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Abstract 

 The main hypothesis of this thesis was that the regulation of oxygen uptake 

( 2OV ) kinetics at the onset of exercise in trained young men is linked to 

cardiovascular adaptations. Two studies were conducted to investigate the 

interrelationships between oxygen (O2) transport and O2 utilization in accelerating

2OV kinetics at the onset of exercise. In the first study, simultaneous kinetics of 

2OV and cardiac output (Q ) were studied during the transition to heavy and 

moderate cycling exercise (Chapter 2). The acceleration of 2OV kinetics during the 

heavy exercise that followed prior moderate or heavy exercise was enabled by the 

rapid increase in Q ; whereas, the acceleration of 2OV kinetics during moderate 

exercise that followed a heavy warm-up was associated with small changes in Q

kinetics.  

 The objective of the second study was to determine, in a model of forearm 

exercise, if the elevation of forearm blood flow (FBF) prior to the onset of exercise by 

prior circulatory occlusion would accelerate FBF and muscle oxygen uptake             

( mus2OV ) kinetics during subsequent exercise as demonstrated previously for prior 

exercise (Chapter 3). Prolonged ischemia (15 min occlusion) followed by 3 min 

recovery reduced FBF and impaired mus2OV kinetics during subsequent heavy 

hand-grip exercise. However, prior heavy exercise confirmed the previous findings 

and resulted in a faster FBF and mus2OV  kinetics. There was a high positive 

correlation between the time course of change in FBF and mus2OV at the onset heavy 
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exercise. In a follow up of the second study, to investigate a possible mechanism 

for the slower adaptation of mus2OV following ischemia, the prior occlusion condition 

was repeated after ingesting a high dose of ibuprofen. Prostaglandin inhibition by 

ibuprofen augmented the FBF response during reactive hyperaemia and restored 

FBF during the heavy exercise that followed 15 min of circulatory occlusion to the 

control level. 

  These two studies provide evidence that O2 delivery plays a dominant role in 

accelerating 2OV kinetics at the onset of heavy exercise in trained young men. The 

findings exposed differences in the mechanisms regulating pulmonary 2OV and 

mus2OV with prior exercise resulting in higher Q and FBF, but no changes in O2 

extraction to yield the faster increase in pulmonary 2OV  and
 mus2OV at the onset of 

subsequent heavy exercise. In contrast, prior occlusion slightly retarded the 

increase in FBF and significantly reduced O2 extraction thus delaying mus2OV  

kinetics. The precise mechanisms impairing mus2OV kinetics at the onset of heavy 

forearm hand-grip exercise that starts after a brief recovery from prolonged 

occlusion are still unknown, but this impairment may be partially due to a 

vasoconstrictor effect restricting blood flow during the adaptation to exercise and 

redistribution of the blood to the periphery. 

 In a third study, the influence of muscle activity on the 2OV slow component 

during heavy exercise and O2 cost during moderate exercise that followed a heavy 

warm-up were examined (Chapter 4). The heavy exercise 2OV slow component was 
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attenuated in a graded fashion by prior moderate and heavy warm-ups, and the 

principal components analysis showed a moderate but significant correlation 

between the changes in the integrated electromyographic activity and the 2OV slow 

component amplitude. The higher O2 cost of moderate exercise following a heavy 

warm-up was associated with higher mean power frequency. Changes in 2OV slow 

component and increased O2 cost during moderate exercise after prior heavy warm-

up appear to be related to some changes in surface electromyographic activity 

which may provide some evidence for increased muscle fibres recruitment.  
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Chapter 1 

Literature Review 

1.1 Introduction 

 Oxygen uptake ( 2OV ) kinetics describe the time course of changes in 

muscle oxidative phosphorylation during work rate transitions. 2OV kinetics 

provide a unique window into understanding the efficiency of the metabolic system 

and the percentage contributions from both aerobic and non-aerobic sources.  At 

the onset of exercise, 2OV  increases in an exponential fashion (Henry, 1951; Henry 

& Demoor, 1956) with an error signal that is progressively reduced in proportion to 

the difference between the required and the actual 2OV at the new work rate 

(Hughson et al., 2000; Whipp & Wasserman, 1972). A debate has developed 

surrounding the underlying physiological processes that regulate the rate of 

increase in oxidative metabolism during work rate transitions (Grassi, 2001; 

Hughson, 1990; Tschakovsky & Hughson, 1999; Whipp et al., 2005). One position 

argues that a limitation of oxidative enzyme activity and mitochondrial substrate 

availability (metabolic inertia) restricts the rate at which oxygen (O2) utilization can 

increase at the onset of exercise, independent of O2 availability under most normal 

exercise conditions from rest to approximately 50-60% of maximal 2OV  (Barstow et 

al., 1994; Grassi, 2003; Hill et al., 1924; Mahler, 1985). The second argument 

suggests that even under these normal conditions O2 plays a critical role in 

regulating the adaptation of oxidative metabolism (Hughson & Morrissey, 1983; 

Linnarsson, 1974; MacPhee et al., 2005). A consequence of the metabolic inertia 

hypothesis is that 2OV kinetics would be insensitive to increased or modest 
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reductions in O2 delivery (Poole & Richardson, 1997). Whereas, the O2 delivery 

hypothesis suggests that there is a rate limiting step in the O2 cascade from the 

lungs to the mitochondria of the working muscle and a greater portion of ATP 

demand can be synthesized through the aerobic energy supply system with small 

perturbations of the metabolic controllers (phosphorylation and redox potentials), if 

more O2 is made available (Hughson et al., 2001; Wilson & Rumsey, 1988).  

 In spite of the disparate viewpoints mentioned above, it is generally accepted 

by both camps that there are conditions where altering O2 delivery can impact 2OV

kinetics. The debate remains; however, over the exact nature of these conditions. 

This debate can be distorted by a focus on the “either/or” nature of O2 transport 

versus O2 utilization limitations. Recently, the terms “regulation” or “modulation” of 

2OV  kinetics by O2 transport have been used and these seem to be a more 

appropriate way to understand the interaction between the factors that determine 

the rate of increase in oxidative phosphorylation during work rate transitions 

(Hughson, 2005; Hughson, 2009; Hughson et al., 2001; Tschakovsky & Hughson, 

1999).  

 Several innovative experimental designs have been applied to examine the 

factors that control 2OV kinetics during work rate transitions. These designs 

centered mainly on alternating the metabolic environment and/or manipulating 

the rate of O2 delivery prior to the exercise onset. The priming exercise model is the 

most common experimental paradigm used to address the role of O2 delivery in 

regulating 2OV kinetics. Prior heavy exercise alters the local metabolic 

environment, increases muscle bed vasodilation, right-shifts the oxygen 

hemoglobin (HbO2) dissociation curve and improves muscle perfusion to the 
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working muscles at the onset of a second exercise bout (Gerbino et al., 1996; 

MacDonald et al., 1997). However, prior heavy exercise also increases oxidative 

enzyme activity and elevates mitochondrial substrate availability at the onset of 

subsequent exercise (Gurd et al., 2006).Thus, the role of O2 delivery to enhance 

2OV kinetics remains undefined due to the conflicting results and the 

interpretation of the findings using this model. Prior occlusion is an alternative 

experimental model that could elevate muscle blood flow for several minutes prior 

to a subsequent exercise bout (Carlsson et al., 1987) without marked impact on the 

metabolic states (Mole et al., 1985). Thus, this experimental paradigm may 

precisely address the role of O2 delivery in regulating the 2OV kinetics during work 

rate transitions. 

 The studies applied in this thesis emphasize the influence of increased O2 

supply through the active (prior exercise) and passive (prior occlusion) warm-up, 

on accelerating pulmonary 2OV and muscle oxygen uptake ( mus2OV )kinetics at the 

onset of dynamic exercise in trained humans. To help clarify the issue surrounding 

the role of O2 delivery in controlling  2OV kinetics, it is important to monitor 

muscle blood flow in the exercising muscles or other surrogate markers of 

cardiovascular responses such as heart rate (HR) or cardiac output ( Q ) kinetics. 

Relatively few studies have simultaneously examined the kinetics of 2OV and Q

during exercise transitions (Perrey et al., 2003a; Yoshida & Whipp, 1994). In the 

first study, simultaneous measurements of breath-by-breath 2OV and estimates of 

beat-by-beat Q have been applied to investigate the relative contributions of muscle 

metabolic and cardiovascular adaptations to 2OV kinetics during both moderate 
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and heavy cycling exercise (Chapter 2). In the second study, pulsed and echo 

Doppler ultrasound has been used to directly monitor muscle blood flow during 

rhythmic hand-grip exercise that follows identical bout of heavy hand-grip exercise 

or circulatory occlusion. The purpose of this study was to determine whether or not 

prior occlusion, followed by a brief recovery, will have similar effects as prior heavy 

exercise in accelerating forearm blood flow (FBF) and mus2OV kinetics during 

subsequent heavy forearm exercise (Chapter 3). Also, the effect of inhibiting 

cyclooxygenase (COX) enzyme by a high dose of ibuprofen on FBF, mus2OV  and skin 

blood flow (SBF) during a heavy hand-grip exercise that follows prolonged ischemia 

was examined (Chapter 3). In the third study, electromyographic  (EMG) activity of 

the lower limb muscles was measured simultaneously with breath-by-breath 2OV

to examine whether or not changes in muscle activity are associated with the 2OV

slow component during heavy exercise and the higher O2 cost during moderate 

exercise that followed a heavy warm-up were examined (Chapter 4). 

1.2 Oxygen uptake following exercise onset  

1.2.1 Measurements and characteristics of oxygen uptake kinetics  

 The measurements of 2OV at the onset of exercise are first made at specific 

time intervals by the respirometer collection system (Krogh & Lindhard, 1913). The 

development of breath-by-breath measurements via the computerized mass 

spectrometer-based systems enabled the precise characteristics of 2OV dynamics 

during work rate transitions (Auchincloss et al., 1966; Hughson, 1984a; 

Linnarsson & Lindborg, 1974; Whipp & Wasserman, 1972). At the onset of 

exercise, 2OV does not increase instantaneously, rather it rises in an exponential 
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fashion to reach the anticipated steady-state level and the rate of increase is 

directly proportional to the exercise intensity (Krogh & Lindhard, 1913; 

Linnarsson, 1974; Whipp & Wasserman, 1972). There is an initial rapid increase in 

2OV lasting between 15 and 20 s (Phase I), that is attributed to a rapid increase in 

Q and pulmonary blood flow, due to the action of the muscle pump, and small 

increase in arterial-venous oxygen content difference [(a-v)DO2] (Krogh & Lindhard, 

1913; Whipp & Ward, 1982). This initial increase in Phase I is followed by a rapid 

exponential increase in 2OV (Phase II) that drives 2OV towards the essential steady 

state level. Phase II (primary phase) reflects the arrival of the venous blood from the 

exercising muscles to the lung (Whipp & Ward, 1982). Modeling studies of Q  

profiles and 2OV (Barstow et al., 1990), direct experiential measurements of muscle 

2OV (Grassi et al., 1996; Koga et al., 2005)   and characterization of PCr 

degradation by magnetic resonance spectroscopy (MRS) (Rossiter et al., 1999; 

Rossiter et al., 2002a) have shown that the Phase II pulmonary 2OV  kinetics largely 

reflect the kinetics of O2 consumption in the exercising muscles following the onset 

of exercise. During heavy exercise, the attainment of steady-state 2OV  is delayed or 

may be absent, and the slow component of 2OV  (Phase III) is manifested (Whipp, 

1994; Whipp & Wasserman, 1972). The majority of pulmonary 2OV during Phase 

III (86%) can be attributed to the exercising muscles (Poole et al., 1991). 

1.2.2 Control of oxygen uptake following exercise onset 

 The rate of increase in oxidative phosphorylation has been debated to be limited 

by the adaptations of O2 transport and O2 utilization mechanisms. The manipulation 
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of the muscle partial pressure of oxygen provides evidence to support the role of O2 

delivery in limiting the 2OV kinetics at the onset of exercise. Impairment of  the 

mitochondrial O2 supply in the following equation will restrict the rate of ATP 

synthesis through the oxidative energy supply system, and by consequence, the 

kinetics of 2OV through the transition to steady state will be slower (Poole et al., 

2008).                    

6 ADP + 6 Pi + 2(NADH + H+) + O2 → 6 ATP + 2 NAD + 2 H2O      

 Inspired hypoxic or hyperoxic gases modify the muscle energetic state (ATP + 

PCr) (Haseler et al., 1998; Linnarsson et al., 1974) and 2OV kinetics during 

submaximal work rates (Engelen et al., 1996; Linnarsson, 1974; MacDonald et al., 

1997; Murphy et al., 1989). Biochemical measurements of cellular metabolism 

have shown that O2 delivery may adjust the phosphorylation and redox potentials 

needed to drive the oxidative metabolism (Wilson & Rumsey, 1988). Additionally, 

Hughson (2005; 2009) suggested theoretical models that illustrate the impact of 

dynamic changes in the intracellular partial pressure of oxygen (PO2) on metabolic 

inertia (enzymes activity and metabolic substrates) and how the oxidative 

metabolism at the onset of exercise is modulated by a dynamic interaction between 

O2 delivery and utilization mechanisms.  

 In addition, altering the O2 availability to the working muscles by reducing 

HR dynamics using β-adrenergic receptor blockade drugs (Hughson, 1984b; 

Hughson & Smyth, 1983), or performing the exercise in supine posture (Hughson 

et al., 1991a; Jones et al., 2006; MacDonald et al., 1998), above the heart level 

(Hughson et al., 1996), where the blood flow to the working muscles is restricted, 

or transition from prior moderate exercise, where the rapid influence of the 
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parasympathetic system on O2 delivery is limited,(Brittain et al., 2001; Hughson & 

Morrissey, 1982; MacPhee et al., 2005) has resulted in slower 2OV kinetics during 

the transition to moderate work rates, suggesting strong evidence to link 2OV

kinetics to O2 transport.  

 Conversely, researchers who argue against the potential role of O2 availability in 

regulating the metabolic control and support the acceleration of O2 utilization as a sole 

mechanism to control 2OV kinetics based their position on several experimental 

observations.  Muscle O2 transport dynamics as assessed from arterial blood flow 

(Bangsbo et al., 2000; Grassi et al., 1996; MacDonald et al., 1998), Q (Perrey et al., 

2003a; Yoshida & Whipp, 1994) or HR (MacPhee et al., 2005) have been shown to be 

faster than those of 2OV ; however, the assumption that microvascular perfusion can 

be extrapolated accurately from upstream arterial measurements or cardiovascular 

dynamics has been challenged. During upright exercise in healthy subjects, potentially 

reducing muscle O2 supply following blood withdrawal (Burnley et al., 2006) or 

increase O2 transport through hemodilution (Berger et al., 2006a) does not alter the 

2OV kinetics. Yet, the blood flow distribution within the exercising muscle is not 

known in these studies. Moreover, alterations in O2 supply by breathing hypoxic or 

hyperoxic gases have been shown to modify 2OV kinetics (Linnarsson, 1974; 

MacDonald et al., 1997). Several studies have reported a similar time course for the 

reduction in muscle [PCr], estimated by MRS, and the increase in pulmonary 2OV

during transition from rest to both moderate and heavy work rates (Rossiter et al., 

1999; Rossiter et al., 2002a). The exponential nature of [PCr] and 2OV kinetics has led 

those researchers to assume that metabolic inertia is the only limiting step for 2OV
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kinetics (Bangsbo et al., 2000; Grassi, 2003). However, altering the [PCr] and other 

metabolic intermediates by changing PO2 challenge this argument (Haseler et al., 

1998; Hogan et al., 1992; Linnarsson et al., 1974). Pharmacological activation of 

pyruvate dehydrogenase (PDHa) with dichloroacetate (DCA) reduces substrate-level 

phosphorylation during subsequent exercise, suggesting an enhancement of the 

contribution of oxidative phosphorylation to energy turnover (Greenhaff et al., 2002). 

Yet, this intervention has been shown not to speed 2OV or mus2OV kinetics during 

heavy exercise (Bangsbo et al., 2002; Grassi et al., 2002; Jones et al., 2004b; Rossiter 

et al., 2003). Inhibition of nitric oxide (NO) synthesis with L-NAME resulted in faster

2OV kinetics which was thought to be associated with reduce O2 avilability and 

enhance cytochrome c oxidase activity (Jones et al., 2004a). However, NO synthesis 

inhibition elevates mean arterial blood pressure (MAP) and probably redistributes the 

blood during exercise (Frandsenn et al., 2001). Furthermore, in the pump-perfused 

canine hind-limb model, the inhibition of NO synthesis with L-NAME did not alter 

muscle blood flow distribution to the gastrocnemius–plantaris–soleus muscle group 

(Krause et al., 2005), and the direct inhibition of mitochondrial respiration by NO does 

not limit the kinetics of oxidative metabolism at exercise onset (Grassi et al., 2005).  

Effect of training on oxygen uptake kinetics 

 The sensitivity to changes in O2 demand might be increased with training. 

Short periods of physical training can enhance both O2 transport and O2 utilization 

mechanisms and speed 2OV kinetics (Phillips et al., 1995). Endurance exercise 

training has been shown to accelerate 2OV kinetics and reduce 2OV slow 

component amplitude (Berger et al., 2006b; Carter et al., 2000). However, it is not 

apparent what type of training program would be most advantageous to enhance
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2OV kinetics. Interestingly, repeated high intensity anaerobic training has been 

shown to be as effective as low intensity continuous aerobic training in enhancing 

the rate of oxidative metabolism at the onset of exercise (Bailey et al., 2009a). Most 

recently, Bailey et al. (2010) have shown that 4 weeks of inspiratory muscle 

training increased blood flow to the exercising muscle and improved 2OV kinetics 

at the onset of high intensity exercise suggesting that enhanced O2 delivery enabled 

the increase of oxidative phosphorylation during the transition to heavy exercise. 

1.3 Cardiac output and blood flow at exercise onset  

 Blood circulation has been described by the Arab physician Ibn al-Nafis during 

the Islamic golden age in the early 13 th century. However, the quantitative methods to 

study the peripheral circulation of blood in human were not available until the 20th 

century. Both invasive and non-invasive methods for evaluating Q and blood flow in 

human during exercise have been used.  

1.3.1 Measurements of cardiac output 

 Q , the volume of blood being pumped by the heart in each minute, can be 

measured by several techniques. Each method has advantages and restrictions 

that may limit its application during exercise. The direct Fick method was first 

described by Adolf Eugen Fick in 1870. The Fick principle calculates the O2 

consumption from the measurement of the oxygen content of the venous, 

measured at the pulmonary artery, and arterial blood, which can be measured at 

the radial or femoral artery (Astrand et al., 1964; Chapman et al., 1950).Thus, Q

can be calculated from the following equation: Q  = 2OV  / (a-v)DO2.  

http://en.wikipedia.org/wiki/Adolf_Eugen_Fick
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The thermodilution method was described initially by Fegler (1954) for measuring 

Q in animals.  The method was then adapted for use in man by Branthwaite and 

Bradley (1968), and developed further by use of the Swan and Ganz catheter (Ganz 

& Swan, 1972). The thermodilution method requires the infusion of ice cold saline 

into the pulmonary artery and measurements of the temperature difference of 

blood upstream and downstream of the infusion point several centimetres away 

(Ganz & Swan, 1972). Cardiac output can then be determined based upon these 

measurements and knowledge of the rate and temperature at which the saline was 

infused. High Q  will change the temperature rapidly, and low Q will change the 

temperature slowly (Runciman et al., 1981; van Grondelle et al., 1983). The Fick 

principle and thermodilution method are considered to be the gold standard 

techniques for measuring Q .However, the invasive natures of these techniques and 

the need for a medical expertise limit their use during exercise (Warburton et al., 

1999). Also, these techniques are limited to study the rate of changes in Q  during 

the transition from rest to higher work rates.  

 Rebreathing techniques have been employed in clinic settings (Hoeper et al., 

1999; Sackner et al., 1980) and exercise (Hsia et al., 1995; Johnson et al., 2000; 

Reybrouck et al., 1978; Simmons & Shephard, 1971) to determineQ . Foreign gases 

such as acetylene (C2H2) and nitrous oxide (N2O) are normally used in rebreathing 

techniques because they are inert, soluble, and enter the blood stream via 

pulmonary diffusion but do not bind with hemoglobin (Ayotte et al., 1970; 

Triebwasser et al., 1977; ZeidiFard et al., 1976). Pulmonary blood flow is directly 

related to Q
 and can be estimated by the rate of disappearance of a soluble gas 

from the lungs into the blood stream, when the diffusion constant is known. 
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Rebreathing techniques are valid for determining Q , but they are limited to be used 

during steady state exercise. 

 An accurate, continuous and non-invasive measurement of Q during 

exercise would be of great help to characterize the time course of changes in Q

during work rate transitions. Beat by beat Q  can be obtained by Doppler 

echocardiography (Ihlen et al., 1987) and vascular impedance cardiography 

(Denniston et al., 1976; Perrey et al., 2003a) however, motion artifacts limit the use 

of these techniques to supine positions or low intensity exercise. 

 Q was also estimated from the finger cuff Modelflow technique that employs  

a non-linear, three-element windkessel equation (Wesseling et al., 1993). Previous 

studies have reported that the Modelflow Q  technique was valid in comparison to 

thermodilution (de Wilde et al., 2007; Wesseling et al., 1993) and Doppler 

echocardiography methods (Sugawara et al., 2003), as well as CO2 (Pitt et al., 2004) 

and C2H2 rebreathing methods (Tam et al., 2004).  

 Most recently, MRI techniques have been used to determine Q . 

Simultaneous imaging of the aorta in combination with velocity encoded phase 

contrast MRI, which measures an average blood velocity across the vessel 

diameter, provides the most accurate measure of Q in large vessels (Groepenhoff et 

al., 2007). 

1.3.2 Cardiac output at exercise onset 

 To help clarify the issue surrounding the influence of O2 delivery, it is 

important to monitor muscle blood flow. However, the direct measurement of leg 
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blood flow kinetics during cycling exercise is a challenge. Subsequently, Q  kinetics 

(De Cort et al., 1991; Perrey et al., 2003a; Yoshida & Whipp, 1994) have been used 

as a surrogate marker. Recently, Lador et al. (2006) studied Q  kinetics, using a 

Modelflow estimation technique (Wesseling et al., 1993), during low (50W) and 

moderate (100W) cycling exercise bouts. The kinetics of Q  have been shown to be 

faster than 2OV kinetics. The faster Q  at the onset of exercise could be a 

consequence of a rapid increase in SV (Leyk et al., 1995) resulting from the sudden 

increase in venous return with the onset of the higher work rate mediated primarily 

by the stronger muscle pump (Sheriff et al., 1993; Tschakovsky et al., 1996), and 

increased HR (Perrey et al., 2003a) that reflects a greater reliance on 

parasympathetic activation and vagal withdrawal. Leyk et al. (1995) monitored the 

SV using Doppler ultrasound during upright cycling across exercise transitions to 

work rates of up to 200 W. They showed SV to increase rapidly and peak by 30 s 

following the onset of exercise.  

1.3.3 Measurements of blood flow 

 Early measurements of blood flow in humans during exercise were obtained by 

venous occlusion plethsmography (Humphreys & Lind, 1963). The basis of this 

technique lies in the fact that an external pressure (sub-diastolic pressure not more 

than 50 mmHg) suppresses only the venous outflow, while the arterial inflow remains 

unaffected. Joyner et al.(1990) have shown a fast adaption in exercise blood flow 

measured by venous occlusion plethsmography.  However, the method has certain 

disadvantages. First, measures taken during muscular work are not good, measures 

are usually taken during short pauses in contraction or at the end of exercise, and 

therefore the obtained blood flow data are a combination of exercise and reactive 
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hypermia. Second, the limb must be placed above the level of the heart; which 

negatively affects the blood flow and oxygen uptake kinetics (Hughson et al., 1996). In 

comparison to Doppler ultrasound, the venous occlusion plethsmography technique 

has been shown to be accurate only in the first beats after the release from circulatory 

occlusion (Tschakovsky et al., 1995).  

The local injection technique with a radioactive label has also been used to determine 

the blood flow to the working muscles (Grimby et al., 1967; Holzman et al., 1964; 

Tonnessen, 1964). The distribution of the label can be assessed before and after 

exercise as an indication of the flow through the exercising muscle. Using the 133Xe 

clearance methods, Tonnessen (1964) reported that there is a gradual increase in the 

blood flow to the calf muscle with the increase in work rates up to 70 % of the 

maximal. Pendergast et al.(1980) concluded that changes in muscle blood flow kinetics 

are faster than those of 2OV . However, the 133Xe clearance method seems to have 

qualitative rather than quantitative significances due to the considerable 

underestimation of blood flow in the working muscles (Cerretelli et al., 1984). 

Quantitative determination of muscle blood flow during exercise may be obtained by 

the thermodilution method (Andersen & Saltin, 1985; Ganz et al., 1964; Richardson et 

al., 1993; Rowell et al., 1986). Ganz (1964) was the first to use the thermodilution 

method to measure the blood flow in the femoral artery during exercise. 

thermodilution method is used to assess blood flow during steady state exercise 

(Andersen & Saltin, 1985). However, attempts have been made to use it to characterize 

the time course of changes in blood flow at the onset of exercise (Grassi et al., 1996; 

Knight et al., 1993). The invasive nature of the thermodilution methods reduces the 

ability to employ it during exercise.  
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 Doppler ultrasound technology has been extensively used in the measurement 

of blood flow in the last two decades. It has been used to measure blood flow non-

invasively and continuously at the onset of forearm exercise (Hughson et al., 1996; 

Tschakovsky et al., 1995; van Beekvelt et al., 2001) and kicking exercise 

(Nyberg et al., 2010; Paterson et al., 2005; Shoemaker et al., 1994). Doppler 

ultrasound was shown to be reproducible in the measurements of arterial mean 

blood velocity (MBV) and diameter during both rest and exercise across different 

days (Shoemaker et al., 1996a). Previous studies have reported a strong 

relationship between Doppler ultrasound and strain-gauge plethysmography for 

MBV measurements (Tschakovsky et al., 1995; Van Leeuwen et al., 1992). 

Radegran (1997)has reported that ultrasound Doppler estimates of blood flow 

during dynamic knee extensor exercise was valid in comparison to thermodilution 

techniques.  Figure 1.1 is an example of the output of Doppler ultrasound which 

allows to non-invasively measuring the blood velocity to the exercising muscles.  
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Figure 1.1: Representative tracing of mean blood velocity by Doppler ultrasound in 

the biracial artery.  

At the resting state (A), the blood flow response has three distinguish phases within 

each heart cycle. During systole, there is rapid increase in blood velocity, which 

peaks at peak systole. This initial increase in blood velocity is followed by a 

decrease in flow and reverse flow that stops as the aortic valve closes. In late 

diastole, there is a period of low forward flow or no flow as the blood passes out of 

the arteries and into the venous circulation. During exercise (B), there are large 

oscillations in the flow pattern with a reverse flow during contraction followed by 

an increase in flow during the relaxation phase.  
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1.3.4 Blood flow following exercise onset 

 Following the onset of exercise, muscle blood flow increases rapidly in a 

biphasic manner (Shoemaker et al., 1994; Shoemaker et al., 1996a), with initial 

rapid adaptation followed by slower adaption to match the changes in metabolic 

demand of the muscles (Hughson et al., 2003; Radegran & Saltin, 1998). Both 

neural vasoconstrictor activity and locally derived vasodilator substances 

contribute to this precise blood flow regulation (Clifford & Hellsten, 2004).  The 

initial rapid increase in blood flow, which occurs within the first 5-10 s of exercise, 

has been attributed to the muscle pump (Laughlin, 1987; Sheriff et al., 1993), 

rapid vasodilation due to mechanical factors (Kirby et al., 2007; Shoemaker et al., 

1998), and instantaneous increases in adenosine (Saltin et al., 1998), acetylcholine 

spillover from neuromuscular junctions (Segal & Kurjiaka, 1995) and potassium 

concentrations (Armstrong et al., 2007; Clifford, 2007; Hilton et al., 1978; Murrant 

& Sarelius, 2002). A second, slower increase in blood flow is characterized by the 

release of endothelium mediated vasodilator substances such as NO (Dyke et al., 

1995) and prostaglandins (PGs) (Kilbom & Wennmalm, 1976; Nyberg et al., 2010; 

Wilson & Kapoor, 1993) that influence the vascular tone and initiate further 

increases in exercise hyperemia. Following the first minute of exercise, further 

vasodilation arises due to the release of intramuscular vasoactive metabolites and 

thereby matches blood flow to the metabolic demands of the exercising muscles 

(Boushel, 2003; Rowell, 1997; Rowell, 2004). It is not the aim of this thesis to 

examine the factors controlling blood flow at the onset of exercise. Rather, the aim 

is to determine the interrelationship between the kinetics of blood flow and those of

mus2OV during work rate transitions.  
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1.4 Methodology 

 The applications of non-invasive technologies which precisely 

measure/estimate the blood flow response in a beat by beat basis can provide an 

accurate assessment to the role of O2 delivery in controlling 2OV kinetics at the 

onset of exercise. In the studies applied in this thesis, several cardiovascular 

variables have been measured during the transition from rest to higher work rates. 

The techniques of measuring and analyzing 2OV , blood flow, blood pressure (BP),Q

, and blood gases during work rate transitions have been used extensively in our 

lab over the past three decades. In addition, measurements of the muscle activity 

using surface EMG have been applied in a few studies (Perrey et al., 2001; Perrey et 

al., 2003b; Tordi et al., 2003). This section will illustrate the principles behind 

these techniques and the measurements will be described in more details in the 

methods sections of the following chapters.  

1.4.1 Oxygen uptake  

 Oxygen uptake was measured on a breath-by-breath basis (First Breath, 

Waterloo, Ontario, Canada). This system consisted of a digital volume turbine 

(UVM-17125, VacuMed, Ventura, CA) for gas volume measurement, and a mass 

spectrometer (Innovision, Amis 2000, Odense, Denmark) for gas fraction 

measurement. Correction was made for lung gas stores by the nitrogen balance 

methods described by Beaver et al. (1981). This correction allowed for the 

calculation of alveolar oxygen uptake. The volume measurement system was 

calibrated prior to each test by pumping a gas through a an automated 3 L syringe 

(Vacumed, Ventura, CA) at flow rates comparable to those observed during 

exercise. The mass spectrometer was calibrated with precision medical gases which 
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spanned the gas concentrations observed during testing. The volume and flow were 

measured with no time delay; however, the gas fractions were measured with delay 

due to the difference between the transport time and mass spectrometer response 

time. 

1.4.2 Blood flow  

 Blood flow was obtained by pulsed and echo Doppler ultrasound. The 

technique of Doppler ultrasound applied in measuring blood flow is based on the 

principle that immobile objects will reflect sound back at the same frequency as the 

transmitted sound, while the sound reflected back from moving particles will be 

shifted in frequency. The magnitude of this frequency shift will be directly 

proportional to the velocity of the moving element according to the following 

equation: 

V = fD. c . 2 . ft cos (q) 

V = velocity of the particles in cm/sec 

fD = shift frequency 

ft = transmitted frequency 

q = angle of insonation 

c = velocity of sound in tissue (blood) cm/sec 

The sound reflected by the tissue/blood is in the auditory range and can be 

monitored continuously. 

1.4.3 Blood pressure  

 A finger plethysmograph (Finometer, Finapres Medical System, Arnhem, 

Netherlands) was used to measure arterial blood pressure on a beat-by-beat basis. 

The system has an infrared emitting diode in the finger cuff and a detector 
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immediately opposite, such that when the cuff wrapped around the finger, light 

from the diode travels through the finger and the amount reaching the other side 

can be detected. Absorption of the light is proportional to the distance through the 

finger that it must travel. With each heart beat, the change in vessel transmural 

pressure causes the finger to "swell" proportionally. Matching the changes in 

transmural pressure via instantaneous, equal increases in cuff pressure therefore 

maintains finger volume and provides continuous estimates of arterial pressure. 

Comparisons with direct arterial blood pressure measures indicate a good 

agreement (Imholz et al., 1990). 

1.4.4 Cardiac Output  

 In this thesis,Q  has been measured non-invasively using Finometer finger 

cuff technique and validated using C2H2 rebreathing methods.    

Finometer Modelflow cardiac output  

The Modelflow algorithm implemented in the Finometer uses aortic characteristic 

impedance, windkessel compliance of the arterial system and peripheral vascular 

resistance to compute flow pulses from an arterial pressure pulses (Wesseling et 

al., 1993), and has been shown to estimate changes in Q  during moderate and 

heavy exercise with high precision. Moreover, the reconstruction of brachial artery 

waveform employed by Finometer had shown to improve the accuracy and 

sensitivity to detect the changes in cardiovascular measurements (Guelen et al., 

2003; Guelen et al., 2008; Maestri et al., 2005; Schutte et al., 2004).  
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Acetylene rebreathing cardiac output 

 C2H2 rebreathing was used as a reference method in this study, because it 

has been shown to be valid (Bell et al., 2003; Dibski et al., 2005; Hunt et al., 1997; 

Warburton et al., 1998) and in fairly high agreement with dye-dilution and direct 

Fick methods when measuring Q  at rest and during exercise up to 90% of the 

maximal 2OV (Liu et al., 1997; Triebwasser et al., 1977). 

 C2H2 is used to measure blood flow through the lungs since it is soluble gas 

and enters the blood stream with a known diffusion constant. An inert, insoluble 

gas (e.g., He, Ar, or CH4) is also added to the gas mixture to ensure full 

equilibration of the system (bag/lung) before the disappearance rate of the 

acetylene is measured (Triebwasser et al., 1977). The decay curves of the soluble 

and inert gas mixture (C2H2/He) can be used to compute Q as it is directly related 

to the rate of blood flow through the lungs. 

1.5 Exponential characteristics of 2OV kinetics 

 The exponential function has an amplitude (A) and time constant () which 

reflects the time required to reach 63% of the total amplitude or 63% of each 

distinct phase of the 2OV response. Generally, the steady-state is attained and the 

response amplitude is completed after 4 time constants (Hughson, 2005).  

The curve fitting procedure calculates the various parameters of the exponential 

model by using the least-squares error approach. The best fit is defined by the 

minimum residual sum of squares between the model parameters and the actual 

data set with a symmetrical distribution around the zero-line as seen in Fig. 1.2.  
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2OV kinetics have been described using either mono or higher order exponential 

models. A mono-exponential model quantifies the overall response of the exercise 

bout using the effective time constant (Gerbino et al., 1996) that estimates the time 

required to achieve 63% of the total amplitude through the following equation  

2OV (at any time point) = 2OV (baseline) + A (1 – e - (t/
)). 

 

 

Figure 1.2: A schematic illustration of the exponential characteristics of 2OV . 

 

However, the low sampling frequency of blood during exercise did not enable a 

precise characterization of kinetics using the effective time constant 

equation. Therefore, to estimate  kinetics in this study, the area under the 

curve (AUC) of was calculated using the first order hold method. 

kinetics were quantified from the rise time () based on the calculation of AUC and 

mus2OV

mus2OV

mus2OV mus2OV
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the given amplitude  assuming a first order linear dynamic system. The rise time 

for was then estimated from the following equation:   

AUC ( ) = A [(tf  - ts) + τ (e- ( t
f
 / τ) - e- ( t

s
 / τ))] 

where, AUC ( ) is the numerical value calculated from the first order hold 

method for curve, A is the end exercise amplitude, tf  is the final time of 

exercise, ts is the start time to calculate AUC and  is the rise time of . Same 

procedures to calculate FBF kinetics were used in Chapter 3.  

 A higher order mathematical model partitions the 2OV response into distinct 

phases, where the Phase II time constant (τ2; time to reach 63% of the primary 

phase) characterizes the rate of increase in oxidative phosporylation (Hughson et 

al., 2001). The moderate and heavy bouts were curve fitted by two- (phases I and II) 

and three-component (phases I, II and III) exponential models respectively, 

according to the following equation. The two component model has a baseline, two 

amplitude terms (A1 and A2), two time constants (1 and 2) and two time delays 

(TD1 and TD2). The three component model has an extra amplitude (A3), time 

constant (3), and time delay (TD3) to fit the slower adaptive phase manifesting 

during heavy exercise. 
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                                           + A1 (1-e-(t-TD1)/τ1) U1      Phase I     

2OV (t) =   2OV (baseline) + A2 (1-e-(t-TD2)/τ2) U2      Phase II  

                                    + A3 (1-e-(t-TD3)/τ3) U3      Phase III 

 

Where,  

                  U1 = 0    for   t < TD1   and   U1 = 1    for   t > TD1    

                 U2 = 0    for   t < TD2   and   U2 = 1    for   t > TD2    

                        U3 = 0    for   t < TD3   and   U3 = 1    for   t > TD3    

Same procedures to describe Q kinetics where used in Chapter 2.
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1.6 Aim of studies 

The fundamental idea of the following studies is to examine the control 

mechanisms of oxygen uptake following the onset of exercise. Specifically, the 

studies have been designed to investigate the interrelationships between 

cardiovascular adaptations and O2 utilization in accelerating 2OV kinetics in 

trained humans. The experimental objectives were to manipulate and quantify Q  

and FBF responses at the onset of dynamic exercise and infer relationships 

between O2 transport and O2 utilization in accelerating 2OV kinetics. The main 

hypothesis of these studies is that alterations in cardiovascular responses “ Q  and 

FBF” at the onset of exercise will be associated with alterations in the rate of 

increase in oxidative phosphorylation. 

Specific research questions: 

 

I. To examine the effects of prior moderate and heavy warm-up on pulmonary 

2OV  and Q  kinetics at the onset of subsequent moderate and heavy cycling 

exercise (Chapters 2). 

 

II. To determine in a model of forearm exercise, if the increase of blood flow at 

exercise onset following prolonged ischemia would accelerate the blood flow 

and mus2OV kinetics during subsequent heavy exercise as demonstrated 

previously for prior heavy exercise (Chapter 3). 
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III. To quantify the role of muscle activity, as assessed by EMG, on the 

development of 2OV slow component during heavy exercise and increased O2 

cost during moderate exercise that followed a heavy warm-up (Chapter 4). 

 

IV. To study the effect of circadian rhythm on 2OV kinetics and BP regulations 

at the onset of moderate a heavy exercise (Appendix A). 

 

  



 

26 

 

 

Chapter 2 

Prior moderate and heavy exercise accelerate oxygen uptake and 

cardiac output kinetics in endurance athletes 

This chapter is the basis for the published paper:  

Faisal A, Beavers KR, Robertson AD, & Hughson RL (2009). Prior moderate and 
heavy exercise accelerate oxygen uptake and cardiac output kinetics in endurance 
athletes. J Appl Physiol 106, 1553-1563. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 

 

2.1 Overview 

 Cardiorespiratory interactions at the onset of dynamic cycling exercise are 

modified by warm-up exercises. We tested the hypotheses that 2OV and Q  kinetics 

would be accelerated at the onset of heavy and moderate cycling exercise by prior 

warm-up. Nine male endurance athletes (
peak2

OV : 60.5 ± 3.2 ml/min/kg) 

performed multiple rides of two different 36-minute cycling protocols involving 6-

minute bouts at moderate and heavy intensities. Breath-by-breath 2OV  and beat-

by-beat stroke volume (SV) and Q  estimated by Modelflow from the finger pulse 

were measured simultaneously with kinetics quantified from the phase two time 

constant (2). One novel finding was that both moderate (M) and heavy (H) warm-up 

bouts accelerated phase two 2OV  kinetics during a subsequent bout of heavy 

exercise (2: after M=22.5 ± 2.7 s, after H=22.1 ± 2.9 vs. 26.2 ± 3.2 s; P < 0.01).Q  

kinetics in heavy exercise were accelerated by both warm-up intensities (2: M=22.0 

± 4.1 s, H=23.8 ± 5.6 s vs. 27.4 ± 7.2 s; P < 0.05). During moderate exercise, prior 

heavy intensity warm-up (one or two bouts) accelerated 2OV  kinetics and elevated 

Q  at exercise onset, with no changes in Q  kinetics. A second novel finding was a 

significant overshoot in the estimate of SV from Modelflow in the first minutes of 

each moderate and heavy exercise bout. These findings suggest that the 

acceleration of 2OV  kinetics during heavy exercise was enabled by the acceleration 

of Q  kinetics, and that rapid increases in Q  at the onset of moderate and heavy 

exercise might result in part from an overshoot of SV. 
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2.2 Introduction 

 2OV kinetics reflect the oxidative energy supply at the onset of work rate 

transitions. Prior exercise might alter the rate of increase of 2OV  and Q  during a 

subsequent bout of exercise, but research findings utilizing this model are 

controversial. The first systematic investigation of prior exercise on 2OV  kinetics 

by Gerbino et al. (1996) reported faster 2OV  kinetics (shown by smaller effective 

time constant τ 2OV ) in a second heavy exercise bout. However, they observed no 

effects of prior heavy exercise on ensuing moderate exercise bouts or of prior 

moderate exercise on following bouts of either moderate or heavy exercise (Gerbino 

et al., 1996). Since then, many supportive and contradictory findings have been 

reported for 2OV  kinetics while observations of Q  have been limited. 

 Faster 2OV  kinetics have been found in a bout of heavy exercise that 

followed an identical heavy exercise bout (MacDonald et al., 1997; Perrey et al., 

2003a) or multiple sprint cycling (Tordi et al., 2003), but contrary findings of no 

change in kinetics have been reported (Burnley et al., 2000; Wilkerson et al., 2004). 

The reasons for these discrepancies in the responses to heavy exercise after a 

heavy warm-up could be a consequence of varying signal-to-noise relationships 

related to single or multiple test repetitions, to method of data analysis with overall 

kinetics versus a focus on the phase II kinetics, to differences in recovery intensity 

between exercise bouts, or to differences in physical fitness of the subjects studied. 

Likewise, varying results of accelerated or no change in kinetics have been reported 

for the effects of lower intensities of warm-up on 2OV  kinetics on subsequent 

heavy (Burnley et al., 2000; Campbell-O'Sullivan et al., 2002; Gerbino et al., 1996; 
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MacDonald et al., 1997) or moderate (Ferreira et al., 2005b; Gerbino et al., 1996) 

exercise. Several studies have reported no change in 2OV kinetics in moderate 

exercise that follows a bout of heavy warm-up exercise (Burnley et al., 2000; 

Gerbino et al., 1996; MacDonald et al., 1997). However, Gurd et al.(2006) recently 

reported faster phase II time constant (τ2) for 2OV  during moderate exercise that 

followed a heavy warm-up. They observed elevated PDHa activity at baseline after 

the heavy bout and further activation during the second moderate exercise bout. 

 Kinetics of Q  have been investigated primarily in light or moderate exercise 

where a rapid increase in HR attributed to vagal withdrawal was largely responsible 

for the adaptation of Q  to steady state (Fagraeus & Linnarsson, 1976; Inman et al., 

1987; Lador et al., 2006; Linnarsson, 1974; Yoshida & Whipp, 1994). When the 

metabolic demand was elevated and sympathetic contributions were required to 

increase HR the kinetics of both Q  and 2OV  were slower (Inman et al., 1987) but 

prior heavy exercise accelerated Q  and 2OV  in subsequent heavy cycling exercise 

(Perrey et al., 2003a). 

 Relatively few studies have examined simultaneous kinetics of 2OV  and Q  

during exercise transitions (Perrey et al., 2003a; Yoshida & Whipp, 1994). In the 

current study, we examined the relationship between 2OV  and Q  kinetics to 

investigate the relative contributions of muscle metabolic and cardiovascular 

adaptations to 2OV  kinetics at the onset of both moderate and heavy exercise. As 

well, we investigated the effect of prior warm-up in very fit young men who were 

able to perform high work rates in order to generate a large amplitude signal 
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during multiple repetitions to enhance the signal-to-noise ratio in the subsequent 

response kinetics. 

  Two primary hypotheses were tested: first, that both heavy and moderate 

prior exercise would accelerate the kinetics of 2OV  and Q  in subsequent heavy 

exercise; and second, that prior heavy exercise would accelerate the kinetics of 

2OV  and Q  in subsequent moderate exercise.  

2.3 Methods 

2.3.1 Subjects 

 Nine male endurance athletes (age: 22.3 ± 2.7 years, height: 178.6 ± 7.8 cm, 

weight: 71.9 ± 6.5 kg, peak oxygen uptake (
peak2

OV ): 60.5 ± 3.2 ml/min/kg; 

mean ± SD) consented to participate in this study. None of the participants was a 

cyclist, but all included some cycling in their fitness regimes and all were pre-

screened with 
peak2

OV > 55 ml/min/kg. This study was approved by the Office of 

Research Ethics at the University of Waterloo and all subjects provided written 

informed consent following full description of the protocols.  

2.3.2 Experimental design 

 peak2
OV and ventilatory threshold (VT) were determined using an 

incremental exercise test to volitional exhaustion on an electrically-braked cycle 

ergometer (Excalibur, Lode, Groningen, Netherlands). After an initial 4-min period 

of cycling at 20 W, the work rate increased as a ramp of 30 W/min. The pedaling 

cadence was maintained at ~ 80 rpm for the duration of the test. The test was 

stopped when the subject was unable to continue or was unable to maintain a 
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cadence >75 rpm. The 
peak2

OV was calculated as the average of the last 15 

seconds of the test. The VT was estimated from the breakpoint in the curve of 

carbon dioxide output ( 2COV ) as a function of 2OV  (V-slope method) (Beaver et al., 

1986) and confirmed by the point at which minute ventilation ( EV ) to 2OV  ratio 

increased without an increase in EV  to CO2 output ( 2COV ) ratio. 

 Each subject, over a 3-month period, performed multiple rides of two 

different 36-minute cycling protocols involving 6-minute bouts at moderate (M) and 

heavy (H) intensities (power output requiring 2OV  equivalent to 80% of the 2OV  at 

VT and 85% of
peak2

OV , respectively) interspersed with 6-minute bouts at 20 W to 

achieve similar protocols to other studies of prior exercise that have used unloaded 

cycling (Gerbino et al., 1996) , 20W (Burnley et al., 2000; Gurd et al., 2006), 25W 

(MacDonald et al., 1997) or 35% 
peak2

OV (Perrey et al., 2003a). The exercises were 

named by the intensity, bout number and protocol letter as follows: Protocol A = 

moderate (M1A) followed by heavy (H2A) followed by moderate (M3A); Protocol B = 

heavy (H1B) followed by heavy (H2B) followed by moderate (M3B); (Fig. 2.1). The 

pedaling frequency was maintained at 80 rpm throughout each protocol. The same 

cycle ergometer and individual set up (handle bar and seat position allowing nearly 

full knee extension) was used for each ride in the study. 

 The competitive athletes were in the maintenance phase of their training 

regimen. To ensure that there were no changes in their physical fitness during the 

testing period, an incremental exercise test was performed by each participant 

within one week of finishing his testing series. 
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 On testing days, subjects reported to the laboratory in a rested, hydrated 

state. They were asked to abstain from caffeine 12 h and alcohol 24 h before 

testing. No more than two testing sessions per week were arranged; rides were 

performed at least 24 h following the participants’ last exercise regimen, 72 h 

following a heavy training session, and 48 h following their last study ride. The 

tests were completed in a quiet, air-conditioned laboratory at a temperature of 

~23°C. 

Breath-by-breath oxygen uptake 

 Ventilation and gas exchange were measured continuously in at least 8 rides 

(minimum 4 of each protocol) on a breath-by-breath basis (First Breath, Waterloo, 

ON) measuring inspired and expired concentrations of O2, CO2, and N2 by mass 

spectrometry (Innovision, Amis 2000, Odense, Denmark) and gas volumes by a 

bidirectional, low resistance, low dead space (90 ml) turbine (UVM-17125, 

VacuMed, Ventura, CA, modified to remove the signal delay on transition of flow 

direction). This system uses a modification of the Auchincloss algorithm 

incorporating an estimate of the effective lung volume to determine breath-by-

breath changes in lung gas stores (Hughson et al., 1991b).Calibrations with 

precision medical gases and an automated 3 L syringe (Vacumed, Ventura, CA) and 

measurement of the delay time to match the volume and gas signals were 

performed prior to each test. 
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Cardiac output 

 Throughout each exercise test Q  was continuously estimated beat-by-beat 

from the pulse wave of the finger arterial pressure (Finometer, Finapres Medical 

System, Arnhem, Netherlands) utilizing the Modelflow algorithm to estimate SV 

(Wesseling et al., 1993) incorporating factors of age, sex, height and weight to 

estimate the aortic cross-sectional area (Langewouters et al., 1984). The left arm 

was supported slightly below heart level by a sling to minimize arm and hand 

movement. The support of one arm did not affect cycling mechanics or require 

additional activity in the other arm for these highly fit subjects. The MFQ  signal 

was shifted -1s and 1 beat back to compensate for Finometer’s internal digital 

signal processing delay. The signals were linearly interpolated at 1-s intervals, the 

rides were time aligned and averaged together to yield a single data set for each 

subject in each protocol. The Modelflow algorithm follows changes in Q  (Tam et al., 

2004) but might exhibit bias relative to a standard method, especially when applied 

over a wide range of metabolic demand as in the current study. Therefore, we 

compared MFQ  with those from acetylene rebreathing ( Q C2H2) (Triebwasser et al., 

1977) using a gas mixture containing 7% helium (He), 0.7% C2H2, 30% O2 and 

balance N2 from a 5-L rebreathing bag filled to 1.5 times each person’s tidal volume 

(Bell et al., 2003). Each subject performed multiple repetitions of Q C2H2 at the three 

work rates in 8 separate rides (total: 24 at 20 W, 12 at moderate and 12 at heavy 

work rates). Calibrations could not be performed in the exercise transients as the 

C2H2 method requires constantQ during the measurement period. Therefore, Q C2H2 

was calculated between 3.5 and 4 minutes (2 rides of each protocol), and 5 and 5.5 
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minutes (2 rides of each protocol) and these were compared to corresponding 

values for MFQ  at each work rate. Given the small overall bias (see Results) no 

adjustment was applied to the MFQ  as an estimate of Q during exercise. BP, MFQ

and electrocardiogram (ECG) (Pilot 9200, Colin Medical Instruments, San Antonio, 

TX) signals were sampled at 1 kHz (PowerLab, AD Instruments, Colorado Springs, 

CO). 
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Figure 2.1: Two different testing protocols employed to examine the influence of 

prior exercise on 2OV  and MFQ  kinetics. 

 For each exercise bout, the M or H indicates moderate or heavy work rate; 1, 2 or 

3 indicates the order of the exercise bout within the sequence; and, A or B 

indicates the two different protocols. The specific bouts are M1A and H1B (moderate 

and heavy control bouts respectively), H2A and H2B (heavy exercise after a 

moderate or heavy prior exercise respectively), M3A and M3B (moderate exercise 

after one or two heavy prior exercise bouts). 
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2.3.3 Data Analysis 

Breath-by-breath 2VO  and beat-by-beat MFQ  analysis 

 Breath-by-breath 2OV and beat-by-beat MFQ  data were obtained from at 

least 4 repetitions of each of protocols A and B, linearly interpolated at 1-s 

intervals, time-aligned to the beginning of exercise, and averaged together to yield a 

single data set for each subject. The moderate and heavy bouts were curve fitted by 

two- (phases I and II) and three-component (phases I, II and III) exponential models 

respectively, according to the following equation: 

                       + A1 (1-e-(t-TD1)/τ1) U1      Phase I     

      Y(t) =   A0  + A2 (1-e-(t-TD2)/τ2) U2      Phase II  

                            + A3 (1-e-(t-TD3)/τ3) U3      Phase III 

 Where,  

                 U1 = 0    for   t < TD1   and   U1 = 1    for   t > TD1    

                U2 = 0    for   t < TD2   and   U2 = 1    for   t > TD2    

                       U3 = 0    for   t < TD3   and   U3 = 1    for   t > TD3    

Y(t) is the absolute 2OV  or MFQ  at a given time t; A0 is the amplitude of the 

baseline  for 2OV  or MFQ  measured in the 2 minutes preceding the onset of 

exercise while cycling at 20 W; A1, A2 and A3 are the amplitudes, TD1, TD2 and TD3 

are the time delays, and 1, 2 and 3 are the time constants of phases I, II and III 

respectively of the 2OV  and MFQ  kinetic responses.  
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 Phase I was fit with parameters that insured a completed response before 

the start of phase II (i.e. 4 x 1 < TD2) so there was no impact of phase I on the 

phase II kinetics (Hughson et al., 2000) allowing comparison with studies which 

omitted the phase I from the fitting analysis (Barstow et al., 1996; Burnley et al., 

2000). Curve-fitting utilized an iterative non-linear regression process in which the 

best fit was defined by minimizing the residual sum of squares with a symmetrical 

distribution around the zero-line (see Fig.2.2). The rate of activation of the aerobic 

system during the exercise transition was characterized by 2 for 2OV .   

Acetylene cardiac output analysis  

In order to reduce signal noise and improve reliability in the rebreathing data, a 5-

point moving average was applied to every rebreathe trial. Complete mixing of the 

lung-bag system was indicated by the equilibration of He levels. After complete 

mixing was reached, 4 end-expiration points were selected from the C2H2 decay 

curve. End-tidal gas measurements were taken from the first 12s during the heavy 

bouts, and 15s during the 20 W and moderate bouts to avoid recirculation errors 

(Alves et al., 1985; Liu et al., 1997). Rebreathing trials were excluded from the 

analysis if the initial measured He and C2H2 values during the transition to 

rebreathing were disparate from the known concentrations in the tank, which may 

result from subjects being turned onto the rebreathing bag prior to complete 

exhalation. Linear regression was performed to calculate Q  according to the 

following equation: 

760
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where Bs is the slope of the C2H2 disappearance , VA(STPD) is the bag volume(mL), 

PB is the barometric pressure (mmHg), Vt is the lung tissue volume (mL),  and B 

are the Bunsen solubility coefficients for acetylene in the lung tissue (0.768) and 

blood (0.71) respectively (Petrini et al., 1978; Smyth et al., 1984; Triebwasser et al., 

1977). 

Arterial-venous oxygen content difference  

 To account for the lower sampling rate for 2OV  (breath-by-breath) compared 

to the estimates of MFQ  (beat-by-beat), the latter were averaged over each breath 

cycle to yield a single data point to match 2OV  data. (A-v)DO2 was then calculated 

using the Fick equation:            (a-v)DO2 = 2OV  /Q  

Baseline values for 2OV , MFQ  and (a-v)DO2 were the average of the 30 s preceding 

the onset of moderate and heavy cycling bouts. The non-interpolated values of 

2OV , MFQ  and (a-v)DO2 values were averaged in 10 s windows during each exercise 

bout and the relative contribution of Q  and (a-v)DO2 to the overall changes in 2OV

(expressed in %) were approximated through the differentiation of the Fick equation 

as shown by Fukuba et al. (2007): 

∆ 2OV    ≈   (a-v)DO2 ∙ ∆ Q  +   Q  ∙ ∆ (a-v)DO2 

Dividing the differentiated equation by 2OV  shows that the relative change in 2OV  

is approximately equal to the sum of the relative changes in Q  and (a-v)DO2: 
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2.3.4 Statistical analysis 

 Regression and Bland-Altman analyses (Mantha et al., 2000) were used to 

examine the accuracy and reliability of the Finometer Q  method. Additionally, a 

one-way repeated measures analysis of variance (ANOVA) and coefficient of 

variation (CV) analysis were completed to demonstrate the variance of the Q  across 

the multiple bouts. The effect of prior exercise on 2OV  and Q  kinetics as well as 

selected time values of HR and SV were analyzed using one-way repeated measures 

ANOVA. When significant effects were observed, the Bonferroni post hoc test was 

used for comparisons. Regression analyses compared the Q  and 2OV  kinetics to 

each other. All data are expressed as mean ± SD. The data were analyzed using 

Statistical Analysis Software (SAS) package 9.1 (SAS Institute, Cary, NC). 
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Figure 2.2: Representative 2OV  (top) and MFQ  (bottom) data from one participant 

during heavy exercise.  

The three-component model has been used to estimate the fitting parameters for 

both curves. The quality of fit is shown in the small residuals, which are evenly 

distributed around the zero line in both plots. 
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2.4 Results 

2.4.1 Incremental exercise test 

 The pre-study 
peak2

OV (4325 ± 516 ml/min, 60.5 ± 3.2 ml/min/kg) was 

reached at a work rate of 390 ± 44 W during the 30 W/min incremental exercise 

test. VT occurred at 65 ± 5.7 % of 
peak2

OV . The work rates during the moderate 

and heavy bouts were 146 ± 33 W and 266 ± 35 W, respectively. At the completion 

of the study 
peak2

OV (4328 ± 537 ml/min, 60.6 ± 3.9 ml/min/kg) and work rate 

(396 ± 41 W) did not differ from the pre-study values (P = 0.89). 

2.4.2 Modelflow cardiac output validation 

 The MFQ  and Q C2H2 were highly correlated both on a subject-subject basis 

and overall. Individually, the average correlation coefficient was 0.93 ± 0.03 and 

ranged from 0.90 to 0.96 (Fig. 2.3). The overall regression equation between 

methods was MFQ  = 0.94 Q C2H2 + 1.09 with r = 0.92 (P < 0.001). The results of the 

Bland –Altman analysis (Fig. 2.4) showed small bias at the three different work 

rates 20W, 80% VT and 85% 
peak2

OV (0.01, 0.05,-0.97; respectively). The overall 

bias (mean Q C2H2  - MFQ ) was low at -0.20 l/min with 95% limits of agreement from 

-4.16 to 3.76 l/min. MFQ  variability during repeated measurements was low. There 

were no significant differences in MFQ  across the multiple repetitions of each 

protocol (P > 0.41 for moderate bouts; P > 0.67 for heavy bouts). The mean CV in 

all subjects over all rides was 6.7 ± 2.4 % during moderate bouts (ranging from 3.7 

to 11.6) and 7 ± 2.1 % during heavy bouts (ranging from 4.8 to 11.7). The 
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regression equations for both MFQ  and Q C2H2 with 2OV  in all subjects were similar 

[ MFQ  = 0.005 2OV  + 5.58 with r = 0.97 (P < 0.001); Q C2H2 = 0.004 2OV  + 5.89 with 

r = 0.96 (P < 0.001)]. Overall, the Modelflow method provided a valid estimate of Q  

during exercise at the three different intensities of cycling exercise. 

2.4.3 Oxygen uptake and cardiac output kinetics 

 During a heavy exercise bout that followed either prior moderate or heavy 

exercise τ2 values for both 2OV  and MFQ  were less than when heavy exercise was 

not preceded by warm-up (Fig. 2.5, Table 2.1). 2OV responses were normalized to 

the amplitude at the end of the primary phase to eliminate the effect of elevated 

baseline 2OV (Fig. 2.6). The moderate exercise bouts that followed prior heavy 

exercise (one and two bouts) had smaller τ2 for 2OV  than in the no warm-up 

condition. The reduction in τ2 for MFQ  was not significantly different compared to 

the control (Fig. 2.7, Table 2.2). There was a significant relationship between the 

time constants for 2OV  and MFQ  determined for all heavy bouts (r = 0.47, P = 

0.01). However, the overall relationship between 2OV τ2 and MFQ τ2 during moderate 

bouts did not reach the significant level (r = 0.14, P = 0.5, Fig. 2.8). 

Baseline (A0) values for 2OV  were significantly elevated when either moderate or 

heavy exercise was preceded by one bout of heavy exercise and there was further 

small, but significant elevation when moderate exercise was preceded by two heavy 

bouts (Table 2.1 and 2.2). Prior moderate exercise had no effect on the A0 for 2OV
. 

Neither moderate nor heavy prior exercise affected the amplitude of 2OV  during 

phase I (A1) or phase II (A2) in the following bouts of moderate or heavy exercise 
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(Table 2.1 and 2.2). Prior warm-up had a graded effect on the amplitude of the 

2OV  slow component (A3), such that the prior heavy exercise resulted in a greater 

attenuation than moderate exercise (Table 2.1).  

 A0 for MFQ  was significantly elevated by prior heavy exercise (Table 2.1 and 

2.2). There was no impact of prior exercise on the MFQ  amplitudes A1 or A2 in the 

heavy exercise bouts (Table 2.1). During the moderate exercises both A1 and A2 

were significantly reduced by one or two bouts of prior heavy exercise (Table 2.2); 

however, due to the higher starting values the absolute average MFQ  from 15-45 s 

after exercise onset was greater after two prior heavy bouts (M3B = 15.5 ± 4.5 

l/min, P < 0.01) compared to no prior exercise (M1A = 14.5 ± 3.3 l/min) but was not 

different after one bout of heavy prior exercise (M3A = 14.9 ± 4.2 l/min). 

 The HR and SV contributions to MFQ  were markedly impacted by the prior 

exercise condition (Table 3, Fig. 2.9 and 2.10). During both moderate and heavy 

exercise, there was a significant overshoot of the SV within the first two minutes of 

exercise (Fig. 2.9 and 2.10, Table 2.3). During moderate bouts, one prior heavy 

exercise bout elevated HR and reduced the baseline, peak, and end bout SV, and 

these responses were further diminished by two prior heavy exercise bouts. During 

heavy bouts, baseline and end bout HR were elevated by prior heavy exercise, but 

there were no differences in the baseline, peak or end exercise SV between bouts 

with or without warm-up exercise.  
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2.4.4 Arterial-venous oxygen content difference 

 Prior exercise elicited changes in Q  and (a-v)DO2, combining to accelerate 

2OV  kinetics of a subsequent moderate or heavy exercise bout. In a moderate bout 

following one heavy bout (M3A), increases in (a-v)DO2 mainly contributed to the 

speeding of 2OV  kinetics. Relative to the bout without prior exercise (M1A), there 

were increases in the (a-v)DO2 at 30 s (129.8 ± 12.5 vs. 117.0 ± 10.5 mlO2/l blood) 

and at 90 s (145.0 ± 13.9 vs. 134.4 ± 12.7 mlO2/l blood). These increases in  

(a-v)DO2 contributed to 75 % of the change in 2OV  kinetics [(∆(a-v)DO2 /(a-v)DO2 / 

(∆ 2OV / 2OV ) = 10.95% / 14.62%] at 30 s, and reached 100 % by 90 s.  In the 

moderate bout that followed two heavy bouts (M3B) both (a-v)DO2 and Q  

contributed to the change in 2OV  (Fig. 2.11 - top). Q  contributed to 52 %  

[(∆Q  / Q ) / (∆ 2OV / 2OV ) = 8.26% / 15.93%] and 23 % of the changes in 2OV  vs. 

M1A at 30 and 90 s, respectively. For the heavy exercise bouts that followed either 

moderate or heavy exercise, Q  appeared to be the major contributor to changes in 

2OV  kinetics (Fig. 2.11 - bottom). 
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Figure 2.3: Linear regressions comparing the Finometer Modelflow estimated 

cardiac output and acetylene rebreathing cardiac output. 

Individual regressions (above, range: r = 0.90-0.96, P <0.001) and overall 

regression (below, r = 0.92, P <0.001). 
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Figure 2.4: Bland-Altman analysis of MFQ  and Q C2H2. 

Overall bias was -0.20 l/min and 95% limits of agreement ranged from -4.16 to 

3.76 l/min. This figure reflects a maximum of 24 measures taken at 20W, 12 

measures taken at 80%VT and 12 measures taken at 85% 
peak2

OV  for each 

subject (n = 9).  
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     Table 2.1: Fitting parameters of oxygen uptake and cardiac output kinetics during heavy bouts 

Parameters 
 

Oxygen Uptake 
 

Cardiac Output 

H1B H2A H2B H1B H2A H2B 

A0, l/min 

 

0.99 ± 0.05 1.02 ± 0.07 1.17 ± 0.05 *‡ 

 

10.16 ± 0.97 10.25 ± 0.94 11.90 ± 0.75 *‡ 

A1, l/min 0.47 ± 0.16 0.49 ± 0.13 0.44 ± 0.13 3.19 ± 0.78 2.86 ± 0.63 2.99 ± 0.45 

A2, l/min 1.71 ± 0.23 1.68 ± 0.24 1.79 ± 0.26 8.18 ± 1.82 8.01 ± 1.30 8.16 ± 1.47 

A1+A2, l/min 2.18 ± 0.33 2.16 ± 0.34 2.23 ± 0.34 11.37 ± 1.68 10.87 ± 1.48 11.15 ± 1.59 

A0+A1+A2, l/min 3.17 ± 0.35 3.18 ± 0.34 3.40 ±0.36 *‡ 21.53 ± 1.88 21.12 ± 1.33 23. 05 ± 1.76 †‡ 

A3, l/min  0.64 ± 0.15 0.55 ± 0.11† 0.39 ±0.07 *‡  1.51 ± 0.61 1.59 ± 0.74 1.40 ± 0.70 

 2, s 

 

26.15 ± 3.16 22.47 ± 2.71 * 22.05 ± 2.91 * 

 

27.43 ± 7.22 22.0 ± 4.08 † 23.77 ± 5.58 † 

3, s 156.6 ± 34.6 141.2 ± 34.9 137.1 ± 29.3 98.3 ± 13.5 103.2 ± 8.8 97.1 ± 16.6 

TD2, s 11.83 ± 2.02 11.9 ± 1.47 10.29 ± 1.06 †§ 7.3 ± 1.59 7.85 ± 2.26 9.01 ± 2.86 

TD3, s 98.9 ± 15.2 81.9 ± 10.4 * 75.5 ± 7.3 * 115.4 ± 18.3 98.1 ± 7.9 † 97.8 ± 10.5 † 

End bout, l/min  3.7 ± 0.39 3.64 ± 0.37  3.73 ± 0.36   23.0 ± 1.38 22.68 ± 1.05 24.3 ±1.29 †‡ 

      

      Mean ± SD, n = 9  

      * P < 0.01 H1B vs. H2A-H2B; † P < 0.05 H1B vs. H2A-H2B; ‡ P < 0.01 H2A vs. H2B; § P < 0.05 H2A vs. H2B 
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 Figure 2.5: 2OV  (top) and MFQ  (bottom) time series data for heavy bouts. 

Insets: Tau2 (mean ± SE); * P < 0.01; † P < 0.05 compared to H1B. Data lines are the 

average of 9 subjects with ≥ 4 repetitions per each exercise condition. 
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Figure 2.6: Comparison of the normalized 2OV  to the amplitude at the end of 

primary phase during heavy bouts.  

Differences in primary phase kinetics are clear between H2A and H2B vs. H1B.    
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Table 2.2: Fitting parameters of oxygen uptake and cardiac output kinetics during moderate bouts 

Parameters 

 
Oxygen Uptake  Cardiac Output 

M1A M3A M3B M1A M3A M3B 

A0, l/min 

 

0.99 ± 0.05 1.15 ± 0.07 * 1.19 ± 0.06 *§ 

 

9.36 ± 0.98 11.08 ± 0.80 * 11.13 ± 0.72 * 

A1, l/min 0.33 ± 0.14 0.28 ± 0.09 0.31 ± 0.11 1.82 ± 0.42 1.24 ± 0.39 * 1.38 ± 0.31 * 

A2, l/min 0.92 ± 0.23 0.9 ± 0.26 0.89 ± 0.25 5.02 ± 1.36 3.95 ± 1015 * 4.21 ± 1.21 * 

2, s 22.85 ± 4.81 18.91 ± 3.38 † 16.92 ± 2.67 * 20.15 ±5.22 19.13 ± 5.72 18.82 ± 4.29 

TD2, s 13.6 ± 1.67 12.8 ± 1.79 14.2 ± 1.57 7.87 ± 2.65 9.65 ± 2.83 8.51 ± 3.37 

End bout, l/min 2.25 ± 0.37 2.34 ± 0.36 * 2.39 ± 0.36 *§ 16.1 ± 1.47 16.37 ± 1.49 16.81 ±1.47 † 

 

Mean ± SD, n = 9 

* P < 0.01 M1A vs. M3A-M3B; † P < 0.05 M1A vs. M3A-M3B; § P < 0.05 M3A vs. M3B        

Amplitude parameters A0, A1 and A2 for the baseline, phase 1 and phase 2 respectively; time constant (τ2) and time 

delay (TD2) for the primary phase; end bout is the average 2OV  or MFQ  in the last minute of each exercise bout. The 

moderate bouts for protocols A and B are shown in Fig. 2.1.
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Figure 2.7: 2OV  (top) and MFQ  (bottom) time series data for moderate bouts. 

 Insets: Tau2 (mean ± SE); * P < 0.01; † P < 0.05 compared to M1A. Data lines are 

the average of 9 subjects with ≥ 4 repetitions per each exercise condition. 
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Figure 2.8: Linear regressions comparing 2OV Tau2 to MFQ Tau2 for heavy and 

moderate bouts. 

Heavy bouts (top, r = 0.47, P <0.05), moderate bouts (bottom, r = 0.135, P = 0.50).
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Table 2.3: Cardiac output variability, heart rate and stroke volume during heavy and moderate bouts 

 

Mean ± SD, n = 9 

* P < 0.01 and † P < 0.05 compared to the control conditions (H1B, M1A); ‡ P < 0.01 H2A vs. H2B and M3A vs. M3B;  § 

P < 0.05 H2A vs. H2B and M3A vs. M3B.

Variables 

 

Heavy Bouts 

 

Moderate Bouts 

H1B H2A H2B M1A M3A M3B 

Q CV,  % 

 

 

7.7 ± 3.1 7.4 ± 2.6 5.8 ± 2.6 

 

 

6.9 ± 3.2 7.2 ± 2.9 6.2 ±2.1 

Q C2H2 - MFQ  Bias, l/min - 0.8 ± 2.5 -0.5 ± 2.7 - 1.6 ± 2.1 0.4 ± 1.5 0.5 ± 1.4 -0.3 ± 1.9 

Baseline HR, bpm 87.8 ± 7.0 91.0 ± 8.2 108.9 ± 8.7 *‡ 82.2 ± 7.2 104.9± 10.7 * 111.9 ± 10.3 *‡ 

End Bout HR, bpm 169.4 ± 5.3 169.8 ± 6.7 177.1 ± 6.2 *‡ 124.5 ± 10.3 138.3± 10.8 * 146.9 ± 9.2 *‡ 

Baseline SV, ml 115.8 ± 13.2 116.6 ± 11.5 108.0 ± 13.0 118.8 ± 13.1 106.8± 10.4† 96.1 ± 9.4 §* 

Peak SV, ml  151.8 ± 13.7 154.5 ± 11.1 151.5 ± 14.0  141.4 ± 12.5 130.1± 10.4 * 126.2 ± 12.7 * 

End Bout SV, ml  132.0 ± 8.8 137.8 ± 11.4 135.7 ± 6.7  130.9 ± 11.8 119.8± 10.5 * 115.4 ± 8.7 * 

Peak - Baseline SV, ml  36.0 ± 9.9 37.9 ± 12.8 43.5 ±8.7  22.6 ± 8.7 23.3 ± 7.3 30.9 ± 8.7 † 

Peak - End SV, ml  19.8 ± 9.1 16.7 ± 6.9 15.8 ± 8.9  10.6 ± 5.1 10.3 ± 4.6 11.6 ± 5.4 
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Figure 2.9: HR (top) and SV (bottom) during heavy work rate transitions.  

SV is presented as a 5-second moving average. Data lines are the average of 9 

subjects with ≥ 4 repetitions per each exercise condition.  
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Figure 2.10: HR (top) and SV (bottom) during moderate work rate transitions.  

SV is presented as a 5-second moving average. Data lines are the average of 9 

subjects with ≥ 4 repetitions per each exercise condition. 
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Figure 2.11: Percent differences of 2OV , Q , and (a-v)DO2 within moderate and 

heavy bouts.  

Top panel: M1A (control; no prior exercise) and M3B (prior one heavy bout) and 

heavy bouts .Bottom panel: H1B (control; no prior exercise) and H2B (prior heavy 

bout) Data lines are the average of 10 s window for 9 subjects with ≥ 4 repetitions 

per each exercise condition. Changes in 2OV  are approximately equal to changes 

in Q  plus changes in (a-v)DO2 (see text for details). 
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2.5 Discussion  

 Our results provided several unique observations concerning 2OV  and Q  

kinetics during moderate and heavy cycling exercise in endurance athletes. In 

support of our first hypothesis, we observed for the first time that a 6-minute 

moderate warm-up bout, as well as prior heavy exercise, was capable of reducing2 

for both 2OV  and Q  during a subsequent heavy exercise bout. In partial support 

of our second hypothesis, we observed lower 2 for 2OV  when moderate exercise 

followed one or two bouts of heavy exercise; but, the 2 for Q  was not significantly 

altered  although absolute Q  was elevated early in exercise that followed two prior 

bouts of heavy exercise. Our data also revealed novel responses for SV with a 

highly significant overshoot during the early phase of heavy and moderate exercise 

bouts. As well, SV recovered to a common plateau in all heavy exercise bouts 

regardless of the prior exercise condition, but remained below the no-prior exercise 

condition during moderate exercise that followed one or two bouts of heavy 

exercise. 

2.5.1 Methodological considerations and limitations 

 The current data should be put in the perspective that they were obtained in 

highly fit young men who performed multiple repetitions of exercise tests to 

enhance the ability to resolve effects of prior exercise on 2OV  and Q  responses. 

The data then might not reflect the general population, but rather the extreme with 

well adapted cardiovascular and metabolic responses. 

 Continuous estimates of Q  were obtained in the current study by Modelflow 

analysis of the finger arterial pressure waveform (Wesseling et al., 1993). Changes 



 

58 

 

in Q  during transitions to higher work rates have been examined by various non-

invasive techniques (Inman et al., 1987; Leyk et al., 1995; Perrey et al., 2003a; 

Yoshida & Whipp, 1994), including Modelflow (Lador et al., 2006); although, these 

studies involved less intense exercise than the current study. Previous studies have 

reported that the Finometer Modelflow Q  technique was valid in comparison to 

thermodilution (de Wilde et al., 2007; Wesseling et al., 1993) and Doppler 

echocardiography methods (Sugawara et al., 2003), as well as CO2 (Pitt et al., 2004) 

and C2H2 rebreathing methods (Tam et al., 2004). Since Modelflow has not been 

investigated under the conditions of our experiments we conducted a comparison 

with acetylene rebreathing. There was a high correlation between the MFQ  and 

C2H2Q   from steady state baseline cycling at 20 W to steady state exercise at 85% 

peak2
OV with only a small bias and a reasonably small 95% confidence interval for 

the differences between C2H2Q and MFQ (Fig. 2.3 and 2.4). As well, the bias was not 

affected by the protocol, since data from both moderate and heavy bouts confirm 

that there was no significant bias introduced by the type of prior exercise (Table 

2.3). Thus, in the steady state of exercise; there were no systematic errors in 

estimates of Q  introduced by the non-invasive Modelflow approach. 

Methodologically, it was not possible to confirm that there was no bias during the 

non-steady state phase when we observed differences in MFQ  kinetics and the 

overshoot of SV. It is possible that rapid changes in aortic impedance in the 

transitions to higher work rates affected the accuracy of the Modelflow calculation 

during exercise onset so caution should be exercised in the interpretation of the 
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MFQ  and SV. Notably, Harms et al.(1999) reported that, during a dynamic postural 

shift, changes in MFQ  did track estimates from Doppler ultrasound. 

 The breath-by-breath measurements in the current study utilized a 

modification of the Auchincloss algorithm and estimates of a nominal lung volume 

(NLV) to follow changes in lung gas stores and adjust the gas exchange measured 

at the mouth (Hughson et al., 1991b). Based on previous observations that 

minimal breath-by-breath variation in estimates of 2OV was obtained with a lung 

volume smaller than functional residual capacity (FRC), we arbitrarily chose NLV to 

equal 50% of FRC (Hughson et al., 1991b). Recently, Cautero et al. (2002) 

suggested the Grønlund algorithm, which defines a respiratory cycle by equal 

fractions of O2 in expired air, might provide a more accurate measure of breath-by-

breath alveolar 2OV  and that the phase II time constant was faster than when 

compared to the Auchincloss algorithm. In the current study, the absolute value of 

τ2 might differ if 2OV  had been calculated with the Grønlund algorithm but our 

comparisons within subjects would not be biased by the method of calculation. 

 Characterization of 2OV  kinetics has normally been approached through 

multi-component exponential modeling with the major emphasis on the phase II 

response that might reflect changes in muscle oxidative metabolism (Linnarsson, 

1974; Whipp & Ward, 1982). We retained this convention even though 

nonlinearities during phase II (Hughson et al., 2001; Rossiter et al., 2001) might 

question the validity of this approach because current techniques are unable to 

resolve this effect in breath-by-breath data for 2OV . We chose to fit the 

cardiodynamic phase (Whipp & Ward, 1982), by an exponential model with a tau1 
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(1) value fast enough to achieve a complete response before the start of phase II 

(i.e. 4 * 1 < TD2) (Hughson et al., 2000). 

 There have been fewer studies of the kinetics of Q  than 2OV , but it is 

obvious from the HR and SV data (Fig. 2.9 and 2.10) that presenting the kinetics of 

Q  by a simple two or three component exponential model is at best an 

approximation even though residuals appear to be evenly distributed (see Fig.2.2 - 

bottom). The initial overshoot of SV while HR progressively increased violates the 

concept that one exponential term corresponds to a single physiological control 

mechanism for Q . However, using the same model for 2OV and MFQ  simplified 

comparisons of these variables within our study and with other research. 

 An important limitation in the current study is that our measurement of 

MFQ  does not provide insight into the site-specific delivery of oxygenated blood to 

the exercising muscles. Recent data from investigation of multiple muscle sites 

with near infrared spectroscopy (Koga et al., 2007) revealed considerable 

heterogeneity of tissue oxygenation suggesting that even studies that measure 

blood flow and O2 extraction across working muscles (Grassi et al., 1996; Hughson 

et al., 1996) have limitations with regard to determining the matching of perfusion 

with metabolic demand. 

2.5.2 Oxygen Uptake and Cardiac Output Kinetics during Heavy Exercise 

 In the current study we observed faster 2OV  and MFQ  kinetics in a second 

heavy bout following six minutes of prior heavy or moderate warm-up exercise. The 

effect of prior heavy exercise will be considered first, as there are more previous 

data on this experimental model; then, our novel finding that a moderate warm-up 
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was capable of accelerating 2OV  and MFQ  kinetics during a subsequent heavy 

exercise will be examined. 

 Almost universally in previous research, 2OV  was found to be elevated in the 

first minutes of heavy exercise that followed soon after previous single or multiple 

bouts of heavy exercise (Burnley et al., 2000; Gerbino et al., 1996; MacDonald et 

al., 1997; Tordi et al., 2003). However, what is far from universal is agreement on 

whether the 2OV  is simply elevated without a change in kinetics (Burnley et al., 

2000; Wilkerson et al., 2004) or whether 2OV  actually increases more rapidly 

toward the required level (MacDonald et al., 1997; Rossiter et al., 2001; Tordi et al., 

2003). 

 The current study and that of Tordi et al. (2003), where there was clear 

evidence of  faster 2, included only subjects who were well trained athletes. There 

is some evidence that O2 delivery may limit maximal oxygen consumption (Knight 

et al., 1993; Richardson, 2000; Richardson et al., 1999). Greater O2 delivery with 

increased leg blood flow during heavy exercise following prior heavy exercise 

(Fukuba et al., 2007; Hughson et al., 2003), might contribute to an enhanced 

intracellular PaO2 (Hughson, 2005; Tschakovsky & Hughson, 1999) and lessen PCr 

degradation (Rossiter et al., 2001). Physical training induces tighter metabolic 

coupling, such that smaller changes in the energy state of the muscle are needed 

to stimulate enzymes of oxidative phosphorylation (Phillips et al., 1996). This 

tighter coupling is consistent with the hypothesis that elite athletes would be more 

susceptible to limitations in oxygen delivery at the onset of heavy exercise.  
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 Similar to Perrey et al.(2003a), we observed that prior heavy exercise 

accelerated Q  in subsequent heavy cycling exercise. The increase in MFQ  that we 

observed during heavy exercise was a consequence of a rapid increase in SV 

resulting from increased ejection fraction and a somewhat slower increase in HR 

that probably reflects a relatively greater reliance on sympathetic activation than 

on vagal withdrawal (see Fig. 2.9). To the best of our knowledge, this is the first 

study to report an overshoot of SV in the early phase of heavy exercise; although 

our validation of Modelflow SV against C2H2 rebreathing was not specifically tested 

in this transient phase. We found that SV reached values within the first minute of 

exercise that were 15-20 mL greater than the steady state values at the end of the 

exercise bouts. Leyk et al. (1995) monitored the SV using Doppler ultrasound 

during upright cycling across exercise transitions to work rates of up to 200 W. 

They showed SV to increase rapidly and peak by 30 s of exercise onset but the 

resolution of their data was not sufficient to address the possibility of the SV 

overshoot that has been observed in the first minute of exercise transitions in this 

study (Fig. 2.9 and 2.10). It seems probable that the very rapid increase in SV 

reflects the sudden increase in venous return with the onset of the higher work 

rate mediated primarily by the stronger muscle pump (Sheriff et al., 1993; 

Tschakovsky et al., 1996). Although SV was lower in the baseline period after prior 

heavy exercise, there were no differences in peak values between the exercise 

conditions. The elevated HR after the prior heavy exercise bout was sustained 

during the subsequent bout of heavy exercise, resulting in a significantly higher Q  

at the end of exercise in this condition. The higher Q  might have been required as 

a mechanism to assist with thermoregulation. 
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 Several interacting mechanisms are likely responsible for improved O2 

delivery following a heavy warm-up and contribute to accelerated 2OV  kinetics 

during a subsequent heavy bout: (i) an accumulation of vasoactive metabolites 

enhances vasodilation and increases blood flow to exercising muscles (Krustrup et 

al., 2001; MacDonald et al., 2001b); (ii) a right-shift of the oxy-hemoglobin 

dissociation curve resulting from the accumulation of H+ and increased 

temperature promotes O2 offloading at the muscle (Gerbino et al., 1996; 

MacDonald et al., 2001b); and (iii) a reduction in regional perfusion heterogeneities 

in the muscle microvasculature improves the matching between O2 delivery and 

oxygen utilization (DeLorey et al., 2007; Fukuba et al., 2002).  

 While we have shown that enhanced O2 delivery plays an overriding part in 

accelerating 2OV kinetics following heavy exercise, others have argued that the 

overall 2OV  kinetics acceleration are due to an increase in the primary phase 

amplitude and attenuation of the slow component amplitude (Burnley et al., 

2002b; Burnley et al., 2000; Fukuba et al., 2002; Koppo & Bouckaert, 2001; Perrey 

et al., 2003a). In agreement with these previous studies, we observed an increase 

in the absolute 2OV  at the end of primary phase. However a higher end- primary 

phase 2OV  showed in this study and others (Burnley et al., 2002b; Tordi et al., 

2003; Wilkerson et al., 2004) results from a higher baseline, not a real increase in 

the primary phase amplitude (Burnley et al., 2000; Jones et al., 2006; Koppo & 

Bouckaert, 2001; Marles et al., 2007; Tordi et al., 2003). To eliminate the effect of 

the elevated baseline 2OV  following the heavy bout, Jones et al. (2003) showed the 

normalized 2OV  responses to the amplitude of the primary phase and reported 
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that the kinetics of the primary component are unaffected by a prior heavy bout. 

Contrary to their conclusion, our data (Fig. 2.6) showed that prior moderate and 

heavy bouts accelerated the primary component of 2OV  kinetics of a subsequent 

heavy bout even after normalization to the amplitude (A1 +A2) at the end of the 

primary phase. Recently, Hughson et al. (2001) used a computer simulation model 

to demonstrate the difficulty in detecting either dynamic nonlinearities or 

differences in time constant even when they are present. Therefore, optimizing the 

experimental conditions is essential to determine altered 2 (Rossiter et al., 2001). 

In this study, a well-controlled experimental design was developed by selecting a 

homogeneous group of endurance athletes and having them complete multiple 

trials to increase the 2OV  signal to noise ratio enabled us to detect a significant 

effect of prior exercise on the primary component 2OV  kinetics. 

A unique finding of this study was that a prior bout of moderate cycling exercise 

accelerated 2OV  kinetics (reduced 2) in a subsequent heavy bout. The similar 

responses shown in the acceleration of MFQ  and 2OV  kinetics following both prior 

heavy and moderate warm-ups - despite the expected  higher baseline [La-] 

following the heavy warm-up, as shown in Chapter 4 – provide evidence that 

accumulation of H+ during the heavy warm-up is not the sole factor contributing to 

acceleration of the 2OV  kinetics (Burnley et al., 2002a; Koppo & Bouckaert, 2000; 

Koppo & Bouckaert, 2002). This conclusion is in agreement with Fukuba et al. 

(2002), who showed a significant difference in mean response time of the second 

heavy cycling bout after an identical heavy cycling bout, but not after a heavy arm 

cranking exercise bout, despite similar baseline plasma La- concentrations. These 
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findings support the idea that changes in 2OV  kinetics are not simply due to 

systemic lactic acidosis. Highly trained athletes might exhibit an improved 

sensitivity to the local metabolic environment and a more tightly regulated O2 

delivery system to the working muscles. As a consequence of the prior moderate 

exercise, we observed slight increases in HR, MFQ , and [La-] during the subsequent 

baseline period. These factors might reflect conditions compatible with enhanced 

vasodilation and O2 offloading at the working muscle and speeding the kinetics of 

MFQ  and 2OV  during subsequent heavy bouts. 

2.5.3 Oxygen uptake and cardiac output kinetics during moderate exercise 

 Our second hypothesis proposed that both 2OV  and Q  kinetics would also 

be accelerated when moderate exercise followed heavy warm-up exercise. There 

were faster 2OV  kinetics after heavy warm-up (one or two bouts) exercise, but MFQ  

kinetics were not significantly affected. The observation of faster 2OV  kinetics 

during moderate exercise after a heavy warm-up confirmed the recent finding by 

Gurd et al. (2006), but contrasts with the results of others (Burnley et al., 2000; 

Gerbino et al., 1996; MacDonald et al., 1997).  

 The mechanism(s) that made the elevated 2OV  possible during moderate 

exercise after heavy exercise has (have) not been investigated in detail since only 

this study and that of Gurd et al. (2006) have reported this observation in young 

men. Gurd et al. (2006) found that the intramuscular environment was enhanced 

PDHa activity and substrate concentrations (e.g. acetyl CoA and NADH) were 

elevated by a prior heavy exercise bout, but they also found greater tissue 

oxygenation by near infrared spectroscopy suggesting elevated blood flow. This 
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latter observation might appear in conflict with the current study where the 

kinetics of MFQ  were not changed but several factors need to be considered. MFQ  

was elevated in the baseline period before the moderate exercise bout by both one 

and two prior heavy exercise bouts. As well, MFQ  was significantly elevated during 

the first 45 s by the two bouts of prior heavy exercise (M3B). It is possible that 

perfusion of the exercising muscles was elevated in the transition to the moderate 

exercise, but data are not available in the current study to confirm the blood flow 

distribution or to indicate how the change in whole body (a-v)DO2 reflected the O2 

extraction across the working muscle. The absence of effect of prior exercise on 

MFQ  kinetics was similar to the report of Yoshida et al. (1995) who saw no effect 

during moderate one-legged cycling. In a more controlled assessment of the role of 

O2 extraction in accelerating 2OV  kinetics, DCA was infused directly into the 

exercising muscle to stimulate PDHa activity (Howlett et al., 1999b). Oxidative 

metabolism was increased, as determined by PCr utilization and cellular energetic,  

at the onset of moderate (Howlett et al., 1999b) but not sprint exercise (Howlett et 

al., 1999a). It could be concluded that the muscles’ inability to increase 

metabolism during the heavy exercise was due to O2 delivery and/or other 

metabolic limitations, supporting the results shown in our study. 

2.5.4 Heart rate and stroke volume at the onset of exercise 

 The contribution of rapid increases in HR and SV to the kinetics of oxidative 

metabolism at the onset of exercise was recognized by Linnarrson (1974), but it 

was the observation of Hughson and Morrissey (1982) that kinetics of 2OV were 

markedly slowed when HR increased more slowly that emphasized the importance 

of the O2 transport mechanism to metabolic regulation. This previous work 
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demonstrated that the HR response is considerably faster if HR starts from a low 

level that allows parasympathetic withdrawal to rapidly increase HR to ~100 

beats/min.  

 The magnitude and rate of increase in HR at the onset of exercise is 

determined by the interplay of several factors. First, the baseline HR is extremely 

important as it determines whether parasympathetic and sympathetic nervous 

systems can contribute to the rate of increase in HR. Second, the magnitude of 

increase in HR is proportional to the magnitude of the step increase in metabolic 

demand. Third, other factors such as requirements for thermoregulation can 

influence the HR and SV. 

 In the moderate exercise bouts, HR was relatively stable by 2-min of exercise 

and increased by less than 5 beats/min over the next 4-min of exercise. However, 

the absolute HR did differ between each exercise condition with higher absolute HR 

after one or two bouts of prior heavy exercise. The elevated baseline HR after prior 

heavy exercise to over 100 bpm in M3A and M3B (Fig. 2.10) probably contributed to 

a slower increase with the start of moderate exercise as vagal activity was already 

withdrawn and increased sympathetic activity was required to increase HR 

(Fagraeus & Linnarsson, 1976). In the heavy exercise bouts, HR was elevated by 

prior heavy but not moderate exercise, and HR was significantly elevated 

throughout the heavy exercise bout that was preceded by the heavy warm-up 

exercise. HR had not stabilized by 2-min but continued to increase through 6-min 

by 10 to 20-beats/min in each heavy exercise bout. The elevated HR after previous 

heavy exercise and the progressive rise in HR in the heavy exercise bouts might 

reflect the elevated metabolic demand as well as the increased thermoregulatory 

stress. 
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 There have been few studies employing techniques that determine beat-to-

beat SV, but to the best of my knowledge this is the first study to describe a 

significant overshoot in the first minutes of moderate and heavy exercise. At the 

onset of 50 or 100 W cycling exercise, Lador et al. (2006) displayed the first 45-s of 

SV but this was not sufficient to see the time course of the overshoot that 

described in this study. The overshoot and overall elevation in SV contrasts with 

the finding of a reduction in SV during mild supine exercise (Elstad et al., 2009). 

The very rapid increase in SV reflects the sudden increase in venous return with 

the onset of the higher work rate mediated primarily by the stronger muscle pump 

during upright cycling exercise (Sheriff et al., 1993; Tschakovsky et al., 1996). SV 

was not different between the moderate and heavy exercise bouts except when 

heavy exercise preceded the moderate exercise bouts. This suggests that the prior 

exercise probably induced the requirement for an increased thermoregulatory 

response with greater SBF (see Appendix A) and impaired venous return. It will be 

of interest to determine if the SV overshoot is a characteristic of well trained 

athletes or common to healthy people. 
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2.6 Conclusions 

In the current study, we combined estimates of continues MFQ , validated in steady 

state against acetylene rebreathing, with breath-by-breath measurements of 2OV  

to study the dynamic aspects of the cardiorespiratory responses at the onset of 

moderate and heavy exercise with prior warm-up. It was observed that the 

estimates of SV had a significant overshoot in the first minute of both moderate 

and heavy exercise that contributed to the rapid increase in MFQ  at the onset of 

exercise. In support of the hypotheses, the 2OV  response during moderate exercise 

was significantly accelerated by prior heavy exercise. As well, in heavy exercise 

both the 2OV  and MFQ  responses were accelerated not only by prior heavy but also 

by moderate warm-up exercise. Overall, these data showed that prior exercise can 

accelerate the phase II kinetics of 2OV  at least in a population of very fit young 

men. The relatively large amplitude of Q and 2OV  in the heavy exercise enabled 

discovery of significant links between O2 transport and O2 utilization. In moderate 

exercise, the amplitude of the Q and 2OV  signals was smaller. A consequence of 

this was that alternative means of supplying O2 were available so that clear 

concluding statements cannot be made about the link between O2 transport and O2 

utilization. Thus, at least for heavy exercise the data suggest that enhanced O2 

delivery contributed along with greater metabolic activation (Tschakovsky & 

Hughson, 1999) to accelerate 2OV  kinetics in heavy exercise following priming 

exercise.  
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Chapter 3 

Prolonged ischemia impairs blood flow and muscle oxygen uptake 

Dynamics during subsequent heavy exercise 

This chapter is the basis for the published paper:  

Faisal A, Dyson KS and Hughson RL. Prolonged ischemia impairs muscle blood 
flow and oxygen uptake dynamics during subsequent heavy exercise. J Physiol.588. 
19 (2010) pp 3785-3797. 
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3.1 Overview 

 Muscle oxygen uptake dynamics at the onset of exercise can be affected by 

prior heavy exercise. We tested the hypothesis that elevated FBF following prior 

circulatory occlusion would also be associated with accelerated mus2OV dynamics 

during subsequent heavy hand-grip exercise. Ten trained young men performed 5 

minutes of heavy hand-grip exercise at 30% MVC as a control [CON], and 4 

additional heavy bouts after brief recovery from: I) prior heavy exercise [Heavy A], 

II) heavy exercise followed by 2 minutes occlusion [Heavy B], III) 15 minutes 

occlusion [Heavy C], and IV) 5 minutes occlusion with1 minute of moderate 

exercise during occlusion [Heavy D]. FBF was measured by ultrasound and arterial 

venous oxygen content difference was calculated from venous blood samples to 

estimate mus2OV . FBF and mus2OV dynamics were quantified from the rise time. All 

priming conditions elevated FBF immediately before the start of subsequent heavy 

bout (Heavy A: 207.4 ± 92.8, B: 207.8 ± 75.8, C: 135.8 ± 59.2, D: 199.5 ± 59.0 vs. 

CON: 57.4 ± 16.6 ml min-1, P < 0.01). Unexpectedly, prior occlusion reduced FBF 

and O2 extraction at the onset of subsequent heavy exercise and consequently 

slowed mus2OV dynamics (Heavy C: rise time = 95.9 ± 28.9 vs. CON: 58.6 ± 14.3 s, P 

< 0.01). FBF and mus2OV dynamics were faster in Heavy A, B and D compared to 

CON (P < 0.05). Overall, there was a positive correlation between the rise times for 

mus2OV and FBF (r2 = 0.75) indicating that mus2OV dynamics during heavy forearm 

exercise are linked to O2 delivery in trained young men. To investigate a possible 

mechanism for slower adaptation of mus2OV following ischemia, the prior occlusion 

condition was repeated after ingesting a high dose of ibuprofen. This resulted in 

restoration of the FBF and mus2OV to control levels suggesting that a prostaglandin-
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mediated mechanism after occlusion retarded the adaptation of blood flow and O2 

consumption at the onset of subsequent heavy exercise. 
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3.2 Introduction 

 During transitions of exercise to higher power output, faster activation of the 

aerobic energy supply system will result in a smaller O2 deficit and reduced 

homeostatic disturbance. Prior heavy exercise is an experimental paradigm that 

accelerates 2OV kinetics at the onset of subsequent exercise, potentially through 

several mechanisms that affect both O2 transport and utilization. These 

mechanisms include increased oxidative enzyme activity and elevated 

mitochondrial substrate availability (Gurd et al., 2006), increased muscle blood 

flow and right-shifting of the oxygen hemoglobin (HbO2) dissociation curve (Gerbino 

et al., 1996; MacDonald et al., 1997) and improved distribution of O2 delivery to O2 

requirement within the exercising muscle (DeLorey et al., 2007; Fukuba et al., 

2002). 

 Post circulatory occlusion is an alternative experimental model that could 

elevate muscle blood flow for several minutes prior to subsequent exercise bout 

(Carlsson et al., 1987). However, the changes in the metabolic environment during 

occlusion are much less pronounced than during prior heavy forearm exercise 

(Mole et al., 1985). Few studies have used the prior occlusion model to examine the 

factors that affect pulmonary 2OV
 kinetics during a subsequent exercise transition 

(Paganelli et al., 1989; Walsh et al., 2002), while no study has looked at blood flow 

and mus2OV responses at the onset of exercise that followed circulatory occlusion. 

Paganelli et al. (1989) reported that prior 5-10 min of forearm occlusion or 3 min of 

occlusion with moderate exercise reduced the half-time of pulmonary 2OV on-

response kinetics during subsequent heavy arm-cranking exercise by 15 and 50%, 

respectively. In another study, occlusion of resting thigh muscles for 5 and 10 min 
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accelerated the overall pulmonary 2OV kinetics during subsequent heavy cycling 

exercise with no effects on the distinct primary phase kinetics (Walsh et al., 2002). 

But, in this latter study the circulatory occlusion was terminated within 5 s prior 

to the onset of the criterion exercise and the potential replenishment of O2 stores 

on the 2OV response and its impact on kinetics was not considered.  

 It has been shown previously that prior heavy exercise elevated FBF and 

mus2OV at the onset of subsequent heavy dynamic forearm exercise (MacDonald et 

al., 2001b), and that the kinetics of both leg blood flow and mus2OV were accelerated 

in the second of two heavy knee-extension exercise bouts (Fukuba et al., 2007). 

The purpose of the current study was to determine whether prior occlusion, with or 

without exercise, followed by brief recovery had similar effects as prior exercise on 

FBF and mus2OV  kinetics during subsequent heavy forearm exercise in fit young 

men. We tested the hypothesis that all priming conditions (heavy exercise, heavy 

exercise followed immediately by occlusion, occlusion alone and occlusion with 

moderate exercise) would enhance FBF and mus2OV dynamics during the adaptive 

phase of subsequent heavy forearm hand-grip exercise. 

3.3 Methods 

 Twenty four men who regularly exercised their forearm muscles were 

recruited for this study. The participants were divided into three groups: group A 

(10 varsity hockey players, age: 23.0 ± 1.4 years; height: 180.5 ± 7.1 cm, weight: 

85.1 ± 8.5 kg, maximal voluntary isometric contraction strength [MVC]: 54.0 ± 6.2 

kg), group B (8 varsity athletes, age: 24.6 ± 3.6 years; height: 186.1 ± 8.9 cm, 

weight: 86.4 ± 11.3 kg, MVC: 49.6 ± 4.0 kg) and group C (8 varsity athletes, age: 
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24.3 ± 2.7 years; height: 179.5 ± 7.9 cm, weight: 82.5 ± 12.0 kg, MVC: 47.0 ± 3.6 

kg). One subject participated in both group A and B, and another subject 

participated in both group B and C. MVC was determined from the best of three 

attempts taken in the supine position. The study was approved by the Office of 

Research Ethics at the University of Waterloo, and all subjects provided written, 

informed consent following full description of the protocols. 

3.3.1 Experimental design 

 Group A reported to the laboratory on 4 non-consecutive days to perform 

the different exercise protocols (Fig.3.1). The protocols were designed to test the 

effect of the prior exercise, occlusion, or exercise and occlusion on FBF, (a-v)DO2 

and mus2OV  responses during subsequent heavy rhythmic hand-grip exercise. 

Protocol A consisted of 2 heavy hand-grip exercise bouts separated by 6 minutes of 

passive recovery. Protocol B consisted of a bout of heavy hand-grip exercise 

immediately followed by 2 minutes of forearm circulatory occlusion, 6 minutes of 

recovery then another bout of heavy hand-grip exercise.  Protocol C consisted of a 

15 minutes period of forearm circulatory occlusion followed by 3 minutes of 

recovery then a bout of heavy hand-grip exercise.  Protocol D consisted of a 5 

minutes period of forearm circulatory occlusion that included one minute of 

moderate (15% MVC, 7.6 ± 1.0 kg) dynamic hand-grip exercise followed by 3 

minutes of recovery then a bout of heavy hand-grip exercise. The protocols were 

applied in a supine position using the dominant arm extended at the heart level. 

The first heavy bout in protocol A served as a control (CON) and the testing heavy 

bouts were named by the protocol letters as described in Fig.3.1. 
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 Group B completed a control heavy exercise trial (the first bout in protocol 

A), and 2 trials of the prior 15 minutes occlusion protocol (protocol C) on 3 non-

consecutive days. One of the prior occlusion trials was performed after ingesting 

800 mg of ibuprofen (IB) (2 doses of 400 mg, one 3 hours prior, and one 1 hour 

prior to the start of the protocol), while the other was performed after a placebo 

(PL)(same capsule as ibuprofen, filled with sodium bicarbonate). 

 Group C completed protocol A, and 2 trials of protocol C on 3 non-

consecutive days. The 2 occlusion trials (protocol C) were performed after ingesting 

ibuprofen and placebo exactly as described above in group B. All groups visited the 

laboratory for a familiarization session before the start of the real study. 

All the rhythmic hand-grip exercise bouts lasted for 5 minutes at ≈ 30% MVC 

(group A: 13.7 ± 1.7 kg, group B: 12.5 ± 1.1 kg, group C: 11.8 ± 1.0 kg). The 

participants were required to raise the weight for 0.5 s and lower it for 0.5 s 

through a distance of 5 cm with a 1 s pause before the next contraction. 

 The protocols were assigned in randomized order and the sessions were 

separated by at least 48 hours. Testing was performed at least 24 h following the 

participants’ last exercise regimen and 72 h following an intense strength training 

session. The participants arrived in the laboratory in a rested state at least 2 h 

after eating and they were asked to abstain from caffeine 12 h and alcohol 24 h 

before testing. The participants were rested in supine position for 30 minutes 

before initiation of the protocols. The tests were completed in a quiet, air-

conditioned laboratory at a temperature of ~ 22°C 
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Figure 3.1: Prior exercise and occlusion testing protocols.  

Four different testing protocols employed to examine the influence of (A) prior 

heavy exercise, ( B)  prior heavy exercise followed by 2 min occlusion, (C) 15 min of 

occlusion and (D) 5 min of occlusion including 1 min of moderate exercise on 

mus2OV and FBF responses during a subsequent heavy exercise bout. The specific 

heavy bouts are named based on the testing protocol, Heavy A, Heavy B, Heavy C, 

and Heavy D. The moderate and heavy exercise bouts were set at 15% and 30% 

MVC, respectively. 
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3.3.2 Forearm circulatory occlusion  

 In the occlusion protocols, brachial artery blood flow was arrested by rapid 

inflation (E-20 Rapid Cuff Inflator, D. E. Hokanson, Issaquah, USA) of a standard 

BP cuff to ~ 250 mmHg. The occlusion cuff was placed just distal to the elbow. The 

occlusion period was terminated by rapid deflation of the occlusion cuff.  

3.3.3 Data acquisition  

 Brachial artery MBV, BP and HR were measured beat by beat. Brachial 

artery MBV responses were determined by pulsed- Doppler ultrasound (500V, 

Multigon Industries, Yonkers, N.Y.). A 4-MHz Doppler probe was fastened above 

the brachial artery proximal to the cubital fossa with strips of surgical tape. The 

signal was directed 45° relative to the skin and the ultrasound gate was adjusted to 

encompass the total width of the artery. MBV, BP measured by 

photoplethysmograph finger blood pressure cuff in the non-exercising hand 

(Finometer, Finapres Medical System, Arnhem, the Netherlands) and 

electrocardiogram (Pilot 9200, Colin Medical Instruments, San Antonio, TX) were 

sampled at 1 kHz (PowerLab, AD Instruments, Colorado Springs, CO). The brachial 

artery was imaged continuously approximately 5 cm proximal to the 4 MHz probe 

during rest and exercise using a linear 7.5-MHz probe (Micromaxx, Sonosite, 

Seattle, WA) operating in M mode. The imaged data were stored on videotape then 

digitized and vessel diameters were measured by custom edge-detection software.  

Venous blood sampling 

A catheter was inserted in an antecubital vein in a retrograde fashion 

(Mottram, 1955) to maximize collection of blood from deep veins draining the finger 

flexor muscles.  Blood samples (1 ml) were drawn in heparinized syringes at 

baseline and during exercise (each 15 s from 0 to 90 s and each minute from the 
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second minute to end exercise). The samples were immediately put in an ice bath 

and analyzed by CO-oximeter (Stat Profile pHOx, Nova Biomedical, Waltham, MA) 

for O2 saturation and hemoglobin content from which O2 content was calculated. 

The CO-oximeter was calibrated at regular intervals during the analyses. Blood 

samples (3 ml) were drawn in non- heparinized syringes at rest and during the last 

30 s of each exercise and recovery period for immediate lactate [La-] analysis 

(Lactate Pro, Hurstville, Australia).  

Skin blood flow 

Relative forearm SBF was estimated continuously by a laser Doppler probe 

(MoorLAB, Moor Instruments Ltd, Devon, UK) placed 5cm distal to the occlusion 

cuff , on the volar aspect of the exercising forearm. SBF was measured only in 

group C. Baseline SBF was measured for at least 5 minutes before the actual start of the 

protocols.  SBF data were represented as a percentage of baselines. 

3.3.4 Data analysis 

 FBF was calculated from brachial artery MBV and cross sectional area as 

FBF = MBV × πr2, where r is the vessel radius. MBV was calculated beat by beat at 

rest and was averaged over the contraction to contraction cycle (duty cycle ~ 2 s) 

during exercise (Fig. 3.2). Brachial artery diameters were obtained by automated 

edge detection software from M-mode images, averaged over 3 full cardiac cycles 

matching the time points of blood sampling. Exercise FBF values were then 

calculated from the brachial artery diameter and the average MBV over 3 

contraction/relaxation cycles (~ 6 s window) centered on the time points of blood 

withdrawal. Forearm mus2OV was determined from the quantitative estimates of FBF 

and (a-v)DO2 using the Fick equation, mus2OV = FBF × (a-v)DO2. O2 extraction was 
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calculated based on the assumption that arterial hemoglobin was equivalent to 

that of the venous sample and arterial O2 saturation remained constant at 97%, as 

shown by pulse oximetry (Hampson & Piantadosi, 1988) and blood gas analyzer 

(Wilkins et al., 2008). Intracellular partial pressure of oxygen (PaO2) was estimated 

at 90 mmHg based on the HbO2 dissociation curve with estimated arterial O2 

content (mlO2 l-1 blood) = (1.38 [hemoglobin (g/l)] × O2 saturation) + 0.0031 × PaO2 

(mmHg) (Nordmeyer et al., 2007). (A-v)DO2 was calculated by subtracting the 

measured venous O2 content from estimated arterial O2 content (Hughson et al., 

1996; MacDonald et al., 2001b; van Beekvelt et al., 2001). Measures taken to 

represent the value at the start of exercise were obtained during the 15 s 

immediately prior to exercise onset. 

 In addition to the comparison between the absolute values for and 

FBF at the time points of blood sampling through the exercise bouts, we 

characterized and FBF kinetics responses during exercise transitions. To 

estimate the kinetics, the areas under the curves (AUC) of and FBF were 

calculated using the first order hold method. and FBF kinetics were 

quantified from the rise time () based on the calculation of AUC and the given 

amplitude assuming a first order linear dynamic system. The rise time for 

and FBF were estimated from the following equation  

   AUC(Y) = A [(tf  - ts) + τ (e- ( t
f
 / τ) - e- ( t

s
 / τ))] 

where, AUC(Y) is the numerical value calculated from the first order hold method 

for the and FBF curves, A is the end exercise amplitude, tf  is the final time 

(300s), ts is the start time to calculate AUC and  is the rise time of and 

mus2OV

mus2OV

mus2OV

mus2OV

mus2OV

mus2OV

mus2OV



 

81 

 

FBF. For , values were obtained at the blood sampling points, with ts = 0. 

FBF values were the 6 s windows as described above, and kinetics were calculated 

starting from ts = 12 s of exercise to eliminate the impact of the rapid increase in 

blood flow due to mechanical factors during the first seconds of exercise onset 

(Shoemaker et al., 1998). 

3.3.5 Statistical analysis 

 A two-way ANOVA with repeated measures was used to determine 

significant differences over all the heavy bouts across the time points of blood 

sampling. When significant effects were observed, the contrast adjusted test was 

used for comparisons. A one-way ANOVA with repeated measures was used to 

define significant differences in the rise times for and FBF, baseline and 

end exercise [La-] across the heavy bouts. When significant effects were observed, 

the Tukey post hoc test was used for comparisons. Regression analyses compared 

FBF and kinetics to each other. All data are expressed as means ± SD and a 

probability of P < 0.05 was accepted as statistically significant. The data were 

analyzed using Statistical Analysis Software package 9.1 (SAS Institute, Cary, NC). 
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Figure 3.2: Representative tracing of MBV and SBF during resting and reactive 

hyperemia (A) and heavy dynamic handgrip exercise (B). 

During resting the MBV and SBF were averaged beat to beat synchronized with the 

ECG signal. During exercise MBV was averaged over the duty cycle (contraction to 

contraction). Beat to beat averages during exercise would not be representative of 

the true MBV, as the duty cycles were not synchronized to the ECG. SBF was 

averaged over 2 s cycles. 
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3.4 Results 

3.4.1 Group A 

 There were no differences in any physiological variable between the first 

heavy bout in protocol A and the first heavy bout in protocol B across all the time 

points (P ranged from 0.08 to 0.96); therefore we chose the first heavy bout in 

protocol A to serve as a control condition to the heavy testing bouts (Heavy A-D). 

Across the 4 testing days there were no significant differences at baseline values of 

any testing variable (Table 3.1).  

Forearm Blood Flow 

 All priming conditions (exercise, exercise followed by occlusion, occlusion, 

occlusion with exercise) resulted in a significantly higher FBF at the start of 

subsequent testing bouts (Heavy A, B, C, D) compared to Con (Heavy A: 207.4 ± 

92.8, B: 207.8 ± 75.8, C: 135.8 ± 59.2, D: 199.5 ± 59.0 vs. Con: 57.4 ± 16.6 

ml/min, P < 0.01 for all). FBF was significantly higher at the start of Heavy A, B 

and D compared to Heavy C (P < 0.01 for all). During heavy exercise bouts, FBF 

progressively increased to steady state. There was significantly higher FBF through 

the first 2 min of exercise in Heavy A, B and D compared to CON and Heavy C (Fig. 

3.3). By the end of exercise there were no significant differences between all bouts 

(Con: 404.6 ± 104.9, A: 445.1 ± 122.2, B: 416.2 ± 142.8, C: 410.7 ± 109.7, D: 

435.0 ± 109.5 ml/min, P > 0.05). FBF kinetics were faster in Heavy A, B, and D 

compared to CON as shown by a shorter rise time ()(Heavy A: 47.6 ± 14.2, B: 39.6 

± 18.4, D: 50.4 ± 15.8 vs. Con: 65.6 ± 13.0 s, P < 0.05). Prior occlusion resulted in 

slower FBF compared to other conditions (Heavy C: 88.9 ± 29.1 s, P < 0.05). 
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Arterial-venous oxygen content difference 

 Each of the prior conditions elicited a significantly lower (a-v)DO2 at the 

start of subsequent heavy exercise bouts compared to Con (Heavy A: 31.5 ± 10.5, 

B: 37.7 ± 22.3, C: 13.8 ± 7.1, D: 31.2 ± 7.2 vs. Con: 57.2 ± 15.1 mlO2/l blood, P < 

0.01 for all). With the initiation of exercise, (a-v)DO2 increased rapidly and by 30s 

there were no differences between Heavy A, B and D and Con. Only prior occlusion 

resulted in a lower (a-v)DO2 through the first 90 s of exercise in Heavy C compared 

to Con (Fig. 3.4). There was an overshoot response in (a-v)DO2 during CON and 

Heavy A bouts with a significantly greater value at 90s than end exercise (P = 0.05). 

This overshoot response was not present following the prior conditions that 

included occlusion.  

Muscle oxygen uptake 

 Immediately prior to the start of exercise mus2OV tended to be greater in the 

conditions that included prior exercise but individual variability precluded 

significance (Con: 3.3 ± 1.3, A: 6.1 ± 2.1, B: 7.5 ± 4.8, C: 2.0 ± 1.4, D: 6.3 ± 2.6 

ml/min, P range: 0.16 - 0.66). Within the first minutes of exercise, mus2OV was 

higher in Heavy A and Heavy B compared to Con, however prior occlusion 

depressed the mus2OV response in Heavy C (Fig.3.5). By the end of exercise, mus2OV

was not different between Heavy B, Heavy C and Heavy D and Con. However, 

Heavy A was slightly higher than Con and Heavy C (P = 0.04). Prior heavy exercise 

or occlusion plus exercise resulted in faster rise time for mus2OV  in Heavy A, B and 

D compared to Con (Heavy A: 41.6 ± 11.5, B: 40.7 ± 10.5, D: 43.6 ± 13.4 s vs. Con: 

58.6 ± 14.3 s, P < 0.05). Prior occlusion resulted in a slower mus2OV kinetics in 

Heavy C compared to all other conditions (Heavy C: 95.9 ± 28.9 s, P < 0.01). Over 
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all the heavy bouts (Con, Heavy A, B, C, D), there was a positive correlation 

between the rise time of FBF and mus2OV  (Fig.3.6; r2 = 0.75, P < 0.001).  

Mean arterial pressure (MAP) 

 The extent of MAP elevation at the start of exercise was dependent on the 

priming condition. In Heavy A, 6 min resting was able to recover MAP to prior Con 

level (Con: 88.9 ± 5.8 vs. Heavy A: 91.2 ± 4.8 mmHg, P > 0.05). With ischemic 

loading during the priming condition, MAP was elevated at the start of subsequent 

heavy exercise compared to Con (Heavy B: 99.3 ± 6.2, C 100.8 ± 8.3, D: 101.0 ± 

13.8 mmHg, P < 0.01 for all compared to Con). Throughout all testing bouts (Heavy 

A-D) MAP was significantly higher than Con; by the end of exercise MAP was 

(Heavy A: 119.7 ± 12.9, B: 124.7 ± 8.6, C: 123.5 ± 9.7, D: 126.9 ± 10.2 vs. Con: 

112.5 ± 11.1 mmHg, P < 0.01 for all) (Fig.3.7). 

Lactate 

 The baseline [La-] immediately prior to exercise was higher in the heavy 

exercise bouts Heavy A: 3.0 ± 1.0, Heavy B: 3.6 ± 0.7 and Heavy D: 3.4 ± 0.9 than 

CON: 1.3 ± 0.4 and Heavy C: 1.5 ± 0.3 mmol/l; P < 0.01 for all. At the end of 

exercise, there were no significant differences between all the heavy bouts (Con: 4.4 

± 1.3, A: 4.3 ± 1.5, B: 4.6 ± 1.3, C: 4.5 ± 1.1 and D: 4.2 ± 1.7 mmol/l; P > 0.05). 
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Table 3.1: Baselines values in the four testing days 

Parameters 

 

Heavy A Heavy B Heavy C Heavy D P  Values 

HR, bpm 

 

61.4 ± 3.7 65.4 ± 9.2 60.5 ± 9.2 61.9 ± 8.1 0.10 – 0.86 

MAP, mmHg 89.1 ± 5.6 91.1 ± 6.1 93.0 ± 6.6 92.0 ± 7.0 0.09 – 0.65 

mus2OV , ml/min 3.2 ± 1.3 3.1 ± 1.8 3.0 ± 0.9 3.1 ± 1.4 0.70 – 0.96 

FBF, ml/min 57.4  ± 16.6 48.1 ± 18.3 50.3 ± 17.4 47.8 ± 21.3 0.11 – 0.96  

(A-v)DO2, ml/l 56.4 ± 15.6 62.8 ± 18.3 61.6 ± 11.3 65.3 ± 13.5 0.16 – 0.84 

[La-], m.mol/l 1.3 ± 0.4 1.3 ± 0.3 1.2 ± 0.4 1.3 ± 0.4 0.36 – 1.00 

 

Mean ± SD, n = 10 

P values are the range of the contrasts between the protocols A, B, C and D.  
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Figure 3.3: FBF responses during exercise in the four Heavy bouts (Heavy A-D) 

compared to the Control.  

All priming conditions resulted in higher FBF at the start of subsequent heavy 

exercise (bouts Heavy A-D) compared to Con, however by the end of exercise there 

were no differences. During exercise, Heavy A, B, and D all showed higher FBF 

compared to the Con.  Data points are the average responses of 10 subjects. 

(Means ± SE) * P < 0.01, † P < 0.05. 
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Figure 3.4: (A-v)DO2 responses during exercise in the four Heavy bouts (A-D) 

compared to the Control.  

All priming conditions resulted in lower (a-v)DO2 at the start of the subsequent 

heavy exercise (bouts Heavy A-D) compared to the Con.  By 45 s of exercise there 

were no significant differences in (a-v)DO2 between Con and Heavy A, B, and D.  

However (a-v)DO2 was lower up to 90 s of exercise in Heavy C compared to Con. 

There was an overshoot of (a-v)DO2 at 90 s of exercise in Con and Heavy A 

compared to end exercise. Data points are the average responses of 10 subjects. 

(Means ± SE) * P <0.01, † P < 0.05. 
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Figure 3.5: mus2OV responses during exercise in the four Heavy bouts (A-D) 

compared to the Control.   

At the start of exercise, mus2OV  in all conditions was not different compared to the 

Con. mus2OV in Heavy A was significantly higher than Con from the 1st  minute 

through the end of exercise. mus2OV in Heavy B was significantly higher during 

exercise onset (from 30 s through 2 minutes). mus2OV in Heavy C was depressed 

during exercise onset, but reached the same level as Con by the 4th minute of 

exercise. Heavy D was not different from the Con condition.  Data points are the 

average of 10 subjects. (Means ± SE) * P <0.01, † P < 0.05. 
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Figure 3.6: Rise time correlation for
 mus2OV and FBF. 

Across all conditions, the rise time () for mus2OV was significantly correlated to the 

rise time ( for FBF ( mus2OV  = 2.5 + 0.92 * FBF; r2 = 0.75, P < 0.001). 
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Figure 3.7: MAP responses during exercise in the four Heavy bouts (A-D) 

compared to the Control. 

 MAP was significantly higher in all Heavy conditions, both prior to and throughout 

exercise, except for the baseline of Heavy A. Data points are the average responses 

of 9 subjects. (Means ± SE) * P <0.01, † P < 0.05. 
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3.4.2 Group B 

Post occlusion responses with ibuprofen and placebo 

 Following 15 min of occlusion, ibuprofen resulted in a significantly higher 

FBF between 30 and 60s of hyperemia compared to placebo (Fig.3.8 A). At 30 and 

60 s, FBF with IB were 621.34 ± 169.55, 539.58 ± 157.07 vs. PL 545.04 ± 178.26, 

440.77 ± 160.38 ml/min, respectively, P < 0.05).  No differences were seen between 

the effect of IB and PL on (a-v)DO2 during post occlusion period. Although there 

were significant differences in FBF between the 30 and 60 s, the slightly lower     

(a-v)DO2 in IB at these time points negate the ability to detect any significant 

differences in mus2OV (Fig. 3.8 B and C). The effect of IB on MAP was maintained 

lower following release of the occlusion cuff. MAP was significantly lower at all time 

points of hyperemia compared to PL (Fig.3.9 A). After cuff release MAP with IB was 

91.86 ± 4.18 vs. PL 97.49 ± 4.64 mmHg, P < 0.05. By 3 min of hyperemia, MAP 

with IB was 93.88 ± 3.49 vs. 99.83 ± 5.32 mmHg, P < 0.05. As a result of higher 

FBF and lower MAP with ibuprofen, FVC was significantly elevated from cuff 

release through to 90s of the reactive hyperemia with IB (Fig.3.9 B). At 0 and 90 s 

of hyperemia, FVC with ibuprofen were 6.07 ± 1.36, 3.96 ± 1.12 vs. placebo 5.09 ± 

1.21, 3.03 ± 1.07 ml/min/mmHg, respectively, P < 0.05). Over the 3 min of reactive 

hyperemia, there were a significantly greater FBF and FVC areas with IB compared 

to PL (FBF: 1160.58 ± 289.69 vs. 998.55 ± 284.66 ml/min; FVC: 12.71 ± 3.18 vs. 

10.49 ± 3.23 ml/min/mmHg, P < 0.05) but no changes in mus2OV were shown.   
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Figure 3.8: FBF (A), (a-v)DO2 (B) and mus2OV (C) responses during the reactive 

hyperemia in placebo and ibuprofen trials.  

FBF was significantly higher from 30 s to 60 s in ibuprofen trial compared to 

placebo, but there were no differences between ibuprofen and placebo trials in     

(a-v)DO2 or mus2OV throughout the 3 min that followed prior occlusion. Data points 

are the average responses of 8 subjects. (Means ± SE) * P <0.01. 
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Figure 3.9: MAP (A) and FVC (B) responses during the reactive hyperemia in 

placebo and ibuprofen trials.  

MAP was significantly higher throughout the 3 min of recovery following occlusion 

in the placebo trial compared to ibuprofen trial. FVC was significantly higher 

within the first 90 s following occlusion in the ibuprofen trial than placebo. Data 

points are the average responses of 8 subjects. (Means ± SE) * P <0.01. 
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Exercise responses 

 Priming occlusion with IB or PL resulted in a significantly higher FBF at the 

start of subsequent heavy exercise bouts compared to Control (IB: 134.05 ± 39.03, 

PL: 143.17 ± 39.82 vs. Control: 54.82 ± 11.31 ml/min, P < 0.01 for both) (Fig.3.10 

A). During exercise, FBF response in Control was in between the IB and PL curves 

and was not different from either of them. However, FBF with IB was significantly 

higher through 1 to 3 min of exercise compared to PL. At 1 and 3 min of exercise, 

FBF with IB were 378.96 ± 96.84, 479.70 ± 103.60 vs. PL 312.16 ± 88.46, 425.82 ± 

98.36 ml/min, P < 0.05.  

 Priming occlusion with IB or PL elicited a significantly lower (a-v)DO2 

compared to control at the start of exercise ( IB: 15.04 ± 6.48, PL: 17.01 ± 6.21.vs. 

Con: 51.30 ± 10.39 mlO2/l blood, P < 0.01) as well through the first 3 min of 

subsequent heavy exercise bouts (at 3 min; IB: 105.38 ± 6.87, PL 106.24 ± 8.19 vs. 

Control: 115.98 ± 5.14 mlO2/l blood, P < 0.01 for all points) (Fig.3.10 B). There 

were no differences between IB and PL at any time point. There was an overshoot 

response in (a-v)DO2  during the Control bout with a significant difference between 

90s and end exercise (P = 0.05). This overshoot response was not present following 

occlusion.  

 mus2OV was calculated from FBF and (a-v)DO2 . Only prior occlusion with PL 

resulted in a depressed mus2OV  from 15s through 3 min of exercise compared to 

control (Fig 3.10 C).  
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Figure 3.10: FBF (A), (a-v)DO2 (B) and mus2OV (C) responses during exercise in 

placebo and ibuprofen trials compared to control. 

 Prior occlusion with or without ibuprofen resulted in higher FBF and lower (a-

v)DO2 at the start of the subsequent heavy exercise (Placebo and Ibuprofen) 

compared to Control. During exercise in the placebo condition FBF, (a-v)DO2 and 

mus2OV responses were lower than Control up to 3 min, while with ibuprofen        

(a-v)DO2 was lower than control through the first 3 min with no differences in 

mus2OV . Data points are the average responses of 8 subjects. (Means ± SE) * P 

<0.01, † P < 0.05 (Placebo vs. Control), ‡ P < 0.05 (Ibuprofen vs. Control). 
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 At 15 s and 3 min of exercise, 
mus2OV following occlusion with PL was    

10.80 ± 5.49, 45.58 ± 12.54 vs. Con: 17.31 ± 5.69, 53.77 ± 12.67 ml/min, 

respectively, P < 0.05). There were no differences between the 3 conditions in FBF, 

(a-v)DO2 and mus2OV by the end of exercise. 

 MAP was significantly higher following the occlusion with PL compared to 

CON and occlusion with IB at the start of exercise ( PL: 99.89 ± 5.17 vs. Con: 93.08 

± 8.44; IB: 94.14 ± 3.51, P < 0.05) . The changes over the course of exercise were 

similar between the 3 conditions; MAP with occlusion and PL was maintained at an 

elevated level compared to CON and IB at all the time points (Fig.3.11 A). FVC was 

calculated from FBF and MAP. FVC was lower through the exercise in PL compared 

to both CON and IB (Fig. 3.11 B). 
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Figure 3.11: MAP (A) and FVC (B) responses during exercise in placebo and 

ibuprofen trials compared to control.  

Prior occlusion without ibuprofen resulted in higher MAP and lower FVC 

throughout subsequent heavy exercise (Placebo) compared to Control and 

Ibuprofen. Data points are the average responses of 8 subjects. (Means ± SE) * P 

<0.01, † P < 0.05 (Placebo vs. Control), ‡ P < 0.05 (Ibuprofen vs. Control. 
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3.4.3 Group C 

 There were no differences between the baseline SBF across the three testing days 

(Protocol A: 0.21± 0.11, Ibuprofen: 0.26 ± 0.11, Placebo: 0.27 ± 0.16 AU, P > 0.05). 

Relative SBF was slightly greater in placebo compared to ibuprofen in both reactive 

hyperemia and during the exercise; this was in contrast to the total blood flow response 

during exercise seen with groups B. Prior occlusion elevated SBF in placebo with peak 

values of 6.5 fold vs. 5.5 in ibuprofen (P = 0.22), that decreased in placebo to approximately 

3.5 fold vs. 2.5 fold in ibuprofen (P = 0.04) at the onset of subsequent exercise (Fig. 3.12). 

With the onset of exercise, SBF increased slightly to higher level in placebo (5 folds) 

compared to control, Heavy A and Ibuprofen (4, 3.5 and 3.5 folds, respectively; P > 0.05 for 

all, Fig. 3.12). 

 

Figure 3.12: SBF responses during reactive hyperemia (RH), exercise and recovery 

in placebo and ibuprofen, Heavy A trials compared to control. 



 

100 

 

3.5 Discussion 

 Our results provided a unique observation that the mus2OV response at the 

onset of heavy forearm exercise was depressed when exercise began 3 minutes 

after 15 minutes of forearm circulatory occlusion even though FBF was elevated at 

the start of exercise. The slower mus2OV kinetics response in Heavy C was due to no 

improvement in FBF above the control condition once exercise commenced and 

smaller (a-v)DO2. These differences were even more pronounced when contrasted 

with protocols that included prior exercise with or without additional circulatory 

occlusion, where FBF and mus2OV kinetics were faster than control. Thus, our 

hypothesis that FBF and mus2OV kinetics would be enhanced in a heavy bout of 

forearm hand-grip exercise that followed heavy exercise and/or occlusion was only 

partially supported. All priming conditions achieved elevated FBF immediately 

before the start of the subsequent heavy exercise bouts, but FBF and mus2OV

kinetics were enhanced only when the prior conditions included exercise. Our 

results contrast with other research that measured pulmonary 2OV during exercise 

that followed circulatory occlusion (Paganelli et al., 1989; Walsh et al., 2002). 

Overall though, our results demonstrated a strong linear relationship between the 

delivery of O2 as reflected by the kinetics of FBF and the rate of increase in 

oxidative metabolism reflected by the kinetics of mus2OV at the onset of heavy 

forearm exercise. 

3.5.1 Methodological considerations 

 The primary objective of the current research was complement previous 

research that employed prior exercise by utilizing occlusion as a means to elevate 
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muscle blood flow prior to the onset of exercise. We selected 15 minutes prior 

circulatory occlusion with 3 minutes recovery period to achieve a relatively stable, 

elevated FBF similar to that shown with studies of prior exercise (Fukuba et al., 

2007; MacDonald et al., 2001b). Shorter periods of occlusion caused the hyperemia 

to decline more rapidly toward baseline (Carlsson et al., 1987). Previous research 

that examined muscle oxygenation and/or PCr concentrations during various 

combinations of occlusion and exercise provides information on the probable 

metabolic state of the muscle at the onset of exercise in our occlusion only 

protocol. During occlusion of the resting forearm muscle, O2 stores were depleted 

within 5-6 minutes (Blei et al., 1993; Boushel et al., 1998) then increased above 

the resting state within 1 minute of reactive hyperemia, and returned to baseline 

level 3 minutes after cuff release (Hampson & Piantadosi, 1988). Muscle phosphate 

to PCr ratio was only slightly changed after 10 minutes occlusion and recovered to 

baseline within 2 minutes (Boushel et al., 1998). PCr concentration was depleted 

less than 15% by 15 minutes of occlusion and, based on the measured time 

constant, would be expected to be within 5% of baseline with 3 minutes of recovery 

(Blei et al., 1993). The rather modest changes in PCr after occlusion contrast for 

example with the 46% reduction with 3 minutes of repeated hand-grip contractions 

with intact circulation (Mole et al., 1985). From these data we expect muscle O2 

stores to be no lower than baseline and PCr stores, as an indication of enzyme 

activity, within 5% of baseline. These conditions would allow us to achieve our 

objective of a high flow state with minimal metabolic disturbance at the onset of 

the heavy forearm exercise in protocol Heavy C.   

The model of prior 5 minutes heavy exercise with 6 minutes recovery (Heavy A) is 

similar to that used in previous studies of prior exercise and was expected to 
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influence both blood flow and metabolic state (Gurd et al., 2006; MacDonald et al., 

2001b; Rossiter et al., 2001).  

 In Heavy B protocol, the priming heavy exercise bout was followed 

immediately by 2 minutes of circulatory occlusion to determine if the occlusion 

period modified the response to prior heavy exercise. The protocol of Heavy D 

incorporated the prior moderate exercise within the period of circulatory occlusion. 

It has been demonstrated that rapid depletion of PCr occurred when exercise was 

performed within occlusion and that recovery did not occur until circulation was 

restored (Blei et al., 1993). Performing 1 minute of moderate exercise during the 5 

minutes occlusion would be expected to elevate FBF through the 3 minutes after 

release of occlusion while inducing a relatively mild change in the metabolic 

environment that would have partially recovered by the start of the heavy exercise. 

 The kinetic response characteristics in the current study were quantified by 

calculation of the rise time () from the transient responses of FBF and mus2OV . This 

calculation was based on the property of a linear first order system in which the 

time constant can be determined from the rate of increase of a variable toward the 

plateau value (Barstow & Mole, 1991). When calculated in this way the rise time is 

equivalent to the mean response time reported in other studies (Hughson et al., 

1996; MacDonald et al., 1997) and includes the possibility of the appearance of a 

“slow component” with heavier exercise. A precise kinetics with multi-component 

exponential modeling is not possible in studies such as this without a marked 

increase in blood sampling frequency. Therefore, the rise time provides an estimate 

of the overall kinetics response and permits comparisons between FBF and mus2OV .  
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 Brachial artery blood velocity and diameter were measured with the 

occlusion cuff placed distal to the elbow to avoid the potential influence of ischemia 

(Ramsey et al., 1996) or myogenic dilation (Folkow, 1949) on arterial diameter. 

Proximal cuff placement has been shown to induce greater brachial diameter 

dilation than distal occlusion (Agewall et al., 2001; Betik et al., 2004; Guthikonda 

et al., 2007). Further, distal occlusion provides a more accurate assessment of 

endothelial function compared to proximal occlusion (Guthikonda et al., 2007; 

Peretz et al., 2007). 

3.5.2 Prior heavy exercise  

 The finding of faster FBF and mus2OV  kinetics in Heavy A than Con condition  

( group A) confirms previous research with both hand-grip (MacDonald et al., 

2001b) and knee-extension (Fukuba et al., 2007; Hughson et al., 2003; Krustrup et 

al., 2001) exercise. However, some studies of knee-extension exercise have shown 

faster pulmonary 2OV
 kinetics without a change in leg blood flow kinetics (Endo et 

al., 2005; Fukuba et al., 2004; Koga et al., 2005). A combination of several 

interacting mechanisms was likely responsible for the observed higher FBF and

mus2OV in Heavy A and Heavy B protocols (Figs. 3.3 and 3.5). Ferreira et al. (2005a) 

have shown a tight coupling between the kinetics of capillary blood flow estimated 

from near-infrared spectroscopy (NIRS) and mus2OV during both moderate and heavy 

cycling exercise.    

 Improved O2 delivery might have been achieved by accumulation of 

vasoactive metabolites from previous warm-up that enhances vasodilation 

increasing blood flow to exercising muscles and possibly promoting a right shift of 

the HbO2 dissociation curve (Gerbino et al., 1996; MacDonald et al., 1997).  
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Prior warm-up exercise might reduce or abolish regional heterogeneities in muscle 

microvascular perfusion optimizing the match between O2 delivery to O2 utilization 

(DeLorey et al., 2007; Fukuba et al., 2002). Greater O2 delivery can improves the 

oxidative phosphorylation contribution to energy production, while reducing the O2 

deficit and cellular homeostasis disturbance. The proposed mechanism involves an 

increase in the intracellular PO2 (Hughson et al., 2001; Tschakovsky & Hughson, 

1999) and a subsequent reduction in PCr degradation and substrate level 

phosphorylation (Rossiter et al., 2001).  

 The (a-v)DO2 was significantly smaller at the start of exercise and at the first 

15 s sample point in Heavy A and Heavy B than the Con condition, while there 

were no differences in (a-v)DO2 after this time point. These results are in contrast 

to the findings of higher O2 extraction during the second heavy bout of hand-grip 

(MacDonald et al., 2001b) or leg extension (Krustrup et al., 2001) exercise.  The 

discrepancy may be due to the differences in subject characteristics.  The present 

study examined highly trained varsity athletes who likely have higher O2 extraction 

fraction during exercise (Kalliokoski et al., 2001) that might not be further 

enhanced  by a prior warm-up. Further, it has been reported that enhanced PDHa 

activity by prior heavy exercise can affect O2 extraction during moderate (Gurd et 

al., 2006) but not heavy (Bangsbo et al., 2002) exercise. Thus, the faster mus2OV  

kinetics in the prior heavy exercise conditions was attributable to the faster 

increase in FBF that facilitated greater O2 delivery to the exercising forearm 

muscles. The patterns of FBF, (a-v)DO2 and mus2OV  responses were similar in 

Heavy A and Heavy B bouts, with the small exception that the mus2OV was 

significantly elevated above Con from 3-5 minutes only in Heavy A.  



 

105 

 

3.5.3 Prior ischemia  

 Previous research that employed circulatory occlusion prior to the start of 

exercise suggested that pulmonary 2OV  kinetics were faster after the occlusion 

(Paganelli et al., 1989; Walsh et al., 2002). These results contrast with our findings 

of slower mus2OV  kinetics due to slower increase in FBF and smaller (a-v)DO2 in the 

occlusion only condition (Heavy C), but could be explained by major differences in 

methodology. In the study by Walsh et al. (2002) the circulatory occlusion was 

released within 5 s prior to the onset of subsequent exercise and this condition 

resulted in a faster increase in 2OV  than the Con condition. However, the authors 

were unable to evaluate the contribution of 2OV  for the restoration of O2 stores in 

blood and tissues compared to 2OV  for oxidative phosphorylation. When both 

arms were occluded for 5-10 minutes prior to heavy arm-cranking exercise in the 

study by Paganelli et al. (1989) there was a small decrease (from 53 to 45 s) in the 

half time of 2OV
 on-response kinetics. Our observation that 15 minutes 

circulatory occlusion followed by 3 minutes recovery period significantly altered 

FBF and metabolic responses to subsequent heavy exercise (Heavy C) was 

unexpected and contrasted with our hypothesis that prior occlusion would 

facilitate a more rapid increase in FBF, O2 delivery and mus2OV  at the onset of 

heavy forearm exercise. 

 The mechanisms responsible for the ischemic effects on muscle blood flow 

and metabolic responses are unknown. It appears that some factor associated with 

prolonged ischemia impaired FBF response at the onset of subsequent exercise. 

Previously, Naylor et al. (Naylor et al., 1999) noted a 35% reduction in peak reactive 
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hyperemia after 5 minutes circulatory occlusion that included heavy exercise in a 

control (placebo) condition compared to similar occlusion with the PGs synthesis 

inhibitors ibuprofen and  indomethacin. These authors speculated that the smaller 

reactive hyperemia in the placebo condition might have been due to the release of 

vasoconstrictor PGs or activation of platelet aggregation during the ischemic 

period. Interestingly, Shoemaker et al. (1996b) reported that PGs play no role in 

regulating FBF during forearm exercise, thus suggesting a unique ischemic effect 

on FBF control during a subsequent exercise. 

 To verify this surprising finding of slower  during the transition 

phase in Heavy C, and in an attempt to determine a possible mechanism for 

reduced FBF, group B completed 2 trials of protocol C after ingesting ibuprofen or 

placebo. The responses of slower and reduced (a-v)DO2 observed in Heavy C 

with group A were mirrored in the placebo trial in group B, whereas ibuprofen was 

able to restore to the control level primarily as a consequence of improved 

FBF with no difference in (a-v)DO2 between placebo and ibuprofen, suggesting that 

altered O2 extraction might be independent of a prostaglandin mechanism 

(Fig.3.10). In addition during the ibuprofen trial, the MAP response was identical to 

control while it was elevated with placebo in group B (Fig. 3.11) as seen in protocol 

C with group A (Fig. 3.9). These results suggested that 15 minutes of  ischemia 

may activate a prostaglandin-mediated mechanism that had both local and 

systemic effects such as the observed release of thromboxane A2 following 10 

minutes of forearm circulatory occlusion (Mathieson et al., 1983) causing some 

contraction of the vascular smooth muscle which was then exaggerated at the 

mus2OV

mus2OV

mus2OV
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onset of the subsequent heavy exercise 3 minutes after the release of occlusion, 

reducing FBF. 

 The selective perfusion of active muscle fibers is dependent upon several 

factors that constrict blood vessels to non-active regions and dilate vessels to active 

regions(Rowell, 1993). As reactive hyperaemia following ischemia includes blood 

flow to both the skin and muscle, it was important to consider how these two 

components might contribute to the total flow and O2 extraction that we measured 

with and without inhibition of PGs in another group of subjects (group C).  The oral 

administration of aspirin, COX (PGs) inhibitor, has markedly reduced SBF during 

reactive hyperemia (Binggeli et al., 2003), suggesting that short period of occlusion 

might result in redistributions of blood to the periphery al and by consequence 

reducing FBF in subsequent exercise bout. However, local infusion of ketorolac, 

similar non-specific COX inhibitor, has shown increase (Medow et al., 2007) or no 

changes (Lorenzo & Minson, 2007; McCord et al., 2006) in SBF during reactive 

hyperemia. Likewise the study of Binggeli et al. (2003), SBF slightly reduced during 

reactive hyperemia and the subsequent heavy exercise after the oral administration 

of high dose of ibuprofen compared to placebo (Fig. 3.12). Yet, FBF was higher 

throughout the reactive hyperemia and subsequent exercise with ibuprofen 

suggesting that ischemia might have disparate effects on different tissue perfusion.  

 Venous blood was collected from the deep antecubital vein with the catheter 

oriented in a retrograde fashion (Mottram, 1955). Previous anatomical studies 

combined with an investigation in which increased SBF was induced by remote 

body heating suggested that the SBF would have minimal impact on O2 saturation 

in the deep vein (Roddie et al., 1956).The fact that there are differences in SBF 

between the ibuprofen and placebo conditions (group C, Fig. 3.12), while there are 
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similar (a-v)DO2 patterns (group B, Fig. 3.4)  provide further evidence that SBF is 

not affecting the (a-v)DO2 calculation in the current study. However, care should be 

applied in interpretation of reduced (a-v)DO2 during reactive hyperemia and 

exercise after occlusion. 

 The period of reactive hyperemia is associated with increased vascular 

conductance with dilation of the resistance vessels in skeletal muscle. O2 stores are 

rapidly replaced during the hyperemic period as indicated by NIRS (Boushel et al., 

1998; Hampson & Piantadosi, 1988) as well as the marked reduction in the         

(a-v)DO2 prior to the onset of exercise in the current study. What was unexpected 

in the current study was the continued reduction in (a-v)DO2 over the first 90 s of 

hand-grip exercise in Heavy C in group A(Fig. 3.4)and group B (Fig. 3.10). It is not 

known if this was a consequence of blood flow being diverted away from the active 

muscle fibers, possibly to the skin, or if there was an alteration in the metabolic 

pathways that delayed the adaptation of oxidative phosphorylation. There was no 

difference in the end exercise [La-] as a consequence of the delayed FBF and mus2OV  

response so these data do not contribute to understanding potential metabolic 

differences. Future research is required to establish the mechanism for the altered 

(a-v)DO2 after 15 minutes circulatory occlusion.  

 In the Heavy D protocol, where prior 5 minutes circulatory occlusion 

combined with 1 minute of moderate exercise, we cannot provide information on 

the internal metabolic state of the muscle when the subsequent heavy exercise 

bout started 3 minutes after release of circulatory occlusion. However, FBF was 

elevated to approximately the same value as in Heavy A and Heavy B protocols and 

the (a-v)DO2 was similarly reduced below the CON condition at the start of exercise 
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as the other exercise protocols. As well as, in Heavy D FBF and mus2OV were 

accelerated to same extent as in Heavy A and Heavy B protocols. The decrease in 

the rise time of mus2OV  in Heavy D is in agreement with Paganelli et al.(1989) who 

reported 50% reduction in the half response time of pulmonary 2OV  kinetics 

during the heavy arm-cranking exercise bout after prior 3 minutes of circulatory 

occlusion combined with moderate arm-cranking exercise.  

3.6 Limitations 

 Forearm mus2OV was estimated from the Fick equation as the product of FBF 

and (a-v)DO2. Venous blood was sampled from a deep forearm vein; however we 

were not able to measure arterial oxygen content to directly determine (a-v)DO2. We 

assumed constant arterial O2 content during steady state forearm exercise, as 

shown in both moderate (MacDonald et al., 2000) and intense knee-extension 

exercise (Bangsbo et al., 2000). We used a retrograde venous catheter to maximize 

the collection of blood from the confluence of venous drainage from the deep veins 

of the forearm extensor muscles; however, there is a possibility of contamination 

from other vascular beds (Corcondilas et al., 1964). Our results show a similar 

pattern of change in the (a-v)DO2 as seen in previous studies with directly 

measured arterial and venous O2 content (Bangsbo et al., 2002; Bangsbo et al., 

2000; Grassi et al., 1996), or from venous blood samples with the assumption of 

constant arterial O2 saturation (Hughson et al., 1996; van Beekvelt et al., 2001). 

 A limitation in all studies examining O2 delivery and O2 utilization is that 

there are no precise measurements of microvascular perfusion within the complex 

geometry of human muscle recruitment during voluntary exercise and the 

influence of the local environment on the HbO2 dissociation curve can only be 
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speculated. Even with direct measures of muscle blood flow it is not feasible to 

determine whether perfusion and O2 extraction are matched within the 

metabolically active regions of the muscles (Grassi et al., 1996; Hughson et al., 

1996; MacDonald et al., 2001b). The selective perfusion of active muscle fibers is 

dependent upon several factors that constrict blood vessels to non-active regions 

and dilate vessels to active regions (Rowell, 1993). Within the active muscle, 

microvascular perfusion related to local vasodilation and muscle O2 consumption 

appears to follow complex dynamics (Iversen & Nicolaysen, 1989) as supported by 

recent data from multiple sites with near infrared spectroscopy (Koga et al., 2007). 

However, during high intensity exercise, as was employed in the present study, 

there is relatively homogeneous recruitment of muscle fibers (Krustrup et al., 

2008), thus venous blood sampling is likely representative of O2 utilization in the 

working muscles. 
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3.7 Conclusion 

 We demonstrated differences between prior active warm-up with “heavy 

exercise” and “occlusion plus exercise” compared to passive warm-up with 

“occlusion” only on the dynamic adaptation of mus2OV  at the onset of heavy forearm 

exercise. Our findings exposed differences in the mechanisms regulating mus2OV

with the active warm-ups resulting in a higher FBF but no changes in O2 extraction 

to yield the faster increase in mus2OV at the onset of subsequent heavy forearm 

exercise bouts. In contrast, prior occlusion slightly retarded the increase in FBF 

and significantly reduced O2 extraction thus delaying mus2OV
 
kinetics. Over all 

there was a strong correlation between the rates of increase in FBF and oxidative 

metabolism suggesting that the acceleration of mus2OV  kinetics at the onset of 

heavy forearm exercise is linked to O2 delivery in trained young men. Prolonged 

ischemia invoked a prostaglandin-mediated mechanism that affected FBF and O2 

extraction delaying the adaptation of oxidative metabolism during subsequent 

heavy exercise; but, the reduction in FBF was reversed by inhibition of 

prostaglandin synthesis with ibuprofen. 
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Chapter 4 

Priming exercise induced attenuation of the 2OV slow component during 

heavy exercise and increased oxygen cost during moderate exercise are 

associated with changes in muscle EMG activity. 
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4.1 Overview  

 The precise mechanisms for the development of the 2OV slow component 

during heavy exercise and the increase in O2 cost during moderate exercise that 

follows heavy warm-up remain uncertain. We tested the hypothesis that changes in 

muscle activity are related to changes in slow component amplitude during heavy 

exercise and elevated steady state 2OV during moderate exercise following a heavy 

warm-up. Eight male endurance athletes performed two repetitions of two cycling 

protocols involving 6-min bouts of heavy and moderate intensity. 2OV was 

measured breath-by-breath and muscle activity was assessed by surface EMG. 

During heavy exercise, prior moderate and heavy exercise had a graded effect, 

attenuating the slow component amplitude by 19% and 40%, (prior moderate: 455 

± 52; prior heavy: 341 ± 54 vs. no warm-up: 564 ± 71 ml/min; P < 0.01 for both). 

Similarly, prior warm-up modified EMG activity between the 2nd and 6th min of 

exercise, shifting the increase in integrated EMG (iEMG) during control, to a 

smaller increase after a moderate bout and a decrease after heavy exercise. 

Principle components analysis showed a significant positive correlation between 

the slow component amplitude and the changes in iEMG of the knee extensor 

muscles (r = 0.45, P = 0.03). During moderate exercise, mean power frequency 

(MPF) was augmented by one or two prior heavy bouts, but no changes in iEMG 

were observed. The attenuation of slow component amplitude by moderate and 

heavy warm-up and the elevated moderate exercise steady state 2OV following a 

heavy warm-up appear to be related to some changes in surface EMG activity and 

this may be an indication of altered muscle fibre recruitment induced by the 

priming exercise. 
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4.2 Introduction 

 During constant-load heavy exercise above the ventilatory threshold (VT), 

pulmonary 2OV continues to rise above the fundamental exponential kinetic 

response with a superimposed delayed origin (≈ 90-150 s) termed the “slow 

component” (Whipp, 1994; Whipp & Wasserman, 1972). A large amount of the 2OV

slow component can be attributed to the exercising muscles (Poole et al., 1991; 

Rossiter et al., 2002b), but the specifics of muscle activation patterns are still 

unclear. Several converging lines of evidence point to a progressive recruitment of 

muscle fibres potentially the less efficient type II muscle fibres as the principal 

mechanism by which O2 consumption increases during the 2OV slow component. 

First, the amplitude of the 2OV slow component has been shown to be more 

pronounced in subjects with a high proportion of type II muscle fibres (Barstow et 

al., 1996; Garland et al., 2006; Pringle et al., 2003). Also, Krustrup et al. (2004) 

have shown a marked depletion in the quadriceps muscle (mixed fibre type) PCr 

and glycogen from 3 to 6 minutes during heavy cycling exercise. Furthermore, 

investigations employing magnetic resonance imaging (MRI) have shown that 

changes in muscle recruitment are characteristic of the slow component (Endo et 

al., 2007; Saunders et al., 2000). However, studies using surface EMG are more 

varied and controversial (Bailey et al., 2009b; Burnley et al., 2002b; Cannon et al., 

2007; Garland et al., 2006; Osborne & Schneider, 2006; Perrey et al., 2001; 

Sabapathy et al., 2005; Saunders et al., 2000; Scheuermann et al., 2001; 

Shinohara & Moritani, 1992).  
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 Almost universally in previous research which applied a prior heavy warm-

up, the amplitude of the 2OV slow component in the second heavy exercise bout 

was shown to be attenuated (Bailey et al., 2009b; Burnley et al., 2002b; Koppo & 

Bouckaert, 2000; Tordi et al., 2003). However, the associated changes in EMG 

activity during the 2OV  slow component are inconsistent (Burnley et al., 2002b; 

Perrey et al., 2003b; Scheuermann et al., 2001; Tordi et al., 2003). Burnley et al. 

(2002b) showed a reduction in integrated EMG (iEMG) across several muscles in 

conjunction with a smaller 2OV  slow component in the second heavy bout. 

 Similarly, when Bailey et al. (2009b) investigated EMG and its relation to the 

2OV slow component following different heavy warm-ups, they observed 

attenuation in the 2OV slow component amplitude and iEMG in the vastus 

lateralus (VL) muscle. Conversely, Scheuermann et al. (2001) observed a reduction 

in the slow component but no change in iEMG or mean power frequency (MPF) in 

VL muscle. Prior moderate exercise has also been shown to reduce the 2OV slow 

component amplitude during subsequent heavy exercise to a smaller extent than 

prior heavy exercise (Koppo & Bouckaert, 2000). However, there are no data 

available regarding the EMG responses in a heavy exercise bout that follows a 

single moderate warm-up bout. Therefore, investigating the 2OV slow component 

following moderate and heavy priming exercise in concert with EMG may provide 

useful information on the underlying mechanisms. 

 While muscle recruitment patterns have been thoroughly investigated as a 

potential mechanism for the 2OV slow component during heavy exercise, the role of 

muscle activity in higher O2 cost during moderate exercise after priming heavy 
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exercise remains undefined. Gonzales and Scheuermann (2008) reported that 

elevated O2 cost in moderate exercise after a heavy warm-up is not the result of 

additional recruitment of motor units or an appreciable recruitment of type II 

muscle fibres. In the current study, we employed repeated cycling protocols 

involving both moderate and heavy exercise transitions while measuring breath-by-

breath 2OV concurrent with EMG activity in multiple leg muscles to examine the 

relation between the changes in muscle activity (as assessed by iEMG and MPF) 

and 1) the magnitude of the 2OV slow component during heavy exercise following 

both heavy and moderate warm-up; 2) the elevated O2 cost in the moderate 

exercise that follows one and two prior heavy exercise bouts.  
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4.3 Methods 

4.3.1 Subjects 

 Eight recreationally active (
peak2

OV > 55 ml/kg/min) men (age: 23.2 ± 3.0 

years, height: 176.0 ± 6.9 cm, weight: 70.3 ± 5.1 kg, 
peak2

OV : 4190 ± 342 

ml/min; mean ± SD) recruited from those who completed the first study (Chapter 

2), participated in this study following informed consent. This study was approved 

by the Office of Research Ethics at the University of Waterloo.  

4.3.2 Experimental design     

 Participants visited the laboratory on 4 occasions (non-consecutive days), to 

perform 2 sessions of each experimental protocol (Fig.4.1). 
peak2

OV and VT were 

determined from the incremental cycling test described previously in chapter 2. 

The experimental protocols involved a combination of three 6-min cycling bouts at 

moderate (M; 80% VT: 138 ± 25 W) and heavy (H; 85%
peak2

OV : 257 ± 24 W) 

intensities, interspersed with 6-min bouts at 20 W. Within each protocol, the three 

6-min exercise bouts were labeled according to intensity, bout number and 

protocol letter, as follows: Protocol A = moderate (M1A), heavy (H2A), and moderate 

(M3A); Protocol B = heavy (H1B), heavy (H2B), and moderate (M3B); Protocols started 

immediately after 2 min of unloaded (0 W) cycling. 2OV and EMG from the lower 

limb musculature were measured continuously throughout the rides. The same 

procedures for the cycle ergometer set up and testing sessions were applied as 

mentioned in Chapter 2. 
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Figure 4.1: Two different cycling protocols.  

Two different testing protocols employed to examine the relation between the 

changes in 2OV slow component amplitude during heavy exercise, increase O2 cost 

during moderate that follow heavy warm-up and changes in EMG activity.   
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4.3.3 Breath-by-breath oxygen uptake 

 The set up of the breath-by-breath system and 2OV data collection were 

exactly the same as described in chapter 2. Non-interpolated, breath-by-breath 

2OV data were blocked into 10-s windows and averaged together to yield a single 

data set for each subject in each protocol (Fig.4.2). The 2OV  slow component 

amplitude was assessed by calculating the differences (∆) in 2OV between the 2nd 

and 6th min [ )26(2OV 
 ]. The 2nd min was calculated from 90 s to 150 s and was 

selected for the start of this analysis as curve-fitting analyses in chapter 2 have 

shown small 2 in these subjects, as well previous work has shown that the slow 

component started in the 2nd min of heavy exercise (Cannon et al., 2007). In 

addition, the kinetics parameters of the 2OV slow component during heavy exercise 

bouts and the Gain1+2 in both heavy and moderate exercise bouts (Fig. 4.3) for the 

8 subjects were calculated from the rides they performed in the first study. Gain1+2 

was calculated as follows (∆ 2OV /∆WR), where ∆ 2OV  is equal to the summation of 

phase I and phase II amplitudes             ( A1+A2)and ∆WR is equal to the difference 

between the work rate applied during exercise and 20 W baseline. 

4.3.4 Electromyographic activity 

 EMG was obtained from the vastus lateralis (VL), vastus medialis (VM), 

rectus femoris (RF) and biceps femoris (BF) muscles. Prior to each session, EMG 

was recorded during 2 min of unloaded cycling (0 W). EMG was measured on the 

left leg using surface disposable pre-gelled EMG Ag-AgCl electrodes (Blue Sensor, 

Medicotest, Inc., Ølstykke, Denmark) with an inter-electrode distance of 2 cm. Skin 

was shaved and cleaned with alcohol to minimize skin impedance, before 
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electrodes were fixed to the skin in a bipolar configuration along the mid-line of the 

proximal and distal tendons.  A reference electrode was placed over the anterior 

iliac crest. Electrode wires were taped to the skin to reduce movement artifacts. 

Electrode placement was marked with permanent ink to ensure consistent 

positioning during subsequent sessions. Raw EMG was amplified (Custom built 

amplifier, Waterloo, ON, Canada; bandwidth = 20 – 500 Hz, common mode 

rejection rate > 90 db, input impedance = 2 MΩ) and collected at 1000 Hz using a 

16-bit A/D card with a ± 5 V range. To identify baseline muscle activity, the 

rectified signal was passed through a dual second-order Butterworth digital filter 

with a 5 Hz cut off frequency. Muscular contraction was considered to begin when 

the rectified signal exceeded the mean of the baseline EMG plus three standard 

deviations, and end when the signal fell below that level. Integrated EMG (iEMG) 

was calculated as the area under the rectified signal for each burst, blocked into 

10-s windows throughout each protocol. Mean power frequency (MPF) was 

calculated using fast Fourier transformation analysis on the raw signal (95% of the 

total power was considered). Due to inter-subject variability and day to day 

variation in EMG signal, iEMG and MPF were normalized to the baseline activity 

measured during the first 2 min of unloaded cycling prior to each protocol. 

Differences in iEMG activity between the 2nd (90-150 s) and 6th (300-360 s) min     

(∆ iEMG (6-2)) were determined for comparison with ∆ )26(2OV 
 .   



 

121 

 

 

Figure 4.2: 2OV  time series throughout heavy (A, top) and moderate (B, bottom) 

exercise bouts.  

Data are the average of 10-s windows (± SE) from all 8 participants. The 

participants repeated each protocol on 2 occasions.  
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Figure 4.3: Aerobic gain time series throughout heavy (A) and moderate (B) 

exercise.  

Data were averaged across all 8 participants with at least 4 repetitions per 

condition. ∆ 2OV is equal to the amplitude of phase I and phase II (A1+A2). 
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4.3.5 Blood sampling 

 Blood samples were drawn from the antecubital vein during the two rides of 

each protocol to measure lactate [La-] concentrations by fluorometric assay (Lowry 

& Passonneau, 1972). Blood was drawn at rest, and between 5.5 and 6 minutes of 

each of the three work rates: 20 W, moderate, and heavy. 

4.3.6 Statistical analysis 

 The effects of prior exercise on 2OV kinetics during subsequent moderate 

and heavy exercise were analyzed using one-way repeated measures ANOVA. The 

effects of prior exercise on one minute average values of iEMG and MPF during 

moderate and heavy bouts were analyzed using two-way repeated measures 

ANOVA. When significant effects were observed, the Tukey post hoc test was used 

for comparisons. T Test was used to examine the differences in MPF between the 

first 10 s and end exercise, and the differences in iEMG between the 2nd and 6th 

min of exercise in each heavy exercise condition. Principal components analysis 

(PCA) (Coste et al., 2005) and regression analysis, which accounts for the 

correlation within subjects due to repetitions, were used to examine the relation 

between ∆ iEMG (6-2) and 2OV  slow component. All data were expressed as mean ± 

SD. The data were analyzed using Statistical Analysis Software (SAS) package 9.2 

(SAS Institute, Cary, NC). 
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4.4 Results 

4.4.1 Oxygen uptake kinetics 

 The fitting parameters of the 2OV kinetics during heavy and moderate 

exercise were modified by the warm-up bouts (Tables 4.1 and 4.2). The time 

constant (2) during heavy exercise was significantly faster after either prior 

moderate (H2A, 23.1 ± 2.2 s) or heavy (H2B, 22.7 ± 2.3 s) warm-up compared to 

control (H1B 27.0 ± 1.9 s). Similarly, τ2 values were significantly lower in a 

moderate exercise bout that followed either one (M3A) or two (M3B) heavy bouts 

than during control (M1A) (Table 4.2). Neither moderate nor heavy priming exercise 

affected the amplitude of 2OV during phase I (A1) or phase II (A2) in the subsequent 

bouts of moderate or heavy exercise (Tables 4.1 and 4.2). Prior moderate or heavy 

cycling exercises had a graded effect in attenuating the slow component amplitude 

(A3) of subsequent heavy exercise (H2A: 541 ± 103; H2B: 385 ± 63 vs. H1B: 610 ± 

114 ml/min, P < 0.01 for both). This was also reflected by ∆ )26(2OV 
 . The ∆ )26(2OV 



during heavy exercise was 19 % lower following a moderate intensity warm up, and 

40 % lower following a heavy intensity warm-up, than observed during the control 

bout (H2A: 455 ± 52; H2B: 341 ± 54 vs. H1B: 564 ± 71 ml/min; P < 0.01 for both). 

There was greater attenuation with increasing intensity of the warm-up, such that 

the amplitude of slow component in H2B was significantly lower than in H2A for 

both the kinetics analyses and ∆ )26(2OV 
  (P < 0.05 for both). Prior moderate and 

heavy exercise reduced the time to initiate the slow component (TD3) during 

subsequent heavy exercise to a similar extent compared to control (H2A: 81.4 ± 

13.1; H2B: 73.3 ± 10.6 vs. H1B: 102.7 ± 10.4 s; P < 0.01 for both). Prior warm-up 

reduced the Gain1+2 in subsequent moderate exercise, but not heavy cycling 
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compared to their respective controls (Moderate, M3A: 9.2 ± 0.4; M3B: 9.4 ± 0.5 vs. 

M1A: 9.9 ± 0.4 ml/min/W; P < 0.01 for both; Heavy, H2A: 8.8 ± 0.3; H2B: 9.1 ± 0.5 

vs. H1B: 8.9 ± 0.6 ml/min/W; P > 0.05) (Fig. 4.3).   

4.4.2 Lactate 

 The baseline [La-] leading into heavy exercise was elevated following a prior 

heavy bout compared to that following a prior moderate bout or no warm-up 

exercise (H2B: 4.8 ± 0.7 vs. H2A = 1.1 ± 0.2; H1B: 0.8 ± 0.2 mmol/l, P < 0.001 for 

both). At the end of the heavy exercise bouts, [La-] remained significantly lower in 

H1B (4.2 ± 1.2 mmol/l) than H2B (6.3 ± 1. 2 mmol/l, P < 0.01). Also, it tended to 

stay lower in H2A (4.9 ± 1.0 mmol/l, P = 0.06) compared to H2B. Immediately prior 

to moderate exercise, the baseline [La-] was higher for bouts following a heavy 

intensity warm-up than the bout with no warm up (M3A: 4.7 ± 1.0; M3B: 5.4 ± 1.3 

vs. M1A: 0. 9 ± 0. 2 mmol/l, P < 0.01 for both).  At the end of the moderate exercise 

bouts that followed a heavy warm-up, [La-] was lower than baseline (M3A: 3.3 ± 0.9 

mmol/l; M3B: 3.7 ± 1.3 mmol/l, P < 0.01 for both). 
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Table 4.1: Fitting parameters during heavy exercise bouts 

 

Mean ± SD, n = 8  

* P < 0.01 H1B vs. H2A-H2B; † P < 0.05 H1B vs. H2A-H2B;  

‡ P < 0.01 H2A vs. H2B; § P < 0.05 H2A vs. H2B 

Amplitude parameters A0, A1, A2 and A3 for the baseline, phase I, phase II and 

phase III (slow component ) respectively; time constants (τ2, τ3) and time delays 

(TD2, TD3) for the corresponding phases; end bout is the average 2OV  in the last 

minute of each exercise bout. The heavy bouts for protocols A and B are shown in 

Fig. 4.1A and 4.1B respectively.   

Parameters  

 
Heavy Bouts 

 

H1B H2A 
 

H2B 
 

A0, ml/min  987 ± 50 1021 ± 76 1155 ± 48 *‡ 

A1, ml/min  447 ± 148 463 ± 107 424 ± 103 

A2, ml/min  1661 ± 201 1610 ± 166 1733 ± 245 

A1+A2, ml/min  2108 ± 273 2074 ± 219 2157 ± 275 

A3, ml/min  610 ± 114 541 ± 103 385 ± 63 

 2, s  27.0 ± 1.9 23.1 ± 2.2 * 22.7 ± 2.3 * 

3, s  154.3 ± 36.3 144.6 ± 35.8 141.4 ± 27.2 

TD2, s  11.5 ± 1.9 11.7 ± 1. 5 10.2 ± 1.0 †§ 

TD3, s  102.7 ± 10.4 81.4 ± 13.1 * 73.3 ± 10.6 * 

Gain1+2, ml/min/W  8.9 ± 0.6 8.8 ± 0.3 9.1 ± 0.5 

End Exercise, ml/min  3600 ± 277 3540 ± 230 3635 ± 256 
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Table 4.2: Fitting parameters during moderate exercise bouts 

 

Mean ± SD, n = 8 

* P < 0.01 M1A vs. M3A - M3B; † P < 0.05 M1A vs. M3A - M3B; 

 ‡ P < 0.01 M3A vs. M3B; § P < 0.05 M3A vs. M3B 

 

Amplitude parameters A0, A1 and A2 for the baseline, phase 1 and phase 2 

respectively; time constant (τ2) and time delay (TD2) for the primary phase; end 

bout is the average 2OV in the last minute of each exercise bout. The moderate 

bouts for protocols A and B are shown in Fig. 4.1A and 4.1B respectively.   

 

 

 

Parameters  

 
Moderate Bouts 

 

M1A M3A 
 

M3B 
 

A0, ml/min  990 ± 48 1159 ± 73 * 1196 ± 66 * 

A1, ml/min  304 ± 130 255 ± 79 279 ± 87 

A2, ml/min  861 ± 141 837 ± 176 834 ± 191 

A1+A2, ml/min  1165 ± 254 1092 ± 228 1112 ± 259 

 2, s  23.7 ± 4.4 19.3 ± 3.4 † 17.0 ± 2.9 * 

TD2, s  13.2 ± 1.2 12.9 ± 1.9 14.3 ± 1.7 

Gain1+2, ml/min/W  9.9 ± 0.4 9.2 ± 0.4 † 9.4 ± 0.5 † 

End Exercise, ml/min  2179 ± 278 2259 ± 276 2307 ± 303 
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4.4.3 EMG 

 The baseline EMG was not different between days and protocols in all 

muscles (iEMG Protocol A vs. Protocol B, VL: 12.3 ± 2.6 vs. 12.6 ± 2.7, VM: 14.4 ± 

6.6 vs. 13.9 ± 6.5, RF: 10.8 ± 1.6 vs. 11.6 ± 2.4 and BF: 24.8 ± 17.6 vs. 27.2 ± 22.2 

mV, P > 0.05 for all; MPF Protocol A vs. Protocol B, VL: 56.0 ± 3.8 vs. 55.1 ± 2.7, 

VM: 54.4 ± 6.0 vs. 54.7 ± 3.8, RF: 57.1 ± 2.5 vs. 58.6 ± 4.2 and BF: 64.5 ± 7.9 vs. 

63.7 ± 10.1 Hz, P > 0.05 for all). There were also no differences in iEMG or MPF 

between the 20 W baselines that preceded each moderate and heavy condition 

(Table 4.3), or the end exercise iEMG within the moderate and heavy conditions 

(Table 4.4). During heavy exercise, MPF (Fig. 4.4) was significantly lower in all the 

extensor (agonist) muscles at the end of exercise compared to the first 10 s (P < 

0.05 for all comparisons, Tables 4.5 – 4.7). However, MPF in the flexor (antagonist) 

BF muscle was slightly but not significantly higher at the end of exercise [H1B: 

101.4 ± 8.6 vs. 106.5 ± 11.7, H2A: 101.2 ± 6.7 vs. 105.6 ± 7.4 and H2B: 107.7 ± 9.1 

vs. 108.4 ± 9.4 % of baseline MPF; P > 0.05 for all comparisons, Fig. 4.5]. Prior 

heavy exercise significantly elevated MPF throughout the subsequent heavy bout 

(H2B) compared to the control heavy bout (H1B) in all the extensor VL, VM and RF 

muscles (over the 6 minutes of exercise P values were less than 0.05, Tables 4.5 – 

4.7), however, no effect was observed in the antagonist BF muscle. Prior moderate 

exercise resulted in a significantly higher MPF in VL and VM muscles throughout 

the first minutes in subsequent heavy bout (H2A) compared to control (P < 0.05, 

Tables 4.5 and 4.6), but no effects have shown in RF and BF muscles. 
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Table 4.3:  Baseline iEMG and MPF during 20W cycling prior to heavy and moderate bouts  

 

Mean ± SD, n = 8 

iEMG and MPF values are shown as % of unloaded cycling 

 

 

Variables 

 

Heavy Bouts 

 

Moderate Bouts 

H1B H2A H2B M1A M3A M3B 

VL – iEMG 

 

 

126.5 ± 22.7 133.5 ± 19.9 134.2 ± 37.3 

 

 

132.2 ± 18.8 133.5 ± 19.9 136.1 ± 42.8 

VM - iEMG 124.9 ± 20.2 129.7 ± 42.9 128.3 ± 30.5 127.2 ± 33.6 128.1 ± 26.1 131.5 ± 24.5 

RF - iEMG 103.6 ± 26.1 116.2 ± 24.7 112.3 ± 22.4 113.2 ± 18.9 116.4 ± 24.7 113.3 ± 26.9 

BF - iEMG 122.0 ± 24.6 109.5 ± 25.4 127.8  ± 35.2 117.4 ± 14.9 119.6 ± 24.1 115.9 ± 22.3 

VL - MPF 97.3 ± 2.3 98.7 ± 3.5 98.7 ± 5.4 98.0 ± 3.9 98.0 ± 7.1 102.9 ± 8.4 

VM - MPF  96.7 ± 8.6 94.7 ± 11.3  96.9 ± 5.4  96.6 ± 9.3 95.9 ± 10.8 102.8 ± 9.9 

RF - MPF  96.4 ± 7.9 100.9 ± 7.4 97.7 ± 8.1  100.1 ± 5.6 101.3 ± 6.4 101.8 ± 10.0 

BF - MPF  103.1 ± 12.8 101.1 ± 18.4 110.4 ± 13.8  105.9 ± 9.4 108.1 ± 14.9 112.2 ± 14.7 
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Table 4.4: End exercise iEMG during heavy and moderate bouts 

 

Mean ± SD, n = 8 

iEMG values are shown as % of unloaded cycling 

 

 

 

 

 

Variables 

 

Heavy Bouts 

 

Moderate Bouts 

H1B H2A H2B M1A M3A M3B 

VL – iEMG 

 

 

617.2 ± 29.5 591.0 ± 22.7 585.5 ± 28.0 

 

 

339.7 ± 9.6 348.6 ± 8.7 305.0 ± 10.3 

VM - iEMG 598.7 ± 18.1 560.3 ± 21.0 572.7 ± 24.1 315.5 ± 11.6 301.6 ± 8.2 330.7 ± 11.7 

RF - iEMG 419.6 ± 21.6 392.8 ± 18.5 392.3 ± 19.3 230.7 ± 10.0 238.5 ± 9.6 234.9 ± 11.5 

BF - iEMG 311.8 ± 12.3 259.1 ± 10.7 293.3  ± 14.1 193.0 ± 19.9 166.1 ± 17.0 208.0 ± 16.0 
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Figure 4.4: MPF time series throughout heavy cycling bouts.  

Muscle activity is shown from vastus lateralis (VL), vastus medialis (VM) and rectus 

femoris (RF) muscles. MPF is reported as a percentage of unloaded cycling (0 W). 

Data are the average (± SE) of all 8 participants with 2 repetitions per condition. 
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Table 4.5: MPF in VL muscle during heavy and moderate exercise bouts 

 

Mean ± SD, n = 8 

* P < 0.05 H1B vs. H2A and H2B; M1A vs. M3A and M3B 

† P < 0.05 M3A vs. M3B 

‡ P < 0.05 10 s vs. Min 6 in each heavy and moderate exercise condition 

MPF values are shown as % of unloaded cycling 

Variables 

 

Heavy Bouts 

 

Moderate Bouts 

H1B H2A H2B M1A M3A M3B 

MPF – 10 s 

 

 

110.2 ± 5.7 ‡ 113.8 ± 6.3 ‡ 114.2 ± 6.7 ‡ 

 

 

106.9 ± 6.6 109.9 ± 6.2 110.9 ± 7.1 * 

MPF - Min 1 105.7 ± 5.8 109.5 ± 5.6 * 111.5 ± 6.5 * 104.5 ± 4.3 110.6 ± 6.7 * 112.4 ± 6.5 * 

MPF - Min 2 102.2 ± 5.0 105.1 ± 4.7 * 107.4 ± 6.9 * 103.8 ± 3.6 109.4 ± 5.1 * 112.6 ± 6.7 *† 

MPF - Min 3 102.1 ± 5.1 104.4 ± 4.5 107.1  ± 6.5 * 103.6 ± 4.1 109.2 ± 5.8 * 112.5 ± 5.5 *† 

MPF - Min 4 101.8 ± 5.9 104.0 ± 4.4 106.7 ± 6.1 * 104.2 ± 4.3 109.3 ± 6.7 * 113.3  ± 5.8 *† 

MPF - Min 5  102.0 ± 5.5 104.8 ± 5.1  106.3 ± 6.5 *  104.7 ± 4.1 109.0 ± 6.5 * 113.6 ± 6.3 *† 

MPF - Min 6  102.6 ± 6.4 104.9 ± 5.0 106.1 ± 6.1 *  105.3 ± 4.1 109.0 ± 6.9 * 114.1 ± 6.1 *† 
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Table 4.6: MPF in VM muscle during heavy and moderate exercise bouts 

 

Mean ± SD, n = 8 

* P < 0.05 H1B vs. H2A and H2B; M1A vs. M3A and M3B 

† P < 0.05 H2A vs. H2B; M3A vs. M3B 

‡ P < 0.05 10 s vs. Min 6 in each heavy and moderate exercise condition 

MPF values are shown as % of unloaded cycling 

Variables 

 

Heavy Bouts 

 

Moderate Bouts 

H1B H2A H2B M1A M3A M3B 

MPF – 10 s 

 

 

111.7 ± 7.0 ‡ 114.9 ± 7.9 ‡ 116.3 ± 10.2 ‡ 

 

 

109.3 ± 7.1 111.0 ± 11.7 118.0 ± 10.6 *† 

MPF - Min 1 107.2 ± 7.5 112.3 ± 7.0 * 114.5 ± 9.4 * 107.1 ± 8.2 110.2 ± 10.6  117.5 ± 10.6 *† 

MPF - Min 2 104.7 ± 7.4 109.0 ± 5.5 * 112.3 ± 9.2 *† 104.1 ± 9.2 109.6 ± 9.3 * 115.6 ± 10.5 *† 

MPF - Min 3 104.3 ± 7.3 108.4 ± 5.6 * 111.7  ± 9.4 *† 103.6 ± 7.3 108.8 ± 8.5 * 116.0 ± 9.8 *† 

MPF - Min 4 104.6 ± 7.8 107.8 ± 5.0 111.3 ± 10.2 *† 103.3 ± 7.1 109.5 ± 10.3 * 115.4  ± 9.5 *† 

MPF - Min 5  105.2 ± 7.9 108.6 ± 5.5  111.4 ± 10.3 *  104.0 ± 7.4 110.2 ± 9.8 * 115.2 ± 10.2 *† 

MPF - Min 6  106.9 ± 7.6 108.9 ± 5.7 111.5 ± 9.7 *  104.0 ± 7.5 109.8 ± 9.9 * 116.2 ± 9.7 *† 
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Table 4.7: MPF in RF muscle during heavy and moderate exercise bouts 

 

Mean ± SD, n = 8 

* P < 0.05 H1B vs. H2A and H2B; M1A vs. M3A and M3B 

† P < 0.05 H2A vs. H2B; M3A vs. M3B 

‡ P < 0.05 10 s vs. Min 6 in each heavy and moderate exercise condition 

MPF values are shown as % of unloaded cycling

Variables 

 

Heavy Bouts 

 

Moderate Bouts 

H1B H2A H2B M1A M3A M3B 

MPF – 10 s 

 

 

116.0 ± 11.4 ‡ 118.1 ± 10.5 ‡ 120.7 ± 11.3 ‡ 

 

 

104.1 ± 7.2 110.8 ± 8.0 * 115.6 ± 9.1 *† 

MPF - Min 1 111.0 ± 11.6 113.5 ± 10.1 118.4 ± 10.2 *† 103.9 ± 7.1 108.8 ± 7.0 * 114.4 ± 7.4 *† 

MPF - Min 2 107.4 ± 7.4 109.1 ± 6.7 115.7 ± 6.5 *† 103.4 ± 6.4 109.5 ± 7.4 *  112.1 ± 8.8 * 

MPF - Min 3 107.8 ± 5.6 107.0 ± 4.4 112.3 ± 6.2 *† 102.4 ± 6.2 108.5 ± 8.7 * 112.4 ± 8.0 * 

MPF - Min 4 107.4 ± 5.1 108.3 ± 4.2 111.8 ± 4.2 * 101.9 ± 5.8 108.7 ± 8.6 * 111.6 ± 7.8 * 

MPF - Min 5  106.8 ± 4.5 107.3 ± 5.8 111.9 ± 4.2 *†  101.6 ± 5.6 109.7 ± 9.2 * 111.4  ± 8.1 * 

MPF - Min 6  106.7 ± 5.1 106.8 ± 5.2 111.8 ± 4.1 *†  101.2 ± 6.0 108.6 ± 8.4 * 111.6 ± 8.7 * 
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Figure 4.5: MPF (A) and integrated EMG (B) activity in BF muscle.  

Time series for MPF and iEMG are reported as a percentage of unloaded cycling    

(0 W). Data are the average (± SE) of all 8 participants with 2 repetitions per 

condition. 
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 There were no significant differences in iEMG activity at any time point 

between the three heavy exercise conditions in all muscles. There were also no 

significant differences in iEMG activity between the 2nd and 6th min of exercise 

within the three exercise conditions in all extensor muscles (Fig. 4.6) and flexor 

muscle (Fig.4.5). The ∆ iEMG(6-2) in the control heavy bout (H1B) were positive in the 

extensor muscles during [ VL (5.1 %), VM (4.9 %) and RF (5.2 %)]. This response 

was altered by warm-up exercise, such that in H2A ∆ iEMG(6-2) were less than 

control in VL (3.1 %) and VM (3.8 %), and was negative in RF (-2.1 %). There was 

an even more dramatic shift in H2B, where the ∆ iEMG(6-2) were negative in all three 

muscles [VL (-1.5 %), VM (-2.2 %) and RF (-6.3 %); Fig. 4.6]. In the flexor 

(antagonist) BF muscle, iEMG was slightly decreased in H1B (-3.5 %), unchanged in 

H2A (1.0 %) and further decreased in H2B (-13.6 %) (Fig. 4.5). Including all the 

muscles in PCA retained 53% of the variation of the 2OV slow component. However, 

excluding the flexor BF muscle (eigenvalue < 1) from PCA showed that ∆ iEMG(6-2) 

in the extensor VL, VM and RF muscles explained 74% of the variation in 2OV slow 

component. Therefore, the three extensor muscles were used in PCA to retain a 

single factor for the correlation. There were no significant correlation between        

∆ )26(2OV 
 and ∆ iEMG(6-2) in all three heavy bout conditions, while when the data 

from all subjects and conditions were clustered, there was a moderate but 

significant correlation between ∆ )26(2OV 
 and ∆ iEMG(6-2) in VL, VM and RF muscles 

(r = 0.45, P = 0.029). 

  In all moderate bouts, there were no changes in MPF throughout the 6 min 

of exercise. Yet, prior one or two heavy bouts significantly elevated MPF in the 

extensor VL, VM and RF muscles throughout the 6 min of subsequent moderate 
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exercise in a graded manner (Fig. 4.7, Tables 4.5 – 4.7). Relative to the control 

bout, average MPF throughout the exercise bout was elevated during M3A in VL 

(4.9 %), VM (5.1 %) and RF (6.5 %) muscles, and during M3B in VL (6.8 %), VM 

(13.0 %) and RF (10.8 %) muscles. MPF was significantly higher in VL and VM 

muscles through the 6 min of exercise after two heavy bouts (M3B) compared to 

after one heavy bout (M3A) (P < 0.05; Fig. 4.7). There were no changes in iEMG 

throughout the 6 min of moderate exercise. Also, there were no significant 

differences in iEMG activity at any time point between the three exercise conditions 

in all extensor muscles (Fig. 4.8). 
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Figure 4.6: Integrated EMG time series throughout heavy cycling bouts.  

Muscle activity is shown from vastus lateralis (VL), vastus medialis (VM) and rectus 

femoris (RF) muscles. MPF is reported as a percentage of unloaded cycling (0 W). 

Data are the average (± SE) of all 8 participants with 2 repetitions per condition. 
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Figure 4.7: MPF time series through moderate cycling bouts. 

Muscle activity is shown from vastus lateralis (VL), vastus medialis (VM) and rectus 

femoris (RF) muscles. MPF is reported as a percentage of unloaded cycling (0 W). 

Data are the average (± SE) of all 8 participants with 2 repetitions per condition.  
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Figure 4.8: Integrated EMG time series through moderate cycling bouts.  

Muscle activity is shown from vastus lateralis (VL), vastus medialis (VM) and rectus 

femoris (RF) muscles. MPF is reported as a percentage of unloaded cycling (0 W). 

Data are the average (± SE) of all 8 participants with 2 repetitions per condition. 
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4.5 Discussion 

 The results of this study clearly demonstrate the capacity of prior heavy and 

moderate exercise to diminish the amplitude of the 2OV slow component in 

addition to the important findings that: 1) the attenuation in slow component 

amplitude appears to be related to some changes in muscle activity, as measured 

by surface EMG; and 2) the higher O2 cost of moderate exercise is associated with 

higher MPF which may suggest changes in fibre types recruitment during moderate 

exercise after a heavy warm-up. 

4.5.1 Methodological considerations 

 Two minutes of unloaded cycling was employed prior to each protocol to 

serve as baseline condition in order to compare all changes in EMG activity within 

and between the testing protocols on different days. This allowed comparison of the 

different 20W baselines, as well as between the moderate and heavy bouts. The 

normalization of EMG data to the unloaded baseline condition did not impact the 

analyses as the baseline EMG was identical between days and protocols. As well 

as, no differences were shown in EMG activity between the 20 W baselines that 

precede each moderate and heavy condition (Table 4.3).  

 The principal components analysis (PCA) (Coste et al., 2005) was used to 

examine the relation between changes in iEMG activity and 2OV slow component. 

The central idea of using PCA is to aggregate the EMG activity measured in all 

muscles into one factor. PCA with VARIMAX rotation was used on the 4 muscles 

and eigenvalues greater than one were used to decide the number of muscles that 

show the most variation to be included in the analysis (Jolliffe, 2002).  This method 

of analysis enabled the inclusion of all the extensor muscles (VL, VM and RF) to 
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discern how they may contribute in concert to the development of 2OV slow 

component. However, the PCA was not able to detect the significant relationships 

between the changes in iEMG and slow component amplitude in the individual 

heavy exercise conditions. This might have been due to small number of 

participants, but could also reflect the inability of iEMG to relate to the mechanism 

involved for the increased 2OV  slow component. 

  Finally, the 2OV  slow component was calculated as the increase in 

amplitude between the 2nd and 6th min of the exercise bout. While some previous 

work has used the 3rd-6th min (Whipp & Wasserman, 1972; Whipp & Wasserman, 

1986), the slow component was shown to generally begin to manifest within the 

last 30 s of the second minute in our fitting analysis (Chapter 2), which has been 

shown in previous work (Cannon et al., 2007).  

4.5.2 Potential sources of the 2OV  slow component 

 Consistent with previous work (Gerbino et al., 1996; MacDonald et al., 1997; 

Whipp, 1994) we observed the development of a 2OV slow component during heavy 

exercise that was not present during moderate exercise. Several hypotheses, 

including peripheral and central factors, have been proposed to explain the excess 

of 2OV  during the slow component. Direct measurements of (a-v)DO2 have shown 

that the exercising legs are responsible for approximately 86% of the 2OV slow 

component (Poole et al., 1991); therefore, the pulmonary 2OV slow component 

reflects to a large extent the changes in O2 cost of the exercising muscles. However, 

increased cardiorespiratory work may still play a role (Aaron et al., 1992; Carra et 

al., 2003; Gaesser & Poole, 1996). While the primary anatomical source of 
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increased 2OV  during the slow component appears to be the skeletal muscle, the 

precise mechanisms which account for the majority of excess 2OV  remain unclear.  

 The prevailing hypothesis, originally posited by Shinohara and Moritani 

(1992), asserts that as Type I fibres fatigue, the recruitment of Type II muscle fibres 

increases in order to maintain appropriate force production. Since then, many 

supportive (Barstow et al., 1996; Burnley et al., 2002b; Krustrup et al., 2004; 

Pringle et al., 2003; Sahlin et al., 2005) and contradictory (Cannon et al., 2007; 

Garland et al., 2006; Perrey et al., 2003b; Scheuermann et al., 2001) findings have 

been reported regarding the role of additional muscle fibre recruitment in the 

development the slow component. 

 In support of the progressive recruitment hypothesis, Sahlin et al. (1997) 

showed marked increase in the degradation of PCr and rise of energy requirement 

by the end of submaximal cycling exercise at 75% 2OV max.  Furthermore, at the 

whole body level, both proportion of Type II fibres (Barstow et al., 1996) and plasma 

[NH3
+], a marker of Type II fibre activation (Sabapathy et al., 2005), were correlated 

with slow component amplitudes. Additional support for the progressive 

recruitment hypothesis comes from studies examining half-relaxation time (T2) 

using MRI. Saunders et al. (2000) observed an increase in the O2 cost per unit of 

active muscle during high intensity, but not moderate intensity exercise, 

suggesting the recruitment of less efficient Type II muscle fibres. Furthermore, 

Endo et al. (2007) showed that in 10 muscles of the thigh, there is an increasing 

difference in the activation of muscles between the 3rd and 6th minute of exercise as 

intensity progressed from moderate, to heavy, to severe, and that this correlated 

significantly with 2OV  slow component amplitude.  
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 It has been suggested previously that agonist-antagonist co-activation might 

increase as exercise duration increases, resulting in reduced efficiency, increased 

internal work rate and elevated O2 cost (Kellis, 1998). However, Borrani et al. 

(2003) showed that slow component is not a result of a change in external or 

internal mechanical work with fatigue and, in the current study, there was no 

evidence of increased co-activation as there was a decrease  in the iEMG activity of 

the antagonistic BF muscle (Fig. 4.5). In trained subjects, co-activation may 

actually decrease with the progress of exercise (Hautier et al., 2000). These 

subjects may have learned to use their agonist and antagonist muscles more 

efficiently to lower the O2 demand and attenuate the 2OV slow component 

amplitude during the second exercise bout. 

 Another possible mechanism suggested for the development of the 2OV slow 

component is the accumulation of [La-] with exercise progression. A high 

correlation between the increase in blood [La-] and the excess of 2OV slow 

component has been observed (Roston et al., 1987); however, similar to other 

studies (Koppo & Bouckaert, 2000; Poole et al., 1994; Sahlin et al., 2005) our data 

quite convincingly show that lactic acidosis could not be a factor, since blood  [La-]  

levels were significantly elevated throughout the second heavy bout (H2B), despite 

the fact that the slow component amplitude was significantly reduced (Table 4.1). 

Sahlin et al. (2005) showed no changes in muscle or blood [La-] from 3 to 10 min of 

heavy exercise where the slow component was manifested. Moreover, there were no 

correlations observed between changes in muscle and blood [La-] and the 

amplitude of the 2OV  slow component (Duffield et al., 2007).  
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4.5.3 Effects of warm-up exercise on the 2OV  slow component and EMG 

 Using a prior exercise model described in Chapter 2, there were graded 

reductions in the amplitude of the slow component by 22% and 49% when the 

heavy exercise bout was preceded by moderate and heavy exercise, respectively. It 

was hypothesized that changes in muscle recruitment might explain the graded 

attenuation in slow component amplitude following moderate and heavy exercise; 

therefore, in this study the same protocols were repeated in concert with surface 

EMG measurements. In this study, prior moderate and heavy exercise resulted in 

19% and 40% reductions in the slow component amplitude [∆ )26(2OV 
 ] during 

subsequent heavy exercise bouts, respectively. 

 As noted in some previous studies (Burnley et al., 2002b; Garland et al., 

2006; Scheuermann et al., 2001), cycling exercise involves activation of a large 

group of muscles within the thigh, making it necessary to examine EMG in more 

than one muscle; therefore, EMG activity was measured in multiple thigh muscles. 

It was observed that the moderate ∆ iEMG (6-2) across the three knee extensor 

muscles in the control heavy bout (H1B) was attenuated in a graded fashion during 

the H2A and H2B bouts following moderate and heavy warm-ups, respectively (Fig. 

4.6). Principal components analysis was also employed in order to discern if 

alterations in recruitment within this muscle group as a whole may account for the 

development of the slow component. Although there were no significant differences 

in iEMG between the 2nd and 6th min of exercise, prior warm-up exercise slightly 

attenuated the overall activation increase (∆ iEMG (6-2)), and this attenuation was 

moderately correlated with slow component amplitudes. This correlation between 

slow component amplitude and principal components analysis of ∆ iEMG (6-2) from 
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all three thigh muscles provides some evidence that lower muscle activation in the 

second half of the bout may be associated with attenuation of the slow component. 

On the other hand, it cannot be overlooked that no significant change was noted in 

iEMG between the 2nd and 6th min suggesting that other factors, such as 

redistribution of the blood flow to the periphery and mismatching between O2 

supply and demand  (Tordi et al., 2003), reduced efficiency (Sahlin et al., 2005) or 

elevated temperature (Krustrup et al., 2001), likely play a role to the development 

of slow component in addition to changes in muscle fibre recruitment. 

Furthermore, the iEMG activities during the 20W baselines prior to each heavy and 

moderate bouts (Table 4.3) as well as, at the end of exercise during moderate 

exercise (Table 4.4) were the same between conditions, when 2OV was significantly 

higher after prior heavy warm-up (Table 4.1 and 4.2), and slightly elevated at the 

end of moderate exercise that  followed the heavy warm-ups (Table 4.2) indicating 

that changes in muscle recruitment are insufficient to explain all differences in 

2OV  during exercise. 

 In this study, the attenuation of iEMG during a second heavy exercise bout 

following short periods of recovery from moderate and heavy warm-up is consistent 

with another study that examined EMG activity (Bailey et al., 2009b). However, the 

additional observation of a high correlation between ∆ iEMG (6-2) and the slow 

component may be explained by differences in analysis methods. Fitting analysis 

(Table 4.1) and the calculation of )26(2OV 
 clearly showed that the 2OV  slow 

component amplitude was truly diminished without changes in the primary phase 

amplitude. In contrast, other studies have observed larger primary phase 

amplitudes associated with an increase in fibre recruitment as suggested by 
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increased iEMG, early in exercise (Burnley et al., 2002b; Sahlin et al., 2005).        

In this study, there was also a reduction in the slow component amplitude even 

after a short bout of moderate exercise, similar to that shown after a longer period 

of moderate exercise (Koppo & Bouckaert, 2000; Koppo & Bouckaert, 2002). 

 While iEMG data provide some evidence of changes in muscle fibre 

recruitment, the MPF data could not discern the types of muscle fibres being 

recruited.  Additionally, there was a decreasing trend in MPF for all extensor 

muscles within heavy bouts (Fig. 4.4). This trend and the lack of correlation 

between MPF and the slow component is in contrast to a temporal relationship 

observed between the beginning of the slow component and increases in MPF in 

trained runners (Borrani et al., 2001). The graded increases between each 

condition are suggestive of increasing fibre recruitment throughout the exercise 

bout from start to finish. It was interesting that in heavy exercise MPF tended to 

decrease early in exercise and then leveled off in contrast to moderate exercise 

where no changes occurred throughout the exercise. The early decrease in MPF 

observed during the heavy bouts may be due to a greater force needed to overcome 

the inertia of the cycle ergometer at the onset. Indeed, MPF toward the end of the 

control bouts was similar between moderate and heavy exercise. 

 The graded reductions in the 2OV  slow component were observed to occur 

in concert with accelerated primary phase kinetics. It was shown in Chapter 2 that 

the acceleration of primary phase 2OV  kinetics during heavy exercise was related, 

in part, to improved O2 delivery, since Q  kinetics were similarly accelerated by 

both moderate and heavy warm-ups. If bulk O2 delivery and matching of O2 supply 

to demand in the microvasculature is improved early in exercise, this may have 
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important implications for any putative fibre type recruitment shift, since the 

energetic state of the cell is determined by the interplay of oxygen partial pressure, 

enzyme/substrate levels, and ADP concentrations (Hughson, 2009; Hughson et al., 

2001; Tschakovsky & Hughson, 1999). Reduced metabolic fatigue early in exercise 

might generate a lower demand for additional fibre recruitment, and therefore 

reduce the 2OV slow component. Burnley et al. (2002b) suggested that greater 

recruitment of Type II muscle fibres early in exercise might reduce the force 

demand and metabolic strain per single fibre; however, this response was not 

observed in this study or recent studies from the same group (Bailey et al., 2009b; 

DiMenna et al., 2008). Additionally, Layec et al. (2009) showed that during second 

heavy exercise bout, muscle oxygenation, as measured by NIRS, was higher and 

muscle [ADP], measured by 31P-MRS, was lower while ATP production remained 

similar to control. These authors raised the possibility that this could enhance the 

phosphorylation potential of ATP compared to control conditions. The improved 

metabolic conditions may limit the reduction in contractile efficiency (Rossiter et 

al., 2001; Zoladz et al., 2008), thereby reducing the O2 cost of force production and 

resulting in a smaller slow component. 

4.5.4 Impact of prior exercise on moderate exercise oxygen consumption 

 As expected, during moderate exercise there was no evidence of the 2OV  

slow component and no changes in MPF (Fig. 4.8) and iEMG (Fig. 4.9) throughout 

the exercise bouts with and without prior heavy warm-up. There was; however, a 

graded and constant increase in MPF after one (M3A) and two (M3B) heavy warm-

ups bouts compared to control (Fig. 4.8). While Gonzales and Scheuermann (2008) 

observed an elevation in median power frequency during a moderate bout after 
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heavy warm-up exercise, they saw no associations with changes in 2OV or 2OV  

gain. In contrast in the current study, a consistent increase in MPF was observed 

in all muscles studied. Subjects with a higher proportion of Type II fibres tend to 

show lower gain during moderate exercise transitions (Pringle et al., 2003). The 

higher absolute 2OV  during moderate exercise after heavy warm-up (Table 4.2) 

could be explained by fatigue resulting in higher O2 cost per ATP generated 

(Rossiter et al., 2001) or the recruitment of additional muscle fibres which have a 

lower phosphate to O2 ratio (Crow & Kushmerick, 1982).  

 There may be several possible reasons for observing a larger gradation in 

MPF compared to the heavy exercise bouts. First, due to the size principle of motor 

unit recruitment (Henneman et al., 1965) it would be expected that fewer Type II 

fibres would be employed during control moderate exercise, so any increase in 

muscle fibre recruitment after heavy exercise might then have a more dramatic 

effect on overall MPF.  Secondly, the warm-ups involved for heavy bouts were one 

moderate or one heavy bout; whereas the moderate bouts were preceded by one 

moderate plus one heavy bout, or two heavy bouts possibly resulting in elevated 

muscle temperature (Krustrup et al., 2001) that could have increased conduction 

velocity (Bigland-Ritchie & Woods, 1984).  

4.6 Limitations 

 While surface EMG is a well-established method for measuring electrical 

activation of muscle fibres and a tight relationship between iEMG and O2 

consumption has been observed (Bigland-Ritchie & Woods, 1974), there are several 

considerations that should be made when employing its various derivatives to 

make statements about changes in muscle activity and relating them to the slow 
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component. First, as with breath-by-breath 2OV  measurements, surface EMG 

measures contain significant variability, which needs to be reduced in order to 

discern any real physiological changes (Farina & Mesin, 2005). The use of repeated 

measures on both 2OV  and EMG increases the confidence that our results might 

represent true changes in muscle recruitment and that the relation to VO2 2OV  is 

accurate. Still, the resolution of EMG does not necessarily allow the ability to 

discern small changes in motor unit recruitment. Electrode placement between 

days may have been different and therefore may have affected EMG signals, 

however the baseline EMG did not vary between days and protocols verify that care 

was taken in precise electrode placement. From a theoretical standpoint, an 

increase in MPF measured at the surface should correspond to an increase in 

conduction velocity within the muscle (Stulen & DeLuca, 1981), indicating the 

recruitment of larger, faster muscle fibres (Kupa et al., 1995). However, any 

increase in conduction velocity related to increased recruitment of fast Type II 

fibres may be overwhelmed by the MPF depressing effects of higher extracellular 

[K+], leading to no change in overall MPF measured at the surface (Fortune & 

Lowery, 2009).  Additionally, intramuscular temperature increases greatly during 

exercise and changes in muscle temperature could certainly affect MPF by 

increasing conduction velocity (Gamet et al., 1993). Therefore, it is unclear how 

much of the gradation in MPF responses were due to actual changes in recruitment 

and to what degree changes in body temperature influenced the frequency, since 

both variables might alter MPF similarly.  
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4.7 Conclusion 

 It was observed that the 2OV slow component amplitude and increase in 

iEMG during heavy cycling exercise were attenuated in a graded manner following 

moderate and heavy warm-up. There was a moderate correlation between the 

attenuation in the 2OV  slow component and the simultaneous changes of iEMG 

across the extensor muscles of the thigh when all the data from all subjects across 

all exercise conditions were clustered. Pooling of results from principal components 

analysis across conditions might not be appropriate so further work is required to 

explore the hypothesis that changes in progressive fibre recruitment during heavy 

exercise could affect the amplitude of the 2OV slow component. Furthermore, the 

increased O2 cost of moderate exercise after a heavy warm-up was associated with 

a higher MPF of contractions in the thigh extensor muscles. However, the effect of 

temperature on increased MPF during moderate exercise following prior heavy 

exercise should be taken in consideration. Despite some limitations, measurement 

of leg muscle EMG may provide some evidence for increased muscle fibre 

recruitment during heavy and moderate exercise that follow prior heavy warm-up. 
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Chapter 5 

General discussion and future considerations 

5.1 General discussion 

 Oxygen uptake kinetics reflect the dynamic balance between O2 transport 

and utilization mechanisms affecting muscle energetics during work rate 

transitions. The rate of increase in oxidative phosphorylation at the onset of 

exercise has been debated to be limited by the adaptations of O2 transport and O2 

utilization mechanisms (Grassi, 2001; Hughson, 2009; Poole et al., 2008; 

Tschakovsky & Hughson, 1999; Whipp et al., 2005). Interventions that can 

accelerate 2OV kinetics will increase the proportional contribution of oxidative 

metabolism to the total energy demands and could lead to enhanced exercise 

performance. Prior heavy exercise is an experimental paradigm that accelerates 

2OV kinetics at the onset of subsequent exercise, potentially through several 

mechanisms that affect both O2 transport (Faisal et al., 2010; Gerbino et al., 1996; 

MacDonald et al., 1997) and O2 utilization (Bangsbo et al., 2000; Grassi et al., 

1996; Gurd et al., 2006). Alternatively, prior circulatory occlusion is an 

intervention that elevates muscle blood flow prior to the onset of subsequent 

exercise (Carlsson et al., 1987) and has been shown to accelerate pulmonary 2OV

kinetics (Paganelli et al., 1989; Walsh et al., 2002). 

 The main observation of this thesis is that simultaneous measurements of 

O2 transport and O2 utilization can provide considerable insight into the control 

mechanisms regulating 2OV kinetics at the onset of exercise. In Chapter 2 the time 

course of the increase in Q and O2 uptake during the transition to heavy and 

moderate cycling exercise was characterized. Prior moderate and heavy exercise 
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was applied to examine whether these interventions would result in more rapid 

2OV and Q responses in subsequent moderate and heavy exercise. An interesting 

finding from this study was that the temporal responses of Q and alveolar O2 

uptake seemed to parallel each other at the onset of heavy exercise, and to a lesser 

extent during moderate exercise. This finding is in agreement with a tight coupling 

between the kinetics of capillary blood flow measured by near-infrared 

spectroscopy (NIRS) and mus2OV during both moderate and heavy cycling exercise 

(Ferreira et al., 2005a).  

 Contrary to the majority of previous cycling studies (i.e. Burnley et al., 2000; 

Gerbino et al., 1996; Jones et al., 2006; Koppo et al., 2003), in this study there was 

actual acceleration in 2OV kinetics during the second heavy bout as shown by a 

smaller 2. For the first time, prior moderate exercise was shown to accelerate the 

2OV kinetics and reduce 2 in subsequent heavy exercise in endurance athletes. 

Faster 2OV kinetics following prior moderate and heavy exercise were coupled with 

similar acceleration in Q kinetics. A faster increase in Q at the onset of heavy 

exercise can impact the regulation of O2 uptake. Greater O2 delivery can improve 

the oxidative phosphorylation contribution to energy production, while reducing 

the O2 deficit and cellular homeostasis disturbance (MacDonald et al., 1997). The 

proposed mechanism involves an increase in PaO2 as a function of increased O2 

delivery (Hughson, 2009; Tschakovsky & Hughson, 1999) and a subsequent 

reduction in PCr degradation and substrate level phosphorylation (Rossiter et al., 

2001). The acceleration of 2OV  kinetics at the onset of moderate exercise that 

followed a heavy warm-up was associated with a small increase in Q and greater  
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(a-v)DO2 differences. These results do not rule out the potential role of prior 

exercise to stimulate the O2 utilization machinery and regulate 2OV kinetics during 

moderate exercise. Gurd et al. (2006) showed that prior heavy exercise accelerated 

the VO2 kinetics during a subsequent moderate bout (2 reduced from 24 to 19 s) 

due to faster activation of pyruvate dehydrogenase. 

 Numerous non-invasive techniques such as foreign gas rebreathing (Bell et 

al., 2003; Hunt et al., 1997; Johnson et al., 2000), Doppler echocardiography (Ihlen 

et al., 1987) and vascular impedance cardiography (Perrey et al., 2003a; Yoshida & 

Whipp, 1994), have been applied to measure Q during exercise. However, these 

techniques were limited to steady state exercise. The finger cuff Modelflow 

technique (Wesseling et al., 1993) offered a continuous beat-to-beat estimate of SV 

and Q during transitions to moderate and heavy cycling exercise with a high time 

resolution thereby providing valuable  information on the acute time course of 

changes inQ . ModelFlow Q estimation was validated during steady-state exercise 

using C2H2 rebreathing (Faisal et al., 2009). One of the most interesting findings in 

this study was the observation of a rapid SV overshoot at the onset of moderate 

and heavy exercise. The SV overshoot reflects the sudden increase in venous return 

mediated primarily by the action of the muscle pump during upright cycling 

exercise (Sheriff et al., 1993; Tschakovsky et al., 1996). 

 The observation of accelerated 2OV and Q  during heavy cycling exercise 

following prior moderate and heavy exercise shown in the first study (Chapter 2) 

led to further investigations into the impact of elevated muscle blood flow prior to 

the onset of heavy exercise on blood flow and mus2OV kinetics. In Chapter 3 the 



 

155 

 

dynamic responses of FBF, measured directly by Doppler ultrasound, and mus2OV

during the transition to heavy hand-grip exercise were investigated following prior 

heavy exercise and circulatory occlusion to examine whether these interventions 

would result in a similar rapid blood flow response and acceleration in mus2OV

during subsequent heavy exercise. In agreement with previous studies that 

employed a prior heavy exercise paradigm (Fukuba et al., 2007; Hughson et al., 

2003; MacDonald et al., 2001b), it was observed that prior heavy exercise resulted 

in a faster increase in muscle blood flow and mus2OV at the onset of a subsequent 

heavy exercise bout (Faisal et al., 2010). This finding supported the original 

hypothesis that increased oxidative metabolism at the onset of exercise is linked to 

increased O2 delivery to the working muscles. It has been shown that the degree of 

tissue oxygenation may play a role in modulating the levels of other regulators of 

oxidative phosphorylation such that altered tissue oxygenation by reduced PaO2 

will result in a greater change in the regulators of cellular respiration (e.g. 

phosphocreatine, ADP) to achieve a given mus2OV (Haseler et al., 1998; Hogan et al., 

1992). There was a direct linear relationship between the PCr degradation and the 

magnitude of the O2 deficit during submaximal exercise while breathing gases with 

varying inspired PaO2 (Linnarsson et al., 1974). Additionally, Hughson (2005; 2009) 

suggested theoretical models that illustrate the impact of dynamic changes in the 

PaO2 on enzyme activity, metabolic substrates and how the oxidative metabolism at 

the onset of exercise is modulated by a dynamic interaction between O2 delivery 

and utilization mechanisms. 

 Chapter 3 also presented results from an alternative model designed to 

enhance muscle blood flow and O2 delivery at the onset of exercise based on prior 
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circulatory occlusion. Although prior occlusion elevated blood flow prior to exercise 

onset, blood flow and O2 extraction were depressed in the early phase of exercise, 

resulting in slower mus2OV dynamics with the onset of heavy exercise (Faisal et al., 

2010). These results contrast with previous studies that reported faster pulmonary

2OV  kinetics following circulatory occlusion (Paganelli et al., 1989; Walsh et al., 

2002). Based on previous observations that post-occlusion reactive hyperaemia 

was significantly elevated by indomethacin and ibuprofen, inhibitors of 

cycloxygenase (Naylor et al., 1999), it was speculated that vasoconstrictor PGs 

might have contributed to the suppression of muscle blood flow during exercise 

following ischemia.  Ingestion of a high dose of ibuprofen prior to the circulatory 

occlusion protocol was able to restore FBF and mus2OV to control levels, although 

(a-v)DO2 remained suppressed relative to the control condition. These results 

suggest that blood flow was influenced by a vasoconstrictor prostaglandin 

mechanism, and perhaps prior occlusion had an independent effect on muscle 

metabolism.  

 Chapter 4 described a study designed to investigate whether changes in 

muscle activity as assessed by EMG are related to changes in 2OV slow component 

amplitude and increased O2 cost during moderate exercise after heavy warm-up. 

Although there was no change in iEMG activity during each of the heavy and 

moderate exercise conditions, there was a significant increase in O2 consumption 

between the 2nd and 6th min of heavy exercise and throughout moderate exercise 

after prior heavy warm-up. This observation may suggest that additional factors 

other than the progressive recruitment of muscle fibres may be involved in the 

development of slow component during heavy exercise and elevate steady state 
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2OV during moderate exercise after the heavy warm-up. Interestingly, applying the 

principal component analysis to aggregate the EMG activity in all muscles into one 

factor showed a significant correlation between ∆ iEMG (6-2) activity in the knee 

extensor muscles and 2OV slow component amplitude. Additionally, the increase of 

O2 cost during moderate exercise following the heavy warm-up was associated with 

increase in MPF. These later observations provide some evidence for the 

progressive recruitment of type II muscle fibres during the slow component and 

throughout the moderate exercise following the heavy warm-up.  

 This thesis focused on the study of O2 transport and O2 utilization 

mechanisms in highly fit young men; therefore, the data might not reflect the 

general population, but rather a particular subset of the population with well-

adapted cardiovascular and metabolic responses. Training status might be an 

important factor that has rarely been addressed in the studies employing 

experimental models designed to improve O2 availability (i.e. prior exercise or prior 

ischemia) in examining blood flow and 2OV kinetics. There is some evidence that 

subjects of higher fitness (Knight et al., 1993) are more sensitive to O2 delivery 

limitations than subjects of lower fitness (Cardus et al., 1998)to improve their 

maximal oxygen uptake. Although, untrained healthy individuals with slower 2OV

kinetics have shown greater acceleration of 2 during moderate exercise after prior 

heavy warm-up than those who have fast 2OV kinetics (Gurd et al., 2005). Elite 

athletes might be more susceptible to limitations in oxygen delivery at the onset of 

heavy exercise. Endurance athletes tend to show fast 2OV kinetics (Berger et al., 

2006c) and a high O2 extraction fraction during exercise (Kalliokoski et al., 2001) 
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that may slightly be enhanced by prior warm-up. Tordi et al. (2003) reported a 

faster primary component of 2OV kinetics (2 reduced from 29 to 22 s) during 

subsequent heavy cycling exercise following prior multiple-sprint exercise in well 

trained athletes because O2 delivery was also enhanced. Similarly, endurance 

athletes in the current study have shown an acceleration in 2OV and Q  kinetics (2 

reduced from 27 to 22 s). Although individuals show large variation in matching 

blood flow to mus2OV  at the onset of exercise, endurance athletes tend to have a 

better matching between muscle blood flow and mus2OV than untrained men 

(Kalliokoski et al., 2005). More recently, Hernandez et al. (2010) showed that a 

prior bout of contractions speeds blood flow and mus2OV onset kinetics during a 

subsequent bout in highly oxidative skeletal muscle. Additionally, Bailey et al. 

(2010) have shown that 4 weeks of inspiratory muscle training were able to reduce 

the respiratory muscles fatigue, increased blood flow to the exercising muscle and 

improved 2OV kinetics following the onset of high intensity exercise suggesting that 

enhanced O2 delivery enabled the increase of oxidative phosphorylation during the 

transition to heavy exercise. Therefore, it could be inferred that O2 delivery will play 

a greater role to accelerate 2OV kinetics in trained humans who have a well 

adapted respiratory system. 
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5.2 Conclusion 

 In summary, the results of the studies presented in this thesis clearly 

provided evidence that enhanced O2 supply to the exercising muscles following 

prior exercise enabled a faster increase in the rate of oxidative phosphorylation 

during the transition to heavy exercise in trained humans. On the other hand, 

prior circulatory occlusion depressed mus2OV
 
kinetics by retarding the increase in 

muscle blood flow and reducing O2 extraction. The surface electromyography 

provided partial evidence for the role of muscle fibre recruitment to the 

development of slow component and increased O2 cost during moderate exercise 

following a heavy warm-up.  

 Warm-up intervention is a regular routine to enhance the performance 

during subsequent training sessions or during competition. Although trained 

subjects would be expected to show small acceleration in 2OV kinetics following 

prior warm-up, this increase may provide a boost to the performance during an 

Olympic medal or world record attempt. Therefore, the investigation of different 

warm-up interventions that could accelerate the rate of oxidative phosphorylation 

is very essential for sport performance. 

 

 

 

 

 



 

160 

 

5.3 Future considerations 

 The studies enclosed in this thesis addressed mechanisms regulating 2OV

kinetics at the onset of exercise. Several interventions were applied to manipulate 

the rate of increase in O2 delivery prior to exercise. The measurements of O2 

transport were primarily non-invasive in nature. The following recommendations 

address specific methodological issues in this thesis. 

 In Chapter 2, estimates of Q were obtained during cycling exercise by the 

beat-to-beat method of finger arterial blood pressure by the Modelflow algorithm. 

The derived kinetics of Q were used as a surrogate marker for leg blood flow 

kinetics during cycling exercise. Increased Q  after heavy warm-up indicated a 

partial redistribution of blood flow to serve thermoregulatory demands, and 

therefore one cannot be sure of the flow to the working muscle. However, previous 

studies (Hughson et al., 2003; Krustrup et al., 2001; MacDonald et al., 2001b) as 

well as the current research in Chapter 3 have directly measured an increase in 

blood flow to the muscle following a heavy warm-up, which supports the notion 

that at least some of the increase in Q  observed in the present study is directed to 

the working muscle. Additionally, ModelFlow Q  was validated during “steady state” 

phases of exercise; it was not possible to calibrate Modelflow Q  during dynamic 

transitions at the onset of exercise. The validation of Modelflow Q during exercise 

transition will be of great advantage in the exercise modalities where direct 

measurements of blood flow is not possible; though we know of no method by 

which this could be performed. 
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 In Chapter 3 of this study, muscle blood flow and O2 extraction were 

depressed following prolonged circulatory occlusion.  Oral administration of a 

prostaglandin synthase inhibitor was able to restore muscle blood flow at the onset 

of exercise that followed prolonged circulatory occlusion to the control level (Faisal 

et al., 2010), and others have demonstrated marked reductions in SBF during 

reactive hyperemia (Binggeli et al., 2003). These observations suggest that ischemia 

might have disparate effects on perfusion in different tissues. It will be interesting 

to examine whether circulatory occlusion, with the potential release of the 

vasoconstrictor thromboxane A2 (Mathieson et al., 1983) has a systemic effect on 

tissue perfusion by measuring muscle and SBF during exercise when ischemia 

followed by reperfusion has been applied to a distant, non-exercising limb.  

 Repeated episodes of ischemia followed by reperfusion (ischemic 

preconditioning) represent an endogenous protective mechanism that delays cell 

injury. Recent observations have shown that remote ischemic preconditioning 

improved endothelial function (Kharbanda et al., 2002), decreased myocardial 

infarction effect (Botker et al., 2010) as well as, increased maximal O2 consumption 

and maximal power output during subsequent incremental cycling test (de Groot et 

al., 2010). It would be interesting to examine muscle blood flow and mus2OV
 

kinetics responses following short periods of intermittent occlusion rather than 

prolonged period of ischemia. 

 Furthermore, changes in the metabolic environment and PaO2 during and 

after intermittent and prolonged ischemia as well as during subsequent exercise 

also deserve future attention. Magnetic resonance spectroscopy is a powerful, non-

invasive method that could offer a great potential to investigate human 
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biochemistry. This technique would help to assess PaO2 and provide a clear picture 

about the time course of PCr degradation during exercise transition following 

prolonged ischemia. Duplicating the prolonged ischemia study using magnetic 

resonance spectroscopy would provide more precise information about the 

metabolic environment and the mechanisms that could contribute to the depressed 

O2 extraction shown in the current study.  
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Appendix A 

 

Oxygen uptake and blood pressure regulation at the onset of exercise: 

Interaction of circadian rhythm and priming exercise 

 

This appendix is the basis for the manuscript accepted (September 28, 2010) for 

publication in the American Journal of Physiology - Heart and Circulation.  

Yet it is not available online as an Article in Press 
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A.1 Overview 

 Circadian rhythm has an influence on several physiological functions that 

contribute to athletic performance. We tested the hypothesis that circadian rhythm 

would affect BP responses but not 2OV kinetics during the transitions to moderate 

and heavy cycling exercises. Nine male athletes (
peak2

OV : 60.5 ± 3.2 ml/kg/min) 

performed multiple rides of two different cycling protocols, involving 6-minute 

bouts at moderate and heavy intensities, in the morning (7 am) and evening (5 pm). 

Breath-by-breath 2OV  and beat-by-beat BP estimated by finger cuff 

plethysmography were measured simultaneously throughout the protocols. 

Circadian rhythm did not affect 2OV  onset kinetics during either moderate (M) or 

heavy (H) exercise (2 M: morning 22.5 ± 4.6 s vs. evening 22.2 ± 4.6 s; 2 H: 

morning 26.0 ± 2.7 s vs. evening 26.2 ± 2.6 s; P > 0.05). Priming exercise induced 

the same robust acceleration in 2OV kinetics during subsequent moderate and 

heavy exercise in the morning and evening. A novel finding was an overshoot in the 

estimate of BP from finger cuff plethysmography in the first minutes of each 

moderate and heavy exercise bout. After the initial overshoot, BP declined in 

association with increasing SBF between the 3rd and 6th minute of the exercise 

bout. Priming exercise showed a greater effect in modulating the BP responses in 

the evening. These findings suggest that circadian rhythm interacts with priming 

exercise to attenuate BP responses during exercise with a greater influence in the 

evening due to increased SBF.  
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A.2 Introduction 

 Circadian rhythm has shown potent affects on a wide range of 

cardiovascular functions (Guo & Stein, 2003).  However, only two studies have 

examined the effect of circadian rhythm on 2OV and BP during exercise. Circadian 

rhythm displays small effects on resting 2OV ; however, this influence weakens and 

disappears with increasing exercise intensity (Reilly & Brooks, 1990). The previous 

studies that examined the effect of circadian rhythm on 2OV  kinetics have offered 

diametrically opposing results. Carter et al. (2002) reported no diurnal variation of 

2OV  kinetics during either moderate or heavy exercise, while Brisswalter et al. 

(2007) showed a robust acceleration of 2OV  kinetics and a higher steady-state 

2OV  during moderate exercise in the evening. It is unclear, then, whether or not 

2OV  kinetics are affected by circadian rhythm. It has been shown in Chapter 2 

that prior moderate and heavy exercise can accelerate 2OV  kinetics in endurance 

athlete, but it is unknown if these responses would be affected by the time of day. 

 The circadian variation in BP has been known for over 100 years (Hill & 

Lond, 1898), with the lowest BP during sleeping, a morning “surge” around the 

waking hours and the highest BP at midday (Kario et al., 2003; Millar-Craig et al., 

1978; Verdecchia et al., 1990). Recent studies have shown a greater effect of 

circadian rhythm on post exercise BP responses in the afternoon (Jones et al., 

2008a; Jones et al., 2008b). However, no previous study has investigated the effect 

of circadian rhythm on BP during exercise transitions. Altered SBF may alter the 

control of arterial BP, particularly after warm-up when the thermoregulatory 

mechanisms are engaged. Exercise induces a specific heat load that results in 
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smaller temperature increases and larger cutaneous vasodilatory responses in the 

afternoon (Aldemir et al., 2000; Waterhouse et al., 2007) suggesting a potential for 

greater BP reduction in the afternoon. This attenuation of BP response may sustain 

through subsequent daily activity and exercise (MacDonald et al., 2001a). 

 2OV onset kinetics and beat-by-beat BP in association with SBF were 

examined at two different times of day (morning and evening) and during different 

protocols involving transitions from light exercise to moderate and heavy exercise. 

It has been hypothesized that circadian rhythm would attenuate the BP responses 

during moderate and heavy exercise in the evening due to greater thermoregulatory 

effects but would not affect 2OV kinetics during either moderate or heavy exercise. 

Additionally, prior moderate and heavy exercise would have different effects on BP 

responses during subsequent exercise in the morning compared to the evening, but 

would have the same effects on 2OV kinetics during subsequent exercise regardless 

of time of day. 

 

 

 

 

 

 

 

 

 



 

167 

 

A.3 Methods 

Subjects 

 Nine men who regularly participated in endurance training activities (age: 

22.3 ± 2.7 years, height: 178.6 ± 7.8 cm, weight: 71.9 ± 6.5 kg, 
peak2

OV : 4325 ± 

516 ml/min; mean ± SD), same subjects participated in the study in Chapter 2, 

gave consent to participate in this study following full description of the protocols. 

To minimize the between-subject variability in aerobic fitness, an inclusion 

criterion of 
peak2

OV > 55 ml/kg/min was used during recruitment. This study was 

approved by the Office of Research Ethics at the University of Waterloo.  

Experimental design 

All subjects first performed an incremental exercise test to volitional 

exhaustion on an electrically-braked cycle ergometer (Excalibur, Lode, Groningen, 

Netherlands) to determine their 
peak2

OV and ventilatory threshold (VT) as 

described in Chapter 2. All subjects performed multiple rides of two different 

cycling protocols either in the early morning (7am) or early evening (5pm). Both 

protocols involved 6-minute bouts at moderate (M; 80% VT) and heavy (H; 85%

peak2
OV ) intensities (M; 146 ± 33 W and H; 266 ± 35 W) interspersed with 6-

minute bouts at 20 W. Moderate and heavy work rates were calculated from the 

incremental test and assigned names identifying the intensity, the bout number 

within the protocol, and the protocol itself as follows: Protocol A = moderate (M1A) 

followed by heavy (H2A) followed by moderate (M3A); Protocol B = heavy (H1B) 

followed by heavy (H2B) followed by moderate (M3B). The protocols were shown 

previously in Chapter 2 (Fig. 2.1).  
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 Pedaling frequency was maintained at 80 rpm throughout each protocol and 

the same cycle ergometer and individual set up (handle bar and seat position) was 

used throughout the study. Subjects were asked to report to the laboratory in a 

rested, hydrated state and abstain from consuming caffeine for 12 h and alcohol 

for 24 h prior to test sessions. All rides were performed at least 24 h after the 

participants’ last exercise regimen and 36 h following their last study ride. The 

tests were completed in a quiet, air-conditioned laboratory at a temperature of 

~23°C. 

Breath-by-breath oxygen uptake 

 Pulmonary gas exchange was measured continuously in at least 4 rides of 

each protocol (morning and evening) on a breath-by-breath basis (First Breath, 

Waterloo, ON) by measuring inspired and expired concentrations of O2, CO2, and 

N2 via mass spectrometry (Innovision, Amis 2000, Odense, Denmark). Gas volumes 

and concentrations were measured as described in Chapter 2. 

Blood pressure and cardiac output 

 Arterial BP was measured continuously in all protocols using finger arterial 

pressure pulse wave analysis (Finometer, Finapres Medical System, Arnhem, 

Netherlands), which also estimated Q beat-by-beat. In order to minimize the effect 

of arm and hand movement on BP and Q signals, a sling apparatus supported the 

left arm slightly below heart level while subjects cycled. An appropriately sized cuff 

was wrapped around the distal end of the third or fourth digit to measure finger 

artery pressure, and a glycerin column and pressure transducer were used to 

correct for hydrostatic pressure differences between the level of the hand and the 

heart. The Finometer used a transfer function to estimate the brachial pressure 

waveform from finger pressure waveform. During setup, a return-to-flow 
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calibration, using an automated arm-cuff, was used to further validate the 

transformed pressure waveform (Bos et al., 1996). To maintain signal validity 

throughout the rides, an automatic physiologic calibration (“physiocal”) was run 

periodically after ≤ 70 beats to calibrate the finger artery size at which finger cuff 

air pressure equals finger arterial blood pressure. The BP, Q and electrocardiogram 

(ECG) (Pilot 9200, Colin Medical Instruments, San Antonio, TX) signals were 

sampled at 1 kHz (PowerLab, AD Instruments, Colorado Springs, CO). The 

Finometer’s cardiac output estimations were validated against an acetylene 

rebreathing technique as described in Chapter 2. 

Skin blood flow 

 In one ride of each protocol (morning and evening), relative forearm SBF was 

estimated continuously by a laser Doppler probe (MoorLAB, Moor Instruments Ltd, 

Devon, UK) placed over the wrist extensors, 5cm distal to the lateral epicondyle. 

Data analysis 

Oxygen uptake kinetics 

 The analyses of 2OV kinetics were exactly the same as described in chapter 

2. The moderate and heavy bouts were curve fitted by two- (phases I and II) and 

three-component (phases I, II and III) exponential models respectively. 

Blood pressure and cardiac output  

 The Q  signal was shifted -1s and 1 beat backward in order to compensate 

for the Finometer’s internal digital signal processing delay. The BP, Q , and HR 

signals were linearly interpolated at 1-s intervals, and the rides were time aligned 

and averaged together to yield a single data set for each subject in each protocol at 

each time of day.  
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Total peripheral resistance and forearm skin blood flow 

 Total Peripheral Resistance (TPR) throughout the exercise tests was 

calculated as Q /MAP. The SBF signal was normalized to the average of resting 

SBF, measured over the 5 min immediately prior to the start of each exercise test. 

Statistical analysis 

 A two-way ANOVA with repeated measures was used to determine 

significant differences in 2OV kinetics and BP responses during all moderate and 

heavy bouts. When significant effects were observed, the Tukey post hoc test was 

used for comparisons. All data are expressed as means ± SD and a probability of P 

< 0.05 was accepted as statistically significant. The data were analyzed using 

Statistical Analysis Software package 9.1 (SAS Institute, Cary, NC). 
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A.4 Results 

Oxygen uptake kinetics 

 The fitting parameters for 2OV kinetics in the heavy control (H1B) and 

moderate control (M1A) bouts were identical in the morning and evening sessions 

(Fig. A.1, Tables A.1 and A.2), revealing no effect of circadian rhythm on 2OV

kinetics in young trained men. Moreover, priming exercise modified the 2OV  

kinetics in subsequent heavy and moderate bouts at 7am and 5pm to similar 

extents.  During a heavy exercise bout that followed either prior moderate (H2A, 

22.5 ± 4.0 s) or heavy (H2B, 21.8 ± 2.8 s) warm-up, 2OV  kinetics were accelerated 

compared to control (H1B 26.0 ± 2.7 s) in morning sessions with similar results 

during the evening sessions, as shown by the significantly smaller τ2 values (Fig. 

A.2, Table A.1). Similarly, in a moderate exercise bout that followed either one 

(M3A) or two (M3B) heavy bouts, τ2 values were significantly lower than control 

(M1A) in both morning and evening sessions (Fig. A.3, Table A2). 

Blood pressure 

 During all heavy and moderate cycling exercise bouts (morning and 

evening), there was an overshoot of the peak BP response through the second 

minute of exercise with lower values by the end (6th minute) of exercise (Figs. A.4 

and A.5, Tables A.3 – A.8). The BP response tended to be lower throughout the last three 

minutes in both control moderate and heavy exercise bouts in the evening. Generally, there 

were no differences between the morning and evening sessions in the baseline, 

peak, or end exercise BP responses during the control bouts (H1B and M1A), the 

heavy bout that followed prior heavy exercise (H2B) or the moderate bout that 

followed two heavy bouts (M3B) (Tables A.3 – A.8). However, there were differences 
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between the morning and evening sessions in BP responses during the heavy bout 

that followed a moderate warm-up (H2A) where end exercise BP was lower during 

the evening compared to the morning (P < 0.05 for SBP, MAP and DBP, Fig. A.4, 

Tables A.3 – A.5), with greater decline in the SBP from the overshoot peak to end 

exercise during the evening compared to the morning (P < 0.05, Table A.3). In 

moderate exercise that followed one heavy bout (M3A), BP was more like exercise 

that followed two heavy bouts (M3B) in the evening (Fig. A.5). Peak MAP and DBP 

were significantly lower during the evening (P < 0.05 for both, Tables A.7 and A.8). 

At the end of the M3A exercise bout, SBP, MAP and DBP were all significantly lower 

in the evening compared to morning (P < 0.05, Tables A.6 – A.8). The decline in the 

SBP from the overshoot peak to end exercise in the control (M1A) was more evident 

during the evening compared to the morning (P < 0.05, Table A.6). Prior heavy 

warm-up had a greater effect on attenuating the initial rise in BP responses during 

subsequent heavy (H2B) and moderate (M3A and M3B) cycling in the morning 

(Tables A.3 – A.8). Prior moderate warm-up showed a similar effect as prior heavy 

exercise in attenuating the BP during subsequent heavy bouts in the evening. 

Likewise, prior one heavy bout showed the similar effect as prior two heavy bouts 

in attenuating the BP response during subsequent moderate bouts in the evening.  

Cardiac output 

 In both morning and evening sessions, baseline values for  MFQ  were 

significantly elevated in a heavy bout that followed prior heavy exercise (H2B) 

compared to both control (H1B) and a heavy bout that was preceded by moderate 

exercise (H2A) (P < 0.05, Fig. A.6 and A.7, Table A.9). The moderate exercise bouts 

that followed one prior heavy bout (M3A) and two prior heavy bouts (M3B) had 
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higher baseline MFQ  than the no warm-up condition (M1A) (P < 0.05, Fig. A.8 and 

A.9, Table A.10). By the end of exercise, there were no differences between the 

three moderate bouts in the morning, but M3B had a higher MFQ than M1A in the 

evening (P < 0.05, Table A.10).  

Total peripheral resistance 

 Baseline values for TPR were significantly lower in a heavy bout that 

followed prior heavy exercise (H2B) compared to both control (H1B) and a heavy 

bout that was preceded by moderate exercise (H2A) (P < 0.05, Figs. A.6 and A.7, 

Table A.9). TPR remained lower in H2B compared to H1B until the end of exercise in 

both the morning and evening (Figs. A.6 and A.7); however, TPR was lower in H2B 

compared to H2A only in the morning. End exercise TPR was significantly lower in 

H2A in the evening compared to the morning (P < 0.05, Table A.9). Prior heavy 

warm-up (one and two heavy bouts) lowered baseline TPR in M3A and M3B, 

respectively, compared to the moderate control (M1A) (P < 0.05, Figs. A.8 and A.9, 

Table A.10). TPR remained significantly lower in M3A and M3B compared to M1A 

until the end of exercise (P < 0.05, Table A.10). End exercise TPR was significantly 

lower in M3A in the evening compared to the morning (P < 0.05, Table A.10). 

Skin blood flow 

 Resting SBF (immediately prior to the start of exercise protocols) was not 

significantly different in the evening compared to the morning (0.33 ± 0.18 vs. 0.27 

± 0.14 arbitrary units, P = 0.43). During the heavy exercise bouts, baseline SBF 

was significantly elevated in a heavy bout that followed prior heavy exercise (H2B) 

compared to both control (H1B) and a heavy bout that was preceded by moderate 

exercise (H2A) (P < 0.05, Figs. A.6 and A.7, Table A.9). By the end of exercise there 
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were no differences between H2A and H2B and both were significantly higher than 

H1B; the end exercise values for H2A and H2B were significantly higher in the 

evening compared to morning (P < 0.05, Table A.9). One and two prior heavy bouts 

resulted in a higher baseline SBF in M3A and M3B than in the no warm-up 

condition (M1A) (P < 0.05, Figs. A.8 and A.9, Table A.10). The SBF responses 

remained significantly higher in M3A and M3B throughout the bout and until the 

end of exercise compared to M1A (P < 0.05, Table A.10). End exercise SBF was 

significantly higher in M3A in the evening compared to the morning (P < 0.05, Table 

A.10).
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Table A.1: Morning and evening 2OV  fitting parameters during heavy cycling bouts 

Parameters 

 

Morning 

 

Evening 

H1B H2A H2B H1B H2A H2B 

A0, ml/min 

 

1016 ± 54 1019 ± 77 1192 ± 55 *† 

 

1014 ± 44 1038 ± 62 1172 ± 46 *† 

A1, ml/min 482 ± 132 454 ± 160 382 ± 155 403 ± 112 456 ± 142 374 ± 169 

A2, ml/min 1703 ± 240 1709 ± 216 1821 ± 209 *† 1748 ± 246 1687 ± 213 1808 ± 165 *† 

A1+A2, ml/min 2186 ± 341 2163 ± 327 2203 ± 333 2151 ± 327 2143 ± 332 2157 ± 306 

A0+A1+A2, ml/min 3203 ± 395 3182 ± 403 3395 ± 388 *† 3165 ± 371 3181± 395 3270 ± 335 *† 

A3, ml/min  651 ± 118 563 ± 124 * 404 ± 69 *†  621 ± 115 533 ± 133 † 405 ± 111 *† 

 2, s 

 

26.0 ± 2.7 22.5 ± 4.0 *  21.8 ± 2.8 * 

 

26.2 ± 2.6 22.0 ± 2.6 * 21.6 ± 4. 1 * 

3, s 153.0 ± 16.5 136.6 ± 20.0 128.4 ± 25.2 * 144.5 ± 19.6 137.9 ± 23.6 131. 2 ± 25.8 

TD2, s 11.4 ± 1. 9 11.3 ± 1.9 9.7 ± 1.9 *† 10.3 ± 2.5 11.4 ± 1.5 * 9.5 ± 2.0 *† 

TD3, s 96.7 ± 12.7 83.7 ± 14.8 * 74.6 ± 12.4 * 95.7 ± 14.3 79.6 ± 10.7 * 71.7 ± 16.1 * 

Gain, ml/min/W  8.9 ± 0.6 8. 8 ± 0.5 9.0 ± 0.4  8.7 ± 0.5 8.7 ± 0.3 8.8 ± 0.8 

End Bout, ml/min  3718 ± 409 3653 ± 390 3748 ± 385  3667 ± 375 3628 ± 356 3704 ± 362 

  Mean ± SD, n = 9; * P < 0.05 H1B vs. H2A, H2B; † P < 0.05 H2A vs. H2B 
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       Table A.2: Morning and evening 2OV  fitting parameters during moderate cycling bouts 

Parameters 

 

Morning 

 

Evening 

M1A M3A M3B M1A M3A M3B 

A0, ml/min 

 

981 ± 55 1157 ± 76 * 1210 ± 80 * 

 

1012 ± 54 1181 ± 66 * 1197 ± 53 * 

A1, ml/min 317 ± 137 273 ± 92 308 ± 137 322 ± 148 244 ± 98 269 ± 102 

A2, ml/min 924 ± 253 926 ± 297 884 ± 242  888 ± 261 925 ± 290 908 ± 263  

A1+A2, ml/min 1240 ± 364 1199 ± 351 1191 ± 365 1210 ± 340 1168 ± 343 1178 ± 354 

 2, s 22.5 ± 4.6 17. 8 ± 3.6 * 16.8 ± 3.6 * 22.2 ± 4.6 18.0 ± 3.2 * 17.1 ± 3.0 * 

TD2, s 

 

 

14.5 ± 3. 0 13.5 ± 1.3 14.4 ± 2.0 

 

 

14.1 ± 2.0 13.1 ± 1.8 13.7 ± 1.5 

Gain, ml/min/W 9.8 ± 0.5 9.5 ± 0.7 9.4 ± 0.6 9.6 ± 0.3 9.2 ± 0.5 9.3 ± 0.6 

End Bout, ml/min 2226 ± 354 2352 ± 356 * 2407 ± 373 * 2232 ± 375 2343 ± 351 * 2373 ± 352 * 

 

       Mean ± SD, n = 9; * P < 0.05 M1A vs. M3A, M3B 
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Figure A.1: 2OV time series data for the morning and evening responses in 

moderate (top, A) and heavy (bottom, B) exercise control conditions. 

Data are the average of all 9 participants with ≥ 4 repetitions per each exercise 

condition. Inset: Tau2 values (mean ± SE). 
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Figure A.2: 2OV time series data for the three heavy exercise bouts in the morning 

(top, A) and evening (bottom, B). 

 Data are the average of all 9 participants with ≥ 4 repetitions per each exercise 

condition. Inset: Tau2 values (mean ± SE); * P < 0.05 compared to H1B (control). 
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Figure A.3: 2OV time series data for the three moderate exercise bouts in the 

morning (top, A) and evening (bottom, B). 

 Data are the average of all 9 participants with ≥ 4 repetitions per each exercise 

condition. Inset: Tau2 values (mean ± SE); * P < 0.05 compared to control (M1A)
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Table A.3: Morning and evening SBP responses during heavy cycling bouts 

Parameters 

 

Morning 

 

Evening 

H1B H2A H2B H1B H2A H2B 

Baseline SBP, mmHg 

 

147.3 ± 9.8 146.1 ± 14.9 142.7 ± 10.3 

 

152.4 ± 13.3 148.2 ± 14.4 150.8 ± 13.5 

Peak SBP, mmHg 219.7 ± 15.5 220.6 ± 14.8 209.7 ± 14.1*† 219.7 ± 12.3 218.7 ± 13.4 211.0 ± 9.8 *† 

End Bout SBP, mmHg 199.6 ± 11.7 196.8 ± 17.2 183.8 ± 8.7 *† 197.5 ± 13.2 185.5 ± 16.8 *‡ 184.4 ± 12.6 * 

Peak - Baseline SBP, mmHg 72.4 ± 9.6 74.5 ± 11.0 67.0 ± 14.3 † 67.3 ± 9.7 70.5 ± 7.8 60.2 ± 9.3 *†‡ 

Peak - End SBP, mmHg  20.1 ± 7.8 23.8 ± 9.7 25.9 ± 8.2  22.2 ± 6.2 33.2 ± 10.2 *‡ 26.6 ± 8.9 † 

 

Mean ± SD, n = 9;  

* P < 0.05 H1B vs. H2A, H2B; † P < 0.05 H2A vs. H2B; ‡ P < 0.05 (Morning vs. Evening in the same bout) 
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Table A.4: Morning and evening MAP responses during heavy cycling bouts 

Parameters 

 

Morning 

 

Evening 

H1B H2A H2B H1B H2A H2B 

Baseline MAP, mmHg 

 

103.8 ± 5.6 105.3 ± 10.1 103.3 ± 6.4 

 

105.1 ± 9.6 103.5 ± 8.2 104.3 ± 9.4 

Peak MAP, mmHg 145.8 ± 12.9 145.6  ± 13.4 140.0 ± 10.8 145.1 ± 8.4 141.7 ± 10.5 139.0 ± 7.5 

End Bout MAP, mmHg 134.9 ± 8.0 134.1 ± 11.2 127.3 ± 7.3 *† 132.2 ± 8.0 126.7 ± 9.5 *‡ 125.8 ± 7.2 * 

Peak - Baseline MAP, mmHg 42.0 ± 9.2 40.3 ± 10.8 36.7 ± 9.3 40.0 ± 8.9 38.2 ± 8.1 34.7 ± 5.6 

Peak - End MAP, mmHg  10.9 ± 5.9 11.5 ± 2.9 12.7 ± 4.7  12.9 ± 2.6 15.0 ± 5.9 13.2 ± 4.5 

 

Mean ± SD, n = 9;  

* P < 0.05 H1B vs. H2A, H2B; † P < 0.05 H2A vs. H2B; ‡ P < 0.05 (Morning vs. Evening in the same bout) 
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Table A.5: Morning and evening DBP responses during heavy cycling bouts 

Parameters 

 

Morning 

 

Evening 

H1B H2A H2B H1B H2A H2B 

Baseline DBP, mmHg 

 

77.4 ± 3.0 80.2 ± 7.4 78.6 ± 3.8 

 

77.9 ± 7.0 77.4 ± 4.9 78.1 ± 6.9 

Peak DBP, mmHg 107.1 ± 10.5 106.5 ± 10.7 100.9 ± 9.0 *† 104.8 ± 6.2 103.0 ± 7.3 99.4 ± 5.5 * 

End Bout DBP, mmHg 96.5 ± 5.7 96.1 ± 9.4 90.0 ± 5.8 *†  93.6 ± 5.7 89.5 ± 7.3 ‡ 87.4 ± 5.3 * 

Peak - Baseline DBP, mmHg 29.7 ± 8.7 26.3 ± 7.8 * 22.3 ± 8.14 *† 26.9 ± 6.5 25.6 ± 6.7 21.3 ± 5.0 *† 

Peak - End DBP, mmHg  10.6 ± 5.4 10.4 ± 2.4 10.9 ± 4.6  11.2 ± 1.8 13.5 ± 4.9 12.0 ± 3.9 

 

Mean ± SD, n = 9;  

* P < 0.05 H1B vs. H2A, H2B; † P < 0.05 H2A vs. H2B; ‡ P < 0.05 (Morning vs. Evening in the same bout)
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Figure A.4: SBP, MAP and DBP time series responses during the three heavy exercise conditions in the morning (A) 

and evening (B).  

Data lines are the 5 s moving average for all 9 participants with ≥ 4 repetitions per each exercise condition. Solid 

line: H1B, heavy control - no prior warm-up; dashed line: H2A, prior moderate warm-up; dotted line: H2B, prior 

heavy warm-up.  



 

184 

 

Table A.6: Morning and evening SBP responses during moderate cycling  

Parameters 

 

Morning 

 

Evening 

M1A M3A M3B M1A M3A M3B 

Baseline SBP, mmHg 

 

141.9 ± 13.5 140.8 ± 13.0 132.4 ± 8.8 *† 

 

142.9 ± 13.6 136.5 ± 11.2 135.9 ± 11.9 * 

Peak SBP, mmHg 186.4 ± 23.7 172.4 ± 22.9 * 156.8 ± 16.2 *†  189.5 ± 16.6 166.2 ± 17.2 * 162.3 ± 19.0 * 

End Bout SBP, mmHg 166.7 ± 21.4 152.9 ± 19.8 * 140.8 ± 14.0 *† 162.4 ± 17.8 144.6 ± 15.3 *‡ 142.9 ± 15.4 * 

Peak - Baseline SBP, mmHg 44.5 ± 16.2 31.6 ± 12.9 * 24.4 ± 11.2 *† 46.6 ± 14.7 29.7 ± 10.6 * 26.4 ± 12.5 * 

Peak - End SBP, mmHg  19.7 ± 9.0 19.5 ± 8.4 16.0 ± 6.1  27.1 ± 11.0 ‡ 21.6 ± 5.7 * 19.4 ± 5.3 * 

 

Mean ± SD, n = 9;  

  * P < 0.05 M1A vs. M3A, M3B; † P < 0.05 M3A vs. M3B; ‡ P < 0.05 (Morning vs. Evening in the same bout) 
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Table A.7: Morning and evening MAP responses during moderate cycling 

Parameters 

 

Morning 

 

Evening 

M1A M3A M3B M1A M3A M3B 

Baseline MAP, mmHg 

 

101.7 ± 8.8 103.5 ± 9.8 98.6 ± 7.6 † 

 

99.7 ± 6.9 99.1 ± 7.6 98.6 ± 9.1 

Peak MAP, mmHg 124.5 ± 15.9 119.5 ± 15.6 111.6 ± 11.1 *† 123.7 ± 10.6 114.0 ± 10.5 *‡ 112.1 ± 12.8 * 

End Bout MAP, mmHg 114.5 ± 14.6 109.0 ± 15.0 * 101.9 ± 10.0 *† 110.0 ± 10.6 102.4 ± 10.9 *‡  101.0 ± 11.2 * 

Peak - Baseline MAP, mmHg 22.8 ± 10.9 16.0 ± 7.2 * 13.0 ± 6.9 * 24.0 ± 9.3 14.9 ± 5.5 * 13.5 ± 5.7 * 

Peak - End MAP, mmHg  10.0 ± 2.8 10.5 ± 4.2 9.7 ± 3.7  13.7 ± 5.1 ‡ 11.6 ± 3.0 11.1 ± 3.2 

 

Mean ± SD, n = 9;  

* P < 0.05 M1A vs. M3A, M3B; † P < 0.05 M3A vs. M3B; ‡ P < 0.05 (Morning vs. Evening in the same bout) 
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Table A.8: Morning and evening DBP responses during moderate cycling  

Parameters 

 

Morning 

 

Evening 

M1A M3A M3B M1A M3A M3B 

Baseline DBP, mmHg 

 

77.0 ± 6.0 80.1 ± 7.4 76.9 ± 5.6 

 

74.6 ± 3.7 75.6 ± 4.9 75.9 ± 6.4 

Peak DBP, mmHg 93.5 ± 11.3 92.3 ± 11.6 87.3 ± 9.0 *† 90.7 ± 6.8 87.3 ± 8.4 ‡ 85.7 ± 8.8 * 

End Bout DBP, mmHg 85.2 ± 10.7 82.2 ± 12.4 76.5 ± 7.6 *† 80.7 ± 7.3 ‡ 76.3 ± 8.1 *‡ 74.9 ± 8.6 * 

Peak - Baseline DBP, mmHg 16.5 ± 8.0 12.2 ± 5.8 * 10.4 ± 6.1 * 16.1 ± 6.7 11.7 ± 4.8 * 9.8 ± 4.1 * 

Peak - End DBP, mmHg  8.3 ± 1.9 10.1 ± 4.3 10.8 ± 3.8  10.0 ± 3.6 11.0 ± 3.2 10.8 ± 4.0 

  

Mean ± SD, n = 9;  

* P < 0.05 M1A vs. M3A, M3B; † P < 0.05 M3A vs. M3B; ‡ P < 0.05 (Morning vs. Evening in the same bout) 
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Figure A.5: SBP, MAP and DBP time series responses during the three moderate exercise conditions in the morning 

(A) and evening (B).  

Data lines are the 5 s moving average for all 9 participants with ≥ 4 repetitions per each exercise condition. Solid 

line: M1A, moderate control - no prior warm-up; dashed line: M3A, one prior heavy bout; dotted line: M3B, two prior 

heavy bouts. 
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Table A.9: Morning and evening MFQ , TPR and SBF responses during heavy cycling bouts 

Parameters 

 

Morning 

 

Evening 

H1B H2A H2B H1B H2A H2B 

Baseline Q, l/min  10.2 ± 1.0 10.4 ± 0.6 11.8 ± 1.2 *†    10.4 ± 0.9 10.7 ± 0.8 12.6 ± 0.6 *† 

End Bout Q, l/min 

 

22.3 ± 1.8 22.5 ± 1.8 23.9 ± 1.8 *†  

 

23.4 ± 1.7 23.1 ± 0.9 24.6 ± 1.6 *† 

Baseline TPR, mmHg/l/min 10.4 ± 1.0 10.3 ± 0.9 9.0 ± 0.8 *† 10.0 ± 1.5 9.8 ± 0.5 8.4 ± 0.9 *† 

End Bout TPR, mmHg/l/min  6.1 ± 0.6 6.0 ± 0.8 5.4 ± 0.6 *†  5.7 ± 0.6 5.5 ± 0.5 ‡ 5.2 ± 0.5 *  

Baseline SBF, % Baseline  169 ± 26 170 ± 38 269 ± 101 *†  149 ± 42 209 ± 41 341 ± 134 *†  

End Bout SBF, % Baseline  352 ± 135 555 ± 144 * 655 ± 198 *  463 ± 150 815 ± 319 *‡ 937 ± 215 *‡ 

 

Mean ± SD, n = 9 for MFQ and TPR, n = 8 for SBF; 

* P < 0.05 H1B vs. H2A, H2B; † P < 0.05 H2A vs. H2B; ‡ P < 0.05 (Morning vs. Evening in the same bout) 
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Figure A.6: MAP (A), MFQ  (B), TPR (C), and SBF (D) time series responses during the three heavy exercise conditions 

in the morning.  

MAP, MFQ  and TPR data are the 5 sec moving average for all 9 participants with ≥ 4 repetitions per each exercise 

condition. SBF data are the 5 sec moving average from one ride for 8 participants. Solid line: H1B, heavy control - 

no prior warm-up; dashed line: H2A, prior moderate warm-up; dotted line: H2B, prior heavy warm-up. 
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Figure A.7: MAP (A), MFQ  (B), TPR (C), and SBF (D) time series responses during the three heavy exercise conditions 

in the evening.  

 MAP, MFQ  and TPR data are the 5 sec moving average for all 9 participants with ≥ 4 repetitions per each exercise 

condition. SBF data are the 5 sec moving average from one ride for 8 participants. Solid line: H1B, heavy control - 

no prior warm-up; dashed line: H2A, prior moderate warm-up; dotted line: H2B, prior heavy warm-up.  
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Table A.10: Morning and evening MFQ , TPR and SBF responses during moderate cycling bouts 

Parameters 

 

Morning 

 

Evening 

M1A M3A M3B M1A M3A M3B 

Baseline Q, l/min 

 

9.74 ± 0.91 10.78 ± 0.63 * 10.70 ± 0.93 * 

 

9.65 ± 0.90 11.02 ± 0.60 * 11.54 ± 0.40 *‡ 

End Bout Q, l/min 15.80 ± 1.07 16.24 ± 1.20 16.46 ± 2.00  16.16 ± 1.39 16.36 ± 1.37  17.10 ± 1.40 * 

Baseline TPR, mmHg/l/min 10.64 ± 1.11 9.68 ± 0.84 * 9.31 ± 0.87 *  10.59 ± 0.87 9.08 ± 0.50 * 8.59 ± 0.59 * 

End Bout TPR, mmHg/l/min  7.24 ± 0.69 6.73 ± 0.86 * 6.27 ± 0.91 *†  6.81 ± 0.40 6.27 ± 0.41*‡ 5.93 ± 0.62 * 

Baseline SBF, % Baseline  152 ± 29 369 ± 125 * 473 ± 135 *  183 ± 47 477 ± 125 * 580 ± 143 *  

End Bout SBF, % Baseline  234 ± 47 581 ± 160 * 633 ± 190 *  274 ± 94 785 ± 224  *‡ 753 ± 229 * 

 

 Mean ± SD, n = 9;  

 * P < 0.05 H1B vs. H2A, H2B; † P < 0.05 H2A vs. H2B; ‡ P < 0.05 (Morning vs. Evening in the same bout) 
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Figure A.8: MAP (A), MFQ  (B), TPR (C), and SBF (D) time series responses during the three moderate exercise 

conditions in the morning.  

MAP, MFQ  and TPR data are the 5 sec moving average for all 9 participants with ≥ 4 repetitions per each exercise 

condition. SBF data are the 5 sec moving average from one ride for 8 participants. Solid line: M1A, moderate control 

- no prior warm-up; dashed line: M3A, one prior heavy bout; dotted line: M3B, two prior heavy bouts. 
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Figure A.9: MAP (A), MFQ  (B), TPR (C), and SBF (D) time series responses during the three moderate exercise 

conditions in the evening.  

MAP, MFQ  and TPR data are the 5 sec moving average for all 9 participants with ≥ 4 repetitions per each exercise 

condition. SBF data are the 5 sec moving average from one ride for 8 participants. Solid line: M1A, moderate control 

- no prior warm-up; dashed line: M3A, one prior heavy bout; dotted line: M3B, two prior heavy bouts. 
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A.5 Discussion  

 The current research has confirmed our previous findings of significant 

speeding of 2OV kinetics during both moderate and heavy exercise following 

priming exercise (Chapter 2) and has shown that these responses were identical in 

the morning and evening. Thus, our results concerning possible circadian 

influence on O2 transport-utilization mechanisms contrast with those reported by 

Brisswalter et al.(2007) but supported our hypothesis and were in agreement with 

the only other study of circadian effects on 2OV kinetics (Carter et al., 2002). In 

addition, this is the first study to report several key findings regarding the BP 

response to exercise. First, there was a consistent overshoot in BP during the first 

two minutes of both moderate and heavy exercise, then BP declined in association 

with increasing SBF between the 3rd and 6th minute of exercise. This overshoot 

response seems to be controlled by the feed forward central command mechanism 

(Gallagher et al., 2006; Rowell & O'Leary, 1990) independent of circadian rhythm. 

Second, the BP response was shown to be lower throughout the last three minutes 

in both control moderate and heavy exercise bouts in the evening, suggesting an 

influence of time of day on BP response during exercise after the initial BP 

resetting. Third, BP responses during both moderate and heavy exercise were 

significantly affected by priming exercise, and the effects of prior moderate and 

heavy exercise differed between the morning and evening. One or two bouts of prior 

heavy exercise caused graded reductions in BP during subsequent moderate 

exercise in the morning while the effects were similar in the evening. During heavy 

exercise, prior moderate exercise had no effect on BP response in the morning 
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while it reduced BP to a similar degree as prior heavy exercise in the evening. 

Fourth, the BP overshoot magnitude and the subsequent BP reduction were 

modulated to a greater extent by priming exercise in the evening due to a larger 

increase in SBF. 

Circadian rhythm and 2OV kinetics 

 Despite considerable research into 2OV kinetics, very little has been done to 

investigate the effect of circadian rhythm on breath-by-breath 2OV during exercise 

transitions. We observed no differences in any parameter of 2OV kinetics during 

the control moderate (M1A) and heavy (H1B) cycling exercise bouts between the 

morning and afternoon sessions (Fig. A1, Tables A.1 and A.2). These findings agree 

with the only previous study that examined circadian effects on 2OV kinetics during 

treadmill running at moderate and heavy intensities (Carter et al., 2002). 

Additionally, priming exercise exhibited the same robust effects on 2OV kinetics 

during subsequent moderate and heavy exercise bouts irrespective of time of day. 

 Both moderate and heavy warm-ups accelerated 2OV kinetics in subsequent 

heavy exercise (Fig. A.2 and Table A.1), and one or two prior heavy bouts 

accelerated the 2OV kinetics in subsequent moderate exercise (Fig. A.3 and Table 

A.2). The effects of prior exercise on 2OV kinetics have been discussed extensively 

in Chapter 2. Conversely, our results strongly contrast with those of Brisswalter et 

al. (2007) who reported a 50% improvement in 2OV kinetics, a 15% reduction in 
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the 2OV amplitude, and a 3% increase in net efficiency during 80%VT cycling 

exercise in the afternoon. While Brisswalter et al. (2007) used a simple mono-

exponential model fitted to data collected using a COSMED device, even these 

methodological differences seem inadequate to explain the magnitude changes 

observed and the disparity with our results and those of Carter et al. (2002).  

 In addition to the 2OV kinetics results, there were no differences in 2OV

during either the initial 20W periods, steady state moderate exercise, or at the end 

of exercise during heavy bouts at different times of day. While resting 2OV has 

been observed to follow the circadian rhythm of core temperature, with resting 

values achieving their peak in the early evening (Reilly & Brooks, 1990), the 

rhythm, if detected, becomes weaker during light exercise and disappears during 

moderate and heavy exercise (Deschenes et al., 1998; Reilly & Brooks, 1990; Reilly 

& Garrett, 1998). Therefore our results are consistent with previous literature in 

showing no circadian effect on 2OV during exercise. 

Circadian rhythm and the blood pressure response to exercise 

 In contrast with finding no circadian effect on 2OV , we observed novel 

circadian effects on the regulation of BP during exercise that add to the established 

circadian pattern on resting BP (Millar-Craig et al., 1978), as well as the recent 

observations of differences in the post-exercise hypotension (PEH) (Jones et al., 

2008a; Jones et al., 2008b). BP displays a consistent circadian rhythm with the 

highest pressures observed at midday, a reduction of 10-20% through the 
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afternoon and during sleep, and a morning “surge” in the hours before and 

following waking (Kario et al., 2003; Millar-Craig et al., 1978; Verdecchia et al., 

1990). Additionally, the response of BP after exercise is altered by the time of day, 

with greater PEH achieved in the afternoon than in the morning (Jones et al., 

2008a; Jones et al., 2008b; Jones et al., 2009). However, no research has focused 

on the circadian effects on BP during exercise transitions. Using beat-by-beat 

measurement of BP by finger plethysmography, we observed a lower BP response 

throughout the last three minutes in both control moderate (M1A) and heavy (H1B) 

exercise bouts in the evening. Elevated Q and SBF during exercise in the evening, 

consistent with reports of altered thermoregulation (Aldemir et al., 2000; Jones et 

al., 2008a; Jones et al., 2008b; Waterhouse et al., 2007), could have contributed to 

the lower arterial BP during exercise in the evening.  

 Notably, we observed a distinct overshoot of BP within the first minutes of 

both moderate and heavy exercise, which was followed by a slow decline between 

the 3rd and 6th minute of each exercise bout. The BP overshoot was consistent in all 

moderate and heavy bouts, morning and evening, regardless of whether or not 

warm-up exercise was performed. This rapid overshoot in BP has been observed 

previously in humans via intra-arterial catheterization during supine kicking 

exercise in humans (MacDonald et al., 1998). Additionally, sphymomanometry BP 

measurements during cycling show the largest response early in exercise, then a 

slow decline up to 15 min of exercise (MacDonald et al., 1999; Nakas-Icindic et al., 

2004). The overshoot measured here by finger cuff plethysmography in both 
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moderate and heavy cycling exercise is consistent with these previous 

observations. Peak BP values reported in the tables are slightly greater than the 

response pattern in the figures due to small differences between individuals in the 

time to peak response. 

Effect of prior exercise on blood pressure during subsequent exercise 

 The BP responses following priming exercise at different times of day could 

be influenced by large increases in relative SBF, reductions in TPR, and in some 

cases, increases in Q . Prior heavy but not moderate exercise caused sustained 

elevations in Q  prior to and throughout the subsequent heavy exercise bout (H2B) 

in both the morning and evening. TPR was reduced only after prior heavy exercise 

and SBF was elevated to a greater extent in the evening after heavy and moderate 

exercise (Fig.A.7). One or two prior heavy bouts elevated Q  prior to subsequent 

moderate bouts in the both morning and evening, but Q  was only elevated at the 

end of the moderate bout (M3B) after two prior heavy bouts in the evening. 

Simultaneously, TPR was reduced and SBF was increased following one or two 

bouts of prior heavy exercise (Figs. A.8 and A.9). SBF increases to a greater extent 

during exercise in the evening compared to morning, these observations may be 

closely linked to differences in thermoregulatory processes at different times of day. 

The “body clock”, located in the suprachiasmatic nucleus of the hypothalamus, 

induces circadian rhythmicity of core temperature which is generated via heat gain 

and heat loss modes in the morning and evening, respectively (Aldemir et al., 2000; 

Waterhouse et al., 2007; Waterhouse et al., 2004). Exercise-induced heat loads 
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may raise core temperature more and faster in the morning (Aldemir et al., 2000) in 

association with smaller increases in SBF (Aldemir et al., 2000; Waterhouse et al., 

2007). These results align with our observation of attenuated SBF responses to 

exercise in the morning compared to the evening. Thus, the greater effect of 

priming exercise in modulating/lowering BP responses during subsequent exercise 

in the evening appears to be linked to the enhanced thermoregulatory response in 

the evenings compared to the morning. Athletes generally have better responses to 

thermal stress with larger SBF increases for a given change in temperature 

(Fritzsche & Coyle, 2000; Johnson, 1998; Lenasi & Strucl, 2004), which may imply 

that the robustness of response we observed is a result of the subjects’ fitness. 

While the observed attenuation of BP during subsequent exercise following warm-

up seems to be a unique physiological response, it is prudent to compare this 

phenomenon to similar studies involving PEH. Importantly, our results are 

consistent with those of MacDonald et al. (2001a) who observed that PEH, 

measured intra-arterially, is maintained in subsequent rest, exercise, and 

simulated activities of daily living. Our results also bear striking similarity to a 

series of previous studies examining the response of BP after exercise at different 

points in the circadian cycle (Jones et al., 2008a; Jones et al., 2008b; Jones et al., 

2009). These studies showed that after a continuous exercise bout, normotensive 

subjects only experienced PEH in the afternoon. Our observations expand upon 

these previous results and show that in trained subjects, BP is lowered during 

subsequent exercise, but requires a greater exercise stimulus in the morning to 

achieve the same reductions as in the evening. Interestingly, intermittent exercise 
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has been shown to be more effective than continuous exercise in altering post 

exercise BP response. Jones et al.(2009) have observed greater PEH immediately 

following an intermittent exercise protocol similar to our protocols, involving three 

10 min exercise periods interspersed with 10 min of rest. Furthermore, the use of 

intermittent exercise was able to induce reductions in BP in the morning, where 

continuous exercise could not. These observations provide evidence that the 

recovery period in between bouts of exercise may play an important role in 

reducing BP during subsequent exercise bouts. Additional study is necessary to 

determine whether or not the recovery period, or simply exercise intensity, play a 

critical role in lowering the BP responses during subsequent exercise. 

Implications to blood pressure control during exercise 

 At the initiation of exercise the arterial baroreflex response curve is reset to 

a higher BP, though the maximal gain remains essentially unchanged (Bevegard & 

Shepherd, 1966; Dicarlo & Bishop, 1992; Melcher & Donald, 1981; Ogoh et al., 

2003; Walgenbach & Donald, 1983). The immediate resetting of arterial 

baroreceptors at the exercise onset is likely achieved through the feed forward 

central command mechanism (Dicarlo & Bishop, 1992; Gallagher et al., 2006; 

Ludbrook & Graham, 1985; Rowell & O'Leary, 1990). We observed the same peak 

BP during the overshoot in the control moderate (M1A) and heavy (H1B) bouts, 

irrespective of time of day, consistent with an immediate resetting by central 

command that is dependent on motor neural output (Gallagher et al., 2001; Potts 

et al., 1993; Rowell & O'Leary, 1990) independent of circadian rhythm. However, 

the large increases in SBF and the short exercise time to the onset of cutaneous 
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vasodilation in trained subjects (Fritzsche & Coyle, 2000) might influence the 

dynamic resetting of the arterial baroreceptors, potentially through the 

cardiopulmonary baroreflex (Ogoh et al., 2006) leading to an adjustment in the BP 

set-point to lower values after just a few minutes of exercise. 

 Priming exercise, which generates heat stress, and the time of day may 

interact to alter the regulation of SBF and arterial BP during exercise. Passive heat 

stress shifted the carotid-vascular baroreflex response curves downward to the 

prevailing cardiovascular conditions with a reduction in maximal gain (Crandall, 

2000). The impact of the priming exercise might also be through residual effects 

that have been observed as reductions in baroreflex sympathetic outflow (Hara & 

Floras, 1992), vascular responsiveness (Halliwill et al., 1996) and arterial baroreflex 

operating point (Chandler et al., 1998) during the period of PEH.  

 The current research demonstrating a reduction in exercise BP with time 

and after prior exercise was conducted with trained, physically fit subjects. The 

results could have important implications for exercise prescription and for the 

post-exercise hypotension (Piepoli et al., 1994; Quinn, 2000) in the general 

population and for individuals at risk for cardiovascular disease. It is important, 

however, to replicate these studies in these other groups to determine if the BP 

responses to exercise are reduced by prior priming or “warm-up” exercise. 
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A.6 Conclusion 

 We observed that circadian rhythm does not impact 2OV kinetics, end 

exercise 2OV in moderate or heavy exercise, or the acceleration of 2OV kinetics by 

prior warm-up during moderate and heavy exercise in trained humans. However, 

we did find that BP overshoots early in both moderate and heavy exercise and then 

steadily falls in association with increases in SBF, a phenomenon that was 

influenced by both prior exercise and time of day. The effects of prior moderate and 

heavy exercise were different between the morning and evening. In the evening, 

moderate exercise and a single prior heavy warm-up had greater attenuating 

influences on the BP response of subsequent heavy and moderate exercise, 

respectively.
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