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ABSTRACT 

Mercury-contaminated sediments are found in many locations throughout North America 

and the world. Release of Hg from such sediments and subsequent biological uptake can 

result in biomagnification in associated ecosystems. This study focused specifically on a 

stabilization technique involving the addition of reactive media to the sediment matrix to 

immobilize Hg and reduce its bioavailability. A series of batch and column experiments 

was conducted over a range of physical and geochemical conditions to evaluate the 

propensity of a diverse set of reactive media to stabilize Hg in sediment with high organic 

carbon and clay content.  The additives, selected to promote adsorption and precipitation 

of Hg, included natural attapulgite (palygorskite) clay, organically-modified clay, 

elemental sulfur, a strong reducing agent, and mixtures thereof.  The results of the batch 

experiments indicated that addition of reactive media to the sediment led to substantially 

lower aqueous concentrations of Hg relative to untreated sediment.  The stabilization of 

Hg was observed to be dependent on mass of added reagent, with generally greater 

treatment observed for the higher masses of reagent evaluated.  Aqueous concentrations 

of Hg were reduced from > 800 ng L-1 in control samples to < 50 ng L-1 in treated 

samples for all of the reactive media at the highest mass proportions evaluated.  The 

effectiveness of Hg stabilization using the sulfur-based blends was strongly affected by 

contact with atmospheric oxygen, with better treatment observed in oxygen-limited 

conditions.  The results of the column tests showed that relatively low concentrations of 

Hg (< 50 ng L-1) were leached from untreated sediment, maintained under anoxic 

conditions, with steadily percolating water. However, increased concentrations of Hg (> 

200 ng L-1) were observed in column effluent collected from the untreated sediment 
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following flow interruption. This release of high concentrations of Hg was not observed 

for the columns containing treated sediment after stagnation. Particularly low Hg 

concentrations were maintained in effluent collected from the sulfur-based treatment 

mixtures (< 40 ng Hg L-1) for the entirety of the experimental duration, regardless of flow 

perturbations.        
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Chapter 1:   
 

Introduction 
 

1.1 Background 

Mercury (Hg) is a highly toxic contaminant that can have severe impacts on ecosystems 

and human health, but its ecological and toxicological effects are species-dependent 

(Fitzgerald and Lamborg, 2005). Mercury occurs naturally in the environment, cycling 

between air, land, and water. There are three known naturally-occurring oxidation states 

of Hg, including Hg2+, Hg+, and Hg0, and two organic forms, monomethylmercury 

(MeHg) and dimethylmercury (DMeHg). The methyl forms of Hg are highly toxic and 

readily bioaccumulate in the food web. Due to this bioaccumulative effect, Hg poisoning 

is most threatening to predatory animals, including humans.  

 

Anthropogenic activities have increased the global cycling of Hg and have caused the 

unnatural accumulation of Hg in many locations throughout the world (Fitzgerald and 

Lamborg, 2003). The unique physio-chemical properties of Hg make its use in various 

industrial and agricultural operations widespread. For example, the extremely high 

surface tension and volatility of Hg make it useful for the processing of Ag and Au-ores. 

Mercury amalgamates with precious metals due to the high surface tension and affinity 

for other metals and can later be easily separated by exploiting the low volatilization 

temperature of Hg. Historically, Hg was released into the environment through a number 

of processes including precious metal mining, chloralkali manufacturing of pulp and 
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paper, and mining and smelting activities (Boening, 2000). Release of Hg to the 

environment is now largely controlled in the western world, but continues to be a concern 

in developing countries. Currently, the most significant anthropogenic inputs of Hg to the 

environment are atmospheric and result from high temperature combustion processes, 

including burning of fossil fuels and municipal waste (Fitzgerald and Lamborg, 2005).   

 

Mercury is persistent in the environment, and as a result of past industrial activities, 

sediments containing elevated concentrations of Hg are found throughout the world.  

Sediments can act as a sink for atmospheric and aqueous Hg and other contaminants, but 

also behave as a source as weathering of contaminated sediments releases low levels of 

Hg to the environment over long periods of time (Renholds, 1998). The tendency for Hg 

to methylate and bioaccumulate to concentrations in organisms that are millions of times 

higher than in the water column, means even trace concentrations of Hg are problematic 

in the environment (Zillioux et al., 1993). Therefore, remedial strategies focused on the 

stabilization of Hg-contaminated sediments are required for locations where release of Hg 

into aquatic environments and subsequent methylation and bioaccumulation are concerns. 

 

Methods to remediate contaminated sediment focus either on limiting the bioavailability 

of Hg to prevent its uptake by organisms (e.g., sediment washing to remove Hg, thermal 

extraction, solidification/stabilization) or inhibiting Hg-methylation (e.g., through 

addition of reactive media to suppress the activity of microorganisms responsible for the 

methylation of Hg) (Mulligan et al., 2001). Due to the species-dependent nature of Hg 

mobility and toxicity (Compeau and Bartha, 1985; Benoit et al, 1999), remedial 
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approaches that promote formation of non-bioavailable forms of Hg can be highly 

successful.  

  

Treatment methods can be classified into three general categories, including: a) ex-situ 

recovery, b) in-situ recovery, and c) immobilization and stabilization methods (e.g., 

Hinton and Viega, 2001; Mulligan et al., 2001). Due to the complex biogeochemical 

cycling of Hg in the environment, large variations in remediation costs, and other 

socioeconomic factors, the choice of remediation option for a particular location is 

usually site-specific and rarely clear. Extensive research into site characterization as well 

as the mechanisms influencing Hg-release into the aqueous phase is necessary.    

 

1.2 Research Objectives 

 

The primary objective of this study was to evaluate a novel approach for stabilizing Hg in 

a sediment matrix. Addition of reactive media to contaminated sediments has the 

potential to provide a cost-effective management strategy for many sites. The goal of 

investigating sediment additives is to provide a long-term solution for minimizing 

bioavailable Hg. The specific objectives of this study include: 

 

• Evaluate a series of reactive media to determine the most effective media / media 

combinations at stabilizing Hg in a contaminated lacustrine sediment. 

• Determine the optimum reagent ratio for stabilization of Hg under variable redox 

conditions.   

• Investigate the impact of reactive media addition on pore water composition. 
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• Monitor long-term performance of the media combinations in anoxic conditions.   

 

1.3 Thesis Organization 
 

This thesis is presented as two research papers related to the objective outlined out in the 

previous section.  Chapter 2 describes a series of batch experiments designed to 

determine the reactive media / media combinations most effective at immobilizing Hg in 

an organic-rich lacustrine sediment.  The sensitivity experiments described in Chapter 2 

were designed to assess the influence of reagent ratio and redox environment on media 

performance.  Chapter 3 describes a series of column experiments designed to evaluate 

the long-term effectiveness of the reagent combinations under anoxic conditions.  The 

conclusions from this work are summarized in Chapter 4. 
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Chapter 2:   
 

Assessment of Treatment Media Performance for the Stabilization 

of Mercury under Variable Geochemical Conditions 
 

 

2.1 INTRODUCTION   

Sediments containing elevated concentrations of mercury (Hg) are found in many 

locations throughout the world, often the result of past industrial releases. Mercury can be 

problematic to ecosystems, primarily due to its tendency to methylate and bioaccumulate. 

Because the mobility and toxicity of Hg are speciation-dependent (Compeau and Bartha, 

1985; Benoit et al, 1999), remedial approaches promoting the formation of non-

bioavailable or stable species have the potential to be highly successful at treating Hg-

contaminated sediments. Due to the large variability in remediation costs and the 

complex biogeochemical cycling of Hg in the environment, the selection of an optimum 

approach for Hg remediation is rarely clear. 

  

Sediments are commonly thought of as the ultimate sink for Hg and other contaminants 

in the environment (Renholds, 1998). Therefore, strategies targeting the immobilization 

or stabilization of Hg within the sediment matrix present appealing remedial options. The 

tendency for Hg to methylate and bioaccumulate often make ex-situ management of Hg-

contaminated sediments an appealing alternative to in-situ treatment. Sediments can be 

dredged from the location where bioaccumulation is a primary concern (such as lake or 

river systems), and either remediated directly or treated and buried in an alternate 
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location where conditions can be managed to enhance Hg stability and suppress 

methylation.  Many treatment approaches focus on the removal of Hg from the sediment, 

such as washing, thermal extraction, and electrokinetics (Mulligan et al., 2001), but these 

approaches require further containment or treatment of the concentrated Hg and are 

therefore only cost-effective for heavily contaminated sites. Ex-situ 

solidification/stabilization is any process involving the addition of a chemical agent to the 

sediment with the intent of forming a stable solid to immobilize the contaminant, and 

includes cementation and polymerization (Mulligan et al., 2001). This approach offers an 

alternative means of managing Hg-contaminated sediments, through intentional 

immobilization of Hg.   

 

Immobilization can likewise be accomplished by addition of reactive media which target 

adsorption as the primary mechanism of contaminant removal. Manufactured media with 

increased adsorption capacity include various forms of activated carbon and organically-

modified clays (e.g. Viana et al., 2008; Say et al., 2007). The processing of these 

treatment materials can make their use in field application costly, as well. Trace 

concentrations of Hg (ng L-1) can bioaccumulate to potentially toxic levels if conditions 

conducive to methylation exist (Zillioux et al., 1993), making it necessary to explore 

treatment options for sites considered to have relatively low level Hg contamination (μg 

g-1). For sites containing lower amounts of Hg, a more natural, less expensive treatment 

media may be preferred.   
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The complex biogeochemical cycling of Hg requires development of site-specific 

remedial approaches, and implementation of an effective remediation strategy 

necessitates a detailed understanding of mechanisms contributing to the cycling and 

release of Hg.  Findings by Benoit et al. (1999) have shown methylation to be directly 

related to the concentration of dissolved HgS0, which is passively taken up by sulfate-

reducing bacteria (SRB), the primary methylators of Hg.  Therefore, it follows that if this 

species can be limited from solution, methylation can be suppressed.  Accumulation of 

excess sulfide is found to result in decreased methylation, presumably due to the 

increased precipitation of mercury sulfide solids (Benoit et al, 1999), an effect commonly 

referred to in the literature as sulfide inhibition.  

 

Sediments may be exposed to a wide range of geochemical conditions upon dredging and 

reburial (i.e. oxic, anoxic, changing aqueous composition, pH, etc.), thus, it is necessary 

to evaluate the robustness of the media under expected exposure conditions.  The focus of 

this study is to evaluate the effectiveness of a range of reactive media additives to 

promote either adsorption of Hg or precipitation of sparingly-soluble Hg-sulfide solids 

under varied geochemical conditions. Experimental investigations were performed to 

assess the effectiveness of two clay additives including a natural and widely available 

attapulgite (palygorskite) clay and a commercially available organically-modified clay to 

stabilize Hg in sediment.  Elemental iron and elemental sulfur were also investigated to 

assess the ability of these treatment media to limit Hg concentrations.  Elemental forms 

of S and Fe were selected as stabilizing additives rather than solid iron-sulfides due to the 

slow dissolution kinetics of iron-sulfides (Wersin et al., 1991; Svensson et al., 2006), and 
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the strong reducing potential of Fe0.  The effects of redox condition (oxic vs. anoxic), 

mass of reagent, and the chemical composition of the aqueous phase (pH, alkalinity, 

competing ions) on the effectiveness of treatment of Hg-contaminated sediments by the 

four treatment additives were examined.      

 

2.2 METHODOLOGY 

2.2.1 Experimental Approach 

Batch experiments that included mixtures of lake sediment, treatment media, and water 

were conducted to evaluate the short-term stabilization potential of selected media and to 

determine the optimal sediment to media ratio. The additives were mixed and allowed to 

react in contact with an O -rich atmosphere (oxic experiments) or within an enclosed 

chamber filled with 95 % N / 5% H  gas (anoxic experiments). T

2

2 2 he stabilization and/or 

adsorption capacity of four reactive materials (Section 2.2.2.3) were thoroughly 

evaluated, individually and in combination under oxic and anoxic conditions.     

  

2.2.2 Materials 

2.2.2.1 Sediment 

Five sediment samples were collected from the delta of a eutrophic lake in the 

northeastern United States known to contain elevated concentrations of inorganic Hg, as 

well as relatively high concentrations of carbon and sulfur (Table 2.1).   The sediments 

were collected from the lake using a sediment coring device and refrigerated until 

shipped to the University of Waterloo by overnight courier, where they were stored at 4° 

C. To minimize sediment oxidation, sample containers were opened for handling in an 

anoxic chamber (COY glovebox containing a 95% N2, 5% H2 atmosphere). For the initial 
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batch experiments, Sediment A was selected for experimentation based on results of 

previous characterization studies, which indicated that the total Hg concentration (115 mg 

kg-1) was elevated and the sediment had the potential to readily leach Hg into interstitial 

waters (Table 2.1) (Gibson et al., in progress).  For the long-term and mass sensitive 

experiments, the five sediment samples were blended in equal mass proportions to yield a 

larger bulk sample. 

 

2.2.2.2 Water  

The water added to the reactive mixtures was obtained from the headwaters of Laurel 

Creek, Waterloo, Ontario (LCW). This water contained low concentrations of total Hg 

and measurable dissolved organic carbon (Table 2.2) and was similar in composition to 

the water in contact with the lake sediments. 

 

2.2.2.3 Treatment media  

The treatment media evaluated included oxidized elemental sulfur (S) (Adventus, 

Mississauga, Ontario), attapulgite clay (ATP) (Zemex, Attapulgus, GA), organically-

modified bentonite clay (MRM) (Cetco, Hoffman Estates, IL), and H2OmetTM58 granular 

zero-valent iron (ZVI) (QMP, Sorel-Tracy, Quebec) (Table 2.3).  Coarse-grained material 

was selected in preference to fine-grained material such as nanoparticles to facilitate 

longevity of treatment.  Treatment media was obtained from suppliers and used without 

further processing.   
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2.2.3 Batch experiments  

Experimental samples containing 4 g reactive media, 40 g wet sediment, and 160 mL 

LCW were prepared and reacted for 1, 14, and 21 days, after which time concentrations 

of aqueous Hg in contact with the sediment were measured.  Control samples contained 

40 g wet sediment, 160 mL LCW, and no reactive media.  Samples were hand-shaken to 

homogenize the additives, loosely capped to allow excess oxygen to remain in the head 

space, and left to stagnate for the designated reaction time.  Stagnation was implemented 

to mimic anticipated post-depositional field conditions.    

 

2.2.4 Sensitivity tests 

Experimental mixtures showing optimal reactivity were further evaluated by modifying 

the ratio of reactive materials to assess the minimum amount of treatment media required 

to promote Hg immobilization/stabilization. Experiments were performed on each 

individual media (single-media tests), and in combination (bi-media tests).  

Concentrations of major ions and trace elements also were determined to evaluate effects 

of reactive media addition. Each sample contained 40 g of the homogenized sediment, 

160 mL LCW, and varying amounts of media (Table 2.4). Single-media samples were 

prepared with 5% (1.0 g), 10% (2.0 g) and 20% (4.0 g) reactive media on a dry-weight 

basis. The effectiveness of Hg stabilization for the bi-media treatment mixtures was 

evaluated using the same total percentages of treatment media, but with variations of the 

media selected in a step-wise progression so that as mass of one reagent was increased 
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the mass of the other reagent was decreased. All treatment mixtures were allowed to 

equilibrate under stagnant conditions for 14 days.  

  

2.2.5 Collection of Water Samples 

At the end of the reaction time each sample was destructively sampled by the following 

procedure. Samples were vigorously hand-shaken for ~20 s and then poured from the 250 

mL amber bottle into new polypropylene centrifuge tubes.  The samples were centrifuged 

at 6000 rpm for 15 min to separate the solids and facilitate the filtering process. The 

supernatant water was filtered using 0.45 μm Supor® membrane fiber filters.  For the Hg 

analyses, four 20 mL aliquots were collected in trace-clean amber glass vials (VWR); two 

samples were preserved with concentrated Omni trace ultra high purity HCl (Baker 

Instra-Analyzed) and two samples were preserved with ultra purity HNO3 (EMD 

Chemicals) to a pH < 2.0. Samples were individually bagged to minimize cross-

contamination among the samples. Samples for cation analyses were collected in 10 mL 

polypropylene bottles and acidified with Omni trace HNO3 to a pH < 2.0.  Samples for 

anion analyses were collected in 10 mL polypropylene bottles without the addition of a 

preservative.  All samples were stored at 4°C until analysis.   

 

Measurements of pH were made using an Orion Ross combination pH electrode (model 

number 8156BNWP) and Eh measurements were made with an Orion Pt - Ag/AgCl 

combination redox electrode (model number 9678BNWP), both on unfiltered water. The 

pH electrode was calibrated with standard buffer solutions of pH 4, 7, and 10, and the 

response of the Eh electrode was checked regularly against Zobell’s (Nordstrom, 1977) 
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and Light’s (Light, 1972) solutions. Measurements of alkalinity were made on filtered 

samples using a Hach digital titrator with bromylcresol green/methyl red indicator and 

0.16 N H2SO4.   

 

2.2.6 Mitigation of Contamination 

Throughout the course of experimentation, progressive modifications were made to the 

procedures to minimize contamination of samples, surfaces, and the glovebox 

atmosphere. For the oxic samples, after initially allowing excess oxygen to enter the 

headspace of the reaction vessels, further exposure of the samples to atmospheric Hg was 

minimized by lightly capping bottles with teflon-lined lids. For the anoxic experiments, 

glovebox surfaces were frequently wiped to remove residual Hg and trays of activated 

carbon were placed in the glovebox to adsorb volatile Hg and H2S. Experimental controls 

consisting of deionized water (DI) were exposed to the atmosphere for the same time as 

the reactive media mixtures to assess whether contamination was occurring during 

sample handling. Control samples containing only water were included for every 10-15 

samples and were centrifuged, filtered, and preserved in the same manner as the sediment 

samples. Concentrations of Hg in the controls were consistently < 5 ng L-1 throughout the 

duration of the sensitivity experiments.   

 

2.2.7 Analytical Methods 

Analysis of total aqueous Hg was performed according to US EPA Method 1631, 

Revision E (US EPA, 2002).  Acid-preserved samples were oxidized with 0.5% BrCl at 

least 12 hours prior to analysis.  A 0.1% hydroxylamine hydrochloride (HH) solution was 
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added to the samples before analysis to remove residual halides. Stannous chloride 

(SnCl2) was added in excess during analysis to reduce oxidized Hg to its elemental form.  

Reduced Hg was concentrated on a dual gold trap and analyzed by an atomic 

fluorescence (AF) detector using a Tekran® Series 2600 Ultra-trace Hg Analyzer.  

Concentrations of major cations and trace elements were analyzed by inductively coupled 

plasma-mass spectrometry (ICP-MS) (Thermo X Series II quadrupole) and 

concentrations of anions were determined by ion chromatography (IC) (Dionex DX-600).   

 

2.2.8 Geochemical and Speciation Modeling 

Saturation indices (SIs) were calculated using the geochemical equilibrium/mass-transfer 

code MINTEQA2 (Allison et al., 1990).  Thermodynamic constants in the database were 

modified to be consistent with WATEQ4F (Ball and Nordstrom, 1991). Dissolved sulfide 

concentrations were not determined during the experiment. To assess the potential effects 

of dissolved sulfide, the calculations were conducted assuming equilibrium with respect 

to FeS, which provided estimates of sulfide concentrations based on the measured iron 

concentrations. This assumption was made based on observations by Wersin et al. (1991), 

which showed that water is typically in equilibrium with respect to iron sulfide in 

organic-rich, sulfate-reducing environments. Speciation modeling was not performed for 

the bi-media sensitivity samples, because the water collected from both combinations 

contained high levels of sulfate and were assumed not to have become strongly sulfate-

reducing. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Batch Experiments 

Batch-style experiments were designed to evaluate the effect of multiple variables on the 

stabilization of Hg, including: reaction time, reagent mass, reagent combinations, and 

redox conditions. The sediment control, containing only sediment and LCW, released 

between 700 and 1000 ng Hg L-1 to the water under oxic conditions. Lower aqueous 

concentrations of Hg (25-40% decrease) were observed in the sediment control mixture 

under anoxic conditions (Figure 2.1).  The addition of treatment media resulted in further 

decreases in aqueous Hg concentrations, 25-75% below the control concentrations. The 

decreases in concentrations were more subdued under oxic conditions than under anoxic 

conditions. No obvious temporal trends were observed over the time frame evaluated. 

The most promising media combinations included S+ZVI and MRM+ATP, which were 

investigated to assess mass-dependency in the subsequent sensitivity experiments.  The 

clay ATP was also selected for a more thorough investigation considering its low cost, 

availability, and the results of the short-term experiments.   

 

2.3.2 Sensitivity Tests 

For this set of experiments, four individual treatment media and two media combinations 

were selected based on results from previous screening tests; including: ZVI, S, ATP, 

MRM, S+ZVI and MRM+ATP.  Treatment efficiency, as determined by low aqueous Hg 

concentrations, was found to be dependent on reagent combination, reagent ratio, and 

redox environment (Figures 2.2 and 2.3).  With the exception of samples containing only 
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S, which exhibited distinctive behavior, the single-media treatment of Hg under anoxic 

conditions did not display a strong dependence on reagent mass. For all of the single-

media anoxic samples, aqueous Hg concentrations were consistently maintained below 

100 ng L-1, with the exception of mixtures containing 1 g S, 10 g S, and 1 g ATP (Table 

2.4).  Given that ATP has a relatively low cation exchange capacity (CEC) (Weaver and 

Pollard, 1973) sorption limitations likely played a role in the modest effectiveness of the 

1 g ATP addition.   

 

Concentrations of Hg were likewise maintained at < 200 ng L-1 for all bi-media 

combinations.  A more pronounced mass-dependency was observed for the bi-media 

mixtures.  Concentrations of aqueous Hg were maintained below 100 ng L-1 for samples 

containing a minimum of 2.25 g of treatment reagent. The low mass of Hg released under 

anoxic conditions suggests that the Hg is likely bound in a stable reduced form in the 

unoxidized sediment. This observation is consistent with studies by Gibson et al. (in 

progress), which indicated that Hg contained in the untreated sediment is bound 

predominantly as a stable mercury sulfide or possibly mercury selenide.  Under anoxic 

conditions, the mass of Hg released from sediment was more strongly dependent on the 

mass of reagent added than the type of reagent used.      

 

Treatment efficiency under oxic conditions was affected by both mass and type of 

reagent added. Aqueous Hg concentrations were much more variable, and more 

dependent on the mass of treatment media under oxic conditions than under anoxic 

conditions, although this effect was subdued for the MRM+ATP mixture relative to the 
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S+ZVI mixture. For the single-media treatment addition of 1 g, aqueous Hg was lowest 

for the two clays evaluated. A decrease in aqueous Hg concentrations corresponded with 

increasing mass of treatment media, and concentrations were consistently maintained at < 

65 ng L-1 for all reagents evaluated at 4.0 g. The lowest aqueous Hg concentration for the 

single-media treatment was observed for S (4.0 g) under oxic conditions, from 400 ng L-1 

in the unamended sediment to 40 ng L-1 for the treated sediment. The best overall 

treatment for oxic conditions was observed for the reactive media combination containing 

S (2.0 g) + ZVI (0.5 g), with aqueous Hg concentrations maintained at < 30 ng L-1.  

 

The results from the sensitivity tests indicated generally lower aqueous Hg concentrations 

under anoxic conditions than under oxic conditions.  These results are expected according 

to thermodynamic calculations which show a far greater stability of HgS under anoxic 

conditions, and a thermodynamic instability of HgS in the presence of oxygen (Barnett et 

al., 2000).  

 

 HgS(s) + 2H2O ↔ Hg(OH)2
0 + H2S    K = 10-38 (2.1) 

 

 HgS(s) + 2O2(aq) + 2H2O ↔ Hg(OH)2
0 + SO4

2- + 2H+ K=1093 (2.2) 

 

In support of these thermodynamic calculations, Svenssen et al. (2006) reported that the 

addition of elemental sulfur to vials containing HgO or Hg0 formed HgS almost 100% of 

the time under anoxic, alkaline conditions after two years of reaction time. For anoxic 

conditions, saturation indices (SIs) calculated for the sensitivity tests predict 
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supersaturation with respect to mercury sulfide phases (Figure 2.6). For oxic conditions, 

other Hg-phases, such as HgCO3 and Hg(OH)2, approach, but do not attain saturation. 

Possible Hg-controlling phases are listed in Table 2.5.      

  

The reduction of H2O by Fe0 produces H2 gas, which can be used by sulfate-reducing 

bacteria (SRB) as an electron donor.  The reduction of sulfate by SRB can result in the 

production of sparingly-soluble mercury sulfide minerals (Weisener et al., 2005). 

 

 SO4
2- + 2CH2O → H2S + 2HCO3

-        (2.3) 

 

where CH2O represents a generic form of organic carbon.  The release of high 

concentrations of H2S into solution and the accompanying shift in pH can result in the 

precipitation of sparingly soluble mercuric sulfide solids.   

    

 Hg2+ + HS- → HgS(s) + H+       (2.4) 

 

The lowest concentrations (< 40 ng L-1) were observed for oxic mixtures containing the 

highest masses of treatment media [Oxic: MRM (4g), ATP (4g), S (4g), MRM (2g) + 

ATP (2g), and S (2g) + ZVI (0.5g); Anoxic: S (2g) + ZVI (2g)].  This deviation from 

expected results may be due in part to contamination of the enclosed atmosphere within 

the anoxic glovebox by volatile Hg0, leading to slight contamination of water samples 

during sampling.   
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The pH, Eh, and alkalinity of the equilibrated mixtures were not substantially affected by 

mass of reagent added, with pH and Eh remaining nearly constant for the different 

masses evaluated (Figures 2.2 and 2.3). Values of pH were slightly lower under oxic 

conditions than under anoxic conditions, although the difference never exceeded 0.5 pH 

units.  The lower pH under oxic conditions most likely resulted from acid-production 

during oxidation of organic carbon (Equation 2.5) and iron sulfide minerals (Equation 

2.6).        

 

 CH2O + O2 ↔ CO3
2- + 2H+

       (2.5) 

 

 FeS2(s) + 14Fe3+ + 8H2O ↔ 15Fe2+ + 2SO4
2- + 16H+   (2.6) 

 

Minor shifts in pH (< 1 pH unit) corresponded with increased mass of some reagents. A 

slight increase in pH was observed with increasing mass of ATP, likely due to base-

releasing minerals associated with the clay. An opposite shift in pH was observed with 

increased mass of S, decreasing in pH from 6.7 with 1 g S to a pH of 5.9 with 4 g S, 

likely due to acid formed from sulfur oxidation reactions prior to use. The pH was 

relatively constant for samples with variable masses of ZVI and MRM. For the bi-media 

combinations, decreases in pH corresponded to increases in mass for the S+ZVI mixtures. 

The pH of the water in contact with all mixtures ranged from 5.9 to 7.6. Values of Eh 

were generally 100 to 300 mV lower under anoxic conditions than under oxic conditions, 

as expected. The range of Eh is consistent with expected values for both oxic (250 to 450 
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mV) and anoxic conditions (< 0 mV), with the exception of the anoxic MRM (4 g) 

sample, which was approximately 200 mV.       

  

The alkalinity was slightly lower (15 to 150 mg L-1 as CaCO3) for all of the treatment 

mixtures reacted under oxic conditions than for those reacted under anoxic conditions 

(100 to 300 mg L-1 as CaCO3). This decline in alkalinity was likely due to consumption 

of alkalinity through reaction with acid generated from organic carbon and sulfide 

mineral oxidation (Evangelou and Zhang, 1995, Benner et al., 1999).  Alkalinity was 

observed to increase with increasing mass of ATP under anoxic conditions, but not under 

oxic conditions. The alkalinity was consumed almost completely (< 20 mg L-1 as CaCO3) 

by the high masses of S (2 g and 4 g), suggesting the potential loss of buffering capacity 

with the addition of this media.  Addition of a carbonate buffer may be required to 

maintain near neutral pH values during field applications of S additions. If alkaline pH 

can be maintained, elemental S may present a promising remedial option. These results 

are consistent with results reported by Svensson et al. (2006), who observed HgS to form 

in the presence of elemental S in aqueous systems under anoxic, alkaline conditions.  

 

The composition of the aqueous phase requires consideration when selecting a remedial 

option for a specific site. For instance, electrolyte concentration can have a strong effect 

on Hg speciation, and in turn control the speciation and bioavailability of Hg (Nriagu, 

1979).  Following equilibration of sediment and reactive media, the chemical 

composition of the aqueous phase was analyzed for the sensitivity tests, including 

analysis of major, minor, and trace elements.  Major changes in water chemistry were not 
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observed in response to the addition of ATP or ZVI.  Aqueous concentrations of Na, Mg, 

Mn, Sr, Cl, and SO4 increased by 300 to 400%, Fe increased by ~ 50%, and Ca increased 

by ~ 250% with increasing mass of MRM from 1 g to 4 g (Figure 2.4).  Increasing MRM 

in the bi-media combinations resulted in an increase of the same constituents, but only 

from 50 to 200%, in most cases.  Addition of S also corresponded to an increase in 

aqueous SO4 concentration, similar to that observed for the MRM mixtures. Similar 

trends were observed for the bi-media combinations (Figure 2.5). Addition of soluble SO4 

in the range of 30-100 μM SO4 may be undesirable due to its potential to promote Hg 

methylation under reducing conditions (Gilmore et al., 1998).  However, in the presence 

of high concentrations of dissolved SO4, Weisener et al. (2005) found that aqueous Hg 

was successfully removed from contaminated pore water by passage through ZVI-packed 

columns under constant flow conditions. Furthermore, Weisener observed the formation 

of mercuric sulfide, inferred to be metacinnabar, on the ZVI surfaces.  Therefore, while 

the presence of SO4 can lead to methylation, SO4 also may be a beneficial component for 

the stabilization of Hg if redox conditions conducive to the reduction of sulfate prevail.    

 

Increasing mass of MRM and S was accompanied by a corresponding increase in Si by 

approximately 5 mg L-1. Increasing mass of ATP and ZVI had the opposite effect of 

decreasing concentrations of Si by approximately 3 mg L-1. Concentrations of Si were 

nearly four times higher under anoxic conditions (17 to 42 mg L-1) than under oxic 

conditions (4-13 mg L-1), indicating the possible dissolution of silicate minerals under 

anoxic conditions. Concentrations of the elements Al, Cu, Co, Sr, and As were not 

substantially affected by the mass of reagent added and are not included in the figures. 
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Concentrations of Al were maintained below 0.3 mg L-1. The upper bound of the trace 

element concentrations are as follows:  Cu < 50 μg L-1, Co < 1.2 μg L-1, Sr < 0.4 μg L-1, 

and As < μg L-1.   

 

2.4 CONCLUSIONS 

The results from the stabilization experiments indicate that over the time frame of the 

experiments (up to 21 days), the mass of Hg released from the sediment could be reduced 

with the addition of reactive media. The greatest decreases in aqueous Hg concentrations 

were observed for reagent mixtures, including S+ZVI and MRM+ATP. Sediment that 

leached in excess of 1000 ng Hg L-1 in the control samples leached as little as 30 ng L-1 

for the treatment combinations. Aqueous Hg concentrations were independent of redox 

conditions for the sediment mixtures containing MRM+ATP. At low masses of reactive 

media added, the sediment mixtures containing S+ZVI did display a redox-dependency 

with greater treatment observed under anoxic conditions. Increasing the mass of these 

reagents lowered aqueous Hg and eliminated the strong redox-dependency observed at 

the lower mass additions. Values of pH and alkalinity also declined with the addition of 

this reactive mixture, suggesting that a carbonate buffer also may be warranted for field 

applications.  

 

It is expected that different primary geochemical stabilization mechanisms were 

promoted by the two media combinations.  The clay combination most likely promoted 

immobilization through adsorption, and possibly precipitation reactions with sulfide. If 

the sulfate released from the addition of MRM were reduced, formation of mercury 
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sulfide could be possible, as well as co-precipitation or adsorption of Hg by FeS. Mercury 

sulfide mineral precipitation is expected to have occurred for the S+ZVI combination, 

and to a lesser extent, adsorption of Hg to iron sulfide surfaces. Further analysis of the 

solid phase and microbial populations would be needed before removal mechanisms 

could be determined with greater certainty. Although both combinations show promising 

results in the controlled laboratory environment over the short-term, precipitation of 

sparingly-soluble sulfide minerals would be the preferred remedial mechanism to manage 

Hg in the field over longer time periods due to the high stability of HgS minerals.  

 

The most effective of the reactive media mixtures (S+ZVI and MRM+ATP) were 

associated with increased SO4 concentrations. Because high concentrations of dissolved 

sulfate have been found to correlate with higher rates of Hg methylation, applications 

utilizing these media should evaluate the potential for methylation reactions.   
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Table 2.1                                                                                                           
Solid-phase concentration of selected constituents expressed on a dry 
weight basis. Concentrations from Gibson et al. (in progress). 

SEDIMENT Hg (mg kg-1) Ca (mg kg-1) Fe (mg kg-1) C (%) S (%) 

A 115 14,400 15,500 23.3 1.2 
B 79 8,950 20,500 8.4 0.3 
C 335 7,150 25,000 6 0.4 
D 240 7,000 26,000 5.4 0.6 
E 140 5,500 18,500 7.6 0.3 

MEAN 182 8,600 21,100 10 1 
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Table 2.2  
Chemical composition of Laurel Creek Water (LCW) 

PARAMETER VALUE 
pH 7.5 

Eh (mV) 640 
Alkalinity (mg L-1 as CaCO3) 225 

Cl (mg L-1) 28 
NO3 (mg L-1) 6 
SO4 (mg L-1) 35 
Na (mg L-1) 13 
Mg (mg L-1) 15 
K (mg L-1) 1.6 

Ca (mg L-1) 39 
Al (μg L-1) 5 
Mn (μg L-1) 1.4 
Fe (μg L-1) 50 
Se (μg L-1) 1.1 
Pb (μg L-1) 2.6 
Hg (ng L-1) 9 
TP (mg L-1) 0.1 

NH3+NH4 (mg L-1) 0.1 
TKN (mg L-1) 1.8 
TOC (mg L-1) 3.7 
DOC (mg L-1) 3.8 
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Table 2.3 Source, abbreviation, and grain-size of treatment media 

REAGENT ABBREVIATION SOURCE GRAIN SIZE 

Elemental Sulfur S Adventus >2000 μm 

Attapulgite Clay ATP Zemex <125 μm 

Organically-modified Clay MRM Cetco 250-590 μm 

Zero-valent Iron ZVI QMP 250-590 μm 
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Table 2.4 Reagent mass ratios used for the sensitivity tests 

ATP MRM ZVI S Sample 
g (%, dry) g (%, dry) g (%, dry) g (%, dry) 

1 0.5 (1.9) - - - 

2 2.0 (7.1) - - - 

3 4.0 (13.3) - - - 

4 - 0.5 (1.9) - - 

5 - 2.0 (7.1) - - 

6 - 4.0 (13.3) - - 

7 - - 0.5 (1.9) - 

8 - - 2.0 (7.1) - 

9 - - 4.0 (13.3) - 

10 - - - 0.5 (1.9) 

11 - - - 2.0 (7.1) 

12 - - - 4.0 (13.3) 
13 0.25 (0.62) 0.25 (0.62) - - 
14 0.25 (0.61) 0.5 (1.2) - - 
15 0.25 (0.59) 2.0 (4.7) - - 
16 0.5 (1.2) 0.25 (0.61) - - 
17 0.5 (1.2) 0.5 (1.2) - - 
18 0.5 (1.2) 2.0 (4.7) - - 

19 2.0 (4.7) 0.25 (0.59) - - 
20 2.0 (4.7) 0.5 (1.2) - - 
21 2.0 (4.5) 2.0 (4.5) - - 

22 - - 0.25 (0.62) 0.25 (0.62) 
23 - - 0.25 (0.61) 0.5 (1.2) 
24 - - 0.25 (0.59) 2.0 (4.7) 

25 - - 0.5 (1.2) 0.25 (0.61) 
26 - - 0.5 (1.2) 0.5 (1.2) 
27 - - 0.5 (1.2) 2.0 (4.7) 
28 - - 2.0 (4.7) 0.25 (0.59) 
29 - - 2.0 (4.7) 0.5 (1.2) 
30 - - 2.0 (4.5) 2.0 (4.5) 
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Table 2.5                                                                                
Possible Hg-controlling phases 

MINERAL NAME FORMULA 

Cinnabar HgS 
Metacinnabar β-HgS 

Mercury carbonate HgCO3

Mercury chloride HgCl2
Mercury Oxide HgO 

Mercury Hydroxide Hg(OH)2

Mercury Sulfate HgSO4

Pyrhhotite FeS 
Pyrite FeS2

Marcasite FeS2
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Figure 2.1 Concentrations of total dissolved Hg (ng L-1) for different treatment media as a 
function of time and redox environment.   
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Figure 2.2 Concentrations of total dissolved Hg (ng L-1), pH, Eh (mV), alkalinity (mg L-1 
as CaCO3) for individual treatment media as a function of mass of reagent added. 
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Figure 2.3 Concentrations of total dissolved (< 0.45 μm) Hg (ng L-1), pH, Eh (mV), 
alkalinity (mg L-1 as CaCO3) for bi-media combinations as a function of mass of reagent 
added.  
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Figure 2.4.a Concentrations of K (mg L-1), Na (mg L-1), Ca (mg L-1), Mg (mg L-1), and Cl 
(mg L-1) for single-media batch experiments as a function of mass of reagent added.   
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Figure 2.4.b Concentrations of SO4 (mg L-1), Fe (mg L-1), Mn (mg L-1), Si (mg L-1), and 
Sr (mg L-1) for single-media batch experiments as a function of mass of reagent added.   
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Figure 2.5.a Concentrations of K (mg L-1), Na (mg L-1), Ca (mg L-1), Mg (mg L-1), and Cl 
(mg L-1) for bi-media combinations of reactive media as a function of mass of reagent 
added.    
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Figure 2.5.b Concentrations of SO4 (mg L-1), Fe (mg L-1), Mn (mg L-1), Si (mg L-1), and 
Sr (mg L-1) for bi-media combinations of reactive media as a function of mass of reagent 
added. 
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Figure 2.6 Saturation indices (SIs), calculated for Hg-bearing solid-phases using the 
aqueous composition obtained from single-media sensitivity tests. 
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Chapter 3:   
 

Long-term Assessment of Treatment Media Performance for the 

Stabilization of Mercury: A Column Study 
 

3.1 INTRODUCTION 

Mercury is one of the most toxic elements known and persists at elevated concentrations in 

sediments in many locations around the world. The slow release of Hg from the sediment 

matrix and subsequent biological uptake and transformation to alkylmercury compounds 

represents a substantial threat for most predatory organisms, including humans, due to a 

tendency for these compounds to bioaccumulate. The release of legacy Hg from 

contaminated sediments is expected to continue for extended periods, unless mitigation 

steps are taken. Assessment of the effectiveness of solid-phase reactive media additives as 

stabilization agents of Hg in sediment is the primary focus of this study.   

 

Cycling of Hg between organic and inorganic species is a complex problem, but sulfate-

reducing bacteria (SRB) and, to a lesser extent, iron-reducing bacteria (IRB), have been 

identified as the primary methylators of Hg (Zillioux et al., 1993; Han et al., 2008).  

Increasing concentrations of aqueous sulfate in contact with sediment cores increases the 

potential for Hg methylation, most likely due to stimulation of SRB activity (Gilmour et al., 

1998). The production of reduced sulfide by SRB in sediment pore water is increased by 

excess quantities of labile organic carbon and sulfate (Pallud and Van Cappellen, 2006). 

 

 SO4
2- + 2CH2O → H2S + 2HCO3

-      (3.1) 
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where CH2O represents organic carbon. Accumulation of pore water sulfide inhibits Hg 

methylation in cores collected from sediments having contrasting mineral and organic 

content; an effect commonly referred to as sulfide inhibition (Benoit et al., 1999; Han et al. 

2008). Therefore, sulfur content and speciation and redox zonation play a critical role in the 

methylation potential of a system.   

 

Despite the intricate balance between sulfur speciation and methylation, sulfide minerals are 

still considered to be the most prevalent and stable sink for Hg in reducing environments 

(Barnett et al., 1997). Many remediation strategies attempt to stabilize Hg by introducing 

various forms of sulfur to the contaminated system. For example, Kot et al. (2007) used 

colloidal sulfur to immobilize Hg in spiked sediment slurries and numerous researchers have 

utilized iron sulfide minerals for adsorption and/or exchange of aqueous Hg (Brown et al., 

1979; Svensson et al., 2006; Xiong et al., 2009). Therefore, it follows that inducing sulfide 

inhibition through accumulation of excess sulfide should have the dual consequence of 

reducing methylation and immobilizing Hg as a sulfide solid according to the following 

equation.   

 

 Hg2+ + HS- ↔ HgS + H+       (3.2) 

 

Zero-valent iron (ZVI) is a strong reducing agent and has been successfully applied as a 

remedial mechanism for trace metals by forcing the reductive precipitation of metal-sulfides 

in laboratory studies (e.g., Lindsay et al., 2008) and a full-scale field application (Blowes et 
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al., 1997). Weisener et al. (2005) used columns packed with ZVI to intercept groundwater 

with high Hg and sulfate concentrations, and observed > 90 % reduction in aqueous Hg and 

formation of β-HgS precipitates. We postulate that the combined addition of granular zero-

valent iron (ZVI) and oxidized sulfur pellets to Hg-contaminated sediment can have the 

effect of forcing a rapid transition through the sulfate-reduction phase, bypassing the 

opportunity for methylation and stabilizing Hg as solid HgS.   

 

Three saturated column experiments with contrasting treatment additives were conducted to 

test the hypothesis that addition of a strong reductant to a sulfur-based treatment system 

encourages sulfide inhibition of methylation and immobilization of Hg. The three treatment 

columns contained Hg-contaminated sediment and reactive media additions, including: a) 

oxidized elemental sulfur with a strong reductant (S+ZVI), b) a sulfate-rich organically-

modified clay and natural attapulgite clay with no reductant (MRM+ATP), and c) natural 

attapulgite clay with low sulfate and no reductant (ATP).  A fourth column experiment also 

was conducted with Hg-contaminated sediment and no amendment as a control 

(CONTROL).   

 

3.2 METHODOLOGY 

3.2.1 Experimental Approach 

Anoxic column experiments were conducted to evaluate the stability of treatment media 

mixtures in an O2 –deficient environment. Natural lacustrine sediment, reactive media 

and inert granite (added for sediment structure) were blended in proportions considered 

relevant to field-scale application (Table 3.1). Column experiments were designed to 
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assess the performance of treatment media under transient flowing conditions over long 

periods of time.  

 

3.2.2 Materials 

3.2.2.1 Sediment 

Lacustrine sediment collected near a historically-contaminated industrial site was used 

for the anoxic column experiments. Sediment characteristics are discussed thoroughly in 

Gibson et al. (in progress). The five sediment samples discussed in the preceding chapter 

were blended in equal mass proportions to yield the homogenized sediment used for the 

anoxic column experiments. Crushed granite was blended with the sediment at a ratio of 

1:1 to enhance the structural properties of the lacustrine sediment and to increase the 

hydraulic conductivity to promote water flow. The average bulk density of the 

sediment/gravel mixture was 1.183 kg L-1. 

 

3.2.2.2 Water 

Column influent water was collected from the Laurel Creek (LCW) headwaters, 

Waterloo, Ontario and stored at 4° C until experimental use. This water contained low 

concentrations of total Hg and measurable dissolved organic carbon (see Table 2.2), and 

was similar in composition to the water in contact with the lake sediments. LCW was 

purged with argon gas for a minimum of two hours prior to experimental use to remove 

dissolved oxygen.     
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3.2.2.3 Treatment Media 

Treatment media selected for the anoxic columns included attapulgite clay (ATP), a 

mixture of zero-valent iron and elemental sulfur (S+ZVI) and a mixture of organically-

modified clay and attapulgite clay (MRM+ATP). Treatment media was used as received 

from the suppliers with no further modification (see Table 2.3).   

 

3.2.3 Anoxic Column Experiments 

The anoxic column apparatus consisted of a reservoir of LCW, 1.5875 mm (1/16 in) 

Teflon tubing, a variable speed ISMATEC peristaltic pump, four plexiglass columns 

[inner diameter = 5.08 cm (2 in), length = 19.685 cm (7 ¾ in), fabricated at the 

University of Waterloo], flow-through amber glass sample bottles and polypropylene 

waste jugs (Figure 3.1). The experiments were conducted in an anoxic chamber (5% H2 / 

95% N2).  The headspace outlet of each waste jug was directed to an activated carbon 

trap to prevent the release of volatile Hg into the glovebox atmosphere. Columns were 

wet-packed with the homogenized lacustrine sediment, crushed granite, and respective 

treatment media inside the anoxic chamber to minimize sediment oxidation and avoid 

contamination of the sediment. Coarse-mesh nylon and 120 ASTM mesh Nytex screens 

were placed at each end of the columns to retain sediments. In addition, 2 cm thick silica 

sand margins (ASTM 20-30 mesh) were layered on the top and bottom of each column to 

entrap fine sediment fractions.    

  

Effluent from each column was sampled twice weekly for the first 60 days of 

experimentation, after which time flow to the columns was interrupted and columns were 
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left to stagnate for one week. After flow was resumed, samples were collected every 

second day for one week and once per week afterward. A second stagnation period of 30 

days was initiated at day 265 for the CONTROL and S+ZVI columns, day 240 for the 

MRM+ATP column, and day 185 for the ATP column. Samples were collected daily for 

the first week after flow was resumed and then bi-weekly for the remainder of 

experimentation. Water was pumped through the columns at a uniform flow rate for the 

entire experimental period, except during the stagnation periods. Flow rate varied slightly 

between columns, but averaged between 0.6 pore volumes (PV) and 1.0 PV / day.  

 

3.2.4 Collection of Water Samples 

Column effluent was collected using a leur-lock syringe attached to a t-valve on the 

inflow line of the flow-through sample collection vial. The effluent samples were filtered 

using 0.45 μm Supor® membrane fiber filters. For the Hg analyses, four 20 mL aliquots 

were collected in trace-clean amber glass vials (VWR); two samples were preserved with 

concentrated Omni trace ultra high purity HCl (Baker Instra-Analyzed) and two samples 

were preserved with ultra purity HNO3 (EMD Chemicals) to a pH < 2.0. Samples were 

stored at 4°C until analysis. Measurements of pH were made using an Orion Ross 

combination pH electrode (model number 8156BNWP) and Eh measurements were made 

with an Orion Pt - Ag/AgCl combination redox electrode (model number 9678BNWP), 

both on unfiltered water. The pH electrode was calibrated with standard buffer solutions 

of pH 4, 7, and 10, and the response of the Eh electrode was checked regularly against 

Zobell’s (Nordstrom, 1977) and Light’s (Light, 1972) solutions. Alkalinity was measured 

on filtered samples using a Hach digital titrator with bromylcresol green/methyl red 
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indicator and 0.16 N H2SO4. Concentrations of sulfide in column effluent were measured 

during the last 2 months of flow. Measurements were made in sealed cells in the anoxic 

chamber using the methylene blue spectrophometric method (Lindsay and Baedecker, 

1998).   

 

3.2.5 Analytical Methods 

Analysis of total aqueous Hg was performed according to US EPA Method 1631, 

Revision E (US EPA, 2002). Acid-preserved samples were oxidized with 0.5% BrCl at 

least 12 hours prior to analysis. A 0.1% hydroxylamine hydrochloride (HH) solution was 

added to the samples before analysis to remove residual halides. Stannous chloride 

(SnCl2) was added in excess during analysis to reduce oxidized Hg to its elemental form.  

Reduced Hg was concentrated on a dual gold trap and analyzed by an atomic 

fluorescence (AF) detector using a Tekran® Series 2600 Ultra-trace Hg Analyzer.   

Concentrations of major cations and trace elements were analyzed by inductively coupled 

plasma-mass spectrometry (ICP-MS) (Thermo X Series II quadrupole) and 

concentrations of anions were determined by ion chromatography (IC) (Dionex). 

Duplicate analyses of total Hg were performed on many samples, but in most cases the 

size of the error bars was less than the size of the symbol size on the plots.   

 

3.2.6 Geochemical and Speciation Modelling 

Saturation indices (SIs) were calculated using the geochemical equilibrium/mass-transfer 

code MINTEQA2 (Allison et al., 1990). Thermodynamic constants were modified in the 

database to be consistent with WATEQ4F (Ball and Nordstrom, 1991). To compensate 
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when sulfide measurements are missing, the calculations were conducted assuming 

equilibrium with respect to FeS, which provided calculated values of sulfide 

concentrations from the measured iron concentrations. This assumption was made based 

on observations by Wersin et al. (1991), which showed that water is typically in 

equilibrium with respect to iron sulfide in organic-rich sulfate-reducing environments. 

Observation of black precipitates, presumed to be iron sulfide, on the effluent tubes was 

used as one line of evidence that sulfate-reduction was occurring. Speciation modeling 

was not performed for the MRM+ATP column as the effluent waters contained high 

levels of sulfate and low sulfide and were assumed not to have become strongly sulfate-

reducing. 

 

3.3 RESULTS AND DISCUSSION 

Column effluent was sampled over a minimum period of 300 days to assess the long-term 

leaching potential of the sediment and the ability of the selected treatment media to 

immobilize Hg in the sediment matrix. Two intermittent phases of stagnation were 

implemented to evaluate the robustness of the treatment-induced Hg immobilization.   

 

3.3.1 Column Physical Properties and Flow Characteristics  

Inter-column variations in porosity and flow rate were observed (Table 3.1). The porosity 

was 40 vol. % for the CONTROL column, 45 vol. % for S+ZVI, 29 vol. % for 

MRM+ATP, and 33 vol. % for ATP. The differences in porosity likely were due to 

differences in the physical properties of the reactive media addition. The average flow 

rates for the columns ranged from 102 to 127 mL day-1 and the pore volume (PV) of each 
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column was calculated as the difference between saturated and unsaturated masses and 

ranged from 125 to 191 mL.   

 

3.3.2 Column Geochemistry 

3.3.2.1 pH, Eh and Alkalinity  

The column effluent was near neutral in pH, ranging from 6.69 to 8.39, among the four 

columns over the duration of the experiments (Figure 3.2). The effluent pH for the 

CONTROL, S+ZVI and MRM+ATP columns rose gradually until it reached a plateau 

between pH 7.6 and 8.0 by the completion of experimentation. The pH of the CONTROL 

column was 6.99 at the start of experimentation and gradually rose to 8.0 ± .12. The 

effluent pH from the S+ZVI column displayed a similar effect, leveling off at a pH of 7.6 

± .2 by day 22. The pH of the first PV of flow from the MRM+ATP column was 

approximately 6.7 and stabilized near the end of experimentation at 7.9 ± .12.  The 

effluent pH of the ATP column was consistently 8.0 ± .16 throughout the course of 

experimentation. The consistent plateau across the columns at approximately 8.0 pH units 

is most likely attributable to the carbonate alkalinity associated with the LCW input 

solution, which was collected from a spring discharging from a limestone aquifer and the 

presence of carbonate minerals in the contaminated sediment.     

 The alkalinity measured in the effluent of all columns ranged between 100 and 

200 mg L-1 (as CaCO3) and is indicative of alkaline LCW water. The S+ZVI column 

generally had a lower alkalinity than the CONTROL and clay-amended columns. This 

lower alkalinity suggests that acid was generated in the S+ZVI column, possibly due to 

oxidation of the S prior to emplacement in the column. A steady decrease in the Eh was 
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observed as the conditions within the column became increasingly reducing, due to 

depletion of the electron acceptor supply as the organic carbon was oxidized. The 

amended columns exhibited a more pronounced decrease in Eh than the CONTROL 

column.   

 

3.3.2.2 Major Ion and Trace Element Geochemistry 

The concentrations of dissolved major ions and trace elements were monitored in the 

column effluent as a secondary indicator of media performance. Release of high 

concentrations of dissolved constituents is a potential consequence of media addition, and 

can also be used as an indicator of mineral dissolution and instability of the solid matrix.  

Sulfate is of primary concern because increasing sulfate concentrations have been shown 

to cause a corresponding increase in methylation (Gilmour et al., 1992). However, if 

sulfate-reducing conditions prevail, reduced sulfate can contribute to formation of excess 

H2S, which can bind with Hg to form sparingly soluble HgS solids. The concentrations of 

sulfate in the first few PVs from the two clay columns were high (130 to 140 mg L-1) in 

comparison to the CONTROL column (~ 40 mg L-1) and the S+ZVI column (60 mg L-1). 

Sulfate concentrations in the CONTROL, ATP, and S+ZVI rapidly decreased to 20 mg L-

1 or less, but elevated sulfate concentration was maintained in the range of 10 to 110 mg 

L-1 in the MRM+ATP column throughout the duration of the experiments. 

Concentrations of sulfate declined the greatest in the S+ZVI column to < 10 mg L-1 until 

day 118, followed by a small increase to 20 mg L-1.  
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Dissolved sulfide concentrations were measured in the column effluent toward the end of 

the column experiments (Table 3.2). Excess concentrations of dissolved sulfide of up to 

416 μg L-1 were measured in the effluent of the S+ZVI column, in contrast to the other 

three columns, which contained much lower concentrations (9-25 μg L-1). Excess 

dissolved sulfide has been shown to induce sulfide inhibition of methylation in sediments 

containing varying organic carbon content (Benoit et al., 1999). The accumulation of 

sulfide in the S+ZVI column could be interpreted as an indicator of suppressed 

methylation. Additional analysis of the solid-phase methylation would be necessary to 

verify this hypothesis. 

   

Concentrations of Cl approached 500 mg L-1 in the effluent for the first several PVs of 

flow from the MRM+ATP column, but rapidly declined to lower values of 25 mg L-1 

(Figure 3.3). The CONTROL, S+ZVI, and ATP columns leached < 30 mg L-1 Cl. 

Chloride exerts a strong control on Hg speciation and bioavailability and tends to 

complex Hg as a relatively soluble mercury chloride (Nriagu, 1979). Excess dissolved Cl 

is therefore an undesirable component when trying to form stable Hg solids.   

 

The first few PVs of flow were closely monitored and analyzed as an indicator of what 

potentially could be released from sediments immediately following treatment and 

deposition. Elevated concentrations of exchangeable cations (K, Na, and Mg) were 

observed in the first several PVs of flow from the clay-amended columns (Figure 3.3), 

and elevated concentrations of Na (approximately 50 mg L-1) were observed in effluent 

collected from the CONTROL column. In contrast, much lower concentrations of the 
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major ions were observed in effluent collected from the S+ZVI columns. Both the S+ZVI 

and CONTROL columns initially released elevated concentrations of Co, Sb, Ba and Pb 

(Figure 3.4). Concentrations of these elements were lower in the clay-amended columns, 

likely due to adsorption reactions. The S+ZVI treatment combination resulted in an initial 

release of elevated concentrations of Cu relative to the CONTROL column. Elevated 

concentrations of Sr were released from the MRM+ATP column relative to the 

CONTROL, which continued until day 75. Concentrations of U were elevated in the first 

few pore volumes of flow from the ATP column, but then leveled off to a level slightly 

higher than the CONTROL around day 50. The remaining cations showed less 

pronounced changes during the first PV of flow relative to the remainder of the 

experiments.   

 

Between days 60 and 80, the effluent from the ATP column exhibited an increase in 

several elements, including Mg, Al, and Ca. Concentrations of Si steadily increased in the 

ATP column effluent from the start of flow. Because the primary constituents of the ATP 

clay are Mg, Al, and Si, the simultaneous increase of these elements in the effluent water 

suggests possible ATP clay dissolution.    

 

3.3.2.3 Mercury Immobilization 

The CONTROL column, which consisted of unamended sediment, was conducted to 

provide an indication of the concentrations of Hg and other trace contaminants that could 

potentially leach from the sediment after burial, if no treatment were implemented.  

Concentrations of Hg as high as 340 ng L-1 were observed in the effluent from the 
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CONTROL column during the first 4 days of flow, but stabilized by day 36 to 22 ± 2 ng 

L-1 (Figure 3.2). The 7-day stagnation period, which occurred at 60 days, resulted in a 

subtle spike in the effluent Hg concentration to 36 ng L-1, but again stabilized in the range 

of 15-25 ng L-1 within 20 subsequent PVs. The second stagnation period at 265 days 

resulted in Hg release from the sediment of > 300 ng L-1 after flow was resumed. The low 

release of Hg under flowing conditions followed by high release of Hg after stagnation 

implies a mass-transfer constraint on the release of Hg from the untreated sediment. 

These observations suggest that under flowing conditions the concentrations of Hg in the 

pore water were limited due to slow sediment to pore water mass-transfer of Hg. 

Leaching of Hg, even in trace concentrations, may pose a substantial threat to the natural 

environment due to the potential for trace amounts (ng L-1 range) to biomagnify in the 

food web to concentrations on the order of a million times greater than that observed in 

the water column (Zillioux et al, 1993). It is therefore important to seek treatment 

alternatives that have the potential to immobilize Hg to the greatest degree possible.    

  

Despite the increased concentration of Hg released following the two stagnation periods, 

Hg leached from the untreated sediment was low relative to concentrations observed in 

batch reactor experiments, which involved thorough mixing of the sediments with river 

water followed by a stagnation period (Chapter 2). Furthermore, the observed aqueous 

concentrations of Hg observed in the batch experiments were low relative to resuspension 

results for the same sediments reported by Gibson et al. (in progress). In the resuspension 

tests, in which sediment and water were continuously and vigorously mixed for up to 24 

hours, concentrations of Hg as high as 1200 ng L-1 were observed under anoxic 
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conditions. The release of Hg appears to be closely related to the mixing environment, 

with the highest concentrations observed with the most vigorous mixing.  

 

The ATP treatment column resulted in only moderate suppression of Hg release. 

Concentrations of Hg were maintained at values less than observed for the CONTROL 

column for the first 60 days of flow. After the 7-day stagnation, effluent Hg 

concentrations increased steadily, eventually approaching those observed in the 

CONTROL column (after day 90). This increased release of Hg, coincident with release 

of increased Mg and Al, indicates that the potential of the clay to immobilize Hg was 

reached or exceeded by this time and is suggestive of possible clay breakdown.           

 

Concentrations of Hg in the first few PVs of flow from the MRM+ATP column were 

around 300 ng L-1, but decreased rapidly and stabilized below 10 ng L-1 by day 20.  

Organically-modified clays have exceptionally high CEC, and in general, a high affinity 

for Hg with varying affinity for different Hg species (Say et al., 2007).  Of the three 

treatment columns, concentrations of Hg were consistently the lowest in the MRM+ATP 

column. The 7-day stagnation period resulted in little change in Hg release, and 

concentrations did not exceed 25 ng L-1 until the 30-day interruption of flow. Only one 

sample effluent collected at 283 days was observed to have ~ 40 ng L-1 Hg even after the 

longer interruption in flow. Speciation modeling were not performed for this column 

because sulfide concentrations were inferred in the model based on the assumption of 

equilibrium with respect to FeS, which is valid only for sulfate-reducing conditions. 

Neither substantial removal of sulfate nor substantial accumulation of sulfide were 
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observed for the MRM+ATP combination, suggesting that sulfate-reducing conditions 

may not have fully developed. Despite the high concentrations of sulfate, effluent Hg was 

maintained at very low concentrations throughout experimentation. This suggests that the 

adsorption capacity of the MRM may have been high enough to adsorb most Hg, or small 

amounts of sulfide may have formed and precipitated with the Hg.  

 

Effluent concentrations of Hg collected from the S+ZVI treatment column were 

approximately equal to the MRM+ATP column and consistently lower than the 

CONTROL and ATP columns. The initial PV of flow from the S+ZVI column contained 

Hg at concentrations almost 50% lower than those observed in the CONTROL and ATP 

columns and 40% lower than the MRM+ATP column. Within 2 days of flow, the effluent 

Hg concentrations decreased to < 17 ng L-1, and by day 20 concentrations were < 10 ng 

L-1 and continued to decrease until the first stagnation period. The release of Hg after the 

7-day stagnation period was suppressed in the S+ZVI column relative to the CONTROL, 

suggesting that the addition of treatment media lead to immobilization of Hg within the 

sediment matrix. The 30-day stagnation period resulted in a minor increase in Hg 

concentrations of 19 ng L-1 in effluent from the S+ZVI column. However, concentrations 

of Hg in the S+ZVI effluent rapidly returned to very low levels of 3 ± 2.6 ng L-1. 

Weisener et al. (2005) observed similar results using ZVI to stabilize Hg in a sulfate-rich 

groundwater, reducing Hg concentrations from 40 μg L-1 to 100-500 ng L-1; with lower 

concentrations observed in a column with a slower flow velocity. Low concentrations of 

sulfate and high concentrations of sulfide (sulfide measurements made at the end of the 

column life) in the column effluent suggest that sulfate-reduction was actively occurring. 
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Thus, conditions conducive to formation of stable HgS were present, according to results 

reported by Svenssen et al. (2005), which showed the formation of HgS after two years in 

batch reactors containing Hg0 and S0 under alkaline, anaerobic conditions. Speciation 

modeling results resulted in calculated saturation indices that were close to equilibrium 

for an HgS phase for each of the columns analyzed. These results are also consistent with 

SEM imaging results obtained by Weisener et al. (2005), clearly showing the formation 

of β-HgS.  

 

Concentrations of Hg in effluent collected from the S+ZVI column increased 

unexpectedly at day 209 and continued until day 237, when concentrations approached 

30 ng L-1. A similar increase in effluent Hg was observed in effluent from the CONTROL 

column over the same time period. The similar behavior of the CONTROL and S+ZVI 

columns, overlapping timing, and the fact that these two columns were attached to the 

same input reservoir suggest that the spike may have been associated with changes in the 

composition of the LCW feed solution.    

 

3.4 CONCLUSIONS 

The results from the anoxic column experiments suggest that Hg contained in the 

unoxidized sediment is relatively stable if maintained under steady flow in anoxic 

conditions. However, the sediment does have the potential to release environmentally 

significant concentrations of Hg if flow is perturbed. Release of Hg was observed to 

increase following periods of stagnation, suggesting that the concentrations of leached Hg 

were limited by kinetic mass-transfer processes. Similar trends of increasing 
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concentration following flow interruption have been previously observed and are 

attributed to discrepancies between advection and kinetic mass transfer timescales 

(Wehrer and Totsche, 2008; Gong et al., 2010). The addition of reactive media resulted in 

lower concentrations of Hg in the effluent from the columns than observed in the 

untreated sediment. Concentrations following flow disruptions also were lower in the 

treated columns than in the untreated columns. The most immediate and lasting 

stabilization effects were observed for the treatment combinations containing sulfur, 

including S+ZVI and MRM+ATP. The lowest concentrations of Hg were achieved with 

the MRM+ATP additives. Very low concentrations of effluent Hg were maintained for 

the combination of ZVI and S, which also corresponded to rapid sulfate reduction and 

sulfide accumulation. Calculation of saturation indices indicated the potential for all 

conditions to form a mercury sulfide phase, but the greatest degree of supersaturation was 

predicted for the S+ZVI treatment condition. Further work will be required to determine 

solid-phase alterations and affect of media addition on methylation.   

 

 

 

 

 

 

 

   

 

 52



Table 3.1                                                                                                                    
Composition and physical parameters for anoxic column experiments 
Parameter CONTROL MRM+ATP ATP S+ZVI 

Sediment (%) 50 50 50 50 
Gravel (%) 50 40 40 40 
ZVI (%) - - - 5 
S (%) - - - 5 
MRM (%) - 5 - - 
ATP (%) - 5 10 - 
Porosity  0.4 0.29 0.33 0.45 
PV (mL) 171 125 140 192 
Average Flow Rate (PV/day)  0.74 0.96 0.73 0.59 
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Table 3.2                                                                        
Concentrations of dissolved sulfide and sulfate in 
column effluent at the end of experimentation 

Column Day S2- (μg L-1) SO4 (mg L-1) 

355 10 19.6 
376 13 19.1 CONTROL 

369 11 20.5 
355 329 43.3 
376 416 42.8 S+ZVI 

369 315 49.9 
320 5 22.9 
340 12 21.5 MRM+ATP 

360 8 21.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 54



  Input 
Solution

Paristaltic
    Pump 

Column

Flow-through
 Sample Cell

Anoxic Chamber

Waste

 
 
 
Figure 3.1 Schematic diagram of anoxic column experimental setup.   
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Figure 3.2 Concentrations of dissolved (< 0.45 μm) Hg (ng L-1), pH, Eh (mV), and 
alkalinity (mg L-1 as CaCO3) for anaerobic columns as a function of time. Hollow circles 
represent Eh measurements and the hollow diamonds represent Hg (ng L-1) concentration 
in the LCW input solution. 
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Figure 3.3 Concentrations of Na (mg L-1), Mg (mg L-1), K (mg L-1), Ca (mg L-1), Mn (mg 
L-1), Fe (mg L-1), Cl (mg L-1), SO4 (mg L-1), Al (mg L-1), and Si (μg L-1) for control and 
treatment columns. 
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Figure 3.3 Calculated saturation indices for Hg-bearing solid phases.  MRM+ATP results 
not included due to the high concentrations of dissolved sulfate, a violation of the 
assumptions made for modeling sulfide-phases. 
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Chapter 4:   
 

Conclusions 
 

6.1 Summary of Findings 
 

The series of batch and column experiments performed suggest that addition of reactive 

media to Hg-contaminated sediment has the potential to effectively immobilize Hg and 

minimize its release to the environment. Varying levels of treatment efficiency were 

observed for the different media / media combinations under the manipulated conditions.  

 

The batch reactor experiments evaluated the potential of multiple reactive media to 

stabilize a fixed concentration of Hg under specific redox conditions, including both oxic 

and anoxic conditions, and examined the mass-dependency of treatment. Treatment 

efficiency was generally better with increased mass of reagent. The reagent combinations 

that resulted in the lowest release of aqueous Hg included S+ZVI and MRM+ATP. For 

both of these media combinations, added in the highest mass proportions evaluated, 

release of Hg was suppressed below the level of the untreated sediment by > 97%, 

reducing aqueous Hg from > 1000 ng L-1 to < 30 ng L-1. Evaluation of single-media 

performance indicated treatment efficiency under oxic conditions was highly dependent 

on the mass of reagent added, and greater media masses had substantially better 

treatment. Treatment under anoxic conditions was generally good for all reagents, 

independent of mass of reagent. Evaluations of bi-media combinations revealed a redox-
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independent treatment for the MRM+ATP mixture, although increasing mass of both 

reagents resulted in lower release of Hg. The ZVI+S mixture displayed a strong redox-

dependency, with generally better immobilization under anoxic conditions.  

 

Results from the anoxic column experiments were consistent with the results observed in 

the batch reactor experiments. In general, the release of Hg was lower in the column 

experiments than for the batch experiments, for both the treated and untreated sediment 

conditions. Release of Hg from the CONTROL column was nearly an order of magnitude 

lower than the concentrations released from untreated sediment in the batch experiments, 

which likely resulted from mass-transfer limitations.  These results suggest that if the 

sediment is maintained under an entirely anoxic atmosphere, the potential for release of 

Hg from the sediment is limited, provided flow velocities are similar to those used for 

these experiments. The interruption of flow to the columns resulted in increased 

concentrations of Hg released from untreated sediment, but the S+ZVI and MRM+ATP 

treatment additives greatly reduced this flux. Changes in pH were not a concern for this 

set of experiments, given the steady supply of alkaline water, relative to the batch 

experiments, which had only a fixed amount of carbonate alkalinity. High concentrations 

of major constituents and trace elements were released from the sediments during the first 

several PVs of flow. With the exception of sulfate, this release leveled off to near 

background concentrations. High concentrations of sulfate were released from the 

MRM+ATP column throughout the duration of experimentation, suggesting strongly 

sulfate-reducing conditions were not developed for this treatment combination.   
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It is likely that different geochemical stabilization mechanisms were promoted by the two 

media combinations. The high concentrations of sulfate in the MRM+ATP effluent and 

very low concentrations of sulfide suggest that sulfide precipitation was not the dominant 

Hg-stabilization reaction. Clays are known for their high adsorption potential, but the 

sulfur associated with the MRM reagent could also play a role in immobilization by co-

precipitating with Hg. The presence of excess sulfide in the effluent from the S+ZVI 

column suggests formation of HgS is probable. Speciation calculations performed for the 

S+ZVI effluent water support this interpretation.   

 

6.2 Future Research 

Further research into the mechanisms of Hg removal of each of these reactive media and 

media combinations would be beneficial.  Analysis of the solid-phase composition of the 

anoxic column sediments would substantiate modeling results, which predicted the 

precipitation of HgS. The suppression of methylation is a critical concern for the 

treatment of any Hg-contaminated sediment. Treatment performance could be further 

substantiated with analysis of solid and aqueous phases for MeHg concentrations. 

Furthermore, because Hg remediation strategies are inherently site-specific, additional 

experimentation performed on multiple sediments with contrasting compositions would 

test the robustness of the treatment media combinations. Other possible work could 

investigate other types of media, such as biochar, which is becoming a popular additive 

for its high adsorption capacity, low-cost, and potential to reduce the carbon footprint by 

sequestering labile-carbon sources.  
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It is important to note that the anoxic column experiments were performed with sediment 

that had never been exposed to oxygen. It is not known how stable the reactive mixtures 

would remain under oxic conditions, or how effective the reagents would be over the 

long-term on oxidized sediment. Experiments investigating Hg stability under oxidizing 

conditions would be a good further test of the robustness of the media combinations.    
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