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Abstract

For longitudinal data where the response and time-dependent predictors within each in-

dividual are measured at distinct time points, traditional longitudinal models such as

generalized linear mixed effects models or marginal models cannot be directly applied. In-

stead, some preprocessing such as smoothing is required to temporally align the response

and predictors.

In Chapter 2, we propose a binning method, which results in equally spaced bins of

time for both the response and predictor(s). Hence, after incorporating binning, tradi-

tional models can be applied. The proposed binning approach was applied on a longitu-

dinal hemodialysis study to look for possible contemporaneous and lagged effects between

occurrences of a health event (i.e., infection) and levels of a protein marker of inflamma-

tion (i.e., C-reactive protein). Both Poisson mixed effects models and zero-inflated Poisson

(ZIP) mixed effects models were applied to the subsequent binned data, and some impor-

tant biological findings about contemporaneous and lagged associations were uncovered. In

addition, a simulation study was conducted to investigate various properties of the binning

approach.

In Chapter 3, asymptotic properties have been derived for the fixed effects association

parameter estimates following binning, under different data scenarios. In addition, we

propose some leave-one-subject-out cross-validation algorithms for bin size selection.

In Chapter 4, in order to identify levels of a predictor that might be indicative of recently

occurred event(s), we propose a generalized mixed effects regression tree (GMRTree) based

method which estimates the tree by standard tree method such as CART and estimates the

random effects by a generalized linear mixed effects model. One of the main steps in this

method was to use a linearization technique to change the longitudinal count response into

a continuous surrogate response. Simulations have shown that the GMRTree method can

effectively detect the underlying tree structure in an applicable longitudinal dataset, and
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has better predictive performance than either a standard tree approach without random

effects or a generalized linear mixed effects model, assuming the underlying model indeed

has a tree structure. We have also applied this method to two longitudinal datasets, one

from the aforementioned hemodialysis study and the other from an epilepsy study.
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Chapter 1

Introduction

1.1 Introduction to longitudinal studies

Longitudinal studies are increasingly common in many areas of research including medicine,

public health, and the social sciences. The defining feature of longitudinal studies is that

individuals are repeatedly measured over time. This is in contrast to cross-sectional studies,

where a single outcome is measured for each individual. The primary goal of a longitudinal

study is often to characterize the change in responses over time as well as factors that

influence this change.

To analyze longitudinal data, mainly three types of models are used: mixed effects

(conditional) models, marginal models and transition models.

For mixed effects models, Harville (1977) introduced a general class of two-stage linear

mixed effects models and variance component estimation procedures via maximum likeli-

hood and restricted maximum likelihood. Laird and Ware (1982), and Lindstrom and Bates

(1988) proposed iterative estimation procedures for linear mixed effects models. Vonesh

and Carter (1987) proposed a non-iterative procedure for estimation of model parameters.
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Cnaan et al. (1997) provided a detailed review of linear mixed effects models with an

application to a schizophrenia clinical trial. Non-linear mixed effects models have been

proposed by many authors for different applications; for example, Lindstrom and Bates

(1990) proposed an iterative EM-type algorithm for parameter estimation for a two-stage

non-linear mixed effects model, which can be applied to non-linear longitudinal data such

as in pharmacodynamics and pharmacokinetics.

Generalized linear mixed models (GLMMs) are widely used in longitudinal studies

where the responses are non-normal, such as binary and count responses. When estimating

parameters for GLMMs, the most common strategy is to obtain the marginal likelihood

by integrating the random effects out from the joint likelihood of the observable responses

and random effects. However, it is very computationally intensive due to evaluation of

high-dimensional integrals, and often cannot be solved in closed form. To handle these

concerns, Stiratelli et al. (1984) discussed an EM algorithm approach for binary response

data with Gaussian random effects. Longford (1993) discussed an approach based on direct

maximization of the likelihood. Anderson and Aitkin (1985) proposed to use adaptive

Gaussian quadratures for the evaluation of integrals over the random effects. See also

Crouch and Spiegelman (1990), Press et al. (1992), McCulloch(1994), and Liu and Pierce

(1994) for more information on quadrature method. But the quadrature methods can

have trouble with many random effects and/or with too many nested levels of random

effects. As an alternative, Tierney and Kadane (1986), Solomon and Cox (1992), Liu and

Pierce (1993) proposed Laplace approximations of the integrated likelihood. Breslow and

Clayton (1993) proposed the penalized quasi-likelihood (PQL) approach as an attempt

to extend quasi-likelihood to GLMMs. See also Schall (1991), Wolfinger and O’Connell

(1993), McGilchrist (1994) for similar approaches as PQL. Breslow and Lin (1995), Lin

and Breslow (1996) have shown that PQL estimators can be biased and inconsistent for

highly non-normal (e.g., binary) responses. Goldstein (1991) proposed marginal quasi-

likelihood (MQL) approach for estimating the parameters for GLMMs. Lee and Nelder
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(1996, 2001) proposed a hierarchical likelihood model that avoids numerical evaluation of

the integral in the likelihood function. Sutradhar et al. (2008), Jowaheer et al. (2009)

and Sutradhar (2010) proposed a generalized quasi-likelihood (GQL) approach for familial-

longitudinal data such as binary and count data. GQL method will not only account for

familial random effects, but also allows for specification of the correlation structure of

the longitudinal observations. See also Sutradhar (2003) for GQL method. There are also

other approaches to estimate the parameters of GLMMs, such as Monte Carlo ML methods

(McCulloch, 1997; Booth and Hobert, 1999), Gibbs sampling Bayesian method (Zeger and

Karim, 1991) and stochastic approximation method (Gu and Kong, 1998).

For marginal modeling, Liang and Zeger (1986) and Zeger and Liang (1986) introduced

generalized estimating equations (GEE). The pioneering paper of Godambe (1960) eluci-

dated the optimality theory for estimating functions which laid a theoretical foundation for

GEE. Prentice (1988) and Zhao and Prentice (1990) proposed extensions of GEE method-

ology to incorporate assumptions and estimation of higher-order moments. The resulting

methods have been called GEE2.

Transition models examine the effect of past response and covariates on the transition

patterns across responses (continuous or discrete) over time. Various autoregressive-type

regression models exist for modeling transitional patterns in binary, categorical and ordinal

longitudinal data. See Cox (1970), Muenz and Rubinstein (1985), Zeger and Qaqish (1988)

on autoregressive models for binary data; Diggle et al. (2002), Fahrmeir and Kaufmann

(1987) on ordinal and repeated categorical data respectively. Cook et al. (2004) proposed

a continuous Markov model that incorporated multiplicative random effects to reflect the

clustering in processes within subjects.
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1.2 Mixed effects models

Mixed-effects models have been developed in a variety of disciplines, with varying names

and terminologies: random-effects models (statistics, econometrics), variance and covariance-

component models (statistics), hierarchical linear models (education), multi-level models

(sociology), contextual-effects models (sociology), random-coefficient models (economet-

rics), repeated-measures models (statistics, psychology).

Mixed models extend classical linear/generalized linear models by including random or

subject-specific effects in the structure for the mean. The random effects not only determine

(at least partially) the structure of correlation between observations on the same subject,

they also take account of heterogeneity among subjects, due to unobserved characteristics.

1.2.1 Linear mixed effects models (LMEs)

Since the appearance of Laird and Ware (1982), linear mixed models have been widely used

for analysis of clustered data, including longitudinal data. A linear mixed effects model

assumes that each subject’s measurements follow a linear regression model with random

effects, such as a random intercept and/or slope. A linear mixed effects model takes the

form

Yi = Xiβ + Ziui + ei, i = 1, . . . , N . (1.1)

• Yi = (Yi1, . . . , Yini
)
′
is a ni × 1 vector of repeated measures for subject i.

• Xi = (X
′
i1, . . . ,X

′
ini

)
′
is a ni × p matrix of covariates associated with fixed effects β,

where Xij = (Xij1, Xij2, . . . , Xijp)
′
, j = 1, 2, . . . , ni.

• β is a p× 1 vector of unknown population level fixed effects.

• Zi = (Z
′
i1, . . . ,Z

′
ini

)′ is a ni × q matrix of covariates associated with random effects

ui where Zij = (Zij1, Zij2, . . . , Zijq)
′
, j = 1, 2, . . . , ni.
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• ui is a q × 1 vector of unknown subject-specific random effects. In principle, any

multivariate distribution for ui could be assumed; however, in practice, it is typical to

assume that ui ∼ Nq(0,D), where D is an unknown q×q positive-definite covariance

matrix.

• ei is a ni × 1 vector of within-subject error terms for subject i. In practice, we

typically assume ei ∼ Nni
(0,Σi), where Σi is an unknown ni × ni positive-definite

covariance matrix.

• It is generally assumed u1, . . . ,uN are independent of each other, and e1, . . . , eN are

independent of each other. We also assume ui are independent of ei.

In (1.1), Zi is a known design matrix linking the vector of random effect ui to Yi. Zi is

most often a subset of columns of Xi. The random effect ui induces a correlation structure

for repeated measurements within a subject.

If Σi = σ2Ini
, then conditional on the random effects ui, the Yij are independent for

subject i, i.e., the Yij are conditionally independent given ui (conditional independence).

However, marginally, the Yij are not independent (for a given subject i), with the correlation

among the Yij for subject i being induced by the ui. Also, var(Yi) accounts for both

within-subject (or intrasubject) variability via Σi, and between-subject (or intersubject)

variability via ZiDZ
′
i, suggesting additional dependence among the Yi can be introduced

through Σi such as autocorrelated structure.

Usually the parameters (β,Σ,D) of LMEs are estimated by maximum likelihood or

restricted maximum likelihood (REML). The prediction of random effects ui are given by

the “empirical best linear unbiased predictor” (empirical BLUP) or the “empirical Bayes”

(EB) estimates. Refer to Verbeke and Molenberghs (2000), Fitzmaurice et al. (2004), for

example, for more details on estimation and inference for LMEs.
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1.2.2 Generalized linear mixed effects models (GLMMs)

For non-normal longitudinal data, especially for binary and count longitudinal data, gener-

alized linear mixed effects models are developed which extend the generalized linear model

by the inclusion of random effects into the model (see, for example, Breslow and Clayton

(1993)). Conditional on the random effects, it is assumed that responses from a subject

are independent observations from a distribution belonging to an exponential family. We

express the GLMMs as follows:

Yij|ui ∼ fYij |ui
(yij|ui)

fYij |ui
(yij|ui) = exp{yijγij − d(γij)

φ
− c(yij, φ)}

E[Yij|ui] = µij = d
′
(γij)

g(µij) = X
′
ijβ + Z

′
ijui (1.2)

where i = 1, . . . , N ; j = 1, . . . , ni. Xij and Zij are the covariate vectors for fixed effects

β and random effects ui respectively, which are similarly defined as in the linear mixed

effects model.

The assumptions for GLMMs are

• g(·) is some known link function, linking the conditional mean of Yij and the linear

form of the predictors (and random effects).

• Random effects ui is a q × 1 vector. The conditional distribution of Yij, given ui,

belongs to the exponential family. It is also assumed that Yij|ui are independent of

one another.

• var(Yij|ui) = φv(µij) where v(·) is a known variance function.

• The random effects are assumed to have some probability distribution. In practice,

it is typical to assume ui ∼ Nq×q(0,D).
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Let f(ui|D) be the density function of the multivariate normally distributed random

effects with mean 0 and covariance matrix D. The joint probability for Yi and ui can be

expressed as:

f(Yi,ui) = f(Yi|ui)f(ui) where f(Yi|ui) = f(Yi1|ui)f(Yi2|ui) . . . f(Yini
|ui) .

Then marginal probability for subject i is

fi(Yi|β,D, φ) =

∫ ni∏
j=1

f(Yij|ui, β, φ)f(ui|D)dui .

So the likelihood function for β,D, φ is

L(β,D, φ) =
N∏

i=1

fi(Yi|β,D, φ) =
N∏

i=1

∫ ni∏
j=1

f(Yij|ui, β, φ)f(ui|D)dui (1.3)

In order to solve the likelihood, integration over the random-effects distribution must be

performed. As a result, estimation is much more complicated than the case of linear mixed

effect models where the solution can be expressed in a closed form. Various approximations

for evaluating the integral over the random-effects distribution have been proposed in the

literature such as Gauss-Hermit quadrature method, Laplace method and penalized-quasi

likelihood (PQL). These approaches are summarized elsewhere including in Molenberghs

and Verbeke (2005) and McCulloch et al. (2008).

In this thesis, the approximation approach we emphasize is adaptive Gauss-Hermit

quadrature (AGQ), since this approach gives more accurate estimates than the Laplace and

PQL approaches, and it calculates the true likelihood rather than the pseudo-likelihood

from PQL. AGQ is more computationally intensive than PQL and Laplace. In fact,

Laplace is simply a version of Gaussian quadrature with a single quadrature point.
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1.3 Introduction to tree-based methods

The purpose of the analyses via tree-based algorithm is to determine a set of if-then logical

(split) conditions that permit accurate prediction or classification of cases. A classification

tree is used when we wish to predict or explain a categorical response variable, while a

regression tree is for a quantitative response variable.

The origins of classification trees date back to Morgon and Sonquist (1963) who de-

veloped AID (Automatic Interaction Detection). In the early 1970s, Morgan and Mes-

senger (1973) developed a sequential analysis program THAID to deal with classification

problems. Breiman et al. (1984) introduced the famous monograph “Classification and

regression trees” (CART). For CART, the regression tree is a piecewise constant estimate

of a regression function, constructed by recursively partitioning the data and sample space.

Thus the estimated regression function is unsmoothed. Chaudhuri et al. (1994) developed

smooth and unsmooth piecewise polynomial regression trees (SUPPORT) for continuous

data. However, the Chaudhuri et al. (1994) approach did not support categorical predic-

tors. Loh (2002) proposed the generalized unbiased interaction detection and estimation

(GUIDE), which supported categorical predictors and had the ability to detect pairwise

interactions and curvatures. CART performs splitting in a greedy fashion. It searches all

over the potential splitting points and splitting variables, then finds the best one accord-

ing to some splitting criterion. Both SUPPORT and GUIDE use signs of the residuals to

separate the observations into two classes and then uses two-sample t-tests or chi-square

tests for variable selection. The rationale behind GUIDE or SUPPORT is that if a fit-

ted model is unsatisfactory, the lack of fit would be reflected in the distributional pattern

of the residuals. GUIDE and SUPPORT do model fitting just once at each node and

hence allow for fast tree construction. Chaudhuri et al. (1995) extended Chaudhuri et

al. (1994) to support more generalized data types such as binary data, count data and

survival data. Bayesian approaches have also been developed for fitting tree structured
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models, e.g. Chipman et al. (1998) and Denison et al. (1998).

There are several tree-based methods for multiple responses, such as Segal (1992) for

longitudinal continuous response and Zhang (1998) for multiple binary responses. De’Ath

(2002) proposed multivariate regression trees for longitudinal environment data, which

is available as the R package mvpart (De’Ath 2006). Larsen and Speckman (2004) is a

variation of Segal (1992). Lee (2005, 2006) and Lee et al. (2005) proposed generalized

multivariate decision trees, which used generalized estimating equations and supported

general types of response variables such as binary and count. Hsiao and Shih (2007) ex-

tended the GUIDE (Loh, 2002) approach to multivariate normal responses. However, most

of the above tree-based methods assume the covariates are time-invariant. Galimberti and

Montanari (2002) proposed tree-based models for longitudinal continuous data with time-

varying covariates. Mixed effects model have also been used to build trees for longitudinal

data. Abdolell (2002) used tree models to find clusters based on a single predictor and

a longitudinal continuous outcome variable. The splitting criterion was based on a likeli-

hood ratio statistic (deviance) from the linear mixed effects model. This method has been

implemented in R package longRPart. Sela and Simonoff (2009) proposed a RE-EM tree

algorithm for continuous longitudinal data, which combined the flexibility of tree-based es-

timation method CART with the structure of linear mixed effects models for longitudinal

data. Sela and Simonoff (2009) has been implemented in the R package REEMtree.

In order to build a tree, we need to answer three basic questions:

1. Which criterion should we use to split a parent node into its two children nodes?

(splitting criterion)

2. How do we decide when a node become a terminal node? (stopping criterion)?

3. How to decide the right-size of a tree? (pruning)
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1.3.1 CART: classification and regression tree

Breiman et al. (1984) introduced the “Classification and regression trees” (CART). Sup-

pose Y is a response variable, and X is a set of predictors where X = (X1,X2, . . . ,Xp).

The general structure of CART model can be described by the conditional distribution of

Y given X. This model has two main components: a tree T with V terminal nodes, and

a parameter Θ = (θ1, θ2, . . . , θV ) ∈ RV which associates the parameter values θv with the

vth terminal node. Thus a tree model is fully specified by the pair (T, Θ). If X lies in the

region corresponding to the vth terminal node then Y|X has the distribution f(y|θv), where

we use f(·) to represent a conditional distribution indexed by θv. The model is called a

regression tree or a classification tree according to whether the response Y is quantitative

or qualitative, respectively.

Splitting a tree

Non-terminal node is split into two children nodes according to some rules s. If the obser-

vations meet the rules, then they are assigned to the left child node, otherwise to the right

child node. For quantitative predictors, the splitting rules are {Xi <= s} or {Xi > s}.
For qualitative predictors, the splitting rule is based on a category subset C, and assign

observations for which {Xi ∈ C} or {Xi /∈ C} to the left or right child node, respectively.

Assume the response Y is a factor taking outcomes 1, 2, . . . , K. For node τ , we define

the node impurity function i(τ) (Izenman, 2008) as

i(τ) = φ(p(1|τ), . . . , p(K|τ)) .

where p(k|τ) is an estimate of p(Yi = k|τ), the conditional probability of an observation Yi

in class k in terminal node τ . Usually p(k|τ) is estimated by

p̂(k|τ) =
1

Nτ

∑
xi∈Rτ

I(yi = k) ,
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where Nτ is the number of observations in node τ , Rτ is the region (covariate space)

represented for node τ . For classification tree, two commonly used functions for φ are

Gini index : i(τ) = −
K∑

k=1

p(k|τ)log[p(k|τ)] .

Entropy function : i(τ) =
∑

k 6=k
′
p(k|τ)(1− p(k

′|τ)) = 1−
K∑

k=1

p(k|τ) .

For binary outcomes, if p = p(2|τ), the proportion of the second class, then the two

measures are 2p(1− p), and −plog(p)− (1− p)log(1− p), respectively.

Now if τ is the terminal node, we will classify the observations in terminal node τ to class

k(τ) = argmaxkp(k|τ), the majority class in node τ . Then, an estimate of misclassification

rate in node τ is defined as

r(τ) = 1− argmaxkp(k|τ) = 1− p(k(τ)|τ) .

For a tree T with terminal nodes T̃ = {τ1, τ2, . . . , τV }, the estimated misclassification rate

is

R(T ) =
V∑

v=1

r(τv)p(τv) =
V∑

v=1

R(τv) , (1.4)

where p(τv) is the proportional of observations that fall into τv, R(τv) = r(τv)p(τv). R(T )

will be used for subsequently pruning.

For a regression tree, the conventional algorithm models the response in each region

Rv as a constant cv. Thus, the overall tree model can be expressed similarly as Hastie,

Tibshirani and Friedman (2001)

f(X) =
V∑

v=1

cvI(X ∈ Rv) ,

where Rv, v = 1, 2, . . . , V , consists of a partition of the predictors space, and therefore

represents the space of V terminal nodes. If we adopt the method of minimizing the
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estimate of prediction error

R(T ) =
1

N

∑
(Yi − f(Xi))

2 ,

as our criterion to characterize the best split, it is easy to see that the best ĉv is just the

average of Yi in region Rv:

ĉv = ave(Yi|Xi ∈ Rv) =
1

Nv

∑
Xi∈Rv

Yi ,

where Nv is the number of observations fall into terminal node v. Thus

R(T ) =
1

N

V∑
v=1

∑
Xi∈Rv

(Yi − ĉv)
2 =

V∑
v=1

R(τv) , (1.5)

where

R(τv) =
1

N

∑
Xi∈Rv

(Yi − ĉv)
2 = p(τv)s

2(τv) .

p(τv) = Nv/N is the proportion of observations in node v, s2(τv) =
∑

Xi∈Rv
(Yi − ĉv)

2/Nv

is the sample variance of node v. We can treat s2(τv) as the impurity function at node τv.

To split a node τ into left node τL and right node τR, goodness of split measure for a

regression tree is

∆(s, τ) = R(τ)−R(τL)−R(τR) , (1.6)

and it is the following for a classification tree

∆(s, τ) = i(τ)− pL(τL)i(τL)− pR(τR)i(τR) . (1.7)

where pL is the proportion of observations on the left child node, and pR is the proportion

of observations on the right child node. The best splitting point is the one that maximizes

∆(s, τ):

∆(s∗, τ) = maxs∈S∆(s, τ) .
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Pruning a Tree

To declare a node is a terminal node, one commonly used stopping rule is that the number

of observations in a node must be less than a certain predefined number. Another rule is

that if the largest goodness of split value in a node is smaller than a certain threshold.

However, these two rules do not turn out to be the best ideas in practice. A better approach

in Breiman et al. (1984) is to let the tree grow to overly large and then prune it back by

some pruning rules which are introduced in the following.

A tree too large might overfit the data, while a small tree may not be able to capture

the important structure. For CART, the tree is pruned by some cost-complexity criterion.

We define a subtree T ⊂ T0 to be any tree that can be obtained by pruning T0. Define

T̃ to be the set of terminal nodes of T . As before, we index the terminal nodes by v, with

node v representing region Rv. Let |T̃ | be the number of terminal nodes in T . The cost

complexity criterion is defined as (Breiman et al., 1984)

Rα(T ) = R(T ) + α|T̃ | . (1.8)

where α(> 0) is the complexity parameter. R(T ) defined in (1.4) is for classification tree,

and R(T ) defined in (1.5) is for regression tree.

For each α, find the subtree Tα ⊂ T0 to minimize Rα(T ). α is a tuning parameter.

Larger values of α result in smaller tree Tα. α = 0 suggests the full tree T0, and α = ∞
for no splits at all. Cross validation (such as 5-fold or 10-fold) is typically used to find a

best value of α.

Splitting criterion for Poisson data

For discrete response such as Poisson data, the data model is λ = f(X) where λ is an event

rate and X is some set of predictors. Let ci be the observed event count for observation i,
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ti be the observation time, and Xij, j = 1, . . . , p be the predictors. To split a node (parent)

into two child nodes (left and right), the splitting criterion is based on deviance D and

defined as

∆I = Dparent − (Dleft child + Dright child) , (1.9)

where

λ̂ =
# events

total time
=

∑
ci∑
ti

, and D =
∑

cilog(
ci

λ̂ti
)− (ci − λ̂ti) .

For each node to be split, we will find the split point and splitting variable which maximizes

∆I, similarly as continuous or binary response. More details can be found on Therneau,

Atkinson and Foundation (2007) regarding the R package rpart.

Advantages

The advantages of tree-based methods include

• Simplicity of results: in most cases, the interpretation of results summarized in a

tree is very simple. A new observation can be rapidly classified by using just a few

if-then conditions. Also it often yields a much simpler “model” for explaining why

observations are classified or predicted in a particular manner.

• Tree methods are nonparametric or nonlinear. Therefore there is no implicit as-

sumptions that the underlying relationship between the response and predictors are

linear, or follow some non-linear link functions, or even monotonic in nature. And in

a tree, the same variables can be split multiple times which indicates a non-monotonic

relationship between the response and this predictor.

• Invariant to monotone transformations: changing one or several splitting variables to

its logarithm or square root, for example, will not change the structure of the tree;

only the splitting values (but not variables) will be different.
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• Have the ability to handle more complex interactions between predictors than a

standard linear model can handle.

1.4 Binning and smoothing

Binning has been used in kernel smoothing such as density estimation by histogram (Wand

and Jones, 1995), where the real line is divided into equally spaced intervals (or bins). A

smaller binwidth leads to a relatively jagged histogram while a larger binwidth results in

a smoother looking histogram; however, too large a binwidth will result in lost underlying

structure. Histograms are also subject to the bias-variance tradeoff phenomenon as other

kernel density estimation or nonparametric kernel regression methods, such that bias in-

creases and variance decreases as binwidth increases, while the opposite occurs when the

binwidth decreases.

1.5 Motivation

This thesis research is originated from a hemodialysis study where the response (health

events, e.g. infection) and covariates (protein measurements, e.g., C-reactive protein) are

not measured on the same time points. Details of this data are described in Chapter 2.

The first goal is to find out the temporal association between health events and proteins

markers, such as contemporaneous association or lagged association. In order to do this, we

first need to align the response and covariates on the same time points. We have proposed

binning method prior to implementing longitudinal modeling. GLMMs and mixed zero-

inflated models have been applied on the binned data.

An additional goal is to find out whether different levels of C-reactive protein are indica-

tive of the number of occurrences of infection events. Thus we have proposed generalized
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mixed effects regression tree method which uses CART and GLMMs.

1.6 Outline of thesis

The organization of the thesis is as follows. In Chapter 2, the binning method are intro-

duced for longitudinal data where the response and time-dependent predictor(s) are not

measured on the same time points. Then the proposed binning approach are applied on

a longitudinal hemodialysis study to look for possible contemporaneous and lagged effects

between occurrences of a health event (i.e., infection) and levels of a protein marker of

inflammation (i.e., C-reactive protein or crp). Both Poisson mixed effects models and

zero-inflated Poisson (ZIP) mixed effects models are applied to the subsequent data. In

addition, extensive simulations are conducted to investigate various properties of the bin-

ning approach including within-subject variability, mismatch rate, correlation structure,

edge effects, and etc.

In Chapter 3, asymptotic properties of the binning estimates are derived. Leave-one-

subject-out cross-validation algorithms are proposed for bin size selection.

In Chapter 4, a generalized mixed effects regression tree based method (GMRTree) is

proposed. This proposed GMRTree approach is applied to a binned hemodialysis dataset

and an epilepsy seizure dataset. Simulations are done to evaluate the predictive perfor-

mance of GMRTree.

Chapter 5 provides a discussion of approaches proposed in the thesis, and future work

is enumerated.
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Chapter 2

A binning method for longitudinal

data measured at distinct time points

[Part of the work in this chapter has been published in Xiong and Dubin (2010)]

2.1 Introduction

For a longitudinal study, individuals are repeatedly measured over time. Typically, one or

more predictors, some possibly time-varying, and a longitudinal response of interest are

recorded across the same set of time points. To analyze a longitudinal dataset, tradition-

ally either mixed effects models (Laird and Ware, 1982; Breslow and Clayton, 1993) or

marginal models using generalized estimating equations (Liang and Zeger, 1986) are most

often implemented to help determine the association between the predictors, possibly in-

cluding time, and the longitudinal response. For certain longitudinal problems, transition

models may also be appropriate (Ware et al., 1988; Zeger and Qaqish, 1988; Cook et al.,

2004). However, in the scenario that the response and longitudinal predictors within each

individual are not measured at the same time points, we cannot directly apply traditional
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longitudinal modeling. Instead, some form of preprocessing such as smoothing of the data

is required in order to align the response and predictors to the same time points.

This work is motivated by two issues. The main motivation is based on the interests

of nephrologists who are curious about the timing of certain events of interest (such as

an infection) and serum protein markers of inflammation (such as C-reactive protein) for

patients on hemodialysis. Do such events and rises in these proteins occur simultaneously

or is there any evidence suggesting one process precedes the other?

The second motivation is based on the characteristics of a specific dataset provided

to attempt to answer the above questions. That is, the events and serum proteins in a

particular hemodialysis study (Kaysen et al., 2000 for discussion of the hemodialysis study

and longitudinal analysis) of serum proteins occurred at different measurement frequencies,

and, as a result, the health events and proteins were measured at different time points in

general. We describe a binning method in Section 2.3 to allow us to answer questions of

interest of the nephrologists in spite of the non-standard form of the original data. More

importantly, this method could be more generally applied to problems where a longitudi-

nal response and longitudinal predictors are mis-aligned in time and questions regarding

temporal association arise.

Event history analysis such as Cook and Lawless (2007), Aalen et al. (2008) could also

be applied to this type of data. However, for the problem at hand, scientifically we are not

as interested in the association of certain predictors and the (instantaneous) probability of

an event occurring in a window of time. Instead, we have interest in temporal ordering of

association including evidence that a longitudinal predictor precedes or follows (or occurs

contemporaneously) with an event of interest. For this reason, joint longitudinal and

survival modeling (e.g., Wulfsohn and Tsiatis, 1997) is not of interest for the particular

application under study, as we would like to consider lags of equidistant time span between

the event process and longitudinal process. Furthermore, the hemodialysis data has an
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event process that contains recurrent events for many subjects, further complicating any

consideration of joint modeling, even if equidistant time span between lags was not of

importance. Instead, we will use traditional longitudinal modeling to attempt to achieve

our modeling (and scientific) goals following a temporal alignment of the response and any

longitudinal predictors via binning.

The paper will be organized as follows. In Section 2.2, we will fully describe the

hemodialysis study that motivated the proposed methodology. In Section 2.3, we describe

the proposed binning methods to align the data, and the modeling steps based on the

resulting binned data. Section 2.4 presents the results of an analysis incorporating binning

from the hemodialysis study. In Section 2.5, we present a simulation study, which looks

at the effect of various conditions on the success of the binning approach. Finally, we offer

some concluding remarks in Section 2.6.

2.2 Description of a hemodialysis dataset

During hemodialysis, acute phase serum proteins can be measured longitudinally. These

include C-reactive protein (crp), albumin (alb), transferrin (trf), α-1 acid glycoprotein

(aag), and ceruloplasmin (cer). Both alb and trf belong to the class of negative acute-phase

proteins, whereas crp, aag, and cer belong to the class of positive acute phase proteins.

Proteins in the same class are positively correlated, while proteins in different classes are

negatively correlated, a relationship established over time (Dubin and Müller, 2005).

In the hemodialysis study focused upon in this paper, 53 subjects were longitudinally

measured for a period of up to 2 years. Information for these individuals included mea-

surement time of proteins, values of the proteins, and other patient data such as gender,

ethnicity, and body mass index (bmi) at study entry. The proteins were measured weekly

for each patient for the first seven weeks under observation, then monthly thereafter.

19



0 100 200 300 400

−
0.

5
1.

0
2.

0

protein data

days

lo
g(

cr
p)

event data

days

in
fe

ct
io

n

0 100 200 300 400

0
1

Figure 2.1: log(crp) and infection event over time for one subject

In addition to this protein data, event data, including information on cardiovascular

events, access events, and infections, were also available through patient chart records

measured three times a week. Good information was available on infection events (116 in

total), and, hence, infection events will be the focus in the analysis in this thesis. The

event information was not part of the original protein dataset and was not, in general,

measured at the same time, or frequency, as the proteins.

Intermittent missing data, on either the proteins or on chart record event occurrence,

was not an issue from this study sample. There were a few subjects who died during follow-
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up, so not all intended data, by design, was collected. There was no loss to follow-up for

reasons other than death.

To provide an illustration of the type of data we will be analyzing, we show a plot of

the main event of interest, infection, and the main protein of interest, crp, for one of the

patients in Figure 2.1. As the distribution of crp is skewed, the log transformation of crp is

taken to make the distribution closer to symmetric. Specifically, Figure 2.1 shows log(crp)

and infection events, respectively, for this patient followed for approximately 420 days. In

general, the proteins and events were measured at different time points.

There is another key feature of the infection event data that may not be immediately

apparent in Figure 2.1. Taking, for example, day 0 to day 50, there are no events displayed

on the plot in the lower panel, which simply represents no infection events occurring during

this period. Note that this is how the data were recorded, i.e., only events (and the days

on which they occurred) were entered in the original event dataset, whereas days where

no events were observed were never entered in the dataset, even though event data were

obtained three times per week for each subject. Also, it seems that for at least this patient,

after an infection event occurred, there was generally some increase in log(crp) levels, which

indicated that there could be a positive lagged association between log(crp) and infection

events. We have proposed a method in the next section to allow us to see if indeed this

result holds on average, across all patients.

2.3 Methodology

2.3.1 Binning method

For each subject, we implement a smoothing step by defining equally spaced bins of time

for the longitudinal response and predictor. Within each bin, we average the covariate and
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this will be used as new predictor for the remainder of the analysis. In addition, we sum

up the events within each bin, and this will be used as the new response. The notation is

defined as follows:

• Let Yij be the number of health events (e.g., infection) observed for subject i at time

j, where j = 1, 2, . . . , n
(Y)
i . In continuous time, we assume Yij is a binary variable,

but in discrete time (e.g., on a given day), Yij may be a count variable.

• Let Xik be a continuous time-varying predictor (e.g., log(crp)) for subject i observed

at time k for k = 1, 2, . . . , n
(X)
i , where, in general, the times represented by k do not

equal the times represented by j and n
(X)
i 6= n

(Y)
i .

• We then bin (X,Y) in equidistant units of time.

• Next we take the unweighted or weighted average (or sum) of variables within each

bin, for each individual.

• The resulting data will be (Xi,m, Yi,m), where m = 1, 2, , . . . , n
(X,Y)
i . There are a total

of n
(X,Y)
i bins for individual i.

In the above, we could bin multiple (say p) longitudinal predictors of interest, creating

Xi,m = (X1,i,m, X2,i,m, ..., Xp,i,m). In this paper, for the data analysis in Section 2.4, we will

use the unweighted bin average of one protein, focusing on crp, and the unweighted bin sum

of one event, focusing on infection events. In this new dataset after binning, each subject

has only one entry for each bin, i.e., (Xi,m, Yi,m), and each subject has several repeated

measurements (i.e., bins observed over time). This bears modest relation to histogram

smoothing, since the bins are not moving along with time once the bin size is fixed. Each

original data point is used only a single time, i.e., in the defined bin in which it resides.

Instead of equi-distant bins, variable-length binning could also be considered, though

this would not easily allow for consideration of a lagged association between binned response
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and predictor. We could also consider a weighted average within each bin, where the

weights could be based on, say, the number of original observations within a bin or based

on a measure of variability, and etc. In our analysis and simulation in this Chapter, we

will focus on equal bin width and unweighted average within bins, but these considerations

could be an area of future research.

Through this binning method, the longitudinal predictor and response become aligned

in time, and, hence, standard longitudinal modeling can be applied. Also, we can po-

tentially predict the expected total number of events occurring in a period of time using

the average predictor level during this time. For a lagged model, which will be further

discussed in Section 2.3.4, we could use the average current predictor levels to predict the

total number of events in a period of time in the future or provide guidance on event

occurrences in the past, assuming a lagged association can even be identified.

Consideration of different bin sizes will be application and study specific. We will dis-

cuss our method of bin size selection for the hemodialysis dataset in Section 2.4. Automatic

bin size selection choices could be used, e.g., using cross-validation, or pre-defined bin sizes

may be appropriate, assuming these are sensible for the data application and bounded be-

low in size by the data collection procedure. We mention one possible bin choice selection

approach in the Discussion. It will also be important to consider sensitivity of bin size

choice on any resulting model fit.

2.3.2 Generalized linear mixed effect model

For non-normal longitudinal data, generalized linear mixed effects models (Breslow and

Clayton, 1993) are often applied which extend the generalized linear model by inclusion

of random effects into the model. Marginal models using generalized estimating equation

(Liang and Zeger, 1986) are also a possibility. But we will here emphasize a mixed ef-

fects modeling approach, which will allow for subject-specific interpretation of association
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parameter estimates.

Recall that, after binning, the response is the sum of the events within each bin, which

is now count data. For a given bin size, conditional on random effects, we assume for

each subject, the event counts for each bin is independent and distributed as Poisson. The

reason the Poisson distribution is used is that, theoretically, we want to allow for the fact

that greater than one event can occur on any day, so we cannot impose a cap on the

number of events for a given bin size; if such a cap were known, we could use a Binomial

distribution assumption instead.

Given the above Poisson assumption, a generalized linear mixed effects Poisson regres-

sion model could be initially used to model this data with a standard log link function and

a single normally distributed random effect, i.e., a random intercept. To be more specific,

we consider the following GLMM

Yi,m|ui ∼ Poisson(λi,m)

log(λi,m) = β0 + β1 ∗Xi,m + ui

ui ∼ N(0, σ2
u) where i = 1, . . . , n; m = 1, . . . , n

(X,Y)
i .

Here, response Yi,m is the sum of events, and Xi,m is the averaged continuous predictor,

respectively, within the mth bin for individual i. The random ui terms are assumed inde-

pendent between subjects. Note that we are using the time notation m, as described in

Section 2.3.1, to emphasize the change from original time scale to the binned time scale,

and each subject i then has a total of n
(X,Y)
i (binned) repeated measurements. n

(X,Y)
i is

treated as fixed variable here.
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2.3.3 Mixed zero-inflated Poisson model with normal random

effects

Count data with excess zeros relative to a Poisson distribution are commonly encountered

in biomedical and public health applications (and appears to be a feature of our example

hemodialysis event data, with at least 85% of bins with 0 counts with the bins sizes

considered in our analysis in Section 2.4). One popular model to account for excess zeros

is the zero-inflated Poisson (ZIP) model (Mullahy, 1986; Lambert, 1992). Applications for

the ZIP model can be found in Böhning (1998), Ridout et al. (1998), Böhning et al. (1999),

Dietz and Böhning (2000), and Lee et al. (2001). Test for zero-inflation or overdispersion

of ZIP models can be found in Van den Broek (1995), Deng and Paul (2000), Jansakul

and Hinde (2002), Lee et al. (2004), and Ugarte et al. (2004). Hall (2000) has extended

the ZIP model to incorporate random effects. See also Yau and Lee (2001), Wang et al.

(2002), Xiang et al. (2006) and Xiang et al. (2007) for mixed ZIP models.

The standard ZIP model is a mixture of a Poisson component and a degenerate com-

ponent at point mass 0. Using general notation, let Y be a count response variable, then

Y ∼




0 with probability p

Poisson(λ) with probability (1− p) .

That is,

P (Y = y) =





p + (1− p)e−λ , y = 0

(1− p) e−λλy

y!
, y > 0 ,

meaning zeros are not only coming from the Poisson distribution.

In the longitudinal settings with covariates and random effects, usually we assume p

follows a logistic model and λ follows a log-linear model. With random effects vi and ui,
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the mixed ZIP model for longitudinal data is as follows:

logit(pij) = W
′
ijα + Z

′
1ijvi (2.1)

log(λij) = X
′
ijβ + Z

′
2ijui , (2.2)

where i = 1, . . . , n and j = 1, . . . , ni,

Wij and Xij are the covariate vectors for the fixed effects α and β respectively, where

some covariates may overlap between Wij and Xij. Z1ij and Z2ij are the covariate vectors

for random effects vi and ui respectively. The random effects ui and vi are assumed jointly

normal and possibly correlated,


 vi

ui


 ∼ MV N





 0

0


 ,


 Σ11 Σ12

Σ
′
12 Σ22





 ,

where Σ11, Σ12 and Σ22 are unknown positive-definite matrices. In practice, the simple

random intercept form of models is often adequate, in which vi = vi and ui = ui are

univariate and Z1ij = Z2ij = 1 (see Min and Agresti, 2005).

2.3.4 Contemporaneous and lagged models

A longitudinal response may change simultaneously with the longitudinal predictor of

interest. In this case, we use a standard contemporaneous approach where Yi,m is fitted

against Xi,m.

It is also possible that the longitudinal predictor changes prior to an individual expe-

riencing the longitudinal response. Of course, such a lagged relationship may occur in the

opposite direction, whereby a response occurs prior to a change in the predictor. In model

notation, we will be fitting Yi,m versus Xi,m−q as well as Yi,m−q versus Xi,m, the former

suggesting the predictor leads the response and the latter suggesting the response leads
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the predictor. Here q is the lag order. Consideration of lags using the binned method-

ology from Section 2.3.1 is quite straightforward, as the bins are of equal size across the

observational time period of each subject.

We discuss these models further, with regard to the hemodialysis example, in Section

2.4.

2.4 Analysis of the hemodialysis data

2.4.1 Analysis setup

For the hemodialysis dataset, we will be fitting both the generalized linear mixed effects

models and mixed ZIP models presented in Sections 2.3.2 and 2.3.3. For bin size selection,

we used bin sizes that made sense given the data collection. Specifically, bin sizes included

30 days, and 45 days, noting that after the first seven weeks of follow up, protein (crp)

measurements were obtained every 30 days. However, there is a chance that an infection

and crp level may be associated within a period of time closer than 30 days, especially if

we want to consider a lagged association. So a 7-day bin size is also used, but only on the

data from the first seven weeks of the study, as such a small bin size would not be possible

following the first seven weeks of follow-up, unless we further interpolated the data, say

using a curve-based approach. Here, we will consider two datasets for analysis:

1. the full dataset including all longitudinal observations, with a minimum bin size of

30 days, and

2. a subset of the full dataset, where only the first seven weeks of follow-up for each

patient is considered, with a minimum bin size of 7 days.
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The lagged investigation is of key interest to the principle investigator of the nephrology

study. Specifically, lagged models are used to check whether the infection events appear

to occur before or after a rise in the crp levels, as this could help answer an important

bidirectional question about which process possibly precedes the other, if any. Due to the

large bin sizes in the full dataset, it is not biologically meaningful to consider lags (i.e.,

lag orders q) greater than 1 (i.e., 30 days). In addition, for the subset dataset with just

seven weeks of follow-up, we do not want to throw away too much data. So again, we will

maintain a max lag consideration of one bin (i.e., 7 days). Lags of size greater than one

could very well be considered for other datasets, as appropriate.

For each of the two datasets (full and 7-week data) discussed just above, three Poisson

GLMM and three mixed ZIP models are fit for binned data at a given bin size and direction.

In each case (i.e., either Poisson GLMM or mixed ZIP), one of these three models is

for contemporaneous direction (i.e., 0 lag), the other two are for lagged directions. To

accommodate these three models in the mixed ZIP modeling, we adapt the logistic setting

of (2.1) and log-linear setting of (2.2), as necessary:

Contemporaneous model:





logit(pi,m) = α0 + vi

log(λi,m) = β0 + β1 ∗Xi,m + ui

Lag -1 model:





logit(pi,m) = α0 + vi

log(λi,m) = β0 + β1 ∗Xi,m−1 + ui

Lag +1 model:





logit(pi,m−1) = α0 + vi

log(λi,m−1) = β0 + β1 ∗Xi,m + ui

The response Yi,m is the number of infection events within each bin. The predictor Xi,m is

only log(crp). We are not considering other predictors in this particular analysis, including

in the logistic part of the model, as our main interest is in investigating an association

between infection event and crp as well as the direction of such association. Further work

could be considered to produce a fuller explanatory model for the longitudinal infections.
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Normal random effects are included in both the logit model and log linear model.

We assume the covariance matrix between ui and vi is

 σ2

u ρσuσv

ρσuσv σ2
v




Our modeling has shown that ρ is either not statistically different from 0 or including

a ρ different than 0 does not improve the AIC for a given lag and bin size. So we will treat

ρ as 0 in the following analysis.

In our analyses, we implemented the binned data longitudinal modeling using PROC

NLMIXED in SAS (Version 9.1.3). Also, to account for zero-inflation, the correlated

longitudinal data, and possible further overdispersion, we have also fit mixed zero-inflated

negative binomial (ZINB) models (Yau et al., 2003; Xiang et al. 2007) to the longitudinal

hemodialysis infection data. However, for almost all such model fits, the overdispersion

α parameter of the negative binomial approach was either not significant or the AIC for

a fixed bin size (when compared to the less complex mixed ZIP model) was not smaller.

In addition, we found computational difficulties with a few mixed ZINB fits, in that the

NLMIXED procedure did not always converge for the mixed ZINB models, whereas this

problem did not arise for comparable mixed ZIP modeling for this data. Hence, for these

issues, we will not further discuss the mixed ZINB model, though it may be useful for other

data of this type.

2.4.2 Analysis results

Table 2.1 shows the analysis results of the Poisson GLMMs. The analysis results for mixed

ZIP models are shown on Table 2.2. A single random intercept is used for the Poisson

GLMMs, whereas, in the mixed ZIP models discussed in Section 2.3.3, we used a random

intercept in both the logistic model of p and the log-linear model of λ. We have tried more
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complicated models including adding additional random effect terms, but these did not

improve upon the models fit with the random intercepts only.

In both tables, model ”0” stands for contemporaneous model, model ”-1” for ”lag -1”

model, and model ”+1” for ”lag +1” model. Bin sizes 30 and 45 days are applied to the full

dataset, while bin sizes 7 is applied to the 7-week data, where each dataset was described

in Section 2.3.1. We also had run a bin size 10-day model with the 7-week dataset, but the

results of this model within the mixed ZIP modeling framework were not terribly stable

for the logistic part of the model. Also, the log-linear results for these 10-day models were

consistent with that of the 7-day bin size models, both in Table 1 (mixed Poisson) and

Table 2 (mixed ZIP), so we did not include these results in the displayed output.

2.4.3 Contemporaneous analysis focus

Based on the contemporaneous fit (model ”0”) of the Poisson GLMMs in Table 2.1, and

looking at the estimated β1 values, we can see that log(crp) is significant for all bin sizes (30

and 45 day bins for the full dataset, and 7-day bin for the 7-week data). This suggests that

the occurrence of infection is simultaneously associated with log(crp) levels. The positive

sign of β̂1 means that the estimated association between infection and log(crp) is positive.

Larger log(crp) values in a bin are associated with the occurrence of infection, and smaller

log(crp) values are associated with lack of events. Again, this contemporaneous result is

consistent, as it is seen across various bin sizes, in both sets of analyzed data.

The mixed ZIP model contemporaneous analysis results are shown in Table 2.2 model

”0”. By looking at the β1 estimates, we can see the significance of log(crp) in the log-linear

model for bin sizes 30 and 45, which suggests that there is strong positive contemporaneous

association between infection and log(crp) for the full data. The significance of log(crp) is

not quite as consistent for the smaller bin sizes, however, in the contemporaneous mixed

ZIP models. The p-value for log(crp) for the 7-day binned data is .1282, not statistically
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Table 2.1: Generalized linear mixed effects model (Poisson GLMM) for infection versus

log(crp)

bin model estimate p-value Random effects AIC

size β̂1(S.E.) σ̂u(S.E)

30 0 0.5885(0.08819) <0.0001 1.1328(0.1955) 630.3

-1 0.06858(0.1072) 0.5251 1.0656(0.1905) 629.8

+1 0.07141(0.1116) 0.5250 1.0133(0.2149) 569.6

45 0 0.5469(0.09149) <0.001 1.1147(0.1948) 579.8

-1 0.1347 (0.1099) 0.2257 1.0666(0.1908) 566.8

+1 0.08745(0.1195) 0.467 1.0756(0.2233) 518.5

7 0 0.5413(0.2493) 0.0345 1.0594(0.5273) 106.4

-1 0.3680(0.2989) 0.2240 1.2116(0.563) 91.4

+1 1.2430(0.3556) 0.0010 1.3314(0.6957) 80.4
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significant at the traditional .05 level. Still, the association estimate is .4899 which is

consistent with its corresponding Poisson GLMM analysis (where β̂1=.5413, with a p-value

of .0345). But the standard error for log(crp) is much higher in the mixed ZIP model.

For the contemporaneous analyses, the AIC from any mixed ZIP model is always smaller

than that of its comparable Poisson GLMM (i.e., same ”0” model, dataset, and bin size),

regardless of bin size 30, 45 and 7. The lower AIC of comparable mixed ZIP models means

we should focus on the mixed ZIP model results for the contemporaneous analysis, though

the positive association between log(crp) and event occurrence within the same bin is seen

across all models investigated (except, as mentioned above, there is lack of traditional

statistical significance from the 7-day binned data mixed ZIP model association).

We also investigated if there was an interaction between time (via bin number) and

log(crp), but this interaction was never significant, in any of the Poisson GLMM or mixed

ZIP models we had fit (for the contemporaneous models, or the lagged models fit in Section

2.4.4).

Table 2.2: Mixed ZIP model for infection versus log(crp); note ”-” for σ̂v entries means its

associated random effect did not make the final model.
bin model logistic log-linear AIC

α̂0(S.E.) p-value σ̂v(S.E.) β̂1(S.E.) p-value σ̂u(S.E.)

30 0 0.8555(0.4217) 0.0477 1.071(0.4656) 0.5333(0.1018) <0.0001 0.7144(0.2310) 602.5

-1 1.2048(0.4468) 0.0095 0.7741(0.415) 0.2120(0.1590) 0.1882 0.7171(0.283) 588.2

+1 1.6405(0.4401) 0.0001 1.1882(0.3356) 0.1647(0.1082) 0.1342 0.039(3.1453) 538.2

45 0 1.1312(0.3393) 0.0016 1.0256(0.3508) 0.4413(0.0936) <0.0001 0.4959(0.1967) 541.1

-1 1.1018(0.3483) 0.0026 0.8133(0.3756) 0.3971(0.1639) 0.0196 0.7177(0.2368) 513.7

+1 1.6136(0.3326) <0.0001 1.1192(0.3353) 0.1988(0.1133) 0.0853 0.1736(0.5000) 473.6

7 0 1.6916(0.9343) 0.0761 - 0.4899(0.3168) 0.1282 0.9723(0.7394) 101.9

-1 1.6253(1.2188) 0.1884 - 0.3500(0.3438) 0.3136 0.932(0.8173) 89.7

+1 0.0947(1.4565) 0.9484 - 1.1148(0.3641) 0.0035 1.0025(0.7251) 81.3
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2.4.4 Lagged analysis focus

Based on the lagged models’ fits (model ”+1” and model ”-1”) in Tables 2.1 and 2.2,

log(crp) is significant for bin size 7, but only for lagged ”+1” model (in both the Poisson

GLMM and mixed ZIP models). This is an important biological finding, i.e., that is

the occurrence of infection events appears to occur prior to an increase in log(crp). In

addition, this result is not seen in the full dataset with the larger bin sizes, suggesting the

need to focus on smaller bin sizes to capture the dynamics of the ordering of the association

between infection event and log(crp) levels, at least with the hemodialysis patients in the

application study.

In an outlying result, there is also significance of log(crp) for bin size 45 ”-1” mixed

ZIP model. Given its unusual result compared to all other ”-1” model results, we suspect

this is an aberrant finding that we cannot trust as meaningful. To further emphasize this

point, we also ran a 60-day binned mixed ZIP model for lagged log(crp), and the association

between lagged log(crp) and infection events was not significant (p-value of .3836). It is not

biologically plausible that there would be a positive association between lagged log(crp)

and infection events with 45-day bins but not at either 30-day or 60-day bins.

For the full data, for bin size 30 or 45, lagged or contemporaneous analysis, the AIC of

mixed ZIP model is always much smaller than that of the Poisson GLMM model. However,

the results for the 7-week binned data are not so clear in terms of using AIC criterion to

choose between the Poisson GLMM and mixed ZIP model for comparable models (i.e.,

same bin size and lag order). For 7-day ”+1” lagged models, which show the important as-

sociation between infection events and log(crp) levels, the Poisson GLMM is better (lower

AIC) for the 7-day. The opposite is true for the 7-day ”-1” lagged models and contempora-

neous cases, however, non-significance is detected for log(crp). This set of results suggests

the possible need for a more automated approach of selecting models, something we briefly

cover in the Discussion.

33



2.4.5 Analysis summary

In summary, for the full data, there is a strong positive contemporaneous association be-

tween infection events and log(crp) levels. For the 7-week subset of data, the existence of

the contemporaneous association appears to exist as well, though there is one exception on

the 7-day binned data mixed ZIP model. However, for the subset data, there is an impor-

tant lagged ”+1” association across all models, which conveys a biologically meaningful

relationship between infection event and crp levels, i.e., infection events appear to occur

prior to increases in crp in this dataset. The general non-significant results for the ”-1”

model, with the exception of one of the 45-day binned models, suggests it is unlikely the

opposite temporal ordering exists, i.e., that rises in crp occur prior to infection events.

2.5 Simulation

We present a simulation study to evaluate various properties of binning. The goal of

this study is to demonstrate longitudinal data scenarios under which binning should be

successful and other scenarios in which binning might not work well. We will focus on a

single longitudinal count response and a single time-varying continuous predictor. There

are several considerations for this simulation study:

• within-subject variability of the response and time-varying predictor, as well as pos-

sible serial correlation structure

• mismatch structure between the days that the response and time-varying predictor

are observed

• bin size

• number of observations within a fixed bin size.
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2.5.1 Simulation setup

We initially assume that the count response and the continuous predictor are always ob-

served on the same days, with the predictor Xij following a linear mixed effects model, and

the response Yij following a conditional Poisson GLMM distribution. The setup is:

Xij = α0 + vi + eij

Yij|ui ∼ Poisson(λij)

log(λij) = β0 + β1 ∗Xij + ui ,

where α0 = −0.45, vi ∼ N(0, σ2
v), σv = 0.8, eij ∼ N(0, σ2

e), σe = 0.6, β0 = −2.0, β1 = 0.5,

σu = 0.8, ui ∼ N(0, σ2
u). These parameter choices are based on the hemodialysis application

from Section 2.2. In particular, α0, σv and σe are chosen to be close to the estimates when

we performed a linear mixed effects model on log(crp). β0, β1 and σu are chosen to be close

to what we found with the 30-day infection data. Note that we are initially trying to keep

the conditional Poisson rate fairly low, so that the generated data is consistent with the

hemodialysis application. We will investigate a few deviations from this above scenario.

We assume N=50 subjects and each subject’s follow-up time is 40 weeks. When we

impose serial correlation, we provide the following assumption, simply an AR(1) structure,

through the specification of the predictor Xij:

eij = ρeij−1 + wij ,

where |ρ| < 1. If we set the initial error ei0 ∼ N(0, σ2
e), and wij ∼ N(0, σ2

e(1 − ρ2)), then

it can be shown (Fitzmaurice et al., 2004) that for such a process

Var(eij) = σ2
e , Cov(eij, eik) = σ2

eρ
|j−k| .
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2.5.2 Additional simulated data details

Again, to be close to consistent with the application, we assume that for the first 8 weeks,

we see 4 days of observed data each 7-day week. These are days 1, 2, 3, and 6. After

the first 8 weeks, days 1, 3 and 6 are still observed weekly, but day 2 is observed only

every four weeks. If we treat day 2 as the day when crp is measured, this means crp is

measured weekly for the first 8 weeks, then once every four weeks thereafter. Using the

same notion, days 1, 3 and 6 are the days for health events which are measured three times

per week throughout the follow-up of each subject. There will be variants of this general

data structure, as discussed just below when we talk about various forms of matching (and

mismatching) of the days when the response and predictor are observed.

In our modeling of the simulated data, note that we use the first 8-week data for analysis

as well as the full 40-week data, similar to the hemodialysis data application (when we had

(i) a 7-week analysis and (ii) a second analysis that included the entire follow-up period of

each subject).

In order to evaluate the effect of binning, we simulate 5 different types of datasets. The

first one is complete matched data and the other four are some form of mismatched data.

For complete matched, both predictor Xij and response Yij are available on each day that

is observed. This is an ideal scenario within this simulation setup, used as a gold-standard,

and not one that we observed with the application data. Specifically, in each week of the

first eight weeks, there are four days that both Xij and Yij are observed. After the first

8 weeks, either three or four days are observed where both Xij and Yij are obtained each

week; the four-day observation weeks occur only once every four weeks. For mismatched

data, some of the Xij or Yij are not available. Specifically, the 5 different simulated datasets

fall under the 5 following scenarios:

1. complete matched data: both Xij and Yij are available for each day that either one
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is observed.

2. data I: the response initially matched with one of the Xij in a given week is not

available, such as day 2.

3. data II: the predictor initially matched with one of the Yij in a given week is not

available, such as day 1.

4. data III: the predictor initially matched with two of the Yij in a given week is not

available, such as both days 1 and 6.

5. data IV: the Xij and Yij are totally mismatched, such as day 2 having no response,

and days 1, 3 and 6 having no predictors. In this scenario, the predictor and response

are never observed on the same days.

The number of mismatches is 0 in the complete data case and increases as data goes from

I to IV, with data IV being the extreme case where there is complete mismatching. We

generated 500 datasets under each scenario.

2.5.3 Simulated results

Results of the simulation study described above can be seen in Tables 2.3 through 2.5,

which reflect an analysis on the 8-week data only (in Table 2.3), and the entire 40-week

follow-up period (in Tables 2.4 and 2.5), respectively. In each of these three tables, it can

be seen that for complete matched data, the estimated β1 is close to 0.5 (i.e., the original

β1 before binning). Not surprisingly, this binning method works well when the data is all

matched.

For mismatched data I, II, III, the estimated β1 may be close to those of matched data,

especially with low within-subject variability and/or high serial correlations (e.g., ρ = 0.8
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Table 2.3: Estimates for matched data, and data I, II, III and IV for the first 8 weeks,

with bin sizes 7, 14 and 28 days. Before binning, β0 = −2, β1 = 0.5, and σu = 0.8. After

binning, the target β1 value remains at 0.5 and σu remains at 0.8, whereas the target β0

value will be a function of bin size based on an offset, increasing as bin size increases.

Data binsize β̂0(S.E.) β̂1(S.E.) σ̂u(S.E.)

complete matched 7 -0.577(0.151) 0.501(0.140) 0.771(0.134)

14 0.119(0.152) 0.495(0.158) 0.769(0.134)

28 0.814(0.154) 0.494(0.171) 0.767(0.134)

I 7 -0.869(0.158) 0.499(0.150) 0.767(0.142)

14 -0.172(0.160) 0.494(0.171) 0.765(0.142)

28 0.525(0.161) 0.496(0.183) 0.764(0.142)

II 7 -0.602(0.152) 0.443(0.133) 0.772(0.135)

14 0.103(0.152) 0.459(0.152) 0.770(0.134)

28 0.806(0.154) 0.476(0.167) 0.768(0.135)

III 7 -0.639(0.153) 0.356(0.117) 0.779(0.136)

14 0.078(0.153) 0.401(0.142) 0.773(0.135)

28 0.794(0.154) 0.447(0.161) 0.770(0.133)

IV 7 -1.023(0.162) 0.156(0.104) 0.815(0.151)

14 -0.282(0.161) 0.250(0.134) 0.793(0.147)

28 0.464(0.161) 0.360(0.158) 0.777(0.143)
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Table 2.4: Estimates for matched data, and data I, II, III and IV for 40 weeks with different

bin sizes and different within-subject variabilities. Before binning, β0 = -2 and β1 = 0.5.

After binning, the target β1 value remains at 0.5, whereas the target β0 value will be a

function of bin size based on an offset, increasing as bin size increases.

σe = 0.6 σe = 1.5

Data binsize β̂0(S.E.) β̂1(S.E.) β̂0(S.E.) β̂1(S.E.)

complete matched 28 0.654(0.132) 0.498(0.126) 0.870(0.125) 0.497(0.065)

40 1.012(0.132) 0.499(0.133) 1.233(0.125) 0.499(0.075)

56 1.347(0.134) 0.495(0.143) 1.572(0.129) 0.494(0.093)

I 28 0.528(0.133) 0.497(0.129) 0.744(0.127) 0.497(0.070)

40 0.887(0.133) 0.498(0.135) 1.108(0.128) 0.499(0.079)

56 1.224(0.135) 0.495(0.144) 1.447(0.131) 0.494(0.097)

II 28 0.622(0.130) 0.430(0.117) 0.813(0.124) 0.369(0.060)

40 0.987(0.129) 0.446(0.124) 1.179(0.124) 0.380(0.066)

56 1.328(0.132) 0.454(0.135) 1.521(0.126) 0.385(0.082)

III 28 0.569(0.127) 0.320(0.103) 0.745(0.125) 0.223(0.049)

40 0.938(0.127) 0.344(0.112) 1.108(0.125) 0.231(0.057)

56 1.291(0.129) 0.376(0.127) 1.454(0.125) 0.247(0.072)

IV 28 0.315(0.134) 0.062(0.062) 0.518(0.135) 0.008(0.026)

40 0.682(0.134) 0.081(0.072) 0.877(0.136) 0.013(0.030)

56 1.038(0.132) 0.120(0.088) 1.216(0.134) 0.017(0.038)
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chosen in one of the simulation scenarios in Table 2.5). The totally mismatched case IV

has the largest bias for β1. Only in special cases such as a high autocorrelation and/or very

low levels of within-subject variability, will we see possibly acceptable levels of association

bias toward the null.

In Table 2.3, for bin size 28, and under data scenario IV, the estimated β1 is 0.360

with standard error 0.158. Although this estimate is biased downward from 0.5, it is still

statistically significant showing that the response and predictors are associated. Though

bias may be the result under high mismatching, it will not necessarily remove a detected

signal. It may just provide a (possibly very) conservative estimate of association.

As bin size increases, the estimated β0 increases since the number of observations within

a bin increases. More importantly, the estimated β1 increases toward its target value, i.e.,

bias decreases, as bin sizes increase for mismatched data. However, there is a bias-variance

tradeoff working here, noting the standard deviation of β1 increases with increasing bin

size, which is likely due to the number of bins decreasing, i.e., the resulting number of

repeated measurements is decreasing.

From Table 2.3, we can see that the standard error of β̂1 for data I is larger than that

of complete matched data. This may due to that there are fewer responses within each

bin for data I than that of complete matched data, but they have the same number of

covariates values within each bin. As data goes from data II to data IV, there are fewer

number of covariates values, but the response values are the same as those of the completed

matched data. As data goes I to IV, the bias of β̂1 increases but the standard error of β̂1

decreases. The bias effect of β̂1 is much more dramatic than the standard error. The mean

square error (MSE) increases and the coefficient of variation increases, each as mismatching

increases.

For complete matched data and data I to IV, the days where the misaligned cases

occurred are fairly fixed and the same for all the subjects. To make the misaligned cases
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Table 2.5: Estimates for matched data, and data I, II, III and IV for 40-week data with

different positive serial correlation values in Xij. Before binning, β0 = -2 and β1 = 0.5.

After binning, the target β1 value remains at 0.5, whereas the target β0 value will be a

function of bin size based on an offset, increasing as bin size increases.

ρ = 0.4 ρ = 0.8

Data binsize β̂0(S.E.) β̂1(S.E.) β̂0(S.E.) β̂1(S.E.)

complete matched 28 0.648(0.125) 0.5006(0.095) 0.634(0.122) 0.499(0.070)

40 1.005(0.127) 0.4964(0.107) 0.994(0.122) 0.496(0.079)

56 1.346(0.126) 0.5024(0.112) 1.336(0.122) 0.500(0.086)

I 28 0.525(0.127) 0.5014(0.099) 0.510(0.122) 0.501(0.072)

40 0.882(0.128) 0.4982(0.110) 0.871(0.123) 0.498(0.081)

56 1.223(0.128) 0.5045(0.114) 1.213(0.123) 0.503(0.088)

II 28 0.633(0.124) 0.4639(0.090) 0.631(0.121) 0.491(0.069)

40 0.994(0.125) 0.4690(0.103) 0.992(0.122) 0.491(0.078)

56 1.335(0.125) 0.4770(0.109) 1.334(0.121) 0.495(0.086)

III 28 0.604(0.123) 0.3940(0.084) 0.625(0.121) 0.476(0.069)

40 0.965(0.124) 0.3999(0.098) 0.984(0.121) 0.473(0.077)

56 1.314(0.125) 0.4254(0.106) 1.330(0.122) 0.484(0.086)

IV 28 0.359(0.130) 0.1133(0.061) 0.415(0.125) 0.259(0.060)

40 0.721(0.128) 0.1242(0.070) 0.783(0.124) 0.282(0.067)

56 1.077(0.128) 0.1658(0.083) 1.139(0.124) 0.322(0.078)
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Table 2.6: Estimates for different bin sizes and various mismatch rates, 8 weeks data.

Before binning, β0 = -2 and β1 = 0.5. After binning, the target β1 value remains at 0.5,

whereas the target β0 value will be a function of bin size based on an offset, increasing as

bin size increases.
Mismatch bin size = 7 bin size = 14 bin size = 28

(%) β̂0(S.E.) β̂1(S.E.) β̂0(S.E.) β̂1(S.E.) β̂0(S.E.) β̂1(S.E.)

0 -0.577(0.151) 0.501(0.140) 0.119(0.152) 0.495(0.158) 0.814(0.154) 0.494(0.170)

10 -0.610(0.152) 0.483(0.137) 0.090(0.154) 0.487(0.158) 0.787(0.154) 0.490(0.170)

20 -0.648(0.154) 0.455(0.134) 0.058(0.154) 0.473(0.155) 0.759(0.155) 0.484(0.171)

40 -0.731(0.154) 0.390(0.130) -0.013(0.154) 0.439(0.154) 0.697(0.155) 0.472(0.173)

60 -0.819(0.158) 0.321(0.121) -0.087(0.159) 0.398(0.146) 0.627(0.160) 0.447(0.164)

80 -0.916(0.158) 0.243(0.113) -0.177(0.157) 0.335(0.142) 0.554(0.158) 0.414(0.163)

100 -1.023(0.162) 0.156(0.104) -0.282(0.161) 0.250(0.134) 0.464(0.161) 0.360(0.158)

more flexible, we also simulated the data by misalignment rate. For example, for 10%

mismatched rate, we assume that 10% of those days where the Y ’s are observed do not

have corresponding predictors observed, and 10% of those days where X’s are observed do

not have corresponding responses observed.

The results can be seen in Tables 2.6 and 2.7, where it shows that as mismatch rate

increases, the estimated β1 decreases, for a fixed bin size. This is to be expected as the

estimates do not reflect the original data as well when we have less matched information.

Specifically, the result is that the estimates for β1 tend more toward the null as we have less

and less information. Also, a larger bin size results in an estimated β1 closer to its target,

which likely reflects more information (more observations) within a bin when bin size is

larger, though with an increased variance tradeoff, due to fewer corresponding repeated

measures, as seen earlier.
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Table 2.7: Estimates for different bin sizes and various mismatch rates, for 40 weeks data.

Before binning, β0 = -2 and β1 = 0.5. After binning, the target β1 value remains at 0.5,

whereas the target β0 value will be a function of bin size based on an offset, increasing as

bin size increases.
Mismatch bin size = 28 bin size = 40 bin size = 56

(%) β̂0(S.E.) β̂1(S.E.) β̂0(S.E.) β̂1(S.E.) β̂0(S.E.) β̂1(S.E.)

0 0.654(0.132) 0.498(0.126) 1.012(0.132) 0.499(0.133) 1.347(0.134) 0.495(0.143)

10 0.632(0.130) 0.477(0.123) 0.993(0.131) 0.484(0.131) 1.330(0.132) 0.484(0.139)

20 0.609(0.131) 0.455(0.121) 0.973(0.131) 0.466(0.129) 1.311(0.133) 0.470(0.140)

40 0.558(0.129) 0.397(0.116) 0.926(0.130) 0.419(0.122) 1.271(0.132) 0.435(0.135)

60 0.495(0.130) 0.319(0.107) 0.869(0.131) 0.353(0.117) 1.222(0.133) 0.385(0.131)

80 0.414(0.127) 0.203(0.092) 0.794(0.128) 0.248(0.101) 1.154(0.129) 0.297(0.119)

100 0.315(0.134) 0.062(0.062) 0.682(0.134) 0.081(0.072) 1.038(0.132) 0.120(0.088)

2.5.4 Simulation summary

1. If the mismatch rate is fairly small, then we would suggest using a smaller bin,

since the estimated β1 would likely not be very different from its true value, but

the standard deviation of the estimate would be smaller. We state this with more

confidence when within-subject variability is small or when positive serial correlation

is present. The apparent reason for smaller bin sizes resulting in smaller SE’s for β1

is that the smaller the bin size for a given follow-up period, the greater number of

effective repeated measures, i.e., bins.

2. However, if there is large mismatch rate such as case IV (heading toward 100%

mismatch), then a larger bin size would be suggested, noting larger bin sizes in this

scenario result in less bias, though still with greater variability (due to a lower number

of effective repeated measures per individual as stated in point #1 above).

3. When we have a greater number of predictor observations within a fixed bin size, the

43



estimates tend closer to the true β1, as compared to the case for a smaller number

of predictor observations within a fixed bin. We were able to identify this unsurpris-

ing result through simulation study, by looking at one dataset that had four days,

including day 2, that were observed every week across the entire span of follow-up,

whereas another dataset was similar but day 2 was only observed for the first 8 weeks,

then once every 4 weeks thereafter. We also looked at more extreme versions of this

scenario (not shown here), and the results were always improved for more predictor

observations within a fixed bin size. This said, sufficient signal can still be captured

with a small number of predictor observations within a bin, at least under various

scenarios investigated in our simulations. This sufficient signal case for a low number

of observations within a bin was also found in our modeling of the hemodialysis data

presented in Section 2.4.

4. To evaluate bin edge effects, we used a smaller bin size for the first bin and last bin,

compared to the rest of the data. For example, if there were 40 days of follow-up, and

originally there were four bins of 10 days each (i.e., ([0,10], (10,20],(20,30],(30,40])),

we would instead create five bins: [-5,5], (5,15],(15,25],(25,35],(35,45]. These newly

created bins effectively had half-size lower and upper bins due to no data collected

below 0 or above 40 days. In our simulation of 40 weeks (280 days) follow-up, for

bin size 28 days, we let the first bin be [-21,7] (similarly, [-33,7] for bin size 40, and

[-49, 7] for bin size 56). In this case, there is only a slight change on the estimated

β1. For example, for complete matched data, bin size 28, the estimated β1 changed

from 0.498 to 0.467, while it changed from 0.062 to 0.057 under data IV.

5. We should note that the hemodialysis data analyzed in Section 2.4 most closely

resembles mismatched data type III. Hence, based on the simulation results, this

would suggest that our estimates of β1 from the binned modeling of hemodialysis

data are biased toward 0, but that for the contemporaneous association for 30-day

44



bins in the larger dataset, and for the lagged association for 7-day bins in the smaller

dataset, we still were able to capture sufficient signal of the association between

longitudinal CRP and infection events via the proposed binning approach.

2.6 Discussion

The response and predictors of a longitudinal dataset, including the motivating example

longitudinal hemodialysis data, may be measured at different time points. We have pro-

posed a binning method to preprocess this data before doing any longitudinal modeling.

Binning as a statistical technique is not a new method, and has been used in the density

estimation literature for histograms and for faster processing of nonparametric curve esti-

mators (see, for example, Fan and Marron, 1994). However, to our knowledge, binning has

not been used for aligning within-individual longitudinal measures recorded at different

time points as introduced here, and in particular, for investigating ordered associations

between a longitudinal measured event and a time-dependent covariate, each recorded at

different time points within each individual.

This binning approach has allowed us to answer important scientific questions on the

hemodialysis dataset and could be applied to other longitudinal datasets with similar

non-standard data structures. After binning the application dataset, we have applied the

generalized linear mixed effects model and an extension, i.e., the zero-inflated Poisson

model with random effects, which accounted for excess zeros in the binned response. We

considered analysis of two versions of the dataset, each of which allowed us to target

different biomedical questions. The larger dataset allowed us to consider the complete

data which showed a contemporaneous association between infection events and crp levels,

whereas the smaller dataset allowed detection of a lagged effect.

The latter was especially an important biological result, as it appears that infection
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events occur prior to elevation of crp levels, with the smaller bin sizes (7-day) needed to

detect the dynamics of this lagged association.

Though, through the binning method, we were able to uncover some meaningful findings

with the hemodialysis study data, as well as evaluate properties of the approach through

simulation, it is important to consider asymptotic properties of the resulting regression

estimators following binning. This is a current area of our research, with some developments

presented in Chapter 3. We are also developing a more formal model selection approach

that takes into account bin size, lag order, model type, and resulting model fit. Regarding

model type, we might consider models discussed here, such as the Poisson GLMM or

mixed ZIP model, as well as models allowing for a more flexible association between the

response and time-dependent predictor, such as generalized additive mixed effect models.

We currently use AIC for relative model fit for comparing models (e.g., Poisson GLMM

vs. mixed ZIP) for a fixed bin size, but this needs to be more fully investigated as a

tool for model selection in the binning context in future work, and additional work is also

required to consider tools for absolute model fit. We do not have a specific recommendation

regarding how to optimally select bin sizes, an area of future research. However, initial

work suggests that a variation of cross-validation may be an approach worth consideration,

in particular, a variation of leave-one-subject-out cross-validation that is often used in

estimating a mean curve across a sample of subjects (e.g., ). Define the leave-one-subject-

out predicted residual sum squares PRSS=
n∑

i=1

n
(X,Y )
i∑
m=1

(Yi,m − Ê(−i)(Yi,m|ui))
2, where Yi,m is

the binned response in mth bin for ith subject, and Ê(−i)(Yi,m|ui) is the predicted conditional

mean response in the mth bin based on model estimates from the dataset without subject

i. The best bin size could be the one that minimizes PRSS. One issue with the above

approach is that it ignores the direct impact of the original data points Yij, only considering

the individual points indirectly following binning, i.e., focusing on the Yi,m. Implementing

the above approach on the hemodialysis data suggests the smallest bin size considered
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(i.e., 30-day bins in the full dataset, and 7-day bins in the subset 7-week dataset) is best

using this PRSS criterion, though only by a small margin. Much more investigation of

this approach is necessary, including the possible consideration of the original data points

in the evaluation of bin size selection. We add further comments on bin size selection in

Chapter 3.

Our simulation studies show that when the data is completely matched, the estimated

association parameter β1 will be close to the true value. Several factors will affect this

estimate when the data is mismatched, such as proportion of mismatches, bin size, within-

subject variability, and serial correlation with the predictors. For mismatched data, the

association parameter is biased toward the null. However, with low within-subject vari-

ability and high serial correlation, the bias may be small. Although the bias is larger for

completely mismatched data, there may still be sufficient signal in the data such that a

statistically significant association can be detected, even if the association parameter is

clearly biased downward. So, the goals of the modeling effort will need to be kept in mind

when there exist high mismatch rates of the days when the predictor(s) and response are

observed. If establishing an accurate association estimate is the goal, then binning when

mismatch rates are high may not be recommended. However, if establishing a significant

association between a predictor and response is the goal, including for lags of interest, as

was the case for the hemodialysis data application, then binning can be recommended,

even when mismatching is sizable.

Binning is a relatively straightforward approach that has proved useful in other areas

of statistics, and has allowed us to answer some important biomedical questions for the

longitudinal hemodialysis study discussed here. After binning, one is able to use more

traditional longitudinal models and standard statistical packages. The approach, as evi-

denced in the simulation study, can have very useful properties, even under some less than

ideal data settings.
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Oversmoothing is rarely a good idea, for example, in histogram smoothing (Wand,

1997), where binning is relevant. A very large bin width results a histogram with a single

block. For our binning method, we would also not want to choose bin sizes too large in the

longitudinal modeling setting that exists in this thesis. One consequence, surely, is that

any lagged associations will be lost, and possibly even a contemporaneous association. The

large bins in the example (30-day and larger) did not let us obtain a lagged association, for

example. But the smaller bins, i.e., 7-days, when allowed (in the subset dataset) resulted

in a lagged association that was lost in the larger bin sizes.

Binning is not limited to a single predictor. For multiple predictors, there is actually a

greater opportunity to use binning, as there could be even greater misalignment than with

just one predictor. However, the bias and efficiency of the estimated parameters need to

be further investigated for binning method for multiple predictors.

For longitudinal data measured at distinct time points, binning has been shown to

be useful to find the temporal association between predictors and response. Apart from

binning method, curve-based methods can also serve as potential approaches to model the

relationship between the predictors and response. Also, methods in missing data framework

such as EM algorithm may be used to find the association between response and predictors

under the misalignment setting described in this chapter.
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Chapter 3

Inference for binning estimates and

bin size selection

3.1 Estimation and inference for longitudinal data

Let Yij be the response variable for subject i at time point j, Xij = (Xij1, Xij2, . . .,

Xijp)
′

be the p × 1 covariate vector associated with Yij, where i = 1, . . ., n, j = 1, . . .,

ni. Denote Yi = (Yi1, Yi2, . . . , Yini
)
′
as the vector of all responses for subject i, and Xi =

(X
′
i1,X

′
i2, . . . ,X

′
ini

)
′
as the corresponded ni×p covariate matrix. Assume Yi is multivariate

normally distributed with mean E(Yi) = Xiβ and covariance matrix var(Yi) = Vi, and

assume Yi are independent of each other for different i. We specify the marginal regression

model as

Yi = Xiβ + εi , (3.1)

where εi = (εi1, εi1, . . . , εini
), and εi ∼ N(0,Vi). εi in (3.1) accounts for all the correlations

between repeated measurements for subject i. If Vi = σ2Ini
where Ini

is the identity matrix

of dimension ni, then the repeated observations for subject i are assumed independent. In

this case model (3.1) becomes a univariate linear regression model.
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Usually β and Vi are unknown and Vi is assumed to be positive-definite. Suppose

Vi = Vi(α), and θ
′
= (β

′
, α

′
). Then the marginal likelihood function takes the form

L(θ) = Πn
i=1

{
(2π)−ni/2|Vi(α)|− 1

2 exp

[
−1

2
(Yi −Xiβ)

′
V−1

i (Yi −Xiβ)

]}
.

Estimation of θ requires joint maximization of the above likelihood with respect to all

elements in θ.

For a given α, the MLE of β is given by a generalized least squares (GLS) estimator

β̂(α) =

(
n∑

i=1

X
′
iWiXi

)−1 n∑
i=1

X
′
iWiYi ,

where Wi = V−1
i . However, α is usually unknown and can be replaced by its MLE α̂.

Most often, α is estimated by the restricted maximum likelihood (REML) estimator, which

allows estimation of α without having to estimate β first.

E(β̂(α)) =

(
n∑

i=1

X
′
iWiXi

)−1 n∑
i=1

X
′
iWiE(Yi) = β .

Var(β̂(α)) =

(
n∑

i=1

X
′
iWiXi

)−1 (
n∑

i=1

X
′
iWiVar(Yi)WiXi

)(
n∑

i=1

X
′
iWiXi

)−1

=

(
n∑

i=1

X
′
iWiXi

)−1

.

provided the mean and variance are correctly specified for the model, i.e. E(Yi) = Xiβ

and Var(Yi) = Vi.

Still define Yi as a response vector for subject i, and Xi as its covariate matrix for fixed

effects β. For a linear mixed effects model defined in Section 1.2,

Yi = Xiβ + Ziui + ei ,

where ui = (ui1, ui2, . . . , uiq)
′
is q×1 vector of random effects for subject i; Zi = (Z

′
i1,Z

′
i2, . . . ,Z

′
ini

)
′

is the ni× q design matrix for subject specific random effects ui and Zij = (Zij1, Zij2, . . .,
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Zijq)
′
. ei = (ei1, ei2, . . . , eini

)
′
is the random error term. Typically we assume ui are dis-

tributed as N(0,D) and independent of each other. ei are distributed as N(0, Σi) and

independent of each other. ui are assumed to be independent of ei. Zi is most often a

subset of Xi.

Conditional on random effects ui, Yi are distributed as N(Xβ,Σi). Marginally, Yi is

distributed as N(Xβ,ZDZ
′
+ Σi). Thus a linear mixed effects model implies a marginal

model as (3.1) but with a special parametric form of covariance matrix Vi(α) = ZDZ
′
+Σi.

Vector α includes the unique parameters in D and Σi. Fitting of a linear mixed effects

model is usually based on the marginal model and its marginal likelihood as above. β and

α are still estimated by ML or REML estimator as marginal models. Random effects ui

usually are predicted by empirical Bayes estimator (Laird and Ware, 1982).

3.2 Binning method for longitudinal continuous data

For traditional longitudinal data, a covariate Xij and response Yij are measured at the same

time points j, j = 1, 2, . . . , ni. However, in the case that the response and covariates are

not measured on the same time points such as the hemodialysis data discussed in Chapter

2, we use the binning method which was introduced in Chapter 2 to align them to common

time points. In hemodialysis data, the response Yij is binary. Here we will treat response

Yij as continuous. Most notation and steps of the binning method are the same for both

binary and continuous response, except step 4 below. For continuous data, the new binned

response in step 4 is the average of the original responses. However, for binary data, it is

the sum of the original responses in a bin.

1. Let Yij be the continuous response observed for subject i at time j, where j =

1, 2, . . . , n
(Y)
i .
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2. Let Xik be a covariate for subject i observed at time k for k = 1, 2, . . . , n
(X)
i , where,

in general, the times represented by k do not equal the times represented by j and

n
(X)
i 6= n

(Y)
i .

3. We then bin (X,Y) in equidistant units of time.

4. Next we take the unweighted or weighted average of response or covariate within

each bin, for each individual.

5. The resulting data will be (Xi,m, Yi,m), where m = 1, 2, , . . . , n
(X,Y)
i . That is, there

are a total of n
(X,Y)
i bins for individual i.

In the above, we could bin multiple (say p) longitudinal covariates of interest, creating

Xi,m = (X1,i,m, X2,i,m, ..., Xp,i,m), the average then for each covariate separately within

each bin.

To investigate the properties of binning estimates, we use the notation of gold standard

data (GSD). For this GSD, it includes all the distinct time points for both response and

covariates, and at each time point, both the response and covariate values are available.

This is a setup where binning would be unnecessary, but allows for a comparison when some

of the observed data (either the response or covariate or both) are not all actually observed

at the same time points. Assume the GSD Yij and Xij, i = 1, 2, . . . , n, j = 1, 2, 3, . . . , ni,

are modeled as in (3.1); we then have

Yi = Xiβ + εi, where εi ∼ N(0,Vi) .

However, in general, the covariates and response are not measured on the same time

points; a setting for which the binning process is applied. Binning can be considered as

a type of transformation of GSD. At each time point, we apply a weight on the GSD. If

the observed response or covariates are not available, then we apply a zero weight to the

corresponded response or covariates in the GSD. These weights will be captured in weight
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matrices Ai and Bi which will be defined in the following sections. We use Xi and Yi to

denote the GSD, and use X?
i and Y?

i as the resulting data after binning.

After performing binning, for ith subject and mth bin, assume the number of time points

for observed X is c
(X)
im , the number of observed Y is c

(Y)
im , and the number of elements

in the union of distinct time points for both response and covariates are c
(X,Y)
im where

i = 1, 2, . . . , n; m = 1, 2, . . . , n
(X,Y)
i . So, for example, say for subject i and bin m, covariate

X is observed at time point (1, 4, 5) and response is observed at time point (1, 4, and 6).

Then c
(X)
im = 3, c

(Y)
im = 3, and c

(X,Y)
im = 4. In general,

n
(X,Y)
i∑
m=1

c
(X)
im = n

(X)
i ,

n
(X,Y)
i∑
m=1

c
(Y)
im = n

(Y)
i ,

n∑
i=1

n
(X,Y)
i∑
m=1

c
(X,Y)
im =

n∑
i=1

ni .

3.2.1 Binning estimates for complete matched data

First, we assume the observed data before binning is completely matched, i.e. at each

observed time point, both response and covariates values are available. In this case, the

observed data is the same as GSD. For the complete matched case, after performing bin-

ning, then c
(X)
im = c

(Y)
im = cim and n

(X)
i = n

(Y)
i = ni. However for the more general

mismatched case in the next section, usually c
(X)
im 6= c

(Y)
im and n

(X)
i 6= n

(Y)
i . The vector of

binned response for the ith subject is denoted as Y?
i = (Yi,1, Yi,2, . . . , Yi,n

(X,Y )
i

)
′
, the binned

covariate design matrix is X?
i = (Xi,1,Xi,2, . . . ,Xi,n

(X,Y)
i

)
′
. We can think of the binning

process as a transformation of the original data

Y?
i = AiYi ,

X?
i = BiXi .
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However, for complete matched data, Ai = Bi, where

Ai = Bi =




ci1 elements︷ ︸︸ ︷
1

ci1

. . .
1

ci1
ci2 elements︷ ︸︸ ︷
1

ci2

. . .
1

ci2

. . .
c
in

(X,Y)
i

elements

︷ ︸︸ ︷
1

c
in

(X,Y)
i

. . .
1

c
in

(X,Y)
i




n
(X,Y)
i ×ni

. (3.2)

After binning, we will fit the model

Y?
i = X?

i β
? + ε?

i ,

where ε?
i ∼ F (·), E(ε?

i ) = 0 and var(ε?
i ) = V?

i with V?
i being a positive definite covariance

matrix. Note var(ε?
i ) = V?

i = var(Y?
i ) = var(AiYi) = Aivar(Yi)A

′
i = AiViA

′
i. So

V?
i = AiViA

′
i = BiViB

′
i, as Ai = Bi in the complete matched case.

Let W?
i = (V?

i )
−1. Then

β̂? =

(
n∑

i=1

X?′
i W?

i X
?
i

)−1 n∑
i=1

X?′
i W?

i Y
?
i

=

(
n∑

i=1

(BiXi)
′
W?

i (BiXi)

)−1 n∑
i=1

(BiXi)
′
W?

i BiYi .

E(β̂?) =

(
n∑

i=1

(BiXi)
′
W?

i (BiXi)

)−1 n∑
i=1

(BiXi)
′
W?

i BiE(Yi)

=

(
n∑

i=1

(BiXi)
′
W?

i (BiXi)

)−1 n∑
i=1

(BiXi)
′
W?

i BiXiβ = β .

var(β̂?) =

(
n∑

i=1

X?′
i W?

i X
?
i

)−1 (
n∑

i=1

X?′
i W?

i Var(Y?
i )W

?
i X

?
i

)(
n∑

i=1

X?′
i W?

i X
?
i

)−1

=

(
n∑

i=1

X?′
i W?

i X
?
i

)−1

=

(
n∑

i=1

(BiXi)
′
W?

i (BiXi)

)−1

.
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So β̂? is an unbiased estimate of β for complete matched data.

We can compare var(β̂) with var(β̂?).

var(β̂) = (
n∑

i=1

X
′
iV

−1
i Xi)

−1 = (
n∑

i=1

X
′
iWiXi)

−1, where Wi = V−1
i , and

var(β̂?) =

(
n∑

i=1

(X?′
i W?

i X
?
i )

)−1

=

(
n∑

i=1

X
′
iB

′
i(BiViB

′
i)
−1BiXi

)−1

.

The difference between the var(β̂) and var(β̂?) is mainly due to the difference betweenV−1
i

and B
′
i(BiViB

′
i)
−1Bi. In order to see the difference between var(β̂) and var(β̂?) more

closely, we look into special cases as follows. Assume ci1 = ci2 = . . . = c
in

(X,Y)
i

= c, i.e., the

number of original observations in each bin are the same. And assume there are a total of

M bins for each subject which means n
(X,Y)
i = M for all i. So, total number of observations

for each subject is cM . Let J = cM . The assumptions of equal numbers of observations

within each bin and equal number of bins for each subject are just for demonstration only.

They are not required by the binning method itself.

Case I: assume Vi = σ2Ini
. Then

var(β̂?) =
σ2

c

(
n∑

i=1

X
′
iB

′
iBiXi

)−1

.

var(β̂) = σ2

(
n∑

i=1

X
′
iXi

)−1

.

The difference between var(β̂?) and var(β̂) will be reflected by matrix B
′
iBi. And

given the above assumptions,

B
′
iBi = diag(

1

c
1c×c, . . . ,

1

c
1c×c)J×J .

a block diagonal matrix with dimension J × J . 1 is a matrix with all elements of 1.
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Assume we have one single covariate Xij, then β = (β0, β1),

var(β̂) = σ2(
n∑

i=1

Xi
′
V−1

i Xi)
−1

= σ2




n∑
i=1




1 Xi1

. . . . . .

1 XiJ




′ 


1 Xi1

. . . . . .

1 XiJ




−1



=
σ2

∑n
i=1

∑J
j=1(Xij − X̄··)2




1
nJ

∑n
i=1

∑J
j=1 X2

ij −X̄··

−X̄·· 1


 ,

where X̄·· = 1
nJ

∑n
i=1

∑J
j=1 Xij. And

var(β̂?) =
σ2

c

(
n∑

i=1

X
′
iB

′
iBiXi

)−1

=
σ2

c

(
n∑

i=1

(X?
i )
′X?

i

)−1

=
σ2/c∑n

i=1

∑M
m=1(Xi,m − X̄?··)2




1
nM

∑n
i=1

∑M
m=1 X2

i,m −X̄?
··

−X̄?
·· 1


 ,

where Xi,m is the covariate in the mth bin for the ith subject which has been defined

in Section 3.2. X̄?
·· = 1

nM

∑n
i=1

∑M
m=1 Xi,m, the overall mean of the binned covari-

ates. We can see that var(β̂) and var(β̂?) depend on the sum squares of Xij and

Xi,m, respectively. And var(β̂1) = σ2/
∑n

i=1

∑J
j=1(Xij − X̄··)2 = σ2/((nJ − 1)S2

X),

where S2
X =

∑n
i=1

∑J
j=1(Xij − X̄··)2/(nJ − 1), the sample variance of Xij, and

var(β̂?
1) = σ2/(c

∑n
i=1

∑M
m=1(Xi,m − X̄?

··)
2) = σ2/(c(nM − 1)S2

X?) where S2
X? =

∑n
i=1

∑M
m=1(Xi,m− X̄?

··)
2/(nM − 1), the sample variance of Xi,m. Because we obtain

the average in each bin, the sample variance S2
X would usually be greater than S2

X? .

Also there will be fewer resulting repeated measurements following binning, as com-

pared to the original set of observations. So var(β̂1) would usually be smaller than

var(β̂?
1). This is consistent with the simulations in Chapter 2. As bin size increases,

var(β̂1

?
) will generally increase too.
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Case II: assume Vi is a compound symmetric matrix and has the form as

Vi =




σ2
b + σ2

e σ2
b . . . σ2

b

σ2
b σ2

b + σ2
e . . . σ2

b

. . . . . . . . .

σ2
b . . . σ2

b σ2
b + σ2

e




J×J

= (σ2
b +σ2

e)




1 ρ . . . ρ

ρ 1 . . . ρ

. . . . . . . . .

ρ . . . ρ 1




J×J

.

where ρ =
σ2

b

σ2
b+σ2

e
. Then

V−1
i = a0




1 ρ
′

. . . ρ
′

ρ
′

1 . . . ρ
′

. . . . . . . . .

ρ
′

. . . ρ
′

1




J×J

.

where a0 = 1+(J−2)ρ

(1+(J−2)ρ−(J−1)ρ2)(σ2
b+σ2

e)
, and ρ

′
= −ρ

1+(J−2)ρ
.

n∑
i=1

Xi
′
V−1

i Xi =
n∑

i=1




1 Xi1

. . . . . .

1 XiJ




′

a0




1 ρ
′

. . . ρ
′

ρ
′

1 . . . ρ
′

. . . . . . . . .

ρ
′

. . . ρ
′

1







1 Xi1

. . . . . .

1 XiJ




= a0


 nJ(1− ρ

′
+ Jρ

′
) (1− ρ

′
+ Jρ

′
)
∑n

i=1

∑J
j=1 Xij

(1− ρ
′
+ Jρ

′
)
∑n

i=1

∑J
j=1 Xij (1− ρ

′
)
∑n

i=1

∑J
j=1 X2

ij + ρ
′ ∑n

i=1(
∑J

j=1 Xij)
2


 .

Then

var(β̂) = (
n∑

i=1

Xi
′
V−1

i Xi)
−1 =

1

∆




1
nJ

(
(1− ρ

′
)
∑n

i=1

∑J
j=1 X2

ij + J2ρ
′ ∑n

i=1 X̄2
i·
)

−(1− ρ
′
+ Jρ

′
)X̄··

−(1− ρ
′
+ Jρ

′
)X̄·· 1− ρ

′
+ Jρ

′


 ,

where ∆ = (1−ρ
′
+Jρ

′
)a0

{
(1− ρ

′
)
∑n

i=1

∑J
j=1(Xij − X̄··)2 + ρ

′ ∑n
i=1

∑J
j=1(X̄i· − X̄··)2

}
.

And X̄i· = 1
J

∑J
j=1 Xij, X̄·· = 1

nJ

∑n
i=1

∑J
j=1 Xij .
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We know that var(β̂?) = (
∑n

i=1 X?′
i W?

i X
?
i )
−1 = (

∑n
i=1 X?′

i (BiViBi)
−1X?

i )
−1. The

calculation of var(β̂?) will be very similar to the calculation of var(β̂). We just need

to change the Xi in var(β̂) to X?
i , and change the Vi to BiViBi.

BiViB
′
i = (σ2

b + σ2
e/c)




1 ρ1 . . . ρ1

ρ1 1 . . . ρ1

. . . . . . . . .

ρ1 . . . ρ1 1




M×M

,

and here the correlation ρ1 =
σ2

b

σ2
b+σ2

e/c
for matrix BiViB

′
i. Note here, the covariance

matrix dimension is M×M , since the effective repeated measurements are the binned

responses. Similarly, we can get the variance of β̂? as follows

var(β̂?) =

1

∆1




1
nM

(
(1− ρ

′
1)

∑n
i=1

∑M
m=1 X2

i,m + M2ρ
′
1

∑n
i=1 X̄?2

i·
)

−(1− ρ
′
1 + Mρ

′
1)X̄

?
··

−(1− ρ
′
1 + Mρ

′
1)X̄

?
·· 1− ρ

′
1 + Mρ

′
1


 ,

where ∆1 = (1− ρ
′
1 + Mρ

′
1)a1{(1− ρ

′
1)(

∑n
i=1

∑M
m=1(Xi,m − X̄?

··)
2

+ ρ
′
1

∑n
i=1

∑M
m=1(X̄

?
i· − X̄?

··)
2} and X̄?

i· = 1
M

∑M
m=1 Xi,m, X̄?

·· = 1
nM

∑n
i=1

∑M
m=1 Xi,m,

ρ1 =
σ2

b

σ2
b+σ2

e/c
, ρ

′
1 = −ρ1

1+(M−2)ρ1
, a1 = 1+(M−2)ρ1

(1+(M−2)ρ1−(M−1)ρ2
1)(σ2

b+σ2
e/c)

. Here Xi,m is the

covariate value after binning. Here var(β̂?
1) = 1/(a1{(1−ρ

′
1)

∑n
i=1

∑M
m=1(Xi,m−X̄?

··)
2

+ ρ
′
1

∑n
i=1

∑M
m=1(X̄

?
i· − X̄?

··)
2}). If the within-subject variability of Xij is increased,

then
∑n

i=1

∑M
m=1(Xi,m − X̄?

··)
2 and

∑n
i=1

∑M
m=1(X̄

?
i· − X̄?

··)
2 will be increased, thus

var(β̂?
1) will be decreased.

3.2.2 Binning estimates for mismatched data

Assume now the more general case where the response or covariates are mismatched, where

at some observed time points, either only response or covariate is observed, but not for
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both. We now write

Y?
i = AiYi, X?

i = BiXi ,

where Yi and Xi denote the GSD for subject i, as defined in the previous section.

Y?
i requires its own weight matrix Ai whereas X?

i requires a distinct matrix Bi. In

general, for the mismatched case, Ai 6= Bi. As denoted earlier in Section 3.2, c
(X)
im is the

number of observed time points for covariates in mth bin, c
(Y)
im is the number of observed

time points for response in mth bin, and c
(X,Y)
im is the number of elements in the union of

distinct time points for both response and covariates in mth bin. For example, for mth bin,

assume the covariates are observed at time points 0, 3, 6, and the response is observed at

time points 0, 2, 4, 6. Then the union of time points are (0, 2, 3, 4, 6). Thus c
(X)
im = 3,

c
(Y)
im = 4 and c

(X,Y)
im = 5. Let ci =

∑n
(X,Y)
i

m=1 c
(X,Y)
im .

Ai =




c
(X,Y)
i1 elements︷ ︸︸ ︷

1

c
(Y)
i1

,
1

c
(Y)
i1

, 0, . . . ,
1

c
(Y)
i1

c
(X,Y)
i2 elements︷ ︸︸ ︷

1

c
(Y)
i2

,
1

c
(Y)
i2

, 0, . . . ,
1

c
(Y)
i2

. . .
c

in
(X,Y)
i

elements

︷ ︸︸ ︷
1

c
(Y)

in
(X,Y)
i

,
1

c
(Y)

in
(X,Y)
i

, 0, . . . ,
1

c
(Y )

in
(X,Y )
i




n
(X,Y)
i ×ci

.

(3.3)
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Bi =




c
(X,Y)
i1 elements︷ ︸︸ ︷

1

c
(X)
i1

, 0,
1

c
(X)
i1

, . . . ,
1
cXi1

c
(X,Y)
i2 elements︷ ︸︸ ︷

1

c
(X)
i2

, 0,
1

c
(X)
i2

. . . ,
1

c
(X)
i2

. . .

c
(X,Y)

in
(X,Y)
i

elements

︷ ︸︸ ︷
1

c
(X)

in
(X,Y)
i

, 0,
1

c
(X)

in
(X,Y)
i

, . . . ,
1

c
(X)

in
(X,Y)
i




n
(X,Y)
i ×ci

.

(3.4)

We can think of matrices (3.3) and (3.4) as weight matrices which connect the data before

and after binning via GSD. GSD contains all the distinct time points for both the original

observed response and covariates before binning. In the mth bin, for those time points

available in the GSD but where only the observed covariate values are available and the

responses are not available, the weights of those time points on Bi are set to 0, otherwise

set to 1/c
(Y)
im ; on the other hand, for those time points available in the GSD but where only

the observed responses are available and covariates are not available, then the weights of

those time points on Ai are set to 0, otherwise set to 1/c
(X)
im . For the example above, the

weight vector for covariate in the mth bin is (1/3, 0, 1/3, 0, 1/3); the weight vector for the

response in the mth bin is (1/4, 1/4, 0, 1/4, 1/4).

Then the estimated β̂? is

β̂? = (
n∑

i=1

X?′
i W?

i X
?
i )
−1

n∑
i=1

(X?′
i W?

i Y
?
i )

= (
n∑

i=1

(BiXi)
′
W?

i (BiXi))
−1

n∑
i=1

(BiXi)
′
W?

i AiYi, where

E(β̂?) = (
n∑

i=1

(BiXi)
′
W?

i (BiXi))
−1

n∑
i=1

(BiXi)
′
W?

i AiXiβ

= (
n∑

i=1

X
′
iB

′
iW

?
i BiXi)

−1

n∑
i=1

X
′
iB

′
iW

?
i AiXiβ .
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var(β̂?) =

(
n∑

i=1

X?′
i W?

i X
?
i

)−1 (
n∑

i=1

X?′
i W?

i Var(Y?
i )W

?
i X

?
i

)(
n∑

i=1

X?′
i W?

i X
?
i

)−1

=

(
n∑

i=1

X?′
i W?

i X
?
i

)−1

=

(
n∑

i=1

(BiXi)
′
W?

i (BiXi)

)−1

=

(
n∑

i=1

(BiXi)
′
(AiViA

′
i)
−1(BiXi)

)−1

,

under the assumption that var(Y?
i ) = (W?

i )
−1 = var(AiYi) = AiViA

′
i. Since Ai 6= Bi,

thus most likely E(β̂?) 6= β, meaning the binning method produces a biased estimate for β

in general. This is consistent with the simulation findings from Chapter 2. And in Chapter

2, simulations have shown that the β̂? is biased toward 0, which indicates that β̂? is not a

consistent estimator of β.

3.2.3 Examples

To better understand the mismatched case, we use a simple example as follows. In this

example, we assume bin size is b and all subjects have equal number of bins, i.e., n
(X,Y )
i = M

for all i. In each bin, assume the data structures are the same for each subject, such that

there are L matched pairs, and J response-only data points, and K predictor-only data

points. Assume there is one single covariate X. Table (3.1) shows a clearer picture of

the observed data for the mth bin. We denote the GSD data before binning as Xi,mk and

Yi,mk which means the kth observations for X and Y in the mth bin for subject i, and

i = 1, . . . , n. We also arrange the original observed data so that in each bin, the data

is shown as L time points of matched pairs (Xi,mk, Yi,mk), J time points of Y-only data

(·, Yi,mk) and K time points of X-only data (Xi,mk, ·). The (·) signifies there is no observed

corresponding predictor or response. There are a total of (L+J+K) original days on which

we have observed data in each bin. The special cases of equal number of observations

within each bin and equal number of observations for each subject are just for illustration
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only. Binning method itself allows for variable number of observations within each bin and

for each subject.

Let GSD data Yi = (Yi,m1, . . . , Yi,m,L+J+K)
′
, and Xi = (1

′
L+J+K , (Xi,m1, . . . , Xi,m,L+J+K)

′
),

β = (β0, β1)
′
, εi = (εi,m1, . . . , εi,m,L+J+K)

′
. εi ∼ N(0,Vi). Wi = V−1

i . And the model for

GSD data by matrix form is

Yi = Xiβ + εi .

And we have the expectation

E(Yi) = Xiβ .

After binning, the binned response and predictors for the mth bin are Yi,m and Xi,m:

Yi,m =
Yi,m1 + Yi,m2 + . . . + Yi,mL + Yi,m,L+1 + . . . + Yi,m,L+J

L + J
.

Xi,m =
Xi,m1 + Xi,m2 + . . . + Xi,mL + Xi,m,L+J+1 + . . . + Xi,m,L+J+L

L + K
.

Now, after binning, we need to fit the binned data by model

Y?
i = X?

i β
? + ε?

i

where ε?
i ∼ N(0,V?

i ), W?
i = (V?

i )
−1. Now we let

Z1i,m =
Xi,m1 + Xi,m2 + . . . + Xi,mL

L

Z2i,m =
Xi,m,L+1 + Xi,m,L+2 + . . . + Xi,m,L+J

J

Z3i,m =
Xi,m,L+J+1 + Xi,m,L+J+2 + . . . + Xi,m,L+J+K

K
.

Z1i,m is the averaged covariate value for matched pairs in the mth bin. Z2i,m is the averaged

covariate values for Y − only data in the mth bin. Z3i,m is the averaged covariate values

for X − only data in the mth bin. Then we will have

Xi,m =
L

L + K
Z1i,m +

K

L + K
Z3i,m .
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type observed data

(Xi,m1, Yi,m1)

matched pairs (Xi,m2, Yi,m2)

(Xi,mk, Yi,mk) Z1i,m

. . .

(Xi,mL, YmL)

k = 1, . . . , L

(·, Yi,m,L+1)

mth’s Y-only (·, Yi,m,L+2)

bin (·, Yi,mk)

(Xi,m, . . . Z2i,m

Yi,m) (·, Yi,m,L+J)

k = L + 1, . . . , L + J

(Xi,m,L+J+1, ·)
X-only (Xi,m,L+J+2, ·)

(Xi,mk, ·)
. . . Z3i,m

(Xi,m,L+J+K , ·)
k = L + J + 1, . . . , L + J + K

Table 3.1: The data in the mth bin
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And let

X?
i = (1

′
M , (Xi,1, Xi,2, . . . , Xi,M)

′
) ,

Y?
i = (Yi,1, Yi,2, . . . , Yi,M)

′
,

Z1i = (1
′
M , (Z1i,1, Z1i,2, . . . , Z1i,M)

′
) ,

Z2i = (1
′
M , (Z2i,1, Z2i,2, . . . , Z2i,M)

′
) ,

Z3i = (1
′
M , (Z3i,1, Z2i,2, . . . , Z3i,M)

′
) .

where 1M denotes a column vector with all elements of 1, and the length of the column

vector is M . Then

X?
i =

L

L + K
Z1i +

K

L + K
Z3i , and

E(Yi,m) = E(
Yi,m1 + Yi,m2 + . . . + Yi,mL + Yi,m,L+1 + . . . + Yi,m,L+J

L + J
)

=
E(Yi,m1) + E(Yi,m2) + . . . + E(Yi,mL) + E(Yi,m,L+1) + . . . + E(Yi,m,L+J)

L + J

=
Xi,m1 + Xi,m2 + . . . + Xi,mL + Xi,m,L+1 + . . . + Xi,m,L+J

L + J
β1 + β0

=
LZ1i,m + JZ2i,m

L + J
β1 + β0 .

If we write in matrix form, then

E(Y?
i ) = (

L

L + J
Z1i +

J

L + J
Z2i)β .
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β̂? =

(
n∑

i=1

X?′
i W?

i X
?
i

)−1 n∑
i=1

X?′
i W?

i Y
?
i .

E(β̂?) =

(
n∑

i=1

X?′
i W?

i X
?
i

)−1 n∑
i=1

X?′
i W?

i E(Y?
i )

=

(
n∑

i=1

(
L

L + K
Z1i +

K

L + K
Z3i)

′
W?

i (
L

L + K
Z1i +

K

L + K
Z3i)

)−1

n∑
i=1

(
L

L + K
Z1i +

K

L + K
Z3i)

′
W?

i (
L

L + J
Z1i +

J

L + J
Z2i)β

=
L + K

L + J
β +

(
n∑

i=1

(
L

L + K
Z1i +

K

L + K
Z3i)

′
W?

i (
L

L + K
Z1i +

K

L + K
Z3i)

)−1

n∑
i=1

(
L

L + K
Z1i +

K

L + K
Z3i)

′
W?

i (
J

L + J
Z2i − K

L + J
Z3i)β .

var(β̂?) =

(
n∑

i=1

X?′
i W?

i X
?
i

)−1

=

(
n∑

i=1

(
L

L + K
Z1i +

K

L + K
Z3i)

′
W?

i (
L

L + K
Z1i +

K

L + K
Z3i)

)−1

.

1) If K = 0, which means in each bin, there are some days that covariates are not

measured, but responses are all measured. Then

E(β̂?) =
L

L + J
β +

(
n∑

i=1

Z1
′
iW

?
i Z1i

)−1 n∑
i=1

Z1
′
iW

?
i Z2i

J

L + J
β .

2) If J = 0, which means in each bin, there are some days that responses are not

measured, but covariates are all measured, then

E(β̂?) =

(
n∑

i=1

(
L

L + K
Z1i +

K

L + K
Z3i)

′
W?

i (
L

L + K
Z1i +

K

L + K
Z3i)

)−1

n∑
i=1

(
L

L + K
Z1i +

K

L + K
Z3i)

′
W?

i Z1iβ .
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3) If L = 0, which means in each bin, response and covariates are totally mismatched.

There are no matched pairs in each bin at all. Then

E(β̂?) =

(
n∑

i=1

Z3
′
iW

?
i Z3i

)−1 n∑
i=1

Z3
′
iW

?
i Z2iβ .

However, because Z1i, Z3i, and Z3i are in matrix form, it is not easy to see explicitly the

form of the expectation of β̂?. We can say the expectation may be affected by

• matched rate L
L+J

for response and L
L+K

for covariate.

• correlation between Z1i,m, Z2i,m and Z3i,m. This means the correlation structure of

each covariate is important.

We use a special case W?
i = 1

σ2 Ini
as an example to explore the expectation of β̂?. This form

of Wi means there is no dependence between repeated measurements for each subject, which

is not generally realistic for longitudinal data but is used here for illustrative purposes. This

also corresponds to the independent covariance structure for the response.

1. Assume W?
i = 1

σ2 Ini

If W?
i = 1

σ2 Ini
, then observations within each subject are independent, then GLS be-

comes ordinary least, and the longitudinal modeling becomes simple linear regression.

Then, we can write estimated β? as β̂?

β̂? =

(
n∑

i=1

X?′
i X?

i

)−1 n∑
i=1

X?′
i Y?

i

cov(β̂?) =

(
n∑

i=1

X?′
i X?

i

)−1

σ2
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Since we assume there is only one single covariate Xij, and β = (β0, β1)
′
thus we can

write

Yi,m = β?
0 + β?

1Xi,m + ε?
i,m

β̂?
0 = Ȳ ?

·· − β̂?
1X̄

?
··

β̂?
1 =

∑n
i=1

∑M
m=1(Xi,m − X̄?

··)Yi,m∑n
i=1

∑M
m=1(Xi,m − X̄?··)2

var(β̂?
1) =

σ2

∑n
i=1

∑M
m=1(Xi,m − X̄?··)2

,

where X̄?
·· =

∑n
i=1

∑M
m=1 Xi,m

nM
, Ȳ ?

·· =

∑n
i=1

∑M
m=1 Yi,m

nM
.

Since

E(β̂?
1) =

∑n
i=1

∑M
m=1(

L
L+K

Z1i,m + K
L+K

Z3
i,m
− X̄?

··)(
L

L+J
Z1i,m + J

L+J
Z2i,m)

∑n
i=1

∑M
m=1(

L
L+K

Z1i,m + K
L+K

Z3
i,m
− X̄?··)2

β1 .

Let

Z̄1
?
·· =

∑n
i=1

∑M
m=1 Z1i,m

nM
, Z̄3

?
·· =

∑n
i=1

∑M
m=1 Z3i,m

nM

. From the setup, we can derive that

L

L + K
Z̄1·· +

K

L + K
Z̄3·· = X̄?

·· .

Let E(β̂?
1) = T1

T2
β1 where

T1 =
n∑

i=1

M∑
m=1

(
L

L + K
Z1i,m +

K

L + K
Z3i,m − X̄?

··)(
L

L + J
Z1i,m +

J

L + J
Z2i,m)

n∑
i=1

M∑
m=1

((Z1i,m − Z̄1··)
L

L + K
+ (Z3i,m − Z̄3··)

K

L + K
)(

L

L + J
Z1i,m +

J

L + J
Z2i,m)

= var(Z1)
L2

(L + K)(L + J)
+ cov(Z1, Z3)

KL

(L + K)(L + J)

+ cov(Z1, Z2)
LJ

(L + K)(L + J)
+ cov(Z2, Z3)

KJ

(L + K)(L + J)
.
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T2 =
n∑

i=1

M∑
m=1

(
L

L + K
Z1i,m +

K

L + K
Z3i,m − X̄?

··)
2

=
n∑

i=1

M∑
m=1

(
L

L + K
Z1i,m +

K

L + K
Z3i,m − L

L + K
Z̄1·· − K

L + K
Z̄3··)2

=
n∑

i=1

M∑
m=1

((Z1i,m − Z̄1··)
L

L + K
+ (Z3i,m − Z̄3··)

K

L + K
)2

=
L2(nM − 1)

(L + K)2
var(Z1) +

K2(nM − 1)

(L + K)2
var(Z3) +

2KL(nM − 1)

(L + K)2
cov(Z1, Z3) .

Thus

E(β̂?
1) =

T1

T2
β1 = β1

var(Z1) L2

(L+K)(L+J)
+ cov(Z1, Z3) KL

(L+K)(L+J)

L2

(L+K)2
var(Z1) + K2

(L+K)2
var(Z3) + KL

(L+K)2
cov(Z1, Z3)

+
cov(Z1, Z2) LJ

(L+K)(L+J)
+ cov(Z2, Z3) KJ

(L+K)(L+J)

L2

(L+K)2
var(Z1) + K2

(L+K)2
var(Z3) + KL

(L+K)2
cov(Z1, Z3)

. (3.5)

var(β̂?
1) =

σ2

T2
=

σ2/(nM − 1)
L2

(L+K)2
var(Z1) + K2

(L+K)2
var(Z3) + KL

(L+K)2
cov(Z1, Z3)

. (3.6)

• if K = 0, then

E(β̂?
1) = β1

var(Z1) L
L+J

+ cov(Z1, Z2) J
L+J

var(Z1)
=

L

L + J
β1 +

cov(Z1, Z2)

var(Z1)

J

L + J
β1

var(β̂?
1) =

σ2

(nM − 1)var(Z1)
;

positive correlation between Z1, Z2 would increase the expectation of β̂?
1 .

• if J = 0, then

E(β̂?
1) =

var(Z1) L
L+K

+ cov(Z1, Z3) K
L+K

L2

(L+K)2
var(Z1) + K2

(L+K)2
var(Z3) + KL

(L+K)2
cov(Z1, Z3)

.

var(β̂?
1) =

σ2/(nM − 1)
L2

(L+K)2
var(Z1) + K2

(L+K)2
var(Z3) + KL

(L+K)2
cov(Z1, Z3)

.

Summary: from equation (3.5) and (3.6), we can see that the E(β̂?
1), var(β̂?

1) are

affected by
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• The matching rate L
L+K

for X and for L
L+J

for Y .

• The sample covariance among Z1, Z2, Z3, which are the binned covariates

values for matched data, Y-only data and X − only data.

• The sample variance of Z1, Z3.

• Fixing all other conditions, if there is positive autocorrelation among the predic-

tor values Xi,m, then cov(Z1, Z2) > 0, cov(Z1, Z3) > 0, and cov(Z2, Z3) > 0.

Thus the E(β̂?) would be increased compared to the case with no autocorrelation

among the predictors.

• σ2, the variance of the random error term.

2. Assume W?
i is a compound symmetry matrix

E(β̂?) = (
n∑

i=1

(BiXi)
′
W?

i (BiXi))
−1

n∑
i=1

(BiXi)
′
W?

i AiXiβ

var(β̂?) =

(
n∑

i=1

X?′
i W?

i X
?
i

)−1

=

(
n∑

i=1

(BiXi)
′
(AiViA

′
i)
−1(BiXi)

)−1

.

W?
i is a compound symmetry matrix with correlation matrix ρ and variance σ2

b + σ2
e

var(β̂?) =

1

∆1




1
nM

(
(1− ρ

′
1)

∑n
i=1

∑M
m=1 X2

i,m + M2ρ
′
1

∑n
i=1 X̄?

i·
)

−(1− ρ
′
1 + Mρ

′
1)X̄

?
··

−(1− ρ
′
1 + Mρ

′
1)X̄

?
·· 1− ρ

′
1 + Mρ

′
1


 ,

where ∆1 = (1− ρ
′
1 + Mρ

′
1)a1

{
(1− ρ

′
1)

n∑
i=1

M∑
m=1

(Xi,m − X̄?
··)

2 + ρ
′
1M

2

n∑
i=1

(X̄?
i· − X̄?

··)
2

}
.

And X̄?
i· = 1

M

∑M
m=1 Xi,m, X̄?

·· = 1
nM

∑n
i=1

∑M
m=1 Xi,m, ρ1 =

σ2
b

σ2
b+σ2

e
, ρ

′
1 = −ρ1

1+(M−2)ρ1
,

a1 = 1+(M−2)ρ1

(1+(M−2)ρ1−(M−1)ρ2
1)(σ2

b+σ2
e)

. Here Xi,m is the covariate value after binning.
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3.3 Conditional Poisson distribution

From the previous section, if the original observed data is completely matched (same as the

gold standard data), then the expectation of estimated β̂? for the binned data, i.e., E(β̂?),

is the same as β. This is true for multivariate normal responses. However, for non-normal

data, such as conditional Poisson data, we would like to know the relationship between

the estimated β? for the binned data and the β of the original gold standard data. Here

we mainly investigate a simple random intercept model because of its simplicity and wide

usage.

Assume Yij is the response for subject i and time j. For simplicity, suppose we have a

random intercept conditional Poisson model for Yij, i.e., conditional on the random inter-

cept ui, Yij is distributed as Poisson(µij). Assume there are k such original observations

in the mth bin. After binning, then the binned response Yi,m and covariate Xi,m are

Yi,m = Yi1 + Yi2 + . . . + Yik ,

Xi,m =
Xi1 + Xi2 + . . . + Xik

k
.

By conditional Poisson GLMMs, we have





log(µi1) = β0 + Xi1β1 + ui ,

log(µi2) = β0 + Xi2β1 + ui ,
... ,

log(µik) = β0 + Xikβ1 + ui .

Summing up the left hand-side and right hand-side of the above equations, and dividing

each side by k, we have

1/k log(µi1µi2 . . . µik) = β0 + (Xi1 + Xi2 + . . . + Xik)β1/k + ui = β0 + Xi,mβ1 + ui .

On the other hand, conditional on random effects ui, Yi1, Yi2, . . ., Yik are independent,
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thus Yi1 + Yi2 + . . . + Yik|ui are Poisson(µi1 + µi2 + . . . + µik). That is

log(µi1 + . . . + µik) = log(eβ0+Xi1β1+ui + eβ0+Xi2β1+ui + . . . + eβ0+Xikβ1+ui)

= log(eXi1β1 + eXi2β1 + . . . + eXikβ1) + β0 + ui .

If Xi1 = Xi2 = . . . = Xik = c, i.e., for subject i, Xij is time-invariant within each bin but

can be the same or different between bins, then log((µi1+. . .+µik)/k) = 1/k log(µi1µi2 . . . µik),

thus log(µi1 + . . . + µik) = β0 + β1Xi,m + ui. So

Yi,m|ui ∼ Poisson(β0 + Xi,mβ1 + log(k) + ui) .

Under these conditions, then after binning, β1 remains the same but there is an offset

log(k) in the intercept.

However, if Xij is time-varying, but the within-subject variability of Xij is sufficiently

small, then within each bin, the Xij would be very close to a constant. Then after binning,

the conditional distribution of the binned response is still approximately Poisson.

We would like to establish a more general proof as future work, i.e., to establish the

conditional distribution of Yi,m when Xij is fully time-varying and to establish precisely

what we mean by the within-subject variability of Xij being sufficiently small. We have

established in numerical studies that Xij can be time-varying with a constant mean and

the conditional distribution of Yi,m follows.

3.4 Bin size selection

In Chapter 2, we have discussed the potential important of bin size selection as well as

having investigated the role of bin size influence on parameter estimation via simulation.

We discuss this topic a bit further in this section.
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3.4.1 Cross validation using binned data

Cross-validation can be used for bin size selection. Similar ideas have been used in non-

parametric smoothing to choose smoothing parameters. For longitudinal data, we consider

leave-one-subject-out cross validation instead of leaving-one-observation-out, the former

also a common choice in bandwidth selection in nonparametric modeling of longitudinal

data (e.g. Rice and Silverman, 1991).

In this approach, we use the binned data for cross validation. The loss function is

defined as predicted residual sum of squares PRSS =
∑n

i=1

∑n
(X,Y)
i

m=1 (yi,m− Ê(−i)(Yi,m|ui))
2.

Yi,m is the binned response in the mth bin for the ith subject. Ê(−i)(Yi,m|ui) is the pre-

dicted conditional mean for the ith subject in the mth bin, based on estimates from the

dataset without subject i. The best bin size is the one with minimal PRSS. To calculate

Ê(−i)(Yi,m|ui), we need to predict the random effects of subject i based on the data without

subject i. We can use the linearization method to predict the random effects.

For a generalized linear mixed effects model, conditional on the random effects, assume

the mean of Yij is µij. And with a known link function g(·), g(µij) = g[E(Yij|ui)] =

X
′
ijβ + Z

′
ijui. Here Xij is the p-dimensional vector and Zij is the q-dimensional vector for

fixed effects β and random effects ui respectively where ui ∼ N(0,D)

Let vij = Var(Yij|ui), Qi be a diagonal matrix where Qi = diag(vijg
′
(µij)

2), and let Y ∗
ij

be a surrogate response whose elements are

Y ∗
ij = g(µij) + (Yij − µij)g

′
(µij) .

Vi is a ni × ni matrix and defined as Vi = Qi + ZiDZ
′
i. The prediction of random effects

is (Diggle et al., 2002, p.174)

ûi = D̂Z
′
iV̂

−1
i (Y∗

i −Xiβ̂) (3.7)

For the hemodialysis data, the predicted PRSS is 213.9695 for bin size 30, 218.7389 for

bin size 45 and 218.9826 for bin size 60, which shows 30 day bin size would be selected.
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We had run 200 simulations for complete matched data using bin size 28, 40 and 56. By

the PRSS criteria, 59.5% of the time, bin size 28 is selected, while 33% for bin size 40 and

7.5% for bin size 56. Similarly, for complete mismatched data by bin size 28, 40 and 56,

52% of the time bin size 28 is selected, and 32% for bin size 40 and 16% for bin size 56.

3.4.2 Cross validation using original data before binning

In the above section, we have used binned data for bin size selection. However, binned

data would be different once the bin size is changed. On the other hand, original observed

data before binning is always the same no matter what bin size we use to perform binning.

It is also desirable to use original data to conduct bin size selection instead of using binned

data only. In this section, we will consider bin size selection by incorporating original data.

First approach

Let Yij denotes the observed response for subject i and time j where j = 1, 2, . . . , n
(Y )
i . The

PRSS is defined as
∑n

i=1

∑n
(Y)
i

j=1 (Yij − Ê(−i)(Yij|ui))
2. We need to predict the conditional

mean response Ê(−i)(Yij|ui) for subject i by the data which exclude subject i. However,

we fit models only on the binned data because the misalignment of the original response

and covariates on time. Here we suggest calculating Ê(−i)(Yij|ui) by the binned data. One

possible way is to use the average predicted conditional mean response in the bin where Yi,j

is located. Suppose original response Yij is located at the mth bin, then we use
Ê(−i)(Yi,m|ui)

c
(Y)
im

for calculating Ê(−i)(Yij|ui). Here c
(Y)
im is the number of original responses in the mth bin

for subject i. For the hemodialysis data, the PRSS is 92.5235, 90.9055 and 92.3674 for bin

size 30, 45 and 60 respectively which indicates bin size 45 will be selected.
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Second approach

In the first approach, we try to calculate the Ê(−i)(Yij|ui) by Ê(−i)(Yi,m|ui)/c
(Y)
im . In this

second approach, we propose to use marginal mean Ê(−i)(Yij) instead of the conditional

mean Ê(−i)(Yij|ui) to calculate the PRSS, which is defined as
∑n

i=1

∑n
(Y)
i

j=1 (Yij−Ê(−i)(Yij))
2.

If the random effects structure of the conditional Poisson GLMMs contains only a single

normal random intercept, then the marginal mean of Yi,m can be calculated explicitly.

Assume ui is distributed as N(0, σ2
u). By GLMM setting, we have

E(Yi,m|ui) = µi,m, log(µi,m) = X
′
i,mβ + ui .

The marginal mean of Yi,m is calculated as

γi,m = E(Yi,m) = E(E(Yi,m|ui)) = E(eX
′
i,mβ+ui) = eX

′
i,mβE(eui) = eX

′
i,mβ+σ2

u/2 .

However, this second approach is limited to the conditional intercept model. Assume

Yij is located in the mth bin, c
(Y)
im is the number of original responses in the mth bin for

subject i. We suggest using
γi,m

c
(Y)
im

for calculating Ê(−i)(Yij). We choose the bin size which

minimizes the PRSS. For the hemodialysis data, the PRSS values are 116.1346, 120.8958,

130.9015 for bin size 30, 45 and 60 days respectively, which indicates bin size 30 will be

selected.

These two approaches using original data have good potential because we compare the

PRSS criteria based on the same original response. However, one limitation is that the

response and covariates for original data are misaligned on time. Thus we cannot model

the original data directly but have to do some pre-processing such as the proposed binning

method. Thus for calculating the PRSS criteria for the original data, we still have to

borrow the binned data.

For hemodialysis among bin size 30, 45 and 60 days, approach 1 gives 45 days as the

best bin sizes, while approach 2 suggests bin size 30 days as the best. So some future work

is still required to choose between the two proposals using the original data.
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3.4.3 Summary of bin size selection

In this section, we have proposed two methods for bin size selection, using either binned

data or original data. The selection criteria is PRSS, the predicted residual sum squares.

For bin size selection using original data, we also proposed two different approaches to

construct the PRSS criteria. In total, we have three different PRSS criteria. When using

original data for bin size selection, in order to build the PRSS, we still have to rely on the

marginal/conditional mean of binned data and number of original responses within each

bin (i.e., c
(Y)
im ). We applied these three PRSS criteria into hemodialysis data. Two criteria

selected bin size 30 and the other one selected bin size 45.

The reason to use original response for bin size selection is that as bin size changes,

the binned data also change. Thus comparison of PRSS criteria for different bin sizes

are based on different binned responses. However, when choosing smoothing parameter in

nonparametric smoothing, comparison using cross-validation criteria are always based on

the same responses. So it is worth considering original data in bin size selection, since our

original responses will never change no matter which bin size we have applied.

It looks like bin size selection using binned data compared to using original data also

has its advantages, since we have a model for the binned data (we fit the GLMM model

on the binned data), but not for the original data. And the PRSS criteria of original data

still depends on the binned data, which uses either
Ê(−i)(Yi,m|ui)

c
(Y)
im

for Ê(−i)(Yij|ui) or
γi,m

c
(Y)
im

for Ê(−i)(Yij). However, we still need to do more investigation on choosing one approach

versus the other.

In summary, further investigation is necessary to evaluate the PRSS criteria for select-

ing bin size under the binned data modeling approach.
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Chapter 4

A mixed effects regression tree-based

method for longitudinal count data

4.1 Motivation

For the hemodialysis study described in Chapter 2, we established via the binning procedure

that there was a contemporaneous relationship between log(crp) and infection for 30-day

binned data. And there was also a lagged relationship between infection and log(crp) for

the 7-week binned data; more specifically, the analysis indicated that infection occurred

ahead of log(crp) change in the latter setting. This is an important biological finding.

Now, from a biomedical standpoint, we are also interested in whether the rise in crp was

obviously preceded by an infection event, and if such event could be well determined to

have occurred in the recent past based on current readings of crp, a serum physiological

measurement that is easy to collect. In fact, there may be noticeable cutoff levels for crp

that are indicative of recent occurrences of infection event. For example, cut-off levels of

crp can be used to predict potential cardiovascular disease. According to the guidelines of

the American Heart Association (AHA) and the Center for Disease Control (CDC), risk
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for cardiovascular disease is low if crp is 1mg/L or less; risk for cardiovascular disease is

moderate if crp is between 1mg/L and 3mg/L; it is of high risk if crp > 3mg/L. In this

research, we are interested in finding out the cut-off levels of log(crp). It is also of interest

to detect whether other covariates such as age, gender, ethnicity, BMI and etc. should be

included in the model and what these covariate levels should be for best predicting number

of event occurrences.

Optimally, we would like to know risk factors of a pending occurrence. It is easy to

collect serum marker data, levels of which may result from a recent past event. In the

hemodialysis study, chart records were available for each patient. However, in general,

such chart records may be difficult to obtain, meaning only the marker of inflammation

(here, crp) can be used (among the consideration of both a measure of “infection” and

obtaining the crp measure itself) to help see if an infection may have recently occurred.

If so, it is possible to monitor the patients for future events (e.g., additional infections, or

possibly worse outcomes). Here there is a justification in identifying crp levels that may

be a reflection of event occurrences in the recent past.

In order to answer this medical question, a tree-based method is proposed for longitu-

dinal count data. To get the cut-off levels of log(crp), it is the same as finding the splitting

point of log(crp) in the regression tree.

Breiman et al. (1984) introduced “Classification and regression trees” (CART) which

is for univariate continuous response. Tree-based methods for longitudinal/clustering re-

sponses have also been proposed, such as Segal (1992). Segal (1992) suggested a tree that

can analyze continuous longitudinal response using Mahalanobis distance for within-node

homogeneity measures. Larsen and Speckman (2004) suggested a multivariate regression

tree that is a variation of the approach of Segal (1992) for longitudinal continuous data.

Zhang (1998) suggested a tree that can analyze multiple binary responses using generalized

entropy criterion. Lee (2005) proposed generalized multivariate decision to support various
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type of data such as count and binary using generalized estimating equations. Abdolell

(2002), Sela and Simonoff (2009) are using random effects models to build tree. More

specifically, Abdolell(2002) used linear mixed effects model for building splitting criterion.

Sela and Simonoff (2009) proposed a random effects EM tree (REEMtree) method for

longitudinal continuous data.

In summary, most of the existing classification and regression tree based methods are

either dealing with uncorrelated continuous or discrete responses, or correlated binary

data or count data but requiring the covariate value to be time-invariant. In this paper,

we have to make the tree-based method work for time-varying covariate, and supporting

longitudinal count data. Also we are more interested in subject-specific effects, so this

tree-based model should also account for individual subject effects.

The organization of this Chapter is as follows. In Section 4.2, we will introduce the

proposed generalized mixed regression tree-based method for longitudinal count data with

time-varying covariates. Section 4.3 will present the results of an analysis on hemodialysis

data and epilepsy seizure data. Some simulations are conducted in Section 4.4 to evaluate

the proposed method. Some discussion and future work are provided on Section 4.5.

In order to answer the scientific question related with the cut-off levels for log(crp),

a tree-based method is a reasonable choice. For the proposed GMRTree method in the

following section, we will adopt the linearization idea of penalized-quasi likelihood (PQL)

approximation in GLMMs and change the longitudinal count response into a surrogate

continuous response. As the response is count, following binning, the bias of PQL (Breslow

and Lin, 1995) should not be troubling as this affects mostly binary responses. Then, we

estimate the tree by CART, and random effects by a generalized linear mixed effects model.
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4.2 Model for generalized mixed effects regression tree

(GMRTree)

Before we introduce the proposed method, we review some notations of recursive partition

methodology for a univariate continuous response Y and a set of covariates (X1, X2, . . . , Xp).

Suppose that Yi = f(X1,i, X2,i, . . . , Xp,i)+ ei. For recursive partition, the aim is to approx-

imate f by a step function defined as

f̂(Xi) =
V∑

v=1

avbv(Xi) .

The functions bv(X) takes the form

bv(X) = I(X ∈ Rv) ,

where I(·) is an indicator function, and {Rv}V
v=1 represents a partition of the covariate

space which include the variables to be split and the split point. After fitting with the

regression tree, observations within the same region, i.e. partition Rv will have the same

mean av.

Suppose Yij is the longitudinal response for subject i at time j, Xij = (Xij1, Xij2, . . . , Xijp)
′

is the corresponded covariate vector, and the q-dimensional random effects vector ui =

(ui1, ui2, . . . , uiq)
′
where i = 1, 2, . . . , N ; j = 1, 2, . . . , ni. Conditional on the random effects

ui, assume

g(µij) = f(Xij1, Xij2, . . . , Xijp) + Z
′
ijui . (4.1)

where E(Yij|ui) = µij, var(Yij|ui) = v(µij). ui is assumed to be distributed as Nq(0,D).

Zij is the covariate vector for the random effects. g(·) is a link function. For count data,

most often g(·) is the log canonical function. If f(·) is a linear function of parameters such

that f(Xij1, Xij2, . . . , Xijp) = β1Xij1 + β2Xij2 + . . . + βpXijp, then (4.1) is the form of a

generalized linear mixed effects model. However, if different subsets of data have different
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structures, then parametric form for f(·) might be too restrictive. Also, p may be large, so

that including all of the predictors directly in parametric model may lead to overfitting and

therefore poor predictions. In this case, we propose a nonparametric regression tree-based

method estimate f(·). We use a piecewise constant model to fit f(·), such as by CART,

and the model (4.1) is defined as

log(µij) = Z
′
ijui +

V∑
v=1

I(Xij ∈ Rv)βv , (4.2)

where Rv is the partition of the covariate space in the vth terminal node. Here Rv and βv

are unknown. And the covariance matrix of ui is also unknown.

For longitudinal continuous response, Sela and Simonoff (2009) have proposed REEMtree.

For the tree-based model with random effects

Yij = f(Xij1, Xij2, . . . , Xijp) + Z
′
ijui + eij ,

where ei1, ei2, , . . . , eini
are assumed to normally distributed with covariance matrix Ri.

And eij are independent across subjects. The algorithms to estimate f(·) and predict the

random effects are as follows.

1. Initialize the predicted random effects ûi to zero.

2. Iterate through the following steps until the predicted random effects, ûi converges:

(a) Estimate a regression tree approximating f , based on the target variable, Yij −
Z
′
ijûi, and predictors, Xij· = (Xij1, . . . , Xijp), for i = 1, . . . , N and j = 1, . . . , ni.

Use this regression tree to create a set of indicator variables, I(Xij· ∈ gv), where

gv ranges over all of the terminal nodes in the tree.

(b) Fit the linear random effects model, Yij = Z
′
ijui + I(Xij· ∈ gv)µv + eij. Extract

ûi from the estimated model.
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For longitudinal non-normal data, a similar approach as REEMtree will be proposed to

get f̂ and ûi. However, here, we will use linearization to change the non-normal response

into an approximated continuous normal response.

4.2.1 Estimation procedure

Assume f(·) is a linear function of parameters βv, then (4.1) becomes the form of GLMMs

g(µij) = X
′
ijβ + Z

′
ijui . (4.3)

By linearization technique in penalized quasi-likelihood (Schall 1991; Breslow and Clayton,

1993), given the current estimates β̂ and ûi, the surrogate response Y ∗
ij , i.e.,

Y ∗
ij ≡ g(µ̂ij) + g

′
(µ̂ij)(Yij − µ̂ij) ≈ X

′
ijβ + Z

′
ijui + e∗ij ,

approximately follows a linear mixed effects model with fixed effects β and random effects

ui, with error term e∗ij. e∗ij is assumed to be normally distributed with mean 0 and diagonal

covariance matrix var(e∗i ) = diag(g
′
(µ̂ij)

2var(Yij)). Here e∗i = (e∗i1, . . . , e
∗
ini

).

Using similar idea, we derive the distribution of surrogate response Y ∗
ij for GMRTree

model in (4.1). Suppose h(·) is the inverse of link function g(·). Let ηij = g(µij) =

f(Xij1, Xij2, . . . , Xijp) + Z
′
ijui. Then we have µij = h(ηij). Given current estimates β̂ and

ûi, Yij can be written as

Yij = µij + eij = h(ηij) + eij ≈ h(η̂ij) + h
′
(η̂ij)(ηij − η̂ij) + eij ,

by first order Taylor expansion, Yij. Here var(eij) = v(µij). Then reordering the above

expression yields

Y ∗
ij ≡ η̂ij + (Yij − h(η̂ij))/h

′
(η̂ij) ≈ ηij + eij/h

′
(η̂ij) .

That is

Y ∗
ij ≡ g(µ̂ij) + g

′
(µ̂ij)(Yij − µ̂ij) ≈ f(Xij1, Xij2, . . . , Xijp) + Z

′
ijui + e∗ij . (4.4)
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Note 1/h
′
(η̂ij) = g

′
(h(η̂ij)) = g

′
(µ̂ij) because h(·) is the inverse function g(·). Thus Y ∗

ij

approximately follows GMRTree model with tree function f(Xij1, Xij2, . . . , Xijp), random

effects ui and error term e∗ij, where var(e∗i ) = diag(var(Yij)g
′
(µ̂ij)

2). The right side of

equation (4.4) is the general form of the REEMTree model proposed by Sela and Simonoff

(2009). Thus we can adopt the estimation procedures in REEMTree to our GMRTree.

In our proposed estimation method for GMRTree model for longitudinal count data,

we will use the linearization technique in (4.4) to change the longitudinal response Yij into

a surrogate response Y ∗
ij . Since Y ∗

ij is treated as continuous data, the tree-based methods

for continuous data such as CART can be applied. The detailed algorithm is as follows:

1. Initial: Estimate a standard regression tree f using CART on count response Yij and

predictors, Xij = (Xij1, . . . , Xijp)
′
, for i = 1, . . . , N and j = 1, . . . , ni by assuming

ûi = 0.

2. Iterate through the following steps until the predicted random effects ûi converges:

(a) Use this estimated regression tree f̂ to create a set of indicator variables, I(Xij ∈
Rv), where Rv is the partition of the covariate space for each terminal node,

v = 1, . . . , V .

(b) Fit the following conditional Poisson GLMM model and get the ûi

log(µij) = Z
′
ijui +

V∑
v=1

I(Xij ∈ Rv)βv .

(c) Calculate the fitted µ̂ij from (b). Then calculate the surrogate response Y ∗
ij by

Y ∗
ij = g(µ̂ij) + (Yij − µ̂ij)g

′
(µ̂ij) .

(d) Estimate f by a weighted regression tree, based on the response Y ∗
ij−Z

′
ijûi, and

predictors Xij. The weight is wij = (µ̂ijg
′
(µ̂ij)

2)−1 = µ̂ij since var(Yij) = µij.

82



Here, a weighted regression tree is fitted in step 2(d), because after linearization of the

GLMMs by (4.4), the covariance matrix of random error term is diag(µ̂ijg
′
(µ̂ij)

2) instead of

diagonal matrix σ2Ini
. Normally in CART, we assume the error term has constant variance

σ2. For non-constant variance, we need to put a weight to fit the tree.

We call the above proposed approach Generalized Mixed Effects Regression Tree (or

GMRTree). In this approach, we iteratively estimate the tree f(·) by CART (Classification

and Regression Tree) and predict the random effects ui by GLMM model until convergence.

In the initial step, by assuming random effects ui is 0, standard regression tree for Poisson

data is estimated. The splitting criterion is based on maximizing the deviance between a

parent node and two children nodes (see Chapter 1, Section 1.3.1, “Splitting criterion for

Poisson data”). Once f(·) is estimated, then we will know Rv, the partition of the covariates

space. We use this partition Rv information to fit a GLMM model and then predict the

random effects ui (step 2(b)). In step 2(c), a linearized response Y ∗
ij is calculated. After

step 2(c), a count response Yij is successfully changed into a surrogate continuous response

Y ∗
ij . Thus we can adapt tree-based method for continuous response to estimate the f(·).

In the last step 2(d), Y ∗
ij −Z

′
ijûi is used to estimate the f(·) like REEMTree. The splitting

criterion for step 2(d) is the goodness of split measurement in (1.6), which is based on

maximizing the prediction errors between the parent node and two children nodes (See

Chapter 1, Section 1.3.1, “Splitting a tree”). The pruning for Poisson data and continuous

data are based on cost complexity criterion which is defined in (1.8). The cost complexity

parameter is usually given by cross validation (See Chapter 1, Section 1.3.1, “Pruning a

tree”).

Within each iteration, from step 2(a) to 2(c), the partition Rv is fixed. Rv will be

updated in step 2(d) since a new estimated f(·) is created. Before convergence, the partition

of Rv will be updated after each iteration.

For the convergence, we first check whether the likelihood of step (b) converges. Most
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of the time, the log-likelihood will converge in a few steps, especially if we fit the data

with the correct model as shown in our simulation. However, there are also times that log-

likelihood will not converge; but, the difference of log-likelihood between two consecutive

iterations might be stable, in this case, we also claim it has converged.

CART theory is pretty mature and has been implemented in R package rpart . CART

provides us splitting criteria and pruning algorithms, concepts briefly presented in Chapter

1. Parameter estimation of GLMMs has been implemented in R package lme4. Compu-

tation is not burdensome by using existing package rpart and lme4, and in fact there are

useful purposes for utilizing tested software/algorithms.

4.3 Data analysis

4.3.1 Analysis of hemodialysis data

In Chapter 2, we introduced the binning method for aligning response and time-varying

covariates that were originally collected at distinct time points within an individual. We

utilize the same approach here. Specifically, we have applied the proposed GMRTree

method to both the 30-day binned data and 7-day binned data (i.e., only for the first 7 week

data), also described in Chapter 2. For the binned data, the response is the sum of infection

events in each bin. Covariates are either logcrp only or logcrp and additional covariates

such as age, gender, bmi and ethnicity. log(crp) is the only time-varying covariate and its

average within each bin becomes the binning method covariate.

Figure 4.1 is the regression tree for 30-day binned data by CART with one single

covariate logcrp, while Figure 4.2 is the corresponded GMRTree. For tree built by CART

(Figure 4.1), the value under each terminal nodes is the averaged response value within

that terminal node. For example, the value 0.1073 for the node logcrp < 0.01732 is the
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|
logcrp< 0.01732

logcrp< 1.775

logcrp>=0.1101

logcrp< 0.1802
logcrp>=1.64

logcrp< 1.247
logcrp>=0.9458 logcrp>=1.423

logcrp< 1.57

0.1073

0.0725
0.07817

0.02451 0.2984

0.05052 0.4056

0.5043

0.6253

0.8336

Figure 4.1: CART for infection for bin size 30; logcrp is the only covariate
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|
logcrp< 0.01732

logcrp< 1.775

logcrp>=0.1101
−2.883

−1.552 −0.3099

−0.3943

Figure 4.2: GMRTree for infection for bin size 30; logcrp is the only covariate
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|
logcrp< 0.01732

bmi>=27.43

bmi< 25.73

age>=75.5

bmi>=21.53

ethnicity=bd

bmi< 29.79

logcrp>=0.6135

bmi< 17.25

logcrp< 1.609

0.02601

0.02646 0.1246
0.3712

0.0633

0.1681 0.676

0.4623

0.122

0.5521 1.563

Figure 4.3: CART for infection for bin size 30; logcrp, bmi, age, gender, ethnicity are the

covariates
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|
logcrp< 1.606

logcrp< 0.01732

bmi< 25.73

bmi>=27.43

logcrp>=0.1101

bmi>=21.53

−2.619

−3.824 −1.094

−1.557 −0.1695

−2.27 0.1347

Figure 4.4: GMRTree for infection for bin size 30; logcrp, age, gender, bmi, ethnicity are

the covariates
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average of the responses whose logcrp meet the condition logcrp < 0.01732. For GMRTree,

the value under each terminal node is the estimated fixed effects β̂v, assuming the node is

the vth terminal node with covariate partition Rv. And βv is defined in

log(µij) = Z
′
ijui +

V∑
v=1

I(Xij ∈ Rv)βv .

If we want to compare the terminal node values between CART and GMRTree, it is better

to use the log transformation of value of CART for comparison.

Comparing Figure 4.1 with Figure 4.2, the size of GMRTree is smaller than that of

CART. However, the first few splitting conditions of Figure 4.1 are the same as those of

Figure 4.2. This may just be a coincidence.

If we include bmi, age, gender, ethnicity and logcrp as the covariates, the regression

tree by CART for 30-day binned data is shown on Figure 4.3, while the regression tree

by proposed GMRTree method is in Figure 4.4. In both of these two trees, log(crp) is

the leading splitting variable. However, variable ethnicity and age are significant splitting

variables in CART (Figure 4.3), but not in GMRTree (Figure 4.4).

From GMRTree in Figure 4.4, we can see that both logcrp and bmi are selected as

splitting variables. The first splitting point is {logcrp < 1.609}. The terminal node with

condition {logcrp < 0.01732 & bmi > 27.43} has the smallest β̂v -3.824, while the terminal

node with condition {logcrp > 1.606} & {bmi < 21.53} has the largest β̂v is 0.1347. This

indicates that the conditional rate of the infection occurrences depends on logcrp level

and bmi. logcrp level greater than 1.609 and and bmi less than 21.53 would have higher

conditional expected rate of infection occurrences.

Figure 4.5 and Figure 4.7 are the regression trees for lagged infection by CART for

7-day binned data, while Figure 4.7 includes covariates other than logcrp. Figure 4.6 and

Figure 4.8 are the corresponded GMRTrees.

If we just use logcrp as the only covariates such as Figure 4.6, the first three cut-off
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|
logcrp< 1.609

logcrp< 0.8175

logcrp>=−0.9101

logcrp< −0.9352

logcrp>=0.9102

0.00702

0.01414 0.05978
0.02301 0.09244

0.2028

Figure 4.5: CART for lagged infection for bin size 7; logcrp is the only covariate
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|
logcrp< −0.9226

logcrp>=−1.881

logcrp< −0.961

logcrp< 1.609

logcrp>=0.8713−6.965 −4.336

−3.301

−3.561 −2.196

−1.804

Figure 4.6: GMRTree for lagged infection for bin size 7; logcrp is the only covariate
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|
logcrp< 1.609

age< 60.5

age>=70

age< 68.5

logcrp>=−1.82

0.006433

0.01093

0.01528 0.0534
0.09205

0.2028

Figure 4.7: CART for lagged infection for bin size 7; logcrp, age, gender, bmi and ethnicity

are the covariates
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|
age< 62.5

logcrp< 1.609

logcrp>=−1.865

logcrp< 0.8175

ethnicity=abd

age< 59.5

age>=70

−5.462 −3.518
−2.481

−5.462 1.094

−0.7488

−3.735 −0.3532

Figure 4.8: GMRTree for lagged infection for bin size 7; logcrp, age, gender, bmi, ethnicity

are the covariates
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levels for logcrp are -0.9226, -1.881, and 1.609. The conditions formed by these three cutoff

levels are {logcrp > −1.881 & logcrp < −0.9226}, {logcrp < −1.881}, and {logcrp >

−0.9226 & logcrp < 1.609}, {logcrp > 1.609}. However, there are still some cut points

after these three levels. Branch {logcrp > 1.609} has the highest estimated βv among

all the terminal nodes. This indicates when {logcrp > 1.609}, the patients would have

recently experienced the highest conditional mean rate of infection occurrences. However,

if we include more covariates to build the tree, then age, ethnicity and logcrp are all selected

as splitting variables as shown on Figure 4.8.

4.3.2 Analysis of epilepsy seizure data

We next analyze a well-known count dataset consisting of epileptic seizure counts as pre-

sented originally by Thall and Vail (1990) and also analyzed by Diggle et al. (2002). Thall

and Vail (1990) presented longitudinal data from a clinical trial of 59 epileptics who were

randomized to a new anti-epileptic drug progabide with 31 under treatment (trt=1) and

28 under placebo (trt=0). The number of seizures was recorded for a baseline period of

8 weeks. Counts were then recorded for four successive two-week periods. Age was also

recorded at the start of the trial. For this tree-based analysis, the covariates are logarithm

of counts for the baseline period (lbase) centered to have zero mean, logarithm of age (lage)

centered to have mean 0, Treatment (trt), an indicator for the fourth period (V4), i.e., if a

given observation is in the fourth period after the baseline period. The response variable

is the seizure count in each two-week period after baseline. We fit a GMRTree model to

this data. The estimated tree is shown on Figure 4.10. From this figure, we can see that

only lbase and lage have been selected to split the tree, while V 4 and trt are not selected.

There are a total of 7 terminal nodes from left to right, which are denoted as node number

1, 2, 3, 4, 5, 6 and 7. The value shown below each terminal node is the estimated βv for

that terminal node where βv is defined in (4.2). The β̂v for these 7 terminal nodes are
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1.035, 0.6172, 1.696, 2.074, 2.073, 2.719 and 3.244 respectively. Node 2 has the smallest β̂v

0.6172, while node 7 has the largest β̂v 2.719.

Figure 4.11 and figure 4.12 shows the average seizure counts for all individuals within

root node and each terminal node. This shows that terminal nodes 1, 2 and have noticeable

lower average seizure counts than those of terminal node 4, 5, 6 and 7, while individuals

in node 2 have the lowest seizure counts and node 7 has much higher ones. Individuals

within each terminal node have different patterns of trajectories, which supports the use

of GMRTree.

Figure 4.13 is the average seizure count overall subjects for each terminal node which

shows that terminal node 6 has the smallest average seizure count, while terminal node 13

has the largest one. This result agrees with the estimated βv in each terminal node (β̂v for

node 2 is 0.6172 and is the smallest among the seven β̂v, while node 7 has the largest β̂v

2.719).

4.4 Simulation

We conduct some simulations to evaluate the performance of the proposed GMRTree. We

would like to know whether GMRTree can effectively detect the underlying tree structure,

and how it performs comparing with CART and GLMM on their own.

4.4.1 Setup: data generation

In this simulation, we consider two data generation scenarios: generate data from a GM-

RTree model with a random intercept or from a regression tree CART (no random effects).

Assume there are 4 covariates X1, X2, X3 and X4 which are independent and identi-

cally distributed as Unif(0, 2). The split point for each variable is at value 1. The first
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|lbase< 0.1598

lbase< −0.1842

lage< −0.1017

lage>=0.09673

lbase< 0.7774

lbase>=0.2956

lbase< 0.5714

lage< 0.009863

lage< −0.2997

2.996

2.478 4.036 9.09

6.876 10.97 12.9
8.23 15.24 26.39

Figure 4.9: CART for seizure data
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|lbase< 0.7774

lbase< 0.1031

lbase< −0.1109

lage< −0.1017

lage< 0.009863

lage< −0.2997

1.035 0.6172 1.696

2.074

2.073 2.719 3.244

Figure 4.10: GMRTree for seizure data
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Figure 4.11: Patterns of number of epileptic seizures for individuals in GMRTree root node

and nodes 1, 2 and 3
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Figure 4.12: Patterns of number of epileptic seizures for individuals in GMRTree nodes 4,

5, 6, and 7
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Figure 4.13: Average profile of number of epileptic seizure within each terminal node in

the GMRTree
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splitting variable is X1. For each generate dataset, there are 100 subjects and 60 repeated

observations for each subject. For each subject, we use the first 10 observations of the

generated data as “training data”. The next 50 observations of each subject are used as

“testing data” which will be used for prediction.

1. If the data is generated by GMRTree model which is a regression tree plus a random

intercept model, then the model for generating the simulated Yij is

log(µij) = β1I{(Xij1<=1)∩(Xij2<=1)} + β2I{(Xij1<=1)∩(Xij2>1)}

+ β3I{(Xij1>1)∩(Xij3<=1)} + β4I{(Xij1>1)∩(Xij3>1)∩(Xij4<=1)}

+ β5I{(Xij1>1)∩(Xij3>1)∩(Xij4>1)} + ui , (4.5)

where ui ∼ N(0, σ2
u).

2. If the data is generated from CART, then the model is (4.5) without the random

effects ui. That is

log(µij) = β1I{(Xij1<=1)∩(Xij2<=1)} + β2I{(Xij1<=1)∩(Xij2>1)}

+ β3I{(Xij1>1)∩(Xij3<=1)} + β4I{(Xij1>1)∩(Xij3>1)∩(Xij4<=1)}

+ β5I{(Xij1>1)∩(Xij3>1)∩(Xij4>1)} , (4.6)

Table 4.1 shows the parameter values of βk, k = 1, . . . , 5 and σ2
u. There are four sets of

parameters in this simulation study which are denoted as 1, 2, 3 and 4 in the first column

of table 4.1. Two sets are for CART model and two for GMRTree model. For CART

model, β values in the set 2 are higher than that of set 1. For GMRTree model, σu is set

4 is higher than that of set 3. So in total, there are 4 dataset is generated. However, for

each generated data, the first 10 observations of each subject consist of the training data.

The remainder of the 50 observations of each subject consists of the testing data.
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Table 4.1: Parameters and models for data generation

Data Generation model Tree Random Effects

β1 β2 β3 β4 β5 σ2
u

1 CART -2 -0.5 0.5 1 1.5 0

2 CART 0.5 1 2 3 4 0

3 GMRTree -1 0.5 1 1.5 2 0.36

4 GMRTree -1 0.5 1 1.5 2 2.25

4.4.2 Predictive performance

To evaluate the performance of the GMRTree, first four models are fitted to the training

data, which are

• GMRTree model: a GMRTree model with random intercept. GMRTree model is

defined in (4.1). Here we only use a random intercept for ui. The split points will

be given by the fitted tree, which are most likely not the same as Xijk = 1 where

k = 1, . . . , 4 but will be close.

• True model: true model is the model used by the data generation, which is either

(4.5) or (4.6). In the true model, the split point is always at Xijk = 1.

• GLMM: a generalized linear mixed effects model which contains only main effects

and random intercept. No splitting point is considered in this case. If the data is

generated by CART, then it is a GLM model.

• CART model: a standard Poisson regression tree model by rpart. If we fit CART

model to longitudinal data, we will treat the data as uncorrelated, this ignore the

correlation among the responses. No random effects are considered in CART model.
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Then we make prediction for the four fitted models by using testing data. And the

corresponded prediction errors are calculated for each fitted model.

There is no specific guidelines on how to compare the prediction performance of dif-

ferent non-nested fitted models for non-normal count data. However, for continuous data,

Sela and Simonoff (2009) used RMSE (root mean square error) to evaluate the prediction

performance. Here we propose three criteria, prediction of mean square error (PMSE), pre-

diction of mean absolute deviation (PMAD) and prediction of mean absolute bias (PMAB),

which are defined as follows

PMSE =
1

N ∗ n

N∑
i=1

n∑
j=1

(Yij − µ̂ij)
2 ,

PMAD =
1

N ∗ n

N∑
i=1

n∑
j=1

|Yij − µ̂ij| ,

PMAB =
1

N ∗ n

N∑
i=1

n∑
j=1

|µ̂ij − µij| ,

where N = 100, n = 50. Yij is the response of the testing data. And µij is the estimated

conditional mean of the testing data by using the estimated parameters from the training

data. Details of calculation of µij are as follows: get the estimates f̂ and predicted random

effects ûi for each subject from the fitted model of the training data. If the fitted models

are CART models, then ûi is 0. Then predict the µ̂ij for the testing data by

µ̂ij = exp(f̂(Xij1 . . . , Xij4) + ûi)

Note that Xijk, k = 1, . . . , 4 are the covariates in the testing data, not the ones generated

from the original training data.

On the other hand, for the testing data, we know the true µij. So we should be able to

calculate the bias for the µij, thus be able to calculate PMAB.
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Table 4.2: Prediction error for different fitted models with different data generation models.

The parameters for data generation are given by Table 4.1 and the number of subjects is

100. For the training data, the number of repeated measures per subject is 10. For the

testing data, the number of repeated observations per subject is 50.
data fitted PMSE PMAD PMAB

generation model |T | min mean max min mean max min mean max

CART GMRTree 5.09 1.408 1.555 1.768 0.838 0.876 0.916 0.037 0.094 0.241

1 True 5 1.400 1.510 1.664 0.831 0.865 0.910 0.015 0.065 0.140

CART 5.01 1.402 1.548 1.748 0.839 0.873 0.916 0.028 0.085 0.238

GLMM 5 2.116 2.309 2.488 1.051 1.094 1.143 0.619 0.647 0.683

CART GMRTree 5.09 12.030 14.810 21.970 2.287 2.408 2.572 0.291 0.487 0.782

2 True 5 11.080 12.280 13.320 2.243 2.322 2.424 0.052 0.180 0.450

CART 5.01 12.030 14.910 21.980 2.287 2.409 2.600 0.294 0.476 0.777

GLMM 5 129.000 140.900 157.400 6.910 7.286 7.776 6.453 6.830 7.349

GMRTree GMRTree 5.02 3.163 3.932 6.088 1.218 1.348 1.524 0.360 0.465 0.613

3 True 5 3.068 3.740 4.684 1.201 1.328 1.473 0.346 0.434 0.545

CART 5.31 5.748 11.110 26.630 1.645 2.053 2.833 1.087 1.562 2.427

GLMM 5 5.839 8.330 13.120 1.655 1.902 2.202 1.164 1.397 1.672

GMRTree GMRTree 5 4.223 7.945 24.170 1.273 1.566 2.157 0.389 0.571 1.004

4 True 5 4.040 6.644 10.750 1.262 1.533 1.901 0.382 0.526 0.804

CART 9.19 23.870 182.600 1401.000 2.951 5.621 11.430 2.624 5.355 11.200

GLMM 5 11.140 47.110 273.500 1.947 2.894 4.476 1.493 2.405 3.993
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4.4.3 Simulation results

Simulation results are shown in Table 4.2. The first column “data generation” denotes the

model used to generate the training and testing data. The second column ”fitted model”

denotes the fitted model to the training data. And this fitted model is applied to the

testing data to do prediction. The third column “|T |” is the average size of the tree if the

fitted model is a tree model (either GMRTree or CART model). The “|T |” is 5 for GLMM,

which is defined as the number of estimated fixed effects in the model. For the true model,

“|T |” is 5 since there are always 5 terminal nodes in the tree, no matter data is generated

by (4.6) or (4.6). Thus the tree size is 5.

We can see that when the data is generated by CART model, the fitted GMRTree model

with random intercept still provides close PMSE/PMAD/PMAB results to those of the

fitted CART model, and also close results to the fitted true model using the tree splitting

points and splitting variables. The tree size of fitted GMRTree model is close to 5. The

main reasons is that in this case, the predicted random intercept of the fitted GMRTree

model will be very small and close to zero, thus has little noticeable effect on the final

estimated conditional mean µ̂ij. However, if the data is generated by a CART model, but

we fit a GLMM model to this data, then the prediction errors for GLMM model would be

the largest compared with those of the fitted GMRTree or CART model; this pattern is

more obvious if the β increases. So if the data are generated by a model which has tree

structure such as CART or GMRTree, GMRTree can efficiently detect the tree structure,

even though the model for the generated data may be a CART model.

If the data is generated by GMRTree with random intercept, then the fitted GMRTree

model would provide the smallest PMSE/PMAD/PMAB than those of fitted CART or

fitted GLMM model. And the PMSE/PMAD/PMAB of fitted GMRTree model is close to

those of the fitted true model, which indicates that the estimated parameters of GMRTree

model would be close to its true values of the parameters. And the partitions of the
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Table 4.3: For the generated data, β = c(−1, 0.5, 1, 1.5, 2), variance of random effects

σ2
u = 0.36 and the number of subjects is 200. For the training data, the number of repeated

observations per subject is 20. For the testing data, the number of repeated observations

per subject is 50.
data fitted PMSE PMAD PMAB

generation model |T | min mean max min mean max min mean max

GMRTree GMRTree 5 3.133 3.482 4.018 1.220 1.289 1.368 0.267 0.312 0.366

True 5 3.070 3.444 4.013 1.212 1.284 1.367 0.262 0.305 0.361

CART 5 6.852 10.270 19.100 1.753 1.989 2.360 1.199 1.492 1.885

GLMM 5 6.180 7.620 10.480 1.688 1.839 2.000 1.171 1.316 1.489

GMRTree covariates space would be close to those of the true model.

In summary, GRMTree model can efficiently detect the tree structure in the data.

More simulations are done to explore the GMRTree performance by changing the num-

ber of subjects, parameter values of β, and σ2
u value in the generated data. Also, instead of

using four uniform covariates, we consider mixed types of covariates such as including both

continuous and categorical covariates. Here we assume the both the testing and training

data are generated from a GMRTree with random intercept. The prediction errors of the

testing data are calculated by PMSE/PMAD/PMAB, the same way as the ones calculated

in Table 4.2.

The numbers of subject in the training data in Table 4.3 is increased from 100 to 200,

comparing with Table 4.2, and repeated measurements from each subject increased from

10 to 20. The tree parameter β in Table 4.4 is increased from (-1, 0.5, 1, 1.5, 2) to (1, 2, 3,

3.5, 4), comparing with Table 4.3. In Table 4.5, binomial and discrete uniform covariates

are included.

The pattern of the simulation results in Table 4.3, Table 4.4 and Table 4.5 are similar

to the results in Table 4.2 when the data generation model is GMRTree. That is, when the

data is generated by a GMRTree model with a random intercept, if we fit a GMRTree with
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Table 4.4: For the generated training and testing data, β = c(1, 2, 3, 3.5, 4), σ2
u = 0.36, and

the number of subjects is 200. For the training data, the number of repeated observations

per subject is 20. For the testing data, the number of repeated observations per subject is

50.
data fitted PMSE PMAD PMAB

generation model |T | min mean max min mean max min mean max

GMRTree GMRTree 5 22.070 25.000 29.840 3.154 3.350 3.534 0.706 0.843 0.993

True 5 21.050 24.240 27.240 3.136 3.336 3.523 0.699 0.825 0.959

CART 5 237.400 396.800 901.900 9.049 10.940 13.660 8.326 10.340 13.160

GLMM 5 204.700 270.000 455.200 8.871 9.919 11.130 8.210 9.325 10.560

Table 4.5: Covariate X1 ∼ Unif(0, 2), X2 ∼ binom(1, 0.5), X3 ∼ Unif(0, 1), X4 ∼
discrete Unif(1, 2, 3, 4). For the generated training and testing data, β = c(1, 2, 3, 3.5, 4),

σ2
u = 0.36 and the number of subjects is 200. For the training data, the number of repeated

observations per subject is 20. For the testing data, the number of repeated observations

per subject is 50.
data fitted PMSE PMAD PMAB

generation model |T | min mean max min mean max min mean max

GMRTree GMRTree 5 3.126 3.531 4.103 1.246 1.323 1.405 0.262 0.312 0.364

True 5 3.102 3.507 4.100 1.240 1.321 1.404 0.261 0.308 0.364

CART 5 6.929 10.340 19.250 1.799 2.032 2.409 1.226 1.522 1.928

GLMM 5 5.931 7.316 9.811 1.675 1.806 1.989 1.104 1.237 1.413
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random intercept to this generated data, then the PMSE/PMAD/PMAB values are very

close to those of the fitted true model, and much smaller than those of a fitted GLMM model

or a fitted CART model. This pattern is more obvious when we increase the tree parameter

β. When we increase the β, it is more obvious that GMRTree outperforms CART or

GLMM model. Based on the PMSE/PMAD/PMAB, the prediction error statistics for

fitted GMRTree in Table 4.5 are close to those of the fitted true model, which indicates

that GMRTree method also supports different type of covariates.

4.4.4 Predictive performance for new subjects

For all the above simulations, the subjects in the testing data are the same as the subjects

in the training data. In this case, we use the f̂ and random effects ûi from the training

data to predict µ̂ij for the testing data. The predicted µ̂ij is calculated by

µ̂ij = exp(f̂(Xij1 . . . , Xij4) + ûi) ,

However, if the subjects in the testing data are different from the ones in the training data,

the predicted random effects ûi will be unknown for the testing data. Thus we need to

predict the random effects ui for the subjects in the testing data, using equation (3.7) in

Chapter 3. In this simulation, a training data is generated which has 100 subjects and 10

repeated observations for each subject. Another testing data is generated with 100 new

subjects and 50 repeated observations per subject.

Simulation results are shown in Table 4.6. Even though the subjects are new for the

testing data, the prediction errors (PMSE/PMAD/PMAB) of the proposed GMRTree are

still very close to those of the true model, and much smaller than the predictor error

for CART and GLMM. These results agree with the results in Table 4.2 where the data

generation is GMRTree (data 3 & 4) and fitted model is GMRTree.
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Table 4.6: Prediction error for new subjects. For the generated training data, there are 100

subjects with 10 repeated observations per subject. Fixed effects β = c(−1, 0.5, 1, 1.5, 2),

σ2
u = 0.36. Covariate X1 to X4 are all Unif(0, 2). For the generated testing data, number

of subjects is 100, and the number of repeated observations per subject is 50.
data fitted PMSE PMAD PMAB

generation model |T | min mean max min mean max min mean max

GMRTree GMRTree 5.026 2.574 3.289 4.489 1.135 1.252 1.412 0.178 0.245 0.404

True 5 2.558 3.124 3.918 1.119 1.234 1.365 0.162 0.214 0.297

CART 5.304 6.290 11.120 28.030 1.703 2.051 2.629 1.143 1.560 2.229

GLMM 5 4.921 7.142 11.010 1.554 1.783 2.130 1.027 1.263 1.594

4.4.5 Summary

In summary, GMRTree method can efficiently detect the tree structure in the data. Simu-

lation results have shown that if the generated data is from a tree model (either GMRTree

or CART model), the prediction errors (i.e., PMSE/PMAD/PMAB) of the fitted GMRTree

model are very close to the prediction errors of the true model which uses the true split

point and true splitting variables, and the prediction errors of the fitted GMRTree model

outperform those of fitted GLMM and CART model. Even when the data is generated

from a CART model, fitted GMRTree still provides close result to the fit of the true CART

model which uses the true splits.

4.5 Discussion

The GMRTree method utilizes the existing theories of CART and GLMM model, and

uses existing R functions lme4 and rpart. There is no restricted requirements such that

subjects have to have an equal number of observations and have measurements at a well-

defined consistent schedule in Segal(1992). Time-dependent covariate can also be included
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in GMRTree model, so that different observations of the same subjects can be located in

different terminal nodes.

In GMRTree, one main step is to change the count response into a continuous response

by linearization. Then we use the continuous response to estimate the tree and use GLMM

model to predict the random effects. The performance of GMRTree also largely depends on

the linearization. For GLMM model, only when the conditional distribution approximates

normal, then the linearization works well. This will work better for count data than for

binary data, for example.

Simulations have shown that GMRTree method can effectively detect the tree structure

located in the data. If the data really has a tree structure, then GRMTree method works

better than GLMM model. The estimated PMSE, PMAD and PMAB for fitted GMRTree

model are very close to the ones for the true model, which indicates the fitted GMRTree

model is close to the true model. Even though the underlying model is CART and we fit

a GMRTree model, the fitted model would still be close to the true model, since at this

time, the predicted random effects would be very close to zero.

However, GMRTree also has its shortcomings. When the data is generated from a

GLMM model with main effects and we fit a GMRTree tree model to this data, sometimes

the estimation algorithm of GMRTree does not converge. There are several reasons for

this. First when we use a tree to approximate a true linear model, we already have

some information lost. Second, we use this approximated tree to get the random effects,

thus the predicted random effects may incur some bias. Third, linearization itself may also

introduce some bias. So if we fit a GMRTree to a GLMM, and if we still use the convergence

of log-likelihood, or convergence of fixed effects and random effects as convergence criteria,

we may not be able get proper convergence at all. So, in future work, we will consider

alternative convergence criteria, and see how GMRTree performs under more general model

settings.
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CART uses exhaustive search algorithm to find the best split point and best split

variable by searching over all the split variables and all the split points. However this

exhaustive search approach has selection bias toward variables which provide more split

points (Doyle 1973). GUIDE (Loh, 2002) almost provides an unbiased variable selection

and also detects curvature. Hence, as part of future work, we would like to investigate

if we can use GUIDE to estimate f(·) instead of CART. Other tree-based algorithms for

continuous data may also be considered to estimate f(·).
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Chapter 5

Summary and future work

In this Chapter, we provide a summary of current contributions of this thesis and also a

listing of some future work items.

5.1 Summary

The research topic from this thesis originated from a real hemodialysis study where the

longitudinal response (such as infection event) and time-varying covariates (such as C-

reactive protein (crp)) were not measured on the same time points. We were interested

in finding out the temporal association between the response and covariates, such as the

ordering of infection event occurrence and changes in crp levels. We were also interested

in finding out the cut-off levels of crp which might be indicative of event occurrences.

In Chapter 2, a binning method was introduced for longitudinal data where the response

and time-dependent predictors were not measured on the same time points. Then the

proposed binning approach was applied on a longitudinal hemodialysis study to look for

possible contemporaneous and lagged effects between occurrences of a health event (i.e.,
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infection) and levels of a protein marker of inflammation (i.e., crp). Both Poisson mixed

effects models and zero-inflated Poisson (ZIP) mixed effects models were applied to the full

dataset and first 7-week subset data. We have found there were contemporaneous effects for

mixed ZIP model between infection and log(crp) for the full data by using bin size 30 days

and 45 days. Another important biological finding was that there was lagged association

between infection and log(crp) when looking into the first 7-week data, when we could

consider smaller bin sizes, such as bin-length of 7 days. More specifically, infection event

occurred prior to a rise in log(crp). In addition, extensive simulations were conducted to

investigate various properties of the binning approach including within-subject variability,

mismatch rate, correlation structure, edge effects, etc. We also provided an initial approach

on bin size selection. This work has been published recently (Xiong and Dubin, 2010).

In Chapter 3, we have derived asymptotic properties of the binning estimates for com-

pleted matched data and partially mismatched data, especially on the fixed effects. We

also further investigated bin size selection criterions for the binning approach by using data

both before binning and after binning.

In Chapter 4, we had interest in identifying levels of crp that might be indicative

of recent infection occurrences in hemodialysis patient. Hence, in order to find out the

potential cut-off levels of crp, we proposed a generalized mixed effects regression tree

(GMRTree) method for longitudinal count data. The GMRTree model included a tree

structure and also allowed for inclusion of random effects. We used weighted regression

tree to estimate the tree, and used generalized linear mixed effects model to estimate

the random effects. One of the main steps here was to change the longitudinal count

response into a surrogate continuous response by linearization. We evaluated the prediction

performance of the proposed GMRTree method by comparing the predicted of mean square

error (PMSE), prediction of absolute mean deviation (PMAD) and prediction of absolute

mean bias (PMAB) with those of CART and GLMM models. The proposed GMRTree
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approach has been applied to binned hemodialysis data and epilepsy seizure data.

In the following section, we discuss some future work items which will extend what has

been done in this thesis.

5.2 Future work

5.2.1 Binning method and bin size selection

Binning is a relatively straightforward approach that has proved useful in other areas of

statistics, and has allowed us to answer some important biomedical questions for the lon-

gitudinal hemodialysis study discussed in Chapter 1. After binning, we are able to use

traditional longitudinal models and standard statistical packages to do analysis. For lon-

gitudinal data measured at distinct time points, binning method has been shown to be

useful to find the temporal association between coviariates and response. Apart from bin-

ning method, curve-based methods are also potential approaches to model the association

between the covariates and response when they are not aligned on time. Also methods in

missing data framework such as EM algorithm may be another choice. Measurement error

models can also be a third choice, here we model the covariates by a measurement error

model. Then we find out the temporal association between response and true covariates,

by using the observed covariate values which have measurement errors.

So, in the future, more efforts are needed to investigate the potential of curve-based

methods, EM algorithms and measurement error models for longitudinal data where the

response and covariates are not measured on the same time points.

For bin size selection, we have proposed leave-one subject out cross-validation to select

the best bin size by minimizing the PRSS value. The PRSS value is calculated by either

using original data before binning or the binned data. For original data, PRSS can also be
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calculated either using the marginal mean or conditional mean. For the binned hemodialy-

sis data, the PRSS values are not very sensitive to different bin sizes since the PRSS values

are close for different bin sizes. In the future, we would like to develop more sensible and

more robust criterions for selecting bin sizes.

The approach of using binned data to calculate the PRSS ignores the direct impact

of the original data points Yij, only considering the individual points indirectly following

binning, i.e, focusing on the Yim. Thus, we have proposed two approaches of bin size

selection by using original data. However, for the PRSS using original data, we still need

to calculate Ê−i(Yij|ui) or Ê−i(Yij). However, we do not have model information for

original data, thus we cannot calculate these expectations directly. The only information

is the binned data. We proposed to predict these two expectations by Ê−i(Yi,m|ui)/c
(Y)
im

or Ê−i(Yi,m)/c
(Y)
im respectively, where m is the bin number where Yij is located, and Yi,m is

the binned response, c
(Y)
im is the total number of original responses in mth bin for subject i.

However, it is not known what is the implication of choosing one over the other between

the two proposed approaches by using the original data. In the future, more investigation

needs to be done to choose between these two approaches. We still need to evaluate the

performance of using
Ê(−i)(Yi,m|ui)

c
(Y)
im

to calculate Ê(−i)(Yij|ui), and
γi,m

c
(Y)
im

to calculate Ê(−i)(Yij)

respectively.

In summary, in the future, more efforts need to be done to build more sensible and

robust bin size selection criteria by using both binned response Yi,m and original individual

response Yij. More investigation needs to be done to choose among bin size selection

approaches using binned data and original data.

5.2.2 Correlation structure in models of binned data

We would like to more specifically investigate the unconditional correlation structure of re-

peated measures following binning, including what effect the conditional correlation struc-
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ture of the repeated measures may provide, as well as the correlation structure coming from

the time-varying covariates. We only indirectly investigated, via simulation, the effect of

the time-varying covariate structure, using only AR(1), on the resulting unconditional

correlation structure of the repeated measures following binning.

Sutradhar (2003) proposed to use generalized quasi-likelihood (GQL) based estimating

equations to estimate the regression parameters for longitudinal data and use methods

of moments to estimate the longitudinal correlations which follow a general correlation

structure. Sutradhar et. al (2008) and Sutradhar (2010) have extended Sutradhar (2003)

into longitudinal familial study where single or multiple random effects are considered.

This GQL approach for familial study can not only handle general correlation structure of

the responses including AR(1), but also variance components of the random effects.

Much more work is necessary to get a handle on the resulting unconditional covari-

ance (correlation) structure of the repeated measures following binning under a variety of

realistic scenarios. GQL could be one of the approaches to be used.

5.2.3 Asymptotic properties of binning estimates

In this thesis, we here mainly looked into the asymptotic properties of the binning esti-

mates β̂? (fixed effects) by marginal models, based on continuous normal response (linear

model) with only independent and compound symmetry covariance structures. For com-

plete matched data, we can prove that the estimated β̂? is an unbiased estimate of β.

And the variance of β̂? can be derived explicitly. However, it is much more complicated

for mismatched data where the estimated β̂? is biased, and the variance of β̂? cannot be

displayed explicitly except using weight matrices Ai and Bi. The number of matches and

mismatches between the response and covariates affect var(β̂?). In the future, we would

like to look more into the asymptotic properties of the binning estimates for mismatched

cases.
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For conditional Poisson model, we have shown that under certain conditions, after

binning, the binned data still follows a conditional Poisson model. In the future, we will

look more into the asymptotic properties for binning estimates for conditional Poisson

model.

5.2.4 Tree estimation

On occasions, GMRTree algorithm may not always converge when the underlying true

model for the data is a GLMM model with main effects, and we fit a GMRTree model.

A few reasons including linearization step and convergence criteria that may cause this

divergence. We plan to investigate these issues further in the future. We will develop

flexible and reasonable convergence criteria. We also might do some adjustments on the

linearization step to get better approximation if possible.

In the future, we hope to explore the extension of existing consistency results from

regression trees and GLMMs to GMRTree, checking whether parameters for the tree and

variance components of random effects are estimated consistently.

CART uses exhaustive search algorithm to find the best split point and best split

variable by searching over all the split variables and all the split points. However, this

exhaustive search approach has selection bias toward variables which provide more split

points (Doyle 1973). GUIDE almost provides an unbiased variable selection and also

detects curvature. So in the future, we will explore to use GUIDE to estimate f(·) instead

of CART. Or any other tree-based algorithms for continuous data can also be considered

to estimate f(·). Methods such as bagging and boosting build on a tree structure as a way

to improve predictive performance (see for example, Hastie et al., 2001), noting these tend

to perform better than just fitting a single tree.

Another possible approach is to develop our own splitting criteria and grow the tree,

instead of using linearized surrogate response and CART to fit the tree. We could build
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our splitting criteria by using our marginal likelihood of GLMMs by integrating out the

random effects. This approach is computationally intensive because of the integration. So

one possibility is that instead of using the first overlygrown tree and then pruning it back,

i.e., the approach of CART, we could use conservative penalty to grow the tree and also

avoid pruning. This is an area of future research.
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