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Abstract

Online computation is a model for formulating decision making under uncertainty. In an
online problem, the algorithm does not know the entire input from the beginning; the input is
revealed in a sequence of steps. At each step, the algorithm should make its decisions based on
the past and without any knowledge about the future. Many important real-life problems such
as robot navigation are intrinsically online and thus the design and analysis of online algorithms
is one of the main research areas in theoretical computer science.

Competitive analysis is the standard measure for analysis of online algorithms [19, 22, 30, 38].
It has been applied to many online problems in diverse areas ranging from robot navigation, to
network routing, to scheduling, to online graph coloring. In this thesis, we first survey three
classic online problems, namely the cow-path problem, the Processor-Allocation problem and the
Robots-Search-Rays problem and highlight connections between them.

Second, the main result is for the One-Robot-Searches-Two-Rays problem for which we con-
sider the weighted scenario, in which the robot is located on a ray with a preferential probability
p. We term the One-Robot-Searches-Two-Rays-And-Weighted problem as 1-STRAW (and in
general k-STRAW for k searchers).

In the 1-STRAW problem, we propose a search strategy which is optimal among weighted
geometric states. In addition, we prove a tight lower bound of the worst case competitive ratio
and conjecture a lower bound of the average case competitive ratio for the 1-STRAW problem.
Additionally, we compare our search strategy and its performance with the doubling strategy [41]
and the SmartCow algorithm[36].
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Chapter 1

Introduction

Online computation is a model for formulating decision making under uncertainty [5, 15, 39, 47].
In an online problem, the algorithm does not know the entire input of the problem. The input
is rather revealed in a sequence of steps. An online algorithm makes its decisions only based on
the observed past and without any given knowledge about the input sequence in the future. The
cost of a decision taken by the online algorithm cannot be undone.

1.1 Online Target Searching

Online target searching is the class of robot searching problems in which the robot knows only
partially about some of the configuration of the search domain, the shape of the terrain, the
target’s location and its own position. The problem of target searching involves an agent or a
robot exploring a given domain, with the purpose of guarding it or finding a given target under
some conditions of uncertainty [41].

The quality of a search depends on the searching abilities of the robot and its knowledge
about the terrain being searched. Therefore, it is important to consider various cases given the
robot’s different capabilities.

Targets for searches are classified into two main types: mobile and immobile. Domains are
divided into bounded and unbounded. Among the first, we consider searches on line segments.
For unbounded domains, we consider the real lines.

Robots are also classified according to their abilities in several classes: tactile, visual, nav-
igational tools, and computing resources. A tactile robot identifies the target when the
robot is located at an ε distance or less of the object. A robot with vision comes with a system
that provides a visibility map of its local environment. However, a robot moving under restricted
memory may not be able to use previous visibility maps. Additionally, a robot with no memory
or knowledge is termed oblivious whereas the robot is non-oblivious.
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These conditions introduce a degree of uncertainty in the search that is revealed as the robot
searches the terrain. Thus, searches can be considered as an online problem because the robot
can only attain more information while active, as opposed to the offline version, in which all the
information is given at once before the start of the computation.

In this thesis, we will focus on the One-Robot-Searches-Two-Rays-And-Weighted problem.
By weighted, we mean that the target hides on one of the rays with a random probability p,
where p ∈ [0, 1]. We will discuss the Robots-Search-Rays problem in details in Chapter 2 Section
2.3 and the One-Robot-Searches-Two-Rays-And-Weighted problem in Chapter 3.

1.2 Online Measures

Competitive analysis is the standard measure of online algorithms. In this model, we compare
the performance of an online algorithm with an offline optimal algorithm OPT which knows the
entire input in advance. Intuitively, we want to measure how close is the performance of the online
algorithm to the optimal case. Competitive analysis became popular after two papers by Sleator
and Tarjan [19, 30] in 1985. The term competitive analysis was introduced by Karlin et al [38].
Additionally, the competitive framework was thoroughly studied by Dorrigiv and López-Ortiz
[22, 23].

Competitive analysis is a relatively simple measure to apply but efficient to quantify the
performance of the online algorithms, which was a major breakthrough in the study of online
algorithms. It computes a partial solution to a problem with incomplete information of a prob-
lem. It indicates the performance drop of the online algorithm given the absence of the input
information of the problem. Therefore, we compare the cost of the online algorithm with the
one computed with the full information, namely the cost of the optimal offline algorithm OPT.
Without loss of generality, we denote the cost of an algorithm A on a sequence σ by A(σ). An
online algorithm A is said to have competitive ratio c if A(σ) ≤ c ·OPT (σ) for all sequences σ.

Alternatively, a C(n)-competitive algorithm is defined as that, for all sequences σ, an online
algorithm A is said to have the competitive ratio C(n) if A(σ) ≤ C(|σ|)·OPT (σ). More generally,
we have that an algorithm is C(n)-competitive if and only if

C(n) = max
|σ|=n

{ A(σ)
OPT (σ)

}
We will use the notation of the competitive ratio throughout the thesis especially in Chapter 3.

For randomized algorithms, we have a similar definition of the competitive ratio [45]. A
randomized online algorithm A makes some random choices while handling the sequence of the
input. Therefore the cost of the randomized online algorithm is a random variable. In addition,
depending on the types of the adversaries, we have different types of offline algorithms. An
oblivious adversary does not know the actions made by A on σ. Therefore it cannot make its
own movements according to the performances of the online algorithm. We say that A has an
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asymptotic competitive ratio C(n) against an oblivious adversary if there exists a constant b such
that for all sequences σ,

E[A(σ)] ≤ C(|σ|) ·OPT (σ) + b

In contrast, for the adversaries who are non-oblivious, for example adversaries can observe
the outcome of the online algorithm, and make its own decision accordingly, the competitive ratio
then is defined as:

E

[ A(σ)
C(|σ|) ·OPT (σ)

]
≤ b

Since in this case, OPT (σ) is a random variable as well.

Competitive ratio is the key to measure online problems and we use the concept throughout
the thesis. For the cow-path problem in Section 2.1, we use the competitive ratio to evaluate
the performance of the SmartCow algorithm which is described in Figure 2.1. For the Processor-
Allocation problem in Section 2.2, we use a similar concept of the acceleration ratio which is a
worst case measure, refer to Definition 3. For the Robots-Search-Rays problem in Section 2.3
which includes our core work of the 1-STRAW problem, we used the competitive ratio as well.

1.3 Our Results and Organization of the Thesis

This thesis is concerned with oblivious robot searches for an immobile target on unbounded real
lines. In Chapter 2, we present a survey of three classic online problems, namely the cow-path
problem, the Processor-Allocation problem and the Robots-Search-Rays problem. We state the
known lower bounds on the competitive ratio for these three problems and compare the common
aspects and differences between them. In Chapter 3, we define the problem of One-Robot-
Searches-Two-Rays-And-Weighted (1-STRAW) and propose a search strategy. Additionally, we
compute both the worst case competitive ratio and the average case competitive ratio given our
search strategy. In Section 3.3, we analyze the average case competitive ratio of 1-STRAW in
both the un-truncated setting and the truncated setting in terms of the target’s location range.
We prove a tight lower bound of the worst case competitive ratio and conjecture a lower bound
on the average case competitive ratio for the 1-STRAW problem. In Chapter 4, we present the
conclusions and the open problems.
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Chapter 2

Classic Online Problems

The problem of scheduling is central to many areas of computer science [40]. In this chapter, we
demonstrate connections among three typical scheduling problems. The first problem is known
as the w -ray cow-path problem [36, 37]. The second involves computing solutions to multiple
problems given a limited amount of processors, under the condition that a solution to any one
of the problems can be requested at any time. The third problem involves multiple robots
searching an unknown environment for a goal. These problems concern anytime algorithms whose
quality of output improves gradually as the amount of available computation time increases. Such
algorithms occur naturally in settings where a computationally intensive problem is addressed
under uncertainty with respect to the available computation time.

In the cow-path problem, consider a cow standing at a crossroads (referred to as the origin)
with w paths (rays) leading off into unknown territory. On one of the rays there is a grazing
field (the goal) at distance (unknown) d from the intersection, and all of the other rays go on
forever; unfortunately, the cow does not know that it has found the field until it is standing in
it. Clearly, the cow must walk at least distance d to get to the field; if it knows which path to
take, the cow will walk exactly distance d. When the cow has no prior knowledge of which ray
the field is on, we would like to know how it can find the field while traveling the least distance
possible. López-Ortiz [43] proved a firm lower bound of the competitive ratio for the w -ray cow-
path problem among all deterministic search strategies. Additionally, Kao et al. [36] gave an
optimal randomized algorithm for the 2-ray cow-path problem and conjectured a lower bound
among all randomized algorithms for the w-ray cow-path problem.

In the Processor-Allocation problem, consider the general setting in which a set of m pro-
cessors of the identical speed is available for the execution of n problem instances each with a
corresponding contract algorithm, which is defined as a set of the computation durations for the
specific problem instance. For example, given the problem instance pi, its corresponding contract
algorithm is denoted as {(pi, d1), (pi, d2), . . . (pi, dj) . . . , (pi, dn)}, which means a processor can be
executed for dj amount of time to get a solution of the problem instance. (pi, dj) is termed as a
contract in the contract algorithm.
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The problem we face is how to assign and schedule the executions of the various contract
algorithms to the processors in a way that guarantees an efficient interruptible algorithm, which
is the algorithm that can provide the solutions of the problem instances given the fact that
the algorithm can be interrupted at any time to be queried for the problem solutions. In this
setting, at query time, the algorithm will report for each problem instance the solution of the
corresponding contract of longest length (i.e., contract time) which has been completed by query
time. Schedules are compared in terms of the acceleration ratio, which is a worst-case measure
of efficiency. Bernstein et al. [13] showed an upper bound of n

m(m+n
n )(

m+n
m

) on the acceleration
ratio; in addition, they showed that this bound is optimal for a restricted, though natural and
intuitive, class of schedules that use a round robin and length-increasing strategy. Such strategies
are known as cyclic strategies. López-Ortiz et al. [42] proved that this bound is tight among all
possible schedules.

In the Robots-Search-Rays problem, m robots search for a target which is located on one
of p concurrent rays. We seek search strategies for the robots that minimize the competitive
ratio, namely the maximum of the ratio of the search cost using the strategy, and the distance
from the starting position to the target, over all possible positions of the target. Kao et al. [37]
gave a hybrid algorithm that achieves an optimal competitive ratio of m + 2 (p−m+1)p−m+1

(p−m)p−m . For
the general problem of m robots and p rays, López-Ortiz and Schuierer [43] showed an optimal
strategy that achieves competitive ratio 1 + 2p−mm ( p

p−m)
p
m .

It has been observed that the theoretical analysis of geometric searches and robot motion
planning is closely linked to the scheduling of heuristics and algorithms for problem solving.
This connection was first established by Kao et al. [36, 37] for the case of a single searcher in
the randomized case, as well as certain multi-searcher scenarios. The work of Bernstein et al.
[13] drew a similar connection between scheduling contract algorithms and robot searching on a
set of rays. Bernstein et al. [13] work established the connection only for cyclic schedules. It
turns out that interesting parallels can be drawn for the Processor-Allocation problem and the
Robots-Search-Rays problem: informally, the rays correspond to problem instances, the robots
to processors, and the (unknown) location of the target corresponds to the (also unknown) query
time. Moreover, when p=1, the Robots-Search-Rays problem becomes the cow-path problem.

2.1 Cow-path Problem

Search problems are widely studied by computer science researchers [1, 8, 9, 10, 11, 12, 26, 27,
28, 34, 44] and the cow-path problem is one of them. The cow-path has been the subject of
intense study under the competitive framework [6, 20, 33, 35, 36], which plays an important role
in online problems. The problem has a simple model. A cow is standing at the origin of w rays,
which extend from the origin to unlimited distances far away. There is only one grass field (goal)
on one of the w rays and the information of the goal is not revealed to the cow. The problem is
to minimize the cow’s total traveling distance until it finds the grass field.

This problem has various applications, one of which is robot motion planning [7, 16, 17, 18,
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25]. For example, a robot searching in a two-dimensional space with obstacles. Whenever the
robot runs into an obstacle, it should look for the closest corner of the obstacle to walk around.
This problem of avoiding obstacles can be interpreted as a 2-ray cow-path problem, where the
goal is the closest corner and rays are the two possible paths, one of which contains the closest
corner.

A tight lower bound for general deterministic algorithms for the cow-path problem is known
but the randomized search algorithms and the lower bound of the set of general randomized
algorithms are relatively less developed than deterministic search strategies. In this section, we
list the results of the deterministic search strategies and introduce a randomized algorithm, which
was first proposed and shown to be optimal for the 2-ray cow-path problem by Kao et al. [36].

Here we denote by A a deterministic algorithm for the cow-path problem and by g the goal
distance dist(g) from the origin. Algorithm A searches a fixed distance to find the goal, which is
denoted as cost(A, g).

Definition 1 ([36]) Algorithm A has competitive ratio c if, for all goal positions g,

cost(A, g) ≤ c ∗ dist(g) + d, (2.1)

where c and d are constants that are independent of the goal position g.

We denote randomized algorithms as R. Since the distance explored to find the goal is not
a fixed number under randomized algorithms, instead we define cost(R, g) as a random variable.
Therefore we define the competitive ratio of randomized algorithms by the expected value of the
random variable cost(R, g).

Definition 2 ([36]) Algorithm R has competitive ratio c if, for all goal positions g,

E[cost(R, g)] ≤ c ∗ dist(g) + d, (2.2)

where c and d are constants that are independent of the goal position g.

Particularly, if an algorithm for the cow-path problem has competitive ratio c, then for any
goal position g from the origin, the expected search distance that the algorithm explores to find
the goal is at most cg plus a small constant.

A Deterministic Algorithm

An optimal deterministic search strategy is a cyclic search strategy with the exponential geometric
ratio b. The strategy works as follows. The cow explores the w rays in a fixed cyclic order. Let
b =

w

w − 1
. The sequence of turn points of the cow is given by xi = bi for i = 0, 1, 2, . . .. The kth

time that the cow returns to the origin it chooses to explore ray (k mod w) up to distance xk.
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Theorem 1 ([43]) Any deterministic search strategy for the w-ray cow-path problem has a worst
case competitive ratio of at least

1 + 2 (w − 1)
(

w

w − 1

)w
.

In the 2-ray cow-path problem, the optimal deterministic search strategy defined above is
named as the doubling strategy and it has the worst case competitive ratio of 9, which matched
Theorem 1. Additionally, it has been proved that the doubling strategy can achieve an average
case competitive ratio of approximately 5.27, which is stated in the theorem as follows.

Theorem 2 ([41]) Assume that the hiding target selects a random distance d and that it hides
using a uniform distribution on the interval [d,−d]. Then the doubling strategy has an average
case competitive ratio of ≈ 5.27.

A Randomized Algorithm

Kao et al. [36] described an algorithm named the SmartCow algorithm, which is a randomized
geometric sweep algorithm with geometric ratio r > 1, which is a fixed constant used to accu-
mulate the cow’s search distances in rounds. Without loss of generality, we assume that the w
rays are tagged with the integers 0,1,...,w -1. The description of the SmartCow algorithm can be
found in Figure 2.1. The analysis of the competitive ratio will be made regarding the constant r.

Restrictions of the SmartCow Algorithm

• The usage of the randomization in the SmartCow algorithm is very limited in this case.
The randomization is only used at the beginning of the search, in order to get a random
permutation of the w rays and a random initial search distance. The algorithm does not
require a random number generator after the search begins.

• The goal is located on one of the w rays with the same possibility.

Under the randomized settings, according to Definition 2, we need to consider the expected
value of the total searching distance when computing the ratio and Kao et al. [36] proved the
general representation of the average case competitive ratio given the SmartCow algorithm.

Theorem 3 ([36]) For any fixed r > 1, the SmartCow algorithm has the competitive ratio of

1 +
2
w
× 1 + r + r2 + ...+ rw−1

ln r
.

It has been shown that the SmartCow algorithm is an optimal strategy that matches the lower
bound of the 2-ray cow-path problem[36].

7



1 σ ←

2

3 d← rǫ, i← 0

4 repeat

5

6

7 d← d× r

8 i← (i + 1)

9 Until

10

a random permutation of 0,1,2,...,w-1

ǫ← a random real uniformly chosen from [0,1)

Explore path σ(i) up to distance d

If goal not found then return to origin

mod w

goal found

Figure 2.1: The SmartCow algorithm proposed in [36]

Theorem 4 ([36]) For w=2, the optimal competitive ratio is given by

min
r>1

{
1 +

1 + r

ln r

}
Since this ratio is achievable by the SmartCow algorithm, therefore the SmartCow algorithm is
optimal.

Note that for the 2-ray cow-path problem, the optimal geometric ratio r∗ for the SmartCow
algorithm is other than two, i.e. it is 3.59112. Additionally, the lower bound of average case

competitive ratio given the SmartCow algorithm is 1 +
1 + r∗

ln r∗
= 4.59112.

Therefore we have shown two lower bounds of the average case competitive ratio under both
the deterministic and the randomized settings for the 2-ray cow-path problem. When the ge-
ometric ratio is two, the doubling strategy outweighs the SmartCow algorithm in terms of the

average case competitive ratio by
5.32− 5.27

5.32
≈ 1%.

In addition, Kao et al. [36] conjectured that the SmartCow algorithm is also an optimal
randomized search strategy for the general w -ray cow-path problem.

Conjecture 1 ([36]) The optimal competitive ratio achievable by any algorithm for the w-ray
cow-path problem is given by

min
r>1

(
1 +

2
w
× 1 + r + r2 + ...+ rw−1

ln r

)
8



Since this is exactly the ratio achievable by SmartCow, under this conjecture, the SmartCow
algorithm (with the appropriate minimizing r) is an optimal randomized algorithm.

It is an important open problem to determine the lower bound for randomized algorithms
when w ≥ 3, as stated in Conjecture 1.

2.2 Processor-Allocation Problem

Anytime algorithms [3, 13, 14, 21, 31, 42, 48, 49] are widely used in solving the Processor-
Allocation problem. Anytime algorithms are the algorithms that are able to return a partial
answer, whose quality depends on the amount of computation they were able to perform. The
answer generated by anytime algorithms is an approximation of the correct answer. Anytime
algorithms are widely used in solving real-world problems, such as game-playing programs [2, 36,
37], robotics searching and medical diagnosis systems.

There are two different types of anytime algorithms—interruptible algorithms and contract
algorithms. Interruptible algorithms can be stopped at any time during their execution and
provide current useful partial results, whereas contract algorithms provide valuable results only
when being interrupted after a contract completion. If the contract algorithm is interrupted at
the time before a contract completion, there is no result available to be used.

Although contract algorithms are less flexible than interruptible algorithms, it turns out that
in terms of implementation, contract algorithms are much simpler. This provides the possibility
of working on contract algorithms for online problems and then converting them to interruptible
algorithms by applying a standard black-box transformation. The Processor-Allocation problem
is a typical problem that uses the transformation described above. Consider the scenario as
follows:

There are n problem instances and m parallel processors ready to execute the problems. We
want to design an interruptible algorithm, which at any time, may be interrupted and queried for
solutions of each problem instance with its corresponding longest length of the contract that has
been completed. The problem is how to assign and schedule the executions of the various contract
algorithms to the processors in a way that guarantees an efficient interruptible algorithm.

Schedules for the Processor-Allocation problem are evaluated by the acceleration ratio, which
is a worst-case measure of efficiency. Let us consider the case described as follows in order
to perceive what we mean by the worst case. Denote the length of the last contract which is
completed for problem pi as d∗i and processor mi started a new contract for problem pi with
length di at time t, where di > d∗i . The worst case acceleration ratio for problem pi will happen
at t+ di − ε, where ε is an arbitrarily small value, since intuitively, that is when processor mi is
ε-close to complete a longer contract (with better solution) for problem pi, of which the current
solution is still provided by the contract with smaller length (lower quality) of d∗i .
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Definition 3 ([42]) Given a set P of n problem instances and a set M of m processors of
identical speed, the acceleration ratio of a schedule X for P , denoted by Rm,n(X) is defined as
the smallest value r, with r ≥ 1 such that for any allowable interruption time t, and any problem
p ∈ P , we have that lX(p, t) ≥ t/r, where lX(p, t) is the length of the longest contract for problem
p that has been completed by or at time t in X. Then the acceleration ratio for P and a set M
of processors of identical speed is defined as

R∗m,n = inf
X
Rm,n(X).

A schedule X is optimal if Rm,n(X) = R∗m,n.

Informally, the acceleration ratio indicates how much faster the processors in M should be in
order to provide a solution of the same quality as an offline algorithm.

Figure 2.2 [42] illustrates an example of a schedule X for 2 problem instances and 4 processors.

It is noticeable that the value of
t

lX(p, t)
peaks just before each contract is completed for each

problem instance.

Processor 0

Processor 1

Processor 2

Processor 3

Problem p0

Problem p1

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

t

lX(p, t)

lX(p0, t)

lX(p1, t)

Figure 2.2: The top figure depicts a schedule of contracts for the case of 4 processors and 2

problems, for the first ten time units. The bottom figure depicts the plots of the function
t

lX(p, t)
for the two problems (p ∈ {p0, p1}). The acceleration ratio is the maximum value, on the y axis,
attained by either curve, and in this example it is equal to 4 [42].

Early research [13] showed that a cyclic schedule, as defined below, is a good candidate for
an optimal acceleration ratio for the Processor-Allocation problem. The properties are
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• Problem-round-robin: The schedule arranges the problems in a round robin manner, which
means that given a permutation of problems, the schedule executes each problem in the
order according to the permutation of problems and iterates over it.

• Length-increasing: The lengths of contracts are arranged by the schedule in an increasing
manner.

• Processor-round-robin: The schedule arranges each problem on a specific processor in a
round robin manner, which means that given a permutation of processors, the schedule
picks the processor in the order according to the permutation of processors and iterates
over it.

The round-robin schedule of contract lengths 1, a, a2, ... has the acceleration ratio that matches
the lower bound for all possible cyclic schedules [13, 49], which is stated in the following theorem.

Theorem 5 ([13]) The optimal acceleration ratio for m processors and n problems is

( n
m

)(m+ n

n

)m+ n

m

for all possible cyclic schedules.

Although a lower bound on the acceleration ratio is known for cyclic schedules, the case for
general schedules remained open until López-Ortiz et al. proved the lower bound proposed in
Theorem 5 is true for all schedules in [42].

Model Design 1 Model of the Processor-Allocation problem [42]
(pi, di): contract of length di for problem pi
(pi, Di): the next contract after (pi, di) in schedule X
Ti: when a processor is about to start contract (pi, Di)
Tj: when a processor is about to start contract (pj , Dj)

The key to López-Ortiz et al. [42] proof of the lower bound on the acceleration ratio among
all schedules is the swap concept. Intuitively, when the schedule is about to choose one contract
out of the two to start processing, it chooses the contract with a longer length to process than
the one with a shorter length, which is shown in Technique 1.

Another swapping case is shown in Technique 2. It shows that if a contract a, with which
the problem instance was executed by the last contract with longer duration, starts earlier than
contract b, with which a different problem instance was executed by the last contract with shorter
duration, it should be completed later than contract b. That is because we want to balance the
value of the acceleration ratios over the two problem instances.

11



Technique 1 Longer contracts start earlier [42]
Given a schedule X and two problems pi and pj for which

dj < di and Tj > Ti, then either Dj < Di or
we can define a new schedule s.t.Dj < Di,
and whose acceleration ratio is no worse than that of
the original schedule.

Technique 2 Longer contracts complete later [42]
Let C0 = (p0, D0) be a contract scheduled by X at time
T0 and Cj = (pj , Dj) be any contract
happens after T0. Then there exists another schedule of no worse
acceleration ratio such that if d0 ≥ dj for a problem
pj 6= p0 then T0 +D0 ≥ Tj +Dj.

A schedule is normalized when being constructed using Technique 1 and 2. Additionally,
normalized schedules have no worse acceleration ratio than un-normalized schedules. The work-
flow of the techniques to prove the lower bound acceleration ratio is shown in Figure 2.2.

By normalizing schedules and making use of the results of Gal [28] and Schuierer [46], López-
Ortiz et al. [42] proved the lower bound for the acceleration ratio for general schedules as
follows.

Theorem 6 ([42]) Given n problem instances and m processors, every schedule that simulates
an interruptible algorithm using executions of contract algorithms has an acceleration ratio no
less than ( n

m

)(m+ n

n

)m+n
m

.

An interesting open problem is to find the optimal randomized algorithms (lower bound) for
the Processor-Allocation problem. Instead of having contracts with pre-defined lengths, we can
assign contract durations randomly. In addition, the speed of the processors can be different or
assigned with random values.

2.3 Robots-Search-Rays Problem

The Robots-Search-Rays problem is a classic and thoroughly studied problem in robotics [4, 24,
29, 32]. In this set of problems, the agents are robots and the space being searched is two-
dimensional and consists of rays, which start from an origin and extend to unlimited distances.
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Space of all schedules

Technique 1

Technique 2

Model Design 1

(worst)

(best)

acceleration ratio

Figure 2.3: Illustration of the techniques for proving the lower bound in the Processor-Allocation
problem [42]

Consider m robots standing at the origin of p concurrent rays. On one of the p rays, there is
a target g, whose distance from the origin is unknown to the robots. The robot finds the target
only when it stands on it. When m = 1, the Robots-Search-Rays problem is equivalent to the
cow-path problem. Baeza-Yates et al. investigated searching on real line [6] and López-Ortiz et
al. [43] proved the lower bound of the competitive ratio for the Robots-Search-Rays problem over
all deterministic search strategies.

To formalize the problem, we use the model described in Model Design 2. The competitive
ratio is the quotient of the search time over the distance of the target to the origin. Here we
consider the robots have same maximal speed, which is without loss of generality, the ratio of
unit distance and unit time.

Since our goal is to find the optimal searching strategy with the best competitive ratio,
therefore, we need to define the properties which optimal strategies should have. Clearly, having
more than one robot searching on the same ray is not optimal since resources are wasted in this
case. Additionally, removing the robots’ idle periods from the robot schedule never increase the
competitive ratio.

Intuitively, when a robot returns to the origin and is ready to start searching another ray,
it should choose the ray which is least explored since we want to make every ray searched in a
balanced way given the same possibility of containing the target. This rule is defined in Technique
3 and proved to be optimal by López-Ortiz et al. [43] among general search strategies.

A strategy satisfying Model Design 3 and Technique 3 is termed a normalized strategy. It has
the worst case competitive ratio defined as follows:
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Model Design 2 Model of the Robots-Search-Rays problem [43]
Unit Speed: All robots have the same maximal speed---

one unit of distance per unit of time
XS = (x0, x1, . . . ): robots’ turn points

ordered by time
ri: the ray on which the robot that turns at

xi is located
Ti: the first time that a robot passes xi

on ray ri again after the last time it
was searching the same ray

competitive ratio: supi≥0

{
Ti
xi

}
occupied: ray r is occupied at time T if there

is a robot on r at that time
busy: ray r is busy at time T if there

is a robot on r that is moving away
from the origin at that time

Model Design 3 Properties of Optimal Searching Strategies [43]
Let S be a strategy to search on p rays with m robots.
Then there exists a strategy S2 with the same competitive
ratio or better such that
(1) At any time t, there is at most one robot on a given ray.
(2) If a robot moves towards the origin on some ray, then it

continues until it has reached the origin.
(3) All robots are moving at all times.

Technique 3 Search Least Explored Ray First [43]
There is an optimal on-line strategy to search on p rays
with m robots that satisfies Model Design 3
such that if a robot is located at the origin at time T,
then it chooses to explore the ray that has been explored
the least among all non-busy rays.
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Theorem 7 ([43]) The worst case competitive ratio of an optimal normalized strategy with turn
point sequence X = (x0, x1, . . .) is at least

sup
k≥0

{
1 + 2

k+p−m∑
i=0

xsi

/ k∑
i=k−m+1

xsi

}
(2.3)

where p is the number of rays, m is the number of robots and Xs = (xs0, x
s
1, . . .) is the sequence

of the sorted values of X and xsi := 0 if i < 0.

Space of all searching strategies

Model Design 3

Technique 3

Model Design 2

(worst)

(best)

competitive ratio

Figure 2.4: Illustration of the techniques for proving the lower bound in the Robots-Search-Rays
problem

Note here the restrictions do not mean that only normalized strategies can be optimal. In-
deed there are non-normalized strategies which are optimal. However, one can always obtain a
normalized strategy from those non-normalized ones with the same or smaller competitive ratio.

By normalizing strategies and making use of the results of Gal [28] and Schuierer [46], López-
Ortiz et al. [43] proved the lower bound of the competitive ratio for the Robots-Search-Rays
problem among all the deterministic search strategies, which is described as follows.

Theorem 8 ([43]) There is no search strategy for a target on p rays using m robots with a
competitive ratio of less than

1 + 2
( p
m
− 1
)( p

p−m
)p/m

.
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An optimal exploration algorithm

A classic strategy that achieves a competitive ratio matching the lower bound in Theorem 8 is a
cyclic search strategy with the exponential geometric ratio b [43]. The strategy works as follows.
The robots explore the rays in a fixed cyclic order. Let b = (p/(p−m))1/m. The sequence of turn
distances of the robots is given by xi = bi for i = 0, 1, 2, . . .. The kth time that robot R returns
to the origin it chooses to explore ray (km+R) mod p up to distance xkm+R.

Notice that this optimal strategy is similar to the one for the Processor-Allocation problem,
which is cyclic and has contracts assigned with lengths 1, a, a2, .... In the next section, we will
discuss the connections between these two problems.

2.4 Connections of Three Online Problems

Clearly, the Robots-Search-Rays problem is a generalization of the cow-path problem. Now we
will highlight the connections between the Processor-Allocation problem and the Robots-Search-
Rays problem.

The connection was first established by Kao et al. [36, 37] for the case of a single searcher in
the randomized case, as well as certain multi-searcher scenarios. The work of Bernstein et al. [13]
drew a similar connection between scheduling contract algorithms and robot searching on a set
of rays. It turns out that interesting parallels can be drawn for the two problems: informally,
the rays correspond to problem instances, the robots to processors, and the (unknown) location
of the target corresponds to the (also unknown) query time. Refer to Figure 2.4. By looking
into the two problems, we also found the similar intuitions behind the normalization of schedules
for the Processor-Allocation problem, and the normalization of search strategies for the Robots-
Search-Rays problem.

Note here, it is not a two-direction transformation which means that we can transfer the
Processor-Allocation problem to the Robots-Search-Rays problem but we cannot transfer it back.
To demonstrate this, we just need to look at one simple example, e.g we can benefit from multiple
processors working on contracts for the same problem at the same time. However multiple robots
searching the same ray provides no benefit at the same time.
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Connections Processor-Allocation Problem Robots-Search-Rays Problem

Normalized
Strategy

Lower Bound

Agent

Media

Geometric
Metric

Evaluation
Metric

Processors Robots

Problem Instances Rays

Contracts Search Extents

Acceleration Ratio Competitive Ratio

The normalized strategy
pushes forward the completion
time by processing the problem
with longer contract duration
earlier.

The normalized strategy
pushes forward the searching
process by exploring the ray
with smaller searched distance
earlier.

(
n

m1

) (
m1 + n

n

)m1 + n

m1 1 + 2
(

p−m2

m2

) (
p

p−m2

)p/m2

Figure 2.5: Connections of the Processor-Allocation Problem and the Robots-Search-Rays Prob-
lem, in order to distinguish the notations, we denote m1 as the number of processors, n as the
number of problems, p as the number of rays and m2 as the number of robots.
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Chapter 3

One Robot Searches Two Rays And
Weighted Problem

In this chapter, we study the One-Robot-Searches-Two-Rays-And-Weighted (1-STRAW) prob-
lem. Here by weighted, we refer to the different probabilities of the target being located on either
of the two rays. This problem is new to the Robots-Search-Rays problem and the lower bound of
the competitive ratio has never been proved before. In this chapter, we compute and prove a tight
lower bound on the worst case competitive ratio and conjecture a lower bound on the average
case competitive ratio. This chapter consists of three parts. Firstly, we define the 1-STRAW
problem in a formal way and propose a search strategy for this problem. Secondly, we compute
the worst case competitive ratio of our proposed search strategy and prove its tight lower bound.
Thirdly, we analyze the average case competitive ratio given our search strategy.

3.1 Problem Definition and Search Strategy

3.1.1 Problem Definition

In the 1-STRAW problem, we investigate searching on two concurrent rays for a point target g
located at some unknown distance along one of the two rays with different locating probabilities.
A robot moving at unit speed searches for the target using a strategy S. The probability of
the target located on the first ray is p and the probability of it located on the second ray is
q. Therefore we have p + q = 1. Without loss of generality, we define high = max{p, q} and
low = min{p, q}.

Now let us recall the 2-ray cow-path problem, which is equivalent to the problem of One-
Robot-Searches-Two-Rays in the unweighted case. Here we define a cyclic search strategy with
a geometric ratio b for the 2-ray cow-path problem as Su, where u stands for unweighted. We
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define the worst case competitive ratio given the cyclic search strategy as CSu(w) and we have

CSu(w) = 1 + 2 · lim
k→∞

{∑k+1
i=0 b

i

bk + ε

}
(3.1)

which results in CSu(w) = 1 + 2b2
b− 1.

Now, let us compute the worst case competitive ratio CSu(w) in a different way. We denote the
two rays as R1 and R2 and the worst case competitive ratio as C1

Su(w) when the target is found
on ray R1. The worst case competitive ratio is denoted by C2

Su(w) when the target is found on ray
R2. Since the target selects a location on either one of the two rays with the same probability, we

have CSu(w) = 0.5×C1
Su(w)+0.5×C2

Su(w). In addition, we know that C1
Su(w) = C2

Su(w) = 1+
2b2

b− 1
.

Therefore CSu(w) = 1 + 2b2
b− 1.

This gives us an indication of how to compute the worst case competitive ratio for 1-STRAW,
which is denoted as CS(w). Here we denote the ray with the probability of high as RH and the
ray with the probability of low as RL. In addition, we use CHS(w) as the worst case competitive
ratio when the target is on RH and CLS(w) as the worst case competitive ratio when the target is
on RL.

Definition 4 The worst case competitive ratio CS(w) for 1-STRAW is

CS(w) = high × C H
S(w) + low × C L

S(w)

where CHS(w) and CLS(w) represent the worst case competitive ratios on the ray with the probability
of high and on the ray with the probability of low respectively.

In the case of the real line, the competitive ratio for a given target point g is the distance
traversed by the robot divided by the distance from the origin to the target position, that is

CS(g) =
ĈS(g)
|g| , where ĈS(g) denotes the total search distance by the robot. Additionally, we

are interested in both the worst case and the average case performance under this measure.

Without loss of generality, we can assume that the robot starts from the origin, which simplifies
the description of a strategy. In addition, we study the case where the target point is not located
within a distance ε of the robot starting position. Again, this is a natural restriction, as otherwise
the target can hide infinitesimally close to the starting point and on the opposite side of the first
search move by the robot, resulting in an unbounded competitive ratio. Therefore, in the study,
we set ε = 1.

Definition 5 The average case competitive ratio of a randomized strategy S given the target

location range [d1, d2] is defined as CS(a) =

∫
d2−d1 Ĉ(S, g)/|g|dg

d2 − d1
, where g is the possible target

location chosen from [d1, d2].
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3.1.2 Proposed Search Strategy

Now that we have the definitions of the 1-STRAW problem and the performance measures of both
the worst case competitive ratio (Definition 1) and the average case competitive ratio (Definition
5), we propose a search strategy.

1 high← max {p, 1− p}

2 low ← min {p, 1− p}

3 RH ← 0 /* the ray with probability high */

4 RL ← 1 /* the ray with probability low */

5 σ ← {RH , RL}

6 dH ← f(p) · b0

7 dL ← b1

8 i← 0

9 repeat

10 if (i mod 2 == 0)

11 Explore Path σ(0) up to distance dH

if (target is not found)12

13 dH ← dH × b2

Robot returns to the origin14

15 else if (i mod 2 == 1)

16 Explore Path σ(1) up to distance dL

if (target is not found)17

18 dL ← dL × b2

Robot returns to the origin19

20 i + +

21 Until target is found

Figure 3.1: Proposed Searching Strategy for the 1-STRAW problem

In this strategy, we inherit the geometric ratio of the cyclic strategy [43]. However, we intro-
duce a ratio function f(p) to accelerate the search distances on the ray with higher probability,
which is a function of the probability p. Intuitively, we want the robot to search for longer dis-
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tances on the ray with higher probability because there is a better chance that the robot will
reach the target there. In the next section, we will obtain the optimal representation of f(p) to
get the lower bounds of the worst case and the average case competitive ratio.

3.2 Worst Case Competitive Ratio

In the previous section, we defined the 1-STRAW problem and proposed a search strategy. In
this section, we compute its worst case competitive ratio, introduce the representation of the
optimal ratio function f(p) and prove the lower bound of the worst case competitive ratio of the
1-STRAW problem.

We observe that the worst case competitive ratio grows bigger as the number of search rounds
increases, which means the worst case competitive ratio in the last round is the largest out of
all the worst case competitive ratios at all the former rounds, shown in Figure 3.2 and 3.3. The
following lemmas prove this point.

fb4fb0 fb2 fb6 fb81 fb2k−2 fb2k fb2k+2

CompetitiveRatioH

TargetDistance

1

fb2ifb2i−2

Figure 3.2: General case of CHS

Here we have the following settings:

Index i is the accumulator of rounds. CHS(w)(i) represents the worst case competitive ratio at
round 2i + 2 when the target is on RH . CLS(w)(i) represents the worst case competitive ratio at
round 2i+ 3 when the target is on RL.

Lemma 1 CHS(w)(i) is a monotonically increasing function of i.

Proof. We here introduce a small number ε. The worst case occurs when the target is located
just past the end point of the searching distance at round 2i, which is f(p) · b2i + ε.
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b5b1 b3 b7 b91 b2k−1 b2k+1 b2k+3

CompetitiveRatioL

TargetDistance

1

b2i−1 b2i+1

Figure 3.3: General case of CLS

Therefore we have

CHS(w)(i) =

2 ·
i∑

j=0

f(p) · b2j + 2 ·
i∑

j=0

b2j+1 + (f(p) · b2i + ε)

f(p) · b2i + ε

= 1 +
2f(p)(b2i+2 − 1) + 2b(b2i+2 − 1)

(b2 − 1)(f(p) · b2i + ε)

= 1 +
2f(p) + 2b
b2 − 1

·
b2 − 1

b2i

f(p) +
ε

b2i

Recall that ε is arbitrarily small, so we have ε
b2i
→ 0 and hence

CHS(w)(i) = 1 +
2f(p) + 2b
b2 − 1

·
b2 − 1

b2i

f(p)

Therefore, CHS(w)(i) is a monotonically increasing function of i.

Lemma 2 CLS(w)(i) is a monotonically increasing function of i.
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Proof. We denote CLS(w)(i) as the worst case competitive ratio at round 2i+ 3 when the target
is on RL. The worst case occurs when the target is located at the closest place to the end point
of the searching distance at round 2i+ 1, which is b2i+1 + ε.

Therefore we have

CLS(w)(i) =

2 ·
i+1∑
j=0

f(p) · b2j + 2 ·
i∑

j=0

b2j+1 + (b2i+1 + ε)

b2i+1 + ε

= 1 +
2f(p)

(
b3 − 1

b2i+1

)
+ 2b

(
b− 1

b2i+1

)
(b2 − 1)

(
1 +

ε

b2i+1

)
Since ε is arbitrarily small, so we have

ε

b2i+1
→ 0 and hence

CLS(w)(i) = 1 +
2f(p)

(
b3 − 1

b2i+1

)
+ 2b

(
b− 1

b2i+1

)
b2 − 1

Therefore, CLS(w)(i) is a monotonically increasing function of i.

The lemmas above allow us to use the worst case competitive ratio at the last search round
as the worst case competitive ratio for the 1-STRAW problem.

Now we will compute the worst case competitive ratio for a general function f(p), given the
probability p with which the target is located on one of the rays and the geometric ratio b. By
the general function f(p), we mean that nothing is known for f(p) other than the fact that f(p)
is a function of the probability of p. Later on, we will decide how to choose f(p) in order to get
the best efficiency out of the search strategy.

Theorem 9 The worst case competitive ratio for the 1-STRAW problem given the general func-
tion f(p) is:

CS(w) =


3b2 − 1
b2 − 1

+ 2b3
b2 − 1

[
pf(p) + 1− p

f(p)

]
p ∈ [0, 0.5]

3b2 − 1
b2 − 1

+ 2b3
b2 − 1

[
(1− p)f(p) + p

f(p)

]
p ∈ [0.5, 1]

Proof. There are two cases for the location of the target. One is that the target is located on
RH and the worst case competitive ratio is CHS(w). The second case is that the target is located
on RL and the worst case competitive ratio is CLS(w). In addition according to Definition 4, we
have CS(w) = high× CHs(w) +low × CLS(w).
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The worst case is that the target is located at the point which is ε away from the end point
of the last search distance on this ray. For the case that the target is located on RH , the target
distance will be f(p)×b2k+ε, given our searching strategy. For the case that the target is located
on RL, the target distance will be b2k+1 + ε. Now we will compute CHS(w) and CLS(w) respectively.

Case 1: Target is on RH , target distance is f(p)× b2k + ε

We denote the total distance the robot traveled as DH and we have

DH = 2 ·
k∑
i=0

f(p) · b2i + (f(p) · b2k + ε) + 2 ·
k∑
i=0

b2i+1

= f(p) · 2b2k+2 − 2
b2 − 1

+ f(p) · b
2k+2 − b2k
b2 − 1

+
2b2k+3 − 2b
b2 − 1

+ ε

= f(p) · 3b2k+2 − b2k − 2
b2 − 1

+
2b2k+3 − 2b
b2 − 1

+ ε

Given Definition 1 and Lemma 1, we have

CHS(w) = lim
k→∞

{
DH

f(p)b2k + ε

}

= lim
k→∞



3b2 − 1− 2
b2k

b2 − 1
+

2b3 − 2b
b2k

(b2 − 1) · f(p)
+ ε
f(p) · b2k

1 + ε
f(p) · b2k


=

3b2 − 1
b2 − 1

+
2b3

b2 − 1
· 1
f(p)

Case 2: Target is on RL, target distance is b2k+1 + ε

DL = 2 ·
k+1∑
i=0

f(p) · b2i + 2 ·
k∑
i=0

b2i+1 + (b2k+1 + ε)

= f(p) · 2b2k+4 − 2
b2 − 1

+
3b2k+3 − b2k+1 − 2b

b2 − 1
+ ε

24



Given Definition 1 and Lemma 2, we have

CLS(w) = lim
k→∞

{
DL

b2k+1 + ε

}

= lim
k→∞

{f(p) ·
2b3 − 2

b2k+1

b2 − 1
+

3b2 − 2b
b2k+1

− 1

b2 − 1
+

ε

b2k+1

1 + ε
b2k+1

}

=
3b2 − 1
b2 − 1

+
2b3

b2 − 1
· f(p)

Now we can compute CS(w) = high× CHs(w) + low × CLS(w).

CS(w) =
3b2 − 1
b2 − 1

+
2b3

b2 − 1
· {f(p) · low +

high

f(p)
}

which is

CS(w) =


3b2 − 1
b2 − 1

+ 2b3
b2 − 1

[
pf(p) + 1− p

f(p)

]
p ∈ [0, 0.5]

3b2 − 1
b2 − 1

+ 2b3
b2 − 1

[
(1− p)f(p) + p

f(p)

]
p ∈ [0.5, 1]

This completes the proof.

3.2.1 Lower Bound of Worst Case Competitive Ratio

Representation of Ratio Function

So far we have obtained the expression of the worst case competitive ratio of the 1-STRAW
problem given an unknown ratio function f(p). What we do next is to find a proper formula for
the ratio function f(p). By proper, we mean that, out of all the possible representations of f(p),
the final f(p) we choose minimizes the value of CS(w), given the same geometric ratio b and the
same probability p. We additionally prove a theorem which indicates that the ratio function f(p)
we choose is the best function out of any possible choice of f(p), in terms of getting the smallest
value of worst case competitive ratio for the 1-STRAW problem.

The requirements for the ratio function f(p) are to be considered carefully. Let us examine
the search strategy at a higher level. The robot should search a longer distance on the ray with
higher probability because the target is more likely to be on this ray. This is where the ratio
function f(p) comes in. It is also the reason why there is no need to have a ratio function f(p)
for the 2-ray cow-path problem since the two rays have equal probability of having the target
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located on them. Therefore, the first requirement for ratio function is f(p) ≥ 1 (when p = 0.5,
f(p) = 1), which makes the searching distance longer than the ones in the unweighted case.

Another requirement can be observed from the representation of worst case competitive ratio
CS(w), which is

CS(w) =
3b2 − 1
b2 − 1

+
2b3

b2 − 1
·
{
f(p) · low +

high

f(p)

}

Both f(p) · low and
high

f(p)
should be functions of the probability p with boundaries. This is a

straightforward requirement since if either of the function goes to infinity, the worst case com-
petitive ratio will be unbounded, which makes CS(w) meaningless since we desire the smallest
possible worst case competitive ratio.

Under the conditions of the two requirements above, we proposed the first candidate of ratio

function f(p), which is f(p) =
high

low
. Intuitively, this makes a lot sense. The ratio function

f(p) =
high

low
is bigger than or equal to 1. When low → 0, f(p)→∞, which means, if the target

is on RH for sure, then the robot will search on RH to an unbounded distance. This will make
the robot get to the target at its first try and the worst case competitive ratio will be 1.

However, if we set f(p) =
high

low
, then we have

f(p) · low +
high

f(p)
= 1

Therefore,

CS(w) =
3b2 − 1
b2 − 1

+
2b3

b2 − 1
·
{
f(p) · low +

high

f(p)

}
= 1 +

2b2

b− 1

which cancels out the probability p and is equivalent to the worst case competitive ratio of the
2-ray cow-path problem. This means that, no matter what the probability p is, if we follow the
proposed search strategy, we will always get the worst case competitive ratio with the same value
as the one in the unweighted case.

The result shows that the natural weight function
high

low
is not correct. So the next question

is: does there exist any other representation of f(p), which makes f(p) · low +
high

f(p)
≤ 1?

Ideally, we want to find

min
{
f(p) · low +

high

f(p)

}
Now we will introduce a theorem, which takes us one step closer to get the best representation

of f(p).

Here we define g(f(p)) = f(p) · p+
q

f(p)
, we propose the theorem described as follows.
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Theorem 10 The optimal ratio function f(p) which makes g(f(p)) minimal is

f(p) =
√
q

p

Proof. First, we compute the derivative of g(f(p)) over f(p), we have

d

df(p)
g(f(p)) = p− q

f(p)2
(3.2)

Assign Equation 3.2 to zero, we have

f(p) =
√
q

p

Now we will prove that f(p) =
√
q

p
is the optimal choice to make g(f(p)) minimal.

For any x 6=
√
q

p
, we have

g(x)− g
(√

q

p

)
= x · p+

q

x
− p ·

√
q

p
− q ·

√
p

q

=
x2 · p+ q

x
− x · 2√pq

x

=
(
√
p · x−√q)2

x

Since we only consider any x > 1, therefore we have

g(x)− g
(√

q

p

)
> 0

And f(p) =
√
q

p
makes g(f(p)) minimal, which value is 2

√
pq

Corollary 1 CS(w) achieves the smallest value when f(p) =
√
high√
low

, given the same choice of

geometric ratio b and probability p.

Proof. Refer to Theorem 10.

Therefore, we have the final representation of the worst case competitive ratio CS(w) for the
1-STRAW problem. Since it is a function of the geometric ratio b and the probability p, we
denote the function of the worst case competitive ratio for the 1-STRAW problem as CS(w)(b, p)
and it equals to

CS(w)(b, p) =
3b2 − 1
b2 − 1

+
4b3

b2 − 1
·
{√

p · (1− p)
}

27



Lower bound

In this section, we will compute the lower bound of the worst case competitive ratio CS(w)(b, p).
The shape of CS(w) is shown in Figure 3.4. Our goal is to find the optimal geometric ratio b given
the probability p, which ensures that our proposed search strategy has the smallest worst case
competitive ratio. Now that we have the representation of CS(w)(b, p), which makes finding the
lower bound easier. What we will do is to compute the derivatives of CS(w)(b, p).

Figure 3.4: CS(w)(b, p)

There are two partial derivatives for CS(w)(b, p), which are respectively the partial derivative

over p, denoted as
dCS(w)(b, p)

dp
and the partial derivative over b, denoted as

dCS(w)(b, p)
db

.

We will compute the partial derivative over p first since it is more straightforward. Because
we have

CS(w)(b, p) =
3b2 − 1
b2 − 1

+
4b3

b2 − 1
·
{√

p · (1− p)
}

when we compute the partial derivative over p, we regard b as a constant. We introduce two

constants c1 and c2 with c1 = 3b2 − 1
b2 − 1

and c2 = 2b3
b2 − 1

. Therefore the function CS(w)(b, p) can

be re-written as
CS(w)(p) = c1 + c2 · 2

√
p · (1− p)

We denote g(p) = 2
√
p · (1− p), as it is shown in Figure 3.5. Since c1 and c2 are constants

and CS(w)(p) = c1 + c2 · 2
√
p · (1− p), therefore CS(w)(p) has the same symmetric shape as g(p).
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Given
d

dp
CS(w) =

2b3(1− 2p)
(b2 − 1)

√
p · (1− p)

when
dCS(w)

dp
= 0, we have p = 0.5. Therefore the maximum worst case competitive ratio is

achieved at p = 0.5 and

CS(w)(b, 0.5) =
2b3 + 3b2 − 1

b2 − 1

Because of the symmetry of CS(w)(p), the minimum worst case competitive ratio is achieved
at either p = 0 or p = 1 and

CS(w)(b, 0) = CS(w)(b, 1) =
3b2 − 1
b2 − 1

Intuitively, this is as expected. When the probability of the target located on one ray is close
to 1, which means almost surely that the target is on this ray, then our proposed strategy will
make the robot search on this ray first for a long distance, which ensures that the robot finds
the target as soon as possible, thus making the worst case competitive ratio as small as possible.
When the target is located on either of the rays with the same probability, then our strategy
results in an unbiased search and the worst case competitive ratio will be the highest among all
cases with non-equal probabilities.

Figure 3.5: g(p) = 2
√
p · (1− p)

Now let us consider the partial derivative of CS(w)(b, p) over b. In this case, the probability p
is regarded as a constant. We have

dCS(w)(b, p)
db

=
6b

b2 − 1
− 2b(3b2 − 1)

(b2 − 1)2
+

12b2
√
p · (1− p)
b2 − 1

− 8b4
√
p · (1− p)

(b2 − 1)2
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When
dCS(w)(b, p)

db
= 0, we have

√
p · (1− p) =

1
b3 − 3b

Therefore, given the equation of
√
p · (1− p) = 1

b3 − 3b
, we can represent p as y(b). In

addition, we can compute CS(w)(b, y(b)) as

CS(w)(b, y(b)) =
3b2 − 1
b2 − 1

+
4b3

b2 − 1
·
√
p · (1− p)

= 3 +
6

b2 − 3

Therefore,

CS(w)(b, y(b)) = 3 +
6

b2 − 3
(3.3)

In order to distinguish this special b which makes
dCS(w)(b, p)

db
= 0, we denote this b as b∗.

Now we will prove that this CS(w)(b∗, y(b∗)) is the minimal value out of any possible CS(w)(b, p),
given the same p.

Theorem 11 CS(w)(b∗, y(b∗)) is the smallest value out of any CS(w)(b, y(b∗)).

Proof.

∵ CS(w)(b
∗, y(b∗)) = 3 +

6
(b∗)2 − 3

CS(w)(b, y(b∗)) =
3b2 − 1
b2 − 1

+
4b3

b2 − 1
·
√
p · (1− p)

=
3b2 − 1
b2 − 1

+
4b3

b2 − 1
· 1

(b∗)3 − 3b∗

∴ CS(w)(b∗, y(b∗))− CS(w)(b, y(b∗))

= 3 +
6

(b∗)2 − 3
−
[

3b2 − 1
b2 − 1

+
4b3

b2 − 1
· 1

(b∗)3 − 3b∗

]
=

2
[(b∗)3 − 3b∗] · (b2 − 1)

· [(2b∗ + b∗)b2 − (b∗)2 · b∗ − 2b2 · b]
=

2
[(b∗)3 − 3b∗] · (b2 − 1)

·
{

(b∗ − b) · [b(b+ b)− b∗(b∗ + b)]
}
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There are two cases when b 6= b∗

Case 1: if b > b∗, then b∗ − b < 0, b(b+ b)− b∗(b∗ + b) > 0

Therefore, CS(w)(b∗, y(b∗))− CS(w)(b, y(b∗)) < 0,

∴ CS(w)(b∗, y(b∗)) < CS(w)(b, y(b∗))

Case 2: if b < b∗, then b∗ − b > 0, b(b+ b)− b∗(b∗ + b) < 0

Therefore, CS(w)(b∗, y(b∗))− CS(w)(b, y(b∗)) < 0,

∴ CS(w)(b∗, y(b∗)) < CS(w)(b, y(b∗))

CS(w)(b∗, y(b∗)) is the smallest value out of any CS(w)(b, y(b∗)).

Now given the probability p, we can get the optimal b to reach the lower bound of CS(w)(b, p).
The equation is √

p · (1− p) =
1

b3 − 3b

And the lower bound of the worst case competitive ratio is CS(w)(b, y(b)) = 3 +
6

b2 − 3
, shown in

Equation 3.3.

(a) CS(w)(b, 0.5) (b) CS(w)(2, p)

Figure 3.6: CS(w) given the specific probability p and the geometric ratio b

Also, refer to Figure 3.4 and Figure 3.6. When the probability p = 0.5, the optimal b equals
to 2. The result matches with the lower bound of the worst case competitive ratio for the 2-ray
cow-path problem, which is 9. Note here, when p = 0.5, our proposed search strategy is equivalent
to the doubling strategy.
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3.3 Average Case Competitive Ratio

3.3.1 Un-truncated Average Case Competitive Ratio

In this section, we will compute the average case competitive ratio for the 1-STRAW problem.
Different than the worst case competitive ratio, the average case competitive ratio is determined
by any possible target location since we want to get the average value of all the competitive ratios,
see in Figure 3.7.
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(a) General case of CH
S with the average competitive ratio

b5b1 b3 b7 b91 b2k−1 b2k+1 b2k+3

CompetitiveRatioL

TargetDistance

1

b2i−1 b2i+1

aL
1

aL
2

aL
3

aL
4

aL
i

aL
k

aL
k+1

aL
0

(b) General case of CL
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Figure 3.7: General case of CHS and CLS with the average competitive ratio

We assume that there is no limitation on the range of the target location, which means that
it is possible that the target is located at an unbounded distance to the origin. We call this case
un-truncated.
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The average case competitive ratio under this setting is named the un-truncated average case
competitive ratio, denoted as CS(a). We will introduce three models to compute the un-truncated
average case competitive ratio and analyze the lower bound of CS(a). To compute the average
case competitive ratio, we will use the formula as follows.

CS(a) = high× CHS(a) + low × CLS(a) (3.4)

where CHS(a) is the average case competitive ratio when the target is on RH and CLS(a) is the
average case competitive ratio when the target is on RL.

First, we will introduce two lemmas which give the properties of CS(a). Refer to Figure 3.8a
and Figure 3.8b. To simplify the descriptions, instead of using the notation of round, we use the
notation of term. Note here the term does not equal to the round. We name the un-truncated
average case competitive ratio for term i (which is the (2i)th searching round) as aHi on RH .
Similarly, we denote the un-truncated average case competitive ratio for term i (which is the
(2i)st searching round) as aLi on RL.

fb2i−2 fb2i

CompetitiveRatioH

TargetDistance

aH
i
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(a) CH
S at term i

b2i−1 b2i+1

CompetitiveRatioL

TargetDistance

aL
i

b2i−1 + x

(b) CL
S at term i

Figure 3.8: The ith term of CHS and CLS

Lemma 3 aHi is a monotonically increasing function of i, where i = 1, 2, . . . ,∞.

Proof. In the ith term, if the target is located at f(p) ·b2i−2 +x, where x ∈ [0, f(p) · (b2i−b2i−2)],
refer to Figure 3.8a, the un-truncated average case competitive ratio is:

aHi =
1

f(p) · (b2i − b2i−2)
·
∫ f(p)·(b2i−b2i−2)

0

{
1 +

2 ·∑i−1
j=0 f(p) · b2j + 2 ·∑i−1

j=0 b
2j+1

f(p) · b2i−2 + x

}
dx
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=
1

f(p) · (b2i − b2i−2)
· x
∣∣∣∣f(p)·(b2i−b2i−2)

0

+
2(f(p) + b) · (b2i − 1)
f(p) · b2i−2 · (b2 − 1)2

· ln(f(p) · b2i−2 + x)
∣∣∣∣f(p)·b2i−2(b2−1)

0

= 1 +
2(f(p) + b) · (b2i − 1)
f(p) · b2i−2 · (b2 − 1)2

· [2i · ln b− (2i− 2) ln b]

∴ aHi = 1 +
4 ln b(f(p) + b)
f(p) · (b2 − 1)2

·
[
b2 − 1

b2i−2

]
(3.5)

When i increases,
[
b2 − 1

b2i−2

]
increases, therefore aHi increases.

Lemma 4 aLi is a monotonically increasing function of i, where i = 1, 2, . . . ,∞.

Proof. In the ith term, if the target distance is located at b2i−1 + x, where x ∈ [0, b2i+1− b2i−1],
refer to Figure 3.8b, the un-truncated average case competitive ratio is:

aLi =
1

b2i+1 − b2i−1
·
∫ b2i+1−b2i−1

0

{
1 +

2 ·∑i
j=0 f(p) · b2j + 2 ·∑i−1

j=0 b
2j+1

b2i−1 + x

}
dx

=
1

b2i+1 − b2i−1
· x
∣∣∣∣b2i+1−b2i−1

0

+
2f(p) · (b2i+2 − 1) + 2b(b2i − 1)

b2i−1(b2 − 1)2
· ln(b2i−1 + x)

∣∣∣∣b2i+1−b2i−1

0

= 1 +
4 ln b · [f(p)(b2i+2 − 1) + b(b2i − 1)

]
(b2 − 1)2 · b2i−1

∴ aLi = 1 +
4 ln b ·

[
f(p)(b3 − 1

b2i−1
) + b(b− 1

b2i−1
)
]

(b2 − 1)2
(3.6)

When i increases,
[
f(p)(b3 − 1

b2i−1
) + b(b− 1

b2i−1
)
]

increases, therefore aLi increases.

Last term of the un-truncated Average Case Competitive Ratio

According to Lemma 3 and Lemma 4, we know that the last term of the un-truncated average
case competitive ratio is the largest. We will compute the largest value given that the target
distance can be unbounded. To be consistent with the proofs for the worst case competitive
ratio, we will compute the (i+ 1)st term for both RH and RL, shown in Figure 3.9a and Figure
3.9b.
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Figure 3.9: Last term of CHS and CLS

Theorem 12 The last term of the un-truncated average case competitive ratio CS(a)last
for the

1-STRAW problem given the general function f(p) is:

CS(a)last
=


1 + 4 ln b · b2

(b2 − 1)2
+ 4 ln b · b3

(b2 − 1)2

[
pf(p) + 1− p

f(p)

]
p ∈ [0, 0.5]

1 + 4 ln b · b2
(b2 − 1)2

+ 4 ln b · b3
(b2 − 1)2

[
(1− p)f(p) + p

f(p)

]
p ∈ [0.5, 1]

Proof. There are two cases in terms of the location of the target.

Case 1: Target is on RH , target distance is f(p)× b2k + x, x ∈ [0, f(p)b2k+2 − f(p)b2k],
refer to Figure 3.9a.

aHk+1 =
1

f(p) · (b2k+2 − b2k) ·
∫ f(p)·(b2k+2−b2k)

0

{
1 +

2 ·∑k
i=0 f(p) · b2i + 2 ·∑k

i=0 b
2i+1

f(p) · b2k + x

}
dx

= 1 +
4 ln b(f(p) + b)
f(p) · (b2 − 1)2

·
[
b2 − 1

b2k

]
Because

CHS(a)last
= lim

k→∞

{
aHk+1

}
Therefore we have

CHS(a)last
= 1 +

4 ln b · b2 · (f(p) + b)
f(p) · (b2 − 1)2

= 1 +
4 ln b · b2
(b2 − 1)2

· [ b

bf(p)
+ 1]
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Case 2: Target is on RL, target distance is b2k+1 + x, x ∈ [0, b2k+3 − b2k+1], refer to
Figure 3.9b.

aLk+1 =
1

b2k+3 − b2k+1
·
∫ b2k+3−b2k+1

0

{
1 +

2 ·∑k+1
i=0 f(p) · b2i + 2 ·∑k

i=0 b
2i+1

b2k+1 + x

}
dx

= 1 +
4 ln b ·

[
f(p)(b3 − 1

b2k+1
) + b(b− 1

b2k+1
)
]

(b2 − 1)2

Because

CLS(a)last
= lim

k→∞

{
aLk+1

}
= 1 +

4 ln b · b2
(b2 − 1)2

· [f(p) · b+ 1]

∵ CS(a)last
= high× CHS(a)last

+ low × CLS(a)last

We have CS(a)last
= 1 +

4 ln b · b2
(b2 − 1)2

+
4 ln b · b3
(b2 − 1)2

× [low × f(p) +
high

f(p)
], which is

CS(a)last
=


1 + 4 ln b · b2

(b2 − 1)2
+ 4 ln b · b3

(b2 − 1)2

[
pf(p) + 1− p

f(p)

]
p ∈ [0, 0.5]

1 + 4 ln b · b2
(b2 − 1)2

+ 4 ln b · b3
(b2 − 1)2

[
(1− p)f(p) + p

f(p)

]
p ∈ [0.5, 1]

This completes the proof.

Arithmetic Mean of the un-truncated Average Case Competitive Ratio

Now we need to emphasize the difference between the worst case competitive ratio and the average
case competitive ratio in terms of computing the lower bound. In the previous section, we have
two lemmas similar to Lemma 3 and Lemma 4. We used the last term worst case competitive
ratio for the 1-STRAW problem to compute the lower bound of CS(w). The reason is because

our goal is min
{

max
{
CS(w)

}}
. However, for the average case competitive ratio, our goal is

to minimize the average value of the average case competitive ratios of all the terms, which is

denoted as AVE
{
CS(a)

}
. Therefore we desire

min
{

AVE
{
CS(a)

}}
The first option of computing the average value of the competitive ratio is to calculate the

arithmetic mean of ai, which is denoted as

AVEarithmetic =

k∑
0

ai

k + 1
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Theorem 13 The arithmetic mean of the un-truncated average case competitive ratio CS(a)arithmetic

for the 1-STRAW problem given the general function f(p) is:

CS(a)arithmetic
=


1 + 4 ln b · b2

(b2 − 1)2
+ 4 ln b · b3

(b2 − 1)2

[
pf(p) + 1− p

f(p)

]
p ∈ [0, 0.5]

1 + 4 ln b · b2
(b2 − 1)2

+ 4 ln b · b3
(b2 − 1)2

[
(1− p)f(p) + p

f(p)

]
p ∈ [0.5, 1]

Proof. When the target is on RH , we name the arithmetic mean of the average case as
AVEHarithmetic. Whereas when the target is on RL, we use AVELarithmetic as the arithmetic mean
of the average case. We have

AVEHarithmetic =

k∑
i=0

aHi

k + 1
and

AVELarithmetic =

k∑
i=0

aLi

k + 1

Case 1: Target is on RH , refer to Figure 3.7a.

First, we need to know the value of aH0 , in which case the target distance is between [1, f(p)·b0].
The robot will find the target at the first round of searching and the competitive ratio will always
be 1. Therefore, aH0 = 1. Given aH0 = 1 and Equation 3.5, we have

AVEHarithmetic =

k∑
i=0

aHi

k + 1
=

aH0 +
k∑
i=1

aHi

k + 1

=

1 +
k∑
i=1

{
1 +

4 ln b(f(p) + b)
f(p) · (b2 − 1)2

·
[
b2 − 1

b2i−2

]}
k + 1

= 1 +
4 ln b · b2(f(p) + b)
f(p) · (b2 − 1)2

· 1

1 +
1
k

− b2

b2 − 1
·

1− 1
b2k

k + 1
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Additionally, we have

CHS(a)arithmetic
= lim

k→∞

{
AVEHarithmetic

}

= lim
k→∞

{
1 +

4 ln b · b2(f(p) + b)
f(p) · (b2 − 1)2

· 1

1 +
1
k

− b2

b2 − 1
·

1− 1
b2k

k + 1

}

= 1 +
4 ln b · b2(f(p) + b)
f(p) · (b2 − 1)2

Case 2: Target is on RL, refer to Figure 3.7b.

First, we need to know the value of aL0 , in which case the target distance is between [1, b1].
According to the definition of the competitive ratio, we have

aL0 =
1

b− 1
·
∫ b−1

0

{
1 +

2f(p) · b0
1 + x

}
dx = 1 +

2f(p)
b− 1

· ln (x+ 1)
∣∣∣∣b−1

0

= 1 +
2 ln b · f(p)
b− 1

Given aL0 = 1 +
2 ln b · f(p)
b− 1

and Equation 3.6, we have

Therefore

AVELarithmetic =

k∑
i=0

aLi

k + 1

=

1 +
2 ln b · f(p)
b− 1

+
k∑
i=1

{
1 +

4 ln b ·
[
f(p)(b3 − 1

b2i−1
) + b(b− 1

b2i−1
)
]

(b2 − 1)2

}
k + 1

= 1 +
2 ln bf(p)
b− 1

· 1
k + 1

+
4 ln b · b2(1 + bf(p))

(b2 − 1)2
· 1

1 +
1
k

− 4 ln b · b(f(p) + b)
(b2 − 1)2

· b2

b2 − 1
·

1− 1
b2k

k + 1
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Additionally, we have

CLS(a)arithmetic
= lim

k→∞

{
AVELarithmetic

}
= lim

k→∞

{
1 +

2 ln bf(p)
b− 1

· 1
k + 1

+
4 ln b · b2(1 + bf(p))

(b2 − 1)2
· 1

1 +
1
k

}

− lim
k→∞

{
4 ln b · b(f(p) + b)

(b2 − 1)2
· b2

b2 − 1
·

1− 1
b2k

k + 1

}
= 1 +

4 ln b · b2(1 + bf(p))
(b2 − 1)2

Because we know

CS(a)arithmetic
= high× CHS(a)arithmetic

+ low × CLS(a)arithmetic

= high×
[
1 +

4 ln b · b2(f(p) + b)
f(p) · (b2 − 1)2

]
+ low ×

[
1 +

4 ln b · b2(1 + bf(p))
(b2 − 1)2

]
= 1 +

4 ln b · b2
(b2 − 1)2

+
4 ln b · b3
(b2 − 1)2

× [low × f(p) +
high

f(p)
]

which is

CS(a)arithmetic
=


1 + 4 ln b · b2

(b2 − 1)2
+ 4 ln b · b3

(b2 − 1)2

[
pf(p) + 1− p

f(p)

]
p ∈ [0, 0.5]

1 + 4 ln b · b2
(b2 − 1)2

+ 4 ln b · b3
(b2 − 1)2

[
(1− p)f(p) + p

f(p)

]
p ∈ [0.5, 1]

This completes the proof.

Weighted Mean of the un-truncated Average Case Competitive Ratio

Now we compute the weighted mean of the un-truncated average case competitive ratio. Here we
define the weight as the length difference between the endings of two consecutive searching rounds
on the same ray. Therefore we denote lenHi = f(p) · b2i − f(p) · b2i−2 and lenLi = b2i+1 − b2i−1

when i ≥ 1. And the weighted mean of the un-truncated average case competitive ratio is defined
as

AVEHweight =

k∑
i=0

{
aHi × lenHi

}
lenH0 + lenH1 + lenH2 + · · ·+ lenHk

and

AVELweight =

k∑
i=0

{
aLi × lenLi

}
lenL0 + lenL1 + lenL2 + · · ·+ lenLk
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Theorem 14 The weighted mean of the un-truncated average case competitive ratio CS(a)weight

for the 1-STRAW problem given the general function f(p) is:

CS(a)weight
=


1 + 4 ln b · b2

(b2 − 1)2
+ 4 ln b · b3

(b2 − 1)2

[
pf(p) + 1− p

f(p)

]
p ∈ [0, 0.5]

1 + 4 ln b · b2
(b2 − 1)2

+ 4 ln b · b3
(b2 − 1)2

[
(1− p)f(p) + p

f(p)

]
p ∈ [0.5, 1]

Proof. Same as the arithmetic mean of average case, we will consider two situations (CHS(a)weight

and CLS(a)weight
) respectively and then combine them using the formula

CS(a)weight
= high× CHS(a)weight

+ low × CLS(a)weight

Case 1: Computation of CHS(a)weight

∵ lenHi = f(p) · b2i − f(p) · b2i−2, aHi = 1 +
4 ln b(f(p) + b)
f(p) · (b2 − 1)2

·
[
b2 − 1

b2i−2

]
when i ≥ 1 and

aH0 = 1, therefore we have

AVEHweight =

k∑
i=0

{
aHi × lenHi

}
lenH0 + lenH1 + lenH2 + · · ·+ lenHk

=

1 + f(p) · (b2 − 1)
k∑
i=1

{
b2i−2 ×

[
1 +

4 ln b(f(p) + b)
f(p) · (b2 − 1)2

· (b2 − 1
b2i−2

)
]}

f(p) · b2k − 1

= 1 +
2− f(p)

f(p) · b2k − 1
+

4 ln b · b2(f(p) + b)
(b2 − 1)2

·
1− 1

b2k

f(p)− 1
b2k

− 4 ln b(f(p) + b)
b2 − 1

·
k

b2k

f(p)− 1
b2k
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∵ CHS(a)weight
= lim

k→∞

{
AVEHweight

}

∴ CHS(a)weight
= lim

k→∞

{
1 +

2− f(p)
f(p) · b2k − 1

+
4 ln b · b2(f(p) + b)

(b2 − 1)2
·

1− 1
b2k

f(p)− 1
b2k

}

− lim
k→∞

{
4 ln b(f(p) + b)

b2 − 1
·

k

b2k

f(p)− 1
b2k

}

= 1 +
4 ln b · b2(f(p) + b)
f(p) · (b2 − 1)2

Case 2: Computation of CLS(a)weight

∵ lenLi = b2i+1 − b2i−1, aLi = 1 +
4 ln b ·

[
f(p)(b3 − 1

b2i−1
) + b(b− 1

b2i−1
)
]

(b2 − 1)2
when i ≥ 1 and

aL0 = 1 +
2 ln b · f(p)
b− 1

, therefore we have

AVELweight =

k∑
i=0

{
aLi × lenLi

}
lenL0 + lenL1 + lenL2 + · · ·+ lenLk

=

aL0 +
k∑
i=1

{
aLi × (b2i+1 − b2i−1)

}
b2k+1 − 1

= 1 +

2 ln b · f(p)
b− 1

+ 2− b
b2k+1 − 1

+
4 ln b · b2 · (f(p) · b+ 1)

(b2 − 1)2
·

1− b

b2k+1

1− 1
b2k+1

− 4 ln b · (f(p) + b)
b2 − 1

·
k

b2k+1

1− 1
b2k+1
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∵ CLS(a)weight
= lim

k→∞

{
AVELweight

}

∴ CLS(a)weight
= lim

k→∞

{
1 +

2 ln b · f(p)
b− 1

+ 2− b
b2k+1 − 1

+
4 ln b · b2 · (f(p) · b+ 1)

(b2 − 1)2
·

1− b

b2k+1

1− 1
b2k+1

}

− lim
k→∞

{
4 ln b · (f(p) + b)

b2 − 1
·

k

b2k+1

1− 1
b2k+1

}

= 1 +
4 ln b · b2(f(p) · b+ 1)

(b2 − 1)2

Because we have

CS(a)weight
= high× CHS(a)weight

+ low × CLS(a)weight

= high×
[
1 +

4 ln b · b2(f(p) + b)
f(p) · (b2 − 1)2

]
+ low ×

[
1 +

4 ln b · b2(1 + bf(p))
(b2 − 1)2

]
= 1 +

4 ln b · b2
(b2 − 1)2

+
4 ln b · b3
(b2 − 1)2

×
[
low × f(p) +

high

f(p)

]
which is

CS(a) =


1 + 4 ln b · b2

(b2 − 1)2
+ 4 ln b · b3

(b2 − 1)2

[
pf(p) + 1− p

f(p)

]
p ∈ [0, 0.5]

1 + 4 ln b · b2
(b2 − 1)2

+ 4 ln b · b3
(b2 − 1)2

[
(1− p)f(p) + p

f(p)

]
p ∈ [0.5, 1]

This completes the proof.

We computed three measures of the un-truncated average case competitive ratio, namely
CS(a)last

, CS(a)arithmetic
and CS(a)weight

. In addition, the values of these three representations of
average case competitive ratio are the same. Therefore, we have the observation.

Observation 1 Note that CS(a)last
= CS(a)arithmetic

= CS(a)weight
and the last few terms of the un-

truncated average case competitive ratio dominate the whole picture of the un-truncated average
case competitive ratio, see Figure 3.7a and Figure3.7b.

Since we observed that the last few terms of the un-truncated average case competitive ratio
dominate over the previous terms, we conjecture that while the robot searches the target to an un-
bounded distance using our proposed search strategy, the un-truncated average case competitive
ratio will converge to a limit, which is the last term of the un-truncated average case competitive
ratio.

Conjecture 2 By following our proposed search strategy, the un-truncated average case compet-
itive ratio for the 1-STRAW problem converges to a limit when the robot searches the target to
an unbounded distance.
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Lower Bounds of the un-truncated Average Case Competitive Ratio

Since the three un-truncated average case competitive ratios have the same values, we will denote
the ratio as CS(a) and analyze the lower bound of CS(a)(b, p), which is denoted as a function of
the geometric ratio b and the probability p. Because we have

CS(a)(b, p) = 1 +
4 ln b · b2
(b2 − 1)2

+
4 ln b · b3
(b2 − 1)2

× (low · f(p) +
high

f(p)
)

Therefore, according to Theorem 10, the optimal representation of CS(a)(b, p) is

CS(a)(b, p) = 1 +
4 ln b · b2
(b2 − 1)2

+
8 ln b · b3
(b2 − 1)2

·
√
p(1− p)

which is shown in Figure 3.10.

Figure 3.10: CS(a)(b, p)

Here we consider the two partial derivatives of CS(a)(b, p), which are
dCS(a)

dp
and

dCS(a)

db
, to

get the insight into the properties of CS(a).
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When we regard b as a constant and p as a parameter
(
dCS(a)(b, p)

dp

)
, the representation of

the un-truncated average case competitive ratio can be written as

CS(a)(p) = 1 + c1 + c2 · 2
√
p(1− p)

where c1 =
4 ln b · b2
(b2 − 1)2

and c2 =
4 ln b · b3
(b2 − 1)2

.

Refer to Figure 3.5. When p = 0.5, CS(a)(0.5) is maximized, with value

CS(a)(b, 0.5) = 1 +
4 ln b · b2
(b2 − 1)2

+
4 ln b · b3
(b2 − 1)2

which is shown in Figure 3.11.

Figure 3.11: CS(a)(b, 0.5)

In addition,when p = 0 or p = 1, CS(a)(0) or CS(a)(1) is the min, which is

CS(a)(b, 0.5) = 1 +
4 ln b · b2
(b2 − 1)2

Since we are seeking a lower bound of any possible average case competitive ratio, we desire
to find the minimal value of the maximum of the un-truncated average case competitive ratio,
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which is CS(a)(b, 0.5). Now let us consider the derivative of CS(a)(b, 0.5), which is

dCS(a)(b, 0.5)
db

=
4b

(b2 − 1)2
+

8 ln b · b
(b2 − 1)2

− 16 ln b · b3
(b2 − 1)3

+
4b2

(b2 − 1)2
+

12 ln b · b2
(b2 − 1)2

− 16 ln b · b4
(b2 − 1)3

=
4b

(b2 − 1)3
· [(b3 + b2 − b− 1)(1− ln b)− ln b(b2 + 4b+ 3)

]
As we can see from

dCS(a)(b, 0.5)
db

, when b grows bigger than e, then we have ln b > 1 and

dCS(a)(b, 0.5)
db

< 0, which means CS(a)(b, 0.5) decreases as b grows. Therefore the optimal b for
the un-truncated average case competitive ratio is unbounded.

Now let us regard p as a constant and b as a parameter. We have

CS(a)(b) = 1 +
4 ln b · b2
(b2 − 1)2

+ c · 4 ln b · b3
(b2 − 1)2

where c = 2
√
p(1− p). Obviously, CS(a)(b) decreases while b increases. Therefore, the optimal b

in this case for the un-truncated average case competitive ratio is also unbounded.

Now if we consider the problem at a high level, the un-truncated average case competitive
ratio is achieved when the robot can always finish its searching in every round given that the
target was not found at that round. Moreover, the target’s location range is [−∞,+∞]. It makes
sense that the optimal b is unbounded in this case since the robot can always reach the target
given a sufficiently large b. However if the target is located in a restricted range, then the optimal
b is bounded. We will consider the truncated case in the next section.

3.3.2 Truncated Average Case Competitive Ratio

In this section, we will compute the truncated average case competitive ratio for the 1-STRAW
problem. By truncated, we mean that the target is located in a bounded interval [−d′ ,+d], see
in Figure 3.12a and Figure 3.12b. The signs of + and − represent robot searchings on RH and
RL respectively.

Additionally, we have f(p) ·b2k−2 ≤ d ≤ f(p) ·b2k and b2k−1 ≤ d′ ≤ b2k+1. Here we introduce a
parameter t to represent the ratio between the target boundary and the search distance closest to
the target boundary given the search strategy. Therefore we have d = t ·f(p) · b2k−2, d

′
= t · b2k−1

and t ∈ [1, b2]. Next, we will compute the truncated average case competitive ratio. Our setting
here is that the target truncates the searching distance with the same ratio t on both RH and
RL.

Now we will compute the truncated average case competitive ratio for the 1-STRAW problem,
denoted by C∗S(a), given the general ratio function f(p).
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Figure 3.12: The Truncated Competitive Ratio of CH
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Theorem 15 The truncated average case competitive ratio C∗S(a) for the 1-STRAW problem given
the general function f(p) is:

C∗S(a) =



1 +
4 ln b · b2
(b2 − 1)2

· 1
t

+
2b2

b2 − 1
· ln t
t

+
[

4 ln b · b3
(b2 − 1)2

· 1
t

+
2b3

b2 − 1
· ln t
t

]
·
[
pf(p) + 1− p

f(p)

]
p ∈ [0, 0.5]

1 +
4 ln b · b2
(b2 − 1)2

· 1
t

+
2b2

b2 − 1
· ln t
t

+
[

4 ln b · b3
(b2 − 1)2

· 1
t

+
2b3

b2 − 1
· ln t
t

]
·
[
(1− p)f(p) + p

f(p)

]
p ∈ [0.5, 1]
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Proof. We denote the truncated average case competitive ratio AVEHtruncated when the target is
located within [f(p) · b2k−2, d] on RH . Similarly, AVELtruncated denotes the truncated average case
competitive ratio when the target is located at [b2k−1, d

′
] on RL. Additionally, we denote

CH
∗

S(a) = lim
k→∞

{
AVEHtruncated

}

CL
∗

S(a) = lim
k→∞

{
AVELtruncated

}
and we have the formula

C∗S(a) = high× CH∗S(a) + low × CL∗S(a)

Next we will compute CH
∗

S(a) and CL
∗

S(a) respectively.

Case 1: Computation of CH
∗

S(a)

As we can see from Figure 3.12a, there are three ranges to include in the computation of
AVEHtruncated. The first range is from [1, f(p) · b0] and in this range, aH0 = 1. The second range is
from [f(p) ·b0, f(p) ·b2k−2] and in the second range, the robot returns to the origin after completes
the search distance in the current round given the fact that the target is not found. The third
range is from [f(p) · b2k−2, d] and robot finds the target in the third range. Therefore we have

AVEHtruncated =
1

d− 1
·
{

(f(p)− 1)

+
k − 1∑
i = 1

∫ f(p)·b2i−f(p)·b2i−2

0


1 +

2
i−1∑
j=0

f(p) · b2j + 2
i−1∑
j=0

b2j+1

f(p) · b2i−2 + x


dx

+
∫ d−f(p)·b2k−2

0


1 +

2
k−1∑
i=0

f(p) · b2i + 2
k−1∑
i=0

b2i+1

f(p) · b2k−2 + x


dx

}

∵
∫ f(p)·b2i−f(p)·b2i−2

0


1 +

2
i−1∑
j=0

f(p) · b2j + 2
i−1∑
j=0

b2j+1

f(p) · b2i−2 + x


dx
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=
∫ f(p)·b2i−f(p)·b2i−2

0

1 +
2f(p) · b

2i − 1
b2 − 1

+ 2b · b
2i − 1
b2 − 1

f(p) · b2i−2 + x

 dx

= [f(p) · b2i − f(p) · b2i−2] +
4 ln b(f(p) + b) · (b2i − 1)

b2 − 1

∴ AVEHtruncated =
1

d− 1
·
{

(f(p)− 1)

+
k − 1∑
i = 1

{
[f(p) · b2i − f(p) · b2i−2] +

4 ln b(f(p) + b) · (b2i − 1)
b2 − 1

}

+
∫ d−f(p)·b2k−2

0


1 +

2
k−1∑
i=0

f(p) · b2i + 2
k−1∑
i=0

b2i+1

f(p) · b2k−2 + x


dx

}

= 1 +
1

d− 1
· 4 ln b · (f(p) + b)

b2 − 1
·
[
b2(b2k−2 − 1)

b2 − 1
− k + 1

]

+
1

d− 1
· 2(f(p) + b) · (b2k − 1)

b2 − 1
·
[
ln d− ln(f(p) · b2k−2)

]

∵d = t · f(p) · b2k−2

∴ AVEHtruncated = 1 +
4 ln b · (f(p) + b) · b2

(b2 − 1)2
·

1− 1
b2k−2

t · f(p)− 1
b2k−2

− 4 ln b · (f(p) + b)
b2 − 1

· k − 1
t · f(p) · b2k−2 − 1

+
2(f(p) + b) · ln t

b2 − 1
·

b2 − 1
b2k−2

t · f(p)− 1
b2k−2

∵ CH
∗

S(a) = lim
k→∞

{
AVEHtruncated

}

∴ CH
∗

S(a) = 1 +
4 ln b · b2 ·

(
1 +

b

f(p)

)
(b2 − 1)2

· 1
t

+
2b2
(

1 +
b

f(p)

)
b2 − 1

· ln t
t
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Case 2: Computation of CL
∗

S(a)

As we can see from Figure 3.12b, there are three ranges to include in the computation of
CL
∗

S(a). The first range is from [1, b]. The second range is from [b, b2k−1] and in this range, the
robot returns to the origin after completes the search distance in the current round given the fact
that the target is not found. The third range is from [b2k−1, d

′
] and robot finds the target in the

third range. So we have

AVELtruncated =
1

d′ − 1
·
{∫ b−1

0

{
1 +

2f(p) + 1
1 + x

}
dx

+
k − 1∑
i = 1

∫ b2i+1−b2i−1

0


1 +

2
i∑

j=0

f(p) · b2j + 2
i−1∑
j=0

b2j+1

b2i−1 + x


dx

+
∫ d

′−b2k−1

0


1 +

2
k∑
i=0

f(p) · b2i + 2
k−1∑
i=0

b2i+1

b2k−1 + x


dx

}

∵
∫ b2i+1−b2i−1

0


1 +

2
i∑

j=0

f(p) · b2j + 2
i−1∑
j=0

b2j+1

b2i−1 + x


dx

= (b2i+1 − b2i−1) +
[
2f(p) · b

2i+2 − 1
b2 − 1

+ 2b · b
2i − 1
b2 − 1

]
· 2 ln b

∴ AVELtruncated =
1

d′ − 1
·
{

(b− 1) + (2f(p) + 1) · ln (1 + x)
∣∣∣∣b−1

0

+
k−1∑
i=1

{
(b2i+1 − b2i−1) +

[
2f(p) · b

2i+2 − 1
b2 − 1

+ 2b · b
2i − 1
b2 − 1

]
· 2 ln b

}

+
∫ d

′−b2k−1

0

1 +
2f(p) · b

2k+2 − 1
b2 − 1

+ 2b · b
2k − 1
b2 − 1

b2k−1 + x

 dx

}
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= 1 +
ln b · (2f(p) + 1)

d′ − 1
+

4 ln b · b4 · f(p)
(b2 − 1)2

· b
2k−2 − 1
d′ − 1

+
4 ln b · b3
(b2 − 1)2

· b
2k−2 − 1
d′ − 1

− 4 ln b · f(p)
b2 − 1

· k − 1
d′ − 1

− 4 ln b · b
b2 − 1

· k − 1
d′ − 1

+
[

2f(p)
b2 − 1

· b
2k+2 − 1
d′ − 1

+
2b

b2 − 1
· b

2k − 1
d′ − 1

]
· (ln (d

′
)− ln (b2k−1))

∵d
′

= t · b2k−1

∴ AVELtruncated = 1 +
ln b · (2f(p) + 1)
t · b2k−1 − 1

+
4 ln b · b4 · f(p)

(b2 − 1)2
·

1− 1
b2k−2

t · b− 1
b2k−2

+
4 ln b · b3
(b2 − 1)2

·
1− 1

b2k−2

t · b− 1
b2k−2

− 4 ln b · f(p)
b2 − 1

· k − 1
t · b2k−1 − 1

− 4 ln b · b
b2 − 1

· k − 1
t · b2k−1 − 1

+

 2f(p)
b2 − 1

·
b3 − 1

b2k−1

t− 1
b2k−1

+
2b

b2 − 1
·
b− 1

b2k−1

t− 1
b2k−1

 · ln t

∵ CL
∗

S(a) = lim
k→∞

{
AVELtruncated

}
∴ CL

∗

S(a) = 1 +
4 ln b · b2 · (b · f(p) + 1)

(b2 − 1)2
· 1
t

+
2b2 · (b · f(p) + 1)

b2 − 1
· ln t
t

Now we can compute C∗S(a) which is high× CH∗s(a) + low × CL∗S(a).

C∗S(a) = high× CH∗s(a) + low × CL∗S(a)

= 1 +
4 ln b · b2
(b2 − 1)2

· 1
t

+
2b2

b2 − 1
· ln t
t

+
[

4 ln b · b3
(b2 − 1)2

· 1
t

+
2b3

b2 − 1
· ln t
t

]
·
(
high

f(p)
+ low · f(p)

)
This completes the proof.

According to Corollary 1, the optimal function f(p) is
√
high√
low

. Therefore we have the rep-

resentation of C∗S(a)(b, p, t), which is denoted as the function of the geometric ratio b and the
probability p and the ratio t, defined as follows.

C∗S(a)(b, p, t) = 1 +
4 ln b · b2 · [1 + 2b ·√p(1− p)]

(b2 − 1)2
· 1
t

+
2 · b2[1 + 2b ·√p(1− p)]

b2 − 1
· ln t
t

(3.7)
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Theorem 16 The maximum of C∗S(a)(b, p, t) is

C∗S(a)(b, p) = max
{
C∗S(a)(b,p,t)

}
= 1 +

2 · b2[1 + 2b ·√p(1− p)]
b2 − 1

· e 2 ln b
b2−1

−1

when t = e
1− 2 ln b

b2−1 .

Proof.

Here we regard b and p as constants and we set c∗1 = 4 ln b · b2 · [1 + 2b ·
√
p(1− p)]

(b2 − 1)2
and

c∗2 = 2 · b2[1 + 2b ·
√
p(1− p)]

b2 − 1
. Therefore c∗1 and c∗2 are taken as constants as well. Given Equation

3.7, we have

C∗S(a)(t) = 1 + c∗1 ·
1
t

+ c∗2 ·
ln t
t

Now we will compute C∗S(a)

′
(t)

dC∗S(a)(t)

dt
= −c∗1 ·

1
t2
− c∗2 ·

ln t
t2

+ c∗2 ·
1
t2

= 0

We have the result that when t = e
1− c∗1

c∗2 ,
dC∗S(a)(t)

dt
= 0.

Now we will divide all possible values of t to three categories, which is
t1 : [1, e

1− c∗1
c∗2 )

t∗ = e
1− c∗1

c∗2

t2 : (e
1− c∗1

c∗2 , b2]

and we will prove that both C∗S(a)(t1) and C∗S(a)(t2) are smaller than CS(a)(t∗).

Case 1: t1 ∈ [1, e
1− c∗1

c∗2 )

∵ t1 < t∗ = e
1− c∗1

c∗2

therefore we set t1 = t∗ · e−ε = e
1− c∗1

c∗2
−ε
, ε > 0.

CS(a)(t
∗)− CS(a)(t1) = c∗1 ·

1
t∗

+ c∗2 ·
ln t∗

t∗
− c∗1 ·

1
t1
− c∗2 ·

ln t1
t1

= c∗1 ·
1
t∗

+ c∗2 ·
1− c∗1

c∗2

t∗
− c∗1 ·

1
t1
− c∗2 ·

1− c∗1
c∗2
− ε

t1

= c∗2 ·
1
t∗
· (1− 1− ε

e−ε
)
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∵1− ε < e−ε

∴CS(a)(t
∗)− CS(a)(t1) > 0

Case 2: t1 ∈ (e
1− c∗1

c∗2 , b2]

∵ t2 > t∗ = e
1− c∗1

c∗2

therefore we set t1 = t∗ · eε = e
1− c∗1

c∗2
+ε
, ε > 0.

CS(a)(t
∗)− CS(a)(t2) = c∗1 ·

1
t∗

+ c∗2 ·
ln t∗

t∗
− c∗1 ·

1
t2
− c∗2 ·

ln t2
t2

= c∗1 ·
1
t∗

+ c∗2 ·
1− c∗1

c∗2

t∗
− c∗1 ·

1
t2
− c∗2 ·

1− c∗1
c∗2

+ ε

t2

= c∗2 ·
1
t∗
· (1− 1 + ε

eε
)

∵1 + ε < eε

∴CS(a)(t
∗)− CS(a)(t2) > 0

Therefore, we proved that

CS(a)(t
∗) = 1 +

2 · b2[1 + 2b ·√p(1− p)]
b2 − 1

· e
2 ln b
b2 − 1

−1
(3.8)

is maximum when t∗ = e
1− 2 ln b

b2−1 out of any possible t ∈ [1, b2].

The graph of C∗S(a)(b, p) is shown in Figure 3.13.

Lower Bound of Truncated Average Case Competitive Ratio

In what follows, we compute the lower bound of the truncated average case competitive ratio
C∗S(a)(b, p). Refer to Figure 3.13, we know visually that given b as a constant, function C∗S(a)(p)

has the same shape as g(p) = 2
√
p · (1− p). In addition, given p as a constant, function C∗S(a)(b)

decreases in the beginning and once passes a specific value of b, C∗S(a)(b) increases. Therefore, we

compute
dC∗S(a)(b, p)

dp
and

dC∗S(a)(b, p)

db
respectively to get the observations above proved theoret-

ically.

Firstly, we regard b as a constant and denote

a∗1 =
2b2

b2 − 1
· e 2 ln b

b2−1
−1
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Figure 3.13: Truncated Average Case Competitive Ratio C∗S(a)(b, p)

a∗2 =
2b3

b2 − 1
· e 2 ln b

b2−1
−1

Therefore, according to Equation 3.8, we have

C∗S(a)(p) = 1 + a∗1 + a∗2 · 2
√
p · (1− p)

In addition, we have
dC∗S(a)(b, p)

dp
= a∗2 ·

1− 2p√
p · (1− p) (3.9)

Since the function g(p) = 2
√
p · (1− p) as shown in Figure 3.5, therefore function C∗S(a)(p)

has the same shape as g(p). Given the shape of C∗S(a)(p) and Equation 3.9, we have that when
p = 0.5, the value of C∗S(a)(0.5) is maximum, which equals to

C∗S(a)(0.5) = 1 +
2b2

b− 1
· e 2 ln b

b2−1
−1

When p = 0 or p = 1, either C∗S(a)(0) or C∗S(a)(1) is minimum, which equals to

C∗S(a)(0) = C∗S(a)(1) = 1 +
2b2

b2 − 1
· e 2 ln b

b2−1
−1

Now we will regard p as a constant and we have

C∗S(a)(b, p)

db
== e

2 ln b
b2−1

−1 ·
(

1 + 2b ·
√
p · (1− p)

)
· 4b2

b2 − 1
×
{ √

p · (1− p)
1 + 2b ·√p · (1− p) − 2b · ln b

(b2 − 1)2

}
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∵ e
2 ln b
b2−1

−1 ·
(

1 + 2b ·
√
p · (1− p)

)
· 4b2

b2 − 1
> 0

∴
dC∗S(a)(b, p)

db
= 0 if and only if

√
p · (1− p)

1 + 2b ·√p · (1− p) − 2b · ln b
(b2 − 1)2

= 0. Therefore we have

√
p · (1− p) =

2b · ln b
(b2 − 1)2 − 4b2 · ln b (3.10)

The solution of Equation 3.10 is

b = e
RootOf

“
2ZeZ+4Z(eZ)2

√
p·(1−p)−

√
p·(1−p)(eZ)4+2

√
p·(1−p)(eZ)2−

√
p·(1−p)

”
(3.11)

which makes
dC∗S(a)(b, p)

db
= 0.

Here we introduce a conjecture on the lower bound of the truncated average case competitive
ratio as follows.

Conjecture 3 The optimal geometric ratio b which leads to the lower bound of C∗S(a) given

the probability p is defined as eRootOf
“
2ZeZ+4Z(eZ)2

√
p·(1−p)−

√
p·(1−p)(eZ)4+2

√
p·(1−p)(eZ)2−

√
p·(1−p)

”
,

where the function RootOf is a place holder for representing all the roots of an equation in one
variable and it checks the validity of its arguments and is expressed in a single-argument canonical
form, obtained by making the argument primitive and expressing the RootOf in terms of the global
variable Z.

54



Comparisons between the 1-STRAW problem and the SmartCow algorithm

In this part, we compare the lower bound of the truncated average case competitive ratio for the
1-STRAW problem with the lower bound of SmartCow algorithm. Since the SmartCow algorithm
only applies to the unweighted case, therefore, the truncated average case competitive ratio we
are using here is

C∗S(a)(b, 0.5) = 1 +
2b2

b− 1
· e 2 ln b

b2−1
−1

Firstly, we will demonstrate the similarities and differences between our strategy for the 1-
STRAW problem and SmartCow algorithm. Refer to [36] and Figure 3.1.2. We have the following
comparison table, see in Table 3.1. Both the competitive ratios in the table are for the average
cases.

1− STRAW SmartCow

1

2

3

4

1

2

3

4

Comparisons

Similarities

Differences

1

2

3

4

5

1

2

3

4

5

Two Rays Two Paths

One Robot One Cow

Randomization Initially: Randomization Initially:

f(p) · b0, p ∈ U [0, 1] d← rǫ, ǫ ∈ U [0, 1]

Geometric Ratio: Geometric Ratio:

b > 1 r > 1

Weighted Case:

high, low, RH , RL

Un-weighted Case:

p = q = 0.5

First Searched Ray: First Searched Path:

RH Random Permutation on Two Paths

Initial Searching Distances: Initial Searching Distances:

RH : f(p) · b0

RL : b

R1 : rǫ

R2 : rǫ+1

Accumulations: Accumulations:

RH : f(p) · b2i

RL : b2i+1

R1 : rǫ+i

R2 : rǫ+i+1

Competitive Ratio: Competitive Ratio:

C∗
S(a)(b, 0.5) = 1 + 2b2

b− 1 · e
2lnb

b2 − 1
−1

Csmart
S(a) = 1 + 1 + r

lnr

Table 3.1: Comparisons of the 1-STRAW problem and the SmartCow algorithm

In addition, we computed the truncated average case competitive ratio C∗S(a)(b, 0.5) given
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different geometric ratio b and the average case competitive ratio CsmartS(a) given various values of
r. Without loss of generality, we use b as geometric ratio for both algorithms and produced a
value table for both cases, see in Table 3.2.

C∗
S(a)(b, 0.5) = 1 + 2b2

b − 1 · e
2lnb

b2 − 1
−1

Csmart
S(a) (b) = 1 + 1 + b

lnbb

1

2

3

4

5

6

7

8

9

10

1.5

1.7

1.9

2.0

2.5

3.0

3.5

3.59112

4.0

4.5

7.3342

6.3259

5.8262

5.6718

5.3463

5.3574

5.5046

5.53998

5.7207

5.9769

7.1658

6.0883

5.5182

5.3280

4.8197

4.6409

4.5921

4.59112

4.6067

4.6567

Table 3.2: Comparisons on the lower bounds of the 1-STRAW problem and the SmartCow
algorithm

Here we can see from Table 3.2 that the optimal geometric ratio b for the 1-STRAW problem
lies between [2.5, 3.0] and the optimal value of the truncated average case competitive ratio
C∗S(a) can be obtained between [5.3463, 5.3574]. Whereas, the optimal geometric ratio b of the
SmartCow algorithm is 3.59112 and the lower bound of CsmartS(a) is 4.59112. Moreover, given the
same b, CsmartS(a) is slightly smaller than C∗S(a).

The lower bound of the average case competitive ratio given our search strategy, therefore,

is less than
5.3574− 4.6409

4.6409
= 15.4388% worse than the lower bound of the average case com-

petitive ratio obtained by the SmartCow algorithm , given the same geometric ratio b under this
unweighted setting. The reason is because that the SmartCow algorithm is an optimal random-
ized algorithm and our search strategy for the 1-STRAW problem is in essence a deterministic
algorithm.
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However, the SmartCow algorithm only applies to the unweighted case. In the 1-STRAW
problem, our proposed search strategy outweighs the SmartCow algorithm. To illustrate this
point, let us consider a simple case where p = 1. In our search strategy, the robot will choose
the ray with the probability of 1 to search for an unbounded distance, which ensures that the
robot will find the target at its first try and the competitive ratio is 1, which is the optimal value.
However, given the same settings, the SmartCow algorithm will make the robot to pick one of
the two rays randomly which means that there is a half chance that the robot will choose the ray
with the probability of 0 to search at the first round and will return to the origin after it fails to
find the target. This guarantees that the competitive ratio after the first round given our search
strategy is better than the one obtained by the SmartCow algorithm. Therefore, under weighted
settings, our search strategy is the better choice than the SmartCow algorithm.
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Chapter 4

Conclusions

In this thesis, we surveyed three classic online problems, which are the cow-path problem, the
Processor-Allocation problem and the Robots-Search-Rays problem, and described the connec-
tions between these three problems.

In our core work, which is the One-Robot-Searches-Two-Rays-And-Weighted problem under
the Robots-Search-Rays problem set, Chapter 2 Section 2.3, we proposed a new search strategy
and an optimal ratio function f(p) for the strategy given. We computed the representation of

the worst case competitive ratio CS(w) given the optimal f(p) =

√
high

low
, which is

CS(w)(b, p) =
3b2 − 1
b2 − 1

+
4b3

b2 − 1
·
{√

p · (1− p)
}

In addition, we proved a tight lower bound on the worst case competitive ratio, which is

3 +
6

b2 − 3
when equation

√
p · (1− p) = 1

b3 − 3b
is fulfilled. This means that given the equation

and any probability p, we can get the optimal b∗ to reach the lower bound of CS(w) = 3+
6

b∗2 − 3
.

The result is equivalent to the result of the doubling strategy, since when p = 0.5, the optimal b
equals to two and the minimal worst case competitive ratio is 9. This shows our search strategy
is no worse than the doubling strategy [41].

Moreover, we studied the average case competitive ratio for the 1-STRAW problem in two
settings. We first assumed the target can be located on the two rays without boundaries. In
this setting, we obtained the conjecture that the average case competitive ratio, as the robot
searches towards to an unbounded distance, will converge to a limit, shown in Conjecture 2. Also
we have the result that the optimal geometric ratio b is unbounded, which led us to study the
truncated average case competitive ratio. In the truncated setting, the target is located in the
range of [−d′ ,+d]. Under this setting, we obtained the representation of the truncated average
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case competitive ratio, which is

C∗S(a) = 1 +
2 · b2[1 + 2b ·√p(1− p)]

b2 − 1
· e 2lnb

b2−1
−1

And we conjecture the lower bound of the truncated average case competitive ratio, which is
shown in Conjecture 3.

Additionally, we compared our search strategy and its performances with Kao et al.’s Smart-
Cow algorithm under the unweighted setting. It shows that the average case competitive ratio
given our search strategy is less than [15.4388%− ε] worse than that obtained by SmartCow
algorithm [36], since in essence, our search strategy is a deterministic algorithm whereas the
SmartCow algorithm is an optimal randomized search strategy. However, under the weighted
settings, our search strategy outweighs the SmartCow algorithm.

Last but not least, there are some open problems raised in our research. The first open
problem is to prove Conjecture 3. Secondly, the design and the computation of the lower bound
of the randomized algorithms for the 1-STRAW problem remain unknown. Moreover, we know
there are some connections between the Processor-Allocation problem and the Robots-Search-
Rays problem in the unweighted case. We are interested in researching on the possible connections
between the two problems in the weighted case as well. Additionally, we would like to consider
more general case, which are the k-STRAW problem and the k-SnRAW (k-Robots-Search-n-Rays-
And-Weighted) problem.
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[43] A. López-Ortiz and S. Schuierer. On-line parallel heuristics, processor scheduling and robot
searching under the competitive framework. Theoretical Computer Science, 310(1-3):527 –
537, 2004. 4, 5, 7, 13, 14, 15, 16, 20
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