations [40]
) [t I 2(bg+k)

= jt|Las—1 (20E]), 3.25

and
— I\ =T, _ )+ I 1(22) (3.26)
! LAY U / [ S I A ’

The asymptotic behaviour of the modified Bessel function is given by [40], for large

values of the argument,

e (v +3)(v - 3)
L(z) ~ 7= |1~ ~2i 2, (3.27)
so that for large ||, one finds
1 L

Since this construction is not tied to any realization of so(2,1) it is interesting
to compare this with the Perelomov construction of coherent states for the same
algebra. Simply stating Perelomov’s result [68] (since this is not the point of this

section)

T'(2bo + k)

R (2h0) ——— 1 CFlbg, by + k). (3.29)

lbo, ¢) = (1 = |¢]?) Z

k=0
Clearly these are not equivalent to the annihilation operator states Eq. (3.21). Also,
the region of convergence for the sum is |{| < 1. Performing the same calculations

as for the previous states,
2bo (¢

(Ts) = bo + - KR

(3.30)
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and
4b3l¢ 2bo[¢|? 4b3|¢1
T2 = b2 2 g . 3.31
T = bt T * (o 1o T {T= [0 (3.31)
This renders the uncertainty in Ty
(ATy)? = ZolE (3.32)

(1-1¢1H)*

A significant difference between Eq. (3.28) and Eq. (3.32) is their behaviour
as (T3) becomes very large. In Eq. (3.28), this follows from taking |t| large so
that (AT3)? ~ 3(T3). For the states constructed a la Perelomov, large (T5) is
achieved through taking |{| — 1. In this limit, a comparison between Eq. (3.30)
and Eq. (3.32) indicates that AT; ~ (T3), indicating much broader distributions.
With so(2,1) acting as the spectrum generating algebra for the hydrogen atom
problem, some authors [49] cite the broad distribution as a reason for rejecting
the Perelomov states in the hydrogen atom problem in favour of an annihilation
operator construction as by Barut and Girardello [9], these comments being in the
context of a search for “classical” states of the hydrogen atom. However, such
assertions are meaningless in the absence of a framework for the comparison of
quantum and classical behaviour. If that framework involves comparing quantum

wave functions with classical distributions, the width in n is not relevant.
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3.2 Minimum Uncertainty and Klauder’s Con-
struction

Another connection of interest [23] is found in a particular system between Nieto's
construction of minimum uncertainty coherent states and Klauder’s construction of
temporally stable coherent states. The potential in question is sometimes called the
harmonic oscillator with centripetal barrier [56]. Though the configuration space
of this potential has only one degree of freedom it carries this name due to the
relationship between this potential and the radial part of the three dimensional
harmonic oscillator with non-zero angular momentum.

Nieto’s generalization of the harmonic oscillator coherent states (see Section
2.2.3) focuses principally on the fact that harmonic oscillator coherent states are
minimum uncertainty states, satisfying equality in Heisenberg's uncertainly relation
for the standard £ and p operators. In this generalization. the coherent states
satisfy minimum uncertainty for a new pair of operators X and P through which
the potential “appears” like the harmonic oscillator. The thrust in defining states
according to this scheme is to provide states which remain coalesced for the longest
possible time, and hence follow corresponding classical trajectories for the longest
possible time via Ehrenfest’s relations.

Klauder’s generalization [45] focuses on the form of the eigenstate expansion
which guarantees that the harmonic oscillator coherent states remain temporally
stable: that the time evolution may be described by evolving the parameters to

the coherent state itself. This generalization prescribes the form of the eigenstate
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expansion in any (non-degenerate) potential to permit the definition of temporally
stable states in other systems.

Klauder’s generalization also provides a resolution of the identity for the set of
generalized coherent states. It is important to point out that Nieto’s generalization
does not provide a resolution of the identity in general, although there are sev-
eral plausibility arguments to suggest that one should exist: If a resolution of the
identity exists, it must be found case by case.

The potential of concern is given by

V(z) = U (l - 2)2, (3.33)

b4

in which the length scale is via z = az for some positive a, and the energy scale is
expressed through
hlq?

Us = —A(A +1), (3.34)

2m

where A is introduced here as a convenience for later calculations. In position space,

the Hamiltonian eigenstates are given by

2avl(n +1 132 _ y
(z|n) = (ﬁ;ﬁ) e VIPHLOM (), n=0,1,2...,  (3.35)
2

where v = JA(A+1), y = vz? and L, are the Laguerre polynomials. These

eigenstates each have energies

h2a?
En=——(v(4n +2) +3) - 2%). (3.36)
2m
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To see the relationship between this system and the radial part of the three di-

mensional harmonic oscillator, observe that the time-independent Schédinger equa-
tion for the latter system is given by

"l

[ ! 2*2\
\2m t 3™ | ) = E9), (3.37)
or
2L 1 L.\
<2m + o + Emwzr ) |'¢’) = Eli[)) (3.38)

Recognizing that the eigenstate [1) is also an eigenstate of L? with eigenvalue
h*{(€ + 1), the equation becomes

2 R+ 1
(p,+ (£+1)

Lo 2y — o
om T Tomiz + i ) [¥) = E|¥). (3.39)
From this expression one finds the effective radial potential
2
Vi) = D L e (3.40)
2mr? 2

which pertains to a particular total angular momentum, A*£(£ + 1). Thus. the
connection is made through

Vi(z) = V(z) + 2Us (3.41)

with V(z) given by Eq. (3.33), and the identifications

A=

and fa’v - mw.

(3.42)
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With these identifications these two systems are one and the same.
Now constructing the coherent states according to Nieto's recipe [56], classical
particles in the potential Eq. (3.33) oscillate through
st ( D //E+1\2 1\1/2_ t 2a 205
a:!?()—&'—-r)—kkr )—) sin(w(t+¢)), w= avm

0

, (3.43)

in which the two arbitrary constants are embodied in the energy and the phase
angle ¢. Accordingly, the map through which classical trajectories are sinusoidal
is the left hand side of Eq. (3.43). The new position and momentum operators are
given by

-~

) H .

X=ad2"-[=—=+1|, P=ad(3p+pi) (3.44)
20Uy

The generalized minimum uncertainty states are thus solutions of the problem

X b
(5 +ia5) 1 =cio (3.45)

for some complex valued C. Even though the operator X involves the Hamiltonian.

the exact solution may be obtained and is given by {56]

2avt/2e~ve \? —y/2. 1/4 1/2
18) = m eV Yy I 2(2(vCy/2)77), (3.46)

with v and y given as before. This may be expressed as a superposition over

eigenstates given by

- (e s (=B
)= (IA+1/2(2|ﬂ[) ,§0 Tt O £ A+ %)!n), (3.47)
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in which ], is the modified Bessel function and 3 is reworked from C,

B= (P). (3.48)

vC
2
A resolution of the identity has been found to be [36]
i= [&8f(8NIBNA, (3.49)

in which 4?8 = dRe(3)dIm(3) and the integration is over the entire complex plane.

The function f(p) is given by

flp) = K,\+1/z(2l;)1rf,\+1/z(2p).

(3.50)

where K, is the other modified Bessel function.

As an initial argument in expressing these coherent states in terms of Klauder’s
construction, note that in their respective eigenstate expansions Eqs. (3.47) and
(2.86), the change in phase of the coefficients between successive terms is constant,
in the first case due to successive powers of a complex number, and in the latter
since the eigenenergies, Eq. (3.36), are equally spaced.

If Nieto’s states given above may be described in terms of Klauder’s construc-
tion, then the normalizing function M(s?) in Eq. (2.86) must be at least propor-
tional to the leading part of Eq. (3.47). Also, Klauder’s k(s?) of Eq. (2.89) must
be at least proportional to the function f(]8|) given by Nieto, and if so, p(u) is
provided by Eq. (2.89). A consistency check will then be provided by calculating

the moments p, which should correspond to the denominator within the sum of
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Eq. (3.47), i.e.,
pnx L(n+ 1)I'(n + A+ 3/2). (3.51)

To begin, the integration over the complex S plane may be expressed as

[&6=[" o) [~ ae (3.52)

where § is being used as the phase angle of 3. Accordingly, the expression Eq. (3.49)

may be rewritten

. o * df |B|Kxp 1/2 =
= [Cap) [ P2 sl g (g5

Since the dependence of 3 on 8 is 27-periodic, integration as written with respect
to 8 corresponds to integration with respect to v, so that the two may be identified.

Relating normalization functions,

M?(s?) = M_ (3.54)
Day1/2(2181) .

from Eq. (3.47). Any further progress requires the assumption s* = |3|P for some

power p so that
w+1/2)/p
M*(u) =

= — 3.55
Int1/2(2ut/P) (3.53)

Now identifying k(u) with the rest of the measure in Eq. (3.53) with integration

over @ disregarded yields

u?/P VK 172(200/P) [ g (202 /P)

k(u) = ™

(3.56)
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From Eq. (2.89), Eq. (3.56) leads to
1
p(u) = Eu"/”s’ = K 1/2(26'P). (3.57)

The moments of this function are given by

1

[ =]
=5 /0 a0 Py, (3.58)

This is a known integral [40] which yields

[N

3
n+A+S)0(En+1). (3.59)

1
Pn"EF( 2

The reader will note that this does correspond to the appropriate part of Nieto's

construction. Eq. (3.51), with p = 2.
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3.3 A Further Connection Between Sections 3.1.1

and 3.2

The minimum uncertainty coherent states in the harmonic oscillator with cen-
tripetal barrier, shown to be Klauder coherent states, are also SO(2,1) annihilation
operator coherent states. The forms of the eigenstate expansions, Eqs. (3.21) and
(3.47), are certainly suggestive of one another, and to see why this is the case, note
the following.

As detailed in Section A.3, so(2,1) may be used as a spectrum generating al-
gebra for the isotropic harmonic oscillator and hence the harmonic oscillator with
centripetal barrier. To develop this connection, the time independent Schrodinger

equation for the harmonic oscillator with centripetal barrier is given by

P 1 .\
(% U (% - as) ) %) = El). (3.60)
or
1/71. 1 . 1 .a m
: (Epz 4 §hzuzz 3, Eﬁza4uzz.) [) = 5 (E +200) [9), (3.61)
where the v arises from
v = e 2 3.62)
°= om 8.

This must be connected to Eq. (A.42) in terms of two operators which commute

by [R, P] = 1. This may be accomplished by setting

R=r"1Y2\z, P=nr"12\"15 (3.63)
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which casts Eq. (3.61) into the form

B
2h\2

1/1- 1, 1 .
- _P2 =.,2p=-2 _ﬁ242/\—4 2) =
> (557 + 3R + SR A B2 )
The coefficient of & is changed to unity by setting
1
/\4 = ‘2-52(141/2.

putting the Schrdodinger equation into the form

é (lpz + .;_,,21‘2-2 L 1‘22) ) E +2Us) [9).

_— m (
2 ~ V2Rl

This may be identified with Eq. (A.42) provided

n=2 ¢==v), -DBY?=

(E +2U0) [¥).

72

(3.64)

(3.65)

(3.66)

(3.67)

From the work in Appendix A, this may be considered an eigenvalue equation for

the T operator in some realization of so(2,1). With this identification, one finds

2.2
E=—‘/§:‘n“”(bo+k)—2vo,

in which k is some integer and

1 1 ——
bo=§i‘:z 1+8V2.

(3.68)

(3.69)

The negative root is rejected since this results in a spectrum bounded above, leaving
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the positive root as representative of the ground state, and £ = 0,1,2.... With
this in mind, the expression Eq. (3.68) for the eigenenergy agrees with Eq. (3.36).
From Appendix A, the ladder operator T_ of the Lie algebra so(2,1) alluded to

above is given, in terms of the original operators Z and p, by

T. = Tl—iTZ
_ Vv ) 1 2‘2)__1_“ B
T 2V2 (h2a2y2p e 9T 4h(3P+P3)- (3.70)

Compare this with the expression for X and P in Nieto's construction. Eq. (3.44),

expressed in terms of Z and p.

5 1 P2 1 2.2
X = 2(5'-_,02”2-*-;53—01:
P = a%ip+pi). (3.71)

Matching the real and imaginary parts. the annihilation operator coherent state

definition for this system

T_|t) = t|t) (3.72)

corresponds with the minimum uncertainty equation, Eq. (3.45): Coherent states

of these constructions are identical.



Chapter 4

Coherent States for the Spherical

Rotator

4.1 The Spherical Rotator

common problem in the literature is the pendulum, alias the rotator. Typ-

 ically, the physical system in question is planar, a point mass constrained
to a certain radius from a point on a plane. Like other simple systems. ideas are fre-
quently set in the context of the rotator for pedagogical reasons [69], and the planar
rotator is a popular subject of perturbative studies [25]. When subjected to periodic
kicking, this classical system becomes chaotic, and figures prominently in the study
of quantum classical correspondence in the context of quantum chaos {29, 7, 22].
An obvious generalization of this model is to permit the mass to move in any
direction on the surface of a sphere of a certain radius. The spherical rotator is fre-

quently invoked to describe the low energy rotational modes of a diatomic molecule

74
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when the molecular bonding is such that the inter-atomic distance may be regarded
as fixed. Not surprisingly, when subjected to a periodic impulse, the spherical ro-
tator becomes chaotic and has also been the subject of studies of quantum classical
correspondence [44].

The Hamiltonian for the spherical rotator with moment of inertia I is given by

. J?
H= ':').7, (41)
i.e. proportional to the total angular momentum squared.,
Jr=J+ 2+ 3 (4.2)

Note that the angular momentum components all commute with the total angular
momentum, {jk,jz] = 0, which provides the J; as generators of the degeneracy
group. This group is of course SO(3) or SU(2) (see Appendix A). Forming the
irreducible representations of the group through simultaneous eigenstates of J? and

js, one finds that

Jjom) = B + Vljm),  Jolj,m) = hmlj, m), (4.3)
where j = 0, %, 1,...and m = —j,—j+1,...,], so that the eigenstate energies are
given by

2
Ej= 5737 +1). (4.4)

The allowed values for m implies that the dimensions of the irreducible represen-
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tations are 2j + 1, which is thus the degeneracy of the energy level labeled by the
half-integer and integer j.

A position space representation is required so the half-integer j values must be
eliminated to avoid double-valued eigenfunctions. Then, the eigenstates are given

by the spherical harmonics Y™,

27 +1( —m)!
4 (7 +m)!

(6,17, m) =Y"(6,¢) = (—1)"‘\J Pl(cos)e™,  (4.5)

in which the P[" are the associated Legendre functions. This restriction on j carries

through to m, of course, and prohibits the situation (8, ¢|j, m) = —(4, ¢ + 27|j, m),

4.2 Angular Momentum Coherent States

4.2.1 On SO(3)

The Lie group SO(3) is the degeneracy group of the spherical rotator. This group
may be generated by the components of the orbital angular momentum Ji, with
k = 1,2,3. Beginning with these, the irreducible representations are spanned by
sets of angular momentum eigenstates |j,m) pertaining to a particular integer j.
The most important construction of coherent states for these sets of states is due to
Perelomov [67, 68]. These have been variously termed angular momentum coherent
states, Bloch coherent states or atomic coherent states.

Reviewing the generalizations given in Chapter 2, be aware firstly that despite
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readily available ladder operators,

ji = jl + ijz, (46)
which satisfy
[j+, j_] = 2hj3, and [j3, jﬁ] = iﬁji, (47)

no eigenstates of these operators exist besides the null vector. This is simply because
the spectrum is finite. (A contrived method around this problem is considered in
Appendix F.)

Following Perelomov [68], and moving temporarily into atomic units, note that

the angular momentum operators satisfy
[jj, jk] = 'iEjujl (4.8)

where €5, is the completely antisymmetric Levi-Civita tensor. This is the hallmark
of the generators of the Lie group SO(3), locally isomorphic to SU(2), to which
Perelomov's generalization of coherent states will now be applied. Recall that this
generalization requires a fiducial vector, and a homogeneous space X formed by the
quotient of the group SU(2) with the isotropy subgroup H for the fiducial vector.
Choosing |7, —7) as the fiducial vector, the elements of H ~ U(1) are of the form

exp(iaJs) with a real. Elements of X are hence of the form [68]

-

D(¢) = exp(i(adi +BJ2))

= exp(éJy — €J2)
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= exp((J;)exp(nJs) exp(—(™J-) (4.9)

in which a and 3 are real, £ = }(8 +ia), £ = —|€le™™, ( = —tan|éle™™ and
n =In(1 + |{|?). Accordingly, the coherent states are given by

17,¢) = D(¢)14, —3)
! @ 1V g
Z [( )l] (1+|CP) |7, m). (4.10)

meej LT +m)I(7 —m)!

With respect to the angular parameterization, the normalized Haar measure [75]

on SU(2) for a function f is given by

_ 1 .2 . x
fovey o) = 5oz [ sin* iy [ sinbdd [ dof(v.0.4). (4.11)

Then, integrating the projection operators |7, ()(j,{| over X with respect to the

measure induced by Eq. (4.11) gives

2;+1 d*¢ o
J7r /(1+K|2)3l]vC)(]v<|

= [ (015,005 ¢l, (4.12)

where d?¢ = dRe(()dIm((), and integration is over the entire complex plane pro-

jected from the unit sphere with the transformation

¢ = —tan ge-‘d’. (4.13)

This construction of angular momentum coherent states does not yield minimum
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uncertainty states for the customary angular momentum operators. Reinserting A

into the calculations, in the state |, (),

_ 2h¢ _ 2jh¢
(J+) - 1+ IClz! (J“) - 1+ ICIz’ (4'14)
so that with J; = L(J, + J_) and J, = L(J, - J.),
27RR. 2jRIm e —1 2
(J1) = —i_:lef(_li)' (J2) = -i+—|c(|§l, (Ja) = Jﬁ—l—_;-i_%, (4.15)

where the J; calculation follows from Eq. (4.10). Also, for the squared components,

2j(2) — D¢ 20(2 = UN'C ) eI + 2]

2y J?) = ’ ,
Vo= Tarere o Y T T areer (14 1CP)
(4.16)
which provides some support for
(J3) = i(ji +2RJ T+ J2 = 2J) (4.17)
ﬁz . . - .2 2 .
= T (25(25 = 1) (¢ + ¢%) +8521¢ 12 + 23(I¢* - 1)) .

Following through to the calculation of the uncertainty,

2
(ALY = e (47°Re(0 — 27 (¢ + ) + 24 - 1) . (418)

(1+]¢2)?

Calculations proceed along similar lines for J;, but will not be drawn to their
conclusion here. The uncertainty product becomes increasingly complicated and

diminshingly significant.
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Though the preceding calculation did not meet with success, SO(3) coherent
states do satisfy a certain minimum uncertainty condition. Note that in the angular

momentum eigenstate |j, m)

2

&
(ALY = (J]) = 5(* —m" +) (4.19)
= (AJy)° (4.20)
so that the uncertainty relation
2 h?
(AL (AL)? > Z(Js) (4.21)

is saturated in the extremal states m = £j. Also, SO(3) is the rotation group,
so the states |j, () are transformed by a rotation from |j, —j). Accordingly, states
|7,{) are angular momentum minimum uncertainty states for the rotated angular

momentum operators
J,= D)D), t=1,2.3, (4.22)

where D(C ) is the displacement operator given by Eq. (4.9). Expectation values

may be taken from the fiducial vector,

(JvClvaC) = (J’ -jljlljy _'j>7 (4'23)
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and

G, ¢1deld, ¢) = G, ¢1D(C) D1 () D) D ()1, ¢) = G —1F25, 1), (4.24)

and so on. The uncertainty product is thus

2 2
(AL ALY = py = 552 (4.25)

This is precisely why one of the extremal states was chosen as the fiducial vector.

Also, expectation values for the rotated angular momentum operators are given by
(L1) =(La) =0. (L) = —jh. (4.26)

Finally, calculating the expectation values, Eq. (4.15), in terms of the trans-
formation onto the unit sphere, Eq. (4.13), used to describe the resolution of the

identity, one finds
(J1) = —jhsinBcosd, (Jo) =—jhsinfsing, (Js3) = —jhcosb, (4.27)

which, since the fiducial state gives the above triplet as —3/(0,0,1). represents a

reorientation of the initial state in the direction of (6, ¢).

4.2.2 The Spherical Rotator

Generalized coherent states for the spherical rotator have been proposed by Atkins
and Dobson [3] and Bhaumik, Nag and Dutta-Roy [16], among others. Both of
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these propositions are generalized annihilation operator coherent states arising from
Schwinger’s bosonic treatment [72] of angular momentum (see Appendix B).

Atkins and Dobson describe their states as simultaneous eigenstates of the sin-
gletons @, and a_ (with complex eigenvalues), and hence include the half-integer
J states. This definition renders them equivalent to the direct product of two
harmonic oscillator coherent states, and so their various properties follow quickly.
For example, they satisfy a resolution of the identity given by the standard form
Eq. (2.35) written twice, once for each eigenvalue. As well, they have a classical
limit which may be exploited to study the quantum classical correspondence of an-
gular momentum. Note that convenient time evolution does not follow (under the
action of the Hamiltonian H = J2/2I) since the eigenvalues of J? are quadratic,
unlike the equally spaced eigenvalues of the harmonic oscillator Hamiltonian. How-
ever, the main difficulty with the states of Atkins and Dobson is the lack of a
position space representation due to the inclusion of the half integer j states.

Bhaumik et al. omit the half integer j states. They define their states as si-
multaneous eigenstates of K_ and [_, the ladder operators of bosonic construction
discussed in Appendix B. It is unclear why they define their states in terms of
K_ and not L_, thereby retaining the symmetry between positive and negative m.
Also, their expression for I_ is one which only when modified leads to a generator
for so(2,1) or su(1.1).

Briefly, their states are defined by satisfying jointly the two eigenvector-eigenvalue

equations

118,7) = B818,7),  K-18,7) = 718,7)- (4.28)
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with 8 and v complex numbers. From Eqgs. (B.20) and (B.18), each of the above

gives a two-term recursion relation which is simply solved to give

1 o J ﬁm7j-m
cosh § Zf:m__j \/(j +m)l(j —m)

18,7) =

|, m). (4.29)

in which £ = |B|(1 + |a|?) and v = af. In terms of a and 3, this becomes

1 © J '—mﬂj
cos Ej:Om:—J \/(] + m) (.7 - m)'

|a: B) =

15, m). (4.30)

Bhaumik et al. {16] also report a resolution of the identity satisfied by their states.
Unfortunately, theirs does not appear to be valid, an observation not present in the

literature. A resolution of the identity which these states do satisfy is given by

1-/d2a —e ¢ cosh €|a; B)(a; B, (4.31)

where d?z stands for dRe(z)dIm(z). The expression given by Bhaumik et al. lacks
the cosh ¢ which eliminates the normalization constant of Eq. (4.30), and a factor
of 1 associated with the integration over 8.

In any case, it is somewhat more convenient to define them slightly differently.

Consider states which are simultaneous eigenstates of /_ and L_. With

2 1. . s 1.,
I_ = 20+84, L_= 8-, (4.32)
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it is further convenient to identify the eigenvalues according to

Fla.p)=3a'le.6), E-la.f) = ;6%a.9) (433)

with Re(a) > 0 and Re(8) > 0 to avoid the duplication of states. {(See Appendix
B for more details regarding the bosonic treatment of angular momentum.) Then,
expressing the state as a superposition over angular momentum eigenstates |j.m)

with integer j, the recursion relations

Vi+m+2)i+m+Dejsimn = ocjm. (4.34)

Vi -m+2)G—m+Dejrima = Bcim (4.35)

follow through Egs. (B.20) and (B.22). Starting at coo and applying successively
Eq. (4.34). one obtains

2k
o = (4.36)
v (2k)!
Then applying Eq. (4.35) successively to cii yields
2k 32¢
Chith-t = M- (4.37)
(2k)!1(20)!

Changing the labels to the standard j and m and imposing the usual normalization

yields

1 aitm gi=m
0= Jeshe 2:1 Vi +m)l(G —m)

']j, m), (4.38)

where £ = |a|? + |3|2. Note the use of the comma to distinguish these states from
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Eq. (4.31). The states Eq. (4.38) satisfy the resolution of the identity

s da &B _,
1= 4/Re(a)20 -1r_ ./Re(ﬁ)zo ——e""cosh fla’ ﬂ)(a,ﬂl, (439)

n

in which, as indicated, the integrals are only over the non-negative real portion of
the complex planes of a and 8.

Before describing some of the properties of these states, it is worthwhile to
connect them to the standard SO(3) coherent states, given by Eq. (4.10). Suppose

la; ) is a superposition of SO(3) coherent states which is also an eigenstate of I.

Then
Flesg) =13 61l7.¢) = zalas ). (4.40)
=0

Carrying the operator through the summation in the usual fashion in conjunction

with Eq. (B.20) yields the two term recursion relation

1+[¢? 2cs
j+l = zm ; = : ’ (4.41)
¢ J@i+2)2+1)
so that
2\j 25
o= LY aje (4.42)
¢ (25)!
Assembling the state |a; (),
1 a2j<-j+m

|a; ¢) =

: e "
\/coshfgn:‘ \/(Hm)!(j_m)!lfvm)\ §=lal’(1+[¢I7),  (4.43)

and comparing with Eq. (4.38), indicates that |a;() = |a,) through the identi-
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fication @ = (. A similar recipe exists for constructing superpositions of SO(3)
coherent states which are also eigenstates of L_.
Not surprisingly, since [[_, K_] = 0, the states |a, ) may also be constructed

as an eigenstate of K_ formed of SO(3) coherent states. Suppose

f(_|n; () =k|x:(), with |x;¢) = Zc,ly,() (4.44)
i=0
This gives the recursion relation
ey (37 + 12 +2)—— = Kes, (4.45)
1+¢?

which may be solved to yield

LR W

R T (4.46)

Assembling the state |x: () in conjunction with Eq. (4.10) and demanding normal-

ization gives

1
cosh

(s

VU +m)i(j —m)!

.m), s=%<1+|<1’). (4.47)

|55 ¢) =

2

With the identifications & = af, and a = 3¢, Eq. (4.47) corresponds to Eq. (4.38)
including the value of £.
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Properties of the States

Due to the work in Section 3.1, the states |a, 3) defined by Eq. (4.38) are minimum
uncertainty states for some pairs of operators. In fact, since they are eigenstates of
I_. L_ and K_ they the satisfy minimum uncertainty prodncts

hz

(AL (ALY = (L)', (AL)Y(ALy)® = K’

4

h? , 2
T (AK)(AK:) = - (Ks)"
(4.48)
Through the constructions of Eq. (4.43) and Eq. (4.47), it is not difficult to work

out these uncertainties,

2
(ALY = (AL =" (laP tanhe + 7). (4.49)
(ALY = (ALz)Z=ﬁ(|ﬁ|’tanhe+5) (4.50)
d H. .
(AK)? = (AK,)? = %:(ftanhﬁ-i-l). (4.51)

However, these operators are derived from abstract ladder operators in some ab-
stract space. Minimum uncertainty in these operators does not correspond to any-
thing physically significant, or if it does, it is far from obvious. Only in the fortuitous
case of J do the operators correspond to physical angular momentum, and it is to
these operators we now turn our attention.

The simplest calculations of these expectation values in a coherent state |a, )
are through an expression in terms of superpositions of SO(3) coherent states, for

example, Eq. (4.43). Accordingly, expectation values of the angular momentum
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components are

Re(¢
(h) = Agranh ey, (452)
(i) = ~h¢tamhgrm) Im‘éf (453)
_ 46 = ¢
(J3) = —fi§ l:anh{1 T (4.54)
In terms of the angles 8 and ¢ given by Eq. (4.13) these are
((J1).(J2), (J3)) = —ﬁ—g— tanh {(sin 6 cos ¢, sin 8 sin ¢, cos ). (4.55)

As with the SO(3) coherent states, these states are not minimum uncertainty states
for the standard angular momentum operators. However, looking at the rotated
angular momentum operators as mentioned before, some progress can be made.
To this point, the treatment of angular momentum operators has been somewhat
cavalier. In representing the operators as pairs of bosonic creation and annihila-
tion operators, direct products should be used. For example, J, = &i_ ® a-, and
I, = %(&L 1) ® 1., and so on. Similarly, when expressing the standard angular
momentum operators Jx without regard to their bosonic realization, but applying
them to various states of differing j, the operator actually in use is the direct sum

of the operator over all the representations:

Je =P Jjz (4.56)
1=0

in which the subscript j labels the representation, and £ = 1,2,3. The more care-
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ful treatment is introduced now to accommodate the rotation of these operators
through Eq. (4.22), since the displacement operator exists only within representa-
tions of SO(3). The rotation of J; is given by

Of course, all this means is that a cavalier treatment of the rotation of these oper-
ators continues to be legitimate.

Accordingly. due to Eq. (4.26), the expectation values of J, in the state |a. )
are given by

(L) = (La) = 0. (L) = ~Af tamh (4.58)

where the calculations were carried out by expressing the state as a superposition

of SO(3) coherent states. via Eq. (4.42). As for the squared quantities.

(23) = (23) = 4% tanh, (4.59)

so that the coherent state |@,3) is a minimum uncertainty state for the rotated
angular momentum operators,

62 ﬁ‘.’
1

(ALY (AL) = (L3)(I3) = A*2-tank® € = —

5 (L3). (4.60)

Returning to the expectation values of Ji, J2 and J3, consider the complex
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parameters a and 3 in a polar notation,
a=lale®, g =|ple, (4.61)

exnectation valunes into

—h Ceaa - ~ Slpieal 1R 38523 e etall (=S 334w BB S SR,

(1) = HlallB]cos(d; — ;) tah (4.62)
() = Hlalllsin(d; ~ 8,) tanh £, (4.63)
(Js) = (8 ~ o) tenh . (4.64)
(J?) = Z—2(3€tanh£+£2) (4.65)

With these expressions and the identifications

J = —gf tanh ¢, (4.66)
2 _ 312
cosf = Blsi_’ (4.67)
sinf = —2@. (4.68)
¢ = 6,-4,, (4.69)
the expectation values become
((J1).(J2),(J3)) = J(sin @ cos ¢, sin O sin ¢, cos F), (4.70)

in agreement with the earlier expression Eq. (4.55).

To calculate the expectation values of the Cartesian coordinate operators, a cer-
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tain approximation must be made which requires £ to be sufficiently large that the
state |a, B) is in effect absent from states of low j. The details of this approximation
are discussed in Appendix D.

From the appendix, these expectation values are given by

@ = jla*+a-p-pn=t, (4.71)
(y) = %(az -a?+ 8- ﬂ")ti?i. (4.72)
tanh
(2) = (af +a"f) a’z . (4.73)
Making the further identification

‘¢’ 292+01, (474)

these expectation values may be expressed by
(z) = (cos@cosfcosy + sin @sin)tanh{, (4.79)
(y) = (sin¢cosfcosy — cos¢@sinp)tanhé. (4.76)
(z) = —(sinfcosyp)tanh{, (4.77)

The significance of these angles are shown in Figure 4.1. The angular momentum
vector J makes an angle 6 with the z-axis and a line on the z-y plane below it
makes an angle ¢ with the z-axis. The vector 7, signifies the location of the state
with ¢ = 0, which is below J by a right angle. The location 7 of the coherent state

is found by rotating 7o an angle ¥ clockwise while looking down J and remaining
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Figure 4.1: The angles involved in the location of the coherent state.

on a plane normal to J. Note that the set of points corresponding to ¥ € [0, 2n] is
a geodesic on the sphere, the path one expects a classical particle to take with an
angular momentum oriented parallel to Eq. (4.70).

Lastly, consider time evolution. These coherent states do not evolve in time
among themselves. However, it is always possible to express the time evolution in
terms of the evolution of coherent state parameters plus corrections. Such an effort
is conferred meaning when the corrections are small.

Given a value jo, one may write

3G +1) = —55 + (2jo + 1)j + (4 — jo)*. (4.78)
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Therefore, with |/(0)) = |a, 8), the evolved state [1(t)) is given by

1 odtmpi-m Ay
W(t)) = B e—*:—,J(J'i'l)tlj’m)

einiiat oitmgi-m

Veosh g 5o/ + ml(j — m)!

X exp (—izf} (20 +1)7 + (3 = 50)°) t) 4. m)

- ei,%jgt |ae-iut/2. ,Be""‘"/z)

es,"—,jge (ae-iu:/z)j+mﬂe-iu/zz)j-m < N A ) ‘
+ —i=(j — Jo)°t) 1, m
VeoshE5J + m)l(G — m)! Te R
+..., (4.79)

in which successive terms arise from continued expansion of the exponential. and
w = (20 +1).

The value of jo to be used is that which minimizes the corrections. Taking jo at
the centre of the distribution in j gives jo = %E tanh . Since the expansion of an
exponential was required to obtain Eq. (4.79), one would not expect this correction
to be small. However, at ¢t = 0 the first correction term (denoted |¥(!)) vanishes.

To see for how long it remains small, note that

(2(2)|2M(2))

= P (- 2gean g + D [eramh e+ €] 3 - £ [36° + (6 + &) tanh ] s
= 37 Jo Jo ) Jo 2 Jo
+ 78 46+ (¢ +68) tanb ] ) (4.80)

The proper way to choose jo is to to minimize Eq. (4.80) over jo as a parameter.
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Since the expression in question is a quartic in jg, this approach is not very fruitful.
However, the derivative of the quartic has one real root and two complex roots (by
Maple). Since the coefficient of j§ is positive, the real root must correspond to a
single, global, minimum of the quartic. Not surprisingly, the expression for this
root is extravagantly cowplicated, but does consist of terms tendiag to zero plus

%E tanh ¢ with increasing £. Inserting this value for jo into Eq. (4.80) yields

K42 (€ 3tanh’E+1 €,
(P EWy = 2; (f_ﬁ tcosh§£+ +%[tanh‘£—tanhf]
2
+ % [7 - 4tanh?¢] + l—gs—tanhf) : (4.81)

Note that with increasing £. the quartic and cubic terms vanish exponentially. The

quadratic term is the largest remaining term. tending to 3¢?/16 for large values of

.

A Classical Limit

Large values of £ have been alluded to in several contexts already. To formalize this
concept, consider the following limiting process hereafter designated the classical

limit for the angular momentum coherent states |a, 3),
1
h — 0, J=constant ~ —Ehﬁ. (4.82)

The first direct implication is that § — co simultaneous to i — 0.
The conception of this limit is in direct analogy with that of the harmonic

oscillator coherent states in which £ — 0 with #|a|? fixed. With £ = |a|* + |B/?,
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the limit Eq. (4.82) is simply the same limit, applied jointly to the a and [ parts
of the angular momentum coherent state.

Under the action of this limit, the uncertainties become

IAT\ LN A TN N
\ 41) —7 U, \u;z)—ru,

—
Ha
co
<o

-

as well as for 1:',1,2 and K 1,2- Also, the uncertainties of the rotated angular momen-

tum operators disappear,

(AJ,) = 0. (AJ,) = 0. (4.84)

Since tanh § — 1 (which it does quite quickly).

(z) — (cos¢cosfcosp + sin ¢sin ¥). (4.85)
(y) — (sin pcosfcostp — cos ¢sin ). (4.86)
(z) = —(sinfcosy), (4.87)

so that (r)® = (z)? + (y)* + (2)* — 1. The significance of this is that since the
surface of the sphere is convex, any distribution whatsoever of the wave function
on the surface results in (r) < 1. Therefore, in the limit, with (r) = 1. the wave
function must be localized on a point.

As for time evolution, the leading behaviour is given by |ae™?/?, Be™t/?) so
that under time evolution, recalling the identifications of Eqs. (4.66) to (4.69) and

Eq. (4.74), the angles 6 and ¢ are constants of the motion. and 3 behaves like
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Yo + wt. In the classical limit, w = J/I for a moment of inertia I, i.e. precisely the
behaviour one would expect from a classical particle on the surface of a sphere.
In the classical limit, the correction term |®(")) does not vanish. Given a specific

time and enacting the classical limit,

(gguy = 3 (4.88)
167

From some numerical work, this does not improve significantly when using the true
minimum of the quartic calculated through the symbolic computations of Maple
rather than the approximate minimum %5 tanh . However, the classical evolution
of a localized particle on a sphere takes place along a localized particle moving
along the geodesic of a sphere. which is exactly what is given by |aei“t/2, Be™t/?).

The discrepancy must arise from the destructive effects of expanding exponentials.



Chapter 5

Klauder’s Construction with

Energy Degeneracies

5 lauder’s construction for generalized coherent states is not directly applica-

2 ble to energy degenerate systems. In the presence of energy degeneracies,
the resolution of the identity fails. This chapter addresses the issue of how to over-
come this difficulty, and applies the resultant construction to the hydrogen atom

problem.

5.1 Background

Coherent states for the hydrogen atom have been contemplated by researchers since
the first mention by Schrodinger of the harmonic oscillator coherent states [70].
Schrodinger proposed that non-spreading wave functions which follow classical

motion in the Coulomb potential should exist, but the technical difficulties over-

97
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whelmed him at that time. Indeed, the technical difficulties have kept the topic
alive for seventy five years. All the published constructions of hydrogen atom co-
herent states have only been “coherent” in a weaker sense than that conceived by
Schrédinger.

One of the earlier studies was by Brown [21] who constructed states which
traveled strictly on circular orbits, representing only a small. specific set of classical
orbits. Brown's construction was ad hoc in nature, though it deserves mention
being an early contribution.

Many of the hydrogenic coherent state constructions are based on constructing
the Perelomov coherent states for SO(4.2), the dynamical group of the hydrogen
atom [8]. The first of these was Mostowski [51]. Mostowski (and subsequently de
Prunelé {24]) claims that the initial motion is along a classical trajectory, but the
wave function does spread with time and cannot be described by the evolution of
the coherent state parameters.

McAnally and Bracken [49] construct SO(4,2) coherent states, using Barut and
Girardello's conception of coherent states [9] as eigenstates of annihilation opera-
tors. McAnally and Bracken argue that the Perelomov construction for the hydro-
gen atom is inappropriate due to the enormous number of contributing eigenlevels
in the large quantum number limit (see Section 3.1.1). They also take issue with
some of Mostowski's calculations and provide a more detailed description of their
calculations and conclusions.

Zlatev et al. [91] (making no reference to McAnally and Bracken’s construc-

tion) provide a further presentation of Perelomov’s construction of SO(4,2) coher-
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ent states, exploiting a bosonic realization of the group [83]. Their conclusion is
that SO(4,2) coherent states cannot have a classical limit, at least in their terms.

Gerry [35] also exploits a bosonic representation of SO(4,2) in a construction
of hydrogen atom coherent states, writing the states directly in terms of harmonic
oscillator coherent states expressed by the bosonic operators. Gerry uses this con-
struction to derive Kepler’s third law without resorting to large n limits. Gerry
and Kiefer [37] also present a group theoretical construction of hydrogenic coherent
states. Using the spectrum generating subgroup SO(2.1), Gerry and Kiefer con-
struct coherent states which do not disperse when evolved in a so-called “fictitious
time” corresponding to evolution in a four dimensional harmonic oscillator mapped
to the Coulomb problem through the Kustaanheimo-Stiefel transformation.

This Kustaanheimo-Stiefel transformation has been the basis of several other
constructions of hydrogenic coherent states. Another work by Gerry (36] is such a
paper. Gerry reports that these coherent states remain localized while evolving in
the same sense as Gerry and Kiefer's states cited above. Bhaumik, Dutta-Roy and
Ghosh [15] almost simultaneously published a similar construction, though their
states are evolved in real time. Similarly, Nuori [63] constructs coherent states
for the d-dimensional Coulomb problem by mapping onto a harmonic oscillator of
appropriate dimensionality. Ghosh [38] constructs generalized annihilation operator
coherent states for the three dimensional Coulomb potential by mapping the system
through squared parabolic coordinates onto two dimensional harmonic oscillators.

Nieto’s generalization for minimum uncertainty coherent states [58] (see Section

2.2.3) may also be adapted to three-dimensional radial problems, and was applied
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to the hydrogen atom [55]. This approach relies upon expressing the wave function
as the product of radial and angular parts.

Numerous publications involving hydrogenic coherent states have come from
a group centred at the University of Rochester engaged in the experimental gen-
eration of Rydberg states in atoms (85, 87, 88, 86, 89]. Theoretical calculations
show [32, 66] that a picosecond laser pulse acting on certain atoms excites a va-
lence electron into a localized superposition of Rydberg states. These states are
regarded as coherent in the sense that they are initially localized and initially exhibit
classical behaviour. The long time evolution of these states is dominated by a series
of fractional revivals [4, 54], intensely non-classical behaviour. The experimental
results bear these predictions out.

From this group, Gaeta and Stroud [31] consider coherent states similar to those
of Brown [21], examining in detail the issue of wave function revivals. Mallalieu and
Stroud (48] also examine these states as evolved through a semi-classical propagator.

Two somewhat similar studies make use of SO(4) as the degeneracy group of
the hydrogen atom. Gay, Delande and Bommier [33] discuss superpositions of
SO(4) coherent states described as the direct product of two SO(3) coherent states,
though in different terms from what appears in this chapter. Nauenberg [53] con-
structs SO(4) states by first considering states associated with the often overlooked
SO(3) subgroup generated by the operators AI, /iz and js. Whereas Gay et al. do
not even consider the superposition of different SO(4) coherent states, Nauenberg,
stating that general results are reasonably independent of how they are superposed,

performs his calculations with a Gaussian superposition.
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Recently, several papers have appeared constructing “temporally stable” hydro-
genic coherent states based on the general procedure of Klauder. Klauder’s original
paper [45], contains such a construction, making use of a somewhat ad hoc construc-
tion of SO(4) coherent states which, among other things, disrupts normalization.
Klauder’s paper was followed by one by Majumdar and Sharatchandra [47], who
construct the SO(4) coherent states more carefully, though in doing so they report
a resolution of the identity which cannot be valid. Unfortunately, this problem
undermines the entire basis of their construction. A central claim, developed in
an unpublished preprint 73], is that there is a one to one correspondence between
coherent states by Klauder’'s construction and their measures in the resolution of
the identity. This claim has been shown to be false by Sixdeniers et al. [74] who, as
an example in their construction of coherent states, give multiple sets of coherent
states all leading to the same measure.

Another take on temporally stable coherent states comes from Fox {27] who also
uses careful construction of SO(4) coherent states. Hearkening back to Nauenberg’s
construction (53], Fox employs a Gaussian superposition of these states parameter-
ized in such a way as to provide a resolution of the identity. As such, this approach
may be applied to systems besides the hydrogen atom, though it does not result
in the standard coherent states when applied to the harmonic oscillator itself. Fox
uses the Gaussian superposition as one way of overcoming the criticisms of Bellomo
and Stroud [12, 13], who claim that the temporally stable approach to constructing
coherent states does not support wave function revivals. Another way is discussed

in Section 5.3.4.



CHAPTER 5. KLAUDER’S CONSTRUCTION 102

Of course, in the low quantum number regime, Fox’s states are only Gaus-
sian in the principal quantum number distribution, not in configuration space.
Fox shows [27] that in a limit involving large quantum numbers, the configuration
space distribution does become Gaussian, and that the inevitable dephasing of the
azimuthal angle (spreading of the wave packet about the classical orbit) occurs
relatively slowly.

The literature on the topic of constructing hydrogenic coherent states is crowded
to say the least. It appears that each author has his own idea as to what “coherent”
means, stated or unstated. For the hydrogen atom problem, Schrédinger's idea
of “coherent™ meaning minimum uncertainty wave packets which follow classical
trajectories for all time, the prospects are quite dim. After all, the potential at
large distances from the origin is very flat, so that finding non-dispersing hydrogenic
wave packets is as likely as finding such packets for free electrons. In any case. with
the present task of defining temporally stable hydrogen coherent states, certain
problems exist with published constructions thus far. The following sections remedy

this situation.

5.2 Handling the Degeneracy

As observed in Section 2.2.4, if the Hamiltonian H contains any energy degeneracy,
the resolution of the identity fails. In order to circumvent this problem, the solution
is to select one eigenstate from each energy level so that dg, 5, = dnm, but which
eigenstate? Clearly, a standard “number state” will not suffice since the resolution

of the identity will then only project onto the contributing states. The selected
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states must be in some sense representative of all the states in the energy eigenlevel.

In fact, the minimum requirement for the selected eigenstate is that it be from
among a set of states which satisfy a “resolution of the identity” on the entire
degenerate subspace of the Hilbert space, and that the measure involved in the
resoiution of the identity is independent of the subspace. Recall that any linear
combination of degenerate eigenstates is still an eigenstate.

Energy degeneracies arise in the presence of symmetries in the system. Symme-
tries are embodied in quantum mechanics by sets of commuting operators. These
commuting operators are the Casimir operators and generators of the degeneracy
group, where for the present purposes, the degeneracy group of a system is a group
such that one unitary irreducible representation contains all the eigenstates of a sin-
gle degenerate energy level. The obvious, though not unique, construction of these
sets of states is Perelomov’s construction of coherent states (see Section 2.2.2),
applied to the degeneracy group.

To accomplish this, replace Eq. (2.86) with

|s,, z)

= N(s?) io i:exl‘/(b;—i”ﬁ\/d_ﬂln,z). (5.1)

where d, is the degeneracy of the nth energy level, |n, z) are the Perelomov coherent
states for the degeneracy group G, and the normalizing factor N(s?) is given by
®©  .2n

L= (o m,2ls,m,2) = M) 3 S,

n=0 pn

(5.2)
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From Eq. (2.74), in each energy degenerate subspace of the Hilbert space, the

Perelomov coherent states satisfy the resolution of the identity

In = davol(H) [ dn(2)In,z)(n. 2], (5.3)

in which H is the isotropy subgroup relative to the fiducial vector in the construction
of the Perelomov coherent states, X = G/H is the quotient space formed by the
degeneracy group with the isotropy subgroup, and the measure dp is induced from
the Haar measure on the degeneracy group. The states Eq. (5.1) therefore satisfy

the resolution of the identity

i= [du(s.r.2)ls.7.2)s,7.2l. (5.4
with
[ duts.v.2) = (5.5)
. _1_ ® ) r
rlingo 21"/; ds’k(s )/-r‘ dy vol(H)/qu(:z:).

Since the states |n,z) are formed by superpositions over states which share a
common energy eigenvalue e,, they are also eigenstates of the Hamiltonian and
so evolve simply in time. Accordingly, the states |s,v,z) preserve the temporal
stability property of the non-degenerate construction.

The salient feature of Eq. (5.1) is the somewhat unobtrusive but nevertheless

important factor v/d, which accommodates the d,, of Eq. (5.3). This factor, though
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associated with the measure over the degenerate subspaces in the resolution of the
identity, cannot remain with the measure unlike Majumdar and Sharatchandra’s
expression [47], since it is dependent on the energy level. If, like Klauder [45] or
Fox [27], the factor is bundled in with the state |n,z) normalization is disrupted.
If this factor is incorporated in the present manner with normalization imposed
afterwards, then neither of these problems arise. Furthermore, this admits the
democratic interpretation that the state Eq. (5.1) consists of a superposition of
energy eigenstates, each eigenstate being a coherent state of the degeneracy group.
wetghted by the degeneracy of the group. In this conception, all energy eigenstates
are weighted equally up to the factor of s*/p,, whereas the other constructions
noted favour eigenstates in levels of low degeneracy.

This completes the general construction. Note that the function p(u) remains
unspecified so that specific problems may be tackled by specific choices of this
function. To illustrate this construction and this degree of freedom, we now turn

to the hydrogen atom problem.

5.3 As Applied to the Hydrogen Atom

The group theoretical treatment of the hydrogen atom is standard in the literature
(8, 79, 1]. For the hydrogen atom problem, there are two pertinent realizations
of the degeneracy group SO(4). One uses the elements of the angular momentum
vector, f),-, and a scaled quantum Runge-Lenz vector, fi,-, as generators of the group,
whereas the other decouples these six generators into two sets, M; = %(LJ + A;)),

and N; = %(f}j — A;). In the second representation, one finds that SO(4) =
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SO(3) ® SO(3), so that, loosely speaking, a Perelomov coherent state for SO(4)

may be given by the direct product of two SO(3) coherent states.

5.3.1 Coherent States of the Degeneracy Group

The SO(4) coherent states are quite interesting in their own right. Such coherent
states have been discussed in the past. The present construction is most similar
to that of Gay, Delande and Bommier [33] although they are not interested in the
completeness of the states and obtain their expressions by considering special cases.

Though he uses a different construction, much the same may be said of Nauenberg's

construction [53].

The SO(3) coherent states with the fiducial vector |5, —j), j = 0.},1.3... .. are
given by Eq. (4.10),
. d (29)! }” Pt
() = - - s=|7.m). 5.6
0= 2 G e (5.6)
and the resolution of the identity for these states is written
. 27 +1 d*¢ . )
1; = \ .Cl, .
5= [ 060l (5.7)

where d?¢ = dRe({)dIm((), and integration is over the entire complex plane pro-
jected from the unit sphere with the transformation ¢ = — tan £e~*. Expectation
values of the operator components are given by (in atomic units)

2

g =13 ICI?

(Re(¢). ~tm(¢), 5(¢I* - 1)) . 3)
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In the hydrogenic realization, the representations of each copy of SO(3) are of
equal dimension (n = 2j + 1) so the dimensions of the relevant representations of

SO(4) are d, =n?, n =1,2,3,.... The SO(4) coherent states are thus

LY
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v
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e o

where the individual SO(3) coherent states are given by the expansion in Eq. (5.6).
This leads to the direct product states |j,m;)|j,m;) which may be expressed in
terms of the standard angular momentum states via Clebsch-Gordon coefficients.

To examine the properties of these states, with L = M + N and A =M - N
one has from Eq. (4.15)

2jRe(G1) + 2jRe((2)

L+1GR T 1+1G12

2 Im(G)  25Im(G)

\La) = 1+1G1P 1+][G2 (5:10)

. JUGP =1) | G2 -1)

La) = T er T Tiear

\ _ 2jRe(G)  2jRe((y)

(A = L+[G12 1+]G)?

s Im(G) | 25Im(()

o) = TeF T itiar (&1
(As) = JUGP-1) (& -1)

1+1[G12 141G

so that by choosing (; and (; appropriately, one may define states of a specified
angular momentum and Laplace-Runge-Lenz vector. Of course, these six elements

above are not all independent. For example, (f..) and (A) must be perpendicular,
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since L- A = M? — N2, and in this realization, M2 — N2 = 0. In fact, this is simply
one of the Casimir operators of SO(4). The other Casimir operator provides the

other constraint,

ot

-t

(V]
N

)= 2 +1) =n' - 1, .

B =

leaving four degrees of freedom among the six components, specified by the real
and imaginary parts of {; and {;. Since the fiducial vectors are states of minimal
fluctuations, these states are states of minimal fluctuation in terms of the rotated
four dimensional angular momentum vectors.

In order to visualize a few examples of SO(4) coherent states, it is useful to
consider those with (f;) parallel to the z-axis. From Eq. (5.10), this is accomplished
by setting (s = —(;. With this identification, the Laplace-Runge-Lenz vector is on
the z-y plane. Since the system is rotationally invariant, the general properties
of these states can be completely characterized by considering only those states
with the Laplace-Runge-Lenz vector parallel to the z-axis. From Eq. (5.11), this
is accomplished by setting Im(¢;) = Im((z) = 0. These identifications reduce the
problem to one real degree of freedom. Re({;) = n. In terms of this parameter, the

expectation values are given by

25

(L) = = v (00,7 = 1), (5.13)
(A) = 1ijq= (21,0,0). (5.14)

Since these are states with minimal fluctuations about these values, the quantum
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wave functions should be close to the classical trajectories described by these vec-
tors. Thus, the eccentricity, proportional to the magnitude of (A), is given by
e = 29/(1 + n?), depicted in Figure 5.1. Note that € < 1 for all 5, consistent with
this being a bound state.

Describing the quantum wave function in terms of the corresponding classical
orbit, n = 0 leads to a circular orbit (¢ = 0). This also follows since only the
extremal state is preserved in the coherent state, Eq. (5.9). with this choice of
parameter. With n increasing, the orbit elongates in the z direction. Since the
energy is fixed, the semi-major axis is constant, but the semi-minor axis shrinks
according to b = ay/1—¢2. When  — 1, the eccentricity becomes one, and the
angular momentum goes to zero. The quantum state given by these parameters will
be dominated by interference, with the incoming and outgoing portions of the wave
function interfering with one another. As n exceeds one, the eccentricity reduces,
and the angular momentum changes sign.

It is well known that the orbit of a particle in the Coulomb potential in po-
sition space is an ellipse with one focus at the origin. Using the position space
representation of eigenstates, a sample SO(4) coherent state is depicted in Figure
5.2. It is less well known that the orbit in momentum space is a circle, displaced
from the origin a distance proportional to the eccentricity. Using the momentum
space representation of eigenstates [42], the same state as in Figure 5.2 is depicted

in momentum space in Figure 5.3.
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Figure 5.1: The eccentricity as a function of 7.

5.3.2 Hydrogenic Coherent States

It is now straightforward to construct the coherent states for the full system. The

coherent states for the hydrogen atom problem by this construction are given by

19,7, C1. Ga) = 1\/(32)"‘2’;J l m("'i%I)(" u I 1.C1. Ca). (5.15)

The states Eq. (5.15) satisfy the resolution of the identity

- EGd2(,
1 = —/d}l ’7)/ 1 T |C Iz 1 + |C I’) |3,7,C1,<2)(8,’7, 417C2I7 (516)

where the subscripted B is included to emphasize that this is more appropriately
regarded as a projection operator into the bound portion of the Hilbert space. In

the specific example of p(u) = e™¥, with moments p, = n!, explicit form may be
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Figure 5.2: An SO(4) coherent state, on the 81st energy level, with the angular
momentum parallel to the z-axis and with an eccentricity of € = 0.385, shown on a
cut through the state on the z-y plane. (a) The solid lines are a half-height contour
and the dashed line is an ellipse with the given eccentricity, i.e. the classical orbit
with the corresponding parameters. (b) This is the same state on the z-y plane
with |(r|n, (i, (2)|? plotted on the vertical axis.
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Figure 5.3: An SO(4) coherent state in momentum space. on the 81st energy
level, with the angular momentum parallel to the z-axis and with an eccentric-
ity of e = 0.385, shown on a cut through the state on the p.-p, plane. (a) The
solid lines are a half-height contour and the dashed line is a circle displaced from
the origin a distance proportional to the eccentricity, i.e. the classical orbit with
the corresponding parameters. (b) This is the same state on the p,-p, plane with
l(pin, (1, ¢2)|? plotted on the vertical axis.
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given to N(s?) and k(u) by
N(s%) = e™"/3(1 + 3% + s%)1/2 (5.17)

and

k(u) = 1 + 3u + v (5.18)

5.3.3 Some Clarification

At this point. a few observations are in order. Primarily, the term “temporal stabil-
ity” in no way refers to the time evolution of the structure in coufiguration space.
Only through a rather generous interpretation does this construction “positively”
solve the long-standing problem of forming non-dispersing wave packets for the hy-
drogen atom. Temporal stability refers strictly to the mathematical property that
the states evolve in time among themselves. With this property in mind. some
authors [47] have grossly overstated the nature of the configuration space time evo-
lution. while other authors {12, 13] have studied in detail the long-time evolution
of individual states, even though there is no underlying physical basis either to
provide for spatial coherence, or to presume states of this description are found in
the laboratory at all. The question of how to prepare these states in the laboratory
remains very much open.

Much of the study of generalized coherent states rests more in the mathemati-
cal than the physical nature of mathematical physics. Glauber's motivation in this
study of coherent states {39] was not so much that coherent states are found in the

laboratory, but that they provide a representation in which otherwise difficult cal-
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culations become feasible. Glauber noted that certain electric field operators have
representations as sums over the modal annihilation operators. In diagonalizing
these operators, one arrives at states which are eigenstates of these annihilation op-
erators. Restricted te 2 single mode, this corresponds to the annihilation operator
definition of harmonic oscillator coherent states. Hence as annihilation operator co-
herent states, they arise from a representation, a point of mathematical convenience,
not as a conclusion from the physics of the problem. In any case, generalizations
of annihilation operator coherent states have appeared widely, though the physical
motivation to study such definitions in any context besides as representations is
unclear.

Glauber also showed how these states may be constructed through the action
of a displacement operator on the ground state. This definition was generalized
by Perelomov [67], a generalization which has been widely successful. This success
is founded upon the properties of the dynamical group coming through into the
set of coherent states, not from an assertion (which few researchers make) that an
individual state by such a construction matches a state by some preparation in the
laboratory. This success is of a mathematical, not physical. nature. again resting
upon the use of these states as a representation.

Of Glauber's original three definitions, the approach which appears to invest the
most physics is the minimum uncertainty construction. Indeed, squeezed states, a
generalization of this construction, are used as descriptions of physical aspects of
certain quantum optical experiments in the laboratory. Nieto et al. [61] have

also developed a generalization which minimizes the uncertainty product of a pair
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of “natural” operators. Ehrenfest’s relations then lead to the initial evolution of
the quantum expectation values approximating classical evolution. Though this
approach is strongest in terms of an underlying physical motivation, these states still
lack (in general) any physical hypothesis which selects for states of this description
in the laboratory. As an aside, the Nieto construction, though seen from time to
time, is not as widely used as the Perelomov construction for perhaps two reasons.
Firstly, though it is generally applicable in principle, many systems are intractable
to carry through to completion (when the Hamiltonian enters into the “natural”
operators). Secondly, it appears a certain tradeoff is at work: This approach is
considerably less mathematically endowed than Perelomov’s approach.

Now consider Klauder's construction. All of the attractions are mathematical
in nature. As initially presented, no reservations are made for coherence in con-
figuration space (i.e. semi-classical behaviour) and there is no general physical
mechanism which would result in finding these states in the laboratory. However.
a certain degree of freedom remains in the construction, and two suggestions have
separately appeared that a fourth requirement will simultaneously eliminate the
degree of freedom and ensure for the behaviour in configuration space {47. 34]. It
is likely that a fourth requirement, if it exists, will be physical in nature. The
requirement postulated by Majumdar and Sharatchandra [47] is that the measure
found in the resolution of the identity corresponds to the “canonical” measure on
classical phase space. They further assert that the measure uniquely identifies the
set of coherent states. This assertion is false, as shown by Sixdeniers et al. [74] who

demonstrate multiple measures corresponding to the same set of coherent states.
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Also, though it is convenient from a mathematical point of view, it is unclear why
the measures should correspond to one another at all from a physical point of view,
or even if a meaningful identification (one to one) can always be made between
individual coherent states and points in classical phase space.

A fourth requirement is also postulated by Gazeau and Klauder {34] which is
motivated by an attempt to formalize the connection between the quantum param-
eters to the coherent state and the classical action-angle variables. Unfortunately,
their requirement results in an angle variable whose rate of change with time is
independent of the action, a rather special circumstance restricted to the harmonic
oscillator and a small number of other systems. This is a severe limitation in terms
of semi-classical behaviour, since this is clearly at odds with how the angle variable
evolves in, say, the hydrogen atom problem.

A degree of freedom also remains in Fox's construction [27] of Gaussian gener-
alized coherent states, namely the width of the Gaussian in question. Note that in
this context, the distribution in energy level, not configuration space, is Gaussian.
Fox does not give any criteria which are intended to specify a suitable width. As
with the Klauder's construction, this degree of freedom may be optimized according
to the aim in mind.

Hence, in the absence of an acceptable fourth criterion (none is herein pro-
posed), we carry on. This limits the construction to a mathematical tool, though
an interesting mathematical tool it is. Note that the time dependent Schrodinger

equation for a time independent Hamiltonian in this coherent state representation
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becomes (in atomic units)

2 (5,219 = = gglo. ) (.19

—— .

tion, this would make for an interesting starting point in a study of time dependent
perturbation theory. That is, coherent states are useful when considered as an
ensemble of states, not as individual states.

Speaking now in the specific case. some authors [12, 13] have suggested that the
temporally stable construction of coherent states does not support the possibility
of exhibiting full or fractional revivals as described by Averbukh and Perelman [4]
or Nauenberg [53]. Firstly, before one decides whether a state is to be found in the
laboratory, one should first postulate a physical mechanism for the preparation of
these states: The presence or absence of phenomenon which is, after all, universal
is not relevant. Secondly, these authors did not exploit the degree of freedom which
remains in the construction. Without supplying a physical motivation which would
lead to finding these states in the laboratory, we shall see that by exploiting this

degree of freedom wave functions may be formed by the present construction which

exhibit the full panoply of revivals.

5.3.4 Dynamics

Having thus constructed the states emphasizing, among other things, time evolu-
tion, it is now interesting to consider the behaviour of these states as evolved in

time. Other authors have defined hydrogen atom coherent states with a variety
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of constructions and with various reports of evolution in “fictitious” time [36], or
evolution along circular {21, 31] or Keplerian elliptical orbits with possible, even-
tual state revivals (33, 53]. Coherent states also may be constructed by the present
recipe which travel along elliptical orbits and exhibit fractional revivals.
According to Averbukh and Perelman [4], fractional revivals are a universal phe-
nomenon exhibited by wave functions provided third order corrections and higher
do not contribute significantly to a polynomial approximation to the energy eigen-
values over contributing energy eigenstates. Expanding about n = 7 (using the

more compact i = (n)), the hydrogen atom energy levels are

en = —27112 = (5.20)
1 1 _ 3 —\2 =13
~ on E(n—n)—gj(n—n) +¥(n—n) +

In this expansion the first term leads to an overall (time dependent) phase. and
so can be ignored for the purposes of this discussion. Starting at time ¢ = 0, the
first order term leads to initial classical behaviour. Note that this term contributes
integer multiples of 27 in phase after a time of ¢ = 2773 (Observe that with
circular states, (r) = (2n? + n)/2 which in conjunction with this time leads to
the quantum version of Kepler’s third law.) Classically, a particle in the Coulomb
potential with an energy of E = —(27%)"! has a semi-major axis of % and hence a
period of T¢; = 27, corresponding to the above. (This may further be established
through Bohr-Sommerfeld quantization.) After one half-period, phase differences
equal integer multiples of #. Hence, after one classical period, one expects the state

to be more or less reformed, depending on the dephasing for which the quadratic
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and larger terms are responsible at the edges of the number distribution. The
quadratic contributions at the edges of the distribution (n = 72 + An) are small
after one period provided 37 (An)? < 7, which is the first indication that a narrow
wave packet is less inclined to disperse in configuration space. This argument is
usually phrased in terms of the fact that the energy levels are more evenly spaced
in the hydrogen atom spectrum at large quantum numbers.

The same argument may be applied to the quadratic term in the expansion
Eq. (5.20). Again starting at time ¢ = 0. the linear term gives the initial near-
periodicity provided the dephasing by the quadratic term is small. Eventually, this
dephasing will not be small. However, after a sufficiently long time, the dephasing

contributions will be on the order of 7. In fact. at some time T, with

S APT =k T=

27
2nd 3

at. (5.21)
for some integer k, the phase contributions will be integer multiples of x. (Since
phase angles are equivalent up to multiples of 27, the k? term acts equivalently
to k, which is equivalent to the sequence {0.1,0,...}.) This represents the initial
state evolved one half period from the initial time so that if the initial behaviour
is of a more or less coherently moving, localized wave packet. the behaviour in the
neighbourhood of T, will be likewise, provided the cubic term is sufficiently small

at the edges of the distribution, i.e.,

4r(An)® < 37, (5.22)
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which asserts that the number distribution must be narrow if wave function revivals
are to be observed. Note that T, = T,.,/2 in Averbukh and Perelman’s notation,
who consider integer multiples of 2w, rather than = as above.

These considerations may be carried on ad infinitum with successive terms in
the energy level expansion, yielding super-revivals and so on, but the same general
behaviour will result for successively longer times: An initially localized wave packet
which has long since dispersed will reappear out of nowhere. This phenomenon has
generated a great deal of interest since there is no classical counterpart. Classically,
a smooth distribution of trajectories will disperse and remain so.

At the heart of the coherent states described above lies the function p(u). Given
the distribution function p(u) = e~* with moments p, = n!, the hydrogenic coherent

states, Eq. (5.15) with Eq. (5.17), leads to a eigenlevel distribution characterized
by
-8 ) 2n 2
e ns**(n + 1)
(n) = 34-{—332-{-1"2:% n!
2 s*+5s% + 4
st4+3s2 + 17

(5.23)

This summation follows from the usual collection of techniques involving differen-
tiating by s, shifting indices, and comparing with the expansion of exp(—-s?). By
similar techniques, one obtains

233 +6s% + 145 + 1052 + 4

2:
(An)" = s 88 +6s6 +11s4+6s2+1"

(5.24)

so that, taking leading order behaviour, An ~ ,/(n). Substituting into the above
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necessary condition for a revival at t = T, gives 47r\/(—15 /3 <« 1 which is never
satisfied since (n) > 1.

However, the function p(u) is a “degree of freedom” in the construction, and
may be chosen according to application in mind. Accordingly, consider instead
p(u) = exp(—u®) for some constant & > 0 with a view to constructing wave packets

which exhibit strong revivals. The moments of this function are

pn = /°c> u" exp(~u®)du = ~I(
0

a a

). (5.25)

Many of the expressions involved in subsequent calculations may be handled using
properties of the functions of Mittag-Lefler [11]. though they will be treated instead
by comparisons to expressions following from p(u) = e~%. In fact, using p(u) =
exp(—u®) results in a set of coherent states closely related to those described by
Sixdeniers et al. [74].

Expressions for (n) and (An)? may be approximated by recognizing the scalings

necessary to map expressions with @ = 1 onto those with general a:
n+l->(n+l)/a, s-— s (5.26)
Hence, one obtains to leading order (large values of s will eventually be involved)
(n) ~ as®®, An~ as®, (5.27)

so that An ~ \/a(n). Substituting this into the minimal condition for the first full
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Figure 5.4: Distributions in energy level for a =1 (x) and a = 1/32 (+).

revival gives

ana®?/(n) <« 3, (5.28)

which may be satisfied if a is chosen sufficiently small. Without discussing the
effect of changing a very much further, there will be a tradeoff between large and
small a: Large o will introduce many significantly contributing energy levels for
a given (n) yielding good spatial localization, but weak or non-existent revivals,
whereas small a yields strong revivals of poorly localized states. Note that in this
construction a small width in n follows from an appropriate choice for p(u), whereas
the same may be accomplished by Fox's construction [27] by simply specifying the
width to be narrow.

As a typical example, consider the state depicted in Figures 5.5 to 5.8. The

energy level distribution is shown in Figure 5.4. For this state, @ = 1/32 and s =
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Figure 5.5: A hydrogenic coherent state depicted on the z-y plane. evolved shown
at times (a) t = 0. (b) t = T¢y/4, (c) t = Teu/2. (d) t = 3Tci/4. (e) t = T¢y, and (f)
t = 2T¢;. where T¢; is the classical period.

Figure 5.6: A hydrogenic coherent state depicted on the z-y plane. evolved shown
at times (a) t =0, (b) t =T,/5, (c) t = T./4, (d) t =T./3, (e) t = T, /2. and (f)
t="T,.
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Figure 5.7: A hydrogenic coherent state depicted on the p.-p, plane in momentum
space. evolved shown at times (a) ¢ = 0, (b) t = T¢i/4. (c) t = Teu/2. (d) t = 3T /4.
(e) t = Tcr, and (f) t = 2T¢y.

Figure 5.8: A hydrogenic coherent state depicted on the p.-p, plane in momentum
space, evolved shown at times (a) t =0, (b) t =T./5, (c) t =T,./4. (d) t = T,/3,
(e)t=1T,/2, and (f) t =T,.
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2.209 x 10%. This results in a state centred at (n) = 160 with a width of An = /5
for which one expects a full revival at ¢ = T, = 1.373 x 10°. The chosen parameters
1,2 to the SO(4) coherent state provide an elliptical orbit with eccentricity ¢ =
0.385, the major axis parallel to the z-axis, and the angular momentum parallel to
the z-axis, so that the state is constrained to a narrow region about the z-y plane
in position space and the p.-p, plane in momentum space. The vertical axes are
amplitudes of the wave functions in position and momentum space, calculated at
the times indicated on a square grid 80000 units in width centred at the origin in
position, and 0.02 units in width in momentum space.

The evolution of this state is as expected. Initially localized. the state evolves
semi-classically. The wave function then spreads out but remains close to the
ellipse. As the expected times for the various fractional revivals arrive, the state
exhibits the expected revival including the full revival at ¢ = T,. even though an
examination of the minimal condition for the first revival gives the dubious result
0.29 « 1. Revivals are observed in position space as well as momentum space.

Figure 5.10 depicts the autocorrelation function for the same state as above, ex-
hibiting the typical pattern characterizing revivals (compare with Figure 2 of Parker
and Stroud [66]). Compare Figure 5.10 with Figure 5.9 in which the autocorrelation
function is depicted for a similar state calculated with @ = 1. This latter calculation
is analogous to the calculations carried sut by Bellomo and Stroud [12, 13], clearly
showing that no revival is apparent at the expected revival time of T, = 1.373 x 10°.

The minimal condition, Eq. (5.28), for observing revivals is worthy of a further

point. Note that with a fixed a, states with larger (n) are less likely to exhibit
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Figure 5.9: Autocorrelation function x(t) = [(¥(0)|¥(¢))|* at time ¢ of a coherent
state with & = 1. The parameters were so chosen to result with a state of the same
(n), same eccentricity and so forth as depicted in Figures 5.5 to 5.8. The revival
time is T, = 1.373 x 10°.
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Figure 5.10: Autocorrelation function x(t) = [(¥(0)[%(¢)){* at time ¢ of the state
depicted in Figures 5.5 to 5.8. This state employs a = 1/32 and hence has a narrow
distribution in n. The revival time is T, = 1.373 x 10°.
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revivals. Strictly speaking, this is not due to the idea that one expects classical
behaviour in the large quantum number regime, and revivals are a quantum phe-
nomenon. This suppression of revivals has more to do with the relationship between
a and (n) in this definition of coherent state. One could easily imagine a sequence
of states with increasing (n) and decreasing a such that revivals continue to be
observed in the large quantum number regime. In any case, note that for increas-
ing (n), the revival time is of order O((n)*) — after very long times. Though the
cubic term in the energy level expansion is smaller at larger (n). the dephasing that
results from it is larger due to the long time involved.

Commenting again on the assertion by some authors that “temporally stable”
states for the hydrogen atom can not exhibit this phenomenon [12, 13}, their cal-
culations involved. in present terms, a = 1. hence wide distributions in n» which
exhibited no appreciable revivals over the time frames calculated. Wave function
revivals are a universal phenomenon depending on the nature of the energy eigen-
level spacings, and in the case of the hydrogen atom, the width An. By exploiting
the fact that one may choose p(u) to one’s liking, An may be reduced such that
the resultant states do revive. Further, one study [12] used values of s leading to
(n) equal to 25 and 400. With respect to the second calculation, from Eq. (5.21)
T, ~ 5.36 x 10'%, though their calculation only extends to ¢ = 5 x 10°. For the
other study (13|, values of (n) exhibited were 10 and 200. A full revival should be
found at about ¢ = 3.35 x 10° though their calculation only extends to ¢ = 5 x 108.
As shown in Figure 5.9, even if calculations are carried out over the appropriate

time frame, no revivals are apparent.
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5.4 Conclusion

This approach to defining temporally stable coherent states in degenerate systems,

in particular the hydrogen atom problem, is similar in spirit to those of Majumdar
and

Sharatchandra [47], Klander [45] and Fox [27]. Majumdar and Sharatchandra

i3

make explicit use of the SO(4) degeneracy group, but treat the factor d, differently.
Although Klauder’s construction is specific to the hydrogen atom problem rather
than the present general approach, a similar term appears in that construction
which disrupts normalization. Fox uses a somewhat different construction which
avoids the use of the moments of some function p(u). Even so. one may construct
coherent states in degenerate systems related to Fox's construction as the present
construction is related to Klauder's original work.

The general construction of Eq. (5.1) provides states with many useful proper-
ties. They form a complete set of states (in the bound portion of the spectrum)
and evolve in time among themselves. This makes them a clear candidate for use in
representations of time evolved, bound states. Further, there is a freedom in their
definition which stems from the choice of p(u). If p(u) is appropriately chosen.
hydrogen atom coherent states may be defined which exhibit the full range of phe-
nomena exhibited by other approaches: initial semi-classical behaviour, interference
between the head and tail of the state as it disperses about the Keplerian ellipse,
localization on the Keplerian ellipse and wave function revivals at predictable times.

The salient difference between these coherent states and other constructions is
the natural and explicit manner in which the energy degeneracies are treated herein,

via Perelomov’s group theoretical construction of generalized coherent states.



Appendix A
SO(3) and SO(2,1)

Throughout this thesis, frequent use is made of the compact Lie group SO(3) and
the closely associated non-compact SO(2,1). In the present context. the frequent
occurrence of SO(3) is due to the fact that the quantum angular momentum oper-
ators Ji can act as generators for the group, i.e. as a basis for the associated Lie
algebra so(3). In that sense, much of what is said also goes for SU(2), to which
SO(3) is locally isomorphic. The group SO(2.1) arises in two separate contexts:
being generated by the “hyperbolic® angular momentum that comes out of the
bosonic realization of angular momentum, and also as a spectrum generating alge-
bra for the hydrogen atom and the isotropic harmonic oscillator. Accordingly, the
algebra receives more attention than the group, and again, much of what is said of

SO(2.1) also applies to SU(1,1), to which it is locally isomorphic.

130



APPENDIX A. SO(3) AND SO(2,1) 131

A.1 SO(3)

In Euclidean three dimensional space, the classical angular momentum vector is
given by J = x x p. Similarly, the quantum vector is given by J' = % x p. Using
the standard commutation reiations {z;, px] = thd;x, where the d;; is the Kronecker
delta and j,k = 0,1,2,3, one may verify the angular momentum commutation
relation

[J1. Ji] = ihe;ned). (A.1)

where €ji, is the completely antisymmetric Levi-Civita tensor. Introducing the
scaling
Jj=Ji/h (A.2)

gives the commutation relation
[J;. Jk] = i€jnade. (A.3)

This is the standard commutation relation for the Lie algebra so(3) whose Casimir
operator is J? = J? + J2 + J2, the total angular momentum squared. Since J?
commutes with all the components, we choose by convention to consider joint eigen-
states of J? and Jj.

Most textbooks on quantum mechanics note these commutation relations, but
few point out that these are the commutation relations for the Lie algebra so(3) [76].
Much of what follows is thus fairly standard in the literature, but frequently, the

connection to Lie algebras and Lie groups is frankly ignored.
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To assist in working out the nature of these irreducible representations of so(3),

consider the raising and lowering operators
Je=Jy £id, (A.4)
which satisfy the commutation relations
[Ja, Je] = s,  [Ji, -] = 2J5. (A.5)

Since J? and J; commute, they share eigenstates. Suppose |m) is an eigenstate
of J; with eigenvalue m and that Jelm) # 0. Then. using the first of the above

commutation relations
JaJilm) = (Juds £ Ji)im) = (m £ 1)Jg|m). (A.6)

so that J:|m) is an eigenstate of J3 whose eigenvalue is = 1. that is. |m £ 1). Since
so(3) is a compact simple Lie algebra, unitary irreducible representations are finite
dimensional. Therefore, there must be a largest eigenvalue, say j. of j;;. This state

will be annihilated by the creation operator:
Jili) = 0. (A7)
Operating on the left with J_ and expanding,

J_J) = (2 —i(dhd = B 0) + F3)5)
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= (J2-J} - Js)l5) =0. (A.8)

which rearranges to

J5) = (5 + V)l5). (A.9)

With m’ now standing for the lowest eigenvalue (so that J_|m') = 0), a similar
argument gives

J3m!) = m/(m’ — 1)|m), (A.10)

which signifies that j(j + 1) = m/(m’ — 1). The two solutions for m’ are m' = —j
and m' = j + 1. but the second solution is discarded due to the assumption that
m’ is the lowest eigenvalue, i.e. not greater than the largest eigenvalue.

The implication of these calculations is that the eigenvalues of J; range from
some largest value j to a lowest value —j, spaced along unit intervals. Note that
this is a finite range. a reflection of the fact that SO(3) is a compact Lie group.
Since whole numbers come in only two varieties (even and odd). j can only assume
integer or half integer values. Since j identifies the representation, it will be used
as a label along with m: These eigenstates will henceforth be denoted |j.m).

As observed above, the state J.|j, m) is proportional to |j.m £ 1). The con-
stants of proportionality (matrix elements) ci can be determined by considering

the expression
(. m|Je el m) = (§,m|(J? - J} £ Ja)j,m). (A.11)

Since J; is the Hermitian conjugate of Jz, acting to the left with J gives lez)? on
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the left hand side of the above. On the right, expanding the operators and acting
to the right yields
ez =j(G+1) -=m?*+m. (A.12)

Taking c.. real and positive. and factoring the right.

Jeljm) = (G =m)G+m+1)j,m +1). (A.13)
J_lim) = \J(7 —m+ 1) +m)jm—1). (A.14)

Different sources express the matrix elements in different forms: the present form
is intentionally chosen in relation to the bosonic realizations of angular momentum

in Chapter 4 and Appendix B.

A.2 SO(2,1)

Much of this section is carried out in analogy to the previous section. though
in the absence of any specific realization. Also, note that whereas discussions
of angular momentum are standard in the literature, discussions of so(2.1) are
existent [83, 1. 65] though much less common. To begin, consider the generators

T,- for j = 1,2, 3. which satisfy
(T, T2 = —iTs, [T2,Ta) =Ty, [T5.Ty] =iTo, (A.15)

differing from so(3) by the one sign. Continuing the analogy, representations will

be explored in term of simultaneous eigenstates of T3 and the Casimir operator.



APPENDIX A. SO(3) AND SO(2,1) 135

The Casimir operator is given by
T? = T2 - T2 - T2, (A.16)

{This is not simply copied from so(3} with a judicious change of sign, but is the

result of the standard construction involving the Cartan-Killing form,

20 0
k=102 0 |, (A.17)
00 —2

which, since it is not negative definite. indicates that the group is not compact.)

Let

Ti = T1 + iTQ, (A].S)
so that
(T5.T:] = +Tx, and [T,.T.] = —-27T%. (A.19)

Suppose [b) is an eigenstate of T3 with eigenvalue b. Then
TaTelb) = To(To £ 1) = (b £ 1)Tu}b), (A.20)

which demonstrates how T acts as a ladder operator between eigenstates of Tj.
Without any assumptions on the nature of the realizations or representations
(in particular, whether or not the representations are unitary), the foregoing cal-

culations give the general structure of the spectrum of T. Like that of SO(3), the
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spectrum will be given by by + k for k£ some integer. Without making additional
assumptions, k remains unrestricted. To impose some restrictions, realizations of
interest will be Hermitian, leading to unitary representations of the group. In
this case, the eigenvalues b of Tj are real, and so is the eigenvalue of the Casimir

operator. Further, TJ: = T;, so that
(BITLT8) >0, (B|T-T,b) > 0. (A.21)

Another restriction introduced is that there will be an eigenstate |bo) annihilated

by the operator T_: T |8) = 0. Operating on the left of this expression by T. yields
ToT_|bo) = (T2 = T? - T3)|bo) = 0. (A.22)

Rearranging,

T2|bo) = bo(bo — 1)]bo). (A.23)

which identifies the eigenvalue of the Casimir operator.
The matrix elements of the ladder operators may now be determined in analogy

to those of so(3). Provided T_|b) # 0, for some [b) and noting that T! = T_. the

same recipe may be used as for SO(3):

o=l = (bIT:Tolb) = (b|(T2 — T% = T)[b)

= (b-bo)(b+bo—1), (A.24)
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and
les[? = (BIT_T4|b) = (b|(TZ — T + Ts)[b)
= (b—bo + 1)(b+ bo), (A.25)
so that
T_16) = \/(b—bo)(b+bo—1)}b—1), (A.26)
Telb) = /(b—bo+1)(b+bo)lb+1). (A.27)

Supposing there to be a largest eigenvalue b, for which T+[b1) = 0 yields
T_T.lby) = (T2 - T% + T3)|by) = 0. (A.28)

which leads to by(b; + 1) = bg(bo — 1). Solving. by = —bg or b, = by — 1. Clearly.
the latter solution must be discarded since b; > by by hypothesis. With respect to
the former solution, note that since the realizations are Hermitian, the operators

T. T are positive definite. So,
(BIT+T-|6) = (B(T3 — T2 — T3)[b) > 0, (A.29)

so that (b — bg)(b+ by — 1) > 0. The first factor is always greater or equal to zero
s0 b+ b > 1. This must be true for all values of b, and in particular, b = b so that
bo > ;. Therefore, with by > 0, the solution b; = —b, for the largest eigenvalue

must also be discarded so that there can be no largest eigenvalue: A spectrum
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bounded below is unbounded above.

If the assumption was made instead that the spectrum is bounded above similar
calculations would indicate that the spectrum in unbound below. This is a funda-
mental difference between SO(3) and SO(2,1). Whereas the former is a compact
group with finitely dimensional representations, the latter is non-compact rendering
the unitary irreducible representations infinitely dimensional.

Hence, the spectrum of the operator T3, generator of the group SO(2,1), is given
by b =by + k, where £ =0,1,2,....

A.3 A Useful Realization of so(2,1)

To ease the discussion of both the isotropic harmonic oscillator and the hydrogen
atom problem, the following realization of so(2,1) may be applied, with a prudent
selection of parameters, to either of these problems. This development follows
Cizek and Paldus 78], employing a scaling transformation, rather than the “tilting”
transformation found elsewhere (8].

Stemming from the basic commutation relation (in atomic units)
[F,pr] =1, (A.30)

between radial distance, #* = £ + §? + 2% and its conjugate momentum p,, scaled

radial and radial momentum operators may be defined by

R=X, P=2X1, (A.31)
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which satisfy the same commutation relation as above, with some constant A to be

determined later. Using the new operators, three generators may be defined by

- -

W, = &, (A.32)
- _ . _i _ R

W: = n (RP 5(n 1)), (A.33)
Ws = n2R*™™P?+¢R™™, (A.34)

in which £ is some object which commutes with both 7 and p,. These operators

commute according to
[Wl. Wg] = 'in, [Wg, Wa] - 'I:W;;, [WI. Wa] = 2'I.Wz (A35)

Since they are closed under commutation, they span some algebra. To see precisely

what algebra this is, let

(Ws £ Wh) (A.36)

0D

T, = W (A.37)
Through these new operators, the former commutation relations translate into
[Tl, Tz] = —iTa, [Tz, Ts] = ‘iTl, [T;;,Tl] = iTz, (A38)

exposing the algebra to be so(2,1). According to the usual construction, concern

will be focused on joint eigenstates of the Casimir operator and T3. The Casimir
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operator of the algebra in this realization is given by

C = T2-T2—1T7
= W1W3—W2(Wz+'i)
1

= {+ 4—75(1 -n?), (A.39)

independent of the scaling factor A.

The obscure motivation for these derivations will now be laid bare. The genera-
tors T have an abundance of parameters which may be chosen to suit the problem
at hand. A suitable choice permits this realization of so(2.1) to act as a spectrum
generating algebra for a variety of problems, including the N-dimensional isotropic
harmonic oscillator and the N-dimensional hydrogen atom.

Suppose that the time-independent Schrédinger equation may be arranged into

the form

AMWs + A" BW,|4) = D). (A.40)

Expanding in terms of R and P,

1 . . . . 1

E(n'zR"""P2 +ER™ + BAT®RY)|Y) = aD/\'"hb). (A.41)
Now choosing A so that BA=2" = 1, the above becomes

1 20 7 - - 1 1
§(n‘2R2"‘Pz + &R + R™)|¢) = §DB‘5I¢), (A.42)
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which may be expressed in the convenient form
- 1 _L
Tsl) = EDB 7|). (A.43)

The eigenspectrum of T3 and hence of the Schrddinger equation is now clear. From

the work of Section A.2, the lowest eigenvalue by of T3 is given by

bolbo — 1) = € + 75(1 - n). (A.44)

or
1 1 -
bo—ai%\/l'f"ln £, (A.45)

where the sign is to be determined later, with subsequent eigenvalues separated by
unit intervals:

%DB-% = by + k. (A.46)

with £ =0,1,2....



Appendix B

A Boson Calculus for Angular

Momentum

This appendix is a brief discussion of boson calculus of angular momentum (in-
cluding and beyond so(3)) as introduced by Schwinger {72]. Note that Schwinger
discusses the K. operators but does not invoke the Lie algebraic connection. His
intention was to describe the standard theory of quantum angular momentum in
terms of particular bilinear combinations of bosonic creation and annihilation op-
erators. Bhaumik et al. [16] also discuss the K. operators as well as the [: and
L though in a slightly different form, and they also do not make mention of the
s0(2,1) structure of the Ky, I. and Ls operators.

The bosonic realization of the generators of U(n) as &}a; fori,j = 1,...,nis well
known [65] of which the present work is only the n = 2 example. These generators
are a manifestation of the fact that U(n) may act as the degeneracy group of the

n-dimensional isotropic harmonic oscillator [5]. The bosonic realizations of so(2,1)

142
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Figure B.1: Bosonic creation and annihilation operators.

are quite common, though Barut [10] alludes to them and Perelomov [68] makes
direct reference to them in connection to his construction of coherent states. In
any case, the following development suffices for the present purposes.

Following Schwinger [72], consider the direct sum of two Heisenberg-Weyl alge-
bras, one to be spanned by the bosonic creation and annihilation operators &L, and

a, and the other by a_, and &', as diagrammed in Figure B.1. These operators,

spanning different copies of the usual algebra, satisfy the commutation relations

64,84] = a-,a"] =1, (B.1)

with all other commutators equal to zero. The operators ny = &L&i give the
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occupation numbers, so that

d_|n_;ny) = /n_|no —1;ny), (B.2)

alln_iny) = Vno +1n- + 1;ny), (B.3)

n_jn_ing) = nojn_ing), (B-4)
as well as

diln_ing) = nglnoing — 1), (B.5)

&l]n_;n+) = y/ng+1ln_jng +1), (B.6)

iglnoing) = nilnoing). (B.7)

The ground state is given by |0;0) with a_-|0;0) = a,|0;0) = 0, and any state

may be obtained by applying the appropriate number of creation operators:

&f-n_.‘fru.

T 00

In_iny) =

(B.8)

The collection of states can thus be imagined as the lattice points on a unit grid in
the first quadrant with n_ along the vertical axis and n, along the horizontal as in
Figure B.1. Now instead of the states |n_;n.), consider |j,m) with j = (n,+n_)/2
and m = (n. —n.)/2 so that ny = j+m and n_ = j—m. This rotates the structure
onto its point with j vertical and m horizontal.

The states |, m) have been so called not simply to create confusion with angular

momentum eigenstates. There is a specific connection which may be drawn between



APPENDIX B. A BOSON CALCULUS FOR ANGULAR MOMENTUM 145

the bosonic creation and annihilation operators and those of angular momentum.

The identification is made thusly:

J o= %(&La_+a’_a+) (B.10)
Jo = —%(aia_—af_ag (B.11)
Jis = %(&Lzh,—af_a_). (B.12)

After some algebra, one may verify that these satisfy the standard commutation
relations for angular momentum. It follows, therefore. that the action of the usual

ladder operators ji =J; + ijg on a state |7, m) must agree with the usual result

Jiliom) = (G -m)(j+m+1)j,m+1). (B.13)
Jolim) = (i -m+ 1) +m)lim-1). (B.14)

irrespective of whether the calculation is carried out in terms of angular momentum
ladder operators or as bosonic operators in conjunctior with Eq. (B.4) and (B.7).
This is indeed the case.

The standard angular momentum ladder operators only allow one to move
between eigenstates pertaining to a particular j. The bosonic operators provide

some additional ammunition, allowing one to move between states of different j.
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Figure B.2: Angular momentum ladder operators, acting on states |j.m) with
integer j.

In particular, consider the creation and annihilation pair K. in Figure B.2 with
K, = a'a' and K. = a,a_. The state Ki|j.m) is proportional to |j £ 1,m).
Then, define K, according to [f(,;, K_] = —2K;, and note that [f{;,,R'i] = if(t.
Extracting K 1,2 from f(i = f(l + f(z makes the collection K 1.2.3 a realization of the
Lie algebra so(2,1), worked out in greater detail below.

Similarly, the operators [, = &la!/2 and [_ = &,4,/2 act diagonally as di-
agrammed in Figure B.2, and [, = a'4'/2 and [_ = a_4_/2, move along the
opposite diagonal. Both of these pairs generate a realization of so(2,1). These op-
erators are suggested by Bhaumik et al. [16] although their forms differ from these
by the factor of 1, and they make no allusion to any Lie algebraic structure.

In anticipation that a position space representation will be required, states of

non-integer j are now ruled out. Employing only the eight ladder operators Jx,
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Ky, I, and Ly, one remains on the depleted lattice (shown in Figure B.2). The
question now arises “What does this depleted lattice represent?” This lattice is the
direct sum of the two copies of s0(2,1) spanned by I 5 and L. 3, merged with Jy,
together with whatever operators are necessary to close the commutation relations.
This last requirement introduces Ky for a total of ten generators. The depleted
lattice is not, of course, a sub-algebra of the direct sum of two Heisenberg-Weyl
algebras since the new algebra is spanned by bilinear combinations of the bosonic
operators, not linear combinations.

There is a certain impulse to connect the operators I+, Ky or L, with the
quantum Laplace-Runge-Lenz vector which may act as a ladder operator of sorts
between angular momentum eigenstates of differing j. There are two problems with
such a connection. Firstly, the action of the Laplace-Runge-Lenz vector renders a
rather complicated superposition of angular momentum eigenstates [1], not a scaled
pure eigenstate as in the cases of /+, K+ and L. Secondly, the Laplace-Runge-Lenz
vector comes out of a realization of SO(4), a compact Lie group, not a realization
of a noncompact group as with I, I‘{i and L.

Returning to the set of states as diagrammed in Figure B.1, the horizontal and
vertical axes represent separately two irreducible representations of the Heisenberg-
Weyl group, as do any horizontally or vertically aligned collection of points. Due
to the algebraic structure of pairs of bosonic creation and annihilation operators,
collections of states on a diagonal line connecting the horizontal to the vertical axis
form representations of SO(3) (the J: operators form the pertinent realization).

These are finite collections of states, since SO(3) is a compact group. Collections
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of states on diagonal lines starting on horizontal or vertical axes and moving diago-
nally upwards and to the right (through the operators K. ) form representations of
SO(2,1). These are collections are infinitely numerous, and SO(2,1) is non-compact.

The ladder operators are given by (with their actions on angular momentum

eigenstates also noted)

Je = dha., Jilim) = /(G -m)(i +m+1)lim+1), (B.15)
o= adtay, Jlim)=\(i-m+1)G+m)im-1), (B.16)
k. = atat, Kim)=\G+m+0)G-m+1j+1Lm),  (B.17)
K_ = aia_, K_|j,m) \[]+m W7 —m)l7 — 1,m), (B.18)
L= salal. Llim)= 2 Gemt G +m+2)i+1lm+1)(B19)
o= sy Lim=z/GemGtm-Dli-1m-1. (B20)
i, = %a’_af_. 13+Ij,m)=%\/(j—m+1)(j—m+2)|j+1.m—1)(B.21)
L. = %&-a_. L_lj,m \[J— JG-m-1)j-1m+1). (B.22)

With T standing for all of the above pairs of ladder operators, the first two com-

ponents are obtained by inverting Ty = T} % iT;. This gives

j, = %(&La_ +atay), L= —é(aia_ —atay), (B.23)
K, = %(alra'_ +as8.), K= -%(&Laf_ —é&.a), (B.24)
= (@ha +asan), = —3alal - a.a.), (B.25)
L= i-(aiaf_ +a_a), L= —i(a*_a‘_ —a_a_). (B.26)
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Then, since [T}, T3] = %[f}_, T_], the third components are derived according to

. 1. .. 1
Js = 3l J]= 5(&3.&4.-*-&'_&_), (B.27)
. 1 . .

Ky = —§[K+,K_]=%(&L&++&'_&_+l), (B.28)

. i -, i.. 1
Iy = —§[I+, I—] = EGLG+ + Zv (B29)
; P
L3 = —§[L+,L_]— 2G_G_+4. (B30)

With these definitions and identifications, the following commutation relations

may be verified, where T, stands for any of the four sets of operators listed above.
[Ts, Tl] = iTz, [Tz, Tg] = 7.T1 (B31)

In the case of the J, this is an affirmation that they may act as basis elements of
su(2) or so(3). For all the other sets of operators, this completes the description of
the basis elements of so(2,1), the incidental sign arising from the definitions given
in Egs. (B.28) to (B.30).

Now turning to calculating the Casimir operators, they may be constructed
according to the standard forms of those for so(3) and so(2,1). In terms of the

number operators, they are given by

S o= Ju o+ iU
= l(‘ +7 )2+l(fz +7-)
= 4n+ - 2 + n-

_ %(m +4) (-21-(73,, +AL)+ 1) , (B.32)
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k= —kE +KI—k
1. . 1

= A —h)? -3, (B.33)

P o= -1‘+i.+1‘§—1'3=-%, (B.34)

B = b i +iiofy=- (B.35)

18
R}

Clearly, the eigenvalue of J? is j(j + 1) as usual, independent of m as it must be.
From this, one may conclude that the largest and smallest eigenvalues of J; are %j
as usual.

The eigenvalue of K? is m? — 1/4, independent of j, reflecting how the roles of
j and m are exchanged in Ky from J.. From Section A.2, the lowest eigenvalue of
K, is given by bg(bo — 1) = m? — 1/4. Solving, by = +m + 1/2. However, looking
at Eq. (B.28), the eigenvalues of K3 may be expressed as j + 1/2. For any given
state |j,m), j > |m|, so that the lowest value of j, given an m, is |[m|. This induces
the choice of sign for by which may be expressed by = |m| + 1/2. The spectrum of
K3, as expected. is b= |m|+1/2 + k = j + 1/2 for non-negative integer k. so that
j =|m| + k.

The eigenvalues of [? and L? are both independent of j and m. Looking at
I2, this is a reflection that the operators do not involve é_ or &l whatsoever, and
hence relies only on one copy of the Heisenberg-Weyl algebra, existing irrespective
of the direct sum. Again from Section A.2 and Eq. (B.34), the lowest eigenvalue
of I3 is given by by(bo — 1) = —3/16 so that by = 1/4 or 3/4. Comparing with
Eq. (B.29), this choice merely stems from whether one takes the ground state of

the representation with n; = 0 (as with the ground state [0,0)) or n, = 1 (as
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with |j,m) = |1,0)), so that both representations exist on the depleted lattice.

Analogous statements hold for the L operators with respect to n_.



Appendix C
The Harmonic Oscillator

The harmonic oscillator is a quantum system which corresponds to the classical
problem of a mass on a spring with one degree of freedom. The Hamiltonian for a

particle of mass m and spring constant k = mw? is given by

. P 1
H = % + ;mwzi:z. (C.l)

In general, the time evolution of states is via the time dependent Schrédinger equa-
tion,

o d :
ihZ1¥) = Al¥), (€2)

but since the Hamiltonian is time independent, time evolution may be more simply

expressed via the time evolution operator,

[B(t)) = U(t)|p) = e H/Myp). (C.3)
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Accordingly, if the state is an eigenstate of the Hamiltonian with energy E, the

time evolution is particularly simple,

[b(t)) = e By, (C.4)

The collection of eigenstates of the Hamiltonian is a complete set of states and
hence arbitrary states may be expressed as superpositions over states. This allows
the time evolution of arbitrary states to be expressed in terms of the time evolution
of eigenstates. Thus attention is now turned to solving the eigenvalue eigenstate

problem

Hin) = E,|n). (C.5)

To this end, recall that [z, p] = ih. Indeed, the objects

eo =1, e =ip/Vmwh, e =iz % (C.6)

may be regarded as the basis of a nilpotent three dimensional Lie algebra charac-

terized by the commutation relation
[61, 82] = €g, (C7)

with the two other commutators equal to zero. This real Lie algebra is the Heisenberg-

Weyl algebra [68] often denoted W,. A general element g of this algebra is given
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by (summing over repeated indices)

g = Sk€k, (C.8)

with implied summation and in which the s, are real numbers. Now consider the

new pair of operators

a = %(el—ieg), (Cg)
&t = %(—Cl—ieg). (ClO)
or,
|
ey = Ti(a—a'). (C.11)
e = %(am*). (C.12)

In terms of these, the element g is given by

g = iso + ad — a"al, (C.13)

in which a = (33 + 13,)/+/2. Their commutator is given by

[a,a] = 1. (C.14)

Expressing the Hamiltonian in terms of the operators & and its Hermitian adjoint
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gives

H = —hw (ef + eg) /2 (C.15)
= hw(a'a+aa') /2 (C.16)
= hw (afa + %) : (C.17)

so that finding eigenstates of a'a yields eigenstates of H. Suppose that |n) is
an eigenstate of a'a with eigenvalue n. Now, due to the commutation relation,
Eq. (C.14),

(ata)atn) = at(1 + a'a)|n) = (n + 1)al|n), (C.18)

So that a'|n) is also an eigenstate of a'é but with eigenvalue n + 1. Similarly, if
n # 0, then for a one finds

(a'a)a|n) = (n — 1)a|n). (C.19)

Hence, the operators @ and a' annihilate and create units of the eigenvalue of a'a,
and are called the annihilation and creation operators respectively. Examining the
action of the annihilation operator more carefully, & acting on |n) is proportional
the |n — 1):

a|n) = culn —1). (C.20)

Taking the inner product of the above with its own Hermitian adjoint yields

(nlataln) = |ea]%. (C.21)
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Since |n) is an eigenstate of a'a, we obtain

ca = V1, (C.22)

alln) = va + 1jn + 1). (C.23)

Knowing that the Hamiltonian spectrum is bounded below indicates that the
spectrum of a'a is also bounded below. Hence, there is a state |¢) which is annihi-

lated entirely by an application of a:

alp) = 0. (C.24)

Operating on this equation by a' gives the eigenvalue of this state as n = 0, and
will hereafter be called the ground state, |0). Operating on |0) » times yields the
nth eigenstate of a'a,

(a0} = In). (C.25)

2

n!
To determine the position space representations of these states, Eq. (C.24), with
a in terms of Z and p, projected into position space yields

(%z " %) (=10} = 0. (C.26)
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This first order differential equation yields the solution

mw /4 mw
0= (22) " e (-T2, 21
which has been normalized to (Gj0) = 1. The nih state is then obtained through

Eq. (C.25).
(a")"10) = Val[n). (C.28)

Defining the quantity ag = \/mw/k (an inverse length scale). the creation operator

in position space becomes

1 d
At — 20— —
a' = s (aoz d:c) . (C.29)

To apply this operator to some function f(z). observe that

1 2 d _ 1 La2.2 d —‘—agz"’
-~z (aoz: - dz) f= Ry Ll (e f). (C.30)
With the ground state in terms of aq given by
a0\ _,
(z|0) = (7_91;) e~1%% (C.31)

the successor is obtained,

1/2
(z|at|o) = — (%) L tazr 4 (e=ss=), (C.32)
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and indeed, in general one finds

«t n _ n Qg 12 1 _ag 2 a4 ‘“o’\ C
(] (a")"10) = (-1) v il = (emo%=") (C.33)
1/2
= (G2) " Lot (Capet D (a9 (can
\2*v7/ af \ ' ‘)
o () -5982° . (agz) (C.35)
- 2"\/1? € nl&0 b .

in which the parenthetically enclosed expression of Eq. (C.34) is recognized as
a standard definition (2] of the Hermite polynomials, H,. From Eq. (C.25) the

eigenstates may be written

1/2
- Qo ~ia3z?
(z|n) = (__n!?‘\/v?) e H,(aoz). (C.36)



Appendix D

The Spherical Rotator

D.1 Angular Momentum Matrix Elements

In order to calculate (), (y), or (z) in a state composed of angular momentum
eigenstates, the matrix elements (j'.m'|Z|j,m) are required as well as those for
y and 2. To find these matrix elements, one can consult the literature [77]. or
undertake the calculation one’s self. The rest of this section is devoted to the
latter approach. In this section, references to equation numbers in Gradshteyn and
Ryzhik’s Table of Integrals, Series, and Products [40] are given by, for example. GR
8.735.5.

With integral j values, the angular momentum eigenstates expressed on the

surface of a unit sphere are given by the spherical harmonics

2j+1(j—m)
4r (j +m)

(8, 8li.m) = Y7(6.4) = (—1)"*\\ PP(cosf)e™. (D)
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in which the functions P[* are the associated Legendre functions. Accordingly.

expressing Z = sin & cos ¢,

(5", m'|2]j, m)

w 2% - -
= /’ d9/ sin 9dg(y’. m’|0, )(0, ¢| sin § cos ¢|j, m)
0 4]

= (—1)'"'+'"\J (27 +1)(25' + 1) (j — m)l(5' — m')!
@r)?  G+m)G +m)

2n , . ,
X f dé / sin 8dé sin § cos 9P (cos ) P (cos g)eim-m%  (D.2)
0 0
Integrating over ¢,
2x . ,
/ cos ¢et(m-m Md‘ﬁ = W(‘;m’,m-{-l + ‘sm‘.m-l)s (D3)
0

in which the 4,5 is the Kronecker delta. Applying this to Eq. (D.2). one obtains

T _ (7 + 12"+ 1) (G -m)l(j' =m = 1)!
(.7 . m |:z:|],m) - (—I)J 16 (] +m)!(jl+m+ l)l

x /0 " d6 sin? P+ (cos 8) P (05 )b mas

| @141 (G - m) —m+1)!
16 G+m)NG +m—1)!

< /0 " dfsin? 6PT (cos ) P™(cos 6)bmimey.  (D.4)
Examining the first integral, note that through GR 8.735.5,

V1= PPt (z)
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(' =m)(J' —m+1)
25" +1

(7 +m) +m+1)
25’ +1

PP (z) - PP \(z), (D5)

so that

I = /0' df sin? § P7+" (cos 8) P™(cos 6)

1
= /_1 VI= 22 Pp¥ () PP (z)dz

(7' —=m)(y'—m+1) r* __ m
T / PP, (z) PP (z)dz

M) +m+1) / Pr
2 +1

(z)dz. (D.6)

Carrying out the integration through GR 7.112.1 and simplifying the factorials.

2(j + m)! X 2(j + m +2)! .
@+ 0@ - DG —m-21 5 T e +nG —my o O

[1=

Similarly, the second integral of Eq. (D.4) is given by

(7 +m)! 2 (j + m)!

b= GG TN = T G DR =D G =)

8 j-1. (D.8)

where use was made instead of GR. 8.733.4 to raise the upper index of the associated
Legendre function. rather than lowering it as through GR 8.735.5. Assembling the
entire matrix element, and using the Kronecker-4 to write primed indices in terms

of unprimed indices, Eq. (D.2) becomes

(§',m'| sin 8 cos |, m)
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2\\ @+)@j-1 T (2 +3)@j+1) T

G-—m)§-m-1)
(27 +1)(27 - 1)

G+m+2)j+m+1)
(27 +3)(25 +1)

sj’.j—l‘;m’,m+1 + J Jj’,j-{-l(sm’,m-{-l) .

(D.9)

To calculate the matrix element for §, a similar procedure is used, though the

integration over ¢ becomes
2x . ,
/ sin G ™™ 8dd = ix(dmr ot = S mat): (D.10)
0
so that the calculation follows analogously with certain sign changes. This yields

(5',m| sin 0 sin ¢|j. m)

i(J”*””*“'”@fdlA-Ju“m+”0"m+”

- 81 i410m m—
2 (27 +1)(25 — 1) (27 +3)(2j +1) et

. [G-mG-m-1)
2+ 125 - 1)

(j+m+2)(j+m+1)
(25 +3)(27 +1)

65'.j-l‘sm'.m+1 - \J Jj'.j+16m'.m+1) .

(D.11)

For the z component, the integration over ¢ yields

2 ,
/0 eim=megy — ons . (D.12)
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so that

(j',m'| cos 8|5, m)

_ @27 +1)(25 +1)(F —m)l(j' —m)!
A 4(7 +m)l(5' + m)!

X /1r df sin 6 cos § P[*(cos 8) P (cos 8)6mr m
0

. . . (a7 __ {
_ \ (27 + l)i(2; ++nll;§gj’ +771");)(!1 m)! /-11 2P (z) PP (2)dz b m.(D.13)

The expression given by GR 8.733.2 yields

I'+m o

_i-m+l. I +m
27 +1 9!

TP (z) = - Pra(z) + (z). (D.14)
27 +1

so that integrating again through GR 7.112.1, simplifying the factorials and ex-

pressing primed terms through unprimed terms,

(', m'| cos B]j.m) =

Gm-m) o o (tm+ 1) -m])
(25 +1)(2j —1) 727 (27 +3)(27 + 1)

8 j+10mtm. (D.15)

D.2 Some Expectation Values

The matrix elements in the preceding section may be used to calculate the expecta-

tion values of Z, §y and Zz in the coherent state |a,3) defined in Section 4.2.2. In all
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the following cases, the expectation values are calculated through (see Eq. (4.38))

(,8'|0)a.B) =
1 o+ Gi-m i +m’ gei'-m’

08B & ;e |f( + m(G = m( 4 mG = )]

(j',m'|0|j,m), (D.16)

in which ¢ = |af? + |B]%.
Taking the first of the four pieces of Eq. (D.9) and carrying the calculation
through,

1 o tm Bi=m i’ tm’ gei'-m’

cosh{ ; Fm /(7 +m)(j — m)I(5 + m)I(j' — m)!

U+mG+m-1)
(27 +1)(25 - 1)

a; =

61" J-1 ‘Sm’.m-l

a? i F) la(2(j+m-2)w|2(j-m) 1
Cocosh€ i T, G+m =2 - m)! oy 1) (25 - 1)
@ ¢ & = (D.17)

cosh€ =5 (27)!\ (2 1 3)(2 + 1)

At this point, the calculation can be carried no further without an approximation.
The appropriate approximation is (2j + 3)~%/2 — (25 + 1)~'/2, which is clearly
questionable for the initial values of j in the sum. This sum is justified only with
the joint assumption that £ is sufficiently large and that the overwhelming bulk of
the state |a, ) is weighted away from the low-j angular momentum eigenstates.

Thus adopting this approximation, the summation quickly follows so that

2

ay ~ %-tanhé. (D.18)
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To obtain the second piece, the same approximation must be adopted yielding

=2

~

Yy [ hl h ) IR ] . v
ine tnird and [Ortl pleces yieid

ag ~ ?—tanh{, a4 ~ 0‘: tanh €. (D.20)

In all cases, it is necessary to approximate as above. These results together yield

(z) ~ %(a2 +a? -3 - B")t—a—%h—f, (D.21)
and
() ~ 2(a* —a™? + 37 - ﬂ")t—i"-@—f. (D.22)
2 §

Not surprisingly. this approximation must also be adopted in the calculation of

(z). Using the techniques carried out for (z) and (y). Eq. (D.15) leads to

(z) ~ (B + a'ﬂ-)tﬁ’;ﬁ. (D.23)

The approximation involved is precisely

1 0 52.1'-{-1

cosh§ 325 (27)!1y/(25 + 3)(27 + 1)

~ tanh €. (D.24)

The left hand and right hand sides of this expression are plotted in Figure D.1.

The approximation is poor for small values of £ but improves as { increases.
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Figure D.1: The left hand side of Eq. (D.24) versus the right hand side. The upper
curve is tanh § whereas the lower curve is the sum.



Appendix E

The Hydrogen Atom

E.1 The Group Structure

Group theoretical treatments of the hydrogen atom are standard in the Literature (8,
78,79, 1, 65]. This section is provided for reference, and to draw particular attention

to aspects of the development relevant for the present purposes.

E.1.1 The Degeneracy Group SO(4)

Since the potential V'(r) is spherically symmetric, it commutes with the angular
momentum operators, [L?, V(#)] = [L, V()] = 0, where the bold face indicates the
operator vector, so that the degeneracy group at least contains as a subgroup the
Lie group SO(3). The dimension of the irreducible representations being 2£ + 1,
this accounts for a (2£ + 1)-fold degeneracy for an energy level E,, pertaining
to a total angular momentum quantum number £ and radial quantum number n’.

However, as it turns out, many of these Ey, correspond to one another increasing

167



APPENDIX E. THE HYDROGEN ATOM 168

the degeneracy of the nth energy level to n? where n = n' + £ + 1, a degeneracy not
accounted for by SO(3).

The reason for this so-called accidental degeneracy stems from the conservation
of a certain operator quantity noted by Pauli in 1926, a prodigious year for quantum
mechanics. This quantity is the quantum mechanical analogue of the classical
Laplace-Runge-Lenz vector

A=pr—Z:—:, (E.1)

given by

-

A'=%(pr,—(fo>)—Z§. (E.2)

the elements of which commute with the Hamiltonian. Also. the elements of angular

momentum and the Laplace-Runge-Lenz vector commute according to

(L, Le] = iy, (E.3)
[L;. AY] = ie;u . (E.4)
(AL, &) = (~2H)ieju L, (E.5)

where H is the hydrogen Hamiltonian. These commutation relations almost define
the span of these six elements as some algebra, except they are not closed under
commutation due to the factor of H. Restricting the action of the group to a
subspace of the Hilbert space corresponding to a single energy level E,, the vector
Al may be scaled to remove the H. This has one of two consequences. If a continuum
energy level is used (E, > 0), the negative sign in Eq. (E.5) remains yielding so(3,1),

the non-compact algebra associated with the Lorenz group. If a bound energy level
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is used (E, < 0), the algebra is compact, and becomes so(4). Since the present
interest is with bound states, only the latter scaling will be employed. This scaling

is given by
A =A'/\/-2E,, (E.6)

making SO(4) the degeneracy group of the bound portion of the hydrogen atom

problem.

E.1.2 The Spectrum Generating Algebra

Continuing from Section A.3, the realization of so(2,1) developed there may be

connected to the hydrogen atom problem. The Hamiltonian

. 1., Z
=55 - = (E.7)

may be rewritten rendering the Schrédinger equation (with eigenvalues for A writ-
ten as F)

(7p2 + #7102 — 27 E)|y) = 2Z|9). (E.8)

so that constant quantities are on the right and operator quantities are on the left.
The states |¢) will be not only eigenstates of T3, but also eigenstates of L? since
[Ts, L?] = [T5. Ls] = 0. Therefore, Eq. (E.8) may be rewritten

(7p2 + 7 H(L + 1) — 27 E)|Y) = 2Z|%). (E.9)
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Eq. (E.9) identifies with Eq. (A.42) provided

n o= 1, (E.10)
£ = {L+1), (E.11)
B = -2E, (E.12)
D = 22 (E.13)

From Eq. (A.45), the lowest eigenvalue is thus

—t
1+46¢ +1) = : (E.14)
£+1

Y = - £

| =
B |

Now from Eq. (A.46),

1 , L s
DB~ = Z(-2E.)"7 =t +n/,  n'=0.12.... (E.15)

Firstly, we expect E, < 0 since the right hand side of Eq. (E.15) is real. Secondly.

if that is the case. then the left hand side is positive, so the negative root b5~ must

be discarded. Solving Eq. (E.15) for E,, therefore yields the famous Bohr formula,

Zz
Bn=—-—— n={+1+n" (E.16)

2n2’
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Therefore, so(2,1) is generates the spectrum of the hydrogen atom with the real-

ization

(7Fp2 + L3 £ 7), (E.17)
(E.18)

» ;ﬂ
[2)
|
Lo

o3
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.

Q
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Appendix F

Angular Momentum Annihilation

Operator Eigenstates

It seems rather clear that an annihilation operator acting on a finite spectrum
can have no eigenstates: An application of the annihilation operator on the any
state annihilates the weight associated with the ground state. and no corresponding
weight enters into the uppermost state. For a similar reason, a creation operator can
have no eigenstate. acting on a finite or infinite spectrum bounded below. However.
in a somewhat contrived manner. an annihilation-like operator may be constructed
which has eigenstates on a finite spectrum. such as angular momentum states of a
fixed total angular momentum.
Let

A-=J_+ %{UJ)(J} = (F.1)

for some complex number d, the |j,m) are the angular momentum states, simul-
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taneous eigenstates of J2 and J;, and the (27)! was added for future convenience.
Though A_ is j-dependent, it is not necessary to clutter the notation by adding the
subscript. The second part of the operator A_ transfers the coefficient of 17, —7) to
|7,7). so that one end of the set of states |j, m) is connected to the other when seen
through A_. Accordingly, A_ transfers weights one step counterclockwise among
the states, now tied into a loop. Note that the Hermitian conjugate Al = A, shifts
in the opposite direction.

Suppose the eigenstate |a) of A_ with eigenvalue a can be expressed as a super-

position over the |j,m). Then, recalling that

J_ljiom) = (5 —m + 1)(j +m)lj.m - 1), (F.2)

an application of A_ to |a) yields

J

Ala) = Y cnA_ljm)

= Y c,,,\/(j—m+1)(j+m)|j.m—1)+—‘;— ZJ: emli ). =jljsm)

m=-j (2 ) m=-j

= Y ena/G-mGLmt Dlim) + (—g.-)—!c-,-u.,j)

m=-j

a Z Cmlj,m). (F.3)

m=-j

From the last equality above follows the recursion relation

2om f J F—1 d ¢
Cm+1 = ylorm=3,...,7 — 4 7o o—7
S JG-mG+m ) @)

=ac;. (F.4)
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Leaving c_; as a normalization constant, the first part of the recursion relation

gives
@t [(j—m)
=c_; . F.5
"\ G +m)! (F
Consistency with the second part demands that
a¥ d
¢; = c_j(éj_)! = C-jm)—!. (FG)
The states are therefore given by
W=c; ¥ r—ﬁm ol (F.1)
m=—j 2]
with normalization
27 — k)!|a|?*
1=|¢? Z (27 = k)l (F.8)

frard ‘)] ILI

The restriction Eq. (F.6) has several interesting consequences. the first of which
is that, unlike other annihilation operator constructions. there are only a finite
number of eigenvalues. These eigenvalues are the 2j + 1 roots of a?*! = d, that is.
arranged evenly about a circle on the complex plane centred on the origin, equal in
number to the number of angular momentum eigenstates.

Since the states |a) are eigenstates of some operator, contrived as it may be,

they satisfy a certain minimum uncertainty product for a pair of operators following

the conclusions of Section 3.1. The uncertainty product in question is given by

(AA)*(AA;)? = —(4,)? (F.9)

| -
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in which
> s 1 c g C e
A = S+ m(le,J)(J, =il + 15, =i)4.51) (F.10)
: . t C oy C e
A? = J2 - n/nl-u(dbsj)(]s —Jl —d‘|J~ —])<J’]|)7 (F'll)
‘\4]}:
A3 = —i[Aly Az] = ']3 +oeeey (F'12)

where, unfortunately, the remainder of A; has been omitted since it is a large
expression devoid of physical interpretation. For that reason, derivations along
these lines end now. The existence of these states is interesting. as is the spectrum
of A_. However, they have been constructed simply because it is possible to do so.

and have no clear application.
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