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Abstract 
 
The oil production from well fractured carbonate reservoirs is a considerable part of the total oil 
production in the world. The petroleum resource base in naturally fractured reservoirs is 
estimated to be in the range of billions of barrels in the U.S and in addition, a multibillion- barrel 
international oil resource base exists in naturally fractured reservoirs. 

            Gravity drainage is important in some of oil recovery processes, either acting as the driving force 
in processes using horizontal wells or altering the displacement patterns during water-flooding, 
chemical flooding, CO2 flooding and other EOR methods. The gravity drainage process has a 
major effect on oil recovery from oil reservoirs. Gravity drainage driven oil production in 
naturally fractured and other complex reservoirs falls into two regimes: the balk flow regime and 
the film flow regime. Oil recovery by gravity drainage in a fractured reservoir strongly depends 
on the capillary height of the porous medium. Capillarity and gravity forces are usually the major 
driving forces in fractured reservoirs.  

            This PhD thesis consists of two main parts namely: 1) Experimental works on gravity drainage, 
and 2) Modeling and simulation of the gravity drainage processes using COMSOL® software. 

An appropriate design of experiment (DOE) method was selected to find the most important 
parameters contributing in gravity drainage and then conduct the experiments in a useful as well 
as economic manner. A two-dimensional experimental setup was employed to investigate free 
fall gravity drainage (FFGD) and controlled gravity drainage (CGD) using unconsolidated glass 
beads fractured porous media having various fractures configurations. Flow visualization 
measurements were carried out. Following the flow visualization experiments, parametric 
sensitivity analysis was performed considering the effects of different system parameters such as 
fracture aperture, matrix height, permeability, and fluid properties on the dependent variables 
including drainage rate, critical pumping rate, maximum drainage rate, recovery factor and so on. 
These experiments enabled us to capture some aspects of the recovery mechanism and the flow 
communication between matrix block and fracture during gravity drainage.  After analyzing the 
experimental data for the FFGD test runs, it was found that the rate of liquid flowing from matrix 
to fracture is proportional to the difference of liquid levels in the matrix and in the fracture. In 
addition, the characteristic rate and the maximum liquid drainage rate from the fractured models 
were determined for such a stable gravity-dominated process. The experiments showed that the 
presence of fracture is more influential in lower matrix permeability systems. For a given 
fracture-matrix system with different initial liquid saturation conditions, it was seen that the 
production history can be correlated by plotting the fraction of recoverable liquid as a function of 
time. Furthermore, the recovery factor can be correlated using dimensionless numbers such as 
the Bond number and the dimensionless time.  

For the controlled gravity drainage (CGD) test runs conducted, the experimental results indicated 
that higher pumping rates cause a higher difference between the liquid levels in the fracture and 
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in the matrix, thus the gas breakthrough happens sooner. Moreover, it was found that as long as 
the porous medium is drained with a constant liquid pumping rate but lower than critical rate, the 
height difference between the G-L interfaces in matrix and fracture remains constant. In this 
study, a new concept of “Critical Pumping Rate” (CPR) was defined at which each particular 
porous medium has recovery factor equal to the recovery factor for higher rates just before gas 
breakthrough. The difference between liquid levels in fracture and matrix remains unchanged at 
rates higher than CPR. Known this particular withdrawal rate, there are two main advantages, 
namely: 1) choosing a pumping rate lower than it to drain the reservoir without getting gas 
breakthrough; and 2) understanding the physics of pumping behaviour from fractured media and 
extending the concept to the real cases. In addition, the maximum liquid pumping rate from each 
physical model was studied and it was found that the rate depends strongly on the storage 
capacity of the fractures, petrophysical properties of each model as well as physical properties of 
test fluids. The critical rate, maximum rate, recovery factor at gas breakthrough and difference of 
gas liquid interface positions in matrix and fracture were correlated by dimensionless numbers 
such as Bond number, Capillary, and the ratio of permeabilities. Linear regression correlations 
presented in this study can predict production history and flow behaviour in the fractured porous 
media for a wide range of dimensionless numbers.  

The COMSOL® software was used to numerically simulate the gravity drainage processes in the 
two-dimensional flow experiments for fractured porous media. The parameters of the model 
were based on theory, as well as on the results of the two-dimensional gravity drainage 
experiments. The simulation results for the gravity drainage processes compared favourably with 
the experimental results, as a good match between the numerical solution and the experimental 
data was found. The simulation model developed provides a basis for further modeling of gravity 
drainage process in more complicated porous media. 
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Chapter 1 
 

Introduction and Objectives 
 

1.1 Introduction 
 

A large proportion of the world's proven oil reserves have been found in reservoir rocks that are 
naturally fractured (Waldren and Corrigan, 1985; Nelson, 1985; Aguilera, 1995; Nelson, 2001).  
The current increasing global oil and gas demand has meant that fractured reservoirs have found 
an increasingly significant role as global energy source in the Middle East and elsewhere. 
 

Naturally fractured carbonate reservoirs are described as geological formations with a 
heterogeneous distribution of porosity and permeability.  These reservoirs are usually thought to 
comprise of an interconnected fracture system that provides the main flow paths.  Fractures have 
high permeability and low storage volume about 3-4% of the oil original in place (OOIP) 
(Aguilera, 1995; Sahimi, 1995).  The reservoir rock or matrix acts as the main storage of the 
hydrocarbon.  The matrix regions have low permeability and high storage volume.  Hence, the 
rock matrix contains most of the oil.  However the production of oil to the wells is through the 
high permeability fracture system, implying that it is the matrix-fracture interaction that mainly 
controls the fluid flow.  Production from the matrix-fracture system can be associated with 
various physical mechanisms including oil expansion upon pressure decline in the reservoir, 
water imbibition, and gravity drainage by gas injection when using horizontal wells (Saidi, 1987; 
Nelson, 2001).  
 

From geological point of view, it is plausible to distinguish between various classes of fractured 
reservoirs (Nelson, 1985; Aguilera, 1995; Nelson, 2001).  The most important aspect of a 
fractured medium to provide an acceptable drainage rate is whether or not the fracture network 
provides a continuous flow path for acting fluids (Saidi, 1987).  In other words, whether it has 
regions with different fracture geometries or a system consisting of a hierarchy of fractured 
systems at different scales, i.e. multi-scale fractures (Waldren and Corrigan, 1985; Nelson, 
1985).  When the fracture network is not continuous in nature, the reservoir can then be split up 
into two separate flow domains, consisting of fractured and non-fractured media.  It is evident 
that in the fractured domain, the reservoir is heterogeneous, considering the presence of different 
fracture density, fracture apertures, and permeability anisotropies. 
 

The presence of fractures with permeability values that are orders of magnitude higher than that 
of the porous matrix gives rise to distinct mechanisms of oil displacement and production from 
naturally fractured reservoirs (Van Golf, 1996).  Notable among them is the gravity drainage 
mechanism that occurs when the local reservoir pressure drops below the saturation pressure, 
whereby the evolved gas phase can travel to the upper sections of the reservoir through vertical 
fractures.  A new zone, called the secondary gas cap, or the gas invaded zone is formed when all 
the fractures are filled with the gas and span the matrix block that contains oil.  The lower 
pressure gradient within the gas phase causes the gas pressure to be higher than that of oil at the 
same elevation.  Therefore, as long as the gas pressure is higher than the threshold capillary 
pressure of the gas-oil interface in the matrix, the gas enters the matrix and displaces the oil 
downwards by the action of gravity. (Nelson, 1985; Aguilera, 1995). 
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Gravity drainage has been reported to increase oil recovery by more than 60% in some reservoirs 
and recovery can be as high as 90% even for tertiary gravity drainage conditions (Chatzis et al., 
1988; Dullien et al., 1990; Dullien, 1992).  Several authors have developed theories for the 
gravity drainage process (Saidi, 1974; Saidi et al., 1979; Chatzis et al., 1988; Kantzas et al., 
1988; Dullien et al., 1990).  In petroleum engineering, there is a special attention given to gravity 
drainage, especially for gas injection as a secondary and tertiary recovery method in porous 
media.  However, great efforts are still needed to explore new issues and also find out solutions 
for unsolved problems in gravity drainage from fractured porous media.   
 
1.2 Motivations and Objectives 
 
The primary motivation of this study is to further the understanding of two-phase fluid transport 
characteristics through fractured porous media under gravity drainage process conditions. 
 

The study of two phase flow in fractured porous media is an important and challenging problem 
in petroleum engineering and hydrogeology.  A few of researches on this kind of porous systems 
have concentrated on investigating the communication between matrix and fracture in unsteady 
state conditions to better account for the capillary, viscous, and gravitational forces present in 
fractured media.  On the other hand, a significant number of studies have been numerical 
modeling of the fractured porous media without support from experimental data.  Furthermore, 
there is a dilemma. Many of the experimental researchers have commented that some of their 
results are either contradictory to, or difficult to explain with theoretical concepts of flow in 
porous media.  Part of the problem lies in the lack of information on how the fluids are moving 
in the matrix and fracture parts of a system during the experiments.  By contrast, the work 
reported here tracks the gas-liquid interfaces and explains the communication rate and 
production mechanisms for gravity drainage processes in a logical way.  It also includes detailed 
production rate, communication rate, critical rate and maximum rate measurements throughout 
the experiments. 
 

Generally, the motivations for the current research work to study gravity drainage in fractured 
porous media are as follows: 
 

1) Fractured petroleum reservoirs contribute almost 35-40% of the world's oil and gas reserves 
(Sahimi, 1995; Van Golf, 1996). More fundamental understanding is needed. 
2) Most fractured reservoirs having primary or secondary gas cap are produced by gas injection 
or free fall gravity (Saidi, 1987; Van Golf, 1996). 
3) Gravity drainage in fractured media is still a controversial subject among the researchers in 
this field. 
 

To address the aforementioned, this thesis consists of two important parts including: experimental 
and modeling tasks in order to meet main objectives of the research objectives listed below: 
 

1) To enhance our understanding of gravity drainage process in naturally fractured reservoirs, 
focusing on the communication between the fracture and matrix as well as the interplay of 
capillarity and gravity forces by investigation of different aspects of gas gravity drainage in 
fractured porous media. 
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2) To visualize gravity drainage in fractured systems using glass beads packed models with 
fractures and to focus on oil recovery efficiency, residual oil saturation and oil production 
mechanism for different cases. 
3) To focus on the behavior and movement of the macroscopic Gas-Liquid (G-L) interface 
through matrix and fractures in order to address the velocity distribution in fractured media that 
have different fractures configurations during the gravity drainage process.  To obtain the 
recovery performance of the employed macroscopic porous media models as a function of liquid 
withdrawal rate, as well. 
4) To simulate the experimental results using COMSOL and then to compare the outputs of 
simulation runs with the experimental data obtained in this study.  This part enables the 
development of best scenarios for producing oil from fractured media using the gravity drainage 
as a method of oil recovery. 
 

To achieve the objectives for this PhD research work, the following tasks were done: 
 

 Unconsolidated glass-bead types of experimental prototype were designed.  Each model 
is equipped with a certain pattern of fractures such as vertical and horizontal fractures. 

 Free-fall and Controlled gravity drainage experiments were carried out with focus on 
visualizing pore-scale aspects of the multiphase flow process, as well as fluid flow 
interaction between the matrix and the fractures. 

 Parametric sensitivity analyses were performed considering the effect of different system 
parameters such as fracture aperture, matrix height, permeability, and fluid viscosity on 
the liquid drainage rate and gas-liquid interfaces movement. Each series of experiments 
was initiated with a detailed Design of Experiment (DOE) through which different 
experimental steps and phases were designed and ranked considering the effects of 
various independent parameters on the dependent variables. 

 Last part of the work presented in this thesis is modeling of experiments using COMSOL 
as a multiphase flow modeling software and then comparing the outputs from the 
modeling software to experimental results.    It is widely accepted in the petroleum 
engineering literature that the modeling and reservoirs simulators, which are based on 
observations from hydrocarbon producing fields and laboratory tests, demonstrate a close 
link between these and emphasize the need for interdisciplinary approach to improve our 
current understanding of fractured reservoirs and the predictions of oil and gas 
production. 

 
1.3 Lay-Out of the Thesis 
 
The characterizations of naturally fractured reservoirs and literature review of previous research 
works in relation to this study are presented in Chapter 2. The first part of the chapter is a review 
of general information regarding fractured petroleum media, types of fractured reservoirs and the 
geologic aspects that describe fractured oil reservoirs, especially those parameters related to 
experimental works and numerical simulations such as fracture porosity, fracture aperture, 
matrix porosity, and matrix permeability.  The second part is previous research works regarding 
gravity drainage processes and also the numerical simulation of naturally fractured reservoirs 
that is composed of three categories: dual porosity models, dual permeability models, and finally 
common simulation softwares. 
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The experimental work for free fall gravity drainage (FFGD) in unconsolidated fractured porous 
media and important results related to the issue are addressed in Chapter 3.  Visualization of 
immiscible displacement of liquid by gas was covered in the chapter.  Visualization of the 
experiments under different conditions was carried out to determine oil production mechanism 
and gas-liquid interface movement in the fractured porous media during the gravity drainage 
process.   
 

The experimental study and empirical approach of controlled gravity drainage (CGD) are 
presented in Chapter 4.  The governing equations, sensitivity analysis of various parameters, 
mechanism of oil production at constant pumping rate from fractured glass beads systems are 
described in this chapter.  The physical model experiments were conducted at room conditions 
under constant production rate.  The experiments were carried out to include the effect of 
pumping rate on immiscible CGD recovery factor and flow behaviour in the fractured porous 
media.  The last section of chapter 4 summarizes the dimensional analysis work completed for 
the CGD process to facilitate the identification of the key variables affecting critical pumping 
rate and recovery factor.  The dimensional analysis also can help the scalability of experimental 
findings to field applications in the range of the dimensionless numbers. 
 

Discretization of the governing equations and simulation of the fractured media by COMSOL are 
presented in Chapter 5.  In the modeling approach, the governing equations were written for each 
part of the fractured porous media separately and then all reasonable assumptions were 
mentioned.  The last part of Chapter 5 presents the outcomes of the numerical modeling for free 
fall gravity drainage and controlled gravity drainage processes, and comparison is made between 
simulation outputs and experimental results. Finally, the main conclusions obtained from this 
research work and recommendations are presented in the Chapter 6. 
 



Chapter 2 
 

Background and Literature Review 
 

2.1 Naturally Fractured Reservoirs 
 
Naturally-fractured reservoirs are an important component of the global hydrocarbon 
reserve and production base.  In many parts of the world, fractured reservoirs account for 
the bulk of production.  In other areas, such as the Rockies of North America, low 
permeability formations that were once considered unconventional hydrocarbon resources 
are now quickly becoming main stream reservoirs (Saidi, 1987). 
 

A naturally fractured reservoir can be defined as a reservoir that contains fractures (planar 
discontinuities) created by natural processes like diastrophism and volume shrinkage, 
distributed as a consistent connected network throughout the reservoir.  Fractured 
petroleum reservoirs represent over 27% of the world's oil and gas reserves.  However, they 
are among the most complicated class of reservoirs to produce efficiently.  A typical 
example is the Circle Ridge fractured reservoir located on the Wind River Reservation in 
Wyoming, USA.  This reservoir has been in production for more than 50 years but the total 
oil recovery until now has been less than15% (Saidi, 1987). 
 

It is undeniable that reservoir characterization, modeling and simulation of naturally 
fractured reservoirs present unique challenges that differentiate them from conventional, 
single porosity reservoirs.  Not only due to the intrinsic characteristics of the fractures, as 
well as the matrix, have to be characterized, but the interaction between matrix and 
fractures must also be modeled accurately.  Furthermore, most of the major naturally 
fractured reservoirs have active aquifers associated with them, or would eventually resort to 
some kind of secondary recovery process such as waterflooding, implying that it is essential 
to have a good understanding of the physics of multiphase flow for such reservoirs.  This 
complexity of naturally fractured reservoirs necessitates the need for their accurate 
representation from a modeling and simulation perspective, such that production and 
recovery from such reservoirs be maximized (Aguilera, 1995). 
 

Recently, new areas of research are being explored including the origin and development of 
fracture systems, fracture detection methods, efficient numerical modeling of fluid flow and 
methodologies to test these models (Robert, 2002).  As stated earlier, the fractures are 
considered as a macroscopic planar discontinuity in rock which is interpreted to be due to 
deformation or diagenesis.  These fractures may be due to compression  or dilatant 
processes and may have a positive or negative impact on fluid flow.  Naturally fractured 
reservoir can be defined as any reservoir in which naturally occurring fractures have, or are 
predicted to have, a significant effect on flow rates, anisotropy, recovery or storage 
(Nelson, 2001).   
 

The porous system of any reservoir can usually be divided into two parts (Eshraghi, 1995): 
 Primary Porosity (matrix porosity): This porosity is usually inter-granular and is 

controlled by lithification and deposition.  The matrix porosity contributes 
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 Secondary Porosity (fractures):  Post lithification processes cause this porosity. 
Fractures are highly permeable and hence contribute significantly to the fluid flow 
but as they are not very porous, their contribution to fluid storage is negligible. 

 

The post-lithification processes that cause secondary porosity are general in the form of 
solution, recrystallization, dolomotization, and fractures or jointing. 
 

In a naturally fractured reservoir, as explained before the matrix porosity and fracture 
permeability have different roles in providing fluid storage and fluid flow direction. 
Therefore, it is important to consider their contributions for oil production performance and 
recovery rate during EOR method. Hence dual porosity formulation was developed by 
Warren and Root (1963). 
 

Most of the petroleum reservoirs show a dichotomy of porous space but with varying 
degree of matrix and fracture presence.  A low fractured reservoir is one in which the 
fracture porosity is not significant.  Most natural fractured reservoirs are highly fractured 
and consist of a significant amount of fracture porosity.  Hence this dichotomy for natural 
fractured reservoirs is justified (Eshraghi, 1995). 
 

The dual porosity concept superimposes the secondary or fracture media on the primary or 
matrix media and this superimposition is idealized as primary porosity coupled with the 
secondary porosity, as shown in Figure 2.1. 

 
Figure 2.1: Idealization of the dual porosity reservoir (Saidi, 1987) 

 
Naturally fractured reservoirs represent a challenge to the reservoir-modeling world due to 
their complexities.  Substantial research has been accomplished in the area of geo-
mechanics, geology and reservoir engineering of fractured reservoirs (Saidi, 1987). 
 
 

Model Reservoir 

Matrix Block Fracture

Actual Reservoir 

Fracture
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2.2 Petrophysical Properties of Fractured Reservoirs 
 
2.2.1 Porosity: In a fractured reservoir the total porosity ( t ) is the result of the simple 

addition of the primary and secondary porosities, 
 

21  t  (2.1) 

    
where 1  =primary porosity and 2 = secondary porosity. 
 

From a large number of laboratory measurements on various types of rocks, the fracture 
porosity was considerably less than the matrix porosity (Nelson, 1985; Eshraghi, 1995).  
The two porosities are expressed by the conventional definitions, 

1 = matrix void volume/total bulk volume and 2 = fracture void volume / total bulk 
volume. 
 
The two porosities are relative to the total bulk volume (matrix + fractures). 
In the correlation of matrix porosity ( m ) and the fracture porosity ( f ), the fact that the 

matrix porosity refers only to the matrix bulk volume may be taken into consideration: 
 

volumebulkMatrix

matrixtheofspacevoidofVolume
m                                 

while the fracture porosity is given by: 
 

f 2  (2.2) 
 
In this case the primary porosity, as a function of matrix porosity, is expressed by: 
 

m )1( 21   (2.3) 
 
and the effective primary porosity, containing the oil phase, is: 
  

)1()1( 2,1 wimeff S   (2.4) 
 

where Swi is the initial water saturation in fractured oil reservoirs.                                                            
Therefore, the equation of double porosity in the fractured systems can be written as 
follows (Eshraghi, 1995; Van Golf, 1996): 
 

fmfme    (2.5) 
 
2.2.2 Permeability: The basics of permeability established for a conventional reservoir 
remain valid in the case of a fractured reservoir.  But in presence of two systems (matrix 
and fractures), permeability may be redefined as matrix permeability, fracture permeability 
and system (fracture-matrix) permeability.  The definition of permeability may create some 
confusion especially for fracture permeability, which may be interpreted either as single 

 
 

7



fracture permeability or as fracture network permeability, or sometimes as fracture 
permeability of fracture- bulk volume.  Therefore, the various expressions of permeability 
will be examined and discussed here in detail (Sahimi, 1995). 
The intrinsic fracture permeability is associated to the conductivity measured during the 
flow of fluid through a single fracture or through a fracture network, independently of the 
surrounding rock (matrix).  It is, in fact, the conductivity of a single channel (fracture) or of 
a group of channels (fracture network).  In this case the flow cross-section is represented 
only by the fracture void areas excluding the surrounding matrix area.  In a simplified case 
of a block, where the fracture is parallel to the flow direction, by use of the equation of flow 
rate through the conduit for fracture and the formula based on the Darcy concept, Kf is 
obtained by (Van Golf, 1996): 
 

cos
12

2b
K f   (2.6) 

 
where b is the fracture aperture and α is the dip angle. 
 
For a fracture system having n fractures of similar orientation, the intrinsic permeability is 
expressed by the arithmetic average:  
 

cos
12
1

2


n

i
i

f

b
K  

 

(2.7) 

 

For a fractured system with fracture porosity 2 , the conventional fracture permeability, Kf 
is: 
 

2, .ffeff KK   (2.8) 
 

2.3 Types of Fractured Reservoirs and Oil Recovery  
 
According to the research performed on 100 fields (Van Golf, 1996), fractured reservoirs 
are divided into four groups: 
Type I: This Type of reservoirs has low matrix porosity and permeability. Fractures 
provide both storage capacity and fluid-flow pathways. 
 

Type II: Type II reservoirs have low material porosity and permeability. Matrix provides 
some storage capacity and fractures provide the fluid-flow pathways. 
 

Type III: Type III (micro porous) reservoirs have high matrix porosity and low matrix 
permeability. Matrix provides the storage capacity and fractures provide the fluid-flow 
pathways. 
 

Type IV:  This type of reservoirs has high matrix porosity and permeability. The matrix 
provides both storage capacity and fluid-flow pathways. 
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      Studies show that majority of reservoirs in the world are of type II and III (Sahimi, 1995; 
Van Golf, 1996).  Therefore, reservoirs of other types are found rarely. Based on the 
previous studies and also my preliminary experiments, production mechanisms for these 
two types (II and III) are very similar (Saidi, 1987; Zendehboudi et al, 2008). Moreover, the 
number of fractured media type III in Iran and US is much more than that of type II and the 
reservoir characterization and production history of type III are more available and easier to 
access for implementation of scaling up of experimental results and also EOR screening 
criteria for type III of fractured reservoir (Sahimi, 1995; Van Golf, 1996). Therefore, we 
focus on type III of fractured reservoirs in this research. 
 

2.3.1 Fractured reservoirs versus conventional reservoirs: Before discussing type II and 
type III fractured reservoirs, it is beneficial to compare fractured reservoirs with 
unfractured reservoirs in order to understand why fracture reservoirs behave differently and 
need to be treated differently.  Although porosity and permeability vary widely in fractured 
reservoirs, type I, II and III fractured reservoirs have low matrix permeabilities and could 
not be produced economically without the presence of fractures.  High permeability – low 
porosity fractures in a low permeability – higher porosity matrix provides the mechanism 
for recovery of hydrocarbons (Sahimi, 1995).  However, this dual porosity system adds a 
measure of complexity that is absent in unfractured reservoirs.  The production 
characteristics of fractured reservoirs differ from those of conventional reservoirs in several 
fundamental ways: 
 

1) Because of the high transmissivity of the fracture network, the pressure drop around a 
producing well is very low and pressure gradients do not play a significant role in 
production.  Production is driven instead by complex mechanisms that govern 
fracture/matrix- block communication and fluid-flow phenomena (Van Golf, 1996; 
Dastyari et al., 2005). 
 

2) In fractured reservoirs with some matrix permeability, the pressure decline per barrel of 
oil produced is low compared to conventional reservoirs.  This occurs because fluid 
expansion, gravity drainage, and imbibitions provide a continuous supply of oil from 
matrix blocks into the fractures during production (Van Golf, 1996; Saidi, 1996). 
 

3) The gas to oil ratio (GOR) in fractured reservoirs normally remains lower compared to 
homogeneous reservoirs throughout production, if the reservoir is properly managed.  This 
occurs because liberated gas flows preferentially upward through fractures to the top of the 
reservoir rather than horizontally toward the nearest well bore as in an unfractured 
reservoir.  The liberated gas communicates with the gas cap and expands it.  The gas 
content of produced oil is lowered accordingly in such type of fractured reservoirs with a 
gas cap (Saidi, 1987; Saidi, 1996). 
 

4) Fractured reservoirs lack transition zones.  The oil-water and gas-oil contacts are 
essentially knife- sharp type of interfaces, both prior to and during production, since the 
high permeability of the fracture network provides a mechanism for rapid equilibration of 
fluid contacts (Van Golf, 1996; Saidi, 1996). 
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5) Water cut in fractured reservoirs is strictly a function of production rate.  The 
petrophysical characteristics of the reservoir rocks and PVT properties of the fluids have 
insignificant effect on water production (Saidi, 1987; Dastyari et al., 2005). 
 

6) Convective circulation occurs during the production of many fractured reservoirs.  As a 
result, PVT properties are constant throughout a fracture reservoir, compared to a 
conventional reservoir where bubble point varies as a function of depth within the oil 
column (Van Golf, 1996; Saidi 1996). 
 

Because of these fundamental differences, mistaking a fractured reservoir for an 
unfractured reservoir early in the field-development phase can lead to mistakes in 
exploitation strategy that have profoundly negative effects on reservoir performance.  Most 
wells completed in newly discovered fractured reservoirs produce at high rate initially 
(Sahimi, 1995; Van Golf 1996).  If investment decisions are made, as they sometimes are, 
by assuming that those high production rates can be maintained over extended periods of 
time, the field may be economically doomed from the start.  When wells in fractured 
reservoirs are pumped at excessively high rates, the GOR can increase rapidly instead of 
maintaining low as in a properly managed field (Sahimi, 1995; Van Golf 1996).  This 
eventually leads to a rapid decline in reservoir pressure.  Rapid pressure decline can change 
the delicate balance of recovery mechanisms that feed the matrix oil into the fractures and 
drastically decrease recovery factor.  Finally, if an incorrect secondary recovery technique 
is chosen, ultimate recovery may be further reduced.  The most common example of poor 
reservoir management is water flooding a fractured reservoir.  The inevitable early water 
breakthrough leaves a large amount of recoverable oil behind by way of bypassing matrix 
blocks (Eshraghi, 1995; Van Golf, 1996). 
 
2.4 Gravity Drainage in Fractured Reservoirs  
 
Gravity drainage is an important production mechanism in the development of many oil 
reservoirs with attractive features such as a large dipping angle, significant vertical 
thickness, and high permeability. It is also important in aquifer water infiltration. This 
mechanism will be especially promising in the cases in which a gas cap (initial or 
secondary) is present, in direct contact with the oil zone. Capillary continuity is perhaps the 
most important parameter affecting the performance of gravity drainage process (Saidi, 
1979; Firoozabadi et al., 1992). Oil recovery by gravity drainage in a fractured reservoir 
strongly depends on the total height of the capillary continuity. When modeling multiphase 
flow in a fractured porous medium, the capillary forces should be taken into account for 
both matrix and fracture. Considering matrix blocks to be discontinuous, it is only 
appropriate if and only if the fracture capillary pressure is assumed to be zero. There is not 
a reliable assumption to believe that fracture capillary pressure could be zero in value 
(Fung, 1991; Blunt et al., 2001). 
 

It is reported in the literature that high oil recoveries can be achieved by employing gravity 
drainage processes in laboratory and in field.  For example, Kantzas et al. (1988) reported 
the results of gravity drainage experiments, using unconsolidated media with maximum oil 
recovery of 99% of the initial oil in place (IOIP).  Da Sle and Guo (1990) reported an 
ultimate oil recovery of 94% of IOIP in Westpem Nisku D Reef field.  Characterizing and 
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modeling of gravity drainage processes are still of great interest.  Several gravity drainage 
models have been developed, and reported, in the literature (Saidi, 1976; Schechter and 
Guo, 1996).  However, these models simply overlook the communication term between the 
matrix and fracture, by assuming a constant rate of oil flowing from matrix to fracture 
during gravity drainage process.  Researchers have developed theories for the gravity 
drainage process in homogeneous media (Chatzis et al., 1988; Kantzas et al., 1988; Dullien 
et al., 1990).  Many other studies have been conducted on the modeling and experimental 
aspects of gas flooding.  For example, experimental studies carried out using micromodels 
and packed columns have reported that oil recovery as high as 90% of the initial oil in place 
is attainable, if gas gravity drainage is considered the dominant mechanism in the depletion 
process (Chatzis et al., 1988; Dullien et al., 1990; Dullien, 1992).  
 

Visual investigation of the immiscible displacement of the oil being displaced by the gas 
has been the subject of several articles (Chatzis et al., 1988; Oren, 1992; Zhi-An, 1994; 
Sajjadian et al., 1999; Blunt et al., 2001).  Haghighi and Yortsos (1997) studied the 
drainage process in a horizontal fractured system.  They observed and modeled the flow 
patterns in the matrix and fracture according to the pore-scale phenomena, using 
percolation theory concepts.  Sajjadian et al. (1999) performed a visualization study of the 
gravity drainage using a glass micromodel with fractures.  Furthermore, Zhou and Blunt 
(1998) studied the effect of wettability on gravity drainage process.  Flow visualization of 
tertiary oil recovery by inert gas injection under gravity drainage in models with 
macroscopic heterogeneities has also been reported elsewhere (Catalan, 1994).  In absence 
of predictive theoretical models, experimental laboratory studies may be a way to predict 
the performance of the gravity drainage processes.  To properly scale up the experimental 
data to the field scale, the laboratory physical models should be appropriately scaled to the 
specific reservoir in geometry, physical and even chemical processes.  To build such a 
system a good understanding of the process (interplays of the different physical forces) is 
required (Por et al., 1989; Kulkarni et al., 2005). 
 

Understanding of the production mechanisms that contribute to hydrocarbon production 
from naturally fractured media has been substantially improved during the past few 
decades.  Enormous research and development projects have been commenced with the 
cooperative aid of academic divisions as well as industrial branches (Chatzis et al., 1988; 
Oren, 1992; Zhi-An, 1994; Sajjadian et al., 1999; Blunt et al., 2001).  However, there are 
still ambiguous areas, especially among its upstream division, over which further R&D 
activities are needed.  As an example, research topics such as gravity drainage mechanism 
in fractured porous media, under both free-fall gravity drainage, or controlled gravity 
drainage and their associated debatable issues such as complex fluid flow communication 
between matrix and fractures are still in great deal of interest in academic research 
activities.  Efforts have been made to critically address these research topics through a 
series of relevant publications for the recovery of residual oil (Saidi, 1974; Chatzis, et al., 
1988; Kantzas, et al., 1988; Dullien, 1990). 
 

Production from fractured reservoirs under gravity drainage mechanism is dominated by 
two major interacting forces namely, capillary forces and gravity forces (Dullien, 1992).  
The viscous force is the only major driving force for production of non-fractured (i.e. 
homogeneous) reservoirs (Da Sle, 1990; Paul, 2005).  Considering the gravity drainage 
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process in a fractured medium, there are two major parameters affecting the overall system 
drainage rate, namely, the density difference between interacting gas and liquid, and also 
the elevation difference between gas-liquid interfaces in matrix and fracture.  The latter two 
parameters are responsible for drainage type of liquid movement through the matrix block.  
Consider the case of a vertically suited matrix block which is surrounded by two vertical 
fractures on both sides, and is draining under the influence of controlled gravity (pumping 
the liquid out of the system) as it is one of the cases for the experimental set up of the 
current study.  Essentially, the oil content of fractures, which is not a considerable volume 
as a result of their low storage capacity values, would be drained first because of the 
associated high values of inherent permeability.  The resulting void space would then be 
occupied by invading gas phase, which originally comes from either associated gas cap or 
from the source of gas injection.  It is believed that the original oil held in place in the 
matrix, which contributes the most to ultimate oil recovery, needs longer time to be 
transmitted towards fractures, compared to the time associated with fracture drainage 
(Schechter and Guo, 1994; Zendehboudi et al., 2008).  Interaction of gravity and capillarity 
forces dictates this communication phenomenon (Schechter and Guo, 1994; Zendehboudi et 
al., 2008).  This time delay makes fractures to be filled up with invading gas phase.  In 
other words, the presence of vertical fractures causes the gas-liquid contact inside fractures 
to move downwards ahead of the corresponding contact in the matrix block by gravity 
drainage mechanism.  The gas phase invades all the way through the fracture until it fills up 
the whole fracture volume, except the height with respect to threshold capillary pressure, 
which is indeed negligible.  If the matrix block is surrounded by gas, the gravity forces tend 
to drain the oil out of the matrix while the capillary forces tend to retain the oil inside the 
tortuous pores (Thomas et al., 1983; Tavassoli et al., 2005). 
 

Free-fall gravity drainage (FFGD) takes place when gravity force is the only acting force on 
the draining liquid (Dullien, 1992). However, the fluid withdrawal rate under FFGD 
recovery mechanisms might not compensate the CAPEX and OPEX of recovery process; it 
is needed to increase the ultimate recovery using different EOR (or, IOR) processes 
(Thomas et al., 1983; Trivedi and Babadaghli, 2008).  In a fractured medium, one can 
enhance the ultimate recovery factor using techniques which reduce the interfacial tension 
(i.e. injection of surface active agents) or reduce the entrapment of liquid.  In most cases, 
the matrix height is much greater than its capillary threshold height; otherwise, the liquid 
content would not drain under free fall gravity drainage mechanism (Dullien, 1992; Sahimi, 
1995).  In general, the ultimate liquid production is governed by the matrix capillary 
pressure.  
 

The gravity drainage mechanism of fluid-flow in naturally fractured reservoirs was 
modeled and validated by solving the available analytical equations (Firoozabadi and 
Hauge, 1990).  The block to block interaction effect was included in this model.  It is 
assumed that the information concerning block dimensions, which are essential to any 
reservoir characterization, are known and therefore are not discussed here Whereas, the 
effects of oil relative permeability, threshold height, change in the initial irreducible water 
saturation while gas is being displaced by spreading (or, not spreading) oil need to be 
further reviewed (Schechter et al, 1996; Aziz et al, 1993). 
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Under pure gravity dominated flow, the ultimate recovery would be dictated by a trade -off 
between the gravity and capillary forces (Saidi, 1987; Dullien, 1992). It should be noted 
that there are two major flaws in numerical simulators for naturally fractured reservoirs.  
The first one is the inappropriate governing equations used for the modeling.  These 
equations do not consider some vital modeling parameters; or if they do, there are some 
doubts regarding defined parameters.  For example, most of these governing equations have 
some problems when they are dealing with the matrix-fracture flow communication (i.e., 
the defined shape factor for considering the flow communication has not been generalized 
yet) (Zimmerman, 1991; Saidi, 1997; Mora and Wattenberger, 2009).  In addition, the 
governing equations in gravity dominated flow, either free fall gravity drainage or 
controlled gravity drainage, have not been clearly defined yet.  Aside from that, most of the 
simulation studies lack some primary reservoir data, especially those related to fractured 
section such as fracture size, distribution, and orientation. 
 

Most of the early studies focused on the representation of reservoirs by means of single 
reservoir blocks.  Most of the time these studies have relied on sparse experimental data in 
the literature (Mattax and Kyte, 1962; Kleppe and Morse, 1974; Kazemi and Merrill, 1979) 
to verify their models.  However those experiments provided rough approximations of the 
recovery obtained in the actual reservoirs.  Later, experimental works focused on 
understanding the mechanisms that control the flow of fluids in porous media (Horie et al. 
1988; Firoozabadi and Hauge, 1990; Labastie, 1990; Firoozabadi and Markeset, 1992).  
Hughes (1995) presents a detailed discussion of the aforementioned experiments.  From the 
most recent experiments, we can see that most of them lack an explicit velocity distribution, 
saturation distribution and variation of communication rate in fractured porous media, since 
accurate measurement and considering entire main parameters have been the biggest 
difficulties in these kinds of studies.  Some of the experimental studies focused on the 
mechanisms dominant in gravity drainage situations and in small block imbibition 
displacements.  Whereas others, have emphasized understanding flow through a single 
fracture with no transfer from the matrix. 
 

Li et al. (2000) discussed the results of the experimental work on gas gravity drainage on 
artificially fractured Berea sandstone cores at reservoir conditions (Spraberry Trend Area, 
West Texas).  They concluded that fractures could improve the efficiency of immiscible 
displacement, but suggested additional experimental investigation for further clarification 
that our research work shows contradictory finding compared to the idea presented.  
 

Dastyari et al. (2005) investigated the gravity dominated immiscible gas injection in a 
single-matrix block using 2D glass micromodels, in both free and forced gravity drainage 
modes.  The authors reported that the free gravity drainage is initially a very fast process, 
but slows down at longer times.  This observation appears to be supported by the original 
gravity drainage theories (Cardwell and Parsons, 1948; Terwilliger et al., 1951) as well as 
other macroscopic experimentation (Meszaros et al., 1990).  However, three other 
conclusions of Dastyari et al. (2005) appear to contradict the previous observations.  Firstly, 
the authors suggested that the oil recovery in an un-fractured system appears to be higher 
than that of a fractured system.  This observation contradicts the observations of Catalan et 
al. (1994) and Li et al. (2000) which indicate that the presence of fractures in the direction 
of flow enhanced the oil production rates.  Secondly, the authors stated that the residual oil 
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saturation increases to more than twice of the natural gravity drainage, which contradicts 
the observations of Thomas et al. (1990) and Karim et al. (1992).  Thirdly, the authors 
reported that gas injection in both un-fractured and fractured models results in higher 
residual oil saturations, which appears to contradict almost all the experimental studies 
summarized in this section, which suggest that gravity stabilized gas injection can result in 
very low residual oil saturations. 
 

Jones, Wooten, and Kaluza (1988) studied single phase flow through rough-walled 
fractures, and found that for wide fractures, Whiterspoon’s et al. (1980) cubic law equation 
can be used to calculate absolute permeability and to characterize single-phase flow.  
Romm (1966) presented two-phase flow experiments in smooth vertical parallel plates.  He 
concluded that fracture relative permeabilities are equal to the phase saturation.  Also, he 
suggested these results cannot be applied to flow in fractured media where a system of 
interconnected fractures is present. 
 

In general, several authors (Kazemi and Merrill, 1979; Beckner, 1990; Gilman et al., 1994) 
have assumed that fracture capillary pressures are negligible.  Others have shown 
experimentally that capillary continuity becomes important when gravity provides a driving 
force (Horie et al., 1988; Firoozabadi and Hauge, 1990; Labastie, 1990; Firoozabadi and 
Markeset, 1992).  Kazemi (1990) concluded that the capillary continuity is prevalent in the 
vertical direction and has suggested that, in order to reduce the number of equations to 
solve, the fractured reservoir simulations should use the dual permeability formulation for 
the z direction and the dual porosity formulation for the x and y directions.  However, the 
uncertainty problem related to shape factor remains unsolved and in all three directions, 
both methodologies should be applied to get accurate results. 
 

Gravity drainage from a block, under constant pressure, consists of two main parts: first: oil 
recovery as the gas-oil front in matrix is moving before it reaches the block threshold 
height (one phase flow period).  Second: oil recovery during two-phase flow conditions 
which takes place from about the time that matrix gas-oil front reaches the threshold height 
to final recovery.  Oil recovery during this second period is dictated by the oil relative 
permeability, which is affected by the fluid distribution and the shape of capillary pressure 
curve.  The oil relative permeability should be calculated from laboratory measured gravity 
drainage tests under actual reservoirs conditions (Chatzis et al., 1988; Dullien, 1992).  Such 
a procedure may not be practical in low permeability rocks.  In this case, the centrifuge 
method may be used at best, with the necessary precautions and corrections before 
calculating relative permeability (Dullien, 1992; Sahimi, 1995). 
 

To calculate the relative permeability from gravity drainage or centrifuge experiments, 
often the entire oil relative permeability curve cannot be matched with one Corey exponent 
“n” (Corey model, ) (Dullien, 1992).  This is particularly the case when the high 

oil saturation portion of relative permeability corresponds to an n > 4 value. In this case the 
part related to the high oil saturation can be matched with one “n” value and the low oil 
saturation part (the film flow part) with different “n” value (Dullien, 1992).  

n
ooro Skk .

 

Several gravity drainage models have been developed for porous media, especially 
fractured ones in the literature. In these models, capillary pressure, communication rate 
between matrix and fracture are usually either neglected or considered inappropriately. 
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However, these two parameters play important roles in many cases (Zendehboudi et al., 
2008; Zendehboudi, et al., 2009). 
 

Almost all the gravity drainage models are complicated.  Some of the models don’t have 
analytical solutions and have to be solved numerically.  Schechter and Guo (1996) 
conducted a review on the papers in the field.  There are four main models as summarized 
by Schechter and Guo (1996).  These include the Cardwell-Parsons-Dykstra (1985) (CPD) 
model, Nenniger-Storrow (1987) (NS) model, Pavone-Bruzzi-Verre (1990) (PBV) model 
and Luan (1993) model.  After comparing to experimental data, Schechter (1996) 
concluded that the accuracy of these models to predict the oil production by gravity 
drainage is poor.  Schechter and Guo (1996) also developed a gravity drainage model 
which did not improve the accuracy significantly. 
 

Because the analytical models do not work well, an empirical model developed to 
characterize spontaneous imbibition was proposed to model the gravity drainage process. 
The model was suggested originally by Aronofsky et al. (1987) to match oil production in 
naturally fractured reservoirs developed by water flooding.  Many applications have been 
conducted since then. Schechter and Guo (1996) used a similar equation to fit the 
experimental data of spontaneous water imbibition in oil-saturated rocks by substituting 
production time with the dimensionless time.  Baker et al. (1983) inferred the fracture 
spacing by matching production data from the Spraberry trend naturally fractured reservoir 
using the model with dimensionless time.  Li and Horne (2000) also applied the imbibition 
model proposed by Aronofsky et al. (1987) to evaluate water injection in geothermal 
reservoirs. 
 

Non-linear nature of the fundamental gravity drainage equation (Cardwell and Parsons 
,1948) has prompted application of experimental, numerical and empirical techniques to 
gravity drainage process characterization.  No single model to adequately define the gravity 
drainage process is available. 
 

In this thesis, our study and discussions are limited to free fall gravity drainage and 
controlled gravity drainage of gas-oil systems.  Furthermore, empirical equations were 
obtained for prediction of recovery factor and production rate of fractured porous media 
under the gravity drainage processes.  The equations were derived with fewer limitations 
compared to previous empirical modes as it was tried to consider most of the parameters 
significantly affecting gravity drainage performance.  
 

2.4.1 Description of gas gravity drainage along with a mathematical concept 
through block to block interaction:  The gas phase entering from the top of the block 
will displace oil that is produced at the bottom of the block in a gas or oil phase.  The gas is 
considered to be the non-wetting phase, and gas compressibility is ignored.  In the case of 
oil saturated block totally surrounded by gas, the initial pressure of the column is 
considered to be above the threshold pressure.  Therefore, gas can enter the block.  By 
assuming suitable initial and boundary conditions, the final equation for gravity drainage is 
as follows (Zhou et al., 1998; Blunt et al., 2001): 
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where M= (Ko/µo)/ (Kg/µg) is the mobility ratio, A is the medium’s cross-sectional area  and 
H is the distance of gas-oil interface from top of the matrix.  In such displacement, the 
capillary pressure of the matrix decreases oil production.  The oil can be produced to the 
extent that gravitational forces exceed capillary forces. 
 

In a displacement with a sharp interface, under certain conditions depending on the gas-oil 
capillary pressure, and the block height, the block saturated with oil can be totally 
entrapped by gas circumventing the block if hc>L.  On the other hand, to penetrate into the 
block, the dynamic capillary pressure of gas must exceed the threshold capillary pressure, 
pc.  In the case of small blocks totally surrounded by gas, it is very unlikely to achieve the 
static pressure value.  The maximum gravity drainage rate at H=0 is: 
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where hc is the entry capillary threshold height and  is the capillary height at the exit face 

(bottom of the block) and it is zero when it is at gas oil contact. 
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Figure 2.2: Simple schematic of gravity drainage process in a matrix block. 
 
2.5 Contribution of the Thesis in Experimental Work of Gravity Drainage 
Processes 
 
In the previous experimental studies mentioned earlier in this text there are some significant 
missing points: 
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1) No experimental work discussed the effects of fracture aperture on communication 
between matrix and fracture, gas-liquid interface movement and recovery performance at 
breakthrough during the gravity drainage process. 
2) Velocity distribution in fractured media and effect of various fracture configurations on 
recovery performance have not seen in the experimental projects. 
3) No research work has addressed the production mechanism under controlled gravity 
drainage process in fractured porous media. 
4) Although some researchers (Schechter and Guo, 1996; Blunt et al, 2002) investigated the 
dimensional and parametric sensitive analysis of gravity drainage but these researches have 
been done under the gravity drainage conditions in homogeneous porous media and this 
issue in fractured porous media remains unaddressed.  Hence, it is necessary to investigate 
these important points in order to figure out production mechanism and effective 
parameters contributing in fractured porous media under gravity drainage with a logical 
approach. 
 

The current study has addressed all the above-mentioned issues to provide us with a better 
understanding of the physics of gravity drainage processes. 
 

In general, the original contributions of the experimental work to the existing literature are 
summarized as: 
 

1) Demonstration of the FFGD and CGD processes through the fractured porous media 
having different patterns of fractures.  This will help to figure out more physics and 
production mechanism of gravity drainage in fractured porous media using visualization 
techniques. 
2) Experimental demonstration of the capillary continuity and communication between 
matrix and fracture in the fractured porous system with unconsolidated glass beads matrix 
part at various conditions. 
3) Experimental demonstration of the possibility of gas breakthrough control during 
controlled gravity drainage by setting appropriate pumping rate. 
4) Definition of new concepts of ‘Critical Pumping Rate (CPR)’ and ‘Maximum Possible 
Withdrawal Rate (MPWR)’ for CGD process. 
5) A new correction factor was introduced for fluid transferring rate equation proposed by 
Warren and Root (1963).  The correction factor was derived for FFGD in the fractured 
porous media, which is taken into account as an unsteady state process. 
6) The empirical correlations were obtained using regression analogy to relate the 
dimensionless numbers such as Bond number and ratio of permeabilities to the recovery 
factor and difference of the gas-liquid interface positions in matrix and fracture during 
gravity drainage processes with high accuracy.  It was concluded that the correlation’s 
regression fit employed is a useful tool for predicting FFGD and CGD oil recoveries. 
 
2.6 Modeling and Simulation of Fractured Porous Media  
 
Successful EOR schemes for oil reservoirs, economical approach for environmental 
projects and effective removal method for remediation plans are joined with fluid flow in 
porous media, which require modeling of multiphase-fluid flow and transport in subsurface 
soil and rock systems (Aziz and Settari, 1979; Blunt and King, 1992; Hoteit and 
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Firoozabadi, 2008).  The mathematical model enables the researchers to predict future 
behaviors of subsurface media under possible changes such as pumping rate and pressure 
distribution.  However, the capability of such numerical models decreases drastically where 
sufficient information concerning capillary pressure vs. saturation and relative permeability 
functions for the various fluid pairs and porous media are missing.  Determination of the 
capillary and permeability functions can be carried out based on measurements or partially 
inferred from prediction models (Chatzis et al., 1983; Dernond and Roberts, 1987).  
Equilibrium and steady state experimental methods are usually highly restrictive by their 
initial and boundary conditions, huge time efforts required, and also they are often difficult 
to be replicated (Persoff, 1991; Sahimi, 1995).  Prediction methods are typically including 
two general approaches: conceptual/analytical and computational based methods.  The 
analytical methods are generally based on a simplified conceptual pore model for predicting 
permeability from pore size distribution data.  Computational methods cover a wide range 
of the methods such as numerical modeling and continuum/discontinuous analysis 
modeling (Kazemi, 1990; Carlson, 2004). 
 

In general, a displacement process is mainly affected by the petrophysical properties of the 
medium, and also physical properties of the fluids in both homogeneous and heterogeneous 
porous media (Chatzis et al., 1988; Ayatollahi et al., 2005).  In two-phase immiscible flow, 
interactions between the high permeable medium and low permeable medium and also 
interactions between porous media and the fluids control the fluid flow pathways.  This is 
because that the fluid flow dynamics depends on a combination of conditions such as 
heterogeneity and oil content (Zendehboudi et al., 2008; Zendehboudi et al., 2009).  A large 
number of numerical techniques have been developed to model two-phase flow in porous 
media (Barenblatt and Zheltov, 1960; Saidi, 1979; Dean and Lo, 1988; Blunt and King, 
1992; Zhi and Dong, 1994; Blunt et al., 1995).  The finite difference and finite volume 
techniques are conventionally used for numerical simulation of the fluid flow in very large 
scale problems (Blunt and King, 1992; Blunt et al., 1995).  However, it has been proved 
that the finite difference method is strongly influenced by the mesh quality, mesh size, and 
mesh orientation, which makes this method unattractive for unstructured gridding (Kazemi 
and Gilman, 1993; Blunt et al., 1995, Chen et al., 1999).  Finite element methods have been 
employed to model single-phase and two-phase flow in heterogonous permeable media 
with different capillarity pressures (Mualem et al., 1976; Ghanem et al., 1988; Blunt and 
King, 1992; Blunt et al., 1995).  Up-scaling methods are also being considered by replacing 
a porous medium containing heterogeneities with an equivalent homogeneous medium 
(Van Genuchten, 1980; Saidi, 1987; Chen et al., 1995).  
 

Numerical models for naturally fractured reservoirs are generally divided into categories, 
namely, double-porosity, single permeability (dual porosity) model and double- porosity, 
double- permeability (dual permeability) model.  The difference between the two models is 
that the second type considers matrix block-to-block flow while the first one neglects this 
mechanism.  Also it is clear that the dual porosity model requires a transfer function 
calculation between matrix and fracture.  Therefore, proper calculation of mass transfer 
from matrix to fracture plays an important role in generating better simulation results (Li et 
al., 2000; Tony et al., 2002). 
Geomechanical modeling of the subsurface fracture network through use of the sub-critical 
fracture growth scheme is a powerful first step in an attempt to model naturally fractured 
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reservoirs.  The numerical model described by Olson (2004) can complete this step. The 
second step is to quantify the influence of fracturing on subsurface fluid flow. 
 

In many porous fractured reservoirs, the long-term production and recovery are controlled 
by matrix-fracture transfers, which take place in the multiphase conditions resulting from 
depletion or the implementation of secondary/tertiary methods.  Therefore, fractured 
reservoir simulators have to incorporate reliable formulations and algorithms in order to 
correctly represent the physics of multiphase transfers between the constitutive media, 
matrix, fractures, and/or faults.  Considered on a general basis, the problem is complex as 
multiple physical mechanisms can be involved in those transfers, including pressure 
diffusivity, capillarity, gravity, viscous drive, molecular diffusion, and thermal conduction 
(Firoozabadi et al., 1994). 
 

Fractures have a big impact on reservoir production; however, they are inherently difficult 
to quantify.  Historically, two approaches have been developed to model fluid flow in 
natural fractured reservoirs: 1) the continuum approach, and 2) discrete fracture pattern 
simulation. Both techniques are discussed in the following sections. 
 
2.6.1 Double porosity and double permeability: The most popular and effective 
technique to model naturally fractured reservoirs has been through a dual porosity approach 
in which the fracture and matrix are separated into two different continuums, each with its 
own set of properties.  They also interact with each other and the fluid can transfer in 
between.  Most of the existing dual porosity models idealize matrix-fracture interaction by 
assuming orthogonal fracture systems (or parallelepiped matrix blocks) and pseudo-steady 
state flow. 
 

The foundation of the dual porosity model was laid down by Barenblatt (1960) and Warren 
and Root (1963) more than forty years ago.  The continuum reservoir simulation is based 
on the idea that a heterogeneous hydrocarbon reservoir can be represented by an equivalent 
homogenous medium.  Warren and Root (1963) expanded this approach to a naturally 
fractured reservoir.  They proposed to describe the fractured reservoir with two types of 
porosity: 1) the primary or matrix porosity, and 2) the secondary or fracture porosity.  This 
approach is called the double porosity or dual porosity approach.  The two systems are 
linked through a transfer function, which represents the exchange of fluid between them.  
These transfer functions depend on the shape and dimensions of the matrix block, 
transmissibility of the block, relative permeability, capillary pressure, and density 
differences between phases (Mattax and Dalton, 1990).  Warren and Root (1963) 
acknowledged that a naturally fractured reservoir was inherently heterogeneous. However, 
if the scale of heterogeneity is small compared to the scale of the reservoir, the reservoir is 
considered homogeneous (Warren and Root, 1963).  Warren and Root (1963) derived the 
analytical solution for the response of an infinite reservoir based on the following 
assumptions: 1) the matrix porosity is homogeneous, isotropic, and contained within a 
systematic array of identical, rectangular parallelepipeds; 2) the fracture system consists of 
an array of uniform orthogonal fractures, aligned with the principal axes of permeability. 3) 
Flow can occur between the matrix and the fractures, but flow from matrix to matrix block 
cannot occur; 4) Quasi-steady state exists in the matrix blocks at all times; and 5) only 
single phase flow of a slightly compressible liquid is considered.  Warren and Root (1963) 
define the following dimensionless parameters: 
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where K is the permeability, h is the reservoir thickness; q is the flow rate at the wellbore, 
µL is the viscosity, p0 is the initial reservoir pressure, p(r,t) is the pressure at radius, r, and 
time , t, Φf and Φm are the porosity of the fracture and matrix system respectively, Cf and 
Cm are the total compressibility of the fracture and matrix system respectively, and rw is the 
wellbore radius.  With these dimensionless parameters, Warren and Root (1963) derived the 
following equations for calculating pressure in a reservoir: 
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where pD is dimensionless pressure, tD is dimensionless time and ω is a measure of the fluid 
capacitance or storage capacity due to the secondary porosity (or fracture) and is 
determined through: 
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The second parameter, λ, is related to the flow capacity of the matrix blocks and the 
contrast between the matrix and fracture permeability, and is determined through (Warren 
and Root, 1963): 
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where α is a shape factor (Warren and Root, 1963) 
 

A natural extension of the double porosity approach is to allow for flow between matrix 
blocks, called the double or dual permeability model.  To solve for fluid flow through the 
matrix block as well as the fracture system one has to solve the Barenblatt-Zheltov 
equations (1960). 
 
2.7 Contribution of the Study in Numerical Modeling of Fractured Porous 
Media 
 
Previous attempts were made in modeling gravity drainage processes using several of 
numerical simulation tools (Blunt, 2001; Zhang, 2002; Hoteit and Firoozabadi, 2008).  The 
most common tool is a very popular commercial reservoir modeling software, CMG.  The 
advantages of such tools are that it is simple to use and is readily available.  The 
disadvantage is the limited access to the governing equations and the algorithm used in the 
numerical simulation.  However, COMSOL software, which is used here in this study, has 
some advantages over CMG including its flexibility and powerful functionality in 
conducting complex 2-D and 3-D numerical simulations.  The software uses a simple 
graphic user interface (GUI) to define the control volume of the simulated system.  
Furthermore, the predefined equations can be combined and modified to suit the needs of 
the problem analyzed.  However, it should be noted that selection of appropriate size for 
mesh and time intervals are important to impede instability during solution time and meet 
required criteria for convergence. 
 

At the field scale, flow in fractured reservoirs is simulated by a dual porosity or dual 
permeability approaches in which the reservoir is composed of two domains: a flowing 
fraction, which represents the fractures, and a relatively stagnant matrix (Saidi and Tehrani, 
1979; Hoteit and Firoozabadi, 2008).  The transport of fluids between fracture and matrix is 
represented by a transfer function (Barenblatt and Zheltov, 1960; Warren and Root, 1963; 
Saidi and Tehrani, 1979).  Our attempt in modeling the gravity drainage process involved 
separating the matrix part and fracture part into two subdomains.  The uncertainties 
associated with the shape factor for communication rate were eliminated as it was replaced 
by setting continuity condition in the interface between matrix part and fracture part.  This 
method applies the fluid flow equation to air as the gas phase and to oil as the liquid phase. 
 

In the numerical simulation, the average gas and oil saturations are calculated as time is 
progressed for each element in matrix, and fracture parts.  Oil drainage rate and gas-liquid 
interface velocity are computed from the knowledge of gas-liquid interface coordination in 
the two subdomains, and their dependencies on average oil saturations are established.  
Then the new guesses that are required in the single porosity formulations are calculated. 
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The goal of this simulation study was to develop a numerical model that describes the 
gravity drainage process in fractured porous media.  A numerical simulation was run based 
on the conditions of experiment for homogeneous porous medium under free fall gravity 
drainage (FFGD) and controlled gravity drainage (CGD).  Another simulation run was 
conducted for our constructed fractured porous medium undergoing both FFGD and CGD.  
The simulated oil production history and the simulation results from COMSOL were 
compared to the results of the experiments to validate the numerical model.  In this study, 
the effects of fracture, pumping rate, and mesh size using FEMLAB were evaluated using 
basis of the dynamic modeling in immiscible two-phase flow.  This is encouraging for 
further developments in simulating oil production from heterogeneous porous media as the 
model may ultimately be matched for utilization by oil industries for fractured petroleum 
reservoirs with more complexities. 



Chapter 3 

Free Fall Gravity Drainage in Fractured Porous Media 
 

3.1 Scope 
 
Gravity drainage is a primary recovery method which produces mostly oil and gas using the 
natural energy reservoir as the driving force to push the fluids into the production well, and is 
typically applied during the initial production phase of an oil reservoir. This oil production 
method results in the movement of oil from the upper to the lower parts within a reservoir into 
the direction of the producing wells driven by gravitational forces (Dullien et al., 1992). 
Fractured reservoirs are very important contributors to world oil and gas reserves and production. 
A large number of these reservoirs are being produced by free fall or gas injection type of gravity 
drainage process (Saidi, 1974). 
 

Gravity drainage experiments were performed to find the initial (characteristic) rate for various 
systems and to investigate the effects of fracture length and aperture, liquid properties, matrix 
properties and initial oil saturation effects on the production history and characteristics of gas-
liquid interfaces advance. Free fall gravity drainage through fractured models was investigated; 
the attention was focused on the starting point of gas penetration into the matrix, the recovery 
rate and oil recovery in various systems. The movement of gas-oil contact was visualized and oil 
recovery versus time was determined experimentally. These experiments enabled us to capture 
some aspects of the flow communication between matrix block and fracture during gravity 
drainage. 
 

This chapter describes the design of experiments, and details the visualization experiments 
carried out using different fractured porous media under free-fall gravity drainage conditions. 
The results are presented and discussed for different operating conditions. 
 
3.2 Design of Experiments  
 
Design of Experiment is a descriptive discipline which indeed has very broad applications 
among all the engineering, natural, and social sciences. The application procedure has been 
generalized in the form of selecting one or more independent variables, manipulating their 
effects on one (or some) dependent parameters, and then determining the sensitivity of dependent 
variable(s) upon changing the independent parameters (Montgomery and Runger, 2006; 
Montgomery, 2008). Obtaining good results from a standard design of experiments procedure 
depends upon successful completion of the following steps: 
1) Set the objectives,  
2) Select various process variables,  
3) Select an experimental design,  
4) Execute the design,  
5) Check that whether the data are consistent with the experimental assumptions or not,  
6) Analyze and interpret the results,  
7) Use (i.e. present) the results [this phase could lead to perform further experimental runs or 

consider additional design of experiments or even revise the original one].  
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3.2.1 Set the objectives: It is the best practice to delineate the general objectives of a set of 
experiments through a team discussion. All the objectives should be written down, even the 
"unspoken" ones (Montgomery and Runger, 2006; Montgomery, 2008). The following 
objectives have been set for the experiments in this study:  
1) Understanding the physics of free fall gravity drainage process in fractured media and 

extending the results to predict the real field case performance, if it is possible.   
2) Focusing on the behavior and movement of Gas-Liquid (G-L) interface through matrix and 

fractures and obtaining the recovery performance of employed models as a function of 
relevant dimensionless numbers. 

3) Defining new concepts for “Characteristic Rate” and then obtaining this parameter for each 
particular fractured model.    

4) Performing parametric sensitivity analysis.  
 
3.2.2 Select the various process variables: This step includes screening the design in order to 
identify which parameters are affecting the overall system response. According to our 
understanding of the physics of Free Fall Gravity Drainage process and also following 
performing some preliminary gravity drainage tests, it was concluded that the following five 
parameters could be considered to be the main affecting variables influencing the general 
performance of controlled gravity process (Zendehboudi et al., 2008; Zendehboudi et al., 2009):  
 Fracture aperture, 
 Matrix height, 
 Fracture height,   
 Matrix permeability,  and   
 Fluid properties.  

 

Since the process variables include both inputs and outputs (i.e., factors and responses) the 
dependent variables are: 
 Characteristic (initial) Rate,  
 Recovery factor, 
 Residual oil saturation, and,  
 Vertical elevation difference between the G-L interface positions in matrix and fractures 

during the gravity drainage processes.  
 

It is wise to critically choose a sound range of variation for experimental input factors just before 
designing the physical models. This makes it possible to have a reasonable idea about the 
experimental outputs before performing a particular test relative to other designed experiments. 
  
3.2.3 Selection of an experimental design: Considering the number of important factors 
evaluated in the current study and the nature of the process, it appears that the most relevant 
experimental design method is factorial with two levels of design. This type of experimental 
design is frequently used in experiments involving several independent factors where it is 
necessary to study the combined effect of the involving parameters on system response. 
However, as the number of factors in a two level factorial design increases, the number of runs 

for even a single replicate of the 2 design becomes very large. Fractional factorial designs can be 
used in our case to draw valuable conclusions from fewer runs. Therefore, the basic purpose of a 
fractional factorial design is to economically investigate cause-and-effect relationships of 
significance in a given experimental setting. There are lots of good reasons on why selecting 
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only two levels is the most common choice amongst engineers. First and foremost, having two 
design levels is ideal, simple, and also economical for screening designs (Montgomery and 
Runger, 2006; Montgomery, 2008). However, it is recommended to conduct the experiment at 
some centre points between the high level and also the low level of each experimental factor. 
The standard layout of a 2-level design generally uses “+1” and “-1” notations to denote the 
"high level" and the "low level" limits of each factor respectively. Table 3.1 demonstrates the 
series of designed experiments in which 32 trials (i.e., experimental runs) have been planned, 
considering each factor to be set to its high or low limit during that particular run. 
 

Table 3.1: Design of Experiment data-table for the FFGD experiments 
 

Run No. 
Fracture 
aperture 

Matrix 
height 

Fracture 
height 

Matrix 
permeability 

Fluid 
viscosity 

surface 
tension 

1 -1 -1 -1 -1 -1 -1 

2 +1 -1 +1 -1 -1 -1 

3 -1 +1 -1 -1 -1 -1 

4 -1 -1 +1 +1 -1 -1 
5 -1 -1 -1 -1 +1 -1 
6 -1 -1 +1 -1 -1 +1 
7 +1 +1 -1 +1 +1 +1 
8 -1 +1 +1 +1 +1 +1 
9 +1 -1 -1 +1 +1 +1 

10 +1 +1 +1 -1 +1 +1 
11 +1 +1 -1 +1 -1 +1 
12 +1 +1 +1 +1 +1 -1 
13 -1 -1 -1 +1 +1 +1 
14 -1 +1 +1 -1 +1 +1 
15 -1 +1 -1 +1 -1 +1 
16 -1 +1 +1 +1 +1 -1 
17 +1 -1 -1 -1 +1 +1 
18 +1 -1 +1 +1 -1 +1 
19 +1 -1 -1 +1 +1 -1 
20 +1 +1 +1 -1 -1 +1 
21 +1 +1 -1 -1 +1 -1 
22 +1 +1 +1 +1 -1 -1 
23 -1 -1 -1 -1 +1 +1 
24 -1 -1 +1 +1 -1 +1 
25 -1 -1 -1 +1 +1 -1 
26 -1 +1 +1 -1 -1 +1 
27 -1 +1 -1 -1 +1 -1 
28 +1 -1 +1 -1 -1 +1 
29 +1 -1 -1 -1 +1 -1 
30 +1 +1 +1 -1 -1 -1 
31 +1 -1 -1 +1 -1 -1 
32 -1 +1 +1 +1 -1 -1 
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Use of “+1” and “-1” notations for the factor setting is called data coding. This aids in the 
interpretation of the coefficients fitted to any experimental model. After factor settings are coded 
properly, all the center points have the value "0". Regarding our study, centre points have been 
chosen for all the independent variables. Since we were dealing with eight different fractured 
media, and also 100 replicate runs had been considered in order to examine the repeatability of 
the experiments, a total of 400 experimental runs were designed to be performed in order to 
study various effects of all independent variables on the system responses.  
 
3.3 Experimental Setup and Procedures 
 
Figure 3.1 shows the schematic diagram of fractured packed models which were used in gravity 
drainage experiments. All experiments were conducted at room conditions. There were several 
peripheral accessory equipments in order to perform these gravity drainage experiments: a 
vacuum equipment was used to remove dissolved gas from test liquids and also pre-dry the glass 
beads; two digital balances were used for measuring the cumulative liquid production from both 
matrix and fractures; and a high resolution camcorder was employed for continuous recording of 
liquid-air interface movements in both matrix and fractures. Pictures taken at various stages of 
gravity-stabilized displacement were analyzed by image processing techniques to track the gas-
liquid interfaces movement through the matrix and fractures.  For improved imaging, we also 
dyed the oil red by adding a little bit of oil soluble red dye for better color contrast when the test 
fluid is Varsol oil.  The fractures were made using long pieces of Plexiglas with thickness equal 
to model’s thickness. Slots with different dimensions were made using Plexiglas pieces by 
milling them in the machine shop to create apertures of 1 mm, 2 mm, 3 mm, 5 mm, and 11 mm, 
and then placed a mesh over the two sides of the slots to prevent the beads from entering the 
fracture space. To obtain the same initial condition for each experiment, models were saturated 
by adding dry glass beads to a known volume of liquid in order to attain the desired matrix 
packing height.  
 

The fractured models were of rectangular geometry with certain patterns of fractures. A known 
volume of liquid was filled into the fractured model. Glass beads were loaded from the top of the 
model while packing continuously. The packing operation must be continuous to prevent the 
formation of any layering in the fractured medium during the packing process. Glass beads’ 
loading was stopped when the glass beads in the rectangular model reached 1-2 cm above the 
target height. After 5 minutes tapping stopped, the glass beads height would continuously drop.  
More glass beads were then added into the fractured porous medium to achieve the target height. 
Every time glass beads were added, manual mixing with a stick was needed to ensure packing 
uniformity. Following the packing, the excess liquid was removed from the porous medium and 
measured.  The volume of liquid that remained in the physical model was the pore volume of 
porous medium (VP). The bulk volume of the porous medium (VB) was the space of the column 
occupied by liquid and glass beads. Thus the effective porosity of the porous medium was found 
as:  

B

P
e V

V
 (3.1)  
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When the experimental run started, the cumulative liquid production from matrix and fractures 
were separately recorded and measured. As mentioned above, each physical model is equipped 
with a certain pattern of fractures. Figure 3.1 shows the different configurations of fractures in 
the porous media used in this study. 
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(e), L = 55 cm 
Lf = 45 cm (Vertical) , 

18 cm (Horizontal) 

(f),  L = 55 cm 
Lf = 45 cm (Vertical) , 

18 cm (Horizontal) 
 

(g),  L = 55 cm 
Lf = 45 cm 

(h),  L= 55 cm 

Figure 3.1: Schematic of the apparatus for free fall in porous media with various 
patterns of fractures. 
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3.3.1 Test fluids: Gravity drainage tests were performed using laboratory test liquids consisting 
of de-ionized water, Varsol oil and aqueous solutions of CMC with different concentrations to 
resemble the oil phase, and air was used to simulate the gas phase. A sodium salt of low viscosity 
Carboxy Methyl Cellulose, commonly referred to as CMC, was found to be an appropriate 
polymer which can be mixed with de-ionized water to simulate the oil phase for liquid viscosity 
(Srivastava et al., 1990). More information regarding CMC is in Appendix A. Water viscosity 
was increased by adding Carboxy Methyl Cellulose to represent different oil viscosities. Since 
the CMC powder does not readily dissolve in water, a blender was used to break-up the large 
aggregates of CMC formed during the dissolution process in order to speed up the dissolution 
rate and produce a homogeneous solutions. The effect of CMC powder concentration on the 
viscosity of prepared solutions is shown in Table 3.2. The physical properties of test fluids are 
also shown in Table 3.3.  Methods for viscosity and surface tension measurements are brought in 
Appendix B. 
 

Table 3.2: The effect of CMC concentration on the mixture viscosity 

CMC  (wt%) in de-ionized water Viscosity of CMC solution (mPa.s) 

0 1.0 0.2 
1 4.8 0.3 
2 11.9 0.4 

 

Table 3.3:  Physical properties of test fluids 
 

Density  (g/cm3 ) Test Fluid Surface tension (mN/m) Viscosity (mPa.s) 

CMC solution (1%) 1.05 73.2 0.6 4.8 0.3 
CMC solution (2%) 1.07 74.1 0.5 11.9 0.4 
Varsol oil 0.78 25.0 0.5 1.2 0.3 

Water 1.00 72.0 0.4 1.0 0.2 
1.210-3 N/A 0.018 Air 

 
3.3.2 Model properties: As explained in section 3.3, the porosity of packed models was 
measured by the saturation method and it was concluded that all the prepared models had similar 
porosity values because of the random packing procedure. The falling head permeability 
measurement technique was used to measure the permeability of different physical models used 
(Dullien, 1990). Tables 3.4 and 3.5 contain properties of glass beads (i.e. particles size 
distribution) and the physical properties of different packed models used in this study, 
respectively.  
 

Table 3.4  :Particles size distribution and permeabilities of three types of glass beads employed in 
the experiments  
Type of glass beads Min diameter (mm) Max diameter (mm) Average diameter (mm) Permeability 

(Darcy) 
BT2 0.84074 1.40971 1.12522  95 1013
BT3 0.59436 0.84074 0.71755 408 67 
BT4 0.41912 0.59436 0.50673 204 49 
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Table 3.5: Properties of employed packed models 

Porosity, % 
Permeability 

,Darcy Run 
No. 

Model 
height, L 

(cm) 

Matrix 
glass 

beads size f m e Keff,f  Km 
Test fluid 

Fracture 
aperture 
(b), mm 

Fractures 
pattern 

1 55 BT2 1.410 38 38.86 15979 1013 CMC(1%) 5 b 
2 55 BT2 1.410 38 38.86 15979 1013 CMC(2%) 5 b 
3 55 BT2 1.410 38 38.86 15979 1013 CMC(2%) 5 b 
4 55 BT2 1.410 38 38.86 15979 1013 CMC(2%) 5 b 
5 55 BT2 0.920 38 38.56 3465 1013 CMC(2%) 3 b 
6 55 BT2 0.920 38 38.56 3465 1013 CMC(1%) 3 b 
7 55 BT3 1.410 38 38.86 15979 408 CMC(1%) 5 b 

8 55 BT3 1.410 38 38.86 15979 408 CMC(2%) 5 b 
9 28 BT3 1.410 38 38.86 15979 408 CMC(2%) 5 b 

10 40 BT3 1.410 38 38.86 15979 408 CMC(2%) 5 b 
11 55 BT4 1.410 38 38.86 15979 204 CMC(1%) 5 b 
12 55 BT4 1.410 38 38.86 15979 204 CMC(1%) 5 b 
13 55 BT4 1.410 38 38.86 15979 204 CMC(1%) 5 b 
14 55 BT4 1.410 38 38.86 15979 204 CMC(2%) 5 b 
15 55 BT4 0.920 38 38.56 3465 204 CMC(1%) 3 b 
16 55 BT4 1.410 38 38.86 15979 204 Water  5 b 
17 55 BT2 0.620 38 38.37 1028 1013 CMC(2%) 2 b 
18 55 BT2 1.410 38 38.86 15979 1013 Varsol 5 b 
19 55 BT3 1.410 38 38.86 15979 408 Varsol  5 b 
20 55 BT3 0.920 38 38.56 3465 408 Varsol  3 b 
21 55 BT3 3.208 38 40.12 128000 408 Water  11 a 
22 55 BT3 1.712 38 39.09 27720 408 Water  11 d 
23 55 BT3 3.207 38 40.12 128000 408 Varsol  11 a 
24 55 BT3 1.712 38 39.09 64000 408 Varsol  11 d 
24 55 BT3 0.920 38 38.56 32000 408 Varsol  11 d 
26 55 BT2 0.231 38 38.14 2619 1013 CMC(2%) 5 c 
27 55 BT2 0.046 38 38.03 533 1013 CMC(2%) 1 c 
28 55 BT2 0.231 38 38.14 2619 1013 Varsol 5 c 
29 55 BT3 1.410 38 38.86 15979 408 Varsol  5 e 
30 55 BT3 1.531 38 38.86 17120 408 Varsol  5 f 
31 55 BT2 N/A 38 38.00 N/A 1013 Varsol  N/A unfractured 
32 55 BT2 0.231 38 38.14 2619 1013 CMC(1%) 5 c 
33 55 BT4 1.410 38 38.86 15979 204 CMC(1%) 5 e 
34 55 BT4 1.531 38 38.93 17120 204 CMC(1%) 5 f 
35 55 BT2 N/A 38 38.00 N/A 1013 CMC(2%) N/A unfractured 
36 55 BT3 0.702 38 38.43 7989 408 Varsol  5 a 
37 55 BT3 0.702 38 38.43 7989 408 Water  5 a 
38 55 BT4 1.410 38 38.86 15979 204 CMC(2%) 5 e 
39 55 BT2 1.410 38 38.86 15979 1013 Varsol  5 e 
40 55 BT2 1.410 38 38.86 15979 1013 CMC1% 5 e 
41 55 BT3 1.215 38 38.74 13696 408 Varsol  5 g 
42 55 BT4 1.215 38 38.74 13696 204 CMC(1%) 5 g 



The effective porosity (e) reported in Table 3.5 for each fractured system is defined as:  
 

     (3.2)         e=f +m -f.m                                                    

In the above equation, the fracture porosity (f) is defined as the ratio of fracture volume over the 
total bulk volume of the sample. Matrix porosity (m) is also defined as the ratio of matrix pore 
volume over bulk volume of the matrix. 
 

The effective fracture permeability (Keff,f) reported in Table 3.5 can also be correlated with 
fracture porosity and aperture through the following two equations (Saidi, 1987): 
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   Keff,f = Kf.f (3.4) 
 

If fracture-matrix communication is neglected (the assumption is correct when we are dealing 
with high viscous oil and very low permeable matrix), the total effective permeability for the 
whole model with a long vertical fracture would be like two parallel porous media, as follows: 
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(3.5)           

In above equation, Km is the matrix permeability and Wm represents the width of matrix. If the 
fracture aperture is negligible compared to the width of matrix, then Equation (3.5) simplifies to 
Equation (3.4) for calculating the effective permeability of a medium with fractures in parallel 
flow with that in matrix. 
 
3.4 Oil Recovery Mechanism 
 
During the gas invasion process, it was observed that no gas entered the matrix at the beginning 
of the experiments. During this period, gas invades into the fractures because of the lower 
resistance to flow (i.e., higher permeability). During these early stages in which no gas has 
entered into the matrix side, one can write the following mass balance equation to relate gravity 
rate to the fracture parameters:  
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dH fwhere μL is the liquid viscosity; q is the drainage rate ;  is the recession rate of interface 

position through the fractures; Af is fracture cross sectional area perpendicular to the flow 
direction;   and g are  density difference between gas and liquid and gravitational force, 
respectively.  
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As the gas invasion process is progressed, the driving force for gas flow into the fracture 
decreases gradually. At the time at which the liquid level in the fracture is low enough (say at 
distance h from the top of each model) such that hg..  for each particular system is equal to 
the difference between the capillary pressure threshold of matrix and that of the fracture, liquid 
drainage would start in the matrix domain. The liquid drainage rate in fractures at the start of gas 
invasion into the matrix is called “characteristic (initial) drainage rate”. After this time, liquid 
drainage occurs both from matrix and from fractures. According to the drainage phenomena 
observed in our simplified fractured macromodels, it was found that there are two counter-acting 
driving forces for liquid drainage out of each particular model. Liquid drains mainly from both 
matrix and fractures based on the effect of gravitational force. However it is evident that there is 
liquid flow communication between matrix and fractures where by a portion of the liquid which 
drained from matrix would be transferred from the matrix side to the fracture side. It was 
observed that some parts of the matrix side in the vicinity of each side fracture are affected more 
by liquid flow communication rather than the rest of the matrix. These portions of the matrix 
which are adjacent to the side fractures have more potential for flow communication. Other 
portions of the matrix which are far away from the fracture are therefore not affected by the 
presence of fractures. This point is verified by the qualitative analysis of interface movement in 
matrix, as the liquid-air interface in matrix is relatively flat in regions near the half-way distance 
of parallel fractures (see Figure 3.2). However, this interface is considerably inclined towards the 
fracture in the areas adjacent to each fracture. This tilted interface becomes flat as the driving 
force for the liquid communication between fracture and matrix decreases versus time.  This 
 

20 sec 30 sec 50 sec  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 Figure 3.2: Schematic of interface advancement at three different times for the BT2 

glass beads model saturated with CMC solution (1%) in fractured model(b) , b=2 mm , 
L model=55 cm. 
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communication rate depends on the properties of test fluids, matrix permeability, and vertical 
distance between the liquid levels in matrix and fractures. Figure 3.2 shows the oil recovery 
mechanism at various stages and the interface advancement during the gravity drainage 
experiments. 
 

Determination of fluid flow direction through fracture network and between matrix blocks and 
fracture is of great importance. When the fractured network model starts to produce by gravity 
drainage (Figure 3.2), the gas enters in the porous medium. If the top ends of vertical fractures 
are located at the same level with matrix part will, the vertical fractures would be invaded first by 
gas.  The gas will continue to flow in the fractures and at a certain time when the driving forces 
for gas invasion in both matrix and fractures parts become the same, the gas will invade the 
matrix. This is because the conductivity (permeability) of the fractures is greater than that of the 
matrix. Now assume the fracture height is lower than matrix height as fracture pattern is placed 
in lower level than matrix is, as such fractured media can be seen in the fractured media with 
fractures configurations of e, f and g.  In these cases, the gas first invades matrix and as soon as 
the gas-liquid front touches the top part of fractures, the movement of gas-liquid interface stops 
in matrix and gas starts invading in the vertical fractures. This process proceeds until the driving 
force for gas invasion equals for both matrix and fracture parts and then we observe gas-liquid 
interface movement in matrix and fracture domains.   
 

During the gravity drainage process, oil flows from matrix to vertical fractures and also the gas-
oil fronts continue moving to reach the horizontal fracture (if placed in the middle of the 
fractured medium). If a horizontal fracture is placed in the middle, then that is where the upper 
and lower matrix blocks communicate and can greatly affect the oil recovery from matrix blocks 
and the total oil recovery. If both vertical fractures have the same dimensions and their apertures 
are equal or greater than the horizontal fracture, some of oil from the side parts of the horizontal 
fracture starts flowing to the vertical fractures. The affected regions of the horizontal fracture 
communicating are adjacent to the side fractures. Also, the upper matrix block drains oil into the 
middle horizontal fracture and then a fraction of the oil in the horizontal fracture is drained by 
lower matrix blocks. As mentioned above, remaining liquid flows through the middle horizontal 
fracture toward the left and the right vertical fractures, which then flows downward to the bottom 
(Figure 3.3). Therefore, it can be concluded that the horizontal fracture can considerably 
increases the production rate and ultimately recovery performance during initial period of gravity 
drainage process. 
 

 
 
 
 
 
 
 
 
 
 
Figure 3.3: A schematic carton to show liquid transferring between 
different parts of a fractured porous medium containing such fracture 
configuration. 
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3.5 Experimental Results and Discussion  
 
Free fall gravity drainage experiments were carried out in various porous media models with 
different initial conditions. The experiments for each model were repeated two or three times. 
The average result was used to obtain the production history and gas/liquid interface advance. 
Comparison between runs for a given system shows very good repeatability of experiments as 
will be documented later.  
 

Parametric sensitivity analyses were performed in this study in order to investigate the effect of 
different system parameters on the gravity drainage process performance. In this section, the 
effects of model length, matrix permeability, fluid pair properties, and fracture aperture on the 
gravity drainage process performance were investigated. This analysis contains a quantitative 
approach (analyzing the drainage rates versus time) as well as relevant qualitative analysis 
(analysis of interface movements in both fractures and matrix using video-recording and digital 
imaging techniques). Gas-liquid interface position “H(t)” was measured from the top portion of 
each individual packing all the way down along the model length with respect to time as the gas 
phase invades the fractures and matrix space respectively. Qualitatively speaking, all the test 
results for models a, b and d in Figure 3.1 are conveying the message that at the very beginning 
of the experimental duration, the gas-liquid interface advances faster in the fracture compared to 
that in the matrix. At each time, the elevation difference of interface positions is defined by the 
interface position in the fracture minus that of the matrix,  
 

 
(3.7) 

        ΔH(t) = [Hf(t) – Hm(t)]                                                             

  
Table 3.6 provides a summary of main results obtained from these experiments. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

33



 
 

34

 

Table 3.6: Results of Free fall gravity drainage experiments for 42 sample runs after 5 hrs 
 

Run 
No. 

Model 
height 

(L) 
,cm 

Matrix 
glass 
beads 
size 

Fracture 
Length 
(Lf ),  
cm 

Test fluid Fracture 
aperture 
(b), mm 

Fractures 
pattern 

Initial 
flow rate, 

cm3/s 

Residual 
liquid 

saturation, 
% 

RF, % 

1 55 BT2 55 CMC(1%) 5 b 1.90 0.2 6.2 0.3  87.0 0.7
2 55 BT2 55 CMC(2%) 5 b 1.10 0.3 7.1 0.3  86.0 1.1
3 55 BT2 55 CMC(2%) 5 b 1.10 0.2 5.0 0.3  90.0 0.8
4 55 BT2 55 CMC(2%) 5 b 1.10 0.3 5.0 0.3  90.0 0.9
5 55 BT2 55 CMC(2%) 3 b 0.50 0.1 7.2 0.3  86.0 1.0

6 55 BT2 55 CMC(1%) 3 b 0.80 0.1 6.1 0.3  86.0 1.1
7 55 BT3 55 CMC(1%) 5 b 1.90 0.3 7.3 0.3  76.0 0.7
8 55 BT3 55 CMC(2%) 5 b 1.10 0.2 8.2 0.5  75.5 1.1
9 28 BT3 28 CMC(2%) 5 b 1.00 0.2 8.3 0.6  57.0 0.4

10 40 BT3 40 CMC(2%) 5 b 1.10 0.3 8.1 1.1  68.5 0.7
11 55 BT4 55 CMC(1%) 5 b 1.85 0.2 7.0 1.0  70.0 0.9
12 55 BT4 55 CMC(1%) 5 b 1.85 0.3 5.4 0.6  75.0 0.8
13 55 BT4 55 CMC(1%) 5 b 1.85 0.2 5.3 0.7  75.0 0.9
14 55 BT4 55 CMC(2%) 5 b 1.05 0.2 8.6 0.8  70.0 0.7
15 55 BT4 55 CMC(1%) 3 b 0.80 0.1 7.1 0.4  69.5 1.2
16 55 BT4 55 Water  5 b 6.20 0.5 5.2 0.6  71.0 1.1

17 55 BT2 55 CMC(2%) 2 b 0.40 0.1 7.1 0.7  85.0 0.8
18 55 BT2 55 Varsol 5 b 5.30 0.3 13.4 0.9  83.0 0.9
19 55 BT3 55 Varsol  5 b 5.20 0.6 14.1 0.2  79.0 0.7
20 55 BT3 55 Varsol  3 b 2.40 0.2 14.4 0.2  78.0 0.6
21 55 BT3 55 Water  11 a 7.60 0.4 7.4 0.8  77.0 0.5
22 55 BT3 30 Water  11 d 3.40 0.2 7.6 0.3  76.0 0.7
23 55 BT3 55 Varsol  11 a 6.40 0.5 15.1 0.6  80.0 1.7
24 55 BT3 30 Varsol  11 d 3.10 0.4 15.0 0.7  79.0 1.4
24 55 BT3 15 Varsol  11 d 1.30 0.2 14.3 0.3  79.0 1.2
26 55 BT2 18 CMC(2%) 5 c N/A 8.2 0.4  86.0 0.8
27 55 BT2 18 CMC(2%) 1 c N/A 7.4 1.3  86.5 0.7
28 55 BT2 18 Varsol 5 c N/A 13.0 0.9  82.5 0.9
29 55 BT3 46 Varsol  5 e N/A 14.1 0.8  79.0 1.2
30 55 BT3 46 Varsol  5 f N/A 14.1 1.0  79.0 1.4
31 55 BT2 N/A Varsol  N/A N/A N/A 15.2 0.7  82.0 1.1
32 55 BT2 18 CMC(1%) 5 c N/A 7.4 0.5  85.0 1.2
33 55 BT4 46 CMC(1%) 5 e N/A 8.2 0.9  70.0 1.8
34 55 BT4 46 CMC(1%) 5 f N/A 8.1 0.7  70.5 1.0
35 55 BT2 N/A CMC(2%) N/A N/A N/A 6.4 0.8  86.0 1.3
36 55 BT3 55 Varsol  5 a 2.70 0.5 14.1 1.2  79.5 0.9
37 55 BT3 55 Water  5 a 2.70 0.4 7.3 0.6  76.0 1.0
38 55 BT4 46 CMC(2%) 5 e N/A 8.1 0.5  70.0 1.1
39 55 BT2 46 Varsol  5 e N/A 14.1 0.4  83.0 0.8
40 55 BT2 46 CMC(1%) 5 e N/A 6.1 0.3  86.0 0.7
41 55 BT3 46 Varsol  5 g N/A 15.1 0.4  79.0 0.8
42 55 BT4 46 CMC(1%) 5 g N/A 8.2 0.3  69.0 0.6



3.5.1 Effect of matrix permeability: Three different types of unconsolidated packed models 
were employed in terms of the size of packing materials. Figure 3.4 shows the effect of matrix 
permeability on the cumulative liquid production performance versus time in fractured porous 
medium (b). This Figure represents the experimental data related to the run numbers 1, 7, and 11 
according to Table 3.6. In all of these experimental runs, models were packed to the ultimate 
height of 55cm, and two vertical fractures with 5mm aperture were also made along each side of 
these models. These models were saturated with 1 wt% aqueous CMC solution prior to the free-
fall gravity drainage tests. 
 

Qualitative analysis of the recorded events has shown that gas-liquid interface in the matrix was 
not stable during the early stages of the tests. The interface was tilted towards the side fractures 
in the areas adjacent to these fractures. However as time went by, the gas-liquid interface became 
more horizontally flat, which indicates that the displacement became more gravitationally stable. 
This gravity-dominated process is very fast during the early experimental duration when higher 
permeability matrices were employed. According to the experimental results for the test with 
BT2 glass beads as the matrix, almost 50% of the initial liquid in place was drained within the 
first 75 seconds of the run time. However this cumulative drainage was reduced to almost 19% 
of the initial saturation within the same time interval for the models with BT3 glass beads as the 
matrix (Figure 3.4). As it is summarized in Table 3.6, a system with higher matrix permeability 
(i.e. lower capillary threshold height) has higher ultimate cumulative production (87% for Run 
#1, 76% for Run #7, and 70% for Run #11). 
 

 
Figure 3.5 shows the variations of liquid height difference in fractures and matrix versus time for 
different matrix permeabilities. At the beginning of gravity drainage process, the effect of matrix 
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 Figure 3.4 : Comparison of production history using models made with BT2, BT3 and 
BT4 glass beads and model length = 55 cm , fluid pair: CMC solution (1%)-Air , b = 5 
mm. 

 
 

35



permeability on liquid height difference is negligible because of the fact that flow is mainly due 
to the fracture drainage. This height difference reaches a local maximum at which liquid 
drainage from matrix started. The time to reach this local maximum is delayed as the matrix 
permeability decreases. Beyond this point, the difference between the gas-liquid contact 
locations in fractures and matrix tends to decrease significantly with time as the interface 
location in the matrix drops while the interface position in the fractures remain relatively 
unchanged as it almost reaches to its threshold value. Remember that all the interface heights in 
fractures and matrix were measured from the top of the packed model towards the production 
end in the downward direction. During this period, models with higher permeability have lower 
(Hf  - Hm) values. 
 

 
Figure 3.6 shows the effect of matrix permeability on the liquid communication rate between 
matrix and fractures.  It is clear that during the gravity drainage process in such systems, there 
are two separate driving forces which affect the liquid communication rate between fracture and 
matrix: 1) the matrix permeability, and 2) the difference between gas-liquid interface positions in 
fracture and matrix. According to Figure 3.5, during the early stages of the process the effect of 
matrix permeability is more pronounced on the communication rate. As time goes on, it is 
evident that the contribution of interface height difference (Hf - Hm) will dominate the rate of 
liquid communication. For example, the models with higher interface height difference (i.e. those 
with lower matrix permeabilities) have higher liquid communication rate. 
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Figure 3.5 :Difference between the gas-liquid contact locations in fracture and matrix 
using data obtained with the media made with BT2 , BT3 and BT4 glass beads and model 
length = 55 cm , fluid pair: CMC solution (1%)-Air , b=5 mm. 
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Figure 3.6: Liquid communication rate from matrix to the fractures in three different matrix 
permeability models versus time. [model length = 55 cm, fluid pair: CMC solution (1%)-Air 
, b = 5 mm]. 

 
3.5.2 Effect of liquid viscosity: In order to investigate the effect of liquid viscosity on the 
gravity drainage process performance, different aqueous solutions of CMC were used, with 
viscosities higher than that of de-ionized water. Free-fall gravity drainage tests were performed 
on the same type of glass bead packed models having the same length (55 cm) and the same 
fracture aperture (5 mm), but different fluid pairs (Table 3.6, Run numbers 11, 14, and 16). The 
experimental results of cumulative production were plotted versus time in Figure 3.7. As it is 
depicted in Figure 3.7, it is concluded that in models with similar physical and dimensional 
properties under free-fall gravity drainage, the less-viscous the liquid is, the higher would be the 
cumulative liquid drainage. It is also concluded that in experiments with lower viscosity liquids, 
the drainage rate was also higher than those with higher viscosity liquids during the early stages 
of the process. However, all the three models produced approximately the same ultimate amount 
of cumulative liquid, which means they all had a similar recovery factor. It is also evident that as 
the viscosity of the liquid increases, the amount of the characteristic drainage rate from the 
fracture and also the maximum production rate from the system decreases accordingly. However, 
the residual liquid saturation increases with increased liquid viscosity (Table 3.6).   
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Figures 3.8 and 3.9 show the effect of different liquid viscosities on the height difference of 
interface locations in matrix and fractures ΔH(t) and also the liquid communication rate between 
fractures and matrix respectively. As indicated in Figure 3.8, the measured ΔH(t) values were 
higher for Run #16 (water as the test liquid) compared to the other two cases before reaching the 
local maximum at which gas invasion into the matrix started. This point can be justified 
according to the lower viscosity values of de-ionized water compared to the CMC aqueous 
solutions with higher viscosities. When gas invasion into the matrix has commenced, the air-
liquid interface in the matrix moves downwards faster in systems with lower liquid viscosity 
compared to those with higher viscosities. Therefore, the measured ΔH(t) values decrease more 
during this period for systems with lower viscosity liquids compared to higher ones. It is 
worthwhile to note that during this stage of the drainage process, the liquid level in fractures 
reached its threshold height and the velocity of interface drop in matrix depends mainly on the 
liquid viscosity. The higher the viscosity value is, the lower is the interface drop within the 
matrix, hence the higher would be the measured ΔH(t) value. 
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Figure 3.7: Cumulative amount of liquid recovered versus time for models with BT4 
glass beads for variable liquid viscosity [Length of model = 55 cm, fracture aperture (b) 
= 5 mm]. 
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Figure 3.8: Comparison of difference between the gas-liquid contact locations in fracture 
and matrix using data obtained with the BT4 model for different viscosities. 
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Figure 3.9: Effect of liquid viscosity on the rate of liquid communication between matrix 
and fracture in the models filled with BT4 glass beads [L = 55 cm, b = 5 mm]. 
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Figure 3.9 shows the effect of liquid viscosity on liquid communication rate between fractures 
and matrix. According to the results shown in this figure, it is concluded that systems with lower 
liquid viscosities have higher liquid communication rate; as liquid viscosity decreases, the height 
difference between local positions of liquid interfaces within fractures and matrix decreases 
(Figure 3.8, after the local maximum point).  The condition of low viscosity and also ΔH(t) 
values would result in lowering the driving forces available for liquid communication towards 
the fractures. Experimental results show that upon increasing the liquid viscosity to about 20 
mPa.s, the amount of liquid communication between the matrix and the fractures in all of our 
experimental prototypes diminished to nearly zero. 
 
3.5.3 Effect of interfacial tension: Gas–oil gravity drainage at low interfacial tension was found 
to be very effective in oil recovery from fractured media in both secondary and tertiary injection 
(Saidi, 1995).The capillary threshold height and also entrapment of hydrocarbon during 
enhanced oil recovery (EOR) methods depend on the balance between capillary and gravitational 
forces represented by the Bond number as oils with lower interfacial tension have shorter 
capillary threshold height and more overall recovery if other properties of porous media and test 
liquids were unchanged during the free fall gravity drainage.  Normally, when the gas–oil 
interfacial tension decreases, which in turn causes reduction of capillary pressure between the 
phases; it would increase the oil recovery considerably if the porous medium has the same 
wettability for both test liquids. In order to investigate the effect of surface tension, first the 
fractured medium (e) was filled with water. In the model there were two vertical fractures and a 
horizontal fracture between them with a small gap created between side fractures and horizontal 
one. Under gravity drainage conditions, approximately 66 percent of the original liquid in place 
was produced during 90 seconds. The measured over time, the gas-liquid interfaces in fracture 
and matrix parts were also tracked. When the system was saturated with Varsol oil, the surface 
tension reduced from 72 mN/m to 25 mN/m. The oil production was about 66 % of original oil in 
place during 90 seconds. Since viscosities of these two test fluids were a little different (1.2 
mPa.s for Varsol compared to 1 mPa.s for Water) and all other properties except interfacial 
tension had the same values for both cases, therefore the bulk flow rates of both systems were 
identical. The fractured porous medium saturated with water had a recovery factor almost as 
much as that for the medium saturated with Varsol oil during the initial period of free fall gravity 
drainage.  
 

Variation of recovery factor with time is given in Figure 3.10. Although the capillary threshold 
height is shorter for the fractured porous medium filled with Varsol compared to the model 
saturated with water, the final recovery stays the same and equals to 77% after 5 hrs for the two 
fractured systems. The reason for the same recovery is that the film flow is more dominant in 
liquid recovery from waterwet glass beads, while in the second case, Varsol is not able to form a 
effective continuous film flow like water does, therefore we have more residual Varsol saturation 
in the drained part which is about 18% in comparison with 13% for the fractured medium filled 
with water. It should be noted that if the glass bead was oil wet, low value of interfacial tension 
for Varsol oil would increase the overall recovery performance significantly because film flow 
phenomenon plays important role in decreasing residual oil and finally it significantly affects the 
final oil recovery. 
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Figure 3.10: Recovery factor versus time for the porous media saturated with 
Varsol oil and water [BT2 glass beads fractured medium, model length = 55 cm, b = 
5 mm, fracture configuration (e)]. 

 
Experimental results show that capillary pressure drainage height does not affect the recession 
rate of the liquid level in the fractures and both cases have the same rate for gas-liquid movement 
in the fractures. The equality of the recession rate for liquid level in matrix part of both fractured 
porous media is also established during initial time of the process, however, as time passes, 
capillary pressure has a stronger effect on movement of gas-liquid interface in matrix. 
Consequently, the recession rate of liquid level has higher magnitude for the physical model 
saturated with lower interfacial tension liquid (Figure 3.11). The same experiment was done on 
fractured porous medium of configuration (b). The model contained BT3 glass beads which were 
saturated with Varsol oil and water and the experimental result (see Figure 3.12) confirm the 
theoretical concept explained for the previous scenario as both curves follow almost the same 
trend and value for oil recovery. 
 

As mentioned above, the maximum flow rate which occurs during the initial stage of the free fall 
gravity drainage depends on dimensions of porous medium, petrophysical properties of fracture 
and matrix parts, and viscosity of liquid. Therefore, the maximum flow rate for both cases 
explained here is approximately the same.   
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Figure 3.11: a) Gas–liquid interface position in fracture versus time, b) Difference between the gas-liquid 
contact locations in fracture and matrix (Hf-Hm), and gas-liquid interface in matrix (Hm) using experimental 
data obtained from the media made with BT2 glass beads but different test fluids named Varsol and water 
[model length = 55 cm, b = 5 mm, fractures configuration (e)]. 
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Figure 3.12: Comparison of recovery performance for two models filled with water 
and Varsol at various times [media made of BT3 Glass Beads, b = 3 mm, fracture 
configuration (b), L = 55 cm].  
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3.5.4 Effect of fracture aperture: Comparing the experimental results for runs number 2, 5, and 
17 (Table 3.6) gives an idea about the effect of fracture aperture on the gravity drainage process 
performance. In these runs, BT2 type of glass beads was used as the main matrix with the total 
height of 55cm, 2 wt% aqueous solution of CMC was used as the test liquid, and three different 
sizes of fracture apertures (2, 3, and 5 mm) were tried. Figures 3.13 and 3.14 show the effect of 
fracture aperture on the cumulative liquid drainage and also liquid production rate respectively. It 
is clear that increasing the magnitude of fracture aperture results in higher liquid production rates 
just during the initial period of the process, but it does not have any significant effect on the 
liquid ultimate recovery. Figure 3.16 shows that at the initial times of the process during which 
the communication rate keeps on increasing, the amount of liquid drainage rate from the fracture 
decreases. The plots reveal that at the start of communication between the fracture and matrix, 
we have the highest production rate; however, the production rate is decreasing with time as the 
reservoir is depleting, and the behavior of fractured model approaches that of homogeneous 
medium, when the fracture is totally drained.  
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Figure 3.13: Cumulative production versus time for runs # 2, 5 and 17. 
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Figure 3.15 shows the effect of the fracture aperture size on the difference between the gas-liquid 
contact locations in fracture and matrix. The employed models have the same physical and 
dimensional properties at stated above regarding Figures 3.13 and 3.14. In addition, Figure 3.16 
depicts the liquid communication rate versus time for different fracture aperture sizes. According 
to the results mentioned in these two figures, it is concluded that as the fracture aperture size 
increases, the values of height difference between interface locations in matrix and fractures and 
also liquid transfer rate increases accordingly. It is also clear that as the aperture size increases, 
the value of characteristic rate from the fracture also increases. Maximum production rate is also 
higher in the case of models with higher fracture aperture; however, the amount of residual liquid 
saturation is almost the same for all of these runs as this is mainly a function of the matrix 
permeability and threshold capillary height, which are the same among these three runs (Tables 
3.6 and 3.10).  
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Figure 3.14: Liquid production rate versus time for runs # 2, 5 and 17 with BT2 
glass beads.  
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Figure 3.15: Effect of magnitude of the fracture aperture on difference between the gas-liquid 
contact locations in fracture and matrix in the models filled with BT2 glass beads and CMC 
solution (2%). 
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Figure 3.16: Liquid communication rate versus time for different fracture apertures in BT2 
glass beads cases. 
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3.5.5 Effect of model length: Table 3.6 contains results of three experimental runs (Run # 8, 9, 
and 10) that deal with the effect of model length on the gravity drainage process performance. In 
these runs, BT3 type of glass beads was used as the packing material for the matrix which was 
attached to two 5 mm-aperture vertical fractures on both sides, and 2 wt% aqueous CMC 
solution was used as the test liquid. Figures 3.17, 3.18, and 3.19 show the effect of length of 
model (28, 40, and 55cm) on the cumulative liquid recovery, elevation difference between 
interface positions in matrix and fractures, and liquid transfer rate. According to Figure 3.17, 
models with larger length have higher cumulative liquid drainage. This is because models with 
larger length have higher ratio of the model length to the drainage capillary height. However, the 
amount of characteristic drainage rate is almost the same for these models, as this is mainly a 
function of the fracture and matrix permeability. The maximum production rate is also higher in 
the models with larger length; however the residual liquid saturation is almost the same for all of 
these cases as it is mainly a function of the threshold capillary height of the matrix (Table 3.6).  
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Figure 3.17 : Effect of model length on production curve during free-fall gravity drainage in 
BT3 glass beads models filled with CMC solution (2%), and b = 5 mm. 

 
Figures 3.18 and 3.19 show the effect of model length on the hydrostatic pressure difference 
between fracture and matrix and also on liquid communication rate. It is evident that the longer 
the model is, the higher would be the ( )mf HH   value. It is also concluded that models with the 

larger length have higher rate of liquid transfer between matrix and fractures at any particular 
time. 
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Figure 3.18: Gas-liquid interface height difference between matrix and fracture versus time 
for the BT3 models having different length. 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 10 100 1000 10000

Time (s)

L
iq

u
id

 C
o
m

m
u
n
ic

a
tio

n
 R

a
te

 (
g
/s

)

L=55 cm

L=40 cm

L=28 cm

 
Figure 3.19: Influence of model length on liquid rate flowing from matrix to fracture for 
runs # 8, 9 and 10. 
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3.5.6 Effect of fracture length and fluid properties in a model with single fracture: In this 
configuration, a fracture was placed in the middle of the rectangular box all the way down along 
the model height as two matrix parts with the same properties were located on either side (see 
figure 3.1a). In order to investigate the effect of fracture length on important parameters 
contributing in free fall gravity drainage process, a  set of experiments with free fall gravity 
drainage was carried out using unconsolidated glass beads for the matrix, and a vertical fracture 
of 55cm length inserted in the middle of it. For other fracture lengths, the fracture was placed as 
desired and the bottom tip of fracture was away from the production well.  Model (a) with BT3 
type of glass beads was saturated with de-ionized water prior to the free-fall gravity drainage 
test. Experimental results indicate that gas invades the fracture space first and after the driving 
force for further gas invasion in the fracture and matrix respectively become the same, the gas 
can invade the matrix as well. At that point we define the initial flow rate for fluid flow in 
fracture from production data and performed image analysis of interface advancement. 
Visualization study of the process has shown that initially the gas-liquid interface in the matrix 
was not stable and tended to dip lower at locations close to the fracture. However, as the 
drainage process of drainage is progressed the gas-liquid interface became flat, indicative of 
stable displacements. The free fall gravity drainage is initially fast. 50% of the water was drained 
from the system within the first 2 minutes of the experiment (see Figure 3.20). The same 
experiment was repeated in models BT3 glass beads using the water-air fluid pair with a smaller 
fracture length (Lf = 30 cm). The same phenomenon was observed regarding the downward 
interface movement, however, less recovery was attained (46% in the first 2 minutes), though the 
final recovery for the case of Lf =30 cm was about the same as that on the model with longer 
fracture. It is apparent from Figure 3.20 that the longer the fracture, the higher is the recovery 
rate in free-fall gravity drainage.  
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Figure 3.20: Cumulative production of water recovered versus time for models with BT3 
glass beads with variable fracture length. 
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To investigate the effect of liquid viscosity and surface tension, Varsol oil was used as a test 
fluid, having a little higher viscosity than water and a much lower surface tension. Free-fall 
gravity drainage tests were performed on the same type of glass bead model for three different 
fracture lengths, namely 55, 30 and 15 cm respectively (Figure 3.21). Based on the results shown 
in Figures 3.20 and 3.21, it can be concluded that if we have two systems with the same physical 
and dimensional properties under free gravity drainage, the system filled with the water produced 
at higher rate at the start of production compared to models containing the more viscous oil. The 
lower surface tension value of Varsol oil compared to that of water results in slightly higher final 
oil recovery factor. For the same fracture length of 30 cm, it was found that the oil recovery after 
8 hours were 79% and 80% for BT3 glass bead models with water and Varsol oil respectively. 
The ultimate recovery for the cases with Varsol oil was a bit higher compared to water due to 
capillary pressure end effects. Based on the results given in Table 3.6, it is seen that the initial oil 
rate decreases as fracture length decreases. The residual oil saturation attained in the total length 
of model is lower when Varsol oil was used compared to water. This reduction can be explained 
by the capillary end-effects due to water’s higher surface tension compared to Varsol oil.  Packed 
columns with water produce higher wetting phase saturation value for a given location above the 
production-end compared to another liquid of much lower surface tension, as this is well known 
(Dullien, 1992). 
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Figure 3.21: Cumulative production of oil recovered versus time for models with BT3 
glass beads with variable fracture length. 

 
3.5.7 Effect of fractures configuration: We conducted laboratory experiments to investigate the 
effect of fractures pattern on the oil flow rate during free fall gravity drainage. Water wet glass 
beads were used as matrix part and three different fractures patterns were placed in the 
rectangular porous medium to simulate fractures network in fractured porous media. The 
experiments were performed in the 55 cm long rectangular models saturated with 2% CMC 
solution, which were filled with BT3 glass beads. In the first case, there was no horizontal 
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fracture. The maximum flow rate was adjusted at 1.3 cm3/s. When a horizontal fracture was 
placed between two vertical fractures, but not crossing them, this caused an increase of around 9-
10% in initial flow rate. It means that the horizontal fracture increases the overall permeability in 
the models and also plays an important role in transferring liquid to vertical fractures. When a 
fractured porous medium with fractures configuration (f) was employed, during the gravity 
drainage process, it was observed that this configuration produced oil with higher rate during 
initial periods compared with the first fractured model which did not have horizontal fracture as 
the magnitude of its initial volumetric rate was 1.5 cm3/s (15% more than the flow rate for the 
model with just two vertical fractures on both sides). Also it is evident that the homogeneous 
porous media have the lowest production rate during initial period of the experiment which was 
0.7 cm3/s. 
 

Table 3.7 shows the maximum flow rate for the porous media with various fracture patterns 
under free fall gravity drainage. The properties of models are the same as written in the first 
paragraph of this section; just the employed liquid was changed from CMC solution (2%) to 
Varsol oil. The magnitude of production rate reveals the role of liquid communication between 
matrix and fractures and also liquid transferring from a fracture to another fracture as it causes 
that the liquid flow rate in the media with fracture network increases. The table below supports 
this discussion regarding the effect of fracture network configuration on the maximum 
production rate or recovery rate for initial times during production. 
 
Table 3.7:  Maximum flow for variable fracture configuration of porous medium saturated with 
Varsol 

Maximum flow rate, cm3/s Case No. Fracture pattern 
Model (h): Homogeneous  1 4.4 0.4 
Model(g): Has two vertical fractures  2 4.8 0.3 

3 5.1 0.5 Model(e): Has two vertical fractures and one horizontal 
fracture between them, but not touching the vertical 
ones 

4 5.3 0.4 Model(f): Is the same as model(e), except the  horizontal 
fracture is connected to vertical fractures from both 
sides 

    
Regarding recovery factor, if a horizontal fracture placed in the middle of the porous medium, it 
can build an effective capillary continuity according to the fracture aperture size; all four 
experimental models have almost the same ultimate production performance, otherwise the upper 
matrix part and lower matrix part act as separate porous media. Due to discontinuity of flow, 
there is some oil left above the horizontal fracture which equals 1.5% of oil in place. Therefore 
this type of fractures decreases the ultimate recovery. The highest recovery is achievable in the 
model with two parallel fractures on both sides and then for the homogeneous medium. 
 

It can be understood from Figure 3.22 that the model with fracture configuration (f) produces 
liquid with greater recovery rate compared to other models. This is due to the presence of 
vertical fractures and connection between horizontal fracture and vertical fractures, while the 
porous medium pattern (h) has lower production rate among other experimental models at the 
start of free fall gravity drainage process.     
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Figure 3.22: Comparison of recovery factor for various fractured model to figure 
out effect of fracture network (BT3 Glass beads, b= 5 mm, fluid pair: CMC (2%)-
Air, L = 55 cm).  

 
The gas-liquid interface movement in fracture and matrix parts is also presented for the fractured 
porous media. Figure 3.23 shows the difference between the gas liquid positions in matrix and 
fracture against time for the physical models with fractures patterns e, f, and g. The plot shows 
fractured medium (f) has the lowest difference (Hf-Hm) due to having higher effective 
permeability, because gas-liquid interface in the matrix advances with the higher rate, and also 
more communication exists between vertical fractures and other parts of the model. Therefore, 
there is lower rate of gas-liquid interface movement downward in the vertical fracture. 
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Figure 3.23: Effect of fractures configuration on difference between the gas-liquid 
contact locations in fracture and matrix in the models filled with BT3 glass beads and 
CMC solution (2%). 

 
3.5.8 Effect of horizontal fracture and capillary continuity: The interaction of fluid flow 
between matrix blocks and the role of fracture in gravity drainage have imposed a real challenge 
to researchers during the last thirty years. The main issue in understanding the flow behavior in 
fractured porous media is the block-to-block interaction. In this experimental research, some 
phenomena about the block-to-block interaction, i.e. capillary continuity are detailed. 
 

When a fractured medium contains horizontal fractures, capillary continuity may exist in a weak 
or strong form. The capillary continuity phenomenon is an important contributor to oil recovery 
in fractured reservoirs. Capillary continuity, as a recovery mechanism, may provide fluid 
communication between partially or completely isolated matrix blocks, thus increasing the 
recovery rate by gravity drainage or viscous displacement. Capillary continuity increases the 
height of the continuous fluid column in a reservoir and thereby the recovery of oil, since the 
gravity drainage efficiency is dictated by the height of the fluid column. Capillary pressure 
continuity in vertically stacked matrix blocks has been studied extensively, e.g. by Horie et al. 
(1990), Labastie (1990) and Stones et al. (1992). They investigated the properties of materials 
present in the fracture, the effect of the overburden pressure and the permeability, and how this 
affected capillary continuity.  An important aspect is the critical fracture aperture, defined as the 
aperture below which liquid drops may form stable liquid bridges across the fracture. A formula 
for critical aperture was suggested by Sajadian and Danesh (1998), but it is not clear if this was 
consistent with the experimental results presented (Ringen et al., 2005). 
 

Consider a stack of two matrix blocks separated by a horizontal fracture under free fall gravity. 
Assume that a hanging drop touches the bottom surface of the upper block almost at one point 
like the case shown in Figure 3.24. 
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b

Figure 3.24:  Schematic of formed droplet between blocks. 
 
In this situation, there are two cases for drainage: 

1) In some points between two blocks, oil drainage is by formation and detachment of 
droplets, resulting in a discontinuous flow. This means that the diameters of formed 
droplets are smaller than the fracture aperture at those points. The following equation 
shows the capillary pressure associated with a drop of radius r. 

 
 
 
 
where r is the radius of droplet , b is the fracture aperture at a certain point, σ is the interfacial 
tension and ∆ρ is the density difference. However, it should be noted that the radius of drops is 
dictated by the surface tension of liquid/gas fluid pair, as well as density difference between 
them. 
 

2)  In other contact points of the matrix blocks/fracture space, we have a continuous flow 
between blocks. The drained oil is transferred through a liquid bridge/or multiple bridges 
from block to block. This means the diameters of droplets are equal or bigger than the 
fracture aperture. 

 

A laboratory flow apparatus was built to obtain data on water-air and oil-air drainage 
displacements in models with a horizontal fractured. For this purpose, three configurations have 
been used:  a porous medium which a fracture with aperture of 5 mm is located in the middle 
(model (c)), a porous medium with a 1 mm fracture aperture  located in the middle, and a porous 
system with no fracture (model (h)).  In this study, a medium containing fracture pattern (e) was 
used to investigate the effect of fracture aperture and surface tension on capillary continuity.  
 

Experimental results showed that for the BT4 glass beads as matrix and a fracture of 5 mm were 
saturated with CMC 2%, the presence of fracture causes a flow discontinuity in vertical 
direction. Some portion of matrix above the horizontal fractures is not invaded by air, therefore 
air bypassed the liquid in that area above the fracture and flow around the fracture to push the 
liquid toward production well (see Figure 3.25). Consequently there is some liquid left in the 
matrix part above the fracture and this phenomenon decreases the final liquid recovery and 
increases the residual liquid saturation. If we change the fracture aperture from 5 mm to 1 mm, 
the effective flow continuity exists between upper matrix and lower matrix and liquid drops build 
some bridges to keep capillary continuity. The recovery factor and residual liquid saturation for 
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latter case have equal values with those for a homogeneous porous medium with the same 
dimensions and petrophysical properties. In order to consider the effect of interfacial tension, the 
test fluid was changed to Varsol oil. It was observed that a reasonable capillary continuity was 
established during gravity drainage even for fracture aperture equal to 5 mm and no significant 
amount of oil remained above the fracture because smaller the interfacial tension (IFT) is, the 
smaller will be the capillary pressure which needs to be overcome by the weight of the droplet. 
The main results are presented in Table 3.8 to show the effect of fracture aperture size on 
capillary continuity. 
 

Capillary Discontinuity 

 
Figure 3.25: A view of liquid displacement in a fractured medium in whose the horizontal fracture 
exhibits a capillary discontinuity [BT4 Glass beads; b= 5 mm , fluid pair: CMC solution (2%)-
Air].  
 
In the case of water-air drainage, the thin fracture system showed a more stable front than the 
wide fracture system. However, the final water saturation was higher in the areas near the wide 
fracture, thus showing that capillary pressure in the narrow fracture has more effect. Also during 
oil-air drainage, the final oil saturations were higher in the blocks near the wide fracture, again 
showing the weak effect of fracture capillary pressure when having wide fractures. When the 
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fracture aperture is thick, the oil will drain mainly by film flow process. The film flow process 
over the fracture walls cannot provide adequate liquid transmissibility for flow across the 
fracture between the matrix blocks. The oil transmissibility by film flow is so small that 
production of oil from the bypassed region of the upper block will take an extremely long time. 
Since the drainage flow rate by film flow is very small, this kind of capillary continuity is 
recommended to be considered as non-effective or discontinuity. For the case of non-capillary 
contact between blocks (thick fracture) the total amount of recovery will be equal to the number 
of blocks times the recovery of one of blocks if all blocks’ properties are exactly the same. But 
for the full capillary continuity between the blocks, the performance of a stack block is like that 
of a single block with the same height.  
 

This work showed that the thin fracture systems had a more stable front and delayed the gas 
breakthrough compared to wide fracture systems, and that capillary pressure plays an important 
role when the fracture is narrow. We observed that neither the capillary pressure nor the relative 
permeability curves in the fracture affected the results for the narrow fracture system. This leads 
us to the conclusion that when the fracture is 1 mm thin, there is almost perfect capillary 
continuity. 
 

The results of capillary continuity experiments indicated that although different degrees of 
capillary continuity have the same effect on ultimate recovery point of view, their 
transmissibilities are not the same. At the best conditions (narrow fracture aperture), due to a 
larger number of liquid bridges, the transmissibility of a stack blocks is such that the flow rate is 
close to that of a single block with the same height. 
 

Table 3.8: Properties of employed packed models along with obtained results for capillary continuity 
investigation 

 
3.5.9 Effects of initial liquid saturation on recovery history:  Free-fall gravity drainage 
experiments were performed with BT4 glass bead models using the CMC solution (1 wt%)–air 
system to investigate the production characteristics of media that are fully saturated with liquid 
and compare them to that of media with same initial gas saturation. First, gravity drainage was 
performed in a fully saturated model. To establish initial gas saturation for the next run, the 
liquid was injected back into a drained packed model from the bottom. This results in the 
trapping of gas as a residual phase in the matrix with about 15% PV gas saturation. The presence 
of initial gas saturation reduces the matrix permeability by about 30% in bead-pack type of 
porous media (Chatzis et al., 1983). Now having this condition established, we performed the 

Model 
length 
(L), cm 

Matrix 
glass beads 

size 

Porosity

(ϕe), % 

Pattern of 
fractures 

 
Fluid 

Fracture 
aperture (b), 

mm 

Maximum 
Flow rate, 

cm3/s 

residual Oil 
saturation,

% 
Recovery factor,% 

 0.3 55 BT2 38.0 N/A CMC 
(2%) 

Homogeneous 
media, No 
fractures 

1.6 12.1 0.4   1.3 79.0

 0.2 55 BT2 38.0 (c) CMC 
(2%) 

5  1.6 13.5 0.3   1.1 77.5

 0.2 55 BT2 38.0 (c) CMC 
(2%) 

1 1.6 12.2 0.3   0.9 79.1

 0.4 55 BT2 38.0 (c) Varsol 
Oil 

5 6.5 15.1 0.4   1.2 78.2
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free-fall gravity drainage test and monitored the production history as before. The results 
obtained with BT4 beads in runs 11, 12 and 13 are shown in Figure 3.26. It is evident that the 
amount of liquid recovered from a fully saturated model with a fracture is greater than that 
obtained from the same system with residual gas present in the matrix. When the cumulative 
amount of liquid up to a particular time is normalized by dividing it with the maximum amount 
of recoverable liquid, we obtain the fraction of recoverable liquid as a function of time. 
Therefore, we can compare the production history of two systems by plotting the fraction of 
recoverable liquid remaining in the system as a function of dimensionless time. This comparison 
is made in the plot shown in Figure 3.26. 
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Figure 3.26: Comparison of cumulative production in the BT4 glass bead model with 
different initial liquid saturation conditions, fluid pair: CMC solution (1%)-air. 

 
For gravity drainage conditions, the characteristic time is the length of system divided by the 
free-fall Darcy velocity in that system. Using the matrix permeability, actual time t, fluid and 
model properties, the dimensionless time can be defined as:  

L

gtK
t

L

m
D .


  (3.9) 

It can be seen that the production history presented in the form shown in Figure 3.27 is described 
extremely well by the same characteristic function. This observation permits us to describe the 
production history from a partially saturated system by utilizing the supposedly known fractional 
recovery curve of a fully liquid saturated model or system. Also, from Figure 3.26, we can see 
that the liquid production rate at early times of gravity drainage is almost equal for all three 
systems with different initial gas saturation. It should be mentioned that the initial gas saturation 
is not uniformly distributed through the model. The top portions of the matrix and also the areas 
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of matrix close to the fractures have lower saturation of trapped gas. Therefore, the 
communication between matrix and fracture is not much affected by the presence of initial gas 
saturation, implying that the initial production rates are not affected much because, as mentioned 
before, the area close to the fracture has the highest contribution on the communication between 
matrix and fracture. Based on our experimental results, it is obvious that the cumulative 
production in the presence of initial gas saturation decreases. 
 

Figure 3.27: Comparison of production history in model No.11 with BT4 beads 
starting at different initial liquid saturation conditions. 

 

3.5.10 Comparison of production history: In this section, a comparison is made for model 
pattern (a) with fracture aperture of 1.1 cm under free fall gravity and different matrix 
permeability. The oil recovery rate is a strong function of matrix properties during free fall 
gravity drainage. The larger the permeability is, the larger will be the cumulative production at a 
given time, as shown by the results in Figure 3.28. Given enough time, the ultimate recovery in a 
given system with fracture and in another one without a fracture is the same, simply because the 
microscopic recovery efficiency of the matrix dominates in pore volume. Upon comparison to 
the production history of a homogeneous model with the same matrix permeability at a given 
time, the results clearly show that porous media with fractures produce more oil compared to 
porous media that have no fractures.  
 

The effect of matrix permeability, for the same fracture aperture and fracture orientation, is best 
illustrated when the production history is presented in the form shown in Figure 3.29.  The plots 
of oil recovery history shown in Figure 3.29 indicate that on a relative basis of time, the effect of 
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fracture on oil recovery is stronger for media with low matrix permeability. The presence of 
fractures is more pronounced at low matrix permeability compared to media of much higher 
matrix permeability. 
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 Figure 3.28: Comparison of production history using models made with BT2 and BT4 

glass beads and fracture length = 55 cm. Production history of a homogeneous model 
with BT2 glass beads is also shown for comparison to that with the fracture. 
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3.5.11 Effect of the term defined by 
L

mfm


gHHK  )..(. 

 :  

In this part, an accurate communication flow equation incorporating a time dependent shape 
factor is derived and verified for improving the dual-porosity, dual-permeability modeling during 
free fall gravity drainage in fracture porous media. The equation expresses the transfer rate in 
terms of the liquid phase pressure gradient in the matrix, surface area of fracture, liquid 
permeability, liquid viscosity and a variable matrix-fracture shape factor. 
 
The single phase approach of Darcy’s equation can be extended to be used for multiphase flow in 
order to compute the flow rate transferring from matrix to fracture by the following equation: 

        
x

pK
AK L

L

ro
mcom 

q





                                                                                 (3.10) 

where, Km is the average absolute permeability in the matrix block, µL is the liquid viscosity, pL 
is the pressure of the liquid phase in the matrix, A is the total fracture surface area, which is 
calculated from the fracture geometry and x is the direction perpendicular to the vertical axis. A 
finite difference approximation of equation (3.10) may be written in the following form: 

                                                                                                        

0

100

200

300

400

0.01 0.1 1 10

Dimensionless time, tD

C
u

m
u

la
ti

v
e 

P
ro

d
u

c
ti

500

600

700

o
n

 (
g

)

BT4  with  Fracture

BT2  with  Fracture

BT2  Homogeneous

 

Figure 3.29: Production history of models made with BT2 and BT4 glass beads and 
fracture length = 55 cm using dimensionless time. Comparison of the production history 
of a homogeneous model with BT2 glass beads versus dimensionless time can be made 
to that of fracture systems. 
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It is further assumed that the pressure drop, ∆pL , responsible for the communication flow rate, 
qcom , may be calculated as the difference between the average liquid-phase pressure computed in 
the matrix and fracture, and these two average values of pressure are separated by a distance 
equal to half the fracture spacing. A flow correction, Fcom, is introduced to take care of the 
deviations due to the assumption made here. Consequently, equation (3.11) can be written in the 
following form: 
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).(. mffm HHgpp 

(3.12) 
 

On the other hand, the pressure difference between matrix and fracture can be interpreted as the 
difference of interface positions in the fracture and the matrix during free gravity drainage at 
each specific time: 

  (3.13) 

 

The fracture surface area contributing in liquid communication is defined as the below formula: 

          A=L.W                                                                                                   (3.14) 

L and W are model height and model thickness, respectively. 

The proposed communication rate equation can be implemented in a fractured reservoir 
simulation during unsteady state processes. Current numerical simulators determine the transfer 
flow rate from the following expression (Warren and Root, 1963): 

     ).( fm
L

m
com pp

K
q 


                                                                       (3.15) 

 

where α is the constant shape factor. Equation (3.15) is valid just when dealing with steady state 
conditions as the surface area subject to liquid transferring from matrix to fracture stays constant. 
However, during an unsteady state process such as gravity drainage, the fracture surface area 
which is responsible for the communication is variable with time and a variable constant shape 
factor was used in this case. Modification of equation (3.15) includes the substitution of the 
shape factor by the flow correction factor that was obtained by combining the experimental 
approach and statistical regression. 
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Figure 3.30 indicates that equation (3.16) can predict the value of dimensionless correlation, 
Fcom, to calculate communication rate from matrix to fracture with a high accuracy. 
 

 
Based on data shown in figure 3.30, the value of the coefficient ‘a’ for equation (3.16) is 0.06 
and the equation can be used for transfer flow rate in fractured media with fracture configuration 
‘b’. 
Figure 3.31 shows the effect of driving force for communication between matrix and fracture on 
the liquid rate flowing from matrix to the fracture. It is clear that as this term increases, the 
communication rate increases assuming other parameters remain constant. As shown in the 
graph, the communication Darcy velocity changes linearly with the term namely, 

L

mfm gHHK


 )..(. 

 and communication Darcy velocity in the system with lower permeability 

changes sharper with driving force compared to that for more permeable system. However, the 
model with the higher permeability has a higher communication velocity and consequently, 
higher liquid communication rate up to 1.4 g/s. 
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Figure 3.30: Regression analysis for data points corresponding to correlation factor for 
communication flow rate at various times for employed different fractured media with 
fractures pattern (b). 
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Figure 3.31: Liquid communication Darcy velocity as a function of 
L
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 for two 

different models (both models were saturated with CMC solution (2%) and had L = 55 cm, b =5 mm). 

3.5.12 Effective permeability in fractured media: During free fall gravity drainage in fractured 
porous medium of type b (having two vertical fractures on both sides), there are three stages 
during oil production (though those steps exist for porous media a and d, as well): 
 

1) First, gas invades the fractures and no oil is produced from matrix part; only fractures 
contribute to oil production, therefore, the effective permeability is equal to the effective 
permeability for fracture: 
                                                                                                     (3.17) eK feffK ,
 
2) After gas invasion starts in the matrix porous medium, both fractures and matrix 
contribute to oil production and each part has a share in the magnitude of total effective 
permeability of the porous medium. Since this kind of flow is neither pure in parallel nor 
pure in series, it would be difficult to define an effective permeability during this short period 
because the effective permeability is a function of several parameters such as communication 
rate which is variable with time during free fall gravity drainage process. 
3) When the gas-liquid interface reaches the bottom of fracture and there is no more oil in the 
fracture. It should be noted that because of the small volume of fluid in the fractures, the 
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initial period (first two steps mentioned above) may be very short (it makes impractical to 
measure important parameters in some cases). Therefore, the pressure equalization between 
matrix and the fracture happens soon. The reservoir (or fractured medium) then responds like 
an unfractured porous medium with a permeability equal to Ke which is greater than matrix 
permeability and we cannot take into account the matrix permeability as effective 
permeability for the model in this stage; although, there is no fluid left in the fracture. A good 
estimate for calculating the magnitude of effective permeability is to use a cumulative rate 
plot versus time and then obtain volumetric flow rates, and finally applying Darcy’s equation 
to find effective permeability. The calculations show difference between that value and 
matrix permeability well.  
      The experimental results show that this effective permeability may be expressed as 

follows: 
 
                                                                                          (3.18) feffme KcKK ,.
 
where, c is a constant which depends on the particle size. The effective permeability for 
fracture media can also be obtained by pressure decline curve analysis. The above equation 
also shows that during film flow along the fracture length which is parallel with the flow in 
matrix, therefore, effective permeability for this case can be calculated by the formula which 
is valid for parallel porous layers.  

  
The following table summarizes the magnitude of permeability for homogeneous and fractured 
media: 

 
Table 3.9: Effective permeability for the fractured porous media (b) under FFGD 
 

Run 
no. 

Type of glass beads Type of reservoir Fracture aperture Effective permeability 

1 BT2 Unfractured  N/A Km for BT2 
2 BT2 fractured  5 mm 1.2 Km for BT2 
3 BT2 fractured  3 mm 1.1 Km for BT2 
4 BT3 Unfractured  N/A Km for BT3 
5 BT3 fractured  5 mm 1.5 Km for BT3 
6 BT4 Unfractured  N/A Km for BT4 
7 BT4 fractured  5 mm 1.95 Km for BT4 

 
The experimental results in Table 3.9 show that the effect of fracture on effective permeability is 
more significant in the porous media with lower matrix permeability. 
 
3.5.13 Production flow rate: Usually, a maximum flow rate is observed in vertical fracture 
reservoirs when communication between matrix and fracture starts simultaneously and therefore, 
the drainage flow comes from both matrix and fracture domains. However, when dealing with 
homogeneous porous media, the maximum flow rate occurs at the beginning of gravity drainage 
process. Table 3.10 lists the values of maximum production rate for the experimental porous 
media under gravity drainage process.  
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According to the dynamics of fluid flow in porous media, if the porous medium is unfractured 
and flow regime is Darcian, one can use the following equation to find the maximum flow rate 
during free fall gravity drainage: 
 

     
L

hLgK
A c
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..max


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
q



ch

                                                                           (3.19) 

 

where, qmax is the maximum production rate; K is total effective permeability; μL is the viscosity; 
L is the length; ρ is the density, and  g the gravitational force , and  is capillary threshold 

height for the porous media used in our experiments. 
 

The experimental results show that the presence of fractures increases the maximum flow rate 
compared to that for the porous media without fractures. If we use effective permeability, which 
is combination of matrix and fracture permeabilities in the above formula, it gives a good 
estimate regarding the maximum production rate in fractured porous media. Noteworthy that the 
maximum oil production rate in gravity drainage tests is estimated by using the plot of the oil 
production rate (or cumulative production) versus time. There is an abrupt change in oil 
production rate when the gas-oil surface touches the top of the core sample because of the effect 
of the entry capillary pressure. This approach in the estimation of initial oil production rate is not 
accurate. In order to obtain an empirical approach for liquid production rate, q/qmax was plotted 
versus a new dimensionless time which is defined as follows: 
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where σ is the surface tension of test liquid and other parameters were defined in previous parts. 
The results show that Ln(q/qmax) is a linear function of natural logarithm of the dimensionless 
time with a reasonable accuracy for all our fractured porous media saturated with various liquids. 
Equation (3.19) presents this relationship between these dimensionless numbers. 
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                                                                                  (3.21) 

 

The coefficients a and b of the above equation depend on petrophysical properties of fractured 
medium and test fluid. The History matching can provide the values of these constants if the oil 
production data are available. 
 

Figures 3.32 and 3.33 indicate the relationship between production rate and dimensionless time 
for two different fractured porous media. 
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Figure 3.32: Ln (q/qmax) versus Ln(tD) for model(e) saturated with Varsol oil 
[BT2 glass beads, L = 55 cm]. 
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Figure 3.33: Relationship between liquid production rate and dimensionless time 
for fractured porous medium (a) with a vertical fracture in the middle [BT3 glass 
beads, b = 5 mm, L = 55 cm, fluid pair: Air-Varsol]. 
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Table 3.10: Maximum flow rate of free fall gravity drainage experiments for 42 sample runs  
 
Run 
No. 

Model 
height, L 

(cm) 

Matrix 
glass 
beads 
size 

Fracture 
Length ,Lf  

(cm) 

Test fluid Fracture 
aperture (b),mm 

Fractures 
pattern 

Maximum 
flow rate, 

cc/s 

1 55 BT2 55 CMC(1%) 5 b 5.30 0.6 
2 55 BT2 55 CMC(2%) 5 b 2.60 0.2 
3 55 BT2 55 Water 5 b 14.40 0.9
4 55 BT4 18 Water 5 c 2.10 0.3 
5 55 BT2 55 CMC(2%) 3 b 1.95 0.2 
6 55 BT2 55 CMC(1%) 3 b 4.70 0.3 
7 55 BT3 55 CMC(1%) 5 b 1.60 0.2 
8 55 BT3 55 CMC(2%) 5 b 1.10 0.2 
9 28 BT3 28 CMC(2%) 5 b 0.75 0.1 

10 40 BT3 40 CMC(2%) 5 b 1.00 0.2 
11 55 BT4 55 CMC(1%) 5 b 1.30 0.1 
12 55 BT4 55 Water  5 a 3.30 0.4 
13 55 BT4 55 CMC(2%) 5 c 0.30 0.1 
14 55 BT4 55 CMC(2%) 5 b 0.95 0.1 
15 55 BT4 55 CMC(1%) 3 b 1.00 0.1 
16 55 BT4 55 Water  5 b 3.20 0.3 
17 55 BT2 55 CMC(2%) 2 b 2.10 0.2 
18 55 BT2 55 Varsol 5 b 9.80 0.3 
19 55 BT3 55 Varsol  5 b 5.60 0.3 
20 55 BT3 55 Varsol  3 b 4.80 0.3 
21 55 BT3 55 Water  11 a 6.00 0.4 
22 55 BT3 30 Water  11 d 5.20 0.2 
23 55 BT3 55 Varsol  11 a 5.80 0.3 
24 55 BT3 30 Varsol  11 d 4.30 0.2 
25 55 BT3 15 Varsol  11 d 3.20 0.3 
26 55 BT2 18 CMC(2%) 5 c 1.60 0.2 
27 55 BT2 18 CMC(2%) 1 c 1.40 0.1 
28 55 BT2 18 Varsol 5 c 11.60 0.6
29 55 BT3 46 Varsol  5 e 5.10 0.4 
30 55 BT3 46 Varsol  5 f 5.30 0.3 
31 55 BT2 N/A Varsol  N/A N/A 12.00 0.5
32 55 BT2 18 CMC(1%) 5 c 3.90 0.3 
33 55 BT4 46 CMC(1%) 5 e 1.70 0.2 
34 55 BT4 46 CMC(1%) 5 f 2.00 0.2 
35 55 BT2 N/A CMC(2%) N/A N/A 1.50 0.1 
36 55 BT3 55 Varsol  5 a 4.75 0.3 
37 55 BT3 55 Water  5 a 3.60 0.2 
38 55 BT4 46 CMC(2%) 5 e 0.65 0.1 
39 55 BT2 46 Varsol  5 e 10.00 0.9
40 55 BT2 46 CMC(1%) 5 e 7.20 0.5 
41 55 BT3 46 Varsol  5 g 4.80 0.2 
42 55 BT4 46 CMC(1%) 5 g 1.92 0.3 



3.6 Dimensionless Groups  
 
In this section, the relevant dimensionless numbers which play important roles in the up-scaling 
procedure of the experimental results are discussed accordingly. 
  
3.6.1 Bond number: According to the definition provided in the concepts of fluid flow in porous 
media, Bond number, “Bo”, is a dimensionless number which expresses the importance of body 
forces (i.e. gravitational forces) compared to either surface or interfacial forces (Dullien, 1990):  
 

                                                   (3.22)
 

    
mKg

Bo
..

  

                                                                                                            where “∆ρ” is the density difference between acting fluids flowing in porous medium, “g” is the 
gravitational acceleration associated with the body force, “Km” is the matrix permeability, and 
“σ” is the surface tension across the interface.  

 

According to the definition, a high value of Bond number for fluid flow inside a particular matrix 
indicates that the fluid flow inside the matrix is relatively unaffected by the surface tension 
forces. However, a low value for Bond number (i.e. typically less than unity) reveals the relative 
importance of capillary forces against gravitational forces. Intermediate numerical values 
associated with this dimensionless number indicate a non-trivial balance between these two 
forces. Since understanding of the Bond number value is essential for investigating different 
aspects of gravity drainage process it is wise to consider it as one of the reference dimensionless 
groups. This makes it possible to realize its physical importance on the different aspects of 
FFGD process defined previously in section 3.2, including recovery factor and elevation 
difference between G/L interface positions in matrix and fractures.     
 
3.6.2 Reynolds number: For fluid flow in porous media, Reynolds number is defined as follows 
(Dullien, 1990):  
 

                                            (3.23)
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                                                                                                          where “ρ” is the liquid density, “v” could be defined as either pore velocity or specific discharge 
(i.e. withdrawal rate in the case of flow influenced by only gravitational force in gravity drainage 
process), “Dp” is a representative grain diameter for the porous medium which is often taken as 
the 30% passing size of grains from a grain size analysis using sieves, and “μL” is the liquid 
dynamic viscosity.  
 

According to the dynamics of fluid flow in porous media, one can differentiate between laminar 
(i.e. Darcy) and turbulent (i.e. non-Darcy) regimes of liquid flow based on the magnitude of 
Reynolds Number for each particular flow system. The threshold value of unity (Rep = 1) has 
been considered for the critical Reynolds Number above which the liquid flow through a 
particular porous material would be no longer follow Darcy’s flow regime. According to the 
literature, experimental results have shown that flow regimes with values of Reynolds number up 
to 10 may still be Darcian flow (Dullien, 1990). For each particular porous medium with definite 
pore size distribution in which a known liquid is flowing down gradient under the action of 
gravity force only, the magnitude of the discharge rate (or the associated value of Darcy velocity) 
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is the parameter by which one could differentiate between the type of flow regime, whether it is 
laminar or turbulent. To be consistent with the majority of open literature cases where this 
dimensionless number has been defined, the macroscopic discharge velocity (i.e. withdrawal rate 
in case of flow under gravity drainage process) was used in analogy regarding dimensionless 
analysis of FFGD process. Table 3.11 shows the withdrawal velocity criteria upon which the 
liquid drainage rate out of the matrix domain with definite properties would remain within the 
range of Darcian flow regime:  
 
Table 3.11: Reynolds number as a function of drainage velocity for the employed fractured porous 
media and the drainage rate criteria for laminar flow regime 

Reynolds number (Rep) and production rate (q) criteria for laminar flow 
Type of glass beads  

Water Varsol Oil CMC 1% CMC 2% 
Rep=11.25v, Rep=7.32v, Rep=2.34v,  Rep=0.95v,  
 

 

3.6.3 Porosity ratio, (
e

f




): In order to fulfill the sufficient numbers of dimensionless groups 

required for the dimensionless analysis, the dimensionless porosity has been defined as the ratio 
of the magnitude of fracture porosity, “ f ”, to the magnitude of effective porosity, “ e ”, in each 

particular fractured medium. The parameter indicates what fraction of total oil in place occupies 
the fracture.  
 
3.7 Recovery Factor for Free Fall Gravity Drainage 
 
Since free-fall gravity drainage is a gravity-dominated process, and the only resistance is the 
capillary pressure force, the oil production depends significantly on the properties of the porous 
media, fluids used, and their interactions. These include permeability and relative permeability of 
the porous media, pore structure, matrix sizes, fluid viscosities, initial water saturation, the 
wettability of the rock-fluid systems, and the interfacial tension. It is difficult to include all these 
important parameters in an analytical model. This may be why the existing analytical models do 
not work well in characterizing and modeling the gravity drainage process, as described 
previously. Mathematical models developed to predict oil production accurately by gravity 
drainage from fractured gravity have been few. An empirical oil recovery model was proposed 
accordingly to match and predict oil production during free fall gravity drainage. The model was 

BT2/DP=1125 µm scmq /70.2 3 scmq /15.4 3 scmq /82.12 3 scmq /60.31 3
   

    
 
Rep=7.10v, Rep=4.62v, Rep=1.48v, Rep=0.61v, BT3/DP=710 µm 
 

scmq /21.4 3 scmq /45.6 3 scmq /22.20 3 scmq /03.50 3
   

      
 
Rep=5.06v, Rep=3.29v, Rep=1.05v, Rep=0.43v, 

BT4/DP=506 µm 
 

scmq /92.5 3 scmq /06.9 3 q 60.28 scmq /70.69 3
    

   scm /3  
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tested with experimental and field data of oil production under free-fall gravity drainage. The 
results demonstrated that the oil recovery model could satisfactorily work in the oil-gas drainage 
system. Initial oil production rate can be estimated using the oil recovery model. The empirical 
model suggested by Zendehboudi et al. (2009) in this study to match the oil production by 
gravity is expressed as follows: 
 

            BAt1                                                                                              (3.24) tFR )(.
 

A and B are constant values for each specific case, which depend on petrophysical properties of 
rock and physical properties of oil existing in the reservoir. The values of these constants can be 
obtained by a history match technique once the oil production data are available. Then it would 
be possible to predict the future production performance of the known fractured reservoir and it 
can assist to select the best scenario for oil production from the case under study. 
   
Figure 3.34 shows recovery factor versus time for two fractured porous mediums that there is a 
good agreement between experimental data and the empirical equation proposed above.  
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(b) 
Figure 3.34: Variation of (1-RF) during free fall gravity drainage for a) BT2 glass beads model (g) 
saturated with CMC solution (1%). b) fractured porous medium (b) [fluid pair: Varsol oil-Air, BT3 
glass beads]. 
 
It is well understood that the residual wetting phase saturation for systems of different 
permeability in the absence of capillary end-effects is independent of matrix permeability. The 
results of residual liquid saturation shown in Table 3.6 support this statement, as the measured 
residual liquid saturation varied in the range of 5-10% P.V.  However, for finite in height porous 
media, the residual liquid saturation increases as the permeability and height of packing 
decreases. 
 

The experimental runs were conducted to investigate the effect of Bond number and capillary 
end ( ) on liquid recovery. The variations in the Bond number were obtained by 

varying the physical properties of the test fluids and also the specification of the porous medium. 

LLeffective /
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The following empirical model was developed by fitting the production data versus three 
variables, namely: the Bond number, the ratio of the effective length over the length of porous 
medium and the ratio of fracture porosity over effective porosity. 
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                       (3.26) 

 
The effective length is defined as: 
                                                                                                    (3.27) 

 
In equation (3.27), h  is the capillary threshold height for the porous media used in our 

experiments. 
 
3.8 Conclusions 
 
The experimental work of free fall gravity drainage in the fractured porous media led to the 
following conclusions: 
 

 The experimental results have shown that the free-fall gravity drainage rate increases in the 
presence of fractures. The models with a longer fracture produced higher oil recovery rate 
compared to models without fracture. 

 The models with larger matrix permeability produced more oil during the production process 
when compared at the same time. In addition, free-fall gravity drainage appears to be stable 
and piston-like displacement, even for media with fractures. 

 For a given fracture-matrix system and for different initial oil saturation conditions, it was 
found that the production history can be correlated by plotting the fraction of recoverable oil 
remaining versus time. 

 The characteristic rate did not depend on petrophysical properties of the matrix part of a 
system. 

 The model length, fracture permeability and fracture aperture were important parameters that 
significantly affect production characteristics. The effect of a fracture on liquid recovery was 
greater in systems of low matrix permeability compared to the effect a fracture has in porous 
media with matrix of much higher permeability. 

 The fractures patterns in a fractured medium significantly affected the magnitudes of 
recovery rate and effective permeability. 

 The extent of capillary contact between matrix blocks controls fluid saturation development 
and influences the gravity drainage oil recovery in fractured porous media. 

 The rate of liquid transferring from matrix to the fractures depends on properties of test fluid, 
matrix permeability, and difference of liquid levels in matrix and fractures. 

 Final liquid recovery can be correlated to the Bond Number through an equation fitted to the 
data.  
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Chapter 4 

Controlled Gravity Drainage in Fractured Porous Media 
 
4.1 Scope 
 
Oil production from a fractured reservoir, composed of a gas cap and an oil zone, is usually 
taking place using surface or submersible pumps. The pumping usually is operated under 
constant withdrawal rate until gas breakthrough, at which time the pumping rate would be 
influenced by the presence of gas at the production well. It is evident that pumping rate dictates 
both pressure and fluid flow regimes in the volume which is under the drainage influence of the 
pump. The main focus of this chapter is on the gas-liquid (G-L) interface behavior and recovery 
performance of employed models as a function of liquid withdrawal rate. A series of flow 
visualization experiments were performed using unconsolidated packed models of rectangular 
geometry with various configurations of fractures. Parametric sensitivity analyses were 
performed considering the effect of different system parameters such as fracture aperture, matrix 
height and permeability, well spacing and fluid viscosity on the Critical Production Rate (CPR), 
Maximum Possible Withdrawal Rate (MPWR) and G-L interfaces in both matrix and fractures.  
 

Experimental results have shown that higher pumping rates cause higher difference between 
liquid levels in fracture and in the matrix, thus the gas breakthrough happens sooner. Moreover, 
it was determined that as long as the porous medium is drained with a constant liquid withdrawal 
rate less than critical, the height difference between G-L interfaces in matrix and fracture 
remains constant. In this chapter, a new concept of “Critical Pumping Rate” (CPR) was defined 
at which each particular porous medium has a recovery factor equal to the recovery factor for 
higher rates just before gas enters into the production well at the bottom, and also the difference 
between liquid levels in fracture and matrix remains unchanged at rates higher than this specific 
rate. Known this particular withdrawal rate, there are two main advantages, namely: 1) choosing 
a pumping rate lower than it to drain the reservoir without getting gas breakthrough; and 2) 
understanding the physics of pumping behavior from fractured media and extending the concept 
to the real cases. In addition, the maximum liquid pumping rate from each physical model has 
also been studied and it was found that this rate depends strongly on the storage capacity of the 
fractures, petrophysical properties of each model as well as physical properties of test fluids.  
 

The key objective of this chapter is to advance our understanding of controlled gravity drainage 
in naturally fractured reservoirs, as well as to find out the interaction between capillary and 
gravity forces in the mentioned process. To achieve these objectives, unconsolidated glass-bead 
types of experimental prototype have been designed, each model is surrounded vertically by one 
vertical fracture at each side. Controlled gravity drainage experiments have been performed with 
focus on visualizing pore-scale aspects of the multiphase flow process, as well as fluid flow 
interaction between matrix and fractures. This study was undertaken with a detailed Design of 
Experiment (DOE) phase through which different experimental steps and phases have been 
designed and ranked considering the effects of various independent parameters on dependent 
variables. This step is described in detail after this introductory section. The methodological plan 
of this study is first to perform a parametric sensitivity analysis in order to determine the effects 
of various system parameters on overall system production performance. In particular, 
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experimental results were analyzed in order to delineate the effect of fracture aperture, matrix 
height and permeability, well spacing and fluid properties on the magnitude of newly defined 
“Critical Pumping Rate” and also ”Maximum Possible Withdrawal Rate”. 
 
4.2 Design of Experiments (DOE) 
 
Design of Experiment (DOE) is a structured, organized method that is used to determine the 
relationship between the different factors (Xs) affecting a process and the output of that process 
(Y). This method was first developed in the 1920s and 1930, by Sir Ronald A. Fisher, the 
renowned mathematician and geneticist. Experimental design is a strategy to gather empirical 
knowledge, i.e. knowledge based on the analysis of experimental data and not on theoretical 
models. It can be applied whenever you intend to investigate a phenomenon in order to gain 
understanding or improve performance. Building a design means, carefully choosing a small 
number of experiments that are to be performed under controlled conditions (Montgomery and 
Runger, 2006; Montgomery, 2008). There are four interrelated steps in building a design: 
 

1) Define objectives to the investigation, e.g. better understand or sort out important variables 
or find optimum.  
2) Define the variables that will be controlled during the experiment (design variables), and 
their levels or ranges of variation.  
3) Define the variables that will be measured to describe the outcome of the experimental 
runs (response variables), and examine their precision.  
4) Among the available standard designs, choose the one that is compatible with the 
objective, number of design variables and precision of measurements, and has a reasonable 
cost 
  

4.2.1 Set the objectives: The first decision before designing an experiment is “what is the 
objective, or purpose, of this study?” The focus of the study may be to screen out the factors that 
are not critical to the process, or it may be to optimize a few critical factors. A well-defined 
objective leads the experimenter to the correct DOE (Montgomery and Runger, 2006; 
Montgomery, 2008).  The following objectives have been finalized for the experiments regarding 
the current study:  
 

1) Investigate the physics of controlled gravity drainage process in a fractured medium; and 
extending the results to predict the real field case performance, if it is possible.   
2) Focus on the behavior and movement of Gas-Liquid (G-L) interface through matrix and 
fractures, and obtaining the recovery performance of employed physical models as a 
function of liquid withdrawal rate. 
3) Define new concepts of “Critical Pumping Rate” and also “Maximum Possible 
Withdrawal Rate”, and then obtaining these two parameters for each particular fractured 
model.    
4) Perform parametric sensitivity analysis.  

 
4.2.2 Select various process variables: This step includes screening the design in order to 
identify which parameters are affecting the overall system response. According to our 
understanding of the physics of Free Fall Gravity Drainage Process (Zendehboudi et al., 2008; 
Zendehboudi et al., 2009), and also following some preliminary controlled gravity drainage tests, 
it was concluded that the following 6(six) parameters could be considered to be the main 
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affecting variables that influence the general performance of controlled gravity process. This 
includes:  
 

1) Fracture aperture, 2) Matrix height, 3) Matrix permeability, 4) Interfacial tension, 5) Well 
spacing, and 6) Fluid viscosity.  

 

Since the process variables include both inputs and outputs, i.e. factors and responses, the 
dependent variables are namely: 1) Critical pumping rate, 2) Maximum possible withdrawal (i.e. 
pumping) rate, 3) Recovery factor, and 4) Vertical elevation difference between the G-L 
interface positions in matrix and fractures during the controlled gravity drainage processes.  
 

It is wise to critically choose a sound range of variation for experimental input factors just before 
designing the models. This makes it possible to have a reasonable clue about the experimental 
outputs before performing each particular test relative to the other designed experiments. 
 
 4.2.3 Select an experimental design: Considering the number of factors evaluated in the 
current study (total of 6) and the nature of the process, it appears that the most relevant 
experimental design method is factorial with two levels of design (Montgomery and Runger, 
2006; Montgomery, 2008). This type of experimental design is frequently used in experiments 
involving several independent factors where it is necessary to study the combined effect of the 
involving parameters on system response. However, as the number of factors in a two level 

factorial design increases, the number of runs for even a single replicate of the 2 design becomes 
very large. Fractional factorial designs can be used in our case to draw out valuable conclusions 
from fewer runs. Therefore, the basic purpose of a fractional factorial design is to economically 
investigate cause-and-effect relationships of significance in a given experimental setting. There 
are lots of good reasons on why to select only two levels is the most common choice amongst 
engineers. First and foremost, having two design levels is ideal, simple, and also economical for 
screening designs (Montgomery and Runger, 2006; Montgomery, 2008). However, it is 
recommended to have some centre points between the high level and also the low level of each 
experimental factor. The standard layout of a 2-level design generally uses “+1” and “-1” 
notations to denote the "high level" and the "low level" limits of each factor respectively. Table 
4.1 demonstrates the series of designed experiments in which 32 trials (i.e. experimental runs) 
have been planned, considering each factor to be set to its high or low limit during that particular 
run. 
 

Use of “+1” and “-1” notations for the factor setting is called data coding. This aids in the 
interpretation of the coefficients fitted to any experimental model. After factor settings are coded 
properly, all the center points have the value "0". Regarding our study, centre points have been 
chosen for all the independent variables except the well spacing. So, the appropriate 
experimental design for our controlled gravity drainage experiments is half fractional factorial 
design including 26-1 trial runs. Since we were dealing with seven different withdrawal rates, and 
80 replicate runs have been considered in order to examine the repeatability of the experiments, a 
total of 350 experimental runs have been designed to be performed in order to study various 
effects of all independent variables on the system responses  
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Table 4.1: Design of Experiment data-table for the CGD experiments 
 

Run no. Fracture 
aperture 

Matrix 
height 

Matrix 
permeability 

Fluid 
viscosity 

Well 
spacing 

Fluid interfacial 
tension 

1 -1 -1 -1 -1 -1 -1 
2 +1 -1 -1 -1 -1 +1 
3 -1 +1 -1 -1 -1 +1 
4 +1 +1 -1 -1 -1 -1 
5 -1 -1 +1 -1 -1 +1 
6 +1 -1 +1 -1 -1 -1 
7 -1 +1 +1 -1 -1 -1 
8 +1 +1 +1 -1 -1 +1 
9 -1 -1 -1 +1 -1 +1 

10 +1 -1 -1 +1 -1 -1 
11 -1 +1 -1 +1 -1 -1 
12 +1 +1 -1 +1 -1 +1 
13 -1 -1 +1 +1 -1 -1 
14 +1 -1 +1 +1 -1 +1 
15 -1 +1 +1 +1 -1 +1 
16 +1 +1 +1 +1 -1 -1 
17 -1 -1 -1 -1 +1 +1 
18 +1 -1 -1 -1 +1 -1 
19 -1 +1 -1 -1 +1 -1 
20 +1 +1 -1 -1 +1 +1 
21 -1 -1 +1 -1 +1 -1 
22 +1 -1 +1 -1 +1 +1 
23 -1 +1 +1 -1 +1 +1 
24 +1 +1 +1 -1 +1 -1 
25 -1 -1 -1 +1 +1 -1 
26 +1 -1 -1 +1 +1 +1 
27 -1 +1 -1 +1 +1 +1 
28 +1 +1 -1 +1 +1 -1 
29 -1 -1 +1 +1 +1 +1 
30 +1 -1 +1 +1 +1 -1 
31 -1 +1 +1 +1 +1 -1 
32 +1 +1 +1 +1 +1 +1 

4.3 Experimental Work 
 
In this section, details of the experimental set up, test fluids, and experimental procedures are 
presented and discussed accordingly.    
 
4.3.1 Experimental setup: Figure 4.1 shows the schematic diagrams of the experimental setups 
used in the current study. The experimental setups comprised of the following components:  
a) A rectangular porous medium,  
b) A particular pattern of fractures, 
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c) High definition video-recording and high-resolution digital imaging facilities: The G-L 
interface movement through both matrix and fractures were recorded continuously during the 
experiments,  
d) Peristaltic pump with variable discharge rates,  
e) Digital balance to weigh the withdrawn liquid,   
f) Vacuum equipment to remove dissolved gas from test liquids.   
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

(a) (b) (c) (d) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

(e) (f) (g) (h) 

Figure 4.1: Schematic of the apparatus for controlled gravity drainage in porous media 
with various patterns of fractures. 
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Controlled gravity drainage experiments were conducted at room conditions. Pictures and 
movies taken at various stages of controlled gravity drainage experiments were analyzed using 
image processing techniques to track the gas-liquid interface movement through the matrix and 
fractures. To resume the same initial condition for each experiment, models were saturated by 
adding dry glass beads to a known volume of liquid in order to attain the desired matrix packing 
height. The Peristaltic pump was connected to each model’s bottom part for producing liquid at 
various fixed discharge rates. A wide range of high and low pumping rates was then applied to 
each particular fractured medium.  
 
4.3.2 Test fluids: Varsol oil, de-ionized water and aqueous solutions of Carboxy Methyl 
Cellulose (CMC) with different concentrations were employed as common laboratory liquids for 
investigating the oil recovery history and gas-liquid interfaces movement by controlled gravity 
drainage, primarily in fully saturated porous media models. Water viscosity was increased by 
adding Carboxy Methyl Cellulose (CMC) to represent different oil viscosities. The effect of 
CMC powder concentration on the viscosity of prepared solutions was brought in Chapter 3 
(Table 3.2). The physical properties of fluids were mentioned in the previous chapter (Table 3.3). 
 
4.3.3 Experimental procedure and data analysis approach: Controlled gravity drainage 
experiments were carried out in various models with different initial conditions. Some of the 
experiments have been repeated two or three times in order to make sure from their accuracies. 
For each particular experimental run, the average results were used to obtain both the production 
history and also G-L interface advancement in matrix and fractures. Looking at the replicate runs 
preformed in this study shows clearly that almost all of the performed experiments were 
conducted as accurately as possible, i.e. a high degree of repeatability has been achieved. A 
summary of model characteristics is presented in Table 4.2. Experimental results related to 
nineteen sample experiments are presented in Table 4.3.  
 

As was stated before, parametric sensitivity analyses were performed in this study in order to 
investigate the effect of different system parameters on some aspects of the controlled gravity 
drainage process such as newly defined concept of “Critical Pumping Rate”, and also “Maximum 
Possible Withdrawal Rate”. The effects of model length, matrix permeability, fluid pair 
properties, well spacing, and fracture aperture on the controlled gravity drainage process 
performance were investigated. This analysis contains quantitative approach (such as analyzing 
the drainage rates and also cumulative production versus time and also investigating CPR and 
MPWR at different conditions) as well as relevant qualitative approach (analysis of interface 
movements in both fractures and matrix using video-recording and digital imaging techniques). 
Gas-liquid interface positions in both matrix and fractures “H(t)” were measured from the top 
portion of each individual packing all the way down along the model’s height with respect to 
time as the gas phase invaded the fractures and matrix space respectively.  
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Table 4.2: Properties of employed packed models 

Porosity, % 
Permeability 
Darcy Run 

No. 

Fracture 
length, 
Lf (cm) 

Matrix glass 
beads type f m e Keff,f Km 

Viscosity 
(mPa.s)  

Fracture 
aperture 

“b”, 
(mm) 

Fracture 
pattern 

Well 
location 

1 55 BT2 1.41 38 38.86 15979 1013 4.8 0.3 5 b Center 

2 55 BT2 1.41 38 38.86 15979 1013 11.9 0.4 5 b Center 

3 55 BT2 1.41 38 38.86 15979 1013 11.9 0.4 5 b Corner 

4 55 BT2 1.41 38 38.86 15979 1013 1.0 0.2 5 b Center 

5 55 BT2 0.92 38 38.56 3465 1013 11.9 0.4 3 b Center 

6 55 BT2 0.92 38 38.56 3465 1013 4.8 0.3 3 b Center 

7 55 BT3 1.41 38 38.86 15979 408 4.8 0.3 5 b Center 

8 55 BT3 1.41 38 38.86 15979 408 11.9 0.4 5 b Center 

9 55 BT3 1.41 38 38.86 15979 408 11.9 0.4 5 b Corner 

10 28 BT3 1.41 38 38.86 15979 408 11.9 0.4 5 b Center 

11 40 BT3 1.41 38 38.86 15979 408 11.9 0.4 5 b Center 

12 55 BT4 1.41 38 38.86 15979 204 4.8 0.3 5 b Center 

13 55 BT3 1.41 38 38.86 15979 408 1.0 0.2 5 b Center 

14 55 BT4 1.41 38 38.86 15979 204 11.9 0.4 5 b Center 

15 55 BT4 1.41 38 38.86 15979 204 11.9 0.4 5 b Corner 

16 55 BT4 0.92 38 38.56 3465 204 4.8 0.3 3 b Center 

17 55 BT4 1.41 38 38.86 15979 204 1.0 0.2 5 b Center 

18 55 BT2 0.62 38 38.37 1028 1013 11.9 0.4 2 b Center 

19 55 BT2 0.62 38 38.37 1028 1013 11.9 0.4 2 b Corner 

20 55 BT3 1.41 38 38.86 15979 408 1.2 0.3 5 b Center 

21 55 BT3 0.70 38 38.43 7989 408 1.2 0.3 5 a Center 

22 55 BT3 0.23 38 38.14 2619 408 1.2 0.3 5 c Center 

23 55 BT3 0.35 38 38.23 4000 408 1.2 0.3 5 d Center 

24 55 BT3 1.41 38 38.86 15979 408 1.2 0.3 5 e Center 

25 55 BT3 1.53 38 38.86 17120 408 1.2 0.3 5 f Center 

26 55 BT3 1.21 38 38.74 13696 408 1.2 0.3 5 g Center 

27 55 BT3 N/A 38 38.00 N/A 408 1.2 0.3 5 h Center 
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*: Critical Pumping Rate 

Table 4.3:  Results of controlled gravity drainage experiments for 27 sample runs 

Run 
No. 

Model 
length 
L (cm) 

Matrix 
glass 
beads  

Fracture 
aperture 
“b” (mm) 

Viscosity 
“μL” 
(mPa.s)) 

Recovery 
factor 
(%PV) 

Fracture 
pattern 

Sor 
(%PV) 

CPR* 
“Qcr“, (cm3/s) 

MPWR** 
Qmax, (cm3/s) 

1 55 BT2 5 4.8 0.3  85.2 0.5 b 16.1 0.5 8.6 0.1  8.9 0.2 
2 55 BT2 5 11.9 0.4  85.2 0.3 b 16.2 0.3 4.3 0.3  7.1 0.3 
3 55 BT2 5 11.9 0.4  85.1 0.4 b 16.1 0.2 3.8 0.2  4.9 0.2 
4 55 BT2 5 1.0 0.2  85.2 0.2 b 16.2 0.1 9.4 0.2  11.4 0.1 
5 55 BT2 3 11.9 0.4  85.3 0.4 b 16.3 0.1 4.0 0.3  5.9 0.2 
6 55 BT2 3 4.8 0.3  85.0 0.3 b 16.1 0.4 7.5 0.1  7.8 0.2 
7 55 BT3 5 4.8 0.3  83.0 0.4 b 18.2 0.3 3.1 0.2  6.1 0.1 
8 55 BT3 5 11.9 0.4  83.2 0.5 b 18.3 0.2 1.5 0.3  5.4 0.3 
9 55 BT3 5 11.9 0.4  83.1 0.2 b 18.1 0.3 1.3 0.2  4.4 0.1 
10 28 BT3 5 11.9 0.4  83.0 0.4 b 18.2 0.2 0.8 0.1  3.8 0.3 
11 40 BT3 5 11.9 0.4  83.1 0.4 b 18.1 0.3 1.1 0.3  4.4 0.3 
12 55 BT4 5 4.8 0.3  81.2 0.2 b 20.2 0.1 1.4 0.2  5.1 0.2 
13 55 BT3 5 1.0 0.2  83.1 0.5 b 18.1 0.2 6.6 0.2  7.5 0.2 
14 55 BT4 5 11.9 0.4  81.2 0.3 b 20.0 0.3 0.7 0.3  4.8 0.1 
15 55 BT4 5 11.9 0.4  81.2 0.1 b 20.1 0.2 0.5 0.2  4.0 0.1 
16 55 BT4 3 4.8 0.3  81.3 0.3 b 20.2 0.2 1.2 0.3  4.3 0.1 
17 55 BT4 5 1.0 0.2  81.2 0.4 b 20.1 0.1 3.3 0.1  5.7 0.2 
18 55 BT2 2 11.9 0.4  85.3 0.4 b 16.0 0.3 3.4 0.1  4.9 0.2 
19 55 BT2 2 11.9 0.4  85.2 0.3 b 16.2 0.2 3.1 0.2  4.1 0.3 
20 55 BT3 5 1.2 0.3  84.3 0.4 b 17.1 0.5 6.4 0.3  7.3 0.2 
21 55 BT3 5 1.2 0.3  84.2 0.1 a 17.2 0.4 6.2 0.3  7.0 0.1 
22 55 BT3 5 1.2 0.3  84.5 0.3 c 17.2 0.3 N/A 5.2 0.3 
23 55 BT3 5 1.2 0.3  84.4 0.5 d 17.0 0.3 4.9 0.3  5.9 0.3 
24 55 BT3 5 1.2 0.3  84.2 0.4 e 17.3 0.1 7.0 0.1  8.2 0.2 
25 55 BT3 5 1.2 0.3  84.1 0.3 f 17.1 0.2 7.2 0.2  8.4 0.1 
26 55 BT3 5 1.2 0.3  84.2 0.2 g 17.2 0.1 6.2 0.3  7.1 0.2 
27 55 BT3 5 1.2 0.3  84.1 0.4 h 17.1 0.1 N/A 5.0 0.3 

**: Maximum Possible Withdrawal Rate 
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4.4 Experimental Results and Discussion 
 
In this section, experimental results are presented along with detailed relevant discussions. Table 
4.3 presents a summary of the main results obtained from twenty seven (27) experimental runs 
which are the reference runs upon which most of the conclusions have been derived. In the first 
section, some qualitative conclusions have been made which are mainly based on critical 
judgment. These results are suitably supported by related mathematical relations as well as 
observations derived from visualization studies. In the second section, results obtained from a 
parametric sensitivity analysis of the process performance have been presented. This section 
includes a detailed quantitative approach by which one can realize the effects of various system 
parameters on the production performance of employed fractured media under controlled gravity 
drainage process.    
 
4.4.1 Qualitative Approach: In this section, some of the experimental results are presented 
mainly based on the qualitative approach of process analysis. The principal sources of this 
analysis are visualization techniques and simple mathematical approach, as well as some related 
experimental data.   
 
4.4.1.1 Liquid production mechanism for controlled gravity drainage experiments: Since 
pumping of liquid out of the system generates a pressure difference between the top and bottom 
of the model (top side is open to atmospheric pressure while suction vacuum pressure applies to 
the bottom side), liquid withdrawal out of the system is a combined effect of capillarity, gravity, 
and viscous forces. It is noted that the pumping rate could be lower or higher than the free fall 
gravity drainage rate, i.e. a vast domain of withdrawal rates from below to above the FFGD rate 
has been examined in the current study. Therefore the magnitude of pumping rate as well as 
gravity and capillarity forces control both pressure and fluid flow regimes in the volume which is 
under the drainage influence of pump. 
 

According to the experimental results, it is observed that when the pump is set on a specific flow 
rate (i.e. constant withdrawal rate), there is no gas invasion through the matrix side during the 
early stages of the process. During this stage, gas invades into the fractures because of their 
lower resistance to flow (i.e. higher permeability). During these early stages in which no gas has 
entered into the matrix, one can write the following mass balance equation to relate withdrawal 
rate into the fracture parameters: 
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The effective fracture permeability is defined as: 
  

ffefff KK ,  (4.2) 

                                                                                                                                                                                   
where “μL” is the liquid viscosity , “q” is the constant pumping rate, “Kf” is the intrinsic fracture 
permeability, “ f ” is effective fracture porosity which is fracture volume divided by total system 

bulk volume, and (dp/dL) is the pressure gradient along the fracture. 
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As time proceeds, the driving force for gas and liquid flow into the fracture decreases gradually 
as the driving force for liquid drainage out of the fracture also decreases accordingly. This is 
because of the fact that the liquid head inside the fractures decreases versus time. Unlike the 
starting stage of the experiment at which the invading gas phase couldn’t enter into the matrix 
because of limiting capillary forces, it is now feasible for the gas phase to invade through both 
fractures and matrix simultaneously. In other words, the gas flow potential through fracture 
declines versus time as the liquid head within this medium gradually decreases. At a particular 
time, the gas invasion driving force (i.e. pressure difference) through both matrix and fractures 
would be equalized to each other, and from then on, the liquid drainage from the matrix side 
would commence. After reaching this specific point, the liquid will drain simultaneously out of 
both matrix and fractures. The mathematical representation of this driving force equality at the 
time at which gas invasion begins into the matrix is described by Equation (4.3): 
       

thmf ppp   (4.3) 

 
where “pf” is the fracture pressure, “pm” is the matrix pressure, and “pth” is the capillarity 
threshold pressure of the matrix. 
 

According to the drainage phenomena observed in our simplified prototypes of fracture media, it 
is concluded that there are two counter-acting drainage flow paths for the liquid inside each 
particular system, the liquid would drain vertically downwards through both matrix and fractures 
based on the combined effect of gravity, capillarity, and viscous forces. Gravity forces as well as 
viscous forces (applied pressure driven force along both matrix and fractures) are in favor of the 
drainage, but capillarity forces slow down the process. At this point, another important aspect 
would be brought into consideration, which is the liquid communication from matrix side into 
the fractured space. This concept is described in detail in section 4.4.1.3. The above explanation 
is valid for the fractured media a, b and d as the top end of fractures is at the same level as the 
top end of matrix.  Consider we are dealing with the models e, f and g in Figure 4.1. As observed 
in the videos recorded from gas-liquid displacement, liquid drainage starts from top part of the 
medium which is a region belonging to matrix part. Consequently the following equation can be 
written to relate pumping rate to pressure difference and other properties of fractured medium: 
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where Keff is effective permeability for the porous medium which is a function of fracture 
permeability and matrix permeability, and Am is the cross-sectional area of matrix. The above 
formula is applicable during controlled gravity drainage as long as the gas-liquid interface has 
not reached the top point of fracture network existing in the model. When the gas touched the 
fracture, the gas-liquid interface movement would be stopped in the porous matrix with lower 
permeability compared to higher permeability for the fractures and the interface starts moving in 
the fracture. At a specific time, the driving force for gas invasion in both matrix and fracture 
parts gets equal, again gas-liquid interface keep moving in the matrix and we have drainage and 
gas invasion through both parts of the fractured medium. The mathematical formula (4.3) 
indicates equalization of driving forces for invading porous matrix and fracture parts, therefore 
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this is valid for all fractured media under controlled gravity drainage at the time which liquid 
flow starts in the matrix part and gas-liquid interface movement is observed in both parts of the 
fractured porous media during the oil recovery method. Since we have just production from the 
fractures prior to gas entry into the matrix, Equation (4.1) can be used to calculate pressure 
difference along the fracture.    
  
4.4.1.2 Elevation difference between G-L interface positions within matrix and fractures: 
The experimental data show that as long as the pumping rate is constant, the elevation difference 
between G-L interface positions in both matrix and fracture mediums remains unchanged during 
each particular controlled gravity drainage experiment. The same result has been found for the 
case of experimental results in free fall gravity drainage (FFGD) process (Zendehboudi et al., 
2008; Zendehboudi et al., 2009). One can relate these two cases by considering the same 
experimental prototypes: suppose the matrix length (and as a result total height of the system) is 
too high by which one can neglect the threshold capillary height of the matrix compared to its 
length. If such a system goes under free fall gravity drainage, both the drainage rate and also 
elevation difference between G-L interface positions within matrix and fractures remain constant 
during the drainage process. Now consider the same experimental protocol, with similar fluid 
pairs and petrophysical properties as well as fractured system, when performing controlled 
gravity drainage at a liquid withdrawal rate equal to the drainage rate of FFGD process. It is 
predicted that these two systems behave similarly as for the production performance as well as 
the elevation difference between G-L interface positions within fractures and matrix. 
 

The elevation difference between G-L interface positions in matrix and fractures strongly 
depends on the petrophysical properties of the porous medium, fracture properties, physical 
properties of the liquid-in-place, and liquid withdrawal rate. For instance, a higher pumping rate 
and also a smaller fracture aperture cause higher elevation distance between the G-L interfaces in 
fracture and matrix. This is because of the fact that the liquid communication from matrix to 
fracture plays an important role in establishing equilibrium between G-L interface positions and 
also their downward movement in both fractures and matrix. If one considers no liquid 
communication from matrix to fractures during the course of controlled gravity drainage 
experiment, the fracture would be drained quickly as it acts like an independent thin slit with 
negligible capillarity pressure for gas invasion. In this case, the recession rate of G-L interface 
within the fracture is a function of fracture properties only as well as withdrawal rate. However, 
the experimental results show that rate of G-L interface movement downwards through the 
fracture is slower than the rate by which it would move if there would be no communication 
between matrix and fracture. In addition, it is found that the rate of elevation recession for G-L 
interface within fractures and matrix are similar to each other as soon as communication starts 
between these two domains. In other words, elevation difference between G-L interface positions 
within matrix and fractures remains constant as long as one can maintain constant liquid 
withdrawal rate out of the system. This finding also supports the idea presented in section 
4.4.1.3, i.e., the liquid communication rate is constant during controlled gravity drainage process 
as long as the pumping rate remains unchanged.   
 

The above concluding remark can be supported by relevant mathematical representation of the 
process performance. Visualization study proved that the gas-liquid interface moves faster in 
fractures compared to matrix at the initial stage of the process during which the liquid has not 
been drained out of the matrix. Considering the downward vertical axis to be positive direction 
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of flow movement, one can write the following equality between the elevation difference of G-L 
interface positions through matrix and fractures [ΔH(t)] and interface position within matrix 
[Hm(t)] and fractures [Hf(t)] respectively: 
 

ΔH(t) = [Hf(t) – Hm(t)]                                                                     (4.5) 

                                                                    
Figures 4.2, 4.3, and 4.4 represent the G-L interface position within matrix, fractures, and also 
their elevation difference for three selected experimental runs. As it is evident in these three 
figures, both “Hf(t)” and “Hm(t)” increase linearly versus time, and the amount of “ΔH(t)” is 
fairly constant for each of these selected experimental runs. In addition, it is evident that when 
liquid withdrawal rate is increased, considering all other system parameters to remain 
unchanged, the rate of G-L interface recession in both matrix and fractures increases as well. 
This increase in the recession rate of G-L interface also increases the elevation difference 
between the G-L interface positions within matrix and fractures. Differentiating Equation (4.5) 
with respect to time; one can see that the rate of elevation change for G-L interface inside matrix 
is the same as that of fracture.  
 

After initiation of gas invasion through matrix, one can conduct a mass balance through a control 
volume perpendicular to the flow streamlines so long the withdrawal rate remains constant under 
the action of pump suction. This mass balance relates the constant total drainage rate to the 
recession rate of interface position through both matrix and fractures according to the following 
mathematical representation:  
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in which “q” is the constant withdrawal rate, “Af” and “Am” are fracture and matrix cross 
sectional area perpendicular to the flow direction respectively, “ m ” is the matrix porosity, and 

 is the average residual liquid saturation in the selected element. Since [Hf – Hm] is constant 
during the course of controlled gravity drainage under constant withdrawal rate, one can isolate 
the rate of change of G-L interface elevation, within the fracture or matrix, according to the 
following equation:  
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where (dH/dt) is the recession rate of G-L elevation within matrix or fractures. Equation 4.7 
states that at constant withdrawal rate for a controlled gravity drainage process with experimental 
conditions similar to the current study, the recession rate of G-L interface within either fracture 
or matrix is only a function of matrix and fracture cross sectional area, matrix porosity, and 
average residual liquid saturation within the model at a particular time. As a result, other 
parameters such as fluid viscosity and also matrix permeability would not have appreciable 
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effects on the magnitude of (dH/dt). In other words, one can use this conclusion to predict some 
experimental results. Consider the controlled gravity drainage process, with constant withdrawal 
rate, conducting in two dimensionally similar models in which all other parameters are different. 
According to Figures 4.2 and 4.3, it is concluded that although both matrix permeability and 
liquid viscosity have been changed, the rate of G-L interface movement through both matrix and 
fractures remains almost constant. It is worthwhile to note that changing matrix permeability 
does have an influence on the average residual liquid saturation within the matrix, but according 
to the experimental results (i.e. slopes of the linear correlations presented in Figures 4.2 and 4.3) 
this change is not significant at all.  
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Figure 4.2: G-L interface positions in matrix and fractures versus time; 
matrix filled with BT3 glass beads, withdrawal rate of q = 0.75 cm3/s, [b= 5 
mm, L= 55 cm, fluid pair: Air-Water]. 
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Figure 4.3: G-L interface positions in matrix and fractures versus time; 
matrix filled with BT2 glass beads, withdrawal rate of q=0.75cm3/s, [b= 5 
mm, L= 55 cm, fluid pair: Air-CMC solution (1%)]. 
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Figure 4.4: G-L interface positions in matrix and fractures versus time; matrix 
filled with BT2 glass   beads, withdrawal rate of 2.8 cm3/s, [L= 55 cm, b= 5 
mm, fluid pair: Air- CMC solution (1%)]. 

 
Table 4.4 provides the comparison between experimentally-obtained recession rate for G-L 
position and the corresponding values obtained using Equation (4.7). As it is indicated in Table 
4.4, these two corresponding values are in good agreement with each other. According to the 
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data presented in Table 4.4 and also Equation (4.1), consider two identical experimental models 
except their fracture aperture, which are undergoing a constant withdrawal rate. The fracture 
cross sectional area perpendicular to the flow direction would be lower for the model with 
smaller fracture aperture. As a result, the pressure gradient along the model height inside the 
fracture, which is a constant value for each particular model before gas entry into the matrix, 
would be increased by decreasing the fracture aperture. Refer to Equation 4.7, it is evident that 
all the contributing parameters remain unchanged except (dHf/dt) and “Af”, so the recession rate 
of G-L elevation position inside fracture (as well as that of matrix) would be increased by 
decreasing “Af”. 
 

Table 4.4: Experimental and predicted values of recession rate for G-L interface position inside 
either matrix or fractures for 12 different conditions 
 

(Am=28.2 cm2  , Фm=0.38) 
Interface velocities dH/dt, (cm/s) 

 
Withdrawal 
rate, 
(cm3/s) 

Fracture aperture (b) = 5mm Fracture aperture (b) = 3 mm Fracture aperture (b) = 2 mm 

 Experimental Predicted Experimental Predicted Experimental Predicted 
0.4 0.0421 0.0004  0.0386 0.0416 0.0003 0.0412 0.0428 0.0004  0.0425 
0.8 0.0792 0.0005  0.0762 0.0828 0.0006 0.0824 0.0853 0.0003  0.0851 
2.8 0.2630 0.0005  0.2661 0.2851 0.0004 0.2883 0.2942 0.0006  0.2980 
4.6 0.4342 0.0003  0.4380 0.4702 0.0005 0.4742 0.4831 0.0005  0.4890 

 
4.4.1.3 System-specific drainage rates: According to the studies performed on the G-L 
interface positions within fractures and matrix and also their downward movement rate, a new 
concept of “Critical pumping rate” has been defined. The CPR is the withdrawal rate at which 
the height difference between G-L interfaces within matrix and fractures remains constant even 
if the withdrawal rate would be increased further. This concept is schematically illustrated in 
Figures 4.5 and 4.6. In most of the experiments conducted in the current study, this elevation 
difference is close to the total height of the matrix. As a result, the total matrix height dictates 
this defined critical pumping rate. In addition, ultimate recovery factor, just before gas 
breakthrough into the production side, would be unchanged at the pumping rates higher than this 
specific critical pumping rate. Detailed sensitivity analysis of parameters affecting CPR will be 
presented in the “Quantitative approach” section. Here, a qualitative analysis of the effect of 
fracture spacing on CPR is presented accordingly. 
 

Another newly defined parameter which is investigated thoroughly in this chapter is the 
maximum possible withdrawal rate (MPWR). This rate has been defined as the maximum 
withdrawal rate that each particular system can maintain in a stable manner during the course of 
controlled gravity drainage (CGD) process. In other words, after reaching this system-specific 
rate, it is not possible to increase the withdrawal rate any further. This rate depends strongly on 
the petrophysical properties of matrix and fractures, model dimensions and fluid-pair properties.   
According to Equations 4.1 and 4.2, if the fracture spacing decreases, keeping all other 
parameters constant, the effective fracture porosity would increase, and so does the effective 
fracture permeability. Considering the withdrawal rate to be constant over time, the pressure 
gradient along the fracture height would decrease up to the point at which gas invades into the 
matrix. As the gas phase invades through the matrix, Equation 4.7 governs the relationship 
between (dH/dt) and withdrawal rate. Decreasing fracture spacing would decrease matrix cross 
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sectional area; so considering all other parameters to be unchanged in Equation 4.7, the rate of 
G-L interface’s downward movement would increase as long as a constant withdrawal rate 
would is established. It means, a model with lower fracture spacing experiences smaller G-L 
interface distance from the topside of the medium at exactly the time when the gas invades 
through the matrix, compared to the model with higher fracture spacing. The above mentioned 
analysis is valid only if the withdrawal rate from both models is identical. As a result, model 
with lower fracture spacing allows us to drain it at higher withdrawal rates without experiencing 
full drainage of the fractures, i.e. the time at which gas breakthrough occurs at the production 
side. Consequently, this model could tolerate higher critical pumping rate based on the CPR 
definition.   
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Figure 4.5: Schematic diagram of “Critical 
Pumping Rate” (CPR) and its relation to the 
height difference between the G-L interface 
positions within fractures and matrix. 

Figure 4.6: Schematic diagram representing 
the CPR and its relation to the recovery factor 
just before gas breakthrough during the 
controlled gravity drainage (CGD) process. 

 
4.4.1.4 Liquid communication between matrix and fractures in CGD: Following material 
presented in section 4.4.1.1, it is evident that a portion of the liquid which was drained out of the 
matrix, has been communicating from the matrix side into the fracture sides as soon as gas 
invades through the matrix. It is observed that some parts of the matrix side, in the vicinity of 
each side fracture, are affected considerably by matrix to fracture liquid communication rather 
than the rest of the matrix. These portions of the matrix which are adjacent to the side fractures 
have higher potential for liquid flow communication. The rest of the matrix, which is far away 
from each fracture, is therefore not affected by the presence of fractures. Figure 4.7 shows a snap 
shot of the area affected by the liquid communication phenomena between matrix and fractures 
during the course of CGD experiment. This finding is also verified by the qualitative analysis of 
G-L interface movement in matrix, as the liquid-air interface in matrix is relatively flat in regions 
near the half-way distance of parallel fractures. However, this interface is considerably inclined 
towards the fractures in the area close to the side fractures.  
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It is believed that as long as a constant withdrawal rate would be maintained from the system, 
liquid communication rate between matrix and fracture remains constant as well during 
controlled gravity drainage process. The logic behind this qualitative observation comes from the 
fact that according to the experimental results and the materials presented in section 4.4.1.2, rate 
of G-L interface downward movement within either matrix or fracture remains constant for each 
particular model under constant withdrawal rate. In addition, the elevation difference between G-
L interface positions within matrix and fractures also remains constant after gas invasion occurs 
within matrix. As a result, in order to have simultaneous liquid drainage from both fractures and 
matrix sides, it is necessary that the drainage driving forces within these two parts of the system 
should be the same. In addition, decreasing rate of these two drainage driving forces (i.e. 
pressure differences) should also be the same unless there wouldn’t be any liquid production 
from the matrix side. Based on the above, one can define the communication rate to be of the 
form: 
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where “qcom” is the liquid communication rate between matrix and fracture, “α” is a 
proportionality constant (Warren and Root, 1963; Mora and Wattenberger, 2009 ) which is a 
function of each particular model’s properties (such as fracture dimensions), “Km” is the matrix 
permeability, “μL” is the liquid viscosity, and “pm” and “pf” are matrix and fracture pressures 
respectively. If one differentiates both sides of Equation 4.8 with respect to time, considering the 
fact that all the parameters in the right hand side except pressures are constant for each particular 
fractured system, the rate of change of communication rate would be proportional to the 
difference between the rate of change of pressures in matrix and fractures respectively. Knowing 
that rate of change of matrix pressure is equal to that of fracture pressure, it is concluded that 
liquid communication rate remains constant during the course of controlled gravity drainage 
process under constant withdrawal rate. 
 

Using the analogy between “Free-Fall Gravity Drainage” (FFGD) experiments and “Controlled 
Gravity Drainage” (CGD) experiments, one can also verify that the liquid communication rate 
would be constant for each particular system as long as the withdrawal rate remains unchanged. 
As it was stated before, one can consider the CGD experiments to be absolutely similar to the 
FFGD experiments in which height of the model is so large that the threshold capillary height 
within fracture is negligible compared to its height. According to the analysis performed for 
FFGD experiments regarding the magnitude of communication rate (Zendehboudi et al., 2008), it 
was found that when the rate of liquid communication reaches a constant value, (corresponding 
to a constant rate of drainage under free fall conditions), it remains constant as long as the 
drainage rate remains unchanged. As the withdrawal rate is absolutely constant for each 
experimental run of CGD process, it results in the communication rate to be a constant value 
during each CGD experimental runtime.   
 

According to the visualizations performed in this study, the liquid communication occurs 
through a small portion of fracture height close to the G-L interface position within fracture. One 
can support the idea of liquid communication rate to be a constant value based on the fact that 
the difference between matrix and fracture pressures is proportional to the elevation difference 
between G-L interface positions within matrix and fractures measured from the top side of the 
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model [ΔH = [Hf(t) – Hm(t)]. As the “ΔH” value is constant as soon as gas invades into the 
matrix side, the noted pressure difference remains constant during the course of CGD process, 
and so does the amount of liquid communication rate. For a particular fractured system, 
considering all other parameters remain unchanged except an increase in the value of withdrawal 
rate, this could cause higher “ΔH” values and as a result, communication rate would also be 
increased. Therefore, this communication rate along with the withdrawal rate would affect fluid 
flow behavior both in fractures and in matrix.  
 

 
 

Figure 4.7: Snap shot of G-L interface advancement [matrix 
filled with BT2 glass beads, Fluid pairs: Air-CMC solution (1%), 
b = 5 mm, Model height = 55 cm, liquid pumping rate:1.8 cm3/s]. 

 
4.4.1.5 Viscous fingering in CGD process: The displacement of one fluid in a porous medium 
by another fluid depends both on heterogeneities and on the interaction of several forces. 
Viscous fingering in porous media is a phenomenon which results when a less viscous fluid is 
displacing a more viscous one. As time proceeds the interface develops a highly complex 
fingered pattern. In the oil industry this can lead to a poor recovery of hydrocarbon as the 
displacing fluid bypasses the oil. In fractured porous media, interactions between immiscible 
fluid phases within the fractures play a critical role on system’s behavior. The presence of 
heterogeneities such as fractures inevitably influences the formation of viscous fingers. This 
phenomenon closely relates to the enhanced oil recovery for fractured porous media. The 
interacting between displacement process and reservoir heterogeneity is one of the most 
interesting topics recently. However, the boundary conditions and the interface of oil and gas are 
much complicated when dealing with the modeling of viscous fingering in a fractured porous 
medium (Gary, 2008). 
 
The displacement conditions in the physical model used can be of two types: 

 88



1) Displacement is stable. Therefore, the gas-liquid interface is almost flat and no 
viscous fingering occurs. 
2) Displacement is unstable and the recovery at gas-breakthrough decreases 
significantly because viscous fingering happens and reduces the volume swept. 
 

There are various factors that affect immiscible displacement during controlled gravity draining 
and may cause viscous fingering. In what follows, the effect of some of these factors on 
fingering phenomena is described: 
 

1- Pumping rate: In immiscible displacements at high flow rates smaller and more numerous 
fingers are formed than at low rates. To control the stability of an immiscible 
displacement it can be a reasonable step to control the pumping rate, therefore it is 
possible to obtain a stable displacement by using a rate less than a critical rate which is 

defined by




 gKeff ..

. However in most practical situations this would imply using a rate 

which would not be economical. 
2- Heterogeneity properties: One factor that plays a fundamental role in viscous and 

capillary finger formation is the heterogeneity of the porous medium. Permeability 
variations have been found to play an important role in finger initiation and growth 
(Stalkup, 1983) 

3- Mobility Ratio: The effect of the mobility ratio on this process is important. If the 
mobility ratio (M) is less than 1, then the displacement process is very simple and 
efficient. The displaced fluids move ahead of the displacing fluid, and the displacement 
front is stable. Since typically M > 1, the front is unstable and many fingers of the 
mixture of the gas and the displaced fluid develop, leaving behind large amounts of oil 
(Sahimi, 1995).  
 

Gravity drainage mechanisms and capillary pressure concepts suggest that for gas-liquid flow in 
a fracture, the fractures will be invaded by gas (the nonwetting phase) first, and then the gas can 
enter in the matrix space if the entry capillary pressure is exceeded. If the pump is set on a 
certain flow rate which is greater than the free fall gravity drainage rate, viscous fingering would 
be seen during controlled gravity drainage (see Figure 4.38). This phenomenon happens when 
the ratio of displaced fluid’s viscosity to displacing fluid viscosity exhibits a high value. In our 
cases, the fracture presence accelerates fingers growing and their density as it was observed once 
the fractures gets invaded by gas, the gas penetrates into the matrix from various points and 
creates more fingers compared to the case when the porous medium is homogeneous.      
 
4.4.2. Quantitative Approach: In this section, experimental results are presented for a 
parametric sensitivity analysis. The effects of the variation in different system parameters such as 
matrix properties (permeability, total height, and initial liquid saturation), fracture properties 
(fracture aperture and fracture configuration), fluid properties (liquid viscosity and surface 
tension), and well position on the recovery performance of Controlled Gravity Drainage (CGD) 
process have been extensively investigated.  
 
4.4.2.1 Effect of Model height: For determining the effect of total model height on the 
production performance of CGD process, three different runs have been performed (Table 4.3, 
Run numbers 8, 10, and 11) with the same model and fluid properties but different model height. 
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In all of the noted cases, BT3 glass beads were used to pack the models, CMC (2%) solution-Air 
were used as the pair fluid and two fractures were attached to both sides of the vertically 
standing matrix. The only manipulated variable was the matrix height which was set at 55, 40, 
and 28 cm respectively. In order to determine the critical pumping rate (CPR) and Maximum 
possible withdrawal rate (MPWR) for each of these three different systems, each of them was 
drained under a series of different withdrawal rates. The effect of matrix height on production 
performance, the recession rate of G-L interface within matrix and fractures, the critical pumping 
rate, and also the maximum possible withdrawal rate were studied accordingly.         
 

Figure 4.8 shows the effect of model height on the cumulative liquid produced under CGD 
process. As it is evident in this figure, the model with larger height provides higher ultimate 
cumulative liquid production. In addition, taller models could keep the assigned withdrawal rate 
for longer duration of time; hence the gas breakthrough into the production side happens far later 
than the shorter models. The time at which each particular graph deviates from the straight line 
trend is the time at which fractures have been emptied as a result of controlled liquid withdrawal. 
This point is a good indication for the gas breakthrough time into the production side for each 
particular model. It is clear that as the model height increases, this time is longer as well. Before 
reaching the gas breakthrough point, all the models have the same production rate controlled by 
the peristaltic pump. As gas breakthrough happens for each particular model, the cumulative 
liquid produced afterwards remains almost constant for the cases at which the constant 
withdrawal rate has been set to low values (like the case in Figure 4.8). On the other hands, if the 
withdrawal rate is high enough, the cumulative liquid production after gas breakthrough keeps on 
increasing until reaching its final steady value. This is due to the fact that operating the CGD 
process at low withdrawal rate, most of the liquid within matrix has already been drained out of 
the system when liquid level in fracture reaches the bottom, so the cumulative liquid production 
wouldn’t change significantly afterwards. However, in CGD experiments with higher drainage 
rates, there are still lots of liquid held in matrix when gas breakthrough happens from the fracture 
side, i.e. cumulative liquid produced would change appreciably afterwards as matrix could still 
support enough liquid for drainage. For example, for the model with total height of 28cm under 
withdrawal rate of 0.6 cm3/s, 212 grams of liquid were produced at the point at which gas 
entered into the production side (420 seconds), compared to the ultimate cumulative liquid 
production which is 223 grams after 1800 seconds. Taller models have higher ultimate 
cumulative liquid recovery as their storage capacity is higher than that of shorter models.  
 

Figure 4.9 presents the effect of withdrawal rate on the difference between G-L interface 
positions within fractures and matrix during the course of controlled gravity drainage process. It 
was noted previously that the magnitude of “ΔH” is constant over time if the withdrawal rate 
remains unchanged. Figures 4.9 shows this elevation difference keeps on increasing as the 
withdrawal rate increases up until reaching the critical pumping rate for each particular model. 
This is because of the fact that increasing the withdrawal rate causes a substantial increase in the 
amount of applied pressure difference (i.e. driving force for drainage) over the total system. This 
increase in the driving force would result in a jump in the elevation difference between G-L 
interface positions within matrix and fractures. After reaching the CPR for each particular model, 
the value of “∆H” remains constant, i.e. maintaining higher constant values of withdrawal rate 
compared to associated CPR wouldn’t change the magnitude of “∆H” for each particular model. 
As a consequence, all the height difference values reported in Figure 4.9 were up to the CPR.    
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Figure 4.8: Effect of model height on the cumulative production 
performance during CGD process [Withdrawal rate: 0.6 cm3/s, matrix 
filled with BT3 glass beads, Fluid pair: Air - CMC solution (2%), and 
fracture aperture (b) = 5 mm], Run No. 8, 10, and 11. 
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Figure 4.9: Effect of model height on the difference between G-L interface 
positions within matrix and fractures during CGD process [withdrawal 
rate: 0.6 cm3/s, matrix filled with BT3 glass beads, fluid pair: Air - CMC 
solution (2%), and fracture aperture (b) = 5 mm], Run No. 8, 10, and 11. 
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Figure 4.10 shows that as the withdrawal rate increases up until reaching the CPR associated 
with each model (1.5, 1.1, and 0.8 cm3/s for model heights of 55, 40, and 28 cm respectively), 
the amount of recovery factor at the point of gas breakthrough at the production side (i.e. the 
point at which G-L interface through fractures recedes down to the bottom of the fractures) 
would be decreased accordingly. After reaching the CPR for each particular model, recovery 
factor doesn’t change appreciably when the drainage rate increases (as it is mentioned as one of 
the criteria for defining CPR). It is because of the fact that when each particular model is 
operating at a drainage rate higher than the CPR, gas breakthrough occurs very soon at the 
production side. Following gas breakthrough, most of the fluid withdrawing from the model is 
the gas phase rather than the liquid phase because of the high mobility of gas phase as well as the 
presence of two high flow-potential pathways (i.e. fractures) at both sides of the matrix. As a 
result, recovery at the gas breakthrough time for each particular model operating at high drainage 
rates does not change significantly compared to the value when the model was operated at its 
CPR. Another conclusion that could be derived from Figure 4.10 is that as the model height 
increases, the associated recovery factor at the gas breakthrough time also increases as long as 
the operating withdrawal rate remains at a similar constant value. It can be justified in the way 
that the longer the model is, the higher is its storage capacity. Hence at each particular fixed 
drainage rate, taller model have the ability to maintain that particular withdrawal rate for a longer 
duration of time, which leads into higher recovery factor. In other words, the taller models can 
maintain higher constant pumping rates without gas breakthrough for longer time period.  
 

If a particular model would be drained at low enough withdrawal rate, the drainage process is 
almost like a piston-like displacement. During the drainage process, the cumulative produced 
liquid is a combination of liquid which was drained as the bulk liquid flow (i.e. bulk liquid 
withdrawal) and also the portion which comes from the film flow drainage of liquid. From fluid 
flow connectivity point of view, it is possible at low enough withdrawal rates that the slowly-
draining liquid under the film-flow drainage type of process have enough time to communicate 
with the liquid which is draining ahead of the G-L interface under the influence of bulk drainage 
type of process within the time limitation of the CGD process. As a result, the final recovery 
factor, having low enough withdrawal rate, would be appreciably greater. On the other hand, 
when the system is draining under high constant withdrawal rate, the liquid drained under the 
influence of bulk-drainage type of process moves faster ahead of the liquid which is draining 
under the film flow type of drainage. It was experienced that at some high withdrawal rates, there 
might be some times during which the flow connectivity has been lost. As a result, one cannot 
reach the high recovery factor values under high withdrawal rates compared to those which are 
achievable under lower constant withdrawal rates. In most of the systems under high withdrawal 
rates, maximum “∆H” cannot be maintained long enough compared to the systems operated at 
lower drainage rates. That is why such a system results in lower recovery efficiency. 
 

The aforementioned discussion could also be made using the macroscopic point of view. 
Generally, when the drainage process is performed under high pumping rates, the liquid inside 
the fractures would be drained much faster than the case at which the pumping rate is low. 
Therefore, the possibility of liquid communication from the matrix into the fracture would be 
decreased. As a result, the obtained value of recovery factor just before the gas breakthrough 
time would be lower than the case in which liquid has enough time to communicate from the 
matrix to the fracture (i.e. at lower drainage rates). In addition, draining a system under low 
withdrawal rates results in a small “∆Hlow” value, and this elevation difference between interface 
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positions remains fairly constant until the fracture is emptied. Comparing this “∆Hlow” with the 
“∆Hhigh” value associated with higher withdrawal rates shows that larger portions of matrix has 
been drained in the case where the withdrawal rate is lower (i.e. recovery factor associated with 
“∆Hlow” under lower drainage rate would be higher than that of “∆Hhigh” under higher drainage 
rate.   
 

Figure 4.11 presents the effect of model height on the “Critical Pumping Rate” (CPR) as well as 
on the “Maximum Possible Withdrawal Rate” (MPWR). As it is evident in this Figure, the taller 
the model is, the higher would be its associated CPR and MPWR. Consider the CGD experiment 
in one of these models up until reaching the point at which drainage occurs from the matrix side. 
At constant drainage rate, the rate of change of G-L interface position within fracture remains 
proportional to the withdrawal rate as long as no gas invasion occurs in the matrix. As a result, 
operating at a particular constant drainage rate, the shorter the model is, the sooner this G-L 
interface reaches the fracture’s bottom. This implies that models with taller height could operate 
at higher drainage rates (i.e. higher CPR’s) without having gas breakthrough at the production 
well. In addition, the maximum withdrawal rate that a system can sustain is proportional to its 
storage capacity; the taller the model is, the larger would be its associated storage capacity. It is 
also concluded that both of these system-specific-rates vary almost linearly with the model 
height if other parameters remain unchanged. 
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Figure 4.10: Variation of ultimate recovery factor with change in 
withdrawal rate for different model heights during CGD process [matrix 
filled with BT3 glass beads, fluid pair: Air – CMC solution (2%), and 
fracture aperture (b)=5 mm] , Run No. 8, 10, and 11. 
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Figure 4.11: Effect of model height on the Critical Pumping Rate and 
also Maximum Possible Withdrawal Rate during CGD process [matrix 
filled with BT3 glass beads, fluid pair: Air – CMC solution (2%), and 
fracture aperture (b) = 5 mm], Run No. 8, 10, and 11. 

 
4.4.2.2 Effect of fracture aperture: In the current study, the fracture aperture has been chosen 
as an independent parameter to be analyzed in the context of parametric sensitivity analysis. 
According to Table 4.3, three experimental trials (run numbers 2, 5, and 18) were selected to 
figure out how fracture aperture variations could affect the CGD process performance. In all of 
these runs, unconsolidated matrix with the total height of 55cm was prepared by packing of BT2 
glass beads, and air – CMC solution (2 wt%) was used as the fluid pair. Run numbers 2, 5, and 
18 represents models with fracture apertures of 5, 3, and 2 mm respectively. Figures 4.12 to 4.14 
show the effect of fracture aperture on different aspects of CGD process performance.  
 

Figure 4.12 shows the effect of fracture aperture value on the elevation difference between G-L 
interface positions within fractures and matrix. It is evident that at each particular withdrawal 
rate, the lower the value of fracture aperture is, the higher would be the associated “∆H” 
magnitude. There are two reasons to support this experimental result. First of all, as the fracture 
aperture increases, the associated value of fracture permeability increases as well. As a result, 
there is smaller flow resistance against the liquid adjacent to the side of fracture to communicate 
into the fractures, i.e. the liquid communication rate would be increased as well. In addition, as 
the fracture aperture size increases, the associated fracture volume increases as well. This 
increase in the fracture storage capacity would avoid the G-L interface elevation within fracture 
to drop appreciably compared to the cases with smaller fracture apertures while both of the 
systems undergo the same withdrawal rate. Both of these mechanisms are in favor of keeping the 
“∆H” value to be higher for the smaller magnitude of fracture aperture. It is also worthwhile to 
note that at very low values of withdrawal rates, it is evident that the values of “∆H” for these 
three models are in the same order. It seems that operating the CGD experiments at these lower 
drainage rates, the above mentioned two mechanisms can support the head recession values, 
manipulated with the pumping action, to be approximately the same for all of these three models. 
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As a result, the magnitude of fracture aperture seems to have no effect on the “ΔH” value when 
withdrawal rate is below a certain rate (in this case 1.5 cm3/s). Increasing the withdrawal rate 
above this value, one can appreciate the effect of higher fracture aperture on maintaining lower 
head recession value, and as a consequence, reaching higher recovery factor and CPR values.   
 

Another conclusion, which can be derived from the results in Figure 4.12, is that for each 
particular model, the higher the withdrawal rate is, the higher would be the associated “∆H” 
value. It is because of the increased pressure difference value along the model as the drainage 
rate increases. The increase in the pressure difference value causes an increase in the magnitude 
of “∆H” for each particular model. The values of “∆H” for each particular model were shown in 
Figure 4.12 up until reaching the “∆H” values associated with each model’s corresponding 
critical pumping rate (CPR’s of 4.3, 4, and 3.4 cm3/s for models with 5, 3, and 2 mm fracture 
aperture respectively). According to the definition of CPR, all the “∆H” values associated with 
withdrawal rates higher than CPR would remain the same as the value at the CPR. 
 

Figure 4.13 shows the effect of fracture aperture on the recovery factor, just before gas 
breakthrough into the production side, associated with the CGD process under different 
withdrawal rates up until reaching the CPR associated with each particular model. As it is 
evident in this figure, the recovery factor for each particular model at the time of gas 
breakthrough decreases as the withdrawal rate increases up until the CPR value is attained, above 
which the value of recovery factor remains almost constant based on the definition of CPR. The 
reason was discussed previously in section 4.4.2.1; increasing the drainage rate would result in 
an increase in the value of associated “∆H”, which in turn leave much more liquid behind in the 
matrix part at the time at which gas breakthrough happens from the emptied fracture. As a result, 
the recovery factor would be decreased during conditions of higher drainage rates. Furthermore, 
according to the conceptual definition of different fluid flow patterns within the matrix part of 
each model (bulk drainage type of flow and film-flow type of drainage), it is evident that at 
lower withdrawal rates, the combined effect of these two flow patterns leads to the substantial 
increase in the recovery factor of each particular model. On the other hand, the film-flow type of 
drainage cannot help the bulk-flow drainage process to be more effective in the cases with higher 
withdrawal rates, resulting in lower values of recovery factor at the point of gas breakthrough. 
According to Figure 4.13, it is also evident that models with larger fracture aperture show 
slightly higher recovery factor values at constant withdrawal rates compared to that of models 
with lower values of fracture aperture. As models with larger fracture aperture have higher 
fracture storage capacity, therefore, under similar circumstances of CGD type of process they 
should have higher recovery factor values. However due to the small differences between the 
fracture storativity of models with fracture apertures of 5, 3, and 2 mm, the recovery factor 
enhancement as a result of increased fracture aperture value wouldn’t be substantial in our lab- 
scale cases tested.  
 

Figure 4.14 presents the effect of fracture aperture on the values of system-specified drainage 
rates, namely CPR and MPWR. It is clear that models with larger fracture aperture shows higher 
CPR and MPWR values. Since a model with higher fracture aperture has larger storage capacity, 
it’s MPWR would be higher as well, compared to the model with smaller fracture aperture (4.9, 
5.9, and 7.1 cm3/s for models with 2, 3, and 5 mm fracture aperture size respectively). As models 
with higher fracture aperture and correspondingly higher fracture permeability have lower liquid 
flow resistance in the fracture side, it can be concluded that they also show low flow resistance 
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for liquid communicating from the matrix into the fracture side when all other parameters remain 
unchanged. As a result, the liquid communication appears to be higher in the cases with larger 
fracture aperture. This could be another possible reason behind for obtaining higher values of 
MPWR for models with larger fracture aperture.   
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Figure 4.12: Effect of magnitude of fracture aperture on the elevation 
difference between G-L interface positions in matrix and fractures during 
CGD process under different constant-withdrawal-rates [matrix filled with 
BT2 glass beads, fluid pair: Air - CMC solution (2%)]. 
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Figure 4.13: Recovery factor at the time of gas breakthrough as a function 
of withdrawal rate for different magnitudes of fracture aperture during the 
course of CGD process (matrix filled with BT2 glass beads, fluid pair: Air 
- CMC solution (2%)]. 
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Figure 4.14: Effect of fracture aperture size on the magnitude of CPR 
as well as MPWR during the course of CGD process (matrix filled 
with BT2 glass beads, fluid pair: Air - CMC solution (2%)]. 

 
4.4.2.3 Effect of matrix permeability: In this section, the various impacts of matrix 
permeability (i.e. size of the glass beads packed as the matrix medium) on the production 
performance of controlled gravity drainage process are discussed in detail referring to Figures 
4.15 to 4.19. Three different types of unconsolidated models were employed in terms of the size 
of packing materials. The aforementioned Figures represent the experimental data related to the 
run numbers 1, 7, and 12 according to Table 4.3. In all of these experimental runs, models were 
packed to the ultimate height of 55cm, and one vertical fracture with 5 mm aperture size was also 
attached along each side of the models. All these models were saturated with 1wt% aqueous 
solution of CMC prior to the CGD experiments.  
 

Figures 4.15 and 4.16 represent the production history of fractured models with different matrix 
permeability values under two different withdrawal rates (0.6 and 6 cm3/s respectively). 
Considering Figure 4.12, it is evident that at the beginning stages of the CGD experiment, all 
models show similar production behaviour. It seems that this behaviour continues up until 
passing around 130 seconds of the process duration at which these three curves start to branch 
off. This might be because of the fact that during this stage, most of the produced liquid has been 
fed from the fractures into the production side. As the fracture properties are the same, the 
production history within this period remains similar to each other. Thereafter, when matrix 
starts to influence more significantly the drainage process, these three curves begin to deviate 
from each other as the matrix properties (i.e. permeability) differs from one model to the other. 
The same phenomena can be observed in Figure 4.16, but for a limited time extent. This is 
because of the fact that when the CGD experiment was performed at higher drainage rates (6 
cm3/s compared to 0.6 cm3/s), fractures have limited time to compensate for the withdrawal rate. 
In other words, low storage value associated with each fracture could only handle the higher 
withdrawal rate (6 cm3/s, Figure 4.16) for a shorter period of time compared to the case with 
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lower drainage rate (0.6 cm3/s, Figure 4.15).  It is clear that the higher the matrix permeability 
value is, the higher would be the associated cumulative production as well as the recovery factor. 
Since models in which the matrix side comprised of coarser grain size have larger permeability, 
the liquid can drain easier than in cases with tighter matrix component. This point is verified by 
both graphs presented in Figures 4.15 and 4.16. In addition, it is clear that after the separation 
point (i.e. the point at which these three graphs have been branched off in which the acting 
drainage rate wouldn’t be the same as the nominal one) happened in both of these figures, each 
of these models produced at a different constant withdrawal rate although a constant 
predetermined drainage rate has been set for all of them. Only the most permeable one could 
maintain the drainage process at that particular nominal rate. The other two tighter models failed 
to sustain the rate, i.e. gas breakthrough happened earlier through their emptied fracture space. 
This separation point happened to be created sooner when all three models were initially 
operating under higher nominal drainage rate (i.e. 6 cm3/s). According to Figure 4.15, as the 
nominal drainage rate is far below the MPWR (Figure 4.19) associated with all three models, it 
could be maintained for a longer period of time. Even after the separation point, the difference 
between the nominal and actual withdrawal rates for each of these three models is not an 
appreciable amount. However, a slightly different conclusion could be made based on Figure 
4.16, in which the nominal drainage rate is almost equal to the MPWR of model with BT3 as the 
matrix continuum, slightly higher than that of model with BT4-type of matrix, and still well 
below that of model with BT2-type matrix. According to this Figure, the separation point 
happens sooner as BT3 and BT4 model couldn’t even sustain the nominal drainage rate for an 
appreciable duration of time. The more permeable matrix (with BT2 glass bead size as the matrix 
continuum) can only be drained at the nominal drainage rate for less than 100 seconds. In 
addition, the difference between the nominal and actual drainage rates for each of these three 
models is significant.  
 

Another observation that can be made based on these two plots is that all the production history 
curves become flat after some time associated with each particular model and drainage rate. It is 
clear that the higher the withdrawal rate is, the sooner a particular model would be drained (i.e. 
the sooner will be the gas breakthrough time into the production side), and as a result, the level-
off point happens sooner as well. Consequently, the final recovery factor for the model 
containing the most permeable matrix is just over 85% of the Initial Liquid in Place (ILIP) 
during 1800 seconds of experimental runtime, while almost similar recovery factor values are 
attained for the models with BT3 and BT4 as the matrix (83% and 81% of ILIP respectively) 
after 4500 seconds of experimental time. However, if all of these experiments would be 
continued for an appreciable longer time (more than 10,000 seconds according to our 
experimental time durations), the ultimate residual liquid saturation in all models would be 
reached the nominal values of residual liquid saturation in unconsolidated porous media (7-10% 
of ILIP), depending on the matrix properties (Kantzas et al, 1988; Zendehboudi et al, 2008).          
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Figure 4.15: Effect of matrix permeability on the production history of 
fractured prototypes during the CGD process withdrawal rate of q = 0.6 cm3/s 
[b= 5 mm, Model height = 55 cm, fluid pair: CMC solution (1wt%)-Air]. 
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Figure 4.16: Effect of matrix permeability (glass bead sizes of BT2, BT3, and 
BT4) on the production history of fractured prototypes during the CGD process 
for withdrawal rate of q = 6 cm3/s [b= 5 mm, model height = 55 cm, fluid pair: 
CMC solution (1wt%)-Air]. 
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Figure 4.17 shows the effect of matrix permeability on the elevation difference between G-L 
interface positions within matrix and fractures. It appears that even at low constant drainage 
rates, this elevation difference is high for models with tighter matrix; so the more permeable the 
matrix is, the lower would be the associated value of “ΔH” when controlled gravity drainage 
experiments was done with constant withdrawal rate. As the matrix permeability significantly 
affects the rate of liquid communication, this rate would be lower for the case of tighter matrices. 
As a result, the associated values of “ΔH” would be higher than that of a matrix with higher 
permeability. In such a model with high values of “ΔH”, gas breakthrough at the production face 
happens sooner than the case with higher matrix permeability. In addition, when the matrix 
permeability is low, the drainage of liquid is smaller compared to the cases in which the matrix 
has a higher permeability value. As a consequence, fractures play more important role in 
providing liquid to be drained out of the system in the case of matrix having low permeability 
value. As the fracture properties (i.e. fracture length and aperture) are the same for all these 
models, the liquid level within each fracture recedes more in the downwards direction compared 
to the cases with higher matrix permeability. This would result in higher “ΔH” values associated 
with lower matrix permeabilities. Another conclusion which could be pointed out here is that for 
each particular model (i.e. constant matrix permeability), the value of “ΔH” keeps on increasing 
when the nominal drainage rate increases. When withdrawing liquid from a particular model 
having constant matrix properties at higher nominal rates, a higher pressure gradient across the 
model height develops and this increases the pressure drop in the form of increased “∆H” value.  
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Figure 4.17: Effect of matrix permeability on the height difference between 
G-L interface positions within matrix and fractures during the CGD process 
at different levels of withdrawal rate [b= 5 mm, model height = 55 cm, fluid 
pair: CMC solution (1wt%)-Air]. 

 
According to the physics of CGD process and the experimental results presented in Figure 4.17, 
it is expected that models with low matrix permeability values should show a high value of “ΔH” 
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even at very low flow rates. This has been verified based on the data points presented in Figure 
4.17, as the model with low values of “Km” (i.e. matrix composed of BT4 glass bead) shows a 
“ΔH” equivalent to 30 cm even at the withdrawal rate of 0.6 cm3/s. This high “ΔH” value can be 
achieved for models with matrices composed of BT3 and BT2 even if the associated withdrawal 
rates reach 1.8 and 7 cm3/s respectively. As a result, the CPR value would be higher for the 
models in which their matrix is of higher permeability (Figure 4.19).   
 

Following the discussion presented regarding results shown in Figures 4.15 and 4.16, one can 
compare the recovery factor values of these three models in order to examine the effect of matrix 
permeability on the CGD production performance. Figure 4.17 presents this parametric 
sensitivity analysis, in which one can appreciate the negative effect of matrix permeability 
reduction on the recovery factor (just before gas breakthrough into the production face) at each 
particular constant withdrawal rate. As the matrix is the main storage of liquid within each 
fractured system, its role in providing liquid for the drainage process would be reduced so long 
its permeability has been reduced accordingly. This could result in lower recovery factor of such 
a system with reduced matrix permeability. Aside from that, it is also evident that for each 
particular model with constant matrix permeability, an increase in the withdrawal rate of CGD 
process would results in a decrease in the associated recovery factor values. This recovery factor 
decrease is substantial for the cases in which the matrix permeability is lower in value (BT3 and 
BT4 respectively). It seems that the sensitivity of recovery factor to withdrawal rate for each 
particular medium is much more severe whenever the matrix permeability is lower. This point 
can also be supported using the logic presented previously about the combined effect of two 
different drainage fluid flow patterns within the matrix. 
 

The magnitude of matrix permeability has also a profound effect on the system-specific 
withdrawal rates, namely CPR and MPWR. As demonstrated in Figure 4.19, both of these 
system-specific drainage rates, CPR and MPWR, increase almost linearly when the matrix 
permeability increases. As matrix permeability increases, liquid transmissibility from matrix to 
fracture increases as well, so a porous medium with fractures is capable of providing higher 
drainage rates without gas breakthrough at the production side (i.e. higher values of CPR). In 
addition, such a model has also higher drainage capacity (even in case of gas breakthrough, i.e. 
MPWR) than models with lower matrix permeabilities. This is due to the higher liquid 
communication rate from matrix to fractures as well as lower liquid flow resistance as a result of 
the high matrix permeability. It is expected that if the matrix permeability increases beyond that 
of BT2 beads, these two graphs would coincide as a single graph (i.e. with the same increasing 
rate behavior). This is due to the fact that liquid communication rate increases accordingly as the 
matrix permeability value increases. It is also clear that as the matrix permeability approaches 
that of fracture, these two media behave as a homogeneous medium, i.e. both of these specific 
rates would be the same.   
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Figure 4.18: Effect of matrix permeability on the recovery factor values before 
gas breakthrough into the production side during the CGD process at different 
levels of withdrawal rate [b= 5 mm, model height = 55 cm, fluid pair: CMC 
solution (1wt%)-Air]. 
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Figure 4.19: Effect of matrix permeability on the magnitude of CPR as well as 
MPWR during the CGD process [b= 5 mm, model height = 55 cm, fluid pair: 
CMC solution (1wt%)-Air].   
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4.4.2.4 Effect of liquid viscosity: An important factor which has a significant impact on the 
CGD process performance is the liquid viscosity. To achieve different liquid viscosities in our 
CGD experiments, aqueous solutions of CMC with different concentrations were used as the test 
liquid, focusing on cases that have higher viscosities than that of water. Controlled gravity 
drainage tests were performed using models with similar matrix permeability values (BT4 as the 
packing agent), same model height (i.e. 55 cm), and the same fracture aperture magnitude (5 
mm), but different test-liquid properties (i.e. viscosities). This information is summarized in 
Table 4.2 as run numbers 12, 14, and 17.  
 

Figure 4.20 shows the impact of liquid viscosity on the magnitude of elevation difference 
between the G-L interface positions within matrix and fractures. The “∆H” values have been 
documented up until the values corresponding to the CPR were reached, and from then on, this 
height difference remained almost unchanged for each particular model. From this Figure, it is 
evident that the liquid level in the fracture drops faster in the downwards direction (i.e. 
magnitude of “∆H” increases with a steeper slope) when the liquid viscosity is higher than water. 
The reason is that at higher liquid viscosities, the liquid communication rate between matrix and 
fractures would decrease and as a result, there is no liquid flow support from the matrix side to 
avoid excessive recession of the G-L interface within the fractures compared to that of matrix. 
As a consequence, the rate of change of this elevation difference with respect to the drainage rate 

(i.e.
dq

Hd MF )( 
) would be higher for the cases in which the liquid viscosity is higher as well.  

 

Figure 4.20 presents the effect of liquid viscosity on the magnitude of recovery factor just before 
gas breakthrough into the production side. It is evident that for each particular liquid viscosity, 
the recovery factor values decrease as the nominal drainage rate increases. As the increased 
value of liquid viscosity results in a substantial decrease in the liquid communication from 
matrix to fracture, the recovery performance of such a system also decrease as well. In addition, 
at a constant withdrawal rate, it is clear that the higher the liquid viscosity is, the lower would be 
its associated recovery factor. Furthermore, one can see that all these three curves have been 
leveled off after reaching their CPR level (3.3, 1.4, and 0.7 cm3/s as the viscosity level increases 
accordingly), which is compatible with the original definition of critical pumping rate for each 
particular porous medium with fractures. It is also worthwhile to consider the relative slope of 
each particular curve just before leveling-off point, i.e. the relative effect of withdrawal rate on 
the recovery performance of each particular system. It is evident that the higher the liquid 
viscosity is, the more affected would be the system recovery performance based on an increase in 
the withdrawal rate. This point is proven based on the increasingly steeping slope of each 
particular curve just before the leveling-off point.  This point was also supported by the data 
points of Figure 4.20, in which systems with higher liquid viscosity has sharper rate of change of 
“∆H” in response to an increase in the drainage rate, hence the recovery performance also would 
be decreased rapidly for such a system as a result of withdrawal rate increase. 
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Figure 4.20: Effect of liquid viscosity on the elevation difference between 
G-L interface positions within matrix and fractures during the CGD process 
[matrix filled with BT4 glass beads, model height = 55 cm, b = 5 mm]. 
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Figure 4.21: Effect of test liquid viscosity on the recovery factor at the gas 
breakthrough time during the CGD process [matrix filled with BT4 glass 
beads, model height = 55 cm, b = 5 mm]. 
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Liquid viscosity also affects the two previously defined system-specific rates, CPR and MPWR. 
According to Figure 4.22, both of these rates are decreasing as a result of an increase in the 
liquid viscosity. It is expected that the CPR curve would be flattened off after reaching a limiting 
liquid viscosity point. As the magnitude of CPR is significantly affected by the liquid 
communication rate, it is expected that at a particular viscosity value, this communication rate 
would be ceased. In addition, the maximum withdrawal rate that a system can sustain is also 
affected by the viscosity value of the liquid. It is evident that the higher the liquid viscosity is, 
the lower would be the magnitude of MPWR.  
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Figure 4.22: Effect of liquid viscosity on the system specific 
drainage rates during the CGD process [matrix filled with BT4 glass 
beads, model height = 55 cm, b = 5 mm].   

 
4.4.2.5 Effect of liquid interfacial tension: In order to investigate effect of interfacial tension 
on the recovery performance and interface positions in matrix and fracture, we saturated the BT3 
glass beads porous media using Varsol oil in one case and water in another case and then 
performed controlled gravity drainage at different pumping rates. Figure 4.23 and 4.24 present 
the effect of liquid type on the values of system-specified drainage rates, namely CPR and 
MPWR.  These two system specific rates have higher values for the model which was saturated 
with water (6.6 and 7.5 cm3/s, correspondingly) compared to the model in which the Varsol oil is 
test fluid (6.4 and 7.3 cm3/s, correspondingly) however as seen the difference between those 
specific rates is small in the two models under controlled gravity drainage and this difference is 
due to small difference between viscosities of those test liquids.  
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Figure 4.23 shows the influence of liquid type on the magnitude of elevation difference between 
the G-L interface positions within matrix and fractures. The “∆H” values has been demonstrated 
up until reaching the values corresponding to the CPR, and from then on, this height difference 
remains almost unchanged for each particular model. Another conclusion can be drawn that the 
rate of change of this elevation difference with respect to the drainage rate would be higher for 
the cases in which liquid viscosity is higher as well. The reason for that issue is being lower 
communication between matrix and fracture in the medium saturated with Varsol. Also if we 
have two identical fractured porous media which are saturated with two test fluids with the same 
viscosity, but different interfacial tension under controlled gravity drainage. The experimental 
results show that if they produce with the same rate, recession rate of G-L elevation within either 
matrix or fractures would be identical for both systems, however (Hf-Hm) for the model saturated 
with higher interfacial tension is higher and the difference between the (Hf-Hm) is (hc1-hc2). 
Figure 4.23 shows this, as the gas-liquid interface position in fracture for the model saturated 
with water always is almost 6 cm lower compared to that for the medium saturated with Varsol 
every time, when the model produce liquid with a constant withdrawal rate during CGD. 
The theoretical concept related to flow in porous media and experimental results infers that 
interfacial tension doesn’t affect magnitude of MPWR if other liquid properties and model 
properties remain unchanged, and but it does affect (Hf-Hm) and consequently this changes the 
amount of critical pumping rate .Reduction of IFT can play a significant role in improving the 
final recovery, due to increased gravity effects, which in turn, change the process from capillary 
counter-current flow to gravity driven co-current flow, though it does not change considerably 
the recovery performance at gas breakthrough during controlled gravity drainage process.  
 

Figure 4.24 shows the recovery factor at gas breakthrough versus pumping rate for water and 
Varsol air. 
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Figure 4.23: Effect of interfacial tension on the elevation difference 
between G-L interface positions in matrix and fractures during CGD for 
different withdrawal-rates [matrix with BT3 glass beads, fracture aperture 
b= 5 mm]. 
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Figure 4.24: Effect of test fluid on recovery factor at gas-breakthrough 
at various pumping rates in fractured model (b) [BT3 Glass beads, b= 
5 mm]. 

 
Results presented in Figure 4.24 confirm that during controlled gravity drainage, as long as the 
bulk flow is responsible for recovery, the interfacial tension of oil doesn’t affect recovery factor. 
The recovery process takes longer time when film flow is active. The porous medium containing 
oil with lower interfacial tension produces more oil. It should be noted that Varsol oil and water 
exhibit a small difference in recovery factor due to having slightly viscosity difference.  
 
4.4.2.6 Effect of well location: The position of production well from which liquid was drained 
and its relative distance from each side fracture affects the CGD process performance as well. In 
the current study, two different production well locations were considered in order to pump the 
liquid out of the fractured system, one at the centre of the bottom part of each model, and the 
other one at the corner side of each system, right below one of the side fractures. Each of 
controlled gravity drainage tests was conducted by liquid drainage with different constant 
withdrawal rates. In this section, two distinct experimental runs (run numbers 2 and 3, Table 4.2) 
were selected in order to determine the impact of production well placement on recovery 
performance of the CGD process. In both of these experimental runs, a 55 cm long matrix filled 
with BT2 glass beads was surrounded by one vertical fracture at each side. The air - CMC (2 
wt%) fluid pair was employed to saturate both matrix and the two fractures, having 5mm 
aperture size.  
 

Figures 4.25 to 4.27 show the results of the G-L interface positions in matrix and fractures at 
different withdrawal rates when the production well is located just below one of the fractures, 
namely f2 fracture. As depicted in Figure 4.25, when the withdrawal rate is very low (i.e. 0.7 
cm3/s), there is no difference between the behavior of liquid recession rate in both fractures, 
namely f1 and f2, so that the difference (Hf2- Hf1) is zero during the experimental runtime. As a 
result, one can conclude that the system’s fluid flow behavior is similar to the case when the 
production well is located at the center of the model’s bottom. This can also be verified by the 
experimental results presented in Figure 4.28 where the elevation differences between G-L 
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interface positions within matrix and fractures are the same at the lowest examined withdrawal 
rate (i.e. 0.7 cm3/s). As a result, the recovery factor of these two systems at gas breakthrough 
would also be close to each other at the lowest operating withdrawal rate according to the first 
data point shown in Figure 4.29. 
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Figure 4.25: Rate of change of G-L interface positions in matrix and 
fractures when production well is located at the corner [matrix filled with 
BT2 glass beads, q = 0.7 cm3/s, L= 55 cm, b= 5 mm, fluid pair: Air- CMC 
solution (2%)]. 

 
As it is evident in Figures 4.26 and 4.27, the flow behavior of the fractured system having a 
corner production well changes dramatically if the withdrawal rate increases. Depending on the 
magnitude of the withdrawal rate, an elevation difference occurs between the liquid level in the 
two fractures, namely f1 and f2. It is clear that “Hf2” curve (the liquid head position inside the 
fracture below which the drainage sink is operating) has a steeper slope in the case with higher 
withdrawal rate (Figure 4.27) compared to that of Figure 4.26. This is also evident in the 
magnitude of (Hf2- Hf1), i.e. this expression has higher numerical values in the experiment with 
higher drainage rate (Figure 4.27), especially during the early runtime. Based on these two 
Figures, one can define two different forms of elevation difference between the G-L interface 
positions within matrix and each of the acting fractures, namely as (Hf2- Hm) and (Hf1- Hm), in 
which the first defined elevation difference is higher than the latter one. Consequently, the flow 
behavior of fractured systems whose liquid level behavior is presented in Figures 4.26 and 4.27 
deviate totally from that of the system at which the drainage well is located at the center.   
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Figure 4.26: G-L interface positions in matrix and fractures versus time when 
production well is located at the corner [matrix filled with BT2 glass beads, q = 
1.8 cm3/s, L= 55 cm, b= 5 mm, fluid pair: Air- CMC solution (2%)].   
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Figure 4.27: G-L interface positions in matrix and fractures versus time when 
production well is located at the corner [matrix filled with BT2 glass beads, q = 
2.8 cm3/s, L= 55 cm, b= 5 mm, fluid pair: Air- CMC solution (2%)].   
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By placing the drainage well below one of the fractures, it does not change the physics of 
controlled gravity drainage process. One can still define a reference elevation difference between 
G-L interface positions within matrix and fracture in which the acting fracture is the one below 
which the drainage well is operating, i.e. (Hf2- Hm). As long as the withdrawal rate is low enough 
and there is still liquid inside this reference fracture (f2), this reference elevation difference could 
be maintained constant as a result of constant low drainage rates (Figure 4.26). However, as the 
drainage rate increases, it is not possible to keep the difference (Hf2- Hm) constant anymore, even 
for a short period of time (Figure 4.27). It is also evident that the increasing slope of “Hf2” is 
higher when the withdrawal rate is higher (2.8 cm3/s compared to 1.8 cm3/s accordingly).  
 

According to Figure 4.26, the fractured system is operating with constant “Hf2- Hm” (i.e. nearly 
22cm) within the time interval of 20-140 seconds. At t = 140 seconds, this elevation difference 
starts to decrease when the fracture “f2” is emptied. As a result, the elevation difference would 
follow the curve of (Hf1- Hm) which is held constant at this time (nearly 8 cm from t = 140 
seconds up to the t = 300 seconds). During this time interval, this curve governs the actual 
drainage rate of the system. It is important to note that this actual drainage rate is indeed lower 
than the nominal withdrawal rate which has been set originally on the peristaltic pump. As time 
goes on, the elevation difference curve for (Hf1- Hm) would meet that of (Hf2- Hm) at t = 350 
seconds. At this time, f1 was out of liquid. One can conclude that it is not wise to have the 
production well connected to even a single fracture, or in the worst case, connected to an 
interconnected fracture network. This may cause early drainage of fracture(s) that have been 
touched by the drainage well. As a result, early gas breakthrough could happen with reduced 
value of recovery factor at gas breakthrough. In addition, having the production well intersecting 
even a single fracture, the drainage rates would be lower than the expected values of withdrawal 
rate.              
 

Figure 4.28 presents the effect of production well position on the elevation difference between 
G-L interface locations within matrix and fractures. It is clear that at lower withdrawal rates, 
both of these graphs show the same trend, i.e. the effect of production well location on the 
process performance is somehow negligible for low withdrawal rates. However, as the drainage 
rate increases, this difference increases as well. This is due to the fact that systems with a 
production well right below one of the side fractures would have the gas breakthrough stage 
sooner than the system at which the production well is placed at the middle of the model’s 
bottom, especially when CGD experiments are operated at high drainage rates. This results in 
higher values of “∆H” associated with rapid drop of the liquid level inside the fracture, which 
causes gas breakthrough into the production well. These two graphs correspond up to reaching 
the associated values of CPR (3.8 and 4.3 cm3/s for producer at corner and centre of the model 
respectively). In addition, it is evident that for each particular system, the magnitude of “∆H” 
increases as the drainage rate increases.  
 

Following the above discussion, one could logically discuss the effect of producer location on 
the recovery factor of the fractured system. As depicted in Figure 4.29, CGD experiment when 
the liquid has been withdrawn out of the centre has higher recovery factor values than that when 
the production well is right below the side fracture at each constant drainage rate. As discussed 
before, having the production port right below a side fracture causes gas breakthrough sooner 
than the case at which the liquid is pumped out from the centre. It is important to note that the 
recovery factor values reported in Figure 4.29 are the values obtained just before gas 
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breakthrough into the production well. In addition, for both of these two production well 
positions, it is evident that the recovery factor at gas breakthrough decreases as the drainage rate 
increases. As discussed previously, lower drainage rates result in lower values of “∆H” 
regardless of the position of the production port, so, most of the matrix part has been drained  
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Figure 4.28: Effect of production well placement position on the elevation 
difference between G-L interface levels within matrix and fractures [matrix 
filled with BT2 glass beads, fluid pair: CMC solution (2 %) – air, model 
length: 55 cm, b = 5 mm]. 
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Figure 4.29: Effect of well placement position on the recovery factor just 
before gas breakthrough time [matrix filled with BT2 glass beads, fluid 
pair: CMC solution (2 %) – air, model length= 55 cm, b = 5 mm]. 
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successfully at the point where the liquid level within fracture touches the bottom (i.e. just before 
gas breakthrough). In addition, lower drainage rates guarantee the cooperative effect of film-flow 
and bulk-flow type of drainage processes in matrix to be responsible for higher recovery factor 
values just before gas breakthrough. 
 

The location of the production well also affects the corresponding values of CPR as well as 
MPWR. These two system specific rates have higher values for the model whose drainage well is 
located at the centre (4.3 and 7.1 cm3/s correspondingly) compared to the model in which the 
production well is just below one of the fractures (3.8 and 4.9 cm3/s correspondingly). This can 
be described in terms of the length of the flow path that each liquid unit (especially those within 
the matrix as it has the major source of liquid storativity) should be drained along until reaching 
the production well. The shorter the flow path length is, the lower would be the flow resistance 
for the draining liquid, and as a result, the higher would be the volume of liquid capable of being 
drained along these flow paths. Consequently, the rate of liquid capable of draining towards the 
production well is higher for the case where the liquid flow-path length is shorter, i.e. when 
production well is located at the centre of the model compared to the position at the corner below 
a side fracture.           
 
4.4.2.7 Effects of initial liquid saturation: Analysis of production history was addressed so far 
for CGD experiments having common initial condition of 100% liquid saturation as the starting 
point. There could be possibility of presence of limited initial gas saturation within the fractured 
media upon which the production history could be affected significantly. In order to establish the 
initial gas saturation condition, liquid could be re-injected at very low volumetric rates (close to 
the rate at which imbibition occurs) into the packed model which had been already drained out of 
liquid. This could result in trapping of the gaseous phase (i.e. air) as a residual phase with 
saturation of almost 20% of the total pore volume. Sensitivity analysis of the effect of residual 
gas on the production performance was performed using a fractured model with 55 cm long 
matrix filled with BT4 glass beads (Run number 14, Table 4.2, as the reference model). 
Qualitatively speaking, similar experimental results have been obtained as those which were 
discussed previously regarding free-fall gravity drainage experiments (Zendehboudi et al., 2008). 
  
Figures 4.30 and 4.31 show the experimental results of the effect of the presence of residual gas 
on the CGD experiments for the reference model. As depicted in Figure 4.30, liquid production 
rate and also cumulative liquid produced could be equal during the early stages of CGD 
experiment for reference run number 14 and the trial in which all the system parameters are the 
same as those of reference, except it had 20% PV residual gas saturation (i.e. 80% ILIP to begin 
with). This could be due to the fact that most of the liquid produced during the early stages of the 
CGD process comes from the limited storage capacity of side fractures. As the storativity of 
fractures wouldn’t be affected by the presence of residual gas, these two systems could have 
similar early production performance. According to the visualization results, it is concluded that 
matrix top portions, and also the area within the matrix adjacent to each side fracture hold lower 
residual gas saturation compared to the other parts of the matrix when each particular model was 
saturated under low enough injection rates. It is expected that the liquid communication rate 
from matrix into the fractures wouldn’t change significantly as a result of the presence of the 
residual gas inside the matrix. The matrix area adjacent to each side fracture is mainly 
responsible for the liquid communication process. The effective permeability to water in the 
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presence of residual gas is about 65% of the absolute permeability of the matrix (Chatzis et al., 
1983). In addition, the cumulative production decreases as the residual gas saturation increases. 
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Figure 4.30: Effect of residual gas saturation on the production history of model 
undergoing CGD experiment [matrix filled with BT4 glass beads, fluid pair: CMC 
solution (2 wt%) – Air, b = 5 mm, L = 55 cm, q= 2.4 cm3/s]. 
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Figure 4.31: Effect of residual gas saturation on the recoverable fraction in a 
model undergoing CGD experiment [matrix filled with BT4 glass beads, fluid 
pair: CMC solution (2 wt%) – Air, b = 5 mm, L = 55 cm, q= 2.4 cm3/s]. 
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When the cumulative amount of liquid up to a particular time is normalized by dividing it with 
the maximum recoverable amount of liquid, one could obtain the fraction of recoverable liquid 
as a function of time. Therefore, it is possible to compare the production history of these two 
systems by plotting the fraction of recoverable liquid remaining in the system as a function of 
dimensionless time. This comparison is made in the plot shown in Figure 4.31 for the reference 
model itself, and also when it is saturated partially with residual gas. This observation permits to 
describe the production history from a partially saturated system by utilizing the supposedly 
known fractional recovery curve of a fully liquid-saturated system.  
As it is discussed above, since the area close to the fractures contains a little volume of air, and 
also considering the fact that this area has the main responsibility to contribute to liquid 
communication between matrix and fracture, the presence of residual gas won’t affect 
significantly the values of system specific rates as well as the elevation difference between G-L 
interface locations within matrix and fractures. This point can be verified by comparing the 
experimental results of CPR (0.65 cm3/s with residual gas compared to 0.7 cm3/s with 100% 
initial liquid saturation) as well as those of MPWR (4.7 cm3/s with residual gas compared to 4.8 
cm3/s with 100% initial liquid saturation).  
 
4.4.2.8 Effect of fracture orientation:  A series of experiments on controlled gravity drainage 
was performed in the fractured porous medium which has a vertical fracture with aperture size of 
11mm. We first considered this case in which the gravitational force is parallel to the flow in the 
fracture. This kind of experiment was done for several pumping rate in the physical model and 
the difference between gas-liquid interfaces in matrix and fracture was plotted versus pumping 
drainage rate. Like previous experiments as the flow rate coming from the fractured porous 
medium goes up, the elevation difference increases. Figure 4.32 depicts this behavior. The same 
experiments were repeated in two fractured macromodels at which the fractures were inclined at 
15 and 30 degrees relative to the direction of gravity. Compared to the case in which the flow in 
the fracture and gravity were parallel, the displacement process in the fracture is slower under 
free fall gravity drainage as expected. However, the process is similar to the vertical one. For 
each known pumping rate, both cases have the same gas liquid interface velocity and it was 
observed that the displacement process in vertical fracture and inclined fracture had identical rate 
of dH/dt. Therefore, vertical elevation difference between gas-liquid interface positions in matrix 
and fracture parts for the case with inclined fracture is smaller than that in the model containing 
the vertical fracture. According to Figure 4.32, the following relationship is established between 
(HF-Hm) of first case and that of the fracture media with inclined fracture orientation. 
 

(HF-Hm)Vertical= (HF-Hm) Inclined/cos β                                                 (4.9) 

 
where β is the inclination angle of the fracture. The validity of the above equation can be 
confirmed by using the analogy that constant pumping rate is proportional to liquid level 
recession rate in matrix and fracture part as shown in Equation (4.7). From Equation (4.9) it can 
be concluded that the system with vertical fracture experiences earlier gas breakthrough. 
Therefore, this phenomenon causes lower recovery factor at breakthrough for the fractured 
medium with vertical fracture compared to the model with inclined fracture during a controlled 
gravity drainage test for any pumping rate. 
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Figure 4.32: Effect of inclination angle of fracture on the difference between 
G-L interface positions within matrix and fractures during CGD process 
[matrix filled with BT3 glass beads, fluid pair: Air - Water, fracture aperture 
(b) = 11 mm, and β= 15ο], Model (a) which has a vertical fractured in the 
middle. 

 
 Additionally, the experimental runs performed to show effect of inclination angle, confirmed 
that as long as the withdrawal rate is constant, the elevation difference between G-L interface 
positions in both matrix and fracture domain remains unchanged during a particular controlled 
gravity drainage experiment, no matter whether the fracture is vertical or inclined. 
 

The  inclination angle of a fracture affects the values of  the two  system-specific rates, CPR and 
MPWR. According to Figure 4.33, both of these rates are increasing as a result of an increase in 
the inclination angle of fracture. Based on the experimental results it is expected that the 
associated values of “ΔH” would be higher for the fractured porous medium containing the 
fracture with the lower inclination angle. In such a model with high values of “ΔH”, gas 
breakthrough into the production well happens sooner than the case with lower inclination angle. 
As a result, the CPR value would be higher for the models with the inclined fracture. In addition, 
the maximum withdrawal rate that a system can sustain is also affected by inclination angle of 
fracture. If the fractures are oriented through the porous medium, it is evident that the higher the 
inclination angle is, the higher would be the magnitude of MPWR because the fractures have 
more storativity when they are inclined.  
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Figure 4.33: Effect of fracture inclination angle on the magnitude of CPR as well 
as MPWR during the course of CGD process in porous medium (a) [matrix filled 
with BT3 glass beads, b=11 mm, fluid pair: Air -Water]. 
 

 

4.4.2.9 Effect of fractures pattern: In this part, we investigate the effect of fractures pattern on 
system specific rates, the difference between G-L interface positions within matrix and fractures, 
and the recovery factor at gas breakthrough. For this, BT3 and BT2 glass beads were used to 
make the matrix parts for the fractured models. The test fluids including CMC solution (1% wt) 
and Varsol oil were employed to simulate the oil phase. It was found that in the models b, e, f, 
and g shown in Figure 4.1 as long as a withdrawal rate was set on a constant rate and equal for 
all physical models, the recession rate for gas-liquid interface is the same for all of them if 
petrophysical properties of matrix and fracture are identical. Therefore, the results show that the 
fracture pattern does not affect the gas liquid interfaces movement in a controlled gravity 
drainage process. However, the presence of horizontal fracture in the fracture pattern increases 
the communication rate as well as the recovery factor at breakthrough if the aperture size of 
horizontal fracture is small enough in order to establish effective capillary continuity.  
Experimental results also revealed that the fractured porous medium model (f) has the highest 
critical rate among the fractured models that we have used in the research.  
 

On the other hand it can exhibit the maximum value of MPWR. The main reason for keeping 
high magnitudes of CPR and MPWR is important role of connected fracture network in physical 
model (f) as it causes easily flow transferring from matrix to fracture and vice versa. 
Additionally, if the intensity of fracture is high in the fracture network, it would have more 
storage capacity in fractured model and this would enable to recover more oil at any withdrawal 
rate before gas breakthrough compared to the models whose fractures have lower intensity and 
could not make a fracture network to maintain a continuous flow path to production well. 
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Table 4.5 indicates the effect of four fracture patterns used in this study on the magnitude of 
system specific rates. In addition, the difference between gas-liquid interface position in matrix 
and fracture, as well as the gas-liquid interface position in fracture could be seen in Figures 4.34 
and 4.35 versus time for various fractured porous media at two different pumping rates (0.8 
cm3/s and 1.3 cm3/s) during controlled gravity drainage. Important point to note here is that the 
gas-liquid interface advancement in the fracture is almost the same for all kinds of fracture 
configurations at each particular withdrawal rate before touching the horizontal fracture , but it 
moves slower when the interface reaches the intersection of horizontal and vertical fracture 
because some amount of liquid would be provided from horizontal fracture while communication 
between horizontal fracture and vertical ones to maintain that constant pumping rate set on the 
pump. Therefore, the fluid transferring by communication lowers the recession rate of gas-liquid 
interface in vertical fractures. Also when the horizontal fracture is invaded by gas, the same 
condition is established for gas-liquid interface downward movement velocity. Therefore, as 
seen in Figure 4.34, no difference exists between the porous media with various fractures 
patterns with respect to gas-liquid interface positions in matrix and fractures, especially for low 
pumping rates. As the withdrawal flow rate increases, this difference becomes bigger (see Figure 
4.35) due to complex nature of communication between different parts of fractured media. 
 
Table 4.5:  Specific flow rates for variable fractures configurations of the BT3 porous media 
saturated with Varsol 
Case No. Fracture patterns (see Figure 4.1) Critical 

pumping flow 
rate (CPR), 

cm3/s 

Maximum 
pumping flow rate 
(MPWR), cm3/s 

1 Model (h) : Homogeneous  NA 5.0  0.1 
2 Model(g): Has two vertical fractures  6.2 0.2 7.1 0.1 

3 Model(e) : Has two vertical fractures and one 
horizontal fracture between them, but not 
touching the vertical ones 

7.0 0.1 8.2 0.2 

4 Model(f): Is the same as model(e), except the 
horizontal fracture is connected to vertical 
fractures from both sides 

7.2 0.3 8.4 0.2 

 
  

 117



0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Time (s)

H
ei

gh
t 

(c
m

)

Hf for model (e)

Hf for model (g)

Hf for model (f)

(Hf - Hm) for model (e)

(Hf-Hm) for model (g)

(Hf-Hm) for model (f)

Figure 4.34 G-L interface position in fractures, and the difference between gas-
liquid interface position in matrix and fracture versus time; matrix filled with BT3 
glass beads, withdrawal rate(q)= 0.8 cm3/s, [b= 5 mm, L= 55 cm, fluid pair: Air-
Varsol]. 
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Figure 4.35: G-L interface position in matrix, and difference (Hf-Hm) versus time; 
matrix filled with BT3 glass beads, withdrawal rate(q)=1.3 cm3/s, [b= 5 mm, L= 55 
cm, fluid pair: Air-Varsol]. 
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4.4.2.10 Effect of physical model properties and production rate on viscous fingering 
phenomenon: The experiments were conducted on fractured 2D glass bead media in rectangular 
Plexiglas models with the height of 55 cm and then the physical model was filled with one of 
common test fluids and kept saturated and finally the fractured porous medium was drained by 
several pumping rates during controlled gravity drainage.  Depending on the permeability of 
glass beads, liquid viscosity and pumping rate, viscous fingering happens under some conditions. 
This experimental study examines the influences of the pumping rate, test fluid viscosity, matrix 
permeability and fracture configuration on the flow pattern in the fractured media. For this 
purpose, systems with a set of vertical and horizontal fractures were constructed as fractured 
porous media. After placing the samples on a glass stand, controlled gravity drainage studies 
were performed by pumping out the liquid by constant withdrawal rates from the production 
point under the models. Note that the samples were vertically placed and production direction 
was vertical which is parallel with the gravitational force. During the constant rate flow 
experiments, gas-liquid interface movement was visualized to identify at which conditions 
viscous fingering occurs. Figure 4.36 shows viscous fingering in the fractured porous media 
made of BT3 glass beads. In this case when production rate is very low (e.g.,  0.7 cm3/s) the gas 
advancement is piston-like, however by increasing rate, finger growth started in porous medium 
during controlled gravity drainage process. The interesting observation in this study was that 
when we have the same liquids and the same matrix in a different fractured media which has a 
vertical in the middle, there was no viscous fingering in that rate (Figure 4.37). The main reason 
for lack of viscous fingering is as in the second porous medium, air had the chance to move 
towards production well easily and it prevents occurrence of unfavourable viscous fingering 
phenomenon. However, it causes early gas breakthrough, resulting in low recovery factor for the 
second case. 
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Viscous Fingering 

 
Figure 4.36: Schematic of viscous fingering  
phenomenon in the fractured porous medium[ b= 5 mm , 
fluid pair=CMC solution (2%)-Air , BT3 glass beads, q 
= 1.4 cm3/s] 

 
Figure 4.37: Liquid displacement in the 
fracture medium saturated with CMC solution 
(2%) [L= 55 cm, b= 5 mm and the matrix part 
is BT3 glass beads , q= 1.4 cm3/s] 

 
4.5 Multi-Variable Regression Analysis – Dimensional Analysis 
  
According to the physics of controlled gravity drainage (CGD) process and also experimental 
findings, a detailed dimensionless analysis has been conducted in which the dimensionless 
distance between the G-L interface positions within matrix and fractures, critical pumping rate 
(CPR), maximum possible withdraw rate (MPWR), and recovery factor at gas breakthrough have 
been correlated as a function of defined dimensionless numbers and dimensionless groups. 
The statistical approach presented for this study is summarised in the following sections and with 
more details in Appendix C. 
 
4.5.1 Multiple linear regression analysis for Critical Capillary Number: Figures 4.38 to 4.40 
present the effects of different dimensionless groups (namely as Kf/Km, Bond number, and 
critical Reynolds number) on the critical Capillary number. According to the procedure 
mentioned above for the multiple linear regression analysis, the critical Capillary number should 
be expressed linearly based on the defined dependent dimensionless variables according to the 
following relationship:                           
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in which “vCritical” is the critical pumping velocity for each particular CGD experimental run.  
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Figure 4.38: Effect of Bond Number (Bo) on 
critical Capillary number during controlled 
gravity draining at various conditions. 

Figure 4.39: Linear function of critical Capillary 
number with respect to Reynolds number while 
the fractured porous media are under CGD. 
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Figure 4.40: Influence of Kf/Km on critical Capillary number for two 
different values of Bond number. 
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According to the Figures 4.38 to 4.40, the critical Capillary number increases linearly with 
increasing dimensionless both Bond number and Kf/Km; however it would be decreased linearly 
with increasing critical Reynolds number. As the liquid viscosity increases, the CPR would be 
decreased as well. In addition, as the fracture permeability (i.e. fracture aperture) increases (or 
“Kf/Km” increases), the fractured system would be capable of handling higher magnitudes of 
liquid withdrawal velocity (i.e. higher associated CPR’s). The last term in Equation 4.10 
represents the interaction effect of dependant dimensionless groups on the magnitude of 
dimensionless CPR. Figures 4.38 to 4.40 clearly show that this interaction term consists of two 
dimensionless groups, namely as Bond number and critical Reynolds number, so Equation 4.10 
could be written as:  
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Table 4.6 provides the information regarding the correlation coefficients of Equation 4.11, 
standard errors, and lower limits as well as upper limits of the coefficients: 
 
Table 4.6:  Information table for linear regression model of critical Capillary number 

 

Coefficients Numerical value Standard Error Lower 95% Upper 95% 

a -5.15397E-05 1.2871E-05 -8.0218E-05 -2.28614E-05 

b 1.806883653 0.09123571 1.603597823 2.010169484 

c -8.43132E-06 9.1564E-06 -2.88331E-05 -1.19705E-06 

d 3.1254E-09 1.2626E-09 3.12108E-10 5.93868E-09 

e -0.269152134 0.07235542 -0.430370049 -0.107934219 
 
It is clear that the critical withdrawal velocity (which is associated with CPR) appears at both 
sides of Equation 4.11. As a result, in order to obtain the CPR for any particular fractured set up, 
one needs to perform a trial and error procedure using Equation 4.11. As an initial guess for the 
iterative procedure, considering critical Reynolds number to be equal to unity would be a 
reasonable trial. The critical withdrawal velocity associated with ReCr. = 1.0 guarantees a Darcian 
flow by which the iterative procedure could be initiated. Knowing the initial guess for “vCritical, 

guessed”, the right hand side of Equation 4.11 could be solved as all the parameters are known 
based on the information provided for each particular CGD experiment. Consequently, the first 
calculated critical Capillary number would be obtained and as a result, the associated “vCritical, 

calculated” could be obtained. If the calculated critical withdrawal velocity wouldn’t be similar to its 
guessed value (i.e. its associated relative error wouldn’t be within a reasonable domain) the 
“vCritical, calculated” would be considered as the second guessed value and the iterative procedure 
would be repeated accordingly until a reasonable match between calculated and guessed values 
of critical withdrawal velocity would be obtained.  
 
4.5.2 Multiple linear regression analysis for Maximum Capillary Number: From 
experimental investigation of CGR process, it was concluded that there is a maximum 
withdrawal rate (i.e. maximum macroscopic drainage velocity) for each particular fractured 
media under the CGD process below which a constant withdrawal rate could be maintained for a 
reasonable duration of time. Practically, it is viable to drain a fractured system at a rate below the 
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maximum withdrawal rate associated with that particular porous medium. As a result, 
determining the maximum drainage rate for each particular fractured porous medium undergoing 
a CGD process would be a necessity in order to evaluate the performance of this recovery 
technique.  
 

The multiple linear regression analysis could be implemented in order to figure out what 
parameters (i.e. dimensionless groups) are affecting the maximum withdrawal rate associated 
with each fractured system. The dimensionless objective function containing maximum 
withdrawal rate (or maximum drainage velocity) is called maximum Capillary number (CaMax.). 
Following the procedure presented in section 4.5.1 and Appendix C, the individual effect of each 
dimensionless parameter on the maximum capillary number has been presented through figures 
4.41 to 4.43.  
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Figure 4.41: Effect of Bond number on 
maximum Capillary number for two different 
values of Kf/Km. 
 

Figure 4.42: Maximum Capillary number 
versus permeability ratio in logarithmic plot.  
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Figure 4.43: Effect of “Re” on “CaMax.” at two different values 
of Bond number. 
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According to these figures, it is clear that logarithm of dimensionless MPWR (i.e. maximum 
Capillary number) changes linearly with “Kf/Km”, Bond number, and maximum Reynolds 
number (Reynolds number associated with MPWR or maximum drainage velocity, “vMax.”). 
Logarithm of dimensionless maximum withdrawal rate increases linearly with all the noted 
dimensionless groups except the maximum Reynolds number. Consequently, one could express 
the dimensionless maximum possible withdrawal rate in terms of the dimensionless parameters 
as follows: 
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Another point that can be concluded from Figures 4.41 to 4.43 is that the maximum Capillary 
number depends on the combination of all three of the dimensionless parameters, namely natural 
logarithms of Bond number, “Kf/Km”, and maximum Reynolds number. As a result, Equation 
4.12 could be expressed in a more specific form:  
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(4.13) 

 
Table 4.7 contains the numerical values of the coefficients of correlation provided in Equation 
4.13 as well as the standard error, lower and upper limits of the coefficients obtained from the 
multiple linear regression analysis.  
 
Table 4.7: Information table for linear regression model of maximum Capillary number 
 
Coefficients Numerical value Standard Error Lower 95% Upper 95% 
a 0.269179 0.511808 0.0712 1.409558 
b 1.083895 0.075394 0.915908 1.251883 
c -0.02022 0.152268 -0.35949 -0.009057 
d 0.058835 0.061108 0.07732 0.194992 
e 0.00784 0.001896 0.003616 0.012065 

 
According to Equation 4.13, the maximum drainage velocity is present on both sides of the 
equation, so in order to determine the MPWR, it is needed to perform the trial and error 
procedure similar to that presented in section 4.5.1 in order to obtain the maximum drainage 
velocity (i.e. MPWR).  
 
4.5.3 Multiple linear regression analysis for dimensionless height: Elevation difference 
between G-L interface positions within matrix and fractured is another important parameter for 
evaluating the performance of a CGD process. Consequently, it was considered as one of the 
parameters which should be predicted statistically based on the multiple linear regression 
analysis using available system parameters. A relevant dimensionless objective function, 
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dimensionless height, has been defined as the ratio of model height to the elevation difference 
between G-L interface positions within matrix and fractures for each particular fractured system.  
In order to perform the statistical sensitivity analysis, one could examine the same method 
described in section 4.5.1 and Appendix C. Cross-plots of dimensionless height versus different 
affecting dimensionless groups (Figures 4.44 to 4.46) admit the linear dependency of 
dimensionless height to be of the following functional form:  
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To present the data in a linear form regardless of their increasing and decreasing trends, the 
natural logarithm term would have been brought up in some of the terms. Accordingly, the 
combination term have been shown to be a multiplication of Bond number and logarithm of 
Capillary number as it was concluded from Figures 4.44 to 4.46: 
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The correlation coefficients of Equation 4.15 have been presented in Table 4.8:  
 

Table 4.8:  Information table for linear regression model of dimensionless height  
   
Coefficients Numerical value Standard Error Lower 95% Upper 95% 
a -3.7105 1.259318 -6.25191 -1.1691 
b -0.16571 0.120855 -0.4096 -0.106185 
c -164525 10411.7 -185537 -143513 
d 9.65E-05 2.84E-05 3.92E-05 0.000154 
e -21904.4 1040.688 -24004.6 -19804.2 
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Figure 4.44: Dimensionless height against 
Capillary number ,“Ca.”, during controlled 
gravity drainage at various conditions 

Figure 4.45: Effect of “Kf/Km” on natural 
logarithm of dimensionless height 
(Ln(L/∆H)). 
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Figure 4.46: Effect of Bond number on “Ln (L/∆H).” for Capillary 
numbers equal to 3.07E-05 and 1.54E-05, respectively 

 
4.5.4 Multiple linear regression analysis for recovery factor: As the production performance 
of a CGD process would be evaluated based on the amount of recovered liquid with respect to 
the liquid initially present in place (i.e. recovery factor), it would be beneficial if one could 
estimate the amount of recovery factor having all the available system parameters in form of 
previously defined dimensionless groups. According to the same procedure presented in sections 
4.5.1 through 4.5.3, for a fractured system analogous to the experimental schemes defined in 
section 4.3.1, one could suppose the recovery factor to have a functional relationship based on 
the defined dimensionless parameters as follows: 
 
                   

 126



),,,(. 4 numberstheseofnCombinatio
K

K
CaBofFR

m

f  (4.17) 

 
Performing the standard statistical procedure described before, which could result in deducing 
relevant cross-plots of recovery factor versus affecting dimensionless groups (Figures 4.47 to 
4.49), the final multi-variable regressing form of recovery factor is as follows:   
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      If   Criticalqq      (4.18) 

 

RF =RFCritical      If   q > qCritical             (4.19) 
 
It is worthwhile to note that the product of Bond and Capillary numbers as well as interaction of 
all three dimensionless numbers would affect the recovery factor parameter in the form of 
“combinatory impacts”. Curve fitting based on the regression analysis results in determining the 
correlation coefficients as presented in Table 4.9: 
 
Table 4.9:  Information table for linear regression model of recovery factor 
 

Coefficients Numerical value Standard Error Lower 95% Upper 95% 

a 50.07562 2.325941 45.43302 54.71822 

b -271062 8651.818 -288331 -253793 

c 218012.5 15589.04 186896.7 249128.4 

d 0.001129 0.000256 0.000618 0.001641 

e -203.384 6.938715 -217.234 -189.535 

f 1563333 59960.75 1443651 1683015 
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Figure 4.47: Impact of Bond number on 
production performance of the fractured porous 
media during the controlled gravity drainage. 

Figure 4.48: Recovery factor versus the ratio 
of fracture permeability to matrix permeability 
for two values of capillary number.  
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Figure 4.49: Linear plot of recovery factor versus 
Capillary number at two different magnitudes of Bond 
number.  

 
Based on the analysis of residual errors illustrated in Appendix C, the multi-variable linear 
regression correlations are acceptable as they can predict the behaviors of the fractured porous 
media under the gravity drainage process well. 
 
4.6 Limitations and Assumptions for the Empirical Correlations 
 
The ranges of the dimensionless groups for, which the correlations of CPR, MPWR, R.F and ∆H 
are applicable, are given in Table 4.10.  Moreover, Table 4.11 shows the limitations/restrictions 
associated with the correlations.  
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Table 4.10: Ranges of the dimensionless numbers  
 

Dimensionless numbers Range 
Capillary number, Ca 0 – 0.00008 

Permeabilities ratio, 
m

f

K

K
 

0 – 11000 

Bond number, Bo 0 – 0.00015 
Reynolds number, Re 0 – 5 

 
     Table 4.11: Limitations of the empirical equations in the current study 
  

 1) Porous medium is non-deformable so it has a constant porosity 

 2) Viscous drag tensor is neglected due to small pressure gradient 

 3) No source or sink terms exist for mass 

 4) Both liquid and gas phases are incompressible at the conditions (very small changes in 
temperature and pressure) 

 5) Two phases are immiscible 

 6) Physical properties of fluids are constant during the experiments 

 7) The studied case here is two dimensional flow in porous media, though fluid flow in 
gravitational direction is dominant in a vertical porous system under free fall and 
controlled gravity drainage processes  
 8) The correlations are valid just in the range of dimensionless number employed in the 
current study. Range of dimensionless groups in oil fields are almost the same as we have 
in the experimental work 
 9) Geometry of physical models doesn’t have big effects on RF in gravity drainage; it just 
affects residual oil saturation slightly. 
 10) We had 8 porous media with different fracture patterns, and the correlations are 
giving very good results with high accuracy for the porous media having these kinds of 
fracture configuration. Therefore, only main limitation would be type of fracture 
configuration for the fractured porous media. It should be noted if we have effective 
fracture permeability for a porous medium with unknown fracture patterns, the obtained 
empirical equations can help to predict flow behaviour and recovery factor of the porous 
system somehow. 

 
4.7 Conclusions  
 
The following statements summarize the main results of the combined experimental and 
statistical research work for the fractured porous media undergoing the controlled gravity 
drainage (CGD) process. 
 

 During controlled gravity drainage, elevation difference between gas-liquid interface 
locations in fracture and matrix remains constant while liquid is pumping out of the 
fractured system with constant withdrawal rate lower than associated Critical Pumping 
Rate (CPR).  
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 Pumping rate dictates the liquid communication between matrix and fractures, pressure, 
fluid flow regimes and also G-L interface movement in fractured porous media during the 
course of CGD experiments.  

 Considering all experimental variables to remain unchanged, CPR is somehow sensitive 
to the magnitude of liquid viscosity.   

 Maximum Possible Withdrawal Rate (MPWR) depends on the fractures’ storage 
capacity, matrix flow properties (i.e. permeability), and also liquid flow properties (i.e. 
viscosity).  

 During CGD experiments, rate of liquid communication from matrix into the fractures 
remains constant as long as a constant withdrawal rate is maintained.  

 When the magnitude of fracture spacing increases, the liquid communication rate from 
matrix to fracture decreases, and as a result, the associated CPR decreases as well.  

 Critical rate, maximum rate, recovery without gas breakthrough and difference of gas 
liquid interface positions in matrix and fracture were correlated by dimensionless 
numbers such as Bond number, Capillary, ratio of permeabilities and etc. 

 Linear regression modeling presented in this paper can predict production history and 
flow behavior in our fractured porous media well for a wide range of dimensionless 
numbers. Therefore it helps us to understand the physics of controlled gravity drainage. 

 
 



Chapter 5 
 

Numerical Simulation of Gravity Drainage Processes Using COMSOL 
 
5.1 Scope  
 
The simulation of multiphase flow in subsurface porous media needs effective solution methods, 
and tools for managing the complicated structure of the media as well as for understanding of the 
transport phenomena in such porous systems. A complex two-phase flow (e.g., Air-Varsol) in 
porous media under gravity drainage process is studied here in this chapter. The numerical 
simulation of the gravity drainage process in homogeneous and fractured porous media were 
carried out using COMSOL. A new numerical modeling approach was proposed to simulate the 
time-dependent drainage in vertical porous physical models in order to investigate the important 
aspects of the gravity drainage (free fall or/and controlled gravity drainage) on oil saturation 
distribution and oil production history. The effect of permeability heterogeneity in the form of 
fractures on the drainage process was simulated by the fluid flow module of the software used. 
Furthermore, the evolution of relative permeability of the wetting and non-wetting phases, 
capillary pressure and some other significant parameters were investigated. The results obtained 
from this numerical simulation have been compared with the experimental data extracted from 
the laboratory tests published in the literature. Outputs from the numerical model generally show 
a very good agreement with the experimental results. 
 
5.2 Governing Equations 
 
Throughout this study, it is assumed that the porous medium has a constant porosity and the 
cross-product permeability terms associated with the viscous drag tensor can be neglected.  It 
should be mentioned here that different models for deformable porous media with considering 
thermal and mechanical loads have been developed (Kueper et al., 1991; Chen et al., 1999).  The 
general form of the two-fluid flow equations (without source–sink terms) is described by the two 
fluid, volume-averaged momentum and continuity equations (Chen et al., 1999) as following: 
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Equation (5.2) is the continuity equation of the wetting phase, where Equation (5.1) is the 
Darcy’s equation for the oil phase.  Equations (5.4) and (5.3) are the continuity equation and 
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Darcy’s equation for non-wetting phase, correspondingly.  In Equations (5.1), (5.2), (5.3) and 
(5.4), the subscripts w and nw denote the wetting and non-wetting fluids, respectively. Also, 

, Si, qi, g, µi, ρi and Ki denote pressure, degree of saturation relative to the porosity, 

the volumetric flow rate vector, the gravitational acceleration vector, dynamic viscosity, density 
and the effective permeability tensor, respectively.  The effective permeability is defined as the 
relation between intrinsic permeability (K) and relative permeability (kri) : 

),( nwwipi 

 
Ki=kri. K                                                                                            (5.5) 

 
Assuming that the porous media is non-deformable and with definition of volumetric fluid 
content as ii S.    one can write: 
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In Equation (5.7), 

                                                                                         
  is the porosity of the porous media. 

Assuming two-dimensional flow and that the wetting fluid is incompressible due to the small 
variation range of the pressure and then substitution of Equation (5.1) into Equation (5.2) and 
Equation (5.3) into Equation (5.4) gives: 
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and similar equation for non-wetting phase, 
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Equations (5.1) to (5.9) were written for matrix part, though those equations are valid for 
fractures if there is a fractured medium including two fractures on both sides.  
pnw and pw are the non-wetting and wetting pressures, respectively. The capillary pressure pC is 
defined by: 
 

 (5.10) 
 
The predefined Darcy’s equations under the earth science module in COMSOL are stated for 
liquid phase and gas phase as follows: 
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where the time scaling factor (δts), the flux scaling factor (δk), the source scaling factor 
(δQ),storage term (Cp=dθw /dhc), and, the source term (Q) are input parameters. δts = 0 is valid 
for a steady state system and δts =1 is for a transient system. δk is the flux scaling factor which is 
unity in our gravity drainage system. Q is the source term. In this research, Q is equal to zero for 
both phases. The storage term (Cp) is a function of porosity ( ), residual wetting saturation (Swr) 
and the effective wetting saturation and pressure. 
 

Equations (5.11) and (5.12) for the pre-defined boundary conditions can be solved 
simultaneously. The functional description of the capillary pressure–saturation, hc(Sw), and 
permeability functions, Ki(Sw), enables estimation of the evolution of wetting and non-wetting 
phases distribution. Also, to estimate the constitutive relations parameters properly, one can 
employ the obtained function into the governing equations (Parker et al., 1987; Chen et al., 1999; 
Zhang, 2002). 
 
5.3 Capillary Pressure and Permeability Functions 
 
The numerical model used the capillary pressure versus saturation curve to evaluate the 
saturation of the liquid. During the numerical simulation, both liquid and gas phases exist in the 
control volume. Therefore capillary pressure curve for our two phases should be taken into 
account during the simulation of the gravity drainage phenomena. 
The scaling of capillary pressure curve of a particular porous medium in accomplished using the 
following relation:  
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where σog is the interfacial tension of the oil-gas system. The capillary pressure of the porous 
medium is a function of interfacial tension and permeability. Therefore, the capillary pressure 
values will change as the properties of oil (or liquid) vary. This affects the capillary pressure 
curves that were used to evaluate the oil saturation in the particular position of the system. 
The developed constitutive models to description of the capillary pressure–saturation, and 
permeability functions are listed in Table 5.1. 
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Table 5.1 : Two-fluid capillary pressure and permeability parametric models (Beckner, 1990; 
Kueper et al., 1991; Sahimi, 1995) 
 

Parametric Model Parameters Capillary pressure 
functions 

Relative Permeability 
functions 
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In this study, the Van Genuchten equation (VG) is employed to compute capillary pressure and 
relative permeability in the numerical modeling (Van Genuchten, 1980): 
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where Sew denotes the effective saturation of the wetting fluid, 
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θws and θwr are the saturated and residual wetting fluid content, respectively; α and n are fitting 
parameters, that are inversely proportional to the non-wetting fluid entry pressure value and the 
width of pore-size distribution, respectively. It is assumed that m=1-1/n and that the effective 
saturation of the non-wetting fluid (Sen) is derived from Sen =1-Sew. 
The capillary pressure–saturation function can be considered a static rock property, while the 
permeability function is a hydrodynamic property describing the ability of the medium to 
conduct a fluid. The basic assumption behind the capillary pressure–permeability prediction 
models are from conceptual models of flow in capillary tubes combined with pore-size 
distribution knowledge which are derived from the capillary pressure–saturation relationship. A 
typical representation of this type of model follows Mualem’s formulation (Van Genuchten, 
1980) which is as the following: 
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Combining the Van Genuchten capillary pressure–saturation equation (5.14) with the Mualem 
(VGM) model-with introducing new parameter the tortuosity parameter (η) gives permeability 
functions as follows according to Mualem (1976): 
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      For convenience in modeling and due to lack of information to the contrary, the η value was set 
equal to 0.5 for both the wetting and non-wetting permeability expressions throughout this 
study.Based on the research work of Chen et al (1998), it was found that the parameter changes from 
0.45 to 0.6, depending on the size of glass beads.    
The Corey’s equation can be used to calculate relative permeability for numerical modeling. The 
following formulas show the relationship between saturation degree and relative permeability of 
each phase in Corey’s analogy (Chatzis and Morrow, 1983; Saidi, 1987; Sahimi, 1995): 
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where hc is capillary height. 
The capillary pressure data for the experimental cases in this study were defined by the van 
Genuchten correlation for capillary pressure versus saturation. The capillary height curves shown 
in Figure 5.1 were curve fitted values using the van Genuchten and Brooks-Corey empirical 
models for the matrix part. The variables in van Genuchten and Brooks-Corey correlations for 
this research work are summarized in Table 5.2. 
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Figure 5.1: Capillary height curves for the matrix part saturated with 
Varsol oil based on two different empirical models (Matrix made with 
BT3 glass beads). 

 
Table 5.2: The variables of the capillary pressure curves used in the numerical simulation 
 

Parameter values α n λ m=1-1/n Capillary threshold height (hc), 
cm 

van Genuchten 0.112 3.5 N/A 0.714 5  hc versus Sew 

Brooks-Corey N/A N/A 1.85 N/A 5 
 
For the fracture part, the parametric models mentioned above for the capillary pressure– 
saturation and permeability functions were tested in their ability to fit the multi-step outflow 
experimental data. However none of them produced results with reasonable accuracy. Therefore 
in this case, the relative permeability constitutive equations tried are based on expressions 
proposed by Honarpour et al., (1982) which are as the following: 
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In order to get results with lower absolute error percentage with respect to experimental findings, 
a set of required parameters are suggested for proposed empirical model. The parameters for the 
fitted curved are tallied in Table 5.3. 
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Table 5.3: Fit Parameters for fracture relative permeability in gravity drainage experiments
  
Parameters  Numeric value 

 
1.00

rwk  0.15 

no 2.0 0.22 

 
0.40

rnwk  0.08 

ng 3.1 0.16 
 
 

5.4 Numerical Simulation 
 
A brief review of the state of the art literature concerning the numerical implementation of 
multiphase fluid flow model reflects that the finite element methods (FEM) are the general 
framework for numerical simulation in very large problems (Blunt and King, 1992; Kazemi and 
Gilman, 1993). 
 

Flow in porous media is a subject of interest in many fields of the science and engineering, such 
as hydrogeology, petroleum engineering, and chemical engineering. The case of two-region 
heterogeneous media (e.g., fractured media) plays a fundamental role in numerical modeling of 
transport phenomena in porous media systems (Aziz and Settari, 1979). Many different 
theoretical models are implemented under COMSOL, using many of the original features of the 
software (COMSOL guide, version 3.5). These models correspond to direct simulation and 
macro-scale or large-scale models .In this section, some important aspects of the application of 
the COMSOL for a comprehensive analysis of transport through porous media which are either 
homogeneous or fractured ones are discussed. Also, a new numerical model for gravity drainage 
was developed to address certain limitations of the existing numerical simulation models. Instead 
of employing double porosity to deal with a complex term named communication rate between 
matrix and fracture, the new model considers matrix and fracture parts separately gridded 
properly in the modeling approach and then had continuity equation for each subdomain. Finally 
in order to apply communication between fracture and matrix, continuity was set in interior 
boundaries that mean pressure and velocity is identical for matrix and fracture parts.  Therefore, 
the new model does not require a predefined equation for transfer rate which probably makes 
some errors due to various amounts for shape factor existing in the communication rate equation 
(Kazemi, 1990; Hoteit and Firoozabadi, 2008). In the following sections the numerical modeling 
along with the analysis of simulation outputs are presented and discussed in a great details. In the 
last section results obtained from the current numerical simulation are compared with the 
experimental data (Zendehboudi et al., 2008; Zendehboudi et al., 2009). 
 
5.4.1 Subdomains, boundary and initial conditions: COMSOL 3.5® uses a graphic user 
interface (GUI) to model the problem analyzed. The GUI is simple to use and enables modeling 
of complex geometry. The analysis of the gravity drainage process is conducted using a 2-D 
rectangular control volume, constructed of 1 subdomain and 4 boundaries for homogeneous 
porous media and 3 subdomains and 6 boundaries for fractured unconsolidated media. The 
subdomain represents the control volume of the porous media. The dimension of the modeled 
control volume is same as the physical model (23.5 cm in width and 55 cm in height for the 
matrix part and 0.5 cm for aperture width and 55 cm in height for the fractures). The y axis is the 
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vertical axis with gravity acting in the “-y” direction. The permeability and porosity values for 
matrix are 3 10-10

 m2
 and 0.38 respectively. 

 

The combination of governing equations (5.7) and (5.8), the boundary and initial conditions 
(Figures 5.2 and 5.3 and Tables 5.4 and 5.5), and the constitutive relationships in equations (5.11 
and 5.12) constitute the mathematical model of the system. The mathematical model has no 
analytical solution available because of the nonlinearity of the constitutive functions. Therefore, 
a numerical model should be adapted to simulate the two-fluid flow regime (Chen et al., 1999; 
Hoteit et al., 2008). 
 

Initially, the control volume is assumed to be saturated with 100% oil phase. At t > 0, boundary 4 
is exposed to air with atmospheric pressure and boundary 3 is opened for to the collection 
cylinder (see Figure 5.2). Since during free fall gravity drainage both the apparatus and the 
collection cylinder operate at identical system pressure equal to 1 atmosphere, the effect of 
pressure on the system is negligible. Therefore, in the upper bound of the geometry (Figure 5.2), 
air pressure equal to one atmosphere where the lower bound of the sample is in-transferable to 
non-wetting phase due to having capillary threshold height (Figure 5.2). The employed 
parameters for the porous media samples are shown in Table 5.6 which was used in the 
experimental work performed by Zendehboudi et al. (2008 & 2009). 
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Figure 5.2: Boundaries of homogeneous porous media during FFGD and CGD for numerical 
modeling. 
 
The procedure for doing a controlled gravity drainage experiment is the same as that for free fall 
gravity drainage except a constant flow rate is withdrawn during the gravity process, while in 
free fall gravity drainage the exit pressure is atmospheric.  
 
Table 5.4: Boundary and initial conditions for homogeneous medium in COMSOL® 

 

Free Fall Gravity Drainage(FFGD) Controlled Gravity Drainage (CGD) Boundary 
conditions Wetting phase Non-Wetting phase Wetting phase Non-Wetting phase 

Boundary 1 Zero flux Zero flux Zero flux Zero flux 
Boundary 2 Zero flux Zero flux Zero flux Zero flux 
Boundary 3 PO=0 Zero flux qProduction=constant Zero flux 
Boundary 4 Zero flux PO=0 Zero flux PO=0 
Initial 
conditions 

P(h,0) =PBottom- ρw.g.h P(h,0)=ρnw.g.(L-h) P(h,0) =PBottom- ρw.g.h P(h,0) =ρnw.g.(L-h) 
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Figure 5.3: Boundaries of fractured porous media during FFGD and CGD for numerical 
modeling. 
 
Table 5.5: Boundary and initial conditions for fractured medium in COMSOL® 

 

Free Fall Gravity Drainage(FFGD) Controlled Gravity Drainage (CGD) Boundary 
conditions Wetting phase Non-Wetting phase Wetting phase Non-Wetting phase 

Boundary 1 Zero flux Zero flux Zero flux Zero flux 
Boundary 2 Zero flux Zero flux Zero flux Zero flux 
Boundary 3 PO=0 Zero flux qProduction=constant Zero flux 
Boundary 4 Zero flux PO=0 Zero flux PO=0 
Interior 
boundary 1 

Continuity  Continuity  Continuity  Continuity  

Interior 
boundary 2 

Continuity Continuity Continuity Continuity 

Initial 
conditions 

P(h,0) =PBottom- ρw.g.h P(h,0) =ρnw.g.(L-h) P(h,0) =PBottom- ρw.g.h P(h,0) =ρnw.g.(L-h) 

 
Table 5.6:  Parameters required for employed porous media in numerical modeling 
 

Type of the 
medium 

Matrix 
permeability , 
Darcy 

Test 
fluid 

Oil viscosity 
, cp 

Oil 
density, 
g/cm3 

Oil 
interfacial 
tension , 
mN/m 

Fracture 
aperture, 
mm 

Model height, 
cm 

Homogeneous 300 Varsol  1.2 0.781 25 N/A 55 

Fractured  300 Varsol  1.2 0.781 25 5 55 
 
5.4.2 Mesh configurations: COMSOL 3.5 is a finite element analysis tool. Once all variables 
are input into the system and the subdomain is discretized into small elements. Typically, smaller 
mesh size produces more accurate numerical simulation; however, there is a limit to the mesh 
size used in the numerical model due to this fact that the smaller mesh size in the subdomain 
increases the number of elements in the numerical simulation. This will in turn increase the 
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computational efforts and time required for the numerical model. We use exponential distribution 
of mesh size for the numerical modeling of fractured porous medium as smaller meshes in the 
boundaries and bigger ones for middle parts of matrix are chosen. First, we fix the size for meshes 
(almost equal to mesh size in fracture) close to the boundary of matrix and fracture and size of 
meshes grows exponentially as we are approaching to the middle of matrix. Since fracture is small 
enough, the uniform mesh size was selected for the fracture parts.    
To further understand the effect of mesh size on the numerical simulation result, two simulations 
were run with 39 mm (horizontal) by 37 mm (vertical) and 3.9 mm (horizontal) by 3.7 mm 
(vertical) mesh size to study the effect of the mesh size on the precision and accuracy of the 
numerical simulation. The effect of mesh size on the results are presented and discussed in 
section 5.5.4. 
 
5.4.3 Method in analyzing the numerical results: The developed numerical model can evaluate 
the liquid saturation, the liquid cumulative production and the liquid velocity for each element 
and output the numerical results at some time intervals. The output data were analyzed before 
they were compared with the results from the experimental data. The focus of analysis of the 
results obtained from numerical model is the liquid saturation, velocity of liquid phase and the 
liquid production history. 
 
5.4.3.1 Simulation runs of free fall gravity drainage: Figure 5.4 shows the results of the total 
velocity field calculation of COMSOL (solving of the PDEs by considering boundary condition) 
for homogeneous porous media under FFGD. As can be seen here, the velocity vectors of non-
wetting phase (air), Vnw, follow a regular decreasing with the height of the sample in 
gravitational force direction.  At the other hand, velocity of the wetting phase (Vw) increases as 
fluids are approaching the bottom of physical model. Also, due to blocking of the lower 
boundary condition for air flow as results of capillary threshold height, after 130 seconds there is 
a significant decrease in the rate of pressure and saturation degree changes for air as non-wetting 
phase. This is due to this fact that the air is a non-wetting phase here and cannot go through when 
gas-liquid interface reaches almost 5 cm of the model height relative to the bottom of the 
physical model.  Also, the air saturation and air pressure would be in their minimum values.   
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Figure 5.4: Total Velocity versus height of homogeneous porous medium under FFGD, a) 
Wetting phase (Vw)   b) Non-wetting phase (Vnw). 
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Figures 5.5a to 5.5c show the changes in non-wetting phase saturation for unfractured media 
which is drained in a free fall gravity drainage mode. The background color shows the 
extractable (effective) air volume fraction in which the red color is 100% air and blue is 0% air. 
The non-wetting phase across the reservoir pushes the Varsol oil in gravitational force direction 
during the process and flow direction of wetting phase is towards the bottom of the physical 
model.  As the fluid reaches the production well, then the wetting phase velocity and also oil 
saturation degree increase at each particular time. It should be noted here that there are initial 
rapid changes in saturation followed by very slow drainage of the wetting phase. There are two 
features which help to describe the displacement pattern. First, gas rapidly reaches the 
equilibrium position (hc) beyond which the column is saturated with the wetting phase. Second, 
at the later stages of the process the saturation profile is almost uniform with a distance from top 
of the hc and then decreases slowly over the time. 
 

  
 

 

          (a),  @ t=40 sec               (b) , @ t=120 sec       (c)  , @ t=400 sec 
Figure 5.5: Effective saturation of non-wetting phase evolution during FFGD for 
homogeneous porous media. 

Snw= 0.62 

Snw=0 

 
Figures 5.6 and 5.7 demonstrate the distribution of the wetting fraction in a 55 cm-length volume 
of the fractured porous medium after 30 seconds and 120 seconds of FFGD, respectively. As 
shown in these figures, at time of 30 seconds there is still some oil phase in fracture and that this 
is why the percentage of residual oil saturation is 100% in the whole distance of 12 cm from the 
bottom of the fractured porous medium.  However, as time goes on the gas-liquid interface 
advances more downward and finally after 120 seconds the fracture part gets empty and there is 
just drainage from porous matrix which provides the oil production. If more time is let the 
drainage process proceed, then the oil production will happen via oil film mechanism.  If so, then 
lower average residual oil saturation value than what is seen in Figure 5.7 is attainable. 
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Figure 5.6: Wetting phase distribution curve along the model 
height after 30 seconds that free fall gravity drainage process 
proceeds in the fractured medium [ BT3 glass beads, test fluid: 
Varsol oil, L= 55 cm , b=5 mm]. 
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Figure 5.7: Oil saturation fraction versus height of a fractured porous 
medium saturated with Varsol under FFGD at t=120 sec [ BT3 glass 
beads, L= 55 cm, b=5 mm].  

 
Based on the two empirical models brought in Table 5.1, the numerical modeling data of relative 
permeability against wetting saturation were shown in Figure 5.8 for the homogeneous porous 
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media with permeability equal to 300 Darcy. According to Brooks-Corey correlation, a Krw of 
about 0.4 can be calculated for a residual oil saturation of 0.8 (x=10 cm and y=40 cm). The 
relative permeability of each phase is proportional directly with the value of that phase’s 
saturation degree.  This means that the oil relative permeability will be higher at the points with 
higher residual oil saturation during free fall gravity drainage. 
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Figure 5.8: Oil and gas relative permeability versus wetting 
saturation degree for BT3 glass beads homogeneous porous 
medium fully saturated with Varsol. 

 
As production starts in fractured oil reservoirs under gravity drainage, the oil in the fracture is 
first recovered and then gas from the gas cap or the free gas or injected gas replaces it. The oil in 
the matrix needs longer time to be drained by gravity into the fractures. This causes the fractures 
to become saturated with gas while the matrix contains mainly oil. Therefore the gas-oil contact 
(GOC) in fracture advances ahead of that in the matrix blocks. This difference in the contacts 
elevation in addition to the density difference between the oil in the matrix and the gas in the 
fracture provides the pressure difference required for the oil transferring from the matrix into the 
fractures. The final recovery factor from the matrix is determined by the balance between the 
capillary pressure and gravity forces. The numerical simulation of the FFGD experiment in a 
fractured medium during a time period of 30 seconds (Figure 5.9) shows the non-wetting phase 
distribution within the physical model. Since the fracture part of the model has a higher 
permeability, the air front moves further ahead in the fracture and it has a higher velocity 
initially.  Therefore, it is not on the same level as in the matrix part. 
 

 143



  

Figure 5.9: Non-wetting saturation distribution within two different parts of the 
fractured porous medium under FFGD [ BT3 glass beads, b=5 mm , L=55 cm, t= 
30 sec]. 

Snw=0.58

Snw=0 

 
Figure 5.10 presents the field velocity profile versus model width for the fractured porous 
medium.  The total velocity here is almost a flat line for the matrix part and there is a same 
velocity for the points located at the identical y-coordination.  Furthermore, there is a 
considerable difference between velocity in fracture part and matrix part when the FFGD starts 
or the process is at the beginning of communication between matrix and fracture.  The liquid 
velocity in the fracture is much higher than the matrix part. The liquid velocity in the fracture 
increases with increase in the fracture aperture. The dotted line in the Figure 5.10 represents the 
described velocity distribution. This phenomenon occurs when the elapsed time is 5 seconds in 
free fall gravity drainage mode. However as the process proceeds, more communication would 
be established between these two different parts of the medium, causing drainage of more liquids 
into the fracture and a bigger decline in movement rate of G-L interface in fracture towards the 
bottom of the physical model.  However, this also depends on the magnitude of communication 
between matrix and fracture, and fracture dimensions.  Such a process can occur in any of the 
following conditions: 
1- Where the communication rate is very low (i.e. matrix permeability is small or oil phase is 
too viscous) and interfaces between matrix and fracture acts like an impermeable wall.  
Consequently, the liquid velocity still has a higher value in fracture than in the matrix. 
2- Magnitude of the liquid transferred into the fracture is moderate as G-L interface positions 
move downward with a same velocity at both parts and there is no significant difference between 
them. 
3- For the case of the present study, the matrix is highly permeable and the oil phase has a low 
viscosity.  Therefore, the communication between matrix and fracture is strong enough allowing 
drainage of a considerable amount of oil into the fracture part.   This transferring rate acts like a 
resistance force applying on side part of the fracture and this affects liquid velocity in fracture 
significantly leading to a lower G-L interface velocity in fracture even to values lower than the 
value of G-L interface velocity in the matrix (See Figure 5.9 for the velocity profile at 20 
seconds). 
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Figure 5.10 :Velocity profile along the width of the fractured 
porous medium saturated with Varsol oil for two different times of 
free fall gravity drainage [BT3 glass beads, L=55 cm , b=5 mm]. 

 
Figure 5.11 shows results for wetting and non-wetting phase relative permeabilities against oil 
saturation for the fracture part in the fractured porous media under FFGD. It should be 
emphasized here that the connate water saturation in this study is assumed to be equal to zero. 
This new approach is based on the continuity of capillary pressure at the fracture-matrix 
interface.  This makes possible estimating physically correct relative permeability values for 
multiphase flow between fractures and the matrix.  This new conceptual model overcomes a 
serious flaw that exists in most of the current simulation practices when estimating flow mobility 
for fracture-matrix flow term. Figure 5.11 conveys this message again that two-phase flow 
through the fractures can be modeled adequately by using a porous medium approach. In this 
approach, Darcy's law which governs the flow and phase interference is represented by a relative 
permeability variable. By choosing the appropriate fitting parameters (See Table 5.3) and 
applying them in a model proposed by Honarpour et al. (1982), a relative permeability model is 
obtained that is capable of predicting the fracture behaviour during the gravity drainage 
processes. There is an acceptable agreement between experimental results and the simulator 
outputs. 
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Figure 5.11: Oil and gas relative permeability curves for the 
fracture part based on the fitted Honarpour et al. expression for 
the case under study. 

 
5.4.3.2 Simulation runs for controlled gravity drainage: The second problem addressed here 
is how to reproduce the flow behaviour in a controlled gravity drainage experiment in 
unconsolidated porous media under laboratory conditions.  In Figures 5.12a to 5.12c, the 
numerical solutions for wetting saturation for an unfractured medium while pumping the oil from 
that medium with permeability of 3* 10-10 m2 and viscosity of 1.2 mPa.s for a time period of 2 
minutes with different pumping rates are shown. The red colour and blue colour represent the 
maximum amount and minimum wetting phase saturation in Figures 5.12, respectively. It could 
be observed that there are various wetting saturation distributions for each withdrawal rate and 
lower pumping rate keeps higher amount of wetting phase in the porous media after elapsing a 
particular time of CGD. 
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(a)  q= 1.8 g/s (b)  q=2.2 g/s (c)  q= 3 g/s 
Figure 5.12: Wetting phase evolution after 2 minutes of CGD process for the 
homogeneous porous medium saturated with Varsol oil at various volumetric 
flow rates [ BT3 glass beads, L=55 cm].  

Sw=0.38 

Sw=1 

 
Figures 5.13a to 5.13b present numerical solutions for the CGD process in fractured porous 
medium, in form of schematic cartons, to capture non-wetting phase front displacement and 
distribution of the residual oil saturation after 2 minutes. This graphical presentation shows that 
the gas-liquid interface moves faster in fractures compared with matrix at the initial stage of the 
process during which liquid has not been drained out of the matrix.  In addition, Figure 5.13 
indicates that when liquid withdrawal rate increases, assuming all other system parameters 
remain unchanged, the rate of G-L interface recession in both matrix and fractures increases, as 
well. This increase in the recession rate of interface also leads to increases in the elevation 
difference between interface positions within the matrix and fractures. 
 

 
  

 

(a) q= 0.8 g/s (b)  q= 1.8 g/s 
Figure 5.13: Gas front evolution in two different parts of the fractured porous medium for two 
withdrawal pumping rates at the time of 2 minutes of CGD [ b=5 mm , L=55 cm]. 

Sw=0.37 

Sw=1 
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Figure 5.14 presents change in wetting saturation along the model height at 60 sec and 260 
seconds, respectively. These results explain well that during a short period of controlled gravity 
drainage, still a part of the porous medium has not become empty and oil saturation is 100% 
there.  This means that non-wetting phase front still is placed behind the saturated part.  
However, as the process proceeds, the volume of fully saturated part would get smaller and 
finally it vanishes and gas-liquid interface touches the bottom of the porous medium.  Such 
condition happens at 260 seconds and the residual oil saturation has the highest value close to 
production point. Also, the lowest residual oil saturation occurs at the top of the physical model.  
Therefore, as time goes on the average residual oil saturation decreases with time. 
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Figure 5.14: Oil saturation against model height under CGD at two different 
particular times [ L= 55 cm, q= 1.4 g/s]. 

 
Figures 5.15 and 5.16 show velocity profile of the two immiscible-phase problem for the 
homogeneous porous medium and fractured one. As expected, field velocity for cross section of 
the medium at the bottom end part is the same as the withdrawal velocity identified in the 
simulation input data when the numerical modeling was set for homogeneous medium.  Hence, 
in modeling of a fractured medium the same result came out and equal velocities for bother the 
fracture and matrix parts.  These velocities are identical with outward velocity, but the 
volumetric flow rate of matrix part is much higher than the fracture part because of bigger cross 
sectional area of the matrix part. Such problems can exhibit good examples of the real 
phenomena related to oil velocities in petroleum reservoirs that can be in the forms of 
homogeneous or a porous medium with vertical fractures. 
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Figure 5.15 : Oil velocity distribution in the unfractured media 
during controlled gravity drainage for two withdrawal rates [BT3 
glass beads, L=55 cm , fluid pair: Air-Varsol]. 
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Figure 5.16: Velocity distributions in the fractured porous medium 
saturated with Varsol under CGD for volumetric flow rates equal to 
1.4 cm3/s and 3.5 cm3/s [ BT3 glass beads , L=55 cm , b=5 mm]. 

 
Figures 5.17 and 5.18 represent total velocity of the wetting phase versus model height for 
homogeneous and fractured porous media, respectively during controlled gravity drainage 
process with a constant pumping rate. These figures indicate that at a particular time the field 
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velocity for wetting phase is increasing as the fluid approaches the bottom of the physical model 
where production point is located.  In this case, the porous medium is under controlled gravity 
drainage (CGD) and the pump drains the liquid out of the medium with constant volumetric flow 
rate.  
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Figure 5.17: Total velocity profile along the unfractured medium height 
when pumping rate is 1 cm3/s [BT3 glass beads, L=55 cm , fluid pair: Air-
Varsol]. 
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Figure 5.18: Total velocity distribution for matrix and fracture parts of the fractured porous model 
under CGD for two different process period [BT3 glass beads, b=5 mm, L=55 cm, test fluid: Varsol, 
q=1 cm3/s]. 
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5.5 Results and Discussions 
 
Four numerical simulations with different boundary conditions were conducted in this study 
using the developed numerical model to investigate the gravity drainage processes in both 
homogeneous and fractured porous media. In all of the numerical simulations performed, the 
boundary conditions of the laboratory works were considered properly with varied mesh size to 
investigate the effect of mesh size on the numerical simulation results. In the following part some 
important numerical simulation results are presented and then compared with the experimental 
data in order to validate the selected approach for modeling implementation. 
 
5.5.1 Evolution of saturation: Consider that we have a BT3 glass beads homogeneous porous 
media which is saturated with the Varsol oil. As the free fall gravity drainage process continues 
the saturation of wetting phase decrease in the porous medium and liquid saturation varies from a 
minimum value at the top of model to a maximum value at the model’s bottom at any particular 
time. In order to depict this phenomenon numerically, a numerical simulation was done for a 
porous medium with the same properties as the physical experimental model. The software 
provides the saturation distribution along the model’s height at various times. Figure 5.19 shows 
the simulation results for wetting phase saturation in the model. 
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Figure 5.19 :Oil saturation distribution along the height of the homogeneous 
porous model during FFGD process at different time periods 

 
It is possible to integrate and produce the amount of wetting liquid remaining in the invaded 
zone. This is shown in Figure 5.20. 
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Figure 5.20: Comparison between simulation and experimental results  
for the fractured porous media saturated with Varsol oil under FFGD 
[BT3 glass beads, b= 5 mm , L=55 cm]  

 
The gas-liquid interface movement versus time during the experiments was recorded using a 
camcorder under the gravity drainage conditions to obtain a good estimate of the average liquid 
saturation in the swept area in any specific time. Figure 5.20 shows the experimental findings 
along with numerical modeling outputs. Also, Figure 5.20 shows the relationship between the 
residual oil saturations at five specific times for the case of two-immiscible phase flow of oil-air 
in the fractured porous sample as determined by the COMSOL model and the experimental 
results. It can be seen that there is a reasonably good agreement between the two approaches as 
errors less than 10% in magnitude are observed. It should be noted here that as long as the bulk 
flow is the dominant mechanism in the gravity drainage process, the average remaining oil 
saturation will not change with time considerably in the gas invaded zone in a particular porous 
medium. However, after the process takes fairly long time, remaining oil saturation will have a 
big difference relative to when the bulk flow plays an important role in the production. Figure 
5.20 confirms the statement made above. 
 

The spatial variation of oil saturation during the controlled gravity drainage experiment is 
illustrated in Figures 5.21 and 5.22 and has similar trends to those observed during the 
experiment. The distribution of oil saturation before the gas breakthrough varies from ~ 0.36 at 
the top of the medium to 1 at the bottom when the pump is set on 1.4 g/s and the CGD lasts 
almost for 60 seconds for homogeneous porous media. The oil saturation profiles illustrate the 
gas/oil interface as it progressed through the porous medium. 
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Figure 5.21: Oil saturation distribution in the homogeneous 
porous medium under CGD during different time periods [q= 1.4 
g/s , L=55 cm, BT3 glass beads]. 
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(a)   @  t=60 seconds  (b)   @  t=100 seconds 
Figure 5.22: Oil saturation versus height for the fractured porous medium saturated with Varsol 
undergoing CGD with withdrawal rate equal to 1.4 g/s  [BT3 glass beads, L=55 cm, b=5 mm]. 
 
Figure 5.22 presents residual oil saturation for the fractured porous medium under the controlled 
gravity drainage at two different times. These plots demonstrate the gas front advancement 
change along the height of the fracture and the matrix versus time in the fractured medium.  
In the case of fractured BT3 glass beads model, the value of the final residual oil saturation, Sor, 
(at gas breakthrough) obtained from the numerical modeling was 0.28 while experimental 
magnitude is 0.29 for the withdrawal rate of 1.4 g/s.  Numerical modeling calculations say that 
the gas breakthrough was occurred after 170 seconds in homogeneous medium and 145 seconds 
in fractured one when the pumping rate was set on 2.5 g/s.  Meanwhile, based on the 
experimental observations, those numbers were recorded 155 and 133 seconds for unfractured 
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and fractured porous samples, respectively. Therefore, it can be concluded that the simulation 
results are in good agreement with those obtained from experiments. 
 
5.5.2 Liquid production history: The production histories for two numerical simulations are 
shown in Figure 5.23 and 5.24. The cumulative liquid production is based on 1.1 cm depth and 
one horizontal production well. During the free fall gravity drainage the liquid production rates 
were evaluated for three particular times, namely, 10, 20, and 60 seconds, respectively. The 
simulation results are in qualitative as well as quantitative agreement with the experimentally 
measured production history. Based on the simulation results, the cumulative liquid production is 
a linear function of time. Also, the experimental data show the same trend during the period 
which bulk flow dominates. The difference in the liquid production rates between the simulation 
run and the FFGD experiment is less than 10%. This indicates that the numerical model 
developed can successfully simulate the liquid production history of the gravity drainage 
experiments. 
Figure 5.24 shows a plot of the experimental flow rates versus the flows modelled in COMSOL. 
As mentioned earlier in this text, the agreement between the model and the experiment is 
generally very good. In most cases, the absolute error is not greater than 12%. However, the 
magnitude of the lowest errors is actually not less than 10%.  In free fall gravity drainage, a 
single porosity model was used to predict the experimental data of oil recovery from fractured 
media and the simulation results are shown in Figure 5.24. The solid lines represent the model 
results. Figure 5.24 shows that the model matches the experimental data of oil recovery 
remarkably. In the case of fractured BT3 glass beads model, the initial oil production rate 
calculated from numerical approach is 6.2 g/s compared to 5.7 g/s measured from the 
corresponding experiment. 
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Figure 5.23: a) production history b) Oil production rate versus time for the unfractured 
porous medium under free fall gravity drainage [BT3 glass beads, L=55 cm, fluid pair: 
Varsol-Air] 
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Figure 5.24: a) Oil cumulative production versus time  b) oil outflow rate versus time for 
the fractured porous medium under free fall gravity drainage [BT3 glass beads, L=55 cm, 
b=5 mm, test fluid: Varsol] 

 
Figures 5.23 and 5.24 indicate that at early times of gravity drainage processes, both the oil 
recovery and gas front position increases linearly with time.  The gas moves down the packed 
model until it approaches the capillary/gravity equilibrium at a transition time, t. After this time 
period, the change of oil recovery and gas-liquid interface is not considerable as plot of oil 
recovery versus time (Figures 5.23 & 5.24) follows a flat trend, approximately.  
 

Table 5.7 shows experimental and simulation results for the oil recovery factor after 
implementation of the gravity drainage with oil under atmospheric conditions for the both 
homogeneous and fractured media. As can be seen in Figures (5.23 & 5.24) and Table 5.7, the 
simulation results are in good agreement with those obtained from experiments.  Also, the 
comparison between the experimental findings and the simulation results indicates that the 
suggested model works satisfactorily for gravity drainage in fractured porous media. As shown 
here, the oil recovery factor obtained after implementation of the gas gravity drainage changes 
with time and varies with different the height of the model changes.  The experimental and 
simulation results obtained from all block heights in this work can be compared at the same time 
as shown in Table 5.8. The maximum simulation oil recovery factor could be attained using the 
gravity drainage with height almost equal to 80 cm. As mentioned before, the block height is 
important and can affect the oil recovery. For heights greater than 80cm, increasing model height 
does not change the magnitude of production performance, considerably.   
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Table 5.7: Experimental and Simulation results for the porous media under  free fall gravity drainage 
(FFGD) [ BT3 glass beads, fluid pair: Varsol-Air] 
 

Homogeneous medium(L=55 cm) Fractured medium (L=55 cm, b=5 mm) Production history 
Laboratory results Simulation results Laboratory results Simulation results 

Recovery Factor (%) 79.0 0.9 80.5 80.0 1.2 81.0 
Maximum production rate , 
g/s 

4.6 0.7  4.9 5.7 0.9 6.2 

Production rate, g/s (@ t=10 
sec) 

4.5 0.9  4.8 5.4 0.3 6.0 

Production rate, g/s (@ t=20 
sec) 

4.2 0.5  4.4 4.3 0.7 5.2 

Production rate, g/s (@ t=60 
sec) 

2.2 0.8  2.4 2.4 0.6 2.6 

 
 

Table 5.8: The amount of oil recovery factor for various block height of porous media according to 
laboratory and simulation works [BT3 glass beads, fluid pair: Varsol-Air] 
 

Homogeneous medium Fractured medium (b=5 mm) Block 
height (cm) Experimental recovery 

factor (%) 
Simulation recovery 
factor (%) 

Experimental recovery 
factor (%) 

Simulation recovery 
factor (%) 

28 68.5 1.2  71.0 69.5 2.0 72.0 
40 74.0 1.4  75.5 75.5 1.5 77.0 
55 79.0 0.9  80.5 80.0 1.2 81.0 
80 80.5 1.6  82.0 81.5 0.8 83.0 

 
5.5.3 Interface advancement: One of the goals of developing the numerical simulation was to 
enable the prediction of the gas-liquid advancement in the experiments. The gas-liquid interface 
positions of the simulations were extracted at 5 second-intervals. The interface corresponds to 
the elevations with 98% wetting phase in the simulation. Figures 5.25 and 5.26 are the G-L 
interface profiles extracted from the numerical simulations for different times in the porous 
medium under FFGD. These were then compared with the G-L interface profile of the 
experiment using the same plots. Interface velocity against time is shown in Figures 5.27 and 
5.28 for homogenous porous medium and fractured medium, respectively.  As can be seen in 
these figures, the interface velocities decrease with time during the free fall gravity.  The 
difference between the interface velocity obtained from the simulation and the experiment is less 
than 12%, which is satisfactory. Figure 5.28 also confirms the relationship observed between the 
interface velocity in both fracture and matrix based on the magnitude of the communication rate. 
It should be noted that in the numerical simulation, the properties of the unconsolidated glass 
beads were assumed to be uniform. 
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Figure 5.25: Gas-liquid interface position relative to top of model in the 
homogeneous porous medium under FFGD versus time [ BT3 glass 
beads, L=55 cm, fluid pair: Air- Varsol] 
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Figure 5.26: Comparison between simulation and experimental findings 
of FFGD process for gas-liquid contact locations in fracture and matrix [ 
BT3 glass beads , model length =55 cm ,  fluid pair : Varsol -Air ,  b=5 
mm] 
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Figure 5.27: Interface velocity versus time during FFGD for a 
homogeneous BT3 glass beads medium saturated with Varsol, L=55 
cm 
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Figure 5.28: G-L interface velocity versus time for a fractured porous 
medium under FFGD [ BT3 glass beads, L=55 cm , b=5 mm , Varsol 
oil-Air system] 
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For the controlled gravity drainage process, the vertical interface velocities obtained from the 
simulations are plotted in Figures 5.29 and 5.30. Since withdrawal rate is kept the same in this 
type of gravity drainage process, the rate of gas-liquid interface movement is constant throughout 
the controlled gravity drainage. It can be concluded here that under a constant withdrawal rate 
lower than the associated critical pumping rate (CPR), the elevation difference between gas-
liquid interface locations in fracture and matrix remains constant while liquid is pumping out of 
the fractured system with. The same important point was extracted from the experiments 
conveying the message that there is a good agreement qualitatively between the numerical and 
experimental results as the numerical value for (Hf-Hm) is 8.2 cm for 1.8 g/s compared to 7.6 cm 
measured in the experiment. Quantitatively speaking, the difference between those two numbers 
is reasonable, indicating this is a good indicator for error evaluation. Results from the evaluation 
of the gravity drainage interface profile indicate that this numerical model can successfully 
simulate the gas-liquid interface movement of the experiments dealing with immiscible 
displacement in porous media.  
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Figure 5.29: G-L position in the homogeneous porous medium made of BT3 glass 
beads during controlled gravity drainage based on the experiments and modeling 
part [ q= 1.8 g/s , L=55 cm , test fluid: Varsol] 
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Figure 5.30:Comparison between experimental data and simulation results for G-L 
interface positions in matrix and fractures versus time; matrix filled with BT3 glass 
beads, withdrawal rate of q=1.8 g/s, [b= 5 mm, L= 55 cm, fluid pair: Air-Varsol] 

 
5.5.4 Effect of mesh size: Two numerical simulations of the experiment were carried out using 
different mesh configurations to study the effect of mesh size on the numerical simulations 
results for free fall gravity drainage (FFGD). Simulation #1 was conducted with a 39 mm by 37 
mm mesh size and the simulation #2 was conducted with a 3.9 mm by 3.7 mm mesh size. 
Simulation # 1 has a total of 96 elements and approximately 3700 degrees of freedom.  The 
number of meshes increased to 9600 elements in the simulation #2 and the degrees of freedom 
increased to approximately 7900, which is more than double of that of simulation #1. Decreasing 
in the mesh size increases the memory requirement significantly. Furthermore, run time of 
simulation #1 was less than 15 min, while the runtime of simulation #2 was over 30 min. The 
initial (maximum) liquid production rates for simulations #1 and #2 were 5.1 g/s and 4.9 g/s, 
respectively. The oil production rate from simulation #1 was approximately 5% larger than that 
of simulation #2. The average residual oil saturation for simulations #1 and #2 were 0.14 PV and 
0.12 PV, respectively. The residual oil saturation for simulation #1 is 16 % greater than that of 
simulation #2. Both the liquid production rate and the mean residual oil saturation for simulation 
#1 are greater than that of simulation #2. The reason can be accounted for by a higher numerical 
dispersion in simulation #1 than in simulation #2. Numerical dispersion happens when the gas 
goes into an element, and it is immediately dispersed throughout the element due the averaging 
of element properties. As a result, the larger the mesh size, the greater the numerical dispersion 
and less accurate the numerical simulation will be. The effect of the numerical dispersion on 
simulation #2, with a smaller mesh size, is less than that of simulation #1; hence, it is fair to 
conclude that the simulation results from simulation #2 are more accurate than that of simulation 
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#1. This also explains why both the oil production rate and the mean residual oil saturation for 
simulation #1 were larger than those of simulation #2 by 5% and 16%, respectively. 
 
5.6 Conclusions 
 
The main purpose of this study was to investigate the appeared complexity of two-phase flow 
(air/oil) using finite element method in homogeneous and fractured porous media where the 
supposed porous media was non-deformable media.  The following five (5) conclusions can be 
made based on this study: 
 

 A new 2-D numerical model of gravity drainage was developed using COMSOL 3.4. The 
new numerical design considered single porosity modeling approach to have separate 
governing equations for matrix and fractures parts and then solve them simultaneously. 
The numerical model developed is capable of modeling the production history and the 
gas-liquid advancement patterns of the experiments. 

 By considering the capillary pressure-saturation and permeability functions as 
constitutive relations and governing equations, the unknown parameters such as the 
evolution of the model’s wetting and non-wetting phases can be estimated. 

 Four simulations with different model properties as well as different mesh configurations 
were carried out based on the properties of the experiments to validate the feasibility of 
the numerical model developed. 

 The variation of mesh configuration in the numerical simulations indicates that the effect 
of mesh size on the liquid production rate was 5% and also its impact on residual oil 
saturations was by 16%. 

 The main result of the present work was the implementation of a biphasic (Air-oil) flow 
model, including governing transport equations and capillary pressure functions in porous 
media, which coupled to fractured porous systems could be useful to study enhanced oil 
recovery (EOR) processes at laboratory scale. 

 



Chapter 6 

Conclusions and Recommendations 

6.1 Conclusions 
 
Based on two-phase flow experiments using free fall gravity drainage (FFGD) and controlled 
gravity drainage (CGD) conditions in fractured porous media, the experimental results were well 
matched by numerical simulation. Numerical simulations were also used to estimate the 
influence of variables like relative permeability, matrix capillary pressure, fracture aperture and 
test fluid properties. The results have shown that the capillary pressure function is very important 
in the simulation of gravity drainage processes. Knowledge of the capillary pressure function is 
critical in numerical modeling. 
 

The combined experimental and simulation study resulted in a much better understanding of the 
physical processes that occur during two phases flow in a fractured system, compared to 
previous reported studies (Guzman and Aziz, 1993 ; Hughes, 1995). Significant conclusions that 
are based on experimental and simulation work presented in this thesis have as follows: 
 

 Capillary continuity and communication between matrix and fracture strongly depend on 
fracture aperture, matrix physical properties and physical properties of test fluids. These 
two phenomena have high contribution in oil recovery and amount of final residual oil 
saturation in fractured petroleum reservoirs during production. 

  According to the experimental results, fractured media with lower liquid viscosities have 
higher liquid transfer rate compared to those with higher liquid viscosities. This is 
because of the fact that as liquid viscosity decreases, the height difference between local 
positions of liquid interfaces within fractures and matrix becomes smaller. This condition 
of reduced viscosity and also ΔH(t) values would result in weakening the driving forces 
available for liquid communication from matrix towards the fractures. 

 It has been observed for oil wet glass beads that a low value of interfacial tension for oil 
would increase overall recovery performance considerably because the capillary 
threshold height is shorter in comparison to the case when the model is saturated with oil 
of higher surface tension. Lower surface tension causes a decrease in the magnitude of 
residual oil saturation and it affects final oil recovery. 

 It was proven that increasing the value of fracture aperture results in higher liquid 
production rates only during the initial period of the process, but it does not have any 
significant effect on the ultimate liquid recovery. The variation of the size of fracture 
aperture changes the magnitude of transfer rate between matrix and fracture as well as the 
value of height difference between interface locations in matrix and fractures. 

 The experimental results show that an increase in matrix block height causes increase in 
matrix oil recovery by free fall gravity drainage, however the oil production performance 
approaches a limit by increasing the matrix height such that increasing the block height 
towards infinity makes an ignorable increase in production performance. This fact is 
related to capillary threshold height becoming negligible compared to porous medium 
length On the other hand, it is clear that the longer the model is, the higher would be the 
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 High density of fractures, especially vertical ones, within a porous medium accelerates 
recovery rate due to maintaining an increase in the overall effective permeability. 

 Fractures affect more the recovery history of media with low matrix permeability 
compared to the case of high matrix permeability. 

 Flow correction (Fcom), which was introduced in order to consider all assumption made in 
formulation of communication rate, is a function of dimensionless time to calculate flow 
transfer rate between matrix and fracture during free fall gravity drainage and it is not 
right to assume a constant shape factor instead a variable correction factor for calculation 
of liquid communication in fractured porous media. 

 In this study, an empirical model was developed to calculate recovery performance at 
different times of gravity drainage process that can be used for prediction of free fall 
gravity drainage in porous media if production history is available somehow. 

 Pumping rate dictates the liquid transfer between matrix and fractures, pressure profile, 
fluid flow regimes and also the G-L interface recession rate in fractured porous media 
during the course of controlled gravity drainage (CGD) experiments. 

 The elevation difference between G-L interface positions in matrix and fractures is a 
function of several parameters such as the petrophysical properties of the porous medium, 
fracture properties, physical properties of the liquid-in-place, and liquid withdrawal rate 
during controlled gravity drainage (CGD). 

 Experimental data show that as long as the withdrawal rate is constant, the elevation 
difference between G-L interface positions in both matrix and fracture mediums remains 
unchanged during a particular controlled gravity drainage experiment. 

 Pumping rate, mobility ratio and heterogeneities are three parameters that probably can 
cause viscous fingering depending on their values when we are dealing with immiscible 
displacement in fractured media. 

 It is clear that models with larger fracture aperture show higher critical pumping rate 
(CPR) and maximum pumping withdrawal rate (MPWR) values. Since a model with 
higher fracture aperture has larger storage capacity, the corresponding MPWR would be 
higher as well compared to the model with smaller fracture aperture. 

 Experiments indicate that the liquid level in fracture drops faster in the downwards 
direction (i.e. magnitude of “∆H” increases with a steeper slope) when the liquid 
viscosity is higher in magnitude. The reason is that at higher liquid viscosities, the liquid 
communication rate between matrix and fractures would decrease and as a result, there is 
no liquid flow support from the matrix side to avoid excessive recession of the G-L 
interface within the fractures compared to that of matrix. In consequence, the rate of 

change of this elevation difference with respect to the drainage rate (i.e.
dq

Hd MF )( 
) 

would be higher for the cases in which the liquid viscosity is higher as well.  
  According to the physics of Controlled Gravity Drainage (CGD) process and 

experimental findings, the Bond number, Capillary number, permeability ratios, and 
dimensionless length are the main dimensionless numbers to carry out up scaling for 
fractured porous media under gravity drainage conditions. 
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 Aspects of gravity drainage process in porous media and saturation distribution were 
successfully modeled using COMSOL®, even though the model assumed that air and test 
fluids are incompressible. The model provided verification that the assumptions made 
about residual liquid saturation in fracture, relative permeability and capillary pressure 
functions were reasonable. It can be used for modeling multi-phase flow of fluids in 
fractured porous media when acceptable values for relative permeability, capillary 
pressure and model properties are available.  

 Comparisons between experimental results and simulation outputs have shown a good 
agreement between them. This is encouraging for further developments in simulating oil 
production from heterogeneous porous media.  

 
6.2 Recommendations 
 
6.2.1 Experimental work: There are still some areas of further improvement. This study has 
relied on a simplistic description of fractured porous media. Although qualitative trends are 
possible using the simple fractured media structures employed in this research study, 
quantitative, predictive capability is possible only by using a more realistic model of fractured 
rocks. More research is needed to figure out effects of capillary continuity on recovery from 
fractured media during gravity drainage. Fracture aperture and type of test fluids are important 
parameters which should be taken into account for different fractured porous systems. 
 

The impact of wettability on capillary continuity in fractured rocks is still not fully understood. 
Visualization methods, to measure the in situ fluid saturation development in fractured rocks, are 
recommended in order to study the impact of fractures and wettability on multiphase flow in 
fractured reservoirs. Visualization technique provides useful insights to local phenomena 
happening in fractured media during free and controlled gravity drainage processes. 
 

Type of production well can affect recovery performance and gas breakthrough during gravity 
drainage processes and this subject requires more research and could be studied in future works. 
 

Accurate modeling and characterization of underground flow in multi-fluid rock systems require 
development of a fast, reproducible experimental method that yields the information necessary to 
determine the parameters of the capillary pressure–saturation and relative permeability functions. 
Therefore it is needed to develop efficient parameter estimation approach to obtain relative 
permeability and capillary pressure for simulation softwares and numerical programs to study 
three-phase flow in homogeneous and fractured porous media.  
 

Some particular fractures configurations in the fractured porous media to investigate different 
aspects of gravity drainage were used; therefore it would be interesting to have more fractures 
patterns in experimental runs and simulation part to figure out the influence of fracture patterns 
and interaction between fractures on recovery rate, gas-liquid interface downward rate and 
production performance. 
 
6.2.2 Numerical modeling: The results from the numerical simulation indicate that the current 
model is capable of replicating the experimental results within a 12% difference. The accuracy of 
the numerical model depends on the quality of the input variables. In additional to mesh size, 

 164



 165

other factors that may improve the numerical model include: 1) capillary pressure curve and 
coefficients, 2) mesh configuration, and 3) modeling technique 

 Capillary pressure curve: Capillary pressure curve is critical to the algorithm of the 
numerical model. It is used to evaluate the liquid saturation of the system. The capillary 
pressure curves used in this model were calculated based on the capillary pressure curve of a 
water-air drainage system and scaled to the interfacial tension of air- Varsol oil. The capillary 
pressure data calculated were curve-fitted using the Van Genuchten correlations to describe 
the capillary pressure curve in the numerical model. The scaling and the curve-fittings of the 
water air capillary pressure curve to describe the Varsol oil drainage affect the accuracy of 
the capillary pressure curve inputted. Instead of curve fitting the capillary pressure curve 
using Van Genuchten correlation, it is recommended to measure capillary pressure data 
directly to reduce the inaccuracy in the capillary pressure data due to curve fitting of data. 

 Mesh configuration: A quick study was conducted to understand the effect of mesh size on 
the production history, the mean residual oil saturation and the gas-liquid interface 
advancement of the numerical model. The disadvantage of the mesh configuration of the 
current numerical model is the inability to simulate gravity drainage in a very large fractured 
system. In field operation, the dimension of the control volume is in the order of kilometres 
rather than centimetres for lab scale. If the mesh size remains 1 mm by 1 cm or 0.67 mm by 
6.7 mm, the total number of element and the total degrees of freedom will be exponential. A 
suggestion in minimizing such problem is to introduce a variable mesh configuration to the 
numerical model. The idea is to have smaller size meshes near the interface and boundaries 
and larger size meshes in middle areas.  

 Modeling Technique: Regarding modeling of fractured media, dual porosity and dual 
permeability techniques in conjunction with experimental works should be performed to 
investigate the matrix-fracture transfer function in transient and steady-state flow.  
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Appendix A: CMC Information 
 
A.1 Product Description 
 
Product name: Carboxy methyl cellulose (CMC) sodium salt  
Product number: C 5678 
Company name: Sigma-Aldrich Canada, Ltd 
Store: at room temperature 
CAS number: 9004-32-4 
Molecular weight: 90 kDa 
Degree of polymerization: 400 
Sodium content: Approximately 8% by weight. 
Purity: 99.5% 
Synonym: CMC 
 
This product is a low viscosity carboxy methyl cellulose (CMC); viscosity of CMC solution 
(2%) changes from 5 cp to around 12 cp. Moreover, the viscosity of a 4% solution in water at 25 
°C is 50 - 200 centipoises. The viscosity is both concentration and temperature dependent. As the 
temperature increases, the viscosity decreases. As the concentrations increases, the viscosity 
increases. 
 
All kinds of Carboxy methyl cellulose (CMC) are used as suspending agents. Low viscosity 
CMC is usually used in "thin" aqueous solutions. Medium viscosity CMC is used to make 
solutions that look like a syrup. High viscosity CMC is used to make a mixture, which resembles 
a cream or lotion. 
 
A.2 Precautions and Disclaimer 
 
For laboratory use only. Not for drug, household or other uses. 
 
A.3 Preparation Instructions 
 
The product is soluble in water (40 mg/ml). The key to dissolving carboxy methyl cellulose is to 
add the solid carefully to the water so that it is well dispersed (well-wetted). Adding the solid in 
portions may be necessary. Adding water to the dry solid produces a "clump" of solid that is very 
difficult to dissolve; the solid must be added to the water. Stir gently or shake intermittently; do 
not stir constantly with a magnetic stirring bar. High heat is not needed and may actually slow 
down the solubilization process. A mixing device, such as an impeller-type agitator which 
produces a vortex, would allow the powder to be drawn into the liquid, but it may produce some 
shearing. 
 
A.4 Storage/Stability 
 
Under normal conditions, the effect of temperature on solutions of this product is reversible, so 
slight temperature variation has no permanent effect on viscosity. However, long periods of 
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heating CMC solutions at high temperatures (autoclaving) will degrade the product and 
permanently reduce viscosity. CMC is therefore very difficult to sterilize. 
γ-Irradiation, like heating, will degrade CMC. High viscosity CMC is more adversely affected by 
autoclaving and irradiation than is low viscosity CMC. Filtering CMC solutions tends to leave a 
gel behind because the material is fibrous, so solutions cannot be sterile filtered. 
 
A.5 Procedure to Measure Viscosity 
 
To measure the viscosity of CMC solutions: 1) Prepare a 2% (w/w) solution of CMC in water. 2) 
Heat for several hours at 37 oC. 3) Place in a shaker for one to two days at 2-8 °C to completely 
dissolve the product. 4) Bring the solution back to 25 C. 5) Measure the viscosity with a 
Brookfield viscometer 
 
A.6 CMC Rheology 
 
It has been reported in the literature that the CMC solution is a non-Newtonian fluid and its viscosity 
is a function of the shear rate. The solution is a power-law fluid which is in the category of 
pseudoplastic liquids. Figure A.1 shows shear stress versus shear rate for this kind of non-Newtonian 
fluids. However, in this thesis, the CMC solution has been considered as a Newtonian fluid with a 
constant viscosity. Because, CMC exhibits Newtonian behaviour at extreme shear rates, both low and 
high. For CMC solution (2%), if apparent viscosity is plotted against shear rate, we can see a curve 
like Figure A.2. 

 
 
 
 
 
 
 
 
 
 
 
 
  

Figure A.1: Variation of shear stress with respect 
to shear rate for shear-thinning fluid 
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Figure A.2: Apparent viscosity versus shear rate for CMC solution 
(2%) 

 
There are two reasons for assuming CMC solutions as Newtonian fluids: 

1) During the experiments, velocity gradient is negligible for the main parts of the matrix 
medium, however shear rate is in the range of 0 – 5 1/s within the portion of matrix part 
which is adjacent to the side parallel fractures. Based on the viscosity measurement, the 
liquid behaves still Newtonian fluid in the domain of low velocity gradient established in 
the fractured porous media as seen in Figure A.2. 

2) As obtained in the current study and also transport phenomena in porous media, velocity 
is small enough that we can consider Darcian flow regime for the gravity drainage 
experiments. Therefore, this assumption is valid for CMC solutions to be taken account 
as Newtonian fluids according to magnitude of Reynolds number and velocity gradient 
for both free fall and controlled gravity drainage processes. 
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Appendix B: Measurement of Physical Properties 
 

 
B.1 Viscosity  
 
There are a number of laboratory instruments for measuring viscosity. Here, two of them, which 
were employed in this study, are explained briefly. 
 
B.1.1 Coaxial cylinder viscometer:  A coaxial viscometer is used for measuring the viscosity of 
the test fluids. The type of viscometer is Fann® Model 34 series. The solution is sheared in the 
annular space between the coaxial cylinders by rotating the outer cylinder at a known speed. The 
torque, generated on the inner stationary cylinder due to viscous drag exerted by the solution, is 
transmitted to a spring. The deflection of this spring is measured on a dial indicator. The 
calibration of dial-reading vs. rotational speed has been done for two known viscosities for this 
viscometer and following equation was obtained:    
 

5196.0)Re(*1047.0  adingDial  (B.1) 

 
B.1.2 U-Capillary tube: There is a simple method to measure viscosity. First we make a U- 
capillary tube.  In one arm of the U is a container of our liquid and there is another container 
down on the other arm. By making suction, liquid is flown down through the capillary into the 
lower container. During a certain time period, we measure cumulative liquid and then calculated 
flow rate. By calibration of this simple viscometer, we find out value of viscosity for the liquid 
with unknown viscosity. Equation (B.2) shows the relationship between viscosities of two liquids 
for this type of viscometer. 
 

1

2

2

1





q

q
 (B.2) 

 
where q and µ are the volumetric flow rate and the viscosity, respectively. 
 

It should be noted that Equation (B.2) is valid when the test fluid exhibits Newtonian behavior 
and also flow regime is laminar. 
 
B.2 Surface Tension 
 
There are two common methods for measuring surface tension which were used in our research 
study. 
 
B.2.1 Capillary rise method: The end of a capillary is immersed into the solution. The height at 
which the solution reaches inside the capillary is related to the surface tension by the equation as 
follows: 

rg
h

..

cos.2




  (B.3) 
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where h is the height the liquid is lifted, σ is the liquid-air surface tension, ρ is the density of the 
liquid, r is the radius of the capillary, g is the acceleration due to gravity, and θ is the angle of 
contact. 
Contact angle is measured by a goniometer (Model 190 CA Goniometer) using an optical 
subsystem to capture the profile of a pure liquid on a solid substrate. This method is called the 
sessile drop. The angle formed between the liquid/solid interface and the liquid/vapor interface is 
the contact angle. Older systems were using a microscope optical system with a back light. In 
this methodology, high resolution cameras and software are employed to capture and analyzed 
the contact angle. 
For the purpose of modeling drainage process, it is reasonable to assume θ = 0°, since most rocks 
are water wet in their original depositional environment (Berg, 1975). 
 

B.2.2 Wilhelmy plate method: A universal method especially suited to check surface tension 
over long time intervals. A vertical plate of known perimeter is attached to a balance, and the 
force due to wetting is measured. 
 




cos.l

F
  (B.4) 

 

where l is the wetted perimeter of the Wilhelmy plate. Figure B.2 shows a simple schematic of 
the apparatus. 
 

 

Figure B.2: Schematic of Wilhelmy plate model equipment 

 

 
 

Figure B.1: Capillary rise method for measuring interfacial tension 

h 
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B.3 Density  
 
The basic way to measure density is to weigh a known volume and densitometer is another 
option if high accuracy needed 

 



Appendix C:  Multi-Variable Regression Analysis 
 

  
Design of a regression analysis procedure is important for modeling the response of a process. 
To do so, one need “good” estimates of the model parameters, i.e. the contributing parameters 
should have a minimum in the statistical variance and they should be unbiased in nature. In other 
words, if one wishes to design an appropriate regression model, some primary elements should 
be considered such as implementing a precise model, logical generalization of modeling results, 
and quantifying the dependency of response variable(s) on all process inputs. There are three 
main steps to perform such a statistical modeling which are described briefly in the following 
sections:  
 
C.1 Dimensionless Numbers 
 
In this section, the dimensionless numbers which play important role in the upscaling of the 
experimental results are discussed. There are three independent dimensions and fifteen (15) or 
sixteen (16) variables, depending on the response variable; therefore, thirteen or fourteen 
different dimensionless numbers can be defined based on the Buckingham π theorem or any of 
the dimensionless analysis analogies. Table C.1 lists the variables associated with the 
experiments carried out and Table C.2 lists the dimensionless groups that can be found.  
 
Table C.1 : Dependent and independent variables used for Buckingham-Pi theorem 
 

Variable Dimension Variable  Dimension
Particle diameter (Dp) M0 L1 T0 Matrix porosity ( m ) M0 L0 T0 

Liquid density (ρl) M1 L-3 T0 Gas liquid surface tension (σ) M1 L1 T-2 

Gas density (ρg) M1 L-3 T0 Withdrawal velocity (v) M0 L1 T-1 

Matrix permeability (Km) M0 L2 T0 Fracture aperture (b) M0 L1 T0 

Fracture permeability (Kf) M0 L2 T0 Gravitational force (g) M0 L1 T-2 

Liquid viscosity (µL) M1 L-1 T-1 Matrix width (W) M0 L1 T0 
Gas viscosity (µg) M1 L-1 T-1 Position difference between gas liquid  

interface in matrix and fracture (∆H) 
M0 L1 T0 

Model height (L) M0 L1 T0 Recovery factor (R.F) M0 L0 T0 
Fracture porosity ( f ) M0 L0 T0   
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Table C.2: Dimensionless groups obtained using Buckingham-Pi analysis 
 

Dimensionless Group  Dimensionless Group 

g

l




 
g

L




 

L

W
 

L

b
 

m

f




 
m

f

K

K
 


 gKm ..

 

Lv.

 

4

2.

v

gKm  
L

pl Dv


 ..

 

R.F 
m  

H

L


 

2

23..


lLg

 

 
Since some of above variables are constant in the experimental work, the following table shows 
the required dimensionless groups for our cases. 
 

Table C.3: Dimensionless groups used in the CGD experimental data analysis 
Dimensionless Group  Dimensionless Group 

R.F = Recovery factor 

m

f

K

K
= Permeabilities ratio 


 gKm ..

= Bond number 

Lv.

= Capillary number 

H

L


= Dimensionless height 

L

pl Dv


 ..

= Reynolds number 

 
It should be noted that six dependent variables are taken account as significant dimensional 
variables for recovery factor at gas breakthrough and elevation difference between G-L interface 
positions in matrix and fractures. Also five dependent variables are considered as effective 
parameters affecting the magnitudes of critical pumping rate and maximum withdrawal rate. 
 
C.1.1 Capillary Number: In fluid mechanics, the Capillary number represents the relative 
importance of viscous forces compared to the surface tension forces acting across a particular 
interface between the liquid and gas phase, or between two immiscible liquid phases (Grattoni et 
al, 2001). It is defined as:

                         

           
Lv

Ca
.


 

                                                         (C.1)             
 

 182

http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Surface_tension
http://en.wikipedia.org/wiki/Liquid
http://en.wikipedia.org/wiki/Immiscible


 
where “μL” is the liquid viscosity, “v” is a characteristic velocity (which could be considered as 
the withdrawal rate considering the current experimental study, , and “σ” is either the surface or 
interfacial tension between the two fluid phases. As a general rule of thumb, one can consider the 
fluid flow in a porous medium to be dominated mainly by capillary forces if the associated value 
of capillary number is equal to or less than 10- 5 (Gray, 2008). As it was stated before in Section 
4.4.2 of Chapter 4, liquid viscosity and the withdrawal rate have profound effect on the recovery 
factor, as well as on the G-L interface locations within matrix and fractures. Defining the 
capillary number as one of the contributing dimensionless numbers in the regression analysis, 
one could incorporate the importance of these two independent variables on the statistical 
modeling response.    
 
C.1.2 Bond Number: As explained in Chapter 3, the Bond number is a dimensionless number 
expressing the ratio of body forces (often gravitational) to capillary forces. 
      

           
 2.. lg

Bo



 

                               (C.2)
 

 
 

where “∆ρ” is the density difference between two fluids, “g” is the gravity acceleration in the 
direction of flow ,  “l” is the characteristic length scale (often taken as the average grain radius 
and “σ” is the surface tension across the interface (Morrow et al., 1988)). In this study, the (Km) 
is used instead of (l 2). 
 

For a vertical displacement, Bo takes into account the balance between gravity and capillary 
forces and is directly proportional to the advance of the displacing phase front. Understanding 
importance of the Bond number value is essential for investigating different aspects of gravity 
drainage process. It is wise to consider it as one of the reference dimensionless groups. This 
makes it possible to realize its importance on the different aspects of CGD process defined 
previously in section 4.4.2 of Chapter 4, including CPR, MPWR, and elevation difference 
between G-L interface positions in matrix and fractures.     
 
C.1.3 Reynolds Number: For non-Darcy flow in porous media, it is similar to turbulent flow in 
a conduit. The Reynolds number for identifying turbulent flow in conduits was adapted to 
describe non-Darcy flow in porous media (Chilton et al , 1931). The researchers conducted fluid 
flow experiments on packed particles, and redefined the Reynolds number, Re, as 

                                    
 

           L

p
p

Dv


 ..

Re 
 

                                        (C.3)
 

 

                                                                   where Dp is the diameter of particles. In practically all cases, Darcy’s law is valid as long as the 
Reynolds number based on average grain diameter does not exceed some value between 1 and 
10. Also, some experimental works in porous media have shown that the critical Reynolds 
number for non-Darcy flow to become significant is in the range of 40-80 (Levy, T., 1975). To 
be consistent with the majority of  the open literature cases in which this dimensionless number 
have been defined, macroscopic discharge velocity (i.e. withdrawal rate in case of flow under 
gravity drainage process) was used in our analogy regarding dimensionless analysis of CGD 
process.  
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C.1.4 Ratio of fracture permeability to matrix permeability, (
m

f

K

K
): This ratio is the main 

factor affecting fluid flow in both matrix and fractures during the course of CGD process. It 
could be beneficial to consider the importance of this driving force in the dimensional analysis. 
As the medium permeability (either matrix or fracture) contributes significantly to the flow 
potential within that particular medium, the ratio of fracture to matrix permeability, which is a 
dimensionless parameter) could represents the flow potential contrast between these two flow-
related media. In addition, the contrast between fracture and matrix permeabilities also involves 
liquid flow exchange between these two media. Moreover, it has profound effect on the final 
recovery factor values as well as on the amount of gas invasion into the matrix. As a result, this 
dimensionless parameter was considered as one of the groups required for the dimensionless 
analysis of CGD process performance. 
   
C.1.5 Dimensionless height, (L/∆H): In order to fulfill the sufficient numbers of dimensionless 
groups required for the dimensionless analysis, the dimensionless height has been defined as the 
ratio of the magnitude of model height, “L” (which is constant for each particular packing 
height) to the magnitude of elevation difference between G-L interface positions within matrix 
and fractures, “∆H”, in each particular fractured medium. The latter is dictated by the value of 
withdrawal rate which has been set for each particular CGD process. The main reason for 
defining this dimensionless parameter is to figure out how the height difference between liquid 
level positions within fractures and matrix would be influenced by changing the main 
independent parameters of noted CGD experiments.  
 
C.1.6 Recovery factor (R.F): As common in petroleum reservoir engineering, this 
dimensionless parameter is defined as the ratio of recoverable oil to the oil in place in a reservoir. 
It is accepted that recovery factor estimation is a tool for rapid assessment of suitability of 
recovery methods at given conditions. To ease evaluation, the results are ranked by recovery 
factor  
 
C.2 Multiple Linear Regression Models 
 
In many applications of regression analysis, it is common that there are more than one regressor 
variable. A regression model which contains more than one regressor variable is called a 
multiple regression model. As it was described in section C.1, the proposed dimensionless 
analysis contains six dimensionless groups, namely: 
 

1) Bond number, 2) Capillary number, 3) Reynolds number, 4) 
m

f

K

K
, 5) H/∆h, and, 6) Recovery 

factor 
 

There are four important objective parameters for each CGD experiment, namely CPR, MPWR, 
Recovery Factor, and elevation difference between G-L interface positions within fractures and 
matrix. These four objective functions should be statistically modeled as functions of the defined 
dimensionless groups. In order to perform the multiple linear regression analysis, these four 
objective functions should be expressed explicitly in the dimensionless form.  
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As the nature of both of CPR and MPWR is drainage liquid velocity, they could be expressed in 
terms of the capillary number. Hence, two corresponding capillary numbers would be defined: 
Critical Capillary number, associated with the CPR, and Maximum Capillary number, associated 
with MPWR. Recalling the definition of Capillary number presented in section C.1.1, Critical 
Capillary number would be the ratio of viscous forces associated with the critical pumping 
velocity (or critical pumping rate) to the capillary forces applied across the gas-liquid interface. 
Similarly, Maximum Capillary number is also defined as the viscous forces associated with the 
MPWR, divided by the capillary forces associated with the G-L interface. As a result, these two 
important parameters (CPR and MPWR) or their equivalent dimensionless groups (Critical 
Capillary number or dimensionless CPR, and Maximum Capillary number or dimensionless 
MPWR) could be estimated statistically in terms of the other mentioned dimensionless groups. 
 

The “Recovery Factor” objective function is dimensionless in nature. The elevation difference 
between G-L interface positions within matrix and fractures would also be altered to the 
dimensionless form by introducing the “dimensionless height” group. In other words, height of 
each particular model divided by the elevation difference between interface positions within 
matrix and fractures forms this forms this dimensionless objective function.         
 

In order to perform the multiple linear regression analysis, it is primarily assumed that each of 
these dimensionless objective functions is a sole function of every each of the defined 
dimensionless groups. In other words, in order to figure out the dependency of a particular 
dimensionless objective function upon a particular dimensionless group, they should be plotted 
against each other for the range of all of the experimental data which are available. As a result, 
the absolute effect of each of the dimensionless groups (Capillary number, Bond number, 

Reynolds number,
m

f

K

K
) on the dimensionless objective functions could be investigated. Doing 

so, it was primarily assumed that there is no interaction term between defined dimensionless 
predictor variables. In other words, each particular objective function is only a sole function of 
different singular dimensionless predictor values, and not a function of an interaction term, 
consisting of a combination of some of those predictor variables.  
 

Following plotting each particular dimensionless objective function versus each particular 
dimensionless group, two different schemes could appear. If the resulting graph would have a 
unique linear trend, it shows that the dimensionless objective function is a function of that 
particular dimensionless group itself and the dependency could be figured out using the multiple 
linear regression analysis. However, if the resulting graph would have multiple different linear 
trends, it means that not only the objective function has functional dependency upon that 
particular dimensionless group, but also there is a combined functional dependency between the 
objective function and a combination of dependent parameters. This combined dependant 
parameter consists of every other dimensionless group whose sole functional relationship with 
that particular objective function consists of multiple (i.e. more than one) linear graphs.  
 

Following determination of the functionality of each particular dimensionless objective function 
to different dimensionless groups and/or their combination, the coefficients of the resulting 
correlation could then be obtained using multiple linear regression analysis. In general, the 
dependent variable or response (i.e. dimensionless objective function in our case) may be related 
to “k” regression variables using the following model: 
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     exxxy kko   ....2211                                                   (C.4) 
 
This relation is called a “multiple linear regression” model with “k” regressor variables (x1 to 
xk). The parameters “β0 to βk” are called the regression coefficients, x1, x2,…,xk are the 
dimensionless numbers, and “y” is the actual response variable (i.e. objective function). 
According to the procedure mentioned above about considering the combined effect of 
dimensionless groups on the objective functions (and their related figures which are discussed 
later), and based on the physics of the CGD process which have already been reviewed in the 
first part of Chapter 4, it is found that combination of dependent dimensionless groups have also 
major contribution in the magnitudes of all the objective functions. As a result, regression 
models should include the term related to the “effect of interaction between the dependent 
dimensionless groups” as well. An interaction between two dependent variables can be 
represented by a cross-product term in the regression model, such as: 
 

   exxxxy o  21122211                                                           (C.5)                       
 
in which “e” is the random error term (or experimental error), which is defined as the difference 
between actual dependent variable and predicted dependent variable obtained by the regression 
model. As far as the curve fitting procedure using multiple linear regression analysis is 
concerned, it is much more convenient to express the mathematical operations using matrix 
notation. Suppose there are “k” regressor variables and “n” observations, and the model relating 
the regressors to the response is as follows:  
 

    niexxxy iikkiioi ,....,2,1....2211                        (C.6)                       
 
This model could be represented as a system of “n” equations; hence it could be expressed in the 
matrix notation as: 
 
     eXy                                                                                                (C.7)                              
                               
where: 
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Respectfully, the least square estimate of “β” parameter is:  
 

                                                                                       (C.8)                             yXXX '1' )( 
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C.3 Analysis of the Multi-Variable Regression Modeling 
 
The regression modeling, which is based on the assumption of validity of experimental data and 
as such the precision of preliminary DOE, should be checked accordingly in order to examine the 
curve fitting procedure and validity of the preliminary employed DOE. Three major validity 
indicators have been relied on in this section to check the suitability of the multi-variable linear 
regression analysis, namely as ANOVA tables, residual analysis, and squared of residuals’ 
analysis (Montgomery and Runger, 2006; Montgomery, 2008).  
 
C.3.1 ANOVA tables: The analysis of variance (ANOVA) table includes data from a standard 
sum of the squares of the variance analysis for regression. The relevant ANOVA table for CPR 
has been shown as Table C.4. As it is depicted in this Table, each particular ANOVA table 
includes the relevant data for each of three sources of deviation consisting of Regression, 
Residuals and Total (i.e. first column). The source of variation of each data is either due to the 
deviation of each predicted data from its group mean value (i.e. Regression), or due to the 
deviation of each predicted value from its observed value (i.e. Residuals). The sum of these two 
sources of deviation would be expressed as the Total source of deviation. For each of these three 
sources of deviations, four measures of variance (i.e. columns 2 to 5, Table C.4) could be 
described as follows: 
 

a) Degrees of freedom (i.e. DF, 2nd column of Table C.4): For each particular regression analysis, 
this parameter could be determined as the number of correlation coefficients, “N”, respect to the 
number of regressor variables used in each particular model. The higher is the degree of freedom 
for each particular model, the more reliable would be the regression model.  
 

b) Sum squares (i.e. SS, 3rd column of Table C.4): Summation of the squared deviations, which 
are predicted from the observed data, is a measure of variance for each particular regression 
analysis. Total Sum Square is the summation of the squares of the residuals with the sum of the 
squares due to the regression. 
 

c) Mean squares (i.e. MS, 4th column of Table C.4): This column contains the sum of squares 
(i.e. SS) corrected for the degrees of freedom (i.e. DF).  
 

d) F-test (i.e. F, 5th column of Table C.4): This is a variance-related statistical parameter which 
compares two models that are different from each other by one or more regressor variables to 
figure out if the more complex model would be also more reliable than the less complex one. If 
the “F” value is greater than a standard (i.e. critical) tabulated value, the more complex equation 
would be considered significant. By default, the significance level is set at 0.05. 
 

According to the above descriptions, Table C.4 is the ANOVA table for CPR, and since Fobserved, 
which is equal to 478.027, is greater than the critical value (3.48), all of the considered 
parameters in multi-variable linear regression analysis of CPR (i.e. Critical Capillary number) 
and their attributed effects are of great significance, and consequently cannot be ignored to 
simplify the related statistical analysis.  
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Table C.4 : ANOVA table for CPR (i.e. CaCr.) regression analysis 
 

 DF SS MS F 
Regression 4 8.01E-08 2E-08 478.0275273 
Residual 10 4.19E-10 4.19E-11  
Total 14 8.05E-08     

 

 

 

 

According to the same statistical analogy, ANOVA tables could also be created for MPWR (i.e. 
Maximum Capillary number) as it is depicted in Table C.5. It is clear that due to the higher 
magnitude of “F” function compared to its tabulated critical value (3.48), all the dimensionless 
groups considered for the multi-variable linear regression analysis of MPWR are of great 
importance and can be neither ignored nor reduced. In addition, it is concluded that there is at 
least one nonzero correlation coefficient in the proposed regression model.   

Table C.5: ANOVA table for MPWR (i.e. CaMax.) regression analysis  
 

 DF SS MS F 
Regression 4 9.022047 2.255512 256.1864 
Residual 10 0.088042 0.008804  

Total 14 9.110089   

 

 

 

 

The same procedure has been followed to establish the ANOVA table for the other two objective 
functions of regression analysis, dimensionless height and recovery factor just before gas 
breakthrough into the production side. Tables C.6 and C.7 show the strong dependency of noted 
objective functions to the dimensionless groups used for statistical analysis based on the high 
magnitude of observed “F” function compared to the tabulated critical values. In addition, these 
two tables show good accuracy of the regression analysis for both of these objective functions.  

 Table C.6: ANOVA table for dimensionless height regression analysis 
  

 DF SS MS F 
Regression 4 193.8636 48.46591 637.6914973 
Residual 42 3.192089 0.076002  
Total 46 197.0557   

 

Table C.7 : ANOVA table for recovery factor regression analysis 
  

 DF SS MS F 
Regression 5 26670.56648 5334.113 876.8266 
Residual 67 407.5898002 6.08343  
Total 72 27078.15628     

 

 

 

 

C.3.2 Residual analysis: The difference between the observed value of the dependent variable 
(y) and its predicted value (ŷ) is called the residual parameter (i.e. “e”) attributed to that 
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particular dependent variable. Each data point has one attributed residual value based on the 
following definition: 

Residual = Observed value - Predicted value                                                       (C.9)                  

A residual plot is a graph that shows the residual magnitudes for each particular variable on the 
vertical axis and the magnitudes of independent variable on the horizontal axis. If the data points 
in a residual plot would be randomly dispersed around the horizontal axis, that particular linear 
regression model is statistically appropriate, i.e. it predicts the dependant variable precisely 
enough compared to the actual values reported based on the experimental observations; 
otherwise, it is recommended to use a non-linear regression model instead of the linear one. In 
this section, residual plot studies have been performed for all the statistical regression analyses 
presented in section 4.5.2 of Chapter 4 to check for their validity and accuracy besides the 
accuracy check done in section C.3.1. 

Residual plots for critical Capillary number regression analysis: Figures C.1 and C.2 are the 
residual plots for critical capillary number (i.e. CPR) with respect to “Km/Kf” as well as with 
respect to the related combined interaction component (i.e. combination of Bond number, 
Reynolds number, and permeability ratio) respectively, which were included here as two samples 
of the residual plots for the critical capillary number. As it is clear in these two Figures, the 
residual data spread randomly all along the horizontal axis. In other words, the proposed linear 
regression is valid in terms of these two particular dependant variables. In addition, Figure C.3 
and C.4 are the comparison chart between actual (i.e. experimentally measured) and predicted 
values of critical capillary number against its related interaction term (combination of Bond 
number, Reynolds number, and the permeability ratio) and Bond number (Bo) correspondingly. 
As it is depicted in these Figures, there is a good compatibility between the actual and predicted 
values of critical capillary number, showing reliable performance of the proposed regression 
analysis.   

 
Figure C.1: Residual plots for “CaCr.” with 
respect to “Kf/Km” dimensionless number 

Figure C.2: Residual plots for “CaCr.” with 
respect to interaction component [Bo.Re] 
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Figure C.3: Comparison chart of predicted 
versus actual “CaCr.” against the interaction 
term 

 

Figure C.4: Comparison chart of predicted 
versus actual “CaCr.” against Bond number 

 
Residual plots for maximum Capillary number regression analysis: In order to check the 
validity of the regression analysis performed for maximum capillary number (i.e. MPWR), two 
related residual plots have been presented as well. Figures C.5 and C.6 show the residual plots 
for maximum capillary number with respect to “Ln(Kf/Km)” as well as its values with respect to 
another dimensionless parameter, i.e. the related combined interaction term, respectively. As 
these two residual plots do not present a certain trend with respect to the values provided in the 
“x-axis”, it is concluded that the proposed linear regression relationship is appropriately valid for 
predicting maximum Capillary number using available experimental data for a system analogous 
to our proposed fractured systems.  
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Figure C.5: Residual plots for “CaMax.” with 
respect to “ln(Kf/Km)” 

 

Figure C.6: Residual plot for “CaMax.” with 

respect to its related interaction component [i.e.  
Ln(Bo).Ln(ReMax.).Ln(Kf/Km)] 
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As well, a comparison between predicted and actual values of maximum Capillary number has 
been shown in Figures C.7 and C.8 as a function of two of the previously defined dimensionless 
groups to correlated “CaMax.”, i.e. the combined interaction and Kf/Km terms provided in 
Equation 4.13 in Chapter 4. As it is clear in the Figures, there is a precisely acceptable match 
between the values calculated based on the experimentally measured parameters and the values 
predicted by the regression analysis. In other words, Equation 4.13 could predict the maximum 
Capillary number (related to the MPWR) precisely for a system similar to the fractured models 
employed in our experimental approach. 
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Figure C.7: Comparison chart of predicted versus 
actual “CaMax.” against the related interaction term  

 

Figure C.8: Comparison chart of predicted 
versus actual “CaMax.” against the term named, 
Kf/Km 

Residual plots for dimensionless height regression analysis: Two consecutive plots, Figures 
C.9 and C.10, show the random spread of residual values attributed to the dimensionless height 
against two of the contributing dimensionless groups, provided previously in order to linearly 
regress it based on Equation 4.15 of Chapter 4. According to the logic provided in section C.3.2, 
it would be concluded that the regression analysis presented by Equation 4.15 accurately predict 
related values of dimensionless height based on the provided measurable experimental 
parameters for a system analogous to our fractured prototypes undergoing a particular CGD 
process. As usual, this accuracy could also be double checked by comparing the calculated 
dimensionless height values (based on the measurable experimental parameters) against its 
predicted values (using Equation 4.15) in presence of two of the contributing dimensionless 
groups according to Equation 4.15 (which is happened to be capillary number and the combined 
interaction term, (i.e. “Bo.Ln (Ca)”), as it is presented in Figures C.11 and C.12. It is clear that 
the achieved agreement has high levels of accuracy in terms of the statistical parameters. 
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Figure C.9: Residual plot for dimensionless 
height with respect to “Ln(Ca)” 

Figure C.10: Residual plot for dimensionless 
height with respect to its related combined 
interaction term (i.e. Bo.Ln (Ca)) 
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Figure C.11: Comparison chart of predicted 
versus actual dimensionless height against 
capillary number 

Figure C.12: Comparison chart of predicted 
versus actual dimensionless height against its 
combined interaction parameter (i.e. Bo.Ln(Ca)) 

Residual plots for recovery factor regression analysis: Figures C.13 and C.14 show the 
residual plots of recovery factor versus two selected contributing dimensionless groups based on 
Equation  4.18 (in Chapter 4), namely as fracture to matrix permeability ratio and also combined 
interaction term in terms of a multiplication of Capillary and Bond numbers respectively. As it is 
depicted in these two Figures, the data points are scattered randomly around the x-axis, showing 
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that the representation of the dependent variable based on that particular independent variable is 
valid within the range of change of noted independent variable. In other words, the proposed 
linear regression analysis provided to predict the recovery factor values is precisely valid for a 
system analogous to our experimental fractured system. The accuracy of Equation 4.18 to 
estimate the recovery factor values could also be examined by comparing the predicted and 
calculated actual recovery factor values. This is the theme of Figures C.15 and C.16, in which the 
calculated recovery factor values (i.e. obtained from experimentally measured parameters) are in 
good agreement with the predicted ones using Equation 4.18 when then have been plotted 
against each of the independent variables, such as capillary number and the combined interaction 
parameter as they are the cases for these Figures.  
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Figure C.13: Residual plot for recovery factor 
with respect to the dimensionless number 
named, Ca.Kf/Km 

Figure C.14: Residual plot for recovery factor 
with respect to the combined dimensionless 
number  Ca.Bo.Kf/Km 
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Figure C.15: Comparison chart of predicted 
versus actual recovery factor against capillary 
number 

Figure C.16: Comparison chart of predicted 
versus actual recovery factor values against the 
combined interaction term (i.e. Ca.Bo.Kf/Km) 

Squared residuals analysis: One of the simplest methods to check the accuracy of a particular 
linear regression is to look at the magnitudes of squared residuals. These values for the proposed 
linear regressions have been presented in Table C.8. Our results from experimental and linear 
regression analyses are showing reasonable compatibility between measured and predicted 
values. In other words, small values of residuals as well as appreciable magnitudes of squared 
residual indicate that the proposed linear regression curves works well for the experimental 
conditions noted previously.  
 

Table C.8: Summary of the statistical linear regressions  
 

Objective function Multiple R R square Standard Error Number of observations 
CPR 0.998 0.997 4.83E-06 19 
MPWR 0.999 0.998 3.2E-02 19 

(Hf-Hm) 0.997 0.995 14.38E-2 59 
Recovery Factor 0.998 0.996 21.3E-2 59 
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Appendix D: Model Report from COMSOL  

 

D.1 Table of Contents 

 Title - Two Phase Flow of Air and Oil  
 Table of Contents  
 Model Properties  
 Constants  
 Geometry  
 Geom1  
 Interpolation Functions  
 Solver Settings  
 Postprocessing  
 Equations  
 Variables 

D.2 Model Properties 

Property Value 
Model name Two Phase Flow of Air and Oil 
Author Sohrab Zendehboudi 
Company University Of Waterloo 
Department  Department of Chemical Engineering 
Reference Copyright (c) 1994-2007 by COMSOL AB
URL www.comsol.com 
Saved date Jul 5, 2010 10:32:12 PM 
Creation date Sep 6, 2008 8:35:56 AM 
COMSOL version COMSOL 3.5 

File name: C:\Users \Desktop\Homogenious.mph (Simulation Modeling of Two Phase Flow of 
Air and Oil) 
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Application modes and modules used in this model: 

 Geom1 (2D)  
o Darcy's Law (Earth Science Module)  
o Darcy's Law (Earth Science Module) 

D.2.1 Model description 

Two Phase Flow of Air and Oil 

This two-phase flow example for air and oil builds on the two-phase flow model for an air-water 
system. The switch from air-water to air-oil is accomplished with Leverett scaling of interfacial 
tensions for the different fluid pairs. 

D.3 Constants 

Name Expression Value Description 
rhowater 1000[kg/m^3]   Density, water 
rhow 803[kg/m^3]   Density, wetting fluid 
etaw 0.00392*hour[Pa*s]   Dynamic viscosity, water 
rhonw 1.28[kg/m^3]   Density, nonwetting fluid 
etanw 0.0000181*hour[Pa*s]   Dynamic viscosity, nonwetting fluid 
hour 3600     
sigma_ao 0.00259     
sigma_aw 0.00681     
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D.4 Geometry 

Number of geometries: 1 

D.4.1 Geom1 
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D.4.1.1 Point mode 
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D.4.1.2 Boundary mode 
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D.4.1.3 Subdomain mode 

 

 

 

 

 

 200



D.5 Geom1 

Space dimensions: 2D 

Independent variables: x, y, z 

D.5.1 Scalar Expressions 

Name Expression Unit Description
pnw_top 0.2[m]*rhowater*g_nw*sigma_ao/sigma_aw Pa   
pnw_in pnw_top+(0.55-y)*rhonw*g_w Pa   
pw_in -rhow*g_w*y Pa   
pw_t 5     
Hc (pnw-pw)/(rhowater*g_w) m   
Sew (1+abs(alpha*Hc)^N)^(-M)*(Hc>0)+1*(Hc<=0)     
thetaw (thetar+Sew*(thetas-thetar))*(Hc>0)+thetas*(Hc<=0)     
krw ((Sew^L*(1-(1-Sew^(1/M))^M)^2)+eps)*(Hc>0)+1*(Hc<=0)     
Cp 1/rhowater/g_w*((alpha*M/(1-M)*(thetas-thetar)*Sew^(1/M)*(1-

Sew^(1/M))^M))*(Hc>0) 
    

Senw 1-Sew     
thetanw thetas-thetaw     
krnw ((1-Sew)^L*(1-Sew^(1/M))^(2*M))*(Hc>0)+eps     

D.5.2 Expressions 

D.5.2.1 Subdomain Expressions 

Subdomain   1 2 
kaps m^2 3e-010[m^2] 3e-010[m^2]
thetas   0.38 0.38 
thetar     0.003 
alpha     0.112 
N     3.5 
L     0.5 
M     1-1/N 
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D.5.3 Mesh 

D.5.3.1 Mesh Statistics 

Number of degrees of freedom 31304
Number of mesh points 4586 
Number of elements 8800 
Triangular 8800 
Quadrilateral 0 
Number of boundary elements 605 
Number of vertex elements 6 
Minimum element quality 0.665
Element area ratio 0 
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D.5.4 Application Mode: Darcy's Law (w) 

Application mode type: Darcy's Law (Earth Science Module) 

Application mode name: w 

D.5.4.1 Scalar Variables 

Name Variable Value Unit Description 
tscale tscale_w 1e-5 s Heaviside scaling factor
g g_w 9.82*hour*hour m/s^2 Gravity 
D D_w y m Elevation/vertical axis 
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D.5.4.2 Application Mode Properties 

Property Value 
Default element type Lagrange - Quadratic
Variable Pressure analysis 
Analysis type Transient 
Frame Frame (ref) 
Weak constraints Off 
Constraint type Ideal 

D.5.4.3 Variables 

Dependent variables: pw 

Shape functions: shlag(2,'pw') 

Interior boundaries not active 

D.5.4.4 Boundary Settings 

Boundary   1, 3, 5-7 2 
Type   Zero flux/Symmetry Pressure
Pressure (p0) Pa 0 6 
Inward flux (N0) m/s 0 -9e-4 

D.5.4.5 Subdomain Settings 

Locked Subdomains: 2 

Subdomain   1 2 
Storage term (S) 1 0 Cp 
Saturated permeability (kaps) m2 kaps kaps*krw
Density, fluid (rhof) kg/m3 rhow rhow 
Viscosity, fluid (eta) Pa⋅s etaw etaw 

Subdomain initial value   1 2 
Pressure (pw) Pa pw_in pw_in
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D.5.5 Application Mode: Darcy's Law (nw) 

Application mode type: Darcy's Law (Earth Science Module) 

Application mode name: nw 

D.5.5.1 Scalar Variables 

Name Variable Value Unit Description 
tscale tscale_nw 1e-5 s Heaviside scaling factor
g g_nw 9.82*hour*hour m/s^2 Gravity 
D D_nw y m Elevation/vertical axis 

D.5.5.2 Application Mode Properties 

Property Value 
Default element type Lagrange - Quadratic
Variable Pressure analysis 
Analysis type Transient 
Frame Frame (ref) 
Weak constraints Off 
Constraint type Ideal 

D.5.5.3 Variables 

Dependent variables: pnw 

Shape functions: shlag(2,'pnw') 

Interior boundaries not active 

D.5.5.4 Boundary Settings 

Boundary   3-4, 7 5 
Type   Zero flux/Symmetry Pressure
Pressure (p0) Pa 0 6 
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D.5.5.5 Subdomain Settings 

Locked Subdomains: 2 

Subdomain   2 
Storage term (S) 1 Cp 
Saturated permeability (kaps) m2 kaps*krnw
Density, fluid (rhof) kg/m3 rhonw 
Viscosity, fluid (eta) Pa⋅s etanw 

Subdomain initial value   2 
Pressure (pnw) Pa pnw_in 

D.6 Interpolation Functions 

D.6.1 Interpolation Function: Hpnw_t 

Interpolation method: Linear 

Data source type: Table 

x f(x) 
0 0.4 
21.2 0.4 
21.25 0.6 
45.2 0.6 
45.25 0.8 
68.95 0.8 
69 1 
92.95 1 
93 1.5 
122.45 1.5 
122.5 2 
154.95 2 
155 4 
200 4 
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D.7 Solver Settings 

Solve using a script: off 

Analysis type Transient 
Auto select solver On 
Solver Time dependent 
Solution form Automatic 
Symmetric auto 
Adaption Off 
Optimization Off 

D.7.1 Direct (UMFPACK) 

Solver type: Linear system solver 

Parameter Value 
Pivot threshold 0.1 
Memory allocation factor 0.7 

D.7.2 Time Stepping 

Parameter Value 
Times 0: 0.1:120 
Relative tolerance 0.01 
Absolute tolerance 0.0010 
Times to store in output Specified times 
Time steps taken by solver Free 
Manual tuning of step size Off 
Initial time step 0.0010 
Maximum time step 1.0 
Maximum BDF order 5 
Singular mass matrix Maybe 
Consistent initialization of DAE systems Backward Euler 
Error estimation strategy Include algebraic
Allow complex numbers Off 
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D.7.3 Advanced 

Parameter Value 
Constraint handling method Elimination 
Null-space function Automatic 
Assembly block size 5000 
Use Hermitian transpose of constraint matrix and in symmetry detection Off 
Use complex functions with real input Off 
Stop if error due to undefined operation On 
Store solution on file Off 
Type of scaling Automatic 
Manual scaling   
Row equilibration On 
Manual control of reassembly Off 
Load constant On 
Constraint constant On 
Mass constant On 
Damping (mass) constant On 
Jacobian constant On 
Constraint Jacobian constant On 
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D.8 Postprocessing 

 

D.9 Equations 

D.9.1 Subdomain 

Dependent variables: pw, pnw 

D.9.1.1 Subdomain: 2 

Diffusion coefficient (c) 
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pw pnw 
-diff(kap_w*(-pwx/eta_w-
rhof_w*g_w*diff(D_w,x)/eta_w),pwx), -
diff(kap_w*(-pwy/eta_w-
rhof_w*g_w*diff(D_w,y)/eta_w),pwx), -
diff(kap_w*(-pwx/eta_w-
rhof_w*g_w*diff(D_w,x)/eta_w),pwy), -
diff(kap_w*(-pwy/eta_w-
rhof_w*g_w*diff(D_w,y)/eta_w),pwy) 

-diff(kap_w*(-pwx/eta_w-
rhof_w*g_w*diff(D_w,x)/eta_w),pnwx), -
diff(kap_w*(-pwy/eta_w-
rhof_w*g_w*diff(D_w,y)/eta_w),pnwx), -
diff(kap_w*(-pwx/eta_w-
rhof_w*g_w*diff(D_w,x)/eta_w),pnwy), -
diff(kap_w*(-pwy/eta_w-
rhof_w*g_w*diff(D_w,y)/eta_w),pnwy) 

-diff(kap_nw*(-pnwx/eta_nw-
rhof_nw*g_nw*diff(D_nw,x)/eta_nw),pwx), -
diff(kap_nw*(-pnwy/eta_nw-
rhof_nw*g_nw*diff(D_nw,y)/eta_nw),pwx), -
diff(kap_nw*(-pnwx/eta_nw-
rhof_nw*g_nw*diff(D_nw,x)/eta_nw),pwy), -
diff(kap_nw*(-pnwy/eta_nw-
rhof_nw*g_nw*diff(D_nw,y)/eta_nw),pwy) 

-diff(kap_nw*(-pnwx/eta_nw-
rhof_nw*g_nw*diff(D_nw,x)/eta_nw),pnwx), -
diff(kap_nw*(-pnwy/eta_nw-
rhof_nw*g_nw*diff(D_nw,y)/eta_nw),pnwx), -
diff(kap_nw*(-pnwx/eta_nw-
rhof_nw*g_nw*diff(D_nw,x)/eta_nw),pnwy), -
diff(kap_nw*(-pnwy/eta_nw-
rhof_nw*g_nw*diff(D_nw,y)/eta_nw),pnwy) 

Damping/Mass coefficient (da) 

pw pnw 
Cp+eps -Cp+eps 
-Cp+eps Cp+eps 

Conservative flux convection coeff. (al) 

pw pnw 
-diff(kap_w*(-pwx/eta_w-
rhof_w*g_w*diff(D_w,x)/eta_w),pw), -
diff(kap_w*(-pwy/eta_w-
rhof_w*g_w*diff(D_w,y)/eta_w),pw) 

-diff(kap_w*(-pwx/eta_w-
rhof_w*g_w*diff(D_w,x)/eta_w),pnw), -
diff(kap_w*(-pwy/eta_w-
rhof_w*g_w*diff(D_w,y)/eta_w),pnw) 

-diff(kap_nw*(-pnwx/eta_nw-
rhof_nw*g_nw*diff(D_nw,x)/eta_nw),pw), -
diff(kap_nw*(-pnwy/eta_nw-
rhof_nw*g_nw*diff(D_nw,y)/eta_nw),pw) 

-diff(kap_nw*(-pnwx/eta_nw-
rhof_nw*g_nw*diff(D_nw,x)/eta_nw),pnw), -
diff(kap_nw*(-pnwy/eta_nw-
rhof_nw*g_nw*diff(D_nw,y)/eta_nw),pnw) 

Conservative flux source term (ga) 

kap_w*(-pwx/eta_w-rhof_w*g_w*diff(D_w,x)/eta_w), kap_w*(-pwy/eta_w-
rhof_w*g_w*diff(D_w,y)/eta_w) 
kap_nw*(-pnwx/eta_nw-rhof_nw*g_nw*diff(D_nw,x)/eta_nw), kap_nw*(-pnwy/eta_nw-
rhof_nw*g_nw*diff(D_nw,y)/eta_nw) 
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Initial value (init) 

pw pw_in 
pnw pnw_in 

D.10 Variables 

D.10.1 Point 

D.10.1.1 Point 1, 4 

Name Description Unit Expression
rhof_w Density kg/m^3 rhow 
rhof_nw Density kg/m^3   

D.10.1.2 Point 2-3, 5-6 

Name Description Unit Expression
rhof_w Density kg/m^3 rhow 
rhof_nw Density kg/m^3 rhonw 

D.10.2 Boundary 

D.10.2.1 Boundary 1-2, 6 

Name Description Unit Expression 
nU_w Normal velocity m/s u_w * nx_w+v_w * ny_w
flux_w Outward flux m/s u_w * nx_w+v_w * ny_w
nU_nw Normal velocity m/s   
flux_nw Outward flux m/s   

D.10.2.2 Boundary 3-5, 7 

Name Description Unit Expression 
nU_w Normal velocity m/s u_w * nx_w+v_w * ny_w 
flux_w Outward flux m/s u_w * nx_w+v_w * ny_w 
nU_nw Normal velocity m/s u_nw * nx_nw+v_nw * ny_nw
flux_nw Outward flux m/s u_nw * nx_nw+v_nw * ny_nw
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D.10.3 Subdomain 
D.10.3.1 Subdomain 1 
 
Name Description Unit Expression 
S_w Storage term 1/Pa 0 
Qs_w Liquid source 1/s 0 
K_w Hydraulic 

conductivity tensor 
m/s Ks_w * CKs_w 

Kxx_w Hydraulic 
conductivity tensor 

m/s K_w 

Kxy_w Hydraulic 
conductivity tensor 

m/s 0 

Kyx_w Hydraulic 
conductivity tensor 

m/s 0 

Kyy_w Hydraulic 
conductivity tensor 

m/s K_w 

kap_w Permeability tensor m^2 kaps_w * CKs_w 
kapxx_w Permeability tensor m^2 kap_w 
kapxy_w Permeability tensor m^2 0 
kapyx_w Permeability tensor m^2 0 
kapyy_w Permeability tensor m^2 kap_w 
gradP_w Pressure gradient Pa/m sqrt(pwx^2+pwy^2) 
u_w x-velocity m/s (-kapxx_w * (pwx+diff(rhof_w * g_w * D_w,x))-kapxy_w 

* (pwy+diff(rhof_w * g_w * D_w,y)))/eta_w 
v_w y-velocity m/s (-kapyx_w * (pwx+diff(rhof_w * g_w * D_w,x))-kapyy_w 

* (pwy+diff(rhof_w * g_w * D_w,y)))/eta_w 
U_w Velocity field m/s sqrt(u_w^2+v_w^2) 
S_nw Storage term 1/Pa   
Qs_nw Liquid source 1/s   
K_nw Hydraulic 

conductivity tensor 
m/s   

Kxx_nw Hydraulic 
conductivity tensor 

m/s   

Kxy_nw Hydraulic 
conductivity tensor 

m/s   

Kyx_nw Hydraulic 
conductivity tensor 

m/s   

Kyy_nw Hydraulic 
conductivity tensor 

m/s   

kap_nw Permeability tensor m^2   
kapxx_nw Permeability tensor m^2   
kapxy_nw Permeability tensor m^2   
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kapyx_nw Permeability tensor m^2   
kapyy_nw Permeability tensor m^2   
gradP_nw Pressure gradient Pa/m   
u_nw x-velocity m/s   
v_nw y-velocity m/s   
U_nw Velocity field m/s   

D.10.3.2 Subdomain 2 

Name Description Unit Expression 
S_w Storage term 1/Pa Cp * CSs_w 
Qs_w Liquid source 1/s 0 
K_w Hydraulic 

conductivity tensor 
m/s Ks_w * CKs_w 

Kxx_w Hydraulic 
conductivity tensor 

m/s K_w 

Kxy_w Hydraulic 
conductivity tensor 

m/s 0 

Kyx_w Hydraulic 
conductivity tensor 

m/s 0 

Kyy_w Hydraulic 
conductivity tensor 

m/s K_w 

kap_w Permeability 
tensor 

m^2 kaps_w * CKs_w 

kapxx_w Permeability 
tensor 

m^2 kap_w 

kapxy_w Permeability 
tensor 

m^2 0 

kapyx_w Permeability 
tensor 

m^2 0 

kapyy_w Permeability 
tensor 

m^2 kap_w 

gradP_w Pressure gradient Pa/m sqrt(pwx^2+pwy^2) 
u_w x-velocity m/s (-kapxx_w * (pwx+diff(rhof_w * g_w * D_w,x))-kapxy_w 

* (pwy+diff(rhof_w * g_w * D_w,y)))/eta_w 
v_w y-velocity m/s (-kapyx_w * (pwx+diff(rhof_w * g_w * D_w,x))-kapyy_w 

* (pwy+diff(rhof_w * g_w * D_w,y)))/eta_w 
U_w Velocity field m/s sqrt(u_w^2+v_w^2) 
S_nw Storage term 1/Pa Cp * CSs_nw 
Qs_nw Liquid source 1/s 0 
K_nw Hydraulic 

conductivity tensor 
m/s Ks_nw * CKs_nw 
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Kxx_nw Hydraulic 
conductivity tensor 

m/s K_nw 

Kxy_nw Hydraulic 
conductivity tensor 

m/s 0 

Kyx_nw Hydraulic 
conductivity tensor 

m/s 0 

Kyy_nw Hydraulic 
conductivity tensor 

m/s K_nw 

kap_nw Permeability 
tensor 

m^2 kaps_nw * CKs_nw 

kapxx_nw Permeability 
tensor 

m^2 kap_nw 

kapxy_nw Permeability 
tensor 

m^2 0 

kapyx_nw Permeability 
tensor 

m^2 0 

kapyy_nw Permeability 
tensor 

m^2 kap_nw 

gradP_nw Pressure gradient Pa/m sqrt(pnwx^2+pnwy^2) 
u_nw x-velocity m/s (-kapxx_nw * (pnwx+diff(rhof_nw * g_nw * D_nw,x))-

kapxy_nw * (pnwy+diff(rhof_nw * g_nw * 
D_nw,y)))/eta_nw 

v_nw y-velocity m/s (-kapyx_nw * (pnwx+diff(rhof_nw * g_nw * D_nw,x))-
kapyy_nw * (pnwy+diff(rhof_nw * g_nw * 
D_nw,y)))/eta_nw 

U_nw Velocity field m/s sqrt(u_nw^2+v_nw^2) 
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