
Design and Implementation of a Service
Discovery and Recommendation

Architecture

by

Muhamed Sukkar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2010

c©Muhamed Sukkar 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Increasing number of software vendors are offering or planning to offer their ap-
plications as a Software-as-a-Service (SaaS) to leverage the benefits of cloud computing
and Internet-based delivery. Therefore, potential clients will face increasing number
of providers that satisfy their requirements to choose from. Consequently, there is an
increasing demand for automating such a time-consuming and error-prone task. In
this work, we develop an architecture for automated service discovery and selection in
cloud computing environment. The system is based on an algorithm that recommends
service choices to users based on both functional and non-functional characteristics of
available services. The system also derives automated ratings from monitoring results
of past service invocations to objectively detect badly-behaving providers. We demon-
strate the effectiveness of our approach using an early prototype that was developed
following object-oriented methodology and implemented using various open-source
Java technologies and frameworks. The prototype uses a Chord DHT as its distributed
backing store to achieve scalability.

iii

Acknowledgements

All praises and thanks are due to Allah for giving me the ability, the patience, and
the strength to complete this task. Thanks to Allah for facilitating my path to the right.
May Allah accept this work and render it useful and beneficial for my faith and for my
life.

To Prophet Mohammad, peace be upon him, the beloved, the master, the mercy sent
to the human kind, who commended to seek knowledge anytime and anywhere; may
Allah help us be good followers to his message.

I would like to express my appreciation to my supervisor, Professor Raouf Boutaba
for his help and support throughout my Masters degree. I would also like to thank
my readers, Professor Richard Trefler and Dr. Khuzaima Daudjee for their insightful
comments and discussions.

This thesis would not have been possible without the assistance of many people,
who I need pages and pages to list them all. I express my deepest gratitude and appre-
ciation to Dr. Noura Limam for her support, guidance, and encouragement. She has
helped me to explore the research area and provided me with invaluable feedback to
keep my focus and to improve the quality of my research.

Many thanks are due to Professor Martin Karstin and Dr. Jin Xiao for their helpful
comments and advice, especially at the beginning of my graduate life at Waterloo. I also
thank Margaret Towell and the staff of the Computer Science Graduate Office for their
help and support.

I am truly indebted to my father Hesham and my mother Lamaa, without their love,
confidence, support and prayers, I would never succeed in life. I thank my grandfather
Omar, my sisters, Salam, Raghad, Deemah, A’aisha and my young brother Abdurrah-
man for their constant love and support.

Special thanks are due to my father-in-law, Professor Abdallah El-Kettani, my mother-
in-law Basema, and my brothers-in-law Jaafar, Ibrahim, Mohannad, Yahya, Nazeer and
Abdulhakeem; their constant support, prayers, and encouragement was very helpful
and motivating.

To my late grandfather, Sheikh Muhamed Sukkar, my late grandmother Najah, the
late Mr. Mohammad Daadoush, I started with you but here I am without you at the
end, may Allah bless and reward you.

I cannot forget to thank Professor Mohammed Sqalli of my former institute, King
Fahd University of Petroleum and Minerals (KFUPM) for his encouragement and sup-
port to pursue my graduate studies here at Waterloo. To my dearest friends, Moataz,
Abdulkareem, Ayman, Mahmoud, Hassan, Abdallah, Khaled, Salamah, Sinan, Obaida,

iv

Amer, Wael, Saleem and the rest of you all: you made my life at KFUPM and beyond
lovely and enjoyable; I really miss you.

My little princess Lemya, your eyes are my guide to the future, your smile was my
strongest motivation to reach the end of this road, may Allah bless and protect you.

My beloved wife Shifaa, where to begin and where to finish; truly without your
sincere love, infinite patience, continuous encouragement, unfettered confidence, and
huge support I would have never finished this journey. You are the best thing that has
ever happened to me. I cannot thank you enough!

v

To my small world, Shifaa and Lemya

vi

Contents

List of Figures xi

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Organization . 4

2 Background 5

2.1 Introduction . 5

2.2 Chapter Organization . 6

2.3 Definitions and Terminology . 6

2.4 Web Services and Service Oriented Architecture 7

2.5 Service Modeling: Description, Quality, and Service Level Agreements . . 10

2.6 Service Discovery . 11

2.7 Service Selection and Ranking . 12

2.8 Trust and Reputation . 13

2.9 Cloud Computing and the as-a-Service Model 14

2.10 P2P Systems and Architectures . 17

2.11 Summary . 18

vii

3 Overview, Design Requirements and Usage Scenarios 19

3.1 Introduction . 19

3.2 Chapter Organization . 19

3.3 Modeling Service Interactions . 20

3.3.1 Basic Client-Provider Interaction Model 20

3.3.2 Advanced Broker-based Interaction Model 20

3.4 Proposed Architecture: dirSaaS . 22

3.5 Design Goals . 24

3.5.1 Directory: Scalable Architecture . 25

3.5.2 Discovery: Effectiveness . 25

3.5.3 Data Models: Expressiveness . 25

3.5.4 Recommendation: Objectiveness and Personalization 26

3.6 Usage Scenarios . 26

3.6.1 Service Advertisement . 26

3.6.2 Service Discovery . 28

3.6.3 Service Ranking and Recommendation 28

3.6.4 Feedback . 29

3.7 Summary . 29

4 System Design Specifications 30

4.1 Introduction . 30

4.2 Chapter Organization . 30

4.3 Supported Interaction Scenarios . 31

4.3.1 Advertisement Use Case . 31

4.3.2 Discovery and Recommendation Use Case 31

4.3.3 Feedback Use Case . 31

4.4 Broker Core Services . 35

4.4.1 Advertisement Component . 35

4.4.2 Discovery Component . 35

viii

4.4.3 Reporting Component . 36

4.4.4 Feedback Component . 37

4.4.5 Match Making Component . 38

4.4.6 Evaluation Component . 39

4.4.7 Scoring Component . 40

4.4.8 Reputation Component . 40

4.4.9 Storage Access Component . 41

4.4.10 Indexing Component . 42

4.5 Broker Storage . 42

4.5.1 Peering Component . 42

4.5.2 Request Handler Component . 42

4.5.3 Database Access Component . 43

4.6 System User Interface . 43

4.6.1 Administration Component . 43

4.6.2 Client Interface Component . 44

4.6.3 Provider Interface Component . 44

4.6.4 Monitoring Interface Component . 44

4.7 Data Model and Main Data Structures . 44

4.7.1 Service Description Model . 45

4.7.2 Service Level Agreement Model . 47

4.7.3 Monitoring Report Model . 47

4.7.4 System Messages . 47

4.8 Summary . 50

5 System Implementation 51

5.1 Chapter Organization . 51

5.2 Implementation Technologies . 51

5.2.1 Data Structures . 52

5.2.2 Broker Core Services . 52

ix

5.2.3 Peer To Peer Implementation of the Broker Storage 54

5.3 Enhancements to OSDA . 55

5.3.1 System configuration . 55

5.3.2 Broker Implementation using EJBs 55

5.3.3 UnifiedQuery model . 55

5.3.4 XML Database Choice . 56

5.3.5 New approach for data binding . 57

5.4 New Features in dirSaaS . 57

5.4.1 SLA-related Design Choices . 57

5.5 Summary . 58

6 Conclusion and Future Work 59

6.1 Summary of Contributions . 59

6.2 Future Directions . 60

Bibliography 67

x

List of Figures

2.1 Service Oriented Architecture: Basic Roles [46] 8

2.2 Web Services Architecture Stack [49] . 9

3.1 Basic Client-Provider Interaction Model . 21

3.2 Advanced Broker-based Interaction Model 23

3.3 High-level Architecture . 24

3.4 System Use Case Diagram . 27

4.1 Advertisement Use Case: Sequence Diagram 32

4.2 Service Discovery and Recommendation Use Case: Sequence Diagram . . 33

4.3 Feedback Use Case: Sequence Diagram . 34

4.4 Data Model: Extended Unified Service Description (USD+) Schema 46

4.5 Data Model: SLA Simplified Schema . 48

4.6 Data Model: SLA Complete History . 49

xi

Chapter 1

Introduction

The Internet as we know it today is much different from what it was known 30 years
ago. Back then, the main focus was just on moving bits and pieces of information from
one location to another. It was a joy back then to receive a response from a ”pinged”
server.

Over time, the Internet evolved with the invention of the Web to a distribution plat-
form for content and media. It is the content available from worldwide locations that
mattered to the end-users, and it became less and less important where the location of
the content is. However, the content on the Internet grew so fast that it became so large
for anyone to make any sense of it. Search engines started to make the scene more in-
teresting as the largely disconnected islands of information suddenly became available
with a few keystrokes of keywords.

The Internet today is going though a third wave of evolution. The fact that everyday
content and media is available mainly on the Internet rather that on traditional means
is no longer intriguing or special. In fact, we are suffering today from an information
overload; simply, there is much more consumable information available than one has
time for in a lifetime. Increasingly, we feel the need for better tools to make sense of this
available information in a concise and efficient manner. We need more systems to auto-
mate tasks and functions that we increasingly see as cumbersome and time-consuming.

In the past decade, efforts were made to bring more structure to the information
available on the Internet. Initiatives like Web Services, Semantic Web Technologies,
Service Oriented Architectures among others are trying to better connect the isolated
information systems available from individual organizations.

Today, applications are expected to be released more as online services on the web
than as heavyweight desktop applications. There are several reasons for this trend.
First, the ability to connect to the web is no longer restricted to PCs or even laptops;

1

smart phones and other limited-capability devices are quickly becoming the largest base
of web access.

Second, everyone expects all the services they need to be available for them any-
time and anywhere. Universal Internet access is a universal phenomenon. Moreover,
legacy utility networks, such as mobile, landline, and even power networks are quickly
converging to the universal data network and competing to be the access method for
accessing the Internet; so called the unified communication vision.

Third, as users embrace wider choices of heterogeneous hardware platforms and
operation systems, it is logical for application developers to write their software once,
deploy it on their infrastructure, and offer it to anyone who needs it on the web instead
of developing a separate version for each combination of user choices. Software mainte-
nance and upgrade issues largely hide away from users and relieves them from a huge
burden.

Not only applications targeted at individuals are offered online, but an increasingly
popular trend is to offer larger scale services and complete infrastructures for whole
companies or organizations. This trend is captured in the over hyped term of Cloud
Computing. The basic idea is that not every company or person wants to run and main-
tain the computing infrastructure and supporting systems they need. This trend is often
compared to the early 20th century when companies no longer maintained their power
generation facilities and this responsibility was given to specialized power companies
that offered this utility as a service to anyone in its network area.

As more services are offered in this manner, potential clients will be faced with more
choices. It would be quickly a frustrating experience to search for those services and
research them individually before making a decision to choose one of the potential
providers and offerings. There would be no guarantee that clients choices are opti-
mal for their own requirements. There is even the risk that a provider does not fulfill
its promises and therefore possibly cause a financial loss to the client if a disconnected
service was mission-critical to the business. This is especially important with the lack of
trust in today’s Internet; something that is still under intensive research but falls outside
the scope of this work.

Therefore, we see a clear need for an online mediated marketplace-like for the emerg-
ing market of online services, or Software-as-a-Service (SaaS) as it is commonly known.
In this thesis, we attempt to investigate this problem and offer our attempt to design a
solution that will help match potential clients with the best providers that satisfy their
requirements, while ensuring the trustworthiness of those providers in an automated
and time-efficient manner.

2

1.1 Motivation

As the Internet becomes the main delivery channel for new applications and services,
users will face the task of choosing the proper provider and offer for their requirements.
The task of objectively researching, comparing and evaluating available choices manu-
ally is a daunting and an error-prone mission. Not doing the proper search may lead
to undesired consequences and cost valuable time and money. While SaaS and cloud
computing advocates ease of provisioning and configuration (e.g. getting a server up
and running in terms of minutes rather than days), users still have to make the deci-
sion on which provider and which one of its offerings to work with. The problem is
compounded when dealing with unknown and potentially untrustworthy providers.

One common technique for distinguishing trusted partners in online environments
is the use of reputation systems. Reputation systems usually use feedbacks of previous
users to help guide new ones. However, this subjective method is prone to many vul-
nerabilities such as Sybil attacks [16] and others. While many solutions in the literature
have been proposed to tackle individual problems of reputation systems, an alternative
is to avoid using human feedbacks altogether and instead rely on unbiased monitoring
results to infer feedbacks and give users an objective and complete view.

However, such a methodology is not sufficient by itself. To be effective, monitoring
results need to be compared to the service agreement between the provider and user
that will define the obligations and penalties of each. The agreement, in turn, needs to
describe unambiguously the service in question.

Moreover, the user needs a mechanism to search and discover such a service among
the potentially hundreds or thousands of services. Users need a way to specify their
requirements so they can later compare the matching offers using the objective method
described above.

1.2 Objectives

This thesis aims to analyze and study the existing solutions to various service manage-
ment problems that are related to the cloud environment and SaaS applications, and
attempt to find a unifying theme among all of them. In particular, we attempt to design
a service description scheme to represent service capabilities and quality attributes. We
also focus on the storage and retrieval -advertisement and discovery- of service records.
Another major objective is to design and integrate a solution for the service evaluation
and recommendation problem based on service quality. While service and SLA mon-
itoring systems are outside the scope of this work, it is our objective to facilitate the

3

integration of these systems with our proposed platform to provide the information
necessary for our core system.

1.3 Contributions

The main contribution of this thesis is that it presents a unified solution to the prob-
lem of obtaining recommendations of online SaaS services and cloud-based offers. This
solution integrates four main components: (1) a service description scheme that covers
both functional and non-functional aspects of a service in a Service Level Agreement, (2)
a scalable service directory that allows flexibility to advertise and search using the de-
scription scheme, and (3) a service recommendation engine that responds to constraints
to give user-specific rankings of service matches.

1.4 Organization

The rest of this work is organized as follows. Chapter 2 provides the necessary back-
ground for the technologies and concepts used throughout the remaining chapters.
Chapter 3 provides a high-level overview of our proposed system including domain
modeling, design requirements and usage scenarios. We then describe the specifica-
tions of our system design in Chapter 4 and how it is realized in our implemented
prototype in Chapter 5. Chapter 6 summarizes our results and points out to potential
future works.

4

Chapter 2

Background

2.1 Introduction

Developing an enhanced service directory platform like the one we propose in this work
for SaaS applications involves solving a variety of different problems. For example,
we need to define what a service is -in the new domain of cloud computing and SaaS
applications-, and how it would be represented and described in an identifiable and
expressive manner. Such description may also include quality information in the form
of a Service Level Agreement (SLA). Then, such a service, or more precisely, its rep-
resentative description, needs to be stored and cataloged by the system, raising issues
such as where such description would come from, how it would be stored, and how
it would be eventually found or discovered. When handling a collection of services of
various providers, we need mechanisms for evaluating and comparing those services
against each other to give the ultimate service user a hint about their trustworthiness,
which is very critical when dealing with unknown online providers that may not even
have a known physical location. The trustworthiness and quality assurance issue opens
the door to problems like developing reliable reputation measures.

As mentioned earlier, each of those mentioned issues or problems is a research area
on its own. Therefore, our goal in this chapter is to study and discuss the literature of
those main problems and their proposed solutions. Our ultimate objective is to develop
a unique approach to solve this composite problem by considering each of its subprob-
lems. Therefore, we need to make sure that our integrated solution would solve the
individual problems without introducing other complex problems or incompatibilities.

5

2.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 2.3 provides the main
definitions and terminology we are going to use in the rest of this thesis. Following
that, we provide an overview of the main research areas that this work uses and builds
on. Namely, we review the areas of: web services and service oriented systems and
architectures in 2.4; service description and modeling in Section 2.5; service discovery
in Section 2.6; service selection and ranking in Section 2.7; service trust and reputation
in Section 2.8; and cloud computing in Section 2.9. Section 2.11 summarizes the findings
of this chapter.

2.3 Definitions and Terminology

We define a Service in this environment to be a collection of functionalities provided
over the Internet by an external provider.

Another definition that is also relevant is provided in [11]: in technological terms,
services refer to software applications, methods, operations, or communications between
two computing objects, or the interface between two software components.

A Service Provider is an entity or organization that supplies services online. A Service
Client or Customer or User is a person or an organization that wishes to consume online
services. We will use these terms interchangeably.

Providers specify their services in functional and non-functional terms. The func-
tional specification is usually called a Service Description which basically describes what
the service does. The non-functional specification includes issues like service quality
and service level and is often described in a Service Level Agreements (SLAs), either for-
mally or informally.

Users usually state their requirements to describe the functionality they desire from
the service, effectively searching over service description. We use the term Constraints
to refer to user restrictions on the non-functional aspects of the service, or its SLA. Fi-
nally, we use the term Selection Criteria or Preferences to refer to the priorities of the user
for selecting a service and provider. These criteria will be described in detail in later
sections.

A Service Broker is an entity or organization that can intermediate between service
requesters and providers. In the context of Service Oriented Architectures (SOA - see
Section 2.4), a broker provides service location, brokered trust arrangements, and other
facilities. The term broker has long been used in human affairs to refer to an intermediary

6

with specialized knowledge who works toward a mutually desirable outcome through
negotiation. In technical literature, and particularly in distributed systems, the most
known example of a broker is the Object Request Broker (ORB), which is the core com-
ponent in the Common Object Request Broker Architecture (CORBA). ORBs provide ba-
sic object interoperability functions between heterogenous object-oriented systems that
are implemented using different programming languages and operating systems [6]. In
essence, ORBs allow objects implemented in one system to invoke remote method calls
to objects in another system. The broker in this case provides all the necessary plumbing
to facilitate this interaction.

According to [2], Brokers can be classified in two main types. The first type is the
forwarding broker, in which the broker plays the role of the intermediary between clients
and servers for all interactions. The broker is thus the main plumbing that connect
providers to their clients, and no direct interaction between clients and providers occur.
This type presents a unified mechanism to abstract over, and allow connecting between,
heterogenous entities or systems. The core ORB functionality described earlier is the
most common example of such type. The second type, the handle driven broker, serves
only as a kind of name server. It acts as a meeting place for demands and offers, where
its main role is matchmaking. After clients locate the desired providers, they interact
directly, without broker intervention. The second type is more often described as a
naming or trading service, which is also one of the CORBA services that are additional
to the main broker function.

Our proposed broker system is of the second type; once clients locate the required
provider and offered SaaS using the system, they proceed to provision the service with-
out intervention from the broker.

2.4 Web Services and Service Oriented Architecture

Service Oriented Computing (SOC) is a computing paradigm that utilizes services (see
2.3) as the fundamental elements for developing applications [37]. The standards body,
OASIS, in their Service Oriented Architecture (SOA) Reference Model [35], define SOA
as an architectural paradigm for organizing and utilizing distributed capabilities that
may be under the control of different ownership domains. According to the World Wide
Web Consortium (W3C), a Web service is a software system designed to support inter-
operable machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-related
standards [49].

7

Figure 2.1: Service Oriented Architecture: Basic Roles [46]

There are typically three main roles in a service oriented environment. Namely, those
are service providers, service clients, and service directories or registries (see Section 2.3
and figure 2.1).

In light of the previous definitions, we can attest that the concept of a service and
service orientation is of paramount importance to realizing the visions of SOC/SOA.
While it is widely believed that building a SOA means using web services technology,
the fact remains that the stack of web services technologies, as defined by the standards
of W3C (see figure 2.2), are but one way of doing SOA. Therefore, SOA should not be
treated as a one way solution to all software problems; it is rather a way of thinking, a
paradigm shift, when developing possible solutions.

From a software development point of view, we observe two main incarnations or
usage of SOC/SOAs. The first one is the static, or development-time SOA. In this model,
a developer would search for an existing software component published as a (web)
service and attempt to develop her new application against the interface provided by
that service as described in its contract (the description. However, once the new system
is developed and deployed, its link to the used service is fixed and cannot change for
whatever reason during runtime, such as a prolonged unavailability of the service that
will render the dependent system unstable as well.

The other, less common in practice, form of SOA is the dynamic, late-binding model.
In such incarnation, a developer would only fix the requirements needed for the correct
operation in the specification of her new system. At run-time, an intermediate entity
such as a broker or registry, would search its repository for a satisfying service in-
stance and bind to it. Subsequent run of the dependent system may or may not use
the same service instance. From our observation of industry practices, such powerful

8

Figure 2.2: Web Services Architecture Stack [49]

9

model seems to be in rare usage. This might explain why the public UDDI servers of
IBM, Microsoft and SAP were discontinued by 2005.

SOA provides an inspiring model for new generations of distributed, integrated, and
Internet-scale applications today. SaaS and cloud applications might generally provide
an API for programmatic access along with a human-friendly interface. Therefore, it is
our goal in this work to try to support both kinds of system architecture developments.
By utilizing SOA models and providing a service-oriented APIs for our system, we
allow a multitude of unforseen programmatic interactions with our system at run-time.
Whereas a human service requester looking for the best candidate online application to
satisfy her immediate requirements can use a human-friendly web-based interface to
issue the request and obtain the results.

We target SaaS applications (Section 2.9) as the fundamental entities in dirSaaS, our
proposed directory system. While UDDI provides similar basic functionality to our
proposed system, it does not fully meet our requirements for multiple reasons. First,
while UDDI supports generic service description models using its tModel element, it
was designed mainly for web services and its WSDL description model. While SaaS
applications might provide a web sevice interface, they are usually offered at a higher
level of abstraction. Second, UDDI architecture is centralized, providing little support
for Internet-scale scalability. Third, service discovery in UDDI is rather limited and we
provide a better alternative in dirSaaS. Fourth and most importantly, UDDI does not
provide any facilities for customized or personalized recommendation on top of the
matches returned by the discovery process. One of the main objectives in this work is
to provide such a recommendation facility.

2.5 Service Modeling: Description, Quality, and Service
Level Agreements

Since the service concept is a broad one, and since our focus is on the software aspect
of a service, then we cannot manage a service directly but we need some description that
represents the service and can be handled by machine processing. Metadata is machine-
processable data that describes resources [20]. Thus, we view a service description as
metadata that describes a service. A service description describes the characteristics,
capabilities, and other information about the service to facilitate understanding and in-
teraction with the service. The view of description as metadata allows the reuse of
existing literature works on metadata processing and interoperability.

Based on this metadata view, we discuss service description by studying three dif-
ferent aspects. The first is the level of abstraction in describing the service, the second

10

is the notion of functional and non-functional properties of services, and the third is the
technical details and schema of service description records.

At the lowest level of abstraction, a service description is intended to specify the
programmatic interface, including input and output parameters and data types, or the
access point to the service, thus becoming a contract between the original service de-
signer and potential service users. This is, for example, what Web Services Description
Language (WSDL) [12] is intended to allow.

At a higher level of abstraction, a service description attempts to specify the high-
level semantics, attributes or capabilities of the service using formal or informal termi-
nology. Description at this level may be targeted for human consumption, and thus
focus on easy readability of the format, or targeted for intelligent machine processing,
thus focusing more on expressive power and flexibility. Examples include OWL [9] and
Unified Service Description (USD) [28]. USD is intended as a meta-description rather
than a description; it encapsulates descriptions from different schemes and technologies
into the unified description, achieving interoperability between them.

So far we mentioned the functional aspects of a service description, which is speci-
fying what the service does. Another aspect of services to describe is the non-functional
properties [36] that the service entails, which is how a service would perform its func-
tions. Such properties include temporal constraints such as response time, reliability,
security, and other properties.

There have been several proposals for a technical standard for describing quality of
a service and representing it in the form of Service Level Agreements (SLAs). Among
them we mention IBM’s WSLA [15],[24], WSOL [45], OWL-Q [25], and SLAng [42].
These proposals provide some attempts to formalize the description of QoS attributes
and dimensions.

2.6 Service Discovery

At an abstract level, the process of obtaining a set of services which can possibly fulfill a
user request is called Service Discovery [41]. The essence of this process is to retrieve the
service description documents that satisfy the user query from some back-end database
of service description records. This process is often referred to as a service by itself, the
discovery service.

There are a number of proposed systems for service discovery that are targeted at
different objectives [4]. The most used of those approaches have been Service Location
Protocol (SLP) [19], Jini [50], UPnP [5] and UDDI [34]. SLP is an IETF standard that is

11

geared toward networked applications and devices using relatively lower level abstrac-
tions and mechanisms. Jini is a Java-based approach to building dynamic distributed
software components, but it did not become a standard. UPnP is an industry standard
backed mainly by Microsoft (it became an international ISO standard in 2008) that is
targeted primarily at solving the needs of personal networked devices. the UDDI spec-
ification from OASIS is still considered the primary standard approach for discovery in
the web services stack and SOA environments.

Service discovery systems are mainly classified based on the architecture used to
store, distribute and access service information. Thus, the architecture of discovery sys-
tems range from fully centralized to fully decentralized. The degree of distribution of
the discovery system is much dependent on the context it is used in and the require-
ments of that system. The survey in [4] presents a detailed classification criteria and
evaluation of major discovery systems.

A major effort to interoperability between heterogeneous discovery systems was
proposed in OSDA [28]. OSDA is itself a discovery system, allowing service requester
agents implemented in a particular discovery system to issue requests and retrieve re-
sults from another system. OSDA achieves this function through a technology depen-
dent adapter that translates messages between the discovery system specific represen-
tation to an intermediate format (Unified Service Description) and vice versa. The in-
termediate messages are forwarded by technology-independent broker to a distributed
p2p service directory. In dirSaaS, We have reused and built on many parts of OSDA.
For example, we have reused the Chord-based P2P architecture and its INS/Twine-
based indexing mechanism. The description model, USD, was updated and enhanced
to include SLA information, which was not considered in OSDA. The main broker, how-
ever, was considerably updated to reflect its new role in dirSaaS. The implementation
of dirSaaS is discussed in Chapter 5.

2.7 Service Selection and Ranking

A naive service discovery process returns all the results found during discovery in no
particular order. However, when the number of returned service matches is large, a
mechanism is needed to assist the decision making for selecting the most appropriate
of those results. The problem is that all services returned satisfy the discovery request
requirements, and thus we need another mechanism to distinguish between them.

The classic solution to this problem is to use a ranking mechanism based on some
useful criteria to the requester. One of the most useful ranking criteria is to evaluate the
adherence of service providers to their obligations in interactions with previous clients.

12

As we described in Section 2.5, these obligations are usually expressed in the form of
a service level agreement (SLA). The SLA would define the quality of service (QoS)
parameters and their obligated thresholds.

There is a need to obtain the runtime values of these parameters and compare them
against the promised offer values in the SLA. This process is usually called SLA moni-
toring [38]. Assuming an SLA monitoring agent is in place to collect runtime behavior
of services (a topic that is outside the scope of this thesis), these monitored values can
now be used for further processing for obtaining service ranking.

It is reasonable to assume that multiple criteria can be used to evaluate a service.
Therefore, an algorithm is needed to combine these values (which have different do-
mains and types) in a single aggregate service score. The most common method used
is the Simple Additive Weighting (SAW) which is an essential technique in Multiple At-
tribute Decision Matching [21]. In the SAW technique, each attribute needs to be scaled
to a normalized value and given a weight indicating its importance. The final score
is the summation of the product of the scaled value and weight for all criteria. This
approach is the most used one in proposed service selection algorithms [27], [53], [3],
[7].

The mentioned approaches, however, differ in what attributes are used to derive
the final score. Most of them apply SAW to quality attributes to derive the final score,
yet each of them assume a different set of fixed quality attributes. On the other hand,
[27, 26] proposes a unique two-step approach for the service ranking. The first step
applies the SAW technique to scaled quality parameter values to combine them in an
aggregate value, just like the other approaches. The second step uses the aggregate
quality value with other criteria (cost and reputation) to derive The final score of the
service. This method appears to reflect a more comprehensive evaluation of the service
under consideration, and it is the one used in our proposed system.

2.8 Trust and Reputation

Trust plays a critical role in online environments where providers and requesters have
minimal a priori knowledge about the trustworthiness of their partners. Trust is a
multidisciplinary concept with roots in economics, psychology, as well as computation
[33, 51, 22]. A first attempt at formalizing the concept of trust in computing was given
by Marsh [29]. Thus, trust needs to be considered as an important criterion in the service
evaluation and ranking process. There exist various computational models to compute
trust. Reputation is most commonly used in practice and literature as a quantitative
measure of trust in computer systems.

13

In many deployed systems as well as research works, reputation is derived from
the human submission of his or her own feedback about using the system or service
under review. An example of a system that uses such reputation mechanism is eBay
[51]. This approach, however, must consider the fact that these human reports are often
subjective and may involve cheating or bias. Thus, some research works like [48] focus
on detecting false and dishonest user quality ratings from both providers and users
under various cheating behaviors. They rely on having few trusted monitoring agents
to provide initial trusted quality reports on some services. Further reports are compared
to detect if they are honest or cheating in a trust-distrust propagation mechanism.

Multiple research works on service evaluation and recommendation consider repu-
tation as an important criterion but each handles it from a different point of view. Some
works [52],[53] consider reputation as a generic selection criterion and therefore do not
provide any special handling of it as it is assumed given using some form of reputation
system. Others [30, 31] take the point of view that reputation of a service is a summary
or aggregation of its quality attributes. Thus, reputation is not an explicit measure but
rather an abstract notion implicit in the underlying service quality attributes.

A unique approach is presented in [27], [26], where reputation is handled differently
from the other two selection criteria (those are quality, cost, and reputation). Reputation
is forecasted statistically based on the time series of previous performance feedbacks.
This method ensures that any potential bias in the subjective user feedbacks is circum-
vented and instead objective and reliable service performance is used instead to obtain
an estimate of the service reputation. We adopt this approach in this work.

2.9 Cloud Computing and the as-a-Service Model

Cloud computing is the latest trend in the industry that tries to reflect the current level
of technology penetration in society. Since it is still an evolving paradigm, there is no
current widely accepted definition for it. However, we find that the following defini-
tion from the National Institute of Standards and Technology (NIST) [32] reflects much
of the current buzz in the industry. NIST defines cloud computing as a model for en-
abling convenient, on-demand network access to a shared pool of configurable comput-
ing resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction. This cloud model promotes availability and is composed of five essential
characteristics, three service models, and four deployment models.

The essential characteristics that distinguish cloud computing are those of: on-demand
self-service; broad network and device accessibility; resource pooling; rapid elasticity;

14

and measured service. Those characteristics are not unique on their own to cloud com-
puting. Rather, it is their combination that distinguishes the cloud from previous com-
puting paradigms.

Services branded with cloud computing generally work as one of the following ser-
vice models, depending on the level of abstraction and the amount of user control over
the provisioned service:

Software-as-a-Service (SaaS)

This software delivery model and term existed long before the cloud term itself existed.
The most familiar example of a SaaS is a web-based email such as GMail. The applica-
tion is provided through an accessible thin interface (most likely a web-based one). The
service provider is responsible for all maintenance and management operations of the
cloud infrastructure that underlies the service. This model is targeted mostly at human
end-user consumers. Most people are actually using one SaaS or another unknowingly,
since any website that provides some ”functionality” or application other than static
web pages could be described as SaaS. The most cloud-related benefit to SaaS applica-
tions comes actually from the other two models, since they open the door for potentially
infinite possibilities of new SaaS applications to be available in a rapid manner.

Platform-as-a-Service (PaaS)

This is a relatively newer model whose aim is to deploy customer-developed software to
a hosted, managed cloud platform, using tools and programming languages supported
by the provider. The provider again is responsible for managing the platform infras-
tructure. However, the user may have some control over the deployed application and
some of its environment configuration. This model allows small software development
firms to benefit from the vast infrastructure available at the cloud providers. This model
is not equivalent to project hosting portals like SourceForge, since the hosted projects
are just static files available for download, not deployed live code, and the user still has
to deploy and manage the software on her own. Salesforce’s force.com is one of the
early examples of PaaS, but the most popular today seem to be Google App Engine and
Microsoft Azure.

Infrastructure-as-a-Service (IaaS)

In this model, consumers have even greater control ”almost to the metal” to manage op-
erating systems, storage, arbitrary deployed applications as they deem reasonable. The

15

provider is still responsible for the control and management of the underlying ”phys-
ical” platform infrastructure. For example, the user has control or knowledge of the
actual physical machine used to host his virtual image. OS Virtualization techniques
play paramaount role in this model, as they isolate each user image completely from
the underlying hardware. This allows, for example, an image to be migrated between
actual hardware servers without the user noticing anything.

Cloud computing solutions have been adapted for different deployment models
to satisfy different requirements and restrictions, whether they are technical and legal
ones. These models are:

Public Cloud

The infrastructure hosting the cloud platform is owned by an organization that is inter-
ested in selling shared usage of the platform to the general public.

Private Cloud

The infrastructure is operated for the benefit of a single organization although it might
be hosted or managed off-premise by a third-party. Some analysts e.g. [14] argue that
”there is no such thing as a private cloud” since the organization still needs to budget
a capital expenditure to procure, manage, and run this infrastructure, which makes the
benefit of cloud computing much less obvious. However, we argue that there are still
large benefits (based on the characteristics mentioned earlier) to end users inside the
organization to use the cloud model rather than the old ways. IT operations inside an
organization would be much more streamlined and organized (e.g. there should be no
more struggle to know if a lone old server in the machine room is actually needed any-
more or not). Regulation compliance, for example, might be a much important factor
than cost to force organizations to consider the private cloud model instead of a public
or hybrid one. Despite the potential higher cost, the benefits mentioned are well worth
the investment.

Community Cloud

The infrastructure (which might be hosted and managed off-premises) is only shared
between organizations of a specific community or having shared concerns or policies.
Thus, this model shares characteristics of both public and private models.

16

Hybrid Cloud

This model allows an organization to use a combination of the above three models to
support its needs by binding those models in a standardized or proprietary interfacing
technology while keeping the composing clouds separated and unique.

As shown above, we can see that cloud providers are trying to offer a cloud solution
for each IT problem. The fact remains, however, that migrating to cloud computing so-
lutions might not be the best approach for every one. Security of data stored in remote
cloud infrastructure, for example, is still a big concern for individuals as well as organi-
zations. However, it was argued [18] that the security provided by a cloud provider is
probably much more vigilant than what an IT shop in a small organization is providing
currently.

As more providers and start-ups jump on the cloud bandwagon, however, a multi-
tude of problems would face potential users that are not related to a specific provider
but rather to an industry that would be a victim of its own success. The closest example
is that of the Web 1.0 era, when the WWW was flooded by a huge number of new web
sites every day that users had no idea they even existed. So one major issue with cloud
computing in the future would be finding the appropriate service and service provider.
Another related one is the evaluation of potential services against each other and the
trustworthiness of the potentially unknown providers. Today, we have a few big well
known providers that supply mostly the IaaS and PaaS infrastructure. Once smaller
vendors arrive at the scene to utilize the potential of such available infrastructure, as we
are only beginning to see today, then these problems would continue to grow.

2.10 P2P Systems and Architectures

Peer-to-Peer (P2P) systems are an important paradigm of distributed systems that lack
centralized control or hierarchical organization. There is no clear distinction between a
client and a server, or put differently, a node can play both client and server roles [44],
[1].

Indexing content in P2P systems is an essential task to facilitate retrieval of the
shared content. Depending on the scheme used to index the content, P2P systems can
be categorized as unstructured, semi-structured, or structured [4], [13]. Only in struc-
tured schemes like distributed hash tables (described below), the indexing information
is homogeneous among the nodes, thus providing efficient searching and routing.

Architectures of P2P systems can be classified as centralized, decentralized or par-
tially decentralized [4] depending on whether the content indexing information is stored
in a central node, in each peer, or in a subset of super-peers, respectively.

17

A Distributed Hash Table (DHT) is a distributed version of a centralized hash table.
The main function of a hash table is to store key-value pairs and retrieve the values
associated with a given key. Distributed Hash Tables provide insert and lookup infor-
mation in a small (usually logarithmic to the number of nodes) number of routing hops.
Systems built to provide such an abstraction are usually self-organizing structured P2P
overlay networks that serve as a substrate for a large-scale P2P application [10]. Main
example systems include Chord [44], CAN [39], Pastry [40], and Tapestry [54]. In a DHT
system, the full domain set of keys (e.g. 32-bit key size provide 232 keys) is partitioned
among the set of participating peer nodes so that each node is responsible for insert and
lookup operations for its own set and will forward requests to other keys to neighbor
nodes.

The use of a P2P architecture to distribute a service registry has been proposed in
the literature before in few works like [47], [17], [28]. P2P substrates, especially DHTs,
provide many nice attributes that are of particular interest to our goal of building a
scalable service management platform. Thus, our choice is to utilize a DHT P2P system
(Chord) as the back-end for distributed storage.

2.11 Summary

The system proposed in this thesis touches on many interrelated problems in service
oriented systems and platforms such as service description, quality, discovery, selection,
and reputation. In addition, we discussed peer to peer systems and the emerging cloud
computing paradigm. The knowledge we gained from studying these issues allowed
us to proceed in designing the proposed system, whose overview we cover in the next
chapter.

18

Chapter 3

Overview, Design Requirements and
Usage Scenarios

3.1 Introduction

In the last chapter, we found that quite a few solutions are proposed in the literature
to solve the problem of locating, evaluating and comparing Internet-based services. As
more such services are offered, however, the need for more effective solutions and sys-
tems will continue to rise.

In this chapter, we are going to study this problem in greater detail, and try to de-
velop a model for representing the domain of service provisioning in general along with
all involved parties. We then present a high level overview of the proposed solution ar-
chitecture. We describe the goals and requirements such a solution should have, and
finally describe the scenarios of how the solution system would be used to solve the
problem.

3.2 Chapter Organization

In section 3.3, we present our effort at modeling service provisioning scenarios using
two-party and three-party models. Based on the three-party model, we present the
overall proposed system architecture. Section 3.5 develops the overall goals and re-
quirements that the design of the proposed broker system should fulfill. Section 3.6 will
describe the major use cases of the system - advertisement, discovery and recommen-
dation, feedback and administration. We conclude the chapter in 3.7.

19

3.3 Modeling Service Interactions

3.3.1 Basic Client-Provider Interaction Model

In basic Internet applications, there are only two interacting parties: the client and
the provider. Clients need to locate providers themselves using a variety of methods.
Providers also used a variety of (marketing) techniques to expand their reach of clients.

Figure 3.1 shows more details about this basic 2-party service interaction model for
cloud services. The obligations of service providers are usually specified in the form of
an SLA. A single service offering may have a single description of all service capabilities
and one or more SLAs that different clients can choose from. Each SLA between a
client and provider allows for one or more service usages by the client. The provider is
responsible for maintaining the agreed service level for all service usages and to offer
compensation when service level violates the agreement in some cases.

There are multiple potential issues with this basic model. First, the client has to have
prior knowledge of the provider and service existence before being able to access any
services. This is not a major problem when there are only a few well-known providers
and few possible services. However, it is evident from the tremendous Internet growth
that there are potentially endless possibilities for introducing new services and poten-
tially many competing providers for the same service. To make matters worse, a service
client has neither guarantees that the contracted service will maintain the agreed level
nor knowledge about the service performance with previous clients. The client has to
rely on its own observations to detect any service level variations. There is not even a
guarantee whether the provider will act honestly or maliciously. There is basically no
guarantee on the optimality of the chosen service in terms of cost, quality or trustwor-
thiness.

3.3.2 Advanced Broker-based Interaction Model

As shown earlier, there are severe problems with the basic client-provider model above.
In this thesis, we propose to introduce a specialized broker (Section 2.3) entity to solve
these problems. The introduction of an intermediate broker into a two-party interaction
is well known as a useful solution for abstracting and solving many problems in com-
puting or in everyday life in general. The role of the broker entity is to provide a trusted
platform that mediates between clients and providers. This role is metaphorically simi-
lar to the broker role in real life (as in real estate brokerage, for example).

The broker provides double-edge benefits: it provides clients with enhanced tools
for searching and evaluating services; and at the same time enhances the visibility of

20

Figure 3.1: Basic Client-Provider Interaction Model

21

providers’ services and gives them incentives for good behavior. The result is a much
better experience for clients as well as a more competitive and higher quality service
market. We believe it should be a win-win solution for all involved parties.

Figure 3.2 shows the interaction model when a broker is available. In enhancement
to the basic interaction model described in Section 3.3.1, providers advertise their Ser-
vice descriptions and SLAs with the broker. Clients use the broker search and rec-
ommendation facilities to locate and evaluate candidate services and providers. The
broker’s directory function provides a solution to the first problem clients face (how to
locate and know services and providers). To solve the trustworthiness and service guar-
antee problem, the broker provides a service recommendation function that is based on
objective reputations of offered services. The reputation information is obtained from
the broker interface with an objective reputation system. This reputation system could
be provided as an external service (to allow for different reputation mechanisms) or
implemented inside the broker if no suitable reputation system exists.

3.4 Proposed Architecture: dirSaaS

The main entity or party in our proposed architecture is the broker. Brokers are inde-
pendent organizations, and they can compete with each other. As we discussed earlier,
there are different roles that a broker can serve. However, dirSaaS is mainly of the
second matchmaking type. Its main role is to provide a powerful directory service with
advanced search capabilities while maintaining quality guarantees on the search results.
Clients turn to the broker to find the services relevant to their needs. The broker is not
a gateway for service invocations and thus direct client-server interaction commences
outside the proposed system after the client selects its chosen provider.

A high-level overview of the proposed architecture is presented in figure 3.3. The
proposed broker basically functions as an enhanced load/store interface over a back-
end directory or registry of services. It integrates a discovery system that provides inter-
faces for advertisement and discovery. Service providers are the entities that populate
this directory with service offers they wish to advertise. The broker’s main objective is
to facilitate clients’ discovery requests for services that match their requirements. Naive
service discovery, however, does not provide flexibility or explicit ranking when pre-
senting discovery matches to the requesting client. Therefore, the proposed broker also
incorporates a ranking engine that provides the clients with personalized rankings and
recommendations from initial discovery results. It is the ranking and recommendation
engine that tremendously helps clients in their difficult decision making process of con-
tracting an external service from the cloud.

22

Figure 3.2: Advanced Broker-based Interaction Model

23

Broker

User

Service Providers/

Services

Broker Storage

Information services

Figure 3.3: High-level Architecture

The broker relies on objective reputation information that reflect accurate service
performance in its service recommendation function. The current broker architecture
includes an internal reputation system that expects to receive feedbacks about previ-
ous service invocations from independent and trusted service monitoring agents [48].
However, the broker should easily adapt to obtain reputation from external reputation
systems.

As previously mentioned, brokers are autonomous entities and may in fact compete
with each other to attract more providers and/or customers. Moreover, providers can
choose to advertise and customers can search with more than one broker. Brokers can
opt to facilitate inter-broker search by participating in an inter-domain service discovery
system such as OSDA [28].

3.5 Design Goals

The proposed broker system includes several components, as described briefly in Sec-
tion 3.4. In this section, we elaborate on the design requirements for dirSaaS. These re-

24

quirements serve as guidelines for the detailed design of the system, which is described
in Chapter 4.

3.5.1 Directory: Scalable Architecture

The architecture of a service directory ranges from fully centralized to fully distributed
[4]. Since the system is targeted to Internet scale, it is critical for the broker’s directory
to scale with growing demand from users. The broker should be scalable to millions
of users and several thousands of providers and services. Scalability provides a high-
quality experience for both providers and users under variable loads. A low-quality
experience with the broker system will reflect on the low expectations from the func-
tionality of the broker itself, and consequently from the advertised services as well. The
chosen directory architecture directly affects the scalability of the system.

3.5.2 Discovery: Effectiveness

Discovery is an integral part of our system. The most important evaluation criterion for
discovery in our system is how effective it is in discovering services [4]. Effectiveness
in this context comprises two complementary criteria: completeness and correctness.
Completeness (recall) is the ability of a service-discovery process to return all matching
service instances registered in a service directory, whether the directory is distributed or
centralized. Correctness (precision) measures how closely a discovered service matches
the user’s request [4].

3.5.3 Data Models: Expressiveness

The purpose of service description and quality models in our system is to facilitate dis-
covery and ranking/recommendation, rather than being complete behavioral or func-
tional specifications of services. Thus, data models need to be expressive enough to
serve the needs of both providers and clients when advertising or searching services.
The level of service details should be balanced; too many details distract the user and
complicate the search process, whereas too few details make the discovery and ranking
almost useless. At the same time, it should be easy and efficient to process those data
models at the machine level.

25

3.5.4 Recommendation: Objectiveness and Personalization

As explained earlier, there is a strong need for feedback and reputation systems in on-
line environments. While many such systems have been introduced for various online
content and activities, the major component of these systems is the reliance on human
end-users to evaluate and provide their feedback on the items or services that they had
experienced. The use of such subjective feedbacks arguably causes many problems to
the effectiveness of those reputation systems [26]. Therefore, in our system, we require
the use of an alternative method for obtaining those feedbacks. The feedbacks obtained
using this method should be objective and reflect more accurately the perceived user
view of the provisioned service, without any manual intervention from the user.

Service clients may have different perceptions and priorities when accessing ser-
vices. They might be looking for the best quality at any cost, or the most trusted
provider within a certain budget, or other constraints. Thus, the system should not
offer the same service rankings and recommendations for all users. Instead, those rank-
ings and recommendations should be tailored to the individual user preferences and
constraints.

3.6 Usage Scenarios

In this section we will elaborate on the main usage scenarios of the system. These in-
clude service advertisement, discovery, ranking and administration, and feedback. The
use case diagram in figure 3.4 illustrates all the use cases, their actors, and their rela-
tionships. Each use case is described below.

3.6.1 Service Advertisement

While search engines usually crawl and index the web on their own without any action
from content provider web sites, it would be difficult to create a structured service index
from plain text descriptions and SLA terms on service provider web sites. Thus, adver-
tisements from service providers are the main method for populating the directory of
our broker system. Providers can advertise their services with the broker as follows:
follows:

1. Select or search for an appropriate service type. Services of the same type have
different descriptions and SLAs but share the same structure of those descriptions
and SLAs.

26

Figure 3.4: System Use Case Diagram

27

2. Provide service description details for that type.

3. Submit one or more SLA offers.

3.6.2 Service Discovery

Discovery is the process which allows clients to specify their requirements for search-
ing the service directory and obtain the list of service matches. Those matches are not
necessarily ordered or arranged in any specific order. A client could discover services
as follows:

1. The client selects or searches for an appropriate service type.

2. The client specifies the desired features or capabilities.

3. The system processes the discovery request and return a list of available service
matches, not in any particular order.

3.6.3 Service Ranking and Recommendation

To grasp a better picture about the merits of each offer in the available service matches,
the broker evaluates service rankings and sends a personalized recommendation to the
user. Once the discovery is done and the list of service matches is available, the user can
get his/her personalized recommendations as follows:

1. The user specifies constraints and weights (importance) on individual quality at-
tributes and overall cost accepted in the SLA offers.

2. The user specifies the weights (importance) of overall cost and quality.

3. The system processes those inputs with the raw discovery matches from the dis-
covery use case (Section 3.6.2), removes SLAs that do not satisfy the constraints
in the first step and ranks, influenced by the user-supplied weights in step 2, the
remaining SLA offers. The details of this process is described in the next chapter.

4. The user chooses one of those offers to view more details or to order the service
from the provider directly (outside the system).

28

3.6.4 Feedback

To support the internal reputation system, the broker needs to receive service quality
reports from authorized monitoring agents. Once these reports have been submitted,
the broker processes them to derive service feedback.

This use case proceeds as follows:

1. The monitoring agent submits service quality reports for that cover a predefined
monitoring interval for a specific SLA.

2. The reputation system processes these reports to calculate service feedback.

3. The calculated feedback is added to the feedback history of that specific SLA.

3.7 Summary

In this chapter, we modeled a basic two-party service provisioning scenario using only
clients and providers and described the difficulty to use it in modern environments. We
then added a third-party - a broker - to that scenario and proposed a high level archi-
tecture of service provisioning using this advanced model. We described the important
features of such an architecture to help guide its design, and enumerated the major use
case scenarios of using it for effective service provisioning.

In the next chapter, we will describe the detailed design of such an architecture - the
main components, their functions and their interrelatedness.

29

Chapter 4

System Design Specifications

4.1 Introduction

The reference model used by dirSaaS was described in the last chapter. To summa-
rize, that model assumes the existence of service clients and providers that interact first
indirectly through a broker and later directly between each other. In this chapter, we
elaborate on the design details of the proposed system architecture that will fulfill the
role of the broker entity. We describe all the components of the broker’s core services
and storage system. For each component, we describe its purpose and functionality,
as well as its interface and interactions with other components. Then we describe the
design of the system data model and data structures, including the messages between
different components. Finally, we describe the user interface design of the system.

The architecture of dirSaaS builds on the main concepts of OSDA. The dirSaaS bro-
ker is composed of the Broker Core Services and the Broker Storage, and an optional
System Interface. Providers and requesters interact with the broker system directly us-
ing the exposed API of the core services or through the optional system interface. The
system interface is mainly targeted for illustrating the basic usage and to facilitate hu-
man interaction with the system. It can also be used in the administration task of the
broker system itself.

4.2 Chapter Organization

The remainder of this chapter is organized as follows. In 4.3, we describe the main usage
scenarios of the system using a black box (abstract) view of the system and its compo-
nents. The broker components are then described in Sections 4.4 (Broker Core Services),

30

4.5 (Broker Storage), and 4.6 (System Interface). A detailed elaboration of the data mod-
els and messages used in the system is presented in 4.7. Section 4.8 summarizes the
chapter.

4.3 Supported Interaction Scenarios

The system supports three main usage scenarios that are initiated by the external stake-
holders of the system. Those stakeholders are service providers, service requesters and
monitoring agents. Each of them initiate Service Advertisement, Service Discovery, or
Service Feedback scenarios, respectively.

4.3.1 Advertisement Use Case

The service advertisement scenario is described in the sequence diagram in figure 4.1.
It illustrates the design details of the use case described in Section 3.6.1. Further details
about the Advertisement Component is described in Section 4.4.1.

4.3.2 Discovery and Recommendation Use Case

The service discovery and recommendation scenario is described in the sequence dia-
gram in figure 4.2. It illustrates the combined design of the use cases of Service Dis-
covery and Service Ranking and Recommendation described in Sections 3.6.2 and 3.6.3.
Further details about the Discovery Component and its related components is presented
in Section 4.4.2.

4.3.3 Feedback Use Case

The service feedback scenario is described in the sequence diagram in figure 4.3. It
illustrates the design details of processing monitoring quality reports to obtain service
feedback. Further details about the Reporting and Feedback Components is presented
in Sections 4.4.3 and 4.4.4.

31

Fi
gu

re
4.

1:
A

dv
er

ti
se

m
en

tU
se

C
as

e:
Se

qu
en

ce
D

ia
gr

am

32

Fi
gu

re
4.

2:
Se

rv
ic

e
D

is
co

ve
ry

an
d

R
ec

om
m

en
da

ti
on

U
se

C
as

e:
Se

qu
en

ce
D

ia
gr

am

33

Fi
gu

re
4.

3:
Fe

ed
ba

ck
U

se
C

as
e:

Se
qu

en
ce

D
ia

gr
am

34

4.4 Broker Core Services

To achieve modularity and ease of development, the Broker Core Services are designed
as loosely coupled components that interact together using well defined interfaces. We
then proceed to describe the design details of each component.

4.4.1 Advertisement Component

This component is responsible for accepting a service description document in the USD+
format (Section 4.7.1) and then forwarding it to the Storage Access Component (Section
4.4.9), which then handles its persistence in the Broker Storage.

This component is one of the three publicly exposed interfaces of the system. It
can be accessed directly from a service provider system, or through its wrapper in the
Provider Interface (Section 4.6.3). Its public API is simply:

void advertise(USD+ serviceDescription, List<SLA> SLAs);

For simplicity, this call is one-way and does not return any value to the requesting party.
Alternatively, this call can be asynchronous to allow the provider to receive a confir-
mation or failure message as a callback. However, this option would complicate the
realization of the design.

4.4.2 Discovery Component

This component is responsible for accepting a query about the service description doc-
ument again using the USD+ format (Section 4.7.1). As shown in figure 4.2, it acts as the
main interface and controller for the discovery and ranking scenario.

This component is one of the three publicly exposed interfaces of the system. It
can be accessed directly from a service requester system, or through its wrapper in the
Client Interface (Section 4.6.2). Its public API is:

List<USD+> discover(USD+ USDRequirements,SLA SLARequirements,
double qualityWeight, double costWeight);

Where:

35

• USDRequirements specifies each attribute of the description content in USD+ (4.7.1)
that the requester wants to search. The difference from the advertisement USD+ is
that not all attributes need to be defined in the query. The absent attributes would
be considered as wildcards and will not restrict the returned matches. The content
of each attribute should be the exact value required or a subset match of it.

• SLARequirements specifies each quality parameter of the SLA that is to be restricted
by this query. Similarly to USDRequirements above, not all SLA quality parame-
ters need to be specified. However, depending on the semantics of quality param-
eters (whether more-is-better or less-is-better), the specified values in this query
act as an upper or lower bound on the returned matches.

• qualityWeight and costWeight are the relative weights (importance) of aggregate
service quality and aggregate service cost, respectively. They correspond to ωq
and ωc respectively in [26].

This call is synchronous (it waits for the response) and returns the ranked list of
service matches.

4.4.3 Reporting Component

The reporting component acts as the link or interface between independent trusted
monitoring agents [48] and the broker system. It is responsible for accepting a mon-
itoring report (Section 4.7.3) submission on a particular SLA rather than a particular
service or provider. This fine granularity is needed as the cost and quality parameters
are different for each SLA of the same service, thus each service SLA is effectively an
independent service instance by itself. Furthermore, the report itself is rather detailed.
It lists each quality parameter of the SLA along with the value at the time of the mea-
surement. A predefined number of reports for a predefined monitoring interval are
submitted by the monitoring agent to this component.

It is assumed the SLA cost is fixed and does not necessarily vary during the validity
period of each SLA. More advanced SLA cost modeling may account for compensa-
tion credit to the service user when the service level falls below the SLA specification,
thereby reducing the cost of the service. However, the purpose of including SLA infor-
mation and monitoring in this work is to facilitate the discovery of services by future
users using objective feedbacks. Therefore, the variable cost incurred by the previous
users has no effect on the decision of the new users. The quality variation, that led to
the cost variation in the first place, is important in the decision making process and this
is what we intend to capture from the monitoring streams of reports.

36

This component is one of the three publicly exposed interfaces of the system. It can
and should be accessed directly from a monitoring agent system, but could also be used
through the Monitoring Interface in the portal (Section 4.6.4), but this use is mostly for
prototyping and testing.

This interface component has the following public API:

void submitReport(ID SLAID ,List<Report> periodReports,
Date reportingPeriod);

Where:

• SLAID is the ID of the reported SLA. This will be needed to locate the report
database of this particular SLA.

• List<Report> periodReports is a list of monitoring reports where each re-
port is an attribute-value list of all the SLA quality parameters and their measured
values.

• reportingPeriod is the monitoring period covered by the submitted reports,
not necessarily the time of submitting this report to the broker system.

The Reporting Component acts as the controller of the reporting scenario (figure 4.3).
It sends the list of reports to the Feedback Component to perform the service feedback
calculation. It then pushes this feedback value to the Broker Storage to be amended to
the feedback series.

4.4.4 Feedback Component

This is an internal component that does not interact with outside of the Broker Services.
Its main function is to calculate service utility and feedback based on the reports that
were supplied from monitoring. This component is initiated when the reporting com-
ponent forwards monitoring reports covering a monitoring interval. The feedback is
calculated and then sent back.

A summary of the steps needed for these calculations is provided below. The deriva-
tion details are provided in [26].

37

Utility Calculation

Calculating the overall service utility ν is summarized as follows:

1. For each quality parameter in the SLA, if the monitored value is equal or better
(either more or less depending on the type of the parameter), then theAccept value
for this parameter is 1, otherwise it is 0. This value for each individual parameter
is stored in an OutcomesHistory (table) structure.

2. The probability for each quality parameter value to meet its expected value (the
SLA value) is estimated as the ratio of successful previous measurements in the
overall measurements. This probability is used as the individual utility of the
particular QoS parameter. Thus, this value for each parameter will be updated
when a new report is submitted.

3. The overall service utility is the multiplication of all the individual parameter util-
ities.

Feedback Calculation

Following utility calculation, feedback calculation is done using the following formula
(See [26]):

Feedback = −µ
6
ν3 +

µU0

2
ν2 + (1 + µ(

1

6
− U0

2
)ν (4.1)

Where

• U0 is a constant that depends on the cost of the particular SLA. Assuming there is
some limit MAXCOST on the cost of the SLA, then U0 is the ratio of the current
SLA cost to MAXCOST i.e. U0 =

SLACOST
MAXCOST

• µ is a constant that is calculated based on U0 as follows:

µ =

{ 6
2−3U0

if U0 ∈ [0, 1
2
]

6
3U0−1

if U0 ∈ [1
2
, 1]

(4.2)

• ν is the current overall service utility as calculated previously.

38

4.4.5 Match Making Component

This component checks a list of service descriptions (including a list of SLAs for each
description) if any of those SLAs match the SLA requirements. Thus, this component
receives this information as input and will remove the non-matching SLAs from the
original list. If a particular service description has no single SLA match, then the whole
service description is pruned. The component will return the list of matching descrip-
tions with at least one or more SLAs that match the requirements.

The requirements are expressed in terms of cost and quality constraints. Services
with higher cost than the cost constraint are filtered out. Quality constraints are ex-
pressed as the thresholds of accepted values of the SLA QoS parameters. Thus, the com-
ponent has to check each parameter and decide from the parameter type if the threshold
is an upper bound or a lower bound and accordingly filter the list of SLAs.

Match Making is an internal phase during the scenario of service discovery. Thus, it
does not have any interactions with other broker parts or external components.

4.4.6 Evaluation Component

This component evaluates a list of SLA offers against each other. To achieve a meaning-
ful comparison, we need to derive a scalar normalized value for cost (we will call it C)
and quality (Q) that will allow each SLA to have a rank in those categories. These values
will be used to derive the final scalar score value in the Scoring Component (4.4.7).

We will now describe a summary of the quality and cost normalization procedures
as described in [26].

Quality Evaluation

Since quality is not a single value but rather a list of quality parameters, those quality
parameters need to be normalized (scaled) individually, and later the normalized values
are combined in a single Q value. This is done in the following steps:

1. For each quality parameter Qi, two parameters (qi)max and (qi)min are defined to
represent the maximum and minimum value of the parameter, respectively. If
the parameter follows the more-is-better type (e.g. availability), then (qi)max is the
maximum offered value in all SLA offers and the (qi)min is the requester constraint
on this parameter. The reverse holds true for parameters of the less-is-better type
(e.g. response time).

39

2. Each value qi of a quality parameter Qi is scaled to a value in [0, 1] as follows:

Scal(qi) =


qi−(qi)min

(qi)max−(qi)min
if Qi ∈ QOS+

(qi)max−qi
(qi)max−(qi)min

if Qi ∈ QOS−

1 if (qi)max − (qi)min = 0

(4.3)

WhereQOS+ andQOS− refer to the more-is-better and less-is-better types of param-
eters.

3. Finally, the overall scaled quality value Q of the particular SLA is calculated from
the vector of Scal(qi) using the following formula:

Q =

√√√√ N∑
i=1

Scal(q2i) (4.4)

Cost Evaluation

Taking all SLAs together, the maximum (Cmax) and minimum (Cmin) is calculated and
the cost for each SLA (c) is normalized (to C) as follows:

C =
Cmax − c

Cmax − Cmin
(4.5)

Therefore, this component will return the list of SLA offers, along with the normal-
ized Q and C values for each offer.

4.4.7 Scoring Component

This component will produce the final scalar score value for each of the SLA offers it re-
ceives. As input, it takes the SLA offers to score, the normalized cost and quality values
C andQ (4.4.6), the importance (weight) of cost (ωq) and quality (ωq)to the requester, and
the forecasted Reputation (R) of each SLA (4.4.8). The score of each SLA is calculated
using the following formula [26]:

Score(SLA) = eλ(R−1) + e−λ(ωqQ+ ωcC − 1) (4.6)

The component will return the list of the scores of each SLA offer it received.

40

4.4.8 Reputation Component

Reputation of a particular SLA depends on the previous performance history of that
SLA, rather than what the user thinks (subjectively) of the service. This objective method
of reputation calculation removes the potential bias that users may have when they eval-
uate the services they use. Depending on the user input to derive an aggregate service
reputation has many documented problems in the literature [26] despite its apparent
appeal and widespread use in current information systems deployed on the Internet.

The idea that we depend on in this work is that past service performance as quanti-
fied in service feedback (4.4.4) gives a strong indicator of future performance, although
not at all times. Thus, the forecasting of the reputation needs to balance the past short-
term fluctuations with long-term consistent behaviour and adjust (according to some
criteria) the reputation value accordingly. Out of many possible statistical forecasting
and smoothing techniques (like Moving Average, Weighted Moving Average, or Simple
Exponential Smoothing (SES)), we will implement the reputation calculation using the
SES technique due to its simplicity and reasonable performance as described in [26].
Thus the reputation time series R(t) is computed using the feedback series f(t) as fol-
lows:

R(t) = αf(t) + (1− α)R(t− 1) (4.7)

Where α is a constant smoothing factor in [0, 1]. α acts as the weight of the most recent
feedback as well as an aging factor for all other feedbacks. The current (t) reputation is
rather a weighted average of the recent (t) feedback and the last (t−1) feedback. Higher
α values will give more weight to the most recent feedbacks but less for old ones.[26].

4.4.9 Storage Access Component

This component acts as the abstraction over the details of accessing the Broker Storage.
It provides interfaces for the other components in the Broker Services to interact with
the Broker Storage without being too coupled with the its choice of implementation.

The current choice of the Broker Storage is Chord [44], as in OSDA[28]. Thus, we
need application-specific keys to act as the routing keys for Chord. The Indexing Com-
ponent (4.4.10) is used for this task for all the functions performed by this component.

According to the current needs of the other components in the Broker Services, this
component provides the following functions:

1. Inserting a service description and its associated SLAs. Nothing is returned by
this function.

41

2. Retrieving and returning service description matches based on a description query.

3. Retrieving and returning service feedback history of an SLA based on its identifi-
cation (Provider, Service, SLA).

4. Updating a particular SLA feedback history with an new value. Nothing is re-
turned by this function.

4.4.10 Indexing Component

This component is dependent on the implementation of the Broker Storage. Its func-
tion is to facilitate the mapping from system data to the mechanism used by the Broker
Storage to store this data. For example, when Chord is used for P2P routing, this com-
ponent will generate the necessary keys to map the application data to the Chord key
namespace. Thus, the design of this component plays an important role in achieving ef-
fective and efficient load balancing. Improper design here might lead to skewed storage
and/or query load on the peer nodes.

4.5 Broker Storage

Our proposed system should scale to millions of users and many thousands of services.
Thus its back-end storage should be distributed to offer graceful scalability. For this
reason, we designed the back-end storage as a P2P network of cooperating nodes to
support the storage needs of the broker system. It consists of three main components:
a Peering Component, a Request Handler Component and a Database Access Compo-
nent.

4.5.1 Peering Component

The selected structure for this component is a Chord [44] ring. Chord is a very pop-
ular structured peer-to-peer network that is based on the Distributed Hash Table and
consistent hashing [23] concepts. It is known for its fault tolerance and self-stabilization
properties [43]. The use of Chord guarantees an upper bound ofO(logN) on the number
of hops for each routed request.

Each participating node in the broker storage implements this component to listen
for and route messages based on their application keys. The final routing destination
will pass the message to the Request Handler Component for parsing it and executing
the relevant action.

42

4.5.2 Request Handler Component

Based on the type of the message received from the Peering Component, this compo-
nent will interact with the Database Access Component to execute the required func-
tions. Therefore, this component will parse the system-specific requests (e.g. retrieving
service descriptions) to a generic database request that is sent to the Database Access
Component.

This component returns the results (if any) directly to the requesting Storage Access
Component. The contact information of the Storage Access Component should be used
from the original request coming to the Request Handler Component. Therefore, there
is no need to to route through the Broker Storage again for returning the response.

4.5.3 Database Access Component

This component is an abstraction over the database chosen to ultimately store and
retrieve all required system information. The generic requests it can receive include
Insert, Update, and Retrieve. Deleting information from the database is mainly used
to automatically delete outdated records. Future system design enhancement might
require the ability to explicitly delete specific information.

4.6 System User Interface

The System User Interface is mainly designed to illustrate simple use cases of the sys-
tem. It supports manual human input and interaction with the main system. We di-
vide it into four components: Administration Component, Client Interface Component,
Provider Interface Component and a Monitoring Interface Component.

4.6.1 Administration Component

The main functionality of this component is to initialize and tune the system to be used
by the other components and components. Some of the possible functions is to manage
authorized monitoring agents, assign agents to specific providers or services, managing
service description and SLA templates, and so on.

This last function requires further elaboration. The system relies on receiving mes-
sages and information in a proper format. This format or structure might or should

43

depend on the particular service category or type used. We cannot assume that all ser-
vice types should use the same attributes to describe their services or to constraint its
SLA performance since some of these attributes or constraints may be meaningless in
the domain of some services.

However, we assume that all services of a particular type should adhere to that
type’s template. This is necessary for the proper evaluation and ranking of offered ser-
vices to eventually give a meaningful comparison to potential service users.

The source of these templates is a point worth discussing as well. Practically, service
providers in a particular domain should agree to some approved or de facto standard
to describe their services. If such standard exists, our broker system should use it as
the service template. When the new services and service types emerge, however, the
system administration should try to come up with such representation and potentially
drive its standardization process along with help from partner service providers.

4.6.2 Client Interface Component

This interface part allows service requesters to interact with the system to browse and
search available service types as well as service descriptions and SLAs.

4.6.3 Provider Interface Component

This interface part allows service providers to interact with the system to browse and
search available service types as well as providing service descriptions and SLAs of the
services they want to advertise.

4.6.4 Monitoring Interface Component

This interface part allows monitoring system administrators to input service monitoring
reports of a specific SLA that they are contracted to monitor.

4.7 Data Model and Main Data Structures

In this section, we will describe the service information that our broker system relies on
to achieve its purpose. In particular, we describe how services are described, how SLA
information is represented and reported, what particular messages the system uses.

44

In dirSaaS, services are organized by a service type or category classification. A
service type or category is a general classification to group related service offerings to-
gether. Examples include productivity software services (e.g. Google Docs or Zoho),
Customer Relation Management - CRM (e.g. Salesforce) and Platform-as-a-Service (e.g.
force.com or Google App Engine). Each service type is associated with a service tem-
plate that provides the structure for describing the functionality as well as the quality of
the service. One can think of a template as an XML schema or a database schema. The
template just describes the structure of the service record. The broker manages this sys-
tem schema, which then is used by providers to populate the database with conforming
records or documents. The proposed system attempts to enforce standard service type
names, standard parameters (and their names, data types, allowed values,...etc.).

Neither the clients nor the providers are supposed to create their own templates to
describe advertisements or discovery requests. There may be a standardization body
or an industry consortium to standardize those templates. For example, SLP templates
and service types are IETF standards. Ontologies can be introduced to compare between
heterogeneous templates that describe the same service type. Unified templates at least
within one broker system are necessary for the correct behavior of the broker. There is
no advantage for letting each provider define their own terms and definitions in their
templates. In fact, that would introduce difficulties to detect the semantic differences
between them. The broker could utilize an already standardized or widely accepted
template to describe a particular service type. So, when a broker wants to allow a new
service type in its market, and no standard template exists for that type, a provider could
submit its template but the broker has to approve it to become visible. The broker may
also make its own templates or solicit a provider or a group of providers to develop such
a template. Instead of burdening providers to develop a new template each time they
advertise a new service type, the broker can implement this task (probably with inputs
from providers) and then all providers can just use the developed template to describe
their services. The broker in this case is promoting standard mechanisms for describing
services. This is in contrast to the real situation on the web today, where each provider
is free to describe its services using its own terms (usually in unstructured plain text)
and each provider claims their offerings are superior to other providers’ offerings.

Because of its expressive power, platform independence and acceptance in the In-
ternet, we are going to use XML as the basis of all data formats. To describe the used
structures more formally and less ambiguously, we will use the XML Schema language
to describe those structures and formats.

45

4.7.1 Service Description Model

The description model we use (USD+) is an extension of the Unified Description Model
(USD) that was used in OSDA [28]. As shown in figure 4.4, the description schema
consists of three parts that are enclosed in the overall document: meta information about
the description such as its expiry time and the service type; the description content
which specifies the general capabilities of the service; and a list of pointers to SLAs that
the service supports.

4.7.2 Service Level Agreement Model

SLA Information could be described in a variety of proposed methods in the literature
(e.g. WSLA [24], WSOL [45], SLAng [42]). At their core, any of these frameworks should
be usable with our system. What we effectively need from an SLA is shown in figure 4.5.
SLA is presented as a simple list of quality parameters, their definitions, and contracted
thresholds along with an abstract cost value. Almost all available SLA description lan-
guages offer this basic information albeit with much more information than we need for
the effective ranking of services based on their SLA performance.

4.7.3 Monitoring Report Model

The system uses two report models or types depending on where it is used. The indi-
vidual report that the monitoring agent submits to the system consists of a list of values
of the QoS parameters of the SLA they monitor. Along with the SLA identifier, this in-
formation would be enough for the system to retrieve the second report model. This
more complete model is shown in figure 4.6. It includes the full SLA information in
addition to the historical values of the SLA QoS parameters and the overall measure-
ments of utility and feedback. This more complete information is what gets stored and
retrieved by the system when any of that information is required.

4.7.4 System Messages

There are three types of message structures that are used by external components when
communicating with the system. These are described below.

Advertisement message: This message is sent by the service provider to the Advertise-
ment Component in the Broker Services. It contains two data structures:

46

C:\Dropbox\NewOSDA\src\schema\USD.xsd 02/09/2010 4:15:17 PM

©1998-2009 Altova GmbH http://www.altova.com Page 1Registered to Failed Thanks (Best Alto)

U...

root element

USD

type U...

UsdVersion

type xs:double

default 1.0

ServiceCategory

ServiceCategory

type ServiceCategory

CategoryID

type xs:anyType

CategoryName

type xs:string

CategorySchema

CategorySchema

type CategorySchema

Version

type xs:anySimpleType

Location

type xs:anyURI

ServiceID

ServiceID

type Service...

ProviderName

type xs:string

ProviderID

type xs:anySimpleType

LocalID

type xs:anySimpleType

ExpiryTime

ExpiryTime

type ExpiryTi...

attributes

GoodAfter

type xs:dateTime

GoodBefore

type xs:dateTime

Description

Description

type Description

Feature

Attribute

0 ∞..

type Featu...

attributes

name

type xs:string

AccessInfo

type xs:anyURI

SLAList
SLAURI

0 ∞..

type xs:anyURI

Figure 4.4: Data Model: Extended Unified Service Description (USD+) Schema

47

C:\Dropbox\NewOSDA\src\schema\SLA.xsd 02/09/2010 6:47:54 PM

©1998-2009 Altova GmbH http://www.altova.com Page 1Registered to Failed Thanks (Best Alto)

Comment describing your

root element

SLA

Sla...

SLAID

type Sla...

ProviderName

type xs:string

ProviderID

type xs:anySimpleType

LocalID

type xs:anySimpleType

LocalSLAID

type xs:anySimpleType

ExpiryTime

ExpiryTime

type ExpiryTime

attributes

GoodAfter

type xs:dateTi...

GoodBefore

type xs:dateTi...

OfferCost

type xs:double

derivedBy restriction

min/maxI... 0.00

OfferQoS QoSParameter

1 ∞..

attributes

Name

type xs:token

use required

GreaterIsBetter

type xs:boolean

use required

ThresholdValue

type xs:anySimpleType

use required

Figure 4.5: Data Model: SLA Simplified Schema

48

C:\Dropbox\NewOSDA\src\schema\SLAReport.xsd 02/09/2010 6:36:31 PM

©1998-2009 Altova GmbH http://www.altova.com Page 1Registered to Failed Thanks (Best Alto)

The document to store all
reports of a specific SLA

SLAReports

SLAURI

type xs:anyU...

Comment describing your

root element

SLA

SLAID

type Sl...

ExpiryTime

type ExpiryTi...

OfferCost

type xs:double

derivedBy restriction

min/maxI... 0.00

OfferQoS QoSParameter

1 ∞..

attributes

Name

type xs:token

use required

GreaterIsBetter

type xs:boolean

use required

ThresholdValue

type xs:anySimpleTy...

use required

Report

0 ∞..

attributes

ReportTime

type xs:dateTi...

use required

Measurements MetricMeasurement

1 ∞..

attributes

MetricName

type xs:token

use required

MeasuredValue

type xs:anySimpleTy...

use required

OverallUtility

type Percenta...

min/maxI... 0.00 1.00

Feedback

type Percenta...

min/maxI... 0.00 1.00

constraints

MetricNameIDkey

SLA/OfferQoS/QoSParam...selector

@Namefield

MetricNameRefkeyref

refer MetricNameID

Report/Measurements/Met...selector

@MetricNamefield

Figure 4.6: Data Model: SLA Complete History

49

• The service description content as represented in USD+.

• A list of the contents of each SLA of the service.

Discovery message: This message is sent by the service requester to the Discovery
Component in the Broker Services. This message contains four parts:

• The service description query based on the same USD+ model but with po-
tential empty attribute values.

• The SLA requirements based on the same SLA model but with potential
empty attribute values.

• The importance of quality in ranking discovered services represented as a
weight value between 0 and 1.

• The importance of cost in ranking discovered services represented as a weight
value between 0 and 1.

Monitoring Report Message: This message contains three parts:

• The identifier of the reported SLA. This includes a Provider ID, a Service ID,
and a local SLA ID.

• The report content as represented in the first report model (list of QoS values).

• A timestamp to indicate the date and time when the service data was col-
lected, not the time of the report submission.

4.8 Summary

In this chapter, we provided the detailed design of the proposed broker system and its
components. We also described how the system interfaces and messages with external
components and entities. In the next chapter, we are going to discuss the steps and
technologies used to implement a working prototype of the proposed system based on
the design choices in this chapter.

50

Chapter 5

System Implementation

Having described the design of our broker system in the last chapter, in this chapter we
delve into details of our prototype implementation. We describe the motivations and
tradeoffs when designing and implementing the various components of the system, and
compare the design choices in our system to those of OSDA [28], which is the basis of
our work.

5.1 Chapter Organization

In section 5.2 we describe the used technologies and frameworks for implementing the
various parts and their components. Then, we illustrate some of the implementation
enhancements of dirSaaS over OSDA in section 5.3. Finally, we describe some of the
new features of dirSaaS in 5.4 before summarizing in section 5.5.

5.2 Implementation Technologies

As the goal and scope of this system is to be an effective tool when interacting with In-
ternet applications, our choice of implementation technologies was focussed on Internet
standards and platform-independence using open-source frameworks and technolo-
gies. Because of the need for platform independence, we used Java as the programming
language, HTTP as the main transport protocol and XML as the format for all messages
and data structures. Web Services fit as a natural choice for such environment. We used
Java EE 6 standards, such as EJB, JAX-WS, JAXB, SDO, as the reference APIs. We also re-
lied on open-source components, such as GlassFish, JXTA, Chord, INS/Twine, Berkeley

51

DB XML. Since we have mainly web-based technologies, the resulting system is highly
modular and flexible. The system is distributed by nature and thus all its components
can be deployed on separate systems or all on the same machine. This helps dirSaaS
scale naturally in the face of increasing load.

We will now describe the data structures used by the system, followed by discussing
the implementation details of each part.

5.2.1 Data Structures

As described earlier and also in Section 4.7, XML is the de facto standard used to repre-
sent data in web applications and services for its expressive power and platform inde-
pendence. Multiple tools and frameworks now support XML naturally. Thus, it satisfies
the expressiveness design requirement that we described earlier in Section 3.5.

Since Web Services technologies use XML exclusively, then it would be a natural
choice for all messages internal and external to the system to be based on XML and
to use the latest XML binding technologies (static like JAXB and SDO, or dynamic like
SDO). For that choice to work best, our back-end data storage is also a native XML
Database (the embedded Berkeley XML DB).

5.2.2 Broker Core Services

The Broker Services functions as a Java EE Server. The components of this part are
implemented using stateless session Enterprise Java Beans (EJB) using the latest EJB
3.1 standard. They run on a GlassFish server. These EJBs cooperate with each other
to achieve their intended functionality. The components that support external system
interactions (Advertisement, Discovery, and Reporting) are deployed as public web ser-
vices. Those services can be accessed by other system parts mainly using SOAP/HTTP
and relying on JAX-WS as the underlying technology of choice for implementing SOAP/HTTP.
The input parameters to these services are XML documents that conform to our prede-
fined XML Schemas.

Advertisement Web Service

This web service represents the main access interface for service providers who wish to
advertise their services in the system. This web service is implemented as a one-way call
that does not return any response to the caller. Once the input advertisement has been
received, it is forwarded to the Broker Storage through the Storage Access Component
for storage.

52

Discovery Web Service

This web service represents the main access interface for service requesters who wish
to discover available services according to their functional and non-functional needs.
Since the service requester is waiting for the results, the natural implementation would
be a synchronous web service. However, since the steps required to get the final results
evaluated and ranked is complicated and requires a lot of messaging, it would be best
to change this web service to an asynchronous call and let the user know of the results
using callback or polling for example.

The enterprise bean implementing this web service acts as a controller, handling all
data retrieval and update from and to the P2P Broker Storage and forwarding them to
(sub) components for further processing. Thus, those sub components (like the evalu-
ation or reputation components) are decoupled from contacting the other components
and act as simple functions doing calculations over the passed data. Those other (inter-
nal) components are implemented as local EJBs and perform their specialized calcula-
tions that were described in the last chapter.

Reporting Web Service

This web service represents the reporting component of the system and its primary
function is to accept monitoring reports from monitoring agents and store them appro-
priately in the P2P Broker Storage after doing initial processing to calculate the utility
and feedback of the reported service using the (internal) Feedback Component. The
calculations were described in the last chapter.

Storage Access Component

This is the main access point to the Broker Storage from the Broker Core Services. It ab-
stracts the details of communicating with the P2P implementation, and provides those
communication facilities as high-level functions that handle the calls of appropriate
components.

The other functionality of this component is to receive callbacks from the P2P nodes
when they need to return some results to the Core Services. This functionality is im-
plemented as a special web service that will receive the results from the P2P nodes and
forward them to the requesting component appropriately.

53

Indexing Component

This component is an extended version of the Broker Request Handler and the Indexing
Component of OSDA [28]. Its main function is to create INS/Twine [8] strands that are
then hashed to generate the keys required for routing in the P2P Broker Storage.

Three kinds of keys are required in the new system for advertisements, queries as
well as SLA monitoring reports. Advertisement and query keys are generated in the
same manner as in OSDA. Multiple advertisement keys are generated based on the
service description attributes or capabilities. Advertisements are then sent to all peers
associated with those keys to improve redundancy and fault tolerance. Queries are gen-
erated from the same capabilities section but they get forwarded to the peer associated
with the key of the longest strand.

Keys for monitoring reports are generated differently. They are created by hashing
the ID of each SLA (4.7.2), which consists of the service ID and a unique number for
each SLA. The reason for this design choice is to distribute the storage of reports inde-
pendently of the description of their reported services.

5.2.3 Peer To Peer Implementation of the Broker Storage

Each participating peer node implements these components:

Peering Component

The peering component is implemented as a JXTA peer to take advantage of the boot-
strapping, authentication and secure communication facilities in the JXTA framework.
The peering components in all peers constitute a Chord ring, where Chord is used to
route requests between peers. Chord is a very popular structured peer-to-peer network
that is based on the Distributed Hash Table and consistent hashing concepts. It is known
for its fault tolerance and self-stabilization properties [43]. The use of Chord guarantees
an upper bound of O(logN) on the number of hops for each routed request.

Request Handler Component

The Request Handler Component receives the messages routed by the Peering Compo-
nent and, according to the type of the encapsulated message, calls the relevant database
operation appropriate for that type. The supported message types are insert, update,
and search and the syntax of each of those messages is in XPath/XQuery. If the mes-
sage type is search, the enclosing message includes return contact information to allow

54

this component to call the web service at that address, which according to our design is
the Storage Access Component in the Broker Services.

Database Access Component

This component handles the necessary API calls to Berkeley DB XML. BDB XML is an
embedded native XML database that is built on top of the popular Berkeley DB. Since it
is embedded, it can only be instantiated and called using its public API calls. This also
means that creating new DB instances is handled automatically when a new peer is ini-
tiated and no extra work needs to be done. BDB XML also includes full XPath/XQuery
processing, and allows (optional) XML Schema validation of inserted documents for
ensuring the integrity of XML records.

5.3 Enhancements to OSDA

5.3.1 System configuration

The OSDA broker implementation uses static XML configuration files to supply envi-
ronment parameters to the EJB broker components, like broker or peer address. This
is against the official EJB specifications (to access the filesystem directly). Furthermore,
these files were parsed using a custom XML parser that is internal to the implementa-
tion of a specific Jetty server. We have changed that to a dynamic form using JNDI en-
vironment entries parameters (with default values in ejb-jar.xml). The JNDI API allows
those values to be updated dynamically at runtime without recompiling/repackaging
the system.

5.3.2 Broker Implementation using EJBs

The enterprise beans have been updated to reflect the latest specifications (EJB 3.1) of the
Java EE 6 standard. This simplifies their development and maintenance. It also allows
using some of the latest Java enhancements like resource injection using annotations
(that were used for the system configuration described above).

5.3.3 UnifiedQuery model

It was argued [28] that the UnifiedQuery model is suitable as queries could be built
from advertisements. While this in theory appears reasonable, its representation in the

55

same XML Schema definition makes validation harder, as it depends on parsing the
type of message (Command). Indeed we could describe separate XML messages for
each type of request/response pair. An example from industry is the XML Schemas
for the OpenTravel Alliance (OTA) where each type of message request or response is
described in a separate XML Schema document and each of these schemas reuse inner
components that are shared between them. In our case, the inner Description element
and its associated Attribute elements could be reused between the two and the fact that
a query is a subset of the advertisement can be explicitly mentioned in the schema to
ease the validation.

5.3.4 XML Database Choice

The current OSDA implementation uses eXist native XML database to store advertise-
ments at the global P2P level. However, the implementation does not mandate nor
facilitate creating a separate instance for each peer to distribute the storage. So, in or-
der to assign a separate DB instance to each peer, manual deployment configuration is
needed (this includes manually starting the eXist database and recording its address in
a special configuration file that needs to be changed manually each time the address is
changed).

So to improve upon the previous OSDA architecture, we describe the following re-
quirements for a new choice of XML database. First, the database should support work-
ing in embedded mode so that it is instantiated and used implicitly by each running
JXTA peer, alleviating the need to manually create a database instance upon starting a
new peer and assigning the reference to it from the new peer. Second, it would also
be preferable to use an XML database that supports XML Schema validation - in the
sense that each xml document in a collection should validate against the specific schema
for that collection. Third, it should provide APIs for Java or alternatively some web
services-based or XMLRPC-based APIs. Fourth, supporting XQuery and its associated
XQJ standard would be also an advantage. XQJ is to XML data sources what JDBC is
to RDBMSs. Thus, using a standardized API to access the database allows to substitute
the implementation without changing the code.

As of August 2010, none of the available products in the market support all the pre-
vious requirements. We evaluated eXist (currently used in OSDA), Berkeley DB XML,
BaseX, Sedna, Mark Logic XML Server, MonetDB/XQuery, and Documentum xDB (for-
merly XHive). However, none of databases that support XQJ also provide embedded
mode, so the disadvantage of a stand-alone execution for our P2P design outweighs this
benefit.

We decided to use the Berkeley XML DB (over eXist) for the following main reasons:

56

• Per-document schema-validation (there is no mention of schemas or validation in
eXist).

• Embedded use inside application (although eXist has support for this, its authors
do not recommend it whereas BDB was built specifically as an embedded DB in-
side applications). In addition to the main requirement for the P2P nodes men-
tioned earlier, this feature eases administration considerably.

5.3.5 New approach for data binding

We propose to use JAXB and SDO instead of String objects that need to be parsed man-
ually. The use of Strings to represent XML content is frowned upon in the community
as it needs complete parsing before making use of it. This leaves us with XML data
binding approaches which include XMLBeans, Simple XML and others in addition to
JAXB and SDO. JAXB is the natural choice for web services as it is implicitly used by
JAX-WS tools. The only problem with JAXB is its static nature. XML Schema documents
have to be compiled separately before building and deploying the system and there is
no way to add new types at runtime (e.g. using a new schema that extends the default
one). SDO comes to rescue here as it allows both static binding and dynamic binding
which means it is possible to create or extend new types at runtime. We need such flex-
ibility to facilitate creating new service templates dynamically. We can rely on the static
strongly-typed JAXB API for accessing the system messages and main structure (USD,
Requests, Responses) and use the dynamic, weakly-typed SDO API for the templates of
the services.

5.4 New Features in dirSaaS

5.4.1 SLA-related Design Choices

Since importing and using SLA information is a new requirement for our system in
comparison to OSDA, we need to review the path this information is taking inside the
system and how it is eventually stored and retrieved.

We propose to separate storage of USDs from their associated SLAs. The USD will
still keep pointers to the SLAs to facilitate their retrieval based on the retrieval of the
USD document itself. The SLA information, however, will be stored separately along
with its associated monitoring data. This will facilitate the monitoring implementation
since a monitoring report may not include USD information but only SLA information.

57

The current approach to generate P2P routing keys for USDs is to hash the descrip-
tion content along with the broker URL. Since SLAs are stored with their monitored
data, We propose to generate keys for SLAs based on the hash value of the SLA ID only.
The ID of an SLA consists of the service ID in addition to a unique SLA number if the
service supports multiple SLAs. The ID of each supported SLAs will be stored in the
USD itself as we previously mentioned. Thus upon discovery of USD matches, it is an
easy task to retrieve their associated SLAs. When a monitoring agent submits a report,
it submits the ID of the associated SLA as well. Using this ID, we can retrieve the full
SLA history and update it with the new report (and the derived calculations of utility
and feedback).

5.5 Summary

In this chapter, we elaborated on the design choices and tradeoffs for implementing the
different parts and components of dirSaaS. We showed how the new dirSaaS prototype
extends and improves the implementation of OSDA to achieve the new requirements of
our system.

58

Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

This thesis describes a comprehensive framework for a SaaS service directory that al-
lows personalized search and evaluation of functional and non-functional service pa-
rameters. As such, it introduces several features currently missing in current works
in service description and discovery: a structured schema for describing functional and
non-functional service description and quality parameters; an interface to accept service
monitoring reports about previous service execution performance; a scalable directory
of service information and feedbacks; and a personalized service recommendation en-
gine that takes previous service performance in consideration.

The core of the service directory is the service description scheme, which uses sim-
ple, extensible schemas to describe both functional service capabilities and non-functional
service quality guarantees. Along with easier parsing and processing of the service in-
formation, this structure allows simple, template-based creation of service description
and queries, benefiting both service providers and service requesters.

The structure of the simple service quality schema serves as a basis for the second
main contribution of this thesis: an approach for integrating the service management
platform with third-party service monitoring agents who are contracted to monitor and
submit reports of service performances of current subscribed service users.

Meanwhile, service providers benefit from being able to advertise the existence and
features of their service offers using a single, eventually standardized template and to
easily compare with other providers using the same template. This same template will
be used by service requesters, making search easier and more comprehensible, and pro-
viding incentives for providers to outperform their competitors.

59

Another contribution of this thesis is the use of an innovative approach to storing
and indexing service descriptions, as well as SLA guarantees and runtime reports. Each
service description is stored using multiple identification keys that are generated by
hashing over partial strands of its content. When key ranges are assigned to multiple
participating directory (peer) nodes, the information is effectively replicated and can
tolerate partial failures in parts of the storage nodes network. When searching, partial
information in the query can then be matched to any corresponding key, gaining access
to the full advertised record. SLA information is stored in a possibly different location
than the corresponding service description, helping to avoid malicious attacks targeted
against the sensitive and influential service monitoring information.

The main contribution of this thesis is the integration of the monitoring-based feed-
back and reputation mechanisms as the core for evaluating and selecting services. The
generated recommendations are thus more objective and accurate than any user-based
feedback system.

6.2 Future Directions

As with all large frameworks, there are a few major difficulties in the design and imple-
mentation of this service directory. We will discuss them here in the context of potential
future work that would help resolve these difficulties.

One of the difficulties is that the service description and SLA schemas would require
service providers to agree on common terminology and templates for their advertised
offers to be compatible with each other. Once a comprehensive collection of service
templates becomes available or standardized, developing service descriptions and SLAs
would become much simpler, but the initial creation of such a collection would require
a significant effort. Since the creation of such standards is far beyond the scope of this
work, future work should study this problem and whether it can be solved in an efficient
manner.

The design of the SLA information and monitoring storage introduces another diffi-
culty. The current approach requires that all submitted quality reports should be stored
to obtain all the necessary information for evaluation and recommendation. The SLA
guarantees should be fully parsed and understood by the system to process this infor-
mation. Future work should study if only summaries or abstracted information can be
stored to reduce both storage and processing overhead. This problem is exacerbated
when the frequency of monitoring reports is high or when a very large number of ser-
vices exist. Solving the previous issue might also allow the system to be agnostic to the
format or language used to represent SLA information, thus supporting more advanced
SLA languages like the one proposed in [42].

60

The current proposed system assumes that service monitoring agents exist and can
access the system to submit their reports. Thus, future work should investigate service
and SLA monitoring and compare the existing works on this subject.

Finally, it would be worthwhile to address support for more sophisticated queries
in the service directory, with a good analysis of what types of queries should or should
not be handled in the global index or passed to the back-end database.

61

Bibliography

[1] Karl Aberer. P-grid: A self-organizing access structure for p2p information sys-
tems. In Carlo Batini, Fausto Giunchiglia, Paolo Giorgini, and Massimo Mecella,
editors, CoopIS: International Conference on Cooperative Information Systems, volume
2172 of Lecture Notes in Computer Science, pages 179–194. Springer, September 4-7
2001. 17

[2] Omotunde Adebayo, John Neilson, and Dorina Petriu. A performance study of
client-broker-server systems. In CASCON: IBM Centre for Advanced Studies Confer-
ence, page 1. IBM Press, 1997. 7

[3] Vikas Agarwal, Girish Chafle, Koustuv Dasgupta, Neeran M. Karnik, Arun Kumar,
Sumit Mittal, and Biplav Srivastava. Synthy: A system for end to end composition
of web services. Web Semantics: Science, Services and Agents on the World Wide Web,
3(4):311–339, 2005. 13

[4] R. Ahmed, N. Limam, J. Xiao, Y. Iraqi, and R. Boutaba. Resource and service dis-
covery in large-scale multi-domain networks. IEEE Communications Surveys and
Tutorials, 9(4):2 –30, quarter 2007. 11, 12, 17, 25

[5] J. Allard, V. Chinta, S. Gundala, and III Richard, G.G. Jini meets upnp: an archi-
tecture for jini/upnp interoperability. In SAINT: International Symposium on Appli-
cations and the Internet, pages 268 – 275, jan. 2003. 11

[6] Gostavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services -
Concepts, Architecture, and Applications. Springer, 2004. 7

[7] Danilo Ardagna and Barbara Pernici. Global and local qos guarantee in web ser-
vice selection. In Christoph Bussler and Armin Haller, editors, BPS: Workshop on
Business Processes and Services, volume 3812, pages 32–46, Sep. 5 2005. 13

[8] Magdalena Balazinska, Hari Balakrishnan, and David R. Karger. Ins/twine: A
scalable peer-to-peer architecture for intentional resource discovery. In Pervasive:
International Conference on Pervasive Computing, pages 195–210, 2002. 54

62

[9] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. Owl 2 web ontology
language, 2009. 11

[10] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron.
One ring to rule them all: service discovery and binding in structured peer-to-
peer overlay networks. In ACM SIGOPS European Workshop, pages 140–145. ACM,
2002. 18

[11] Elizabeth Chang, Tharam Dillon, and Farookh K. Hussain. Trust and Reputation for
Service-Oriented Environments. Wiley, 2005. 6

[12] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services de-
scription language (WSDL) 1.1. Technical report, W3C, 2001. 11

[13] Edith Cohen and Scott Shenker. Replication strategies in unstructured peer-to-peer
networks. In SIGCOMM: ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 177–190, Pittsburgh,
Pennsylvania, USA, 2002. ACM. 17

[14] Andrew Conry-Murray. There’s no such thing as a private cloud, 2009. 16

[15] Asit Dan, Doug Davis, Robert Kearney, Alexander Keller, Richard P. King, Diet-
mar Kuebler, Heiko Ludwig, Mike Polan, Mike Spreitzer, and Alaa Youssef. Web
services on demand: Wsla-driven automated management. IBM Systems Journal,
43(1):136–158, 2004. 11

[16] John R. Douceur. The sybil attack. In Peter Druschel, M. Frans Kaashoek, and
Antony I. T. Rowstron, editors, IPTPS: International workshop on Peer-To-Peer Sys-
tems, volume 2429 of Lecture Notes in Computer Science, pages 251–260. Springer,
Mar. 7-8 2002. 3

[17] John Garofalakis, Yannis Panagis, Evangelos Sakkopoulos, and Athanasios Tsaka-
lidis. Web service discovery mechanisms: Looking for a needle in a haystack? In
International Workshop on Web Engineering, in Conference Hypertext 2004, 2004. 18

[18] Roger Grimes. Cloud computing is more secure than you think, May 2010. 17

[19] E. Guttman. Service location protocol: automatic discovery of ip network services.
IEEE Internet Computing, 3(4):71 –80, jul/aug 1999. 11

[20] Bernhard Haslhofer and Wolfgang Klas. A survey of techniques for achieving
metadata interoperability. ACM Computing Surveys, 42(2):1–37, 2010. 10

63

[21] Ching-Lai Hwang and Kwangsun Yoon. Multiple Attribute Decision Making, Meth-
ods and Applications - A State-of-the-Art Survey. Springer-Verlag, 1981. 13

[22] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, 43(2):618–644, 2007.
13

[23] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: distributed caching protocols
for relieving hot spots on the world wide web. In STOC: ACM Symposium on Theory
of Computing, pages 654–663, El Paso, Texas, United States, 1997. ACM. 42

[24] Alexander Keller and Heiko Ludwig. The wsla framework: Specifying and mon-
itoring service level agreements for web services. Journal of Network and Systems
Management, 11(1):57–81, 2003. 11, 47

[25] K. Kritikos and D. Plexousakis. A semantic qos-based web service discovery algo-
rithm for over-constrained demands. In NWeSP: International Conference on Next-
generation Web Services Practices, pages 49 –54, oct. 2007. 11

[26] N Limam and R Boutaba. Assessing software service quality and trustworthiness
at selection time. IEEE Transactions on Software Engineering, 36(4):559 – 574, July-
Aug. 2010. 13, 14, 26, 36, 37, 38, 39, 40, 41

[27] Noura Limam and Raouf Boutaba. Qos and reputation-aware service selection. In
NOMS: IEEE/IFIP Network Operations and Management Symposium, pages 403–410.
IEEE, Apr. 7-11 2008. 13, 14

[28] Noura Limam, Joanna Ziembicki, Reaz Ahmed, Youssef Iraqi, Tianshu Li, Raouf
Boutaba, and Fernando Cuervo. Osda: Open service discovery architecture for
efficient cross-domain service provisioning. Computer Communications, 30(3):546–
563, 2007. 11, 12, 18, 24, 41, 45, 51, 54, 55

[29] Stephen Paul Marsh. Formalizing Trust as a Computational Concept. PhD thesis,
University of Stirling, April 1994. 13

[30] E. Michael Maximilien and Munindar P. Singh. Conceptual model of web service
reputation. ACM SIGMOD Record, 31(4):36–41, 2002. 14

[31] E. Michael Maximilien and Munindar P. Singh. Toward autonomic web services
trust and selection. In ICSOC: International Conference On Service Oriented Comput-
ing, pages 212–221. ACM, 2004. 14

[32] Peter Mell and Tim Grance. The nist definition of cloud computing, 2009. 14

64

[33] Lik Mui, Mojdeh Mohtashemi, and Ari Halberstadt. A computational model of
trust and reputation. In HICSS: Hawaii International Conference on System Sciences,
pages 2431–2439, 2002. 13

[34] OASIS. Uddi version 3.0.2, 2004. 11

[35] OASIS. Reference model for service oriented architecture 1.0, 2006. 7

[36] Justin O’Sullivan, David Edmond, and Arthur H. M. ter Hofstede. What’s in a
service? Distributed and Parallel Databases, 12(2/3):117–133, 2002. 11

[37] M. P. Papazoglou and D. Georgakopoulos. Service oriented computing: Introduc-
tion. Communications of the ACM, 46(10):24–28, 2003. 7

[38] Franco Raimondi, James Skene, and Wolfgang Emmerich. Efficient online monitor-
ing of web-service slas. In SIGSOFT FSE: ACM SIGSOFT International Symposium
on Foundations of software engineering, pages 170–180, Atlanta, Georgia, 2008. ACM.
13

[39] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
scalable content-addressable network. In SIGCOMM: ACM SIGCOMM Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communication,
pages 161–172, San Diego, California, United States, 2001. ACM. 18

[40] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systems. In Middleware:
ACM/IFIP/USENIX International Middleware Conference, pages 329–350, 2001. 18

[41] Brahmananda Sapkota, Laurentiu Vasiliu, Ioan Toma, Dumitru Roman, and
Christoph Bussler. Peer-to-peer technology usage in web service discovery and
matchmaking. In WISE: International Conference on Web Information Systems Engi-
neering, volume 3806 of Lecture Notes in Computer Science, pages 418–425. Springer,
2005. 11

[42] James Skene, Franco Raimondi, and Wolfgang Emmerich. Service-level agreements
for electronic services. IEEE Transactions on Software Engineering, 36(2):288 –304,
march-april 2010. 11, 47, 60

[43] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek, and
H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet appli-
cations. IEEE/ACM Transactions on Networking, 11(1):17 – 32, feb 2003. 42, 54

65

[44] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
SIGCOMM: ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pages 149–160, San Diego, California,
United States, 2001. ACM. 17, 18, 41, 42

[45] Vladimir Tosic, Kruti Patel, and Bernard Pagurek. Wsol - web service offerings
language. In WES: Web Services, E-Business, and the Semantic Web - CAiSE Workshops,
pages 57–67, 2002. 11, 47

[46] Aphrodite Tsalgatidou and Thomi Pilioura. An overview of standards and re-
lated technology in web services. Distributed and Parallel Databases, 12(2/3):135–
162, 2002. xi, 8

[47] Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, Abhijit Patil, Swapna Ound-
hakar, and John Miller. Meteor-s wsdi: A scalable p2p infrastructure of registries
for semantic publication and discovery of web services. Information Technology and
Management, 6:17–39, 2005. 18

[48] Le-Hung Vu, Manfred Hauswirth, and Karl Aberer. Qos-based service selection
and ranking with trust and reputation management. In Robert Meersman, Za-
hir Tari, Mohand-Said Hacid, John Mylopoulos, Barbara Pernici, Özalp Babaoglu,
Hans-Arno Jacobsen, Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra,
editors, CoopIS: International Conference on Cooperative Information Systems, volume
3760 of Lecture Notes in Computer Science, pages 466–483. Springer, Oct. 31 - Nov. 4,
2005. 14, 24, 36

[49] W3C. Web services architecture. Technical report, W3C Working Group Note, 2004.
xi, 7, 9

[50] Jim Waldo. The jini architecture for network-centric computing. Communications of
the ACM, 42(7):76–82, 1999. 11

[51] Giorgos Zacharia and Pattie Maes. Trust management through reputation mecha-
nisms. Applied Artificial Intelligence, 14(9):881–907, 2000. 13, 14

[52] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and
Quan Z. Sheng. Quality driven web services composition. In WWW: International
Conference on World Wide Web, pages 411–421. ACM, 2003. 14

[53] Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. Qos-aware middleware for web services com-
position. IEEE Transactions on Software Engineering, 30(5):311–327, May 2004. 13,
14

66

[54] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz.
Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications, 22(1):41 – 53, jan. 2004. 18

67

	List of Figures
	Introduction
	Motivation
	Objectives
	Contributions
	Organization

	Background
	Introduction
	Chapter Organization
	Definitions and Terminology
	Web Services and Service Oriented Architecture
	Service Modeling: Description, Quality, and Service Level Agreements
	Service Discovery
	Service Selection and Ranking
	Trust and Reputation
	Cloud Computing and the as-a-Service Model
	P2P Systems and Architectures
	Summary

	Overview, Design Requirements and Usage Scenarios
	Introduction
	Chapter Organization
	Modeling Service Interactions
	Basic Client-Provider Interaction Model
	Advanced Broker-based Interaction Model

	Proposed Architecture: dirSaaS
	Design Goals
	Directory: Scalable Architecture
	Discovery: Effectiveness
	Data Models: Expressiveness
	Recommendation: Objectiveness and Personalization

	Usage Scenarios
	Service Advertisement
	Service Discovery
	Service Ranking and Recommendation
	Feedback

	Summary

	System Design Specifications
	Introduction
	Chapter Organization
	Supported Interaction Scenarios
	Advertisement Use Case
	Discovery and Recommendation Use Case
	Feedback Use Case

	Broker Core Services
	Advertisement Component
	Discovery Component
	Reporting Component
	Feedback Component
	Match Making Component
	Evaluation Component
	Scoring Component
	Reputation Component
	Storage Access Component
	Indexing Component

	Broker Storage
	Peering Component
	Request Handler Component
	Database Access Component

	System User Interface
	Administration Component
	Client Interface Component
	Provider Interface Component
	Monitoring Interface Component

	Data Model and Main Data Structures
	Service Description Model
	Service Level Agreement Model
	Monitoring Report Model
	System Messages

	Summary

	System Implementation
	Chapter Organization
	Implementation Technologies
	Data Structures
	Broker Core Services
	Peer To Peer Implementation of the Broker Storage

	Enhancements to OSDA
	System configuration
	Broker Implementation using EJBs
	UnifiedQuery model
	XML Database Choice
	New approach for data binding

	New Features in dirSaaS
	SLA-related Design Choices

	Summary

	Conclusion and Future Work
	Summary of Contributions
	Future Directions

	Bibliography

