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ABSTRACT 
 

Heavy oil derived from oil sands is becoming an important resource of energy and 

transportation fuels due to the depletion of conventional oil resources. However, bitumen 

and heavy oils have a low hydrogen/carbon ratio and contain a large percentage of sulfur and 

nitrogen heterocyclic compounds. At the level of deep desulfurization, aromatic poly-nuclear 

molecules, especially nitrogen-containing heterocyclic compounds, exhibit strong inhibitive 

effect on hydrodesulfurization (HDS) due to competitive adsorption on catalytically active 

sites with sulfur-containing molecules. Therefore, it is necessary to study the HDS of 

refractory sulfur-containing compounds and also the effect of nitrogen-containing species on 

the deep HDS for achieving the ultra low sulfur specifications for transportation fuels. 

Additionally, the cost of H2 increased in recent years and a bitumen emulsion upgrading 

technique using an alternative in-situ H2 generated via the water gas shift (WGS) reaction 

during the hydro-treating was developed in our group. In the present study, a kind of nano-

dispersed unsupported MoSx based catalyst was developed and used for hydrodesulfurization, 

hydrodenitrogenation (HDN) and upgrading bitumen emulsions. 

 

Objectives of this thesis were to (1) improve the catalytic activity of the nano-dispersed Mo 

based catalysts towards the HDS and HDN reactions of refractory sulfur-/nitrogen-containing 

compounds; and (2) compare the reactivity of in-situ hydrogen generated via the WGS 

reaction versus externally provided molecular hydrogen in HDS and HDN reactions to 

improve the efficiency of the bitumen emulsion upgrading technology developed by our 

group. 
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In the present study, to stimulate the reaction system of bitumen emulsion, water was added 

into the organic reaction system, so there are different phases in this reaction system. To 

investigate the activity of the catalyst, the catalyst particles dispersed in different phases were 

characterized separatedly via HRTEM-EDX. After HRTEM-EDX study, all phases were 

mixed up and dried for further characterizations, BET, SEM, and XRD. The catalyst 

prepared in in-situ hydrogen was found to have higher surface area and smaller particle size 

than the one made in molecular hydrogen. The presence of sulfur-/nitrogen-containing 

compounds in the preparation system caused significant changes in the morphology of 

dispersed Mo sulfide catalyst according to HRTEM observations.  

 

Refractory sulfur-containing compounds of dibenzothiophene (DBT) and 4,6-

dimethyldibenzothiophene (4,6-DMDBT) were used as model compounds in HDS studies. 

The simultaneous HDS of both model compounds was performed at different reaction 

temperatures from 330°C to 400°C. The effect of the reaction temperature on the WGS 

reaction in the presence of sulfur-containing model compounds was reported. A kinetic 

model for HDS reactions was proposed and used in discussing experiment results. The 

relative HDS reactivity of 4,6-DMDBT to DBT using dispersed Mo sulfide catalyst in in-situ 

hydrogen was found to be higher than the reported results which were obtained over 

supported catalysts. Nickel and potassium were introduced into Mo sulfide catalysts as 

promoters and their effect on the WGS reaction and the HDS reaction were discussed.  

 

The simultaneous HDS was carried out in the two different hydrogen sources. The in-situ 

hydrogen reaction system showed higher conversion and desulfurization results of both 
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sulfur model compounds. This observation has been found to be mainly contributed by the 

higher activity of the Mo sulfide catalyst prepared in in-situ H2.  

 

Strong inhibitive effect of nitrogen-containing compounds, basic quinoline or non-basic 

carbazole, on the HDS of refractory sulfur model compounds was observed and discussed. 

Basic quinoline was a much stronger inhibitor than non-basic carbazole. The two HDS 

reaction pathways were affected by nitrogen-containing compounds to different extents. 

 

The HDN of quinoline over the dispersed Mo sulfide catalyst using in-situ hydrogen had 

been studied extensively by a previous member in our group. In this thesis, the HDN of 

carbazole was studied. From the identification of HDN products of carbazole, a HDN 

reaction network was proposed. The HDN of carbazole was processed at different reaction 

temperatures. The WGS reaction was not inhibited in the presence of carbazole. Comparable 

reactivity of the two hydrogen sources towards the HDN of carbazole was observed. The 

presence of 4,6-DMDBT caused significant effect on the HDN of carbazole due to the 

competitive adsorption on the catalyst surface. 
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Chapter 1 Introduction 
 

Canada’s oil sands deposits contain as much as 173 billion barrels of economically viable oil, 

second only in size to Saudi Arabia1. To recover deep buried oils, techniques such as steam 

injection or hot water extraction are applied and result in forming heavy oil/bitumen 

emulsions. As an inhibitor for hydro-treating reactions, the water present in heavy 

oil/bitumen emulsions has to be removed from the reaction system by adding surfactants 

before upgrading. To solve this problem, a novel heavy oil/bitumen emulsion upgrading 

process was developed in our group, wherein both water-removal and upgrading were 

encompassed in a single-step process2,3,4, as shown in Fig. 1-1. This process is based on the 

activation of water present via water gas shift reaction (as shown in Eq.(1-1)) to generate 

reactive hydrogen in-situ for upgrading. The previous work done in our lab5,6 has 

demonstrated that in-situ H2 is more effective than molecular H2 for upgrading Cold Lake 

bitumen emulsions (22wt% H2O, 4.4 wt% S dry, 8780 CP@40⁰C). Therefore, in situ H2 is a 

promising and economical alternative source of molecular hydrogen for industrial upgrading 

processes. 

                         (1-1) 

Besides the WGS reaction, reactions involved in the new one-step upgrading process include 

hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodemetallization (HDM), 

hydrogenation, and hydrocracking.  The present study is focused on HDS and HDN 

CO + H
2
O   CO

2 
+ “in-situ” H

2
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reactions using model compounds to understand these fundamental reactions occurring 

during the upgrading process. 

 

Fig. 1 - 1  The new one-step bitumen emulsion upgrading technology developed by Ng et al 2-3 

 

It is well known that environmental concerns result in more rigorous legislation 

specifications for petroleum products, including fuel oils. These specifications emphasize the 

importance of the conversion of heavy oil/bitumen into lighter and more valuable clean 

products7 with ultra-low sulfur concentration. The maximum amount of sulfur allowed in 

gasoline and diesel fuel was reduced to 50 ppm in 2005 and would  probably be reduced even 

further by 20108. Deep hydrodesulfurization technology must be implemented to attain this 

low level limitation on sulphur content . At the level of deep desulfurization, aromatic 

polynuclear molecules, especially nitrogen-containing heterocyclic compounds, exhibit 
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strong inhibitive effect on HDS9. The negative effect of nitrogen-containing compounds on 

HDS is very strong, even at concentrations as low as 5 ppm of nitrogen in the form of 

quinoline or carbazole10. The nitrogen-containing compounds are more difficult to be 

removed than sulfur-containing species. Therefore, it is necessary to study the effect of 

nitrogen-containing compounds on the deep HDS of refractory sulfur-containing species for 

achieving the recent ultra-low sulfur specifications for gasoline and diesel fuels.  If most of 

sulfur- and nitrogen-containing compounds could be removed from heavy oils/bitumen 

emulsions in the preliminary upgrading process, the burden of sulfur removal in the 

downstream treatments would be greatly alleviated. Therefore, one of major objectives of 

this thesis is to investigate (1) the catalytic HDS and HDN activities of candidate catalysts, (2) 

HDS and HDN reaction mechanisms and kinetics using model compounds, and (3) mutual 

effects between HDS and HDN reactions.  

 

Dibenzothiophene and 4,6-dimethyldibenzothiophene are typical refractory sulfur species 

present in heavy oil/bitumen and they will be used as sulfur-containing model compounds in 

the present study. Carbazole and its derivatives have been reported as predominant nitrogen-

containing compounds in an atmospheric gas oil (AGO) 11. They were also identified as the 

most refractory organic nitrogen-containing species towards HDN in a blended gas oil12. 

Therefore, carbazole will be used as one of nitrogen-containing compounds to study HDN 

reactions in this thesis. Besides non-basic carbazole, basic quinoline will also be used as a 

basic nitrogen-containing model compound in the chapter studying the effect of nitrogen-

containing compounds on the HDS activity of the catalyst since it has been considered as 

one of the strongest HDS inhibitors due to the strong adsorption on active sites via the 
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donation of their unpaired electrons to the Lewis sites or by the interaction with the protons 

of the Brønsted acid sites9, 13.  

The other major objective of this thesis is to develop high effective catalysts for upgrading 

bitumen emulsions. Unsupported dispersed Mo sulfide based catalysts were found to be more 

efficient in hydro-treating than traditional supported catalysts. According to experimental 

results of Aldridge and Bearden14, an unsupported M-Coke catalytic system provided several 

orders of magnitude more catalyst particles per cm3 of oil in the reactor, even though the 

amount of M-Coke catalyst in the reactor was only a fraction of that used in an expanded bed. 

Compared with supported catalysts, unsupported dispersed catalysts have a number of 

advantages such that15,16: (1) deactivation problems could be reduced by the use of once-

through dispersed catalysts; (2) a high degree of catalytic metal utilization results from the 

absence of diffusional limitations; (3) well-dispersed small particles provide a high surface 

area for maximum interaction of feed, oil and hydrogen. 

 

As well accepted, nickel has a significant promotional effect on the HDS/HDN reactions 

after being introduced into the MoS based catalyst. It was proposed that the promoter (Ni) 

weakened the metal-sulfur bond in the MoS itself, and increased the electronic density on the 

sulfur atoms, which could also be interpreted in terms of an enhancement of the basicity of 

the S2- centers17. Furthermore, the positive effect of Ni on the WGS reaction was also 

reported18. Potassium is a well-accepted effective promoter for the WGS reaction19,18,20. 

Therefore, in this thesis, to develop more effective nano-dispersed molybdenum catalysts for 

upgrading bitumen and heavy oils by using syngas, nickel and potassium promoters will be 
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introduced into the catalyst to improve the activity for both the WGS reaction and the 

bitumen upgrading reactions.  

 

To achieve these two major objectives, developing high active catalysts and investigating 

HDS/HDN reaction mechanisms and kinetics, experiments will be carried out in a batch 

reactor using CO to provide in-situ generated hydrogen over dispersed Mo sulfide based 

catalysts. The HDS activity of unpromoted and promoted dispersed Mo sulfide catalysts will 

be investigated first. The HDS of sulfur-containing model compounds obtained using in-situ 

hydrogen will be compared with that using molecular hydrogen to evaluate the efficiency of 

the CO reaction system towards HDS reactions with the presence of water over dispersed 

catalysts. Continuously, the effect of the two nitrogen-containing model compounds on HDS 

will be compared and discussed. Finally, the catalyst activity towards the HDN of carbazole 

and HDN reaction mechanism and kinetics will be studied in both hydrogen sources. To 

explain the experimental results, morphology and physical properties of candidate catalysts 

are characterized via HRTEM, SEM, XRD, and BET.  

 

There are 9 chapters in this thesis. Chapter 1 and Chapter 2 introduce the background and 

objectives of the present study. Chapter 3 describes experimental and characterization 

conditions, including flow charts for reactors, experimental procedures, methodology for 

analyzing products, and characterization techniques.  

 

Chapter 4 is an important chapter in this thesis. It extends the characterization to the catalyst 

particles dispersed in different phases involved in hydro-treating reactions via high-resolution 

transmission electron microscopy (HRTEM) combined with energy-dispersed X-ray analyzer 
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(EDX). This technique could provide an insight into the morphology of Mo sulfide slabs and 

the atomic composition of the observed catalyst particles. Additionally, the BET, XRD, and 

SEM techniques are also applied to analyze the surface area, pore size, crystal diameter, and 

dispersion of catalysts. The characterization results will be used to understand and explain 

experiment results. 

  

From Chapter 5, experimental results will be reported and discussed. First of all, 

simultaneous HDS of DBT and 4,6-DMDBT over in-situ prepared dispersed Mo sulfide 

catalyst is described in Chapter 5. After introducing the identification of their HDS products, 

kinetics modeling and calculation, the effect of reaction temperature, and the effect of 

promoters on HDS reactions are studied.  

 

At the beginning of Chapter 6, the simultaneous HDS results of DBT and 4,6-DMDBT are 

compared via using different hydrogen sources, CO, syngas, and molecular hydrogen. 

Continuously, the effect of hydrogen sources on the HDS activity of the dispersed Mo sulfide 

catalyst is identified via ex-situ preparing the nano-dispersed catalysts in CO or hydrogen. 

The reactivity of the two hydrogen sources in the simultaneous HDS of DBT and 4,6-

DMDBT is also compared in this chapter. 

 

The strong inhibitive effect of N-containing compounds on HDS has been observed by many 

researchers21,22,23. To reach deep HDS, this effect has to be studied. In Chapter 7, the 

inhibitive effect of carbazole and quinoline on the simultaneous HDS of DBT and 4,6-

DMDBT is investigated and discussed.  
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Chapter 8 is focused on the HDN of carbazole. An HDN reaction network of carbazole is 

proposed in this chapter. Kinetic modeling of pseudo-first-order rate constant for the 

conversion of carbazole is introduced and applied in HDN studies. HDN results of carbazole 

obtained using the two sources of hydrogen are compared and discussed. In the last section of 

this chapter, the effect of a sulfur-containing compound, 4,6-DMDBT, on the HDN of 

carbazole is investigated and discussed. 

 

Chapter 9, the last chapter, is devoted to summarize major conclusions and to list the 

recommendations for future studies. 
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Chapter 2 Literature Review 
 

 

2.1 Dispersed Mo sulfide catalysts 
 

Traditional hydro-treating catalyst usually contains sulfided molybdenum promoted by cobalt 

and/or nickel and is supported on porous alumina with high surface area. In recent years, the 

application of unsupported dispersed molybdenum sulfide based catalysts for deep HDS and 

upgrading of heavy oils is studied intensively24,25,26,27,28,29,30. The use of unsupported catalysts, 

which could be dispersed in a heavy feedstock, is considered to be a promising way to 

improve the efficiency of HDS/hydro-treating processes. Unsupported catalyst provides very 

high density of active sites for hydro processing reactions31, reaches high degree of catalytic 

metal utilization due to the absence of diffusion limitation, and reduces deactivation 

problems by the once-through use of dispersed catalysts15-16. These advantages lead to more 

efficient activation of hydrogen molecules, and hence, high suppressibility of coke formation. 

For this reason, hydro-refining processes utilizing dispersed catalysts are particularly suited 

for upgrading heavy oils. Furthermore, unsupported dispersed catalysts are more suitable for 

specific studies via advanced analytical techniques than their supported counterparts to 

understand reaction mechanisms and find out active sites because the interference with 

support has been eliminated31,32,33,34,35.  

 

Dispersed catalysts can be in-situ generated in the feed of heavy oil as finely dispersed 

powders via thermal or hydrothermal decomposition of water-soluble or oil-soluble catalyst 



10 
 

precursors36,37,38. The term of hydrothermal decomposition preparation method is a process of 

thermal decomposing the catalyst precursor in the presence of water and this process is also 

called as aqueous preparation. This technique is suited for preparing dispersed catalysts from 

water soluble precursors. E. Devers et al38 compared the methods of hydrothermal 

decomposition with traditional thermal decomposition, in which there was no water involved, 

and they found the hydrothermal samples had higher activity towards the HDS of thiophene.  

 

It is well known that the presence of water has significant inhibitive effect on hydro-treating 

reactions because of its high oxygen content and its competitive adsorption on the catalyst 

surface. Therefore, the effect of water on hydro-treating reactions is important in the 

application of hydrothermal synthesis of highly active catalysts. It is believed that the 

inhibitive effect of water could be diminished by maintaining the pressure of H2S at a 

desirable level so that the catalyst can be kept in sulfided state39. Satterfield et al40 observed a 

promotion effect of water on the HDN of quinoline and they reported the enhancing effect of 

water increased in the presence of H2S. Song et al25, 41 dissolved molybdenum precursor in 

water when they studied on the liquefaction of coal over dispersed MoS2 catalyst and they 

discovered a surprisingly strong promotion effect of water addition on the catalytic 

conversion of coals. They found that: (1) water addition was effective for the generation of 

active Mo sulfide from ammonium tetrathiomolybdate (ATTM); but when the active catalyst 

had been generated, the water had an inhibitive effect on the C-O bond cleavage or the 

hydrogenation of aromatic rings; (2) the surface area of MoS2 generated from ATTM with 

added water was much higher (>300 m2/g for the sample prepared at 375̊C) than that from 

ATTM alone (<300 m2/g for the sample prepared at 375̊C). They explained that the added 
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water could dissolve ATTM, and the presence of the organic solvent helped to disperse 

ATTM-containing water droplets during agitation, which gave rise to finely dispersed 

precursor molecules isolated by organic solvent prior to and during their decomposition and 

hydrogen reduction25, 41.  

 

Our group has used dispersed MoS2 based catalysts prepared via the hydrothermal synthesis 

method for upgrading heavy oils and HDS for years. The ratio between water to reacting 

reagents was optimized36, 42. Based on our study, water had a positive effect on HDS and 

upgrading at low concentrations and inhibitive effect was observed when increasing water 

concentration beyond the optimum ratio. 

 

2.2 HDS of refractory sulfur-containing compounds 
 

To understand basic HDS reaction mechanisms in the present reaction system, in-situ H2 with  

in-situ prepared dispersed Mo sulfide catalyst, model sulfur-containing compounds was used 

in this thesis to investigate the HDS activity of candidate catalysts and study the application 

of in-situ H2 for HDS.  

 

As reported, the size and the type of sulfur-containing compounds present in major 

transportation fuels, gasoline, jet fuels, and diesel fuels, have a relationship to the boiling 

range of each distillate fuel fraction43. In the middle distillates, alkylated benzothiophene, 

dibenzothiophene, and alkylated dibenzothiophene are major sulfur-containing species, and 

in heavy oils, more than or equal to three-polycyclic sulfur-containing compounds are 

predominant, such as DBT and benzonaphthothiophene. The reactivity of sulfur-containing 
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compounds in HDS reactions is mainly determined by molecular size and structure, and also 

is affected by the number and the location of alkyl-substituents to the molecule. For example, 

among the isomers of dimethyl-benzothiophene, the one with methyl substituents at 4- and 6-

positions, which are adjacent to the sulfur atom, has the lowest HDS reactivity due to the 

highest steric hindrance of the methyl substituents at these locations to the access of the 

molecule to the catalyst surface.  

 

Bataille et al17 reported that 4,6-DMDBT had similar adsorption coefficient as DBT on Mo 

sulfide surface and they attributed the much lower reactivity of 4,6-DMDBT to (1) the fact 

that only one β-H available for the elimination step, (2) a steric hindrance caused by the 

methyl groups during the E2 elimination step of the dihydrointermediates, and (3) an effect of 

the methyl group on the acidity of the H atom at positions 4 and/or 6. 

 

Therefore, to achieve deep HDS, the conversion and the removal of these key substituted 

DBT to a large extent determine the required HDS conditions. In this thesis, the HDS of 4,6-

DMDBT in a mixture with one of the typical sulfur-containing compounds present in heavy 

oils, DBT, will be studied over the dispersed Mo sulfide catalyst using in-situ H2.  

 

It is well known, the HDS reaction of refractory sulfur-containing compounds proceeds in 

two reaction pathways, direct desulfurization route (DDS) and hydrogenation desulfurization 

route (HYD). The HDS reaction networks of DBT and 4,6-DMDBT were proposed in Fig. 2-

1 and Fig. 2-2 based on the HDS products detected in the present study44 (the identification 

of HDS products refers to the section of 5.3) and also based on the comparison with 

literatures13c. 
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In the HDS of DBT, biphenyl (BP) is the DDS product obtained via the direct sulfur removal 

from the molecule, whereas, cyclohexylbenzene (CHB) and dicyclhexyl (DCH) are sulfur-

removed products obtained in the HYD route with hydrogenated aromatic rings. The product 

of tetrahydro-DBT (TH-DBT) is the partially hydrogenated benzenic ring(s) and it is an 

intermediate in the HYD pathway. The sulfur-removed products obtained via the HYD route 

are called as HYDD products (as illustrated in Fig. 2-1) in this thesis. Similarly, the HDS 

products of 4,6-DMDBT could be divided to DDS and HYDD products as shown in Fig. 2-2. 

However, the HDS of 4,6-DMDBT is more complicated than that of DBT due to the 

presence of the methyl substituents in the molecule, whose positions change during the HDS 

reactions due to isomerization. As a result, many isomers of DDS and HYDD products were 

detected in the HDS of 4,6-DMDBT (Fig. 2-3). Actually, the isomerization of 4,6-DMDBT 

occurred during the HDS is beneficial for the HDS of 4,6-DMDBT by transforming the 

molecule into more reactive isomers45,46.  
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Fig. 2 - 1 HDS reaction net work of DBT using in-situ H2 over dispersed Mo sulfide catalysts. 

DBT: dibenzothiophene, BP: biphenyl, TH-DBT: tetrahydrodibenzothiophene, CHB: 

cyclohexylbenzene, DCH: dicyclhexyl 

 

 

 



15 
 

 

Fig. 2 - 2 HDS reaction network of 4,6-DMDBT using in-situ H2 over dispersed Mo sulfide 

catalysts. 4,6-DMDBT: 4,6-dimethyldibenzothiophene, 3,3’-DMBP: 3,3’-dimethylbiphenyl, 

DM-TH-DBT: dimethyl-tetrahydro-dibenzothiophene, DM-HH-DBT: dimethyl-hexahydro-

dibenzothiophene, DMCHB: dimethyl-cyclohexylbenzene 
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Fig. 2 - 3 GC chromatograph of HDS products of DBT and 4,6-DMDBT detected by FID and 

PFPD detectors. 

 

The selectivity of the two reaction pathways is a key point in the HDS study. It is determined 

by many factors, such as the sulfur-containing molecular structure, feedstock composition, 

catalyst morphology and composition, and experimental conditions32,13c,47,8. It has been 

widely observed that DDS is the dominant reaction route in the HDS of DBT13c,48, while 

conversely, HYD is the major reaction pathway in the HDS of 4,6-DMDBT13c. The high 

selectivity towards the HYD route is attributed to the steric hindrance of the adsorption of the 

sulfur atom on the catalyst surface caused by the presence of methyl groups at positions of 4 

and 6 in the 4,6-DMDBT molecule48. This thesis would be the first to study the effects of 
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reaction conditions, such as the use of different hydrogen sources, catalyst morphology, and 

the addition of nitrogen-containing species, on the selectivity between the two HDS reaction 

pathways in the HDS of each sulfur-containing model compound over dispersed Mo sulfide 

catalyst using in-situ hydrogen.  

 

2.3 Use in-situ hydrogen instead of molecular hydrogen 

 

The comparison between in-situ H2 versus molecular H2 in HDS reactions was discussed in 

literatures36, 49, but contradicting results were observed. As reported by Ng49a and Liu49b, in-

situ H2 was superior to molecular H2 in the HDS of benzothiophene (BT) and DBT, while 

Takemura et al49d observed that molecular H2 was more effective than in-situ H2 in the HDS 

of Khafji residual oil over supported CoMo/Al2O3. Comparative reactivity of both of them in 

the HDS of BT and DBT over commercial CoMo(NiMo)/Al2O3 catalysts was reported by 

Kumar et al49c. Lee et al36 attributed these reported contradicting results to the different 

proportions of H2O to CO used in the hydro-treating reactions. In the present reaction system, 

water has two functions of (1) participating the WGS reaction to generate in-situ H2, and (2) 

inhibiting the hydrotreating reactions. Therefore, by changing the ratio between H2O to CO, 

higher reactivity of in-situ H2 than molecular H2 in the HDS of DBT could be obtained as 

seen by Lee’s results36, 42. 

 

The application of in-situ H2 in the HDS of DBT and the HDN of quinoline has been studied 

intensively by Lee42. Comparable and even more effective hydro-treating results were 

observed when using in-situ H2 instead of molecular H2. Besides the model compounds study, 
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the efficiency of the in-situ H2 reaction system in bitumen upgrading was also investigated by 

using a Cold Lake bitumen emulsion provided by Imperial Oil in our group6. In this real 

feedstock study, in-situ H2 was more active than molecular H2. So, the application of in-situ 

H2 as an additional effective H2 source is a promising process for upgrading bitumen 

emulsions. In this thesis, the comparison of the reactivity of two hydrogen resources will be 

extended in the simultaneous HDS of DBT and 4,6-DMDBT and also in the HDN of 

carbazole. 

 

2.4 Inhibitive effect of N-containing species on HDS 

 

In the petroleum industry, the long-term trend is towards processing heavier feed stocks 

containing large quantities of sulfur and nitrogen. The problem in deep removal of sulfur has 

become more serious due to the lower and lower legislation limit of sulfur content in finished 

gasoline and diesel fuel products, and the higher and higher sulfur and nitrogen contents in 

the crude oils. As summarized by Song43, the majority of sulfur-containing compounds 

present in heavy oils are greater than or equal to three-ring polycyclic sulfur compounds, 

including DBT, benzonaphthothiophene, phenanthro[4,5-b,c,d]thiophene and their alkylated 

derivatives. These multi-ring polycyclic sulfur species have low reactivity in HDS and they 

are the sulfur-containing compounds detected in the finished commercial transportation fuel 

product of diesel. The removal of such low reactive sulfur species is a challenge to the 

present technique. Moreover, the inhibition effect on the deep HDS of heavy oils becomes 

more severe due to the competitive adsorption of nitrogen-containing compounds on the 

catalytically active sites of the catalyst.  
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Most of the nitrogen in petroleum is in the form of 5- and 6-membered heteroatom rings and 

anilines. The 6-membered rings and anilines are the most basic, accounting for about one 

third of the total nitrogen. Usually, basic nitrogen-containing compounds, such as quinoline, 

were considered as stronger inhibitors for HDS than non-basic nitrogen-containing species, 

such as carbazole39. The inhibiting behaviour of nitrogen-containing compounds on hydro-

treating reactions was described using Langmuir-Hinshelwood rate equations50. For six-

membered heterocyclic nitrogen-containing species, a good correlation between adsorption 

equilibrium constants and proton affinities, except for sterically hindered nitrogen-containing 

compounds, was observed by LaVopa et al 50a and Nagai et al 50b. They have found that the 

adsorption strength of the inhibitors increased in the order of ammonia < aniline < pyridine < 

quinoline. This order was in accordance with the order of inhibition strength on the poisoning 

of hydroprocessing catalysts by these nitrogen species50a. The initial adsorption of six-

membered heterocyclic nitrogen compounds, such as quinoline and pyridine, was proposed 

to be through the nitrogen heteroatom, either by donating its un-paired electron to a Lewis 

site or by the interaction with the proton of a Brϕnsted site8, 50a, b .  

 

As the major nitrogen-containing compounds present in many hard-to-desulfurize middle 

distillates10-11, 51, the effect of five-membered heterocyclic nitrogen-containing compounds, 

such as carbazole and its derivatives, on HDS reactions are also studied intensively, and they 

are normally considered as less poisoning than basic species. However, the inhibitive 

strength of the non-basic carbazole on the HDS of model sulfur-containing compounds is not 

conclusive. As reported by Nagai and Kabe50c, strong inhibitive effect on the HDS of DBT 

was caused by the presence of carbazole. As observed by Laredo et al10, non-basic carbazole 

had comparable negative effect as the basic quinoline on the HDS of DBT over a commercial 
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CoMo/γ-Al2O3 catalyst. The different observed inhibitive strength of five-membered 

heterocyclic carbazole on HDS reactions may be due to the nature of the active catalysts as 

suggested by the experimental results obtained by Turaga et al., who observed that carbazole 

had little effect on the HDS of 4,6-DMDBT over a commercial γ-Al2O3-supported CoMo 

sulfide catalyst, while it significantly inhibited the HDS activity of a CoMo/MCM-41 

catalyst13b. Their results indicated that the effect of carbazole on HDS could be affected by 

the physical property of catalyst. The effect of carbazole on HDS has been rarely studied 

over dispersed Mo sulfide catalysts, and this would be investigated in Chapter 7 of present 

thesis. 

 

2.5 HDN of carbazole 
 

Carbazole (Cz) and alkylcarbazoles are predominate nitrogen-containing species present in 

refractory raw distillates, and they were identified as the most refractory organic nitrogen-

containing compounds in the feed stocks towards HDN reactions 11-12, 52. The lone pair of 

electrons of the nitrogen atom in the carbazole molecule are conjugated with the π electrons 

of aromatic rings, so the five-membered heterocyclic carbazoles are non-basic nitrogen-

containing compounds with the pKa value of -6.021. The carbazole molecule favours to 

adsorb on the catalytic active sites via aromatic rings in a parallel way because the lone pair 

of electrons in the nitrogen atom are not available in the end-on adsorption on the catalyst 

surface53. This is also the predominant adsorption pattern of 4,6-DMDBT, one of the most 

refractory sulfur-containing compounds, and polycyclic aromatic hydrocarbons in the 

hydrogenation reactions8, 13c, 53. The presence of carbazole and its derivatives may influence 

the HDS of sulfur-containing compounds and became a barrier to reach the more and more 
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strict legislation on the sulfur content in fuel products. Therefore, the HDN of carbazole 

should be carefully studied. 

 

The HDN of carbazole caused less attention than the HDS of DBT and 4,6-DMDBT and 

there is not a well accepted reaction mechanism as reported in literatures54. It is well known 

that nitrogen removal requires ring hydrogenation prior to C-N bond cleavage55. As assumed 

by Perot56 that three types of reactions would be involved in HDN leading to the 

hydrogenolysis of nitrogen-containing compounds: (1) hydrogenation of nitrogen-containing 

heterocycles, (2) hydrogenation of benzenic cycles, and (3) C-N bond cleavage. So an 

effective HDN catalyst should have both hydrogenation activity and hydrogenolysis activity. 

Additionally, the reaction of cracking has been observed during HDN as indicated by Ledoux 

et al57.  

 

Chapter 8 of this thesis would be the first to investigate the HDN of carbazole over dispersed 

Mo sulfide catalyst using in-situ hydrogen compared versus molecular hydrogen and an HDN 

reaction network will be proposed on the basis of product distribution of carbazole. 
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Chapter 3 Experimental and Characterization 
 

Before reporting and discussing experiment results, it is necessary to introduce experimental 

system, product analysis, and catalyst characterization. Reactors, reactants, experimental 

operation procedure, product analysis methodology, and characterization techniques will be 

introduced in this chapter. 

 

3.1 Reactors 
 

Experiments were carried out in two separate 300 ml Autoclave high temperature and high 

pressure bolted closure laboratory batch reactors. One is an AISI 316 stainless steel (SS) 

batch reactor and the other one is a Hastelloy C (HC) batch reactor. The working volume of 

the SS batch reactor is 249 ml and that of the HC batch reactor is 300 ml. Both reactors are 

equipped, respectively, with a Magnedrive II assembly stirrer and a 45⁰ pitch impeller. The 

two reactors and their accessories (valves, fittings and tubing) are designed to be capable of 

5,000 psi at up to 510 ⁰C. Flowcharts of the two batch reactors are given in Fig.3-1 and 

Fig.3-2, respectively.  

 

As drawn in Fig.3-2, the HC batch reactor is composed by three systems as shown in squares 

with broken lines: gas supply, reactor, and sampling system. The SS batch reactor has the 

same gas supply and reactor system as the HC reactor, while it does not have the liquid-

sampling system. Therefore, in the experiments using the SS batch reactor, only the final 
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liquid product is available for analysis, while in the experiments using the HC batch reactor, 

liquid products at different reaction times could be sampled for analysis during running 

reactions.   

 

 

Fig. 3 - 1  Flow chart of the SS 300cc batch Autoclave reactor 
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Fig. 3 - 2  Flow chart of the HC batch Autoclave reactor 
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3.2 Reactants 
 

Model S-/N-containing compounds and catalyst precursors used in this thesis were purchased 

from Sigma-Aldrich without further purification. Gases used for checking sealing and 

reactions were all provided by Praxair. Detailed information of reactants is listed in Table 3-1. 

Table 3 - 1 Reactants, catalyst precursors, solvents, and gases used in experiments 

 Supplier Purity Product 
No. Usage 

Catalyst precursors     

Phosphomolybdic acid hydrate 
(PMA) Aldrich ACS 

reagent 221856 

Mo precursor Ammonium 
Tetrathiomolybdate 
(ATTM) 

Aldrich ≥ 99.97% 323446 

Nickel (II) sulfate hexahydrate Aldrich > 99% 22767-6 Ni precursor 

Potassium carbonate Aldrich ≥ 99% 209613 K precursor 

S-containing model 
compounds     

Dibenzothiophene (DBT) Aldrich ≥ 98% D32202  
4,6-dimethyldibenzothiophene 
(4,6-DMDBT) Aldrich ≥ 97% 479411  

N-containing model 
compounds     

Quinoline (Q) Aldrich ≥ 98% 241571  
Carbazole (Cz) Aldrich ≥ 95% C5132  
Solvent     

Toluene (T) OmniSolv 99.99% TX0737-1 Solvent for model 
compounds  

De-ionized (DI) water Departmental - - 
WGS reactant and the 

solvent for cat. precursor 
Gases     
CO 

Praxair 

2.4 CO-2.4T WGS reactant gas 
H2 5.0 HY5.0UH-T Reactant gas 
N2 4.5 N2-4.5T Sealing check 
H2S 2.6 HS2.6-Q Sulfidation reagent 
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3.3 Reaction procedure 
 

A hydro-treating experiment in a batch reactor involves the following major steps: 

(1) preparing feed stocks and sealing reactor vessel 

(2) checking leakage and feeding reactant gases 

(3) reacting, taking gas/liquid samples and stopping the reaction 

 

3.3.1 Preparing feed stocks and sealing reactor vessel 
 

In a typical experiment, model S-/N-containing compound(s) is (are) dissolved in 100 ml of 

toluene. Catalyst precursor is dissolved in deionized (DI) water. Amount of each reagent in a 

typical HDS experiment is listed in Table 3-2. Detailed reaction conditions of each 

experiment will be listed in the chapters where the experiment results are reported and 

discussed.  

 

The sealing of Autoclave batch reactors was accomplished via a sealing O-ring. Before each 

usage, each side of the sealing O-ring was coated with a thin layer of Dow MolyKote® 

lubricant. This lubricant layer could promote sealing and make the sealing O-ring easily to be 

removed from the top of the vessel after high-pressure/temperature reactions. After the 

sealing O-ring was totally dry, transferred the organic model compound(s) solution and the 

aqueous catalyst precursor solution into the reactor vessel. Put on the sealing O-ring, set up 

the Magnedriver II, covered the lid and then sealed the reactor vessel. Finally assembled 

cooling water line (for cooling down the Magnedrive II) and thermocouples. 
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Table 3 - 2 Experiment conditions, including amounts and concentrations of solvents, 

reagents, and gases in a typical HDS experiment† 

† Detailed composition of starting materials in each experiment will be given in separate 

chapters. Calculation involved in this table is given in Appendix A1. 

* Mo concentration in the aq. phase was determined by ICP 

 

3.3.2 Checking leakage and feeding reactant gases 
 

Author checked the leakage of the reactor vessel by pressurizing the vessel with N2 to 

1200~1500 psi. This action was completed in following steps (refer to Fig. 3-2): 

(1-1) Made sure that gas/liquid inlet valves and gas/liquid outlet valves were closed 

well; 

 Amount Concentration S/Mo 

Organic phase   

 
S*/Mo ≈ 12 
 

(molar) 
 

*S: as in the 
S-model 

compounds 

    Solvent-toluene 100 ml --- 

    Model compounds   

        DBT 0.42g 0.022 mol/l S: 1647 ppmw, 
0.045 mol/l         4,6-DMDBT 0.50g 0.023 mol/l 

Aqueous phase   

     Solvent-DI water 10ml --- 

     Precursor-PMA 0.07~0.075g Mo*: 0.4  mmol,  430 ppmw 
Gases (pressure at 
room temperature)    

     CO 590 psi Mol of CO: 0.227 mol H2S/Mo=10 
(molar)      H2S 10 psi Mol of H2S: 0.004 mol 

Reaction 
temperature 380 ⁰C 

Reaction time 1~3 hr 

Catalyst Dispersed Mo sulfide 



29 
 

(1-2) Opened valves C, H and G to release the pressure in gas lines and then closed 

them; 

(1-3) Opened N2 cylinder and adjusted the regulator to around 1500 psi; 

(1-4) Opened valve C, valve H and gas inlet valve, allowing N2 fed into the reactor 

vessel; 

(1-5) When N2 pressure of the reactor vessel reached to 1200-1500 psi, closed gas 

inlet valve; 

(1-6) Closed N2 gas cylinder; 

(1-7) Released the pressure left in the gas line by opening valve G; 

(1-8) Closed valves G, H, and C. 

 

Left pressurized reactor vessel for 15-20 min, and recorded the vessel pressure every 5-10 

min. The reactor was sealed successfully if the pressure did not drop down. To vent gas from 

the vessel, opened valves 5 (valve 4 closed), 3 (valve 2 closed), 1 and finally opened gas 

outlet valve. All valves should be closed after gas pressure decreased down to atmospheric 

pressure.  

 

Before charging reactant gases, H2S and CO (or H2), the reactor should be purged with CO 

(or H2) three times to remove un-wanted gases from the reactor, such as O2 and N2. Reactant 

gas charging procedure was done as follows (refer to Fig. 3-2): 

(2-1) Made sure that gas/liquid inlet valves and gas/liquid outlet valves were closed 

well; 
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(2-2) Opened valves A (or B), H and G to release the pressure in gas lines and then 

closed them; 

(2-3) Opened CO (or H2) cylinder and adjusted its regulator to a little higher than 600 

psi; 

(2-4) Opened valves A (or B) and H, then gas inlet valve; 

(2-5) Closed gas inlet valve when reactor pressure reached to 300-400 psi; 

(2-6) Opened cooling water and turned on Magnedrive II, stirring at 400-600 rpm for 

1-2 min; 

(2-7) Stopped stirring, and vented CO (or H2)  from the reactor vessel; 

(2-8) Repeated steps (2-4) to (2-7) to purge two more times; 

(2-9) Had valve A closed, opened valves D, H and G, venting CO (or H2)  from gas 

lines; 

(2-10) Closed valves D, H and G; 

(2-11) Opened H2S cylinder and regulator; 

(2-12) Had valves D and H open, opened valve E (making sure valve F closed) for 

several seconds to flush the gas line with H2S; 

(2-13) Closed valve E; 

(2-14) Slowly opened gas inlet valve, charging H2S into the reactor; 

(2-15) Closed gas inlet valve and closed H2S cylinder; 

(2-16) Opened valve E to vent out H2S and then closed it. Opened valve F, allowing 

air flow into the H2S treater; 

(2-17) Closed valve D, and opened valve A (or B) allowing CO to fill gas lines; 

(2-18) Opened gas inlet valve, pressurized the reactor to designated pressure; 
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(2-19) Closeed gas inlet valve and CO cylinder; 

(2-20) Opened valve G, venting CO out of gas lines, and then closed all valves. 

The most commonly used molar ratio between CO and H2S was 590:10. H2S was introduced 

to sulfide and to form active MoS2 catalyst. At this time, the reactor was ready to be used for 

running one experiment.  

 

3.3.3 Reacting, taking gas/liquid samples and stopping the reaction 
 

The reactor was heated up to the designated reaction temperature at the rate of 4-6⁰C/min and 

was kept at the reaction temperature for 1-3 hrs with stirring at 900-950 rpm (1000-1100 rpm 

for the HC batch reactor). At 380⁰C, the pressure would be around 2800-2900 psi (19-

20MPa). The relationship between pressure and temperature in a typical HDS reaction using 

in-situ H2 is shown in Fig. 3-3. 

 

Fig. 3 - 3  Reaction temperature – pressure relationship in a typical HDS experiment from 

room temperature to 380⁰C, (590 psi of CO, 10 psi H2S, 430 ppmw Mo, 100 ml toluene, 10 

ml H2O, DBT+4,6-DMDBT, SS reactor) 

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350 400

Pr
es

su
re

, p
si

Temperature, C



32 
 

When using the HC batch reactor, gas and liquid samples could be taken during the reaction. 

Liquid samples were taken according to the following procedure (refer to Fig. 3-2): 

(3-1) Opened valves I to VI to vent gas and liquid left from previous experiment from 

sampling system; 

(3-2) Closed valves I to VI; 

(3-3) Opened liquid outlet valve, and some liquid moved into the sampling tubing by 

high pressure inside the reactor. Valve I must be closed firmly in this step, or a 

large amount of liquid would come out of the reactor; 

(3-4) Closed liquid outlet valve quickly. Liquid sample stayed in the tubing between 

the liquid outlet valve and valve I at high pressure. The temperature of the liquid 

sample cooled down to room temperature quickly; 

(3-5) Opened valves II and IV (making sure valve III closed well) having liquid sample 

expand to downstream sampling tubing. Gases came out with the liquid sample 

separated at the tee between valves IV and VI. The small Swagelok sample 

cylinder connected between valves IV and V had two functions: condensing 

liquid phase evaporated in the gas phase and decreasing the pressure; 

(3-6) Took gas sample at gas sample outlet, after that opened valve V to vent; 

(3-7) Put one vial directly under liquid sample outlet, and opened valve VI to collect 

liquid sample. 

 

In a normal liquid product sampling procedure, the sampling system was flushed two times. 

Namely steps (3-3) to (3-7) were repeated three times. Gas and liquid collected at the last 

time were analyzed. 
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When the reaction completed, stopped stirring, turned off the furnace, and shut down the 

cooling water.  After the reactor cooled down to room temperature, picked up final gas 

sample, opened the reactor vessel, and took liquid product. Next, analyzed gas and liquid 

products.   

 

3.4 Product analysis 
 

Compositions of gas and liquid products were very important to calculate the conversion of 

CO via the WGS reaction, the conversion and the desulfurization of S-containing compounds 

via the HDS reaction, and the selectivity between HDS reaction pathways. Hence, gas and 

liquid samples were identified and quantitatively analyzed. 

 

3.4.1 Gas analysis 
 

Gas samples were analyzed by two gas chromatographs. Early samples (before 2008) were 

analyzed on a Perkin Elmer Model 8500 gas chromatograph equipped with one thermal 

conductivity detector (TCD) and two packed columns: 80/100 mesh Haysep C and 80/100 

mesh Molecular Sieve 5A. Gases, containing H2, O2, H2S, CO, and CO2, were separated on 

the 5A molecular sieve column, whereas CO2 and H2S were separated on the Haysep C 

column because CO2 and H2S would poison the molecular sieve. The gas mixture was 

switched between the two columns by a 10-port valve.  

 

After 2008, an Agilent Refinery Gas Analyzer (RGA, 3000 Micro C) was purchased and 

used in gas analysis. Injected gas samples are delivered to the sample inlet of the RGA after 
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passing through a sample conditioning system, which selectively removs any liquid fractions 

from the sample. Then an internal vacuum pump draws the conditioned samples into four 

independent GC modules simultaneously. Table 3-3 lists detailed configuration and 

separation of gases on RGA. Each GC module houses a silicon micro injector, a temperature-

controlled capillary column, and a micro thermal conductivity detector (TCD). This RGA 

could finish one analysis in 4 minutes, so it is useful in the study on the WGS reaction.   

 
Table 3 - 3 Configuration and gas separation of RGA 

 

3.4.2 Liquid analysis 
 

Liquid products were analyzed on a Varian CP-3800 gas chromatograph, which is configured 

with a VF-05MS capillary column, connected to three different detectors: flame ionization 

detector (FID), thermionic specific detector (TSD, <1 ppmw of N), and pulsed flame 

photometric detector (PFPD, <1 ppmw of S). Three detectors of this GC can simultaneously 

implement semi-identification and quantitative analysis of sulfur-containing compounds (by 

PFPD), nitrogen-containing compounds (by TSD), and hydrocarbons (by FID) present in the 

Channels A B C D 

Injector Type Backflush Backflush Backflush Firmed volume 

Carrier Gas Argon Helium Helium Helium 

Column Type Molecular Sieve Plot U Alumina OV-1 

Detector Type TCD TCD TCD TCD 

Inlet Type Heated Heated Heated Heated 

Gas separated H2, O2, N2, CH4, 
CO 

CO2, C2, H2S, 
COS C3, C4

=, C5 i-C4, C6 
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liquid sample. Conversions of model compounds in hydro-treating reactions and distribution 

of their products were calculated based on the results obtained from this GC. The flowchart 

of the product analysis is shown in Fig. 3-4. Detailed calculation process and GC running 

methods are given in Appendix B. 

 

 

Fig. 3 - 4 Flowchart of product analysis after the hydro-treating process 

 

3.5 Characterization Techniques 
 

Physical property and morphology of candidate catalysts were characterized via X-ray 

diffraction (XRD), BET, HRTEM, and scanning electron microscope (SEM). From these 

characterization techniques, following information could be obtained: 

XRD – crystalline identification 

BET – surface area and pore size 
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HRTEM-EDX – crystal size, stacking degree, and morphology; atomic composition of 
a specific area of catalyst particles 

SEM-EDX – particle morphology and dispersion; atomic composition of a specific area 
of catalyst particles 

 

XRD: XRD measurement was performed on a Burker UXS D8 Focus X-ray Diffractometer 

with a Cu source of X-ray. The measuring wave length was 0.15406 nm. The survey 

measurement was scanned from 10 degree to 70 degree with 0.02 degree increment at the 

scanning speed of 1 sec/step.  

 
BET: BET surface area measurement was carried out on a Micromeritics Gemini 2375 surface 

area analyzer. Catalyst samples were dried in N2 at 110°C overnight and cooled down to 

room temperature before BET analysis. 

 
HRTEM-EDX:  Catalyst powders dispersed in different phases were diluted by ethanol and 

sonicated to disperse well. One drop of the solution was deposited on a holey-carbon film 

supported on Cu grids. Details of TEM sample preparation is described in the following 

Chapter. Specimens were examined using a JEOL 2010 TEM operated at an accelerating 

voltage of 200keV. Interested particles were chosen for energy dispersive X-ray spectrometer 

analysis. 

 
SEM-EDX: An LEO 1530 Field Emission Scanning Electron Microscope equipped with 

SE2 and BSD detectors was used. Specimens were characterized at 5kV or 25kV. A high 

voltage of 25kV was selected to complete the EDX analysis of Mo, whose identification 

peaks appear in the range of 16-21kV. Catalyst powders were loaded on a sample holder, 
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surface of which was covered with a black sticky tape. Then the sample holder was dropped 

into a gold coating machine (Desk II Gold Sputter/Etch Unit, Denton Vacuum, LLC). 

Coating chamber was evacuated and the sample surface was coated with a 3-10 nm gold film 

to increase the conductivity. Gold-coated specimen was then transferred into SEM sample 

chamber and the SEM analysis was processed under high vacuum conditions (lower than 

1.5×10-5 mBar).  
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Chapter 4  

Catalyst Preparation and Characterization 

4.1 Introduction 
 

Key factors in the application of dispersed catalysts for hydro-treating are particle size and 

the population of catalyst particles obtained per unit volume of reactants. The activity of 

catalyst is controlled by the degree of dispersion and the composition of catalyst under a 

given set of reaction conditions. The term of dispersion on supported catalyst is defines as 

“the ratio of the number of active metal atoms on the surface of a catalyst to the total number 

of active phase atoms in it”58. Therefore, the size of catalyst the particles and stacking degree 

of molybdenum sulfide slabs are important to improve the dispersion and further increase the 

catalyst activity. Roxlo et al59 studied the infrared optical absorption on edge planes in single 

MoS2 crystal platelets using photo-deflection spectroscopy (PDF). They estimated that a 

fundamental turnover frequency in the HDS of dibenzothiophene for edge-like defects was 

7.9 × 10−2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠/𝐸𝑑𝑔𝑒𝑆𝑖𝑡𝑒 ∙ 𝑠−1  under reaction conditions.  

 
It was found that, on unsupported Mo catalysts, active metals were present in MoS2-like 

phases60. MoS2 has a layer structure. Within one layer, its structure can be viewed as a two-

dimensional macromolecule with each Mo ion surrounded by six sulfur anions in a trigonal 

prismatic arrangement. In this configuration, each sulfur ion is bound to three Mo ions, 
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which results in a weak interaction with the next layer. A main theme in many structure-

activity studies of molybdenum catalysts has been to establish whether different hydro-

treating reactions are catalyzed predominately by sites along MoS2 edge-surfaces or sites 

associated with basal planes26-27, 32, 60.  

 

Daage and Chianelli 32 proposed rim sites of Mo sulfide crystals and edges of top and bottom 

layers were where hydrogenation reaction of large molecules, like DBT, took place; while 

edge sites of “sandwiched” layers catalyzed sulfur removal reactions. This was called as 

“Rim-Edge” model as shown in Fig. 4-1. Based on this model, selectivity between HDS 

reaction pathways was determined by the stacking number of MoS2 slabs.  

 

 

Fig. 4 - 1 The “Rim-Edge” model of a MoS2 catalytic particle32 
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Iwata et al26-27 extended the use of the “rim-edge” model in their study of hydro-treating 

heavy oils.  They suggested that hydrogenation reactions could be catalyzed on all NO 

adsorption sites which were likely located on all edge sites. Their results also indicated that 

the number of HYD active sites increased with decreasing the number of stacked slabs in 

each MoS2 particles. 

 

High-resolution transmission electron microscopy is a widely used technique to study the 

length and stacking degree of MoS2 slabs. Iwata27 prepared unsupported molybdenum sulfide 

via different methods and compared their catalytic activity towards the HDS of DBT and the 

hydrogenation (HY) of 1-methyl-naphthalene (1-MN). Via HRTEM and XRD images, they 

found that the catalyst with a poorly crystallized bent and folded multi-layered MoS2 

exhibited higher activity than the one with a well crystallized multi-layered MoS2. Highly 

bent sites may lead to sulfur vacancies during reactions, where were considered as the active 

sites for desulfurization reactions. They concluded that active sites were located on the 

curvature of basal planes in addition to edge planes.  

 

Roy Lee, a previous member of our group, prepared dispersed molybdenum sulfide catalysts 

via the hydrothermal decomposition of phosphomolybdate acid (PMA) at 150 ºC, 250 ºC, 

and 340ºC using in-situ H2 and molecular H2, respectively, and characterized candidate 

catalysts using SEM, XRD, BET, XPS, and Raman42. His characterization results indicated 

that nano-sized MoS2 particles with high surface area, 120-360 m2/g, were prepared. SEM 

images showed that the catalyst prepared in in-situ H2 had significantly smaller particle size 

than the one made in molecular H2.  With increasing preparation temperature using in-situ H2, 

MoS2 crystals were detected in Raman spectrum from 250ºC and molybdenum oxides 
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disappeared at 340ºC. XPS study confirmed that Mo ions at the outer surface of catalyst 

particles were completely reduced to Mo4+ at 340ºC when prepared in in-situ H2. Therefore, 

Lee’s characterization results suggested that in the present reaction system, in-situ H2 was an 

effective atmosphere for preparing active molybdenum sulfide catalyst and the catalyst 

should be prepared at the temperature higher than 340ºC.  

 

With the presence of water, our reaction system is a multi-phase reaction system. During 

hydro-treating reactions, molybdenum precursor, which was pre-dissolved in aqueous phase, 

was decomposed, reduced and sulfided to black insoluble molybdenum sulfide. Liquid 

product and catalyst particles were collected after the reaction. The black dispersed 

molybdenum sulfide particles were found to be dispersed in different phases: organic phase 

(Org.), aqueous phase (Aqu.), oil/water interface (O/W) and at the bottom of the aqueous 

phase (Baq.), as shown in Fig. 4-2. Besides these phases in the liquid product, lots of black 

catalyst particles left on reactor vessel wall, which were collected and analyzed as the phase 

of wall catalyst (Wcat.). Among these phases, the organic phase is where hydro-treating 

reactions occurred and the Wcat phase contains most of the catalyst particles.  

 

A question was asked: if the catalyst particles collected from different phases have the same 

morphology? Since in the previous study42 the catalyst particles were not separated from 

different phases and were not characterized as in different phases, this question could not be 

answered. In this work, catalyst particles from different phases were collected ad 

characterized. The crystal slab length and the stacking degree of the dispersed Mo sulfide 
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particles collected from different phases were analyzed using HRTEM-EDX. 

Characterization techniques of SEM, XRD and BET will also be used in this chapter. 

 

Fig. 4 - 2 Separate phases observed in the liquid product after hydro-treating reactions 

4.2 Ex-situ preparation of catalysts 
 

As discussed in the precious section, the dispersed molybdenum sulfide catalyst was in-situ 

prepared via the hydrothermal decomposition, the reduction, and the sulfidation of water-

soluble molybdenum precursors in the HDS/HDN reaction system. After reaction, solid 

catalyst particles were observed to disperse in separate phases: Org., Aqu., O/W, Baq., and 

Wcat as shown in Fig. 4-2.  

 

The morphology of catalyst particles was characterized on a JEOL 2010 HRTEM combined 

with EDX at an accelerating voltage of 200keV. Freshly prepared catalyst powders were 



44 
 

diluted and ultrasonically dispersed in ethanol at room temperature. Suspended catalyst 

particles in clear ethanol solution were dropped onto a carbon coated copper grid. HRTEM 

samples were prepared in a glove bag, which was filled with N2, to prevent the contact with 

air. A detailed procedure for preparing HRTEM samples was described as follows: 

(1) Purged reagent alcohol with N2 for 1hr to remove dissolved oxygen, and kept the de-

aired reagent alcohol in a sealed container. 

(2) Purged an empty and clean separate sealed container with N2 for longer than 10 min 

to replace the air inside, and then sealed the container. 

(3) Released the pressure of the reactor and opened the reactor with N2 flowing to 

PROTECT the liquid product from air. 

(4) Collected liquid product (all phases) and transferred it into the N2-filled container 

(step (2)) and sealed well. 

(5) Transferred the liquid product, the reactor vessel (covered with a rubber stopper), and 

the de-aired reagent alcohol into a glove bag, and sealed the glove bag well. 

(6) Vacuumed the glove bag and filled it with N2, repeated 3 times. 

(7) In the N2-filled glove bag, opened the container with the liquid product, and separated 

the organic phase from others (phases of O/W, Aqu. and Baq.). Rinsed the reactor vessel 

with de-aired reagent alcohol, and then collected Wcat powders.  

(8) Transferred some black particles from each phase to an empty vial, and then added 

some de-aired reagent alcohol (2-3 ml) to dilute and allowed the black powders to 

disperse. 
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(9) Sealed all vials and sample containers, and opened the glove bag. 

(10) Transferred the sealed vials of diluted solutions out of the glove bag and sonicated 

for 3-5 min. 

(11) Returned these vials back into the glove bag, and repeated step (6). 

(12) Prepared HRTEM samples by dropping 1 drop of the clear phase of ethanol diluted 

solution of each phase on separate Cu grid (200 mesh carbon coated Cu grid), and 

allowed the grid to dry. 

(13) Kept HRTEM samples in a N2-filled glove bag. 

 

After HRTEM analysis, samples from all phases were mixed and dried via a vacuum drying 

system, as illustrated in Fig. 4-3. The dried catalyst powders were kept in a N2 filled glove 

bag and catalyst powders were characterized using BET, XRD and SEM. Experimental 

design for catalyst characterization and detailed catalyst preparation conditions are given in 

Fig. 4-4 and Table 4-1, respectively. Dispersed molybdenum sulfide based catalysts were 

prepared under different conditions to investigate the effect of hydrogen sources and S-/N-

containing species on the physical properties and the morphology of candidate dispersed Mo 

sulfide catalysts. 

 

It is important to note that the catalysts were prepared at 340 ºC instead of the temperature 

for hydro-treating at 380 ºC in this research. There are two concerns: (1) to compare the 

characterization results with previous results39; and (2) to run catalyst preparation 
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experiments under the safe pressure limit of the reactor (if the reaction was carried out at 

380°C, the pressure would be over 4000 psi). 

 

 

Fig. 4 - 3 Vacuum drying system 
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Fig. 4 - 4 Experimental design on the catalyst preparation for characterization (detailed 

preparation conditions refer to Table 4-1) 

 

Table 4 - 1 Dispersed molybdenum sulfide catalysts preparation conditions, 340 ºC, 1hr 

* Total pressure at room temperature was around 600 psi due to the solubility of H2S in 

solution. 

 

Run  No. MoCO340 MoH340 SMoCO340 NMoCO340 

Aqueous 
phase 

PMA, g 3.86 4.09 3.99 3.99 

H2O, ml 25 25 25 25 

Organic 
phase 

Toluene, ml 100 100 100 100 

DBT, g - - 0.42 - 

4,6-DMDBT, g - - 0.50 - 

Quinoline, g - - - 0.36 

Gases* 

H2S, psi 200 200 200 200 

CO, psi 500 - 500 500 

H2, psi - 500 - - 
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4.3 Characterization results  

4.3.1 BET 
 

The surface area and the pore size of dispersed Mo sulfide catalyst particles prepared under 

different conditions at 340 ⁰C were characterized by BET (Micromeritics Gemini 3243) and 

the results are shown in Table 4-2. In this section, catalyst particles were not analyzed by 

phases. They were a mixture of particles collected from all phases and dried via vacuum 

drying (Fig. 4-3). The Mo sulfide catalyst sample prepared in in-situ hydrogen was found to 

have the highest BET surface area, 266 m2/g, among all candidate catalyst samples. Surface 

areas of all dispersed Mo sulfide samples were higher or close to 200 m2/g, including the 

samples prepared in the presence of S-/N-containing compounds.  

 

The surface area higher than 200 m2/g was lower than normal supported hydrotreating 

catalysts, wherein high surface area materials were used as carriers, but it was significantly 

higher than the value of around 10 m2/g surface area of unsupported MoS catalysts prepared 

and reported by Iwata et al27 via traditional thermal decomposition method. Hence, the 

hydrothermal decomposition method is an effective way to prepare dispersed Mo sulfide 

catalysts with high surface areas. This is in agreement with what was reported by Dever38 and 

Song25, 41. During the hydrothermal preparation process, the presence of water favored the 

dispersion of the aqueous Mo precursor in the organic phase in small water droplets and 

resulted in smaller MoS2 particles with higher surface area.  
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Table 4 - 2 BET surface area and average pore size of dispersed Mo sulfide particles 

prepared under different conditions (detailed preparation conditions refer to Table 4-1) 

 

4.3.2 XRD 
 

X-Ray Diffraction measurements were performed on a Burker UXS D8 Focus X-ray 

Diffractometer with a Cu source of X-ray. The measuring wave length was 0.15406 nm. The 

survey measurement (2θ) was scanned from 10 degree to 70 degree with 0.02 degree 

increment at the scanning speed of 1 sec/step.  

 

XRD spectra of the samples prepared in CO and molecular H2 are shown in Fig. 4-5. Wide 

peaks at the diffraction angles (2θ) of 13-14, 33-34, 39-40, and 59-60 were observed in XRD 

chromatographs of tested dispersed Mo sulfide catalysts. These XRD peaks were 

corresponding to the diffraction bands of MoS2 crystallites, i.e. (002), (100), (103), and 

(110)61. XRD patterns of the candidate dispersed Mo sulfide catalysts confirmed the 

generation of MoS2 under different preparation conditions. MoS2 was widely accepted as the 

active phase for hydrotreating reactions. Wide peaks shown in XRD spectra indicated that the 

prepared unsupported MoS2 particles had poor crystal structures and dispersed in small 

crystalline size.  

Sample MoCO340 MoH340 SMoCO340 NMoCO340 

BET surface area, m2/g 266 205 207 198 

Pore volume, cm3/g 0.13 0.10 0.10 0.10 

Adsorption average pore diameter 
(4V/A by BET), nm 1.96 1.95 - 1.97 
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Fig. 4 - 5 XRD spectra of candidate Mo sulfide catalyst prepared in in-situ H2 or molecular 
H2. 

Other conditions:  3.9-4.0g PMA, 25ml H2O, 100ml toluene, no S-/N-containing compounds, 

200psi H2S, 500psi CO or H2. 

 

4.3.3 HRTEM-EDX 
 
 
Via using HRTEM and EDX, the catalyst morphology and the semi-quantitative elemental 

composition of the candidate dispersed Mo sulfide catalysts were obtained. HRTEM-EDX 

results could be used to explain the experimental results and provide suggestions for future 

experimental design.  
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4.3.3.1 HRTEM images of candidate catalyst samples prepared in in-situ H2 and 
molecular H2 

 

HRTEM images of each phase of candidate catalysts ex-situ prepared in in-situ H2 

(MoCO340) and in externally supplied molecular H2 (MoH340) are shown in Fig. 4-6 to Fig. 

4-11. The black bent thread-like fringes correspond to MoS2 slabs. MoS2 has an identical 

structure based on trigonal prisms structure of sulfur coordinated to Mo. The trigonal prisms 

are strongly bonded in two dimensions forming the S-Mo-S sandwiches, which can stack to 

form three-dimensional crystals of varying stacking arrangements. MoS2 usually found in 2H 

(hexagonal) form indicating that the unit cell repeats along the hexagonal c-axis after two 

layers. The MoS2 slabs perpendicular to the (002) planes are easily observed via HRTEM, 

whereas basal planes tend to be unobservable, especially in low-stacked solids62. That is why 

the morphology of MoS2 slabs observed in HRTEM images is in thread-like shapes. Stacked 

MoS2 layers are bonded via weak Van der Waals forces and the spacing between stacked 

MoS2 layers is an identical parameter. The spacing measured from the fringes of both 

candidate catalyst samples was in the range of 6.1-6.5 Å, close to the d002 of MoS2 (6.15Å). 

EDX analysis of the HRTEM observed slabs also confirmed the presence of sulfided Mo in 

all phases of both candidate catalysts. EDX spectra are listed in Appendix C. 
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Fig. 4 - 6 HRTEM images of MoS2 slabs collected from the organic phase, MoCO340. 

 

Other conditions:  3.9-4.0g PMA, 25ml H2O, 100ml toluene, no S-/N-containing compounds, 

340°C, 200psi H2S, 500psi CO. 

 

 

 

5nm 

5nm 5nm 
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Fig. 4 - 7 HRTEM images of Wcat particles, MoCO340. 

Other conditions:  3.9-4.0g PMA, 25ml H2O, 100ml toluene, no S-/N-containing compounds, 

340°C, 200psi H2S, 500psi CO. 

 

 

 

5nm 

5nm 

 

5nm 
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Fig. 4 - 8  HRTEM images of MoS2 slabs dispersed in phases of (A) O/W, (B) Aqu., and (C) 

Baq, MoCO340. 

Other conditions:  3.9-4.0g PMA, 25ml H2O, 100ml toluene, no S-/N-containing compounds, 

340°C, 200psi H2S, 500psi CO. 

5nm 
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 Fig. 4 - 9 HRTEM images of the MoS2 slabs collected from the organic phase, MoH340. 

Other conditions:  3.9-4.0g PMA, 25ml H2O, 100ml toluene, no S-/N-containing compounds, 

340°C, 200psi H2S, 500psi H2. 

 

 

 

 

10nm 

10nm 10nm 
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Fig. 4 - 10 HRTEM images of Wcat particles, MoH340. 

Other conditions:  3.9-4.0g PMA, 25ml H2O, 100ml toluene, no S-/N-containing compounds, 

340°C, 200psi H2S, 500psi H2. 

 

10nm 

10nm 10nm 
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Fig. 4 - 11 HRTEM images of MoS2 slabs dispersed in phases of (A) O/W, (B) Aqu., and (C) 

Baq, MoH340.  

Other conditions:  3.9-4.0g PMA, 25ml H2O, 100ml toluene, no S-/N-containing compounds, 

340°C, 200psi H2S, 500psi H2. 
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MoS2 slab length and stacking degree were determined via statistical analysis by measuring 

480-650 MoS2 slabs of each sample in HRTEM images. Average Mo sulfide crystalline slab 

length, L , and average stacking number, N , were calculated according to equations (4-1) 

and (4-2). 

∑

∑
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wherein: 

 L --- average length of the MoS slabs 

 Li --- length of the ith MoS slab 

 ni --- number of the slabs with the length of Li 
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wherein: 

 N --- average stacking number of the stacked MoS slab groups 

 Ni --- stacking number, equals to 1,2,3,…,n 

 ni --- number of the stacked MoS slab groups with the stacking number of ni 

 



59 
 

The average length and the average stacking degree of MoS2 slabs dispersed in the five 

phases of the two candidate catalysts, MoCO340 and MoH340, are listed in Table 4-3. An 

example of the measurement and the calculation process of average MoS2 slab length are 

given in Appendix D. 

 

Table 4 - 3 Average crystalline length and average stacking degree of MoS2 slabs dispersed 

in different phases of samples MoCO340 and MoH340*. 

*: Preparation conditions: 3.9-4.0g PMA, 25ml H2O, 100ml toluene, no S-/N-containing 

compounds, 340°C, 200psi H2S, 500psi CO (MoCO340) or H2 (MoH340). 

**: Average length and average stacking degree were calculated according to equations (4-1) 
and (4-2), respectively. 

†: few MoS2 slabs found in this phase (as shown in Fig. 4-8C) 

 

For the sample of MoCO340 which was made using in-situ hydrogen, the statistic average 

length of MoS2 slabs in each phase was in the range of 3.9-5.4 nm. Most MoS2 crystal groups 

had 2-4 layers in each phase. It is worth to note that there were too few MoS2 slabs observed 

via HRTEM in the Baq phase (Fig. 4-8C), hence, the statistic average numbers of this phase 

were not representative and they were listed just for reference. The order of the average 

MoS2 slab length is listed as below: 

O/W (3.9 nm) < Org. (4.5nm) ~ Wcat. (4.7 nm) < Aqu. (5.4 nm) 

Phase** Org. Wcat. Aqu. O/W Baq. 

Average length, nm 
MoCO340 4.5 4.7 5.4 3.9 4.3† 

MoH340 8.2 5.8 6.1 6.7 5.8 

Average stacking degree 

layers/group 

MoCO340 2.7 2.9 3.0 2.8 2.4 

MoH340 5.8 4.4 4.4 4.4 4.3 
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The distribution of counted MoS2 sheets as a function of slab length with a one nanometer 

increment is illustrated in Fig. 4-12. In the organic phase, wherein hydro-treating reactions 

took place, there were 61% counted MoS2 slabs distributed in the range of (2.0nm–4.9nm, 

Table 4-4). There were no slabs observed longer than 9.0 nm and more than 93% were 

shorter than 7.0 nm. The average MoS2 slab length of Wcat particles was close to that of the 

MoS2 sheets dispersed in the organic phase, while the slab length distributions in the two 

phases were different. Among Wcat particles, about 55% MoS2 slabs had a length in the 

range of (2.0nm-4.9nm). There was about 1% longer than 14nm and less than 84% shorter 

than 7.0 nm. The latter number was almost 10% lower than that obtained in the organic phase. 

Therefore, when preparing dispersed Mo sulfide in in-situ H2, the MoS2 particles were 

dispersed in smaller sizes in the organic phase than those collected from the reactor vessel 

wall (Wcat). 

 
Fig. 4 - 12 Crystalline size distribution of the MoS2 slabs dispersed in different phases 

(except the Baq phase) of the sample MoCO340, prepared at 340°C using in situ H2 
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Table 4 - 4 Distribution of the length of MoS2 slabs which dispersed in Org. and Wcat phases, 

catalyst samples of MoCO340 and MoH340 (more details available in Appendix C). 

Length, nm 
MoCO340 MoH340 

Org. Wcat Org. Wcat 
<2.00 6.9% 7.3% 0.0% 0.0% 

2.00-5.00 60.9% 55.5% 28.3% 48.2% 
<7.00 93.1% 83.6% 56.5% 75.0% 
<10.00 100.0% 98.2% 71.7% 94.1% 
≥10.00 0.0% 1.8% 28.3% 6.0% 

 

For the sample of MoH340 which was prepared in molecular hydrogen, the statistic average 

length and the statistic average crystalline stacking number of MoS2 slabs in each phase were 

in the range of 5.8-8.2 nm and 4.3-5.8 layers/group, respectively. The average slab length of 

each phase (Table 4-3) increased in the order of:  

Wcat. (5.8 nm) ~ Baq. (5.8 nm) < Aqu. (6.1 nm) < O/W (6.7 nm) < Org. (8.2 nm) 

 
The MoS2 slabs in the organic phase of MoH340 were much longer, straighter, and dispersed 

in larger stacking groups than those observed in the other four phases. In this phase, all MoS2 

slabs were longer than 2.0nm (Fig. 4-13). The MoS2 sheets in the length range of (0-7.0nm) 

occupied 56% and there were more than 13% sheets longer than 14nm. In the phase of Wcat, 

75% MoS2 slabs were shorter than 7.0nm and 94% distributed in the range of (0-10.0nm). 

Hence, when preparing the catalyst in external supplied molecular hydrogen, the MoS2 

particles collected from reactor vessel wall, where most catalyst powders located, were 

shorter than those dispersed in the organic phase.  

 

 



62 
 

 
Fig. 4 - 13 Crystalline size distribution of MoS2 slabs dispersed in different phases of the 

sample MoH340, prepared at 340°C using molecular H2 

 

4.3.3.2 HRTEM images of spent Mo sulfide catalysts in the presence of S-/N-species 

The morphology of in-situ prepared dispersed Mo sulfide catalyst in in-situ H2 in the 

presence of S-/N-species was characterized via HRTEM. The HRTEM images of these two 

samples are shown in Fig.4-14 and Fig.4-15. Compared to the HRTEM images of fresh 

prepared dispersed Mo sulfide catalyst, MoCO340, MoS2 slabs were significantly longer and 

straighter after introducing S-/N-containing model compounds into the system. This 

observation was confirmed from statistic analysis results listed in Table 4-5. Both average 

slab length and stacking degree increased to different extents in all phases. Although the 

average MoS2 slab length in the organic phase of SMoCO340 was the same as that of the 
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fresh catalyst, MoCO340, the average stacking degree increased by 0.6 layer/ group. The 

presence of nitrogen-containing compound, quinoline, led to more severe aging effect on the 

catalyst morphology than sulfur-containing compounds. 

 

Table 4 - 5 Average crystalline length and stacking number of the MoS2 slabs dispersed in 

different phases of samples MoCO340, SMoCO340 and NMoCO340*  

*: Cat. preparation conditions: 3.9-4.0g PMA, 25ml H2O, 100ml toluene, 200psi H2S, 500psi 

CO, 340°C, 0.42g DBT and 0.50g 4,6-DMDBT for SMoCO340, 0.36g quinolone for 

NMOCO340, no S-/N-containing compounds for MoCO340. 

†: few MoS2 slabs found in this phase (as shown in Fig. 4-8C) 

Phase Org. Wcat. Aqu. O/W Baq. 

Average length, nm 

MoCO340 4.5 4.7 5.4 3.9 4.3† 

SMoCO340 4.5 5.5 7.3 5.6 4.6 

NMoCO340 6.0 5.8 6.1 6.5 5.2 

Average stacking degree 

layers/group 

MoCO340 2.7 2.9 3.0 2.8 2.4 

SMoCO340 3.3 3.7 4.0 3.3 3.2 

NMoCO340 3.8 3.8 3.3 3.3 3.8 
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Fig. 4 - 14 HRTEM images of MoS2 slabs in all phases of SMoCO340. A. Org., B. Wcat, C. O/W, D. Aqu., E. Baq. 

Preparation conditions: 3.9-4.0g PMA, 25ml H2O, 100ml toluene, 200psi H2S, 500psi CO, 340°C, 0.42g DBT and 0.50g 4,6-DMDBT. 
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Fig. 4 - 15 HRTEM images of MoS2 slabs in all phases of NMoCO340. A. Org., B. Wcat, C. O/W, D. Aqu., E. Baq. 

Preparation conditions: 3.9-4.0g PMA, 25ml H2O, 100ml toluene, 200psi H2S, 500psi CO, 340°C, 0.36g quinolone 
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4.3.4 SEM morphology of MoS2 particles 
 

The stacked three-dimensional MoS2 structure as shown in HRTEM images is composed by 

repeating the unit cell of two-dimensional trignoal prisms of S-Mo-S sandwiches along the 

hexagonal c-axis. However, such staked slab structure is not the final structure in which MoS2 is 

present in the reaction system. The use of SEM could provide an insight into the real 

morphology of dispersed Mo sulfide catalyst. Most unsupported MoS2 particles have been found 

to disperse in sphere shape and in uniform sizes as shown in SEM pictures (Fig. 4-16 and Fig. 4-

17). 

 

 

Fig. 4 - 16 SEM image of MoCO340 taken by the SE2 detector at the magnification of 100KX 

 



67 
 

The diameter of the dispersed Mo sulfide prepared in in-situ H2 is about 20 nm (Fig.4-16), and 

the MoS2 particle diameter of the sample prepared in molecular H2 is around 30-40 nm (Fig.4-

17). The larger SEM size than HRTEM statistic sizes indicated that MoS2 particles were 

polycrystallines and were composed via the aggregation of small crystals. 

 

 

Fig. 4 - 17 SEM image of MoH340 taken by the SE2 detector at the magnification of 100KX 
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4.4 Discussion  

4.4.1 Effect of H2 sources on the preparation of dispersed Mo sulfide catalyst 
 

As introduced previous chapters, CO was used as a new source of H2 for hydro-treating reactions 

instead of expensive molecular hydrogen in our new bitumen upgrading technology. The in-situ 

hydrogen produced from CO via the water gas shift reaction was used in most reactions. To 

study the efficiency of in-situ hydrogen, molecular hydrogen was also used for comparison in the 

present study. Therefore, there are two hydrogen sources, in-situ hydrogen generated from CO 

and externally supplied molecular hydrogen. In this section, the effect of hydrogen sources on 

the physical properties of dispersed Mo sulfide catalyst will be discussed. 

 

The BET surface area of the dispersed Mo sulfide catalyst prepared in molecular hydrogen was 

60 m2/g lower than that made in CO. The BJH pore volume was also lower. This was attributed 

to the longer MoS2 slab length and the higher stacking degree of MoH340 as shown in HRTEM 

images. It should be noted that in the organic phase of MoH340, the MoS2 slabs were in high 

crystallinity with long, straight, and parallel crystal sheets, whereas the MoS2 slabs of 

MoCO340-Org were short, curved and disordered. It has been concluded that well-crystallized 

MoS2 particles do not have the necessary activity for hydro-treating reactions63. Therefore, the 

bent and disordered morphology of MoS2 slabs observed on HRTEM images would be more 

beneficial for high activity towards hydro-treating reactions. As modeled by Johnson D.C. et al 

via their correlation of NMR and ESR studies on HDS activities64,65, pairing of Mo atoms were 

located at edge sites and single Mo atoms provide unpaired spins at the corners of particles. As a 

result, the catalyst particles were electronically conducting at the edges, which were considered 
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as active sites on MoS2 slabs. This model has been demonstrated by Topsϕe in their STM 

studies66,67. Shorter MoS2 length and smaller MoS2 crystal stacks provide more corner and edge 

positions on the active phase. It was also recognized that these edge and corners were the active 

sites on the surface of MoS2 particles for HDS and HDN reactions27, 68. According to this model, 

the activity of the MoS2 particles prepared using in-situ H2 should have higher activity towards 

HDS reactions. The comparison between the HDS activities of the dispersed Mo sulfide catalysts 

prepared in the two hydrogen sources will be discussed in chapter 6. 

 

However, the reason for the smaller MoS2 clusters obtained in the case of CO is not clear. Mo 

(VI) in the precursor of PMA is reduced firstly to Mo (IV) and then activated via sulfidation. In 

the CO system, reductive hydrogen was in-situ generated via the water gas shift reaction, while, 

in the H2 system, reductive hydrogen was externally supplied. The concentration of the reduction 

gas, hydrogen, in the H2 system was much higher than that in the CO system. Therefore, the 

molecular H2 reaction system provided a more constant reaction atmosphere for generating MoS2 

crystals and promoted the growth of the MoS2 crystals, while in the CO system, the occurrence 

of water gas shift reaction and the low concentration of hydrogen may influence the growth of 

MoS2 crystals. This may be one reason for the short, disordered, and bent MoS2 slabs prepared in 

CO system. Although the amount of hydrogen in the CO system was lower than in the system 

with molecular H2, it was enough to reduce Mo (VI) to Mo (IV). 

 

D. Genuit et al69, prepared unsupported sulfided molybdenum sulfided at 450ºC via the solution 

decomposition of ammonium thiodimolybdate and they observed black MoS2 slabs with 11 nm 

and 7 layers. The unsupported sulfided molybdenum catalyst prepared at 330ºC by Iwata et al26 
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dispersed as highly folded and bent MoS2 slabs with the length longer than 10nm. These reported 

MoS2 slabs were significantly longer than what obtained in the present study.  

 

4.4.2 Effect of S-/N-containing compounds on the morphology of the dispersed Mo 
sulfide catalyst  
 

In the presence of S-/N-containing compounds during the preparation of dispersed Mo sulfide 

catalyst, the BET surface area of the catalyst decreased significantly by 22% and 25% (Table 4-

2), respectively. The statistical average MoS2 slab length and the average stacking degree also 

increased significantly in all tested phases after consumed in HDS/HDN reactions. Therefore, we 

may expect the deactivation of the dispersed Mo sulfide catalyst after hydro-treating runs.  

 

Generally, there are four main reasons for catalyst deactivation70 during the hydro-treating of 

heavy oils: 

• Sintering of the active phase at high reaction temperature leading to a decrease in 

dispersion; 

• Active sites poisoned or blocked by strongly adsorbed species, such as coke; 

• The pore structure of the catalyst blocked by coke deposition, resulting in the loss of pore 

volume and surface area; 

• Metal decomposition on the catalyst surface. 

 

The last possibility is not likely because we are using model compounds dissolved in toluene and 

water. Therefore, the adsorption of reactants on the catalyst surface and the deposit of coke 

produced from model compounds are the most possible reasons for the observed changes in the 
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morphology of dispersed Mo sulfide catalyst. As a result of coking, the catalyst sample 

NMoCO340 would have smaller catalyst surface area, which had been observed in the BET 

surface area characterization results as shown in Table 4-2.  

 

It has been reported that adsorbed nitrogen-containing compounds may act as coke precursors71. 

Furimsky noted a marked increase in C/N ratio in the coke deposits compared to the feedstock, 

indicating preferential adsorption of nitrogen-containing species on the catalyst surface72. 

Satterfield et al observed that intermediates formed during the HDN of quinoline left some 

deposit on the catalyst surface73. Hence, the nitrogen-containing compound, quinoline, caused 

more severe change in the morphology of the dispersed Mo sulfide catalyst than sulfur-

containing compounds. This coke formation should be one reason for the inhibitive effect of 

nitrogen-containing compounds on HDS reactions, which will be reported and discussed later in 

Chapter 7. 

 

As suggested by Daage and Chianelli32, the rim sites of the MoS2 crystallines were the 

hydrogenation active sites, while the edge sites of “sandwiched” layers catalyzed the sulfur 

removal step. Therefore, the selectivity between the two reaction pathways, DDS over HYD, in 

HDS reactions should increase when using the catalyst with higher stacking degree. The 

HRTEM results obtained in the present study showed that the stacking degree of the MoS2 

crystalline slabs was different when prepared in different gas atmospheres, in-situ hydrogen and 

molecular hydrogen. Therefore, based on using the Daage and Chianelli proposal, the molar ratio 

of DDS/HYD in HDS reactions should be higher when using molecular hydrogen.  
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4.4.3 Element distribution in different phases 

 

The application of EDX with HRTEM makes it possible to obtain information on elemental 

composition of a certain area of the catalyst sample, so that we could learn about elemental 

distribution and atomic composition of specific slab groups. Fig.4-18 is a typical EDX spectrum 

of a molybdenum sulfide sample. Besides sulfur and molybdenum, elements of copper and 

carbon derived from the carbon coated copper grid were detected. These four elements were 

expected to occur in EDX spectrum. However, some unexpected atoms were detected and the 

elemental distribution in different phases was found to be different.  

 

Fig. 4 - 18 A typical EDX spectrum of a Mo sulfide sample, SMoCO340-Org. 

Cat. preparation conditions: 3.9-4.0g PMA, 25ml H2O, 100ml toluene, 200psi H2S, 500psi CO, 

340°C, 0.42g DBT and 0.50g 4,6-DMDBT. 
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Elements detected by EDX in each phase of SMoCO340 are listed in Table 4-6 as an example. 

The EDX spectra of all characterized samples are given in Appendix D. Besides S, Mo, P, O, Cu, 

and C, Ni, Ca, K, Fe, and Si were also detected. Oxygen was considered to be derived from the 

air absorbed on the grid or on the catalyst surface. Phosphorus came from the molybdenum 

precursor, PMA. Ni, Ca, and K may be from the DI water or the contaminants left in the reactor 

vessel from previous experiments. The signal of Fe might be resulted from the corrosion of the 

reactor vessel. Si might derive from Moly-Kote®. It is interestingly to note that the black 

particles present at the bottom of the aqueous phase, the Baq phase, contained more elements 

than the other phases, and the catalyst particles in the organic phase and the Wcat particles were 

much cleaner. Since the organic phase is where HDS/HDN occurred, the unwanted contaminant 

elements would not cause significant effect on the experiment results. This also applies to the 

Wcat phase, which contained most catalyst particles.  

Table 4 - 6 Elements detected via EDX from different phases (SMoCO340)* 

*: Cat. preparation conditions: 3.9-4.0g PMA, 25ml H2O, 100ml toluene, 200psi H2S, 500psi CO, 

340°C, 0.42g DBT and 0.50g 4,6-DMDBT. 

Phase Org. Aqu. O/W Wcat. Baq. 

Elements contained 
(EDX characterization) Cu,C,S, Mo 

Cu,C,S, 
Mo,Fe,Co, 
O,Ca,Ni,Si, 

Os 

Cu,S, 
Mo,Fe,O, 

P,Ca 

Cu,C,S, 
Mo,Fe,

O,P 

Cu,S, 
Mo,Fe,O,P,Mn, 

Ni, Mg, Ca,K,Ti, 
Si, Cl 

Atomic composition  
(EDX semi-

quantitative analysis) 

Mo 1 1 1 1 1 

S 1.29 2.16 1.59 1.69 1.81 

O 0.12 0.26 0.51 0.02 1.27 

(S+O)/
Mo < 2 > 2 < 2 < 2 > 2 
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If we set the atomic concentration of Mo as 1, the relative atomic concentration of S is listed in 

Table 4-6. As observed from HRTEM images, MoS2 was found as the major component of the 

catalyst particles. Therefore, the atomic ratio of S/Mo should be around 2.0, but the data listed in 

the Table 4-6 showed that the S/Mo ratios in the Org., O/W, Wcat, and Baq phases were lower 

than 2.0. The highest S/Mo ratio, which was the only one higher than 2, was obtained in the 

aqueous phase, wherein the sulfidation reagent of H2S present. This indicated that there was 

some Mo atom present in the catalyst system in a form other than MoS2. This may be attributed 

to incomplete sulfidation of Mo during the preparation and partial oxidation of MoS2 when 

preparing HRTEM samples. After adding sulfur and oxygen and then compared with Mo, it was 

found that still some excess Mo not in the form of sulfide or oxide in the phases except Aqu and 

Baq phases. Therefore, based on the EDX semi-quantitative analysis, some Mo was present in 

the form of atomic Mo in the organic phase and on the wall catalyst particles.  

 
 
4.5 Conclusions 

 

The characterization of the morphology of nano-sized catalyst particles dispersed in separate 

phases using HRTEM-EDX is an important contribution of this thesis. Combined with other 

characterization results, we may draw conclusions as follows: 

 

(1) As observed from HRTEM-EDX and XRD, MoS2 was generated after the hydro-thermal 

decomposition of the Mo precursor in the presence of the sulfidation gas, H2S.  

(2) MoS2 with high surface area (>200 m2/g) was prepared in the present study. The sample 

made in the molecular hydrogen had lower surface area than the one prepared in in-situ hydrogen. 
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(3) XRD spectra indicated that the MoS2 prepared had low degree of crystallinity.  

(4) Smaller BET catalyst surface areas, longer MoS2 sheets, and higher MoS2 stacking degree 

were observed for the catalysts prepared in the presence of S- or N-species, probably due to the 

adsorption of reactants/products and the formation of coke on the catalyst surface. The 

deactivation of the dispersed catalyst in long-term HDS/HDN experiments is expected and basic 

quinoline may cause more severe deactivation than the refractory sulfur-containing compounds. 

(5) HRTEM images suggested that the morphology of the MoS2 particles prepared in CO would 

be more active for hydro-treating reactions than that made in molecular H2. 

 (6) More contaminant elements were detected via EDX in the Baq phase, while in phases of Org. 

and Wcat, the element composition indicated that there were less metallic species. 
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Chapter 5 Simultaneous Hydrodesulfurization of 

Dibenzothiophene and 4,6-
Dimethyldibenzothiophene 

5.1 Introduction 
 

There are two major adsorption modes of sulfur-containing model compounds on the catalyst 

surface in HDS reactions. One is σ-adsorption mode, wherein the molecule stands on the catalyst 

surface via the sulfur atom adsorbing on the active site. σ-adsorption is the predominant 

adsorption way of DBT molecules on the catalytically active sites and results in the direct 

desulfurization from the molecules and hence, DDS route is the major reaction pathway in the 

HDS of DBT8. The presence of the two methyl substituents at 4 and 6 positions adjacent to the 

heteroatom inhibits the access of the sulfur atom to the catalyst surface sites, so the adsorption of 

4,6-DMDBT in the σ-mode is much weaker than that of DBT and direct sulfur-removal from the 

4,6-DMDBT molecule is strongly suppressed.  

 

The other adsorption mode is π-adsorption mode. During HDS, the flat 4,6-DMDBT molecule 

has more possibility to be adsorbed on the active sites with the aromatic rings parallel to the 

catalyst surface, in which way the π-electron clouds of aromatic rings binding to the active sites 

and results in the hydrogenation of the sulfur-containing molecule. The hydrogenation of 

aromatic rings leads to a flexible cyclohexyl ring, and then the sulfur atom has more access to the 

σ-bonding of sulfur atom to the active sites. Therefore, the HYD pathway is the major route in 
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the HDS of 4,6-DMDBT. The electron-donating effect of the two methyl groups makes the 

hydrogenation reaction in the HDS of 4,6-DMDBT even faster than that of DBT8.  

 

It should be noted that Koltai et al74suggested a dihydro-intermediate of DBT or 4,6-DMDBT 

was produced as the first step in HDS reactions. This dihydro-intermediate was unstable and 

could be transformed via the two pathways, DDS and HYD, on similar catalytic sites by further 

hydrogenation to produce tetrahydro- and hexahydro- intermediates or by desulfurization 

according to an elimination mechanism resulting in biphenyl derivatives. 

 

To elucidate the HDS reaction mechanism and the two different reaction pathways in details, 

Topsøe’s group 33-35, 75,66,76 characterized the active nanostructures and tried to identify the 

specific active sites involved in HYD and DDS pathways using scanning tunnelling microscopy 

(STM), density functional theory (DFT), and high-angle annular dark-field scanning 

transmission electron microscopy (HAADF-STEM). The morphology of single-layer MoS2 

nanoclusters weakly supported on a Au(111) surface was observed in large-scale STM images 

under different sulfidation gas atomspheres34. It was found that under highly sulfiding conditions 

(H2S:H2=500), a triangular shape was the stable form of MoS2 nanoclusters, while when using 

more reducing conditions (H2S:H2=0.07), a hexagonal morphology emerged instead of the 

triangular shape. Therefore, the stable shape of MoS2 clusters seemed sensitive to the sulfidation 

gas atmosphere. They also found that truncated hexagons had an edge elimination (the sulfur 

edge), which was completely absent in the triangular MoS2 structure (as shown in Fig. 5-1). 

Namely, the triangular MoS2 nanoclusters generated under highly-sulfiding conditions were 

terminated by fully saturated Mo edges, whereas the hexagonal clusters exposed two types of 
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edges, Mo edges covered with S monomers and fully S-saturated sulfur edges with H atoms 

adsorbed (S-H groups), which was believed to be important in HDS as a source of reactive 

hydrogen atoms. The sulfur vacancies on the catalyst surface are considered as the active sites 

for sulfur removal, which is an important reaction step in the DDS pathway and is the final step 

in the HYD reaction route.  

 

 

Fig. 5 - 1 Atomic ball model showing a hypothetical, bulk-truncated MoS2 hexagon exposing the 
two types of low-index edges, the S edges and Mo edges34 (blue: Mo; yellow: S). License 
number for reusing this figure from Elsevier: 2531641409788. 

 

It is well known that the addition of Ni and/or Co into the MoS2 would increase the reactivity of 

the catalysts. As a promoter, only a small fraction of Co or Ni relative to Mo is needed. A key 

discovery in the study of Co/Ni promoted Mo catalysts was reported by Topsøe et al60 who 

proposed and identified the CoMoS/NiMoS structures, when they applied in-situ Mӧssbauer 

Emission Spectroscopy technique in the study of supported/unsupported Mo sulfide catalysts. 
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Via extended X-ray adsorption fine structure study (EXAFS), they observed Co atoms located in 

the same plane as Mo atoms with shorter Co-S distance than Mo-S in the MoS2 phase. The 

presence of Ni/Co enhanced the C-S bond cleavage activity of the catalyst via weakening the 

metal-sulfur bond and increased the electronic density on the sulfur atoms17.  

 

In the previous work of our group42, Co and Ni  was added into the dispersed Mo sulfide 

catalysts, respectively. The characterization of the promoted Mo catalysts has shown that Co/Ni 

existed not only on the outer surfaces of the catalysts, but also in the bulk phase. The catalytic 

activity towards the HDS of DBT was enhanced significantly with the presence of Ni, while the 

selectivity between the two HDS pathways kept at a similar level.  However, the promotional 

effect of Co on the HDS of DBT using in-situ hydrogen was not as significant as Ni, and the 

conversion of DBT was even a little lower than using MoS2.  

 

The traditional and currently commercially used WGSR catalyst is CuO-ZnO-Al2O3 catalyst, 

which has high activity towards WGSR at low reaction temperatures20. However, it is not 

tolerant to sulphur or oxygen and so it could not be applied in treating oil fuel feed stocks. Many 

researcher have found that potassium promoted sulfided (Ni)Mo catalyst has high activity 

towards the WGS reaction and is active in the presence of sulfur and oxygen18, 20, 77. 

 

In the present chapter, the reaction pathways for the HDS of 4,6-DMDBT in a mixture with DBT 

will be studied. The effect of Ni and K on HDS will also be studied. The following topics will be 

discussed: 
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• WGS reaction in the presence of S model compounds at different reaction 

temperature 

• Identification of HDS products of 4,6-DMDBT 

• Kinetics calculation 

• The effect of Ni and K on WGS and HDS 

5.2 Experimental 
 

Detailed experiment process has been described in Chapter 2 and will not be repeated here. The 

experimental conditions are listed in Table 5-1. 
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Table 5 - 1 Detail reaction conditions of the experiments involved in Chapter 5† 

†: other common conditions: 10 ml H2O, 100ml toluene, 0.5g 4,6-DMDBT, 0.42g DBT, 430-
500ppmw Mo (0.4 mmol Mo) 
* run in the HC reactor, others (not starred) were run in the SS reactor 
‡: Ni+Mo=0.4 mmol 
††: K/Mo=0.4, K+Mo=0.4mmol, no S-containing compounds present 
‡‡: K=0.4mmol, no S-containing compounds present 

  

Experiment ID Reaction 
temp., ⁰𝐂 

Reactant gases, 
psi 

Reaction 
time, 
min 

Active 
metal 

precursor 

𝑵𝒊
𝑴𝒐

 
molar CO H2 H2S 

Reaction 
tempera-

ture 

DS0905* 330 590 0 10 180 PMA --- 

DS0906* 350 590 0 10 180 PMA --- 

DS0907* 380 590 0 10 180 PMA --- 

DS0908* 400 590 0 10 180 PMA --- 

Effect of 
Ni on 
HDS‡ 

NiS-01 380 590 0 10 60 Mo: PMA 
Ni: NiSO4 

0.5 

NiS-02 380 585 0 15 60 Mo: PMA 
Ni: NiSO4 

0.5 

DM-65 380 590 0 10 60 PMA --- 

Effect of 
K on 
HDS 

WG-08 380 590 0 10 250 PMA  --- 

WG-09 380 590 0 10 270 PMA 
K2CO3 

0.4†† 

WG-10‡‡ 380 590 0 10 195 K2CO3 --- 

DSK-01 380 590 0 10 60 PMA 
K2CO3 

0.4†† 



83 
 

5.3 Identification of HDS products of 4,6-DMDBT 
 

The identification of HDS products derived from the HDS of DBT was reported in the previous 

work done by Lee42, hence, in this thesis, the identification of products was focused on the HDS 

of 4,6-DMDBT. The Varian CP-3800 GC, which was configured with three detectors, can be 

used to help identify HDS products. The peaks present on the FID chromatographs but not on the 

PFPD chromatograph are sulfur-removed products of DBT/4,6-DMDBT. GC chromatographs 

obtained by FID and PFPD are shown in Fig. 5-2. 

 

Reagents of 4,6-DMDBT, 2,8-DMDBT, and 3,3’-DMBP were purchased from Sigma-Aldrich, 

so these three peaks were identified simply by the injection of standards. The sulfur-removed 

products were initially separated from the sulfur-containing products via comparing FID versus 

PFPD chromatographs (Fig. 5-2). Further identification of unknown products was completed 

using a gas chromatography-mass spectroscopy (GC-MS) system (Varian GC-CP3800/MS-

Saturn 2000). 

 

It was reported that the isomerization of 4,6-DMDBT occurred before the HDS step and the 

peaks of its isomers, such as 2,4-DMDBT and 1,4-DMDBT, were located after that of 4,6-

DMDBT in the GC chromatograph69. One (39.9 min) of the two peaks after 4,6-DMDBT merged 

on the PFPD chromatograph (Fig. 5-2), had been identified as 2,8-DMDBT via standard reagent. 

The other peak (40.2 min) was indicated to have the same molecular weight and similar 

molecular structure as 4,6-DMDBT as suggested by GC-MS. Hence, it was identified to be 

another isomer of 4,6-DMDBT. Due to the isomerisation of 4,6-DMDBT, many isomers of the 

downstream products via the both reaction pathways had been observed.  
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Fig. 5 - 2 Varian CO-3800 gas chromatograph of HDS products of DBT and 4,6-DMDBT, 

detected via FID and PFPD (GC method given in Appendix B). 
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Besides 4,6-DMDBT and its isomers present in the PFPD chromatograph, more peaks were 

detected between the retention times of DBT and 4,6-DMDBT. As suggested by GC-MS, the 

three peaks closer to 4,6-DMDBT at 38.35 min, 38.46 min, and 38.56 min were dimethyl-

tetrahydro-dibenzothiophene (DM-TH-DBT) and the peaks before (including) 38.06 min were 

4,6-dimethyl-hexahydro-dibenzothiophene (DM-HH-DBT). Detailed GC retention time of each 

component is listed in Table 5-2. 

 

These identification results indicated that the same HDS products of DBT and 4,6-DMDBT were 

obtained in the present study using in-situ H2 over dispersed  Mo sulfide catalyst as those 

reported using supported catalysts8, 78.  

 

The determination of concentrations of HDS products was carried out via external calibration of 

each component detected in products. The GC response factors of the peaks whose standards 

available from markets were calculated from the slopes of external calibration curves. Iso-

DMDBT and iso-DMBP were assumed to have the same GC response factors as 4,6-DMDBT 

and 3,3’-DMBP, respectively. The calibration curves and detailed component concentration 

calculation process are given in Appendix B. 

  



86 
 

Table 5 - 2 GC retention time of HDS products of DBT and 4,6-DMDBT (Varian CP-3800)† 

†: each component has the same retention time (±2%) on the chromatographs obtained via 

different detectors. 

5.4 Results and discussion 
 

In this section, experimental results will be reported. A kinetics model will be proposed and used 

to calculate pseudo-first-order reaction rate constants for the conversion of starting materials and 

for the two reaction pathways. Then, the simultaneous HDS of DBT and 4,6-DMDBT over the 

dispersed Mo sulfide catalyst using in-situ H2 under different reaction temperature will be 

Group Component Detector Retention time, min Identified by 

Starting 
model 

compounds 

DBT FID/PFPD 35.85 Standard 

4,6-DMDBT FID/PFPD 39.50 Standard 

HDS 
products of 

DBT 

DCH FID 15.46 Standard 

CHB FID 15.80 Standard 

BP FID 18.46 Standard 

TH-DBT FID/PFPD 35.50 GC-MS 

HDS 
products of 

4,6-DMDBT 

DMCHB FID 20.70-24.74 GC-MS 

3,3’-DMBP FID 28.90 Standard 

Iso-DMBP FID 25.65, 26.25, 29.37 GC-MS 

DM-HH-DBT FID/PFPD 32.11, 34.18,    
36.24-38.05 GC-MS 

DM-TH-DBT FID/PFPD 38.27, 38.39, 38.48 GC-MS 

Iso-DMDBT FID/PFPD 39.90, 40.14 Standard/GC-
MS 
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discussed. Additionally, the effect of promoters, Ni and K, on the HDS activity of both model 

sulfur-containing compounds will also be investigated in this chapter. 

 

5.4.1 Water gas shift reaction 
 

Since the in-situ hydrogen is produced via the WGS reaction from CO, the effect of reaction 

temperature on the WGS reaction is studied firstly before discussing the HDS of DBT and 4,6-

DMDBT. Concentrations of WGS gases, CO, CO2 and in-situ H2, at different reaction 

temperatures are shown in Fig. 5-6.  

 

As the heating rate in all experiments was the same, the heating time was longer in the 

experiment running at higher temperature. Hence, at higher reaction temperatures, there was 

more time allowing CO be converted to in-situ hydrogen via the WGS reaction, resulted in less 

initial concentration of CO and more initial amount of H2 as shown in Fig. 5-3.  

 

The concentration of in-situ hydrogen increased initially and stayed in the range of 30-40mol%. 

At high reaction temperature of 380°C and 400°C, the concentration of in-situ hydrogen 

decreased slightly at the end of the reaction while the amount of CO2 kept increasing due to the 

consumption of hydrogen in HDS reactions. This is also the reason for lower concentration of in-

situ hydrogen than that of CO2 during the reaction. 
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Fig. 5 - 3  Major WGS gas concentrations and the conversions of CO as a function of the reaction 
time at different reaction temperature: A: 330°C, B: 350°C, C: 380°C, D: 400°C.   

Other conditions: HC reactor, equi-molar DBT and 4,6-DMDBT, 1600~1800 ppmw S in total, 
400~450 ppmw Mo, S/Mo~10/1, 10 ml H2O, 100 ml toluene, 590 psi CO mixed with 10 psi H2S. 
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As suggested by Newsome19, water gas shift reaction was an exothermic reaction and the 

equilibrium constant Keq could be estimated via equation (5-1), which could be used in the 

temperature range of 315 ⁰C to 480 ⁰C. According to this proposal, when running HDS reactions 

at different temperature, the equilibrium concentration of in-situ H2 should be lower at higher 

reaction temperature.  

)33.48.4577exp( −=
T

K eq                                                              (5-1) 

 

However, the gas composition observed in the present study at different reaction temperature had 

shown that the concentration of in-situ hydrogen was stable in the range of 30-40mol% at all 

reaction temperatures except the lowest one, 330°C. This is not in accordance with the estimation 

(Eq. (5-1)), probably due to the higher consumption of in-situ H2 in the simultaneous HDS 

reactions of DBT and 4,6-DMDBT at higher reaction temperature, which pushed the equilibrium 

to the right side of Eq.(1-1) and resulted in a higher CO conversion in the WGS reaction. The 

slow reaction rate, low consumption of in-situ hydrogen and shorter heating time at the lowest 

reaction temperature, 330°C, contributed to the low concentration and slow increasing of in-situ 

hydrogen with extending the reaction time.  

 

5.4.2 HDS kinetics modeling 
 

 
The equation of the HDS reaction of DBT is given in Eq.(5-2). 

𝐷𝐵𝑇 + 𝐻2
 𝑘𝐶𝑜𝑛𝑣.  �⎯⎯⎯� 𝐻𝐷𝑆 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠             (5-2) 
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The rate constant of the HDS of DBT is determined by the concentration of DBT and the partial 

pressure of hydrogen as shown in Eq.(5-3): 

𝑟𝐷𝐵𝑇 = 𝑘(𝐷𝐵𝑇 𝐶𝑜𝑛𝑣.) ∙ 𝐶𝐷𝐵𝑇 ∙ 𝑝𝐻2           (5-3) 

 

Since the concentration of in-situ hydrogen in the gas mixture was found to be apparently 

constant at 35mol% (Fig. 5-3), the concentration of hydrogen was assumed constant in the 

present kinetic model. Hence, a rate constant of 𝑘′ is defined as: 

𝑘(𝐷𝐵𝑇 𝐶𝑜𝑛𝑣.)
′ = 𝑘(𝐷𝐵𝑇 𝐶𝑜𝑛𝑣.) ∙ 𝑝𝐻2           (5-4) 

So: 

𝑟𝐷𝐵𝑇 = 𝑘(𝐷𝐵𝑇 𝐶𝑜𝑛𝑣.)
′ ∙ 𝐶𝐷𝐵𝑇                    (5-5) 

 

As introduced in section 5.1, HDS reaction processes in two pathways, DDS and HYD. 

Therefore, we simplified the HDS reaction network as shown in equation (5-6) (using DBT as an 

example, the same model also used for the HDS of 4,6-DMDBT).  

 

           (5-6) 

 

Reaction rates of each reaction pathway could be impressed in Eqs.(5-7) to (5-9). 

DBT TH-DBT CHB+DCH 

BP 

𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)
′  𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷𝐷)

′  

𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)
′  
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𝑟𝐷𝐵𝑇 = 𝑑[𝐷𝐵𝑇]
𝑑𝑡� = −𝑘(𝐷𝐵𝑇 𝐶𝑜𝑛𝑣.)

′ ∙ 𝐶𝐷𝐵𝑇 = −�𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)
′ + 𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′ � ∙ 𝐶𝐷𝐵𝑇   (5-7) 

𝑟𝑇𝐻𝐷𝐵𝑇 = 𝑑[𝑇𝐻𝐷𝐵𝑇]
𝑑𝑡� = 𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)

′ ∙ 𝐶𝐷𝐵𝑇𝑡 − 𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷𝐷)
′ ∙ 𝐶𝑇𝐻𝐷𝐵𝑇𝑡                     (5-8) 

𝑟𝐵𝑃 = 𝑑[𝐵𝑃]
𝑑𝑡� = 𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′ ∙ 𝐶𝐵𝑃𝑡                                                                            (5-9) 

 

Upon integrating: 

𝐶𝐷𝐵𝑇𝑡 = 𝐶𝐷𝐵𝑇0 × 𝑒−�𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)
′ +𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′ �∙𝑡 

                   ⇒ ln (𝐶𝐷𝐵𝑇
𝑡

𝐶𝐷𝐵𝑇0� ) = −(𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)
′ + 𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′ ) ∙ 𝑡                                 (5-10) 

               𝐶𝐵𝑃𝑡 = −
𝐶𝐷𝐵𝑇
𝑡 ×𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′

𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)
′ +𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′ × (𝑒−(𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)
′ +𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′ )∙𝑡 − 1)                               (5-11) 

               𝐶𝑇𝐻𝐷𝐵𝑇𝑡 =
𝐶𝐷𝐵𝑇𝑡 𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)

′

�𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷𝐷)
′ − 𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)

′ − 𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)
′ �

 

                                     × (𝑒−�𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)
′ +𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′ �∙𝑡 − 𝑒−𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷𝐷)
′ ∙𝑡)                                     (5-12) 

 

The value of 𝑘(𝐷𝐵𝑇 𝐶𝑜𝑛𝑣.)
′  is the pseudo-first-order rate constant for the conversion of starting 

sulfur-containing compounds in HDS reactions. According to Eq.(5-10), this number can be 

obtained via plotting 𝑙𝑛 𝐶𝐷𝐵𝑇
𝑡

𝐶𝐷𝐵𝑇
0   versus t. The slope is−(𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)

′ + 𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)
′ ), eg. −𝑘(𝐷𝐵𝑇 𝐶𝑜𝑛𝑣.)

′ . 

According to Eq.(5-11), if plot 𝐶𝐵𝑃
𝑡

𝐶𝐷𝐵𝑇
𝑡  versus (𝑒−(𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)

′ +𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)
′ )∙𝑡 − 1), the slope would be 
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−𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)
′

𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)
′ +𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′ , wherein −(𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)
′ + 𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′ ) has been obtained from Eq.(5-10), so 

the values of 𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷)
′  and 𝑘(𝐷𝐵𝑇 𝐷𝐷𝑆)

′  can be calculated, respectively. Eq.(5-12) is more 

complicated than the other two. The value of 𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷𝐷)
′ can not be calculated via simply 

plotting. Non-linear regression is required and this is the most difficult part in this kinetic model, 

therefore, the significance of the regression involved in 𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷𝐷)
′  was tested, which can be 

evaluated via comparing F values. If the observed F value (FOBS) is bigger than the tabulated F 

value, the regression using the estimated 𝑘𝐻𝑌𝐷𝐷 is significant. In the present study, at the 95% 

confidence level, the tabulated F value is 5.99. Therefore, if the FOBS is higher than 5.99, the 

regression should be significant. All regression curves and ANOVA (Analysis Of Variance) 

tables of 𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷𝐷)
′ estimation have been given in Appendix E. 

 

For example, the FOBS values for the HYDD pathway reaction constant in the HDS of DBT and 

4,6-DMDBT at 380 ⁰C were 533 (fitting points shown in Fig. 5-4) and 16, respectively. Both of     

them are higher than the tabulated F value of 5.99, and hence the calculated 𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷𝐷)
′ values 

are acceptable. Additionally, the regression for 𝑘(𝐷𝐵𝑇 𝐻𝑌𝐷𝐷)
′  in the HDS of DBT was better fitting 

than in the HDS of 4,6-DMDBT, indicating that this kinetics model (Eq.(5-6)) is more 

appropriate for the HDS of DBT than that of 4,6DMDBT. 
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Fig. 5 - 4 Regression fitting points for 𝒌′𝑯𝒀𝑫𝑫 in the HDS of DBT over dispersed Mo sulfide 

catalyst using in-situ H2 at 380 ⁰C using the proposed kinetics HDS model (experiment ID: 

DS0907).  

Other conditions: HC reactor, equi-molar DBT and 4,6-DMDBT, 1600-1800 ppmw S in total, 

400-450 ppmw Mo, S/Mo: ~10/1, 10 ml H2O, 100 ml toluene, 590 psi CO mixed with 10 psi H2S 

 

Calculated pseudo-first-order rate constant of each single HDS reaction step for the HDS of DBT 

and 4,6DMDBT are listed in Table 5-3.  
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Table 5 -3  Pseudo-first-order rate constants involved in HDS reactions of DBT and 4,6-DMDBT 
as a function of reaction temperature over dispersed Mo sulfide catalyst using in-situ H2*.  

*: Other conditions: HC reactor, equi-molar DBT and 4,6-DMDBT, 1600-1800 ppmw S in total, 

400-450 ppmw Mo, S/Mo: ~10/1, 10 ml H2O, 100 ml toluene, 590 psi CO mixed with 10 psi H2S 

†: 𝑘𝐶𝑜𝑛𝑣.
′ = 𝑘𝐷𝐷𝑆′ + 𝑘𝐻𝑌𝐷′  

‡: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑘𝐷𝐷𝑆.
′ /𝑘𝐻𝑌𝐷′  

 

5.4.3 Simultaneous HDS of DBT and 4,6-DMDBT  
 

Fig. 5-5 represents the HDS product distribution in the HDS of DBT over the dispersed Mo 

sulfide catalyst using in-situ hydrogen at 380°C. Four products were observed: biphenyl (BP), 

the product of the DDS pathway, tetrahydro-DBT (TH-DBT), the intermediate of the HYD 

pathway, and cyclohexylbenzene (CHB) and dicyclohexyl (DCH), the HYDD products of DBT 

which are final products of the HYD route. The contribution of BP in all sulfur-removed 

products was higher than 80% at 380°C during the reaction. This showed that the DDS route was 

Reaction temp., ⁰C 𝑘𝐶𝑜𝑛𝑣.
′ × 𝟏𝟎𝟓 

(Conversion)† 
𝒌𝑫𝑫𝑺′

× 𝟏𝟎𝟓 
𝒌𝑯𝒀𝑫′

× 𝟏𝟎𝟓 
𝒌𝑯𝒀𝑫𝑫′

× 𝟏𝟎𝟓 Selectivity‡ 
𝑘(𝐷𝐵𝑇 𝐶𝑜𝑛𝑣.)
′

𝑘(𝐷𝑀𝐷𝐵𝑇 𝐶𝑜𝑛𝑣.)
′  

DBT 

330 
(DS0905) 4.2 2.5 1.7 26.5 1.5 1.7 

355 
(DS0906) 10.3 7.1 3.2 51.0 2.2 2.8 

380 
(DS0907) 20.7 15.3 5.4 80.9 2.8 2.8 

400 
(DS0908) 31.3 23.7 7.6 149 3.1 2.5 

4,6-
DMDBT 

330 
(DS0905) 2.5 --- 1.6 12 --- --- 

355 
(DS0906) 4.6 0.8 3.9 61 0.21 --- 

380 
(DS0907) 7.3 1.5 5.8 70 0.26 --- 

400 
(DS0908) 12.3 4.7 7.6 75 0.62 --- 
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much faster than the HYD route in the HDS of DBT. The concentration of TH-DBT decreased 

with extending the reaction time, indicating that this intermediate was consumed quickly to 

generate further sulfur-removed products, CHB and DCH.  

 

 

Fig. 5 - 5 HDS product distribution of DBT over dispersed Mo sulfide catalyst using in-situ H2 at 

380⁰C (experiment ID: DS0907).  

Other conditions: HC reactor, equi-molar DBT and 4,6-DMDBT, 1600~1800 ppmw S in total, 

400~450 ppmw Mo, S/Mo~10/1, 10 ml H2O, 100 ml toluene, 590 psi CO mixed with 10 psi H2S 

 

Fig. 5-6 shows the HDS product distribution in the HDS of 4,6-DMDBT over the dispersed Mo 

sulfide catalyst in in-situ hydrogen at 380°C. Low concentrations of intermediates, DM-TH-DBT 

and DM-HH-DBT, suggested fast C-S bond cleavage from partially hydrogenated sulfur-

containing products of 4,6-DMDBT. Desulfurized molecules DMCHB were final products of the 

HYD pathway and DMBPs were products of the DDS route.  The higher concentration of 
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DMCHB indicated higher selectivity towards to the HYD pathway in the HDS of 4,6-DMDBT. 

Hence, DBT and 4,6-DMDBT have different predominant reaction pathway during HDS 

reactions. This is in accordance with what was reported using supported Mo sulfide 

catalysts48,79,80.  

 

 

Fig. 5 - 6  HDS product distribution of 4,6-DMDBT over dispersed Mo sulfide catalyst using in-

situ H2 at 380⁰C (experiment ID: DS0907).  

Other conditions: HC reactor, equi-molar DBT and 4,6-DMDBT, 1600~1800 ppmw S in total, 

400~450 ppmw Mo, S/Mo~10/1, 10 ml H2O, 100 ml toluene, 590 psi CO mixed with 10 psi H2S 

 

Pseudo-first-order rate constants were determined according to the HDS kinetic model shown in 

Eq. (5-6). The selectivity between the two routes, 𝑘𝐷𝐷𝑆′ /𝑘𝐻𝑌𝐷′ , was 1.5 to 3.1 in the HDS of DBT, 

while 0.2 to 0.6 in the HDS of 4,6-DMDBT from 330°C to 380°C. Low rate constants for the 
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direct sulfur removal from 4,6-DMDBT molecules showed that 4,6-DMDBT was extremely 

difficult to desulfurize directly. In the flat 4,6-DMDBT molecule, the methyl groups and the 

sulfur atom are in the same plane of the molecule. The adsorption of 4,6-DMDBT in the π mode 

with the molecule flat on the catalyst surface allow benzene rings, both methyl groups and the 

sulfur atom have access to active sites, and have the hydrogenation of 4,6-DMDBT occur. 

However, as the spacious methyl groups adjacent to the sulfur atom in the 4,6-DMDBT molecule, 

they hinder the molecule from binding on the catalyst surface on the catalyst surface via the 

sulfur atom in the σ mode with the molecule perpendicular to the catalyst surface. Therefore, the 

adsorption of 4,6-DMDBT in the σ mode is much weaker than that of DBT, and the DDS 

pathway in the HDS of 4,6-DMDBT was strongly suppressed.  

 

It is interesting to observe that the rate constant of the HYD pathway, 𝑘𝐻𝑌𝐷, in the HDS of 4,6-

DMDBT was close to the one in the HDS of DBT, Table 5-3. This trend did not change with 

increasing the reaction temperature from 330°C to 400°C. This indicated that the presence of 

methyl groups did not affect the π adsorption of 4,6-DMDBT on the catalyst surface. 

Additionally, the electron-donating effect of the two methyl groups in the 4,6-DMDBT molecule 

may even make the HYD faster than in the HDS of DBT8. Differently, the rate constant of the 

DDS route, 𝑘𝐷𝐷𝑆′ , in the HDS of 4,6-DMDBT was found to be much lower than that in the HDS 

of DBT. Therefore, the lower reactivity of substituted DBT molecules over the dispersed Mo 

sulfide catalyst was primly attributed from the extremely slow direct desulfurization in the HDS 

of 4,6-DMDBT.  
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The pseudo-first-order rate constant of the sulfur-removal step in the HYD route, 𝑘𝐻𝑌𝐷𝐷, was 

observed to be much higher ( > 10 times) than 𝑘𝐻𝑌𝐷′ and 𝑘𝐷𝐷𝑆′ , and even higher than the pseudo-

first-order rate constant for the conversion of the starting material, 𝑘𝐶𝑜𝑛𝑣.
′ . The higher rate 

constant in the HYDD step than HYD was also observed by Wang and Prins81. This indicates 

that the sulfur-removal from sulfur-containing partially hydrogenated molecules, such as TH-

DBT in the HDS of DBT and DM-TH-DBT, DM-HH-DBT in the HDS of 4,6-DMDBT, was 

much faster than the first hydrogenation step to generate hydrogenated intermediates. Therefore, 

these sulfur-containing partially hydrogenated products were considered as intermediate in the 

HYD route. As a result, the concentrations of these intermediates increased initially and 

decreased with extending the reaction time to generate further sulfur-removed products.   

 

The HDS reactivity of DBT over the dispersed Mo sulfide catalyst using in-situ H2 was found to 

be 2.8 times as high as that of 4,6-DMDBT at 355°C (Table 5-3). The low reactivity of 4,6-

DMDBT was previously expected as it is one of the most refractory sulfur compounds present in 

oil fuels, and its HDS reactivity was around 10 times lower than that of DBT in the HDS of a 

diesel fuel at 360⁰C over a traditional supported CoMo catalyst46. More recently, Wang and 

Prins81 reported that 4,6-DMDBT was 7 times less reactive than DBT at 300°C over a NiMoS2/γ-

Al2O3 catalyst. So, the relative reactivity of 4,6-DMDBT to that of DBT was much higher in our 

catalytic reaction system using dispersed MoS2 catalyst with in-situ H2. It is interesting to note 

that Yoosuk et al 78 reported the ratio of the HDS rate constants for the conversions of DBT and 

4,6-DMDBT to be 1.4 at 300°C using an unsupported sulfide NiMo catalyst, and an unsupported 

MoS2 was even more active towards the HDS of 4,6-DMDBT where the ratio of the HDS rate 

constants for the conversions of DBT and 4,6-DMDBT was 0.55.  Hence, dispersed unsupported 
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Mo sulfide based catalysts apparently have a higher relative activity towards the HDS of 4,6-

DMDBT than the traditional supported catalysts. Yoosuk et al 78 attributed the higher activity of 

unsupported catalysts to their higher hydrogenation activities. Another possible explanation is 

that the dispersed unsupported catalyst provides more effective surface area for the π-adsorption 

of the 4,6-DMDBT and hence more effective for the HDS of the bulky refractory sulfur-

containing compounds. Additionally, the interaction between the catalytically active phases and 

the carrier of the supported catalysts is eliminated. The unsupported catalyst may provide a 

higher surface area for the interaction with refractory sulfur-containing compounds. This may 

also contribute to the higher efficiency of the catalyst in the HDS reactions of highly refractory 

sulfur-containing compounds. Therefore, the unsupported finely dispersed Mo sulfide based 

catalyst system is more appropriate than the supported catalysts in hydro-treating heavy feed 

stocks.  

 

The ratio between the reactivity of DBT and 4,6-DMDBT in the simultaneous HDS reactions 

over dispersed Mo sulfide catalyst using in-situ H2 was almost constant within the temperature 

range of 355 ⁰C to 400 ⁰C. This means that the pseudo-first-rate constants for the conversions of 

both sulfur-containing model compounds increased to the same extent under the present 

experimental conditions when the reaction temperature was increased from 355⁰C to 400⁰C.  

 

However, running HDS at different reaction temperature resulted in the change of the selectivity 

between two reaction pathways. The selectivity between the two reaction pathways (Table 5-3), 

𝑘𝐷𝐷𝑆′ /𝑘𝐻𝑌𝐷′ , in the HDS of both sulfur-containing model compounds increased with increasing 

the reaction temperature, namely, the DDS route was more favored. Especially, in the HDS of 
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4,6-DMDBT, at 400 ⁰C, the selectivity towards DDS increased by almost 2 times compared to at 

355 ⁰C. At 400 ⁰C, when the simultaneous HDS reaction proceeded for 180 min, the sulfur-

removed products obtained via the DDS reaction route contributed 86% and 44% to the total 

sulfur-removal of DBT and 4,6-DMDBT, respectively, while, DDS only contributed around 30% 

to the sulfur-removal of 4,6-DMDBT at 380 ⁰C. Hence, for HDS reactions at high temperature 

over the dispersed Mo sulfide catalyst using in-situ hydrogen, sulfur could be removed at a lower 

consumption of hydrogen due to the higher selectivity towards the direct desulfurization pathway.  

 

5.4.4 Effect of Ni on the simultaneous HDS of DBT and 4,6-DMDBT using in-situ H2 
 

Nickel is a well-accepted promoter for Mo sulfide based catalysts for hydro-treating reactions. In 

the present section, Ni was added with a molar ratio of Ni/Mo as 0.5 with a constant total metal 

concentration used in the experiment. Such an atomic ratio between Ni and Mo was optimized by 

Lee42 previously in our group. The effect of Ni on the HDS of DBT was also studied previously 

by Lee, and his results indicated that the conversion and the sulfur-removal of DBT was 

enhanced significantly with the presence of Ni42. 

 

In this chapter, we extended the use of Ni in the HDS of 4,6-DMDBT in a mixture with DBT. 

There were two experiments using Ni-promoted catalyst, NiMo-1 and NiMo-2. In the experiment 

of NiMo-2, the partial pressure of pre-sulfurization gas, H2S, was 50% higher than that in the 

NiMo-1 run. The experiment using un-promoted catalyst, Mo, was run under the exact same 

conditions as the NiMo-1 run. In all these three experiments, the total molar amount of active 

metals, Mo and Ni, was kept constant. The data illustrated in Fig. 5-7 suggest that: 
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• The addition of Ni into the dispersed Mo sulfide catalyst promoted the HDS of DBT 

significantly. Conversion and desulfurization of DBT increased by 60% and 88%, 

respectively (Mo vs. NiMo-1). When increasing the partial pressure of H2S, the HDS 

results of DBT were further promoted over the NiMo catalyst (NiMo-1 vs. NiMo-2). 

 

• Differently, the HDS of 4,6-DMDBT was not promoted significantly with the presence of 

Ni under experimental conditions (Mo vs. NiMo-1). Significantly higher conversion of 

4,6-DMDBT was observed after increasing the partial pressure of H2S over Ni-promoted 

catalyst, however, the sulfur-removal did not increased significantly (NiMo-1 vs. NiMo-

2). The different promotional effect of Ni on the HDS of DBT and 4,6-DMDBT was also 

observed in the LGO studies carried out in our group82. 

 

In Yoosuk’s study on the HDS of DBT and 4,6-DMDBT over dispersed Mo and NiMo 

catalysts78, conversions of DBT and 4,6-DMDBT were also observed to be promoted to different 

extents too, by 8 times and 3 times, respectively. Compared to their HDS results over Ni 

promoted Mo sulfide catalysts, the HDS results obtained in the present study were much lower. 
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Fig. 5 - 7 Conversion and desulfurization results of DBT and 4,6-DMDBT over promoted Mo 

sulfide catalysts using in-situ H2.  

Other conditions: Ni/Mo: ~0.5, 380⁰C, equi-molar DBT+4,6-DMDBT, 1670 ppmw S, 

S/(Ni+Mo): ~10/1, 1hr, 100 ml toluene, 10 ml PMA aqueous solution, 590 psi CO + 10 psi H2S 

(585 psi CO + 15 psi H2S in the NiMo-2 run) 

 

Due to the same amount of metals was used in the experiments using dispersed Mo and NiMo 

catalysts, less Mo was used in the experiment in the NiMo runs than in the Mo run. Hence, 

although similar HDS results of 4,6-DMDBT were obtained over the two different catalysts, it 

may lead to the conclusion that Ni had shown promotional effect on the HDS of 4,6-DMDBT 

due to the lower amount of the active Mo used. Also it could be expected that when the amount 

of Mo was kept constant in experiments, the HDS activity of the NiMo sulfide catalysts would 

be promoted more significantly.   
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The higher conversion of 4,6-DMDBT obtained in the experiment under higher partial pressure 

of H2S indicated that the sulfidation of the NiMo catalyst was not completed. 10 psi of H2S was 

an optimized pre-sulfidation condition in our preliminary experiments to generate highly active 

dispersed Mo sulfide catalyst for the simultaneous HDS of DBT and 4,6-DMDBT83. However, 

this optimized amount of H2S does not seem to be high enough for the pre-sulfidation of NiMo 

catalyst. Therefore, the dispersed Ni-promoted Mo catalyst was more difficult to be sulfided and 

activated than the unpromoted Mo catalyst, hence, more severe pre-sulfidation condition is 

required when using Ni-promoted catalysts. On the other hand, the increased H2S partial pressure 

resulted in a positive effect on the conversion of 4,6-DMDBT, but did not promote the 

desulfurization of the sulfur-containing compound. This is probably due to the inhibitive effect 

of excess H2S on the C-S cleavage step. Such inhibitive effect of excess H2S also explained the 

lower selectivity on the DDS pathway in the 15 psi H2S experiment (Table 5-4). 

 

Table 5 - 4  Selectivity of HDS pathways observed over sulfided Mo & NiMo catalysts* 

 NiMo-1 
(10 psi H2S) 

NiMo-2 
(15 psi H2S) 

DBT 
DDS/HYDD 5.7 4.6 

𝐷𝐷𝑆/𝐻𝑌𝐷 3.1 2.6 

4,6-DMDBT 
𝐷𝐷𝑆/𝐻𝑌𝐷𝐷 0.84 0.77 

𝐷𝐷𝑆/𝐻𝑌𝐷 0.69 0.64 

*: Other conditions: Ni/Mo: ~0.5, 380⁰C, equi-molar DBT+4,6-DMDBT, 1670 ppmw S, 

S/(Ni+Mo) or S/Mo: ~10/1, 1hr, 100 ml toluene, 10 ml PMA aqueous solution, 590 psi CO + 10 

psi H2S (585 psi CO + 15 psi H2S in the NiMo-2 run) 
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Although promotional effect of Ni on the HDS activity of Mo sulfide catalyst was observed, it 

was much lower than expected. The morphology of NiMo catalyst was characterized via 

HRTEM-EDX after consumed in an HDS experiment. The characterized NiMo catalyst particles 

were collected from both the organic phase and the Wcat phase. Interestingly, the black particles 

present in the organic phase was identified to be sulfided Ni by EDX and the molar ratio between 

the two elements, S:Ni, equaled to 1:9 (Fig. 5-8A). This observation suggested that little Mo was 

present in the organic phase and Ni was not completely sulfided. The latter observation was in 

agreement with previous conclusion that NiMo catalyst requires more severe sulfidation 

conditions. The absence of Mo sulfide in the organic phase may be another important reason for 

the low promotional effect of Ni on the HDS activity of Mo sulfide catalyst. 

 

Element of Mo was detected by EDX in the catalyst particles collected on the reactor vessel wall 

as shown in Fig. 5-8B. However, the particles detected in the Wcat sample had two different 

phases: Mo-abundant phase (areas sp2 and sp3 in Fig. 5-8B) and Ni-abundant phase (area sp1 in 

Fig. 5-8B). The distance between layers (Fig. 5-9) was measured to be around 0.64nm, which 

was the identified spacing of MoS2 slabs. This indicated that NiS and MoS2 slabs were present as 

separate phases. Hence the Ni was not playing a role in promoting the MoS2 activity for HDS.  
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Fig. 5 - 8 HRTEM image of NiMo catalyst particles dispersed in the organic phase (A) and on 

the reactor vessel wall (B) collected after HDS experiment (EDX spectra given in Appendix E).  

HDS conditions: 0.42g DBT+0.5g DMDBT, 380°C, 590psi CO+10psi H2S, S/(Ni+Mo): ~10:1, 

2hr 
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Fig. 5 - 9 HRTEM image of MoS2 slabs collected on the reactor vessel wall after the HDS 

experiment over NiMo catalyst. 
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5.4.5 Effect of K on the simultaneous HDS of DBT and 4,6-DMDBT using in-situ H2 

 

Water gas shift reaction is applied in the present study to provide in-situ H2 for hydro-treating 

reactions. High conversion of CO via the WGS reaction is pursued in the present study for 

providing as much in-situ H2 as possible for hydro-treating reactions. As potassium was found to 

have effective promotional effect on the WGS reaction20, 77a, 84, potassium was added into the 

dispersed Mo sulfide based catalyst as a promoter for providing more in-situ H2 for further HDS 

reactions. 

  

Before studying the effect of potassium on HDS reactions, the effect of potassium on the WGS 

reaction was investigated first. In this study, potassium was introduced into the dispersed Mo 

sulfide catalyst as the ratio of K/Mo was 0.4 and the total amount of active metals was a constant 

in all experiments. Fig. 5-10 illustrated the conversion of CO via the WGS reaction as a factor of 

reaction time over different dispersed sulfide catalysts.  

 

As shown in Fig. 5-10, in the experiment using un-promoted Mo sulfide catalyst (WG-08), the 

conversion of CO via the WGS reaction reached 71.2% at the end of the reaction (250 min), 

while this level of CO conversion was observed at 30 min when using potassium promoted Mo 

sulfide catalyst. After adding K into the Mo sulfide catalyst (WG-09), much higher conversion of 

CO was observed. In the experiment of WG-08, the conversion of CO increased from 25.4% to 

71.2% in the first 250 min of the reaction time. After introducing potassium (K/Mo=0.4, molar) 

into sulfided molybdenum, the conversion of CO via the water gas shift reaction increased from 

44.4% at 0 min to 90.6% at 260 min under the same reaction conditions. The conversion of CO 
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was 90% at 130 min and then stayed at this level. This indicated that the equilibrium conversion 

of CO under the present reaction conditions (380ºC, 590psi CO, 10ml DI H2O) was around 

90%~91%, which was a little lower than calculated equilibrium CO conversion of 96.8%. The 

promotional effect of potassium on the activity towards WGS reaction was significant. Therefore, 

more hydrogen could be generated during the reaction when using potassium promoted 

molybdenum sulfide catalyst for HDS reactions and modified HDS result was expected. 

 

Fig. 5 - 10  Conversion of CO via WGS reaction as a function of reaction time over different 

dispersed sulfided catalysts.  

Other conditions: SS reactor, 0.4 mmol active metals (Mo in WG-08 or Mo+K  in WG-09), 

K/Mo=0.4 (WG-09), 10 ml H2O, 100 ml toluene, 590 psi CO mixed with 10 psi H2S, Perken-

Elmer GC 
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The use of potassium promoted Mo sulfide catalyst was extended in HDS studies. Experiment 

results are listed in Table 5-5. Potassium showed strong inhibitive effect on the HDS of DBT and 

4,6-DMDBT. Especially in the HDS of DBT, very little DBT was converted over the KMo 

sulfide catalyst. The negative effect of potassium on the HDS of 4,6-DMDBT seemed to be 

smaller than on the HDS of DBT, but the desulfurization of 4,6-DMDBT was still lower than 

that of DBT. 

 

Table 5 - 5  HDS results of DBT and 4,6-DMDBT over KMo catalyst using in-situ H2. 

 

Kantschewa et al77a studied the nature and properties of a potassium-promoted NiMo-Al2O3 

WGS catalyst. They observed significant enhancement in the WGS activity, but reduced activity 

towards the HDS of thiophene. They explained the low HDS activity of KNiMo catalyst as 

follows: 

 K/Mo=0.4 Mo 

Feed DBT 95.9% 68.6% 

Intermediate TH-DBT 0.6% 8.9% 

DDS BP 3.2% 16.7% 

HYDD 
CHB 0.3% 4.9% 

DCH 0 0.9% 

Feed 4,6-DMDBT 91.0% 69.7% 

Intermediate 

ISO-DMDBT 1.4% 2.5% 

HH-DMDBT 2.2% 2.3% 

TH-DMDBT 1.5% 2.4% 

DDS DMBP 1.9% 2.6% 

HYDD DMCHB 2.0% 20.5% 
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• Mo was coordinated octahedrally in NiMo/Al2O3, while it was coordinated tetrahedrally 

in KNiMo/Al2O3. 

• Addition of potassium destroyed the surface heteropolymolybdate phase, which was the 

precursor for the active phase of a sulfided NiMo/Al2O3 catalyst; hence the NiMoS phase 

could not sufficiently be developed with the presence of potassium. 

• Mo5+ was the stable oxidation state in the sulfided KNiMo catalyst, while Mo4+ was 

considered as the really active phase for HDS. 

 

 
Fig. 5 - 11 XRD spectra of K promoted MoS2 catalyst particles prepared in CO at 340⁰C 

(K:Mo=1:9 molar) 

 

Identified peaks of MoS2 were observed in the XRD spectrum of K promoted Mo catalyst 

prepared in CO at 340°C (Fig 5-11), indicating the generation of active MoS2 in the presence of 

potassium The typical thread-shaped MoS2 slabs with similar statistic average slab length were 
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also observed in the HRTEM images of the KMo catalyst. However, HRTEM (Fig. 5-12) and 

SEM images (Fig. 5-13) showed that the surface morphology of the dispersed Mo sulfide 

catalyst changed after introducing potassium. This change is much clearer as shown in the SEM 

image, wherein the sphere shape of Mo sulfide disappeared and was replaced by a kind of 

stacked plate structure. The change in the morphology of the catalyst surface structure may play 

an important role in the significant decrease in the HDS activity of KMo sulfide catalyst. 

Therefore, potassium did not exhibit a promotional effect on the HDS activity of dispersed Mo 

sulfide based catalyst.  
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Fig. 5 - 12 HRTEM images of Wcat particles of K promoted Mo sulfide catalyst prepared in CO 

at 340 °C (K:Mo=1:9 molar) 
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Fig. 5 - 13 SEM images of K promoted Mo sulfide catalyst particles detected by SE2 (prepared 

in CO at 340 °C, K:Mo=1:9 molar) 
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5.5 Conclusions 
 

Although the HDS of refractory sulfur-containing compounds has been studied intensively, this 

thesis would be the first to investigate the simultaneous HDS of DBT and 4,6-DMDBT over 

nano-dispersed Mo sulfide based catalysts using in-situ H2 generated from CO and H2O via the 

WGS reaction. Our experimental results indicated that: 

(1) The concentration of hydrogen generated from CO via the WGS reaction stayed in the 

range of 30-40mol% in the WGS gas mixture at different reaction temperatures changing 

from 350°C to 400°C. Hence, the concentration of hydrogen was assumed as a constant 

in the HDS kinetic model proposed in the present study. 

(2) The reactivity (based on the conversion) of DBT in HDS over dispersed Mo sulfide 

catalyst was found to be 2.8 times as high as that of 4,6-DMDBT in the mixture with 

DBT. This number was much lower than what was observed over supported Mo catalysts 

for the HDS of DBT and 4,6-DMDBT mixture reported in literatures probably mainly 

due to more effective surface area provided for π-adsorption of 4,6-DMDBT molecules. 

Therefore, the unsupported Mo sulfide catalyst is relatively more active towards the HDS 

of refractory sulfur-containing compound. 

(3) The pseudo-first-rate constant of the HYD route in the HDS of 4,6-DMDBT was 

comparable to that in the HDS of DBT. The lower reactivity of 4,6-DMDBT than DBT 

was mainly due to the inhibition of the DDS pathway caused by the two methyl groups 

adjacent to the sulfur atom. 

(4) HDS product distribution of each sulfur model compound has shown that DDS was the 

major desulfurization pathway in the HDS of DBT, while HYD was the predominant way 
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in the HDS of 4,6-DMDBT. This is in accordance to the reported results using supported 

catalysts. 

(5) Within the reaction temperature range of 330~380⁰C, the reaction pathway of DDS was 

more favoured with increasing the temperature in the simultaneous HDS of DBT and 4,6-

DMDBT. 

(6) Significant promotion effect of Ni on the HDS of DBT was observed after introducing Ni 

into the nano-dispersed Mo sulfide catalyst, while the HDS of 4,6-DMDBT was not 

enhanced by Ni.  

(7) More severe sulfidation condition is required in the preparation of Ni promoted Mo 

catalyst. 

(8) The absence of Mo sulfide in the organic phase and the separate presence of NiS from 

MoS2 in the reaction system may contribute to the low promotional effect of Ni on the 

HDS activity of Mo sulfide catalyst. 

(9) Potassium had shown positive effect on improving WGS activity of the dispersed Mo 

sulfide catalyst, but strongly inhibited the HDS activity. The morphology of Mo sulfide 

catalyst changed significantly after added potassium. Therefore, although more in-situ H2 

was generated over a KMo sulfide catalyst, potassium could not be used as an effective 

promoter for HDS reactions. 
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Chapter 6 Comparison between in-situ H2 and 
molecular H2 for Hydrodesulfurization  

6.1 Introduction 
 

The in-situ H2 reaction system used in our study is a process with water present. The catalyst 

used was an unsupported dispersed Mo sulfide based catalyst, which was prepared in-situ during 

the reactions.  Hence, there are two factors involved in affecting the efficiency of the in-situ H2 

reaction system for hydro-treating reactions: (1) the activity of the in-situ prepared dispersed 

MoS catalyst and (2) the reactivity of in-situ H2. Namely, the better bitumen upgrading results 

obtained using in-situ H2 may be due to two reasons: (1) the dispersed MoS catalyst prepared in 

in-situ H2 has higher activity, and (2) in-situ H2 is more reactive than molecular H2. If this 

assumption is true, what is the contribution of each factor to the higher efficiency of the in-situ 

H2 reaction system? Therefore, in this chapter, the dispersed Mo sulfide catalysts were firstly 

prepared ex-situ in the two different H2 resources. Hence, the question whether the catalyst 

prepared in in-situ H2 has higher activity for hydro-treating reactions could be answered via 

investigating the HDS activity of the two ex-situ prepared dispersed MoS catalysts using 

molecular hydrogen. On the other hand, the question whether the in-situ H2 is more reactive than 

molecular H2 in hydro-treating could be answered via comparing the HDS results using the two 

different H2 atmospheres over the same type of catalyst. The experiments involved in this study 

are two-step experiments and the catalysts prepared are marked as ‘Ex’ catalysts. The 

experimental design is given in Table 6-1.  
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Table 6 - 1 Two-step experimental design 

† investigating the activity of the catalysts prepared in different gas atmosphere 

‡ comparing the reactivity of the two H2 atmospheres over ExCO-01 

 

6.2 Experimental 

Experiments carried out in this chapter were designed to: 

(1) study the simultaneous HDS of DBT and 4,6-DMDBT using the two different hydrogen 

atmospheres; 

(2) determine the HDS activity of the two types of ex-situ prepared dispersed Mo sulfide 

catalysts; 

(3) compare the reactivity of in-situ hydrogen versus external supplied molecular hydrogen 

in HDS reactions over the same type of ex-situ prepared Mo sulfide catalyst. 

 

6.2.1 Simultaneous HDS of DBT and 4,6-DMDBT using two different hydrogen sources 
 

 
Step 1(catalyst preparation) Step 2 (HDS activity study) 

Catalyst 
ID Gas atmosphere Temp. Gas atmosphere H2O 

A† 
ExCO-01 CO (H2O present) 340 ⁰C 590 psi H2 + 10 psi H2S 0 

ExH-01 H2 (H2O present) 340 ⁰C 590 psi H2 + 10 psi H2S 0 

B‡ Use the catalyst of ExCO-01 
595 psi CO + 5 psi H2S 5 ml 

595 psi H2 + 5 psi H2S 5 ml 
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In this section, PMA and ammonia tetrathiomolybdate (ATTM) were used as molybdenum 

precursors to compare the simultaneous HDS results of DBT and 4,6-DMDBT using in-situ 

generated hydrogen versus using molecular hydrogen. Detailed experimental conditions have 

been listed in Table 6-2. 

 

Table 6 - 2 Detail reaction conditions of the experiments to study HDS in the two different 

hydrogen sources† 

†: other common conditions: 10 ml H2O, 100ml toluene, 0.5g 4,6-DMDBT, 0.42g DBT, 

430~500ppmw Mo (0.4 mmol Mo), 380°C 

* run in the HC reactor, others (not starred) were run in the SS reactor 

 

6.2.2 HDS activity of ex-situ prepared dispersed Mo sulfide catalysts 
 

As designed in Table 6-1, ex-situ catalysts were prepared separately prior to running HDS 

reactions. 2g of PMA was dissolved in 20 ml DI water, 100 ml toluene was added, 200 psi H2S 

was purged into the reactor for sulfidation, 500 psi of reactant gas (CO or H2) was introduced 

and pressurized the reactor to 600 psi (at room temperature). The catalysts were prepared at 

340⁰C. The prepared catalyst was then collected in N2 and dried under vacuum. The ex-situ 

catalyst prepared in CO was named as ExCO-01, and the one prepared in molecular hydrogen 

Experiment ID 
Reactant gases, psi Reaction time, 

min 
Active metal 

precursor 
CO H2 H2S 

DS1001* 0 600 10 150 PMA 

DS1002* 600 0 10 150 PMA 

DM-54 0 600 0 180 ATTM 

DM-57 600 0 0 180 ATTM 

DM-60 300 300 0 180 ATTM 
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was marked as ExH-01. As designed in Table 6-1, the HDS activities of the two candidate ex-situ 

catalysts were investigated and compared under normal reaction conditions, which are listed in 

Table 6-3.  

 
Table 6 - 3 Experimental conditions for preparing ex-situ catalysts and for investigating their 

HDS activities 

 
Catalyst preparation 

 
Catalyst ID Gas atmosphere H2S H2O Temperature 

ExCO-01 CO (500 psi) 200 psi 20 ml 340 °C 

ExH-01 H2 (500 psi) 200 psi 20 ml 340 °C 
 

HDS activity investigation 
 

Experiment ID Gas atmosphere H2S H2O Temperature Model 
compounds 

ExCO0901 H2 (590 psi) 10 psi 0 380 °C DBT+4,6-
DMDBT* ExH0901 H2 (590 psi) 10 psi 0 380 °C 

ExCO1001 H2 (600 psi) 0 0 340 °C 
DBT** 

ExH1001 H2 (600 psi) 0 0 340 °C 

* 0.5g 4,6-DMDBT and 0.42g DBT dissolved in 100 ml toluene, 0.09g ex-situ catalyst used 

(about 600 ppm Mo), S/Mo≈10 (molar) 

** 2.1g DBT dissolved in 100 ml toluene (4100-4200 ppmw S, 11mmol Mo), 0.09g ex-situ 

catalyst used (about 600 ppm Mo), S/Mo≈22 (molar) 

 

The activity of the two candidate ex-situ catalysts was firstly investigated via the simultaneous 

HDS of DBT and 4,6-DMDBT using molecular hydrogen. In these two experiments, 10 psi H2S 

was fed into the reaction system to keep the ex-situ catalyst in the sulfidation status. And then, 
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two more repeating experiments were carried out by using DBT as the model compound and 

eliminate the influence of H2S on HDS reactions. H2S was not used in these experiments to test 

whether the catalyst activity lost after exposed in the air during experimental operations. Since 

DBT has much higher reactivity than 4,6-DMDBT, the HDS of DBT was processed at lower 

reaction temperature with higher concentration of the sulfur-containing compound in the 

feedstock. 

 

6.2.3 Reactivity of the two hydrogen sources 
 

The reactivity of the two hydrogen sources in the simultaneous HDS of DBT and 4,6-DMDBT 

was compared over ex-situ prepared dispersed Mo sulfide catalyst, ExCO-01. Detailed 

experimental conditions are listed in Table 6-4. 

 

Table 6 - 4 Experimental conditions for comparing the reactivity of two hydrogen sources* 

Catalyst ID Gas atmosphere H2S H2O Temperature 

ExCO0902 CO (590 psi) 5 psi 5 ml 380 °C 

ExCO0903 H2 (590 psi) 5 psi 5 ml 380 °C 

* 0.5g 4,6-DMDBT and 0.42g DBT dissolved in 100 ml toluene, 0.09g ex-situ catalyst used 

(about 600 ppm Mo) 

 

6.3 Results and discussion 
 

6.3.1 Characterization 
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Characterization results of the catalysts prepared in in-situ H2 and molecular H2 have been 

reported and discussed in Chapter 4. BET and HRTEM results had shown that the dispersed Mo 

sulfide catalyst had higher surface area and dispersed in smaller particles.  

 

In the XRD spectra, width of peaks increases when crystal size become smaller and particle size 

can be calculated from the peak width at half height of each characteristic peak according to 

Scherrer equation (Eq.(6-1)). Here the width at half height of peak at 59°was chosen to calculate 

D. 

                     
θ
λ

cos
89.0
⋅

⋅
=

W
D                                                                     (6-1) 

where: D is the particle diameter, λ the wave length of the X-ray, W the full width at half 

maximum, θ the diffraction angle.  

 

From the standard spectra of MoS2 it is known that the peak at 59° is constituted and overlapped 

by two peaks at 58.5°and 60.2°. Assuming the MoS2 catalysts particle are small enough and are 

able to be treated as small spheres, the particle size from different peaks can be the same. The 

peak at 59°can be fitted into two peaks based on Gaussian Function. Applying a limitation for 

the peak fitting (Eq.(6-2)): 

              1

2

2

1

cos
cos

θ
θ

=
W
W

                                                                      (6-2) 

 

With the peak center and width ratio, the wide peak at 59° was fitted as show in Fig.6-1. The 

MoS2 particle diameters calculated according to each split peak of each MoS sample are listed in 
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Table 6-5. Calculated MoS2 particle diameters prepared in in-situ H2 and molecular H2 were 3.6 

nm and 3.4 nm, respectively, where the numbers were averaged from ones obtained at the split 

peaks of 58.5⁰ and 60.2⁰. Larger MoS2 particle size observed in SEM images, 20-40 nm, 

suggested dispersed Mo sulfide particles were dispersed as polycrystallines composed from the 

aggregation of small nano-sized crystals. Although the MoS2 crystal diameters of the two ex-situ 

catalysts determined from XRD observation were almost the same, the morphology of MoS2 

slabs and the size of aggregated MoS2 particles have been found to be different significantly via 

HRTEM and SEM characterization. As reported and discussed in Chapter 4, dispersed Mo 

sulfide catalyst prepared in in-situ hydrogen had higher surface area, larger pore volume, shorter 

MoS2 sheets, lower stacking degree, and smaller particle size than the one prepared in molecular 

hydrogen.  

 

 
Fig. 6 - 1 Peak fitting for XRD spectra of dispersed MoS catalsts prepared in in-situ H2 and 

molecular H2. 
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Table 6 - 5 Particle size obtained from the Scherrer equation and peak fitting of the XRD spectra 

for each MoS2 particles prepared in different H2 atmospheres 

† The catalyst sample MoCO340 was previously prepared for HRTEM analysis under almost the 
same preparation conditions as the catalysts sample of ExCO-01. The characterization results 
(XRD, and HRTEM) of MoCO340 were reported in this section as the dispersed catalyst 
prepared ex-situ in in-situ H2. 

‡ The catalyst sample MoH340 was previously prepared for HRTEM analysis under almost the 
same preparation conditions as the catalysts sample of ExH-01. The characterization results 
(XRD, and HRTEM) of MoH340 were reported in this section as the dispersed catalyst prepared 
ex situ in molecular H2. 

 

6.3.2 In-situ hydrogen versus molecular hydrogen for HDS 

6.3.2.1 Precursor of PMA 
 

The use of H2 in-situ generated via the WGS reaction in hydro-treating reactions is a key point in 

the novel one-step bitumen upgrading technique developed by our group. The previous work in 

our group done by Moll6 has found that in-situ H2 was more reactive in upgrading bitumen 

emulsions than molecular H2. The upgraded bitumen obtained in the in- situ H2 experiments had 

lower viscosity, lower gravity, and much less asphaltenes. In the present study, the reactivity of 

in-situ H2 will be compared with molecular H2 in the HDS reactions to investigate the effect of 

hydrogen atmosphere on HDS reactions occurring in upgrading processes.  

Samples 2θ W D/nm /nm 

MoCO340† 
58.5 2.52 3.57 

3.6 
60.2 2.55 3.57 

MoH340‡ 
58.5 2.68 3.36 

3.4 
60.2 2.71 3.35 
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Fig. 6 - 2 Simultaneous HDS of DBT and 4,6-DMDBT in in-situ hydrogen versus molecular 

hydrogen over dispersed Mo sulfide catalyst derived from PMA at 380°C.  

Other conditions: 590 psi CO or H2, 10 psi H2S, 10 ml H2O, 100 ml toluene, 0.5g 4,6-DMDBT, 

0.42g DBT, 400-500 ppmw Mo, 150 min, HC reactor 
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Fig. 6-2 shows the simultaneous HDS of DBT and 4,6-DMDBT over in-situ prepared Mo sulfide 

catalyst derived from the precursor of PMA using the two different hydrogen sources. In the 

HDS of DBT with the presence of 4,6-DMDBT, the concentration of DBT changed in the same 

range under both reaction conditions, decreasing from 80-85 mol% to around 15 mol%. When 

using in-situ hydrogen (PMA-CO in Fig. 6-3), the sulfur removal from DBT was slightly lower 

than in the other reaction run in molecular hydrogen (PMA-H2 in Fig. 6-3), while with extending 

the reaction time, the percent of desulfurization of DBT in the two experiments became very 

similar. 

 

Fig. 6 - 3 Desulfurization of DBT and 4,6-DMDBT as a function of reaction time using in-situ 

hydrogen and molecular hydrogen, respectively, over dispersed Mo sulfide catalyst derived from 

PMA at 380°C.  

Other conditions: 590 psi CO or H2, 10 psi H2S, 10 ml H2O, 100 ml toluene, 0.5g 4,6-DMDBT, 

0.42g DBT, 400-500 ppmw Mo, 150 min, HC reactor. 
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In the HDS of 4,6-DMDBT, the conversion of the starting material decreased from 97mol% to 

lower than 50mol% within 150min using in-situ hydrogen and changed from 97mol% to around 

70mol% in the molecular hydrogen experiment (Fig. 6-2). The percentage of sulfur-removed 

products in the HDS product mixture obtained in the in-situ hydrogen run was found to be 

significantly higher than the number obtained in the molecular hydrogen run (Fig. 6-3).  

 

6.3.2.2 Precursor of ATTM 
 

Ammonium tetrathiomolybdate is an already sulfided Mo precursor. Mo sulfide catalysts can be 

synthesized directly via the thermal decomposition of ATTM and do not need further 

presulfidation. Song’s group has done a lot of HDS study using Mo sulfide catalysts derived 

from ATTM13b, 78. The unsupported Mo sulfide catalysts they prepared from ATTM via 

hydrothermal decomposition had a specific surface area of 320m2/g, which is higher than the one 

prepared from PMA in the present study. They have found that ATTM is an effective precursor 

for HDS reactions. In this section, ATTM was used instead of PMA to investigate the effect of 

hydrogen source on the simultaneous HDS of DBT and 4,6-DMDBT.  

 

The simultaneous HDS of DBT and 4,6-DMDBT was carried out using 100% CO, 100% H2, 50% 

CO with 50% H2, respectively. The conversion of model compounds and the sulfur-removal 

results are charted in Fig.6-4. It was interesting to find that in-situ H2 had significant advantages 

over molecular H2 in the HDS of both sulfur-containing compounds. The conversion of starting 

materials and the sulfur-removal results increased with increasing the ratio of CO/H2 in the 

reacting gas atmosphere.  
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Fig. 6 - 4  Conversion and sulfur-removal of model sulfur-containing compounds obtained as a 

function of the gas composition of syngas.  

Other conditions: 380⁰C, equi-molar DBT+4,6-DMDBT, 1670 ppmw S, 430 ppmw Mo, 3hr, 100 

ml toluene, 10 ml ATTM aqueous solution, S/Mo~10/1, 600 psi syngas.  

 

Interestingly, when we illustrated the relationship of the sulfur-removal of DBT and 4,6-

DMDBT with the syn-gas composition, 
2HCO

CO

pp
p
+

=γ  (Fig. 6-4), we found that the 

desulfurization percent (molar) of each model S compound could be linearly related to the value 

of γ (Eq. (6-3&6-4)). Therefore, if we know the molar composition of syn-gas, we may predict 

HDS results of DBT and 4,6-DMDBT by using these equations. 

                                                                  99.02 =R                             (6-3) 

                                                                  94.02 =R                             (6-4) 
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 Where,      
,%DBTD : S-removal of DBT  

,%6,4 DMDBTD − : S-removal of 4,6-DMDBT 

 

6.3.2.3 Discussion 
 

The efficiency of the reaction system using two different hydrogen sources towards the 

simultaneous HDS of DBT and 4,6-DMDBT can be investigated via comparing the pseudo-first-

order rate constant for the conversion of starting sulfur model compounds. In the PMA study, the 

rate constant for the conversion of DBT, Table 6-6, in the in-situ H2 run was 1.2 times as high as 

that in the molecular hydrogen run. This promotional effect of in-situ H2 in HDS was stronger in 

the HDS of the more refractory sulfur-containing compound, 4,6-DMDBT. Over the catalyst 

prepared from ATTM, the higher efficiency to the simultaneous HDS of DBT and 4,6-DMDBT 

obtained using the in-situ H2 was even more significant than what have observed in the PMA 

study, and the desulfurization percentage could be correlated to the molar composition of the gas 

mixture of CO and hydrogen according to Eq. (6-3) and Eq. (6-4). Therefore, CO is a promising 

hydrogen source for hydrodesulfurization of refractory sulfur-containing species in the presence 

of water. 

 

The higher desulfurization results obtained using in-situ H2 may be due to the reduction of the 

water content during the reactions via being consumed in the WGS reaction to generate in-situ 

H2 in the 100% CO experiment. Water is an important and special reactant in the present reaction 

system. Firstly, water reacts with CO to provide in-situ H2 for hydro-treating reactions. Secondly, 

water is the phase where the catalyst precursor is present initially, and is involved in the 
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hydrothermal decomposition of the precursor to prepare the catalyst. The presence of water was 

reported to have positive effect on producing MoS2 with higher surface area and smaller particle 

size, and also have promotional effect on the fine-dispersion of catalyst particles in the reaction 

system38, 41. Thirdly, the adsorption of water molecules on the catalyst surface has inhibitive 

effect on hydro-treating reactions. This inhibitive effect should be minimized in the presence of 

WGS reaction to provide in-situ H2 for hydro-treating reactions. Therefore, the consumption of 

water in the 100% CO experiment reduced the adsorption of water molecules on the active sites 

and resulted in higher conversion and sulfur-removal of DBT and 4,6-DMDBT.  

 

Table 6 - 6 Pseudo-first-order rates constants in the simultaneous HDS of DBT and 4,6-DMDBT 

at 380°C over dispersed Mo sulfide catalyst prepared from PMA in the two hydrogen sources 

(other detailed conditions refer to Table 6-2) 

 PMA, CO PMA, H2 

 DBT 4,6-DMDBT DBT 4,6-DMDBT 
𝑘𝐶𝑜𝑛𝑣.
′  19.5 × 10−5 8.8 × 10−5 16.7 × 10−5 4.1 × 10−5 

𝑘𝐷𝐷𝑆′  13.6 × 10−5 2.5 × 10−5 10.0 × 10−5 1.1 × 10−5 

𝑘𝐻𝑌𝐷′  5.9 × 10−5 6.3 × 10−5 6.7 × 10−5 3.0 × 10−5 

𝑘𝐷𝐷𝑆′ /𝑘𝐻𝑌𝐷′  2.3 0.4 1.5 0.4 

HDS of DBT: 
 𝑘𝐶𝑜𝑛𝑣.
′ ,𝐶𝑂/𝑘𝐶𝑜𝑛𝑣.

′ ,𝐻2 1.2 

HDS of 4,6-DMDBT: 
 𝑘𝐶𝑜𝑛𝑣.
′ ,𝐶𝑂/𝑘𝐶𝑜𝑛𝑣.

′ ,𝐻2 2.1 

 

Additionally, according to HRTEM and SEM characterization results, the dispersed Mo sulfide 

catalyst prepared in in-situ hydrogen derived from PMA had shorter curved MoS2 slabs with 

lower stacking degree and dispersed in smaller polycrystalline particles. The BET specific area 
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of the catalyst prepared in in-situ H2 is also higher than the other one. Hence, the catalyst 

prepared in in-situ H2 may provide more edge and corner active sites exposed for HDS reactions. 

This may be another important reason contributing for the higher efficiency of in-situ H2 reaction 

system towards the HDS of refractory sulfur-containing compounds.  

 

The selectivity between the two HDS pathways was considered to depend on the coexistence of 

the two different active sites for DDS and HYD reactions. Tanaka74b cut MoS2 single crystals 

into several pieces perpendicularly to basal planes to increase the area of edge planes with the 

basal plane area constant. This cut resulted in the increase of hydrogenation activity of the 

catalyst. According to the “Rim-Edge” model31, increasing the amount of rim sites would 

improve the selectivity for hydrogenation reactions. According to the insightful study into the 

micro-structure of MoS2 slabs by Topsøe group34-35, a kind of metallic-like brim sites, which 

located adjacent to the edge of MoS2 slabs, existed and they played an important role in 

hydrogenation reactions. According to these advanced MoS2 structure-activity correlations, the 

catalyst with a low stacking degree would have a greater selectivity to hydrogenated products. 

Our HRTEM results have shown that the stacking degree of the catalyst prepared in in-situ 

hydrogen (MoCO340) is much lower than the one made in molecular hydrogen (MoH340). 

Hence, based on the reported correlation of the MoS2 structure to the catalyst activity, the 

catalyst generated in in-situ hydrogen should have higher selectivity for the HYD pathway. As 

the predominant reaction pathway in the HDS of 4,6-DMDBT, the higher concentration of HYD 

active sites on the catalyst surface would result in higher conversion and desulfurization of 4,6-

DMDBT. This is in agreement with the higher pseudo-first-order rate constant for the conversion 

of 4,6-DMDBT obtained in the experiment using in-situ hydrogen.  
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However, the ratio between the pseudo-first-order rate constants of DDS and HYD routes in the 

HDS of DBT in the PMA study decreased from 2.3 to 1.5 when using in-situ hydrogen instead of 

molecular hydrogen, namely, the pathway of direct desulfurization in the HDS of DBT was more 

favored in the in-situ hydrogen reaction system. This observation was not in agreement with the 

correlation of the MoS2 structure to the selectivity. Molecules of 4,6-DMDBT preferred to 

adsorb on the HYD sites rather than DDS sites because of the steric hindrance of the two methyl 

groups adjacent to the sulfur atom on the DDS active sites. Therefore, in the HDS of DBT in the 

mixture with 4,6-DMDBT, the competitive adsorption of the two sulfur-containing compounds 

on the HYD active sites may contribute to the lower selectivity towards HYD in the HDS of 

DBT. Additionally, the higher amount of hydrogen in the experiment using external provided 

molecular hydrogen may be another reason for the higher selectivity of HYD in the HDS of DBT.  

 

The experiments using ATTM were carried out in the SS reactor, which is not equipped with a 

liquid sampling line. Only the final HDS products were available for the analysis. So the ratio 

between the concentrations of DDS and HYD products was used instead of pseudo-first-order 

rate constants in the discussion on the selectivity between the two reaction pathways. The 

numbers are listed in Table 6-7. The direct desulfurization pathway was more favored in the 

HDS of both DBT and 4,6-DMDBT when increasing the concentration of molecular H2 in the 

syngas. Hydrogenation reaction occurred at the sites composing of a vacancy associated with a 

S-H group and with a hydrogen atom adsorbed on a molybdenum atom17. Therefore, the 

availability of adsorbed hydrogen is important in hydrogenation steps. The higher selectivity on 

HYD observed when using CO instead of molecular H2 as the reaction atmosphere indicated that 
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the in-situ H2 generated via the WGS reaction had provided at least comparable amount of 

adsorbed S-H for HYD reactions.  

 

Table 6 - 7 Selectivity between two HDS reaction pathways observed using syngas with different 

CO/H2 ratio over dispersed Mo sulfide catalyst derived from ATTM at 380°C (detailed 

experimental conditions refer to Table 6-2) 

    * 𝐷𝐷𝑆
𝐻𝑌𝐷

= 𝐷𝐷𝑆 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑠)
𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒(𝑠)+𝐻𝑌𝐷𝐷 𝑝𝑟𝑑𝑢𝑐𝑡𝑠

 

 

The relationship between the selectivity and the source of hydrogen obtained in the ATTM study 

was different from that observed in the PMA study. This probably depended on the morphology 

of the dispersed Mo sulfide catalysts derived from the two Mo precursors. Due to the absence of 

the characterization of the catalyst prepared from ATTM, it is not precise to discuss the details. 

 

As discussed in this part, both the structure of the catalyst and the reactivity of the different 

sources of hydrogen may affect HDS and the selectivity between the two HDS pathways. 

However, the catalysts used in this section were in-situ prepared during hydro-treating reactions, 

so it is difficult to tell which factor plays a more important role in HDS reactions. Therefore, in 

the next section, the dispersed Mo sulfide catalysts would be ex-situ prepared and the 

simultaneous HDS of DBT and 4,6-DMDBT will be studied over ex-situ catalysts in the same 

 CO CO+H2 H2 

𝑫𝑫𝑺∗

𝑯𝒀𝑫
 

DBT 2.5 2.4 3.5 

4,6-DMDBT 0.46 0.56 0.59 
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source of hydrogen, namely, molecular hydrogen. Such experimental design allows us to 

investigate the effect of the hydrogen sources on the catalyst activity towards HDS reactions. 

 

6.3.3 HDS results using ex-situ prepared catalysts 
 

In this section, catalytic activities of the two ex-situ prepared dispersed MoS2 catalysts, ExCO-01 

and ExH-01, towards HDS were studied and compared. Pseudo-first-order rate constants for the 

conversion of starting materials and for the two reaction pathways over the two ex-situ catalysts 

are listed in Table 6-8 and the product distribution is shown in Fig. 6-5. The R2 values of these 

rate constants were higher than 0.95, indicating that the pseudo-first-order rate constants were 

applicable. Comparing the HDS results of DBT and 4,6-DMDBT over ExCO-01 to those 

obtained using ExH-01, we may find that: 

• Rate constants for the conversion of the two sulfur model compounds increased by 50%;  

• Selectivity towards the DDS route decreased from 1.2 to 0.9 in the HDS of DBT; 

• Selectivity between the two route did not change significantly in the HDS of 4,6-

DMDBT. 

• Higher sulfur-removal was obtained (Fig.6-6). 

Hence, the catalyst, ExCO-01, which was prepared in in-situ hydrogen exhibited higher HDS 

activity than the other one generated in molecular hydrogen, ExH-01. It is interesting to observe 

that the catalyst prepared in in-situ hydrogen had a higher selectivity towards DDS in the HDS of 

DBT in the mixture of 4,6-DMDBT, similar to the experimental results observed in the previous 

section wherein in-situ hydrogen was used instead of molecular hydrogen (Table 6-6, PMA as 

precursor). As discussed in the PMA study in the section 6.3.2.3, the lower selectivity of HYD 
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route over the lower stacked Mo sulfide catalyst prepared in in-situ hydrogen (ExCO-01) was 

due to the competitive adsorption of DBT and 4,6-DMDBT on the HYD active sites. To verify 

this proposal and repeat the comparison on the HDS activity of the two ex-situ catalysts, the 

HDS of DBT was carried out. The results are listed in Table 6-9. 
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Table 6 - 8 Pseudo-first-order rate constants in the simultaneous HDS of DBT and 4,6-DMDBT 

at 380°C over ex-situ prepared dispersed Mo sulfide catalyst (other detailed conditions refer to 

Table 6-3) 

 

 

Table 6 - 9 Pseudo-first-order rate constants in the HDS of DBT at 340°C over ex-situ prepared 

dispersed Mo sulfide catalysts (other detailed conditions refer to Table 6-3) 

 
Cat. of ExCO-01 

(Exp. ID ExCO1001) 
Cat. of ExH-01 

(Exp. ID ExH1001) 

 DBT DBT 
𝑘𝐶𝑜𝑛𝑣.
′  11.0 × 10−5 7.0 × 10−5 

𝑘𝐷𝐷𝑆′  4.6 × 10−5 4.2 × 10−5 

𝑘𝐻𝑌𝐷′  6.4 × 10−5 2.8 × 10−5 

𝑘𝐷𝐷𝑆′ /𝑘𝐻𝑌𝐷′  0.7 1.5 

HDS of DBT: 
 𝑘𝐶𝑜𝑛𝑣.
′ ,𝐸𝑥𝐶𝑂/𝑘𝐶𝑜𝑛𝑣.

′ ,𝐸𝑥𝐻 1.6 

 

 

Cat. of ExCO-01  
(Exp. ID ExCO0901) 

Cat. of ExH-01 
(Exp. ID ExH0901) 

DBT 4,6-DMDBT DBT 4,6-DMDBT 
𝑘𝐶𝑜𝑛𝑣.
′  36.0 × 10−5 14.9 × 10−5 24.7 × 10−5 9.77 × 10−5 

𝑘𝐷𝐷𝑆′  19.4 × 10−5 3.96 × 10−5 11.5 × 10−5 2.69 × 10−5 

𝑘𝐻𝑌𝐷′  16.6 × 10−5 10.9 × 10−5 13.2 × 10−5 7.08 × 10−5 

𝑘𝐷𝐷𝑆′ /𝑘𝐻𝑌𝐷′  1.2 0.4 0.9 0.4 

HDS of DBT: 
 𝑘𝐶𝑜𝑛𝑣.
′ ,𝐸𝑥𝐶𝑂/𝑘𝐶𝑜𝑛𝑣.

′ ,𝐸𝑥𝐻 1.5 

HDS of 4,6-DMDBT: 
 𝑘𝐶𝑜𝑛𝑣.
′ ,𝐸𝑥𝐶𝑂/𝑘𝐶𝑜𝑛𝑣.

′ ,𝐸𝑥𝐻 1.5 
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Fig. 6 - 5 Simultaneous HDS of DBT and 4,6-DMDBT over dispersed Mo sulfide catalyst ex-situ 

prepared in CO or molecular H2 at 380°C. A: HDS of DBT over ExCO-01, B: HDS of 4,6-

DMDBT over ExCO-01, C: HDS of DBT over ExH-01, D: HDS of 4,6-DMDBT over ExH-01.  

Other conditions: 100ml toluene, no H2O, 590 psi H2, 10 psi H2S, 0.5g 4,6-DMDBT, 0.42g DBT, 

600 ppmw Mo, HC reactor 
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Fig. 6 - 6 Sulfur-removal of DBT and 4,6-DMDBT over dispersed Mo sulfide catalyst ex-situ 

prepared in CO or molecular H2 at 380°C.  

Other conditions: 100ml toluene, no H2O, 590 psi H2, 10 psi H2S, 0.5g 4,6-DMDBT, 0.42g DBT, 

600 ppmw Mo, HC reactor 

 

At 340°C, the pseudo-first-order rate constant for the conversion of DBT obtained over the 

ExCO-01 catalyst was found to be 1.6 times as high as that observed over the ExH-01 catalyst. 

This number is almost the same as the ratio observed in the HDS of DBT in the mixture with 4,6-

DMDBT. Therefore, the atmosphere of in-situ hydrogen has advantages over molecular 

hydrogen in generating highly active Mo sulfide catalyst for HDS reactions (Table 6-8 and Table 

6-9).  

 

The higher HDS activity of the ExCO-01 catalyst may be due to its physical morphology more 

appropriate for HDS reactions. Higher BET surface area would provide more access for sulfur-
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containing molecules to adsorb on active sites. Shorter MoS2 length and smaller MoS2 crystal 

stacks would have more active corner and edge positions exposed to reactants26-27, 61.  

 

Regarding the HDS of DBT in the mixture with 4,6-DMDBT, the reaction pathway of DDS was 

more favored over the ExCO-01 catalyst, namely, the HYD route was more preferred over the 

ExH-01 catalyst (Table 6-8). However, in the HDS of DBT alone, the pseudo-first-rate constant 

of the HYD pathway was even higher than the one of the DDS route over the ExCO-01 and the 

selectivity for the DDS route was less favored. These observations indicated the ExCO-01 

catalyst had very high hydrogenation activity. Such catalyst with high hydrogenation activity 

would have advantages in reducing the yield of coke during upgrading heavy feed stocks. 

Moreover, the higher selectivity towards HYD over the ExCO-01 catalyst was in accordance 

with the correlation of HDS selectivity to MoS2 structures as discussed in the last section, and it 

also supported the proposal of the competitive adsorption of the two sulfur-containing 

compounds on HYD active sites. 

 

6.3.4 Reactivity of in-situ H2 versus molecular H2 
 

To compare the reactivity of in-situ H2 versus molecular H2 in the presence of water, 

simultaneous HDS of DBT and 4,6-DMDBT was studied in the two different hydrogen 

atmospheres over the same ex-situ catalyst, ExCO-01. Fig. 6-7 shows the HDS product 

distribution of DBT and 4,6-DMDBT obtained using in-situ hydrogen and molecular hydrogen. 

Concentrations of DBT were similar in the two experimental conditions, namely the conversion 

of DBT was similar when using the two different reactant hydrogen atmospheres. This is also 
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reflected from the pseudo-first-order rate constants for the conversions of DBT as listed in Table 

6-10. The same situation was also observed in the HDS of 4,6-DMDBT. This indicated that the 

hydrogen generated in-situ via the WGS reaction had similar reactivity to molecular hydrogen 

towards the conversion of sulfur model compounds with the presence of water over the dispersed 

Mo sulfide catalyst. Therefore, the question asked in the introduction section was answered. The 

catalyst prepared in in-situ H2 had higher activity towards HDS than the one prepared in 

molecular H2; in-situ H2 had similar reactivity as molecular H2 in HDS reactions with the 

presence of water. The better hydro-treating results obtained in our previous studies 5-6, 42, 49a, b 

should be mostly attributed to the higher activity of the catalyst in-situ generated in CO. 
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Fig. 6 - 7 Simultaneous HDS of DBT and 4,6-DMDBT at 380°C over dispersed Mo sulfide 

catalyst ex-situ prepared in CO using in-situ hydrogen and molecular hydrogen. A: HDS of DBT 

in in-situ H2, B: HDS of 4,6-DMDBT in in-situ H2, C: HDS of DBT in molecular H2, D: HDS of 

4,6-DMDBT molecular H2. Other conditions: 100ml toluene, 5ml H2O, 595 psi H2, 5 psi H2S, 

0.5g 4,6-DMDBT, 0.42g DBT, 600 ppmw Mo, HC reactor 
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Table 6 - 10 Pseudo-first-order rates constants in the simultaneous HDS of DBT and 4,6-

DMDBT at 380°C in the two hydrogen sources over the ExCO-01 catalyst (other detailed 

conditions refer to Table 6-4) 

 

 

Although the similar reactivity of the two kinds of hydrogen in the conversions of DBT and 4,6-

DMDBT was observed, the selectivity between the two HDS reaction pathways, DDS versus 

HYD, was dramatically different. When using in-situ hydrogen instead of molecular hydrogen, 

the ratio of  𝑘𝐷𝐷𝑆′ /𝑘𝐻𝑌𝐷′  increased from 1.0 to 3.7 in the HDS of DBT and from 0.4 to 1.0 in the 

HDS of 4,6-DMDBT, suggesting the HYD pathway was more favoured in the experiment using 

molecular hydrogen. Since these two experiments were carried out over the same ex-situ 

prepared catalyst, the source of hydrogen used in the experiments was the main reason causing 

the difference in the selectivity of HDS pathways. In the molecular hydrogen experiment, the 

concentration of reactive hydrogen is significantly higher than that in the CO run. Therefore, the 

 
CO (In-situ H2) 

(Exp. ID: ExCO0902) 
Molecular H2 

(Exp. ID: ExCO0903) 

 DBT 4,6-DMDBT DBT 4,6-DMDBT 

𝑘𝐶𝑜𝑛𝑣.
′  16.3 × 10−5 5.7 × 10−5 16.5 × 10−5 5.1 × 10−5 

𝑘𝐷𝐷𝑆′  12.8 × 10−5 2.9 × 10−5 8.4 × 10−5 1.5 × 10−5 

𝑘𝐻𝑌𝐷′  3.5 × 10−5 2.8 × 10−5 8.1 × 10−5 3.6 × 10−5 

𝑘𝐷𝐷𝑆′ /𝑘𝐻𝑌𝐷′  3.7 1.0 1.0 0.4 

HDS of DBT: 
 𝑘𝐶𝑜𝑛𝑣.
′ ,𝐶𝑂/𝑘𝐶𝑜𝑛𝑣.

′ ,𝐻2 1.0 

HDS of 4,6-DMDBT: 
 𝑘𝐶𝑜𝑛𝑣.
′ ,𝐶𝑂/𝑘𝐶𝑜𝑛𝑣.

′ ,𝐻2 1.1 
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higher selectivity towards the HYD route was attributed from the high concentration of hydrogen 

in the molecular hydrogen experiment.  

6.4 Conclusions 
 

In the present chapter, better HDS results were obtained using in-situ hydrogen compared versus 

using molecular hydrogen. The higher efficiency of the in-situ hydrogen reaction system for 

upgrading bitumen emulsions and for HDS/HDN reactions were also observed previously5-6, 42. 

The major reason for this phenomenon was figured out in this chapter via separating the 

preparation of dispersed catalyst from HDS reactions.  From this study, following conclusions 

may be obtained: 

(1) The in-situ hydrogen reaction system is more effective than the molecular hydrogen 

reaction system in the simultaneous HDS of DBT and 4,6-DMDBT over the dispersed 

Mo sulfide catalyst prepared from PMA. 

(2) When using ATTM as the Mo precursor, conversions and desulfurizations of DBT and 

4,6-DMDBT could be linearly correlated to the molar composition of syngas.  

(3) In-situ H2 is a more effective hydrogen atmosphere than molecular H2 for preparing more 

active dispersed Mo sulfide catalyst with higher BET surface area and smaller size MoS2 

particles. 

(4) In the HDS reactions, in-situ H2 has similar reactivity to molecular H2. Molecular 

hydrogen showed higher selectivity towards the HYD reaction pathway than in-situ 

hydrogen. 
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(5) The higher activity of the catalyst prepared in the in-situ H2 was the major contribution to 

the previously observed promising experimental results using the in-situ reaction system. 

(6) The dispersed Mo sulfide catalyst prepared in in-situ H2 had high hydrogenation 

activities. 
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Chapter 7 Inhibitive Effect of N-Containing 
Compounds on Hydrodesulfurization Reactions 

7.1 Introduction 
 

Based on model compound studies, basic nitrogen-containing compounds have been considered 

as one of the strongest HDS inhibitors due to the strong adsorption of the basic nitrogen-

containing compounds on active sites on catalyst surface via the donation of their unpaired 

electron to Lewis acid sites or by the interaction with protons of the Brønsted acid sites8, 13c, 47,22-

85. Unlike basic nitrogen-containing compounds, the effect of non-basic nitrogen-containing 

compounds on HDS was less intensively studied previously. Since carbaozle and its derivatives 

are the major nitrogen-containing compounds in many hard-to-desulfurize middle distillates 11-12, 

51a, the effect of carbazoles on HDS has attracted more attention recently 12, 13b, 86.  

The inhibitive effect of quinoline, indole and carbazole on the HDS of DBT was studied by 

Laredo et al, and a relationship between the HDS rate constant and the concentration of nitrogen-

containing compounds was given in Eq.(6-1). In this equation, 𝐾𝑁  is the apparent nitrogen-

containing compound adsorption equilibrium constant (l/mmol) and represents the behaviour of 

all the nitrogen-containing compounds that contribute to the inhibition; 𝐶𝑁 the initial nitrogen-

containing compound concentration (mmol/l) and n the fitting exponent. Therefore, according to 
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Eq.(7-1), the inhibition effect of nitrogen species depends on their adsorption strength on the 

catalyst surface and their concentration in the reaction system. 

           𝒓𝑯𝑫𝑺 = 𝒌𝑫𝑩𝑻𝑪𝑫𝑩𝑻/(𝟏 + 𝑲𝑵
𝒏𝑪𝑵𝒏 )                                                   (7 - 1) 

 

The inhibitive effect of non-basic nitrogen-containing compounds, such as carbazole, on HDS 

was attributed to the hydrogenation reactions converting the non-basic nitrogen-containing 

compounds into basic compounds, as suggested by Ho21, 71, or due to their polymerization on the 

catalyst surface14. The competitive adsorption with sulfur species on active sites on the catalyst 

surface was also regarded to as a major contribution to the inhibitive effect of non-basic N-

containing compounds on HDS reactions22. The initial contact of carbazoles on the catalyst 

surface is considered most likely as a side-on configuration involving the aromatic ring (parallel 

to the catalyst surface) rather than an end-on adsorption via the nitrogen heteroatom. The 

adsorption mode of five-membered heterocyclic nitrogen species on catalytically active sites is 

similar to that of polynuclear aromatics, such as naphthalene86a. According to this adsorption 

mode proposal, the reaction pathway of HYD in the HDS of sulfur-containing model compounds 

would be affected more severely than that of DDS.  

 

During HDN, ammonia is produced and released to the gas phase in the reaction system. A part 

of ammonia will strongly adsorb on the catalyst surface. This may also contribute to the 

inhibitive effect of nitrogen-containing species on deep HDS. The adsorption of ammonia was 

found to be weaker than nitrogen-heterocyclic compounds, and was generally treated as a 

reversible inhibition50a. 

 



147 
 

This chapter would be the first study on the effect of basic quinoline and non-basic carbazole on 

the simultaneous HDS of DBT and 4,6-DMDBT using in-situ hydrogen over the nano-dispersed 

Mo sulfide catalyst. 

 

7.2 Experimental 
 

The experiment process has been described in Chapter 2 and will not be repeated here. Detailed 

conditions of experiments involved in this chapter are listed in Table 7-1. The two The SS Auto-

clave batch reactors was used in this serial of experiments to study the effect of nitrogen-

containing compounds on the HDS of DBT and 4,6-DMDBT. 

 

Table 7 - 1 Detailed reaction conditions of the experiments involved in Chapter 7* 

* Other conditions: 10 ml H2O, 100ml toluene, 380⁰C, 10 psi H2S, 590 psi CO or H2, molar 

amount of 430~500ppmw Mo (PMA as the precursor) 

Experiment 
ID 

Ratio between model compounds Reaction 
time, hr Reaction gas 

DBT 4,6- 
DMDBT Quinoline Carbazole 

NS-18 1 1 0 1 3 H2 

NS-19 1 1 0 1 3 CO 

NS-20 1 1 1 0 3 CO 

NS-21 1 1 1 0 3 H2 

DM-90 1 1 0 0 3 CO 

NA-01 Naph: 2 0 0 3 CO 

NA-02 Naph: 2 1 0 3 CO 

NA-03 Naph: 2 0 1 3 CO 
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7.3 Results and discussion 
 

The experimental results on the effect of nitrogen-containing compounds on the HDS of DBT 

and 4,6-DMDBT are listed in Table 7-2. Molecular H2 was also used as the reaction gas 

atmosphere to compare with in-situ H2 to investigate the efficiency of the use of in-situ H2 for 

HDS in the presence of nitrogen-containing compounds. 

 

7.3.1 HDS in the presence of N-containing compounds using in-situ H2 
 

The simultaneous HDS of DBT and 4,6-DMDBT involved in this section were carried out in the 

presence of one nitrogen-containing compound, quinoline or carbazole. The nitrogen-containing 

compound was introduced into the feedstock according to the ratio of S:N equaling to 2:1. The 

experiment results are listed in Table 7-2. 
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Table 7 - 2 Conversions and product distributions for the HDS of DBT and 4,6-DMDBT in the 

presence of nitrogen heterocyclic compounds over a dispersed Mo sulfide catalyst using in-situ 

hydrogen*.  

 No N-containing 
compounds 

(DM-90) 

Quinoline present 
(NS-20) 

Carbazole present 
(NS-19) 

DBT 4,6-
DMDBT DBT 4,6-

DMDBT DBT 4,6-
DMDBT 

Conversiona, % 45.7 44.3 18.7 8.5 32.2 19.6 

S-removalb, mol% 40.9 37.9 16.5 3.7 28.4 11.3 

      Via DDSc, % 71.8 42.7 95.2 73.0  63.2 

      Via HYDd, % 28.2 57.3 4.8 27.0  36.8 

Conversion 
decreased bye --- --- 59% 81% 30% 56% 

S-removal 
decreased byf --- --- 60% 90% 31% 70% 

Relative reactivityg 1.03 2.20 1.64 

Conversion of N-
comp., % --- 99 60 

N-removal, mol% --- 66 52 

*: Equi-molar DBT and 4,6-DMDBT (1670 ppmw of S in total), 590 psi of CO and 10 psi of 

H2S (at room temperature), 500 ppmw Mo, S:N=2:1 (molar), 380°C, 3hr  

a: Conversion=(Starting conc. of S comp. - Final conc. of S-comp.)/Starting conc. of S comp. 

b: S-removal=sum concentration of S-removed products. 

c: S-removal via DDS=100% × DDS (DDS + HYDD)⁄  

d: S-removal via HYD=100% × HYDD (DDS + HYDD)⁄  

e: equals to Conversion of S comp.(No N)−Conversion of S comp.(Q or Cz)
Conversion of S comp.(No N)

 

f: equals to S removal of S comp.(No N)−S removal of S comp.(Q or Cz)
S removal of S comp.(No N)

 

g: equals to Conversion of DBT
Conversion of 4,6DMDBT
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In the presence of basic quinoline, the conversion and the desulfurization (S-removal) of DBT 

decreased to the same extent, 60% (Table 7-2). The conversion and desulfurization of 4,6-

DMDBT decreased by 81% and 90%, respectively. Considering the sulfur-removal percentages 

of the two sulfur-containing compounds, the contribution from the HYD pathway decreased 

more than from the DDS route. In the HDS of DBT, only 5% removed sulfur was obtained from 

the hydrogenation desulfurization pathway. In the presence of non-basic nitrogen-containing 

compound carbazole, the conversion of DBT and 4,6-DMDBT decreased by 30% and 56%, 

respectively, and the sulfur-removal of both S-containing compounds decreased by 31% and 

70%, respectively. Similar to the experiments with quinoline, the conversion and the 

desulfurization of DBT were influenced by carbazole to the same extent, and the negative effect 

of carbazole on the sulfur-removal of 4,6-DMDBT was stronger than on the conversion.  

 

Comparing the two sulfur-containing model species, the HDS of the more refractory 4,6-

DMDBT was inhibited to a higher degree by the presence of basic or non-basic nitrogen-

containing compounds than that of DBT over the nano-dispersed Mo sulfide catalyst using in-

situ H2. This was reflected from the relative HDS reactivity of the two sulfur-containing 

compounds as listed in Table 7-2, which was expressed as the ratio between the conversions of 

DBT to 4,6-DMDBT. Lower relative reactivity means higher reactivity of 4,6-DMDBT related 

to that of DBT in HDS reactions. The lowest number was obtained in the HDS reaction without 

the presence of any nitrogen-containing compound and the highest was obtained in the 

experiment in the presence of quinoline. After introducing basic quinoline into the reaction 

system, the catalytic activity towards the HDS of 4,6-DMDBT was almost completely inhibited 
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and the conversion was as low as 8.5%, (Table 7-2 and Fig. 7-1 B). Interestingly, the conversion 

of quinoline was as high as 99% and the nitrogen-removal of quinoline reached 66 mol%. 

  

 

 

Fig. 7 - 1 Effect of the nitrogen heterocyclic compounds on the S-removal from DBT (A) and 

4,6-DMDBT (B) over a dispersed Mo sulfide catalyst using in-situ hydrogen. Equi-molar DBT 

and 4,6-DMDBT (1670 ppmw of S in total), 590 psi of CO and 10 psi of H2S (at room 

temperature), 500 ppmw Mo, S:N=2:1 (molar), 380⁰C 
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The conversion of CO via the WGS reaction obtained in the quinoline present experiment was 

even higher than that observed in the other two experiments; therefore, the presence of the 

nitrogen-containing species did not show inhibition on the WGS reaction. This demonstrated that 

the inhibitive effect of the nitrogen-containing compounds on the HDS reactions was not resulted 

from the inhibition of the WGS reaction to produce in-situ hydrogen. Hence, the major 

contribution of the strong inhibitive effect of nitrogen species on HDS was resulted from the 

competitive adsorption of model compounds on the catalytically active sites. 

 

Because the HDN of carbazole and the HDS of DBT have common products, i.e. CHB, DCH, 

and BP, the effect of carbazole on the reaction pathways in the HDS of DBT could not be 

distinguished based on the product analysis from our experiments. Fig. 7-2 shows the effect of 

quinoline on HYDD and DDS products for the HDS of both sulfur-containing model compounds. 

In the presence of quinoline, the HYDD and DDS reaction products of DBT were reduced by 93% 

and 46%, respectively. Cyclohexylbenzene was the only desulfurized product obtained via the 

HYD route in the presence of quinoline, while both cyclohexylbenzene and saturated 

dicyclohexyl were observed in the HDS of DBT without added quinoline. Hence, basic quinoline 

had a more severe inhibitive effect on the HYD reaction pathway for the HDS of DBT than on 

the DDS route over the dispersed unsupported Mo sulfide catalyst. 

 

For the HDS of 4,6-DMDBT, after adding carbazole, the concentration of the DDS products of 

4,6-DMDBT was reduced by 56%, and the concentration of HYDD products was decreased by 

81%. In the presence of quinoline, concentrations of DDS and HYDD products were decreased 

by 83% and 95%, respectively. Similar to the HDS of DBT, the desulfurization via the HYD 
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reaction pathway for the HDS of 4,6-DMDBT was more inhibited by the nitrogen heterocyclic 

compounds. As a result, interestingly, the DDS route became the major reaction pathway instead 

of the HYD pathway contributing for the sulfur-removal from 4,6-DMDBT due to the stronger 

inhibitive effect of the nitrogen heterocyclic compounds on the HYD route. 

 

          

Fig. 7 - 2 Effect of the basic quinoline and non-basic carbazole on the HDS reaction pathways of 

DBT and 4,6-DMDBT over the nano-dispersed Mo sulfide catalyst using in-situ hydrogen. Equi-

molar DBT and 4,6-DMDBT (1670 ppmw of S in total), 590 psi of CO and 10 psi of H2S (at 

room temperature), 500 ppmw Mo, S:N=2:1 (molar), 380⁰C 

 

The different inhibitive effects of the nitrogen-containing compounds on the two reaction 

pathways suggested that the DDS and HYD reactions took place on different active sites. This 

assumption has also been proposed by other research groups for the supported Mo catalysts 13a, 

50a. Egorova and Prins studied the nature of active HDS sites and they suggested that the DDS 

and HYD reaction pathways occurred over separate active sites due to the different adsorption 
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modes on the catalyst surface80. The adsorption mode of the nitrogen-containing compounds on 

the unsupported MoS2 catalyst probably plays an important role in the observed inhibition effect 

on HDS. The strong adsorption of the nitrogen heterocyclic compounds, quinoline and carbazole 

parallel to the catalyst surface via a π interaction of the aromatic ring would have a severe 

inhibition effect on the HYD route in the HDS of DBT and 4,6-DMDBT.  

 

Logadόttir et al studied the inhibition of aromatics and N-containing species on the HYD route 

over MoS2 catalyst via density functional theory (DFT) calculations87. They have found that the 

preference adsorption site of the model compound of aromatics, benzene, located at Mo-edge 

rather than on the basal plane. Also, the Mo-edge was found to be the preference adsorption site 

for the N-containing heterocyclic molecule, pyridine, and the Mo-edge was where pyridinium 

ion generated and adsorbed stably. The production of pyridinium ions was a key reaction step 

involved in the hydrogenation of pyridine molecules.  Both benzene and pyridine/pyridinium ion 

preferably adsorb at the Mo-edge, indicating the active site for hydrogenation was located at the 

Mo-edge. Additionally, they suggested that the inhibition of basic N-containing compound on 

hydrogenation reactions may also be due to the consumption of H from the Brϕnsted acid sites in 

the protonation of basic nitrogen species and thereby reduced the number of H atoms available 

for hydrogenation.  

 

The preferable adsorption of nitrogen-containing species on HYD active sites was confirmed via 

the experiment results of the hydrogenation of an aromatic model compound, naphthalene, 

with/without the presence of quinoline or carbazole (Fig. 7-3). Similarly to the effect of nitrogen-

containing compounds on the HDS of sulfur compounds, both quinoline and carbazole had a 
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significant inhibitive effect on the hydrogenation of naphthalene, and the effect caused by 

quinoline was stronger than carbazole.  

 

 

Fig. 7 - 3 Effect of the nitrogen-containing compounds on the hydrogenation of naphthalene over 

a dispersed Mo sulfide catalyst using in-situ hydrogen. 590 psi of CO and 10 psi of H2S (at room 

temperature), 500 ppmw Mo, 380⁰C 

 

Comparing the two nitrogen-containing compounds, non-basic carbazole was less harmful to the 

HDS of both refractory sulfur compounds. Turaga et al. used semi-empirical computational and 

molecular modeling data and correlated the activity towards hydrogenation to the highest bond 

order in the molecule to explain the difference in the inhibitive effect caused by quinoline and 

carbazole on HDS13b. They found that the highest bond order in the molecules decreased in the 

order of quinoline > carbazole ~ 4,6-DMDBT and hence resulted in the preferential adsorption of 

quinoline on the hydrogenation active sites and caused a stronger inhibitive effect on the 
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hydrogenation of 4,6-DMDBT than that of carbazole. Their finding is in agreement with our 

experimental result on the hydrogenation of naphthalene in the presence of quinoline or 

carbazole.  

 

It is also important to note that the concentration of the isomerized products of 4,6-DMDBT was 

lower in the experiments with nitrogen-containing compounds, especially in the experiment with 

quinoline. Isomerization during the HDS reactions is beneficial for the HDS of 4,6-DMDBT by 

transforming it into more reactive isomers45-46. The isomerization of the 4,6-DMDBT is acid 

catalyzed45. The basicity of  the nitrogen-containing compounds, especially the strongly basic 

quinoline, decreases the acidity of the Mo sulfide catalyst, therefore, resulting in a decrease in 

the concentration of the isomerized products of 4,6-DMDBT which contributed to a more severe 

inhibiting effect of the nitrogen-containing compounds on the HDS of 4,6-DMDBT. 

 

7.3.2 HDS in the presence of N-containing compounds using molecular H2 

 

The use of in-situ H2 is the key point in the design of our one-step bitumen emulsion upgrading 

technology. The previous chapters has shown that 

• The unsupported Mo sulfide catalyst prepared in in-situ hydrogen dispersed in smaller 

particles with shorter and more curved slabs stacked in lower degree (Chapter 4). 

• In-situ H2 was more efficient than molecular H2 in the HDS reactions of both DBT and 

4,6-DMDBT over the dispersed Mo sulfide catalyst (Chapter 5). 
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In this section, the comparison between these two sources of hydrogen will be continued in the 

HDS experiments in the presence of N-containing compounds. The experiment results were 

illustrated in Fig. 7-4. With the presence of carbazole, the conversion and desulfurization of DBT 

and 4,6-DMDBT obtained using in-situ H2 were 4~5% and 2~4 mol%, respectively, lower than 

the numbers obtained using molecular H2. With the presence of quinoline, the conversion and 

desulfurization were slightly higher using in-situ H2 in the HDS of DBT, and slightly lower in 

the HDS of 4,6-DMDBT than using molecular H2. The difference of 5% in the experiment result 

is within the experimental error range of a batch reactor. Therefore, comparative HDS results of 

DBT and 4,6-DMDBT were obtained using the two different sources of hydrogen.  

 

Considering the HDS of 4,6-DMDBT, the molar ratio between the two reaction pathways, 

DDS/HYDD, was almost the same when using the two different hydrogen reaction atmospheres 

in the experiments with quinoline or carbazole (Fig. 7-5). In the HDS of DBT with the presence 

of quinoline, the sulfur-removal was almost the same, 0.9% in difference, when using the two 

hydrogen sources. However, the ratio of DDS/HYDD obtained in in-situ H2 was significantly 

higher than the number observed in the molecular H2. Therefore, in the HDS of DBT with the 

presence of quinoline, the in-situ H2 had higher selectivity towards the direct desulfurization 

route. 
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Fig. 7 - 4 HDS of DBT and 4,6-DMDBT in over dispersed Mo sulfide catalyst obtained at 

different reaction conditions: In-situ H2/molecular H2, with/without quinoline or carbazole, 590 

psi of CO(or H2) and 10 psi of H2S (the pressure at room temperature), 400~500 ppmw Mo, 

380⁰C, 3hr 
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Fig. 7 - 5 Selectivity between HDS reaction pathways of DBT and 4,6-DMDBT obtained at 

different reaction conditions: In-situ H2/molecular H2, with/without quinoline or carbazole, 590 

psi of CO(or H2) and 10 psi of H2S (the pressure at room temperature), 400~500 ppmw Mo, 

380⁰C, 3hr 

 

7.4 Conclusions 
 

(1) Severe inhibitive effect of the two nitrogen-containing model compounds on the HDS of 

sulfur species was observed. Basic quinoline was a much stronger inhibitor than non-

basic carbazole for HDS reactions over the dispersed Mo sulfide catalyst.  

(2) The HDS of 4,6-DMDBT was more inhibited than that of DBT with the addition of 

nitrogen-containing compounds. 

(3) The desulfurization from the HYD route was more influenced than from the DDS route in 

the presence of quinoline or carbazole. 
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(4) In the presence of nitrogen species, comparable HDS activities were observed when using 

the two different sources of hydrogen, in-situ hydrogen or external provided molecular 

hydrogen. 
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Chapter 8 Hydrodenitrogenation of Refractory 
Heterocyclic N-Containing Compound of 

Carbazole 
 

8.1 Introduction 
 

The N-containing compounds detected in petroleum or synthetic oils generally could be divided 

into two groups: heterocycles or nonheterocycles. The latter group consists of anilines and 

aliphatic amines. The present study will be only focused on the HDN of hetercyclic N-containing 

compounds due to their much lower HDN reactivity of than aliphatic amines during hydro-

treating processes. Heterocyclic nitrogen-containing compounds fall into two types: those having 

a six-membered pyridinic ring and those having a five-membered pyrrolic ring. The different 

electron configuration of these two types of heterocyclic N-containing compounds results in the 

difference in their basic properties. The extra lone pair of electrons in the nitrogen atom of the 

five-numbered N-containing hetero-aromatics is involved in the π-cloud of aromatic ring, and 

hence, it is not available to interact with acids. In this case, five-membered N-containing 

heterocyclic compounds were regarded as non-basic or neutral species. For example, the pKa 

value of pyrrole, indole, and carbazole were found to be 0.4, -3.6, and -6.0, respectively21. 

Conversely, in the six-membered ring compounds, the lone pair of electrons in the nitrogen atom 

is not tied up in the π-cloud and resulted in the basicity of this group of cyclic N-containing 

compounds, such as pyridine (pKa of 5.221) and quinoline (pKa of 4.921).  
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Among basic heterocyclic N-containing compounds, quinoline is a widely used model 

compounds in HDN studies. The mechanism for the HDN of quinoline has been well 

documented, which included C-N bond cleavage, hydrogenation of aromatic heterocyclic rings, 

and hydrogenation of benzenic rings (Fig. 8-1). In previous study in our group done by Lee42, 88, 

the HDN of quinoline over the dispersed Mo sulfide catalyst using in-situ H2 generated via the 

WGS reaction was studied. Lee observed that42: 

• Higher than 99% of quinoline was converted at 2 hr over dispersed Mo sulfide (1500 

ppmw Mo) catalyst using in-situ H2 at a low reaction temperature, 340⁰C. With 

increasing the reaction temperature to 415⁰C, the N-removal from quinoline increased 

significantly, indicating that C-N bond cleavage was the rate-controlling step in the HDN 

of quinoline42. 

• The amount of water used in the HDN reaction should be optimized. At a low level of 

water concentration, the addition of more water promoted the denitrogenation of 

quinoline via generating more active catalysts and providing acidic functions42. 

• Appropriate amount of H2S in the reaction system would promote the N-elimination step, 

while blocking the hydrogenation of aromatic rings42. 

• Ni had shown significant promotional effect on the HDN activity of the dispersed Mo 

sulfide catalysts; while no evident promotional effect of Co was observed. The optimized 

ratio between Ni/Mo was found to be 0.542. 

• At optimized conditions, more effective HDN results were obtained using in-situ H2 than 

molecular H2
42.   
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Fig. 8 - 1 HDN reaction network of quinoline89. Where, Q is quinoline, THQ1, 1,2,3,4-
tetrohydroquinoline, THQ5, 5,6,7,8-tetrahydroquinoline, DHQ, decahydroquinoline, OPA, 
ortho-propylaniline, PCHA, 2-propylcyclohexylamine, PCHE, propylcyclohexene, PCH, 
propylcyclohexane, PB, propylbenzen. License number for reusing this figure from Elsevier: 
2531650864304 

 

Unlike the HDN of quinoline, the HDN reaction network and product identification of carbazole 

have not reached to an agreement. Tetrahydro-carbazole (TH-Cz) was a commonly detected 

partially hydrogenated intermediate of carbazole during HDN reactions79,54a-90. The detection of 

further hydrogenated intermediates of hexahydro-carbzole, octahydro-carbazole, and 

dodecahydro-carbazole were also reported 54a, 91. Besides these nitrogen-containing partially 

hydrogenated intermediates in the HDN products of carbazole, there was no other N-containing 

product, such as aniline- or amine-type products, reported in literatures. The product of direct 

denitrogenation (DDN), i.e. biphenyl (BP) was not observed after the HDN of carbazole in any 

literatures 54a, 79, 90-92. Hence, N-removal from the molecules took place only after the aromatic 

rings were hydrogenated, and the cleavage of the two C-N bonds occurred simultaneously from 

hydrogenated intermediates in the HDN of carbazole.  
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The bicyclic-six-membered-ring products such as cyclohexylbenzene (CHB), dicyclohexyl 

(DCH), and cyclohexyl-cyclohexene (CHCHE) were reported as major N-removed products of 

carbazole54a, 79, 85, 92, while the contribution of each bicyclic-ring N-removed product to the total 

denitrogenation of carbazole was different in separate studies. A bicyclic-ring product having 

one six-membered-ring and one five-membered-ring, i.e. methylcyclopentylcyclohexane 

(MeCPCH), was reported by Lewandowski et al 85 as the final product of carbazole conversions 

via the isomerisation of DCH. Some ring-opened products, such as phenylhexane (PHA), 

hexylcyclohexane (HCHA), were detected by Yamamoto et al over a phosphoric acid-promoted 

Mn2O3–NiO catalyst91.  

 

Based on the identification of HDN products, several different HDN reaction network of 

carbazole have been suggested in literatures, as shown in Fig.8-2 to Fig.8-4. Although the 

reported HDN reaction networks of carbazole were not in agreement, it was clear that three types 

of reactions occurred leading to N-removal from carbazole molecules: (1) hydrogenation of 

aromatic rings, (2) ring-opening via hydro-cracking, and (3) C-N bond cleavage via 

hydrogenolysis. Therefore, bifunctional catalysts with both hydrogenation and hydrogenolysis 

active centers are desirable.  
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Fig. 8 - 2 HDN reaction network of carbazole presented by Szymanska et al 54a over bulk β-
Mo2C 

 

 

Fig. 8 - 3 HDN reaction network of carbazole suggested by F. Sanchez-Minero et al,92 
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Fig. 8 - 4 HDN reaction network of carbazole suggested in literatures54c-49c 

 

This chapter would be the first to study the HDN of carbazole over dispersed Mo sulfide catalyst 

using in-situ hydrogen. An HDN reaction network of carbazole will be proposed on the basis of 

the identification of HDN products. Therefore, in the present chapter, we will study: 

• HDN mechanism of carbazole 

• WGS reaction with the presence of carbazole 

• Pseudo-first-order rate constant of carbazole at 380⁰C over dispersed Mo sulfide catalyst 

using in-situ H2 

• Comparison of in-situ H2 versus molecular H2 for the HDN of carbazole 

• Effect of 4,6-DMDBT on the HDN of carbazole. 
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 8.2 Experimental 
 

Detailed experiment process has been described in Chapter 2 and will not be repeated here. The 

detailed conditions of experiments involved in the present chapter are listed in Table 8-1. 

 

Table 8 - 1 Detailed reaction conditions of the experiments involved in Chapter 8* 

* Other conditions (except DS0909): 10 ml H2O, 100ml toluene, 0.365g carbazole (2.2 mmol, 

4200 ppmw), 340~350 ppmw N, 430~500ppmw Mo (PMA as the precursor), HC reactor 

  Other conditions (DS0909): 590 psi CO, 10 psi H2S, equi-mol of each component (about 1.2 

mmol of each), 100 ml toluene, 10 ml PMA solution, 430 ppmw Mo 

† Repeated 2 times 

†† Quinoline was used as the model compound instead of carbazole (equi-molar as carbazole 

used in other experiments). Reaction time: 60min, SS reactor 
‡ Reaction time: 60min, SS reactor 

Experiment ID Model compounds Reaction temp., ⁰𝐂 
Reactant gases, psi 

CO H2 H2S 

Cz0901† Cz 380 600 0 10 

Cz0902† Cz 340 600 0 10 

Cz0903 Cz 360 600 0 10 

Cz0904† Cz 380 0 600 10 

Cz0905† Cz 380 600 0 10 

NS0901 Cz and 4,6DMDBT 380 600 0 10 

N-01†† Q 380 600 0 10 

N-05‡   Cz 380 600 0 10 

DS0909 
Q, Cz, DBT, 4,6-
DMDBT, Naph 

380 600 0 10 
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8.3 Identification of HDN products of carbazole 
 

Fig.8-5 shows GC chromatographs of carbazole denitrogenation product obtained using the 

detectors of FID and TSD. Since TSD only responses to N-containing species, the two peaks in 

the time range of 36.5~38.0 min belong to the compounds with the hetero atom. They have been 

identified as tetrahydrocarbazole (TH-Cz, 36.9 min) and carbazole (Cz, 37.7 min) via GC-MS 

(Varian GC-CP3800/Saturn 2000) and the injection of standard reagent. The peaks shown in the 

FID chromatograph between the retention times of 12.0 min and 16.0 min are N-removed 

products derived from the hydrodenitrogenation of carbazole. Among these peaks (12.0 - 16.0 

min), hexyl-cyclo-hexane (HCHA), 1-phenylhexane (PHA), di-cyclo-hexyl (DCH), and cyclo-

hexyl-benzene (CHB) have been identified via using standard reagents (purchased from Aldrich). 

The peak at 14.9 min was identified as cyclohexyl-cyclohexene (CHCHE) as suggested by GC-

MS.  

 

The identification of peaks at 13.94 min and 14.24 min was the most difficult part. These two 

products were only detected by GC-FID. The specific detector for N-containing compounds, 

TSD, did not detect the presence of these two products. This indicated that they were nitrogen 

removed products of carbazole. The GC-MS analysis suggested the molecular weights of the two 

products were 166 g/mol, which was the same as DCH. (cyclopentylmethyl)-cyclohexyl was 

suggested as a N-removed product as suggested by literatures54a, 85, 93, and it was assumed to be 

derived from the isomerization of the HDN products of carbazole. MS spectra of the two un-

identified products are shown in Fig. 8-6. The proposed molecular structures of these two 

products by GC-MS processed in the present study were listed in Tables 8-2 and 8-3. 
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Fig. 8 - 5 GC Chromatographs of carbazole HDN products obtained via FID and TSD detectors 
(Reaction conditions: 380⁰C, in situ hydrogen, Mo sulfide catalyst) 
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Fig. 8 - 6 MS spectra of the N-removed products of carbazole with the GC retention times of 
13.94 min and 14.24 min. 
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Table 8 - 2 Suggested molecular structures (GC-MS results) of the N-removed product at the retention time of 13.94 min 

Suggested 
chemicals  

via GC-MS 
Molecular Structure (2D) R. 

Match 
Difference between MS spectra  

(the suggested structure to the real one) 

Hexylidencyclohexane 
 

880 

 

Cyclopentylmethyl-
Cyclohexane 

 

811 

 

(4-methyl-pent-3-
enyl)-cyclohexane  

805 

 

(E)-Cyclododecene 12

 

800 

 

1-Hexyl-cyclohexene 

 

755 
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Table 8 - 3 Suggested molecular structures (GC-MS results) of the N-removed product at the retention time of 14.24 min 

Suggested 
chemicals 

 via GC-MS 

Molecular Structure (2D) R. 
Match 

Difference between MS spectra  

(the suggested structure to the real one) 

Hexyliden- 

Cyclohexane  
794 

 

Cyclododecene 

 

748 
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A mixture of trans- and cis-cyclododecene was purchased from Sigma-Aldrich (product No. 

28780) and their GC retention times were different from the two un-identified products. So 

the two unknown product could not be isomers of cyclo-dodecene. According to the HDN 

mechanism proposed by Prins94, removal of the nitrogen atom from an aliphatic C-N bond 

fragment in a propylaniline molecule took place via Hofmann elimination. In the Hofmann 

elimination reaction, an acidic site helps in quaternizing the nitrogen atom and thereby 

creating a leaving group, while a basic site promotes the elimination by removal of a β-H 

atom. Therefore, based on this HDN mechanism, hexyl-cyclohexene (HCHE) is the most 

possible structure of the unknown N-removed product with the GC retention time of 13.94 

min and the other unknown product is probably an isomer of HCHE with the double bond 

located at different positions. 

 

Identified HDN products of carbazole are listed in Table 8-4. 

 

A typical HDN product distribution of carbazole is shown in Fig. 8-7, obtained using in situ 

H2 over dispersed Mo sulfide catalyst at 380°C. The concentrations of N-removed products 

decreased in the order of: Isomers of HCHE>CHCHE>CHB>HCHA~DCH>PHA. Among 

them, isomers of HCHE were clearly the major denitrogenation products of carbazole under 

the experimental conditions of the present study. The molar ratio between ring-opened 

products and two-ring products was 1.40 at 180min. Hence, the nitrogen removal from 

carbazole was predominantly processed from the ring-opening reaction pathway. 
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Fig. 8 - 7 HDN products distribution of carbazole (Cz0901-380°C, in situ H2, 180 min) 

 

The reactions of the hydrogenation of aromatic rings, the C-N bond cleavage, and the ring-

opening happened during the HDN of carbazole over the dispersed Mo sulfide catalyst using 

in situ H2. The N-removed products of carbazole could be grouped as two-ring products, 

including CHCHE, CHB, and DCH, and ring-opened products, including HCHA, PHA and 

isomers of HCHE. In the present study, biphenyl was not detected in the HDN product, 

indicating that direct denitrogenation did not occur during the HDN reaction of carbazole 

under the present experimental conditions, dispersed Mo sulfide catalyst and in situ H2. The 

absence of biphenyl was in accordance with literature reports 54a, 79, 90-92. 

 

Cz
52%

TH-Cz
7%
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5%

Iso of HCHE
16%

DCH
4%

CHB
6%

PHA 
3% CHCHE 

7%



175 
 

Table 8 - 4 GC retention time and identification of hydrotreating products derived from HDN 
of carbazole 

†: N-removed or denitrogenated products of carbazole 

Products Molecular 
weight 

Molecular structure 
(2D) 

Molecular structure 
(3D) 

GC 
retention 

time, 
min 

Identification 

Carbazole 
(Cz) 167 

N
H   

37.71 
GC-MS 
Standard 

compound 

Tetrahydro-
carbazole 
(TH-Cz) 

171 

N
H   

36.89 GC-MS 

Hexylcyclohe
xane 

(HCHA)† 
168 

 
 

12.31 
GC-MS 
Standard 

compound 

Phenylhexane 
(PHA)† 162 

 
 

14.98 GC-MS 

Dicyclohexyl 
(DCH)† 166 

 

 

15.26 
GC-MS 
Standard 

compound 

Cyclohexylbe
nzene (CHB)† 160 

 
 

15.82 
GC-MS 
Standard 

compound 

CycloHexylC
ycloHexEne 
(CHCHE)† 

164 
 

 

14.92 GC-MS 
GC-FID 

Isomers of 
Hexyl-

CycloHexene 
(HCHE)  

166 
C6H13

 
 

13.94 
14.24 

GC-MS 
GC-FID 
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Clearly, the reaction mechanisms reported in literatures as shown in Figs. 8-2~8-4 could not 

be used to describe the HDN reaction of carbazole occurred in this study, hence a new HDN 

reaction network of carbazole over the dispersed Mo sulfide catalyst using in situ H2 was 

proposed on the basis of our HDN product identification and with the consideration of 

literature reports, as shown in Fig. 8-8. 

 

Fig. 8 - 8 Proposed HDN reaction network of carbazole over the dispersed Mo catalyst using 

in situ H2 (the products blanketed were not detected by GC) 

HCHE 
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In this carbazole HDN reaction network, we proposed the presence of intermediates of 

aromatic amines derived from the hydrocracking of one benzene ring before nitrogen was 

removed. The hydro-treating of the two-ring products, CHB and DCH, was also run under 

the same conditions and no ring-opened product was detected. In the HDS of DBT, although 

DCH and CHB were detected, no ring-opened products were found under the same 

conditions as in the HDN of carbazole. Therefore, the reaction pathway (via ring-opened 

amine) was considered as the reaction pathway contributing to the ring-opened products of 

PHA, HCHA and isomers of HCHE. 

 

However, why carbazole has ring-opened hydrotreated products, while the sulfur compound, 

DBT, have none of them? This may be due to the difference in the molecular structure of 

carbazole and DBT. In carbazole, the nitrogen atom is sp3 hybridized and it is bonded with 

two aromatic rings and one hydrogen atom. In the most accepted hydrocracking reaction 

mechanism95, cracking of hydrocarbon molecules proceeds through a carboniumion 

mechanism, wherein the hydrocarbon molecules lose a hydride ion to form a high reactive 

carboniumion and heteromolecules by a radical mechanism. The HDN of carbazole under the 

present experimental conditions possibly followed this hydrocracking mechanism and 

generated a carboniumion by losing a hydride ion from the –NH group and then 

hydrocracked one aromatic ring and then removed the nitrogen atom from the molecules. 

 

Due to the nitrogen-removal of carbazole occurred from a partially hydrogenated 

intermediate and the HYDD products of DBT were also derived from such a kind of 

intermediate, bond lengths and orders in molecules of TH-Cz and TH-DBT were compared 
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in Fig. 8-9. First of all, in the both molecules, the C-C bond lengths in the aromatic ring were 

shorter than in the hydrogenated ring. Secondly, the C-S bond lengths were calculated to be 

1.8115Å and 1.9585Å in the molecule of TH-DBT, which were much longer than C-C bonds 

in the same molecule. Differently, the C-N bond lengths in the TH-Cz molecule were 

observed to be 1.4305Å and 1.4775Å, which were longer than those C-C bonds in the 

aromatic ring but shorter than those C-C bonds in the hydrogenated ring. Therefore, the 

occurrence of C-S bond cleavage from the TH-DBT molecule to produce two-ring sulfur 

removed products should be much easier than the C-N bond cleavage from the TH-Cz 

molecule. Thirdly, the C-C bond lengths in the hydrogenated ring were shorter in the TH-Cz 

molecule than in the TH-DBT one, except the C-C bond between the five-membered ring and 

the hydrogenated six-membered ring. This C-C bond was significantly longer than all the 

other C-C bonds and also C-N bonds in the TH-Cz molecule. The longer bond length 

indicates weaker bond strength. This suggested that it was highly possible to break this C-C 

bond and produce ring-opened products. 
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Fig. 8 - 9 Bond length and bond order of C-C, C-N/C-S bonds in molecules of intermediates 
of DBT and carbazole (MM2 calculation results). L: bond length, O: bond order. 
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8.4 Kinetics of the HDN of Carbazole 
 

 

Fig. 8 - 10 Distribution of HDN products of carbazole over dispersed Mo sulfide catalyst 

using in situ H2.  

Other conditions: 590 psi CO and 10 psi H2S (at room temperature), 430 ppmw Mo, 380 ⁰C, 

3hr, 10 ml H2O 

 

Fig. 8-10 shows the distribution of HDN products of carbazole as a function of reaction time, 

observed at 380⁰C using in situ H2 over the dispersed Mo sulfide catalyst (detailed reaction 
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conditions given under the figure). At the beginning of the HDN reaction at 380⁰C, partially 

hydrogenated TH-Cz was the major product and its concentration increased in the first 90 

minutes and then decreased gradually. This suggested that TH-Cz was an intermediate during 

the HDN of carbazole and the concentration decreased to produce nitrogen-removed products. 

As suggested in literatures, the first step in the HDN reaction of N-containing heterocyclic 

compounds was the hydrogenation of the aromatic rings adjacent to the nitrogen atom8, 54a, 79, 

producing partially hydrogenated intermediates, such as TH-Cz. With extending the reaction 

time, the concentration of N-removed products increased gradually producing ring-opened 

products mainly. The absence of direct denitrogented product, BP, indicated that the C-N 

bond cleavage required ring hydrogenation prior to removing the nitrogen atom from the 

molecules.  

 

Assuming the concentration of hydrogen as a constant, the pseudo first order rate constant for 

the conversion of carbazole in the HDN reaction over the dispersed Mo sulfide catalyst using 

in situ H2 was calculated according to (Eq.(8-1&8-2)). 

𝒓 = −𝒅𝑪𝑪𝒛
𝒅𝒕

= 𝒌′ ∙ 𝑪𝑪𝒛                                                                     (8 - 1) 

Where     𝑘 ′ = 𝑘 ∙ 𝑝𝐻2  

Upon integrating Eq. (7-1) one obtains: 

𝐥𝐧 �𝑪𝒕
𝑪𝟎
� = −𝒌′ ∙ 𝒕                                                                      (8 - 2) 

Where: 𝑟 is the reaction rate, 𝑀 ∙ 𝑠−1, 𝑘 the pseudo first order reaction rate constant, 𝑠−1, 𝐶𝑡 

the concentration of  carbazole at time 𝑡, 𝑀, 𝐶0 the initial concentration of carbazole, 𝑀.  
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Fig. 8 - 11 Pseudo first order plots of carbazole at 380⁰C 

Other conditions: 590 psi CO and 10 psi H2S (at room temperature), 380 ⁰C, 430 ppmw Mo, 

10 ml H2O 

 

The pseudo first order plots for the conversion of carbazole in the HDN reaction were shown 

in Fig.8-11. The R squared value, 𝑅2, in Fig.8-11 is 0.993, indicating that the conversion of 

carbazole followed the first order rate law using in-situ H2. If assuming that all Mo was 

converted to MoS2, the rate constant for the conversion of carbazole was found to be 

7.7 × 10−4 𝑠−1 ∙ 𝑔𝑐𝑎𝑡−1  under our experimental conditions. This value will be used as a 

reference for the results obtained in the following discussions. 

 

Reproducibility is a key parameter of the batch reactor in our study. Therefore, some 

experiments were repeated and the repeatability was determined. The experiment of Cz0901 

(detailed exp. conditions are shown in Table 8-1), wherein the HDN of carbazole was carried 
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out in in situ hydrogen at 380°C over the dispersed MoS catalyst, was repeated and the two 

experimental results were compared in Fig. 8-12. The conversions of carbazole were shown 

in Fig.8-12(A) and the numbers obtained were close. The molar concentration of each N-

removed product group was also close as shown in Fig. 8-12 (B&C). The pseudo-first-order 

rate constant for the conversion of carbazole in the repeating run was calculated as 𝑘𝐶𝑧′ =

4.3 × 10−5𝑠−1, which was 8% lower than the number obtained in the repeated experiment 

run. This difference is acceptable in a batch autoclave reactor. Therefore, the repeatability of 

the experiment Cz0901 is acceptable. 

 

HDN of carbazole was also run at 340⁰C, 360⁰C and 380⁰C. Fig. 8-13 shows conversions of 

carbazole and concentrations of the intermediate, TH-Cz, obtained at different reaction 

temperatures, 340⁰C, 360⁰C, and 380⁰C. Obviously, the conversion of carbazole increased 

with increasing the reaction temperature. The concentration of TH-Cz started to decrease 

after 90 min at 380 ⁰C and after 120 min at 360 ⁰C, while at 340 ⁰C, the concentration of TH-

Cz kept increasing over the total duration of the run (3 hours). It was also observed that the 

concentrations of TH-Cz were very similar at different reaction temperatures. However, the 

difference between the nitrogen removals obtained at different reaction temperatures was 

much more significant, as shown in Fig. 8-14. So, the conversion of the intermediate of TH-

Cz to further nitrogen-removed products was faster at higher temperatures than the first 

hydrogenation step of carbazole to TH-Cz. It has been suggested that the rate-limiting step in 

the HDN of carbazole may be the initial hydrogenation of carbazole96. Therefore, for 

removing nitrogen from carbazole, it is important to improve the hydrogenation activity of 

the catalyst. 
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Fig. 8 - 12 Repeatability of the experiment, Cz0901, (380°C, in situ hydrogen). A: N-
containing species, including carbazole and TH-carbazole; B: Two-ring and ring-opened 
products; C: Isomers of HCHE 
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Fig. 8 - 13 Concentrations of carbazole and TH-Cz as a function of reaction time at different 

reaction temperatures, 340~380 ⁰C. 

Other conditions: 590 psi CO and 10 psi H2S (at room temperature), 430 ppmw Mo, 380 ⁰C, 

3hr, 10 ml H2O 

 

Fig. 8 - 14 Denitrogenation of carbazole as a function of reaction time at different reaction 
temperatures, 340~380 ⁰C. 
Other conditions: 590 psi CO and 10 psi H2S (at room temperature), 430 ppmw Mo, 380 ⁰C, 
3hr, 10 ml H2O 
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8.5 WGS reaction in the presence of carbazole 
 

The in situ H2 used for the current HDN study was generated from CO and H2O via the water 

gas shift reaction. According to (Eq. (1-1)), CO reacts with water and converts to in situ H2. 

CO2 was generated as a side-product. So CO, H2, and CO2 are major gases present in the 

reaction system. Small amounts of H2S and COS were also detected during the reaction, 

which was introduced as the sulfidation gas and was the intermediate of the WGS reaction, 

respectively. One blank WGS reaction experiment, wherein carbazole or 4,6-DMDBT was 

not introduced into the reaction system, was carried out to compare the CO conversion via 

the WGS reaction and the concentration of in situ H2 generated for the HDN experiment. As 

shown in Fig. 8-15, the concentration of in situ H2 in the WGS gas mixture was around 30 

mol% at the beginning of the reaction at 380⁰C. This indicated that the WGS reaction started 

before reaching to the reaction temperature of 380⁰C. The concentrations of in situ H2 

detected at different reaction times in the HDN run were almost the same as what observed in 

the blank WGS experiment, and the conversions of CO in the HDN run were even a little 

higher than those in the blank WGS run. Therefore, the presence of non-basic carbazole did 

not inhibit the WGS reaction. This suggested that the adsorption of carbazole occurred on 

different active sites than CO during the HDN reaction.  

 



187 
 

 

Fig. 8 - 15 CO conversions via the WGS reaction and the concentrations of in situ H2 

generated as a function of reaction time.  

Other conditions: 590 psi CO and 10 psi H2S (at room temperature), 380 ⁰C, 430 ppmw Mo, 

10 ml H2O 

 

8.6 In-situ H2 versus molecular H2 in the HDN of carbazole over the 

dispersed Mo sulfide catalyst 
 

In Chapter 5, the in-situ hydrogen reaction system had been found to be more effective in the 

simultaneous HDS of DBT and 4,6-DMDBT. Furthermore, the dispersed Mo sulfide catalyst 

prepared in in-situ hydrogen was significantly active towards HDS reactions than the one in-

situ prepared in molecular hydrogen, and this contributed to the higher efficiency of the in-

situ hydrogen reaction system in HDS reactions. In this section, the reactivity of in situ 
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hydrogen (CO) versus molecular hydrogen (H2) was compared in HDN of carbazole at 

380°C over the dispersed MoS catalyst.  

Comparing Fig. 8-16 to Fig. 8-10, the conversion of carbazole obtained using in situ H2 was 

slightly higher than using molecular H2. The pseudo first order reaction rate constant for the 

conversion of carbazole using molecular H2, 6.7 × 10−4 𝑠−1 ∙ 𝑔𝑐𝑎𝑡−1 was 13% lower than 

the number obtained using in-situ H2, 7.7 × 10−4 𝑠−1 ∙ 𝑔𝑐𝑎𝑡−1.  

 

Fig. 8 - 16 Distribution of HDN products of carbazole over dispersed Mo sulfide catalyst 

using molecular H2.  

Other conditions: 590 psi CO and 10 psi H2S (at room temperature), 430 ppmw Mo, 380 ⁰C, 

3hr, 10 ml H2O 

Cz

0%

3%

6%

9%

12%

15%

0%

20%

40%

60%

80%

100%

0 30 60 90 120 150 180

Co
nc

en
tr

at
io

n 
of

 p
ro

du
ct

s,
 m

ol
%

Co
nc

en
tr

at
io

ns
 o

f C
z,

 m
ol

 %

Reaction time, min

Cz TH-Cz Iso of HCHE DCH CHB HCHA PHA CHCHE



189 
 

For comparing the denitrogenation activity of the catalyst under different reaction conditions, 

a factor α (Eq.(8-3)) was introduced and defined as the molar ratio between the 

concentrations of the N-containing intermediate of TH-Cz and those of N-removed products. 

If 𝛼 > 1 , N-containing intermediate, TH-Cz, is the major product. If  𝛼 < 1 , nitrogen-

removed products are predominant, indicating that denitrogenation from partially 

hydrogenated intermediate is faster than the initial hydrogenation reaction step, in which 

carbazole was converted to TH-Cz.  

       𝛼 =
𝑇𝐻 − 𝐶𝑧

𝑁 − 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠
,𝑚𝑜𝑙𝑎𝑟 

          = 𝑻𝑯−𝑪𝒛,𝒎𝒐𝒍%
(𝑼𝑲𝑵𝟏+𝑼𝑲𝑵𝟐+𝑫𝑪𝑯+𝑪𝑯𝑩+𝑷𝑯𝑨+𝑪𝑯𝑪𝑯𝑬+𝑯𝑪𝑯𝑨),𝒎𝒐𝒍%

              (8 - 3) 

 

In the molecular H2 experiment (Fig.8-16), the concentration of nitrogen-containing 

intermediate, TH-Cz, was significantly higher, and the concentration of nitrogen-removed 

products was lower than what observed in the in situ H2 experiment. The value of α (Fig. 8-

17) decreased to 1.0 at 30 min in the in-situ H2 experiment and at around 75 min in the 

molecular H2 experiment. Hence apparently, the reaction step of nitrogen-removal from 

nitrogen-containing intermediate was significantly faster when using in-situ H2. Hence, using 

in-situ H2 has advantages in removing nitrogen from the refractory nitrogen-containing 

compound, carbazole, over molecular H2. 
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Fig. 8 - 17 Values of α as a function of reaction time obtained under different reaction 

conditions, using in situ H2 or molecular H2.  

Other conditions: 590 psi CO (or H2) and 10 psi H2S (at room temperature), 430 ppmw Mo, 

380 ⁰C, 3hr, 10 ml H2O  

 

In the in-situ H2 experiment, active hydrogen atoms were generated on the catalyst surface 

first and could participate in the hydro-treating reaction immediately before desorbed from 

the catalyst surface and then dispersed into the gas phase. However, in the molecular H2 

experiment, hydrogen molecules have to disperse into the liquid phase from the gas phase 

before having chance to adsorb on the catalyst surface to be involved in hydro-treating 

reactions. The higher access of the active hydrogen in the in situ H2 experiment may be one 

reason for observed faster nitrogen removal from TH-Cz than in the molecular H2 experiment. 
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As concluded in Chapter 6, the catalyst prepared in in-situ hydrogen had higher 

hydrogenation activity than the other one prepared in molecular hydrogen and this may play 

an important role in the HDN of carbazole. It is suggested that in the future, the use of ex-situ 

prepared catalyst could be extended into the HDN study to compare the role of the hydrogen 

source (CO or molecular hydrogen) in the HDN activity of the dispersed Mo sulfide catalyst. 

 

As discussed, the presence of water would have inhibitive effect on the HDN reactions. In 

the molecular H2 experiment, the amount of water was kept in a constant level, while in the 

in-situ H2 experiment, the amount of water kept decreasing due to the consumption in WGS 

reaction. Therefore, the inhibitive effect of water on HDN reactions was reduced when using 

in-situ H2. This may be one more reason for higher HDN results obtained in the in-situ H2 

experiment. 

 

8.7 HDN of carbazole versus HDN of quinoline 
 

Although the HDN of quinoline has been studied in details previously in our group42, 88 and 

previous results were summarized in the introduction section of this chapter, some 

experiments on the HDN of quinoline were also run in the present study to compare the HDN 

results between the two nitrogen-containing model species, carbazole and quinoline, and 

investigate the effect of quinoline/carbazole on the HDS of DBT and 4,6-DMDBT. The 

effect of nitrogen-containing compounds on HDS reactions will be reported and discussed in 
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the following section. In this section, the HDN of carbazole will be compared with the HDN 

of quinoline over dispersed Mo sulfide catalyst using in-situ H2. 

 

Both HDN reactions were run under 380⁰C for 1 hour in a batch Autoclave reactor (detailed 

experimental conditions refer to Table 8-1). It needs to be noted that the HDN reaction of 

quinoline was carried out in the SS reactor, while the HDN of carbazole was carried out in 

the HC reactor. Therefore, in this section, the relative HDN reactivity of both reactants will 

not be compared. 

 

Table 8 - 5 HDN product distribution of quinoline and carbazole over nano-dispersed Mo 
sulfide catalyst in in-situ H2 at 380⁰C for 1 hr (2.2 mmol N, 350 ppmw N, 430-500 ppmw Mo, 
SS reactor, 60min, 590 psi CO, 10 psi H2S) 

 

 
HDN of Quinoline  

(N-01) 
HDN of Carbazole  

(N-05) 

Starting material, mol% Q 1.3 Carbazole 77.5 

N-containing products, mol% 

THQ-1 43.0 

TH-Cz 10.3 
THQ-5 40.9 
DHQ 0.1 
OPA 6.5 

PCHA 0.4 

N-removed Products, mol% 

PCH 3.4 
HCHA 1.0 

Isomers of 
HDCHA 4.7 

PCHE 0.5 
DCH 1.1 
CHB 2.1 

PB 3.7 
PHA 1.0 

CHCHE 2.3 
𝑁 − 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑁 − 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

,𝑚𝑜𝑙𝑎𝑟 12.0 0.8 
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A well-accepted HDN mechanism of quinoline suggested by Jian and Prins89 is shown in Fig. 

8-1, and a proposed carbazole reaction network in HDN based on the present study results is 

illustrated in Fig. 8-8. Clearly, there are three major reaction steps involved in HDN reactions, 

hydrogenation of aromatic rings, opening hydrogenated ring, and cleavage of C-N bond. The 

HDN products of each model compound could be grouped as starting material, nitrogen-

containing products, and nitrogen-removed products. Table 8-5 and Fig. 8-18 show the HDN 

product distributions of quinoline and carbazole in separate 1-hr runs.  
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Fig. 8 - 18 HDN product distribution of quinoline and carbazole obtained in separate runs. 

Other conditions: 380⁰C, 1 hr, 2.2 mmol N, 350 ppmw N, 430-500 ppmw Mo, SS reactor, 
60min, 590 psi CO, 10 psi H2S 
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Quinoline was observed to be very reactive in HDN reactions and the conversion of 

quinoline was as high as 99% at 60 min. The hydrogenated products of tetrahydro-quinolines, 

THQ-5 and THQ-1, were predominant products of quinoline. Compared with the total 

concentration of nitrogen-removed products of quinoline, the total concentration of nitrogen-

containing products was 11 times higher (Table 8-5). This indicated that the first step, 

hydrogenation of the benzenic ring (producing THQ-5) or the hydrogenation of the 

heterocyclic aromatic ring (producing THQ-1), was very fast and much faster than the 

following reaction step of C-N bond cleavage in the HDN of quinoline. This phenomenon 

was also observed and reported by other researchers89,97,98. 

 

As shown in Fig. 8-18B, less than one quarter carbazole was converted when at 60 min over 

the dispersed Mo sulfide catalyst in in-situ H2. The only nitrogen-containing product, 

tetrahydro-carbazole, was the major product of carbazole and contributed to 46% in the HDN 

product mixture (Table 8-3). The total concentration of nitrogen-removed products was 1.25 

times as high as that of the nitrogen-containing product, TH-Cz. Therefore, compared with 

the HDN of quinoline, the reaction step of C-N bond cleavage from hydrogenated nitrogen-

containing products occurred relatively faster in the HDN of carbazole. As observed and 

suggested by Ho99, in the HDN of quinoline, hydrogenolysis was the rate-limiting step, while 

in the HDN of 3-ethylcarbazole, hydrogenation was the rate-limiting step.        

 

Yang and Satterfield100 suggested that the surface Mo vacancy was responsible for 

hydrogenation reaction. H2S adsorbed on such Mo vacancy and transferred it into a Brϕnsted 

acid site which was active in the cleavage of an aliphatic C-N bond. Mo sites at the edges in 
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the layered structure of MoS2 was considered to be responsible for the Csp2-N bond 

hydrogenolysis reaction101. The ratio between the two HDN product groups may depend on 

the access of the nitrogen-containing compound on active sites of the catalyst surface. 

Additionally, it also may be influenced by adsorption modes of reactant on the catalyst 

surface. The initial adsorption of quinoline on the active sites was proposed to be through the 

nitrogen heteroatom, either by donating its unpaired electron to a Lewis site or by the 

interaction with the proton of a Brϕnsted site8,50a,102 , while the carbazole molecule favored to 

adsorb on the catalytically active sites via aromatic rings in a parallel way because the lone 

pair of electrons in the nitrogen atom are not available in the end-on adsorption way on the 

catalyst surface53. 

 

Turaga et al 13b used bond order to explain the relative reactivity of quinoline and carbazole.. 

According to their calculation results, the highest bond order was 1.652 in the molecule of 

quinoline and was 1.449 in the carbazole molecule. The adsorption of quinoline molecules on 

the catalyst surface was considered to be stronger than carbazole molecules on the catalyst 

surface and may contribute to the higher initial hydrogenation. 
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Fig. 8 - 19  Length of C-C and C-N bonds in molecules of Quinoline and carbazole 

(Molecular Mechanics (MM2) , MINIMIZED ENERGY, CHEM OFFICE) Calculations

 

However, the higher degree in denitrogenation (higher ratio between the concentrations of 

nitrogen-containing products and nitrogen-removed products) observed in the HDN of 

carbazole than in the HDN of quinoline (Table 8-5) indicated that the C-N bond cleavage 

from hydrogenated quinoline products seems relatively more difficult than from 

hydrogenated carbazole intermediate. This may be due to the different C-N bond length in 

http://doi.wiley.com/10.1002/jcc.540100408�
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the two kinds of molecules. The lengths of C-C and C-N bonds in the molecules of quinoline 

and carbazole were calculated via the Molecular Mechanics (MM2) Calculation method 

processed using the software of Chem3D® Ultra Molecular Modeling and Analysis 

(Cambridgesoft). The numbers are listed beside each bond as shown in Fig. 8-19. The 

calculated C-N bond lengths in the quinoline molecule were 1.320 and 1.384, and the C-N 

bond length in the carbazole molecule was 1.583. The shorter of the bond length means the 

stronger of the bond. Hence, the shorter C-N bond length in the quinoline molecules will 

result in higher difficulty in removing the nitrogen atom. 

 

8.8 Effect of 4,6-DMDBT on the HDN of Carbazole 
 

The inhibitive effect of N-containing heterocyclic compounds on the HDS of refractory 

sulfur compounds had been studied and reported intensively8, 13c, 92, 103, while the effect of 

sulfur-containing compounds on HDN reactions was rarely reported. In the present study, 

one of the most refractory sulfur-containing compounds, 4,6-DMDBT, was introduced into 

the reactant mixture according to the molar ratio of N:S equal to 1:1. Comparing the HDN 

product distributions of carbazole (shown in Fig. 8-10 vs. Fig. 8-20) obtained with and 

without adding 4,6-DMDBT, strong inhibitive effect of 4,6-DMDBT on the HDN of 

carbazole using in-situ H2 was observed. With the presence of 4,6-DMDBT, the pseudo first 

order rate constant for the conversion of carbazole decreased from 7.7 × 10−4 𝑠−1 ∙ 𝑔𝑐𝑎𝑡−1 

to 4.1 × 10−4 𝑠−1 ∙ 𝑔𝑐𝑎𝑡−1  (Table 8-6), which in equivalent to a decrease of 47%. The 

nitrogen removal at 180 min from carbazole decreased from 41 mol% to 18 mol%, which in 

equivalent to a decrease of 56%. Slight inhibitive effect of DBT on the HDN of carbazole 
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was observed by Laredo et al 86b over a NiMoP/γ-Al2O3 commercial catalyst. They reported 

an estimated 12% inhibition on HDN caused by the presence of DBT.  The inhibitive effect 

on the HDN of carbazole caused by the presence of 4,6-DMDBT observed in the present 

study was much stronger. This may be due to the difference between supported and dispersed 

catalysts. In any case, the inhibitive effect is due to the competitive adsorption of sulfur-

containing compound, DBT or 4,6-DMDBT, on the catalyst surface in hydro-treating 

reactions. As reported, the DBT molecule adsorbed mainly in the mode of σ-adsorption via 

the sulfur atom, while the 4,6-DMDBT molecule preferred to adsorb on the catalyst surface 

via the π-orbital of aromatic rings with the molecule lying flat on the catalyst surface8, 13a, 44. 

Literature reports suggested the molecules of carbazole preferred to adsorb on the catalyst 

surface in the same way as 4,6-DMDBT molecules44, 53. This could account for the stronger 

inhibitive effect on the HDN of carbazole caused by 4,6-DMDBT than DBT.  
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Table 8 - 6 Pseudo first order rate constants for the conversion of carbazole and 4,6-DMDBT 
under different experimental conditions: (a) using in-situ H2, without the addition of 4,6-
DMDBT, or (b) using in-situ H2,with adding 4,6-DMDBT*.  

*: Other conditions: 590 psi CO (H2 used in b) and 10 psi H2S (at room temperature), 430 
ppmw Mo, 380 ⁰C, 3hr, 10 ml H2O, (b) S:N=1:1 

 

As shown in Fig. 8-21, after introducing 4,6-DMDBT into the reaction system, the value of α 

(defined in Eq.(8-3)) was much higher than what observed in the carbazole experiment, and it 

decreased to less than 1.0 after reacting for longer than 130 min. Therefore, 4,6-DMDBT 

affected HDN of carbazole in two ways:  

(i) 4,6-DMDBT molecules competed with carbaozle molecules in the initial 

adsorption on the catalyst surface with carbazole, resulting in the decrease in the conversion 

of carbazole; 

(ii) The denitrogeation acitive sites were partially occupied by 4,6-DMDBT, resulting 

in the lower denitrogenation degree of carbazole. 

Experimental conditions 
In-situ H2  

(Cz)a 

In-situ H2 
(Cz+4,6DMDBT)b 

Conversion of carbazole at 180 min, % 48 29 

Denitrogenaiton of carbazole at 180 
min, mol% 

41 18 

Pseudo first order rate constants   

         𝑘𝐶𝑧′ , 𝑠−1 ∙ 𝑔𝑐𝑎𝑡−1 7.7 × 10−4 4.1 × 10−4 

               𝑅    𝐶𝑧
2  0.99 0.97 

         𝑘4,6𝐷𝑀𝐷𝐵𝑇
′ , 𝑠−1 ∙ 𝑔𝑐𝑎𝑡−1 --- 1.5 × 10−4 

               𝑅    4,6𝐷𝑀𝐷𝐵𝑇
2  --- 0.97 
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Fig. 8 - 20 Distribution of HDN products of carbazole under different reaction condtions over 

dispersed Mo sulfide catalyst with adding 4,6-DMDBT.  

Other conditions: 590 psi CO and 10 psi H2S (at room temperature), 430 ppmw Mo, 380 ⁰C, 

3hr, 10 ml H2O, S:N=1:1 
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Fig. 8 - 21 Values of α as a function of reaction time obtained under different reaction 

conditions, (A) without the addition of 4,6-DMDBT, or (B) with adding 4,6-DMDBT.  

Other conditions: 590 psi CO and 10 psi H2S (at room temperature), 430 ppmw Mo, 380 ⁰C, 

3hr, 10 ml H2O, (B) S:N=1:1  

 

In Chapter 6, a significant inhibitive effect of carbazole on the HDS of 4,6-DMDBT was 

reported. The hydrogenation desulfurization reaction pathway in the HDS of 4,6-DMDBT 

was much more inhibited than the direct desulfurization route by carbazole, due to the 

competitive adsorption on the catalyst surface. So, in the present reaction system using in-

situ H2, the refractory N- and S-containing compounds have competitive inhibitive effect on 

hydrogenation and heteroatom removal. In the mixture of carbazole and 4,6-DMDBT, 

carbazole showed higher reactivity than 4,6-DMDBT (Table 8-4). The pseudo first order rate 

constants for the conversions of carbazole and 4,6-DMDBT were 4.1 × 10−4𝑠−1 ∙ 𝑔𝑐𝑎𝑡−1 

and 1.5 × 10−4𝑠−1 ∙ 𝑔𝑐𝑎𝑡−1 , respectively. The reactivity of 4,6-DMDBT was 1.7 times 
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lower than that of carbazole under the present reaction conditions. Hence, the dispersed Mo 

sulfide catalyst had higher selectivity towards the HDN of carbazole than the HDS of 4,6-

DMDBT. This suggested that non-basic carbazole adsorbed preferentially on the active sites 

over the refractory sulfur-containing compound 4,6-DMDBT.  

 

One hydro-treating experiment in the presence of all model compounds used in this study, 

including DBT, 4,6-DMDBT, quinoline, carbazole,  and naphthalene, was carried out to 

compared their hydro-treating reactivity in an equi-molar mixture over the dispersed Mo 

sulfide catalyst using in-situ hydrogen. Detailed reaction conditions are given in Fig. 8-22. At 

the beginning of the reaction at 380°C, the conversion of quinoline had reached 100%, while 

significant conversion of 4,6-DMDBT was observed at 60 min. The conversions of the other 

three model compounds increased gradually with extending the reaction time. The pseudo-

first-order of each component, except quinoline and 4,6-DMDBT, is listed in Table 8-7. The 

rate constant of DBT was found to be almost 10 times as high as that of carbazole, and the 

rate constant of carbazole was slightly lower than that of naphthalene. Therefore, over the 

dispersed Mo sulfide catalyst using in-situ hydrogen, an order of the relative reactivity of 

model sulfur-/nitrogen-containing compounds and aromatic component in a mixture of all of 

them could be obtained: 

Q (N) >> DBT (S) > Naph (arom) > Cz (N) >> 4,6-DMDBT (S) 
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Fig. 8 - 22 Conversions of DBT, 4,6-DMDBT, quinoline, carbazole and naphthalene over 

dispersed Mo sulfide catalyst in in-situ hydrogen at 380°C.  

Other conditions: 590 psi CO, 10 psi H2S, equi-mol of each component (about 1.2 mmol of 

each), 100 ml toluene, 10 ml PMA solution, 430 ppmw Mo 
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Table 8 - 7 Pseudo-first-order rate constant of each component in the hydro-treating reaction 
of the mixture*.  

 
k' 

(for the conversion) 
DBT (S) 36.0×10-5 

4,6-DMDBT (S)† N/A 

Carbazole (N) 3.6×10-5 

Quinoline (N)‡ N/A 

Naphthalene (Arom.) 5.7×10-5 

* Other conditions: 590 psi CO, 10 psi H2S, equi-mol of each component (about 1.2 mmol of 

each), 100 ml toluene, 10 ml PMA solution, 430 ppmw Mo 

† The conversion of 4,6-DMDBT was too low for the calculation 

‡ The conversion of Quinoline was 100% when heated the reactor up to the reaction 
temperature.  

 

8.9 Conclusions 

 

In this chapter, the effect of molecular hydrogen and in-situ hydrogen for the HDN of 

carbazole over dispersed Mo sulfide catalyst with or without the presence of sulfur-

containing species was elucidated.  

(1) The conversion of CO via the WGS reaction or the concentration of in-situ generated 

hydrogen was not inhibited in the presence of non-basic carbazole. 

(2) One HDN reaction network was proposed. In this mechanism, reactions of 

hydrogenation, C-N bond cleavage, and ring-opening were involved. As a result, the 

HDN products of carbazole could be divided into three groups: partially 
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hydrogenated intermediate, bicyclic nitrogen removed products, and ring-opened 

nitrogen removed products. Among these products, HCHE was found to be the 

predominant denitrogenation product. The proposed HDN reaction network of 

carbazole and the predominant concentration of ring-opened product in the mixture of 

N-removed products have not been observed or reported by other researchers.  

(3) In the mixture with 4,6-DMDBT, carbazole had shown higher reactivity in hydro-

treating reactions over dispersed Mo sulfide catalyst in in-situ H2 at 380⁰C. 

(4) The presence of 4,6-DMDBT also had significant inhibitive effect on the HDN of 

carbazole. 
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Chapter 9 Conclusions and Recommendations 

9.1 Conclusions 

9.1.1 In-situ H2 versus molecular H2 in the preparation of dispersed catalyst 
 

XRD and HRTEM-EDX characterization results confirmed the preparation of MoS2 via the 

hydro-thermal decomposition of the aqueous Mo precursor, PMA. Nano-dispersed Mo 

sulfide catalysts with high surface area (>200m2/g) were prepared in in-situ hydrogen or 

molecular hydrogen. The catalyst made in in-situ hydrogen was found to have higher BET 

surface area, shorter and more curved MoS2 slabs, and lower stacking degree than the one 

made in molecular hydrogen under the same conditions. SEM images suggested the size of 

MoS2 poly-crystallines was also smaller when prepared in in-situ hydrogen.  

 
9.1.2 Simultaneous HDS of DBT and 4,6-DMDBT using in-situ hydrogen 
 

The simultaneous HDS of DBT and 4,6-DMDBT was carried out in in-situ hydrogen from 

330°C to 400°C. DDS was the major reaction pathway in the HDS of DBT, whereas HYD 

was the predominant HDS pathway of 4,6-DMDBT. The relative reactivity of the more 

refractory sulfur-containing compound, 4,6-DMDBT, to DBT obtained over dispersed Mo 

sulfide catalyst using in-situ hydrogen was found to be much higher than the number reported 

in literatures obtained over supported catalysts using molecular hydrogen. The DDS reaction 

pathway was more preferred at high reaction temperature. 
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9.1.3 In-situ H2 versus molecular H2 in HDS 
 

The in-situ hydrogen reaction system, including in-situ prepared catalyst and in-situ 

generated hydrogen, was found to be more efficient in the simultaneous HDS of DBT and 

4,6-DMDBT. The HDS study carried out over ex-situ prepared dispersed Mo sulfide catalysts 

suggested that the one prepared in in-situ hydrogen had higher hydrogenation activity than 

the other one made in molecular hydrogen. The high hydrogenation activity of the catalyst 

prepared in in-situ hydrogen was attributed to the morphology of the catalyst. The 

experiment results also suggested that in-situ hydrogen had comparable reactivity to 

molecular hydrogen in the simultaneous HDS of DBT and 4,6-DMDBT.  The competitive 

adsorption of DBT and 4,6-DMDBT molecules on HYD active sties resulted in the higher 

selectivity of the DDS pathway in the HDS of DBT carried out in the in-situ reaction system. 

9.1.4 Effect of promoters on the simultaneous HDS of DBT and 4,6-

DMDBT 
 

The promotional effect of Ni on the HDS of DBT was more significant than on the HDS of 

4,6-DMDBT. The low promotional effect of Ni observed in the present study was attributed 

to the low sulfidation of NiMo catalyst and to the separate dispersion of Ni to bulky Mo in 

the reaction system. To improve the HDS efficiency of Ni promoted Mo sulfide catalyst, the 

preparation conditions need to be optimized. Significant improvement in the WGS reaction 

was observed after adding potassium into the Mo sulfide catalyst, whereas, the HDS activity 

of KMo sulfide catalyst decreased dramatically. Therefore, potassium could not be used as a 

promoter for hydro-treating reactions. 
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9.1.5 Effect of nitrogen-containing compounds on HDS 
 

Strong inhibitive effect of either basic or non-basic nitrogen-containing compound on the 

simultaneous HDS of DBT and 4,6-DMDBT was observed over dispersed Mo sulfide 

catalyst using in-situ hydrogen. Compared to the DDS route, the desulfurization from the 

HYD route was inhibited more severely by nitrogen-containing compounds due to the 

competitive adsorption on HYD active sites. The in-situ reaction system exhibited 

comparable HDS activity as molecular hydrogen in the presence of nitrogen-containing 

compounds. 

 

9.1.6 HDN of carbazole 
 

HDN products of carbazole were identified via GC-MS and an HDN reaction network was 

proposed. There were three groups of products detected in the HDN of carbazole: patially 

hydrogenated nitrogen-containing intermediate, bicyclic ring nitrogen-removed products, and 

ring-opened nitrogen-removed products. The presence of carbazole did not show inhibitive 

effect on the WGS reaction. The in-situ hydrogen system was comparatively effective in the 

conversion of carbazole as the molecular hydrogen reaction system.  

9.2 Recommendations 

9.2.1Optimizing the preparation conditions of dispersed catalyst 

 
In this thesis, the activities of dispersed Mo sulfide based catalysts were investigated and 

discussed, but the preparation conditions were not optimized. To improve the efficiency of 
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the dispersed catalyst, the preparation conditions could be optimized via modifying the 

oil/water ratio, the partial pressure of H2S, stirring speed, preparation temperature and 

pressure, and so on. Additionally, based on personal experimental experience, the Mo sulfide 

catalyst dispersed better in acetone and ethanol than in toluene. So in the future, the 

composition of the organic phase may be modified to optimize the catalyst preparation 

conditions. Finally, surfactants may also be introduced into the catalyst preparation system to 

improve the dispersion of precursor in the organic phase to increase the activity of the 

candidate catalysts. 

 

9.2.2 Extend the use of ex-situ prepared catalysts for hydro-treating gas oil 

and upgrading bitumen emulsions 

  
In this thesis, ex-situ catalyst studies allowed us to investigate the effect of the sources of 

hydrogen on catalyst preparation and on HDS reactions. In the future, this study could be 

extended to hydro-treating light gas oils and upgrading bitumen emulsions. 

 9.2.3 Investigate the HDN activity of Ni promoted Mo sulfide catalysts 

  
Once the preparation conditions of Ni promoted Mo sulfide catalyst were optimized, the 

promotional effect of Ni on the HDN activity of Mo sulfide catalyst could be studied. 
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APPENDIX A --- Mass Balance Sample Calculations 

A1. Concentrations of reactants (listed in Table 3-2) 

• Weights: 

  𝑊𝐷𝐵𝑇 = 0.42𝑔 , 𝑊4,6𝐷𝑀𝐷𝐵𝑇 = 0.50, 

 𝑊𝑡𝑜𝑙𝑢𝑒𝑛𝑒 = 𝑑𝑡𝑜𝑙𝑢𝑒𝑛𝑒 × 𝑉𝑡𝑜𝑙𝑢𝑒𝑛𝑒 = 0.8669𝑔
𝑚𝑙

× 100𝑚𝑙 = 86.69𝑔 

 

• Concentrations of model compounds: 

𝐶𝐷𝐵𝑇 =
𝑛𝐷𝐵𝑇 ,𝑚𝑜𝑙
𝑉𝑂𝑟𝑔.𝑃ℎ𝑎𝑠𝑒 , 𝑙

=
𝑊𝐷𝐵𝑇 ,𝑔

𝑀𝐷𝐵𝑇 , 𝑔
𝑚𝑜𝑙

×
1

𝑉𝑂𝑟𝑔.𝑃ℎ𝑎𝑠𝑒 , 𝑙
=

0.42 × 98%,𝑔
184.26 𝑔/𝑚𝑜𝑙

×
1

0.1 𝑙
= 0.022 𝑚𝑜𝑙/𝑙 

𝐶4,6𝐷𝑀𝐷𝐵𝑇 =
𝑛4,6𝐷𝑀𝐷𝐵𝑇 ,𝑚𝑜𝑙
𝑉𝑂𝑟𝑔.𝑃ℎ𝑎𝑠𝑒 , 𝑙

=
𝑊4,6𝐷𝑀𝐷𝐵𝑇 ,𝑔

𝑀4,6𝐷𝑀𝐷𝐵𝑇 , 𝑔
𝑚𝑜𝑙

×
1

𝑉𝑂𝑟𝑔.𝑃ℎ𝑎𝑠𝑒 , 𝑙
=

0.50 × 97%,𝑔
212.31 𝑔/𝑚𝑜𝑙

×
1

0.1 𝑙

= 0.023 𝑚𝑜𝑙/𝑙 

 

 
• Concentrations of S: 

𝐶𝑆 ,
𝑚𝑜𝑙
𝑙

= 𝐶𝐷𝐵𝑇 + 𝐶4,6𝐷𝑀𝐷𝐵𝑇 ,
𝑚𝑜𝑙
𝑙

= 0.022 + 0.023,
𝑚𝑜𝑙
𝑙

= 0.045,
𝑚𝑜𝑙
𝑙

  

𝑛𝑆,𝑚𝑜𝑙 = 𝐶𝑆 ,𝑚𝑜𝑙/𝑙 × 𝑉𝑂𝑟𝑔.𝑝ℎ𝑎𝑠𝑒 , 𝑙 = 0.045 × 0.1,𝑚𝑜𝑙 = 0.0045𝑚𝑜𝑙 = 4.5𝑚𝑚𝑜𝑙 

𝐶𝑆 ,𝑝𝑝𝑚𝑤 =
𝑛𝑆 ,𝑚𝑜𝑙 × 𝑀𝑆 ,𝑔/𝑚𝑜𝑙

𝑊𝑂𝑟𝑔.𝑃ℎ𝑎𝑠𝑒
=

0.0045 𝑚𝑜𝑙 × 32.06 𝑔/𝑚𝑜𝑙
86.69 𝑔 + 0.42 𝑔 + 0.50 𝑔

= 1647 𝑝𝑝𝑚𝑤 
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• Concentration of Mo 

To obtain accurate concentration of Mo in the aqueous phase, a condensed PMA aqueous 

solution was prepared and the exact concentration of Mo was detected by ICP. 

 

Preparation of PMA aqueous solution: dissolved 3.3506g PMA in 100 ml DI water. 

Calculated Mo concentration in the PMA aqueous solution

Mo concentration in the PMA aqueous solution quantified by ICP is 

:  

𝑊𝑀𝑜,𝑔 =
𝑊𝑃𝑀𝐴,𝑔

𝑀𝑃𝑀𝐴,𝑔.𝑚𝑜𝑙
× 12 × 𝑀𝑀𝑜 ,

𝑔
𝑚𝑜𝑙

=
3.3506 𝑔

1825.24,𝑔/𝑚𝑜𝑙
× 12 × 95.94,

𝑔
𝑚𝑜𝑙

= 2.11 𝑔 

𝐶𝑀𝑜 ,𝑝𝑝𝑚𝑤 =
𝑊𝑀𝑜,𝑔

𝑊𝑎𝑞𝑢.𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑔
=

2.11,𝑔
(100 + 3.35),𝑔

= 2.05 𝑤𝑡% = 20500 𝑝𝑝𝑚𝑤 

15553

The difference between the calculated and the quantified concentrations may be due to the 

presence of crystal water combined to PMA molecules. Therefore, it is necessary to quantify 

the concentration of Mo in the aqueous precursor solution. The ICP number will be used in 

further calculations. 

 ppmw. 

In a typical experiment, 2.42ml of PMA aqueous solution was taken. So there was about 

𝑛𝑀𝑜,𝑚𝑜𝑙 =
𝐶𝑀𝑜,𝑝𝑝𝑚𝑤 × 𝑊𝑃𝑀𝐴 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑔

𝑀𝑀𝑜,𝑔/𝑚𝑜𝑙
=

15553 𝑝𝑝𝑚𝑤 × 2.42 𝑔 × 10−6

95.94,𝑔/𝑚𝑜𝑙

= 0.0004 𝑚𝑜𝑙 = 0.4 𝑚𝑚𝑜𝑙 

Concentration of Mo based on the weight of model sulfur compounds solution: 

𝐶𝑀𝑜, 𝑝𝑝𝑚𝑤 =
𝑊𝑀𝑜,𝑔

𝑊𝑂𝑟𝑔.𝑃ℎ𝑎𝑠𝑒,𝑔
× 106 =

15553 × 2.42 × 10−6

86.69 𝑔 + 0.42 𝑔 + 0.50 𝑔
× 106 ≈ 430 𝑝𝑝𝑚𝑤 
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• Ratio between S and Mo, S:Mo 

S here refers to the sulfur present in S-containing model compounds. 

𝑆:𝑀𝑜,
𝑚𝑜𝑙
𝑚𝑜𝑙

= 𝑛𝑆,𝑚𝑜𝑙:𝑛𝑀𝑜,𝑚𝑜𝑙 = 0.0045 𝑚𝑜𝑙 ∶ 0.0004 𝑚𝑜𝑙 = 11.5 (
𝑚𝑜𝑙
𝑚𝑜𝑙

) 

 

 
• Mol of CO/H2S charged into the reactor  

The Ideal Gas Law is used to estimate the mass of gases charged or collected based on 

pressure, temperature and volume. At the beginning of the reaction, 590 psi CO and 10 psi 

H2S were charged into the reactor at room temperature (25°C). The working volume of the 

SS reactor vessel is 249 ml.  

 

𝑛𝐶𝑂 =
𝑝𝐶𝑂 × (𝑉𝑤𝑜𝑟𝑘𝑖𝑛𝑔 − 𝑉𝑙𝑖𝑞𝑢𝑖𝑒)

𝑅 × 𝑇
=

590 𝑝𝑠𝑖 × 6.895 𝑘𝑃𝑎 × (249 − 100 − 10)𝑚𝑙
298.2 𝐾 × 8.314 𝑘𝑃𝑎 ∙ 𝐿 × 1000 𝑚𝑙/𝑙

= 0.228 𝑚𝑜𝑙 

𝑛𝐻2𝑆 =
𝑝𝐻2𝑆 × (𝑉𝑤𝑜𝑟𝑘𝑖𝑛𝑔 − 𝑉𝑙𝑖𝑞𝑢𝑖𝑒)

𝑅 × 𝑇
=

10 𝑝𝑠𝑖 × 6.895 𝑘𝑃𝑎 × (249 − 100 − 10)𝑚𝑙
298.2 𝐾 × 8.314 𝑘𝑃𝑎 ∙ 𝑙 × 1000 𝑚𝑙/𝑙

= 0.004 𝑚𝑜𝑙 

𝐻2𝑆:𝑀𝑜,
𝑚𝑜𝑙
𝑚𝑜𝑙

= 𝑛𝐻2𝑆 ,𝑚𝑜𝑙:𝑛𝑀𝑜 ,𝑚𝑜𝑙 = 0.004 𝑚𝑜𝑙 ∶ 0.0004 𝑚𝑜𝑙 = 10 (
𝑚𝑜𝑙
𝑚𝑜𝑙

) 

 

The working volume of the HC reactor vessel is 300 ml. The mass/volume of reactants and 

solvents are the same as experiments run in the SS reactor. Amounts of gas reactants in the 

two reactors are different due to different working volumes. So in an experiment processed in 

the HC reactor: 

𝑛𝐶𝑂 =
𝑝𝐶𝑂 × (𝑉𝑤𝑜𝑟𝑘𝑖𝑛𝑔 − 𝑉𝑙𝑖𝑞𝑢𝑖𝑒)

𝑅 × 𝑇
=

590 𝑝𝑠𝑖 × 6.895 𝑘𝑃𝑎 × (300 − 100 − 10)𝑚𝑙
298.2 𝐾 × 8.314 𝑘𝑃𝑎 ∙ 𝐿 × 1000 𝑚𝑙/𝑙

= 0.312 𝑚𝑜𝑙 
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𝑛𝐻2𝑆 =
𝑝𝐻2𝑆 × (𝑉𝑤𝑜𝑟𝑘𝑖𝑛𝑔 − 𝑉𝑙𝑖𝑞𝑢𝑖𝑒)

𝑅 × 𝑇
=

10 𝑝𝑠𝑖 × 6.895 𝑘𝑃𝑎 × (300 − 100 − 10)𝑚𝑙
298.2 𝐾 × 8.314 𝑘𝑃𝑎 ∙ 𝑙 × 1000 𝑚𝑙/𝑙

= 0.005 𝑚𝑜𝑙 

𝐻2𝑆:𝑀𝑜,
𝑚𝑜𝑙
𝑚𝑜𝑙

= 𝑛𝐻2𝑆 ,𝑚𝑜𝑙:𝑛𝑀𝑜,𝑚𝑜𝑙 = 0.005 𝑚𝑜𝑙 ∶ 0.0004 𝑚𝑜𝑙 = 12.5 (
𝑚𝑜𝑙
𝑚𝑜𝑙

) 

 

A2. Mass balance of the gas phase (involved in a CO experiment) 
 

In an experiment using in situ hydrogen for hydro-treating reactions, CO and H2S are 

charged into the reaction system at the ratio of 59:1 at the total pressure of 600 psi at room 

temperature. Mol amounts of charged CO and H2S have been given in the last section, A1. In 

this section, gas data of the experiment DM-65 will be used for the calculation example. 

 

Reaction conditions for the experiment DM-65 are: 

0.50g 4,6-DMDBT, 0.42g DBT, 590 psi CO, 10 psi H2S, 380°C, 1hr, 900 rpm, SS reactor. 

After the reaction, the reactor cooled down to room temperature. The gas phase was 

transferred and collected in a 30L gas sampling bag. The Perkin Elmer 8500 GC equipped 

with a TCD was used for analysis. The GC data of WGS gas components are: 

Table A - 1 Composition of WGS gases in the final gas sample in the experiment DM-65 
(590 psi CO, 10 psi H2S, 380°C, 1hr) 

Gas component H2 CO2 CO H2S 

GC Area 3.3991 191.8455 95.6387 1.467 
Response factor 9.996 0.18 0.21 0.16 

Normalized mol% 38.3 38.9 22.6 0.3 
n, mol 0.107 0.109 0.063 0.001 
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Normalized mol percent of each WGS gas component was calculated according to the 

following equation: 

𝑀𝑗 ,𝑚𝑜𝑙% =
𝐴𝑟𝑒𝑎𝑗 × 𝑅𝐹𝑗

∑ (𝐴𝑟𝑒𝑎𝑖 × 𝑅𝐹𝑖)𝑖
 

 

For example: 

�(𝐴𝑟𝑒𝑎𝑖 × 𝑅𝐹𝑖)
𝑖

= 3.3991 × 9.996 + 191.8455 × 0.18 + 95.6387 × 0.21 + 1.467 × 0.3 = 88.8 

𝑀𝐻2,𝑚𝑜𝑙% =
𝐴𝑟𝑒𝑎𝐻2 × 𝑅𝐹𝐻2
∑ (𝐴𝑟𝑒𝑎𝑖 × 𝑅𝐹𝑖)𝑖

=
3.3991 × 9.996

88.8
= 38.3 𝑚𝑜𝑙% 

 

Total mol amount of final gases is estimated based on the final pressure and temperature 

according to the Ideal Gas Law. 

 𝑃 = 686 𝑝𝑠𝑖, 𝑇 = 25°𝐶 = 298.15𝐾, 𝑉𝑜𝑟𝑔. = 97 𝑚𝑙, 𝑉𝑎𝑞𝑢. = 5 𝑚𝑙  

 

So, total mol of final gases: 

𝑛𝑡𝑜𝑡𝑎𝑙 ,𝑚𝑜𝑙 =
𝑃𝑉𝑔𝑎𝑠
𝑅𝑇

=
686 𝑝𝑠𝑖 × 6.895 𝑘𝑃𝑎 × (249 − 97 − 5)𝑚𝑙

298.2 𝐾 × 8.314 𝑘𝑃𝑎 ∙ 𝐿 × 1000 𝑚𝑙/𝑙
= 0.280 𝑚𝑜𝑙 

 

Mol of each WGS gas component: 

𝑛𝑖 ,𝑚𝑜𝑙 = 𝑀𝑖 ,𝑚𝑜𝑙% × 𝑛𝑡𝑜𝑡𝑎𝑙,𝑚𝑜𝑙 

 

For example: 

𝑛𝐻2,𝑚𝑜𝑙 = 𝑀𝐻2,𝑚𝑜𝑙% × 𝑛𝑡𝑜𝑡𝑎𝑙 ,𝑚𝑜𝑙 = 38.3 𝑚𝑜𝑙% × 0.280 𝑚𝑜𝑙 = 0.107 𝑚𝑜𝑙 
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Reacted amount of CO:   

𝑛𝐶𝑂𝑟𝑒𝑎𝑐𝑡𝑒𝑑 ,𝑚𝑜𝑙 = 𝑛𝐶𝑂
𝑐ℎ𝑎𝑟𝑔𝑒𝑑 − 𝑛𝐶𝑂𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 = 0.228 − 0.063 𝑚𝑜𝑙 = 0.165 𝑚𝑜𝑙 

 

Conversion of CO via the WGS reaction: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝐶𝑂, % =
�𝑛𝐶𝑂

𝑐ℎ𝑎𝑟𝑔𝑒𝑑 − 𝑛𝐶𝑂𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑�
𝑛𝐶𝑂
𝑐ℎ𝑎𝑟𝑔𝑒𝑑 × 100% =

0.228 − 0.063
0.228

× 100% = 72.4% 

 

A3. Mass balance of in situ H2 

In the experiment DM-65, in situ H2 was generated from CO and H2O and on the other hand, 

it was consumed in HDS of DBT and 4,6-DMDBT. Therefore, the concentration of in situ H2 

detected by GC was found to be lower than that of CO2 as listed in Table A-1. The amount of 

consumed hydrogen in HDS reactions could be calculated from concentrations of HDS 

products of the two model-containing compounds, as shown in Table A-2.  
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Table A - 2 Concentrations of HDS products and the amount of consumed hydrogen in the 

experiment DM-65 (590 psi CO, 10 psi H2S, 380°C, 1hr) 

Component Mol% Mol* Mol of H2 required to 
get 1 mol HDS product 

Mol of consumed 
H2, mol 

DBT 37.32% 0.000821 0 0 
TH-DBT 3.99% 8.78E-05 2 0.000176 

DCH 1.16% 2.56E-05 7 0.000179 
CHB 25.71% 0.000566 4 0.002263 
BP 31.82% 0.0007 2 0.0014 

 
4,6-

DMDBT 43.0% 0.00099 0 0 

Iso-
DMDBT 5.3% 0.000121 0 0 

HH-
DMDBT 3.3% 7.65E-05 3 0.00023 

TH-
DMDBT 5.1% 0.000116 2 0.000233 

DMBPs 15.1% 0.000347 2 0.000694 
DMCHBs 28.2% 0.000649 4 0.002597 

   Sum= 0.0081 
 

Mol of hydrogen collected after the reaction is 0.107 (Table A-1). Adding the amount of consumed 

hydrogen: 0.0081 mol, the amount of hydrogen would be 0.115 mol. According to the 

stechiometry of the WGS reaction, mol of in situ H2 or CO2 generated from CO should be the 

same as mol of consumed CO. So there should be 0.165 mol H2 and 0.165 mol CO2. So the 

recovery of in situ hydrogen is: 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑜𝑓 𝑖𝑛 𝑠𝑖𝑡𝑢 𝐻2 =
0.115
0.165

× 100% = 69.7% 

 

The low recovery of in-situ hydrogen was due to the hydrogenation of the solvent, toluene. 
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A4. Mass balance of the aqueous phase 

In the experiment DM-65, 10 ml of DI water added at the beginning of the reaction. 

 

Water consumed at the CO conversion of 72.4%: 

 𝑛𝐻2𝑂 = 𝑛𝐶𝑂
𝑐ℎ𝑎𝑟𝑔𝑒𝑑 − 𝑛𝐶𝑂𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 = 0.228 − 0.063 𝑚𝑜𝑙 = 0.165 𝑚𝑜𝑙 

 

Volume of consumed 0.165mol DI water is: 

 𝑉𝐻2𝑂,𝑚𝑙 = 𝑛𝐻2𝑂×𝑀𝐻2𝑂,𝑔/𝑚𝑜𝑙
𝑑𝐻2𝑂

= 2.97 𝑚𝑙 ≈ 3 𝑚𝑙 

 

So, there should be about 7 ml of water left after the reaction. Actually, 5 ml of aqueous 

phase was collected at the end. The recovery of the aqueous phase is 71.4%. The loss of 

water may be due to its evaporation and its adsorption on the catalyst surface.  
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A5. Mass balance of the organic phase 

Mass balance of the organic phase is calculated based on the volume of the solvent. The 

presence of model compounds and their hydro-treating products does not affect the volume 

of the organic phase significantly.  

In the experiment DM-65, 96 ml of organic phase was collected from the reactor vessel after 

the reaction. About one more ml of liquid product came out with the final gas sample. So: 

Volume of the organic phase before reaction    100 ml 

Volume of the organic phase collected from the reactor vessel after 

reaction 

     96 ml 

Volume of organic liquid product coming out with the final gas sample         1 ml 

Recovery      97 % 
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APPENDIX B --- GC Analytic Methods 

B-1 Liquid Sample Analysis – GC method 

  
The liquid products of HDS of DBT and 4,6-DMDBT were analyzed by GC-FID, TCD, and 

PFPD (Varian CP-3800) equipped with a VF-05MS capillary column 

( mmmm µ0.130.030 ×× ). Ultra high purity helium is used as the carrier gas. 

  
 

B-1.1 Control method: 

 

 
Injector: Middle (1177 split/splitless) 

Split event talbe Time, min Split state Split ratio 
Initial On 15 

 
Heater: ON; Set point: 250℃;  Stabilization time: 0.50 min 
 
 
 

 Temperature program: 
Column oven zone: 

Rate, ℃/min Step, ℃ Time, min 
Initial 80 0.00 

5.0 120 0.00 
2.0 170 0.00 
10.0 240 5.00 

 Total time 45.00 
 

  
Column: 

Carrier gas He 
Length 30.00 m 
Inside diameter 320 um 
Constant flow Enabled 
Column flow 6.0 ml/l 
Pressure pulse Disabled 
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• Front (FID) 

Detectors: 

He makeup flow H2 flow Air flow 
28 ml/min 30 ml/min 300 ml/min 

  
 
FID event table: 
 

Time, min Range Autozero 
Initial 12 Yes 

 
Heater: ON; Set point: 300℃ 
 
 
 

• Middle (TSD) 
 

He makeup flow H2 flow Air flow 
10 ml/min 0 ml/min 0 ml/min 

 
Bead current: 3.300 A 

 
TSD event table: 

 
Time, min Range Autozero Bead power 

Initial 12 Yes ON 
 
Heater: ON; Set point: 300℃ 
 
 
 

• Rear (PFPD) 
 

Air 1 flow H2 flow Air flow 
17 ml/min 13 ml/min 10 ml/min 

 
Bead current: 3.300 A 

Square root mode OFF 
Trigger level 200 mV 
Tube voltage 550 V 
Sampling delay 6.0 ms 
Sampling width 20.0 ms 
Use gain factor Yes 
Gain factor 2 
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PFPD event table: 
 

Time, min Range Autozero 
Initial 10 Yes 

Heater: ON; Set point: 300℃ 
 
 
 

B-1.2 Integration event 
 

Active Time Event On Value 
Yes 0.00 Set peak width  0.1 
Yes 0.00 Set threshold  0.1 
Yes 0.00 Turn integration Off  
Yes 2.80 Turn integration On  

 

 

 

B-1.3 Calibration Method 
 

Method type: External Standard 

Response: Area (for FID), Square root of Height (for PFPD) 

Standard Unit: ppm-comp. 

Calibration curves of calibrated starting materials were shown in Fig. B-1.   
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Fig. B - 1  GC calibration curves of starting reactants, DBT, 4,6-DMDBT, and carbazole. 

 
  

DBT 

4,6-DMDBT 

Carbazole 
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B-2 GC Calculation Processes 

 

• Calculation of product component concentrations in liquid product samples: 
 

1. Concentration of starting reagents (DBT, 4,6-DMDBT, quinoline, or carbazole) in 

the feedstock: 

           1
1

,
,

, −
−

⋅
=⋅⋅

molgMW
ppmwR

gmolppmwC
R

inFeed
jinFeed

j  

2. Concentration of HDS products and starting reagents in liquid product samples: 

          
i

GC

i Rf
AreappmwC =, , Rf: Response factor 

          1
1

,
,, −

−

⋅
=⋅⋅

molgMW
ppmwCgmolppmwC

i

i
i  

3. Normalized concentration of the component i based on the composition: 

%100
,

,%, 1

1

mol
gmolppmwC

gmolppmwCmolC

i
i

i
i ×

⋅⋅
⋅⋅

=
∑ −

−

  

 
• Conversion of starting reagents: 

 

%100
,
,

1 1

1Pr

mol
gmolppmwC
gmolppmwC

Conv inFeed
j

odin
j

j ×










⋅⋅

⋅⋅
−= −

−

  ---applied in the 

calculation of the conversion of 4,6-DMDBT 
 

Or 
 

∑
≠

−=
)(

%,1
jii

ij molCConv  ---applied in the calculation of conversions of DBT, 

quinoline and carbazole 
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• S-removal or N-removal of starting reagents: 

∑ −−=−
)'(

%,1%,
sHDSprodji

removedS
ij molCmolremovalS

  
 

∑ −−=−
)'(

%,1%,
sHDNprodji

removedN
ij molCmolremovalN

 

 

• Selectivity between HDS reaction pathways 

 

In the HDS of DBT: 

 DDS product --- BP 

 HYDD products --- DCH and CHB 

 HYD products --- TH-DBT and HYDD products 

 

In the HDS of 4,6-DMDBT: 

 DDS products --- 3,3’-DMBP and its isomers 

 HYDD products --- DMCHB and its isomers 

 HYD products --- DM-TH-DBT (and its isomers), DM-HH-DBT (and its 

isomers), and HYDD products 

 

  
So the selectivity between reactions pathways can be obtained via following 

equations: 

1'

1'

,

,
, −

≠

−

−

≠

−

⋅⋅

⋅⋅
=
∑
∑

gmolppmwC

gmolppmwC
molar

HYDD
DDS

ji

prodsHYDDj
i

ji

prodsDDSj
i

j
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B-3 RGA Analytic Method 
 

B-3.1 Configuration of the RGA 
 

3000 GC Configuration A B C D 

Injector Type Backflush Backflush Backflush Backflush 

Carrier Gas Argon Helium Helium Helium 

Column Type Molecular Sieve Plot U Alumina OV-1 

Detector Type TCD TCD TCD TCD 

Inlet Type Heated Heated Heated Heated 

 

RGA set points: 

3000 GC Configuration A B C D 

Sample Inlet Temp., ºC 100 [ON] 100 [ON] 100 [ON] 100 [ON] 

Inlet Temp., ºC 100 [ON] 100 [ON] 100 [ON] 100 [ON] 

Column Temp., ºC 110 [ON] 100 [ON] 140 [ON] 90 [ON] 

Sampling Time, S 30 [ON] 30 [ON] 30 [ON] 30 [ON] 

Inject Time, ms 20 20 20 20 

Run Time, s 240 240 240 240 

Post Run Time, s 10 10 10 10 

Pressure Equilibration Time, s 10 10 10 10 

Column Pressure, psi 40.00 [ON] 36.00 [ON] 40.00 [ON] 36.00 [ON] 

Post Run Pressure, psi 40.00 [ON] 36.00 [ON] 40.00 [ON] 36.00 [ON] 

Detector Filament Enabled Enabled Enabled Enabled 

Detector Sensitivity Standard Standard Standard Standard 

Detector Data Rate, Hz 50 50 50 50 

Baseline Offset, mV 0 0 0 0 

Backflush Time, s 11.0 6.5 8.0 N/A 
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Integrator settings and times events: 

 

• Signal 1 

Initial Setting Value 

Slope Sensitivity 2000,000 

Peak Width 0.020 

Area Reject 1.000 

Height Reject 1.000 

Shoulders OFF 

Advanced Baseline OFF 
 

Time Event Value 
0.000 Integration OFF 
0.500 Integration ON 
1.350 Slope Sensitivity 1000,000 

 

• Signal 2 

Initial Setting Value 

Slope Sensitivity 10000,000 

Peak Width 0.020 

Area Reject 1.000 

Height Reject 1.000 

Shoulders OFF 

Advanced Baseline OFF 
 

Time Event Value 
0.000 Integration OFF 
0.500 Baseline Now  
0.260 Integration ON 
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• Signal 3 

Initial Setting Value 

Slope Sensitivity 5000,000 

Peak Width 0.040 

Area Reject 1.000 

Height Reject 1.000 

Shoulders OFF 

Advanced Baseline OFF 
 

Time Event Value 

0.000 Integration OFF 

0.480 Integration ON 

2.200 Slope Sensitivity 1000,000 
 

• Signal 4 

Initial Setting Value 

Slope Sensitivity 5000,000 

Peak Width 0.040 

Area Reject 1.000 

Height Reject 1.000 

Shoulders OFF 

Advanced Baseline OFF 

 

Time Event Value 

0.000 Integration OFF 

0.420 Integration ON 

0.460 Integration OFF 

0.800 Integration ON 
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Calibration Table: 

 

  



 

243 
 

B-4 Calculation of gas component concentrations based on GC analytic 
results 
 

Interested WGS gases include CO, CO2, H2, H2S, and COS. The concentration of each 

component is calculated according to the following equation: 

 

  %,%, mol
RfArea

RfArea
molC

j
j

GC
j

i
GC
i

i ∑ ×
×

=
 

 

B-5 Compare of calculation methods for conversions 
 

Method 1:  

 Conversion of DBT = %100%100 ×− F
DBT

P
DBT

A
A

 

  Where: P
DBTA --- percentage area of the GC peak for DBT in product;   

  F
DBTA --- percentage area of the GC peak for DBT in feed. 

 Conversion of DMDBT = %100%100 ×− F
DMDBT

P
DMDBT

A
A

 

  Where: P
DMDBTA --- percentage area of the GC peak for DMDBT in product;     

F
DMDBTA --- percentage area of the GC peak for DMDBT in feed. 
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Method 2: 

Conversion of DBT = %100*
),%(,%),%4(,%

),%(,%),%4(
DCHCHBBPDBTHDBT

DCHCHBBPDBTH
+++−+

+++−
 

 

Method 3: 

 Conversion of DBT = %100
),(

.),(%100 ×
−−−

−−−
−

ppmfeedinaddedDBTS
ppmprodinleftDBTS

 

DBTGCAppmprodinleftDBTS −×=−−− 0007.0.),(  

61026.184
%98

06.32
),( ×

×
×

=−−−
FEED

DBT

W

W

ppmfeedinaddedDBTS
 

 

Conversion of DMDBT = %100
),(

.),(%100 ×
−−−

−−−
−

ppmfeedinaddedDMDBTS
ppmprodinleftDMDBTS

 

4344.30006.0.),( −×=−−− −DMDBTGCAppmprodinleftDMDBTS  

61032.212
%97

06.32
),( ×

×
×

=−−−
FEED

DMDBT

W

W

ppmfeedinaddedDMDBTS
 

 

Comparison: 

 Pooled standard deviation, sp=0.6595 (degree of freedom = 3) 

 18.33,025.0 == TTCRITICAL  and 

21

021

11

)(

nns

HXX
TOBS

+

−−
=  
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 Hypothesis: There is not significant difference between the two compared calculation 

methods. 0:,0: 211210 ≠−=− XXHXXH  

 

 Conclusion: If ,CRITICALOBS TT >  then reject the hypothesis, which means that there is 

significant difference between the two compared calculation methods. 

 

 If ,CRITICALOBS TT <  then accept the hypothesis and interested methods are not 

significantly different. 

 

 Method 1 vs Method 3 

Example 1: DM-73 

 Method 1 Method 3  Method 1 Method 3 

Conv.of 
DBT 

75.19 59.30 

Conv.of 
DMDBT 

71.20 51.00 

76.79 58.10 72.72 51.80 

AVE.=75.99 AVE.=58.70 AVE.=71.96 AVE.=51.40 

N1=2 N2=2 N1=2 N2=2 

18.322.26 =>= CRITICALOBS TT  18.317.31 =>= CRITICALOBS TT  

Conclusion Method 1 and method 3 are significant different. 
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Example 2: DM-74 

   Method 1 Method 3  Method 1 Method 3 

Conv.of DBT 

93.70 
96.60  

Conv.of 
DMDBT 

88.40 
93.50  

97.00  92.60  

AVE.=93.70  AVE.=96.80  AVE.=88.40  AVE.=93.05  

N1=1 N2=2 N1=1 N2=2 

18.384.3 =>= CRITICALOBS TT  18.331.6 =>= CRITICALOBS TT  

Conclusion Method 1 and method 3 are significant different.  

  

 

Method 2 vs Method 3 

  Example 1: DM-73 

 Method 3 Method 2 

Conv.of 
DBT 

59.30  58.13 

58.10  57.26 

AVE.=58.70  AVE.=57.70 

N1=2 N2=2 

18.352.1 =<= CRITICALOBS TT  

Conclusion Method 2 and method 3 are not significant different. 
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 Method 3 Method 2 

Conv.of 
DBT 

96.60  96.52 

97.00  96.58 

AVE.=96.80  AVE.=96.55 

N1=2 N2=2 

18.352.1 =<= CRITICALOBS TT  

Conclusion Method 2 and method 3 are not significant different. 

 

 Conclusions: 

Results calculated by method 1 are different from those by method 2 or 3, so the calculation 

method 1 should not be applied in the future. 
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APPENDIX C --- HREM Statistic Results and EDX Spectra 
 

 

C-1. EDX spectra for MoCO340, MoH340, and SMoCO340 
 

 

 

Fig. C - 1 EDX spectra of MoCO340-org 
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Fig. C - 2 EDX spectra of MoCO340-Baq 

 

 

 

 

Fig. C - 3 EDX spectra of MoH340-org 
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Fig. C - 4 EDX spectra of MoH340-Aqu 

 

 

 

 

Fig. C - 5 EDX spectra of MoH340-Baq  
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Fig. C - 6 EDX spectra of MoH340-O/W 

 

 

 

 

Fig. C - 7 EDX spectra of MoH340-Wcat 
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Fig. C - 8 EDX spectra of SMoCO340-O/W 

 

 

 

 

 

Fig. C - 9 EDX spectra of SMoCO340-Baq 
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Fig. C - 10 EDX spectra of sMoCO340-org 

 

 

 

 

 

Fig. C - 11 EDX spectra of SMoCO340-Aqu 
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C-2. HRTEM statistic results 
 

• MoCO340 
 

Table C - 1 Distribution of MoS2 slab length, catalyst sample of MoCO340 

Length, nm Org. Aqu. O/W Wcat. Baq. 

<0.99 1.15 0.73 0 0.91 0 

1.00~1.99 5.75 2.9 9.23 6.35 5.88 

2.00~2.99 12.64 20.29 23.08 19.09 11.76 

3.00~3.99 21.84 7.97 28.46 19.09 35.29 

4.00~4.99 26.44 14.49 20.77 17.27 23.53 

5.00~5.99 12.64 23.19 10 10 11.76 

6.00~6.99 12.64 4.35 4.62 10.91 0 

7.00~7.99 2.3 10.9 0.77 10 11.76 

8.00~8.99 4.6 5.07 0.77 4.55 0 

9.00~9.99 0 1.45 0.77 0 0 

10.00~10.99 0 4.35 0.77 0.91 0 

11.00~11.99 0 2.9 0.77 0 0 

12.00~12.99 0 0.73 0 0 0 

13.00~13.99 0 0.73 0 0 0 

>=14.00 0 0 0 0.91 0 
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Fig. C - 12 Distribution of MoS2 slab length, catalyst sample of MoCO340, prepared at 340 
C in CO derived from PMA 

 

Table C - 2 Stacking degree distribution of MoCO340 

Stacking 
number Org. Wcat. Aqu. O/W 

1 9.2% 6.7% 5.6% 7.3% 
2 29.2% 30.0% 32.4% 31.7% 
3 33.8% 41.7% 34.3% 34.1% 
4 16.9% 15.0% 16.7% 19.5% 
5 4.6% 6.7% 8.3% 4.9% 
6 3.1% 0.0% 2.8% 0.0% 
7 1.5% 0.0% 0.0% 0.0% 
8 1.5% 0.0% 0.0% 2.4% 
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Fig. C - 13 Distribution of MoS2 slab stacking degree, catalyst sample of MoCO340, 
prepared at 340 C in CO derived from PMA 
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• MoH340 
 
 

Table C - 3 Distribution of MoS2 slab length, catalyst sample of MoH340 

 

Length, nm Org. Aqu. O/W Wcat. Baq. 

<0.99 0 0 0 0 0 

1.00~1.99 0 0 0 0 1.87 

2.00~2.99 6.52 14.71 3.81 8.33 9.35 

3.00~3.99 8.7 13.97 10.48 16.67 18.69 

4.00~4.99 13.04 19.12 9.52 23.21 15.89 

5.00~5.99 15.22 9.56 16.19 15.48 10.28 

6.00~6.99 13.04 11.77 24.76 11.31 23.36 

7.00~7.99 2.17 5.88 10.48 2.38 4.67 

8.00~8.99 8.7 7.35 4.76 11.31 4.67 

9.00~9.99 4.35 2.94 12.38 5.36 4.67 

10.00~10.99 2.17 5.88 0.95 2.98 0.94 

11.00~11.99 10.87 5.15 2.86 0.6 0.94 

12.00~12.99 2.17 2.21 0.95 0.6 0.94 

13.00~13.99 0 0.74 2.85 0 0 

>=14.00 13.04 0.74 0 1.79 3.74 
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Fig. C - 14 Distribution of MoS2 slabs, catalyst sample of MoH340, prepared at 340 C in H2 
derived from PMA 

 

Table C - 4 Stacking degree distribution of MoH340 

Stacking 
number Org. Aqu. O/W Wcat. Baq. 

2 2.4% 5.0% 0.0% 8.9% 10.5% 
3 23.8% 30.0% 29.2% 16.5% 13.2% 
4 11.9% 17.5% 38.5% 31.6% 34.2% 
5 11.9% 27.5% 16.9% 25.3% 21.1% 
6 23.8% 10.0% 7.7% 7.6% 18.4% 
7 9.5% 7.5% 3.1% 6.3% 2.6% 
8 2.4% 2.5% 1.5% 1.3% 0.0% 
9 0.0% 0.0% 1.5% 2.5% 0.0% 

10 4.8% 0.0% 1.5% 0.0% 0.0% 
11 2.4%  0.0%  0.0% 0.0%  0.0%  
12 0.0%  0.0%  0.0% 0.0%  0.0%  
13 4.8%  0.0%  0.0% 0.0%  0.0%  
14 2.4%  0.0%  0.0% 0.0%  0.0%  
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Fig. C - 15 Distribution of MoS2 slab stacking degree, catalyst sample of MoH340, prepared 
at 340 C in H2 derived from PMA 
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• SMoCO340 
 
 

Table C - 5 Distribution of MoS2 slab length, catalyst sample of SMoCO340 

 

Length, nm Org. Aqu. O/W Wcat. Baq. 

<0.99 0 0 0 0 0 

1.00~1.99 6.65 2.6 1.2 0 2.5 

2.00~2.99 21.88 5.3 12.3 13.21 16.5 

3.00~3.99 23.82 13.2 17.2 9.4 29.8 

4.00~4.99 15.79 13.2 23.3 28.3 9.9 

5.00~5.99 8.86 7.9 15.3 13.2 20.7 

6.00~6.99 11.91 21.1 12.9 9.4 11.6 

7.00~7.99 1.94 5.3 3.7 17 1.7 

8.00~8.99 2.77 5.3 2.5 1.9 2.5 

9.00~9.99 3.6 6.6 3.7 7.6 3.3 

10.00~10.99 0.83 2.63 1.8 0 0.8 

11.00~11.99 1.39 3.95 3.1 0 0 

12.00~12.99 0 3.95 0 0 0 

13.00~13.99 0.28 1.32 0 0 0.8 

>=14.00 0.28 7.91 3.1 0 0 
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Fig. C - 16 Distribution of MoS2 slabs, catalyst sample of SMoCO340, prepared at 340 C in 
CO derived from PMA 
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Table C - 6 Stacking degree distribution of SMoCO340 

layer 
number 

Org. 
(N=3.3) 

Aqu. 
(N=4.0) 

O/W 
(N=3.3) 

Wcat. 
(N=3.7) 

Baq. 
(N=3.2) 

1 0.8% 0.0% 5.2% 0.0% 6.8% 
2 28.9% 10.7% 26.7% 15.0% 27.3% 
3 28.9% 32.1% 31.0% 30.0% 29.5% 
4 23.1% 21.4% 19.8% 25.0% 20.5% 
5 15.7% 25.0% 11.2% 30.0% 11.4% 
6 1.7% 7.1% 2.6% 0.0% 2.3% 
7 0.0% 3.6% 0.0% 0.0% 0.0% 
8 0.8% 0.0% 2.6% 0.0% 0.0% 
9 0.0% 0.0% 0.9% 0.0% 2.3% 

 

 

 

  

Fig. C - 17 Distribution of MoS2 slab stacking degree, catalyst sample of SMoCO340, 
prepared at 340 C in CO derived from PMA 
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• NMoCO340 
 
 

Table C - 7 Distribution of MoS2 slab length, catalyst sample of NMoCO340 

 

Length, nm Org. Aqu. O/W Wcat. Baq. 

<0.99 0 0 0 0 0 

1.00~1.99 0.85 0.54 0 0.55 1.5 

2.00~2.99 3.39 3.76 7.09 5.48 12.28 

3.00~3.99 11.02 7.53 16.42 13.97 18.26 

4.00~4.99 22.88 20.97 17.54 19.18 21.56 

5.00~5.99 22.88 25.81 19.4 22.74 15.27 

6.00~6.99 14.41 12.37 10.82 10.96 10.48 

7.00~7.99 9.32 13.44 7.84 13.15 8.98 

8.00~8.99 2.54 4.3 4.85 5.21 5.39 

9.00~9.99 3.39 4.3 3.36 3.29 2.69 

10.00~10.99 4.24 3.23 3.36 3.29 1.8 

11.00~11.99 2.54 2.69 1.49 0.82 0.3 

12.00~12.99 1.69 0.54 2.24 0.55 0.9 

13.00~13.99 0.85 0.54 0.37 0.55 0.3 

>=14.00 0 0 5.22 0.27 0.3 
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Fig. C - 18 Distribution of MoS2 slabs, catalyst sample of NMoCO340, prepared at 340 C in 
CO derived from PMA 

 

Table C - 8 Stacking degree distribution of NMoCO340 

Stacking  
number 

Org. 
(N=3.8) 

Aqu. 
(N=3.3) 

O/W 
(N=3.3) 

Wcat. 
(N=3.8) 

Baq. 
(N=3.8) 

1 4.9% 4.3% 8.8% 0.0% 0.0% 
2 19.5% 28.6% 22.1% 18.4% 11.9% 
3 24.4% 32.9% 30.9% 32.9% 37.3% 
4 17.1% 17.1% 19.1% 23.7% 28.8% 
5 17.1% 8.6% 10.3% 11.8% 13.6% 
6 12.2% 5.7% 5.9% 6.6% 5.1% 
7 2.4% 1.4% 1.5% 5.3% 1.7% 
8 2.4% 1.4% 1.5% 1.3% 1.7% 
9 0.0% 0.0% 0.0% 0.0% 0.0% 
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Fig. C - 19 Distribution of MoS2 slab stacking degree, catalyst sample of NMoCO340, 
prepared at 340 C in CO derived from PMA 
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APPENDIX D --- Example Calculation of Average MoS2 Slab 
Length 

 

Size of MoS2 slabs observed on HRTEM images is described via average slab length and 

average stacking degree.  They are calculated according to equations (3-1) and (3-2), which 

are also given in Chapter 3. 

∑

∑

=

== n

i
i

n

i
ii

n

Ln
L

1

1 ,                                                                                              (3-1)  

Wherein: 

 L --- is the average length of the MoS slabs 

 Li --- is the length of the ith MoS slab 

 ni --- is the number of the slabs with the length of Li 

 

 
An example will be given in this section. Fig. D-1. In this image, 33 MoS2 slabs were 

measured. Length of each MoS2 slab is listed in Table C-1. The originally measured length is 

in the unit of centimetre on the HRTEM image. On this picture, 10 nm is 5.38 cm long. This 

ratio is used to convert measured length to real MoS2 slab length in nanometre (Table D-1). 

 



 

268 
 

 

Fig. D - 1 An HRTEM picture of the catalyst sample, SMoCO340, with measurement marked 

 

In Table D-1, numbers of “length on the picture” were measured on the HRTEM image. 

Numbers of “length of slab” were obtained from: 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑙𝑎𝑏,𝑛𝑚 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑖𝑐𝑡𝑢𝑟𝑒, 𝑐𝑚 ×
10 𝑛𝑚

5.38 𝑐𝑚
 

 

Average slab length of MoS2 slabs shown in Fig. D-1 was calculated according to equation 

(3-1): 

𝐿� =
∑ 𝑛𝑖𝐿𝑖𝑖
∑ 𝑛𝑖𝑖

=
1 × 1.90 + 1 × 2.82 + ⋯+ 1 × 11.81 + 1 × 13.08

1 + 1 + ⋯+ 1 + 1
𝑛𝑚 = 5.36 𝑛𝑚  
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Table D - 1 Table of MoS2 slab length and distribution (sorted from maximum to minimum) 

number Length on the 
picture, cm 

Length of slab, 
nm Distribution 

1 1.02 1.90 
1  

(1.00-1.99) 
1 1.51 2.82 

3 
(2.00-2.99) 

1 1.53 2.85 
1 1.54 2.87 
1 1.75 3.26 

9 
(3.00-3.99) 

1 1.79 3.34 
1 1.81 3.38 
1 1.85 3.45 
1 1.91 3.56 
1 1.95 3.64 
1 1.97 3.68 
1 2.07 3.86 
1 2.1 3.92 
1 2.25 4.20 

7 
(4.00-4.99) 

1 2.35 4.38 
1 2.41 4.50 
1 2.49 4.65 
1 2.55 4.76 
1 2.57 4.79 
1 2.64 4.93 
1 2.76 5.15 

4 
(5.00-5.99) 

1 2.76 5.15 
1 2.98 5.56 
1 3.13 5.84 
1 3.3 6.16 2 

(6.00-6.99) 1 3.34 6.23 
1 3.98 7.43 2 

(7.00-7.99) 1 4.03 7.52 

1 4.48 8.36 
1 

(8.00-8.99) 

1 5.22 9.74 
1 

(9.00-9.99) 

1 5.36 10.00 
1 

(10.00-10.99) 

1 6.33 11.81 
1 

(11.00-11.99) 

1 7.01 13.08 
1 

(13.00-13.99) 
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Distribution of MoS2 slab length in each nanometre is shown in Fig. D-2. 

 

Fig. D - 2 Distribution of MoS2 slab length 
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APPENDIX E --- Experimental raw data for Chapter 5 
 

E.1  Experimental data of HDS over Mo sulfide at different reaction temperatures and 

regression figures / ANOVA tables 

• Experiment DS0905  

Reaction conditions: 330⁰C, HC reactor, equi-molar DBT and 4,6-DMDBT, 1600-
1800 ppmw S in total, 400-450 ppmw Mo, S/Mo: ~10/1, 10 ml H2O, 100 ml toluene, 
590 psi CO mixed with 10 psi H2S 

Table E - 1 Experiment DS0905, 330 ⁰C 

Reaction 
time, min 1 10 22 45 60 84 160 175 

DCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17% 0.18% 

CHB 0.23% 0.00% 0.00% 0.28% 0.65% 1.42% 7.75% 8.90% 

BP 2.52% 2.17% 2.69% 4.61% 6.40% 8.59% 19.45% 20.67% 

TH-DBT 0.12% 0.21% 0.62% 1.51% 2.24% 2.97% 4.20% 4.24% 

DBT 97.12% 97.63% 96.69% 93.60% 90.71% 87.02% 68.43% 66.01% 

 

DMCHB 1.15% 0.00% 0.45% 2.48% 4.61% 8.08% 19.13% 18.96% 

ISO-DMBP 0.82% 0.51% 1.94% 1.23% 1.36% 1.61% 1.88% 1.96% 

DMBP 2.55% 2.40% 2.28% 0.66% 0.64% 0.88% 1.41% 1.33% 

TH-DMDBT 0.35% 0.72% 1.16% 1.22% 1.45% 1.84% 1.78% 2.09% 

HH-DMDBT 0.63% 2.21% 1.59% 0.73% 0.78% 0.78% 0.94% 0.97% 

ISO-DMDBT 0.23% 0.58% 0.85% 0.56% 0.58% 0.65% 0.70% 0.78% 

4,6-DMDBT 94.28% 93.58% 91.73% 93.11% 90.58% 86.17% 74.16% 73.91% 
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 Fig. E - 1  Pseudo-first –order plots for the conversions of DBT and 4,6-DMDBT in HDS, 
DS0905, 330⁰C 

 

 

 

Fig. E - 2  Regression for 𝒌𝑫𝑫𝑺′   in the HDS of DBT, DS0905, 330⁰C 
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Fig. E - 3 Regression for 𝒌𝑯𝒀𝑫𝑫′  in the HDS of DBT, DS0905, 330⁰C 

 

 

 

Table E - 2 ANOVA table of 𝒌(𝑫𝑩𝑻 𝑯𝒀𝑫𝑫)
′ , DS0905, 330⁰C, 

Source SS Df MS FOBS 

Regression SSR p-1=1 1.23E-03 10 

Error SSE n-p=6 1.29E-04  

Total SST n-1=7   
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Fig. E - 4  Regression for 𝒌𝑫𝑫𝑺′  in the HDS of 4,6-DMDBT, DS0905, 330⁰C 

 

Fig. E - 5 Regression for 𝒌𝑯𝒀𝑫𝑫′  in the HDS of 4,6-DMDBT, DS0905, 330⁰C 
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• Experiment DS0906  

Reaction conditions: 355⁰C, HC reactor, equi-molar DBT and 4,6-DMDBT, 1600-
1800 ppmw S in total, 400-450 ppmw Mo, S/Mo: ~10/1, 10 ml H2O, 100 ml toluene, 
590 psi CO mixed with 10 psi H2S 

 

Table E - 4 Experiment DS0906, 355 °C 

Reaction 
time, min 1 9 32 40 63 90 135 180 

DCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.12% 0.21% 0.30% 

CHB 0.30% 0.21% 1.06% 2.04% 3.36% 7.78% 13.06% 17.27% 

BP 2.63% 3.89% 10.06% 13.37% 17.69% 28.29% 39.34% 47.63% 

TH-DBT 0.37% 0.84% 2.50% 2.97% 3.41% 3.31% 2.77% 2.09% 

DBT 96.70% 95.06% 86.38% 81.62% 75.54% 60.50% 44.61% 32.72% 

 

DMCHB 4.31% 3.33% 3.52% 8.61% 10.62% 19.57% 27.80% 32.76% 

ISO-DMBP 2.80% 4.74% 2.12% 2.98% 3.06% 4.04% 4.63% 5.20% 

DMBP 1.03% 0.81% 0.49% 0.93% 1.07% 1.73% 2.35% 2.86% 

TH-DMDBT 1.77% 1.93% 0.91% 1.22% 1.15% 1.30% 1.15% 0.93% 

HH-
DMDBT 1.43% 1.16% 0.33% 0.54% 0.61% 0.76% 0.91% 0.91% 

ISO-
DMDBT 1.33% 0.95% 0.36% 0.53% 0.59% 0.89% 1.09% 1.20% 

4,6-
DMDBT 87.33% 87.08% 92.27% 85.19% 82.90% 71.72% 62.07% 56.15% 
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Fig. E - 6 Pseudo-first –order plots for the conversions of DBT and 4,6-DMDBT in HDS, 
DS0906, 355⁰C 

 

 

Fig. E - 7 Regression for 𝒌𝑫𝑫𝑺′  in the HDS of DBT, DS0906, 355⁰C 
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Fig. E - 8 Regression for𝒌𝑯𝒀𝑫𝑫′  in the HDS of DBT, DS0906, 355⁰C 

 

 

 

Table E - 5 ANOVA table of 𝒌𝑫𝑩𝑻 𝑯𝒀𝑫𝑫
′  at 355⁰C 

Source SS Df MS FOBS 

Regression SSR p-1=1 1.27E-03 137 

Error SSE n-p=6 9.28E-06  
Total SST n-1=7   
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Fig. E - 9 Regression for 𝒌𝑫𝑫𝑺′  in the HDS of 4,6-DMDBT, DS0906, 355⁰C 

 

Fig. E - 10 Regression for 𝒌𝑯𝒀𝑫𝑫′  of 4,6-DMDBT, DS0906, 355C 

 

Table E - 6 ANOVA  𝒌𝟒,𝟔𝑫𝑴𝑫𝑩𝑻 𝑯𝒀𝑫𝑫
′  at 355⁰C 

Source SS Df MS FOBS 

Regression SSR p-1=1 5.51E-03 28 

Error SSE n-p=6 2.00E-04  

Total SST n-1=7   

y = -7.7E-06x + 8.5E-06
R² = 9.7E-01

0.0E+00

1.0E-06

2.0E-06

3.0E-06

4.0E-06

5.0E-06

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

C
(D

D
S)

/C
(4

,6
D

M
D

BT
)0

*(
k'

D
D

S+
k'

H
YD

)

exp(-(k'DDS+k'HYD)t-1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2000 4000 6000 8000 10000 12000

C
(in

te
rm

ed
ia

te
s)

t /
 C

(4
,6

-
D

M
D

B
T)

0

Reaction time, s

Experiment 
data



 

279 
 

• Experiment DS0907  

Reaction conditions: 380⁰C, HC reactor, equi-molar DBT and 4,6-DMDBT, 1600-
1800 ppmw S in total, 400-450 ppmw Mo, S/Mo: ~10/1, 10 ml H2O, 100 ml toluene, 
590 psi CO mixed with 10 psi H2S 

 

 

Table E - 7 Experiment DS0907, 380C 

Reaction 
time, min 0 10 28 60 98 120 146 180 

DCH 0.00% 0.00% 0.00% 0.00% 0.17% 0.21% 0.23% 0.29% 

CHB 0.94% 1.11% 3.00% 7.14% 12.51% 15.06% 15.78% 17.31% 

BP 6.54% 12.36% 22.73% 37.77% 54.28% 62.41% 65.68% 72.16% 

TH-DBT 1.33% 2.67% 3.54% 3.29% 2.14% 1.44% 1.18% 0.65% 

DBT 91.19% 83.86% 70.73% 51.80% 30.91% 20.88% 17.13% 9.58% 

 

DMCHB 8.00% 5.57% 14.06% 20.75% 33.73% 38.67% 39.09% 40.92% 

ISO-DMBP 4.41% 4.19% 7.40% 7.89% 4.80% 5.81% 5.80% 11.17% 

DMBP 1.08% 0.86% 1.74% 2.40% 3.78% 4.52% 5.10% 5.97% 

TH-DMDBT 1.20% 0.66% 0.99% 0.86% 0.72% 0.50% 0.44% 0.26% 

HH-DMDBT 0.75% 0.52% 0.90% 1.06% 1.13% 1.12% 1.11% 1.05% 

ISO-DMDBT 0.60% 0.41% 0.78% 1.00% 1.32% 1.35% 1.30% 1.11% 

4,6-DMDBT 83.96% 87.79% 74.13% 66.04% 54.52% 48.03% 47.14% 39.52% 
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Fig. E - 11  Pseudo-first –order plots for the conversions of DBT and 4,6-DMDBT in HDS, 
DS0907, 380⁰C 

 

 

Fig. E - 12  Regression for 𝒌𝑫𝑫𝑺′   in the HDS of DBT, DS0907, 380⁰C 
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Fig. E - 13 Regression for 𝒌𝑯𝒀𝑫𝑫′  in the HDS of DBT, DS0907, 380⁰C, …𝒌𝑯𝒀𝑫𝑫 
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′ , 380⁰C 
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Regression SSR p-1=1 5.08E-03 533 

Error SSE n-p=6 4.58E-05  
Total SST n-1=7   
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Fig. E - 14 Regression for 𝒌𝑫𝑫𝑺′  in the HDS of 4,6-DMDBT, DS0907, 380⁰C 

 
Fig. E - 15 Regression of 𝒌𝑯𝒀𝑫𝑫′ of 4,6-DMDBT, DS0907, 380C 
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• Experiment DS0908  

Reaction conditions: 400⁰C, HC reactor, equi-molar DBT and 4,6-DMDBT, 1600-
1800 ppmw S in total, 400-450 ppmw Mo, S/Mo: ~10/1, 10 ml H2O, 100 ml toluene, 
590 psi CO mixed with 10 psi H2S 

 

Table E - 10 Experiment DS0908, 400 C 

Reaction 
time, min 0 10 30 44 60 90 120 180 

DCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.18% 0.22% 

CHB 1.38% 2.04% 5.46% 7.85% 9.09% 11.81% 12.58% 13.26% 

BP 12.39% 19.81% 39.43% 50.91% 57.13% 71.99% 77.71% 83.04% 

TH-DBT 1.92% 2.35% 2.25% 1.75% 1.43% 0.74% 0.51% 0.37% 

DBT 84.31% 75.80% 52.86% 39.49% 32.35% 15.32% 9.02% 3.11% 

 

DMCHB 8.00% 5.57% 14.06% 20.75% 33.73% 38.67% 39.45% 41.00% 

ISO-DMBP 4.41% 4.19% 7.40% 7.89% 4.80% 5.81% 5.65% 11.12% 

DMBP 1.08% 0.86% 1.74% 2.40% 3.78% 4.52% 4.97% 5.95% 

TH-
DMDBT 1.20% 0.66% 0.99% 0.86% 0.72% 0.50% 0.43% 0.26% 

HH-
DMDBT 0.75% 0.52% 0.90% 1.06% 1.13% 1.12% 1.08% 1.05% 

ISO-
DMDBT 0.60% 0.41% 0.78% 1.00% 1.32% 1.35% 1.27% 1.10% 

4,6-
DMDBT 90.46% 90.68% 83.49% 77.67% 67.62% 46.54% 43.29% 25.24% 
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Fig. E - 16 Pseudo-first –order plots for the conversions of DBT and 4,6-DMDBT in HDS, 
DS0908, 400⁰C 

 

 

Fig. E - 17 Regression for 𝒌𝑫𝑫𝑺′  in the HDS of DBT, DS0908, 400⁰C 
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Fig. E - 18 Regression for 𝒌𝑯𝒀𝑫𝑫′ in the HDS of DBT, DS0908, 400⁰C 

 

 

Table E - 11 ANOVA  𝒌(𝑫𝑩𝑻 𝑯𝒀𝑫𝑫)
′ , 400⁰C 

Source SS Df MS FOBS 

Regression SSR p-1=1 1.21E-03 333 

Error SSE n-p=6 9.62E-05  
Total SST n-1=7   
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Fig. E - 19 Regression for 𝒌𝑫𝑫𝑺′  in the HDS of 4,6-DMDBT, DS0908, 400⁰C 

 

Fig. E - 20 Regression for 𝒌𝑯𝒀𝑫𝑫′ of 4,6-DMDBT, DS0908, 400 C 
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E.2  Experiment data for HDS over promoted (Ni or K) Mo sulfide catalysts 

 

Table E - 13 HDS of DBT and 4,6-DMDBT over the dispersed MoNi catalysts 

 
Base080401 

(Mo) 
NiS-01' 

(Ni/Mo=0.5) 
NiS-2 (15 psi 

H2S)  

DBT 82.74% 72.45% 64.21% 

TH-DBT 4.23% 3.05% 4.50% 

BP 11.74% 20.83% 25.70% 

DCH 1.11% 3.16% 4.65% 

CHB 0.18% 0.51% 0.93% 

Conversion of DBT, w/w 17.26% 27.55% 35.79% 

Desulfurization of DBT, mol% 13.03% 24.50% 31.29% 

 
4,6-DMDBT 83.31% 83.72% 73.3% 

ISO-DMDBT 0.90% 0.67% 1.2% 

HH-DMDBT 1.53% 0.99% 1.5% 

TH-DMDBT 1.41% 0.65% 1.1% 

3,3'-DMBP 1.76% 1.76% 2.3% 

ISO-DMBP 4.42% 4.62% 7.6% 

DMCHB 6.67% 7.58% 12.9% 

Conversion of 4,6-DMDBT, w/w 16.69% 16.28% 26.7% 

Desulfurization of 4,6-DMDBT, mol% 12.85% 13.96% 15.3% 
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Table E - 14 HDS results of DBT and 4,6-DMDBT over KMo catalyst using in-situ H2. 

 

  

 K/Mo=0.4 Mo 

Feed DBT 95.9% 68.6% 
Intermediate TH-DBT 0.6% 8.9% 

DDS BP 3.2% 16.7% 

HYDD 
CHB 0.3% 4.9% 
DCH 0 0.9% 

Feed 4,6-DMDBT 91.0% 69.7% 

Intermediate 

ISO-DMDBT 1.4% 2.5% 

HH-DMDBT 2.2% 2.3% 

TH-DMDBT 1.5% 2.4% 

DDS DMBP 1.9% 2.6% 

HYDD DMCHB 2.0% 20.5% 
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E.3  EDX spectra for NiMo catalyst after consumed in HDS 

 

 

Fig. E - 21  EDX of NiMo(after HDS) sulfide, organic phase 

 

 

 

Fig. E - 22  EDX of NiMo(after HDS) sulfide, Wcat phase Sp1-Fig. 5-12 
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Fig. E - 23 EDX of NiMo(after HDS) sulfide, Wcat phase Sp2-Fig. 5-12 

 

 

 

Fig. E - 24 EDX of NiMo(after HDS) sulfide, Wcat phase Sp3-Fig. 5-12 
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APPENDIX F --- Experimental raw data for the Chapter 6 
 

Table F - 1 Experiment raw data of DS1001-PMA, H2 

Reaction time, min 10 30 65 93 119 150 
DCH+CHCHE 0.6% 1.3% 2.7% 3.4% 4.1% 5.1% 

CHB 3.1% 8.0% 15.2% 18.0% 20.0% 22.5% 
BP 12.2% 21.4% 34.6% 40.4% 45.1% 53.1% 

TH-DBT 4.6% 4.9% 3.9% 3.0% 2.4% 1.3% 
DBT 79.5% 64.4% 43.6% 35.2% 28.4% 18.0% 

S-removal 15.9% 30.7% 52.5% 61.8% 69.2% 80.7% 

 DMBP 1.1% 1.5% 2.8% 4.2% 5.7% 8.9% 
DMCHB 2.0% 4.4% 8.5% 13.0% 16.2% 21.0% 

TH-DMDBT+HH-DMDBT 0.9% 1.0% 1.0% 1.1% 1.2% 1.2% 
4,6-DMDBT 96.0% 92.8% 87.1% 81.0% 75.9% 67.6% 
Iso-DMDBT 0.1% 0.3% 0.6% 0.8% 1.0% 1.3% 

 

Table F - 2 Experiment raw data of DS1002-PMA, CO 

Reaction time, min 9 31 60 90 120 150 
DCH 0.3% 0.7% 1.8% 3.0% 4.0% 4.9% 
CHB 1.4% 3.5% 9.0% 13.8% 17.0% 18.9% 
BP 8.8% 15.5% 30.1% 42.4% 51.4% 58.1% 

TH-DBT 3.4% 3.8% 3.3% 2.4% 1.5% 0.9% 
DBT 86.1% 76.5% 55.7% 38.5% 26.0% 17.1% 

 DMBP 0.88% 2.68% 5.54% 8.57% 11.59% 14.93% 
DMCHB 1.37% 5.13% 13.68% 22.77% 29.76% 34.52% 

TH-DMDBT+HH-DMDBT 0.31% 0.79% 1.26% 1.50% 1.53% 1.31% 
4,6-DMDBT 97.34% 91.05% 78.79% 66.10% 55.89% 48.03% 
Iso-DMDBT 0.11% 0.35% 0.73% 1.05% 1.22% 1.21% 
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Table F - 3 Experiment raw data of ATTM, syngas 

mol% DM57 DM60 DM54 
CO CO+H2 H2 

CO/(CO+H2) 1 0.5 0 
DCH 4.38% 2.62% 0.19% 
CHB 21.34% 18.78% 12.82% 
BP 65.27% 55.95% 52.58% 

TH-DBT 0.71% 1.66% 1.95% 
DBT 8.30% 20.99% 32.46% 

 DMBP 22.21% 18.84% 17.07% 
DMCHB 46.55% 30.61% 24.69% 

TH-DMDBT 0.73% 2.17% 2.90% 
HH-DMDBT 0.98% 0.81% 1.19% 
Iso-DMDBT 1.50% 2.38% 2.00% 
4,6-DMDBT 28.03% 45.20% 52.15% 

     

 

Table F - 4 Experiment raw data of ExCO0901 

Reaction time, min 2 10 30 69 92 133 180 
DCH 0.5% 0.8% 1.2% 2.0% 2.4% 2.7% 2.9% 
CHB 5.7% 13.0% 23.2% 32.6% 35.8% 35.6% 35.1% 
BP 8.2% 16.0% 28.6% 44.1% 50.6% 57.2% 59.6% 

TH-DBT 5.5% 7.5% 5.1% 2.4% 1.3% 0.6% 0.4% 
DBT 80.2% 62.6% 41.8% 19.0% 10.0% 3.9% 1.9% 

S-removal 14.3% 29.8% 53.1% 78.7% 88.8% 95.5% 97.7% 
DMBP 3.8% 6.1% 6.4% 12.8% 17.2% 20.3% 25.5% 

DMCHB 10.3% 18.7% 29.1% 38.6% 45.8% 54.7% 56.7% 
TH-DMDBT 1.0% 3.4% 2.0% 0.9% 0.6% 0.3% 0.2% 
HH-DMDBT 2.4% 1.5% 1.2% 0.9% 0.5% 0.6% 0.5% 
4,6-DMDBT 81.8% 68.3% 59.0% 45.0% 34.4% 23.0% 16.2% 
Iso-DMDBT 0.8% 1.9% 2.3% 1.8% 1.6% 1.1% 0.8% 
S-removal 14.1% 24.9% 35.5% 51.5% 62.9% 75.0% 82.2% 
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Table F - 5 Experiment raw data of ExH0901 

Reaction time, min 0 10 30 60 120 182 
DCH 0.5% 0.6% 1.2% 1.4% 2.4% 2.8% 
CHB 6.0% 11.3% 20.5% 24.7% 35.9% 36.8% 
BP 10.8% 14.7% 25.0% 30.1% 48.7% 54.1% 

TH-DBT 2.2% 7.7% 6.1% 5.0% 1.5% 0.7% 
DBT 80.5% 65.7% 47.2% 38.7% 11.6% 5.6% 

S-removal 17.3% 26.6% 46.7% 56.3% 87.0% 93.7% 

 
 

     DMBP 5.2% 6.3% 7.5% 6.7% 18.6% 22.7% 
DMCHB 9.8% 15.1% 20.6% 26.0% 40.6% 46.5% 

TH-DMDBT 0.7% 2.7% 1.5% 1.4% 0.6% 0.4% 
HH-DMDBT 0.4% 1.5% 1.1% 1.1% 0.9% 0.5% 
4,6-DMDBT 83.4% 72.7% 67.1% 62.5% 37.4% 28.6% 
Iso-DMDBT 0.3% 1.7% 2.1% 2.2% 1.9% 1.4% 
Iso-DMDBT 15.1% 21.4% 28.1% 32.7% 59.2% 69.2% 

 

Table F - 6 Experiment raw data of ExCO1001 

Reaction time, min 0 10 30 60 90 120 
DCH 0.3% 0.7% 1.2% 2.4% 3.7% 3.6% 

CHB 2.5% 5.6% 9.2% 16.2% 23.2% 23.9% 
BP 5.3% 9.7% 12.9% 17.4% 21.7% 20.6% 

TH-DBT 2.3% 4.7% 5.4% 5.8% 5.7% 5.9% 
DBT 89.7% 79.9% 72.3% 59.9% 48.2% 48.4% 

 

Table F - 7 Experiment raw data of ExH1001 

Reaction time, min 1 10 30 60 90 120 

DCH 1.0% 0.6% 1.0% 2.0% 2.6% 4.5% 
CHB 6.6% 4.9% 8.1% 14.2% 17.8% 27.4% 
BP 8.5% 8.2% 11.1% 15.1% 17.2% 24.1% 

TH-DBT 3.1% 4.7% 5.5% 6.4% 6.4% 5.4% 
DBT 81.5% 82.1% 74.9% 63.7% 57.8% 41.7% 
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Table F - 8 Experiment raw data of ExCO0902 

Reaction time, min 0 30 60 90 140 180 

DCH 0.3% 0.2% 0.1% 0.3% 0.2% 0.2% 

CHB 1.5% 3.0% 5.6% 8.2% 9.7% 11.2% 

BP 8.6% 28.3% 45.6% 56.5% 65.7% 74.0% 

TH-DBT 1.7% 2.0% 1.6% 1.2% 0.6% 0.0% 

DBT 87.8% 66.5% 47.0% 33.9% 23.7% 14.6% 

S-removal 10.4% 31.5% 51.4% 64.9% 75.7% 85.4% 

DMBP 4.4% 9.6% 14.8% 19.2% 23.4% 28.2% 

DMCHB 3.1% 5.6% 10.1% 14.4% 16.6% 19.0% 
TH-DMDBT 0.2% 0.3% 0.3% 0.3% 0.3% 0.2% 
HH-DMDBT 0.5% 0.9% 1.3% 1.5% 1.6% 1.7% 

4,6-DMDBT 91.5% 83.0% 72.6% 63.5% 56.9% 49.6% 

Iso-DMDBT 0.3% 0.6% 0.9% 1.1% 1.2% 1.2% 

S-removal 7.5% 15.3% 24.9% 33.6% 40.0% 47.2% 
 

Table F - 9 Experiment raw data of ExCO0903 

Reaction time, min 0 30 60 108 180 
DCH 0.4% 0.5% 0.6% 0.8% 1.0% 

CHB 3.0% 10.2% 17.0% 23.0% 29.3% 
BP 11.6% 25.0% 34.4% 43.6% 55.2% 

TH-DBT 3.6% 4.3% 4.0% 2.8% 1.3% 

DBT 81.3% 60.1% 44.1% 29.9% 13.3% 
S-removal 15.1% 35.7% 52.0% 67.3% 85.4% 

DMBP -10.2% 4.4% 6.4% 8.3% 13.1% 

DMCHB -15.8% 10.2% 18.0% 23.5% 32.1% 
TH-DMDBT -5.1% 1.3% 1.2% 0.9% 0.7% 
HH-DMDBT -3.4% 0.6% 0.6% 0.6% 0.8% 

4,6-DMDBT 135.3% 82.9% 72.6% 65.4% 51.7% 
Iso-DMDBT -0.8% 0.6% 1.2% 1.4% 1.6% 
S-removal -26.0% 14.6% 24.3% 31.8% 45.2% 
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APPENDIX G --- Raw Data for Chapter 7 
 

Table G - 1 HDS of DBT and 4,6-DMDBT with the presence of N-containing compounds 

Exp. ID NS-20 NS-21 NS-19 NS-18 DM-90 DM-91 

Conditions S+Q, CO S+Q, H2 S+Cz, CO S+Cz, H2 CO H2 

DBT 81.93% 80.88% 67.84% 63.37% 54.28% 48.32% 

TH-DBT 1.54% 3.52% 3.81% 4.35% 4.86% 4.29% 

BP 15.73% 13.65% 18.18% 20.07% 29.30% 34.66% 

CHB 0.80% 1.95% 6.71% 7.09% 11.14% 12.34% 

DCH 0.00% 0.00% 3.47% 5.12% 0.42% 0.39% 

DDS/HYDD 19.71 7.02 1.79 1.64 2.54 2.72 

HDS of DBT 16.53% 15.60% 28.35% 32.28% 40.86% 47.39% 
Conversion of 

DBT 18.07% 19.12% 32.16% 36.63% 45.72% 51.68% 

       
4,6-DMDBT 91.46% 86.93% 80.41% 75.18% 55.67% 58.32% 

ISO-DMDBT 0.54% 0.63% 1.06% 1.51% 2.16% 2.34% 

HH-DMDBT 2.09% 2.47% 4.76% 5.72% 2.07% 1.95% 

TH-DMDBT 2.19% 3.98% 2.43% 3.92% 2.24% 2.96% 

3,3'-DMBP 2.16% 3.57% 4.66% 6.53% 6.50% 7.10% 

ISO-DMBP 0.57% 0.86% 2.52% 2.32% 9.68% 8.88% 

DMCHB 0.99% 1.56% 4.16% 4.83% 21.68% 18.45% 

DDS/HYDD 2.77 2.85 1.73 1.83 0.75 0.87 

HDS of DMDBT 3.72% 5.99% 11.34% 13.67% 37.85% 34.43% 
Conversion of 

DMDBT 8.54% 13.07% 19.59% 24.82% 44.33% 41.68% 
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APPENDIX H --- Raw Data for Chapter 8 
 

 

Table H - 2 HDN carbazole at 380 °C, Cz0901 

Reaction time, min 5 30 87 150 180 

Cz 85.94% 82.97% 70.96% 58.38% 52.23% 
TH-Cz 8.02% 8.60% 9.95% 8.36% 6.69% 
HCHA 0.81% 0.86% 1.91% 3.97% 4.95% 

Iso of HDCHA 1.93% 2.96% 7.01% 12.76% 16.30% 
DCH 0.72% 0.94% 1.88% 3.54% 4.33% 
CHB 1.09% 1.78% 3.15% 4.98% 6.01% 
PHA 0.38% 0.47% 1.38% 2.30% 2.69% 

CHCHE 1.11% 1.42% 3.77% 5.71% 6.80% 
 

 

 

Table H - 2 HDN carbazole at 330 °C, Cz0902 

Reaction time, min 5 30 60 103 150 180 

Cz 94.89% 93.32% 88.28% 80.12% 70.47% 66.37% 
TH-Cz 2.96% 6.12% 10.53% 13.82% 15.50% 15.33% 
HCHA 0.26% 0.00% 0.00% 0.64% 1.77% 2.64% 

Iso of HDCHA 0.94% 0.35% 1.18% 2.51% 6.26% 7.69% 
DCH 0.29% 0.10% 0.00% 0.66% 1.95% 2.90% 
CHB 0.46% 0.00% 0.00% 1.28% 2.25% 2.97% 
PHA 0.00% 0.00% 0.00% 0.30% 0.53% 0.64% 

CHCHE 0.19% 0.11% 0.00% 0.68% 1.26% 1.47% 
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Table H - 3 HDN carbazole at 360 °C, Cz0903 

Reaction time, min 0 30 60 120 150 180 

Cz 91.78% 88.46% 81.87% 72.27% 64.66% 58.56% 
TH-Cz 4.69% 9.17% 12.56% 13.58% 12.95% 11.58% 
HCHA 0.37% 0.12% 0.36% 1.39% 2.57% 3.72% 

Iso of HDCHA 1.24% 0.71% 2.05% 5.63% 9.24% 12.89% 
DCH 0.42% 0.15% 0.42% 1.51% 2.61% 3.78% 
CHB 0.42% 0.45% 1.10% 2.18% 3.01% 3.73% 
PHA 0.53% 0.25% 0.49% 0.97% 1.34% 1.66% 

CHCHE 0.56% 0.69% 1.15% 2.47% 3.62% 4.09% 
 

 

Table H - 4 HDN carbazole at 380 °C, Cz0904, molecular H2 

Reaction time, min 0 30 60 110 180 

Cz 92.75% 85.14% 75.74% 64.23% 59.36% 

TH-Cz 6.53% 10.95% 13.81% 13.92% 11.91% 

HCHA 0.15% 0.50% 1.70% 4.11% 5.24% 

Iso of HDCHA 0.14% 1.67% 4.20% 9.25% 12.88% 

DCH 0.14% 0.44% 1.28% 3.15% 4.61% 

CHB 0.29% 0.92% 1.95% 3.13% 3.51% 

PHA 0.00% 0.00% 0.46% 0.81% 0.97% 

CHCHE 0.00% 0.37% 0.86% 1.39% 1.53% 
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