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Abstract 

It is widely agreed that estimates of freeway segment travel times are more highly valued by 

motorists than other forms of traveller information.  The provision of real-time estimates of travel 

times is becoming relatively common in many of the large urban centres in the US and overseas. 

Presently, most traveler information systems are operating based on estimated travel time rather than 

predicted travel time. However, traveler information systems are most beneficial when they are built 

upon predicted traffic information (e.g. predicted travel time). A number of researchers have 

proposed different models to predict travel time. One of these techniques is based on traffic flow 

theory and the concept of shockwaves. Most of the past efforts at identifying shockwaves have been 

focused on performing shockwave analysis based on fixed sensors such as loop detectors which are 

commonly used in many jurisdictions. However, latest advances in wireless communications have 

provided an opportunity to obtain vehicle trajectory data that potentially could be used to derive 

traffic conditions over a wide spatial area. This research proposes a new methodology to detect and 

analyze shockwaves based on vehicle trajectory data and will use this information to predict travel 

time for freeway sections.  

The main idea behind this methodology is that average speed on a section of roadway is constant 

unless a shockwave is created due to change in flow rate or density of traffic. In the proposed 

methodology first the road section is discretized into a number of smaller road segments and the 

average speed of each segment is calculated based on the available information obtained from probe 

vehicles during the current time interval. If a new shockwave is detected, the average speed of the 

road segment is adjusted to account for the change in the traffic conditions. In order to detect 

shockwaves, first, a two phase piecewise linear regression is used to find the points at which a vehicle 

has changed its speed. Then, the points that correspond to the intersection of shockwaves and 

trajectories of probe vehicles are identified using a data filtering procedure and a linear clustering 

algorithm is employed to group different shockwaves. Finally, a linear regression model is applied to 

find propagation speed and spatial and temporal extent of each shockwave. The performance of this 

methodology was tested using one simulated signalized intersection, trajectories obtained from video 

processing of a section of freeway in California, and trajectories obtained from two freeway sections 

in Ontario. The results of this thesis show that the proposed methodology is able to detect 

shockwaves and predict travel time even with a small sample of vehicles. These results show that 
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traffic data acquisition systems which are based on anonymously tracking of vehicles are a viable 

substitution to the tradition traffic data collection systems especially in relatively rural areas. 
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Chapter 1 

Introduction 

Traffic congestion is a common problem in major cities around the world. Unfortunately, traffic 

congestion statistics shows an exacerbating trend over the past decades. Vehicles emissions contribute 

15% of total green house gas emissions in North America, which is a significant factor in global 

warming (Oliver, 2005). According to a recent report (Schrank et. al., 2005) Americans wasted a total 

of 3.7 billion hours and 2.3 billion gallons of fuel in traffic congestion annually. The report states that 

“…the current pace of transportation improvement, however, is not sufficient to keep pace with even 

a slow growth in travel demands in most major urban areas”. 

There are a number of techniques available to alleviate traffic congestion. Enhancing network 

capacity is one of the most common techniques employed to decrease the total delay of the network in 

the past. However, construction of new highways and expansion of existing highways have become 

cost prohibitive, especially when they are located at urban centres. Consequently, recent efforts have 

been focused on efficient utilization of existing capacity and effective travel demand management as 

a way of tackling traffic congestion. One of the most significant challenges to using the existing 

transportation infrastructure more effectively is the lack of accurate, up-to-date traffic conditions data 

for the entire road network. If wide area, up-to-date traffic conditions data would benefit two groups 

of users namely, travelers and operators of transportation networks. Travelers can use the information 

for pre-trip and enroute planning purposes which both would result in lowering the congestion level 

in the network. On the other hand, operators of the network would likely respond to incidents more 

quickly and effectively. They can build up a rich historical traffic information database for the entire 

network which has tremendous value to many applications in traffic engineering as well as other 

areas.    

In large urban areas dedicated fixed sensors such as CCTV cameras and loop detectors have been 

used for many years as the main techniques to collect near real time traffic data. However, extensive 

deployment of these sensors is cost prohibitive and consequently they are typically deployed on only 

heavily travelled freeways within large urban centres. For example, Highway 401 is the only freeway 

that traverses the province of Ontario - running 820 km from Winsor in the West to Cornwall in the 

East - and is a vital transportation corridor for the movement of goods and people. Despite its 

importance, only approximately 59 km (7%) of the highway is instrumented.  
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New developments within the wireless communication field such as mobile phones provide the 

opportunity to obtain real time traffic information over a wide spatial area without the deployment of 

dedicated traffic sensors. Obtaining traffic information through mobile phones has become possible as 

a result of the development of the ability to determine the location of a mobile phone. The locationing 

ability was originally developed in response to the CRTC (Canadian Radio and Telecommunications 

Commission) and FCC (Federal Communications Commission) requirements that wireless carriers 

must provide an estimate of the location of a mobile phone in the event of an emergency call to 911. 

Currently, the accuracy of the estimated locations in mobile phone based systems is sufficient to 

support the estimation of speeds and travel times on roadway segments.  A limited number of 

commercial systems have emerged in the market and several evaluation studies in North America are 

currently underway or have been recently completed (Izadpanah and Hellinga, 2007).  

In mobile phone based systems, the positions of a sample of mobile phones within a specified 

geographical area are tracked anonymously over time. This process is called location referencing. The 

location referencing process is usually carried out by the wireless carrier and the resulting data 

consists of a randomly assigned probe vehicle identification number, time stamp, and position.  The 

data are then transmitted to a processing centre for deriving information on traffic conditions such as 

link travel times and speed, incidents, and queues.  

In the past few years wireless communication technologies have been evolving very quickly. Most 

new mobile phones and smart phones have embedded GPS and are capable to access the Internet. The 

positions obtained from GPS is generally more accurate than positions obtained from cell phone 

system except in areas where sight of satellites is blocked by high-rise towers (e.g. downtown 

Toronto). Coincidently, the cell phones based positioning systems are relatively more accurate in 

these areas due to small size of each cell. Therefore, the two techniques can complement each other to 

provide continuous accurate positions of vehicles over time.        

 Availability of accurate and frequent positions of mobile probes over time for a large spatial region 

provides new opportunities to acquire traffic information that is not readily available through 

traditional traffic surveillance systems. One of these opportunities is travel time prediction. Many 

Intelligent Transportation Systems (ITS) applications such as in-vehicle route guidance systems, and 

advanced traffic management systems rely on future state of traffic rather than current traffic 

conditions only (Chien et. al., 2003). Predicted traffic information is an integral part of all travelers’ 

information systems because travelers and managers of transportation networks are much less 
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interested in past traffic conditions (even if very recently) but are much more interested in the traffic 

conditions that will be experienced by vehicles that are entering a road segment or within currently a 

short period of time.  

Since the advent of ITS, many researchers have worked on prediction of travel time in 

transportation networks. Most of them have used dedicated sensors, dedicated probe vehicle data, or 

fusion of these data with historical data to predict near future travel time. In this research, however, 

the main goal is to develop a reliable model to predict near future (less than one hour) travel time on 

freeways using travel time data obtained from mobile phone probes.  

1.1 Background 

1.1.1 Definition of Travel Time 

Figure 1.1 is a space-time diagram illustrating the trajectory of several vehicles as they traverse a 

hypothetical section of roadway. The roadway section is denoted as section i and the individual 

vehicles are denoted by j. The time taken for a vehicle j to traverse the roadway section i is denoted as 

tj.  

Since many variables such as traffic volume, weather conditions, incidents, behaviour of the driver, 

vehicle characteristics, etc. affect travel time experienced by an individual traveler, travel time of a 

road section is a stochastic process which is impossible to estimate or predict exactly. Consequently, 

all the efforts in the literature focus on estimation or prediction of an expected (average) value of the 

travel time.  

The expected travel time is computed as the average of the travel times associated with all vehicles 

that enter the section i in some time period. So, if travel time of vehicle j on section i is defined by 

 i
j t where t is the time instance that vehicle j entered the section i, the average travel time over 

time period Δ is defined as follows: 

 
1

1
,

n
i i

j
j

t t
n

 


    (1.1) 

Where, n is the number of vehicles entering road section i in time period Δ. For example in Figure 1.1 

n is equal to 4 (i.e. vehicles j+1, …, j+4). 
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Note that this definition implies that even if the travel time of all vehicles can be measured (i.e. 

  1i
j t , t ,j , ,n    ) 

i
  cannot be computed until all n vehicles have traversed the section. 

 

Figure 1.1: Space - time diagram for definition of travel time 

1.2 Travel Time Estimation and Prediction 

Travel time estimation is the process of calculating (average) travel time for vehicles that have 

finished traversing a road section and for which traffic conditions are known. In other words, travel 

time estimation entails calculation of travel time experienced by the vehicles through other traffic 

characteristics such as speed, flow, and density which can be measured in the field using traffic 

sensors such as loop detectors. However, the sensors are generally not able to directly measure travel 

time and consequently, traffic flow theory is usually employed to transform measurable traffic stream 

characteristics into estimates of travel time.  

Conversely, travel time prediction is the process of determining travel time for future traffic 

conditions. The length of time in the future for which travel times are to be predicted is called the 

“prediction horizon”. The length of the prediction horizon plays an important role in the choice of the 

approach to tackle this problem. 

Time 

Li 

tj 

j j+1 
j+2 

j+3 

j+4 

tj+1 

tj+2 

Time Period Δ 

j+5 
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Figure 1.2 illustrates the differences between travel time prediction and travel time estimation. 

Similar to Figure 1.1, the y-axis represents positions of vehicles along the roadway section and the x-

axis represents time. Present time in this figure is the end of time period Δ. At present time, there is 

some information available about traffic in the past time intervals. Consequently, models can be used 

to estimate average travel time of vehicles that entered the road section in time period Δ. These 

models transform measured traffic conditions into estimation of travel time. On the other hand, for 

predicting travel time in the future, traffic conditions are not available. Consequently, travel time 

prediction models need to make use of previously available data and dynamics of traffic flow to 

forecast travel time in the future. Travel time prediction models might first predict other traffic 

metrics and then use a travel time estimation model to transform the predicted traffic stream 

characteristics into predicted travel times.  

Presently, most traveler information systems are operating based on estimated travel time rather 

than predicted travel time due to lack of reliable prediction models. However, traveler information 

systems are most beneficial when they are built upon predicted traffic information (e.g. predicted 

travel time). The latest developments in the field of wireless communications such as mobile phones 

Time

Li 

Time Period Δ Time Period Δ+1 Present time 

“Measured” traffic 
conditions (i.e. spot 

speed, flow, etc.) 
“Unknown” traffic 

conditions 

Travel time estimation is transformation 

of “measured” traffic parameters into 

estimation of travel time. 

Travel time prediction is forecasting of 

travel time in future for which traffic 

conditions are “unknown”. 

Figure 1.2: Travel time estimation and travel time prediction 
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provide the opportunity for researchers to develop prediction models based on wide area real time 

data.  

For example, Ministry of Transportation Ontario (MTO) has developed a freeway travel time 

estimation/prediction system that determines travel time based on the average speed obtained from 

loop detectors. The underlying algorithm in this system is retrospective in nature and can yield 

accurate prediction results only if the state of traffic remains unchanged. However, in reality, the state 

of traffic is constantly changing due to changes in demand and capacity. This issue has been widely 

recognized by the transportation agencies such as MTO and they have initiated a number of efforts to 

address this deficiency. It should also be noted that the current algorithm used by MTO is applicable 

only on freeways with full FTMS instrumentation. One of the objectives of this research is to develop 

a framework which will enable transportation agencies such as MTO to make use of emerging 

technologies to estimate travel times for freeways which are not covered by FTMS. 

1.1.1 Prediction Horizon 

One of the critical questions arising in travel time prediction is the length of prediction horizon.  For 

instance, one might ask “how long would it take to go from Toronto to Montreal next Monday?” or 

“how long would it take to travel from Highway 427 to Don Valley Parkway in Toronto along the 

Gardiner Expressway if someone enters the Gardiner in the next 5 minutes?” To answer these two 

questions, different approaches might be adopted by the analyst. For the first question historical data 

would suffice. However, answering the second question calls for a dynamic model that requires 

traffic conditions in immediate previous time steps.  

To define the prediction horizon, let Δ* be the current time period and Δ be the time period for which 

travel time ought to be predicted. Then, the prediction horizon is defined by: 

*max ,0T       . (1.2) 

In the literature there are different categories of travel time prediction models based on the length 

of the prediction horizon (Van Lint, 2004): 
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 Real-time Travel Time Prediction: In these models, average travel time of vehicles 

entering the road segment at time period Δ = Δ* is desired. In other words, prediction 

horizon, T, in these models is 0. Real-time travel time prediction should be 

differentiated from travel time estimation. In travel time estimation, travel time of 

vehicles that in previous time periods entered the roadway are estimated. However, 

the goal in real time travel time prediction is to forecast travel time of vehicles that 

are entering the roadway section at current time interval which the traffic conditions 

are unknown.  

 Short Term Travel Time Prediction: This category which is also referred to as near 

future travel time prediction models is aimed at prediction horizons that are in the 

order of 0 to 60 minutes (i.e. 600  T minutes). Obviously real-time travel time 

prediction models are a subset of short term travel time prediction models. This 

research focuses on this type of models. 

 Long Term Travel Time Prediction: The objective of these models is to predict travel 

time of vehicles that will be entering the road segment in future time period which is 

longer than 60 minutes (i.e. T > 60 minutes). 

In this research, the focus will be on real-time prediction of travel time.  

1.2.1 Travel Time Variability 

Travel time of a certain section of roadway is subject to temporal variations. The temporal variations 

of travel time are not only seasonal, monthly, weekly but also daily which makes the prediction and 

estimation of the travel time difficult. The variability of travel time has been discussed by many 

researchers such as Meyer and Miller (2001). 

Figure 1.3 shows variability of travel time for different days of weeks in 2002 from 6 a.m. to 8 p.m 

along eastbound direction on a 6.5 km freeway in the Netherlands (Van Lint and Van Zuylen, 2005). 

This figure illustrates different percentiles of observed travel time on this section of the freeway. 

Figure 1.3(a) represents a typical weekday with morning and afternoon peaks. On the other hand, 

Figure 1.3(b) illustrates variations of travel time on Fridays which the afternoon peak starts earlier 

and lasts longer than weekdays. On Saturdays, which are shown in Figure 1.3(c), morning and 
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afternoon peaks are much lighter than weekdays. In fact the morning peak literally doesn’t exist on 

Saturdays. It should be noted that this figure is generated for normal traffic conditions in absence of 

incidents.  

Changes demand and supply (due to weather conditions, incidents, etc.) create the temporal variations 

of travel time which in turn make the prediction of travel time difficult.  
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a) Thursdays 

b) Fridays 

c) Saturdays 

Figure 1.3: Variability of travel times in 2002 for 15 minute time intervals between 6am 
and 8pm for different days of weeks (Van Lint and Van Zuylen, 2005) 
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1.3 Methods of Acquiring Travel Time Data 

1.3.1 Fixed Point Technologies 

Fixed point traffic data acquisition technologies collect various traffic stream measurements using 

sensors installed at predefined fixed points. A number of these technologies are used in practice: 

1. Inductive Loop Detectors 

Loop detectors have been used in traffic engineering as early as 1920’s. Inductive loop detectors 

consist of insulated copper wire installed into the road pavement. When vehicles pass over the loop, 

the metal within the vehicle disturbs the magnetic field created by the loop and induces an electric 

current which is measured by the loop detector. The common practice is to either place a single loop 

detector or two loop detectors (one upstream of the other) in each lane. The single loop detectors are 

able to determine the number of vehicles passing over them as well as occupancy (a measure of the 

fraction of time the loop detects a vehicle). Double loop detectors, which are more common, have the 

ability to determine time mean speed in addition to vehicle counts and occupancy. Normally, loop 

detectors aggregate the data every 20 seconds and send them to a traffic control center through a data 

communication system. It should be noted that loop detectors are incapable of measuring travel time 

directly. However, due to their wide spread used for traffic surveillance, many models have been 

proposed to estimate travel time from loop detector data.  

Loop detectors are relatively accurate and algorithms to acquire traffic information from loop 

detector data are available and widely used throughout the world. However, loop detectors are costly 

to install and maintain particularly because installation and maintenance require closure of the lanes. 

The other disadvantage of loop detectors is that loop detectors become especially unreliable during 

construction due to lane realignment or damage to the detection and communication hardware. 

Ironically these are the conditions for which there is a high demand to obtain traffic information. 

2. CCTV Cameras 

Cameras are mainly installed in transportation facilities to observe the traffic stream and support 

traffic control decisions such as confirmation and response to incidents. Recently, developments in 

image processing algorithms have made it possible to use these cameras as a source of travel time 

measurement. In this case the system operates similar to the traditional method of manual license 

plate recording. However, wide deployment of cameras is cost prohibitive. Furthermore, often 

cameras do not perform satisfactorily in poor weather conditions or in low light conditions.   
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3. Automatic Vehicle Identification 

In this technique, vehicles are detected at fixed points along the subject route and vehicle 

identification and the time when the vehicle was detected are recorded. Consequently, the travel time 

associated with each detected vehicle between two consecutive fixed points can be computed. There 

are a number of technologies which can be used to detect vehicles. In most of these technologies a 

device with a unique ID is installed in vehicles and also readers are installed at certain locations in the 

network. A number of technologies can be used under this technique: radio frequency identification 

(RFID) tags, transponders, and Bluetooth devices. Examples of such systems are Highway 407 in 

Ontario and TrafficWatch system in Oakland California both of which have been deployed for 

electronic toll collection purposes.   

1.3.2 Probe Vehicle Technologies 

Probe vehicles are instrumented vehicles in the traffic stream that are able to disseminate position and 

time data to a traffic centre or can record position and time data which can be downloaded offline. 

Then, the data can be synthesized to obtain travel time or other traffic measures. Probe vehicles might 

be dispatched to the traffic stream for the purpose of data collection or they might be vehicles that are 

already in the network for other purposes but can be used as a data collection tool. Probe vehicles are 

categorized into dedicated probe vehicles and mobile probe vehicles. 

1. Dedicated Probe Vehicles 

Instrumented vehicles can be used as dedicated probes to obtain traffic conditions data. Vehicles are 

typically equipped with a GPS receiver, an electronic map database and a wireless communication 

link. The vehicles periodically send position data to a central data processing facility.  

Dedicated probe vehicles have been used extensively for the purposes of obtaining traffic 

information; mostly for short term data collection (e.g. travel time or speed and delay studies). 

Special purpose vehicles such as trucks, taxis, public transit buses, or winter maintenance vehicle 

fleets have also been used for this purpose.    

The most evident disadvantage of using commercial fleets as probe vehicles is that they may 

produce biased estimates because the probe vehicles may not be a random sample of the population of 

vehicles. A second disadvantage is the limited number of vehicle probes from which data may be 

obtained.  Naturally this second limitation becomes less problematic when the fleet is sufficiently 

large.  
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2. Mobile Probe Vehicles 

Mobile probe vehicles are a sample of vehicles in which the vehicles, drivers or passengers carry 

mobile devices which can be traced. For example, wireless carriers are able to track and locate mobile 

phones. There are a number of techniques to obtain the location of a mobile phone. A brief 

description of these techniques and the mobile phone technology can be found in Appendix C.  

Mobile probes provide an opportunity to derive traffic data at wide area scale without extensive 

instrumentation and at a low cost. However, the mobile probes are only able to produce positions and 

time stamps. Other characteristics of the traffic stream (e.g. volume, density, etc.) cannot be directly 

obtained from mobile probes.  

Figure 1.4 illustrates typical data that can be obtained through tracking mobile phones in a network. 

This figure shows a stretch of a freeway with an on-ramp and the associated time - space diagram for 

the freeway section. Wireless carriers that cover this section of the freeway are able to provide time 

stamped positions for every individual mobile phone user along this freeway. Figure 1.4(a) shows a 

discrete set of points representing the trajectory of different vehicles. Obviously the location data (i.e. 

estimated positions of mobile phones) are not completely accurate. To correct these data some map 

matching techniques should be used (Takada, 2006). The piecewise linear graph resulting from 

connecting all points of an individual mobile probe yields an approximation of the trajectory of the 

mobile probe (as depicted in Figure 1.4(b). The slope of the line between every pair of locations 

represents the average speed of the mobile probe between these two locations. Projection of the line 

segment on the x-axis yields the travel time of the probe between the two locations.  

Figure 1.4(c), however, illustrates the true trajectories of these probe vehicles. Based on this figure, 

two different traffic regimes exist upstream of the on-ramp in the freeway section. Vehicles travel at 

near free flow speed and then join the slower moving queue upstream of the on ramp. Beyond the on 

ramp to some point beyond where the acceleration lane ends, the congested traffic regime prevails on 

the freeway section. Drivers experience the free flow speed at the end of the freeway section.  

Figure 1.4(d) compares the real and approximate trajectories of probe vehicles. As can be seen in 

this figure, the exact position and time that a mobile probe transitions from an uncongested regime to 

a congested regime is not readily available from the approximate time-space diagram. Consequently, 

there are two main issues associated with the approximate trajectories regardless of measurement 

errors in locations obtained from mobile phones. First, data for a sample of vehicles traversing the 
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network is available rather than data for all vehicles. Second, the approximate trajectories of probe 

vehicles are available rather than the real trajectories. 

The other problem associated with mobile phones is that no one can be certain that the mobile 

phone is in a moving vehicle. There are some algorithms in the literature that address this issue 

(Takada, 2006).  In this research, it is assumed that all mobile phones are in moving vehicles.   

 

 

a) Time - position data obtained from mobile 

phones. 

b) Time - space diagram estimated from mobile 

probes. 

  

c) Real time - space diagram. d) Comparison of estimated and real time - 

space diagrams. 

Figure 1.4: Time - space diagram depicting mobile probes on a freeway section with an on ramp 
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1.4 Problem Statement 

As discussed previously, the most useful form of travel time information is predicted travel time 

rather than estimated travel time. The estimated travel time is useful for transportation planning and 

management purposes, but is not accurate enough for pre-trip or en-route planning purposes. 

Hoogendoorn (1997) shows that if current traffic information is used in future instead of predicted 

travel time, it may lead to oscillatory behaviour causing deterioration of traffic conditions instead of 

improvement. 

Travel time prediction is intrinsically a difficult problem due to the fact that many factors influence 

travel time experienced by drivers. For example travel time in a particular road section is affected by 

drivers’ behaviour, traffic demand, weather conditions, and incidents. Many of these factors vary over 

time and are difficult to predict. Furthermore, travel time itself is not easily measured by “traditional” 

data sources such as loop detectors and some models based on traffic flow theory are required to 

estimate travel time. To resolve this deficiency, some researchers have used probe vehicles to develop 

travel time prediction models using data from probe vehicles as input. However, wide area 

deployment of dedicated probe systems is not economically feasible and also such systems cannot 

guarantee dissemination of real time data.  

Over the last three decades, a variety of models has been developed for travel time prediction. 

Some researchers have used time series analyses in the form of ARMA and ARIMA models (Yang, 

2005b; D’Angelo et. al. 1999; and Ishak et. al., 2002). However, the traditional time series models are 

unable to capture rapid fluctuations in traffic stream (Head, 1995 and Abdulhai, et.al., 1999). Kalman 

filter has been used to tackle travel time prediction problem (Chen, et. al., 2005; Chu, et. al., 2005; 

Chen and Chien, 2001; and Yang, 2005a). Some of these researchers have used probe vehicle data 

and the rest loop detector data to predict travel time. Researchers have found satisfactory results 

through applying Kalman filter especially due to the fact that Kalman filter can grasp quick 

fluctuations in travel time well. However, Kalman filter requires the dynamics of the process stated 

clearly which is a challenging task itself in the case of traffic flow due to many uncertainties. Some 

researchers have resorted to data-driven approaches such as Neural Networks due to complexity of 

the process in addition to imprecise and incomplete information about the process (Van Lint et. al., 

2005 and 2002; Rilette and Park, 1999). Furthermore, other techniques such as regression models 

have also been used by researchers (You and Kim, 2000, and Wu et. al., 2004).  
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Advances in wireless communications have provided the opportunity of collecting wide area near 

real time traffic data. However, the data need to be interpreted and transformed into “classic” 

measures such as predicted travel time to be useful for travelers and transportation managers. There 

are three main challenges associated with the process of converting raw mobile phone data to traffic 

conditions: (1) Location data obtained from mobile phone is subject to measurement errors. The 

distribution and extent of the errors depend on the geographical area, the handset, and the localization 

technique being used. (2) Location referencing is not done very frequently and polling intervals 

between two consecutive locations affect accuracy of traffic information especially when two 

different regimes of traffic exist between these two consecutive locations. (3) Only a sample of 

vehicles contain an active mobile phone and only a sample of these phones is used to obtain traffic 

conditions in a network to minimize the cost for travel time prediction. The sampling process causes 

another type of error in the process of obtaining traffic conditions. 

A number of researchers have endeavoured to obtain traffic conditions through mobile phones 

(Cayford et. al., 2006; Smith, 2006; Takada, 2006; Fountain et. al., 2004; Yim, 2003; Ygnace, 2001). 

However, the main focus of these researchers has been estimation of travel time or speed not travel 

time prediction. The available commercial packages that make use of mobile phone data only provide 

an estimation of travel time and/or speed despite the fact that mobile phone systems are potentially 

able to support many decision support tools in traffic engineering (Izadpanah and Hellinga, 2007).  

In spite of the important efforts in the development of travel time prediction models and the 

advances in wireless traffic monitoring systems, some important issues remain to be addressed in 

order to develop a reliable model to predict travel time using data from mobile phones: 

 There is no model available to make use of mobile phone data to predict travel time. 

 There is no general consensus in the literature regarding superiority of a specific type of 

model for prediction of travel time (regardless of data sources such as loop detectors, 

dedicated probes, etc.). 

 Three main sources of errors deteriorate accuracy of data collected via mobile phones: 

measurement errors, errors due to infrequent location inquiries, and errors due to sampling. 

The process of travel time prediction itself creates another source of error because of 

uncertainties about future. It is not clear how the quality of travel time prediction models is 

affected by the first three error terms and the size of fourth error term.  
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This research attempts to address the first two knowledge gaps and the last is left for future research.  

1.5 Research Objectives 

The main goal of this research is to develop the required tools for real-time prediction of travel time 

on freeways using data primarily obtained through anonymously tracking of vehicles. To achieve this 

goal the following objective should be met: 

 Develop an algorithm to predict travel time of a freeway section using data obtained from 

vehicle trajectory data; 

 Evaluate the proposed algorithm against the trajectory data from real freeways. 

 Compare the performance of the proposed algorithm with traditional sources of travel time 

information. 

1.6 Thesis Outline 

The rest of the document is organized as follows: Chapter 2 provides a synopsis of the state of the art 

to estimate travel time. This chapter categorizes travel time estimation models based on the logic 

behind the models. Chapter 3 summarizes the efforts of researchers to predict travel time. Travel 

time prediction models are categorized into two broad groups: data driven models and traffic flow 

models. Furthermore, each group itself divided into different modeling strategies.  

Chapter 4 describes the proposed methodology to predict travel time using trajectories of a sample 

of vehicles. Also, this chapter outlines two methodologies to obtain travel time of a route using data 

obtained from loop detectors. The loop detector data will be used as a bench mark to evaluate the 

performance of the proposed methodology. Chapter 5 of this document describes the datasets which 

were used to show the performance of the proposed methodology. Also, this chapter describes the 

data collection efforts which were conducted in this research to compare travel time obtained from 

different sources of data on two freeway sections in Ontario. Chapter 6 shows the results obtained 

from the application of the proposed travel time prediction model to different freeway sections. 

Chapter 7 summarizes the conclusions and contributions of this research as well as provides 

directions for further research in this area.        
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Chapter 2 

Travel Time Estimation 

This chapter reviews current state of the art in travel time estimation. Although the main goal of this 

research is the prediction of travel time, travel time estimation models are often used as a part of 

prediction process in many travel time prediction models. Furthermore, the study of travel time 

estimation models provides insight into fundamentals of travel time variations over time that are 

essential for prediction of travel time.  

Travel time estimation is the process of calculating travel times that have been experienced by road 

users over a road section. In other words, these models make use of traffic flow theory to determine 

travel time based on other known characteristics of traffic flow such as flow, density, speed, etc.  

Travel time estimation models can be divided into four main categories namely, spot speed 

algorithms, stochastic queuing algorithms, section density algorithms, and multi-regime algorithms. 

2.1 Spot Speed Algorithms 

Spot-speed algorithms are a family of travel time estimation algorithms that rely on the use of speed 

measurements obtained at spot location (e.g. from loop detectors). 

2.1.1 Average Speed Algorithm 

The simplest form of loop detector based travel time estimation algorithms makes use of measured 

average vehicle speeds at a spot location and assumes vehicles travel at this speed over a fixed 

segment of the roadway (Lindveld et al., 2000). The length of this fixed segment of the roadway is 

often assumed to be half the distance between two consecutive detector stations, but can be defined as 

some other length. This scheme can be illustrated using the notation in Figure 2.1 and Figure 2.2. 

.  
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Figure 2.1: Roadway schematic for spot-speed algorithms  

 

 

Figure 2.2: Space - time diagram 

As illustrated in Figure 2.2, the average speed Si represents the speeds of vehicles as they pass a 

specific location (i.e. the loop detector). Spot speed based methods assume that the vehicles travel at 

this speed over the entire section length (i.e. Li). This assumption is generally valid when the road 

section is uncongested.  However, as illustrated in Figure 2.2, when a portion of the section 

experiences congestion, then this assumption is no longer valid as the vehicle’s speed changes 

significantly over the length of section Li and consequently the estimated travel time will not be 
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accurate.  If the section length (Li) is short, then errors between estimated and actual travel time will 

be acceptably small. However, installing loop detectors more closely spaced than approximately 500 

– 600m is generally not economically feasible.   

It is important to note that, in general, point-speed algorithms tend to underestimate travel times 

when congestion is forming.  The magnitude of the underestimation is a function of the severity of the 

congestion, the length of the road section (Li), the portion of the segment congested, and the rate at 

which the queue is growing or dissipating. 

2.1.2 Vehicle Trajectory Algorithm 

The Average Speed Algorithm estimates a trajectory on the basis of the average of all the individual 

vehicle speeds measured at a point location.  Coifman (2002) has proposed a method that develops a 

trajectory on the basis of speeds and arrival times of individual vehicles and assumptions about 

shockwave speeds.  

The use of shockwaves (or more formally, the kinematics theory of traffic flow first proposed by 

Lighthill and Whitham, 1955 and Richards, 1956) within the method proposed by Coifman is 

illustrated in Figure 2.3. The steady state flow-density relationship is approximated by a triangular 

relationship. Shockwave speeds are computed as the slope of the flow-density curve, and therefore 

the speed is Uf and Uc for shockwaves in the uncongested and congested regimes respectively.  

 

Figure 2.3: Shockwave speeds 

Coifman assumes the use of advanced loop detectors that are able to measure and report the speeds 

and arrival times of individual vehicles.  Consequently, the information assumed available about the 

road section is depicted in Figure 2.4(a). The bold arrows (Si and Si+1) represent the speeds of 
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individual vehicles as measured by a loop detector.  The dashed lines represent the projected 

trajectory of these vehicles as if they were to continue travelling at the measured speed. Coifman 

refers to these projected trajectories as “chords”. The time headway between the vehicles i and i+1 is 

just the time elapsed between the measurement of Si and Si+1 by the loop detector.  

If it is assumed that vehicle i is travelling in one flow state and vehicle i+1 is travelling in a different 

flow state, then the boundary between these two flow states (i.e. the shockwave) propagates at a speed 

equal to Uc (or Uf) depending on prevailed density. Consequently, it is possible to determine the 

length of time (ti) and length of roadway (Xi) that vehicle i travels at speed Si (corresponding to flow 

state i) before transitioning to speed Si+1 (corresponding to flow state i+1) by positioning a vector 

with speed Uc to intersect with the chord of vehicle i+1 at the time it is measured to pass the loop 

detector (point a).  The intersection of this shockwave vector and the chord from vehicle i provides 

point b. 

A trajectory is built by connecting the truncated chords from individual vehicles as illustrated in 

Figure 2.4(b).  The chord from vehicle i+1 is connected to the truncated chord from vehicle i. 

 

Figure 2.4: Coifman’s trajectory estimation method 

This method of incrementally summing the truncated chords is continued until the trajectory 

reaches the end of the link (Figure 2.5). The arrows that appear along the time axis are vectors 

representing individual vehicle speeds measured by the upstream loop detector (i.e. Si, Si+1, …).  The 

dotted lines represent the shockwave (propagation) vector.  
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Figure 2.5: Coifman’s trajectory estimation method 

Coifman applied the proposed method to data from I-880 in California.  Actual travel times were 

obtained from dedicated probe vehicles.  The performance of the proposed method is relatively good 

as long as the road segment is not partially covered by a queue (because then the shockwave speed is 

neither Uf nor Uc). Consequently, the method is not reliable when recurrent or non-recurrent queues 

are growing or dissipating – limiting its practical application. Furthermore, Coifman’s method makes 

use of individual vehicle information.  Such data may not be available through commonly used traffic 

management systems in large urban areas such as COMPASS in Ontario.  

2.1.3 Iterative Travel Time Algorithm 

Cortés et. al. (2001) have proposed a method of estimating travel times that combines aspects of both 

the simple Average Speed Algorithm and Vehicle Trajectory Algorithm. The concept of the method is 

explained with respect to Figure 2.6.  
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Figure 2.6: Iterative Travel Time Algorithm space-time diagram 

Figure 2.6 illustrates a space-time diagram for a typical section of freeway.  The section is bounded 

at the upstream and downstream ends by loop detector stations (S1 and S2 respectively) and has length 

L. As vehicles travel along the section, their speeds are measured by the loop detectors.  Most loop 

detectors aggregate data over a defined polling period, typically 20 or 30 seconds.  Consequently, the 

speeds of individual vehicles are not known – rather the average speed of vehicles passing each loop 

station is provided for each polling period (depicted in Figure 2.6 as the bold arrows on the space-

time diagram).  In Figure 2.6, the trajectory of 5 individual vehicles is depicted.  The time scale spans 

3 polling intervals (Δ, Δ-1, and Δ-2).  The average speeds provided by the loop detectors are given by

1S , 1
1S , 1

2S , 2S , 2
1S , and 2

2S . The method proposed by Cortés et. al. is based on the 

assumption that the travel time experienced by vehicles on the section at time interval Δ is a linear 

combination of the speeds measured by loop stations 1 and 2 as per the following equation: 
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Where, the term alpha (α) is a weighting factor that must be calibrated; 1 2,
  is the travel time from 

loop station 1 to 2 during polling interval Δ; 1 2
1

,S
  is the average speed reported by loop station 1 

during interval 1 2,
  ; and 2S is the average speed reported by loop station 2 during polling interval 

Δ. It is important to note that the unknown travel time appears on both sides of the equation meaning 

that it can only be solved iteratively.   

The implication of solving this equation is illustrated graphically in Figure 2.6.  The projection of 

the arrows depicting the average speeds during each polling interval indicates the trajectory of a 

vehicle travelling at this average speed. The iterative solution technique essentially searches for a 

solution that results in the two speed projection lines intersecting within section L and within the time 

period ( 1 2,
  ) to Δ.  

The Average Speed Algorithm assumes that vehicles travel at a speed equal to the speed measured 

at loop station i from a distance halfway between the station i and station i-1 to a distance half way 

between station i and station i+1 (as in Figure 2.2). This is equivalent to computing the travel time 

from one detector station to the next as the distance between the two stations (Li,i+1) divided by a 

weighted average of the speeds measured at the upstream and downstream stations in which the 

weighting is 0.5.   

τi,i+1 = Li,i+1/( 0.5Si + 0.5Si+1) (2.2) 

The Iterative Travel Time Algorithm is very similar to that used in the Average Speed Algorithm, 

when α = 0.5 and the term 1 2
1

,S
   is replaced with 1S . 

Cortés et. al. (2001) evaluated the performance of their proposed algorithm using only simulated 

data. They report a mean absolute percent error in the estimate of link travel times in the range of 7% 

and suggest that the corresponding mean absolute percentage error for the Average Speed Algorithm 

is in the range of 20 – 25%. 

2.1.4 Piecewise Linear Trajectory Algorithm 

Van Lint and Van der Zijpp (2003) proposed an algorithm to estimate travel time along freeway 

sections. The main idea of this algorithm is very similar to the Iterative Travel Time Algorithm and 

Average Speed Algorithm introduced before. However, the difference lies in the way speed is 
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estimated in the road section between the upstream and downstream loop detectors. In this algorithm, 

speed is estimated by a convex combination of the speeds measured by upstream and downstream 

loop detectors. 

The concept of this algorithm is explained with respect to Figure 2.7. In this figure downstream and 

upstream loop detectors are located at xi
 and xi-1 respectively. Average speeds at these two locations 

during time period Δ are designated by iS  and 1iS 
  respectively. The speed of vehicle j that enters 

section p of the freeway during time period Δ is estimated by:  

     
1

1 1
1

j i
j i i i

i i

x t x
S t S S S

x x
  


 




  


 (2.3) 

Where, Sj(t) is speed of vehicle j at time t at location xj(t). In this equation 10 ttt  and

 1i j ix x t x   . As can be seen in Figure 2.7, t0 and t1 are lower bound and upper bound of time 

period Δ respectively.   

 

Figure 2.7: Piecewise linear trajectory algorithm - space-time diagram 
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In equation (2.3), speed of vehicles at any time is estimated by both loop detectors but the weight of 

closer loop detector is heavier than the further one.  

Van Lint and Van der Zijpp (2003) tested the above algorithm against Average Speed Algorithm 

where it is assumed that speed of vehicles in the first half of the section is equal to speed of upstream 

loop detector and speed in the second half is equal to speed at downstream loop detector. They used 

FOSIM simulation model which was developed and calibrated at the Delft University, the 

Netherlands. They simulated a 7.3 km section of a freeway between Delft and Rotterdam in the 

Netherlands. Five different simulation runs were performed with different seeds and different traffic 

demand patterns. The loop detectors are assumed to be spaced 400 to 800 meters apart.  

The researchers defined four measures to evaluate performance of the proposed method namely, 

root mean square error (RMSE), bias from mean (BIAS), root residual error (RRE), and mean relative 

error (MRE): 

 2

1
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k k
k

ˆRMSE
K

 


   (2.4) 
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Where, 
1

1 K

k
k

ˆ ˆ
K

 


  , 
1

1 K

k
kK

 


  , k̂ denotes estimated travel time at time step k, τk represents 

reference travel time obtained from simulation model, and K is total number of time steps.  

RMSE shows the overall error of the estimation models. Furthermore, having BIAS and RRE, RMSE 

can be calculated using RMSE2=BIAS2+RRE2. Using the above measure of performance, the authors 

found that the Piecewise Linear Speed Based (PLSB) trajectory method outperforms the Average 

Speed Algorithm (ASA). Table 2.1 summarizes the results of the study.  
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Table 2.1: Comparison of Average Speed Algorithm and Piecewise Linear Speed Based 
trajectory method (Source: Van Lint and Van der Zijpp, 2003) 

 RMSE (s) BIAS (s) RRE (s) MRE (%) 

 ASA PLSB ASA PLSB ASA PLSB ASA PLSB 

Run 1 58.7 29.8 25.8 -0.96 52.7 29.8 5.96 0.96 

Run 2 54.9 33.3 27.1 0.43 47.7 33.3 5.83 1.51 

Run 3 69.7 33.1 30.4 -3.79 62.7 32.9 6.26 -0.12 

Run 4 63.2 32.7 31.7 -4.92 54.7 32.3 6.28 0.32 

Run 5 56.5 32.7 26.4 -3.44 50.0 32.5 5.35 1.12 

Mean 60.6 32.3 28.3 -2.54 53.6 32.2 5.94 0.76 

2.2 Stochastic Queuing Methods 

Nam and Drew (1996) have proposed a stochastic queuing approach to estimating freeway travel 

times.  This method uses only vehicle counts from loop detectors and does not require estimates of 

speed.  If it is possible to obtain counts of vehicles entering and exiting the road segment as a function 

of time, then average travel time can be estimated from the cumulative arrivals and cumulative 

departures curves.  This is illustrated in Figure 2.8.  

 

Figure 2.8: Estimation of travel times using cumulative vehicle diagram 

In Figure 2.8 q(xi,t) and q(xi+1,t) represent the time series of cumulative number of vehicles 

measured at the upstream (i.e. flow entering) and downstream (i.e. flow departing) ends of roadway 
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section i.  The number of vehicles estimated to be within the section at time tn, N(tn), is the difference 

between the cumulative number of vehicles entering the section and the cumulative number of vehicle 

departing the section.  The total travel time of all vehicles passing through the section during the 

period from tn-1 to tn is shown as the shaded region.  Then the average travel time during that period 

is calculated as the total travel time divided by the number of vehicles traversing the section.  

There are several significant challenges to using this method in practice to obtain accurate travel time 

estimates.   

First, the method requires that the road segment be a “closed” system, meaning that vehicles cannot 

enter or exit the road segment without being measured.  In theory, this is not a problem as traffic 

management systems in major urban areas in North America (e.g. COMPASS system in Ontario) are 

generally configured to have loop stations on all on and off ramps and at regular spacing on the 

mainline lanes.  However, if a loop station is inoperative due to a hardware failure or lane re-

alignment has occurred due to construction/maintenance activities, then this method cannot be used.  

Second, vehicle counts from loop detectors contain errors. In a method that relies on cumulative 

counts, measurement errors accumulate and can create significant errors in the estimates of average 

travel time.   

Third, it is necessary to know how many vehicles are in the road segment at time zero. In theory, 

we can begin the process when no vehicles have arrived and therefore no vehicles are on the road 

segment.  In practice this is not possible, yet the accuracy of the estimation process is sensitive to the 

accuracy of this initial number of vehicles.  

Nam and Drew demonstrate the application of their method using data from a section of the QEW 

(Queen Elizabeth Way in Ontario) between Cawthra Road and Dixie Road. For this section, they 

observed an average error of approximately 3% between the total volume measured at the upstream 

end of the section and the total volume measured at the downstream section.  The authors estimate 

travel times for this section of the QEW but do not have any independent travel time measurements 

and are therefore unable to quantify the accuracy of their estimates. 

2.3 Section Density Algorithms 

Oh et. al. (2002) have proposed an approach that is similar in many ways to the queuing method 

suggested by Nam and Drew as described in the previous section. Using the notation from Figure 2.9, 

the method by Oh et. al. estimates travel time (τΔ) on a road section during time period Δ as section 
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length (L) divided by average travel speed (S). This is essentially the same equation as used in the 

Average Speed Algorithm.  However, unlike the Average Speed Algorithm in which a measured 

speed is used, the section density algorithm estimates speed using measured traffic volumes and 

average section density estimated on the basis of cumulative vehicle counts (Equation (2.8)). 

 

Figure 2.9: Roadway schematic for section density algorithm 

ΤΔ= L / SΔ = L × DΔ / qΔ   (2.8) 

Where Dk is the density of traffic on the road segment during time period Δ and qΔ is the average 

flow rate on the road segment at time period Δ.  The average flow rate qΔ is computed as the average 

of the measured flow rates at the upstream ( iq ) and downstream ( 1iq
 ) detector stations (i.e.

1

2

i iq q
q  



 ). 

This method faces the same challenges as the queuing method proposed by Nam and Drew. 

However, in this case, Oh et. al. suggest some means of addressing these challenges.  For example, 

they suggest that the initial density (i.e. initial number of vehicles on the section) can be determined 

by calculating density on the basis of detector occupancy and an assumed average vehicle length (D = 

o × L/g; o = detector occupancy; g = average vehicle length) when occupancy is quite low. They also 

suggest that systematic vehicle count measurement errors by detectors can be accommodated by 

calculating an average adjustment factor (similar to the 3% error reported by Nam and Drew).  

Oh et. al. evaluated their proposed algorithm using simulated data (so that the true travel time can 

be known) and data from dual loop stations on I-880 in California.  The results from the evaluation 

using the simulated data indicate good correspondence between the estimated travel times and the 

true travel times.  However, these results can only be viewed as the best possible performance of the 

proposed algorithm as the simulated loop data on which the estimates were made, contained no 

measurement errors.  The results from the evaluation using I-880 data do not provide conclusive 

Station i 

L 

Station i+1



 

29 

results.  The proposed algorithm is compared to the Average Speed Algorithm.  The results show that 

the proposed algorithm provides longer travel times than does the Average Speed Algorithm, 

however, because the true travel times are not known, it is not possible to conclude that these longer 

travel times are more or less accurate than the estimates from the Average Speed Algorithm. 

2.4 Multi-Regime Algorithms 

Dhulipala (2002) proposed a multi-regime approach in which separate travel time estimation methods 

are used for each of three traffic states; namely (a) lane closures, (b) incident conditions, and (c) 

normal operations. The methods assume volume and occupancy data from loop detectors are 

available. 

Under lane closure conditions an estimate is made of the capacity of the section in the lane closure 

area (the method assumes a loop detector is present in the lane closure area).  If the upstream volume 

is greater than the estimated capacity, then recurrent congestion is expected, and the algorithm for 

incident conditions is used.  If the upstream volume is less than the estimated capacity then no 

congestion is expected to result from the lane closure and the algorithm for normal conditions is used. 

Consequently, the proposed method consists of two algorithms – one for congested conditions and 

one for un-congested conditions. 

The algorithm for congested conditions estimates the length of the queue (congestion) and the 

number of vehicles in the queue. These estimates are made on the basis of shockwave analysis and 

cumulative vehicle counts. Travel times are estimated separately for the portion of the link upstream 

of the queue and the portion covered by the queue. The travel time for the uncongested portion of the 

link is based on speeds measured by a detector located upstream of the queue.  The travel time in the 

queue is estimated using deterministic queuing theory (Equation(2.9)). 

tc = N/qb  (2.9) 

where tc = time spent in the queue; N = number of vehicles in the queue; and qb = capacity flow of the 

bottleneck.  

For normal conditions, the travel time is estimated by dividing the section length by the measured 

(or estimated) spot speed.  This is essentially the Average Speed Algorithm discussed earlier.  

For incident conditions, the proposed method attempts to make use of incident characteristics (e.g. 

number of lanes blocked, crash versus incident, severity of crash such as property damage only, 
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injury or fatality, hazardous material involvement, number of cars involved, number of trucks 

involved, etc.) to estimate incident clearance times.  This is accomplished through the use of decision 

trees calibrated to an incident database from Fairfax County, Virginia (Ozbay, 1996). The result of 

the calibration is an estimated clearance time for each category of incident (branch in the decision 

tree).  For the estimated duration of the incident, the travel times are estimated as for a lane closure 

condition.   

The proposed algorithms were evaluated using simulated data (CORSIM) for a number of 

scenarios on a hypothetical 10-km long freeway segment with no on or off ramps. The performance 

has not been established using field conditions.  The estimated number of vehicles in the queue and 

queue length are highly susceptible to inaccuracies in loop detector volume counts, but the 

evaluations performed with CORSIM did not consider this source of errors. 
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Chapter 3 

Travel Time Prediction 

 Travel time prediction has been the focus of research for many years. Travel time prediction models 

can be categorized into two groups: data driven models and traffic flow models. Data driven models 

are models that try to find a relationship between given inputs and outputs and use this relationship to 

predict travel time given a set of inputs. Conversely, traffic flow models utilize traffic flow theory to 

capture the physical relation between inputs and outputs. This chapter provides a description of these 

two classes of models.  

3.1 Data Driven Models 

Data driven models or inductive models consider the traffic processes that generate variations in 

travel time as a black box. In other words, these techniques try to find a relationship between given 

inputs (speed, flow, travel time of previous time steps, weather information, etc.) and output (travel 

time) solely based on the data. The relationship is then used to predict travel time in the future given a 

new set of inputs. Data driven models possess either a statistical basis (such as regression models or 

time series models) or a machine learning origin such as neural networks, use heuristic approaches to 

find the relationship. 

This research reviews the current state of the art in travel time prediction models. Regression models, 

time series models, Kalman filter, and neural networks are briefly explained and exemplified by some 

previous research.  

3.1.1 Regression Models 

The general purpose of a regression model is to find a closed form function that relates several 

independent or predictor variables to a dependent or criterion variable. Regression models can be 

separated into two categories namely, parametric regression models and nonparametric regression 

models.  

The general form of a parametric regression model is shown in Equation (3.1). In this equation β = 

(β0, …, βk) is a vector of parameters to be estimated, and Xi = (x0, …, xn) is the vector of independent 

variables for the ith of n observations; the errors εi are assumed to be normally and independently 

distributed with mean 0 and constant variance σ2. The function  f  relates the expected value of 
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dependent variable y to the independent variables. In parametric regression models function f has a 

pre-specified form. Consequently, the challenge is to estimate the vector β. There are a number of 

techniques to estimate parameters in a parametric regression models such as Least Square and 

Weighted Least Square.      

  iii ε,fy  Xβ   (3.1) 

Equation (3.2) shows the general form of nonparametric regression models. In this type of 

regression model, unlike the parametric regression models, the form of function f is not pre-specified. 

Most methods of nonparametric regression implicitly assume that f is a smooth continuous function. 

Again, there are several approaches to estimating nonparametric regression models such as local 

polynomial regression and smoothing splines.   

  iii εfy  X  (3.2) 

You and Kim (2000) developed a nonparametric regression model to forecast travel time along a 

freeway and an arterial in South Korea. They developed a hybrid framework consisting of a GIS 

application and the forecasting model. In this framework, users are able to have a prediction of travel 

time for the next 15 minutes between any OD pair along the freeway or the arterial. To predict travel 

time on the freeway, loop detector data (volume, occupancy rate, and spot speed) were used. The data 

in this study came from 8 loop detectors that cover 114.3 km which means that on average every loop 

detector covers 14.3 km of the freeway. This is far greater spacing than is typical for North American 

freeways which usually have loop detectors spaced approximately every 500-600 meters. However, 

probe vehicle data (distance traveled, travel time, and stopped time for each link) were used for travel 

time prediction on the arterial. On the arterial, 6 roadside beacons were installed with an average 

spacing of 800 meters in the network to receive and transmit probe vehicle data to the operation 

centre.  

To evaluate performance of the framework a simulation model was calibrated using data from loop 

detectors and probe vehicles. Three performance measures were defined namely, root mean square 

error (RMSE), mean absolute percent error (MAPE), and correlation coefficient (ρ). Each time 

interval was chosen to be 5 minutes in this study. The researchers developed different models for the 

arterial and the freeway. The results of the evaluations for 2 different days at the same locations are 

shown in Table 3.1. As can be seen in this table the travel time prediction model performs better on 

the freeway than on the arterials.  
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Table 3.1: Results of travel time prediction in the arterial and freeway in two different days at 
the same locations (You and Kim (2000)) 

  RMSE (Sec) MAPE (%) Ρ 
Avg. Observed 
Travel Time 
(Sec) 

Arterial 
Day 1  15.47 8.02 0.47 148.50 
Day 2 19.63 9.88 0.66 161.67 

Freeway 
Day 1  14.27 2.22 0.83 404.48 
Day 2 8.46 1.67 0.90 390.52 

 

Rice and Van Zwet (2004) developed a linear regression model to forecast travel time on California 

freeways. This research was part of an effort to provide Californian commuters with up to date real 

time data. The algorithm was designed to be part of an Internet based system through which 

commuters would input their origin and destination and obtain the shortest path based on predictive 

travel time. To respond to any query in a reasonable time, the prediction algorithm should be fast 

enough to process the huge dataset available for California.  

The researchers state that they can compute two proxies for travel time at time instant Δ on day d: 

one of them is 
d
 which is the travel time computed using Average Speed Algorithm  and the other 

measure,  d  is travel time calculated based on historical data (Equation (3.3)): 

1d i

i DD  


    (3.3) 

Where, D is the set of all days for which data are available and D is dimension of the set. The 

goal of the model by Rice and Van Zwet is to predict travel time on day d at time interval Δ+δ (
d
  

) where δ > 0. The authors state that on day d at time interval Δ, 
d
   is more accurate than 

d
   for 

a small δ and vice versa. The researchers define 
d
  and 

d
 as two naïve measures of travel time. 

However, they found, based on empirical data, that a linear relationship exists between 
d
    and

d
 . 

The authors state that “this observation has held up in all of numerous freeway segments in CA that 

we have examined”. Consequently, they assumed the following relationship between 
d
 and

d
   : 

d d 
             (3.4) 
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Where, ε is a zero-mean random variable. As can be seen in Equation (3.4), the parameters of the 

model are dependent on Δ and δ. Furthermore, the authors assume that 
d 

     in order to 

express the future travel time as a linear combination of the available naïve measures of travel time 

where 
 is another parameter that changes with δ and Δ.  

The model in Equation (3.4) uses only one data point in the past. However, there are more data 

points in the past that might be very similar to the present day. Consequently, the authors used the 

“nearest neighbour” method to identify the closest days in the past that can be used to predict the 

travel time. The nearest neighbour technique tries to find some days in the past that are closest to the 

present day in some sense. Then it is assumed that travel time in the future would be equal to 

corresponding travel time observed on that particular day and time interval in the past. In this 

research, two distance measures were defined between two days d1 and d2: 

   1 2
1 2

1 *

N
i ,d i ,d

i

m d ,d S S 
  

    (3.5) 

   1 2

1 2
2

1 2
*

d dm d ,d  
 

 


 
  
 
    (3.6) 

Where, 

m(d1, d2) : distance measure between day d1 and d2,

i : an index denotes number of loop detectors, 

N : total number of loop detectors,

Δ : an index denotes time intervals,

Δ* : current time interval, 

i , jS  : Speed measured by loop detector i, at time step Δ, on day j = 1, 2.

If day 
'd minimizes one of the above distances to day d among all previous days available in the 

historical database, 
'd is the closest day to the present day and can be used to predict travel time in 

future (i.e.
d d
     
  ). Furthermore, instead of considering a particular day, the average of n closest 

days can also be used. The other argument that can be made here is that not all time intervals before 
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Δ* are significant in selecting the most similar days, but a time window prior to Δ* could be used in 

equations (3.5) and (3.6).  

Rice and Van Zwet (2004) gathered loop detector data from 116 loop detectors along 48 miles of I-

10 East in Los Angeles. The data are associated with trips that started between 5 AM and 8 PM. Time 

intervals were chosen to be 5 minutes in duration. Two prediction horizons, δ, were chosen, 0 and 60 

minutes. They used Equation (3.6) and a time window of 20 minutes for the nearest neighbourhood 

technique. Furthermore, the average of two closest days in the past was used (n = 2). Root mean 

squared error was used to compare the two prediction models. An estimation of the true travel time 

was made using detector flow and occupancy measurements: 

flow
velocity g

occupancy
   (3.7) 

where in this formula g is average length of vehicles passing over the loop detector. The average 

length of vehicles, g, varies from one location to the other and also it varies over time of a day. 

Furthermore, it is a critical parameter that should be selected carefully in order to obtain correct speed 

values. Jia et. al. (2001) proposed a technique to calibrate factor g which was used by Rice and Kim 

in their research. 

Figure 3.1 and Figure 3.2 show the root mean squared error in terms of time of day for prediction 

horizon 0 and 60 minutes respectively. As expected the mean squared error is smaller during off peak 

hours and is smaller for a prediction horizon of 0 minutes than 60 minutes. Furthermore, the linear 

regression technique performs better than the nearest neighbour method.  
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Figure 3.1: Comparison of nearest neighbour and linear regression for prediction horizon = 0 
min (Source: Rice and Kim, 2001) 

 

Figure 3.2: Comparison of nearest neighbour and linear regression for prediction horizon = 60 
min (Source: Rice and Kim, 2001) 

3.1.2 Time Series Models 

Traffic data from either probe vehicles or loop detectors represent sequential observations over time 

of a stochastic process. Consequently, a number of researchers have used time series analysis to 

tackle the travel time prediction problem. The main goal of time series analysis is to understand the 

Nearest neighbours:  

Linear regression:  

Nearest neighbours:  

Linear regression:  
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mechanism of the process that generates those observations and also forecast the future values of the 

series.  

Yang (2005b) used GPS equipped probe vehicles to predict travel time on an arterial in Minnesota. 

The ARIMA model was used to perform the prediction. However, in this paper no result was 

reported.  

D’Angelo et. al. (1999) developed a time series model to predict travel time along a 18 km section 

of Interstate - 4 in Orlando, Florida. They used data from 25 loop detectors installed in this section of 

the freeway. Ishak and Al-Deek (2002) extended D’Angelo’s model for a 62.5 km section of the same 

freeway using data from 70 loop detectors. The main objective of their study was to identify 

significant factors that affect accuracy of the travel time prediction model. In this study, spot speeds 

obtained from loop detectors are used as the only input to the prediction model. These researchers use 

the average speed algorithm described in the previous section to estimate average speed on the road 

section between the two consecutive loop detectors. Then, they utilize a nonlinear time series model 

to forecast the average speed in near future. The last step is to convert the average speed associated 

with each section to average travel time.  

In this study, the researchers defined a term named “rolling horizon”. The rolling horizon is the 

length of time in the past that is used in the time series model to detect fluctuations in the state of 

traffic. Furthermore, they defined “rolling step” which is the length of time associated with each time 

step in the rolling horizon.  

The authors evaluated the model for a variety of traffic conditions from free flow conditions to 

heavily congested conditions. Moreover, they used different prediction horizons (i.e. 5, 10, and 15 

min) and different rolling horizons (i.e. 15, 20, 25, and 30 min) with different rolling steps (i.e. 1, 3, 

and 5 min) to explore effects of these parameters and their combinations on accuracy of travel time 

prediction. They used relative travel time prediction error as the measure of evaluation. 

The researchers found that the model was very sensitive to the level of congestion. The relative 

travel time prediction error varies between 5% and 30% in which the lower limit is associated with 

free flow conditions and the upper limit corresponds to extremely congested conditions. The 

prediction horizon was found to be the other important parameter in the model. The longer the 

prediction horizon, the less accurate the model was which is in line with expectations. Furthermore, 

the more congested road sections are more sensitive to the prediction horizon. The researchers 
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suggest that for free flow condictions, travel time can be predicted for longer periods of time without 

sacrificing the accuracy of the model.  

3.1.3 Kalman Filter Based Models 

The Kalman filter, which is called linear quadratic estimation (LQE) in control theory, was first 

proposed by R.E. Kalman in a famous paper in 1960 (Kalman, 1960). A Kalman filter is an optimal 

recursive data processing algorithm that is able to estimate the state of a stochastic discrete - time 

controlled process through a number of known, but noisy observations. The Kalman filter 

incorporates all available measurements, regardless of their accuracy, to estimate the current or future 

state of the system using (Maybeck, 1979): 

a) knowledge about dynamics of the system and measurement devices, 

b) statistical descriptions of the system noises, measurement errors, and uncertainty in dynamics 
models, 

c) any available initial information about the state of the system. 

For example assume that one attempts to predict travel time for a section of a freeway using loop 

detector data (spot speed, occupancy, and flow rate). Having knowledge of the relationship between 

these measured data and travel time and also errors in loop detector measurements and in the 

relationship between loop data and travel time, Kalman filter can be used to combine all of this data 

to generate an overall best estimation of travel time. Kalman filter is generally used to solve a set of 

equations which are over-determined. In other words, if a process can be described by a number of 

equations and also a number of measurements (which may contain errors), Kalman filter can be used 

to estimate or predict the process.  

Yang (2005a) used GPS equipped vehicles and Kalman filtering to predict arterial travel time in 

event of a sudden traffic surge. In this research, three test vehicles with GPS receiver were used to 

collect and report travel time data for a pre-specified path for the University of Minnesota Duluth 

graduation ceremony. The test vehicles were running at 3 or 5 minute headway. Having returned to 

the original point, the test vehicles rejoined the traffic stream until the traffic condition around the 

place of graduation ceremony was back to normal. In this study the departure time interval of test 

vehicles is in fact the Kalman filter time step used for prediction of the next time step.  

The state of process in the Kalman filter that should be predicted in this study was travel time. The 

state and measurement equations in the Kalman filter are shown as follows: 
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1 w         (3.8) 

z v     (3.9) 

Where,   is a scalar that relates travel time at time step Δ to the travel time at previous time step. In 

these equations wΔ and vΔ are process and measurement noise terms that are assumed to be white and 

normally distributed with 0 mean and variance R and Q respectively.   

Yang used the following procedure to predict travel time:  

Step 1: Initialization 

Set Δ = 0 and let  0 0ˆE x   and 2
0 0E e P       

Step 2: Prediction  

 State estimate prediction: 1ˆ ˆ    
    

 Error covariance prediction: 1
TP P Q 

       

Step 3: Kalman gain calculation 

   1

1 1 1 1G P P R   
 

      

Step 4: Correction 

 State estimate correction:  1 1 1 1 1ˆ ˆ ˆG z       
        

 Error covariance correction:  1P G P  
   

Step 5: Let Δ = Δ + 1 and go to Step 2 until the present time period ends.  

Note that in this research PΔ is scalar and QΔ is variance of travel time measurements at time step Δ 

and RΔ is variance of process estimation error. 

To quantify the error associated with travel time prediction, a mean absolute relative error (MARE) 

was used which is defined as: 

1 100

K
k k

kk

ˆ

MARE %
K

 




 


 (3.10) 

Where, τk is the true travel time experienced by the test vehicles in time step k. The duration of data 

collection in this study was 45 minutes and the time steps were 3 minutes long. Thus, the total 

number of time steps, K, was 15.   
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They found that the prediction error, expressed in MARE, was 17.61% which the authors of the 

study claimed to be acceptable for the city’s traffic operations activities. It was also found that as the 

process noise variance increases and the measurement noise variance decreases the MARE drops, 

which means that the a priori estimates are more accurate than measurements. In this study, they 

collected data for two similar days and used the first one as historical data.  

3.1.4 Artificial Neural Networks 

Artificial Neural Networks (ANN) has been extensively applied to different fields of engineering 

since late 80’s. Traffic engineering and transportation planning have been in line with the other fields 

of engineering and have witnessed different applications of ANN. In general, ANN can be used for 

clustering, pattern recognition, function approximation, prediction of dynamic systems, etc. 

ANN is designed to mimic the human brain. Humans are able to make decision based on incomplete 

and imprecise information and also in an uncertain and unknown environment. Similar to the human 

brain, an ANN consists of many interconnected and parallel processors that are called “neurons”. 

Figure 3.3 shows a typical structure of ANN. As can be seen in this figure, ANN consists of some 

neurons or nodes1 that are interconnected to each other through unidirectional or in some cases 

bidirectional weighted connections (Karray et. al., 2004). The ANN can be classified into different 

categories according to architecture, learning paradigm, and activation (transfer) functions. 

 In ANN, the nodes are laid in different layers. The way that layers and nodes are designed and 

connected to each other is termed “architecture or topology”. The most commonly used architectures 

are “feedforward” and “recurrent” architecture.  

The most popular topology is feedforward architecture which is illustrated in Figure 3.4(a). In this 

architecture the network starts with an input layer and ends with an output layer. The main 

computational capabilities of the network are concentrated in the layers which are termed hidden 

layers and are placed between the input and output layers. In feedforward architecture neurons are 

connected to each other through unidirectional connections. 

In the recurrent architecture, the neurons are not necessarily connected to each other through 

unidirectional connection. In other words, the connections might be bidirectional or they can even 

provide feedback to the neuron itself (Figure 3.4(b)). This type of topology is of great importance 

especially in modeling and identifying dynamic systems (Karray et. al., 2004).  

                                                      
1 Node and neuron are used interchangeably in this document.  
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Figure 3.3: Typical structure of artificial neural networks 

  

a) Feedforward architecture. b) Recurrent architecture. 

Figure 3.4: Feedforward and recurrent architecture 

One of the main characteristics of the ANN is “learning”. Learning is the procedure of using available 

data to adjust weights of the ANN connections in order to infer as many right decisions as possible in 

future. Although there are a number of learning paradigms in the literature, the most commonly used 

techniques are “supervised” and “unsupervised” learning strategies.  

In supervised learning, the ANN is exposed to a priori known data and the objective of the learning 

algorithm is to determine the weights associated with connections in order to minimize the distance 

between the model output and the known data. To solve the minimization problem different 

approaches such as genetic algorithms, simulated annealing algorithms, and gradient descent based 

algorithms can be used (Karray et. al., 2004). In unsupervised learning, however, an external teacher 

is not involved in the process of learning. The network is provided with inputs but not with known 

outputs. The system itself must then decide based on some predefined guidelines what features it will 

use to group the input data.  
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The other important components of a neural network are “activation functions” which are the basic 

elements of the computational processor for the neural networks. As can be seen in Figure 3.5, any 

individual neuron consists of two components: the first component calculates the weighted 

summation of the inputs and the activation function performs a nonlinear or linear mapping before 

delivering the output to the other neurons. A variety of activation functions can be used, depending on 

the problem at hand and the location of the neuron in the layer. Figure 3.6 illustrates the four most 

commonly used activation functions.  

 

 

 

Figure 3.5: Interconnection between neurons (Karray et. al., 2004) 

Σ 

Σ 

Σ 

wij 

wik 

Node i 

Node j 

Node k 

Activation 

Function 



 

43 

 

Figure 3.6: Typical profiles of four activation functions (http://www.stowa-nn.ihe.nl/ANN.htm) 

Use of ANN models in travel time related problems began in the early 1990’s (Nelson et. al., 1993 

and Blue et. al., 1994). The first attempts to use neural networks in travel time prediction were done 

by Park and Rilett (1998, 1999).  

Park and Rilett (1999) used a multilayer feedforward neural network to predict travel time on US-

290 in Houston, Texas. In this study, they used probe vehicle data collected over a 27.6 km section of 

the freeway from April 1994 to July 1994. Data were collected 24 hours per day. The probe vehicles 

were equipped with transponders and were identified by an automatic vehicle identification (AVI) 

system. The freeway section contained 7 AVI tag readers, dividing the section into 6 links. The data 

were aggregated at 5-minute periods for each link. Three of the links had approximately 7 to 10 

observations per link per time interval and the remaining 3 links had 3 to 6 observations per link per 

time interval. The neural network model was trained using data from the AM peak period.  

The authors state that “… traffic flow patterns of the neighbouring links (upstream and downstream 

links) also should be considered for input into the neural network model. Intuitively, traffic flow-

related parameters of the neighbouring links could provide useful information on the link of interest.” 

The researchers used the correlation coefficient to investigate the relationship between travel time of 
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each individual link and traffic flow- related parameters of neighbouring links. They found that travel 

time observed on a link is highly correlated with travel time observed on neighbouring links. In some 

cases the coefficient of correlation was as high as 0.75. The authors found that the correlation 

between travel time of each link and the neighbouring links increases when the state of traffic is 

changing (i.e. the state of traffic is changing from uncongested to congested and vice versa).     

The researchers used a fully connected multilayer neural network. The backpropagation algorithm 

was used for training the neural network. The backpropagation algorithm is a supervised learning 

method that is used in feedforward neural networks. The objective of this algorithm is to determine 

the weights between every pairs of neuron in order to minimize the total error between estimated 

values and target values. 

Park and Rilett tested four different models for one of the middle links. The difference between the 

models was the number of input variables. Every input variable in this study is travel time of a time 

step which is associated with either the link of interest or neighbouring links. The first model used 

only travel time of the same link for prediction of travel time in the future. The rest of the models 

used different combinations of travel times associated with neighbouring links as well as travel time 

of the link of interest. Furthermore, they changed number of inputs for each model to find the best 

results.  

Although there is no universal rule to determine the layout of layers in neural networks, the 

researchers state that “the appropriate number of hidden neurons and layers of the neural model 

depends on the pattern and complexity of the approximated function and the transfer function of the 

layers”. Via trial and error, the authors found the best number of neurons for the hidden layer of each 

model to be between 4 to 6 neurons. Moreover, they realized that if more neurons are used, the 

accuracy of the model in this case decreases. In their proposed model (Figure 3.7), seven preceding 

travel times of the link of interest are used as input to the neural network. The model consists of three 

layers (one hidden layer) and the model is able to predict travel time in 5 time steps ahead.  

Park and Rilett prepared a neural network model and tested it using 79 days of data for training and 

1 day for validation. This procedure was used 80 times. In other words, every day of data was used as 

testing data once. To compare different models the average error was computed across all 80 trials. It 

was found that predicting one time step ahead incurs 7.4% to 10.5% error. As the prediction horizon 

increases, the error increases linearly.  
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Van Lint et. al. (2002) used state-space neural networks to predict travel time in freeways. The 

state-space neural network is a recurrent neural network in which the state of a system at time k+1 is 

determined by its state at time step k and other inputs (speed and flow rate) at time step k, uk. In this 

study they introduced two state-space neural networks namely, fully connected and partially 

connected state-space neural networks. Figure 3.8 illustrates the fully connected model. This model 

consists of four layers: an input layer, one hidden layer, an output layer, and a context layer. The 

hidden layer includes N neurons each of which corresponds to a link of the route of interest. The 

context layer also consists of N neurons. The responsibility of this layer is to store the pervious state 

of each neuron in the hidden layer. The only difference between the fully connected network and 

partially connected network is the way the context layer is connected to the hidden layer. In the 

partially connected network only previous state of a particular neuron and previous states of the 

upstream and downstream neurons are connected to the corresponding neuron in the hidden layer 

while in the fully connected network previous states of all neurons are connected to every individual 

neuron in the hidden layer. 

The authors used simulated loop detector data to train and evaluate the models. They simulated 7.3 

km of the southbound direction of the A13 freeway in the Netherlands using FOSIM simulation 
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model. Three runs of the simulation were used to train the models and 2 simulation runs were used for 

verification of the models. They used a supervised learning algorithm to determine weights associated 

with each network. 

 

Figure 3.8: Fully connected state-space neural networks for travel time prediction along a route 
(Van Lint et. al., 2002) 

The researchers found that the outputs of the two models are not statistically different. 

Furthermore, they observed that the largest prediction error occurs when congestion is forming or 

dissipating. For other conditions, even severe congestion, both models predict travel time with errors 

less than 10% of the time travel time.   

3.2 Traffic Flow Models 

Traffic flow theory seeks to describe interactions of vehicles and infrastructure (highways and control 

devices) in mathematical forms. Traffic flow theories have been developed for and applied to supply-

demand modelling, capacity and level of service analysis, traffic stream models, continuum 

modelling, shockwave analysis, queuing analysis, and simulation models (May, 1990), all of which 

can be used to estimate and predict travel time in a transportation network. However, the level of 

details and input requirements of these analysis methods differ. For example, traffic assignment 

models that fall into supply-demand models require supply characteristics (geometry of the network, 

cost functions of the links, etc.) and demand characteristics (e.g. OD matrix) and are likely not best 
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suited for short term travel time prediction. Microscopic simulation models can also be used to 

predict travel times but these models are challenging to calibrate and require future OD demands and 

network capacities –information which is generally not available.  

3.2.1 Shockwave Analysis 

Shockwaves are defined as boundaries in the time - space domain that represent discontinuities in 

flow and/or density (May, 1990).  In other words, shockwaves are the boundary of an abrupt change 

in density.  Figure 3.9 illustrates a 3 lane section of a roadway with no on ramp or off ramp. One lane 

is reduced in this roadway due to construction. If the traffic demand on this roadway section increases 

from a value equal to 2 times the capacity of a lane to 2.5 times the capacity of a lane, then a queue 

will begin to build upstream of the construction zone. Vehicles approaching the construction zone 

first travel in uncongested traffic (state A) and then join the queue (state B). In state B traffic is in the 

congested regime. The arrow that separates state A and state B is the shockwave. The shockwave in 

this case propagates backward (i.e. upstream). The speed of propagation is denoted by AB .   

The speed of the shockwave can be derived assuming conservation of vehicles. The shockwave 

speed is derived with respect to Figure 3.9. The number of vehicles leaving flow state A, NA, must be 

exactly equal to the number of vehicles entering flow state B, NB. Furthermore the speed of vehicles 

in state A and B relative to the shockwave respectively are A ABu  and B ABu   where uA and uB 

are the average speed of vehicles in state A and B. Consequently, NA and NB can be calculated as 

follows: 

 A A AB AN u D T     (3.11) 

 B B AB BN u D T     (3.12) 

where, DA and DB are average densities corresponding to state A and B respectively and T is an 

arbitrary period of time.  According to the above two equations and conservation of flow, the 

propagation speed of shockwaves can be calculated as follows: 

A A B B A B
AB

A B A B

u D u D q q q

D D D D D
   

  
  

 (3.13) 

The above equation means that the speed of a shockwave is equal to the change in flow rate over 

the change in density. 
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Shockwave analysis is an important tool for analyzing freeways and intersections. However, as the 

size of the network increases it is very difficult to analyze the network using shockwaves. A 

shockwave based simulation model has been developed by Imada and May (1985) to analyze traffic 

in freeways. One of the reasons that the shockwave analysis and continuum modelling of traffic have 

not received enough attention is the fact that these models require a few parameters that are very 

difficult to estimate using traditional sources of traffic data. One of these parameters that these 

models are ironically very sensitive to is capacity of the bottleneck. The other requirement of these 

models is that they need flow rate of traffic at all entrances and exits. If these data are available or can 

be reliably estimated, then shockwave analysis can be used to estimate queue propagation over time-a 

factor having a significant influence on travel time. As described in the following chapter, shockwave 

propagation is one of the key ideas employed in the proposed travel time prediction model, in which 

existence and speed of a shockwave is determined using the estimated trajectories of the vehicles with 

mobile phone location data.  

      

Figure 3.9: A typical shockwave in a construction zone 
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3.3 Summary 

This chapter reviewed the-state-of-the-art in prediction of travel time. Travel time prediction models 

were divided into two groups: data driven models and traffic flow models. Regression models, time 

series models, Kalman filter, and neural networks were studied as data driven models. Traffic 

assignment models, microscopic simulation models, and shockwave analysis were briefly introduced 

under traffic flow models.  

Data driven models have been used by researchers successfully. However, these models lack 

transferability. In other words, they are location specific which is not necessarily favourable. On the 

other hand, there are many ready-to-use applications available in the market which make application 

of these models easy. The other drawback of these models is that they are not flexible enough to 

account for new strategies that are adopted by managers of the network.  

Traffic assignment models and microscopic simulation models are potentially powerful and reliable 

to predict travel time in a network. However, these models are very data intensive. They require OD 

matrix for future which are very difficult to predict. These models are unlikely to have promising 

results using data from mobile phones. Consequently, they are not considered in this study. The 

shockwave theory, however, can be used to determine the state of traffic in the network. This 

technique will be used as a part of the proposed framework which will be described in the next 

chapter. 
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Chapter 4 

Methodology 

This chapter comprised of two sections. The first section presents the proposed methodology for 

predicting travel time based on mobile phone location data. The second section presents two 

algorithms to predict travel time using loop detector data. The loop detector data will be used for 

comparison purposes.  

4.1 Travel Time Prediction Using Probe Vehicle Trajectories 

The main assumption behind the proposed methodology is that positions of a set of probe vehicles are 

available periodically. As discussed earlier, this kind of information is conceived to be available 

through dedicated probe vehicles (probe vehicles equipped with GPS) and mobile phone based traffic 

monitoring systems. The proposed methodology provides real time prediction of travel time (i.e. 

prediction horizon in this research is assumed to be 0).  

Figure 4.1 shows a time-space diagram for a route. The route is discretized into a number of road 

sections denoted by i whose length is denoted by Li. Time is divided into time intervals denoted by Δ. 

This figure also illustrates four different probe vehicles which show 3 different cases that may occur. 

At this time assume that it is desirable to predict travel time for time interval Δ = 2. Probe 2 shows a 

case where a probe vehicle enters the route during a time interval and finishes the route in the same 

time interval. Therefore, travel time of this probe vehicle can be measured directly using its 

trajectory. Had all vehicles entered the route and finished their trip in the same time interval, travel 

time could have been directly measured. The other case is shown by probe 1 where this probe vehicle 

entered the road section during time interval 1 and finished the route in time interval 2. This probe 

vehicle is irrelevant to prediction of travel time associated with time interval 2. But, the data points 

associated with this probe vehicle in time interval 2 can be used to calculate average speed of each 

road section Li. Probe 3 and probe 4 are examples of the case whose travel time is deemed to be 

predicted. The difference between these two probe vehicles is that for probe 3, only travel time 

associated with time interval Δ = 2 has to be predicted and for probe 4 travel time of time intervals Δ 

= 3 and Δ = 4 need to be predicted.     
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Average speed of each road section over time period Δ can be computed using the following 

equation: 

1

1 1

1
iJ j j
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   (4.1) 

Where, 

iS  : average speed of road section i over time interval Δ, 

iJ   : number of probe vehicles which have any observations during time interval Δ 

on road section i,  

j
nd  : position component of the last observation on road section i associated with 

probe vehicle j, 

1
jd  : position component of the first observation on road section i associated with 

probe vehicle j, 

j
nt  : time component of the last observation on road section i associated with probe 

vehicle j, 
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1
jt  : time component of the first observation on road section i associated with probe 

vehicle j. 

In order to visually explain the above equation, Figure 4.2 illustrates the time-space diagram 

associated with a hypothetical route. The route was discretized into two sections. It is desired to 

compute the average speed of section 2 during time interval 2 (i.e. 2
2S ). Four probe vehicles were 

observed during time interval 2. The first three probe vehicles have observations on section 2 of the 

route during time interval 2 (i.e. 2
2 3J  ). 1 1, , , andj j j j

n nt t d d are shown in Figure 4.2 using green 

circles. If these values are inserted into Equation(4.1), average speed of road section 2 during time 

interval 2 is calculated.   

 

Using the average speeds associated with each road section during the current time interval, travel 

time of route r can be predicted using the following equation: 
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Where, r  denotes the average travel time of route r during time interval Δ and n is the number of 

road sections on route r.  The assumption behind this equation is that speed of road section i is 

constant during all time periods. This equation is incapable of providing accurate travel time for the 

route if a substantial proportion of vehicles which enter the route finish the route in the next time 

intervals and the state of traffic associated with the road sections which are travelled during the next 

time intervals changes. In these cases, the average speed of those road sections in the future should be 

used in this equation. The following methodology which uses the shockwave information can be used 

to predict average speeds of those road sections in the future.   

When the flow or density of traffic changes, a shockwave is generated along the boundary of the 

two states of traffic and the shockwave propagates along the route. Consequently, if shockwaves can 

be detected and their attributes be estimated, the trajectory of the shockwaves can be projected into 

the future and average travel time of each road section can be predicted using the projected trajectory 

of the shockwaves.   

Figure 4.3 illustrates the same probe vehicles shown in Figure 4.1. However, this figure shows a 

shockwave which was detected during the current time interval (time interval 2). The detected 

shockwave is progressing backward throughout the subject route at speed ω. The projected trajectory 

of the shockwave is also shown in the figure with a dashed line. The projected trajectory shows that 

1 1
3 2
i iS S  and 1 1 1

4 3 2
i i iS S S    because the shockwave which was detected during time interval 2 

will reach road section i-1 during time interval 3 and will traverse this road section during time 

interval 4. This shockwave is a boundary between the traffic condition which was prevailing on road 

section i-1 during time interval 2 and most of time interval 3 and the traffic condition which is 

downstream of the detected shockwave. 
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A methodology to detect major shockwaves along the subject route is proposed later in this chapter. 

This methodology provides the following information about each shockwave: 

1. Speed at which the shockwave is propagating along the route,   

2. Average speed of vehicles before reaching the shockwave (upstream of the shockwave), Su 

3. Average speed of vehicles after impacting with the shockwave (downstream of the 
shockwave), Sd 

4. Point in time and space where the shockwave was first detected during the current time 
interval, (t0, x0) 

5. Point in time and space where the shockwave was last detected during the current time 
interval, (tn, xn) 

 Assuming that all shockwaves and information associated with them (which was described above) 

are known, Equation (4.3) can be used to modify the average speed associated with each road section 

for the future time intervals: 
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i i
hS S f    (4.3) 

Where,  

i
hS

  : denotes modified average speed of section i for time interval Δ+h , 

f : is the modification factor which is a number larger than 0. 

The challenge here is to choose a precise modification factor in order to increase the accuracy of 

the prediction model. If the projected trajectories of shockwaves do not pass through road section i, 

the modification factor, f, is 1. If a shockwave with d uS S passes through road section i, f should be 

less than 1 and if a shockwave with d uS S passes through road section i, f should be greater than 1.  

For the cases where ns shockwaves pass through road section i, the following modification factor is 

proposed: 
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The basis for this equation is that when a shockwave passes through a road section, it changes the 

average speed of the road section. Figure 4.4 illustrates a case where a shockwave is detected in time 

interval Δ = 1. Assuming the characteristics of the shockwave (i.e. propagation equation, average 

speed of vehicles upstream and downstream) are known based on the data received in time interval Δ 

= 1, the projected trajectory of the shockwave passes through road section i. The implication of this 

projection is that the speed downstream of the shockwave changes from 1
iS to Sd.  Now two 

assumptions are made: 

1. A shockwave changes the average speed of a road section proportional to d uS S . 

2. Shockwaves divide a road section into equal part in time and space where the average speed 
of each section is influenced by the two boundary shockwaves.      

   In Figure 4.4 there is only one shockwave therefore 
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In order to predict travel time of route r using the average speed and modified average speed of 

each section, the flow chart shown in Figure 4.5 can be used. In this flow chart tΔ denotes the duration 

of time interval Δ and i
mS represents average speed for section i during time interval m. If average 

speed for section i during time interval m is not known yet, i
mS represents modified average speed for 

section i during time interval m. According to this flow chart, travel times of the sections constituting 

route r are added one by one to ̂  . After adding travel time of a section, ̂  is compared with the 

duration of the time interval, tΔ. If it is larger than tΔ, vehicles will likely finish the route during the 

next time intervals and therefore, for the remaining road sections the travel time obtained from the 

modified average speed will be used.  In this flow chart, once travel time of all road sections are 

included into ̂ , then ̂ will be equal to the predicted travel time for route r during time interval Δ 

(i.e. r  ).  
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Equation (4.4) used in this methodology is an empirical equation which was used to simplify the 

problem and reduce the computation burden. This equation and the two assumptions behind the 

equation were shown to be intuitive. It is possible to calculate the modified speed of each road section 

more accurately using the shockwave diagrams overlaid on the time-space diagram associated with 

the freeway section. However, it is very difficult to develop a computer code for a general shockwave 

diagram. 

As explained before, a methodology is proposed to detect major shockwaves. The information 

obtained from shockwaves is used to determine the modified average speed of each road section. The 

input data required for the proposed methodology are positions of a sample of vehicles over time. For 
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each given time interval, the algorithm assesses whether or not the trajectory of a probe vehicle has 

intersected with a major shockwave and finds the coordinates of the point of the intersection in space 

and time. Having detected all of the shockwave intersection points in a particular time interval, a 

linear clustering algorithm is employed to group all the shockwave intersection points associated with 

each shockwave. A linear regression model is fitted to the data points within each cluster to estimate 

attributes (i.e. speed, positions and times of start and end) of such shockwave.  

In this research, it is assumed that (1) positions obtained from probe vehicles are accurate and (2) a 

linear model can be used to model the propagation of shockwaves.  The first assumption would 

probably affect the accuracy of the output of the proposed algorithm. The extent of the degradation 

can be quantified but was not attempted in this research. The second assumption is only true when 

vehicle headways in the traffic flow are uniform which is rarely true.  However, it is anticipated that 

errors resulting from violating this assumption are relatively small.  

According to the above description, the proposed methodology is divided into three parts: (1) 

automatic shockwave detection, (2) data filtering, and (3) linear clustering algorithm. Details of each 

are provided in the following sections.  

4.1.1.1 Automatic Shockwave Detection  

An iterative two-phase piecewise or switching regression is used to detect shockwaves. This type of 

regression is used when two lines with different slopes fit the data and the “joint point” or the 

“change point” is not known a priori. In other words, suppose n pairs of data points (ti, xi), i =1, …, n 

are available, where ti is the time at which the probe vehicle is reported at position xi along the 

roadway. Furthermore, it can be assumed that ti are ordered in a way that 1 2 nt t t   . Then, t and 

x can be related to each other according to the following set of equations:  

1
1 1 0,x a b t t t    (4.5) 

2
2 2 0,x a b t t t    (4.6) 

Where (t0, x0) is the joint point (Figure 4.6). This problem raises  in different fields of science such 

as biology and econometrics (Vieth, 1989 and Worsley, 1983). Quandt (1958) was the first who 

addressed this problem. In the context of probe vehicles, the joint point is the point at which the speed 

of the vehicle has changed and as such likely represents the shockwave boundary between two flow 

states. These points are referred to as “inflection points”. In this research, the two phase piecewise 
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linear regression model proposed by Vieth (1989) is applied to the time series of probe vehicle 

position data in order to find inflection points on the trajectories of these vehicles.  

 

 

 

Assume that a sample of P probe vehicles is available during time period ∆. For each probe vehicle 

p a set of points,   , 1, ,p p
i it x i n    , in time and space is available during time interval ∆. Time 

interval ∆ can also be discretized into a number of smaller time steps. The mathematical program to 

fit a two-phase linear regression to the points in set 
p  can be formulated as follows where 

p is a 

subset of p  and includes data points associated with one or more time steps depending on the 

number of the inflection points detected in previous time steps for probe p. Set 
p is defined 

formally later on with respect to Figure 4.8. 

   
0 0

2 2

1 1 2 2

i i

i i i i
t t t t

Min RRS x a b t x a b t
 

               (4.7) 

s.t. 

Time (t) 

(x) 

t0 

x0 

Unknown joint point or 

”inflection” point

1
1 1x a b t  

2
2 2x a b t  

Distance 

Figure 4.6: Two-phase piecewise linear model 
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  



  


0 1

0 1 1 0

1 1

2 1 3

3 0

0 if no inflection point has been found so far,  
4

1 if at least one inflection point has been found

p p
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j j

l l

t ,x i , ,

t t t j , ,

x a b t

 









  

    

    
 


 






 

where p  represents dimension of set 
p and  0 0,l lt x  is the last inflection point that has been 

found in previous time steps.  

In the above mathematical program, the objective function is a minimization of the total residual 

sum of squares associated with both regression lines fitted to the data. The first constraint guarantees 

that the lines are fitted to the data in set 
p  and the second constraint ensures that the inflection point 

exists within the time limits of the data in p . In other words, the above program finds the best 

piecewise linear regression, for which the inflection point falls within the available data. Figure 4.7 

illustrates the effect of the second constraint. In this figure in the absence of the second constraint in 

the mathematical formulation (i.e. Equation (4.7)), piecewise lines AB and AC, are feasible. 

However, piecewise line AC is not a feasible vehicle trajectory. The second constraint prevents 

accepting piecewise line such as AC in Figure 4.7. The third and fourth constraints guarantee physical 

continuity in the trajectory of the probe vehicle. In other words, when an inflection point is detected, 

the next regression line in the next time step must pass through this point to maintain continuity. 
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Figure 4.7: Accepted and unaccepted piecewise linear regressions 

In order to solve the minimization problem defined by Equation (4.7), the following iterative 

solution algorithm can be used: 

Step 0: Set j=3 and choose set
p . 

Step 1: while 3pj   
 

 Partition
p  into two mutually exclusive and collectively exhaustive sets: 

  1 , 1, ,i it x i j    and   2 , 1, , p
i it x i j     . 

 Perform two regular linear regressions in order to find the best lines fitted to 1  and 2 . 

If an inflection point associated with probe p has been found, the piecewise regression 

line has to be constrained to pass through this inflection point. 

 Calculate the objective function of Equation (4.7), RSS. 

 Set j =j+1 

Step 2: Choose the piecewise linear regression with the smallest RSS. 

p used above is defined in Figure 4.8 which illustrates all the components of the proposed 

algorithm to automatically detect shockwaves. 

Time (t) 

(x) 

t0 

x0 

1
1 1x a b t  

2
2 2x a b t  

Distance 

B 

C 

A: Accepted line 

B: Unaccepted line 

An acceptable inflection 
point 

An unacceptable 
inflection point 

A 
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Assume that in Figure 4.8 time interval ∆ can be divided into K time steps. Set p
k in this figure 

includes all position measurements associated with probe vehicle p that are obtained during time step 

k. In this flow chart, p  is the set containing all inflection points for probe vehicle p. In other words, 

this set is the output of the above algorithm for probe vehicle p over time interval ∆. Set 
p includes 

data from the most recently found inflection point to the end of data points associated with the current 

time step. Figure 4.9 shows two cases to clarify the definition of set
p . This figure shows 

trajectories of probe vehicles A and B during time interval ∆. The time interval is also divided into 4 

time steps. Probe vehicle A has been traveling at approximately a constant speed. Consequently, the 

algorithm does not find any inflection point and at time step k = 4 set A includes all available data 

points (   1 9A
i it ,x i , ,    ). In the case of probe vehicle B an inflection point was found in time 

step k = 2 and after that the probe vehicle travelled at approximately a constant speed resulting in no 

k=1 
p p

k

p

 





 
 

Solve Mathematical Program 
defined by Equation (4.7) 
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Is the Piecewise 
Linear Model 
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k < K? 
No Estimate Inflection Point (t0, x0) 

Set   0 0
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Yes 
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k=k+1 
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Figure 4.8: Proposed algorithm to estimate inflection points 

k = k+1 
p p p

k     
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other inflection point until k = 4. Therefore, set B  contains all data point from the most recently 

found inflection point to the data point associated with the current time interval inclusive

     0 0 7 15B
i it ,x t ,x i , ,     . 

 

The presence or absence of an inflection point is determined statistically. In Figure 4.10 the 

piecewise linear regression model defined by Equation (4.7) has been applied to both the trajectory 

data from two probe vehicles. However, in the case of probe vehicle A the piecewise linear regression 

is not statistically different from a single regime linear regression. Consequently, the one regime 

linear regression is chosen as the better model describing spatial and temporal movement of this 

probe vehicle and no point of inflection is defined. On the other hand, for probe vehicle B a piecewise 

linear regression model is statistically superior to the single regime model. 
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Figure 4.9: Two examples to show set p  
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The following hypothesis test can be applied to check whether or not a piecewise linear regression 

is statistically different from a single regime model (Vieth, 1989):  

0 1 2 1 2

1 1 2 1 2

: and

: or

H a a b b

H a a b b

 
  

 (4.8) 

The following statistic can be used to perform the above hypothesis test: 

 
 

3

4p

RSSL RSS
F

RSS




 
 (4.9) 

Where, RSSL in Equation (4.9) is the residual sum of squares of the single regime linear regression 

fitted to all point in 
p  and RSS is the residual sum of squares associated with the piecewise linear 

regression which is defined by the objective function of Equation (4.7). The F-statistic defined by 

Equation (4.9) can be compared with an F-test table value with 3 and 4p   degrees of freedom at 

a given level of confidence (e.g. 95%). If the F-statistic obtained using Equation (4.9) is larger than 

the critical value, the null hypothesis is rejected implying that the piecewise linear regression is 

Time 
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 Piecewise linear regression 
is not statistically different 

from the single regime 
regression model. 

Piecewise linear regression 
is statistically different from 
the single regime regression 

model. 

Time Interval 

Probe vehicle A 

Probe vehicle B 

Figure 4.10: Statistically significant piecewise linear regression 
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statistically different from the single regime linear regression and a point of inflection has not been 

found. 

4.1.1.2 Data Filtering 

At this stage, all inflection points associated with all probe vehicles in set P have been found. 

However, there are still two main challenges that need to be addressed. First, not every inflection 

point is part of a major shockwave. Second the points may be associated with multiple shockwaves. A 

data filtering procedure is proposed to address the first challenge in this section. A linear clustering 

algorithm is proposed to address the second challenge in the next section.   

The main objective of the data filtering procedure is first to identify inflection points that are more 

likely to be part of a “major” shockwave and second to separate the resulting points into distinctive 

groups to facilitate the linear clustering algorithm which is described in the next section.  

Our investigations of trajectories of vehicles in the real world show that in the case of a bottleneck 

or an incident, drivers do not decelerate and accelerate at a constant rate. Our observations show two 

stages of deceleration and two stages of acceleration as can be seen in Figure 4.11. In this figure, the 

black oval and the red circle show two stages of deceleration and the yellow circle and green oval 

show the two stages of acceleration for that particular probe vehicle. According to this observation, 

four different shockwave point groups can be identified among the detected inflection points (Figure 

4.12). In order to expedite and facilitate the linear clustering procedure, the following rules are used 

to classify the points with similar characteristics into one group: 

if and 1

if and 2

if and 3

if and 4

i i i
u u d u

i i i
u c d c

i i i
u c d c

i i i
u u d u

S S g

S S g

S S g

S S g

      


     


     
      

      

Where,  

i : denotes an inflection point, ,pi p P  ,  
i
uS  : represents speed associated with the upstream of inflection point i (km/h),  
i
uS  : represents speed associated with the downstream of inflection point i (km/h), 

u  : denotes the threshold speed associated with uncongested regime (km/h), 

c  : denotes the threshold speed associated with congested regime (km/h), 

gi :  denotes the group associated with shockwave point i (km/h).  
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In Figure 4.12, group 1, group 2, group 3, and group 4 shockwave points are shown in black, red, 

yellow, and green respectively. The clustering algorithm, described in the next section, is applied to 

the four groups separately to improve computational efficiency and clustering accuracy.  
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Figure 4.12: Four groups of shockwave points 
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Figure 4.11: Acceleration and deceleration of real probe vehicles 
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4.1.1.3 Linear Clustering Algorithm 

The data filtering procedure reduced the inflection points to the shockwave intersection points. 

Furthermore, the data has been categorized into four groups. The resulting shockwave intersection 

points need to be grouped into different shockwaves in order to find the characteristics of each 

shockwave. Under certain assumptions such as deterministic headway of vehicles and steady state of 

traffic, linear models can be used to model the propagation of shockwaves in a traffic stream. 

However, most clustering algorithms such as k-means algorithm (Hartigan, 1975) identify sparse and 

crowded datasets and are not appropriate for datasets with linear patterns (Van Aelst et. al., 2006). 

Consequently, a linear clustering algorithm is adopted to cluster shockwave intersection data points to 

distinctive shockwaves. A number of researchers have proposed different algorithms to cluster 

datasets with linear patterns (Van Aelst et. al., 2006; Murtaghi and Raftery, 1984, and Spath, 1982). 

In this research, a methodology proposed by Spath (1982) is used to cluster shockwave intersection 

points. 

Assume that   , 1, ,l i i lt x i m     is a set which contains all shockwave intersection points 

corresponding to shockwave group l where l is 1, 2, 3, and 4. The linear clustering problem can be 

formulated as follows: 

  2

1
j j

j

n

i C C i
j i C

Min x t 
 

     (4.10) 

s.t.  
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

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where, n denotes the number of clusters to be identified and Cj represents a cluster.  

 The objective function of the above mathematical problem is a minimization of the total sum of 

the squared errors of all clusters provided that 
j jC C ix t    is the regression line fitted to all data 

points in cluster Cj. Constraints 1 and 2 guarantee that data points of clusters are a subset of Ωl and at 



 

68 

least 3 data points exist in each cluster respectively. Constraints 3 and 4 ensure that the clusters are 

mutually exclusive and collectively exhaustive.  

The mathematical problem of Equation (4.10) is a nonlinear integer program which is intrinsically 

difficult to solve. However, this problem can be solved using the following algorithm proposed by 

Spath (1982): 

Step 1: Choose an initial feasible solution. 

Step 2: For each cluster Cj, perform a regression analysis to determine {aCj, bCj}. 

Step 3: For a randomly selected ji C examine if there are clusters Cp with p ≠ j such that shifting i 

from Cj to Cp reduces the objective function. If so, choose Cr that maximizes the reduction. 

Then, set    ,j j rC C i C C i    . Continue this step until all data points are visited. 

Step 4: Repeat Step 2 for a given number of times or until no reduction in objective function is 

achieved. 

Set  1
jC j , ,n   contains the estimated speed of the shockwaves associated with each cluster.  

It should be noted that this clustering algorithm has two limitations: first, the performance of the 

linear clustering algorithm highly depends on the initial feasible solution. One method that can be 

used to create a “good” initial solution is to recognize the fact that shockwave points which are close 

together spatially and are far from each other temporally cannot be part of the same shockwave.  

Second, the number of clusters is assumed to be known. However, in reality this is not the case. 

One approach to addressing this limitation is to apply the clustering algorithm for different values of 

n and then select the solution that maximizes the total marginal benefit. In other words, the optimal 

number of clusters, n, is selected according to the fact that increasing the number of clusters from n-1 

to n results in a maximum reduction in the objective function defined in Equation (4.10). 

4.2 Travel Time Prediction/Estimation Using Loop Detectors 

4.2.1 Average Speed Algorithm (MTO Method) 

The simplest form of loop detector based travel time estimation algorithms makes use of measured 

average vehicle speeds at a spot location and assumes vehicles travel at this speed over a fixed 

segment of the roadway (Lindveld et al., 2000). The length of this fixed segment of the roadway is 

often assumed to be half the distance between two consecutive detector stations, but can be defined as 
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some other length. This scheme can be illustrated using the notation in Figure 4.13 and the time-space 

diagram in Figure 4.14.  

 

 

 

 

Figure 4.14: Space - time diagram 

As illustrated in Figure 4.14, the average speed Si represents the speeds of vehicles as they pass a 

specific location (i.e. the loop detector). Spot speed based methods assume that the vehicles travel at 

this speed over the entire section length (i.e. Li). This assumption is generally acceptable when the 

road section is uncongested or short.  However, as illustrated in Figure 4.14, when a portion of the 

section experiences congestion, then this assumption is no longer valid as the vehicle’s speed changes 
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Si+1 
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Estimated Travel Time 
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Figure 4.13: Roadway schematic for spot-speed algorithms 
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significantly over the length of section i and consequently the estimated travel time will not be 

accurate.  If the section length (Li) is short, then errors between estimated and actual travel time will 

be acceptably small. However, installing loop detectors more closely spaced than approximately 500 

– 600m is generally not economically feasible.   

It is important to note that, in general, point-speed algorithms tend to underestimate travel times 

when congestion is forming.  The magnitude of the underestimation is a function of the severity of the 

congestion, the length of the road section, the portion of the segment congested, and the rate at which 

the queue is growing or dissipating. 

The following equation can be used to predict travel time of a route which consists of n loop 

detectors: 

   
, 11

1 1( ) ( ) 2

i in

M
i i i

L
t

S t S t




 


   (4.11) 

Where, 

, 1i iL   : Length of the highway section between loop i and loop i+1, 

 iS t  
 
: Average speed of loop detector i during the subject time interval, 

 M t  : Average travel time of the route for the subject time interval. 

The assumption behind Equation (4.11) is that the route is bounded by two loop detectors.  

MTO uses this methodology to estimate travel time of vehicles on 400 series highways and the 

QEW in Mississauga. However, MTO uses a number of adjustment factors to compensate for the 

shortcomings of this algorithm when congestion is forming or dissipating.  

In order to determine the adjustment factors, a vehicle equipped with a GPS device travels the 

subject section of highway at different times of various days. This is performed to observe different 

states of traffic along the subject section of highway. Also loop detector data associated with the same 

section at the same time intervals are recorded. Furthermore, the subject section of the highway is 

divided into different congestion zones. The state of traffic on each congestion zone is determined in 

terms of moving well, moving slowly, or moving very slowly for every 20 second time period for 

which loop detector data are available. The following rules are used to determine the linguistic state 

of traffic on each congestion zone: 
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75km/h Moving Well

75km/h or 40km/h Moving Slowly

40km/h Moving Very Slowly

S

S S

S

  


  
  

  

Where S represents the average speed over a congestion zone calculated using the average speed 

algorithm described above. For each combination of linguistic traffic states, the ratio of travel time 

obtained from probe vehicles, p , and travel time obtained from loop detectors using Equation (4.11) 

can be calculated. Finally, this ratio (adjustment factor) is applied in the future to travel time obtained 

from loop detectors whenever the same linguistic combination of traffic states is observed.  

4.2.2 Trajectory Method 

The trajectory method can be used in order to estimate travel time. This method is a modified version 

of the average speed algorithm but cannot be applied before all vehicles which entered the route 

during a time interval, complete the route. Equation (4.11) computes travel time as if the vehicles 

which passed over the first loop detector would pass the last loop detector at the same time. 

Obviously this assumption is not accurate. The trajectory method improves the accuracy of average 

speed algorithm by building the trajectory of an average vehicle. Then the travel time of the average 

vehicle (which is equal to the average travel time of vehicles which entered the route during the same 

20 second time interval) is calculated by projecting the built trajectory on the time axis.  

Figure 4.15 illustrates a route which includes three loop detectors and a time space diagram 

associated with the three loop detectors.  Average speed of the first section can be calculated using 

the average speed of loop detector 1 and loop detector 2 associated with the time which the average 

vehicle entered the 20 second time interval. For the second section (i.e. the section between loop 

detector 2 and 3) the average speed is calculated using average speed of loop detector 2 and loop 

detector 3 associated with the time interval which the vehicles entered the route plus travel time of the 

first section. If the route consists of more than 3 loop detectors then the same approach can be used.  
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The trajectory method explained above is an iterative procedure which can be shown by Equation 

(4.12) below: 
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Where, 

 , 1i i
T t   : denotes travel time of the road section between loop detector i and loop detector i+1 

when it is desired to estimate travel time for vehicles which entered the road section 

during time interval t,  
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 T t  : Travel time of the route associated with time interval t using the trajectory method. 

It is expected that this method can provide very accurate travel time estimation even for long route. 

However, the major shortcoming of this method is that it can only estimate travel time for previous 

time intervals. 
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Chapter 5 

Data Collection 

Two Ontario freeways were selected as the study area. The first study area is a section of a suburban 

freeway in the Region of Waterloo, Ontario (Regional Highway 85) which is not covered by Freeway 

Traffic Management Systems (FTMS) and the second study area is a section of urban freeway 

(Highway 401 in the Greater Toronto Area) which is fully instrumented.  

5.1 HWY 85: Non-instrumented Freeway 

Highway 85 in the Regional Municipality of Waterloo is an example of a non-instrumented freeway 

in Ontario. A section of this freeway was chosen as the study area in this project. Highway 85 is a 

main roadway that connects Highway 401 to Waterloo through Regional Highway 7. The northern 

boundary of this freeway is Sawmill Rd. in St. Jacob (north of Waterloo) and southern boundary of 

Highway 85 is Highway 7 in Kitchener. Figure 5.1illustrates the study area which is bounded by 

Northfield Dr. in the north and Frederick St. in the south. The section is 8.370 km long and 

experiences recurrent congestion in both directions during AM and PM peak periods. The posted 

speed on the section is 90 km/h implying a free flow travel time of 5.58 minutes (actual free flow 

speeds are frequently higher than the posted speed limits). The data collection was performed on 

Thursday September 18, 2008 from 15:35 to 17:50. The rationale behind this time interval is that we 

were interested in collecting data before the start of congestion and after dissipation of congestion. 

The average temperature during the data collection was 19 Celsius and the weather condition was 

mainly clear (Environment Canada, 2008).  

The data collection effort along Highway 85 included two tasks: (1) obtain the “Ground Truth” 

travel time and (2) probe vehicles runs.  
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Figure 5.1: Highway 85 as study area in regional municipality of Waterloo (Source: 
www.maps.google.com) 

 

5.1.1 Ground Truth Travel Time 

A method similar to licence plate number matching was used to capture true travel time of vehicles in 

the study area. Two video cameras were deployed, one at the northern boundary and the other at the 

southern boundary of the study area to film both directions of the freeway section. The cameras were 

deployed on the west side of the freeway outside of the MTO Right of Way. Each camera was 

monitored by an individual during the data collection time period. The internal clocks of the cameras 

were also synchronized to minimize the systematic error in travel time estimation. The videos were 

post-processed to obtain true travel time of vehicles. The first step was to overlay the timestamp on 

the video. It should be noted that timestamp of a video in most digital cameras are attached to the data 

but is not readily available to overlay on the video. Consequently, a commercial-off- the- shelf 

software was used to overlay the timestamp on the videos.  

The next step to obtain travel time of individual vehicles is to match vehicles in two screen shots at 

upstream and downstream videos. In order to match vehicles, two computers were used 

simultaneously and a student manually found the matching vehicles in both screens. Figure 5.2 shows 
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two examples of matched vehicles. Travel time of each individual matched vehicle is simply the 

difference between the two timestamps of the screen shots of the vehicle. There are a number of off-

ramps between the upstream and downstream cameras. Consequently, not every vehicle observed at 

the upstream video can be found in the downstream video. Also, it is likely that some vehicles which 

passed in front of both upstream and downstream cameras were not matched due to human error. In 

total, 352 vehicles were matched for the southbound direction. The results are presented later in this 

document. 

  

a) A truck matched at the videos associated with the northern camera and southern camera (left image and 
right image respectively). 
 

b) An SUV matched at the videos associated with the northern camera and southern camera (left image and 
right image respectively). 

Figure 5.2. Matching process of vehicles to measure travel time 
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5.1.2 Probe Vehicles Runs 

Five probe vehicles equipped with data logger GPS devices were continuously travelling on the study 

area. The data loggers are able to record time, position, and speed of the vehicle at a configurable 

rate. The rate (polling interval between two consecutive records) was chosen as 1 second in this 

project. The drivers of the probe vehicles were instructed to drive with the flow of traffic and try to be 

like an “average” vehicle.   

Probe vehicles began the data collection effort near the north end of the study section and initiated 

their first trip at 3 minute headways. Each probe vehicle completed 6 runs per each direction.  

The probe vehicle drivers were instructed to use King St. North interchange (north of Northfield 

Dr.)  and Ottawa St. (south of Frederick Dr.) to turn around. This ensured that all vehicles covered the 

section between the two cameras. Consequently, in the post-processing of the GPS data, a 

methodology was designed to (1) identify and delete the data points north of the northern camera and 

south of the southern camera; and (2) identify the GPS data points associated with each run. Data 

points which were outside of the study area were visually identified in the Arcview GIS environment. 

Also, a spreadsheet was developed to separate data points associated with each run. The program 

assigns a four digit ID in the form of “xyzz” to the data points associated with each individual run. In 

this format x identifies the driver, y denotes the direction (where 1 is southbound and 2 is 

northbound), and zz is sequential. Therefore, 30 probe vehicle runs per each direction were collected. 

5.1.3 Overview of the Data 

The southbound direction of Highway 85 becomes more congested than the northbound direction 

during the PM peak period. Consequently, video matching was conducted on the southbound 

direction only. In total 352 vehicles could be matched at the upstream and downstream cameras 

which amounts to almost 16% of the total volume observed upstream of the upstream camera 

location.  

Figure 5.3 illustrates the disaggregate travel times obtained from GPS equipped probe vehicles and 

travel time extracted from video matching. As can be seen in this figure, travel times obtained from 

probe vehicles closely match the travel time obtained from the video. Although some bunching of 

probe vehicles can be observed, probe vehicle observations have been spread across the data 

collection time period.   
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Figure 5.3. Disaggregate comparison of travel times of probe vehicles and video matching 

In order to compare average travel time obtained from probe vehicles with average travel time 

obtained from video extraction during each 15 minute time interval, the following hypothesis test was 

conducted: 
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Where, 

videoT  : denotes average of all travel times obtained from video image matching during a 15 

minute time interval, 

probesT  : denotes average travel times of probe vehicles that entered the road section during a 15 

minute time interval. 

Table 5.1 shows the result of the hypothesis test for 9 consecutive 15 minute time intervals starting 

at 15:35. As can be seen in this table the null hypothesis is rejected only for the last interval. For all 

other time intervals, there is insufficient evidence to conclude that the travel times obtained from 

video images and probe vehicles are different. It should be noted that, as can be seen in Figure 5.3, 

the video data were not available after sometime in the middle of the 9th time interval. Also, there are 

only two probe vehicle observations available coincidently at the very end of this time interval. 

Consequently, it is not unexpected that the null hypothesis for this time interval was rejected. It 
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should be also noted that the data associated with this time interval were removed from the data base 

and not used in the further analyses.   

Table 5.1: Result of the test of hypothesis 

Interval 
No 

Video Extraction Probe Vehicles 
t-

statistic 
t-

critical
Reject 

H0 
No 

Observation 
Average 

(min) 
Variance 

(min2) 
No 

Observation 
Average 

(min) 
Variance 

(min2) 
1 35 5.12 0.13 5 5.16 0.29 -0.230 2.024 No 
2 33 5.07 0.18 5 5.30 0.03 -1.195 2.028 No 
3 30 6.19 0.45 2 7.07 0.19 -1.832 2.042 No 
4 64 6.99 0.42 3 7.48 0.33 -1.263 1.997 No 
5 54 9.34 2.02 5 10.18 1.91 -1.265 2.002 No 
6 37 9.66 1.01 2 10.03 0.002 -0.511 2.026 No 
7 53 10.79 3.11 3 10.04 0.05 0.730 2.005 No 
8 30 10.17 4.55 5 10.26 2.59 -0.091 2.034 No 
9 17 7.95 0.72 4 5.59 0.63 5.069 2.093 Yes 

Figure 5.4 can also be used to compare the travel times obtained from GPS equipped probe 

vehicles and the video matching technique. In this figure, the left vertical axis shows the travel time 

and the right vertical axis shows the difference between the travel time obtained from the GPS 

equipped vehicles and the travel time obtained from the video matching technique. The maximum 

difference is around 15% and on average the difference is 8.7%. Given the free flow travel time of the 

study section (i.e. 5.58 min) this figure shows that the travel time associated with the most congested 

state is twice as much as the free flow travel time. As explained earlier, the error associated with the 

last time interval was not calculated but the data points were shown to illustrate the fact that the 

congestion started to dissipate after 17:20.       

 

Figure 5.4. Comparison of Average Travel Time Estimated Using Data from GPS Equipped 
Vehicles and Video Extraction 
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5.2 HWY 401: Instrumented Freeway 

A 21.35 km section of HWY 401 between Highway 400 and Kennedy Rd. was chosen for this study 

(Figure 5.5). This section of the 401 is covered by full FTMS infrastructure. This section experiences 

recurrent congestion during the AM and PM peak periods. The posted speed on Highway 401 is 100 

km/h implying a free flow travel time of 12.81 min for each direction. The data collection was 

performed on Wednesday May 13, 2009 from 14:30 to 19:30.  Similar to HWY 85, the rationale 

behind this time interval is to ensure that data can be collected before the start of congestion and after 

dissipation of congestion.  

The average temperature during the data collection was 18 Celsius and the weather condition was 

mostly cloudy (Environment Canada, 2010). The main task during the data collection was to obtain 

GPS data associated with probe vehicles equipped with GPS devices. Data associated with loop 

detectors on the study area were also obtained from MTO. The following subsections summarize each 

of the two data types. 
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Kennedy Rd. 

Interchange 

Highway 400 

Interchange  

Figure 5.5: The Highway 401 study area in the Greater Toronto Area (Source: www.maps.google.com) 
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5.2.1 GPS Probe Vehicles Runs 

Eight probe vehicles equipped with the same GPS data loggers as were used for the data collection 

effort on HWY 85 were continuously travelling along the study section over the study period. Each 

data logger was able to record time, position, and speed of the vehicle every second. Probe vehicles 

began the data collection effort near the west end of the study section and initiated their first trip at 5 

minute headways. The probe vehicle drivers were instructed to drive with the flow of traffic and try to 

be like an “average” vehicle. They were also instructed to use Weston Rd. interchange (west of 

Highway 400) and McCowan Rd (East of Kennedy Rd) to turn around. Furthermore, in order to 

maximize the number of travel time observations given availability of limited number of probe 

vehicles, the drivers only drove on collector lanes. The same approach which was used for HWY85 

was used to post-process the GPS data in order to identify the trajectory of each GPS equipped probe 

vehicle. Figure 5.6 shows travel time of probe vehicles on eastbound and westbound of HWY 401. 

Each point in this figure corresponds to one run of a probe vehicle which shows that each probe 

vehicle traveled on average 5 times each direction. Also, this figure shows that the eastbound 

direction is more congested than the westbound direction. A comparison between the travel time 

values at the beginning and end of the data collection effort with free flow travel time (12.36 min) 

shows that the forming and dissipating of congestion during that particular PM peak period were 

successfully captured. 
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Figure 5.6: Travel time of probe vehicles equipped with GPS data loggers 

5.2.2 Loop Detector Data  

The Ontario Ministry of Transportation has developed the COMPASS system to monitor and manage 

400 series highways in Ontario. The COMPASS system primarily relies on CCTV cameras and loop 

detector sensors which provide volume, speed, and occupancy. The data are transferred to the MTO 

traffic management centre where further analyses are performed in order to make various decisions. 

Loop detector data associated with the study section and for the duration of our data collection were 

obtained from MTO. The data include 20 second aggregated volume, speed, and occupancy for each 

lane of the collector and express lanes. However, only the data associated with the collector lanes 

were analyzed in this study because all of the probe vehicles drove on the collector lanes.  

Not all of the loop detectors in the study area were operational during our data collection effort. 

Table 5.2 shows the detector ID and location of operational loop detectors in the eastbound and 

westbound directions of the collector lanes of HWY401 in the study area. According to this table, 6 

loop detector stations (each of which consists of a double loop detector per each lane) are available in 

each direction. Consequently, the operational loop detectors have an average spacing of 4.27 km.    
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Table 5.2: Operational loop detectors within study section 

Eastbound Collector Lanes Westbound Collector Lanes 
Detector ID Location Detector ID Location 

401DW0060DEC East of Weston 401DE0300DWC At Midland 
401DW0020DEC East of Jane 401DE0210DWC West of Hwy 404/DVP 
401DE0030DEC East of Keele 401DE0140DWC East of Yonge 
401DE0140DEC East of Yonge 401DE0030DWC East of Dufferin 
401DE0170DEC East of Bayview 401DW0020DWC East of Jane 
401DE0280DEC East of Birchmount 401DW0060DWC East of Weston 

 

Data obtained from the loop detectors shown in Table 5.2 were processed and 15 minute average 

travel times were calculated using both the average speed (MTO) method and the trajectory method. 

Figure 5.7 and Figure 5.8 illustrate the travel times obtained from both methods for eastbound and 

westbound directions respectively.  

Several observations can be made from these two figures: 

1. The MTO method and the trajectory method closely match each other at the beginning and 

end of the data collection effort when traffic is approximately at free flow conditions. This 

observation is more evident in Figure 5.8 where the duration of this condition is longer at 

both ends of the data collection.  

2. It appears that the travel times obtained from both methods are relatively similar at the peaks 

of the curves where traffic state is congested. This argument is applicable to both directions 

of the study section. 

3. The other important observation is that the two curves in Figure 5.7 and Figure 5.8 are most 

different when congestion is forming and dissipating. These four instances are marked by 

green ovals in these two figures. 

 



 

85 

 

Figure 5.7: Comparison of the 15 min aggregated travel times estimated from loop detector 
data for EB HWY401 

 

 

Figure 5.8: Comparison of the 15 min aggregated travel time estimated from loop detector data 
for WB HWY401 

Figure 5.9 and Figure 5.10 compare the 15 minute aggregated travel time obtained from the MTO 

method and the trajectory method with the 15 minute aggregated travel time obtained from GPS 

equipped probe vehicles for the eastbound and westbound directions respectively. As can be seen in 
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Figure 5.9, travel times obtained from the trajectory method are more similar to travel times obtained 

from GPS equipped probe vehicles than are the travel times obtained from the MTO method. This 

observation can also be numerically verified. The Root Mean Square Error (RMSE) between travel 

times obtained from the trajectory method and obtained from GPS equipped vehicles is 2.38 minutes 

whereas the RMSE between travel times obtained from the MTO method and GPS equipped probe 

vehicles is 2.94 minutes.     

 

Figure 5.9: Comparison of travel time obtained from loop detector with travel time obtained 
from GPS equipped probes for EB HWY 401 

As can be seen in Figure 5.10, the travel times obtained from the GPS equipped probes are 

consistently shorter than the travel times obtained via loop detector data. One of the reasons which 

can justify this observation is that the drivers of probe vehicle drove the westbound direction faster 

than an “average” vehicle despite the instructions. This was not possible for the eastbound due to 

heavier traffic congestion. The other reason might be poor performance of the loop detector based 

methods for the westbound direction of Highway 401 particularly in the light of the fact that he 

spacing of the operational loop detectors was rather excessive (4.27 km). However, the RMSE 

associated with the westbound is 3.92 min and 3.97 min for the trajectory method and the MTO 

method respectively.  
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Figure 5.10: Comparison of Travel Time Obtained from Loop Detector with Travel Time 
Obtained from GPS Equipped probes for WB HWY 401 
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Chapter 6 

Results 

The objective of this chapter is to evaluate the performance of the proposed methodology. In order to 

achieve this objective the proposed methodology was applied to the data associated with one 

simulated intersection and 3 field datasets namely (1) NGSIM US-101; (2) HWY 85; and (3) HWY 

401 were used. In this chapter, root mean square error (RMSE), Mean Absolute Percent Error 

(MAPE), and maximum absolute percent error (Emax) are used as measures of effectiveness for the 

propose travel time prediction model. The RMSE, MAPE, and Emax are calculated based on the 

following equations: 
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  max ˆmax , 1k kE abs k K       (6.3) 

where, k̂ denotes predicted travel time at time interval k, k represents reference travel time at time 

interval k, and K is total number of time intervals.   

6.1 Application 1: Signalized Intersection 

A single exclusive through lane of a signalized intersection (Figure 6.1) was simulated using the 

INTEGRATION simulation model (Van Aerde, M. & Assoc., Ltd, 2002a, 2002b). The signal was 

controlled by a fixed time two phase signal timing plan with a cycle length of 100 seconds; phase 1 

and phase 2 have an effective green of 45 and 51 seconds respectively; total lost time of 4 seconds 

and offset of 52 seconds were also chosen. The approach under study had a saturation flow rate of 

1900 vehicles per hour per lane. Traffic demand was assumed to be constant at 700 vph and consisted 

of only passenger cars. Furthermore, vehicles were generated with uniform headways. The approach 

link was 1 km in length and had a free flow speed of 60 km/h; a speed at capacity of 40 km/h and jam 

density of 125 veh/km/lane.  
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The INTEGRATION simulation model uses a single regime four parameter macroscopic traffic flow 

model proposed by Van Aerde (Rakha and Crowther, 2002; Van Aerde, 1995; Van Aerde and Rakha, 

1995). Van Aerde’s model is defined by the following set of equations: 
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where, 

D = Density (veh/h/lane) 

S =  Speed (km/h) 

Sf =  Free flow speed (km/h) 

Sc= Speed at capacity (km/h) 

Vc =  Capacity volume or saturation flow rate(vph) 

Dj =  Jam Density (veh/km/lane). 

1 km 

Simulated Approach 

Figure 6.1: Simulated signalized intersection 
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Using equations (6.4) through (6.8), the fundamental equation of traffic (V=DS), and the equation for 

calculating propagation speed of shockwaves, Equation (3.13), a shockwave diagram for this 

intersection approach can be constructed for one cycle of the simulated approach (Figure 6.2).  

 

In Figure 6.2 A, B, and C represent traffic states that exist upstream of the traffic signal. AB , BC , 

and CA denote speed of propagation of shockwaves that are created between traffic states (A, B), (B, 

C) and (C, A) respectively. Table 6.1 quantifies the characteristics of traffic states A, B, and C and the 

shockwaves generated between them.  

The proposed system was applied to the simulation output. All vehicles were treated as probe 

vehicles. The time intervals were chosen to be 5 minutes and each time step within the time intervals 

was 5 seconds. A 95% level of confidence was used to perform the hypothesis test explained by 

equations (4.8) and (4.9). Furthermore, the thresholds to identify shockwave intersection points 

among the inflection points were chosen to be 18 (km/h) and 14.4 (km/h) for shockwave group 1 

(backward forming shockwave in this case) and shockwave group 2 (backward recovery shockwave 

in this case study) respectively. Because vehicles do not change their speed promptly when they meet 

a shockwave, more than one shockwave intersection point is expected to be obtained according to the 

above criteria. Consequently, for shockwave group 1 for each probe vehicle the last shockwave 
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intersection point is considered for clustering and for shockwave group 2 for each probe vehicle the 

first shockwave intersection point is taken into account.  

Figure 6.3 shows 5 minutes of simulation data. Randomly selected colours have been used for better 

illustration of individual vehicles’ trajectories.   

 

Table 6.1: Attributes of traffic states in Figure 6.2 and shockwaves identified analytically 

Traffic State 
Flow Rate Density Speed Shockwave Speed 

(vph) (veh/km/lane) (km/h) (km/h) 

A 700 12.04 58.14 
-6.20 

B 0 125 0 

-24.52 

C 1900 47.5 40 

+33.84 
A 700 12.04 58.14 

 

 

 

Figure 6.3: Trajectory of probe vehicles, shockwave intersection points and detected 
shockwaves in a signalized intersection 
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The red circles in this figure represent shockwave intersection points associated with backward 

forming shockwaves and the green crosses denote shockwave intersection points corresponding to 

recovery shockwaves. The lines passing through each group of inflection points, representing the 

identified shockwaves, are the result of the clustering module.  

As can be seen in Figure 6.3, the framework could successfully identify both backward forming and 

backward recovery shockwaves but failed to identify the forward moving shockwaves. The main 

reasons for this might be (1) the propagation speed of the forward moving shockwave is higher than 

the other shockwaves; (2) the shockwave does not represent a boundary between two congested 

traffic states; and (3) this type of shockwave lasts for a shorter period of time.  

Table 6.2 shows the final results obtained by applying the proposed framework to the signalized 

intersection. In this table columns are: 

No: A sequential number representing shockwaves, 

Type: Type of the shockwave (1 denotes backward forming shockwaves and 2 represents recovery 

shockwaves), 

t1: Time that the shockwave was first detected,  

tn: Time that the shockwave was last detected,  

d1: Location that the shockwave was first detected,  

dn: Location that the shockwave was last detected,  

ω: Speed of the shockwave,  

yint: Y-intercept of the line which represents the shockwave,  

Su: Average speed of vehicles upstream of the shockwave,  

Sd: Average speed of vehicles downstream of the shockwave,  

n: Number of shockwave intersection points existing in each cluster and used to estimate attributes of 

the shockwave, n 

R2: Coefficient of determination associated with the regression line representing the shockwave. 

Table 6.2: Output of the framework for the signalized intersection 

No Type t1 (s) tn (s) d1 (m) dn (m) 
Speed

yint (m) 
Su Sd 

n R2 (km/h) (km/h) (km/h)  

1 1 100.645 171.33 993.565 896.837 -6.138 1164.474 41.900 7.963 16 0.946 
2 1 197.807 268.044 992.781 880.345 -6.221 1338.313 37.634 3.100 14 0.993 
3 2 154.286 168.283 979.07 926.832 -20.765 1869.922 2.588 30.751 13 0.683 
4 2 255.142 266.328 979.896 1004.406 -14.890 2031.226 5.044 32.904 13 0.215 
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A direct comparison of the shockwave speeds estimated by the proposed method and the true 

shockwave speeds is not possible as the INTEGRATION model does not explicitly output shockwave 

speeds and there does not exist a formal method of computing shockwave speeds on the basis of 

vehicle trajectory data. However, a comparison with the analytical estimates is possible (Table 6.3). 

As can be seen in this table the proposed framework was able to estimate the speed of the backward 

forming shockwaves accurately (<1 % difference). However, the relative difference between the 

analytical estimate and the results obtained from applying the framework is 27.3% in case of the 

recovery shockwave. It is expected that using different thresholds to differentiate between the 

inflection points and shockwave intersection points would improve the similarity between the 

proposed framework and the analytical estimates, however, the analytical estimates are themselves an 

approximation and subject to errors. 

Figure 6.4 shows the shockwave diagram obtained from analytical estimates and applying the 

proposed framework. This figure can be used to temporally and spatially compare the analytical 

estimates and output of the proposed framework for one cycle of the traffic signal. In this figure the 

solid black and red lines represent the shockwave diagram based on the analytical framework and the 

proposed framework respectively. Furthermore, in this figure the red circles represent the beginning 

and end of the shockwave intersection points identified for both backward forming and recovery 

shockwaves. As can be seen the main difference is the fact that the proposed framework did not 

capture the forward moving shockwave. 

Table 6.3: Comparison of analytical estimates of shockwave speed with the results obtained 
from applying the proposed methodology 

Shockwave Type 

Analytical Estimate 

of Propagation Speed 

(km/h) 

Average Speed Obtained by 

the Proposed Framework 

(km/h) 

Relative 

Difference (%) 

Backward Forming -6.20 -6.18 0.32 

Recovery -24.52 -17.83 27.3 
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6.2 Application 2: NGSIM US-101 

The NGSIM data base is the result of Federal Highway Administration (FHWA) efforts to develop 

algorithms and datasets for calibration and validation of simulation models (FHWA, 2007). This data 

base includes trajectories of vehicles on freeway US101 in Los Angeles, California. The US101 test 

section is 0.5 km long. The US101 section consists of 5 lanes which includes a weaving section. Eight 

cameras were deployed along the study section which videotaped the traffic flow. Image processing 

software was used by FHWA to post-process the videos in order to obtain detailed information about 

each individual vehicle including trajectory of each vehicle. In the NGSIM database, positions of 

individual vehicles were available every tenth of second.  

The advantage of the NGSIM database is that it includes the trajectories of all vehicles over a given 

time period at a very high resolution (i.e. the polling interval is one tenth of a second). However, the 

length of the section where the data collection was conducted on US-101 is only 0.5 km. Given the 

fact that average speed during the most congested time during the data collection was 40 km/h, the 
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average travel time along the section would be less than 1 minute. This means that most of the 

vehicles which enter the road section will exit the section during even a short (i.e. 5 minute) time 

interval. It should be noted that the time intervals can be chosen shorter than 5 minutes. However, it is 

then likely that not enough shockwave points can be found to detect shockwaves in the traffic stream. 

The short length of the freeway section poses challenges in applying the proposed methodology but it 

is used for illustration purposes.  

The route was divided into 9 sections each with a length of 76.2 m (250 ft) except the last one 

which had a length of 44.5 m. Three types of probe vehicles are conceivable along this section similar 

to any other road sections:  

1. Probe vehicles which enter and exit the road section during the current time interval, 

2. Probe vehicles which start but don’t exit the road section during the current time interval, 

3. Probe vehicles which entered the route during any previous time interval and exit the road 

section in the current time interval. 

At any time period the complete trajectory of the first group of probe vehicles and their travel times 

are known. Most of the probe vehicles in the NGSIM data set fall into this group because of the short 

length of the US101 section. The travel times of probe vehicles in the second group are not known 

and should be predicted in order to predict the travel time of the current time interval. Travel times of 

vehicles in the third group could be predicted in order to predict the travel time of vehicles during the 

time interval in which vehicles in this group entered the road section. It is noteworthy that the partial 

trajectories of the vehicles in the third group which are available during the current time interval can 

be utilized to estimate average travel time of each road segment more accurately.  

The proposed methodology was applied to the first 15 minute of the data (7:50-8:05). In this study 

we only analyzed those probes which were travelling on the rightmost lane of the highway. Moreover, 

due to the fact that the road section is short and most vehicles traverse the road section during a single 

time interval in which they entered the road section (vehicles in the first group), we separate the 

vehicles in the first group and the second group to evaluate the performance of the proposed 

methodology on the vehicles in the second group. 

Table 6.4 shows the average speed of each road segment during each time interval (i.e. time 

interval 1, time interval 2, and time interval 3) which were calculated using data from probe vehicles 

in the first group. In this table the first column from the left shows each road segment. Each row in 
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the rest of the columns represents average speed of the corresponding road segment during each time 

interval. The last row of the table shows average travel time during each time interval. The travel 

times on this row were calculated based on Equation (4.2). Table 6.5 shows standard deviations of 

speed associated with each road segment. The same tables can be developed using the data associated 

with the probe vehicles in the second group.    

Table 6.4: Average speed over each road segment using data associated with probes in the first 
group 

  Average Speed (km/h) for Each 5 min Time Interval 
Road Section 7:50-7:55 7:55-8:00 8:00-8:05 

1 41.99 33.47 36.14 
2 43.14 35.06 37.83 
3 44.47 37.37 35.76 
4 44.41 33.90 34.69 
5 43.34 30.87 32.34 
6 50.26 45.31 38.54 
7 59.02 57.43 44.12 
8 62.88 61.16 43.08 
9 63.07 59.72 41.96 

Travel Time (sec) 53.31 64.02 68.50 
No of Observations 121 94 86 

Table 6.5: Standard deviation of speed over each road segment using data associated with 
probes in the first group 

  Standard Deviation of Speed (km/h) for Each Time Interval 
Road Section 7:50-7:55 7:55-8:00 8:00-8:05 

1 11.51 10.86 14.12 
2 11.22 11.51 9.27 
3 13.04 10.75 12.62 
4 14.16 8.43 12.71 
5 13.01 5.82 11.22 
6 9.06 6.64 10.06 
7 6.54 8.16 12.54 
8 7.16 9.56 14.83 
9 7.23 12.69 15.66 

No of Observations 121 94 86 
 

Table 6.6 and Table 6.7show average and standard deviation speed of each road segment 

respectively. The probe vehicles used in the speed calculations shown in Table 6.6 fall into the second 

group. This group includes the vehicles which have entered the road section during the current 

interval but have not finished the section. In other words travel times of these vehicles should be 

predicted. It should be noted that if a vehicle doesn’t have any observation for a road segment the 

average of speed obtained from vehicles in the first group and the third group for that segment was 
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used. Consequently, as expected the standard deviations in the last two segments are very small. The 

intent of the shockwave detection is to improve this preliminary prediction.        

Table 6.6: Average speed over each road segment using data associated with probes in the 
second group 

  Average Speed (km/h) for each 5 min time interval 
Road Section 7:50-7:55 7:55-8:00 8:00-8:05 

1 30.79 39.63 27.61 
2 28.34 38.35 22.65 
3 34.50 33.57 29.11 
4 39.66 28.85 33.16 
5 43.94 31.36 33.66 
6 50.53 44.55 38.36 
7 58.77 56.40 42.49 
8 62.99 61.02 42.64 
9 63.07 60.94 43.15 

Travel Time (sec) 62.20 64.36 78.62 
No of Observations 32 32 31 

Table 6.7: Standard deviation of speed over each road segment using data associated with 
probes in the second group 

  Standard Deviation of Speed (km/h) for Each Time Interval 
Road Section 7:50-7:55 7:55-8:00 8:00-8:05 

1 12.89 7.23 14.52 
2 12.47 6.93 11.93 
3 11.78 8.01 10.15 
4 12.12 9.70 8.30 
5 4.69 3.38 8.06 
6 3.48 2.80 9.05 
7 2.32 3.39 10.37 
8 0.90 2.89 9.38 
9 0.02 0.00 2.41 

No of Observations 32 32 31 
 

The proposed shockwave detection algorithm was applied to the NGSIM data. Figure 6.5 illustrates 

the shockwave diagram in the first time interval (i.e. the first five minutes). In this analysis each time 

step within the time intervals was 10 seconds. A 95% level of confidence was used to perform the 

hypothesis test explained by equations  (4.8) and (4.9). Furthermore, the thresholds to identify 

shockwave intersection points among the inflection points were chosen to be 21.94 km/h (20 ft/sec) 

and 23.04 km/h (11 ft/sec). The road section was already congested and these values were selected 

because the shockwave points were visually appealing. As Figure 6.5 shows, all four groups of 

shockwaves which were introduced previously in the report were detected by the proposed algorithm.  
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Table 6.8 shows the characteristics of shockwaves which were found.  

Table 6.8: Output of the shockwave detection algorithm for NGSIM US-101 data 

No 
  

Type 
  

t1 (s) 
  

tn (s) 
  

d1 (m) 
  

dn (m) 
  

Speed yint (m) 
  

Su Sd R2 

  (km/h)   (km/h)  (km/h) 

1 1 61.41 123.54 1219.70 48.69 -18.85 2377.16 33.98 31.17 0.95 

2 1 123.54 135.40 48.69 36.89 -0.99 171.58 20.51 37.08 0.95 

3 1 233.19 281.84 1081.48 10.56 -22.01 6214.42 34.13 27.88 0.69 

4 2 83.81 138.17 961.23 -99.66 -19.51 2596.78 27.10 31.03 0.97 

5 2 246.31 300.40 823.27 -75.30 -16.61 4915.13 25.05 26.07 0.82 

6 3 89.06 149.69 1102.03 -4.31 -18.25 2727.06 31.49 42.66 0.98 

7 3 251.43 294.03 948.33 168.99 -18.30 5548.84 26.75 33.97 0.79 

8 4 66.00 160.28 1398.45 218.63 -12.51 2224.46 39.24 47.95 0.77 

9 4 243.23 292.03 1143.26 541.34 -12.33 4143.22 37.26 42.90 0.68 

No: A sequential number representing shockwaves (each shockwave in Figure 6.5 is marked with corresponding number), 
Type: Type of the shockwave (1 and 2 denotes backward forming shockwaves whereas 3 and 4 represent recovery shockwaves), 
t1: Time that the shockwave was first detected (seconds after 7:50 AM),  
tn: Time that the shockwave was last detected (seconds after 7:50 AM),  
d1: Location that the shockwave was first detected (meters from upstream boundary of the study area),  
dn: Location that the shockwave was last detected (meters from upstream boundary of the study area),  
ω: Speed of the shockwave (km/h),  
yint: Y-intercept of the line which represents the shockwave (meters),  
Su: Average speed of vehicles upstream of the shockwave (km/h),  
Sd: Average speed of vehicles downstream of the shockwave (km/h),  
R2: Coefficient of determination associated with the regression line representing the shockwave. 
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Figure 6.5: Trajectory of probe vehicles, shockwave intersection points and detected 
shockwaves on one lane of freeway US-101 (NGSIM data) 
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The computational time for the shockwave detection algorithm depends on a number of factors 

including the number of probe vehicles, the length of the route, polling interval between consecutive 

positions, duration of time intervals, and duration of time steps. In this research, the shockwave 

detection algorithm and travel time prediction algorithms were coded in MATLAB. The shockwave 

detection algorithm was run on a computer with Intel Core 2 Duo 2.66 GHz processor and 2 GB 

RAM. The computation time for each time interval was 686.86 sec. It should be noted that for the 

NGSIM dataset, trajectories of all vehicles were used and the polling interval was 0.1 sec. Both 

factors contributed to longer computation time for the NGSIM set. On the other hand the length of the 

route associated with the NGSIM data was short.  

The proposed travel time prediction method in this research utilizes shockwave information in 

order to improve the travel time prediction calculated using Equation (4.2). The travel time prediction 

obtained from Equation (4.2) which does not use the modification factor defined by Equation (4.4) is 

referred to as the benchmark method in the rest of the document. 

In order to quantify the improvements achieved by using shockwave information in travel time 

prediction, the travel time prediction obtained from the proposed methodology and travel time 

prediction obtained from the benchmark method are compared with the true travel time of vehicles 

and the measures of effectiveness defined at the beginning of this chapter.  

Figure 6.6 shows travel time prediction obtained from the proposed methodology, the benchmark 

method, and true travel time associated with each time interval for NGSIM data. The RMSEs 

associated with the travel time prediction obtained from the proposed and the benchmark methods are 

7.71 sec and 29.84 sec respectively. The MAPEs associated with the travel time prediction obtained 

from the proposed and the benchmark methods are 11.44% and 36.00% respectively. The Emax for the 

proposed and benchmark method are 29.84% and 59.94% respectively.  
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Figure 6.6: Comparison of travel time prediction from the proposed and benchmark methods 
with true travel time 

 

The application of the proposed model to the NGSIM data (as described in the previous section) 

demonstrated the ability of the proposed method to identify shockwaves. However, the ability to 

generalize these findings are limited by the following: 

1. The data included were only travelling on a known lane. In real world applications, the lane 

on which vehicles are travelling may not be identifiable.  

2. The NGSIM data differ from the data likely to be available in particular from mobile phone 

probes because: 

a. NGSIM positions are available at a much higher polling frequency (i.e. every 0.1 

seconds), 

b. Position accuracy is much better, 

c. Data are available from all vehicles (i.e. 100% sampling rate). 

3. The NGSIM study section is much shorter than what would be considered in real world 

applications. 
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4. NGSIM data are available for only 45 minutes which significantly limits the range of traffic 

conditions captured in the database.  

As an attempt to address these limitations, the proposed model is applied to the HWY 85 and HWY 

401 study areas in the subsequent sections.    

6.3 Application 3: HWY 85 

The compilation of the HWY 85 data was described in Section 5.1.  For the application of the 

proposed method, the 8.384 km freeway section was divided into sixteen 500 m segments and a 384 

m segment. A time interval duration of 15 minutes was selected. Figure 6.8 illustrates the trajectories 

of probe vehicles during the study period as well as the positions of interchanges along the study 

section. Similar to the NGSIM dataset, three types of probe vehicles are expected to be observed: 

1. Probe vehicles which enter and exit the 8.384 km road section during the current 15 minute 
time interval, 

2. Probe vehicles which enter but don’t finish travelling on the road section during the current 
time interval, 

3. Probe vehicles which entered the route during any previous time interval and will complete 
the road section in the current time interval. 

Table A1 and Table A2 in Appendix A show average speed associated with each road segment and 

standard deviation for each road segment respectively obtained from probe vehicles which have 

entered and exited the road section during the same time interval.  

Table A3 and Table A4 in Appendix A show average speed associated with each road segment and 

standard deviation for each road segment respectively obtained from probe vehicles which started and 

not completed the route during the same time interval.  

Figure 6.7 illustrate s the results of the shockwave detection technique for one time interval and 

Table 6.9 shows the attributes of each shockwave depicted in Figure 6.7.  The comparison of values 

in this table and Table 6.8 shows that the R2 values associated with the shockwaves identified on 

HWY 85 are not as large as those obtained through the NGSIM dataset. This finding can have two 

likely reasons: (1) in NGSIM case study, trajectories of vehicles travelling on one single lane were 

used but in the probe vehicles on HWY 85 were not constrained to a single lane; (2) US-101 in the 

NGSIM dataset was more congested than HWY 85. Therefore, vehicles were more constrained to 

follow each other than the HWY 85 case. It should be noted that the computation time associated with 
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the shockwave detection algorithm was 55.93 sec on a computer with Intel Core 2 Duo 2.66 GHz 

processor and 2 GB RAM.   
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Figure 6.7: Shockwave Diagram for HWY 85 between 16:15:00 and 16:30:00 
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Table 6.9: Output of the shockwave detection algorithm for HWY 85 between 16:15:00 and 
16:30:00 

No 
  

Type 
  

t1 (s) 
  

tn (s) 
  

d1 (m) 
  

dn (m) 
  

Speed yint (m) 
  

Su Sd R2 

  (km/h)   (km/h)  (km/h) 
1 1 1896.78 2385.00 3511.08 3464.81 -0.34 9126.03 95.48 54.43 0.01 

2 2 1932.15 2404.07 4254.41 3941.40 -2.40 43268.88 59.76 60.49 0.08 

3 3 2045.51 2596.54 4421.34 4853.73 2.76 -40558.77 62.57 79.99 0.22 

4 4 2060.71 2628.34 4954.96 5423.96 3.00 -43936.45 83.19 91.58 0.72 

No: A sequential number representing shockwaves (each shockwave in Figure 6.7 is marked with corresponding number), 
Type: Type of the shockwave (1 and 2 denotes backward forming shockwaves whereas 3 and 4 represent recovery shockwaves), 
t1: Time that the shockwave was first detected (seconds after 15:35),  
tn: Time that the shockwave was last detected (seconds after 15:35),  
d1: Location that the shockwave was first detected (meters from upstream boundary of the study area),  
dn: Location that the shockwave was last detected (meters from upstream boundary of the study area),  
ω: Speed of the shockwave (km/h),  
yint: Y-intercept of the line which represents the shockwave (meters),  
Su: Average speed of vehicles upstream of the shockwave (km/h),  
Sd: Average speed of vehicles downstream of the shockwave (km/h),  
R2: Coefficient of determination associated with the regression line representing the shockwave. 
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Figure 6.8: Trajectories of probe vehicles along SB of the HWY 85 study section from the start to end of the data collection effort 
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Figure 6.9 illustrates travel time prediction obtained from the proposed method, the benchmark 

method, and the truth over each time interval. True travel time in this figure was calculated based on 

travel time obtained from all probe vehicles equipped with GPS. As can be seen the travel time 

prediction curve is more consistent with the curve representing the truth. The RMSEs for the travel 

time prediction obtained from the proposed method and the benchmark method are 0.50 and 0.87 

minute respectively. The MAPEs associated with the travel time prediction obtained from the 

proposed method and the benchmark method are 4.48% and 6.27% respectively. Based on this figure 

the proposed method is performing particularly better than the benchmark method where the 

congestion is forming and the congestion is dissipating. Emax associated with the proposed method and 

the benchmark method are 9.7% and 17.87%. Conclusions about the accuracy of the proposed 

prediction model are limited by the limited number of probe vehicle data points available in each time 

period.    

 

Figure 6.9: Comparison of travel time prediction obtained from the proposed method and the 
benchmark method with the truth 

6.4 Application 4: HWY 401 

The compilation of the HWY 401 data was described in Section 5.2.  For the application of the 

proposed method, the 21.35 km freeway section was divided into forty two 500 m segments and a 

351.8 m segment. A time interval duration of 15 minutes was selected. Unlike the NGSIM data and 

HWY 85 data only one probe vehicle entered and exited the study section during one time interval. 

The main reason was the length of the study section and also high level of congestion particularly in 

the eastbound direction. Figure 6.10 illustrates the results of the shockwave detection technique for 
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the period between 15:00:00 and 15:30:00. Table 6.10 shows the attributes of each shockwave 

depicted in Figure 6.10. In order to identify a shockwave a minimum of three shockwave points are 

required. Therefore, as can be seen in the shockwave diagram shown in Figure 6.10, the limited 

number of probes with respect to the length of the route has negatively affected the performance of 

the shockwave detection algorithm.   

Figure 6.11 and Figure 6.12 show complete trajectories of probe vehicles along EB direction of the 

HWY 401 study section as well as the position of interchanges along the study section. Figure 6.13 

shows three graphs associated with EB collector lanes of the HWY 401 study section: (1) measured 

travel time obtained from GPS equipped vehicles. It should be noted that these values are obtained 

from complete trajectories of each individual probe vehicle which has to be undertaken off-line; (2) 

prediction of travel time using the proposed method; and (3) travel time prediction obtained from the 

benchmark method. A consistent behaviour amongst the three graphs can be observed in this figure. 

The RMSEs of the proposed method and the benchmark method with respect to the measured GPS 

travel times which are referred to as truth in this figure are 1.88 and 3.86 minutes respectively. The 

MAPEs of the proposed method and the benchmark method with respect to the truth in this figure are 

5.92% and 10.22% respectively. The Emax associated with travel times obtained from the proposed 

method and the benchmark method are 15.62% and 33.63% respectively.  

Figure 6.14 illustrates the two prediction values (i.e. travel times obtained from the proposed 

method and the benchmark method) and the travel time obtained from MTO loop detectors calculated 

using the trajectory method. The RMSEs of the travel time prediction and travel time prediction 

without the modification factor with respect to the travel time obtained from loop detectors are 3.23 

and 4.51 minutes respectively. The MAPEs of the two prediction values with respect to the trajectory 

method are 9.94% and 12.66%. Emax associated with the proposed method and the benchmark method 

are 19.70% and 37.63% respectively.  

Figure 6.13 and Figure 6.14 clearly show the improvements of the shockwave information at the 

times when (1) congestion is forming and (2) congestion is dissipating. These time periods are exactly 

where most travel time prediction models in the literature have difficulty in providing accurate and 

robust predictions. It should be noted that the computation time of the shockwave detection algorithm 

for the duration of the study was 1040.21 sec or on average 54.74 sec per a 15 minute time interval 

using a computer with Intel Core 2 Duo 2.66 GHz processor and 2 GB RAM.  
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Table B1 and Table B2 in Appendix B show average speed associated with each road segment and 

standard deviation for each road segment respectively obtained from probe vehicles which have 

entered and not exited the road section during the same time interval.

 

Table 6.10: Output of the shockwave detection algorithm for HWY 401 between 15:00:00 and 
15:30:00 

No 
  

Type 
  

t1 (s) 
  

tn (s) 
  

d1 (m) 
  

dn (m) 
  

Speed yint (m) 
  

Su Sd R2 

  (km/h)   (km/h)  (km/h) 
1 1 2332.66 2957.62 3583.78 3675.55 0.53 -4423.23 91.26 66.05 0.3257 

2 1 1841.15 3029.75 6315.50 5412.36 -2.74 47377.66 80.11 66.68 0.8916 

3 1 1958.68 3559.32 19723.73 19809.66 0.19 16816.17 85.05 51.51 0.0670 

4 2 1850.92 3043.54 6520.88 5703.02 -2.47 43587.24 66.68 67.04 0.9473 

5 3 1973.60 3217.62 7391.85 7284.47 -0.31 12067.82 67.04 84.53 0.0738 

6 4 2364.12 2977.22 4129.72 4039.71 -0.53 12140.49 66.05 65.97 0.2635 

7 4 2038.09 3254.57 7790.36 7751.48 -0.12 9523.81 85.20 88.84 0.0127 

No: A sequential number representing shockwaves (each shockwave in Figure 6.10 is marked with corresponding number), 
Type: Type of the shockwave (1 and 2 denotes backward forming shockwaves whereas 3 and 4 represent recovery shockwaves), 
t1: Time that the shockwave was first detected (seconds after 15:35),  
tn: Time that the shockwave was last detected (seconds after 15:35),  
d1: Location that the shockwave was first detected (meters from upstream boundary of the study area),  
dn: Location that the shockwave was last detected (meters from upstream boundary of the study area),  
ω: Speed of the shockwave (km/h),  
yint: Y-intercept of the line which represents the shockwave (meters),  
Su: Average speed of vehicles upstream of the shockwave (km/h),  
Sd: Average speed of vehicles downstream of the shockwave (km/h),  
R2: Coefficient of determination associated with the regression line representing the shockwave. 
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Figure 6.10: Shockwave Diagram for HWY 401 between 15:00:00 and 15:30:00 
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Figure 6.11: Trajectories of probe vehicles on EB of the HWY 401 study section from 14:30 to 17:00 
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Figure 6.12: Trajectories of probe vehicles on EB of the HWY 401 study section from 17:00 to 19:30 
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Figure 6.13: Comparison of travel time predictions obtained from the proposed method and the 
benchmark method with the measured GPS travel times for HWY 401 EB collector lanes 

 

 

Figure 6.14: Comparison of travel time predictions obtained from the proposed method and the 
benchmark method with the trajectory method for HWY 401 collector lanes 
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In order to compare the results obtained from the proposed method and the benchmark method 

Figure 6.15 can be used. Figure 6.15 shows travel time obtained from loop detector data using the 

MTO method and the trajectory method as well as measured GPS travel times. This figure also was 

previously shown in Chapter 5 as Figure 5.9. RMSEs of MTO method with respect to the measured 

GPS travel times and the trajectory method are 3.23 min and 2.16 min respectively. The MAPEs of 

the MTO method with respect to the measured GPS travel times and the trajectory method are 9.77% 

and 6.11% respectively. Emax associated with the MTO method with respect to the measured GPS 

travel times and the trajectory method are 28.88% and 16.73% respectively. 

 

Figure 6.15: Comparison of travel time obtained from loop detector with travel time obtained 
from GPS equipped probes for EB HWY 401 

6.5 Summary of Results 

This chapter dealt with the application of the proposed methodology to four test networks, namely (1) 

a simulated hypothetical signalized intersection; (2) NGSIM data associated with a section of freeway 
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Highway 401 in the Greater Toronto Area.  
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obtained from traffic flow theory and found that the relative difference between the propagation 

speeds of the backward forming shockwave obtained from the shockwave detection algorithm and 

traffic flow theory is 0.32%. The same value corresponding to the backward recovery shockwave is 

27.3%. The maximum length of queue obtained from the shockwave detection algorithm was 103.16 

m whereas the maximum length of queue obtained from traffic flow theory was 126.58 m which 

shows 18.5% difference. This highlights the capabilities of the proposed algorithm depicting the 

evolution of congestion in a traffic stream which per se has a number of applications such as end of 

queue warning systems and routing of emergency vehicles.  

For the other three test networks, the proposed shockwave detection algorithm was able to 

successfully identify shockwaves in the traffic stream. Also, the proposed real-time travel time 

prediction was utilized to predict travel time associated with different time intervals of each test 

network. Table 6.11 shows RMSEs associated with the proposed method and benchmark method for 

each road section. As can be seen in this table the proposed method is consistently superior to the 

benchmark method. This table also shows the improvement achieved by the proposed method with 

respect to the benchmark method. Table 6.12 illustrates MAPEs and Emax associated with the 

proposed method and the benchmark method for each test network. This table is consistent with Table 

6.11 and shows that the proposed method is superior to the benchmark method.  

Table 6.11 and Table 6.12 also show the percent improvements achieved by the proposed algorithm 

with respect to the benchmark method.  It should be noted that the main difference between the 

proposed method and the benchmark method is that the proposed method makes use of shockwave 

information and projects the shockwave trajectories into the future time intervals. Therefore, the 

improvements achieved by the proposed are attributable to the shockwave information.  

In order to compare the proposed algorithm with another source which is used in practice by many 

jurisdiction, the travel times obtained from loop detector data using the MTO method was compared 

with the measured GPS travel times and the loop detector travel times obtained from the trajectory 

method. Table 6.11 and Table 6.12 show RMSEs, MAPE, and Emax associated with the MTO method 

with respect to the measured GPS travel times and the trajectory method. As can be seen in these 

tables the proposed method is superior to the MTO method when the measured GPS travel times are 

the reference. However, the MTO method is superior to the proposed method when the trajectory 

method is the reference. It is important to note that the spacing of loop detectors was on average 4.27 

which is rather excessive which sheds doubts on the credibility of the travel times obtained from loop 
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detectors. One important conclusion can be however drawn from the comparison of the results 

obtained from the proposed method and the MTO method. The loop detector data are the results of 

significant capital investment in FTMS for freeways in major urban area. Such systems require 

regular maintenance due to damages caused by traffic, construction of the freeways, and adverse 

weather conditions. Moreover, the flow of data from loop detectors is jeopardized by most road 

works. The proposed algorithm with limited resources available in this research showed that the 

emerging technologies are potentially able to provide travel time predictions which are likely superior 

to the travel times obtained from loop detectors. The emerging technologies such as mobile phone 

probes make use of the existing infrastructure of the cellular network with minimal costs.      

Table 6.11: RMSE associated with the proposed method and the benchmark method for each 
test network 

Algorithm 

US-101 HWY 85 HWY 401 

Truth Truth 
“Truth”: 

Measured GPS 
Travel Time 

“Truth”: 
Trajectory 

Method 
Proposed Method 7.71 sec 0.5 min 1.88 min 3.23 min 
Benchmark Method 29.84 sec 0.87 min 3.86 min 4.51 min 
Improvement  74.2% 42.5% 51.3% 28.4% 
MTO Method - - 3.23 2.16 

    

Table 6.12: MAPE and Emax associated with the proposed method and the benchmark method 
for each test network 

Algorithm 

US-101 HWY 85 HWY 401 

Truth Truth 
“Truth”: Measured GPS 

Travel Time 
“Truth”: Trajectory 

Method 
MAPE  Emax MAPE  Emax MAPE  Emax MAPE  Emax

Proposed Method 11.44% 29.84% 4.48% 9.7% 5.92% 15.62% 9.94% 19.7% 
Benchmark Method 36.00% 59.94% 6.27% 17.87% 10.22% 33.63% 12.66% 37.63% 
Improvement  68.22% 50.22% 28.55% 45.72% 42.07% 53.55% 21.48% 47.65% 
MTO Method - - - - 9.77% 28.88% 6.11% 16.73% 
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Chapter 7 

Conclusions 

This Chapter highlights the main conclusions and contributions of this thesis research and presents 

directions for future work. The main conclusion of this research, which is valuable from academic 

perspective, is that this research provides a systematic framework to study the formation and 

dissipation of congestion on freeways. This information is not only important for travel time 

prediction and traveler information systems which are the subject of this research but also is critical in 

a number of applications in the area of freeway traffic management systems and incident management 

systems.  

In this research a dataset was collected and compiled for two freeway sections. This dataset 

provided an opportunity to gain insight into acceleration and deceleration behavior of probe vehicles 

along congested freeways. Moreover, the methodology presented in this research was applied to this 

dataset to assess the performance of the methodology in real applications.  

Based on the findings of this research the following major conclusions can be made: 

 The methodology presented in this research is capable of providing real-time travel time 

prediction. The results show that the average prediction error of the proposed algorithm is 

much less than the travel time predictions which are traditionally performed using loop 

detector data. 

 This research demonstrated the possibility of identifying shockwaves in a traffic stream 

using a small sample of vehicles.  

 It was shown in this research that the shockwave detection algorithm can estimate the 

shockwave attributes close to the values obtained from traffic flow theory.  

 The study of trajectories of real probe vehicles in transient traffic conditions revealed 

more complex shockwave diagrams. It appears that drivers do not accelerate or decelerate 

at a constant rate. This pattern should be given full consideration in the future studies 

involving shockwaves.    

 It was identified that for a small sample of vehicles equipped with GPS devices (0.23% in 

this research) the average travel times obtained from GPS equipped vehicles are not 



 

115 

statistically different from the true travel time. It should be noted that this conclusion has 

been drawn based on data from one freeway section. The number of probe vehicles 

required for a freeway section depends on the variance of speed among vehicles. 

7.1 Major Contributions 

Four major contributions are emphasized in this section: (1) the development of a real-time travel 

time prediction algorithm for freeway sections which involves two parallel components; (2) the 

development of a shockwave detection algorithm; and (3) The development of an algorithm to adjust 

travel time prediction. 

1. Development of a Real-time Travel Time Prediction with Two Parallel Components: This 

research introduced a travel time prediction model for freeway sections with two parallel 

components. The first component provides a prediction for travel time using all available data 

points obtained during the current time interval. One of the novelties of this component is that 

any source of data can be used to carry out the travel time prediction. This provides an 

opportunity for data fusion which will be described in Section 7.2. Parallel to this component, 

the shockwave detection component identifies any shockwaves which may exist during the 

current time interval and estimates the attributes of each shockwave. Finally, the results of the 

two components are merged together in order to provide a more accurate and robust real-time 

travel time prediction using the proposed travel time prediction adjustment algorithm.   

2. Development of a Shockwave Detection Algorithm: A new shockwave detection algorithm 

was developed in this research. The input to the shockwave detection algorithm is trajectories 

of a sample of vehicles regardless of the technology used to obtain the trajectory data. The 

main idea behind this algorithm is that when a vehicle and a major shockwave intersect, the 

speed of the vehicle changes abruptly. The shockwave detection model was built upon a 

strong theoretical basis of statistics and operations research. In this algorithm, first, a two 

phase piecewise linear regression is used to find the points at which a vehicle has changed its 

speed. Then, the points that correspond to the intersection of shockwaves and trajectories of 

probe vehicles are identified using a data filtering procedure and a linear clustering algorithm 

is employed to group different shockwaves. Finally, a linear regression model is applied to 

find propagation speed and spatial and temporal extent of each shockwave. 
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3. Development of an Algorithm to Adjust Travel Time Prediction: The travel time prediction 

adjustment algorithm proposed in this research projects the trajectories of the shockwaves 

detected in the traffic stream and identifies the road segments which each shockwave will 

likely traverse during the next time intervals. This algorithm adjusts the average speed of 

each road segment based on the average speed upstream and downstream of the shockwave. 

Finally, the algorithm predicts travel time of the route (which is composed of several road 

segments) based on the predicted travel time of each road segment.         

7.2 Future Research 

The following topics are recommended for future research. These topics improve and complement 

this research: 

1. The prediction horizon in this research is zero. It is recommended that the methodology used 

in this research be extended to predict travel time for prediction horizons larger than zero. It 

is recommended that for the prediction horizons larger than zero historical data associated 

with the route be used for better prediction of travel time.  

2. In the methodology presented in this research, first average speeds associated with each road 

segment for the current time interval are calculated. In this research only data obtained from 

trajectories of vehicles which traversed these road segments during the current time intervals 

were used. However, if other sources of data such as loop detector data are available, data 

fusion can likely improve the calculation of average speeds associated with each road 

segment.  

3. The shockwave detection module in this research makes use the data available only in the 

current time interval. However, it is expected that if the data associated with previous time 

intervals are used, a better picture of shockwave diagrams could be obtained which could 

potentially improve the travel time prediction process.  

4. The methodology presented in this research was only applied to freeway sections. However, 

it can potentially be applied to arterials. The main challenge of applying this methodology to 

arterials is that the shockwave diagrams are more complicated in arterials due to the 

interruption of traffic flow by traffic control devices.   
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5. One of the applications of the proposed shockwave detection algorithm is identification of the 

tail of the queue. It is recommended that the accuracy of the proposed algorithm in 

identification of the tail of the queues be investigated.  
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Appendix A 

Table A1: Average speed for each road segment obtained from probe vehicles which entered 
and completed the HWY 85 road section during each time interval   

 Average Speed (m/sec) for Each Time Interval 

Road Segment (m) 1 2 3 4 5 6 7 8 9 

0-500 28.80 26.32 27.53 28.11 32.40 31.17 + 27.25 29.42 

500-1000 28.09 26.76 28.10 28.13 30.42 31.34 + 27.25 29.38 

1000-1500 29.65 28.11 28.53 28.63 18.30 29.76 + 27.90 29.09 

1500-2000 30.04 27.77 28.26 28.63 3.38 8.61 + 25.57 29.27 

2000-2500 30.74 28.24 26.69 28.63 8.41 7.50 + 7.33 30.23 

2500-3000 30.86 28.34 27.09 19.17 9.62 11.61 + 7.45 29.63 

3000-3500 30.86 27.75 26.28 11.12 5.97 10.03 + 12.41 27.84 

3500-4000 30.96 28.65 12.33 7.52 7.16 8.83 + 6.86 22.83 

4000-4500 31.01 28.06 8.71 8.12 9.31 8.01 + 12.21 20.27 

4500-5000 30.63 24.59 11.64 7.94 13.63 9.70 + 17.49 16.81 

5000-5500 30.34 22.92 18.78 18.88 19.30 18.25 + 15.07 22.06 

5500-6000 30.58 25.10 22.50 21.94 21.76 18.68 + 24.30 24.69 

6000-6500 29.60 25.20 26.24 21.94 21.54 11.32 + 26.35 26.62 

6500-7000 30.33 27.11 28.00 24.65 25.37 24.93 + 26.01 26.84 

7000-7500 31.58 28.05 28.00 25.72 28.45 29.59 + 25.73 28.25 

7500-8000 31.58 25.91 26.24 27.64 29.36 28.23 + 24.79 28.43 

8000-8384 31.58 25.82 26.70 27.64 28.56 27.66 + 24.92 28.34 

Travel Time (sec) 275.97 314.45 405.33 493.81 702.14 603.9 + 539.18 325.14 

+ No data is available 
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Table A2: Standard deviation of speed for each road segment obtained from probe vehicles 
which entered and completed the HWY 85 road section during each time interval 

  Standard Deviation of Speed (m/sec) for Each Time Interval 

Road Segment 

(m) 
1 2 3 4 5 6 7 8 9 

0-500 4.43 1.10 1.81 - - - + 0.45 1.99 

500-1000 3.04 0.59 1.43 - - - + 0.45 1.72 

1000-1500 3.71 0.21 1.21 - - - + 2.03 1.42 

1500-2000 2.93 0.82 1.90 - - - + 1.49 1.26 

2000-2500 3.92 0.95 2.38 - - - + 2.48 2.14 

2500-3000 4.08 2.71 1.47 - - - + 0.85 1.51 

3000-3500 4.08 3.09 2.04 - - - + 0.51 3.01 

3500-4000 3.95 1.71 3.09 - - - + 1.51 7.94 

4000-4500 3.88 1.70 2.98 - - - + 0.28 10.40 

4500-5000 4.40 0.76 2.42 - - - + 0.42 8.10 

5000-5500 4.82 3.62 1.88 - - - + 0.31 3.72 

5500-6000 4.48 1.74 1.79 - - - + 1.32 2.81 

6000-6500 5.86 1.40 2.20 - - - + 0.21 2.53 

6500-7000 4.84 0.61 1.58 - - - + 0.08 3.22 

7000-7500 3.06 1.57 1.91 - - - + 0.30 1.71 

7500-8000 3.06 4.01 1.52 - - - + 1.02 1.30 

8000-8384 3.06 3.94 1.49 - - - + 0.85 1.35 

+ No data is available 

- Only one observation existed 
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Table A3: Average speed for each road segment obtained from probe vehicles which entered 
and NOT completed the HWY 85 road section during each time interval 

 Average Speed (m/sec) for Each Time Interval 

Road Segments (m) 1 2 3 4 5 6 7 8 9 

0-500 26.80 26.37 29.40 28.09 29.17 26.62 26.85 + + 

500-1000 26.56 26.66 28.26 27.14 29.17 26.56 27.48 + + 

1000-1500 27.42 27.49 25.90 27.29 29.17 26.45 17.86 + + 

1500-2000 26.34 27.29 24.65 18.66 19.16 9.03 4.95 + + 

2000-2500 26.24 27.57 26.28 13.59 6.87 8.57 7.36 + + 

2500-3000 26.97 27.63 25.49 15.20 8.38 11.17 11.18 + + 

3000-3500 26.18 27.28 24.19 11.77 7.48 10.46 13.73 + + 

3500-4000 28.95 27.81 11.92 6.97 6.72 9.20 12.56 + + 

4000-4500 27.20 27.49 5.38 8.08 9.10 7.39 14.66 + + 

4500-5000 26.95 23.57 9.21 7.94 12.46 9.65 18.38 + + 

5000-5500 27.08 22.71 15.32 18.88 18.05 17.31 20.99 + + 

5500-6000 27.62 24.54 26.13 21.94 21.16 16.98 21.61 + + 

6000-6500 27.81 24.90 27.00 21.94 20.90 14.10 21.44 + + 

6500-7000 28.46 26.80 28.57 24.65 24.01 24.50 23.58 + + 

7000-7500 29.23 28.35 29.87 25.72 27.53 27.02 26.81 + + 

7500-8000 28.62 26.70 26.83 27.64 27.83 25.97 28.04 + + 

8000-8384 28.62 26.37 26.71 27.64 27.85 26.34 27.92 + + 

Travel Time (sec) 305.69 318.23 460.32 533.84 592.28 603.11 557.76 + + 

+ No data is available 

  



 

121 

Table A4: Standard deviation of speed for each road segment obtained from probe vehicles 
which entered and NOT completed the HWY 85 road section during each time interval 

  Standard Deviation of Speed (m/sec) for Each Time Interval 

Road Segments 

(m) 
1 2 3 4 5 6 7 8 9 

0-500 0.14 - - 2.21 - 1.16 0.41 + + 

500-1000 1.12 - - 0.43 - 1.06 0.03 + + 

1000-1500 1.27 - - 0.74 - 0.91 12.84 + + 

1500-2000 0.45 - - 6.91 - 5.24 1.96 + + 

2000-2500 1.26 - - 13.02 - 3.47 0.60 + + 

2500-3000 0.28 - - 3.44 - 2.57 1.46 + + 

3000-3500 1.40 - - 1.15 - 4.15 0.77 + + 

3500-4000 1.68 - - 0.95 - 0.54 2.85 + + 

4000-4500 0.43 - - 0.07 - 1.59 0.39 + + 

4500-5000 0.78 - - 0.00 - 1.56 0.00 + + 

5000-5500 0.60 - - 0.00 - 1.42 0.00 + + 

5500-6000 0.17 - - 0.00 - 1.65 0.00 + + 

6000-6500 0.06 - - 0.00 - 1.20 0.00 + + 

6500-7000 0.00 - - 0.00 - 0.37 0.00 + + 

7000-7500 0.00 - - 0.00 - 0.00 0.00 + + 

7500-8000 0.00 - - 0.00 - 0.00 0.00 + + 

8000-8384 0.00 - - 0.00 - 0.00 0.00 + + 

+ No data is available 
- Only one observation existed 
 

 

 



122 

 

 

Appendix B 

 

Table B1: Average speed for each road segment obtained from probe vehicles which entered and NOT completed EB of the HWY 401 
road section during each time interval 

Road Segments 
Average Speed (m/sec) for Each Time Interval 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

0-500 27.53 27.15 27.07 27.06 27.08 21.02 7.41 7.32 7.36 5.31 5.79 5.44 4.77 9.13 6.66 12.52 24.88 27.32 27.37

500-1000 23.48 25.73 25.05 21.77 23.19 14.53 5.25 8.20 7.73 9.73 7.39 5.76 4.37 7.73 7.99 11.12 11.37 22.68 27.07

1000-1500 22.48 25.68 24.50 21.89 16.80 12.15 8.86 15.69 6.56 10.35 7.51 6.99 10.09 8.89 8.29 7.88 13.66 21.67 24.82

1500-2000 22.36 25.03 23.40 23.47 7.51 5.92 11.96 14.58 9.06 8.84 7.04 7.24 10.34 10.42 9.66 9.16 7.51 12.63 18.54

2000-2500 21.96 24.14 23.16 24.46 6.43 3.66 13.23 14.41 6.53 9.86 6.88 6.36 6.43 11.17 8.94 8.90 9.25 9.93 15.01

2500-3000 22.82 24.09 25.83 25.19 9.07 6.31 13.18 14.32 6.93 8.89 8.96 7.45 10.20 11.92 8.27 10.55 7.50 10.80 11.95

3000-3500 21.04 20.37 25.46 27.33 9.84 6.40 14.86 14.21 8.33 10.43 7.47 8.34 9.50 12.08 9.41 12.26 12.01 14.65 14.77

3500-4000 20.85 18.67 21.73 24.51 11.74 12.11 17.62 16.28 13.07 11.39 11.37 10.34 13.49 12.08 13.14 14.81 15.04 14.74 15.23

4000-4500 23.27 21.46 23.01 24.80 13.22 18.08 21.08 21.27 16.73 14.33 16.93 13.61 18.58 12.08 20.35 19.50 15.44 21.12 21.60

4500-5000 24.93 25.24 24.83 26.09 15.47 19.48 22.39 22.61 17.75 16.58 18.06 13.62 23.06 12.08 21.11 22.95 15.44 24.55 22.18

5000-5500 23.75 23.68 24.70 24.31 15.47 19.46 22.40 24.17 18.23 17.55 19.66 15.09 22.27 12.08 20.89 23.31 15.44 24.50 23.42

5500-6000 24.19 23.39 24.30 11.52 10.55 20.12 22.69 24.75 18.78 16.92 11.60 12.62 7.50 12.08 17.71 19.24 15.44 24.23 24.10

6000-6500 24.25 22.85 16.41 11.55 10.34 18.21 22.99 21.57 16.18 10.30 8.23 10.09 8.67 12.08 15.16 7.29 15.44 11.93 16.99

6500-7000 24.49 20.18 10.39 9.26 10.28 9.09 21.92 11.94 10.29 9.96 6.96 11.01 6.07 12.08 14.28 7.71 15.73 7.78 5.36 

7000-7500 23.46 20.46 14.17 13.57 11.54 12.96 19.71 14.07 12.18 11.66 9.25 12.85 9.94 13.41 16.24 13.06 18.12 10.76 9.86 

7500-8000 22.67 21.59 21.24 22.63 13.66 20.33 21.16 21.25 15.86 15.03 13.86 17.00 14.94 15.40 21.73 20.03 21.64 16.97 19.70

8000-8500 23.91 23.13 22.96 25.53 14.21 22.21 22.82 25.27 18.14 16.32 14.91 20.11 17.98 16.14 23.14 21.36 23.61 18.87 24.74

8500-9000 25.37 23.82 25.09 26.40 14.69 22.43 24.38 25.98 18.75 16.92 16.27 20.49 19.67 16.70 23.26 22.47 24.44 20.28 25.86
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Road Segments 
Average Speed (m/sec) for Each Time Interval 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

9000-9500 26.31 24.67 26.48 26.77 14.80 23.47 24.55 26.02 19.33 17.15 16.92 20.38 20.22 17.17 23.40 22.99 25.31 21.49 26.93

9500-10000 25.65 25.25 27.03 25.17 14.57 23.34 22.02 25.35 18.91 16.78 16.42 20.83 19.75 17.03 23.65 23.35 25.39 21.60 27.07

10000-10500 23.76 24.04 26.40 23.77 14.30 22.60 19.73 22.86 17.93 14.97 15.74 20.17 17.97 15.35 23.54 23.52 24.65 20.94 25.64

10500-11000 21.83 23.48 26.53 24.28 14.58 21.54 19.07 18.66 16.01 15.74 15.87 18.61 16.55 14.23 24.13 23.53 24.43 20.92 27.02

11000-11500 22.98 24.84 25.80 25.02 14.53 22.63 21.19 20.51 18.37 15.21 16.14 18.62 15.44 15.22 23.85 23.41 24.50 21.05 27.62

11500-12000 23.86 27.19 25.99 26.23 14.74 23.45 23.14 25.22 20.00 16.27 17.02 21.03 17.62 16.31 24.29 23.74 25.27 22.20 27.46

12000-12500 23.37 25.92 26.13 25.90 14.42 22.69 23.52 25.26 19.89 16.85 16.36 19.65 17.43 16.43 23.97 20.59 21.89 22.48 27.23

12500-13000 22.73 25.61 27.03 23.98 13.74 20.59 23.09 24.16 18.01 17.53 15.09 19.47 11.72 15.55 15.93 17.37 16.38 22.02 26.93

13000-13500 22.51 21.90 25.84 23.92 13.74 20.84 21.42 23.93 17.55 17.55 15.40 15.32 10.14 13.72 11.84 16.07 16.35 20.63 25.76

13500-14000 23.82 14.35 24.62 26.09 13.31 20.25 22.44 24.38 17.72 16.09 13.01 7.61 10.84 13.28 11.32 16.24 19.24 21.80 26.09

14000-14500 24.17 19.74 24.58 25.68 13.99 19.83 21.17 23.91 16.84 13.50 13.46 11.51 13.19 14.47 14.77 21.25 21.76 22.18 24.48

14500-15000 27.57 22.78 25.03 26.57 14.09 20.68 21.82 23.66 16.64 19.45 15.55 15.40 15.07 15.48 17.45 25.30 23.76 25.92 25.98

15000-15500 27.61 25.04 25.78 26.56 14.86 24.69 22.55 24.24 17.24 20.72 16.78 17.97 17.62 16.32 19.25 25.36 24.35 26.19 27.50

15500-16000 27.70 25.66 26.23 26.85 14.86 23.91 24.16 25.82 18.84 23.78 16.73 18.47 18.93 16.65 19.99 25.42 24.99 26.76 27.52

16000-16500 27.76 27.24 27.23 26.59 14.86 24.15 24.86 26.51 20.01 25.75 16.71 19.00 19.10 17.11 20.70 25.62 24.51 27.38 28.17

16500-17000 26.98 25.81 24.78 24.58 15.04 23.80 24.65 25.88 19.68 18.70 15.05 16.93 19.75 17.17 20.93 24.79 26.84 27.64 27.65

17000-17500 26.78 25.47 25.75 26.11 17.89 22.80 24.77 24.62 12.20 10.45 11.88 9.41 19.63 17.03 20.61 25.61 26.14 27.33 26.39

17500-18000 27.13 27.14 26.35 26.22 19.33 23.61 24.51 19.32 8.33 7.56 11.60 6.27 19.57 17.68 21.14 26.59 26.47 28.57 27.38

18000-18500 26.97 26.99 23.68 24.87 18.58 24.35 23.38 17.52 9.83 6.59 11.60 11.68 17.61 17.13 20.42 26.81 27.75 28.07 26.23

18500-19000 26.50 26.62 23.98 25.20 18.03 23.01 23.38 15.21 10.02 9.75 12.45 11.90 14.83 9.21 14.21 26.22 29.00 28.26 25.98

19000-19500 24.17 24.05 25.38 25.47 17.15 12.45 21.04 15.69 10.12 7.81 11.84 11.97 13.93 6.83 11.51 26.14 28.59 27.85 25.86

19500-20000 24.36 22.73 21.61 19.97 14.02 13.37 18.15 16.77 10.67 8.62 12.11 10.76 13.64 8.45 12.44 26.01 25.74 26.18 24.97

20000-20500 25.44 23.84 16.21 13.63 14.22 19.42 21.59 17.39 11.60 11.02 12.47 15.22 15.58 18.57 15.98 26.20 25.07 23.13 23.05

20500-21000 24.64 25.40 15.41 9.57 15.37 12.50 16.69 19.88 14.58 8.76 12.74 11.65 15.28 19.43 20.09 26.51 25.24 25.49 25.96

21000-21351.8 23.72 23.37 16.45 9.51 15.11 15.33 16.54 20.96 15.41 7.58 12.91 13.53 17.09 17.38 18.86 26.19 25.05 24.72 26.29

No of Obs. 3 4 2 4 3 3 3 3 2 2 3 3 1 4 4 3 3 3 3 

Travel Time (min) 14.64 15.13 15.70 17.09 26.32 23.73 19.87 19.24 27.78 29.65 30.21 30.45 28.87 27.18 23.58 20.83 19.45 18.31 17.00
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Table B2: Standard deviation of speed for each road segment obtained from probe vehicles which entered and NOT completed EB of the 
HWY 401 road section during each 

Road Segments 
 Standard Deviation of Speed (m/sec) for Each Time Interval 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

0-500 2.87 0.46 2.45 2.05 0.94 11.03 1.70 1.22 1.13 0.24 0.96 1.48 - 2.83 0.87 9.71 0.46 3.17 3.12

500-1000 5.59 2.97 4.82 6.83 4.63 11.40 0.77 0.93 1.73 1.89 0.89 1.92 - 2.07 1.47 1.09 0.41 10.15 3.16

1000-1500 1.84 2.87 2.94 1.03 5.92 9.78 2.85 1.29 1.10 2.73 1.62 0.57 - 0.94 1.60 1.16 0.57 6.75 1.44

1500-2000 0.48 2.60 1.61 2.43 3.82 0.70 6.23 6.10 1.58 4.87 1.65 1.24 - 1.16 3.51 0.80 0.73 7.22 7.85

2000-2500 2.36 1.67 1.38 2.76 4.76 1.14 7.08 5.17 1.81 3.42 0.77 1.14 - 1.83 1.76 0.56 0.76 0.25 8.64

2500-3000 3.87 2.51 0.06 2.66 3.48 1.28 7.04 6.96 1.29 4.80 1.29 0.69 - 0.31 0.62 1.12 0.81 2.70 1.50

3000-3500 3.22 5.35 0.31 1.67 2.02 1.97 3.92 5.48 0.23 2.61 0.73 0.92 - 0.00 0.56 2.77 1.48 1.56 1.37

3500-4000 1.24 6.22 4.02 5.40 0.00 5.27 4.94 4.27 1.92 1.49 1.61 1.71 - 0.00 0.23 3.15 0.67 1.45 1.49

4000-4500 1.05 2.86 2.22 2.30 0.00 10.43 2.72 2.16 2.63 0.14 4.76 4.23 - 0.00 1.87 0.53 0.00 3.04 2.50

4500-5000 2.18 2.40 0.79 1.07 0.00 11.65 0.15 0.78 2.02 0.00 5.21 5.61 - 0.00 2.11 0.93 0.00 2.00 4.27

5000-5500 1.35 1.20 0.17 2.21 0.00 11.64 0.14 1.06 2.38 0.00 6.96 8.15 - 0.00 1.97 1.52 0.00 2.03 2.46

5500-6000 0.99 1.43 1.99 4.24 0.00 12.24 0.00 0.55 1.73 0.00 0.22 3.88 - 0.00 3.38 0.65 0.00 3.06 2.15

6000-6500 0.24 2.42 10.90 4.36 0.00 10.55 0.00 4.13 3.36 0.00 2.03 0.36 - 0.00 8.13 1.81 0.00 7.70 3.37

6500-7000 0.51 7.20 3.94 4.83 0.00 4.48 0.00 3.81 0.03 0.00 1.04 0.00 - 0.00 9.15 3.40 0.00 0.91 2.75

7000-7500 0.87 5.21 1.69 3.71 0.00 1.02 0.00 4.19 0.13 0.00 0.55 0.00 - 0.00 6.88 3.71 0.00 1.69 0.88

7500-8000 1.92 1.38 1.41 4.39 0.00 0.32 0.00 1.19 1.41 0.00 2.56 0.00 - 0.00 0.54 1.10 0.00 5.96 1.35

8000-8500 1.77 0.90 0.41 2.36 0.00 0.12 0.00 0.55 2.42 0.00 2.70 0.00 - 0.00 1.09 1.06 0.00 7.60 2.10

8500-9000 2.70 0.94 0.55 3.32 0.00 1.10 0.00 0.27 2.63 0.00 3.45 0.00 - 0.00 1.23 0.07 0.00 8.66 2.22

9000-9500 3.27 0.64 1.00 3.04 0.00 1.16 0.00 0.85 2.39 0.00 3.91 0.00 - 0.00 1.39 0.21 0.00 9.69 0.22

9500-10000 3.09 1.65 0.07 1.99 0.00 0.65 0.00 1.02 2.41 0.00 3.75 0.00 - 0.00 1.67 0.02 0.00 9.78 1.20

10000-10500 0.64 0.51 0.00 2.62 0.00 1.00 0.00 0.45 1.47 0.00 4.27 0.00 - 0.00 1.55 0.18 0.00 9.21 2.70

10500-11000 1.24 1.44 0.00 3.67 0.00 2.83 0.00 0.00 2.07 0.00 4.00 0.00 - 0.00 2.23 0.78 0.00 9.19 1.51

11000-11500 0.00 0.30 0.00 2.45 0.00 1.08 0.00 0.00 0.99 0.00 4.44 0.00 - 0.00 1.90 0.72 0.00 9.31 1.00
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Road Segments 
 Standard Deviation of Speed (m/sec) for Each Time Interval 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

11500-12000 0.00 0.62 0.00 1.59 0.00 0.42 0.00 0.00 0.83 0.00 4.51 0.00 - 0.00 2.42 0.90 0.00 10.31 1.71

12000-12500 0.00 2.49 0.00 1.12 0.00 0.10 0.00 0.00 1.02 0.00 3.60 0.00 - 0.00 2.05 2.94 0.00 10.54 2.21

12500-13000 0.00 2.31 0.00 2.78 0.00 0.37 0.00 0.00 0.74 0.00 2.09 0.00 - 0.00 0.29 0.34 0.00 10.14 1.08

13000-13500 0.00 2.83 0.00 2.51 0.00 0.79 0.00 0.00 0.94 0.00 2.28 0.00 - 0.00 1.07 2.74 0.00 8.24 0.73

13500-14000 0.00 1.90 0.00 1.50 0.00 0.83 0.00 0.00 1.01 0.00 0.91 0.00 - 0.00 1.27 1.56 0.00 6.36 0.68

14000-14500 0.00 2.16 0.00 1.05 0.00 0.78 0.00 0.00 2.31 0.00 1.79 0.00 - 0.00 0.26 1.42 0.00 3.13 1.53

14500-15000 0.00 1.19 0.00 1.90 0.00 2.41 0.00 0.00 1.92 0.00 3.75 0.00 - 0.00 1.79 1.07 0.00 1.02 0.89

15000-15500 0.00 0.38 0.00 2.04 0.00 0.96 0.00 0.00 2.41 0.00 4.72 0.00 - 0.00 3.59 0.91 0.00 1.89 0.88

15500-16000 0.00 0.79 0.00 1.91 0.00 0.45 0.00 0.00 3.40 0.00 4.31 0.00 - 0.00 4.26 0.10 0.00 1.43 0.92

16000-16500 0.00 0.31 0.00 1.84 0.00 0.03 0.00 0.00 4.48 0.00 3.80 0.00 - 0.00 5.57 0.44 0.00 2.73 0.76

16500-17000 0.00 0.22 0.00 1.15 0.00 0.39 0.00 0.00 4.01 0.00 2.99 0.00 - 0.00 5.57 0.28 0.00 1.94 1.45

17000-17500 0.00 0.81 0.00 0.40 0.00 1.22 0.00 0.00 1.64 0.00 3.51 0.00 - 0.00 5.20 0.40 0.00 1.79 3.57

17500-18000 0.00 0.57 0.00 0.86 0.00 0.70 0.00 0.00 1.84 0.00 3.78 0.00 - 0.00 5.80 0.59 0.00 2.53 3.98

18000-18500 0.00 0.47 0.00 1.50 0.00 0.12 0.00 0.00 1.82 0.00 3.78 0.00 - 0.00 4.98 0.76 0.00 0.70 4.26

18500-19000 0.00 0.40 0.00 0.85 0.00 0.69 0.00 0.00 1.08 0.00 2.30 0.00 - 0.00 2.19 0.67 0.00 0.18 3.65

19000-19500 0.00 0.51 0.00 0.29 0.00 4.68 0.00 0.00 1.29 0.00 3.36 0.00 - 0.00 5.31 0.64 0.00 0.42 3.07

19500-20000 0.00 0.37 0.00 2.01 0.00 2.98 0.00 0.00 0.87 0.00 2.90 0.00 - 0.00 4.24 0.62 0.00 0.01 2.34

20000-20500 0.00 0.37 0.00 0.83 0.00 1.08 0.00 0.00 0.57 0.00 2.28 0.00 - 0.00 0.15 0.47 0.00 0.33 0.21

20500-21000 0.00 2.70 0.00 2.18 0.00 5.07 0.00 0.00 0.32 0.00 1.81 0.00 - 0.00 4.60 0.67 0.00 0.22 0.41

21000-21350 0.00 2.62 0.00 3.26 0.00 3.44 0.00 0.00 0.00 0.00 1.51 0.00 - 0.00 3.17 0.39 0.00 1.71 1.31

No of Obs. 3 4 2 4 3 3 3 3 2 2 3 3 1 4 4 3 3 3 3 
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Appendix C 

Mobile phones are now used as a regular medium of communication around the world. A mobile 

phone system consists of a set of base stations, located on a cell grid typically depicted as a series of 

adjacent hexagons (Figure C1). One base station is associated with each cell. The base station consists 

of a tower and a small building containing the radio equipment to communicate with cell phones 

located within the cell and land-line equipment to communicate with a Mobile Telephone Switching 

Office (MTSO). The MTSO handles all of the phone connections to the normal land-based phone 

system for several base stations in a region. Consequently, the MTSO knows the cell in which each 

mobile phone currently connected to the network is located. 

The cell ID information available at the MTSO represents one source of data for inferring traffic 

conditions. However, extracting meaningful information requires that: 

1. It is possible to determine if the mobile phone is in a vehicle, and 

2. The road segments a mobile phone has traversed can be identified from a time series of cell 

IDs and electronic road map database. 

As the mobile phone is moving toward the edge of a cell, the base station associated with the cell 

can measure that the strength of the signal from the mobile phone is diminishing. At the same time 

the neighbouring cell notes that the mobile phone’s signal is strengthening. Consequently, the two 

base stations communicate with each other through the MTSO and at some point, the mobile phone 

gets a message that tells the mobile phone to begin communicating with another base station. This 

process is termed “hand-off” and is depicted in Figure C2(Layton et al., 2006).    

Knowledge of the time of hand-off and the geographical region of hand-off provides a second 

source of data for extracting road conditions data. This source provides more information than just the 

cell IDs obtained from the MTSO providing the potential for more accurate determination of the 

mobile phone’s position.  
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Figure C1: A typical cell grid and associated base stations 

 

 

Figure C2: Hand-off mechanism of a moving mobile phone 

Although, using locations and time associated with locations, traffic conditions along the route of 

the probe vehicles could be determined, it requires a few steps to be taken to convert the raw data into 

travel time and speed. (Hellinga et. al., 2003) and (Hellinga et. al., 2005) provide detailed information 

about these steps.  

Mobile phone Location Identification Techniques 

The cellular phone system was not designed originally to provide handset locations and therefore, 

carriers have had to develop new modules and deploy additional hardware to determine the locations 

with sufficient accuracy to satisfy the 911 requirements established by the CRTC and FCC.  

Location identification techniques can generally be divided into one of 3 categories (Laitinen et al., 

2001):  
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 Network-based  

 Handset-based (GPS) 

 Assisted- GPS 

Each of these location identification techniques are described in the following sections. 

Network-based Techniques 

In network-based implementations, one or several base stations are involved in locating a mobile 

phone. Moreover, all required measurements are conducted at the base stations and the measurement 

results are sent to a location centre where the position is calculated. In this type of implementation, 

there is no requirement to make any changes to the current handsets. However, the mobile phone 

must be in active mode (i.e. in “talk” mode or sending a signal through the control channel) to enable 

location measurement. A number of network-based location identification techniques have been 

developed.  Following are descriptions of the most common techniques.  

Cell Identification Technique 

Knowledge of the cell in which a handset is located is an intrinsic characteristic of a cellular phone 

system, and therefore there is no need for network hardware enhancements. In this technique, the 

location of the mobile phone is approximated by the location of the base station. Relatively minor 

software changes enable these cell IDs to be obtained continuously over time rather than only when a 

911 call is initiated. Obviously, the accuracy of this technique is dependent on the size of the cell; the 

accuracy in rural areas, where the sizes of cells are substantially bigger than urban areas, is much 

lower.  

Time of Arrival Technique 

Since radio waves between base stations and mobile stations travel at a constant speed equal to the 

speed of light, the distance between a mobile phone and a base station is directly proportional to the 

time of arrival of the wave (Zhao, 2000). Consequently, if at least three base stations identify the time 

of arrival of a signal from a specific handset, then the location of the handset can be estimated as the 

intersection of the three circles centered on these base stations (Figure C3-a). 

Time Difference of Arrival Technique 
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Another technique, termed “time difference of arrival” is based on the characteristic that the locus of 

time difference of arrival of a signal between two base stations and a mobile phone forms a 

hyperbola. Thus, the mobile phone’s location lies at intersection of two hyperbolas associated with 

two pairs of base stations (Figure C3-b).  

Angle of Arrival Technique 

The location of a mobile phone can also be determined by measuring the angle of arrival of the radio 

wave. In this case, the intersection of two directional lines of bearing defines a unique position 

(Figure C3-c) (Takada, 2006). This technique requires at least two base stations and also requires 

directional antennas or antenna arrays to be installed at the base stations to measure the angle of 

arrival. Since the angle of arrival technique requires line-of-sight propagation conditions to accurately 

estimate the location of a mobile phone, this technique is not appropriate in dense urban areas (Zhao, 

2000).   

 
 

 

 

 

 

: Base Station 

: Mobile Phone 

a) Time of Arrival b) Time Difference of Arrival c) Angle of Arrival 

Figure C3: Network-based methods of estimating handset locations. 

Timing Advance 

Timing Advance (TA) is a Time Division Multiple Access (TDMA) term used in Global System for 

Mobile communications (GSM) networks. GSM uses the TDMA technology for sharing one 

frequency between several users in order to avoid interference. The TA value is normally between 0 

and 63 and each step represents an advance of one symbol period (approximately 3.69 microseconds). 

Since the radio waves travel at the speed of light (300,000,000 m/s), each TA step represents 550 m 
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from the base station (Eberspacher et al., 2001). In urban areas, the maximum TA step is usually 2 

(i.e. cell diameter ≤ 2 km) while in rural areas it could be as large as 20 (i.e. cell diameter ≤ 20 km). 

Consequently, TA can be used to identify the location of a mobile phone with maximum error of 

approximately 550 m.  

Handset-based Techniques 

In handset-based implementations all the measurements and calculations are performed in the handset 

and the results (i.e. location) are transmitted to the base station. In this category of implementation, 

handsets must be able to measure their own locations, typically through the use of GPS.  

GPS uses satellites orbiting the earth to determine position, speed, and time anywhere around the 

globe. The system is developed and maintained by the US Department of Defence. Civilian access is 

available through an agreement with the US Department of Transportation (Zhao, 2000). The GPS 

receiver determines the position of itself based on time of arrival technique.  

The use of GPS in mobile phone as a locationing technique suffers from three main disadvantages 

(Zhao, 2000): First, the time required to obtain a GPS position is relatively long, ranging from 60 

seconds to a few minutes due to the time required to acquire the satellite navigation message. Second, 

GPS signals are too weak to detect indoors and in urban canyons especially with small cellular sized 

antennas. Third, due to long signal acquisition time, GPS power dissipation is very high.  

Assisted GPS Techniques 

Assisted GPS (AGPS) is a technique devised to overcome the limitations associated with GPS based 

locationing. In an AGPS system, a network of fixed GPS receivers (often located at the base stations) 

is deployed. These receivers are located to have a clear view of the sky and can operate continuously. 

The reference network is also connected with the mobile phone network and continuously monitors 

the real time satellite constellation status and provides precise data. At the request of the mobile 

phone, data derived from the GPS reference network are transmitted to the mobile phone’s GPS 

receiver to “bootstrap” the position acquisition process (Zhao, 2000). Through this technique, 

acquisition time and consequently power consumption is reduced due to the fact that the search space 

is limited by data from the reference network.  Furthermore, sensitivity of the receiver is increased 

when the signals are weak (Zhao, 2000). Obliviously, legacy mobile phones cannot be used in this 

system. 
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