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ABSTRACT 

There is substantial evidence that oxidative stress causes negative outcomes in many cell and 

tissue types. This is especially true of skeletal muscle, as it is continually subjected to various 

sources of reactive oxygen species (ROS). Oxidative stress in muscle has been linked to several 

disease states as well as to the normal aging process. Oxidative stress has also been associated 

with increased apoptotic signalling. Furthermore, elevated apoptosis is consistently observed in 

aged skeletal muscle and is thought to be one of the mechanisms of age-related muscle atrophy. 

Due to its post-mitotic nature, skeletal muscle may be more susceptible to the harmful effects of 

oxidative stress in light of its limited regenerative capacity. As a protective measure, a 

sophisticated antioxidant system exists in muscle consisting of both enzymatic (superoxide 

dismutases (SOD’s), catalase, glutathione peroxidase) and non-enzymatic elements (glutathione: 

GSH). GSH is a ubiquitously expressed tripeptide essential to maintenance of the redox status of 

the cell. Its role in skeletal muscle apoptosis, especially in different muscle types, is currently 

unclear. To elucidate the potential role of GSH in skeletal muscle apoptosis and oxidative stress, 

L-buthionine-[S,R]-sulfoximine (BSO) was used to deplete GSH in young (34.85 ± 0.68 wks) 

and old (69.11 ± 3.61 wks) male Sprague-Dawley rats. Thiol levels (GSH, GSSG), ROS 

production, 4-hydroxy-2-nonenal (4HNE) levels, DNA fragmentation and apoptosis-related 

protein expression were examined in soleus (SOL) and white gastrocnemius (WG) muscle. BSO 

led to significant GSH depletion (89% in SOL, 96% in WG) compared to age-matched controls. 

Catalase upregulation, in the absence of change in SOD levels, was evident as a result of BSO 

treatment and advancing age in both muscle tissues. BSO treatment also resulted in increased 

DNA fragmentation in WG and SOL, with elevated ROS production in SOL only; both of these 

effects were independent of age. Advancing age resulted in elevated caspase activity and Hsp70 
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protein content, with a concomitant decrease in anti-apoptotic ARC in SOL but not WG. 

Additionally, ROS production, 4HNE content, DNA fragmentation and ARC levels were all 

significantly elevated in SOL compared to WG. These data indicate that SOL may be subjected 

to a state of elevated cellular stress.  There is also some evidence that GSH depletion increases 

DNA fragmentation while age contributes to a degradative loss of glycolytic muscle. 
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INTRODUCTION 

Apoptosis is a tightly regulated, highly ordered mode of cell death also referred to as 

programmed cell death.1 This process occurs through a series of cellular events that aid in the 

removal of unnecessary or damaged cells from an organism. For example, during 

embryogenesis, apoptosis of skin cells occurs between the digits of the hand which allows for 

the proper formation of the fingers.2 Apoptosis is also implicated in several disease states, such 

as HIV/AIDS where widespread T cell-specific apoptosis occurs,3, 4 cardiovascular diseases 

where apoptosis can be altered in several tissues such as heart, 5, 6 blood vessels7, 8 and skeletal 

muscle,9 and cancer where decreased apoptotic cell death prolongs malignant cell survival. 4, 10, 

11, 12 

The hallmark morphological features of apoptosis include cell shrinkage, chromatin 

condensation, membrane blebbing, and formation of apoptotic bodies.13 Apoptosis is a type of 

cell death that causes little damage to the surrounding cellular environment, unlike what is 

commonly observed when cells die by necrosis.1 Along with organelle swelling, loss of 

membrane integrity and cell lysis, this latter form of cellular demise involves a large 

inflammatory response at the site of injury.14 This leads to further damage or death of 

surrounding cells by initiating an exaggerated immune response, an event not typically 

observed during apoptotic cell death.1 While mention of necrosis is important to the concept of 

cell death, the remainder of this thesis will focus on apoptotic cell death, with particular 

emphasis on its occurrence in skeletal muscle. 
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Caspases as the “executioners” of apoptosis 

A defining point of the apoptotic death program is the reliance on a family of specialized 

proteolytic enzymes to bring about cell death. Caspases, or cysteine-aspartate proteases, are 

enzymes that cleave target proteins between cysteine and aspartic acid residues.15 These 

enzymes can be divided into two groups, namely the initiator caspases, with the principal 

members consisting of caspases-8 and -9, whose activation leads to subsequent cleavage and 

activation of effector, or terminal, caspases such as caspases-3, -6, -7.16 Caspases can cleave 

other downstream proteases or can activate effector enzymes that play a role in DNA 

fragmentation (ie. caspase-dependent DNAse).17, 18 Caspase activation is both selective and 

very specific in that only certain signals initiate caspase signalling cascades, and only certain 

caspases will be activated depending on the nature of a particular signal. For example, binding 

of specific death ligands to their extracellular receptors, as seen in the extrinsic apoptotic 

pathway, preferentially activates caspase-8, which then transduces the death signal culminating 

in eventual cell death.19, 20 The death signal is propagated by caspases through their ability to 

cleave other caspase zymogens, or procaspases located downstream in the signalling cascade, 

as seen with caspase-8-mediated caspase-3 cleavage.19, 20 Additionally, certain caspases also 

undergo activation through oligomerization-induced autoproteolysis as observed with caspase-

821, 22 and caspase-2 activation.23 

The extrinsic apoptotic pathway 

There are several pathways through which apoptosis can occur. In the extrinsic pathway 

(Figure 1; left side), specialized cell-surface receptors, or death receptors, are stimulated with 

their specific death ligand, leading to intracellular death signal propagation.24 Common death 
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receptors include Fas or CD95, Tumour Necrosis Factor Receptor 1 (TNFR1), and TNF 

Related Apoptosis-Inducing Ligand (TRAIL) Receptors 1 and 2, with their associated death 

ligands, Fas ligand, TNF-α and TRAIL.24 Upon appropriate ligand binding, death domains 

found on the intracellular portion of the death receptors are activated; these include Fas-

associated death domain (FADD)25, 26 or TNFR-associated death domain (TRADD).27 Death 

domain activation leads to assembly of the death-inducing signalling complex (DISC).28, 29 

One of the components of the DISC is procaspase-8, a zymogen activated by proximity-

induced oligomerization with the death effector domains (DED) belonging to FADD.21, 22  

Upon DISC assembly, the mature, initiator form of caspase-8 is released.21, 30 Caspase-8 

proteolytically cleaves cytosolic procaspase-3 to its active effector, caspase-3.19, 20 This latter 

enzyme is responsible for large-scale cellular proteolysis and DNA fragmentation17, 18 and is 

one of the principal convergence points for the extrinsic and intrinsic apoptotic pathways.  
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BH3 domain (ie. Bid).34 On the other hand, the anti-apoptotic members are part of the Bcl-2 

subfamily and contain at least BH1 and BH2, with some members containing all 4 BH domains 

(ie. Bcl-2, Bcl-xL).34 The distribution of these BH domains is significant when considering the 

ways in which these proteins interact during apoptotic cell death. The BH3 domain is an 

essential component in both the anti-apoptotic and pro-apoptotic dimerizations that occur 

during Bax-Bcl-2 or Bax-Bax interactions, respectively.35  

  In most biological systems, pro-apoptotic Bax and anti-apoptotic Bcl-2 are the primary 

Bcl-2 family members of interest, as their opposing effects on mitochondria are so intimately 

tied to cell survival.35, 36, 37, 38, 39 The balance between these proteins, the Bax:Bcl-2 ratio, is a 

frequently used measure of a cell’s susceptibility to apoptotic cell death40 , given the pivotal 

role of the Bcl-2 family members in regulating cell death.35, 37, 38, 39 In terms of its pro-

apoptotic role, Bax is primarily localized in the cytosol in healthy cells but translocates to the 

mitochondria as a result of an apoptotic stimulus and is inserted into the outer mitochondrial 

membrane. This leads to pore formation, also known as the mitochondrial permeability 

transition,39, 41 subsequent loss of membrane potential and release of mitochondrial apoptosis-

related factors.31, 32, 33 Bcl-2 inhibits mitochondrial pore formation by heterodimerization with 

Bax at the mitochondrial outer membrane, thus preventing or at very least delaying release of 

apoptotic factors.35 

When the apoptotic balance is shifted towards mitochondrial pore formation or 

membrane disruption, pro-apoptotic factors can be released into the cytosol which initiates 

apoptosis through distinct mechanisms. For example, cytochrome c can be released from the 

mitochondria31, 39 and binds with Apoptotic Protease-Activating Factor-1 (Apaf-1), 

procaspase-9 and 2-deoxy-ATP in the cytosol.42, 43 This results in the formation of the 
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apoptosome, and is a necessary component in self-cleavage and activation of procaspase-9.42, 43 

Caspase-9 can then cleave procaspase-3, permitting large-scale proteolysis in the cell.17, 18 In 

addition, pore formation permits release of other apoptogenic proteins, such as Smac, which 

can indirectly activate caspases by inhibiting the action of a set of caspase inhibitors known as 

the Inhibitor of Apoptosis Proteins (IAPs).33  

Lastly, there is evidence that both the intrinsic and extrinsic pathways may converge 

during apoptotic signalling.44 In this sequence of events, activation of the intrinsic apoptotic 

machinery leads to caspase-8-mediated cleavage of the Bcl-2 family member Bid (Figure 1).44 

This pro-apoptotic factor is found in the cytosol and upon truncation by caspase-8, inserts into 

the outer mitochondrial membrane and contributes to pore formation and release of 

apoptogenic factors.37 

Caspase-independent and calcium-mediated apoptosis 

Apoptotic cell death can also be caused by two additional pathways. The first of these is the 

caspase-independent mitochondria-mediated pathway, which involves the release of the pro-

apoptotic proteins Apoptosis-Inducing Factor (AIF)32 and Endonuclease G (Endo G)45) from 

mitochondria. AIF is a flavenoid protein normally located in the mitochondria intermembrane 

space that possesses both electron acceptor/donor characteristics typical of NADH oxidases in 

addition to a death effector role.46 Upon exposure to apoptotic stimuli, AIF is released into the 

cytosol, where it then translocates to the nucleus to cause chromatin condensation and large-

scale DNA fragmentation.32, 47, 48 Endo G is a nuclease located in the mitochondria, where its 

role is to produce RNA primers for DNA polymerase gamma.49 However, apoptotic stimuli can 
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induce EndoG release from the mitochondria and subsequent translocation to the nucleus 

where, similar to AIF, it induces large-scale DNA fragmentation.45  

Another series of events culminating in apoptotic cell death is the calcium-dependent 

calpain-mediated pathway. In this particular case, the calcium-dependent proteases calpains are 

activated by increased intracellular calcium concentrations50, which activate caspase-12 

released from the endoplasmic reticulum, leading to downstream activation of caspase-3.51  

Apoptosis in skeletal muscle 

The apoptotic pathways and molecules reviewed above are biologically conserved and are 

similar in many cellular systems, though the intricacies of the pathways may vary slightly 

depending on the tissue. A special case is skeletal muscle, which possesses some unique 

features with respect to apoptotic signalling and cell death. In most systems, an entire cell is 

typically removed when apoptosis is triggered.4, 10, 52, 53, 54 However, due to the multi-

nucleated nature of skeletal muscle, it can undergo a process known as myonuclear apoptosis, 

whereby only certain individual nuclei and their associated cytoplasmic portions are lost 

(Figure 2).55, 56 This restricted loss is speculated, in the short term, to allow for preservation of 

muscle fiber integrity, resulting in maintenance of overall fiber number. However, this loss of 

nuclei would result in fiber and muscle atrophy through loss of that associated cytoplasmic 

portion, or myonuclear domain, of individual myonuclei.55 Work conducted in rodent models 

of muscle atrophy, including hindlimb unloading57, 58 and spaceflight,59 has demonstrated 

decreased myonuclear number concomitant with a decreased myonuclear domain, events 

which are believed to be a primary cause of muscle fiber atrophy.55, 60 The post-mitotic nature 

of skeletal muscle does not allow for typical regeneration, making the presence of satellite cells 
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Bax to the mitochondria.65, 66 ARC also interacts with Fas and FADD, impairing death receptor 

activation, DISC assembly and subsequent caspase-8 activation.62, 65  

Lastly, skeletal muscle is made up of several fiber types that vary in their metabolic 

characteristics, contractile properties, morphology, and mitochondrial content.67, 68 For 

example, soleus is composed mainly of type I, or slow-twitch fibers and has a high oxidative 

capacity due to its elevated mitochondrial content. In contrast, extensor digitorum longus 

(EDL) is a glycolytic, fast-twitch muscle composed mainly of type IIB fibers with lower 

mitochondrial content.68, 69 Given the importance of mitochondria in apoptosis, fiber type 

differences or alteration in mitochondrial content may influence apoptotic signalling. 

Therefore, differences in apoptotic signalling and expression may occur across different 

muscle fibers.  

There is evidence of differential apoptotic signalling in fast and slow muscles, which 

adds another level of complexity to understanding the mechanisms of skeletal muscle 

apoptosis. For example, previous work has shown that the expression of ARC is differentially 

expressed in different fibers.70 Recent work in our lab has shown that the expression of 

apoptosis-related proteins, such as AIF, Smac, cytochrome c, Hsp70, ARC and Bcl-2, is 

increased in slow, more oxidative muscle fiber types. In addition to these protein expression 

differences, caspase-3, -8, and -9 activity, as well as basal levels of DNA fragmentation are 

higher in red portions of the gastrocnemius versus white portions of this same muscle 

(McMillan & Quadrilatero, 2010). There is also some evidence of selective apoptosis or 

apoptotic signalling in specific muscles of a particular fiber type in aging.71, 72, 73 For instance, 

Bax and caspase-3 content have been shown to be increased in EDL, but not soleus, with 

advancing age in rats.73 TNF-α signalling is significantly elevated in superficial vastus lateralis 



10 
 

(predominantly type II muscle) compared to soleus muscle of old rats.72 Although evidence of 

differential apoptosis or apoptotic signals in particular fiber types exists, further research is 

needed to better define apoptotic signalling in different types of skeletal muscle during aging 

and other disease states. 

Cellular effects of oxidative stress  

Oxidative stress occurs due to an imbalance between cellular oxidants or reactive oxygen 

species (ROS) and antioxidants, favouring higher oxidant concentration or production.74 Some 

common cellular oxidants include hydrogen peroxide (H2O2), superoxide anion (O2·-), 

hydroxyl radical (OH·), and hydroxyl anion (OH-).75 While an increased proportion of oxidants 

can be damaging in the long run, ROS production plays an essential role in cell signal 

transduction and adaptation. For example, the activity of antioxidant enzymes, such as 

MnSOD76, 77 and catalase, 78 is upregulated in response to increased ROS production in skeletal 

muscle. In fact, inhibition of intracellular ROS production prevents activation of the 

MAPK/NF-κB signalling pathway in muscle that is primarily responsible for the above-

mentioned upregulations.79 Furthermore, recent work suggests that expression of peroxisome 

proliferator-activated receptor-γ coactivator-1α (PGC-1α), a powerful inducer of mitochondrial 

biogenesis, is increased 5.6-fold in rodent vastus lateralis muscle due to exhaustive exercise 

and associated ROS production.80  

While ROS mediate positive signalling events, they can also result in more oxidative 

stress. This can result in the oxidation of proteins, lipids, and DNA, and has been linked to the 

development and maintenance of several disease states, such as diabetes,81 cardiovascular 

diseases,82, 83 and Duchenne muscular dystrophy.84, 85 One proposed mechanism for the link 
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between oxidative stress and disease is through modulation of apoptosis. Accumulating 

evidence suggests a role for the mitochondria in mediating oxidative stress by way of electron 

leak from the electron transport chain through incomplete reduction of molecular oxygen.86, 87 

This phenomenon can be induced in vitro in several ways, one of which is through direct 

addition of oxidant substances to cell culture media. A study examining the effects of 

mitochondria-targeted antioxidants used t-butylhydroperoxide, a powerful oxidant, to treat N2A 

cells, resulting in a dose-dependent increase in intracellular ROS production and a concomitant 

decrease in cell viability.88 Inhibition of certain elements of the electron transport chain also 

leads to electron leak and subsequent ROS production. In particular, myxothiazole and 

antimycin A (both mitochondrial complex III inhibitors) result in accumulation of electrons at 

complex III, promoting leak and formation of various ROS, such as H2O2 in heart, kidney, and 

skeletal muscle mitochondria.89  

Two other significant sources of ROS include the xanthine oxidase and the NADPH 

oxidase enzyme systems. Xanthine oxidase (XO) is found in the cytosol of skeletal muscle, 

where it plays a major role in ROS production.83, 90, 91, 92 It produces elevated levels of 

superoxide and hydrogen peroxide, as observed during ischemia-reperfusion injury of 

gastrocnemius muscles in rats.83 Its activity has been shown to increase, along with markers of 

oxidative stress including protein carbonyls and lipid peroxides, in gastrocnemius muscles of 

rats exposed to a contraction-induced claudication exercise protocol.91 On the other hand, 

NADPH oxidase produces superoxide anion that is rapidly dismutated to hydrogen peroxide, 

similar to the reactions mediated by xanthine oxidase. However, its cellular localization differs, 

in that NADPH oxidase is localized at the sarcolemma,93 and in the t-tubules of skeletal 

muscle.94 Skeletal muscle insulin resistance has recently been linked with angiotensin-II-
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mediated ROS signalling involving NADPH oxidase, leading to activation of nuclear factor-

κB.95 There is also evidence that skeletal muscle sarcoplasmic reticulum contains a NADH 

oxidase that produces high levels of superoxide radical.96  

With the abundant sources of oxidative stress outlined above comes the potential for 

damage both to intracellular structures and pro-survival factors. It has been demonstrated that 

apoptosome formation, a necessary step in caspase-9 activation and subsequent cell death, is 

intimately dependent upon ROS generation or leak of oxidants from the mitochondria.97 

Several studies have established a link between increasing levels of oxidative stress and 

subsequent elevations in apoptotic signalling. In particular, in vitro studies using the C2C12 

mouse myoblast cell line have shown dose-dependent increases in DNA fragmentation, 

measured by TUNEL staining, a specific dye that stains for DNA strand breaks, and DNA 

laddering assessed by electrophoresis, upon treatment with hydrogen peroxide.98 Recent 

evidence has shown that anti-apoptotic ARC protein levels are decreased via the ubiquitin-

proteasome pathway in response to apoptotic stimuli such as oxidative stress.99 Loss of 

mitochondrial membrane potential, accompanied by cytochrome c release and downregulation 

of ARC protein levels, have been observed in rat embryonic cardiac cells as a result of 

exposure to H2O2.100 Similar releases of cytochrome c, as well as elevated DNA fragmentation, 

have been observed in murine macrophage cells exposed to increasing concentrations of 4-

hydroxy-2,3-nonenal (4-HNE; an aldehydic by-product of lipid peroxidation).101 

In further support of the link between oxidative stress and apoptosis, recent evidence 

indicates a role for antioxidants in preventing apoptosis in certain cell types and tissues. For 

instance, human satellite cells exposed to H2O2 show elevated TUNEL staining as well as 

increased protein carbonyl content, markers of apoptosis and oxidative stress, respectively.50 
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When these same cells were exposed to Oligopin, a natural antioxidant compound found in 

white pine bark, cell viability increased and all evidence of H2O2-induced apoptotic cell death 

was abolished.50 Oxidative stress caused by inclusion of 4-HNE in growth media of Swiss 3T3 

fibroblasts causes significant, dose-dependent DNA fragmentation and loss of cell viability; the 

antioxidant resveratrol has been shown to protect against these effects.102 Additionally, studies 

employing knockout models of antioxidant enzymes show similar effects attributed to 

oxidative stress-mediated apoptosis. Mice heterozygous for Sod2 (or MnSOD), an important 

mitochondrial ROS scavenger, show increased sensitivity to mitochondrial permeability 

transition formation and subsequent release of cytochrome c upon challenge with calcium or t-

butylhydroperoxide; the former is a commonly used source of ROS for in vitro 

experimentation.103 Lens epithelium cells from Sod2 heterozygotic mice show dramatic 

mitochondrial damage, cytochrome c leak, caspase-3 activation and increased cell death 

compared to wild-type controls.104 Transgenic mice that selectively overexpress human 

catalase, an important endogenous H2O2 detoxifier,  in the mitochondria of skeletal and cardiac 

muscle display decreased H2O2 production from cardiac mitochondria compared to controls.105 

They also display increased lifespan, as well as decreased oxidative DNA damage throughout 

their lives, evidenced by decreased 8-hydroxydeoxyguanosine (8-OHdG) levels.105 Similar 

protective effects of catalase overexpression have been observed in a murine cancer cell line, 

resulting in increased tumour growth.106 There is also evidence for the deleterious effects of 

depletion of endogenous antioxidants, most notably reduced glutathione (GSH); however, this 

will be discussed in detail below. These studies highlight the link between apoptosis and redox 

status and suggest that conditions associated with increased oxidative stress may negatively 

influence apoptotic signalling. 
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Oxidative stress, aging and skeletal muscle apoptosis 

It is proposed that a lifetime of electron flow through the mitochondria leads to cumulative 

damage by way of free radical production, particularly in post-mitotic tissues such as skeletal 

muscle;87 this is known as the free radical or mitochondrial theory of aging. In the last several 

decades, scientists have begun to make a connection between normal aging and oxidative 

stress, especially with regards to skeletal muscle aging.107, 108, 109, 110, 111 For example, aged 

animals display higher basal ROS production than their younger counterparts,107 as well as 

higher protein carbonyl content and reduced expression of sulfhydryl groups in skeletal muscle 

mitochondria.109 ROS have been shown to play an important role in age-associated 

mitochondrial dysfunction.108, 111  

A common condition of aging in skeletal muscle is known as sarcopenia, involving 

significant loss of muscle mass and function, along with decreased basal metabolic rate.112 In 

addition to this gradual loss of function, aging in skeletal muscle is also associated with 

selective loss of type II (fast-twitch) fibers, decreased muscle cross-sectional area, and general 

muscular dysfunction.78 The mechanism of this selective loss of muscle fibers and associated 

muscle atrophy has been suggested to involve both oxidative stress and elevated levels of 

apoptosis.56, 64, 72, 73, 76, 113 For instance, in aged humans displaying a high loss of type II 

muscle fibers, total superoxide dismutase (SOD) activity is significantly decreased, while 

markers of lipid peroxidation are increased.76 In frail elderly humans, mRNA and protein levels 

of TNF-α, a main death-receptor ligand, are significantly elevated compared to younger adult 

controls.113  
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Animal studies using rodent models have shown comparable changes to humans. 

Specifically, muscles containing a higher proportion of type II fibers (ie. plantaris versus 

soleus) show elevated extrinsic pathway activation and specific fiber loss,64 while older 

animals (24 months old) experience a 50% increase in mono- and oligonucleosomal DNA 

fragmentation compared to adult (6 month old) animals.56 Additionally, caspase-3 is increased 

in aged EDL with no significant changes observed in soleus, providing further support for the 

selective loss of Type II fibers in aging.73 TNF-α signalling is significantly elevated in old 

superficial vastus lateralis (predominantly type II muscle) compared to old soleus muscle.72 

Conversely, there is some evidence for increased apoptosis in type-I dominant soleus muscle of 

old animals, evaluated through increased apoptotic index and smaller cross-sectional area.71 

Furthermore, the more oxidative soleus muscle of rats shows a high basal level of pro-

apoptotic Bax protein expression with a concomitant lower level of anti-apoptotic Bcl-2; the 

reverse trends are seen in the glycolytic, white gastrocnemius muscle, indicating a greater 

potential for apoptotic signalling in the more oxidative muscle type.114 Yet others have shown 

elevated DNA fragmentation in both aged soleus and EDL muscles.73 Taken together, these 

studies support the notion that apoptosis is elevated in skeletal muscle during aging. However, 

this evidence also indicates that the current consensus on selective fiber loss and aging-related 

muscle atrophy requires further clarification. 

Glutathione: an important regulator of cellular redox status 

Antioxidant enzymes and compounds are vital to maintenance of the delicate cellular redox 

balance. While many such compounds can be obtained from foods and supplements 

(exogenous antioxidants), the body has developed several endogenous defences against 

oxidative insult.115, 116, 117 Specifically, the superoxide dismutases (CuZn- and Mn-containing) 
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are cellular enzymes that reduce the highly damaging superoxide anion (O2·-) to hydrogen 

peroxide and molecular oxygen with the help of hydrogen.117 Catalase is another important 

ROS detoxifier that exerts its action downstream of the superoxide dismutases by detoxifying 

H2O2 to water and molecular oxygen.117 Another major intracellular antioxidant is reduced 

glutathione (GSH). It is expressed in all mammalian tissues, with levels varying from 0.2 mM 

to 10 mM depending on tissue type.116 This water-soluble tripeptide is the major intracellular 

thiol composed of glutamate, glycine and cysteine and is synthesized in a two-step process. 

The first, rate-limiting, step consists of formation of the dipeptide γ-glutamylcysteine through 

ligation of L-cysteine and L-glutamate via the action of the enzyme γ-glutamylcysteine 

synthetase (γ-GCS, or Glutamate-L-Cysteine Ligase).118 The second step is catalyzed by GSH 

synthetase, which adds a glycine residue to γ-glutamylcysteine, resulting in the fully functional 

tripeptide.119  

Typically, glutathione is present in its reduced form (GSH) in the cell and may be 

oxidized to glutathione disulfide (GSSG) via detoxification of ROS by the glutathione 

peroxidase (GPx) enzyme system to which it contributes reducing equivalents.120 It is rapidly 

reduced back to GSH by GSSG reductase (GR),121 thus preserving the reducing cellular 

environment. There is a demonstrated relationship between vitamin C, an important water-

soluble exogenous antioxidant, and GSH in their ability to “spare” each other through 

reduction reactions.122 In particular, studies have shown that GSH is essential in maintaining 

the reduced form of vitamin C (ascorbate) in vivo, as depletion of GSH leads to oxidation of 

ascorbate to dehydroascorbate which is degraded and lost.123 Similar mechanisms of mutual 

sparing have also been observed between vitamin E (an exogenous lipid-soluble antioxidant) 

and GSH, whereby each exerts its respective antioxidant activities to protect the other from 
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peroxide modification.124 In addition, GSH can modulate the activity of a number of proteins 

through post-translational modification.125 The ratio of GSH:GSSG is a useful indicator of 

cellular redox status and oxidative stress, with smaller values indicating an oxidative shift and 

larger values signifying a more reduced cellular state.117  

Glutathione depletion by L-buthionine-[S,R]-sulfoximine 

Attempts to evaluate the cellular redox status and the potential for cytoprotection by 

endogenous antioxidants due to various stressors has been attempted through GSH depletion 

both in cell culture and in animal models.82, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139 

The vast body of literature on this biomolecule highlights its varied roles in many cellular 

functions. A large proportion of research literature has focused on chronic depletion of GSH to 

elucidate the degree of protection its presence confers upon cells. The most common depletion 

method uses specific inhibitors of elements of the γ-glutamyl cycle. A safe, established and 

effective method of obtaining this depleted model is use of the drug L-buthionine-[S,R]-

sulfoximine (BSO), an inhibitor of γ-GCS.140 Through inhibition of synthesis of GSH, levels 

are gradually depleted in almost all organ compartments in the body. BSO has been used to 

reliably deplete GSH in several tissues, including liver,139, 140 kidney,139, 140 pancreas,139, 140 

skeletal muscle,139, 140 brain139, 141 and heart.82, 139  

Glutathione and apoptotic signalling 

There is compelling evidence that intracellular glutathione is depleted acutely during apoptosis 

as part of death signal propagation, which may be effective in shifting the oxidative balance 

without necessarily causing overproduction of ROS.129, 142 This local GSH depletion has been 

attributed to GSH extrusion from the cell during apoptosis30, 126, 143, 144 or as a result of 
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cleavage of enzymes involved in GSH synthesis.145 For instance, Jurkat cells, a T lymphocyte 

cell line, experience rapid intracellular depletion of GSH due to stimulation of extracellular 

death receptors by Fas/APO-1-activating antibody.144 Apoptosis induced by a variety of agents 

in thymocytes leads to disruption of the mitochondrial membrane potential, production of 

ROS, and depletion of GSH in the early stages of apoptosis.146 Further evidence for the 

relationship between cellular GSH levels and mitochondrial membrane potential fluctuations 

comes from studies using bongkrekic acid (BA), an inhibitor of the adenine nucleotide 

transporter (ANT) located on the inner mitochondrial membrane. ANT is one of the proposed 

channels involved in mitochondrial permeability transition (MPT), leading to release of pro-

apoptotic factors into the cytosol.38 BA has been shown to inhibit several apoptotic events 

associated with MPT, such as generation of ROS, DNA fragmentation, and local depletion of 

GSH.147 Cells overexpressing anti-apoptotic Bcl-xL are protected from GSH extrusion when 

exposed to an apoptotic challenge, but similar cells overexpressing pro-apoptotic Bax 

experience a significant loss of GSH prior to apoptosis onset, highlighting the cooperation 

between GSH and Bcl-xL in promoting cell survival.126 Activation of plasma membrane GSH 

transporters in hepatic cells can be increased by treatment with extrinsic pathway death 

ligands,143 while Bcl-2 overexpression in HeLa cells helps to conserve intracellular GSH levels 

by inhibiting a methionine-dependent efflux pump.148 Bcl-2 overexpression in other cell lines, 

such as the GT1-7 hypothalamic line, has shown similar anti-apoptotic effects when 

glutathione depletion is induced. In fact, basal GSH levels have been reported up to 3 orders of 

magnitude higher in Bcl-2 overexpressors compared to controls, an effect that is conserved 

even when BSO is used to deplete intracellular GSH stores.149 Exposure of apoptosis-resistant 

lymphoma cells to cysteine/methionine-free culture media restores apoptotic sensitivity, 
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comparable to the irradiation-sensitive lymphoma cell line; this effect is mediated by a drop in 

intracellular GSH levels.150 Lastly, Bcl-2 overexpression has been shown to cause localization 

of GSH to the nucleus, leading to prevention of caspase activation and subsequent apoptotic 

death.151 In addition to the above links between apoptotic signalling and GSH, caspase-3 has 

been shown to mediate cleavage of the catalytic subunit of γ-GCS, resulting in depletion of 

GSH due to loss of enzyme activity and de novo GSH synthesis.145  

Use of the BSO-induced glutathione depletion model has shed light on the interaction 

between intracellular GSH levels and risk of apoptotic events. For instance, apoptotic 

signalling is associated with increased ROS production due to glutathione depletion by BSO in 

a B cell lymphoma line.152 Mitochondrial permeability transition was shown to be activated in 

BSO-treated HL-60 cells, a human leukemia cell line; this effect was mediated by 

mitochondrial ROS generation.153 Chronic glutathione depletion through an engineered cell 

line has been shown to increase apoptotic markers in as little as 48 hours.154 In addition, severe 

mitochondrial damage has been attributed to BSO-induced GSH depletion. In mitochondria 

isolated from the brains of newborn rats, GSH depletion leads to mitochondrial swelling and 

degeneration.141 BSO has also been shown to be effective in inducing estrogen-mediated 

apoptosis in a human breast cancer cell line characterized by its high intracellular GSH 

stores.155  

Alternatively, increasing GSH levels as a protective mechanism against apoptosis has 

shown some success. For example, GSH has been shown to prolong survival in cancer cell 

lines.128 Mice fed a sulphur amino-acid enriched diet (supplemented with 1% L-cysteine and 

1% GSH) experienced a 63% increase in hepatic GSH levels.52 These animals were 

subsequently injected with an antagonistic anti-Fas antibody and showed preserved 
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GSSG:GSH ratio, prevention of mitochondrial permeabilization and hepatic apoptosis 

compared to age-matched controls fed a normal chow diet.52 Activated human T cells display 

an apoptosis-resistant phenotype upon exposure to Fas when supplemented with glutathione 

monoesters or N-acetylcysteine (NAC; a thiol antioxidant and precursor to GSH). This effect 

was completely abolished when cells were subjected to BSO-induced GSH depletion.156 

Collectively, this data demonstrate the potentially protective relationship between intracellular 

GSH levels and apoptotic signalling, wherein maintenance of thiol levels results in an anti-

apoptotic phenotype.  

Purpose 

There are established links between oxidative stress and apoptosis, along with the consistent 

observation of increased oxidative stress as a result of both aging and glutathione depletion by 

BSO. Studies on the effect of GSH depletion on apoptosis have been carried out in a variety of 

tissues; however, little is known about these effects in skeletal muscle. Therefore, the purpose 

of the present study was to examine the role of glutathione in skeletal muscle apoptotic 

signalling, with particular emphasis on muscles composed of different fiber types. Antioxidant 

redox status changes, as well as shifts in antioxidant capacity were examined in soleus, a 

predominantly slow-twitch, oxidative muscle, and contrasted to the white portion of the 

gastrocnemius, a predominantly fast-twitch glycolytic muscle. Apoptotic protein expression 

and DNA fragmentation were also determined in these two muscle types. In addition, the 

effects of aging on skeletal muscle apoptosis, in combination with the oxidative challenge of 

glutathione depletion, were evaluated.  
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Objectives 

The primary aim of the present study is to investigate the role of GSH depletion in apoptotic 

signalling in skeletal muscle. Given the unclear relationship between apoptotic signalling and 

GSH in skeletal muscle, a GSH depletion model will be used to better understand the 

importance of antioxidant status in apoptotic signalling in this tissue. Soleus and white portions 

of the gastrocnemius muscle have been chosen for analysis due to their established differences 

in oxidative potential and relatively pure fiber type composition (Soleus predominantly type I, 

WG predominantly type IIB). A secondary aim of this study is to elucidate the effect of 

advancing age on apoptotic signalling in GSH-depleted and GSH-intact skeletal muscle. There 

is an established link between apoptotic signalling and aging; however, the effect of GSH 

depletion on apoptosis in skeletal muscle of older animals is currently unclear. 

Hypotheses 

The hypotheses of the current work are as follows: 

1. BSO treatment will decrease muscle GSH and increase muscle ROS production in both 

slow and fast skeletal muscle types. This effect will be further amplified in older 

animals. 

 

2. Skeletal muscle from older animals will experience higher levels of oxidative stress 

compared to their younger counterparts; this will be independent of BSO treatment 

status. 
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3. In addition, upregulation of antioxidant enzymes will be observed primarily in the older 

animal groups, with the highest values seen in the old BSO-treated group. 

 

4. The hypothesized increases in oxidative stress will lead to increased markers of 

apoptotic signaling in both soleus (slow) and white gastrocnemius (fast) muscle, with 

the highest increases observed in older, BSO-treated animals. 

 
5. Levels of apoptotic markers will be increased in SOL compared to WG, as there are 

established differences in basal apoptotic expression in these muscle types. This will be 

independent of BSO treatment status. 
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METHODS 

Animals 

Male Sprague-Dawley rats were obtained from an in-house breeding colony (University of 

Waterloo, Waterloo, ON) for inclusion in this study. Two age groups were examined: a 

“young” group made up of adult-aged animals (34.85 ± 0.14 weeks; n=24) and an “old” group 

consisting of approximately middle-aged animals (69.11 ± 0.74 weeks; n=24). Rats were 

housed in a controlled environment at constant air temperature (20-21˚C) and humidity (~50%) 

on a 12h:12h reversed light/dark cycle. Standard Teklad 22/5 rodent chow (Harlan, WI) was 

provided, with intake monitored daily. All animal care procedures were approved by the 

University of Waterloo Animal Care Committee. 

BSO treatment 

The drug L-buthionine-[S,R]-sulfoximine (BSO; BioShop Canada Inc.), a specific γ-

glutamylcysteine synthetase inhibitor, was used to deplete glutathione levels. The young and 

old rats were subdivided into control (CON) and BSO-treated (BSO) groups, resulting in four 

experimental groups: Young CON (n=12), Young BSO (n=12), Old CON (n=11) and Old BSO 

(n=13). Control animals were provided regular drinking water while BSO-treated animals were 

given water containing 30mM BSO ad libitum for 10 consecutive days, with intake recorded 

daily. Water was changed every 2 days, due to the limited half-life of the BSO drug. Body 

weight of all animals was determined prior to BSO administration as well as after the 10 day 

treatment period in order to assess possible drug toxicity. 

 



24 
 

Tissue collection 

At the end of the 10 day drug treatment, the BSO-treated rats and age-matched controls were 

anesthetized with sodium pentobarbital (90-100mg/kg body weight) and sacrificed by removal 

of the heart. Soleus and white portions of the gastrocnemius muscle were quickly isolated. The 

majority of excised muscle was quickly snap frozen in liquid nitrogen and stored at -80˚C for 

further biochemical analyses. A small portion of the muscle belly of each muscle type was 

covered in Tissue-Tek Optimal Cutting Temperature medium (Sakura Finetek, USA), quickly 

frozen in liquid nitrogen-cooled isopentane, and stored at -80˚C for immunohistochemical 

analyses. 

Immunoblot analyses and subcellular fractionation 

For whole muscle homogenates, skeletal muscle (~20-25mg) was homogenized in 19 volumes 

of ice-cold muscle lysis buffer (20mM HEPES, 10mM NaCl, 1.5mM MgCl2, 1mM DTT, 20% 

glycerol and 0.1% Triton X100; pH 7.4) with protease inhibitors (Complete Cocktail; Roche 

Diagnostics) using a glass homogenizer. Homogenates were then centrifuged at 1000 x g for 10 

minutes at 4˚C, the supernatant was collected, and total protein was determined by the BCA 

protein assay. 

Subcellular fractions of muscle were prepared by differential centrifugation (see Figure 

3). Briefly, skeletal muscle (45mg for soleus, 60-65mg for white gastrocnemius) was 

homogenized by hand in 19 volumes of ice-cold mitochondrial isolation buffer (250mM 

sucrose, 20mM HEPES, 10mM KCl, 1mM EDTA, 1mM EGTA, 1mM DTT; pH 7.4) with 

protease inhibitors (Complete Cocktail; Roche Diagnostics) using a glass homogenizer. 

Homogenates were centrifuged at 800 x g at 4°C for 10 minutes, yielding a pellet (P1) and 
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supernatant (S1). The resulting S1 fraction was spun at 800 x g at 4°C for an additional 10 

minutes to remove any residual debris and the resulting supernatant transferred to a new tube 

(S2). The S2 fraction was then spun at 20,800 x g at 4°C for 20 minutes to yield a pellet 

containing the mitochondrial fraction (M1) and a supernatant corresponding to the cytosolic 

fraction (C1). The M1 pellet was washed twice by adding mitochondrial isolation buffer and 

centrifuged at 20,800 x g at 4°C for 20 minutes. The resulting pellet was considered the 

enriched mitochondrial fraction. The C1 supernatant was re-spun two additional times at 

20,800 x g at 4°C for 20 minutes to remove any residual mitochondria and debris, resulting in a 

cytosolic-enriched fraction. The P1 pellet obtained from the first spin of the whole muscle 

homogenate was washed with mitochondrial isolation buffer and spun at 800 x g at 4°C for 10 

minutes three additional times. The remaining pellet at this stage was combined with 200 µL of 

muscle lysis buffer and 27.7 µL of 5M NaCl, and rotated for 1 hour at 4°C. The samples were 

then centrifuged at 20,800 x g at 4°C for 15 minutes, with the resultant supernatant kept as the 

nuclear-enriched fraction. Total protein concentration was determined for each fraction by the 

BCA protein assay and immunoblots performed to verify the purity of fractions using the 

following primary antibodies: rabbit polyclonal anti-histone H2B (Cell Signaling Technology) 

for the nuclear fraction, rabbit polyclonal anti-copper zinc superoxide dismutase (CuZnSOD) 

(Stressgen Bioreagents) for the cytosolic fraction, and goat polyclonal anti-adenine nucleotide 

translocase (ANT) (Santa Cruz Biotechnology) for the mitochondrial fraction. Samples were 

then stored at -80°C for further immunoblot analysis. 

Equal amounts of protein were loaded in duplicate and electrophoresed on 12% or 15% 

SDS-PAGE gels, transferred onto PVDF membrane (Bio-Rad Laboratories), and blocked 

overnight with 5% milk in Tris-Buffered Saline with 0.1% Tween (TBS-T) at 4˚C. Membranes 
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with whole homogenate samples were incubated at room temperature for 1 hour with the 

following primary antibodies: mouse monoclonal anti-apoptosis inducing factor (AIF), rabbit 

polyclonal anti-apoptosis repressor with caspase recruitment domain (ARC), rabbit polyclonal 

anti-Bax (Santa Cruz Biotechnology); rabbit polyclonal anti-CuZnSOD, mouse monoclonal 

anti-heat shock protein 70 (Hsp70), rabbit polyclonal anti-manganese superoxide dismutase 

(MnSOD), rabbit polyclonal anti-second mitochondrial activator of caspases (Smac) (Stressgen 

Bioreagents); and rabbit polyclonal anti-catalase (Sigma-Aldrich). For detection of Bcl-2 and 

4HNE in whole homogenates, membranes were blocked with 5% TBS-T at room temperature 

for 1 hour then incubated with either a mouse monoclonal anti-Bcl-2 primary antibody (Santa 

Cruz Biotechnology) or a rabbit polyclonal anti-4HNE primary antibody (Abcam) for 1-2 

hours at room temperature, followed by further incubation at 4ºC overnight. The subcellular 

fractions obtained were also electrophoresed and blocked as specified above, with different 

proteins examined in the various fractions. AIF detection was performed in both the nuclear 

and cytosolic fractions in both tissues, and in mitochondrial fractions of WG only (due to 

limited sample), while Smac and cytochrome c (mouse monoclonal primary; Santa Cruz 

Biotechnology) were examined in the cytosolic fraction of SOL and WG as an indirect marker 

of mitochondrial release of these proteins. Membranes were then washed with TBS-T and 

incubated with the appropriate species-specific horseradish peroxidase (HRP)-conjugated 

secondary antibody (Santa Cruz Biotechnology) for 1 hour at room temperature, washed, and 

visualized using the Amersham Enhanced Chemiluminescence Western Blotting detection 

reagents (GE Healthcare) and the ChemiGenius 2 Bio-Imaging System (Syngene). The only 

deviations from these steps was in the detection of Bcl-2, whereby 2 hours of secondary 

antibody incubation was used in combination with the Amersham ECL Plus detection reagents 
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(GE Healthcare). The approximate molecular weight for each protein of interest was estimated 

using Precision Plus Protein WesternC Standards in conjunction with Precision Protein 

Streptactin HRP Conjugate (BioRad Laboratories). Equal loading and quality of protein 

transfer was evaluated by Ponceau S staining (Sigma-Aldrich). Protein levels are expressed as 

mean relative optical density in arbitrary units (AU). 



28 
 

 

Figure 3: Differential centrifugation protocol (Quadrilatero Lab) 
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Glutathione quantification 

Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were determined by high-

performance liquid chromatography (HPLC).157 Briefly, 20-25 mg of muscle tissue was 

homogenized on ice in 10 volumes of 2mM phenanthroline in 7% perchloric acid using a glass 

homogenizer. After a brief incubation on ice, samples were centrifuged at 1000 x g for 10 

minutes at 4˚C. A portion of the supernatant (125μL) was removed, treated with 5μL of 0.4 M 

iodoacetic acid, and neutralized with excess NaHCO2. Samples were then incubated in the dark 

at room temperature for 1 hour, after which time they were treated with 1μL 1-fluoro-2,4-

dinitrobenzene (1.5mL in 98.5mL absolute ethanol), and further incubated in the dark for 8 

hours. A 25μL aliquot of each sample was run on a Waters Alliance 2695 system using a 

Varian (Rainin) Microsorb 5μM amino (25cm x 4.5cm) column at room temperature for 35 

minutes with a flow rate of 1mL/min, and detected at 350 nm. 

Reactive Oxygen Species generation 

Reactive oxygen species (ROS) generation was determined using 

2’,7’dichlorohydrofluorescein-diacetate (DCFH-DA) as previously performed.9, 107 DCFH-DA 

is hydrolyzed by intracellular esterases to yield nonfluorescent DCFH, which is oxidized to the 

highly fluorescent compound DCF as a result of ROS exposure. Briefly, ~10 mg of muscle 

tissue was homogenized in ice-cold Phosphate-Buffered Saline (PBS; pH 7.4) using a glass 

homogenizer. Duplicates of whole muscle homogenate were pre-incubated with the ROS 

scavenger Tiron (1mM) as a negative control, or left untreated. Samples were then incubated in 

the dark with 5μM DCFH-DA (Invitrogen) at 37˚C. Fluorescence was measured every 15 

minutes for 2 hours using a SPECTRAmax GEMINI XS microplate spectrofluorometer 
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(Molecular Devices) with excitation and emission wavelengths of 490 nm and 525 nm, 

respectively. Fluorescence intensity was normalized to total protein content and expressed as 

AU per mg protein. 

Caspase proteolytic enzyme activity 

The enzyme activity for caspase-3, caspase-8, and caspase-9 was determined 

spectrofluorimetrically in muscle homogenate using the fluorescent substrates Ac-DEVD-

AMC, Ac-IETD-AMC, and Ac-LEHD-AMC (Enzo Life Sciences), respectively. Briefly, 12-

15mg of tissue was homogenized in ice-cold muscle lysis buffer, without protease inhibitors, 

and centrifuged at 1000 x g for 10 minutes at 4˚C. Tissue supernatants were then incubated 

with the appropriate substrate at room temperature for 2 hours. Fluorescence was measured 

every 15 minutes using a SPECTRAmax Gemini XS microplate spectrofluorometer (Molecular 

Devices) with excitation and emission wavelengths of 360 nm and 440 nm, respectively. In 

control experiments, caspase substrates were incubated with either human recombinant active 

caspase-3 (Enzo Life Sciences), caspase-8 (Sigma-Aldrich), or caspase-9 (Enzo Life Sciences). 

In all cases, a strong fluorescent signal was obtained, indicating the specificity of the selected 

substrates. In addition, incubation of active recombinant enzymes as well as muscle samples 

with inhibitors for caspase-3 (Ac-DEVD-CHO; Enzo Life Sciences), caspase-8 (Ac-IETD-

CHO; Sigma-Aldrich), and caspase-9 (Ac-LEHD-CHO; Enzo Life Sciences) completely 

inhibited the fluorescent signal observed. Caspase activity was normalized to total protein 

content and expressed as AU per mg protein. 
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DNA fragmentation assay 

Cytoplasmic histone-associated mono- and oligonucleosomes (ie. from fragmented DNA) were 

determined using the Cell Death Detection ELISAPLUS Kit (Roche Diagnostics) according to 

the manufacturer’s instructions. Briefly, 5-7 mg of muscle tissue was homogenized in the lysis 

buffer provided, incubated for 30 minutes at room temperature and centrifuged at 200 x g for 

10 minutes at room temperature. A 20 μL aliquot of supernatant was incubated with 80 μL of 

anti-histone-biotin/anti-DNA-peroxidase reagent in a streptavidin-coated microplate for 2 

hours at room temperature with gentle shaking (~300 rpm).  The solution was then aspirated 

from each well, washed 3 times with the incubation buffer provided in the kit, replaced with 

100 μL of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) substrate solution 

and incubated for a further 30 minutes at room temperature. Absorbance measurements were 

taken every 5 minutes using a SPECTRAmax Plus spectrophotometer (Molecular Devices) at 

405 nm and 490 nm. A control sample consisting of a DNA-histone complex was included to 

confirm a positive signal for DNA fragmentation. Absorbance was normalized to total protein 

content and expressed as AU per mg protein. 

Immunohistochemical analyses 

Lipid peroxidation due to oxidative stress 

Skeletal muscle cross-sections (10 µm) were obtained using a Shandon Cryotome SME 

(Thermo Electron Corp.). Muscle cross-sections were examined for lipid peroxidation using 

immunofluorescence staining for 4-hydroxynonenal (4-HNE) content. 4-HNE is the primary 

α,β-unsaturated hydroxyalkenal produced in cells as a result of oxidative insult;95 in particular, 

expression of this peroxidation product has been observed in skeletal muscle exposed to 
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oxidative stress158. Frozen slides were thawed, air dried and fixed in 4% paraformaldehyde. 

Next, slides were blocked in 5% goat serum for 30 minutes, and then incubated for 1 hour in a 

humidified chamber with the same rabbit polyclonal anti-4-HNE primary antibody (AbCam) 

used for immunoblot analysis. Sections were washed in PBS and then incubated in the dark in 

a humidified chamber with a goat anti-rabbit IgG-FITC secondary antibody (Santa Cruz 

Biotechnology) for 1 hour, washed in PBS, and mounted in ProLong Gold Antifade Reagent 

(Invitrogen). Sections were visualized using a Zeiss Axio Observer Z1 structured-illumination 

fluorescent microscope equipped with an AxioCam HRm camera and associated AxioVision 

4.7 imaging software (Carl Zeiss). 

ARC staining 

Muscle cross-sections were thawed and air dried, then fixed in 100% acetone at 4°C for 10 

minutes and air dried for an additional 5 minutes. They were washed in PBS and subsequently 

permeabilized in 0.5% Triton X-100 for 5 minutes. After washing, 0.6% hydrogen peroxide 

(H2O2) was applied to sections for 10 minutes to quench endogenous peroxidase activity. 

Sections were then washed and blocked with 5% goat serum in PBS for 30 minutes in a 

humidified chamber, and subsequently incubated for 1 hour with the same rabbit polyclonal 

anti-ARC antibody (Santa Cruz Biotechnology) used for immunoblot analysis. Sections were 

then washed and incubated with an anti-rabbit IgG biotinylated secondary antibody (Vector 

Laboratories) for 1 hour, washed, and incubated with ABC Reagent for 30 minutes (Vector 

Laboratories). After another wash, the NovaRED peroxidase substrate kit (Vector 

Laboratories) was used, which produces a red precipitate at the target staining areas; the stain 

was left on the slides for 13-15 minutes. Slides were rinsed with dH2O to remove residual stain 

and washed once more in PBS before being mounted in glycerol gel medium and visualized 
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using a Nikon Eclipse 50i light microscope with a PixelLink Camera and associated imaging 

software. 

Data analysis 

Data is represented as means ± standard error of the mean for each experimental group. Group 

comparisons were conducted using a 2 X 2 ANOVA followed by Tukey post hoc analysis 

where appropriate. For comparison of approximate drug intake between young and old BSO-

treated animals, a Student’s t-test was performed. Except where otherwise indicated, data were 

normalized to the Young CON group for the muscle of interest. Statistical significance was set 

at p<0.05.  
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RESULTS 

Anthropometric, water and food intake data 

Anthropometric data, along with food and water intake for all experimental animals, can be 

found in Table 1. As expected, there was a significant difference in age (p<0.01) between the 

“young” and “old” groups (34.85 ± 0.14 versus 69.11 ± 0.74 weeks). Though there was no 

statistically significant effect for age in terms of water intake, the young groups consumed 10% 

more water than their older counterparts, on average. The interaction term for water intake was 

significant (p<0.01), indicating that the Young BSO animals consumed up to 34% more water 

than the Old BSO group during the 10-day treatment period. A significant age-related decrease 

in approximate BSO dose was seen, from 3.74x10-3 ± 0.24x10-3 mmol/g/day in Young BSO to 

2.33x10-3 ± 0.14x10-3 mmol/g/day in Old BSO. The Old BSO group also consumed 

significantly less food than all other groups, as assessed by the interaction term (p<0.05) for 

this measure. Additionally, BSO dose was inversely correlated with post-treatment body 

weight (r=-0.789, p<0.001) as well as kidney weight (r=-0.743, p<0.001), whereby higher BSO 

doses corresponded to lower body and kidney weights. There was also a significant (p<0.01) 

age-related increase in kidney weight compared to younger animals. 

Prior to BSO treatment, a significant (p<0.01) main effect for age was observed in pre-

treatment body weight, whereby old animals weighed more than their younger counterparts. A 

similar age-related effect persisted after treatment; in addition, BSO-treated animals 

experienced significant (p<0.01) decreases in body weight compared to age-matched controls 

as assessed by the average change in weight from pre- to post-treatment. A main effect for age 

(p<0.01) was also observed for this measure, whereby older animals lost significantly more 

weight than younger animals over the course of the treatment period. Lastly, muscle cross-
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sectional area, used to assess possible losses of muscle mass in place of the muscle wet weight, 

showed a main effect (p<0.05) for age in SOL, with 15% higher values observed in old 

compared to young animals. WG tissue also displayed a significant main effect (p<0.05) for 

age, but older animals had 16% lower muscle cross-sectional area than their younger 

counterparts. 

Table 1: Anthropometric, water and food intake for all experimental animals 

 Young 
CON 

(YCON, 
n=12) 

Young BSO 
(YBSO, 
n=12) 

Old CON 
(OCON, 

n=11) 

Old BSO 
(OBSO, 
n=13) 

PBSO  PAGE PBSOxAGE 

Age (wks) 35.11 ± 0.23 34.60 ± 0.13 69.73 ± 1.11 68.58 ± 1.00 NS <0.001 NS 
Water 

intake (mL) 
482.3 ± 
19.12 

604.75 ± 
30.12 

544.91 ± 
49.09 

452.23 ± 
29.56 

NS NS 0.002 

Total food 
intake (g) 

233.36 ± 
6.88 

207.77 ± 
6.16 

230.66 ± 
9.46 

170.72 ± 
10.44 

<0.001 0.037 0.036 

Approx. 
BSO dose 

(mmol/g/da
y) 

0 3.74x10-3 

±0.24x10-3 
0 2.33x10-3

±0.14x10-3 
--- <0.001 --- 

Pre-BSO 
body 

weight (g) 

506.15 ± 
7.92 

494.29 ± 6.39 585.48 ± 
14.95 

611.94 ± 
14.73 

NS <0.001 NS 

Post-BSO 
body 

weight (g) 

510.27 ± 
7.85 

480.07 ± 
5.84 

575.39 ± 
14.03 

554.28 ± 9.75 0.012 <0.001 NS 

Average 
weight 

change (g) 

4.13 ± 1.79 -14.22 ± 
2.78 

-10.09 ± 
2.87 

-57.66 ± 
15.24 

0.001 0.002 NS 

Kidney 
weight (g) 

1.43 ± 0.04 1.39 ± 0.03 1.84 ± 0.04 1.90 ± 0.04 NS <0.001 NS 

SOL 
Muscle 

CSA 
(μm2)* 

5562.52± 
221.02 

 

5644.18±  
149.56 

 

6688.08±  
512.33 

 

6154.20 ±  
292.12 

NS 0.017 NS 

WG Muscle 
CSA 

(μm2)* 

5469.10±  
397.20 

4895.41±  
449.44 

 

4283.74±  
264.97 

4434.16±  
321.52 

NS 0.04 NS 

*for cross sectional area (CSA) data, n=8 was used 
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BSO treatment alters glutathione content 

Reduced glutathione (GSH) content, as measured by HPLC, showed a significant (p<0.05) 

main effect for drug treatment, as GSH was significantly decreased in SOL and WG tissues 

compared to age-matched controls. SOL GSH decreased 89% from controls to BSO-treated 

animals (Figure 4), while in WG GSH similarly decreased 96% (Figure 5). Glutathione 

disulfide (GSSG) content followed a similar pattern to that observed for GSH. Namely, GSSG 

levels were not affected by age in either tissue but were decreased 89% (p<0.001) in WG due 

to BSO treatment compared to controls (Figure 5). There was a significant interaction (p<0.05) 

effect in SOL GSSG, whereby both BSO groups were decreased compared to the Young CON 

group. Additionally, the Young CON group was decreased compared to the Old CON’s 

(Figure 4).  

 
Figure 4: GSH and GSSG levels in soleus (SOL) muscle; values are presented as means ± SEM. 
** indicates main effect for BSO (p<0.001); @ significantly different than Old CON (p<0.05); + significantly 
different than Young CON and Old CON (p<0.001). 
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Figure 5: GSH and GSSG levels in white gastrocnemius (WG) muscle; values are presented as means ± SEM.  
** indicates main effect for BSO (p<0.001). 
 

BSO treatment also significantly impacted the GSH:GSSG ratio, a commonly-used 

indicator of cellular redox status. BSO-treated groups were significantly (p<0.05) decreased by 

62% in the WG tissue compared to age matched controls. A significant interaction (p<0.05) 

was observed in the SOL, whereby both the Young BSO and Old BSO groups were 

significantly reduced compared to the controls, respectively (Figure 6). 

 
Figure 6: GSH:GSSG ratios in WG and SOL tissues; values are presented as means ±SEM.  
** indicates main effect for BSO (p<0.001); + significantly different than Young CON and Old CON (p<0.05). 
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BSO treatment leads to increased ROS production only in SOL in the absence of similar effects 

on lipid peroxidation 

ROS production was determined in muscle homogenate by measuring DCFH oxidation. BSO 

treatment led to significantly (p<0.05) increased ROS production in SOL muscles compared to 

age-matched controls (Figure 7). ROS production was not different between groups in WG 

muscle (Figure 7).  

 
Figure 7: ROS production in SOL and WG muscle; all values are represented as arbitrary fluorescent units per 
mg protein. ** indicates main effect of BSO (p<0.05). 
 

 In contrast to the observed increase in ROS production, 4 hydroxy-2-nonenal (4HNE) 

levels were not significantly different between groups in both WG and SOL as measured by 

immunoblot analysis (Figure 8). There was a nonsignificant trend (p=0.097) toward a 37% 

decrease in 4HNE protein levels in BSO animals compared to controls in SOL. 

Immunofluorescence analysis did, however, show a 15% decrease (p<0.05) in 4HNE staining 

in BSO-treated SOL tissue compared to age-matched controls (Figure 9, panels B and C). 

While this is contrary to the hypothesized increase in oxidative stress in this model, part of this 
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Figure 12: Relative activities for caspases-3, -8, and -9 in SOL muscle; all values are normalized to Young CON 
group and expressed as means ± SEM. * indicates main effect for AGE (p<0.05). 
 

 
Figure 13: Relative activities for caspases-3, -8, and -9 in WG muscle; all values are normalized to Young CON 
group and expressed as means ± SEM. $ significantly different than Young CON and Old BSO (p<0.05). 
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Whole tissue apoptosis-related protein levels demonstrate age-related variations independent 

of BSO treatment status 

Several apoptosis-related proteins were examined in SOL and WG by immunoblot analysis. 

ARC protein content in SOL was decreased 28% in older animals compared to their younger 

counterparts (p<0.05) while SOL Hsp70 increased 18% in these same animals (p<0.05) (Figure 

14). Immunohistochemical analysis was also performed for ARC, confirming the above results. 

Densitometric IHC analysis revealed a 20% decrease in intensity of staining in older SOL 

muscle cross sections in relation to younger animals (Figure 16, panels B and C). A 

significantly (p<0.05) increased staining intensity in SOL muscle cross-sections was observed 

compared to WG muscle, with all groups displaying up to a 2-fold higher staining (Figure 16, 

panels A and B). The only exception was the Old BSO group, whereby the SOL and WG 

staining intensities were not significantly different (Figure 16 panel C). Lastly, SOL Bcl-2 

protein levels did not change significantly from group to group (Figure 14). 
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BSO treatment leads to significant DNA fragmentation in WG with little effect in SOL 

DNA fragmentation, one of the hallmark events in apoptosis, was quantified using a Cell Death 

Detection ELISA. Average DNA fragmentation was increased 38% (p<0.05) in BSO-treated 

animals in WG tissue and 11% (p<0.05) in SOL tissue (Figure 23). No age-related changes in 

DNA fragmentation were observed in either tissue. In addition, DNA fragmentation values 

were 12-fold higher in SOL tissue compared to WG (p<0.05; Figure 23). 

 
Figure 23: Quantification of DNA fragmentation in SOL and WG tissues using the Cell Death Detection 
ELISAPLUS. Data shown are relative optical densities normalized to WG Young CON; values are presented as 
means ± SEM. **indicates the main effect for BSO treatment (p<0.05), detected in both SOL and WG tissues; # 
indicates a main effect for Tissue type (p<0.05). 
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DISCUSSION 

Effect of BSO treatment and age on cellular thiol levels and anthropometric indicators 

As reported elsewhere,132, 136, 138, 139, 152, 159, 160, 161 BSO treatment leads to significant 

reductions in GSH content. In the present work, SOL GSH levels were decreased by 89% 

compared to age-matched controls, while WG GSH levels were decreased by 96% in the BSO-

treated groups. GSH levels were not affected by age in SOL or WG. GSSG levels were 

decreased as a result of BSO treatment in WG and SOL. Interestingly, in SOL, GSSG levels in 

the Old CON group were 29% higher than in the Young CON group. GSSG levels were not 

different due to age in WG. Owing to the fact that GSSG is the oxidized form of GSH, its 

levels are shown to increase in situations of oxidative stress such as aging.76 The loss of GSSG 

observed in this study is primarily due to the severe BSO-induced reduction in GSH 

synthesis;137 with very little GSH remaining in the cells, the levels of GSSG are decreased 

accordingly. There is also some evidence that GSSG can be released from the cell in response 

to oxidative stress.162 In other words, when there is less of the oxidized glutathione form 

(GSSG) present in the cell, the overall GSH:GSSG ratio will be higher. Higher GSH:GSSG 

ratios are generally indicative of a more reducing environment, which is the “usual” state of the 

cell.163 In the present work, these ratios were significantly decreased in SOL and WG as a 

result of BSO treatment, indicating a shift towards a more oxidative cellular environment.  

 Interestingly, anthropometric measures were also altered in response to BSO treatment. 

Animals receiving BSO had significantly lower post-treatment body weights than age-matched 

controls and experienced greater weight loss over the course of the experimental period. 

Additionally, there were negative correlations between BSO dose (calculated based on water 
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intake) and post-treatment body weight and kidney weight. The inverse dose-kidney weight 

relationship may be indicative of potential drug-induced toxicity, as changes in kidney weight 

are a commonly-used marker of toxicity.164 It is possible that potential drug toxicity was a 

result of the dosage used. In this study, 30mM BSO was used when a more typical dose, as 

cited in the literature, is 20mM or less.131, 137, 138, 140 However, there is some debate as to 

whether the 30mM BSO dose is in fact toxic. Some investigators have observed decreased liver 

weights, another index of potential drug toxicity, when using the 30mM dose over 14 days139 

while others have observed little to no toxic effects.165, 166 Tissue damage or other markers of 

toxicity, such as change in liver weight or liver enzyme activity, would have been helpful to 

further elucidate the potential toxic effects of BSO; however, these were not performed. 

Increasing age had an impact on food intake and anthropometric measures, particularly those 

related to body and organ weight. Older animals consumed less food than their younger 

counterparts, with the overall lowest food intake seen in the Old BSO group. Body weight was 

higher in older animals both before and after the BSO treatment, with greater changes in body 

weight over the 10-day experimental period observed in the old animals compared to the 

young. Kidney weight was also increased with age. 

 Measurements of muscle wet weight are typically performed in comparative studies 

such as this, but unfortunately were not carried out here. In place of this, muscle cross-

sectional area (CSA) was used as an approximate indicator of muscle size. Although muscle 

weights would have been useful, we were interested in studying the SOL and WG muscles 

specifically. Tissue weight for the SOL would have been easily obtained without any major 

limitations; however, accurate weight for WG would have been problematic as the isolation of 

this muscle is somewhat subjective. Measurement of fiber CSA is one way to overcome this 
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limitation. Muscle wet weight and CSA are typically examined together, particularly in studies 

focused on aging or muscle atrophy and are nicely correlated.71 In the WG, CSA was decreased 

by 16% with age, while in aged SOL, muscle CSA increased by 15%. This selective muscle 

fiber atrophy is a common observation in experimental aging models. Human gastrocnemius 

muscle shows decreased type IIA and IIB fiber CSA with age, resulting in an overall decreased 

muscle size.167 In addition, the CSA of type I fibers has been shown to vary little, if at all, with 

age.167 The differences observed between SOL and WG are interesting but may reflect 

differences in muscle recruitment. The soleus is a postural muscle composed of primarily type 

I fibers that is continually recruited, whereas the WG is composed of predominantly type IIB 

fibers that have a higher recruitment threshold.168 Therefore, SOL muscle of aged animals may 

have experienced greater recruitment than WG, coupled with the increased load (body weight), 

which could have led to selective muscle fiber hypertrophy in the SOL. No BSO-induced 

changes in fiber CSA area were observed in this study. 

Effect of BSO treatment and age on markers of oxidative stress and antioxidant content in WG 

To further evaluate the effect of age and BSO on the redox state in the muscle, ROS 

generation, 4HNE levels and several antioxidant proteins (catalase, MnSOD, CuZnSOD) were 

measured. In WG, no significant differences in ROS production (as determined by DCFH 

oxidation) in whole muscle homogenate were observed due to BSO treatment or age. Similarly, 

4HNE levels (a measure of lipid peroxidation) were unchanged in the WG across all groups. 

Furthermore, there were no significant changes observed in the protein content of MnSOD and 

CuZnSOD irrespective of age or BSO treatment in WG. In contrast, catalase protein content 

was increased on average by 1.5-fold in older animals and by 1.7-fold in WG of BSO-treated 

animals. This upregulation, particularly in the BSO-treated group, is noteworthy due to the 
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similarities between the methods of action of catalase and thiol-dependent glutathione 

peroxidase (GPx). Catalase is a potent detoxifier of cellular H2O2.
117 GPx is another detoxifier 

of cellular H2O2 that consumes 2 GSH molecules in this process.29 Several studies suggest that 

the activation of these antioxidant enzyme systems may differ depending on the oxidative 

stress signal, even though they accomplish similar functions in the cell. For example, paraquat 

(a potent ROS producer) has been shown to deplete GSH levels while simultaneously 

increasing SOD and catalase expression and activity without affecting GPx activity.169 The 

authors of this work postulate that the depleted GSH levels result in the lack of change in GPx 

activity, resulting in a reliance on other antioxidant enzymes to combat the oxidative stress.169 

It has also been shown that catalase and GPx activities vary differentially depending on cellular 

localization of the oxidative stress, with GPx responsible for H2O2 generated in the 

endoplasmic reticulum and catalase handling peroxisomal H2O2.170 Therefore, a compensatory 

increase in catalase likely occurred as a result of GSH depletion in WG. A compensatory 

antioxidant upregulation is frequently observed with advancing age, consisting of elevated 

activity of MnSOD and catalase77, 171 as well as CuZnSOD and GPx.171 This upregulated 

response has also been observed with BSO treatment, consisting of increased activity and 

content of SOD’s in certain tissues such as rat heart and aorta.82, 159 Lastly, others have shown 

BSO does indeed lead to decreased activity of GPx1.82 It is possible that the upregulation in 

catalase observed with BSO and age was sufficient to maintain ROS and lipid peroxidation at 

levels similar to the Young CON animals. 

Effect of BSO treatment and age on markers of oxidative stress and antioxidant content in SOL 

In contrast to the WG muscle, SOL displayed a 20% increase in ROS production due to BSO 

treatment with no independent effect of age. The higher ROS in SOL of BSO-treated animals 
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with no observable difference in WG may be a consequence of the different ROS sources 

between tissues. It is well-documented that SOL has a high mitochondrial content compared to 

WG.172, 173, 174 For example, markers of mitochondrial content such as citrate synthase activity 

are 2.6-fold higher in SOL compared to WG,174 while succinate dehydrogenase activity is 2.2-

fold higher in SOL.173 Results from our lab are consistent with these findings (Bloemberg & 

Quadrilatero, 2010). Other markers of mitochondrial density, such as PGC-1α protein levels, 

are elevated in SOL compared to WG in the basal state.172 In addition, mitochondria are a 

significant source of ROS,86, 87, 89 meaning they may require increased defense against 

oxidative damage. As such, there is a distinct mitochondrial pool of GSH134 and work in our 

lab has shown that GSH is depleted in isolated mitochondria of BSO-treated animals (Dam et 

al., 2010). Accordingly, the higher ROS in the SOL of BSO-treated animals could be attributed 

to elevated ROS production from sources such as the mitochondria. In contrast, there were no 

age effects seen in ROS production. The lack of an age effect in SOL and WG may be due to 

the fact that the aged animals used in this study (ie. 17 months old) were not as old as those 

typically used in aging research (24-36 months old). This is supported by work conducted in 

rat muscle examining measures of oxidative protein damage in young (5 months), adult (13 

months) and old (24 months) animals.175 Oxidative damage markers such as protein carbonyls 

and nitrotyrosine were only increased in the oldest compared to the youngest group, with no 

elevation in the adult age group.175 These results may indicate that the mid-range age of our 

“old” animals may not have been sufficient to observe the usual age-related changes in 

oxidative stress. 

SOL 4HNE levels showed a slight decrease in BSO animals compared to controls with 

no age-related effect observed. This result conflicts with the observed increase in ROS 
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production due to BSO treatment.  Higher ROS production would be expected to lead to 

increased markers of lipid peroxidation including 4HNE.176 There is some evidence that the 

levels of 4HNE may intimately depend on cellular GSH concentration, whereby the 4HNE 

produced when cells are GSH-depleted may actually be more easily metabolized and broken 

down.177 Another perspective is the fact that a major route of 4HNE detoxification is through 

conjugation with GSH via the class of enzymes known as glutathione-S-transferases (GST).178 

Interestingly, it was found that 14 days of 30mM BSO treatment leads to paradoxically 

increased tissue GST activity.139 Therefore, it is possible an increased GST activity in BSO 

animals could lead to increased clearance of the 4HNE peroxidation product. This, in turn, 

could explain the decreased signal for 4HNE in our BSO-treated animals in the SOL. 

Quantification of GST protein and activity levels would be necessary to clarify this point; 

however, these analyses were not performed in the present work. There was no difference in 

CuZnSOD or MnSOD content as a result of age or BSO treatment. However, SOL catalase 

protein expression was substantially upregulated by 1.5-fold in older and 1.5-fold in BSO-

treated animals. This upregulated antioxidant defense is likely a compensatory effect that 

would serve to aid in muscle clearance of H2O2 in the absence of GSH as noted above. The 

reason for the differential response in ROS generation observed in SOL compared to WG 

following BSO treatment are unclear but may reflect a higher “oxidative environment” of the 

SOL,179, 180 which could have been augmented in a GSH-depleted state. For instance, 

malondialdehyde levels (MDA, a marker of lipid peroxidation) are higher in the SOL muscle 

compared to vastus lateralis in rats; additionally, enzyme activity for several antioxidants such 

as SOD, GPx and catalase are comparably elevated in the SOL.179 Other groups have shown 

similar results in terms of lipid peroxidation markers and antioxidant enzyme activity, and have 
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also demonstrated increased markers of mitochondrial density in SOL compared to less 

oxidative muscles such as red gastrocnemius or WG.180 

Effects of BSO treatment and age on apoptotic signaling in WG 

In the present investigation we found a 38% higher level of DNA fragmentation in WG of 

BSO-treated animals compared to untreated controls. In contrast, no differences in DNA 

fragmentation were observed in WG of older compared to younger animals. In addition, there 

were no significant differences in caspase-3, -8, or -9 activity between groups. The elevated 

DNA fragmentation in the absence of increased caspase activity in BSO-treated animals is 

surprising but could suggest that caspase-independent mechanisms are playing a role. For 

example, AIF and EndoG are two mitochondrial proteins that can lead to DNA fragmentation 

independent of caspase activation.32, 45 However, as discussed below, AIF-mediated signaling 

is likely not involved as we found decreased levels in cytosolic and nuclear fractions. It is 

possible that EndoG (or other factors) may have played a role in the observed effect; however, 

this remains to be determined. It is also possible that the increased rate of DNA fragmentation 

observed in BSO animals is attributable to other sources of nuclear material outside of 

myonuclei (ie. interstitial cells, macrophages).57, 181 Using TUNEL staining (a microscopic 

method which stains for fragmented DNA in muscle cross-sections) in a rabbit model of limb 

immobilization, Smith and colleagues reported that the majority of TUNEL-positive cells 

observed were outside of the outline of muscle fibers.181 A similar study using limb 

unweighting in rats showed that most TUNEL-stained nuclei were located in the interstitium or 

in connective tissue bands.57 In the present work, DNA fragmentation was only assessed using 

whole muscle homogenates, without the added compliment of TUNEL staining. Given that any 
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apoptotic interstitial or immune cells located in the muscle homogenate would be indiscernible 

from apoptotic myonuclei, the level of DNA fragmentation may have been overestimated. 

The lack of DNA fragmentation in WG of older animals is somewhat surprising; 

however, a closer examination of the literature may explain this finding. Previous work has 

shown an age-related increase in muscle apoptosis;64, 71, 73, 182 however, this is heavily 

dependent on the age of experimental animals. For example, Marzetti and colleagues have 

shown that DNA fragmentation in rat gastrocnemius muscle is not elevated in 18 month-old 

animals compared to adults (8 months), but is significantly increased at 29 months of age and 

older.183 This group also shows no change in several other apoptotic markers, such as Bax, 

active caspase-9, or mitochondrial Bid, between 8- and 18-month old animals.183 Similarly, the 

decrease in fiber CSA in the absence of increased DNA fragmentation in WG in older animals 

is also puzzling. However, recent advances in time-lapse microscopy have shown that CSA of 

fibers decreases in the absence of apoptotic nuclei during disuse atrophy.184 Atrophy and loss 

of muscle mass have been associated with the ATP-dependent ubiquitin-proteasome pathway 

of protein degradation, a process that may occur in the absence of classical markers of 

apoptosis (ie. DNA fragmentation).185 Tawa and colleagues have demonstrated attenuation of 

muscle wasting due to treatment with drugs that inhibit the proteasome, accompanied by 

decreased protein ubiquitination.186 In addition to the potential increased activity of this 

degradation pathway, aging muscle also displays decreased protein synthesis.187 Therefore, it is 

possible that a protein degradation pathway combined with decreased protein synthesis is 

involved in the atrophy observed in WG that is independent of apoptotic signaling. However, 

measures of proteasome activation, protein ubiquitination and protein synthesis were not 

performed in the present work. 



62 
 

Several anti-apoptotic proteins were also measured in WG muscle. Immunoblot 

analysis revealed no differences in both Hsp70 and Bcl-2 protein content across all groups. 

There was, however, a significant interaction in ARC protein with lower levels in the Young 

BSO compared to the Young CON. However, IHC analysis showed no significant differences 

in ARC protein between groups. This result is anomalous as there were no BSO-specific 

decreases in ARC observed in the Old groups. It is currently unclear what accounts for these 

differences.  

In general, we found very few changes in the level of several pro-apoptotic proteins in 

WG muscle between groups. For example, whole muscle Bax, Smac, AIF, and cytochrome c 

were all unchanged due to age or BSO treatment. Furthermore, there were no significant 

differences in the levels of cytosolic Smac or cytochrome c between all groups. In contrast, 

cytosolic and nuclear AIF were decreased in old animals, with no differences in response to 

BSO treatment. Siu and colleagues also found decreased nuclear AIF in aged mixed 

gastrocnemius muscle along with no change in cytosolic AIF levels and increased whole-tissue 

expression of this protein;188 however, the underlying reason for these findings was unclear. 

Collectively, the results of the current study suggest that the degree of aging in the animals 

used in this study was not sufficient to induce apoptosis but may be sufficient to induce a 

protein degradation pathway of muscle loss. 

Effects of age and BSO treatment on apoptotic signaling in SOL 

DNA fragmentation in SOL muscle was significantly elevated in BSO-treated animals 

compared to controls with no age-related changes noted in this measure. However, activity 

measures for three major caspases (caspase-3, -8, and -9) showed age-related differences, with 
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higher proteolytic activity found in older animals. The activity of these caspases was not 

different between groups in response to BSO treatment. This is somewhat puzzling given the 

role of caspases in apoptosis and DNA fragmentation. However, there is evidence that caspases 

do not exclusively function in apoptotic signaling (though that is their primary function). 

Recent work shows that caspase-3 and its downstream cleavage product caspase-activated 

DNase promote skeletal muscle cell differentiation by inducing essential DNA strand breaks in 

the terminal step of this process.189 Other groups have shown that myoblasts exposed to 

caspase-3 and caspase-8 inhibitors are unable to differentiate.190 This could be a reason for the 

increased caspase activation observed in aged SOL in the absence of DNA fragmentation. 

More specifically, given the higher muscle weights in old SOL, it is possible that activation of 

satellite cells (myoblasts) was increased. These myoblasts proliferate, differentiate and then 

incorporate into the muscle fiber to aid in muscle hypertrophy.191 Therefore, the increased 

caspase activity seen here may reflect a shift towards increased muscle regeneration in this 

tissue through induction of satellite cell differentiation and subsequent proliferation. However, 

this remains to be determined.  

The levels of several anti-apoptotic proteins (Hsp70, ARC, Bcl-2) were not affected by 

BSO treatment in SOL. Similarly, the levels of Bcl-2 protein were not affected by age. In 

contrast, Hsp70 protein content was significantly higher in old versus young animals. 

Interestingly, Hsp70 protein levels mirrored the increase in caspase activity in SOL, 

highlighting that advancing age may be inducing a state of cellular stress in this tissue.192 

Hsp70 expression has been shown to increase from middle-aged (16-month) to senescent (29-

month) rats, with a concomitant increase in cleaved caspase-9.193 Hsp70 has also been shown 

to interact with and antagonize Apaf-1, a necessary component of the caspase-9-activating 
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apoptosome.194 Some studies have shown that Hsp70 may exert its protective effects 

downstream of caspase-3 activation,195 thus allowing other cellular events of the caspase 

cascade to occur while inhibiting substrate cleavage and apoptotic death. Therefore, although 

caspase-3 and -9 activity was elevated, the increased Hsp70 content could have been sufficient 

to inhibit caspase-mediated DNA fragmentation and apoptotic events in older animals.  

 Several pro-apoptotic proteins were also measured in SOL. Whole muscle AIF and Bax 

content were not affected by age or BSO treatment. Similarly, whole-tissue Smac and 

cytochrome c levels were not affected by BSO treatment. In contrast, whole SOL Smac and 

cytochrome c were significantly decreased in older animals. Although at first glance it would 

seem that this may be indicative of less apoptosis in aged animals, it is important to note that 

these proteins are part of the mitochondria and generally have vital functions independent of 

their role in apoptosis.196 Release of these proteins from the mitochondrial intermembrane 

space into the cytosol is essential to their pro-apoptotic function.32, 33 Further, subcellular 

distribution studies performed here showed no effects similar to those observed in the whole 

tissue homogenate. In particular, age had no effect on cytosolic AIF, Smac or cytochrome c, 

nor on nuclear AIF. Decreased whole-tissue expression of mitochondrial apoptotic factors, in 

the absence of subcellular changes indicative of mitochondrial release of these apoptogenic 

proteins, may simply indicate decreased mitochondrial content. There is evidence to show a 

decrease in mitochondrial density in elderly humans compared to their adult counterparts.197 

Others have shown similar results, whereby mitochondrial content and other measures of 

mitochondrial density (mtDNA abundance and citrate synthase activity) are decreased in aged 

patients compared to younger counterparts.198 
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In contrast to the higher Hsp70 levels observed in older animals, anti-apoptotic ARC 

expression was decreased in SOL of older animals as assessed by both immunohistochemical 

analyses and immunoblot analysis. Similarly, Siu and Alway have demonstrated decreased 

expression of anti-apoptotic factors (ie. ARC, XIAP) and increased H2O2 levels in aged muscle 

after 7 days of loading compared to younger animals.199 Interestingly, ARC degradation has 

been shown to occur through the ubiquitin-proteasome in response to such cellular stress.6, 99 

Collectively, this ARC data along with the higher Hsp70 levels suggest that SOL muscle of 

older animals may have been under greater stress. However, this stress was not sufficient to 

increase DNA fragmentation (apoptosis) or muscle wasting.  

The data presented herein for WG and SOL suggest differential apoptotic effects due to 

BSO treatment and/or age. In WG, loss of muscle mass is apparent even in the absence of 

elevated apoptotic signaling while this trend does not hold in SOL. BSO-induced DNA 

fragmentation is observed in conjunction with oxidative modifications as assessed by GSH 

depletion and catalase upregulation in both tissues examined. 

Several tissue-specific changes were observed in this study 

There were several noteworthy differences observed between the two muscles tested in this 

study. As alluded to in the previous discussion, the higher mitochondrial volume of SOL 

compared to WG may result in increased ROS production. Although a direct analysis of 

mitochondrial volume or content was not performed between these two muscles, the 

differences are obvious when examining the absolute ROS production (Figure 7 in Results). 

Specifically, a substantially higher level of ROS production was observed in the slower, more 

oxidative SOL compared to the faster, more glycolytic WG. In support of this observation, 
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higher 4HNE immunofluorescent staining was seen in the more oxidative SOL muscle 

compared to the more glycolytic WG. This is consistent with reports indicating that 

malondialdehyde (MDA, a marker of lipid peroxidation) content was substantially increased in 

SOL muscle compared to WG.180 In addition, the 4HNE staining pattern observed between 

SOL and WG was very distinct: in WG more whole-fiber staining occurred, with smaller fibers 

more intensely stained than larger fibers. It is likely that these smaller fibers represent IIXB or 

IIX fibers, which are smaller than IIB200 (Bloemberg & Quadrilatero, 2010). Interestingly, IIX 

and IIXB fibers would tend to have a higher oxidative potential and therefore, mitochondrial 

content200 (Bloemberg & Quadrilatero, 2010). In the SOL, the cell membranes were more 

heavily stained compared to the inside of the fibers. The SOL staining pattern observed may be 

explained by the fact that 4HNE would be more likely to be found on or around the plasma 

membrane, due to the high concentration of polyunsaturated fatty acids which would be more 

susceptible to lipid peroxidation, ensuing radical chain reactions and formation of 4HNE 

adducts.176 In further support of the more oxidative environment of SOL muscle, both GSH 

and GSSG levels were found to be significantly higher in this muscle than WG. In fact, SOL 

GSH was higher than WG GSH across all groups including the BSO-treated groups. A similar 

trend persisted in terms of GSSG levels whereby SOL had consistently higher levels of GSSG 

across all groups compared to the same groups in WG. Similarly elevated basal GSH levels in 

oxidative muscles like SOL have been observed by others compared to more glycolytic 

muscles.179, 201  

DNA fragmentation levels were up to 12-fold higher in SOL compared to WG. 

Combined with the increased markers of oxidative stress in this muscle, this piece of data lends 

support to the link between oxidative stress and apoptotic signaling.75, 98 SOL also experiences 
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a 2-fold higher intensity of ARC staining compared to the more glycolytic WG that, when 

taken together with the increased DNA fragmentation rates observed, may be indicative of a 

protective mechanism developed by the muscle against endogenous damage. Our lab has 

observed similar increases in anti-apoptotic ARC protein expression in red gastrocnemius 

muscle compared to WG (McMillan & Quadrilatero, 2010). We have also shown elevated 

Hsp70 protein expression in slower muscle compared to fast, an observation consistent with 

the fiber-type specific expression of Hsp70.202 Slow muscles have higher protein levels of Bcl-

2 compared to their fast counterparts (McMillan & Quadrilatero, 2010). Lastly, slower muscles 

vary from their faster counterparts on other important markers of muscle health such as higher 

protein synthesis rates203 and increased satellite cell numbers associated with slow muscle 

fibers.204   
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CONCLUSIONS 

The purpose of the present study was to explore the effects of glutathione depletion by BSO on 

apoptotic signaling in different types of young and old skeletal muscle. Apoptosis, as assessed 

by DNA fragmentation, was elevated in both the WG and SOL tissue due to BSO treatment. 

However, in WG this occurred in the absence of other pertinent markers of apoptotic signaling 

(ie. nuclear AIF translocation, increased caspase activity, mitochondrial release of 

Smac/cytochrome c, increased Bax, or decreased Bcl-2, ARC, Hsp70). No potent effects of 

aging were observed in the WG muscle other than loss of muscle mass as assessed by 

decreased muscle CSA. While the lack of DNA fragmentation and elevated apoptotic signaling 

in this tissue are contrary to the established literature, a possible explanation is offered by the 

fact that our old animals were not aged sufficiently to produce such effects. However, the age 

of the experimental animals offers an interesting perspective for examining the effects of in 

vivo antioxidant depletion. In other words, given the lack of change in basal GSH content in 

the Old CON animals compared to the Young CON, use of a chemical depletion model in 

addition to these age groups may show additive effects that could otherwise be lost in a model 

of advanced age. In particular, the elevated oxidative stress and apoptotic signaling typical of 

skeletal muscle from very old animals could confound any further effects of the BSO-induced 

GSH depletion in this tissue, making the age range of the animals used here useful for 

capturing any such synergistic effects. 

In the SOL muscle, while DNA fragmentation and ROS production increased in BSO-

treated animals, a slight decrease in 4HNE levels was observed. This is thought to result from 

elevated GST activity in these animals, though this point remains to be determined. A 

potentially elevated stress state may be occurring in aged SOL muscle, as evidenced by 
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elevated caspase activation and Hsp70 content as well as decreased levels of anti-apoptotic 

ARC. In addition, aged SOL muscle increased slightly in size in the present study, likely due to 

the increased body weight of older animals resulting in a greater load for this postural muscle 

to support as well as possible satellite cell activation. Furthermore, SOL muscle showed 

increased oxidative stress markers (ROS production and 4HNE levels), elevated DNA 

fragmentation and expression of ARC protein compared to WG, offering further evidence for 

the theory of elevated basal cellular stress occurring in more oxidative muscles compared to 

their more glycolytic counterparts (ie. SOL versus WG). Additionally, GSH and GSSG levels 

are elevated in SOL compared to WG which, taken together, indicate somewhat higher cellular 

stress accompanied by a greater antioxidant pool to handle that stress. 

Relating the experimental evidence back to the hypotheses postulated for this work, 

BSO treatment was effective in depleting muscle GSH. However, differential effects were 

observed in SOL and WG tissue in terms of the postulated increases in ROS production. Aging 

did not result in the anticipated increase in oxidative stress, nor did there appear to be any 

additive effect of BSO treatment and age on any measure other than catalase expression. GSH 

depletion was not sufficient to induce a classical apoptotic phenotype in either muscle type 

examined. Instead, in WG a process possibly related to a muscle degradation pathway emerged 

independent of apoptotic cell death with age, while BSO only resulted in disrupted thiol 

balance and upregulated catalase. In contrast, SOL muscle displayed an elevated state of 

cellular stress with age, experiencing disrupted thiol balance and only modest elevations in 

oxidative stress markers due to BSO treatment. Based on these data, BSO-induced GSH 

depletion does not seem to increase apoptotic signaling in either tissue examined, irrespective 

of age. The mid-range of the animals in this study helped to highlight the changes in apoptotic 
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signaling and antioxidant upregulation that occur as animals advance through the aging 

process. 
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LIMITATIONS 

There were several limitations to this study that are mostly methodological in nature. First, the 

muscles used were not weighed at the time of isolation, leaving the muscle cross-sectional area 

as the only estimate of muscle size. Having both CSA and muscle wet weight data could have 

strengthened the interpretations made herein concerning the observed changes in CSA of WG 

and SOL. Second, no measurements of GPx or GST activity were performed. These results 

could have helped clarify the extent to which the thiol system of the cell was impacted by the 

BSO-induced GSH depletion, or if there were any specific compensatory mechanisms at work 

as a result of the extreme GSH depletion observed.  

Focusing specifically on apoptotic signaling, with the exception of AIF protein levels 

and subcellular localization, no other measures of caspase-independent apoptosis were 

performed. In particular, no measure of protein levels or nuclear localization of Endonuclease 

G was performed. This protein is another important mitochondria-housed factor involved in 

caspase-independent cell death45. TUNEL staining could have helped clarify if the levels of 

DNA fragmentation observed were due to myonuclear loss or apoptotic processes in other cells 

present in whole skeletal muscle. Lastly, the idea of degradative mechanisms at work only in 

WG tissue would require quantification of proteasome activity, as well as measurement of 

expression for the various components of this cellular machinery.  
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FUTURE DIRECTIONS 

As suggested throughout the discussion section of this thesis, there are several modifications 

that could have greatly improved the results obtained and that would be good starting points for 

future directions. Any further work in this area would benefit from examination of GST and 

GPx expression and enzyme activity quantification, as well as expression and subcellular 

localization of Endonuclease G. Additionally, while some studies have examined the 

potentially additive effects of stress (ie. exercise) on GSH-depleted animals82, 132, the focus on 

apoptotic effects of this elevated stress state has been absent. It would be interesting to 

consider young (4-8 months), middle-aged/adult (14-18 months) and old (24 months and 

above) GSH-depleted and control animals exposed to an eccentric exercise protocol such as 

treadmill running on a downward incline. In addition, consideration of acute and prolonged 

exposure to such exercise could clarify potentially protective effects, or demonstrate the 

additive negative effects of increased activity, lowered thiol content and changes in ROS 

production of this type of exercise. Since the muscle samples were taken after 10 days of 

treatment, it could be useful to isolate muscle tissue at different time points in the BSO 

treatment protocol. There is some evidence that BSO effectively depletes in vivo GSH levels as 

early as 24 hours after the first administration133.By examining different time points in a BSO 

drug treatment, it may be possible to more accurately pinpoint the occurrence of apoptotic 

signalling events in relation to the level of GSH depletion obtained by the administration of the 

drug. Furthermore, evaluation of the ubiquitin-proteasome system in the context of BSO-

induced GSH depletion in skeletal muscle could offer valuable insight into the potentially 

adverse whole-body effects of this drug. This would be important as BSO is currently under 

investigation for its usefulness in cancer therapy.  
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