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Abstract 

Vehicle emissions, arising from incomplete fuel combustion and reactions 

between N2 and O2 leading to NOX, have detrimental effects on human health and 

environment quality.  Engine exhaust contains a variety of regulated components, such as 

hydrocarbons, CO, nitrogen oxides (NOX), and particulate matter (PM). Government 

environmental agencies have been continuously establishing regulations for automobile 

manufacturers to reduce these emissions.  Lean-burn engines operate with an excess of 

oxygen, which makes the reduction of NOX, challenging, with a coincident challenge for 

diesel engines being PM. Diesel particulate filters have been successfully employed to 

reduce PM. NOX storage and reduction (NSR) catalysts and selective catalytic reduction 

(SCR) catalysts are two promising technologies used to mitigate NOX emissions. A diesel 

oxidation catalyst (DOC) is usually placed upstream of these to reduce hydrocarbons and 

CO emissions and oxidize NO to NO2, which leads to improved performance over these 

catalysts. 

In this study, the performance of DOCs and NSR catalysts, individually and in 

series, has been investigated as a function of temperature, gas composition, catalyst 

length, and catalyst configuration. The catalytic oxidation of CO, hydrocarbons, and NO, 

both individually and in mixtures with NO2, was investigated over a monolith-supported 

DOC. The data clearly show mutual inhibition effects between these species. Addition of 

each gas to the inlet gas mixture caused an increase in the light-off temperatures of the 

other species, mainly due to site adsorption competition. CO was less affected by other 

species because its light-off temperatures began prior to those of NOX and other 
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hydrocarbons, and it is likely the primary surface species poisoning the active sites at low 

temperature.  

Hydrogen production via hydrocarbon steam reforming and water gas shift 

reactions was also investigated over a DOC during steady-state and cycling conditions (to 

mimic NSR catalyst operation) along the catalyst length. C3H6 and dodecane steam 

reforming started at 375 and 450°C, respectively, whereas the water gas shift reaction 

started at 225°C, and proceeded further than hydrocarbon steam reforming in terms of H2 

production. It should be mentioned that H2 production via the hydrocarbon steam 

reforming and water gas shift reactions during cycling experiments, was higher than that 

observed during steady-state experiments. According to temperature programmed 

oxidation experiments performed after steam reforming, the better performance during 

cyclic operation is because less coke was deposited compared to that with steady-state 

experiments.  

 Experiments were also performed over a NSR catalyst. The evaluations included 

testing the performance as a function of NOX source, NO or NO2, testing different 

regeneration protocols, and evaluating different reducing agents (hydrocarbons, H2, or 

CO). For NO and NO2 as the NOX source,  the  trapping and reduction performance was 

better when NO2 was used at all operating temperatures except 300ºC, likely due to high 

NO oxidation activity and rapid trapping of NO2 at 300ºC. Numerous reasons were 

provided to explain the improved performance with NO2 at other tested temperatures. 

The foremost reason though, is treating the monolith as an integral reactor. With NO2 as 

the NOX source, NO2 can be readily trapped at the very inlet and along the catalyst 

length, resulting in a higher trapping amount. Along the same concept, the released NOX 
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from the inlet of the catalyst has more residence time and contact with downstream Pt 

sites, but more importantly more interaction between reductant and stored NOX. In the 

second set of experiments, different regeneration protocols were used. Different 

regeneration times, 4, 8 and 16 seconds with 4, 2, and 1% H2 as the reductant amounts, 

and constant lean times were evaluated. The data clearly show an improvement with 

longer regeneration times in both NOX trapping and overall reduction performance at all 

temperatures except 500°C, where the more significant NOX release resulted in an overall 

decrease in NOX conversion with increasing regeneration time. The improved 

performance at the lower temperatures is due to more extensive nitrate/nitrite 

decomposition with longer regeneration times, thus leading to more extensive surface 

cleaning. The performance of the NSR catalyst was also investigated using hydrocarbons, 

H2, or CO as reducing agents. H2 was found the best at T ≤ 250°C, where the decreased 

performance with CO and hydrocarbons was due to Pt site poisoning at 200°C and as a 

result of slow kinetics at 250°C. CO and hydrocarbons, however, proved to regenerate 

the catalyst as efficiently as H2 at T ≥ 300°C. Hydrogen production via steam reforming 

experiments can not explain the improved performance with hydrocarbons, since 

propylene steam reforming occurred at 375°C, with only a small amount of H2 generated, 

and dodecane or m-xylene reforming did not occur below 450°C. TPR data show that 

propylene started to activate as low as 217°C and the complete reduction of NO by 

propylene was achieved at 287°C. For surface chemisorbed NOX species, propylene was 

observed to reduce these species at T > 200°C, with high rates by 264°C, with this 

activity eventually leading to comparable performance with either CO or H2 at similar 

temperatures during NOX cycling experiments. 
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The performance of two different hybrid DOC+NSR systems was also 

investigated. In the first configuration, a DOC and  NSR catalyst were placed in series 

while in the other configuration, the DOC and NSR catalysts were divided into two equal 

volumes and placed in series (DOC + NSR + DOC + NSR). Overall, the data show an 

increase in the NOX performance with the split configuration at all temperatures tested, 

with small changes at 200°C due to poisoning effects of Pt and Ba sites by CO and 

hydrocarbons being significant. The improved performance with the split configuration 

was related to further NO oxidation occurring over the 2
nd

 DOC, more H2 formed from 

steam reforming and WGS reactions, and reduced inhibition of the WGS reaction by 

hydrocarbons. 
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Chapter 1: Introduction 

 
 

1.1 Environmental Technology Management (ETM) 

 

Environmental Technology Management (ETM) is a multidisciplinary science that 

combines three interrelated fields; environmental science, environmental management, 

and environmental technology. Environmental science is the field that studies the 

environment (air, water, and land) and the interaction between the environment and 

humans [1]. Environmental management is an approach to environmental stewardship 

which deals with prevention and resolution of environmental problems, establishing 

limits, and identifying new technologies or policies that are useful [2]. Environmental 

technology is defined as any technology that reduces risks to humans and environmental 

ecology, improves process efficiency, and creates products that are environmentally 

friendly [3]. These disciplines collectively aim to provide a comprehensive understanding 

of environmental issues for air, water, and land and solutions to those issues.  

 

The focus of the research to be described is a proposed solution to control emissions from 

automobiles. Figure 1.1 describes an example of application of the ETM concept to motor 

vehicle emissions. In the rest of this section, automobile emissions and the approaches to 

manage automobile emissions via stipulating standards and regulations will be discussed. 

Finally, the feasibility of using different technologies to control these emissions, 

specifically for diesel engines, will be evaluated. 
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Figure 1.1 Application of the environmental technology management concept to automobile emissions 
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1.2 Environment 

1.2.1 Automobile Emissions 

 

Automobile emissions are the largest contributor to urban air contaminant emissions and 

one of the largest sources of greenhouse gases [4,5]. In 2002, about 67.4% of CO, 60%  

of nitrogen oxides, and 7.1% of particulate matter (PM) emitted came from automobiles, 

as cited by the Environmental Protection Agency (EPA) with highlights in Table 1.1 [6]. 

Additionally, automotive CO2 emissions are considered a significant contributor to global 

warming and thus climate change. Compounding this is the increasing numbers of 

vehicles on the road and different emissions regulations in different countries.  

 

Table 1.1 Automobile Emissions Relative to Total Emission Sources (Kilotons) in 

2002 

 

Emission 

Source 

CO NOX  VOCs PM SOx 

On Road  

Vehicle 

 

62,957 

 

8,133 

 

4,660 

 

14.433 

 

257.6 

Non Road  

Vehicle 

 

22,414 

 

4,517 

 

2,623.7 

 

301.8 

 

515 

Fires 14,520 16.1 3,036 1,230 102 

 

Residential 

Wood 

Consumption  

 

2,704 

 

36.7 

 

1,222.8 

 

338 

 

5.1 

 

Industrial 

Processes 

 

2,414 

 

1,158 

 

1,680 

 

491 

 

1,233.8 

Waste 

Disposal 

2,018 120 464 273.9 26 
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Fossil Fuel 

Combustion 

 

1,499 

 

2,419 

 

146 

 

190.8 

 

2,028 

 

Electricity 

Generation 

 

652 

 

4,668.9 

 

49 

 

500 

 

10,411.9 

Miscellaneous 33 2.3 1,200 1099.9 0.754 

Solvent use 3.3 9 4,267.9 7 1 

Total All 

sources 

73,218.8 21,082 19,350 4,448 14,581.9 

Total vehicle  

 sources 
49,372.8 12,650.8 7,284 316 772 

Percent 

Vehicle  

Sources (%) 

 

67.4 

 

60 

 

37.6 

 

7.1 

 

5.29 

 

 

 

1.2.2 Pollutants and Their Effects 

 

As discussed in the previous section, automobile emissions account for a significant 

portion of some pollutants. Pollutants are typically classified as either primary or 

secondary. Primary pollutants are substances that are released directly into the 

atmosphere from their sources. Common examples include SO2, CO, nitrogen oxides 

(NOX), particulate matter less than 10 μm in diameter (PM-10), and volatile organic 

compounds (VOCs). Secondary pollutants are not directly emitted from sources, but form 

in the atmosphere as a result of chemical and photochemical reactions between other 

emitted molecules. A common example of secondary pollutants is ground level ozone. 
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In our research, NOX is used as a generic term for mononitrogen oxides, NO and NO2. 

NOX is one of the major contributors to ground-level ozone, which forms when NOX 

reacts with VOCs in the presence of sunlight.  

 

VOCs + NOX + Sunlight  Ozone                                                                               (1-1) 

 

In addition, NOX is a major component of smog. Smog is a mixture of poisonous gases 

(e.g. hydrocarbons, SO2, and CO2) with ground-level ozone as the main component. NOX 

can also react with atmospheric water to form acid which falls to earth as rain, fog, or dry 

particles.  

 

These pollutants, whether primary or secondary, have harmful effects on human, plant, 

and animal life. They can cause breathing problems, dizziness, severe headaches, irritate 

the respiratory system, and at high concentrations can cause death.  

  

1.3 Management of Automobile Emissions 

 

Although the emissions per automobile have decreased over time, due to the large 

increase in the number of automobiles on the road, the overall emissions are still high. 

Therefore, it is still essential to manage and control these emissions to minimize the 

adverse impact to human health and the environment.  

 

Environmental agencies begin the management scheme by evaluating the effect of 

automobile emissions on human health and the environment. Then, they develop 

standards and regulations and impose them on automobile manufacturers. Automobile 

manufacturers then try to find and develop solutions or technologies that meet the 
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regulatory requirements. The third step in the management scheme is evaluating these 

technologies and whether they meet the requirements or not. The last step is 

implementation and subsequently monitoring, which is accomplished in two ways. The 

first is installing on-board diagnostic (OBD) systems; in some cases these are sensors that 

can detect emissions levels. The second is emissions test programs established by 

government agencies, which has been done in many countries such as the US, Canada, 

and Japan.  

 

 

1.3.1 Standards and Regulations 

 

Standards and regulations for automobile emissions are set by accounting for the effects 

of each pollutant on public health and the environment. Due to the increase in the number 

of automobiles and a recognized need for better air quality, government environmental 

agencies have been continuously imposing tighter regulations to reduce emissions from 

vehicle engines. Overall, automobile manufacturers have made remarkable progress in 

reducing pollutant emissions via advanced engine design and using cleaner fuels and 

highly developed exhaust aftertreatment technologies. Table 1.2 summarizes the history 

of heavy-duty, diesel-fueled vehicle emissions legislation in the U.S, Europe, and Canada 

from 1998 to 2010 [7, 8]. 
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Table 1.2 History of automobile legislations, g/KW-hr  

 

 

 

 

1.4 Technology 

 

In the previous sections, automobile emissions and how these emissions are managed and 

controlled by environmental agencies were discussed. The ultimate step is finding 

  

   United States (US) 

 

Year HC NOX  CO PM 

1998 1.75 5.4    20.8 0.13 

2004 0.67 3.35 20.8 0.13 

2007 0.187 1.6  20.8 0.013 

2010 0.187 0.26  20.8 0.013 

 

Europe 

2000 (Euro III) 0.66 5.0  2.1 0.10 

2005 (Euro IV) 0.46 3.5  1.5 0.02 

2008 (Euro V) 0.25 2.0  1.5 0.02 

                                                            

Canada 

1998-2004 1.75 5.4  20.8 0.13 

       2005 HC +   NOX = 1.0 19.3 0.13 

2008-2010 0.187 0.26  19.3 0.013 
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suitable pollution control technologies to mitigate these emissions and meet the 

regulatory requirements.   

 

1.4.1  Diesel Automobile 

 

The interest in diesel engines has recently increased due to their better fuel economy, and 

associated reduced CO2 emissions, relative to gasoline engines. Switching to diesel 

powered vehicles could reduce CO2 emissions from the transportation sector by 25% 

from their current levels [9]. Diesel engines not only emit less CO2, but also less 

hydrocarbon (HC), CO, and NOX as shown in Table 1.3 [9].   

 

Table 1.3 Heavy duty diesel vs heavy duty gasoline engine emissions 

Emissions (g/KW-h) Diesel Engine Gasoline Engine 

             HC 

             CO 

NOx 

             PM 

0.2 

         2 

4.6 

0.09 

1.08 

40.5 

5.76 

- 

 

 

 

                         

 

1.4.2  Diesel Exhaust Emissions Technologies 

 

Despite the fact that the diesel engine is promising from a fuel economy standpoint, 

further efforts are needed to reduce emissions in order to meet recently imposed, and 

upcoming, regulations. The following sections will describe some exhaust aftertreatment 

technologies that could be, and have already been, applied to diesel engines to minimize 

emissions.  
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1.4.2.1  Three-Way Catalytic Converter 

 

The three-way catalytic (TWC) converter is used to clean exhaust from most gasoline 

vehicles. The TWC converter contains precious metals, such as platinum, palladium and 

rhodium, for chemically converting some pollutants in the exhaust gases, such as CO, 

unburned hydrocarbons, and NOX, into harmless compounds. The basic chemical 

reactions occurring on the TWC can be described as follows:  

 2 NOX  → xO2 + N2                                                                                                                                           (1-2)                                                         

CO + 
1
/2 O2 → CO2                                                                                                 (1-3)                                                                                                           

2CxHy + (2x + y/2) O2 → 2xCO2 + yH2O                                                                (1-4)                                                               

 

TWC converters have been used in cars since 1980 [10] and have had a significant 

impact in the reduction of NOX, CO and hydrocarbons from engine exhaust. The TWC 

converter is designed for use in exhaust that is net-free of oxygen, in other words the 

engine operates with a stoichiometric air to fuel ratio. Diesel engines operate with excess 

air, therefore there is a significant amount of O2 in the exhaust. In the literature, there is a 

consensus that the TWC converter can reduce only a small fraction of lean-burn engine 

NOX emissions due to its design focus on operation where little to no oxygen is present 

during reaction.  

 

1.4.2.2  Selective Catalytic Reduction (SCR) 

 

Selective catalytic reduction (SCR) is a process where a reductant such as ammonia 

(NH3) or a hydrocarbon is added to the engine‟s exhaust gas to reduce NOX emissions. 

Some available vehicle models utilizing SCR technology are the Mercedes-Benz E320 
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and Vision GL 320. In NH3-based SCR, NH3 can either be injected as NH3 or originate 

from the decomposition of injected urea. The reductants, NH3 or hydrocarbons, react 

selectively with NOX to form N2 and H2O. NH3-based SCR can meet the regulations 

being imposed, however there is currently no catalyst for hydrocarbon-based SCR that 

has the efficiencies required to meet today‟s regulations. NH3 SCR reactions take place in 

the presence of a catalyst, which is commonly a Fe or Cu-doped zeolite catalyst.  

 

Several SCR reaction pathways have been suggested. The three primary ones are:  

 

4NH3 + 4NO + O2  4N2+6H2O                       (standard reaction)                  (1-5)  

2NH3 +NO2 +NO  2N2 +3H2O                        (fast reaction)                             (1-6)                                                         

 

8 NH3 + 6 NO2    7 N2+12 H2O                      (slow reaction)                          (1-7)                                                         

 

The first reaction pathway is called the "standard reaction" [11] and is considered 

relatively slow, especially at low temperature. The second is called the "fast reaction” 

[12] and is considered much faster than the standard SCR reaction, especially at low 

operating temperature (~200˚C). The third pathway reaction involves the reaction of NH3 

with NO2 and is slow relative to the others. This reaction tends to occur at temperatures 

greater than 250°C and when NO2 exceeds 50% of the total NOX (NO+NO2) [13,14].  

 

Although SCR technology can achieve significant reductions in NOx emissions, it has 

some associated problems: 

 

 SCR technology would require a distribution network for urea or NH3. In 

   addition, there are toxicity, storage and refueling problems with these reductants 

 [15]. 
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 NH3 slip, and an associated odor [16], can occur and consequently SCR requires a 

 very accurate injection system for urea or NH3 to assure that all the NH3 is 

 consumed. 

 

1.4.2.3 Diesel Oxidation Catalyst 

 

Diesel oxidation catalysts (DOCs) are used in most diesel engine exhaust clean-up 

technologies. DOCs are typically comprised of precious metals dispersed on Al2O3 or 

zeolite [9]. The DOC is effective for the control of CO, hydrocarbons, and the soluble 

organic fraction of PM.  

 

As the name implies, DOCs are effective oxidation catalysts, with the common reactions 

including CO, hydrocarbon and NO oxidation. CO and hydrocarbon emissions are thus 

reduced. NO oxidation, as will be discussed in greater detail in the literature review 

section, is also a desired reaction, as several downstream technologies are more efficient 

with NO2 as the NOX source, relative to NO.  

 

The incorporation of zeolite into the formulation is a recent development. Zeolites adsorb 

hydrocarbons at low temperature and release them at about 250°C, where they can then 

be oxidized by the precious metals [17]. The adsorption at low temperature helps reduce 

cold start hydrocarbon emissions.  

 

1.4.2.4 NSR Catalyst Technology 

 

NOX storage/reduction (NSR) is a relatively new catalyst technology for NOX emission 

abatement from lean-burn engines. NSR catalysts were first placed on both the Dodge 
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Ram and GM‟s Humvee in 2007 are expected to be used more wide-spread in the near 

future to meet 2007 and 2010 emissions standards in the US, Europe, and Japan. 

Reduction of NOX to N2 over a NSR catalyst is accomplished in sequential reaction 

steps [18]. Key reactions include storage of NOX by adsorption onto alkali and/or alkaline 

earth components, such as Ba, in the form of nitrate or nitrite species, and an intermittent 

addition of reductant to reduce the surface NOX species to N2. This technology operates 

in two phases; called lean and rich. The lean phase is the trapping or storage phase and 

the rich phase is the regeneration or reduction phase. In NSR, one cycle takes 

approximately ½ to 2 minutes, with 1 to 5 seconds for the rich phase. The lean phase can 

be considered normal engine operation where the exhaust gas includes CO2, H2O, O2, N2 

and NOX species. The NOX species react with the alkali or alkaline earth species to form 

nitrites and nitrates. With time, the storage materials become saturated with NOX species. 

Thus, the rich phase is needed to clean the storage materials from adsorbed NOX, thereby 

beginning a new cycle where the storage species are nitrate-free and are able to adsorb 

entering NOX species again. This rich phase contains many of the same gas species, 

except there should be some form of reductant, such as fuel, CO, or H2, but little or no 

O2. In NSR, the reductants react with surface NOX species and convert them to N2. These 

reductants originate in the exhaust via combustion of the extra fuel and air.  

 

1.5 Motivation 
 

 

Emissions from vehicles have become a societal concern. In many cities, the automobile 

is the single greatest polluter, as emissions from millions of vehicles on the road add up. 

In the U.S. for example, 28% of all US greenhouse gases come from the transportation 
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sector [19]. Despite the fact that new vehicles emit significantly less pollutants compared 

with older-model vehicles, due to the continuing growth in the number of vehicles and 

total distance traveled by each vehicle, the total emissions remain high.  

 

In diesel-powered automobiles, the DOC can significantly reduce the amounts of 

unburned hydrocarbons and CO. However, it is very difficult to dissociate the nitrogen 

oxides to elemental N2 and O2 due to the oxygen present in diesel engine exhaust. 

Consequently, different catalyst technologies, such as SCR and NSR have been 

developed to reduce NOX to N2 in lean exhaust.  

 

1.6 Objectives 
 

 

The aim of this study is to evaluate the effect of operating conditions on, and integration 

of, the DOC and NSR catalyst on NOX emissions. The investigation included effects of 

temperature, gas composition, and cycling times on the overall conversion efficiencies 

for key reactants.  

 

The specific objectives as related to DOC research are: 

 

1. Investigate the oxidation of NO, CO, and hydrocarbons individually and in 

mixtures with NO2 under oxidizing conditions. 

2. Study hydrocarbon steam reforming and water gas shift reactions, quantify the 

production of H2, and probe carbon deposition and regeneration during steady-state 

and cycling operations. 

 

 

The specific objectives as related to the NSR catalyst are: 
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1. Evaluate the effect of NOX source (NO or NO2) on the overall conversion to N2. 

2. Investigate the influence of different rich times with same reductant type and amount 

on the overall reduction to N2. 

3. Investigate the effect of HC species during the regeneration event on catalyst 

performance. 

 

DOC and NSR in series  

 

The aim of this part of the study is to evaluate performance when both the DOC and NSR 

catalyst are placed in series, which represents the actual configuration in NSR-equipped 

diesel automobiles. Two configurations of a DOC and NSR catalyst were compared. In 

the first configuration, the DOC and NSR catalyst were placed in series. In the second 

configuration, the DOC and NSR catalysts were divided into two equal volumes and 

placed in alternating series.  

 

1.7 Research Contribution  
 

 

This research provides unique contributions in developing advanced aftertreatment 

technologies that mitigate diesel automobile emissions. These include the following 

highlights: 

 Competitive reactions between NO, NO2, CO and hydrocarbons are evaluated, 

leading to a more representative understanding of the mechanisms on a DOC in 

practice.  

 

 Hydrogen production via the hydrocarbon steam reforming and water gas shift 

reactions over the DOC during rich conditions is evaluated. This will demonstrate 
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the amount of hydrogen formed, which would subsequently be used as a reductant 

to reduce NOX species in the downstream NSR catalyst. This also provides insight 

about any fuel penalty associated with NOX traps. 

 

 A systematic and comprehensive understanding of the performance of a NSR 

catalyst when either NO or NO2 is used as the feed NOX source is provided. The 

comparison was made between the two when the same amount of NOX is trapped 

so that the effects during the regeneration phase could also be observed. 

 

 The effects of regeneration-phase time, while keeping the total amount of 

reductant introduced during the regeneration phase the same, is evaluated. Such a 

study provides guidance for control strategies that could help minimize fuel 

penalties associated with NSR technology. 

 

 Regenerating the NSR catalyst using hydrocarbons is systemically investigated. 

This will show at what temperatures WGS and steam reforming reactions become 

important, and if the direct reaction between the HC and the surface is key, rather 

than the indirect intermediate route, both of which are still proposed in the 

literature. 

 

 Integrated systems containing both DOC and NSR catalysts, which represents the 

actual configuration in NSR-equipped diesel automobiles, is studied. A novel 

configuration was also evaluated, by alternating DOC and NSR catalysts in series, 

taking advantage of increased NO oxidation and H2 evolution through more 

extensive WGS and steam reforming reactions. 



 16 

1.8 Thesis Outline  
 

 

This thesis is divided into nine chapters and it is organized as follows: 

 

 

Chapter 1:              Introduction and Background  

           

                                This chapter provides an introduction and background about      

                                automobile emissions and their effect, standards and regulations to 

                                manage and control these emissions, and a brief description 

                                about some   automobile aftertreatment emission reduction 

                                technologies. It also provides the motivation for this research, 

                                research objectives, contributions, and organization of the thesis. 

 

Chapter 2:              Literature Review 

  

 This chapter presents a detailed background and a review of several   

                                 relevant previous studies for DOCs and NSR catalysts. 

 

Chapter 3-4:          Diesel Oxidation Catalyst (DOC) 

                               

                     In Chapter 3, competitive reactions between NO, NO2, CO  

                                 and different hydrocarbons (C3H6, dodecane, and xylene) are 

                                 discussed. Hydrogen production via the SR and WGS reactions 

                                 is extensively discussed in Chapter 4. The main focus is to 

                                 compare and quantify the amount of hydrogen formed during steady- 

                                 state and cyclic operation. As a part of this study, coke formation 

                                 and regeneration was investigated after these experiments to explain 

                                 the observed differences. 
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Chapter 5-7:           NOX Storage and Reduction (NSR) Catalyst 

  

                      In Chapter 5, the performance of a model NSR catalyst as a function  

                                 of NOX source, NO versus NO2, is discussed. The assessment 

                                 included comparison with constant cycling times and trapping the 

                                 same amount of NOX during the lean phase. In Chapter 

                                 6 the effect of regeneration time, while keeping the total amount of 

                                 reductant introduced during the regeneration phase the same, is 

                                 evaluated. The evaluation included trapping performance, NOX 

                                 release and formation of NH3. In Chapter 7, the regeneration of a 

                                 NSR catalyst using representative HCs, propylene for short chain, 

                                 dodecane for long chain and m-xylene for cyclic species, is 

                                 discussed. Hydrogen and CO were also used for comparison with the 

                                 HCs. Hydrocarbon steam reforming and temperature programmed 

                                 reduction (TPR) experiments were also performed to characterize the 

                                 performance changes observed as a function of temperature. 

 

Chapter 8:              DOC and NSR Catalyst in Series  

 

                                 In this chapter, the performance when both the DOC and NSR 

                                 catalyst are placed in series, which represents the actual 

                                 configuration in NSR-equipped diesel automobiles, is presented. 

                                 Two configurations of a DOC and NSR catalyst were compared. In 

                                 the first configuration, the DOC and NSR catalyst are placed in 

                                 series, while in the second configuration, the DOC and NSR 
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                                catalysts were divided into two equal volumes and were placed in 

                                 alternating series  

 

Chapter 9:             Conclusions and Recommendations 

 

 In this chapter, the overall conclusions from this research and 

                                 recommendations for future work are listed.  

 

Note: Chapters 3 through 8 have been or will be submitted individually for journal 

publication. Therefore, each of these chapters is “stand-alone” and includes its own 

introduction, experimental methodology and reference sections. 
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Chapter 2: Literature Review 
 

 

The literature review includes discussion of both diesel oxidation catalyst (DOC) 

technology and NOX storage and reduction catalyst (NSR) technology. The first section 

will focus on the DOC and highlight the oxidation reactions, competitive reactions, 

catalyst formulation, and the effect of thermal degradation on DOC performance. In the 

next section, a detailed review on the five sequential reaction steps in NSR catalysis and a 

technique by which the chemistry of an NSR catalyst can be axially resolved is presented. 

 

2.1 Diesel Oxidation Catalyst  
 

 

DOCs were originally used to oxidize CO and hydrocarbons (HCs) into CO2 and H2O 

and help eliminate odors associated with diesel exhaust. DOCs are now also used with 

NOX and PM control systems. Their role in these systems is as preheating devices for 

diesel particulate filters (DPFs) and SCR and NSR catalysts [1,2], as well as for NO 

oxidation. The heat is generated from exothermic HC oxidation reactions, with HC 

amounts controlled either by directly injecting fuel into the exhaust stream or adjusting 

the combustion strategy in the engine [1,3,4]. NO oxidation is desired for better low 

temperature SCR performance (as mentioned in the Introduction, the “fast SCR” reaction 

requires an equimolar mixture of NO-NO2 and diesel engine exhaust contains on the 

order of 5-10% NO2) and also results in more efficient NSR catalyst performance as will 

be discussed below.  
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2.1.1 Reactions on a Diesel Oxidation Catalyst 

 

Due to the complicated nature of diesel fuel and combustion, a vast number of species are 

emitted from the combustion process. For most applications, a DOC is the first catalyst in 

the aftertreatment system. Key reactions that occur over the DOC include the following 

[5]:   

  

2CxHy + (2x + y/2) O2 → 2xCO2 + yH2O                                                      (2-1)                                                                                              

CO + 
1
/2 O2    CO2                                                                                            (2-2)                                                                                                                

NO + 
1
/2O2     NO2                                                                                                                              (2-3)                                                                                

SO2 + 
1
/2O2   SO3                                                                           (2-4)                                                        

H2 + 
1
/2O2   H2O                                                                                                    (2-5)                                                      

CnHm + 2nH2O  (2n +m/2) H2+nCO2                                                                         (2-6) 

                                                        

 

In general, DOCs can achieve more than 90% reduction in CO and HC emissions at 

exhaust temperatures higher than ~300°C [6]. At lower operating temperatures however, 

as in the case of low-speed driving and engine start-up, the catalytic oxidation of HC and 

CO remains a significant challenge [7,8]. One solution to overcome the low operating 

temperature difficulty is incorporating zeolites into the catalyst formulation [9,10]. 

Zeolites can adsorb and trap HCs at low operating temperatures. Then as the temperature 

rises, to about 250ºC, which is above the light-off temperature (the temperature necessary 

to initiate the catalytic reaction) for most HCs over Pt [11], HCs desorb and are oxidized 

to H2O and CO2. Another proposed solution for low temperature HC and CO emissions 

control is using an electrically heated catalyst to decease the time required for HC light-
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off [12]. Finally, it has also been proposed [13] to take advantage of low temperature 

exothermic H2 oxidation, which can occur at room temperature over precious metals. The 

H2 can be generated in an on-board device by hydrolysis of water. However, this method 

is complex and expensive [14].  

 

It is important to note that high HC or CO conversions, at high temperature, can be 

limited by mass transfer in the catalyst [6]. This is influenced by cell density, pore size, 

and dispersion of active sites.  

 

There is no single HC exiting the engine, and therefore, there is the possibility of 

competing reactions. For the sake of simplicity, individual HCs and simple HC mixtures 

are always studied [2, 10,15-17]. If competing reactions exist, the measured conversions 

in tests with individual reactant species would always be higher than that in real 

application. In practice, engine exhaust contains many HC species, which react at 

different rates [18]. Some HC emission rates, in grams per mile, in diesel exhaust from 

two vehicles are shown in Table 2.1 [6]. Conversions of CO and HC would not 

necessarily be comparable with laboratory measured conversions, where pure HC or CO 

is usually used. Therefore, it is of great importance to study more representative HCs and 

mixtures of those HCs to have a better understanding of HC oxidation reaction rates and 

mechanisms.  

 

As a simpler example, CO and H2 react competitively and affect other reactions, either 

promoting or suppressing the light-off temperatures. In a recent study [19], self-inhibition 

of CO on Pt/Al2O3 occurred when CO was used, but the addition of H2 to the mixture 

caused a reduction in the light-off temperature of CO. In the same study, the authors 
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found that H2, without CO, would oxidize at room temperature, but when CO was added 

H2 oxidation began only when 50% CO conversion was attained. Similar observations 

have been reported in other studies [20,21]. Recent evidence suggests that H2 reduces the 

light-off temperature of CO by promoting CO desorption from Pt, while CO inhibits the 

H2 oxidation due to competitive adsorption [22]. 

 

         Table 2.1 Emission rates of some hydrocarbons in diesel engine exhaust  

Compounds 

 
Heavy duty diesel (HD)           Light duty diesel (LD) 

 

(g/mile) 
 

 

Total HC 

Methane 

Ethylene 

Propylene 

n-decane 

n-dodecane 

Benzene 

Toluene 

Xylene 

Ethyl benzene 

Aldehyde 

Formaldehyde 

 

3.65 

NA 

NA 

NA 

0.01 

0.027 

0.024 

0.01 

0.006 

0.005 

NA 

NA 

 

0.23 

0.01 

0.04 

0.01 

NA 

NA 

0.02 

0.006 

0.002 

0.001 

0.03 

0.02 

 

               NA= data not available, therefore the sum of the individual amounts listed do not equal the 

 total measured.      

 

Although DOCs do little in terms of reducing total NOX emissions, they do oxidize NO to 

NO2. The NO2 formed can be used in the downstream aftertreatment technologies. For 

example, NO2 can be used to oxidize soot on particulate filters [1, 23]. Particulate filters, 
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as the name implies, filter soot. At some point however, the soot builds up and needs to 

be removed. This is done via oxidation. Oxidation of soot with O2 occurs at temperatures 

greater than 500ºC, while with NO2, oxidation can occur as low as 300ºC [7,24]. 

Therefore, if the amount of NO2 is increased by using an upstream DOC, this will lower 

the required temperature for filter regeneration. SCR catalysts, as mentioned above, 

perform better with an equimolar mix of NO and NO2, especially at low operating 

temperature (~200˚C) [25]. Engine out NO: NO2 is on the order of 90:10. Therefore, if 

the amount of NO2 can be increased upstream of the SCR catalyst, this will result in 

higher NOX reduction efficiency. For NSR catalysts, as will be discussed in further detail 

below, NO2 is more readily trapped relative to NO, and NO oxidation is therefore critical 

for NSR catalyst efficiency. 

 

2.1.2 Diesel Oxidation Catalyst Formulation 

 

 

DOCs are typically made of a catalyst coating a ceramic or metallic monolithic substrate. 

Monolith substrates are used as they do not result in a high pressure drop, and provide 

excellent high temperature and thermal shock resistance [26]. The monolith wall is then 

coated with a porous, high surface area washcoat such as alumina or zeolite. The precious 

metals are dispersed on the surface and within the pores of the washcoat [14, 26].  

 

Platinum and palladium are the most active precious metals in the oxidation of CO and 

HCs from diesel exhaust [27, 28]. In a comparative study, the activities of Pt- and Pd-

based DOC catalysts were tested for CO and HC oxidation [6], and both CO and HC 

emissions over the Pd catalyst were higher than that of Pt. Most literature demonstrates 
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that Pd activity is less than Pt for the oxidation reactions involved in diesel exhaust [29-

31]. Rhodium has also been studied for HC, CO, and NO oxidation [28, 32, 33] but the 

order of activity was Pt >Pd >Rh [28]. 

 

A combination of Pt/Pd has also been investigated [15, 34, 35]. After thermal aging, CO 

and C3H6 light-off temperatures were always lower when using the Pt/Pd bimetallic 

catalyst compared to tests with a monometallic Pt or Pd catalyst [15]. The authors 

attributed the higher activity of the bimetallic catalyst to two reasons. First, when only Pd 

is used, the chemical state of the Pd will be metallic after thermal aging, and metallic Pd 

is inactive toward HC oxidation. When using a combination of Pt/Pd, Pd will exist in 

both metallic and oxide states after thermal aging. The second reason is that Pd stabilizes 

Pt against sintering. This could be due to oxygen exchange between Pt and Pd at high 

aging temperatures, keeping Pt in a metallic form, which is more stable [28] or possibly 

because of strong interactions between PdO and the oxide supports [36]. Similar 

observations were found when comparing monometallic Pt or Pd and bimetallic Pt/Pd 

supported on γ-Al2O3 for benzene oxidation [35]. 

 

The catalyst support can also have a substantial effect on DOC performance. The main 

function of the catalyst support is to provide high surface area for good dispersion of the 

precious metal catalytic sites. Inorganic base metal oxides such as Al2O3, SiO2, TiO2, 

V2O5, ZrO2, and zeolites have been tested as catalyst supports for DOCs [6, 37]. Al2O3 

and zeolite washcoats are the most commonly used in commercial DOCs. Al2O3 is often 

used due to its high surface area, high porosity, and thermal stability. The increased use 

of zeolites is due their ability to store HCs at low operating temperatures. Due to their 
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nanometer diameter pore size, they can selectivity adsorb HCs during engine start up and 

then desorb them at temperatures where HC oxidation starts [38]. Incorporating zeolites 

in DOC washcoats has shown success in decreasing HC emissions during cold start up 

[14, 9, 26].   

 

Cerium dioxide (CeO2) is commonly added to DOC formulations [26, 37]. Ceria has the 

ability to adsorb oxygen in oxidizing atmospheres, and liberate oxygen in reducing 

atmospheres:  

 

                     oxidizing:  Ce2O3 +
1
/2O2  2CeO2                                                           (2-7) 

                     reducing:   2CeO2 + CO  Ce2O3 + CO2                                                 (2-8) 

                                       

CeO2 also enhances the water gas shift (WGS) reaction, CO + H2O  H2 + CO2, and 

steam reforming reaction in a reducing environment to generate H2, which can then act as 

a reducing agent for NOX to N2 [26]. CeO2 also stabilizes Pt against sintering [26] by 

maintaining the dispersion of Pt particles. 

 

2.1.3 Hydrocarbon Steam Reforming 

 

Some current diesel automobiles are equipped with a DOC as an upstream catalyst and 

downstream SCR and/or NSR catalysts. For example, the Dodge Ram, Humvee, and 

some Toyota models are already equipped with both DOC and NSR catalysts. While the 

Mercedes-Benz E320 and Vision GL 320 in Europe are equipped with both DOC and 

SCR catalysts. 
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For this project, the design assumed is a DOC placed upstream of a NSR catalyst. For 

NSR catalyst application, as will be discussed in more detail below, the engine operates 

in two cycles; lean and rich. The lean phase is typically the normal diesel engine 

operating condition, whereas in the rich phase, the flow composition is similar except no 

O2 and less NOX is present, and reductant species are present. H2, the most efficient NOX 

reductant as will be shown below, can be produced in this rich phase from HC steam 

reforming: 

 

CnHm + 2nH2O  (2n +m/2) H2+nCO2                                                                         (2-9) 

 

HC steam reforming has been extensively studied over the last several decades. The main 

interest in this study, however, is HC steam reforming during cyclic operation, and 

specifically what occurs when cycling between lean and rich atmospheres during NSR 

catalyst application. 

 

Several studies have investigated HC steam reforming over Pd and Pt. The temperatures 

investigated in those past studies match the temperature range NSR catalysts operate in 

and since DOCs contain Pt and Pd supported on either alumina or zeolites, steam 

reforming is likely to occur. The following is a summary of a few studies that evaluated 

catalysts with similar components and in temperature ranges of interest.  

 

C3H8 steam reforming has been investigated over Pd/CeO2/Al2O3 and Pt-Rh/CeO2/ Al2O3 

catalysts [39, 40]. Steam reforming started at about 350ºC. Steam did not need to be 

added to the inlet gases to initiate steam reforming if oxygen was present since water 

formed from oxidation of some of the C3H8. Steam reforming began after the oxygen was 
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completely consumed. Steam reforming of C3H6 and isopropanol (CH3CHOHCH3) was 

also investigated over a powder Pd–Cu/γ-Al2O3 catalyst [41]. Steam reforming of both 

C3H6 and CH3CHOHCH3 started as low as 327ºC and increased steadily until complete 

conversion at about 527ºC.  

 

During the reductant-rich phase of NSR catalyst testing, CH4 has been observed [42], and 

it is therefore important to also consider CH4 reforming reactions. Steam reforming of 

CH4 was investigated over Pd/Al2O3, Pd/CeO2/Al2O3 [43] and Rh/α-Al2O3 catalysts [44]. 

Again, steam reforming began at 345-400ºC and increased with temperature. The catalyst 

including CeO2 showed higher amounts of H2 formed, indicating CeO2 has the ability to 

enhance the steam reforming reaction.  

 

2.2 NOX Storage and Reduction Technology 

 

The NSR process cycles through two phases; a lean phase and a rich phase. In the lean 

phase, NO is oxidized to NO2. NO2 is then adsorbed by trapping materials, such as Ba, in 

the form of Ba(NO3)2 and/or Ba(NO2)2. In operation, the lean phase continues until NOX 

starts to slip. At some point after slip is observed, the second phase of the cycle is 

typically started. In the rich phase, reductants are introduced to reduce the NOX species to 

N2. 

 

The entire process takes approximately ½ to 2 minutes. Overall, the reduction of NOX to 

N2 over an NSR catalyst can be described, as shown in Figure 2.1 [45], with five 

sequential reaction steps.  
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 Figure 2.1 Overall NSR cycle  

 

2.2.1 NO Oxidation to NO2 over the Noble Metal Component 

 

The majority of NOX emitted is NO, usually around 90%, with the rest NO2. Since NO2 is 

trapped more readily than NO, or may even be the required reactant for trapping, NO 

oxidation is a key step in the process. For this reason, DOCs are typically placed 

upstream of NSR catalysts, but NO oxidation can also occur on the NSR catalyst. Pt is 

the most commonly used catalyst component due to its high red-ox activity and results 

typically show that Pt is better than Pd for NO oxidation [29-31, 46]. Although Pd and Rh 

have less NO oxidation activity, they are key for NOX reduction, thus their addition [47]. 

It has been demonstrated that Pt particle size affects NO oxidation rates; as the particle 

size of Pt increases, NO oxidation surprisingly increases, demonstrating structure 

dependence [48].  
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    Figure 2.2  Effect of temperature on NO oxidation. The inlet gas contained 10% 

                        O2, 330 ppm NO, 5% H2O, 5% CO2 and a balance of N2 and the 

                        experiment was run with a commercial NSR sample at a space velocity 

                        of 30,000 hr
-1

. 

  

 

As shown in Figure 2.2 [45], NO oxidation is a function of temperature. At low 

temperature, the NO oxidation rate increases as the temperature increases and is 

kinetically limited. The conversion under the conditions of the test described reached its 

maximum at approximately 350°C and then started to decrease. The decrease at high 

temperature is due to thermodynamic limitations; the equilibrium conversion was 

reached.  

 

The rate of NO oxidation has a positive dependency with respect to NO concentration 

and a negative dependency with respect to the product NO2 concentration [49]. However, 
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the NSR catalyst traps NO2 and therefore may minimize this inhibition when trapping 

sites are available, but will still result in less NO oxidation once those sites are full. This 

inhibition is due to the fact that Pt activity toward NO oxidation drops with oxygen 

chemisorption [50]. The oxygen may not only originate from gas-phase O2, but also can 

come from product NO2, and NO2 is known as a strong oxidizer [51]. 

 

2.2.2 Adsorption of NO/NO2 on the Trapping Sites  

 

After NO is oxidized to NO2, the NO2 is adsorbed by the trapping components, which are 

usually alkali and alkaline earth components, the most typical studied being BaO. 

Numerous studies [52-54] have suggested that NO2 is a precursor for adsorption and 

nitrate formation. However, there is some indication that NO might also be adsorbed by 

trapping materials in the presence of O2, although to a lesser extent and at slower rates 

[55]. Overall, NOX is adsorbed in the form of nitrate and/or nitrite species on the alkali 

and alkaline earth components. Nitrate species, for example, have been detected when 

introducing NO2 to Pt/Ba/Al2O3 [54] while nitrites and nitrates have been detected when 

NO + O2 was introduced at low temperature [56].  

 

The selection of trapping materials is obviously an important factor and several have 

been tested, such as mixed oxides, perovskites, and inorganic oxides [55]. However, 

alkali and alkaline earth components show better trapping capacity due to their higher 

basicity [57]. Although NO2 is adsorbed by trapping materials, it can also be adsorbed by 

the catalyst support, which is typically Al2O3. For example, NO2 sorbed on Al2O3 when 

Pt/Al2O3, BaO/Al2O3, and Pt/BaO/Al2O3 catalysts were used [58], however, the amount of 

NO2 adsorbed was small; approximately 1% of the NOX trapped by Ba [55].  
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Temperature also impacts NOX sorption. As shown in Figure 2.3 [45], sorption increases 

with temperature until the 300 to 400°C range and then decreases.  
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      Figure 2.3 NOX storage capacity. The reactant gas was composed of 10% O2, 

                          330 ppm NO, 5% H2O, 5% CO2 and a balance of N2 at a space 

                          velocity of 30,000 hr
-1

 using a commercial NSR catalyst. 

 

With increasing temperature, the thermal stability of nitrate and/or nitrite species 

decrease, and therefore, at temperatures greater than ~350°C, typically NOX storage 

capacity decreases [59, 60]. One reason for the increase observed, when the temperature 

is increased from a relatively low temperature, is increasing NO oxidation. NO 

conversion to NO2 typically reaches a maximum at around 350ºC, helping to increase 

storage rates up to this temperature as well. The increase in capacity as the temperature 

increases, at low test temperatures, is also due to improved regeneration with temperature 

as will be discussed below. Thus, at low temperatures, the amount of NOX trapped is 

limited by NO oxidation and efficiency in removing nitrate or nitrite species during 
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regeneration. At high temperatures, the trapping capacity is limited by nitrate or nitrite 

stability. 

 

Another factor that influences NOX trapping capacity is the gas composition. A common 

assumption is that BaO is the easiest to form nitrates, relative to hydroxides or carbonates 

[48]. The presence of CO2 in the gas stream results in BaCO3 formation which is more 

stable than BaO. This increased stability can hinder nitrate and/or nitrite formation, which 

in turn will affect the trapping capacity. In one example, with a Pt/K/Al2O3 catalyst the 

trapping capacity decreased by 45% when CO2 was added to the gas mixture [61].  

 

Similarly, the presence of H2O can cause decreased trapping capacity by Ba(OH)2 

formation. In the same study described above, the addition of 5% H2O to a dry mixture 

caused a 16% loss in trapping capacity [61]. However, when both CO2 and H2O are 

added, the H2O had a positive impact on NOX storage capacity, via equilibrium between 

BaCO3 and Ba(OH)2. The carbonate is more stable than the hydroxide, so additional 

hydroxide relative to carbonate resulted in better trapping performance. 

 

The presence of O2 also can influence the trapping capacity via oxidation of NO to NO2 

as well as oxidation of surface NOX to nitrates. It has been shown [62] that as O2 

concentration increases, the NOX storage capacity increases.  

 

Although the trends and mechanisms of NOX storage have been investigated 

[51,55,63,64], due to the complexity of the catalyst, process and their sensitivity to 

experimental conditions, there is still debate regarding the mechanisms and the potential 

reactions involved in multiple catalytic steps [64]. Several mechanisms have been 
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suggested for NOX adsorption. The more accepted are listed below, with Ba used as a 

representative alkali or alkaline earth components. Hydroxide and carbonates are also 

present, but the oxide is selected as an example. 

 

 NO2 reacts with BaO to form nitrate in the absence of O2 via the 

disproportionation reaction [65] 

            BaO + 3NO2  Ba(NO3)2 + NO           (2-10) 

 NO2 reacts with BaO first and then with BaO2 to form nitrate [51] 

       BaO + NO2 → BaO2 + NO,      BaO2 + 2NO2 → Ba(NO3)2                           (2-11) 

 NO2 reacts with BaO to form nitrate in the presence of O2  

       BaO +2NO2+ O  Ba(NO3)2 [66]                                                                  (2-12) 

 NO2 reacts with BaO to form nitrate and nitrite species [67] 

            2BaO + 4NO2   Ba(NO2)2 + Ba(NO3)2                                                         (2-13) 

 

Several mechanisms have been proposed to explain the performance improvements 

observed when NO2 is used instead of NO as the NOX source. First, if trapping is a 

function of NO2 partial pressure [68], then when NO2 is used, the very inlet of the 

catalyst can participate in trapping [48] whereas with NO, oxidation to NO2 must occur 

before efficient trapping can be seen. A second possibility invokes the presence of two 

types of trapping sites. One Ba site type is that near Pt and the other is distant from Pt. 

NO can only adsorb on the Ba sites which are in close proximity with Pt since it needs to 

be oxidized to NO2 prior the adsorption event. While with NO2, it can be adsorbed on 

both Ba site types. 
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2.2.3 Reductant Evolution  

 

Trapping rates decrease with time as the trapping sites become saturated. Consequently, 

the catalyst needs to undergo periodic regeneration to remove the adsorbed NOX, and 

hopefully reduce these to N2. This can be achieved by introducing reductants and 

removing the O2, resulting in a net-reducing environment. The reductants can be 

introduced in a few ways. One is via adjusting combustion so that they exit with the rest 

of the exhaust [69]. Thus, for the rich phase, more fuel is injected into the engine, which 

in turn increases the amount of reductant. Enough fuel must be added so that more 

reductant exits than O2, thus the stream is reductant rich. The most widely used 

reductants in NSR catalyst testing are H2, CO, and C3H6 [70-77] the former two observed 

in rich engine exhaust and the last representing hydrocarbon species, also observed. H2 is 

superior for NOX reduction with NSR catalysts at lower temperatures compared to CO 

and C3H6; however, they are all comparable at higher temperature [70-76]. CO can go 

through the water-gas-shift reaction to produce H2, which can act as a reductant as well. 

It has been extensively demonstrated that the WGS reaction occurs over NSR catalysts 

[60,78]. But, the CO can poison Pt at lower temperatures (< ~200°C), affecting NO 

oxidation and NOX reduction reactions. For example, in a previous study with both 

commercial and model NSR catalysts [79], CO was found to decrease performance when 

present at 200°C, due to Pt poisoning, primarily of the reduction and nitrate 

decomposition reactions. 

 

Hydrogen can also be obtained from HC steam reforming during regeneration, either over 

an upstream DOC, as discussed in the previous section, or over the NSR catalyst since it 
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contains precious metal components as well. Ultimately, the formed H2 can then act as a 

reductant to reduce NOX species over the NSR catalyst.  

Reductants are not only required to reduce the trapped NOX, but they are also 

competitively consumed by oxygen stored on the catalyst surface. Consequently, the 

amount of reductant needed for regeneration and reduction is also dependent on surface 

oxygen; the more stored oxygen, the more reductant required. 

 

2.2.4 Nitrate Decomposition and NOX Release  

 

Nitrate decomposition and the release of NOX from the trapping site occurs due to (1) 

heat caused by the exothermic reaction between the entering reductant and any surface or 

residual gas-phase oxygen and (2) a change in gas composition with the switch from the 

lean to rich environment [48]. In terms of the temperature change, more heat will be 

generated with more reactant oxygen. Nitrate stability and therefore NOX release is a 

function of temperature and therefore, the associated temperature rise may be enough to 

decrease the stability of the surface nitrate or nitrite species and result in NOX release 

from the trapping site. 

 

The NOX observed in the catalyst outlet gas composition of course originates from NOX 

release, but also lack of reduction of those released species. For reduction to occur, 

nitrates must first decompose. The NOX can then be reduced on the surface, if in contact 

with a precious metal site, or is released into the gas-phase for re-adsorption onto a 

precious metal site. What is observed in the outlet gas during the rich phase is a portion 

of the latter. For example, at lower temperatures, the observed release of NOX is strongly 

dependent on the degree that the catalyst can activate the reductants [48]. As the 
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temperature increases, the capability of reductants to reduce NOX to N2 should increase 

and the release of observed NOX in the outlet gas should decrease. While, at higher 

temperatures, around 350°C and above, where the activation of reductant is not an issue, 

the weak stability of nitrate species, and therefore increased amounts released, is the main 

cause for observed NOX release [48].  

 

The absence of NOX and O2 in the regeneration phase leads to a decrease in the stability 

of nitrate and/or nitrite species. For example, by Liu and Anderson [76] demonstrated
 
that 

oxygen enhances the stability of nitrate and/or nitrite species. Therefore, upon switching 

to the rich phase, where little or no oxygen is introduced, the nitrate and/or nitrite species 

become less stable, leading to nitrate and/or nitrite species decomposition and NOX 

release. Via thermodynamic calculations, it has been predicted [80] that there is a direct 

correlation between the amount of CO2 and the stability of NOX species, with more CO2 

present resulting in more NOX released; likely associated with carbonate/nitrate stability. 

The presence of H2O in the gas stream decreased the amount of observed NOX release 

[80, 81], possibly being related to displacement of carbonate groups by hydroxyl groups.   

 

Pt catalyzes the decomposition of nitrate species [76], and therefore another contributing 

factor to nitrate decomposition and NOX release is the proximity of Pt sites to the alkali 

and alkaline earth components
 
[82].  

 

2.2.5 Reduction of NOX to N2 

 

Reduction of NOX to N2 is the last step in the overall NSR cycle. In this step, the NOX  

stored during the lean phase and then released at the onset of the rich phase is reduced to 
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N2 over the precious metals. Two main mechanisms have been proposed for reduction of 

NOX to N2 on the precious metal sites of NSR catalysts. The first mechanism postulates 

that the reductant reduces the precious metal site. Afterward, the reduced precious metal 

site participates in NO decomposition [73]. The second mechanism [83] proposes that the 

reductant is activated on the precious metal and reacts directly with NOX. Propylene was 

taken as an example for the reductant source in the scheme presented below.   

 

       C3H6 (g) + Pt      Pt-C3H6                               (2-14)                                                          

       Pt –C3H6 +2Pt    3 Pt-CH2                                                                                 (2-15) 

       Pt-CH2 + 3Pt-NO   4Pt + CO2 (g) + H2O (g) + 1.5 N2 (g)           (2-16) 

 

Reductant type and amount, temperature, and lean/rich time ratio are known to affect 

NOX reduction.  

 

Abdulhamid et al. [84] did a comparative study between H2, CO, C3H6, and C3H8 for 

reduction of NOX over BaO/Al2O3 samples containing Pt, Pd, or Rh.  The results of this 

study showed that H2 and CO were superior for NOX reduction in comparison to C3H6 

and C3H8 especially when Pt/BaO/Al2O3 was used. Another study compared H2, CO, and 

a mixture of H2 and CO as the reductant source over a Pt/BaO/Al2O3 catalyst [85]. The 

results showed that when mixtures of CO and H2 were used at low temperature (~147ºC), 

low NOX reduction was achieved in comparison with using only H2. The authors 

attributed the poor NOX reduction when using the mixture to reductant competition for 

adsorption on Pt sites. With stronger CO bonding, the surface H2 concentration would be 

lower in the presence of CO, and if conditions favor reduction with H2 instead of CO, the 
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NOX reduction rate would be lowered. They also showed that NOX conversion was 

higher with mixtures of H2 and CO in comparison to just CO as the reductant under 

otherwise identical conditions. With only CO as the reductant, NCO and CO2 species 

were formed. And in the presence of H2, the resultant H2O hydrolyzed the NCO to form 

the intermediate that ultimately decomposed to N2 and H2O. In a separate study [79] the 

effect of CO and H2 mixtures on overall reduction performance was studied. At 200ºC, 

the mixture of CO and H2 was better than using only CO, but using only H2 always 

resulted in better performance. At 300°C, the trapping and reduction of NOX were 

comparable when either H2, CO, or mixtures of the two for were used. At 400 and 500°C, 

mixtures of the two led to slightly improved performance relative to H2 and CO. The 

authors found that the lower performance at 200°C when CO was present was due to CO 

poisoning the precious metal sites to not just reduction of released NOX, but also toward 

the catalyzed decomposition of the nitrates. 

 

The amount of reductant of course also has an impact on NOX reduction. In one study 

[79] the performance of the catalyst improved with each incremental increase in H2 or 

CO concentration, except  at 200ºC, where the performance decreased with each increase 

in CO amount due to Pt poisoning. In another study, Bailey et al. [86] demonstrated that 

increasing the amount of CO during the regeneration phase at T > 300ºC resulted in 

improved overall NOX reduction under the conditions tested. 

 

NH3 is a by-product that can be formed during the regeneration phase [75, 87-89]. NH3 

formation has been observed when H2 was used as a reducing agent in the regeneration 

period over Pt/Ba-based catalysts [88, 89] as well as with mixtures of H2 and CO [87], 
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and pure CO [75]. NH3 can be formed in two ways; directly from reaction of H2, added 

during regeneration, with NO on the catalyst or with the H2 produced from the WGS 

reaction when CO and H2O are available in the regeneration mixture [90]. NO can be 

easily dissociated to atomic nitrogen and oxygen over precious metals at higher 

temperatures [91]. Subsequently, the N atom would react with dissociated H2 to form 

NH3. It should also be pointed out that NH3 has been labeled as a hydrogen carrier and a 

reductant participating in NOX reduction via SCR reaction chemistry [88]. 

Cumaranatunge et. al. [92] have demonstrated equivalent reduction efficiency of H2 and 

NH3 in NSR catalysis, and facile formation of NH3 from a feed of NO and H2 over a 

Pt/Al2O3 catalyst.  

 

Formation of N2O during the regeneration phase is also common. In a proposed path, 

during the regeneration phase, the reductant can reduce the Pt site allowing NO to 

decompose and form N2O via: 2Pt-NO  N2O (g) + Pt + Pt-O [94]. Formation of N2O 

demonstrates incomplete reduction of NOX species.  

 

2.2.6 Spatially Resolved Capillary Inlet Mass Spectrometry (SpaciMS) 

 

A mass spectrometer (MS) can be used to spatially resolve concentration profiles within a 

reactor and has been used to measure the gas species concentrations at different locations 

in monolith-supported NSR catalysts. Such a technique has been developed at Oak Ridge 

National Laboratory and is called spatially-resolved capillary-inlet mass spectrometry 

(SpaciMS). Choi et al. [94, 95] have investigated NOX and H2 concentration profiles over 

a monolith Pt/K/Al2O3 catalyst. As an example, the NOX concentrations at different axial 
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positions along the catalyst are shown in Figure 2.4. This initial study showed that the 

reaction chemistry in NSR catalysts is a function catalyst length, with some parts of the 

catalyst utilized more than others.   

 

 
   Figure 2.4   NOX breakthrough profiles as a function of catalyst length at T = 430ºC. The 

lean gas composition was 250 ppm NO, 8% O2, 5% H2O and N2 balance; 

and the regeneration gas consisted of 4% CO, 1% O2, 5% H2O and N2 

balance [94]. 

 

In a more recent study [96], SpaciMS was used to investigate the influence of sulfur and 

temperature on the spatiotemporal distributions of NSR reactions over a commercial NOX 

trap. The authors divided the catalyst into two zones for discussion; namely a NOX 

storage and reduction zone and an oxygen storage capacity (OSC) zone. The NSR zone 

was upstream, where both NOX and oxygen storage occurred, while in the downstream 

zone only oxygen storage was relevant, as shown in Figure 2.5. At 200ºC, it was found 

that the NSR zone extended to more than half of the catalyst length, while less than half 

was used to store NOX at 325ºC. At 325ºC, and after sulfur exposure, the catalyst could 
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be described with three zones, a sulfated zone with no NOX or oxygen storage, then an 

NSR zone, and finally the OSC zone.  

 

 

 

Figure 2.5   The reactions distribution inside a commercial NSR catalyst at 325ºC before 

and after sulfation. 40 ppm SO2 was added into the feed for 1 hr at 400ºC. 

The lean phase composition was 300 ppm NO, 10% O2, 5% H2O, 5% CO2 

and N2 balance; and the regeneration phase composition was 3.4% H2, 5% 

H2O, 5% CO2, and N2 balance. The space velocity was 30,000 h
-1

. 

 

 

Overall, those three studies showed that using SpaciMS can develop an improved 

understanding of dynamic spatiotemporal distribution reaction chemistry inside a 

monolithic NSR catalyst.    
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Chapter 3 

 

 

Competitive NO, CO and hydrocarbon oxidation reactions over a diesel oxidation 

catalyst 

 

3.1 Abstract 

 

 

The oxidation of NO, CO, and hydrocarbons individually, and in mixtures with 

NO2, were investigated over a monolith-supported Pt/Al2O3 catalyst under oxidizing 

conditions. NO2 was completely reduced by CO and C3H6, under NO2 limited conditions, 

at temperatures as low as 110°C and at temperatures above 140°C with dodecane and m-

xylene. NO2 was then again observed once the extent of oxidation of the other species by 

oxygen was significant. Under the conditions tested, NO, CO, and hydrocarbon oxidation 

was inhibited by NO2 in the feed gas mixture. Hydrocarbons were also found to inhibit 

the oxidation of NO and other hydrocarbon species due to site adsorption competition. 

For CO, hydrocarbons did not change the onset of oxidation, but did inhibit the extent 

after their light off began. At low temperatures, CO was found to initially inhibit NO 

oxidation, but at higher temperatures, once CO oxidation was significant, CO promoted 

NO conversion to NO2. The observed inhibition effects of the different gases on 

hydrocarbon oxidation were not additive, indicating one species would cause inhibition, 

but once its inhibition ended, another species could still then cause inhibition. The 

combined effect of C3H6, NO and NO2 on CO conversion was found to be additive unlike 

that observed for C3H6. This is because CO oxidation started prior C3H6.  
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3.2 Introduction 

 

Relative to today‟s gasoline engine, which uses a stoichiometric amount of fuel 

and air for combustion, the diesel engine and lean-burn gasoline engines have better fuel 

economy, and emit less CO2. However, NOX emissions, and particulate matter (PM) for 

diesel engines, remain an issue. An oxidation catalyst, called a diesel oxidation catalyst 

(DOC) in diesel engine exhaust aftertreatment systems, is commonly used to reduce CO 

and hydrocarbon exhaust emissions.  Pt and Pd are the most frequently used metals [1, 2] 

in DOC formulations, with Pd added for some activity, but also to stabilize the Pt [1-6]. 

In general, DOCs can achieve more than 90% reduction in CO and HC emissions 

at exhaust temperatures higher than ~300°C [6]. At low operating temperatures however, 

as in the case of low-speed driving and engine start-up conditions, the catalytic oxidation 

of HC and CO remains a significant challenge [7, 8]. One solution to overcome the low 

operating temperature difficulty is incorporating zeolites into the catalyst formulation [9, 

10]. Zeolites can adsorb and trap HCs at low operating temperatures. Then as the 

temperature rises, to about 250°C, which is above the light-off temperature (the 

temperature necessary to initiate the catalytic reaction) for most HCs over Pt [11], HCs 

desorb and are oxidized to H2O and CO2. 

DOCs are now also used with NOX and PM control systems. Their role in these 

systems is as a preheating device for the diesel particulate filters (DPFs), selective 

catalytic reduction (SCR) and NOX storage and reduction (NSR) catalysts [12, 13], as 

well as for NO oxidation. The heat is generated from exothermic HC oxidation reactions, 

with HC amounts controlled either by directly injecting fuel into the exhaust stream or 

adjusting the combustion strategy in the engine [12, 14, 15]. Although DOCs have little 
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effect on reducing NOX emissions, they do oxidize NO to NO2. NO2 is a key reactant for 

SCR, NSR and DPF aftertreatment technologies. For example, NO2 can be used to 

oxidize soot on DPFs at lower temperatures than O2 [7, 12, 16, 17]. In SCR, ammonia is 

used as a reducing agent and it has been shown that SCR catalysts perform better with an 

equimolar mix of NO and NO2, especially at low operating temperature [18-20]. 

Furthermore, NO2 is more readily trapped on NSR catalysts, relative to NO, and NO 

oxidation is therefore critical for low temperature NSR catalyst efficiency [21-24]. 

Although an increased amount of NO2 is beneficial for the downstream SCR, 

NSR, and DPF catalysts, previous studies show that NO2 can inhibit both NO and HC 

oxidation over Pt/Al2O3 catalysts. Mulla et al. [25] studied NO oxidation kinetics over a 

Pt/Al2O3 catalyst and found the rate is first order with respect to both NO and O2 

concentrations, but negative first order with respect to NO2 concentration. The inhibition 

effect was attributed to the strong oxidizing character of NO2, where on the Pt it 

dissociates to NO and elemental oxygen, the latter causing the inhibition. Further work 

has shown [.26] that adsorbed oxygen can react with NO resulting in the restoration of the 

activity, but when Pt oxides formed as a result of NO2 dissociation (forming elemental 

oxygen), the catalyst did not regain its initial oxidation activity. Other literature has 

attributed inhibition by NO2 to its high sticking coefficient on Pt [25, 27].  

In a recent study [28], C3H6 inhibition of NO oxidation was shown over a model 

Pt-Pd/Al2O3 catalyst. The apparent decrease in NO oxidation was due the preferential 

consumption of product NO2 as an oxidant for C3H6 oxidation. In the same study, it was 

found that the addition of NO2 inhibits C3H6 oxidation, after the onset of light-off, due to 

the decomposition of NO2 to NO, which then competed with C3H6 for adsorption sites 
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[29]. Although inhibition of hydrocarbon oxidation by NO has been studied, there is little 

evidence of similar inhibition by NO2 [25-27, 30]. 

Numerous studies have addressed the influence of hydrocarbons and CO on NO 

oxidation.  In one study, the interaction of CO, NO2 and NO in the presence of excess O2 

was studied over Pd/SiO2 catalysts [31]. The authors found that CO was effective in 

reducing NO2 at low temperature (below 180°C), but above 200°C reduction stopped 

because CO was consumed via oxidation by O2. Additionally, the interaction between 

C3H6, NO and O2 was also studied over a Pt supported on zeolite catalyst [32], where it 

was shown that O2 promotes the reduction of NO by C3H6 between 200 and 300°C, by 

facilitating the activation of C3H6. In the same study, NO2 was found to selectively react 

with C3H6, being reduced primarily to NO, although N2O formation was also observed. 

Moreover, NO oxidation light-off is inhibited by hydrocarbons and CO over DOCs [33], 

which the authors attributed to competitive adsorption between NO, CO and 

hydrocarbons on oxidation sites. Several similar observations have also been reported 

[34-38].  

The effect of hydrocarbon and/or CO addition on the oxidation of CO and 

hydrocarbons has also been investigated [39-41]. In these studies, the addition of a 

second HC species typically resulted in reaction inhibition relative to individual HC 

oxidation performance. In terms of CO effects, the oxidation of benzene, toluene and 

hexane individually and in the presence of a mixture of CO and isooctane over supported 

Pt, Pd, and Rh catalysts has been characterized [42]. The authors observed that inclusion 

of CO in the mixture considerably inhibited the oxidation of all the hydrocarbons. Such 
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inhibition was attributed to competitive adsorption between the hydrocarbons and CO for 

catalytic sites. 

Diesel exhaust contains a variety of reactive species, with key regulated species 

including CO, hydrocarbons and NO. DOCs are used to oxidize all of these. Based on the 

above discussion, it is likely that each of these influences the catalyst‟s performance 

toward the other species. In the present study, reactions involving NO, NO2, CO and 

different hydrocarbons (C3H6, dodecane, and xylene), all during lean conditions, were 

investigated to study the extent of inhibition between the species.  

 

3.3 Experimental Methods 

The monolith-supported sample was supplied by Umicore. The sample contains 

95 g/ft
3
 Pt supported on Al2O3. The sample was cut to 0.9” diameter with a length of 2.4” 

from a monolith block that had a cell density of 400 cpsi. The sample was placed into a 

horizontal quartz tube, which was placed inside a Lindberg Minimite temperature-

controlled furnace. To ensure that no gas slipped around the sample, the catalyst was 

wrapped with 3M insulation material to seal the catalyst in the quartz tube. For 

temperature measurements, two thermocouples were used; one just inside the inlet face 

and one just inside the outlet face of the catalyst.  

The gases and gas mixtures were supplied by Praxair and were metered with 

Bronkhorst mass flow controllers. Water was introduced using a Bronkhorst CEM system 

downstream, after the dry gas mixture had been heated. In experiments using dodecane 

and m-xylene, the hydrocarbons were again metered with a Bronkhorst CEM system and 

introduced after the wet gas mixture had been heated to >170°C to avoid condensation.  
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Experiments were performed between 100 and 400°C with a space velocity, at 

standard conditions, of 25,000 hr
-1

. The outlet CO, CO2, NO, NO2, N2O, H2O, C3H6, 

C12H26 and C8H10 gas concentrations were measured using a MKS MultiGas 2030 FT-IR 

analyzer.   

 In experiments investigating the effect of NO2 concentration on NO oxidation 

activity in the absence of both hydrocarbons and CO, the catalyst was heated from 150°C 

to 400°C at a rate of ~3.5°C/min in a mixture containing 200 ppm NO, 0, 20, 100 or 200 

ppm NO2, 10% O2, 5% H2O, 5% CO2, and balance N2. In the second set of experiments, 

where hydrocarbons and CO were used, the catalyst was heated from 100°C to 350°C at a 

rate of ~5°C/min. The gas concentrations used were 1080 ppm C3H6, 270 ppm dodecane, 

405 ppm xylene, 3240 ppm CO, 200 ppm NO, 0, 20, 100 or 200 ppm NO2, 10% O2, 5% 

H2O, 5% CO2, and balance N2. Relatively high concentrations of CO and HC species 

were used due to lower flow limitations of the dodecane, and all others were kept on the 

same C1 basis. 

 

3.4. Results and Discussion 

 

This discussion is divided into four sub-sections, based on different trends 

observed in Figure 3.1. In section 3.1, discussion of the overall trends when NO, NO2, 

O2, hydrocarbons and CO are present in the inlet feed, is presented. In section 3.2, the 

effect of NO2, hydrocarbons, and/or CO on NO to NO2 conversion specifically, which 

takes place when most of the reductant species have been consumed, will be discussed, 

and is described in Figure 3.1 as part B. In sections 3.3 and 3.4, the effect of NO, NO2, 

hydrocarbons, and/or CO on the oxidation of hydrocarbons and CO will be discussed, 
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which occurs in the temperature regime covered in the section labeled as “A” in Figure 

3.1.  

 

 

 
 

Figure 3.1 Outlet concentrations obtained during TPO with 1080 ppm C3H6, 200 ppm 

NO, 100 ppm NO2, 10 % O2, 5% CO2, 5% H2O, and balance N2. 

 

 

3.4.1 Overall trends  

 

The effect of temperature on the various key gas species concentrations, with 200 

ppm NO, 100 ppm NO2, 1080 ppm C3H6, and 10% O2 in the feed stream, is shown in 

Figure 3.1. NO2 was not detected in the outlet stream below ~190°C, though 100 ppm 

was in the feed stream. The NO2 is preferentially reduced by C3H6 in the presence of O2 

via selective catalytic reduction chemistry, even at low operating temperatures (~110°C 

was the starting temperature). The NO outlet concentration increased by approximately 
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83 ppm from its initial value (200 ppm) at the experiment onset. The increase in the NO 

concentration is due to incomplete NO2 reduction. 

 

 

Figure 3.2  Outlet concentrations obtained at 100°C in the  presence and absence of 1080 

ppm C3H6, 200 ppm NO, 100 ppm NO2, 10 % O2, 5% CO2, 5% H2O, and 

balance N2. 

 

 To further investigate the reduction of NO2 by C3H6 below 200°C, an extra 

experiment was carried out at 100°C with 200 ppm NO, 100 ppm NO2, 10% O2, and in 

the presence and absence of C3H6, with the data shown in Figure 3.2. At the beginning of 

the experiment, NO, NO2 and O2 were introduced and both NO and NO2 were detected, 

at their nominal inlet values. When C3H6 was introduced, the NO2 concentration 

immediately decreased, reaching zero, and the NO concentration increased, again by 
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about ~83 ppm. When C3H6 was shut off, the NO2 concentration increased and re-

achieved its inlet value and NO decreased to its inlet value. According to Figures 3.1 and 

2, 83% of NO2 was converted to NO via reduction of NO2 by C3H6 while the rest of NO2 

was reduced to N2.  

C3H6 and NO concentrations steadily decreased from 110 to ~160-170°C, after 

which, the decrease in both C3H6 and NO concentrations accelerated. Complete C3H6 

conversion was reached by ~202°C. NO reached a minimum value (10 ppm) at 205°C 

and then slowly increased as temperature increased. NO2 was observed at 192°C and 

reached a maximum at 275°C. The formation of N2O and CO, presumably as a product of 

incomplete NO reduction and C3H6 oxidation, or the selective reduction between the two, 

was detected at approximately ~150°C. The maximum outlet CO detected was 17 ppm at 

190°C and then decreased to zero by 197°C. N2O formation reached a maximum value of 

82 ppm at 198°C, and then slowly decreased and reached zero by 310°C. The N2O data 

show that C3H6 is still reducing some NO and/or NO2 at temperatures higher than when 

complete C3H6 conversion was observed.  

Hydrocarbon SCR, or in this case the interaction between NO-C3H6-O2, has been 

extensively investigated in the literature. In a previous  study investigating the 

interactions of C3H6-NO-O2 over Pt-based catalysts, at T < 250°C, high NO reduction 

efficiency was observed and the authors attributed this activity to O2 facilitating the 

activation of C3H6, forming oxidized hydrocarbon intermediates on catalytic sites [43]. 

These intermediates are believed to preferentially react with adsorbed NO, forming N2 

and/or N2O. However, at T > 250°C, NO reduction decreased due to combustion of C3H6 

by O2 becoming competitive/dominant [44]. NO2-C3H6-O2 interactions have also been 
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studied [23, 28, 34, 35, 45, 46]. Most agree that SCR of NO2 is faster than NO [45, 46], 

especially over un-promoted oxides, such as Al2O3. Burch et al. reported that NO2 is 

more reactive than NO, with NO2 reacting rapidly with the surface of the catalyst to form 

ad-NOX species (surface adsorbed NOX species), including organo-nitro, organo-nitrite 

species, and hydroxynitropropane, considered intermediates in the reaction. The 

observations from Figures 3.1 and 3.2 are seemingly consistent with those previously 

made, in terms of NO2 reduction by C3H6 being more favored compared to that with NO. 

Although the data cannot explicitly be used to show whether it is NO or NO2 

participating in the SCR reaction, no NO2 is observed until the higher temperatures. 

According to the data shown in Figure 3.1, NO2 is easily reduced, at least to NO at lower 

temperatures. And as will be shown below, NO oxidation occurs at temperatures lower 

than 150°C over this catalyst (> 60% conversion at 150°C). These results therefore 

suggest that NO2 is selectively and preferentially consumed by C3H6 at low operating 

temperatures, either to primarily NO at lower temperatures and then to N2O and N2 with 

increasing temperature. 

Similar experiments were performed but with 3240 ppm CO instead of C3H6. The 

outlet concentration of CO and NOX species are shown in Figure 3.3, along with the 

equilibrium NO2 levels for reference. Overall, trends were similar as those with C3H6 are 

observed with CO. Again, no NO2 was detected at the onset of the experiment and not 

below 168°C. The NO concentration increased by only 65 ppm compared with 83 ppm 

with C3H6. A steep decrease in the NO concentration was observed starting at 170°C and 

reached a minimum value at 195°C, then NO slowly increased as the temperature 

increased. A sharp drop in the CO concentration was observed starting at 164°C, and 
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reached 0 ppm by 176°C (C3H6 reached zero at 201°C). NO2 was observed starting at 

168°C, at which point 40% of the CO was consumed, and is lower by 24°C compared to 

that with C3H6. The maximum NO2 amount was attained at 215°C. The N2O amounts 

were very small, indicating that CO suppressed the N2O formation pathway compared 

with C3H6.   

 

 

 

Figure 3.3   Outlet concentrations obtained during TPO with 3240 ppm CO, 200 ppm 

NO, 100 ppm NO2, 10 % O2, 5% CO2, 5% H2O, and balance N2. 

 

In a previous study with aged DOCs [32], the effect of hydrocarbons and CO on 

NO oxidation and NO2 reduction was investigated. Like the data shown in Figures 3.1-3, 

the authors showed that both hydrocarbons and CO can completely reduce NO2 to NO at 

low temperature, until around 250°C in their study, and then the NO was oxidized back to 

NO2. Studies involving CO-NO-O2 have shown similar trends [28, 31, 47].      

  (NO2) 
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The effects of dodecane and m-xylene were also investigated, with NO, NO2, N2O 

and the hydrocarbon concentrations shown in Figure 3.4. Unlike with CO and C3H6, NO2 

was observed at the onset of the experiment, i.e. at 110°C. This shows that neither 

dodecane nor xylene are as strong as the CO and C3H6 in reducing NO2 to NO or N2. The 

summation of NO2 and NO at 110°C was equal to the inlet value of NOX. The likely 

reason for the lower activity of dodecane and xylene at 110°C is related to the nature of 

hydrocarbon chains. First, long chain and cyclic hydrocarbons can partially block access 

of NO2 to active sites, resulting in lower reduction activity. Also, their reactivity is lower 

in the sense that they are not activated at such low temperature. However, as the 

temperature increases, the activity of both dodecane and xylene to reduce NO2 improved. 

With m-xylene, NO2 was completely reduced by 145°C and by 165°C with dodecane. 

NO2 was then again observed at 190°C with m-xylene, and reached a maximum value at 

about 295°C. With dodecane, NO2 was observed starting at 170°C, and reached a plateau 

again at 295°C. NO2 being observed at low dodecane conversion demonstrates that m-

xylene is more reactive toward NO2 reduction, which will be discussed further in section 

3.3. No CO was observed in these two cases, indicating complete combustion once these 

hydrocarbons were activated. The combined data also show that NO reduction is 

coincident with reductant oxidation, suggesting that reduction is tied to the reductant 

activation as the limiting step at low temperature. 

It should be noted that due to the presence of various types of hydrocarbons, CO, 

NOX and excess O2 in diesel exhaust, SCR chemistry over a DOC is inevitable. Figures 

3.1 to 3.4 show this overall trend. With CO and C3H6, NO2 is preferentially being 

reduced by either CO or C3H6 to NO and N2. With larger hydrocarbons (dodecane and 
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xylene) reduction is still observed, but to a lesser extent. Once the temperature is high 

enough to oxidize most of the incoming CO and hydrocarbons, NO oxidation to NO2 is 

observed. N2O formation was very low when CO was used as a reductant, ~ 5 ppm, while 

more than 80 ppm was detected when hydrocarbons were used. Hydrocarbons require an 

intermediate to reduce NO2 to NO and N2, facilitating the formation of N2O, as will be 

discussed below.     

 

 

   Figure 3.4 Outlet concentrations obtained during TPO with either 270 ppm dodecane or 

405 ppm m-xylene, 200 ppm NO, 100 ppm NO2, 10 % O2, 5% CO2, 5% H2O, 

and balance N2. 

 

The interactions between HCs-NOX-O2 and CO-NOX-O2 over Pt/Al2O3-based 

catalysts have been widely discussed [23, 28, 31, 34, 35, 45-50]. Burch et al. [50] 

suggested the following NOX reduction mechanism. CO and hydrocarbons first reduce 
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some Pt-O sites to metallic sites and subsequently NO dissociates on these reduced Pt 

sites, leading to N2O formation at lower temperature and N2 at higher temperature. Other 

research has provided an alternate explanation, with the path mentioned above possibly 

still occurring. For example, (1) NO oxidizes to NO2 and subsequently reacts with the 

hydrocarbon over Pt [51-53], and (2) formation of an oxidized hydrocarbon or isocyanate 

as an intermediate [54-56]. The latter mechanism could explain the trend observed in our 

data, where reduction activity increased as the extent of NO oxidation to NO2 increased 

or once inlet NO2 increased. It has also been proposed that the ad-species originating 

from decomposition of CO and hydrocarbons could facilitate the decomposition of NO 

[57], which the data here also follow, since the activation of the reductant is critical for 

reduction to begin. 

 

3.4.2 Effect of NO2, hydrocarbons, and CO on NO oxidation 

 

The NO oxidation conversion calculated and plotted is based on NO2 made, not 

NO consumed. For the data after Figure 3.5, these calculations were made when most of 

the reductants have been consumed as illustrated in Figure 3.1, part B. Figure 3.5 shows 

data obtained during NO oxidation tests as a function of temperature, where 200 ppm NO 

were added with various NO2 concentrations. A maximum conversion was reached 

between 240 and 270°C for all NO2 concentrations. Below 240°C, the conversions 

increased as a function of temperature because the reaction is kinetically limited.  At high 

temperature, the NO conversion to NO2 is limited by thermodynamic equilibrium 

[58, 59]. The data clearly show that the conversion decreases with increasing 

concentrations of NO2 in the feed, consistent with previous studies [25, 26, 60, 61]. The 

reason for the significant inhibition by NO2 is the reduced activity of Pt when 
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substantially covered with chemisorbed oxygen species or if in a more fully oxidized 

state, and more extensive oxide formation or oxygen coverage is evident when Pt is 

exposed to NO2 compared to O2 [26, 61, 62]. For example, previous work has shown that 

with O2, Pt [111] can have up to a 2/3 monolayer coverage by oxygen, whereas with NO2 

the coverage is 3/4 monolayer [62].  

 

 

Figure 3.5    NO to NO2 conversion obtained during TPO with 200 ppm NO, 0, 20,100, 

and 200 ppm NO2, 10 % O2, 5% CO2, 5% H2O, and balance N2.  

 

Olsson and Fridell [61] reported that NO2 can readily oxidize Pt supported on Al2O3 and 

smaller Pt particles were more quickly oxidized, indicating larger particles are ultimately 

better for NO oxidation. Furthermore, previous experimental work has shown that there 

can be a slow decrease in oxidation kinetics with time-on-stream, which was specifically 
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attributed to oxidation of Pt particles by NO2 with time [26]. The data presented here are 

all consistent with these previous studies; NO2 inhibits NO oxidation through formation 

of Pt oxides or oxygen coverage of the Pt sites.     

The results of the effect of C3H6 addition, combined with NO2, on NO oxidation 

are shown in Figure 3.6. The conditions are otherwise the same as those in Figure 3.5. 

The NO conversion to NO2, in terms of outlet NO2 concentration, was zero at T ≤ 180°C 

for all NO2 concentrations. This is not to say that NO oxidation did not occur, but that if 

it did, the NO2 formed was immediately reduced via reaction with the C3H6 [28]. 

Evolution of NO2 was observed at ~185°C with 0 ppm NO2 while at 190, 195 and 200°C 

with 20, 100 and 200 ppm NO2, respectively. Once NO oxidation was evident, there was 

decreased overall NO conversion with increasing inlet NO2 amount. At T < 215°C, the 

negative impact of NO2 was obvious and at higher temperatures less evident. This is due 

facile hydrocarbon oxidation at the elevated temperature, resulting in easy consumption 

of the oxygen associated with any Pt oxides and therefore a relative abundance of active 

metal sites. Thus, the hydrocarbon is able to reduce the negative impact of NO2 that 

arises from NO2 oxidizing the Pt. Also, at the higher temperatures, thermodynamic 

limitations become more significant, limiting kinetic effects.  

However, in comparing the results in Figures 3.5 and 3.6, it is apparent that C3H6 

has an overall detrimental effect on NO to NO2 conversion. At T ≤ 180°C, no NO2 was 

observed due to the reduction of any formed NO2 by C3H6, as discussed above. At T ≥ 

180°C, NO oxidation started, which is associated with the onset of C3H6 oxidation, 

discussed below, and therefore NO can adsorb and react on the active Pt sites. However, 

even at higher temperatures, the overall NO oxidation conversions are less than those 
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observed in the absence of C3H6. This is consistent with previous research that has shown 

hydrocarbons inhibit NO oxidation. At high temperature, site competition has been 

proposed to explain hydrocarbon inhibition of NO oxidation [29], with some impact of 

NO2 being consumed by the hydrocarbon observed as well [28, 32]. Also contributing is 

competition between NO and C3H6 for surface oxygen.  

 

 

 

Figure 3.6    NO to NO2 conversion obtained during TPO with 1080 ppm C3H6, 200 ppm 

NO, 0, 20,100, and 200 ppm NO2, 10 % O2, 5% CO2, 5% H2O, and balance 

N2. 

 

Experiments with dodecane or m-xylene were also performed and data are shown 

in Table 3.1. Overall there was a decrease in the NO conversion to NO2, similar to that of 

C3H6. In terms of the effect of NO2 concentration, the temperature changes to achieve the 
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same NO to NO2 conversions were on the order of 1 to 5°C, indicating insignificant NO2 

inhibition with the larger hydrocarbon species being present.  

 

 

Table 3.1 Temperatures (°C) required for 10 and 50% conversion of NO to NO2  

 

 

 

 

These results suggest that NO oxidation inhibition by the larger hydrocarbons is 

dominant relative to that of NO2. The temperature differences to attain similar 

conversions are smaller than those observed with C3H6. As will be shown later (Figures 

3.9 and 3.11), the light-off of dodecane is faster once oxidation begins (the temperature 

range from the onset to complete oxidation is narrower), relative to C3H6. This is in part 

due to the exothermicity of the reactions, with dodecane oxidation resulting in more heat 

 

Feed Gas 

 

 

   NO 

 

NO + 20 ppm  NO2 

          

 

NO + 100 ppm  NO2 

            

 

NO + 200 ppm NO2 

           

 

Temperature (°C) at 10% NO Conversion (T10) 

 

no HCs or CO 114 116 123 131 

CO 162 165 171 177 

C3H6 186 191 197 203 

Dodecane 177 178 179 181 

Xylene 191 191 193 196 

C3H6 +  CO 216 218 221 227 

C3H6 + Dodecane 215 217 222 225 

 

Temperature (°C)  at 50% NO Conversion (T50) 

 

no HCs or CO 132 134 139 145 

CO 165 168 174 181 

C3H6 210 213 217 220 

Dodecane 233 234 235 237 

Xylene 225 225 227 229 

C3H6 +  CO  226 227 231 239 

C3H6 + Dodecane 241 247 258 272 
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released. And although the same C1 basis was used, the larger hydrocarbon has more H 

compared with C3H6, therefore the larger hydrocarbons can consume more surface 

oxygen and, thereby again limit the negative effect of the NO2. 

The effect of mixtures of hydrocarbons and NO2 on NO oxidation was also 

studied and summary data are listed in Table 3.1. With a mixture of C3H6 and dodecane, 

NO conversion to NO2 was significantly decreased. For example, with only C3H6, 10 and 

50% conversion of NO to NO2, with 200 ppm NO2 also added, was achieved at 204 and 

225°C, respectively, while the same conversions were achieved with a mixture of C3H6 

and dodecane at 220 and 272°C respectively. The maximum conversion in the presence 

of both hydrocarbons did not exceed 58%, which was reached at 275°C. In terms of NO2 

addition, there were decreases in the overall NO conversions to NO2 with each increase 

in the amount of NO2. The decreased performance with addition of dodecane to C3H6 is 

due to additional competitive adsorption between NO and C3H6, dodecane, and NO2 

for active sites. The effect of the addition of NO2 to the mixed hydrocarbon system on the 

T50 values is more pronounced than when added to mixtures with just the individual 

species, while the T10 changes were similar. This is due to the decreased overall 

conversion nearing the 50% conversion and therefore exaggerating the effect relative to 

the simpler mixtures. 

 NO oxidation conversion as a function of NO2 concentration and temperature, in 

the presence of 3240 ppm CO is shown in Figure 3.7. At low temperature, in the absence 

of CO, there was appreciable NO conversion at 150°C (Figure 3.5). But, in the presence 

of CO, no NO2 was observed at 150°C with or without NO2 added. Again, this is due to 
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the inlet and any formed NO2 being reduced by CO. However, at T > 170°C where NO2 

was observed, the addition of CO promoted NO conversion to NO2.  

 

 

Figure 3.7   NO to NO2 conversion obtained during TPO with 3240 ppm CO, 200 ppm 

NO, 0, 20,100, and 200 ppm NO2, 10 % O2, 5% CO2, 5% H2O, and balance 

N2. 

 

In terms of increasing NO2, it is clear that catalyst performance decreased monotonically 

with each increase in NO2 concentration at T < 190°C. Beyond that, NO conversion to 

NO2 was relatively independent of NO2 amount, for the same reasons discussed above; 

surface oxygen consumption by the reductant species and increased local temperatures 

from the exothermic CO oxidation reaction. NO oxidation to NO2 reached > 90% 

conversions at the 190°C test point with all NO2 concentrations, which is much higher 

than that observed in the presence of the individual hydrocarbons, or mixture of 
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hydrocarbons, and is also higher than the conversions observed in the absence of 

hydrocarbons and CO (Figure 3.5). Between 190 and 220°C, there were no changes 

observed in the NO conversion to NO2 and at higher temperatures the conversions 

decreased with increasing temperature. One contributing factor to the higher NO2 

amounts made with CO compared to that with hydrocarbons is the absence of H, which 

could react with NO2 resulting in NO. Another possibility is that since CO lit-off at a 

lower temperature than the hydrocarbons, as shown by comparing Figures 3.1, 3.3 and 

3.4 for example, there is less reduction by CO as it‟s oxidation is likely limited to the 

very front portion of the catalyst. Consequently, hydrocarbons can reduce more NO or 

NO2 to N2 or N2O. As shown in Figures 3.1, 3.3 and 3.4, significantly more N2O formed 

with hydrocarbons, in the range of 82 to 121 ppm, compared with approximately ~ 6 ppm 

with CO. Therefore, since reduction of NOX continues at higher temperatures with 

hydrocarbons relative to CO, less NO2 formation would be observed with hydrocarbons 

compared with CO, which was observed.  

Similar experiments were also performed but with a mixture of CO and C3H6. 

Summary results are also listed in Table 3.1. Overall, there was a decrease in NO 

conversion with increasing NO2 amount in the feed stream. The NO conversions with a 

mixture of C3H6 and CO were lower than that with either just C3H6 or CO. The more 

significant inhibition on NO oxidation with the mixture of CO and C3H6 is surprising 

based on the data in Figure 3.7, where CO was shown to promote NO oxidation at 

temperatures above 180°C. However, CO inhibits C3H6 oxidation (with O2), shifting the 

50% conversation by 15°C when CO was added to the C3H6-containing feed, as will be 

shown below. This therefore extends the temperature range where C3H6 is reacting with 
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NOX, either in reducing it to N2, reducing any NO2 made to NO, or in simple site 

competition. Otherwise, the effect of NO2 is similar to that observed with just CO or 

C3H6. 

 

3.4.3 Effect of NO, NO2, CO and hydrocarbons on hydrocarbon oxidation 

 

The effect of 200 ppm NO and different concentrations of NO2 on the conversion 

of 1080 ppm C3H6 is shown in Figure 3.8. With the addition of 200 ppm NO and 

increasing amounts of NO2, the light-off and complete conversions of C3H6 occurred at 

higher temperatures. For example, with the addition of 200 ppm NO and 200 ppm NO2, 

the 50 and 90% C3H6 conversions were achieved at 198 and 203°C compared with 161 

and 165°C without NOX added. These data clearly show inhibition by NO, NO2, or total 

NOX on C3H6 conversion. 

Further experiments were performed to investigate whether the inhibition in C3H6 

conversion was due to NO, NO2, or total NOX (NO+NO2). In one set of experiments, 300 

and 400 ppm NO were used with 1080 ppm C3H6. While, in another set of experiments, a 

mixture of NO and NO2 was used, with the same total NOX used with NO alone (i.e total 

NOx was 300 or 400 ppm). The 50% C3H6 conversions with NO only as inlet NOX were 

189 and 196°C with 300 and 400 ppm NO, respectively, while they were 192 and 198°C 

with 300 and 400 ppm of a mixture of both NO and NO2 as inlet NOX, respectively. The 

50% C3H6 conversions were very close, the differences in order of 3°C, with temperature 

error analysis in C3H6 oxidation being -/+ 1°C.  Although attempts were made to more 

clearly determine whether it is NO, NO2, or total NOX inhibiting C3H6 conversion, these 

data indicate it is simply the total NOX amount.  
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Figure 3.8   C3H6 conversion obtained during TPO with 1080 ppm C3H6, 200 ppm NO, 0,  

20, 100, and 200 ppm NO2, 10 % O2, 5% CO2, 5% H2O, and balance N2. 

 

Dodecane and m-xylene conversions were also evaluated and data are listed in 

Table 3.2. In the absence of NO and NO2, 25 and 90% dodecane conversions were 

attained at 131 and 136°C, respectively, while with m-xylene they were achieved at 161 

and 165°C, respectively. Previous literature has shown that the ease of alkane oxidation 

increases with increasing chain length, [64, 65]. Conversely, the ease of alkene oxidation 

decreases with increasing hydrocarbon chain length from ethylene to hexene [64], but is 

less dependent at chain lengths for 7 < n < 10 [65]. A general consensus is that light 

alkenes are more reactive than light alkanes, while heavier alkanes are more reactive than 

heavier alkenes [65]. Additionally, it has been shown that C6-C9 aromatics behave 

similarly to alkenes (C2-C6) in terms of oxidation [64], which coincides with the data 
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listed in Table 3.2, where C3H6 and m-xylene light off were similar. With the addition of 

200 ppm NO and with 0, 20, 100, and 200 ppm NO2, the conversions of both dodecane 

and m-xylene were shifted to higher temperatures. The reason for the lower hydrocarbon 

conversions is due to competition between NO and NO2 and hydrocarbons for the same 

adsorption sites. This is consistent with previous literature [28] regarding the effect of 

NO on higher hydrocarbon oxidation, where evidence suggests that under oxidizing 

conditions, a Pt-based catalyst showed inhibition by NO.   

 

 

Table 3. 2 Temperatures (°C) required for 25, 50, and 90% conversion of hydrocarbon 

species  

 

Figures 3.9 - 11 compare the overall effect of individual species and a mixture of NO, 

NO2, CO, C3H6, or dodecane on the C3H6 and dodecane conversions. As shown in Figure 

3.9, with the addition of only dodecane, there was an insignificant shift in C3H6 

 

Feed Gas 

 

 

No  NOX 

 

NO 

 

NO + 20 ppm NO2 

 

NO + 100 ppm NO2 

 

NO + 200 ppm NO2 

25% HC Conversion  (T25) 

Dodecane 131 162 163 166 171 

Xylene 156 166 169 173 184 

C3H6 157 175 178 185 191 

C3H6 + CO 174 208 209 215 223 

50% HC Conversion (T50) 

Dodecane 133 163 164 167 172 

Xylene 161 175 176 181 190 

C3H6 161 182 185 192 198 

C3H6 + CO 176 211 212 218 226 

90% HC Conversion (T90) 

Dodecane 136 165 167 170 174 

Xylene 165 181 182 187 195 

C3H6 165 186 189 196 203 

C3H6 + CO 179 215 216 222 229 
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conversion, the 50% conversion temperature shifted by 3°C. The lack of significant effect 

is due to surface coverages at the onset of the experiment. The C3H6 initially covers the 

surface, blocking dodecane adsorption, as also shown in Figure 3.9 where dodecane 

begins oxidizing after C3H6. Addition of CO to the C3H6-containing feed shifted the 50% 

C3H6 conversion temperature by 15°C. This coincides with literature evidence, where CO 

inhibition has been attributed to CO adsorbing more strongly than the hydrocarbons and 

consequently occupying Pt sites [42, 66].  

 

Figure 3.9   C3H6 conversion obtained during TPO with 1080 ppm C3H6, and  either 3240 

ppm CO,  270 ppm dodecane, and/or 200 ppm NO, 200 ppm NO2,  and 10 

% O2, 5% CO2, 5% H2O, and balance N2. 

 

With  NO, or a mixture of NO and NO2, the 50% conversion temperature was 

shifted to significantly higher temperatures, on the order of 20 to 40°C under our test 

conditions. The increase in 50% C3H6 conversion temperature was 53°C with a mixture 
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of dodecane and NOX whereas it increased 65°C with a mixture of CO and NOX. As with 

only CO the shift was 15°C, with only dodecane it was negligible and with the NO/NO2 

mixture it was 37°C, this shift in 50% C3H6 oxidation temperature in the mixture of CO 

and NOX or dodecane and NOX demonstrated that the combined effect is not additive; the 

increased temperature is beyond that of the sum of the individual inhibitions.  

 

 

Figure 3.10  Outlet concentrations obtained during TPO with 3240 ppm CO, 1080 ppm   

                      C3H6, 200 ppm NO, 100 ppm NO2, 10 % O2, 5% CO2, 5% H2O, and 

                      balance N2. 

 

To further explain the combined effect with a mixture of CO, C3H6, and NO/NO2, the 

species concentration vs. temperature was plotted and data are shown in Figure 3.10.  A 

mixture of 200 ppm NO and 100 ppm NO2 were used. As shown, the CO concentration 

gradually decreased and no change was observed for both NO and C3H6 concentrations 
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up to 178°C, as shown in left of the shaded area, indicating that CO adsorbs more 

strongly on Pt and shifts both C3H6 and NO oxidation to higher temperature. 

Subsequently, when C3H6 oxidation started, after CO oxidation had begun, NO can co-

adsorb and compete with C3H6 on Pt sites, causing the observed extra shift in C3H6 

conversion.  

It could be expected that the addition of CO to a mixture of hydrocarbons can 

reduce the hydrocarbon light-off temperatures due to the exotherm originating from CO 

oxidation. This however was not observed. Thus, an exotherm does not explain the 

observations in this study and the inhibition effects, instead of promoting effects, are 

relevant to the results obtained.     

The dodecane data are shown in Figure 3.11. In the presence of only NO, the 

temperature required for 50% conversion was shifted by 31°C and with the addition of 

C3H6, the 50% dodecane conversion shifted by 36°C. So although dodecane had little 

influence on C3H6 conversion, C3H6 had a negative impact on dodecane conversion as 

discussed above. The reason is that the C3H6 covers the surface preferentially at low 

temperature relative to the dodecane. With a mixture of NO and NO2, the temperature for 

50% conversion of dodecane was increased by 40°C, and with inclusion of C3H6 to a 

mixture of NO and NO2 the 50% conversion increased by 86°C, compared to the 

experiment with only dodecane. Again, the combined effect of the mixtures is more than 

additive.  
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Figure 3.11 Dodecane conversion obtained during TPO with 270 ppm dodecane  and  

either 1080 ppm C3H6, , and/or 200 ppm NO, 200 ppm NO2,  and 10 % O2, 

5% CO2, 5% H2O, and balance N2. 

 

 

3.4.4 Effect of NO, NO2, and hydrocarbons on CO oxidation 

 

The CO conversion data in the presence and absence of the other components are 

shown in Figure 3.12. Note: the associated error in the temperature was calculated was 

2.3°C for CO conversions. With only CO, 50% conversion was achieved at 145°C and 

90% at 153°C.  In the presence of 200 ppm NO, the 50% CO conversion temperature 

increased by 17°C. The addition of 100 and 200 ppm NO2, with 200 ppm NO, shifted the 

50% conversions to 170 and 177°C, respectively, showing CO oxidation inhibition by 

NOX, again likely through competitive adsorption with CO on the Pt sites [29, 47]. 

Adding C3H6 in with CO shifted the 50% conversion temperature to 172°C. Adding C3H6 
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to the mixtures of 200 ppm NO and NO2, the 50% CO conversion temperatures increased 

to 187, 200, and 208°C with 0, 100, and 200 ppm NO2 respectively.  Although above it 

was pointed out that at low temperature CO preferentially adsorbs to the active sites 

relative to the C3H6, comparing the data in Figure 3.12 with those in Table 3.2, it is 

obvious that both C3H6 and CO result in mutual inhibition. An important observation is 

that the CO light-off curves are less steep in the presence of C3H6 and the NO/NO2 

mixture compared to those in the presence of only NO/NO2.  Furthermore, the inhibition 

by C3H6 and NO/NO2 on CO oxidation, as shown in Figure 3.10, was minimal at low 

temperature (and as shown in the shaded are of Figure 3.12), however, as the temperature 

increased inhibition became apparent, i.e. the slope of the oxidation extent decreased 

relative to the absence of the other components. This is due to CO poisoning decreasing 

once oxidation began, freeing sites for both C3H6 and NO adsorption, resulting in the 

inhibition effect. This is consistent with the conclusions made by Voltz who investigated 

the effect of NO and C3H6 on CO oxidation over a Pt/Al2O3 catalyst [29] and inhibition 

by both NO and C3H6 was attributed to competitive adsorption on catalytic sites. These 

data indicate that CO adsorbs more strongly on Pt sites at lower temperature than either 

C3H6 and NO do, and therefore CO was inhibiting both NO and C3H6 oxidation. As 

shown in Figure 3.10, there was no change in the NO and C3H6 concentrations up to 

178°C, while the CO concentration gradually decreased, as shown in the shaded area. 

Also as highlighted in the shaded area of Figure 3.12 the onset of CO light-off was not 

affected by NOX and C3H6, further suggesting that CO oxidation inhibition, by C3H6 and 

NOX, occurs only after CO oxidation begins. 
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   Figure 3.12 CO conversion obtained during TPO with 3240 ppm CO, and  either 1080   

ppm C3H6, and/or 200 ppm NO, 200 ppm NO2,  and 10 % O2, 5% CO2, 5% 

H2O, and balance N2. 

 

Beyond 178°C, the NO concentration progressively decreased indicating enough 

sites are free of CO for it to adsorb and begin oxidation. The two circles in Figure 3.12 

highlight the start and end of an inflection, the first being where C3H6 oxidation begins 

(~185°C), or where C3H6 can adsorb to Pt sites and compete with both CO and NO. At 

213°C, there was a sharp decrease in CO concentration, as observed in Figure 3.10, and 

at this point the inflection ends as observed in Figure 3.12. Subsequently, steep decreases 

in both NO and C3H6 concentrations were observed. Inflections in the C3H6 oxidation 

curves (Figure 3.9) were not observed with a mixture of CO and NO and NO2. This is 

because C3H6 adsorbs and oxidizes after CO. 
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 Table 3.3 Summary of the temperatures at which the 50% conversion of CO was 

 attained and the increase in temperature to achieve 50% CO conversion with 

 the addition of other reactive species. 

 

 

 

Table 3.3 summarizes the temperatures at which the 50% CO conversions were 

attained and the increase in 50% CO conversion temperatures with the addition of other 

reactive components. The 50% CO conversion temperature was shifted by 17°C with 

only NO, whereas it was shifted 27°C with only C3H6. With a mixture of both NO and 

C3H6, the 50% conversion of CO was shifted by 42°C, indicating the combined effect of 

NO and C3H6 is additive in this case. Also, the 50% CO conversion temperature increased 

25°C with a mixture of 200 ppm NO and 100 ppm NO2 and 55°C when C3H6 was added 

to a mixture of 200 ppm NO and 100 ppm NO2.  The 50% conversion of CO was 

increased by 30°C when C3H6 was added to a mixture of 200 ppm NO and 100 ppm NO2, 

which is similar to the increase in temperature caused by only C3H6 (27°C). This again 

shows that the combined inhibition of C3H6 and NO/NO2 on CO conversion is additive. It 

should be also mentioned that the effect of CO on C3H6, as shown in Figure 3.9, is far 

from additive.  This additive effect on CO oxidation is due to the preferential low 

 

Gases 

 

Temperature (°C)  at 

50% CO conversion 

 

Increase in  temperature 

CO 145 - 
NO 162 17 

C3H6 172 27 

C3H6 + NO 187 42 

NO + 100 ppm NO2 170 25 

NO + 100 ppm NO2 + C3H6 200 55 

NO + 200 ppm NO2 177 32 

NO + 200 ppm NO2 + C3H6 208 63 
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temperature adsorption of CO on the active Pt sites, thus the effect on the onset of CO 

oxidation is absent and NO and C3H6 only adsorb once CO oxidation began.  

 

3.5 Conclusions 

 

The effect of reactant exhaust gas species on the oxidation of NO, hydrocarbons, 

and CO was investigated over a Pt/Al2O3 catalyst in the presence of excess O2. CO and 

C3H6 were found to reduce NO2 at temperatures as low as 110°C whereas higher 

hydrocarbons (dodecane and xylene) reduced NO2 at temperatures above 140°C, 

indicating the reduction ability is related to the activation of the reductant species. Once 

oxidation of the CO or hydrocarbon species with oxygen began, NO2 was observed in the 

outlet stream. The addition of NO2 to the feed stream inhibited the oxidation of NO, CO, 

and hydrocarbons. Hydrocarbons were also found to inhibit NO oxidation, as well as the 

oxidation of other hydrocarbon species (i.e. C3H6 inhibited dodecane oxidation and vice 

versa) due to competition for adsorption sites. The influence of these species on 

hydrocarbon oxidation was not additive. CO was found to initially hinder the oxidation of 

NO to NO2, but as the temperature increased, and CO oxidation via O2 was favored, CO 

promoted NO conversion to NO2. The onset of CO oxidation was not affected, but the 

extent of oxidation after was inhibited. The combined effect of C3H6 and NO and NO2 on 

CO conversion was additive since C3H6 oxidation occurred after CO oxidation. 
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Chapter 4 

 

Hydrogen generation and coke formation over a diesel oxidation catalyst under fuel 

rich conditions 

4.1 Abstract 

 

Hydrogen production via hydrocarbon steam reforming and water gas shift 

reactions was investigated over a monolith-supported Pt-based diesel oxidation catalyst. 

The evaluation included comparison between constantly rich gas composition conditions 

and cycling between rich gas conditions and an inert stream. Analysis was performed 

along the catalyst length at temperatures ranging from 200 to 500°C. During the constant 

inlet composition experiments, C3H6 steam reforming started at 375°C, while dodecane 

steam reforming began at 450°C, and resulted in less hydrogen produced. With a mixture 

of C3H6 and dodecane, hydrogen production originated solely from C3H6 steam reforming 

and, under otherwise identical conditions, was less than that observed with only C3H6, but 

higher than that with only dodecane. Hydrogen production from the water gas shift 

reaction was higher than that observed with hydrocarbon steam reforming, and started at 

225°C. During cycling experiments, hydrogen production via hydrocarbon steam 

reforming was higher than that observed during the constant inlet composition 

experiments. This improvement was observed at all temperatures. Temperature 

programmed oxidation experiments performed after steam reforming indicate coke 

formed on the catalyst surface during steam reforming, and that the coke deposits were  

primarily toward the upstream portion of the catalyst. The data also show that the reason 

for better performance during cyclic operation is that less coke was deposited compared 

to that during non-cyclic experiments.  
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4.2 Introduction 

 

Diesel oxidation catalysts (DOC) are used in a variety of lean-burn engine 

aftertreatment systems. They are typically installed upstream of selective catalytic 

reduction (SCR) and NOX storage/reduction (NSR) catalysts. Their function in such 

systems is to oxidize engine-out NO to NO2, as NO2 is trapped more readily than NO on 

NSR catalysts [1-2] and a 1:1 NO:NO2 ratio promotes the “fast” SCR reaction over SCR 

catalysts [3]. DOCs are also installed upstream of diesel particulate filters, again to 

oxidize NO to NO2. NO2 is more reactive towards soot than O2, lowering the soot 

oxidation temperature by approximately 200°C [4]. Literature evidence shows that the 

temperature range in which DOCs operate overlaps the temperature range in which steam 

reforming reactions are possible. Both water and hydrocarbons are present in diesel 

exhaust, providing reforming reactant species. And since DOCs contain Pt and Pd 

supported on either alumina or zeolites, steam reforming reactions are likely, especially 

during the reductant-rich phase of a NSR cycle. 

Hydrogen can be produced via numerous catalytic methods, including catalytic 

partial oxidation, autothermal reforming, or steam reforming of hydrocarbons, alcohols, 

and biomass [5-9]. Hydrocarbon steam reforming is typically the preferred process for 

industrial-scale hydrogen production, because it does not require oxygen, operates at 

relatively low temperature, and maintains a higher product H2/CO ratio than that of 

autothermal reforming and catalytic partial oxidation [10]. The CO produced during 

steam reforming can also be used in the water gas shift (WGS) reaction to drive the 

production of extra hydrogen.  
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Several studies have shown that the metal type [11-13] as well as the support type 

can influence the extent of steam reforming. Alumina is a typical support in catalysts, but 

tends to induce coke formation during steam reforming due to its surface acidity [14], 

with coke formation a primary steam reforming deactivation process [15-16].  However, 

the presence of precious metals, zirconium, or other alkaline components in the catalyst 

formulation can minimize coke formation [17] or facilitate its removal [18]. Hydrocarbon 

steam reforming over Pd and Pt has been extensively investigated. Previous results 

relevant to the current study include C3H8 steam reforming over Pd/CeO2/Al2O3 and Pt-

Rh/CeO2/Al2O3 catalysts [19-20], with the reaction starting at about 350°C. Steam 

reforming of C3H6 and isopropanol was also investigated over a powder Pd–Cu/γ-Al2O3 

catalyst [21], with both reactions starting at 327°C and increasing steadily until complete 

conversion was attained, which under the conditions of the test, was at 527°C. 

For NSR catalysts, hydrogen has repeatedly been reported to be better than other 

reductant species (CO and hydrocarbons) in reducing surface NOX species to N2 [22-26]. 

Therefore, if the amount of hydrogen can be increased via steam reforming or WGS in 

the upstream DOC during the regeneration phase, which is reductant-rich relative to 

oxygen, the NOX conversion to N2 over the downstream NSR catalyst could be improved. 

The main interest in this study, is comparing and quantifying the amount of hydrogen 

formed during steady-state and cyclic operation over a diesel oxidation catalyst. Coke 

formation and regeneration was also investigated after these experiments to explain the 

observed differences.  
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4.3 Experimental Methods 

 

In this study, a commercial monolith diesel oxidation catalyst supplied by 

Umicore AG was used. The sample contains 95 g/ft
3
 Pt supported on Al2O3. The 

monolith block that the sample was removed from had a cell density of 400 cpsi. The 

sample was 2.3 cm in diameter with a length of 6 cm. The sample was wrapped in 3M 

insulation material and placed into a horizontal quartz tube reactor, which was in turn 

placed inside a Lindberg Minimite temperature-controlled furnace. The matting was used 

to seal the gap between the catalyst and reactor wall. Two K-type thermocouples were 

placed at the radial centres of the catalyst; one at the inlet face and one at outlet edge of 

the catalyst. A third was placed ~ 2.5 cm upstream of the sample. During the 

experiments, the monolith remained nearly isothermal, with only ~2°C temperature 

differences observed between the inlet and outlet face. 

 All gases except balance N2 were supplied by Praxair. The N2 was produced using 

an On-Site nitrogen generator system. Bronkhorst mass flow controllers were used to 

meter gases to the reactor system. The dry gas mixture was then heated to > 120°C and 

water was then introduced using a Bronkhorst CEM system. In experiments that included 

dodecane or m-xylene, they were also metered with a Bronkhorst CEM system and 

introduced downstream of the water injection location, closer to the reactor, thereby 

eliminating any reactions with the steel tubing walls. Small quartz tubes, 3 mm OD and 2 

mm ID, were placed in the front portion of the furnace and before the catalyst to help in 

heat transfer and limit fully developed flow. 

 In the constant gas composition steam reforming and WGS experiments, 5% H2O, 

0.27% hydrocarbon on a C1 basis or 0.27% CO and a balance of N2 were used. In cycling 
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experiments, 60 s inert and 10 s reductant-containing phases were used (labeled rich 

below, matching that of an NSR cycle). In the inert phase, 5% H2O and a balance of N2 

were used while in the rich phase, 5% H2O, 0.27% CO or hydrocarbon on a C1 basis, and 

a balance of N2 were used. In cycling experiments, the rich and inert gas mixtures were 

made in separate manifolds. A fourway, fast-acting solenoid valve was used to switch 

between the two. Experiments were also performed to investigate coke formation during 

cycling and non-cycling experiments. C3H6 steam reforming experiments were performed 

between 300 and 500°C, which typically took about 3 hours in total to complete, or at 

one temperature depending on the experiment. Upon completion of a steam reforming 

experiment, the reactor was cooled to 50°C in N2 and then 10% O2 was added to the feed 

and the reactor was ramped to 500°C at rate of 7°C/min. Catalyst regeneration from 

deposited coke by O2, H2O, H2, and a mixture of H2O and H2 after C3H6 steam reforming 

experiments were evaluated, using the same TPO protocol, but substituting in the other 

regeneration species for the O2.  

Experiments were performed with a 25,000 h
-1 

space velocity at standard 

conditions. The gas compositions were measured using a MKS MultiGas 2030 FTIR 

analyzer. Spatially resolved capillary-inlet mass spectrometry (SpaciMS) was also used 

to measure H2, H2O and hydrocarbons along a radially-centred monolith channel. In these 

studies, He was added and used as a tracer for calibration purposes. To resolve the gas 

concentrations spatially, a silica capillary, connected to the sampling end of a capillary 

from a Hiden Analytical mass spectrometer, was placed within one of the radially-centred 

catalyst channels. The capillary dimensions were 0.3 mm I.D. and 0.43 mm O.D. Gases 
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were collected at different positions by moving the silica capillary tip to different 

positions within the channel.  

 

4.4 Results and Discussion   

 

4.4.1 H2 generation during non-cyclic conditions  

 

Hydrogen generation via steam reforming was investigated between 300 and 

500°C. In the steam reforming experiments, C3H6, C12H26, m-C8H10 and mixtures of these 

were selected to represent different hydrocarbon species in diesel exhaust. In this series 

of experiments, 5% H2O, 0.27% hydrocarbon on a C1 basis, and a balance of N2 were 

used. Also in these experiments, spatially resolved capillary-inlet mass spectrometry 

(SpaciMS) was used to quantify the amounts of the species and study their axial 

concentration distribution. In m-C8H10 steam reforming experiments, no hydrogen was 

detected in the outlet stream at temperatures as high as 500°C and therefore data 

associated with m- C8H10 are not shown.  

Figure 4.1 shows the amount of hydrogen formed at different catalyst positions 

during the C3H6 steam reforming experiments. Note, the position labeled zero is just 

inside the inlet face of the catalyst (really about 1 mm). C3H6 steam reforming began at 

375°C, though to a very small extent. As the temperature was increased stepwise to 

500°C, hydrogen formation monotonically increased. It is also clear from Figure 4.1 that 

hydrogen production increased as a function of catalyst length. In a recent study [27], 

C3H6 steam reforming was investigated over a model Pt/BaO/Al2O3 NSR catalyst. 

Hydrogen formation started at a similar temperature (375°C), but to a higher extent than 

that observed in this study due to the presence of Ba. Alkaline materials are known to 
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suppress the acidity of the alumina support [28] and thus to reduce coke formation, which 

leads to higher hydrogen formation.  

 

 

Figure 4.1  H2 concentrations obtained at different temperatures and lengths of the  

catalyst during steam reforming experiments. The inlet gas composition 

was 900 ppm C3H6, 5% H2O, and balance N2.          

 

 Hydrogen generation via dodecane steam reforming was also investigated and the 

outlet hydrogen concentration data are shown in Figure 4.2. Below 450°C, no steam 

reforming occurred and beyond that hydrogen production was observed, starting at a 

higher temperature than that observed with C3H6, and increased at 475 and 500°C. Also, 

the amount of hydrogen formed at 500°C with dodecane was 10, 100, and 209 ppm at 0, 

3, and 6 cm from the catalyst face, respectively, whereas the amount of H2 formed with 
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C3H6 at the same temperatures and locations were 15, 210, and 488 ppm, or about 2 times 

more by the outlet with C3H6. These results demonstrate that the extent of steam 

reforming over a diesel oxidation catalyst depends on the type of hydrocarbon used. In 

previous studies [13, 29-32], alkane steam reforming was investigated over Pt, Pd, Rh, 

Ru, and Pt/Rh catalysts. According to these studies, alkane steam reforming occurs at 

higher temperatures than those observed with alkenes, consistent with our data, although 

different hydrocarbon chain lengths were used in the present study.  

 

 

 

 Figure 4.2  Outlet H2 concentrations obtained at different temperatures and with 

different hydrocarbon feed mixtures during steam reforming experiments. 

The inlet gas composition was 900 ppm C3H6, 225 ppm C12H26, or 900 ppm 

C3H6 and 225 ppm C12H26, 5% H2O, and balance N2.          
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Similar experiments were also carried out with a mixture of C3H6 and dodecane. 

The quantified outlet hydrogen amounts are shown in Figure 4.2. During these 

experiments, no change in the dodecane amount was observed, indicating that dodecane 

steam reforming did not occur. The C3H6 amount monotonically decreased as a function 

of temperature and catalyst length (data not shown); consequently, the hydrogen 

measured during these experiments originated exclusively from C3H6 steam reforming. It 

should be noted that hydrogen production started at 400°C, slightly higher than that 

observed with only C3H6 (375°C). This decreased hydrogen production in the presence 

vs. absence of dodecane was observed at all temperatures tested. For example, at 500°C 

and in the absence of dodecane, the outlet hydrogen measured was 488 ppm while in the 

presence of dodecane it was 285 ppm. These results demonstrate that there was mutual 

inhibition between C3H6 and dodecane, resulting in lower hydrogen production. Maillet 

et al. [34] investigated hydrocarbon steam reforming over Rh, Pt and Pd supported on 

Al2O3 catalysts. The authors divided the steam reforming process into three main steps. 

The first step involves dissociative adsorption of the hydrocarbon on the metal sites, the 

second includes dissociative adsorption of water on the support, and finally, OH groups 

from the support migrate to the metal particles to react with a CHx fragment originating 

from the dissociative adsorption to yield CO2 and H2. This mechanism explains the 

mutual inhibition between dodecane and propylene observed. C3H6 adsorbs strongly on 

the Pt sites, relative to dodecane, possibly dissociating to a CHx fragment and blocking 

access of dodecane to the Pt. Adsorption on the support is less selective, and some of the 

dodecane adsorbs on the catalyst support, which in turn inhibits water dissociation, or 

inhibits migration of OH groups to the metal site, ultimately inhibiting the reaction 
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between OH groups and the CHx fragment. TPD of adsorbed dodecane (data not shown) 

further supports that dodecane is adsorbed on the catalyst surface, as it was observed 

desorbing up to ~400°C.  

 Hydrogen production via the water gas shift (WGS) reaction was also 

investigated, between 200 and 500°C.  In this series of experiments, 5% H2O, 2700 ppm 

CO, and a balance of N2 were used. The results are shown in Figure 4.3, along with 

equilibrium H2 concentrations for the conditions tested. It is clear that the WGS reaction 

started at a lower temperature (~225°C) than steam reforming for the hydrocarbons 

tested. SpaciMS data show that hydrogen concentrations increased as a function of 

catalyst length and temperature, although the rate of increase slowed at higher 

temperature with the approach to equilibrium. The amount of hydrogen formed by the 

outler via the WGS reaction at 500°C was 3.5 times higher than that observed with C3H6 

steam reforming and 6 times higher than that observed with dodecane steam reforming. 

In the WGS reaction, for every mole of CO reacted, 1 mole of hydrogen will form and 

therefore at 500°C approximately 60% of the CO was consumed in the formation of 

hydrogen. No methanation was observed, and CO conversion was only associated with 

H2 and CO2 production. This finding is in contrast to previous studies [35, 36], where 

methane formation started at temperatures > 375°C with a Pt/CeO2 catalyst during WGS 

experiments. However, methanation depends on numerous factors such as inlet gas 

composition, metal loading, and the inclusion of promoters such as alkali and cerium 

oxide components. In the previous studies [35,36], significantly larger amounts of both 

CO and H2O were used in the feed mixtures (e.g. 11.4% CO and 45.7% H2O) coincident 

with including H2, while in this study CO and H2O concentrations were 0.27% and 10%, 
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respectively, with no H2 added. Furthermore, in the present study the catalyst does not 

contain cerium oxides or other promoters while in the previous studies, the catalyst 

included cerium oxide, and as stated by the authors, this would provide extra adsorption 

sites for water rather than CO blocking all surface sites. Therefore, using an excess 

amount of CO and H2O with a catalyst containing cerium oxide would lead to high C/H 

ratios at the catalyst surface, driving the reactions toward methanation. 

 

 

Figure 4.3  Outlet H2 concentrations obtained at different temperatures during non-

 cycling and cycling water gas shift reactions experiments. The inlet gas 

 composition was 2700 ppm CO, 5% H2O, and balance N2.          
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4.4.2 H2 generation during cycling conditions 

 

  

Hydrogen production via the steam reforming and WGS reactions during cycling 

experiments was also investigated at different temperatures. Steam reforming is typically 

carried out under steady-state inlet conditions, however, for diesel aftertreatment NSR 

applications, the feed is cycled between those of normal engine exhaust and those of the 

rich phase, where significant steam reforming is possible. In the “inert” phase, which 

lasted 60 seconds, 5% H2O and a balance of N2 were used, while in the rich phase, which 

lasted 10 seconds, 5% H2O, 0.27% CO or hydrocarbon on a C1 basis, and a balance of N2 

were used. An inert phase rather than a true lean phase was used to better understand the 

phenomena occurring along the catalyst during the rich phase. In both steam reforming 

and WGS experiments, SPACiMS was used to quantify gas-phase concentrations and 

study their axial distribution at three different catalyst positions. In the plotted data, the 

front position is at the inlet of the sample (~1mm in). 

Propylene steam reforming during cycling was performed between 300 and 

500°C. The measured amounts of hydrogen produced are shown in Figure 4.4. C3H6 

steam reforming again started at 375°C, the same as that for the non-cyclic experiments. 

The hydrogen formed increased as a function of catalyst length and temperature. Two 

primary differences were observed in these experiments when compared with non-cyclic 

C3H6 steam reforming. The first is that a significantly higher amount of hydrogen formed 

at the front of the catalyst during cycling compared with non-cyclic experiments, where 

the maximum amounts of hydrogen with all temperatures tested did not exceed 15 ppm. 

For example, at 500°C, the hydrogen production at the front of catalyst during cycling 

experiment was ~10 times higher than that observed under steady inlet conditions. 
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Another observation is that the amounts of hydrogen formed at the middle and outlet 

positions in the catalyst during cylcing were also higher, but to a lesser extent, being 

about 2 times higher than that observed during steady-state experiments. These 

differences are likely due to more coke being deposited along the catalyst during non-

cyclic tests, especially at the upstream portion, which will be discussed in the following 

section.  

 

 

 

Figure 4.4  H2 concentrations obtained at different temperatures and lengths of the 

 catalyst during cycling steam reforming experiments. The inert phase gas 

 composition was 5% H2O and balance N2. The rich phase gas composition 

 was 900 ppm C3H6, 5% H2O, and balance N2. The inert phase was 60 sec and 

 the rich phase was 10 sec. The front position represents the inlet of sample 

 (~1mm in). 
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 Similar experiments were carried out, but with dodecane, and the H2 generation 

results shown in Figure 4.5. Again, dodecane steam reforming started at 450°C and the 

hydrogen amount progressively increased with catalyst length. Although there were 

differences in the amounts of hydrogen formed during cycling and non-cycling 

experiments, they were not as significant as those observed with C3H6. For example, at 

500°C, the hydrogen formed in the middle and outlet of the catalyst was 100 ppm and 

210 ppm during non-cycling experiments, while 130 and 300 ppm were formed during 

cycling experiments. Again, however, more significant differences were observed at the 

front of the catalyst, where again the hydrogen amount was higher with cycling 

experiments. The smaller differences between dodecane cycling and non-cycling steam 

reforming experiments compared with those observed with C3H6 is related to the 

hydrocarbons type, where C3H6 is activated faster and more easily than dodecane, and 

therefore steam reforming and associated coke formation occur at lower temperatures. 

The positive effect of cycling is less evident for dodecane due to the higher temperatures 

required for the onset of reaction, and at these higher temperatures, as will be shown 

below, coke can be reacted from the surface. 

 Hydrogen production with a mixture of C3H6 and dodecane was also investigated 

and the quantified amounts of hydrogen are shown in Figure 4.5. The conditions are 

otherwise similar to those experiments with either C3H6 or dodecane. Again, no change in 

the dodecane amount was observed while the C3H6 concentration steadily decreased 

along the length and with increasing temperature. This indicates that the hydrogen 

formed was again solely due to C3H6 steam reforming. The hydrogen amounts formed 

were also again lower than those observed in the absence of dodecane.  
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Figure 4.5  Outlet H2 concentrations obtained at different temperatures and with different 

 hydrocarbon feed mixtures during cycling steam reforming experiments. The 

 inert phase gas composition was 5% H2O and balance N2. The rich phase gas 

 composition was 900 ppm C3H6, 225 ppm C12H26, or 900 ppm C3H6 and 225 

 ppm C12H26, 5% H2O, and balance N2. The inert phase was 60 sec and the rich 

 phase was 10 sec.  

 

The reason as stated earlier is because of the mutual inhibition between C3H6 and 

dodecane. It should also be pointed out that hydrogen production was observed at 375°C, 

which is 25°C lower than those observed during non-cyclic experiments (Figure 4.2). 

This suggests that dodecane inhibition was mitigated by the cycling conditions, likely by 

desorption from the surface during the inert phase. Additionally, the amount of hydrogen 

formed during cycling experiments was about twice the amount formed during non-
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cycling experiments. The lower coke build-up on the catalyst during the 10 s rich phase 

of the cycle followed by the inert phase, as will be shown in the next section, explains the 

higher hydrogen production and lower temperature during cycling.  

The extent of hydrogen formed via the WGS reaction during cycling was also 

investigated at different temperatures and different catalyst positions. The hydrogen 

formed during the 10 sec rich phase was measured and the results are shown in Figure 

4.3. Again, hydrogen production started at 225°C and the hydrogen amount increased as 

a function of catalyst position and temperature. In previous studies [37, 38], the WGS 

reaction was investigated during cyclic operation over a commercial NSR catalyst. The 

extent of the WGS reaction was 10% at 200°C and 81% at 500°C, which is higher than 

those observed in this study. The higher WGS reaction extent in the previous studies is 

due to the presence of excess O2 (10%) in the lean phase, thereby removing any residual 

CO adsorbed during the previous rich phase, and the presence of Ce and alkali and/or 

alkaline earth elements (e.g Ba), which are known to enhance the WGS reaction [39-41] 

and suppress coke formation [31, 32]. During cycling experiments with the DOC in this 

study, the trends were relatively similar to those observed during the non-cycling WGS 

experiments, except at the front of catalyst, where a higher amount of hydrogen was 

observed with cycling. Compared with hydrocarbon steam reforming during cycling, the 

hydrogen formed during cycling for the WGS reaction was still higher along all catalyst 

positions and all temperatures. Takahashi et al. [42] studied C3H6 steam reforming and 

WGS reactions over a NSR catalyst between 200 and 400°C under cycling conditions. 

They also showed that the amount of H2 formed during the WGS reaction was higher 

than that formed during C3H6 steam reforming, consistent with our data. But, it should be 
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mentioned that the amount of H2 formed via the C3H6 steam reforming and WGS 

reactions was higher than those observed in our experiments and attained at lower 

temperatures. In Takahashi‟s study, 7% O2 was used in the lean phase and the catalyst 

contained alkali and alkaline earth elements (Ba and K) and ceria-zirconia-based oxygen 

storage components. Therefore, during the rich pulse, the stored or residual oxygen 

would lead to combustion of some CO and C3H6, possibly resulting in a temperature 

increase within the catalyst bed. Thus, the measured temperatures for hydrogen 

production in the previous study would be lower than those observed in our study and 

hence might explain the observed differences. Another contributing factor is that the O2 

in the lean phase removes coke deposited during the previous rich phase, or adsorbed CO, 

which should not affect the reaction onset temperature, but will the amounts of H2 or 

conversions observed. 

 

4.4.3 Coke formation during steady-state and cycling experiments 
 

As discussed above, there were no significant differences in outlet hydrogen 

formed for the WGS reaction between cycling and non-cycling conditions. However, 

hydrogen generation was higher during steam reforming under cycling conditions 

compared to that observed under constant inlet feed steam reforming conditions. To 

determine if coke formation is the reason for this latter difference, coke formation during 

steam reforming experiments was investigated. Ethylene was observed during catalyst 

outlet measurements, and since ethylene is considered a coke precursor during steam 

reforming, coke formation is likely. And although coke formation is a product of 

complete hydrocarbon decomposition, CO is the standard reforming product, and at the 

reforming temperatures, CO is not considered a catalyst poison, while coke deposition 



 103 

does lead to deactivation because it reduces the effective surface area [43]. It is likely that 

the amount of coke deposited on the catalyst during non-cyclic steam reforming 

experiments was ultimately higher than that during the cycling steam reforming 

experiments. Further evidence includes the time-resolved H2 concentration profiles, with 

an example shown in Figure 4.6, where the H2 measured by mass spectrometry dropped 

over time during the non-cyclic C3H6 steam reforming experiment. C3H6 steam reforming 

was selected for these tests. 

 

 

Figure 4.6  Outlet H2 concentrations obtained during C3H6 steam reforming experiments 

 at 450°C.  The inlet gas composition was 900 ppm C3H6, 5% H2O, and 

 balance N2.   
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In the first set of experiments, non-cyclic C3H6 steam reforming experiments were 

performed between 300 and 500°C under conditions identical to those in Figure 4.1. 

Upon completion of the steam reforming experiments at 500°C, the reactor was cooled to 

50°C in N2 and then 10% O2 was added to the inlet gas feed and the reactor was ramped 

to 500°C at 7°C/min. The capillary for SpaciMS readings was placed at two locations; 2 

and 4 cm from the inlet face, to investigate the amount of coke deposited during the test 

(two experiments were performed, with measurements taken at 2 cm during the first and 

4 cm during the second). The amount of evolved CO2 during these TPO experiments was 

measured and the results are shown in Figure 4.7; no CO was observed. The amounts of 

C deposited on the catalyst were quantified based on the CO2 evolved and were 394 and 

395 µmoles upstream of 2 and 4 cm, respectively. As shown, oxygen begins to remove 

the coke from the catalyst as low as 190°C. Coke removal reached a maximum at 230°C 

and coke was completely removed by 250°C. Such data suggest that during normal NSR 

cycling, less inhibition would be observed, at least above 230°C, from coke build-up 

because O2 will be available during the lean phase to remove any built-up coke from the 

previous rich phase of the cycle.  

The data shown in Figure 4.7 also show that the amount of formed CO2 is quite 

similar at the 2 and 4 cm positions, indicating that the deposited coke was only in the 

front 2 cm of the catalyst. Based on the data shown in Figure 4.1, reaction is still 

occurring downstream, and is a combination of steam reforming and WGS, with the 

WGS originating from CO formed during steam reforming. The constantly higher 

hydrocarbon concentrations at the front of the catalyst lead to larger coke deposits there, 

and a drop in formation down the length as the hydrocarbon is consumed. 
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Figure 4.7  CO2 formation obtained during temperature programmed oxidation 

 experiments at 2 and 4 cm from the front of the catalyst. After C3H6 steam 

 reforming experiments, the reactor was cooled down to 50°C with only N2 

 and then 10% O2 was added to feed and the reactor was ramped to 500°C at 

 rate of 7°C/min. 

 

Furthermore, hydrogen is known to suppress coke formation during steam 

reforming [44], and thus the product hydrogen leads to decreasing amounts of coke 

observed down the length of catalyst. With the test ending at 500°C, these effects are 

even more pronounced due to the higher reaction rates and therefore more reaction at the 

inlet. 

To isolate the effect of the temperature and further investigate coke deposition 

along the catalyst length, non-cyclic C3H6 steam reforming experiments were performed 
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at 450°C and for different reaction times; 4, 60 and 180 min. The reactor was 

subsequently cooled to 50°C in N2, 10% O2 was then added, and the reactor was ramped 

to 500°C at 7°C/min. The capillary for SpaciMS was placed at 4 cm from the catalyst 

front. As expected, coke formation increased as the reaction time increased. These results 

indicate that coke deposition builds as a function of reaction time, at least to 180 min, 

which is consistent with the data shown in Figure 4.6. The formed CO2 during TPO was 

measured to quantify the amount of C on the catalyst surface. The amounts of C 

deposited on catalyst surface were 269, 422, and 887 µmoles at 4, 60 and 180 min, 

respectively. CO2 measurements during TPO after non-cyclic C3H6 steam reforming 

experiments performed at 450°C for 180 minutes were obtained at two different 

locations; 2 and 4 cm.  The amounts of C deposited on catalyst surface were 354 and 887 

µmoles at 2 and 4 cm, respectively. The amount of coke at 4 cm was almost 2.5 times 

that at 2 cm. Due to the integral nature of the monolith, coke will be deposited first at the 

front of the catalyst and further verifies that coke deposition was spread along the catalyst 

length with this longer reaction time.  

Similar experiments were also performed after the cycling C3H6 steam reforming 

experiments, run at 375°C and under conditions otherwise identical to those described for 

Figure 4.4. During cycling experiments, no CO2 was observed evolving during the inert 

phase, up to ~500°C. After the cycling experiment, the reactor was cooled to 50°C and 

then ramped at 7°C/min to 500°C with 10% O2 and balance N2. The capillary was placed 

at three different locations (thus steam reforming was repeated at 375°C three times); 1, 

2, and 4 cm from the catalyst front. The detected CO2 during TPO was measured and the 

results are shown in Figure 4.8.  
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Figure 4.8  CO2 formation obtained during a temperature programmed oxidation 

 experiments at 1, 2 and 4 cm from the front of catalyst. After cycling C3H6 

 steam reforming experiments at 375°C, the reactor was cooled down to 50°C 

 with only N2 and then 10% O2 was added to the feed and the reactor was 

 ramped to 500°C at rate of 7°C/min.  

 

At 1 cm, the maximum amount of CO2 measured was about 12 ppm whereas 19 

and 20 ppm were detected at 2 and 4 cm, and the amounts of C deposited on the catalyst 

surface were 31, 91 and 102 µmoles at 1, 2 and 4 cm, respectively. Again, these data 

demonstrate that coke deposition occurred more at the front portion with small reaction 

times, here over the front 2 cm of the catalyst during the 10 sec of C3H6 steam reforming. 

Coke deposition was also primarily observed in the front 2 cm with longer times in the 
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non-cyclic runs mentioned above, but in those experiments the temperature was higher, 

resulting in increased rates at the front as well. For the sake of a more direct comparison, 

cycling and non-cycling C3H6 steam reforming experiments were performed at 400ºC. 

The non-cyclic experiment was held for 50 min, and three 10 sec rich cycles for the 

cycling experiment. This admittedly leads to significantly less exposure during the 

cycling experiments, but based on the TPO data presented above, any built-up coke could 

be oxidized at these temperatures in any case. The reactor was cooled to 50°C and then 

ramped at 7°C/min to 500°C with 10% O2 and balance N2. The capillary was placed 4 cm 

from the catalyst front. The C amount was measured during TPO after 50 min was 385 

µmoles, while 137 µmoles was measured after the 10 sec cycling experiment. It is 

apparent that significantly less total carbon was deposited during the briefer cycling 

experiments, although definitely non-linear with respect to time, which ultimately leads 

to the increased H2 production observed.  

 

4.4.4 Regenerating the catalyst from deposited coke 

 

Numerous regeneration methods have been proposed in the literature to remove 

coke deposited on catalysts. Oxygen, H2O, CO2, and H2 are the most commonly used 

gases for removing coke [45]. In this study, catalyst regeneration from deposited coke by 

O2, H2O, H2, and a mixture of H2O and H2 was investigated after non-cyclic C3H6 steam 

reforming experiments. Although the TPO data show coke removal at relatively low 

temperatures, it is necessary to determine if the other gas components play a critical role 

in coke removal as well, in order to understand and model such phenomena. The steam 

reforming conditions prior to the regeneration tests are similar to those described in 
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Figure 4.1. In all of these experiments, the mass spectrometer capillary was placed at 4 

cm from the catalyst front. In one experiment, C3H6 steam reforming was performed 

during a temperature programmed ramp from 300 to 490°C at a rate of 1°C/min. 

Subsequently, the reactor was cooled in N2 to 50°C. The reactor was then ramped up at a 

rate of 7°C/min to 525°C with a feed containing 5% H2O and the balance N2. The CO2 

measured during the ramp is shown in Figure 4.9.  

 

 

 

Figure 4.9 CO2 formation data obtained during temperature programmed reduction 

experiments at 4 cm from the front of catalyst.  After non-cyclic C3H6 steam 

reforming experiments during a temperature programmed ramp from 300 to 

490°C at 1°C/min, the reactor was cooled down to 50°C with only N2 and 

then (A) 5% H2O was added to the feed, or (B) 1000 ppm H2 and 5% H2O 

were added to feed, and the reactor was ramped to 525°C at a rate of 

7°C/min.  
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Water began to remove coke at 495°C and the catalyst was completely “cleaned” 

at 525°C. Similar experiments were also performed, but the regeneration mixture during 

the temperature ramp portion of the experiment contained 1000 ppm H2 and 5% H2O (a 

H2 value similar to those observed during steam reforming experiments). No CH4 or CO 

was detected in the product stream. The CO2 was observed at the same temperature when 

regenerating with only H2O, as shown in Figure 4.9. This indicates the 1000 ppm of H2 

had little, if any, impact on regeneration although it suppresses coke formation [44]. 

Further experiments were also carried out to investigate the ability of just H2 to remove 

coke. 

C3H6 steam reforming was carried out at 400°C, to eliminate the effect of H2O on 

coke removal, since H2O begins to react with the coke at ~495°C as was shown in Figure 

4.9. C3H6 was turned off after 50 min of steam reforming and then 500 ppm of H2 was 

introduced for 20 min. If the H2 was able to remove the deposited coke, CH4 should be 

detected in the outlet stream via the following reaction: C + 2H2  CH4. However, no 

CH4 was observed in the outlet stream. One possible reason is that the formed CH4 could 

be reformed in the presence of H2O to H2 and CO or CO2 via the following reactions: 

 

CH4  + H2O   CO + 3H2; 

CH4 + 2H2O   CO2 + 4H2. 

 

But, neither CO nor CO2 was observed in the outlet stream, indicating that CH4 steam 

reforming also did not occur. To verify that the coke was not removed from the catalyst, 

the reactor was cooled to 50°C in N2, 10% O2 was then added, and the reactor was 

ramped to 500°C at 7°C/min. CO2 was detected in the outlet stream (data not shown), 
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peaking at 75 ppm at about 225°C, indicating that the H2 did not clean the catalyst from 

deposited coke in the presence of H2O. As further evidence for the lack of H2 reaction 

with surface coke, a TPR experiment was performed after C3H6 steam reforming during a 

temperature ramp from 300 to 480°C. The reactor was cooled afterwards in N2 to 50°C 

and then ramped at 7°C/min to 525°C with a feed containing 1000 ppm H2 and a balance 

N2. No CH4, CO, or CO2 were detected in the outlet stream, again indicating that H2 did 

not remove the deposited coke from the catalyst. The reactor was subsequently cooled in 

N2 to 50°C and then 10% O2 was introduced and the reactor was ramped to 500°C at 

7°C/min. Again, CO2 was detected in the outlet stream. Overall, these data demonstrate 

that H2 does not react with deposited coke on this DOC at temperatures as high as 525°C. 

H2 could be able to regenerate the catalyst at T > 525°C, but this was not investigated to 

avoid catalyst aging. Furthermore, these data support previous conclusions regarding the 

effect of H2 in suppressing coke formation, such that as H2 is produced via steam 

reforming, less coke forms, consistent with the observed axial gradient in surface C along 

the length of catalyst. 

 

4.5 Conclusions  

 

Hydrocarbon steam reforming and water gas shift reactions were investigated as a 

function of catalyst length and temperature over a monolith supported diesel oxidation 

catalyst. Hydrogen production was measured during both cycling and non-cycling 

(constant steam reforming and water gas shift reaction conditions) experiments using 

spatially resolved capillary-inlet mass spectrometry (SpaciMS). The data demonstrate 

that hydrogen production with C3H6 steam reforming started at 375°C, while dodecane 

steam reforming occurred at 450°C and with less hydrogen produced. When C3H6 and 
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dodecane were present together, mutual inhibition was observed and the hydrogen 

formed only originated from C3H6 steam reforming. The amount of hydrogen formed via 

the WGS reaction was higher, and started at a lower temperature (~225°C) than that 

observed with hydrocarbon steam reforming. The amount of hydrogen formed during 

cycling hydrocarbon steam reforming experiments was consistently higher than that 

obtained from the non-cycling experiments. Coke deposition was investigated during 

both types of experiments and the results show that higher amounts of coke were 

deposited during the non-cycling experiments, compared to cycling experiments, 

providing the reason for the observed differences in hydrogen formed. Coke deposition 

was found to start at the front of the catalyst and spread downstream as the reaction time 

increased.  
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Chapter 5 

 

Investigating the Effect of NO Versus NO2 on the Performance of a Model NOX 

Storage/Reduction Catalyst 
* 

5.1 Abstract 

 

 The effects of using NO or NO2 as the NOX source on the performance of a NOX 

storage/reduction catalyst were investigated from 200 to 500°C. The evaluation included 

comparison with constant cycling times and trapping the same amount of NOX during the 

lean phase. With NO2 as the NOX source, better trapping and reduction performance was 

attained in comparison to NO, at all operating temperatures except 300ºC. This exception, 

under the conditions tested, was likely due to high NO oxidation activity and rapid 

trapping of NO2, although it is expected that extending the trapping time would lead to 

consistent differences. Several reasons for the observed improvements at 200, 400 and 

500°C with NO2 relative to NO are discussed. One that can explain the data, for both 

trapping and release improvement, is treating the monolith as an integral reactor. With 

NO2, more NOX is trapped at the very inlet of the catalyst, whereas with NO, the 

maximum in trapping during cycling occurs slightly downstream. Thus more of the 

catalyst can be used for trapping with NO2 as the NOX source. The decreased release 

during catalyst regeneration is similarly explained; with more being released at the very 

inlet, there is more residence time and therefore contact with downstream Pt sites, but 

more importantly more interaction between reductant and stored NOX. NH3 and N2O 

measurements support this conclusion.  

 

* 
See the permission from Springer Science+Business Media in appendix A 
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5.2 Introduction 

 

 Concern over fluctuating fuel prices and depleting fuel reserves has led to 

increased interest in more fuel-efficient engines, such as lean-burn gasoline and diesel 

engines. However, the excess oxygen present in lean-burn engine exhaust significantly 

decreases the reduction of NOX to N2 over today‟s three way catalytic converter (TWC), 

which was designed to operate efficiently in stoichiometric-burn, near-zero oxygen, 

engine exhaust. An alternative, emerging catalyst technology for NOX clean-up from 

lean-burn engine exhaust is NOX storage and reduction (NSR). NSR catalysts are 

typically composed of a high surface area substrate such as γ–alumina, alkali and alkaline 

metal earth components that trap NOX in the form of nitrites and nitrates, and precious 

metals such as Pt, Pd, and Rh for the redox reactions [1-4]. This technology operates in 

two modes: lean and rich. In the lean mode, which is where the engine normally operates, 

NO is oxidized to NO2 over precious metal sites and the NO and/or NO2 is then stored on 

the trapping material as a nitrate and/or nitrite [4-8]. When some portion of these trapping 

materials becomes saturated, the engine exhaust is switched to a reductant-rich mode 

where reductants such as H2, CO, and HC are introduced to induce the reduction of the 

stored NOX to N2 [9-11]. 

 Although the trends and mechanisms of NOX storage, release, and reduction have 

been investigated [12-15], due to the complexity of the catalyst, process and their 

sensitivity to experimental conditions, there is still debate regarding the mechanisms and 

the potential reactions involved in the multiple catalytic steps [15]. However, there is 

consensus in the literature that improved NO oxidation to NO2 results in improved NSR 

catalyst performance. Previous work [16] has demonstrated that over a wide range of 
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operating temperatures, NO can not be adsorbed over barium aluminates and barium 

stannate, even in the presence of O2, whereas NO2 is readily absorbed. In a study that 

investigated the storage of NO and NO2 over a Pt-containing commercial NSR catalyst 

[17], no storage occurred when NO was used as the NOX source below 150°C, while 

significant storage was observed when NO2 was used. However, at 380ºC with a 

Pt/Rh/Ba/Al2O3 sample [18], no significant difference was observed in storage capacity 

when either NO or NO2 was used. This improvement with NO at higher temperature is 

likely attributed to one, or all of, three reasons. First, NO oxidation activity in this higher 

temperature range is significant [19-21]. Second, NO2 is known to inhibit the NO 

oxidation reaction [22], and with NO2 being trapped more rapidly as the temperature is 

increased, at least until approximately 300 to 400°C [13,23], less is present to inhibit the 

reaction, thus allowing even more NO oxidation. Finally, thermodynamic equilibrium 

between NO and NO2 within this temperature range [18] imposes a constraint on the NO2 

concentration, which is easily achieved over a typical NSR catalyst [19]. Therefore at 

downstream positions, the same amounts of NO and NO2 are present, resulting in similar 

performance no matter the NOX source. The interaction of NO, NO/O2, and NO2 mixtures 

was also investigated at even higher temperature, 500°C, over Pt-Ba/Al2O3, Ba/Al2O3, 

and Pt/Al2O3 [7]. The trapping efficiency followed the order NO < NO + O2 < NO2. 

Similar findings were also observed over a commercial NSR catalyst at 400ºC [24]. 

These results indicate that it must be more than just NO oxidation efficiency that dictates 

performance, otherwise there would be a consistently decreasing difference as the 

temperature is increased. Overall, NSR catalysts are more efficient with NO2 as the NOX 

source, or NO2 may even be a necessary intermediate for NOX storage.  
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 Several mechanisms have been proposed for NOX storage when either NO or NO2 

is present in the inlet gas feed. Previous work has proposed that nitrites and nitrates can 

form, either individually [7,12,13,18,25-27], or both form simultaneously via  2BaO + 

4NO2  Ba(NO3)2 + Ba (NO2)2 [15,18]. NOX release mechanisms have also been 

investigated, with the research indicating that nitrate species decompose releasing NO or 

NO2 [7,13,18].  

 There are several reasons that might explain the performance improvements 

observed when NO2 is used instead of NO as the NOX source. First, if trapping is a 

function of NO2 partial pressure [6], then when NO2 is used, the very inlet of the catalyst 

can participate in trapping whereas with NO, oxidation to NO2 must occur before 

efficient trapping is realized. A second possibility involves the presence of multiple types 

of trapping sites [28-30]. As an example, if one Ba site type is near Pt and another is 

distant from Pt, NO might only adsorb on the Ba sites which are in close proximity with 

Pt since it needs to be oxidized to NO2 prior the adsorption event. While with NO2, it can 

be adsorbed on both Ba site types. 

 Although NO2 improves NSR catalyst efficiency, increasing NO2 amounts to the 

NSR catalyst or within the NSR catalyst requires the addition of more oxidation catalyst. 

Diesel oxidation catalysts have been added upstream of NSR catalysts to provide higher 

inlet NO2, as well as for other functions. These are currently precious metal-based 

catalysts. To improve NO oxidation within the NSR catalyst, more precious metal can 

also be added. These obviously come at a cost and therefore it is important to understand 

the effects of NO2 and optimize the amount of NO2 in the inlet. In the present work, we 

have investigated the performance of a model NSR catalyst as a function of NOX source 
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at operating temperatures between 200 and 500ºC. Although there are studies that have 

investigated the influence of NO versus NO2, as shown above, the NOX trapping, release, 

and reduction characteristics as well as N2O and NH3 formation when the two are used 

has not been systematically investigated. Furthermore, a comparison was made between 

the two when the same amount of NOX is trapped so that the effects during the 

regeneration phase could be observed.  

 

5.3 Experimental Methods  

 

The model Pt/BaO/Al2O3 sample used in this study was supplied by Johnson 

Matthey in monolithic form. The model sample contains 2.0 g/in
3
 Al2O3, 1.45% Pt and 

20% BaO relative to the Al2O3. The sample was removed from a monolith block that had 

a cell density of 300 cpsi. The sample used was 0.83” in diameter with a length of 3”. 

The sample was inserted into a horizontal quartz tube reactor, which was placed inside a 

Lindberg temperature-controlled furnace. The catalyst was wrapped with 3M matting 

material to cover the gap between the catalyst and the wall of the reactor to ensure that no 

gas slipped around the sample. Two K-type thermocouples were placed at the radial 

center of the catalyst; one just inside the inlet face of the catalyst and one just inside the 

outlet face of the catalyst. A third was placed ~ 1” upstream of the sample. 

The gases and gas mixtures were supplied by Praxair and were metered with 

Bronkhorst mass flow controllers. A four-way, fast-acting solenoid valve was used to 

switch between the lean and rich mixtures, which were made in separate manifolds. After 

the dry gas mixture had been heated to >120°C, water was introduced downstream of this 

valve. Table 5.1 lists the gas compositions used in the cycling experiments. The gas 

mixture then passed through a high-capacity furnace, achieving the target test 
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temperature prior to entering the furnace holding the sample. This set-up minimized any 

artificial axial and radial temperature gradients during the experiments.   

Before each experiment, the sample temperature was ramped to 500°C with 5% 

H2O, 5% CO2, and a balance of N2 and then the catalyst was cleaned/conditioned with a 

gas mixture consisting of 5% H2O, 5% CO2, 1% H2, and a balance of N2 for 15 min. The 

reactor was then cooled to the target test temperature. Experiments were performed at 

200, 300, 400 and 500°C with a space velocity, at standard conditions, of 25,000 hr
-1

. The 

gases exiting the reactor were maintained at >190°C to avoid condensation and NH3 

hold-up. The gas compositions were measured using a MKS MultiGas 2030 FT-IR 

analyzer at approximately a 2 Hz collection rate. CO, CO2, NO, NO2, N2O, NH3, and 

H2O concentrations were measured.  

 

Table 5.1 Details of flow conditions used in the experiments 

Flow Conditions Trapping 

(lean) phase 

Regeneration 

(rich) phase 

Space velocity 25,000 hr
-1

 25,000 hr
-1

 

Concentrations 

NO2 or NO 

O2 

CO2 

H2O 

H2 

N2 

 

330 ppm 

10% 

5% 

5% 

0 

Balance 

 

0 

0 

5% 

5% 

3% 

Balance 

 

 

5.4 Results 

 

5.4.1 Effect of inlet NO versus NO2, with identical cycling times 

 

 The outlet NOX concentrations when either NO or NO2 was used as the NOX 

source at 200°C are shown in Figure 5.1. For this set of experiments, the lean, or 
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trapping, time was 40 seconds, the rich, or regeneration, time was 4 seconds and 3% H2 

was used as the reductant in the regeneration phase. The conversions and amounts of 

NOX trapped and released for these experiments are listed in Table 5.2. All reported 

values and plotted data were obtained after steady cycle-to-cycle performance was 

observed. The data plotted in Figure 5.1 show that the trapping performance for both 

cases, when either NO or NO2 was used, is similar during the first 11 seconds of the lean 

phase. Beyond the first 11 seconds, however, differences in the outlet concentrations 

were observed. The outlet NOX concentrations at the end of the lean phase were 63 and 

178 ppm with NO2 and NO, respectively, and the amounts of NOX trapped were 101 and 

85 moles. The amounts released as unreduced NO or NO2 during the rich period were 

relatively small, but slightly more was actually released with NO as the feed NOX source 

although less NO was trapped in the prior lean phase. This is somewhat surprising since 

the same amount of reductant was added in both cases. 
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Figure 5.1  NOX outlet concentrations obtained when testing the sample at 200°C.  
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 Similar experiments were carried out at 300, 400 and 500°C, with data shown in 

Figures 5.2-4. At 300ºC, 100 seconds of storage and 4 seconds of regeneration were used 

for cycling. A summary of the results for all temperatures is also listed in Table 5.2. 

 

 

Table 5.2 Calculated performance characteristics as a function of temperature, NOX 

source, and lean phase time over a Pt/BaO/Al2O3 catalyst 

 

 

 At 300ºC, with NO2, the calculated NOX conversion was 96%, while with NO, it was 

94%. It is apparent from Figure 5.2 that the differences in the breakthrough profiles are 

less than those observed at 200ºC, but with some difference in trapping performance 

Temperature 

(°C) 

 

NOX 

source 

 

Time (sec) 

Lean     Rich                        

NOX 

Trapped 

(moles) 

NOX 

Released 

(moles) 

NOX 

Conversion    

(%) 

N2O 

Released 

(moles) 

NH3 

Released 

(moles) 

 

200 

  NO 40 4 85 3.5 73 5.2 47 

  NO2 40 4 101 1.5 90 4.1 50.5 

NO2 35 4 92 1.3 94 3.5 45.6 

NO2 30 4 80 0.9 95 3.4 39.6 

 

300 

  NO 100 4 264 1.8 94 0.57 58 

NO2 100 4 268 1.6 96 0.55 79 

NO2 95 4 256 1.6 96 0.51 73 

 

400 

  NO 120 4 278 8 81 0.27 0 

  NO2 120 4 312 6.4 92 0.07 0.80 

  NO2 100 4 277 3 98 0.01 24 

 

500 

  NO 80 4 163 31 59 0.26 11 

NO2 80 4 189 23 75 0.19 26.5 

NO2 62 4 162 19 83 0.11 24 
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noted after 34 seconds into the lean phase. However, even at end of the 100-second lean 

phase, the difference in the breakthrough was only about 10 ppm. The amounts trapped 

were 268 and 264 moles with NO2 and NO, respectively, and the amounts released were 

1.8 moles with NO to 1.6 moles with NO2. Overall, using either NO2 or NO at 300°C 

led to similar performance for these cycling conditions.  
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Figure 5. 2 NOX outlet concentrations obtained when testing the sample at 300°C 

 

The outlet NOX concentration data obtained at 400°C are shown in Figure 5.3. For this 

set of experiments, the trapping time was 120 seconds and the regeneration time was 4 

seconds. With NO as the NOX source, the calculated NOX conversion was 81%, while 

with NO2 the NOX conversion was 92%.  The NOX released decreased from 8 moles 
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with NO to 6.4 moles with NO2, while the trapping performance increased from 278 to 

312 moles.  
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Figure 5. 3   NOX outlet concentrations obtained when testing the sample at 400°C. 

 

The data obtained at 500°C are shown in Figure 5.4. The cycle time was 80 seconds for 

storage and 4 seconds for regeneration. The NOX trapped with NO2 as the NOX source 

was 189 moles and 23 moles were released during the regeneration phase. When NO 

was used, 163 moles were trapped and 31 moles released. From the data shown in 

Figure 5.4, the NOX breakthrough was similar for the first 38 seconds of the lean phase 

and beyond that, differences were observed. At the end of lean phase, the difference in 

the concentrations exiting the reactor was about 63 ppm.  
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Figure 5. 4  NOX outlet concentrations obtained when testing the sample at 500°C. 

 

5.4.2 Effect of inlet NO versus NO2 with the same amount trapped  

 

 In this set of experiments, the catalyst performance when trapping the same, or 

similar, amount of NOX, using either NO or NO2, was monitored. The same reductant 

amounts during the regeneration phase were delivered, resulting in a constant surface 

NOX species-to-reductant amount in the cycles. The conversions and amounts of NOX 

trapped and released for these experiments are also listed in Table 5.2. In this case, 

although listed for completeness and to demonstrate the more dramatic effects, the 

conversions are not directly comparable since the lean times for the experiments differ. 

For example, at 200ºC, when a similar amount is trapped with NO and NO2, the lean-

phase times were 40 seconds and 30 or 35, respectively. The amount of NOX in during 30 
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seconds is 75% of that in over 40 seconds, and thus when calculating the conversion, the 

basis or inlet amount is not the same. At 200ºC, with NO as the NOX source, the NOX 

trapped was 85 moles. To achieve a similar trapped amount of NOX with NO2 as NOX 

source, the lean phase was decreased to 30 and 35 seconds. For these two times, the NOX 

trapped was 80 and 92 moles, respectively. For all three experiments, 3% H2 was used 

in the 4-second regeneration phase. One would think that since a similar amount of NOX 

was trapped with both NO and NO2 for these experiments, and the same amount of 

reductant was introduced during the regeneration phase, a similar amount of release 

might be expected. This was not the case at 200, 400 and 500°C. For the four 

experiments run at 200°C, the NOX released was 3.5 moles with NO (85 moles 

trapped) and 1.5, 1.3 and 0.8 moles with NO2 (101, 92 and 80 moles trapped).  

 At 300ºC, performance was comparable with the same cycling times, therefore 

extra experiments were not run. At 400ºC, the lean time was reduced to 100 seconds 

when testing with NO2 so that a similar amount was trapped as that with NO for 120 

seconds. When NO was used in the lean phase, the NOX trapped was 278 moles and the 

NOX released was 8 moles, while with NO2, the NOX trapped was 277 moles and the 

NOX released was 3 moles. At 500ºC, when NO was used, 163 moles were trapped 

and 31 moles released and with NO2, the lean phase was shortened to 62 seconds 

resulting in 162 moles of NOX trapped and 19 moles released. The above results 

demonstrate that the use of NO2 as the NOX source is not merely better for trapping, but 

also less release occurred.  
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5.5 Discussion 

 

 In comparing the results obtained at 200 and 500°C when testing with either NO 

or NO2, similar trapping profiles were observed at the onset of the trapping phase. Low 

initial NOX out values indicate that active trapping sites were regenerated during the prior 

rich phase. It has been suggested that there are sites with different relative activities and 

the more active sites for Pt/Ba/Al2O3 samples are associated with the outermost layers of 

Ba particles or are in close proximity to the precious metal sites [28-30]. If the reduction 

equation is assumed as follows; Ba(NO3)2 + 5H2  N2 + BaO + 5H2O,  for 2 moles of 

NOX trapped, 5 moles of H2 are required for reduction to N2. At 200°C, the amount of 

NOX that enters the reactor during a 40-second lean phase is 0.11 mmoles, so the H2 

required to reduce all of the entering NOX to N2 if it all were trapped is 0.28 mmoles. 

Therefore, 3% H2, or 1.01 mmoles input during the 4 seconds of rich, is in large excess. 

Since the catalyst does not contain any oxygen storage components, such as ceria, this 

amount will be in excess even if including that needed to consume the very small amount 

of oxygen stored on the catalyst surface. Hence, excess reductant was delivered during 

the regeneration phase and therefore similar cleaning might be expected with either NO 

or NO2. However, except at 300°C, the data demonstrate that trapping is significantly 

more efficient if NO2 is the NOX source. Such improvements in overall performance have 

been repeatedly observed when comparing NO2 to NO [7,12,13,15,31-34]. In this study, 

the differences between the two are especially apparent at the temperature extremes. 

There are several possible reasons for this trend in trapping. 

 First, monolith-supported catalysts are integral devices, and introducing NO2 can 

increase use of sites at the very inlet of the catalyst if trapping depends on NO2, or is 
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enhanced via NO2. With NO, NO2 becomes available via NO oxidation, and therefore the 

NO2 concentration will be relatively low at the very inlet, but increase downstream, 

meaning that for some distance within the sample, the amount of NO2 will be 

significantly less than when introducing NO2 as the NOX source. For example, applying 

previously derived NO oxidation kinetics [22], demonstrates that at steady-state 

conditions, in other words after the Ba is saturated and no trapping occurs, the 

conversions of NO to NO2 at 200°C and at positions 0”, 1”, 2” and 3” from the inlet are 

0, 11, 16 and 21%, respectively. This build-up in NO2 would result in higher nitrate 

concentrations downstream of the inlet, which has indeed been observed [35]. Note that 

with trapping, NO2 would be adsorbed from the gas phase, resulting in higher local NO 

oxidation rates compared to the absence of trapping. Also, using NO2 as the NOX source 

can result in good trapping performance even in the absence of oxygen in the inlet feed 

[31]. Thus activation of the O2 molecule is not required with NO2, possibly helping 

reaction at low temperature. Another possible contribution is from different trapping sites 

having different adsorption affinities for NO2 and NO. Multiple Ba sites or adsorbing 

types have been proposed [28-30]. In one example, there are two Ba site types, one 

proximal to Pt sites and the other further away. With such a scheme, only the sites close 

to Pt might participate in trapping when NO is the inlet NOX source, as the Pt would 

oxidize the NO to NO2, which would then “spill-over” to an adjacent Ba site. Otherwise, 

the NO2 would have to desorb from the precious metal site and re-adsorb to Ba 

downstream, but as described above, the overall NO oxidation rate is fairly limited at the 

lower temperatures. NO2 can be adsorbed on both types of Ba sites, the one proximal to 

Pt and the one far away from Pt via direct nitrite formation, or via the disproportionation 
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mechanism to nitrates. This of course increases the available amount of trapping sites 

when NO2 is introduced, therefore increased trapping will occur and overall higher NOX 

reduction performance would be expected. Again, however, this would contribute to 

more being trapped at upstream sites as well as throughout the catalyst. Another 

possibility, along the same concept, is that nitrate species and not nitrite species are 

always, or at least preferentially, formed when NO2 was used, while a mixture of the two 

species are formed with NO. The thermal stability of nitrate species is higher than nitrite 

species [4,7], and therefore they are less likely to decompose during the lean phase (via 

an adsorption/desorption like equilibrium) leading to more NOX trapped. Most evidence, 

however, suggests that at temperatures below 300°C, a mixture of nitrites and nitrates 

form when NO is used, but at higher temperatures, although a mixture may initially form, 

the nitrites are quickly oxidized to nitrates and have therefore not been observed [6,7]. 

This is therefore unlikely to significantly influence higher temperature performance and 

therefore cannot explain the differences observed at 400 and 500°C. 

 At 300ºC, the trapping performance of the catalyst appears only slightly 

dependent on the NOX source under the conditions of these tests. NO oxidation initially 

increases with temperature [36] and most NSR catalyst types attain their maximum 

oxidation activity between 300 and 400°C, resulting in high NO2 amounts, thus leading to 

more favorable trapping and comparable performance. Again, using previously derived 

kinetics [22], at 300°C and in the absence of trapping, 50% NO conversion is predicted. 

However, the generated NO2 over a NSR catalyst can be immediately trapped, leading to 

maintained, higher overall NO oxidation rates due to lesser NO2 product inhibition, 

especially in this 300 to 400°C range. Additionally, in this temperature range, some 
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thermodynamic equilibrium between NO and NO2 is being established [18], with a 

calculated maximum 87% conversion allowed at 300°C, indicating the kinetics are still 

responsible for the lower conversion. Even so, based on the data shown in Figure 5.2, it is 

expected that with longer lean time, more difference would be observed, with NO2 still 

resulting in improved NOX trapping at 300°C. At 400 and 500°C, more significant 

differences were observed. It should also be noted that NO2 was observed in the outlet 

gas composition at 400 and 500°C, with NO and NO2 as the NOX source, indicating it is 

not an absence of NO2 limiting trapping at these high temperatures.  

 At all temperatures, with NO2 used, there was also noticeable improvement in the 

regeneration phase, i.e. less unreduced NO and NO2 was released. This is based on the 

data obtained from the experiments where the same amount of NOX was trapped during 

the prior lean phase, presented in Table 5.2, resulting in a constant reductant-to-trapped 

NOX ratio for comparison purposes. A likely reason that explains this trend as well, is the 

integral nature of the NSR catalyst system. As mentioned above, if NO2 is introduced as 

the NOX source, more sites at the front of the catalyst will participate in trapping. 

Trapping with NO will be limited at the very inlet due to low NO2 partial pressures, until 

the extent of NO oxidation is significant enough. Therefore, upon switching from the lean 

to rich phase, in the case of NO2, more NOX is released at the very front of the catalyst 

giving it more chance to be reduced by downstream Pt sites before exiting the monolith. 

While with NO, more is released slightly further downstream, and has less time spent in 

the monolith or chance to contact the reducing Pt sites. This is compounded by the local 

reductant-to-NOX ratio as will be discussed below. 
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 Another impact, still in conjunction with the integral reactor explanation, is the 

oxygen stored on the catalyst surface affecting the amount of reductant available for NOX 

reduction. Previous research [37,38] has shown that reductant can be used up in reducing 

the stored oxygen on the catalyst and hence influences the amount of reductant available 

for regeneration and reduction of NOX. With NO2, more NOX is trapped at the very inlet 

and upon switching from lean to rich, the reductant will simultaneously be depleted to 

reduce both oxygen and NOX stored on the catalyst. Although competitive, this still 

results in the opportunity for reductant to be consumed in the reduction of NOX. 

However, when NO is used, more is trapped slightly downstream and the incoming 

reductant is first used to deplete the oxygen stored at the very inlet, thereby delaying 

reductant delivery to downstream Pt and Ba sites where the higher concentrations of 

stored, or released, NOX species are. This will likely play an increasing role as the nitrate 

decomposition reaction becomes more significant, i.e. with increasing temperature. Also, 

with the catalyst studied in these experiments, although present, little OSC was measured 

due to the absence of standard OSC components. Therefore, the effect described may be 

minor with this system, but more significant with commercial formulations that contain 

ceria and other OSC components.  

 Further evidence supporting the increased reduction being related to where the 

NOX was trapped is the formation of N2O and NH3 byproducts during the regeneration 

event. As shown in Table 5.2, the formation of N2O was always higher when NO was 

used. With more NOX trapped at the front of the catalyst when NO2 is used, during 

regeneration there is more opportunity for complete reduction downstream, leading to 

decreased selectivity toward N2O formation, where N2O can be considered an incomplete 
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reduction product. While with NO, the distribution of trapped NOX is shifted 

downstream, and there is therefore less chance for released NOX to be completely 

reduced. This is again related to residence time, since for any NOX released further 

upstream, there is more chance for reduction at downstream sites, but can also be related 

to the reductant-to-NOX ratio. As the reductant enters, it is consumed by surface oxygen 

and in reducing the nitrites and nitrates. Therefore, reductant delivery to downstream 

active sites lags the lean/rich gas transition, and as time increases, or the lean/rich 

transition front distance into the catalyst increases, this lag increases as well. With NO2 as 

the NOX source, more was trapped at the very upstream Ba sites, and a relatively higher 

reductant-to-NOX ratio is achieved, leading to more complete reduction overall. As a 

matter of fact, NH3 formation was always higher when NO2 was used instead of NO 

(Table 5.2). NH3 is formed from the trapped nitrite/nitrate species and the H2 input during 

regeneration and leads to selective catalytic reduction of NOX over the NSR catalyst 

[39,40]. Following the same concept discussed above, if NO2 is trapped at the very inlet 

of the catalyst, more NH3 can be formed due to longer residence time of the released NOX 

in the channel with the reductant, as well as a higher reductant-to-NOX ratio, a key 

parameter in NH3 formation on NSR catalysts [41]. Furthermore, with NO2 leading to 

more upstream trapping, NH3 that does form will have less trapped NOX downstream to 

react with, contributing to the greater amounts observed with NO2 as the feed. In the case 

of NO, the NOX is trapped slightly downstream relative to the NO2 case, and therefore 

less NH3 is formed, due to the decreased reductant-to-NOX ratio and decreased residence 

time. It should be noted that the amount of N2O, overall, decreased with increasing 

temperature, while NH3 did not show a consistent trend. Typically, observed NH3 
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decreases with increasing temperature, but this was not the case when comparing the data 

at 400 and 500°C. But, different lean times were used and less NOX was trapped at 

500°C, and with the same amount of reductant added, more NH3 was therefore formed at 

500°C. With the trapped NOX being different between the temperatures, a direct 

correlation of NH3 as a function of temperature cannot be made.  

 Other than the axial distribution of trapped NOX explaining the trends, another 

possibility is the nature of the stored NOX during the lean phase. Several complex 

compounds, (e.g., barium aluminates) could be present, which may have different NO 

and NO2 dependencies on trapping [18]. Similarly, the decomposition trends of the 

nitrates or surface NOX compounds formed might be different. However, these types of 

sites are typically formed via high temperature treatments [42], which were not done with 

this sample, making this an unlikely path. 

 There are other factors that can contribute to the observed trends differentiating 

NO and NO2, but these have different extents of significance in different temperature 

ranges, and therefore do not explain the consistently observed trends ranging from 200 to 

500°C. These possible contributing factors are discussed here. The possibility of nitrates 

forming at sites near and far from the precious metal sites when using NO2 was discussed 

in conjunction with the trapping results. Previous studies [7,33,43] have also addressed 

the influence of Pt on the thermal stability and decomposition of nitrate and/or nitrite 

species. If with NO, more NOX is trapped at Ba sites that are near Pt, then there may be 

higher release associated with NO as the inlet NOX source as Pt could induce the 

decomposition of the Ba nitrite/nitrate during the regeneration phase. With a catalyzed 

release, or simply higher than that compared to sites that are not necessarily near Pt, more 
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will escape unreduced. Along the same concept, nitrates are more thermally stable than 

nitrites. More nitrates form with NO2 introduced as compared to NO, which at low 

temperatures is trapped as a nitrite or nitrite/nitrate pair [5,6,15,44]. Therefore at low 

temperature, nitrite decomposition could lead to a higher amount of unreduced NOX, 

while the nitrates formed with NO2 as the inlet NOX source would lead to less. This 

however, just as with the trends in trapping, does not explain the differences observed at 

higher temperatures, as above 300°C, nitrites are rapidly oxidized to nitrates during the 

lean phase [4,7,19]. Another possibility is that NO is released as the decomposition 

product when NO is used and NO2 is released when NO2 is used, for example from 

Ba(NO3)2 decomposition, which is more prevalent with NO2 as the NOX source. In the 

absence of gas-phase O2, NO2 still has some affinity for downstream adsorption, whether 

it be on Pt or Ba [14]. Therefore, if NO2 can indeed stick to downstream sites during the 

regeneration phase, it will have more opportunity for reduction as the reductant 

propagates along the catalyst length. Again, however, this should only be expected at low 

temperature where nitrites might still exist with the switch to the regeneration phase. 

 A last consideration was the associated temperature rise with the switch from the 

trapping to regeneration phase. This is caused by reaction of the entering reductant with 

surface oxygen species, nitrate reduction and possibly mixing phenomena between the 

two phases. Measured temperature rises at the very inlet and outlet of the sample were on 

the order of 5°C during all tests. These are significantly smaller than those observed with 

commercial sample [37], due to the lack of a purposefully added oxygen storage 

component, such as ceria, in the sample used in this study. This small temperature 

increase, and it being observed at both the front and back of the sample, suggests that 
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temperature change is not a significant factor for the trends seen. Furthermore, previous 

work with Pt/Ba/Al2O3 model samples at 350°C has also indicated that with little or no 

temperature rise at the onset of regeneration, regeneration is associated with a surface-

catalyzed reaction, as mentioned above, and not via thermal decomposition of nitrate 

species [45]. Again, however, at higher temperatures thermal decomposition of the 

nitrates is expected and therefore this effect distinguishing NO from NO2 less significant. 

 Overall, of the possibilities proposed, only the integral nature of the NSR catalyst 

can explain the observations at all temperatures and amounts of NOX trapped used in this 

study. The different surface species and their relative rates of decomposition can 

contribute to the observations at low temperature, but not to the differences still observed 

at 400 and 500°C. At low temperature, NO2 is readily trapped at the very inlet, while NO 

is oxidized and then trapped. At higher temperature, NO2 will decompose to establish 

NO/NO2 equilibrium, but this still leaves higher NO2 amounts at the very inlet. 

Therefore, with NO, there is a distribution of trapped NOX as a function of axial position 

along the catalyst length during cycling that has a maximum, rather than a monotonic 

decrease with NO2 as the NOX source. This leads to the better performance consistently 

observed with NO2 as the NOX source and when upstream oxidation catalysts are used. 

 

5.6 Conclusions 

 

 In this study, the performance of a model monolith-supported NSR catalyst when 

using NO or NO2 as the inlet NOX source at temperatures between 200 and 500ºC was 

investigated. The evaluation was based on two different types of experiments; one with 

the same lean cycle times and the other with same amount of NOX trapped. The results 

clearly demonstrated that performance was better when using NO2 at all operating 
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temperatures. At 300ºC, similar performance between the two was observed, due to high 

NO oxidation activity, rapid trapping of formed NO2 and therefore no inhibition effect on 

NO oxidation, but differences were becoming apparent at the end of the lean phase. 

 The improved performance with NO2 relative to NO at the other temperatures can 

be explained by NO2 being more reactive towards trapping than NO, or even being an 

intermediate in the trapping process. This NO2 dependency leads to more NOX trapped at 

the catalyst inlet when NO2 was used, while with NO there was less since oxidation to 

NO2 prior to trapping is required or leads to more appreciable trapping. A distribution of 

stored NOX along the length of catalyst forms, where with NO2 it monotonically 

decreases and with NO there is a maximum downstream of the very inlet. Thus more 

NOX is stored with NO2 as the NOX source since the very front of the catalyst can be used 

and there are no NO2/reactant concentration limitations. Also, less released NOX during 

regeneration was observed when NO2 was used. Again, if with NO2 more is trapped at 

the very inlet, upon switching from lean to rich, the reductant is used to simultaneously 

reduce both surface oxygen and stored NOX. While in the case of NO, the reductant will 

be consumed first to deplete the surface oxygen and lesser quantities of stored NOX at the 

catalyst inlet, resulting in less reductant available to reduce NOX at downstream positions 

where it is being released in higher concentrations. Analysis of byproduct N2O and NH3 

formation during the regeneration phase support this conclusion, as more N2O was 

observed with NO as the inlet NOX source, and more NH3 with NO2. Possible 

contributions to improved performance with NO2 at lower temperatures were also 

discussed, and included nitrate versus nitrite stability and trapping at sites near or far 

from the Pt sites. 
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Chapter 6 

 

Effects of Different Regeneration Timing Protocols on the Performance of a Model 

NOX Storage/Reduction Catalyst
* 

 

6.1 Abstract 

 

 

 The effects of different regeneration times, but with a constant total amount of 

reductant delivered, were investigated over a model NOX storage and reduction (NSR) 

catalyst. The different regeneration times were 4, 8 and 16 seconds with 4, 2, and 1% H2 

as the reductant amounts, respectively. The lean time was kept the same during these 

experiments, resulting in a constant inlet NOX-to-reductant amount in the cycles. Overall, 

the results show clear improvements with longer regeneration times in both NOX trapping 

and overall reduction performance at all temperatures except 500°C. At 500°C, there was 

still an increase in trapping performance with longer regeneration time, but a more 

significant increased NOX release coincident with a small increase in the trapping 

performance resulted in an overall decrease in NOX conversion with increasing 

regeneration time. The data demonstrate that the different concentrations of H2 did not 

lead to different regeneration extents, but that the main factor for the improved 

performance was the regeneration time itself. With longer regeneration times, more 

nitrate/nitrite decomposition occurred, thereby leading to more extensive surface 

cleaning. 

 

 

 

   

   * See the permission from Elsevier in appendix A  
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6.2 Introduction 

 

 With growing concern and public awareness about the environmental, ecological 

and health impacts of air pollution and global warming, environmental agencies have 

been setting increasingly stringent regulations to mitigate and control vehicle emissions. 

This is made more difficult by a coincident demand for higher fuel economy. One 

solution is a shift from stoichiometric burn engines, such as today‟s standard gasoline 

engine, to lean-burn gasoline or diesel engines. Such a transition could result in a 

reduction in both fuel consumption and CO2 emissions. A significant challenge that still 

remains is NOX emissions. NOX storage and reduction (NSR) catalysis is one of the 

currently accepted and implemented technologies for lean-burn engine NOX emissions 

control. NSR catalysts are typically composed of precious metals such as Pt, Pd, and Rh 

for the redox reactions, alkali and alkaline metal earth components that trap NOX in the 

form of nitrites and nitrates, all supported on a high surface area substrate such as γ–

alumina [1-4]. This technology cycles through two phases; a lean and a rich phase. In the 

lean phase NO is oxidized to NO2 on the precious metal sites and then NO2 is adsorbed 

by the trapping materials, such as Ba in the form of Ba(NO3)2 and/or Ba(NO2)2 [5-7]. In 

operation, the lean phase continues until some level of NOX slips past the catalyst. At this 

stage, the rich phase of the cycle is started, where reductants such as CO, H2, and 

hydrocarbons are introduced to reduce the surface NOX species to N2 thereby 

regenerating the trapping sites for the next lean phase, with reduction occurring also via 

participation of the precious metals sites [8-10]. 

 

 Numerous studies have investigated regeneration phenomena, including the effect 

of reductant type, reductant amount, and different lean and rich times [10-16]. In terms of 
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reductant type [11], the reduction efficiencies of H2, CO, C3H6 and C3H8 at different 

temperatures were investigated over a Pt/BaO/Al2O3 model catalyst. The results showed 

that H2 was a superior reductant at low temperatures (T≤250°C), while at high 

temperatures H2 and CO were similar and showed higher reduction efficiency than C3H6. 

C3H8 was inefficient at all temperatures tested. Similar observations were also reported 

over a commercial NSR catalyst [10]. The effect of H2 and CO amounts on the overall 

performance of a commercial NSR catalyst was also investigated [14]. The performance 

of the catalyst improved with each incremental increase in H2 concentration, with 5% H2 

the highest level evaluated. At high temperature, the performance also increased with 

increasing CO amounts, however at 200°C, increasing CO was found to decrease 

performance due to precious metal site poisoning.  

 The effect of the lean and rich times on the performance of a model NSR catalyst 

was also investigated, using H2, CO, and C3H6 as reducing agents [15]. As an example of 

the results, at 300°C, when the lean time was increased from 45 to 135 sec while 

maintaining a constant rich time (1.5 sec), the overall conversion decreased from 93 to 

40%. This was attributed to a lack of sufficient reductant during the 1.5 sec rich phase as 

the lean time was increased. In the same study, the rich time was increased from 1.5 to 

4.5 sec with a constant reductant concentration (3%) and lean phase time (135 sec), and 

the NOX conversion increased from 41 to 98%. This was due to the Ba sites being more 

extensively regenerated with the longer regeneration time and therefore able to 

participate in trapping during the following lean phase. At lower operating temperatures 

(T≤250°C), the authors found that NOX conversion was less dependent on the lean/rich 

ratio. In another study, the effect of rich time vs. reductant amount on the overall NOX 
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conversion performance of a powder Pt/Ba/Al2O3 catalyst was investigated [16]. With a 

fixed reductant-to-inlet NOX ratio at 400°C, the authors concluded that using longer 

regeneration times with lower reductant concentrations was more efficient compared to 

short regeneration times with higher reductant concentrations, which they attributed to 

two effects. The first was consumption of reductant by the oxygen at the lean/rich 

interface and the second was that the reduction process with the shorter regeneration time 

was not as efficient as that with longer regeneration. 

 The overall reduction of NOX and regeneration of trapping sites during the rich 

phase depends not only on the amount and type of reductant, but also on the amount of 

NOX released via decomposition of the surface nitrite and nitrate species. Primary causes 

of nitrate/nitrite decomposition and NOX release are changes is the gas phase 

composition, such as the absence of oxygen and NO and the presence of CO2, H2O and 

reductant during the rich phase, as well as heat generated from the exothermic reaction 

between reductants and oxygen stored on the catalyst surface. For the latter, in a previous 

study [17] the temperature patterns during cyclic operation of a commercial NSR catalyst 

were investigated. Just after the onset of the rich phase, the measured temperature rise 

observed within the first few millimeters of the catalyst surpassed 30°C. As the 

nitrite/nitrate species stability is a decreasing function of temperature, the increased 

temperature can lead to decomposition. Such large temperature rises are not typically 

observed over model Pt/Ba/Al2O3 samples due to a lack of significant oxygen stored on 

the surface, and therefore this exotherm driven decomposition could be insignificant on 

these model systems.  
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 Nova and coworkers [18] clearly demonstrated the relative unimportance of a 

purely thermally driven decomposition versus reductant-induced decomposition on a 

model Pt/Ba/Al2O3 system. In their study little NOX desorption/nitrate decomposition 

was observed during temperature-programmed desorption experiments up to the 

temperature where NOX adsorption was performed. However, in the presence of H2, 

decomposition could begin at temperatures 200°C lower than the adsorption temperature. 

Beyond the reductants, other gas-phase constituents influence nitrate stability as well. 

The presence of oxygen increases nitrate stability [19] and in its absence, the 

nitrates/nitrites become less stable and decompose. Similarly, it has been shown that CO2 

and H2O can influence the stability of surface nitrate species, with CO2 negatively 

impacting performance [20] via a reduction in nitrates formed, while H2O has been 

observed to both decrease [21] and increase [5] NOX conversion performance. The effect 

of Pt on the thermal stability of nitrate and/or nitrite species has also been addressed [22-

24, 18]. Results show that Pt induces decomposition of the Ba nitrite/nitrate during the 

regeneration phase and therefore NOX trapped close to Pt might be released faster. Along 

the same concept, two types of Ba nitrate have been observed; surface and bulk [25-27]. 

Previous studies have concluded that surface Ba nitrate species are not as thermally stable 

as a bulk nitrate species.  

 In this study, the effect of regeneration time, while keeping the total amount of 

reductant introduced during the regeneration phase the same, was investigated. The 

analysis includes experiments with and without reductant to monitor time dependent 

surface NOX species decomposition and reductant-induced decomposition. The trapping 

performance, NOX release and formation of NH3 were measured.  
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6.3 Experimental Methods 

 

The model Pt/BaO/Al2O3 sample used in this study was supplied by Johnson 

Matthey in monolithic form. The sample contains 0.12 g/cm
3
 Al2O3, 1.45% Pt and 20% 

BaO relative to the Al2O3. The sample was cut to 2.1 cm diameter with a length of 6.4 cm 

from a monolith block that had a cell density of 300 cpsi. The sample was inserted into a 

horizontal quartz tube, which was placed inside a Lindberg Minimite temperature-

controlled furnace. The catalyst was wrapped with 3M insulation material to seal the 

catalyst in the quartz tube, to ensure that no gas slipped around the sample. For 

temperature measurements, two K-type thermocouples were placed at the radial center of 

the catalyst; one just inside the inlet face of the catalyst and one just inside the outlet face 

of the catalyst. A third was placed ~ 2.5 cm upstream of the sample.  

The gases and gas mixtures were supplied by Praxair and were metered with 

Bronkhorst mass flow controllers. A four-way, fast-acting solenoid valve was used to 

switch between the lean and rich mixtures, which were made in separate manifolds. After 

the dry gas mixture had been heated to >120°C, water was introduced downstream of this 

valve. Table 6.1 lists the gas compositions used in the cycling experiments. Small quartz 

tubes were inserted into the main quartz reactor tube to provide better heat transfer to the 

gas, such that at the catalyst position, temperature gradients were minimized along the 

length of catalyst. 

Before each experiment, the sample temperature was ramped to 500°C with 5% 

H2O, 5% CO2, and a balance of N2 and then the catalyst was cleaned with a gas mixture 

consisting of 5% H2O, 5% CO2, 1% H2, and a balance of N2 for 15 min at 500°C. The 
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reactor was then cooled to the target test temperature. Experiments were performed at 

200, 300, 400 and 500°C with a space velocity, at standard conditions, of 25,000 hr
-1

. 

Different lean times were used at the different temperatures to reflect the different 

efficiencies at those temperatures, for example performance at 200°C is worse than at 

300°C, so longer lean times were used at 300°C, which also matches application trends 

better. The gases exiting the reactor were maintained at >190°C to avoid condensation 

and NH3 hold-up. The gas compositions were measured using a MKS MultiGas 2030 FT-

IR analyzer at approximately a 2 Hz collection rate. CO, CO2, NO, NO2, N2O, NH3, and 

H2O concentrations were measured.  

 

                       Table 6.1 Details of flow conditions used in the experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 Results and Discussion 

 

 In the first set of experiments, 4, 8 and 16 second regeneration times were used, 

with 4, 2, and 1% H2 as the reductant amounts, respectively. Thus the same amount of 

Flow Conditions Trapping 

(lean) phase 

Regeneration 

(rich) phase 

Space velocity 25,000 hr
-1

 25,000 hr
-1

 

Concentrations 

NO 

O2 

CO2 

H2O 

H2 

N2 

 

330 ppm 

10% 

5% 

5% 

0 

balance 

 

0 

0 

5% 

5% 

1-4% 

Balance 

Temperature (°C) 

200 

300 

400 

500 

 

40 seconds 

80 seconds 

120 seconds 

80 seconds 

 

4, 8, 16 seconds 

4, 8, 16 seconds 

4, 8, 16 seconds 

4, 8, 16 seconds 
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reductant was introduced during each experiment. As previously shown [14], at low 

temperature CO as a reductant has a severe negative impact on NSR catalyst performance 

relative to H2. However, the same study also demonstrated that if H2 is added to the 

reductant stream, some performance can be maintained, and more H2 led to better 

performance and less CO poisoning. So although CO was not added to the regeneration  

mixture in this study, the trends observed with H2 will still be viable if H2 is present in 

any amount in the regeneration gas mixture. The lean phase times at each temperature 

were maintained during these experiments, resulting in a constant inlet NOX-to-reductant 

amount in the cycles. However, different lean times were used at the different 

temperatures to avoid saturation and 0 ppm NOX slip at the performance extremes, better 

reflecting times and saturation levels used in practice. The performance of the catalyst 

was evaluated at different test temperatures, as listed in Table 6.2.  The outlet NOX (the 

sum of NO + NO2) concentrations as a function of time obtained during one of the cycles 

at an inlet temperature of 200°C are shown in Figure 6.1. The lean, or trapping, time was 

40 seconds. The conversions and amounts of NOX trapped and the amount of un-reduced, 

released NOX during the rich phase, are listed in Table 6.2. The amount of unreduced 

NOX release is obtained by integrating the quantity of NOX released during the rich 

phase, which is defined by the trigger sent to switch the valve controlling which gas 

phase enters the reactor. All reported values and plotted data were obtained after steady 

cycle-to-cycle performance was attained. 
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Table 6.2 Calculated performance characteristics as a function of temperature, amount of   

H2, and regeneration time.  

 

 

The data plotted in Figure 6.1 show that the trapping performance was similar during the 

first few seconds of the lean phase, no matter the regeneration time, but differed after. 

The amounts of NOX trapped were 60, 51, and 44 µmoles for the 16, 8, and 4 second 

regeneration times, respectively. The amounts released as unreduced NO or NO2 during 

the rich period were relatively small, but steadily increased as the regeneration time 

increased. This increase was expected since the amount of NOX released is a function of 

NOX trapped during the previous lean phase, and the amount of NOX trapped was larger 

with increasing regeneration time. The total inlet NOX during the 40 second lean time 

Temperature 

(°C) 

H2  

(%) 

 

 Time (sec) 

Rich      Lean                       

NOX 

Conversion    

(%) 

NOX 

Trapped 

(moles) 

NOX 

Released 

(moles) 

NH3 

Released 

(moles) 

CO 

Formed 

(moles) 

 

200 

4 4 40 42 44 4.9 23 0.1 

2 8 40 49 51 5.5 28 0.4 

1 16 40 57 60 6.4 31 0.5 

 

300 

4 4 80 79 150 2.8 51 4 

2 8 80 86 163 3.6 89 9 

1 16 80 92 175 4.4 99 15 

 

400 

4 4 120 78 226 10 37 18 

2 8 120 80 237 16 38 33 

1 16 120 80 247 25 35 55 

 

500 

4 4 80 37 84 15 19 110 

2 8 80 35 88 23 15 157 

1 16 80 30 91 34 10 198 
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was 93 µmoles. During the regeneration period, with 1, 2, and 4% H2, 1124 µmoles of H2 

were introduced. If the reduction reaction is assumed to be Ba(NO3)2 + 5H2  N2 + BaO 

+ 5H2O, then for 2 moles of NOX trapped, 5 moles of H2 are required for reduction to N2, 

or 232 µmoles to reduce all the entering NOX. The catalyst used in these experiments 

does not contain any oxygen storage components, such as ceria, so the amount of H2 

input was in large excess even if including that needed to consume the very small amount 

of oxygen stored on the catalyst surface (i.e. Pt oxides and possibly Ba peroxides at low 

temperatures).  
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Figure 6.1   NOX outlet concentrations obtained at 200°C with 1% H2 and 16 sec, 2% H2 

and 8 sec, and 4% H2 and 4 sec regeneration phases. 
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 Similar experiments were carried out at 300, 400, and 500°C to investigate the 

effect of operating temperature on the storage, release, and reduction of NOX with the 

different regeneration protocols. The outlet NOX concentrations as a function of time at 

300°C are shown in Figure 6.2. A summary of the results are also listed in Table 6.2. 

Again, there was initially little difference in the performance of the catalyst at the 

beginning of the lean phase with differences appearing as the lean time progressed. The 

trapping trends were similar to those observed at 200°C, where increased regeneration 

time led to increased amounts trapped. This increase in the amount trapped, with little 

impact on the amount released, led to higher overall conversions.  
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Figure 6.2   NOX outlet concentrations obtained at 300°C with 1% H2 and 16 sec, 2% H2  

and 8 sec, and 4% H2 and 4 sec regeneration phases. 
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The total inlet NOX during the 80 second lean phase was 186 μmoles and the amount of 

H2 required to reduce this NOX, if all was trapped, is 464 μmoles. The inlet H2 during 

regeneration was 1120 μmoles, still in significant excess.  

 Figure 6.3 compares the outlet NOX concentrations at 400°C, with a lean phase 

duration of 120 seconds. At this temperature, the performances for all three regeneration 

times were similar for a larger portion of the lean phase, relative to that observed at the 

lower temperatures. Differences were still observed, just much later, and again trapping 

performance was improved with increasing regeneration time. The observed NOX release 

was higher than that observed during the 200 and 300°C tests, but this increase had little 

impact on the overall NOX conversions. The improved trapping performance at 400°C 

relative to 200 and 300°C is related to two main factors. First, at low operating 

temperature, NO oxidation is kinetically limited [5] [28] and most NSR catalyst types 

attain their maximum oxidation activity between 300 and 400°C. This would therefore 

result in higher NO2 amounts and subsequently more rapid and extensive trapping of 

NOX as NO2 is preferred relative to NO for trapping and nitrate formation [29]. Second, 

not only does the oxidation activity increase as the temperature increases, but also the 

extent of regeneration increases. As mentioned, with increasing temperature, nitrates 

become less stable and in the absence of O2 and NOX in the gas stream, a more 

significant amount decomposes at 400°C relative to the lower temperatures. Furthermore, 

at high operating temperature, activation of reductants is not an issue [5], and hence the 

reductant can easily reduce decomposing nitrate species to N2. With more extensive 

regeneration, there is more trapping site availability expected in the subsequent lean 

phase portion of the cycle.   
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Figure 6.3   NOX outlet concentrations obtained at 400°C with 1% H2 and 16 sec, 2% H2  

and 8 sec, and 4% H2 and 4 sec regeneration phases. 

 

The data obtained at 500°C and an 80-second lean phase are shown in Figure 6.4. Again, 

improved trapping was observed with longer regeneration times coincident with 

increased release during the regeneration phase. At this high temperature, however, the 

NOX release increased significantly with each increase in  regeneration time; 15, 23, and 

34 μmoles with 4, 8, and 16 seconds of regeneration time, respectively. This increase in 

NOX release coincident with the relatively smaller increase in the trapping performance 

with longer regeneration times resulted in an overall decrease in NOX conversion as the 

regeneration time was increased. Although the reduction rate increases with temperature, 

the too rapid decomposition rate of the Ba nitrate species combined with decreasing 
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reductant concentration and its rapid consumption at the onset of the regeneration phase 

led to the increased significance of released and unconverted NOX.  
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Figure 6.4   NOX outlet concentrations obtained at 500°C with 1% H2 and 16 sec, 2% H2 

and 8 sec, and 4% H2 and 4 sec regeneration phases. 

 

In further detail, at the beginning of the trapping phase, NOX is trapped at sites located at 

upstream positions. These sites become saturated with time and then stop taking part in 

the trapping process, so downstream sites begin to participate. If the trapping phase is 

long enough, both upstream and downstream trapping sites will have participated in NOX 

trapping. At 500°C, nitrate decomposition is rapid and upon switching to the rich phase, 



 156 

the reductant interacts with NOX species trapped at the upstream sites to reduce NOX and 

regenerate the surface. The evolved NOX species originating from the downstream 

trapping sites move through the catalyst without being reduced, as the reductant is being 

used to regenerate the upstream sites. This would in turn lead to the observed lower 

conversion of trapped NOX to N2. The amount released was higher with longer 

regeneration times at 500°C due to the lower local concentration of reductant throughout 

the catalyst at the onset of the rich phase, with the reduction reaction therefore more 

reductant limited during the rapid nitrate decomposition and NOX release. However, the 

amount trapped was still higher with longer regeneration time. At the lower test 

temperatures, the increased NOX release is at least partially due to the increase in the 

amount trapped, combined with lesser local reductant concentrations when nitrate 

decomposition begins as well.  

 The results show a marked increase in the trapping performance coincident with 

slight increases in NOX release and therefore overall performance improvement at all 

temperatures, except 500°C, with longer regeneration times even though the delivered 

reductant amounts were identical. The improvement in catalyst performance when using 

longer regeneration times can be primarily attributed to two effects. First, there will be an 

impact from gas mixing at the lean-to-rich transition interface, which will briefly lead to 

some reductant consumption. As mentioned in the Introduction, a previous study [16] 

investigated the effect of a longer regeneration pulse with a lower concentration of 

reductant vs. a shorter regeneration pulse with a higher concentration of reductant. The 

authors found that a better regeneration of the catalyst was achieved with the longer 

regeneration pulse and lower reductant concentration. One explanation proposed was the 
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consumption of reductants via combustion with oxygen at the interface between the lean 

and rich phase. With higher reductant concentrations, and the high level of O2 used in the 

lean phases, more reductant can be lost compared to the lower reductant concentration 

case. Therefore, if indeed a significant amount of reductant was consumed at the interface 

when high concentrations (and a shorter rich pulse) were used in their study, the total 

amount of reductants delivered to the catalyst beyond the very upstream portion (where 

the oxidation will occur) will be lower than that when longer regenerations where less 

reductant concentration was used. Thus, a better regeneration could be expected with 

longer regeneration. If this mixing effect is significant, then in these experiments, as the 

rich time increased from 4 to 8 sec and 8 to 16 sec with decreasing reductant 

concentrations, the effect should have become less. But the difference between the 8 

second, 2% H2 experiment and the 16 second, 1% H2 experiment was more significant 

than the difference between the 4 second, 4% H2 experiment and the 8 second, 2% H2 

experiment. This indicates that this mixing impact on the observed trends is likely 

minimal, and there must at least be another factor. Furthermore, the temperature rises 

were relatively small, on the order of 2 to 6°C, and the temperature rise at the front of the 

catalyst was slightly higher during the shorter regeneration time experiments, relative to 

the longer regeneration times, in our study, indicating a higher combustion rate. This 

exotherm impact should, if a significant effect, have led to better regeneration with higher 

reductant concentrations, which was not observed.  

 The second effect is related specifically to the regeneration time and nitrate 

decomposition rate. The two reactions shown below, decomposition of the nitrate species, 



 158 

as well as reduction of the nitrate species, describe an overall sense what occurs during 

the regeneration phase.   

 

Ba(NO3)2  BaO + 2NO + 1.5O2           (6-1) 

Ba(NO3)2 + 5H2  N2 + BaO + 5H2O          (6-2)    

                          

Nitrate decomposition and NOX release, reaction (6-1), depend on several factors 

including temperature, the presence or absence of O2, H2O, CO2 and NOX, and the 

inclusion of oxygen storage components such as Ce in the catalyst washcoat. There was 

little temperature rise during the rich phase of individual experiments, indicating little 

effect of changing temperature on NOX release, although this effect might play a more 

significant role in commercial catalysts [17]. Reaction 1 is the reverse of the trapping 

reaction, and the absence of oxygen during the regeneration phase can drive the 

decomposition of Ba nitrate as shown. An oxygen source is required for stabilization and 

formation of Ba nitrate and if oxygen is not introduced during the regeneration event, the 

decomposition reaction will be favored. The presence of CO2 and H2O coincident with 

the absence of oxygen during regeneration event also induces the decomposition of Ba 

nitrate [30-34]. However, in each of these experiments, the inlet CO2, H2O and O2 

conditions were identical and therefore should not directly cause the observed changes in 

performance. 

 To clarify the effect of the rich-phase duration, a second set of cycling 

experiments at 200°C, where the most significant difference in overall performance was 

observed, was performed. The cycling experiments were identical to the previous 

experiments, but in the last cycle after steady cycle-to-cycle performance reached, the 
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reductant was not included during the regeneration phase. The NOX concentration data as 

a function of time for these experiments are not plotted, but the NOX ppm data from each 

experiment were identical for each incremental time frame. During this phase, the 

amounts of NOX trapped in the previous part of the cycle and that released without 

reductant present are shown in Table 6.3.  

 

Table 6.3 Calculated amount of NOX (μmoles) trapped and unreduced NOX released 

during regeneration at 200°C with and without reductant in the regeneration 

portion of the cycle.  

 

 

 

 

 

 

 

 

 

The differences between the amount trapped with reductant used in the previous rich 

phase, and the amount released in the absence of H2 in the regeneration phase are also 

listed. The amount of NOX released in the absence of reductant of course increased as the 

regeneration time increased. The difference represents the amount of NOX associated 

with trapping sites being regenerated during a rich phase when reductant is present, since 

steady cycle-to-cycle performance had been obtained. The values are quite similar with 

the three different regeneration times, indicating a similarity in the amount of regenerated 

trapping sites between the three experiments with three different regeneration times. This 

indicates that, in terms of a reductant dependency, the amount regenerated is a function of 

total reductant delivered, and not the concentration. Furthermore, this indicates that the 

Regeneration 

Protocols 

        NOX                   NOX               Difference  

     Trapped              Released                                                                                                       

4 sec - 4% H2      45 7 38 

8 sec - 2% H2      49 10 39 

16 sec - 1% H2 57 16 41 
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reduction process was not simply slower with short regeneration time or higher reductant 

levels. Finally, this also demonstrates that the extra regeneration observed with the longer 

regeneration time is solely due to the extra time for reaction 1 to continue.  

 Beyond just the amount of nitrate or nitrite species that decompose with time, 

there are other routes, still a function of the regeneration time, which might contribute to 

the improved performance with long regeneration times. The release/desorption and re-

adsorption of the NOX species from trapping sites to adjacent or downstream Ba sites 

during regeneration events is one such possibility. At low operating temperatures, the 

desorption rate of NOX is slower than the reduction rate [5]. Therefore, extending the 

regeneration event could allow more released NOX to spillover to adjacent Pt sites for 

reduction, or be re-adsorbed at downstream Ba sites and then eventually reduced to N2 as 

the reductant propagates from the front to back portion of the catalyst. Another scenario, 

along the same concept, but also related to the time effect related to reaction 1 and 

discussed above, is that NOX species can be trapped on two types of Ba sites; as proposed 

in the literature [35-37], one in close proximity to Pt sites, the other more remote from Pt 

sites. In previous studies [24], it was shown that Pt can catalyze the decomposition of 

nitrate species during the regeneration event. The nitrate species trapped on “distant” Ba 

sites can also be released, but at a slower rate than those proximal to Pt sites [5, 24]. 

Therefore, if the regeneration time is prolonged, it could lead to more NOX release from 

both Ba site types. With more NOX release, there are more sites available in the next 

trapping phase.   
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Figure 6.5  NH3 and NOX outlet concentration data obtained at 200°C during different 

regeneration protocols. 
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Although no differences in catalyst performance would be expected when either H2 or 

NH3 is used as the reductant source [38], the following brief discussion is only to relate 

the NH3 formation trends with different regeneration protocols. The NH3 concentrations 

as a function of time at 200°C and for the three different regeneration protocols are 

shown in Figure 6.5. Ammonia formation upon NOX reduction with H2 over NSR 

catalysts has been widely reported [39-41]. Ammonia was consistently observed in our 

experiments shortly after the onset of the regeneration phase (about 1 to 2.5 sec after the 

onset) and reached a maximum when the released NOX concentration decreased to close 

to the baseline level, as shown in Figure 6.5. This result is consistent with NH3 formed 

along the catalyst participating in the reduction of NOX following the selective catalytic 

reduction (SCR) mechanism. Ammonia formed at the front of the catalyst is used in the 

SCR mechanism to reduce downstream nitrate species. As the amounts of nitrates 

decrease and therefore the amount of NOX release begins to decrease, less NH3 formed 

upstream reacts downstream and more is then observed. The amounts of NH3 formed 

during the cycling experiments were calculated as a function of temperature and 

regeneration time and are listed in Table 6.2. At 200 and 300°C, total NH3 formation was 

always higher when longer regeneration times were used. However, as shown in Figure 

6.5, peak NH3 concentrations were observed with the higher reductant levels, or shorter 

regeneration times. These trends can be related back to local reductant-to-NOX ratios, 

with the higher the ratio leading to more NH3 formed [42-43], as well as nitrate exposure 

time to reductant. As shown in Figure 6.5, NOX release occurs at the onset of the 

regeneration phase. As the regeneration time progresses, less NOX is being released while 

reductant is still being delivered, and this results in NH3 formation accelerating when the 
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observed NOX release was decreasing. Nitrates were still decomposing, as is evident by 

the NH3 formation. Therefore, at later regeneration times, the local reductant-to-NOX 

ratio is higher thus the increase in NH3 as NOX decreases. With the shorter regeneration 

time, but higher reductant level, the increased reductant-to-NOX ratio led to increased 

peak NH3 formation values, while for the longer regeneration time experiments, the 

longer time led to a larger integral amount of NH3 formed. At 400°C, there was not a 

significant change in the amount of NH3 formed as a function of regeneration time, likely 

due to a balance in the more rapid release and reductant-to-NOX ratio. At 200 and 300°C, 

the reductant-to-NOX ratio was relatively higher due to the higher thermal stability of 

nitrate species. Therefore, more NH3 was formed with longer regeneration time due to the 

increased total amount of NOX release. However, at 500°C, the weak stability of nitrate 

species, and the higher reductant concentration during the shorter regeneration protocol, 

resulted in higher NH3 formation since both reactants for NH3 formation were present in 

abundant quantities. Overall, at low operating temperatures, the longer regeneration time 

is a key factor controlling the total release of trapped NOX and to some extent the 

formation of NH3 while at higher operating temperatures, where the thermal stability of 

nitrate species is weak, the higher reductant concentration is the more important 

parameter for NH3 formation.  

 

6.5 Conclusions  

 In this study, the effects of three different regeneration protocols between 200 and 

500°C were investigated over a model NSR catalyst. The regeneration conditions were 4, 

8 and 16 seconds with 4, 2, and 1% H2 as the reductant amounts, respectively. The data 

showed an obvious improvement in the catalyst performance with increasing regeneration 
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time at 200, 300 and 400°C, with the effect related to improved NOX trapping. At 500°C, 

the weaker stability of nitrate species resulted in an overall lower conversion due to a 

more significant amount of NOX released with decreasing reductant concentrations, 

although the trapping performance was still better with longer regeneration time. The 

improved trapping performance with longer regeneration times was primarily due to 

prolonged regeneration conditions leading to more extensive nitrate decomposition, 

allowing more NOX to be trapped in the subsequent trapping phase. Total NH3 formation 

at 200 and 300°C was also higher with longer regeneration time, while at 500°C, the 

trend was reversed, and was related to the local reductant-to-NOX ratios. 
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Chapter 7 

 

Regeneration of a Model NOX Storage/Reduction Catalyst Using Hydrocarbons as 

the Reductant
 

 

 

7.1 Abstract    

      

 Regeneration of a model NSR catalyst using hydrocarbons, H2, or CO as reducing 

agents was investigated. As previously shown, at low temperature, 200°C, H2 proved 

best, while both CO and hydrocarbons were found to poison Pt sites. At 250°C, again H2 

was better but the decreased performance with CO and hydrocarbons was also due to 

slow kinetics and not solely as a result of Pt site poisoning. At T ≥ 300°C, hydrocarbons 

were found to regenerate the catalyst as efficiently as CO and H2. Hydrocarbon steam 

reforming experiments were performed to investigate the improved performance at T ≥ 

300°C.  Steam reforming did not occur with either dodecane or m-xylene below 450°C. 

Additionally, although propylene steam reforming occurred at 375°C, the small amount 

of H2 formed was insufficient for steam reforming to be the sole reason for improved 

regeneration. TPR experiments show that propylene was activated on the catalyst at T ≥ 

217°C and, under the conditions examined, the complete reduction of NO by propylene 

was achieved at 287°C. Furthermore, propylene was observed to reduce surface 

chemisorbed NOX species at T > 200°C, with high rates by 264°C, with this activity 

ultimately resulting in the comparable performance with either CO or H2 at similar 

temperatures during NOX cycling experiments. 

 

 
*
 See the permission from Elsevier in appendix A 
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7.2 Introduction 

 

With increasing environmental regulation pressure, reducing vehicle emissions 

has become a significant challenge facing automobile manufactures. This includes NOX, 

CO and hydrocarbons, and there is increasing concern over vehicle CO2 emissions as 

CO2 is also considered a significant contributor to the greenhouse gas effect. One way to 

reduce vehicle CO2 emissions and increase fuel economy is using lean-burn gasoline or 

diesel engines. However, lean-burn engine exhaust contains excess oxygen which makes 

NOX reduction challenging. One technology to reduce NOX emissions from lean-burn 

engines is NOX storage and reduction (NSR) catalysis. A NSR catalyst contains precious 

metals, such as Pt, Pd and Rh for the redox reactions, and alkali or alkaline metal earth 

components, such as Ba, that trap or store NOX as nitrite or nitrate species [1-4]. Overall, 

NOX is reduced to N2 over NSR catalysts in five steps, two of which occur in the normal 

lean-burn exhaust environment, and the latter three in a reductant-rich mode, relative to 

oxygen [5-7]. These are called the lean and rich, or trapping and regeneration, phases of 

the cycle. The 5 steps are NO oxidation, NO2 trapping, reductant evolution, nitrate 

decomposition and finally NOX reduction. In the lean phase, NO is oxidized to NO2 and 

subsequently trapped by Ba in the form of a nitrate and/or nitrite. Upon saturation of 

some portion of the trapping material, the rich phase is required to regenerate the surface 

for further trapping capacity. In the rich phase, reductants, such as H2, CO, and 

hydrocarbons (HCs), are introduced to induce nitrate/nitrite decomposition and reduce 

the trapped or released NOX to N2. 

 Numerous approaches have been explored to achieve the net reducing 

environment in the rich phase to regenerate the catalyst and reduce the NOX. These 
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approaches include spraying diesel fuel into the exhaust (in-pipe injection) [8-10], using 

on-board fuel reformers to provide CO and H2 [11-12], and in-cylinder injection of 

excess fuel (high F/A ratio) [13-14]. During this rich phase, it has been reported that 

diesel exhaust can, as an example, contain 2-6% CO, 1-2% H2, 0.3- 0.92% hydrocarbons 

and less than 0.5% O2 [15-17]. In previous studies [17-18], different hydrocarbons 

species were detected in the diesel exhaust including formaldehyde, propylene, ethylene, 

acetylene, methane and dodecane. These hydrocarbons will be partially consumed by an 

upstream diesel oxidation catalyst (DOC) during the rich phase either via steam 

reforming or reacting with the small amount of oxygen in the gas or stored on the catalyst 

surface. However, some of these hydrocarbons will pass through the DOC to the 

downstream NSR catalyst. Researchers at Oak Ridge National Laboratory [18] have 

investigated the amount of reductant (CO, H2, and HC) prior to and after the DOC and 

NSR catalysts, with the DOC placed upstream of the NSR catalyst. They found only a 

small change in reductant level across the DOC during the regeneration event, but a 

major decrease in the reductant levels across the NSR catalyst.  

 The hydrocarbons that pass through the DOC can be also be reformed during the 

rich phase over the NSR catalyst. Furthermore, several previous studies reported that the 

WGS reaction occurs on precious-metal based catalysts and on three way catalysts 

(TWCs) [19-23]. In one study, the WGS reaction over a commercial NSR catalyst [23] 

was investigated and the extent of the WGS reaction ranged from only 10% at 200°C to 

91% at 400°C. This reductant amount change makes it difficult to determine whether the 

CO or H2 is consistently the active reductant species. Previous work has demonstrated 

however, that isocyanate species form when CO is present, and these are hydrolyzed to 
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form N2 product [24, 25]. This of course complicates the impact of CO, as it can react via 

the isocyanate route, or via the WGS reaction to form H2. In terms of the hydrocarbon 

species, steam reforming can occur to produce H2. Again, the H2 produced can ultimately 

be used as the reductant source for NOX reduction. The proposed likelihood of steam 

reforming over NSR catalysts is based on the ease of hydrocarbon steam reforming over 

precious metal based catalysts [26-31]. For example, previous studies have shown that 

steam reforming of CH4, C3H8 and C3H6 begins at approximately 325 to 350C over Pd 

and Pt/Rh-based catalysts [30,31]. Such data indicate that if H2 is a necessary reductant, 

then NSR catalyst regeneration using such hydrocarbon species may be limited at 

temperatures below ~350°C, which is in the range that some authors have seen equivalent 

performance between HCs and H2. 

 Regeneration of NSR catalysts using different reductants, such as H2, CO, and 

hydrocarbons, and mixture of these reductants, at different operating temperatures has 

been investigated [32-43]. At low temperatures, there is a consensus that H2 is better in 

comparison to CO and HC, possibly due to precious metal site poisoning [40-41] or Ba 

site poisoning by residual isocyanates [38, 42]. At higher temperatures (T ≥ 300°C), H2, 

CO, and HC are to some extent comparable in their regeneration and reduction 

efficiencies [41,43], therefore leaving the active reductant, whether it is H2 or 

hydrocarbon, ambiguous. 

 Although NSR regeneration phenomena have been investigated, to the best of our 

knowledge, the effects of HCs as the reducing agent on performance and trends in 

performance have not been systematically studied. In the present study, the regeneration 

of a NSR catalyst using representative HCs, propylene for short chain, dodecane for long 
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chain and m-xylene for cyclic species, was evaluated. Hydrogen and CO were also used 

for comparison with the HCs. Hydrocarbon steam reforming and temperature 

programmed reduction (TPR) experiments were also performed to characterize the 

performance changes observed as a function of temperature. 

   

7.3 Experimental Methods  

 

A model Pt/BaO/Al2O3 monolith-supported sample, supplied by Johnson 

Matthey, was used in this study. The sample is composed of 2.0 g/in3 Al2O3, 1.45% Pt 

and 20% BaO relative to the Al2O3. Via H2 chemisorption, the Pt dispersion was found to 

be 12%. The sample had a cell density of 300 cpsi and was 2.1 cm in diameter and 6 cm 

in length. The catalyst was wrapped with 3M catalytic converter matting material and 

inserted into a horizontal quartz tube reactor, which was placed inside a Lindberg 

temperature-controlled furnace. Two K-type thermocouples were placed at the radial 

center of the catalyst. One was just inside the inlet face of the catalyst and one just inside 

the outlet face of the catalyst. A third was placed approximately 1” upstream of the 

sample. Small quartz tubes, 3 mm OD and 2 mm ID, were placed upstream of the catalyst 

to prevent fully developed flow patterns and to assist in heat transfer from the furnace to 

the gas phase. Preliminary experiments with just an inert phase demonstrated that the 

temperature difference between the front and back of the catalyst was less than 5°C for 

all flowrates and temperatures studied. 

The gases and gas mixtures were supplied by Praxair. Bronkhorst mass flow 

controllers were used to meter the gases. For NSR cycling tests, a four-way, fast-acting 

solenoid valve was used to switch between the lean and rich mixtures, which were made 
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in separate manifolds. Water was introduced downstream of this valve after the dry gas 

mixture had been heated. In experiments using dodecane and xylene, the HCs were again 

metered with Bronkhorst mass flow controllers and introduced after the wet gas mixture 

had been heated to >170°C to avoid condensation, and at the reactor inlet to avoid 

reactions on the steel tubing upstream of the quartz tube.  

To start each cycling experiment with a consistent surface, before each 

experiment, the sample temperature was ramped to 500°C and then cleaned, or 

conditioned, with a gas mixture consisting of 5% H2O, 5% CO2, 1% H2, and a balance of 

N2 for 15 min. The reactor was then cooled to the target test temperature. Cycling 

experiments were performed at 170, 200, 250, 300, 400 and 500°C.  Table 7.1 lists the 

gas compositions used in the cycling experiments. The gas compositions were measured 

using a MKS MultiGas 2030 FT-IR analyzer at approximately a 2 Hz collection rate. CO, 

CO2, NO, NO2, N2O, NH3, H2O, C3H6, C8H10, and C12H26 concentrations were measured. 

In steam reforming experiments, spatially resolved capillary-inlet mass spectrometry 

(SpaciMS) was also used. The gases measured by the mass spectrometer were H2, H2O, 

C3H6, C8H10, C12H26 and Ar.  Ar was used as a tracer in the mass spectrometer for 

calibration purposes. Spatial resolution was achieved by placing a silica capillary, 

connected to the sampling end of a 6‟ capillary from a Hiden Analytical mass 

spectrometer via a zero dead volume steel union fitting, within one of the radially 

centered catalyst channels. The capillary dimensions were 0.3 mm I.D. and 0.43 mm 

O.D. Gases were collected at different positions by moving the silica capillary tip to 

different positions within the channel.  



 174 

 Two types of TPR experiments were performed; one evaluating the reaction 

chemistry when C3H6 and NO were both introduced together in the gas phase, and one a 

surface reaction experiment where NOX species were formed on the catalyst surface and 

C3H6 input after. In the former experiments, the catalyst was cleaned under the conditions 

described above and then cooled to 109°C. The catalyst was then heated from 109°C to 

500°C at a rate of about 3°C/min in a mixture containing 1017 ppm C3H6, 257 ppm NO, 

5% H2O, and a N2 balance. In the latter experiment, the catalyst was heated to 300°C and 

saturated with NOX using a mixture containing 350 ppm NO, 10% O2, 5% CO2, 5% H2O, 

and balance N2. Then the reactor was cooled to 115°C. The sample was then heated at 

about 2°C/min to 500°C in a mixture containing 55 ppm C3H6 and a N2 balance. The 

products from the TPR experiments were monitored using the MKS MultiGas 2030 FT-

IR analyzer. 

 

                    Table 7.1 Details of flow conditions used in the cycling experiments 

 

 

 

 

 

 

 

 

 

Flow Conditions Trapping 

(lean) phase 

Regeneration (rich) 

phase 

Space velocity 30,000 hr
-1

 30,000 hr
-1

 

Concentrations 

NO 

O2 

CO2 

H2O 

H2 

CO 

Hydrocarbons 

N2 

 

350 ppm 

10% 

5% 

5% 

0 

0 

0 

Balance 

 

0 

0 

5% 

5% 

1% 

1% 

1% relative to C1 

Balance 
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7.4  Results and Discussion 

 

7.4.1 NOX Cycling Experiments 

 

 Catalyst NOX trapping and reduction performance results using different 

reductants at different temperatures are characterized in this section. This includes 

evaluating different HCs at the different temperatures to determine when they become 

efficient as reductants in the regeneration phase. The data shown in Figure 7.1 were 

obtained at 170°C. The lean, or trapping, time was 40 seconds and the rich, or 

regeneration, time was 10 seconds. The amounts of reductants used were 1% H2, 1% CO, 

or 0.33% C3H6 (1% on a C1 basis). Although the amount of C3H6 is greater than that of 

the CO or H2 on a total reductant basis (in terms of the amount of O species that can be 

consumed via inclusion of H2 and CO), an equivalent C1 basis was chosen for these 

experiments. The conversions and amounts of NOX (the sum of NO and NO2) trapped 

and released during these experiments are listed in Table 7.2. All reported values and 

plotted data were obtained after steady cycle-to-cycle performance was attained. The data 

shown in the figure and table demonstrate that H2 resulted in better trapping performance, 

consistent with previous work [33,41, 44]. Furthermore, at the onset of the lean phase, the 

outlet NOX value reached 0 ppm for many seconds when H2 was used, but not with CO 

and C3H6. With CO and C3H6, saturation of the available trapping sites occurred during 

the lean phase, whereas with H2, the outlet NOX level was still increasing at the end of the 

lean phase, not having reached the inlet value. The calculated NOX conversions were 55, 

7 and 6%, respectively, with differences primarily due to the significantly lower amounts 

trapped when using CO and C3H6. The total inlet NOX during the 40-second lean time 
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was 118 µmoles. With H2 and CO, 841 µmoles were introduced during each regeneration 

period. Although fewer C3H6 moles were input, more was entered based on a C and H 

basis. The catalyst used in these experiments does not contain any oxygen storage 

components, such as ceria, so these reductant levels were in large excess relative to the 

amount required for complete reduction even if all the NOX was trapped. Therefore, it is 

inactivity of the CO and C3H6 toward regeneration, thus leaving the catalyst surface 

covered with nitrates, which caused their poorer performance. 

 

 

   Figure 7.1   NOX outlet concentrations obtained at 170°C with 1% H2, 1% CO, or 3333 

ppm C3H6.  
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Table 7.2  Calculated performance characteristics as a function of temperature and 

reducing agent type. The calculated errors associated with these measurements 

was less than 1% for trapping conditions and less than 2% for regeneration 

conditions. 

 

 

 

 

 Experiments were carried out at higher temperatures to further investigate the 

effect of temperature on the storage, release, and reduction of NOX with the different 

reductants. The outlet NOX concentrations as a function of time at 250°C are shown in 

Figure 7.2. Dodecane and m-xylene were also tested as reductants at this temperature, 

Temperature 

(°C) 

Reductant 

 

 

 Time (sec) 

Lean      Rich                        

NOX 

Trapped 

(moles) 

NOX 

Released 

(moles) 

NOX  

Conversion    

(%) 

 

170 

H2 40 10 74 9.4 55 

CO 40 10 23 14 7.2 

C3H6 40 10 21 13 6.4 

 

 

250 

H2 60 10 81 7.3 42 

CO 60 10 56 25 18 

C3H6 60 10 60 24 20 

C8H10 60 10 52 27  14 

C12H26 60 10 63 18 25 

 

 

300 

H2 80 10 156 6.4 64 

CO 80 10 140 10 55 

C3H6 80 10 135 14 51 

C8H10 80 10 114 33 34 

C12H26 80 10 135 15 51 

 

 

400 

H2 120 10 259 24 67 

CO 120 10 237 31 58 

C3H6 120 10 270 16 72 

C8H10 120 10 250 17 66 

C12H26 120 10 251 15 67 

 

 

500 

H2 80 10 115 38 32 

CO 80 10 117 55 26 

C3H6 80 10 118 31 37 

C8H10 80 10 100 22 33 

C12H26 80 10 101 21 34 
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again with 1% on a C1 basis as their inlet concentrations. The summary of the results is 

also listed in Table 7.2. For this set of experiments, the trapping time was 60 seconds and 

the regeneration time was 10 seconds. With CO, C3H6, C8H10, and C12H26, the NOX 

breakthrough profiles during the lean phase were comparable. It should be mentioned that 

the catalyst performance improved, with CO and C3H6, compared to the performance 

observed at 170°C. It is apparent that both hydrocarbons and CO have some activity 

toward regenerating the catalyst, albeit significantly less than the H2. For H2, the NOX 

conversion was actually less than that observed at 170°C.  
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  Figure 7.2 NOX outlet concentrations obtained at 250°C with 1% H2, 1% CO, 3333 ppm 

C3H6, 833 ppm C12H26, or 1250 ppm C8H10. 
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This can occur for two reasons. One is simply the longer lean time at 250°C, which will 

lead to lesser performance. Secondly, a similar trend has been noted before, where 

performance at temperatures as low as 100°C were as high as those at 200, 250 and 

300°C. This trend was related to enhanced regeneration with H2 when there are 

substantial hydroxyl amounts on the support surface and their promotion of the reductant 

spillover to the trapping sites [45]. 

 To decouple the effect of poisoning and slow kinetics, a second set of cycling 

experiments was performed, at 200 and 250°C, where the rich-phase time was varied. 

The data obtained from experiments with CO and C3H6 at 200°C are shown in Figure 7.3. 

The lean phase was again 40 seconds but the regeneration times were 5, 10, and 20 

seconds. No differences in trapping performance were observed when the regeneration 

time was increased from 5 to 20 seconds, using either reductant. 
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Figure 7.3  NOX outlet concentrations obtained at 200°C with different regeneration 

times; 5, 10, and 20 sec. (A) 3333 ppm C3H6 and (B) 1% CO. 

 

  Data obtained at 250°C are shown in Table 7.3 and Figure 7.4. The lean phase 

was 60 seconds and again the rich-phase duration was changed between 5, 10, and 20 

seconds, with CO, C3H6, as well H2. With all three reductants, increasing rich time 

resulted in increased performance, for example with CO, the amount trapped increased 

from 37 to 78 moles with the increase from 5 to 20 seconds in rich time. The results 

shown in Figure 7.4 also suggest that if the rich time was prolonged further, further 

regeneration might still occur. 
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Figure 7.4   NOX outlet concentrations obtained at 250°C with regeneration times; 5, 10, 

and 20 sec. (A) 3333 ppm  C3H6, (B) 1% CO and (C) 1% H2.  

 

 

Table 7.3 Calculated performance characteristics as a function of reductant type and 

regeneration time at 250°C 

 

 

 

 

 

 

 

 

Reductant  

Type 

 Time(sec) 

Rich      Lean                       

NOX 

Trapped 

(moles) 

NOX 

Released 

(moles) 

NOX  

Conversion    

(%) 

 

CO 

5 60 37 15 13 

10 60 54 22 18 

20 60 78 31 27 

 

C3H6 

5 60 37 15 13 

10 60 55 17 21 

20 60 80 19 34 

 

H2 

5 60 63 8 31 

10 60 81 6.8 42 

20 60 98 6 52 
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The data obtained at 200°C indicate that it is not simply slow kinetics during the 

rich phase limiting the extent of regeneration, since increasing the rich-phase time had no 

effect. It is also not a lack of reductant activation as some regeneration does occur, nor is 

it diffusional resistance differences between the reductants as increased time had no 

effect for the CO and C3H6 species. The poor performance is due to Pt site poisoning by 

CO and C3H6, thereby inhibiting the release and reduction reactions. This is in line with 

previous NSR catalyst studies using CO and C3H6 at low temperature. Abdulhamid et al. 

[41] investigated the regeneration of a Pt/BaO/Al2O3 catalyst using CO at 150, 250, and 

350°C and attributed the decrease in performance at low temperature to CO poisoning the 

Pt sites. In another study [46], surface IR results showed adsorbed CO and carbonate 

species when using CO or C3H6 at 200°C as reductants, which also resulted in a lower 

NOX storage rate after the switch from the rich phase to the lean phase. However, the 

results at 250°C indicate that the performance is limited by slow kinetics, although still 

possibly in combination with some residual Pt site poisoning. If poisoning was 

stronger/dominant, the performance would not have improved with each increase in the 

rich time, as was the case at 200°C. Surface diffusion limitations may play a role, but this 

would be coupled with poisoning. Previous work has shown isocyanate formation when 

CO was used as a reductant [42] and the authors concluded that these formed around the 

Pt sites, which could cause blocking of further surface transport. Such results also 

demonstrate that reductant spillover from the precious metal sites to the Ba trapping sites 

occurs, suggesting spillover direction. 

 The data obtained at 300°C are shown in Figure 7.5, with summary data listed in 

Table 7.2. There was an improvement in the catalyst performance with CO and 
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hydrocarbons, relative to 250°C, but H2 still showed better activity in both trapping and 

reduction performance. With H2, the calculated NOX conversion was 64%, while with CO 

it was 55%. Propylene and C12H26 led to slightly lower but similar conversions, indicating 

persistent kinetic limitations related to regeneration and reduction. With C8H10, the 

catalyst performance was significantly poorer, with the measured conversion being 34%. 

The poor performance with C8H10 compared to C3H6 or C12H26 is likely related to its 

cyclic nature, where it is assumed that activation of cyclic hydrocarbons is more difficult 

than the straight chain hydrocarbons [47]. 
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   Figure 7.5   NOX outlet concentrations obtained at 300°C with 1% H2, 1% CO, 3333 

ppm  C3H6, 833 ppm C12H26, or 1250 ppm C8H10.  
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 At 300°C, NOX trapping and conversion performance was better with H2 

compared to CO and hydrocarbons and CO was better than the hydrocarbons. The 

reasons for the improved performance with CO as the temperature was increased has 

been previously studied and is explained by decreased CO poisoning and increased 

hydrolysis of cyanates, which form from direct reduction of the nitrate species by CO 

[40,48]. In general, the increased performance at 300°C when using the hydrocarbon 

reductants has been attributed to reductant activation vs. temperature [41]. Thus, as the 

temperature increased from 170 to 300°C, the activation of hydrocarbons on the Pt sites 

became easier and faster, and poisoning effects decreased, resulting in the higher 

reduction activity. This is in line with previous work that has shown similar trends and 

concluded that once C-H bond activation occurred, HCs could act as reductants [49]. In 

terms of improved performance for all the reductants, there is an increased surface 

diffusion rate with temperature [50-52], higher NO oxidation rates [53-54], and higher 

nitrate/nitrite decomposition rates during regeneration [5,54], all of which typically lead 

to improved NSR catalyst performance at test temperatures below 400°C. 

 Experiments at 400 and 500°C were also performed with summary data listed in 

Table 7.2.  At 400°C, the amount of NOX released was actually higher with H2 relative to 

m-xylene and dodecane, leading to overall similar conversions. With C3H6, the catalyst 

performance was better than that observed with the other reductants, due to the higher 

overall reductant level introduced when counting both the H and C components as 

reductants. Similarly, there is more when using the m-xylene and dodecane, and with 

their similar performance to H2, suggests that there is still some limitation with their use.  

At 500°C, catalyst performance was lower than that observed at 300, 350, and 400°C, 
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with all reductants. The amounts of NOX trapped with H2, CO and C3H6 were 

comparable, but there were differences in the amounts of NOX released, with CO leading 

to higher release. Although the trapping performance was lower with C8H10 and C12H26 

compared to that observed with H2, CO, and C3H6, the lower NOX release during the rich 

phase led to comparable conversions. The reason for the decreased performance relative 

to 300 and 400°C is due to nitrate stability.  The nitrate species decompose rapidly at the 

onset of regeneration due to their low thermal stability at high operating temperatures 

[55-56]. As the reductant is being used to regenerate NOX species trapped at the upstream 

sites, NOX species are rapidly decomposing at downstream sites and will travel through 

the catalyst without being reduced, leading to a lower ratio of rate of reduction to rate of 

NOX release [57-58]. Also, due to their lower stability at higher temperature, less nitrates 

form during the trapping phase as well. 

 Two mechanisms have been proposed for reduction of NOX to N2 by 

hydrocarbons over the precious metal sites of NSR catalysts. The first mechanism [59] 

postulates that the reductant reduces the precious metal site, which then participates in 

NO decomposition. In the second mechanism [60], the reductant, C3H6 was selected as an 

example, is first adsorbed on the precious metal site and then breaks down to various 

types of reactive hydrocarbon sub-species [5]. The reactions pathways listed in reference 

[60] are shown below: 

C3H6 (g) + Pt  Pt-C3H6        (7-1) 

Pt-C3H6 +2Pt  3 Pt-CH2             (7-2) 

Pt-CH2 + 3Pt-NO  4 Pt + CO2 (g) + H2O (g) + 1.5 N2 (g)        (7-3) 
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For the sake of simplicity, the authors suggested CH2 as the hydrocarbon sub-species 

formed from propylene decomposition. They proposed that the bound intermediate CH2 

group reacts with the sorbed NOX species to form the reduction reaction products. In 

several IR characterization studies [49,61-64] nitro, organic nitro, nitrite and isocyanate 

surface species were observed on Ce-ZSM-5 and Pt/SiO2 surfaces during lean- NOX 

reduction tests and were suggested intermediates in this reaction process, supporting the 

CH2-based mechanism shown above. However, a third possibility, due to the reaction 

mixtures imposed, is that hydrocarbons undergo steam reforming, producing CO and H2, 

which act as the actual reductant species. This is discussed in the following section. 

 

7.4.2 Hydrocarbon Steam Reforming 

 

 In cycling experiments, decreased catalyst performance at low temperatures using 

CO or hydrocarbons was related to Pt site poisoning, or slow kinetics as the temperature 

increased to 250°C. However, at higher operating temperatures (T ≥ 300°C), there was a 

significant improvement in the catalyst performance using hydrocarbons. A similar 

improvement was observed with CO as the reductant as well, which has been well 

explained in recent literature [40,48], thus the focus of this discussion will be on the 

hydrocarbons. In the rich phase, hydrocarbons and H2O are both present and therefore 

steam reforming could occur, leading to H2 which could then act as the reductant. To 

investigate this possibility, hydrocarbon steam reforming was evaluated at different 

temperatures. 

 In this series of experiments, steam reforming of C3H6, C12H16, and C8H10, and 

mixtures of these, were investigated. The reaction gas mixtures used in these experiments 
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contain 5% H2O, 1% hydrocarbon on a C1 basis, and a balance of N2. Experiments were 

carried out at different test temperatures, ranging between 250 and 525°C with no 

reaction observed at less than 375°C. Spatially resolved capillary-inlet mass spectrometry 

(SpaciMS) was used to quantify the amount of hydrocarbons, CO2, H2O, and H2 at 

different catalyst positions. The capillary tip was moved to seven different positions 

within the channel to study the axial distribution of the species. In the plotted data, the 

zero position represents the inlet of sample and 6 cm represents the end of sample. 
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    Figure 7.6   H2 concentrations obtained at different temperatures and lengths of the 

catalyst during steam reforming experiments. The inlet gas composition was 

3333 ppm C3H6, 5% H2O, and balance N2. 

 

 Propylene steam reforming results, obtained along the catalyst length at different 

temperatures, are shown in Figure 7.6. At 375°C, C3H6 steam reforming occurs, but with 
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very low conversions. As the temperature was increased to 525°C, H2 production 

monotonically increased, with more significant increases after 475°C. H2 production 

steadily increased as a function of catalyst length. 

 Similar experiments were also carried out, but with dodecane or m-xylene as the 

hydrocarbons. The H2 production data as a function of temperature and axial length of the 

catalyst are shown in Figures 7.7 and 7.8.  
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Figure 7.7  H2 concentrations obtained at different temperatures and lengths of the 

catalyst during steam reforming experiments. The inlet gas composition was 

833 ppm C12H26, 5% H2O, and balance N2. 

 
Dodecane steam reforming started slightly below 450°C,  higher  than that observed with 

C3H6 (375°C). At 525°C, H2 production was 91, 690, and 1195 ppm at 0, 3, and 6 cm 

respectively, while the amount of H2 formed with C3H6 at 525°C was 172, 6551 and 7973 



 190 

ppm. The outlet level with C3H6 was approximately 6.6 times higher than that observed 

with dodecane at the same temperature. M-xylene steam reforming started at just below 

475°C and the amounts of H2 formed were significantly lower than those with the other 

hydrocarbons. Again, H2 formation increased with temperature, but even at 525°C, only 

20, 238, and 507 ppm were formed at 0, 3, and 6 cm inside of the sample, respectively, 

much lower than those observed with C3H6 and C12H26.  
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Figure 7.8   H2 concentrations obtained at different temperatures and lengths of the 

catalyst during steam reforming experiments. The inlet gas composition was 

1250 ppm C8H10, 5% H2O, and balance N2. 

 

These results, as expected, show that different hydrocarbon types undergo steam 

reforming at different temperatures and with different rates on the NSR catalyst. It should 
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be noted that there is some measured conversion at the front of the catalyst. The capillary 

tip is positioned at the very edge of the sample, so will probe conversion that could occur 

at the face. Also, dodecane and m-xylene will homogeneously decompose in the reactor 

at temperatures above 320-330°C (based on empty reactor baseline experiments) and thus 

could lead to byproducts that are more easily reformed to H2, even at or on the catalyst 

face. 

H2 production rates via steam reforming with a mixture of C3H6 and C12H26 were 

also investigated, with the data shown in Figure 7.9.  According to the results obtained, 

there was no change in the amount of dodecane in any of these tests demonstrating that 

no dodecane steam reforming occurred. C3H6 steadily decreased along the catalyst length; 

therefore, the amount of H2 measured originated solely as a result of C3H6 steam 

reforming. There were only slight differences in the amount of H2 formed via C3H6 steam 

reforming in the absence and presence of dodecane at both 375 and 400°C. However, at 

the higher temperatures, significantly less H2 was formed in the presence of dodecane.  

For example, at 525°C and in the absence of dodecane, the amount of H2 formed was 

7973 ppm whereas in presence of dodecane, the amount of H2 produced was 3738 ppm. 

This indicates that dodecane inhibited C3H6 steam reforming, but at the same time C3H6 

inhibited dodecane steam reforming. The latter is likely due to the higher reactivity of the 

C3H6 while the former is possibly due to the coverage of some metallic sites by the longer 

chain hydrocarbons, resulting in lower availability of metallic sites for adsorption of 

reactants. 

 These results show that steam reforming over a NSR catalyst can occur when 

hydrocarbons and water are present in the gas stream. Different hydrocarbon types have 
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different reactivities towards steam reforming. This could be related the extent of which 

the hydrocarbons can be activated on the surface of precious metals. Since steam 

reforming did not occur below 375°C for C3H6 and 450°C for C12H26 and C8H10, steam 

reforming cannot explain the improved performance in the cycling experiments at 300 to 

400°C described above. Furthermore, even at 375 and 450°C, the amounts of H2 

produced were quite small, and built through the catalyst, such that at the catalyst front 

little H2 was present until the higher temperatures.  
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Figure 7.9   H2 concentrations obtained at different temperatures and lengths of the  

catalyst during steam reforming experiments. The inlet gas composition was 

3333 ppm C3H6, 833 ppm C12H26, 5% H2O, and balance N2. 
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These data therefore demonstrate that steam reforming does not play a critical role in 

NSR regeneration below 450°C. This is not to say that reforming is unimportant for NSR 

activity in general, as desulfation occurs at much higher temperatures, where steam 

reforming can have a more significant contribution. 

 

7.4.3 TPR Experiments 

 

 In the previous section, hydrocarbon steam reforming was investigated and the 

data show that reforming to H2 is not significant enough to explain the improved 

performance observed above 300°C when using hydrocarbons as reductants. To further 

investigate this issue, TPR experiments were performed with propylene selected as the 

reductant. Two types of experiments were performed; one where both the NO and C3H6 

were simultaneously present in the gas phase and one where NO was first trapped on the 

catalyst and then C3H6 was input for the TPR. 

 In the first set of experiments, the catalyst was first cleaned with a gas mixture 

consisting of 5% H2O, 5% CO2, 1% H2, and a balance of N2 for 15 min at 500°C. The 

reactor was then cooled to down to 109°C. The catalyst was heated from 109°C to 500°C 

at approximately 3.3°C/min in a mixture containing 1017 ppm C3H6, 257 ppm NO, 5% 

H2O, and a N2 balance.  The profiles of C3H6 and NO consumption as a function of 

temperature are shown in Figure 7.10. The reaction between C3H6 and NO started at 

approximately 200°C, but at low rates and lit-off beginning at 217°C. Full conversion of 

NO was observed by 287°C.  In terms of a mass balance, if the reduction equation is 

assumed as follows, 9NO + C3H6  4.5 N2 + 3CO2 + 3 H2O, then for 9 moles of NO, 1 

mole of C3H6 is required for reduction to N2. At 287°C, all inlet NO, 257 ppm, was 
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consumed and therefore ~29 ppm of C3H6 should be consumed as well for the reduction. 

But, as shown in Figure 7.10, approximately 41 ppm of C3H6 was consumed at 287°C. 

The excess amount of C3H6 reacted went toward production of CO and other short chain 

hydrocarbons via partial oxidation and reaction, as both CO and ethylene were detected 

by FT-IR.  
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Figure 7.10    NO and C3H6 outlet concentrations obtained during a temperature 

programmed reduction experiment; the ramp rate was 3.3°C/ min. The 

inlet gas composition was 1017 ppm C3H6, 257 ppm NO, 5% H2O, and 

balance N2.  

 

There have of course been several studies focused on NOX reduction by hydrocarbons, 

but in the presence of O2 (HC-SCR) [65-67]. Results from each of these studies indicate a 

similar temperature range in which C3H6 begins to reduce NOX, even in the presence of 
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O2, again suggesting the activation of C3H6, or the HC species in general, as a 

determining factor for regeneration temperature dependency.  Furthermore, and as 

discussed earlier, with a Pt/Ba/Al2O3 catalyst [68], a mixture containing C3H6 and O2 

reacted with surface NOX species at approximately 230°C, again in the same range as that 

observed here. 

 In the second experiment, the catalyst was heated to 300°C and saturated with 

NOX using a mixture containing 350 ppm NO, 10% O2, 5% CO2, 5% H2O, and a N2 

balance. Then the reactor was cooled to 115°C. The sample was then heated at 2.1°C/min 

to 500°C in a mixture containing 55 ppm C3H6 and a N2 balance. Propylene consumption 

as a function of temperature is shown in Figure 7.11. Little to no change in the C3H6 

concentration was observed before 175°C. Beyond that, there was a steady decrease in 

the C3H6 concentration until 264°C, where the maximum consumption of C3H6 was 

observed. The C3H6 consumption rate then decreased beyond 272°C as the surface NOX 

species, thus reaction reactant, were depleted. Anderson et al. performed TPR 

experiments on a Pt/Ba/Al2O3 catalyst with a stoichiometric C3H6/air mixture and 

observed maxima in NOX release just above 200°C [69]. This being done in an air-

containing mixture resulted in some temperature increase due to the exotherm that would 

evolve from C3H6 combustion, thus their measured temperatures for NOX release would 

be lower than those observed in our study. Furthermore, NOX was not observed as a 

product with just C3H6 entering, indicating more complete reduction of the surface 

species.  Jozsa et al. [33] also carried out TPR experiments, but on a commercial NSR 

catalyst, with C3H6, H2, and CO. When the C3H6/N2 mixture was used, NOX release 

reached a plateau at 250°C, slightly lower than that observed in our experiments. This is 
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likely attributed to the trapping conditions, where NO2 was stored between 60 and 100°C. 

Saturating the catalyst at 300°C, as in our study, would lead to states with higher stability 

than those formed with exposure at lower temperatures. 
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Figure 7.11    C3H6 outlet concentrations obtained during a temperature programmed 

reduction experiment; the ramp rate was 2.1°C/ min. The catalyst was first 

heated to 300°C and saturated with NOX using a mixture containing 350 

ppm NO, 10% O2, 5% CO2, 5% H2O, and a N2 balance. The reactor was 

then cooled to 115°C to start the TPR experiment. The TPR gas 

composition contained 55 ppm C3H6 and a N2 balance.  

 

 At 200°C, as shown in Figure 7.2, C3H6 and CO poisoning of Pt sites was evident 

by the lack of improvement with increased regeneration times. The TPR data in Figure 
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7.10 show that NO reduction with C3H6 begins at temperatures slightly above 200°C, 

with little activity at 200°C, in-line with the cycling experiment data. At T ≥ 217°C, the 

C3H6 and NO reaction is evident over the catalyst with complete reduction observed at 

287°C. Similarly, when reducing the previously trapped NOX species (Figure 7.11), some 

reaction extent is observed ~200°C, with increasing reactivity as the temperature was 

increased. Thus at 250°C (Figure 7.4), where extending the regeneration time did have a 

positive effect, it is related to slower kinetics, not complete poisoning by, or inactivity, of 

the hydrocarbon, nor to steam reforming of the hydrocarbon species. At T ≥ 287°C, based 

on the TPR and cycling experiments, the activation of C3H6 is not an issue and therefore 

a more comparable performance with H2 would be expected. 

 

7.5 Conclusions  

 

           In this study, the effects of different reducing agents (hydrocarbons, CO and H2) 

on the performance of a model NSR catalyst were investigated. In cycling experiments, 

H2 was the best reductant for catalyst regeneration at 170°C and the poor performance 

with hydrocarbons and CO was due to Pt site poisoning. At 250°C, H2 was still superior 

and the poorer catalyst performance with hydrocarbons and CO was due to their slow 

reactivity and not solely because of poisoning effects. At T ≥ 300°C, hydrocarbons and 

CO were comparable with H2. Hydrocarbon steam reforming experiment results show 

that steam reforming alone cannot explain the improved performance since steam 

reforming of dodecane and m-xylene occurred at T ≥ 450°C. With propylene, steam 

reforming occurred at 375°C, but the small amount of H2 formed was not enough to 

result in comparable performance to CO and H2 in regenerating the NSR catalyst. TPR 
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experiments were also performed and the results show that the reduction of NO by C3H6 

can start at 217°C. Moreover, propylene can also induce nitrate decomposition and 

reduction at ~ 200°C. Thus as the reaction temperature exceeds 200°C, the hydrocarbons 

become directly active over the NSR catalyst, but are kinetically limited. At T > 300°C, 

the regeneration-phase reaction rates with hydrocarbons become appreciable enough to 

make the extent of regeneration comparable to that with H2.  
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Chapter 8 

 

 

DeNOX Performance in Different Hybrid DOC+NSR Systems 

 

 

8.1 Abstract 

 

 

A combined, in series, DOC/NSR system was evaluated in terms of NOX 

trapping, release, and reduction. The evaluation included comparison between two 

configurations. In the fist configuration, a DOC upstream of a NSR catalyst was tested in 

series. In the other configuration, the original DOC and NSR catalyst were divided into 

two equal volumes and placed in alternating series, i.e. DOC + NSR + DOC + NSR. 

Overall, the data show an improvement in NOX trapping, release, and reduction when the 

catalysts were split. At 200°C, these differences were slight due to poisoning effects by 

CO and hydrocarbons, though the performance with the second configuration was better 

for the first 10 cycles, before steady cycle-to-cycle performance was reached. At higher 

temperatures, the improved performance with the second configuration is related to NO2 

dose. “Extra” NO oxidation occurred over the 2
nd

 DOC, increasing the inlet amount of 

NO2 to the 2
nd

 NSR catalyst. NH3 formed from the 1
st
 NSR catalyst during the 

regeneration period is oxidized over the 2
nd

 DOC resulting in a negative impact, but this 

was overcome by the improved trapping due to the extra NO2 formed. Also, the extents 

of the WGS reaction and/or C3H6 steam reforming increased, resulting ultimately in more 

H2 delivered to the downstream NSR catalyst.   
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8.2 Introduction 

Minimizing fuel consumption has increased the interest in lean-burn engines, such 

as diesel engines. NOX and particulate matter emissions, however, are still considered a 

challenging issue in diesel engines [1-3]. Diesel particulate filters (DPFs) are being used 

to filter diesel particulate matter, and NO2 and/or O2 are used as an oxidant to oxidize the 

particulates on the filter [4-6]. For NOX emissions, two different technologies, selective 

catalytic reduction (SCR) and NOX storage and reduction (NSR), are being used. 

 NSR catalysts typically contain alkali and alkaline metal earth components that 

trap NOX in the form of nitrites and nitrates and precious metals, such as Pt, Pd and Rh 

for the redox reactions. Both are supported on a high surface area substrate such as γ–

alumina [7-11]. A NSR catalyst operates in a cyclic mode; lean and rich. In the lean 

phase, or normal engine operation and exhaust, NO is oxidized to NO2 over precious 

metal sites and the NO and/or NO2 is subsequently stored on the trapping material as a 

nitrate and/or nitrite [12, 13]. When these trapping materials reach a certain level of 

saturation, the exhaust is switched to a fuel-rich mode [14, 15]. In the rich mode, 

reductants, such as H2, CO, and hydrocarbons (HCs) are introduced to induce the 

reduction of the stored NOX to N2 [16]. It has been reported that diesel exhaust during 

this rich phase can contain 2-6% CO, 1-2% H2, and 0.3-0.92% HCs [17-19]. Numerous 

studies [20-31] have investigated the regeneration of NSR catalysts using different 

reductants. The general conclusion is that H2 is the best reductant at low temperature, 

likely because CO and HCs poison Pt sites [20, 21] or Ba sites by residual isocyanates 

[31]. At high temperature (T ≥ 300°C), H2, CO, and HCs all have comparable efficiencies 

in reducing NOX to N2 [20,22].  



 205 

Diesel oxidation catalysts (DOCs) are commonly used in current diesel vehicles 

to reduce CO and HC exhaust emissions. DOCs can also oxidize NO to NO2, which plays 

an important role in SCR, NSR and DPF aftertreatment technologies. In DPFs, NO2 can 

oxidize soot at lower temperatures than O2 [4-6]. In ammonia-SCR, it was found that the 

rate of SCR can be significantly increased if a portion of the NO contained in the exhaust 

is converted to NO2, with an equimolar mix of NO and NO2 being optimal [33]. 

Moreover, NO2 can be readily stored, relative to NO, on NSR catalysts, especially at low 

operating temperatures [16, 34].  

Both water and HCs are present in diesel exhaust, which possibly leads to steam 

reforming, producing more H2. Hydrocarbon steam reforming has been extensively 

investigated over Pt, Pd, Rh, Ru, and Pt/Rd supported catalysts [35-43]. In one study 

[43], C3H6 and dodecane steam reforming was investigated over a Pt/Al2O3 catalyst 

during both steady-state and cycling experiments. C3H6 steam reforming started at 375°C 

while dodecane steam reforming began at 450°C. In another study, C3H8 steam reforming 

was investigated over Pd/CeO2/Al2O3 and Pt-Rh/CeO2/Al2O3 catalysts [40, 41] and 

reforming started at about 350°C. It should be noted that CO inherent to diesel exhaust or 

formed during steam reforming can also be consumed in the water gas shift (WGS) 

reaction to produce extra H2. In a previous study [43], it was found that H2 production 

from the water gas shift reaction over Pt/Al2O3 started at 225°C during both steady-state 

and cycling experiments.  

In NSR catalysts, NO oxidation to NO2 is an important step for overall 

performance. Additionally, H2 has repeatedly been reported to be better than other 

reductant species (CO and HCs) in reducing surface NOX species to N2 [20, 22]. Engine 
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out NO:NO2 during the lean phase is on the order of 90:10 [16, 44] and H2 concentrations 

are about 1-2% during the rich phase [17-19]. Therefore, if the amount of NO2 during the 

lean phase and H2 delivered to the NSR catalyst during the rich phase can be increased 

over the upstream DOC catalyst, the NOX reduction to N2 performance over the 

downstream NSR catalyst could be improved.  

The aim of this study is to evaluate overall NOX reduction performance when the 

DOC and NSR catalyst are placed in series, which represents the actual configuration in 

NSR-equipped diesel automobiles. Furthermore, performance was also evaluated with 

different configurations of the DOC and NSR catalyst, by splitting the samples and 

alternating the series, while keeping the overall catalyst volumes the same. The latter 

design was tested, under the hypothesis that any NO escaping the first NSR catalyst could 

be re-oxidized by the second DOC and then adsorbed on the fourth piece, another piece 

of NSR catalyst. Furthermore, at high temperatures where the WGS reaction could be 

thermodynamically limited, this arrangement could result in extra H2 formed by 

eliminating hydrocarbon inhibition and again, with H2 consumed in the first NSR 

catalyst, more could be made in the second DOC. 

 

8.3 Experimental Methods 

 A commercial DOC supplied by Umicore AG and a model Pt/BaO/Al2O3 catalyst 

supplied by Johnson Matthey were used in this study. Both samples were in monolith 

form. The DOC contains 95 g/ft
3
 Pt supported on Al2O3. The monolith block that the 

sample was removed from had a cell density of 400 cpsi. The samples were 2.25 cm in 

diameter with lengths of 1, 2 and 4 cm depending on the test. The model Pt/BaO/Al2O3 

sample contains 2.0 g/in
3
 Al2O3, 49.9 g/ft

3
 Pt and 20% BaO relative to the Al2O3. The 
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sample was removed from a monolith block that had a cell density of 300 cpsi. The 

samples used were 2.23 cm in diameter with lengths of 2 and 4 cm. The samples were 

inserted into a horizontal quartz tube reactor, which was placed inside a Lindberg 

temperature-controlled furnace. The catalysts were wrapped with 3M matting material to 

cover the gap between the catalyst and the wall of the reactor to ensure that no gas 

slipped around the sample. K-type thermocouples were placed at the radial center of each 

catalyst; one just inside the inlet face of the catalyst and one just inside the outlet face of 

the catalyst.  

The gases and gas mixtures, except N2, were supplied by Praxair and were 

metered with Bronkhorst mass flow controllers. The N2 was produced using an On-Site 

nitrogen generator system. The dry gas mixture was then heated to > 120°C and water 

was then introduced using a Bronkhorst CEM system. 

In these experiments, 250 ppm NO, 50 ppm NO2, 10% O2, 5% CO2, 5% H2O, and 

a balance of N2 were used in the lean phase while in the rich phase 1% H2, 3% CO, 0.5% 

C3H6, 5% CO2, 5% H2O, and a balance of N2 were used. The rich time was 6 seconds and 

the lean times were 40, 100, and 80 seconds with 200, 350, and 500ºC respectively. The 

lean and rich gas mixtures were made in separate manifolds. A fourway, fast-acting 

solenoid valve was used to switch between the two. The calculated errors associated with 

these experiments were less than 1% for trapping conditions and less than 2% for 

regeneration conditions. 

Before each experiment, the sample temperature was ramped to 500ºC with 5% 

H2O, 5% CO2, and a balance of N2 and then the catalyst was cleaned/conditioned with a 
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gas mixture consisting of 5% H2O, 5% CO2, 1% H2, and a balance of N2 for 15 min. The 

reactor was then cooled to the target test temperature.  

Experiments were performed at 200, 350 and 500ºC with a space velocity, at 

standard conditions, of 25,000 h
-1

. The gases exiting the reactor were maintained at > 

190ºC to avoid condensation and NH3 hold-up.  

The gas compositions were measured using a MKS MultiGas 2030 FTIR 

analyzer.  Spatially resolved capillary-inlet mass spectrometry (SpaciMS) was also used  

to measure outlet H2 amounts from each sample.  

 

  

      Figure 8.1 Catalyst configurations used in this study.   

 
8.4 Results and Discussion  

 
 

In this study, the DOC and NSR catalyst outlet concentrations of key reactant and 

product species were measured with different DOC/NSR configurations. In the first 

configuration, a 4 cm DOC and a 4 cm NSR catalyst were placed in series. In the second 
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configuration, the original DOC and NSR catalyst were divided into two equal volumes 

and then placed in series, so that the order of samples was: 2 cm DOC  2 cm NSR  2 

cm DOC  2 cm NSR. These two configurations are shown as group 1 in Figure 8.1.   

 

8.4.1 Performance at 500ºC 

 

In the first set of experiments, the NOX performance obtained with configuration 

A of group 1 were compared to configuration B. The outlet NOX (the sum of NO + NO2) 

concentrations obtained using 1% H2, 3% CO, and  0.5% C3H6 as the reductant mixture 

in the regeneration phase, and at an inlet temperature of 500°C are shown in Figure 8.2.  

 

 

Figure 8.2    NOX outlet concentrations obtained at 500°C with group 1 configurations. 

The lean gas mixtures were 250 ppm NO, 50 ppm NO2, 10% O2, 5% CO2, 

5% H2O, and a balance of N2. The rich gas mixtures were 1% H2, 3% CO, 

and 0.5% C3H6, 5% CO2, 5% H2O, and a balance of N2. 
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For this set of experiments, the lean, or trapping, time was 80 seconds and the rich, or 

regeneration, time was 6 seconds. The conversions and amounts of NOX trapped and 

released for these experiments are listed in Table 8.1. All reported values and plotted data 

were obtained once steady cycle-to-cycle performance was observed. The data plotted in 

Figure 8.2 show that complete trapping was achieved over both sets for similar times, 

about 16 seconds. Both sets also reached trapping saturation by the end of the 80-second 

lean period. The amounts of NOX trapped were 101 and 115 moles, and the amounts 

released as unreduced NO or NO2 during the rich period were 25 and 26 moles for 

configurations A and B, respectively. It should be noted that overall catalyst performance 

at 500°C is low because of the weak stability of nitrate species at 500°C [45]. 

There are several reasons for the improved performance with the “split” 

configuration (configuration B). First, in the split configuration, the NSR catalyst is 

ultimately exposed to higher NO2 amounts. NO2 concentrations at the outlet of each 

catalyst are plotted in Figure 8.3. In both configurations, the upstream DOC oxidizes the 

same amount of NO, hitting thermodynamic equilibrium. As would be expected, NOX 

breakthrough from the 1
st
 NSR catalyst in the “split” configuration occurs earlier. Then 

some of the NO passing through the 1
st
 NSR catalyst is oxidized to NO2 over the 2

nd
 

DOC, which is more readily trapped on the 2
nd

, most downstream NSR catalyst. This is 

consistent with a previous study [46], where the performance of a NSR catalyst was 

improved when NO2 was used instead of NO. With NO2 being a precursor or an 

intermediate in the trapping process, more NOX was trapped along the catalyst length and 

in conjunction with no NO2/reactant concentration limitations, led to the improved 

performance. The data in Figure 8.3 demonstrate that ultimately the sum of the NSR 
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catalysts are exposed to a higher NO2 flux during the trapping period compared to 

configuration A, where the single full size DOC and NSR samples are in series. 

Comparing the NOX profiles in Figure 8.3 for the final outlet amounts, it is apparent that 

the bigger difference is in the amount of NO, indicating that similar NO2 conversions are 

attained, and since more NO2 was generated in configuration B, more extensive trapping 

was attained.  

 

Table 8.1 Calculated performance characteristics as a function of temperature and 

catalyst configurations for group 1 in Figure 8.1.  

 

 

 

 

Temperature 

(ºC) 
Group (1) Time(sec) 

  Lean     Rich                        

NOX 

Trapped 

(moles) 

NOX 

Released 

(moles) 

NOX 

Conversion    

(%) 

NH3 

Released 

(moles) 

 

200 

 

Configuration A 
 

 

40 
 

6 
 

44 
 

14 
 

27.5 
 

0.52 

Configuration B 

(2
nd

 NSR) 

 

40 
 

6 
 

47 
 

15 
 

29.4 
 

0.55 

Configuration B 

(1
st
 NSR) 

 

40 
 

6 
 

23 
 

9 
 

13.4 
 

0.36 

 

 

 

 

350 

 

Configuration A 
 

 

100 
 

6 
 

261 
 

3.6 
 

93 
 

118 

Configuration B 

(2
nd

 NSR) 

 

100 
 

6 
 

267 
 

3.3 
 

95 
 

105 

Configuration B 

(1
st
 NSR) 

 

100 

 

6 
 

172 
 

22.6 
 

54 
 

66 

 

500 

 

Configuration A 
 

 

80 
 

6 
 

101 

 

25 
 

34 
 

12 

Configuration B 

(2
nd

 NSR) 

 

80 
 

6 
 

115 
 

26 
 

40 
 

15.5 

Configuration B 

(1
st
 NSR) 

 

80 
 

6 
 

62 
 

9 

 

24 
 

12 
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   Figure 8.3   NO and NO2 outlet concentrations obtained at 500°C with group 1 

configurations. The lean gas mixtures were 250 ppm NO, 50 ppm NO2, 

10% O2, 5% CO2, 5% H2O, and a balance of N2. The rich gas mixtures 

were 1% H2, 3% CO, and 0.5% C3H6, 5% CO2, 5% H2O, and a balance of 

N2. 

 

Another contributing factor to the differences in performance relates to the 

amount of NH3 formed. NH3 formation during NOX reduction with H2 over NSR 

catalysts has been extensively reported, and NH3 also acts as a reductant [47-49]. As 

shown in Figure 8.4 for configuration B, NH3 was observed at the upstream NSR catalyst 

outlet and 2
nd

 DOC outlet about 1 to 2 seconds after the onset of the regeneration phase 

and for each, reached a maximum when the NOX concentration decreased close to the 

baseline level. As shown, more NOX, during the regeneration phase, is observed at the 

outlet of the 2
nd

 DOC, relative to that at the 1
st
 NSR catalyst outlet, while at the same 
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time, there is less NH3 at the 2
nd

 DOC outlet. These data indicate that some of the NH3 

generated on the 1
st
 NSR catalyst is oxidized to NOX over the downstream DOC, which 

also means less NH3 is available for the most downstream NSR catalyst. If the only 

effect, this should actually lead to decreased performance, indicating that the 

enhancement observed with the extra NO2 is somewhat decreased by this impact on the 

NH3 generated.  

 

 

 Figure 8.4    NOX and NH3 outlet concentrations from the 1
st
 NSR catalyst and 2

nd
 DOC 

for configuration B of group 1, obtained at 500°C with 1% H2, 3% CO, and 

0.5% C3H6 used in the regeneration phase. 

 

Another factor is the changes in reductant concentrations and/or extents of either 

the WGS or steam reforming reactions. Peak concentration data obtained between each 

piece of catalyst are listed in Table 8.2.  The amount of H2 at the inlet of the NSR catalyst 
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in configuration A was 1.16%, which is about the same as that at the inlet of the 1
st
 NSR 

catalyst in configuration B, while the inlet H2 to the 2
nd

 NSR catalyst in configuration B 

was 2.2%. The CO shows the opposite trend, with a higher amount of CO at the inlet of 

the NSR for configuration A relative to the 2
nd

 NSR catalyst in configuration B. The 

increase in H2 and decrease in CO indicate that further WGS reaction extents are realized 

with configuration B. The likely reason for this is that the WGS reaction is inhibited by 

HCs [50], and by the 2
nd

 DOC there is less HC since more HC would be consumed over 

the 1
st
 DOC and NSR catalysts, or at least reduced in concentration, as indeed the data 

listed in Table 8.2 show. With configuration A, only 441 ppm of C3H6 were consumed 

over the upstream DOC while 277 ppm C3H6 were consumed over the 1
st
 DOC of 

configuration B. However, a significant amount of C3H6 is also consumed through the 

NSR catalysts, with only 21 ppm at the outlet of configuration A and 840 ppm at the 

outlet of the 1
st
 NSR catalyst in configuration B, with a drop to 480 ppm across the next 

DOC and 0 ppm exiting the 2
nd

 NSR catalyst. Therefore, the 2
nd

 DOC experiences less 

inhibition and the amount of H2 formed is higher, possibly leading to more extensive 

regeneration of the 2
nd

 NSR catalyst. This effect, however, is likely slight since at high 

temperatures CO, C3H6 and H2 are considered equal in terms of reduction efficacy, 

although in general H2 is considered better [20-31]. Furthermore, based solely on the 

changes in CO and H2 observed, it would seem that the reduction/regeneration reactions 

are not limited by H2 produced through the WGS reaction since the amounts of CO 

consumed and H2 formed are similar, and therefore regeneration is not reductant limited. 

However, since steam reforming is also likely occurring (as discussed in the following 

paragraph), it is not possible to determine the exact source of the H2 increase.  
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   Table 8.2  Outlet reductant amounts as a function of temperature and catalyst  

configurations for group 1, Figure 8.1.  

 

 

Group 1  (Configuration A) 
 

Temperature 

(ºC) 

Reductant Inlet DOC Outlet DOC/Inlet 

NSR 

 

Outlet NSR 

 

200 

CO (%) 3  2.99 2.94  

H2 (%) 1 0.99 0.82 

C3H6  (ppm) 1667  1620 1610 

C2H4  (ppm) 0 4  4  

CH4   (ppm) 0 4  7  

 

 

350 

CO (%) 3  2.9 2.4 

H2 (%) 1 1.13 0.75 

C3H6  (ppm) 1667  1524  1380  

C2H4  (ppm) 0 20  9  

CH4   (ppm) 0 40 25  

 

 

500 

CO (%) 3  2.90 1.65 

H2 (%) 1 1.16 2.1 

C3H6  (ppm) 1667 1226 21 

C2H4  (ppm) 0 50  7  

CH4   (ppm) 0 720  1870  
 

Group 1 (Configuration B) 
 

Temperature 

(ºC) 

Reductant Inlet 1
st
 

DOC 

Outlet 1
st
 

DOC 

Outlet 1
st
 

NSR 

Outlet 2
nd

 

DOC 

Out let 

2
nd

 NSR 

 

 

200 

CO (%) 3  2.99  2.97 2.93  2.93  

H2 (%) 1 1 0.9 0.9 0.8  

C3H6  (ppm) 1667 1650  1638 1638  1627  

C2H4  (ppm) 0 3 4  3  3  

CH4   (ppm) 0 2 4  6  9  

 

 

350 

CO (%) 3  2.9  2.8 2.6 2.45 

H2 (%) 1 1.12 0.92 1.35 0.80 

C3H6  (ppm) 1667 1550  1520  1430  1350  

C2H4  (ppm) 0 15 18  19  25 

CH4   (ppm) 0 25  18  33  22  

 

500 

CO (%) 3  2.99 2.1 1.8 1.55 

H2 (%) 1 1.15 1.9 2.2 1.8 

C3H6  (ppm) 1667 1390 840  480  0 

C2H4  (ppm) 0 23  100  43  0 

CH4   (ppm) 0 250  660  600  1930  
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As mentioned, H2 can be produced by steam reforming over these catalysts. C3H6 

steam reforming using the same DOC and NSR catalyst used in this study has been 

examined previously, and H2 was observed via C3H6 steam reforming at T > 375ºC [22, 

43]. However, C3H6 as a reductant proved effective at lower temperatures indicating a 

direct reaction between C3H6 and surface nitrite/nitrate species [22]. As mentioned above, 

the data listed in Table 8.2 indeed show consumption in C3H6 amounts across the DOC 

and NSR catalysts, with ultimately more consumption observed with configuration B. 

Some of the increased C3H6 consumption with configuration B could be related to the 

increased amount of NOX trapped. The surface nitrates or released NOX could be reduced 

by the C3H6 and since more was trapped with configuration B, more might be consumed.  

To further study the improvement observed with the split system, another set of 

configurations was studied, which are described in Figure 8.1 and labeled as “group 2”. It 

is clear from Figure 8.3 that the outlet amounts of NO and NO2 from the 2 cm DOC are 

almost the same as those from the 4 cm DOC, indicating that only the first half, at most, 

of the DOC is utilized in NO oxidation. Therefore, for group 2, a 2 cm DOC was selected 

as the upstream DOC in configuration A, while in configuration B, the 2 cm DOC was 

divided into two equal parts and alternated with NSR samples to make configuration B. 

The conversions and amount of NOX trapped and released for these experiments are listed 

in Table 8.3. It is apparent that NOX performance is again better with configuration B, 

with similar trends to what was observed in group 1. The NOX conversions were 24 and 

30% for configurations A and B, respectively. The reasons for such improvement were 

discussed above. Worth noting is that the outlet NO2 amounts from the 1
st
 DOC in 

configuration B was less than that from the larger DOC in configuration A (Figure 8.5).   
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   Table 8.3 Calculated performance characteristics as a function of temperature and 

catalyst configuration for group 2, as shown in Figure 8.1.  

 

 

In terms of differences in outlet NOX concentrations between the two 

configurations, there were differences observed in both NO and NO2, with both being 

lower with configuration B. NH3 formation was also observed and the trend was similar 

to that observed in Figure 8.4(data not shown for brevity). In terms of H2 production, the 

observations were also similar to those discussed above with group 1. As shown in Table 

8.4, more H2 was produced either due to more extensive WGS reaction or C3H6 steam 

reforming. This eventually would lead to more deeply regenerated NSR catalysts, 

resulting in better NOX reduction performance. 

Temperature 

(ºC) 
Group (2) Time(sec) 

  Lean     Rich                        

NOX 

Trapped 

(moles) 

NOX 

Released 

(moles) 

NOX 

Conversion    

(%) 

NH3 

Released 

(moles) 

 

200 

 

Configuration A 
 

 

40 
 

6 
 

41.5 
 

17 
 

22.5 
 

0.94 

Configuration B 

(2
nd

 NSR) 

 

40 

 

6 

 

43 

 

16 

 

24.5 

 

0.64 
 

Configuration B 

(1
st
 NSR) 

 

40 
 

6 
 

22 
 

8 
 

13 
 

0.54 

 

350 

 

Configuration A 
 

 

100 
 

6 
 

265 
 

6.3 
 

93.5 
 

82 

Configuration B 

(2
nd

 NSR) 

 

100 
 

6 
 

263 
 

5.8 
 

93 
 

109 

Configuration B 

(1
st
 NSR) 

 

100 
 

6 
 

158 
 

29.5 
 

46 
 

77 

 

500 

 

Configuration A 
 

 

80 
 

6 
 

75 
 

23 
 

24 
 

5.6 

Configuration B 

(2
nd

 NSR) 

 

80 
 

6 
 

96 
 

29 
 

30 
 

19.6 

Configuration B 

(1
st
 NSR) 

 

80 
 

6 

 

55 
 

7.4 
 

21 
 

11 
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  Figure 8.5   NO and NO2 outlet concentrations obtained at 500°C with group 2 

configurations. The lean gas mixtures were 250 ppm NO, 50 ppm NO2, 

10% O2, 5% CO2, 5% H2O, and a balance of N2. The rich gas mixtures 

were 1% H2, 3% CO, and 0.5% C3H6, 5% CO2, 5% H2O, and a balance of 

N2. 

 

CH4 concentrations were also monitored. They are listed in both Table 8.2 and 

8.4. The CH4 formed is due to C3H6 partial decomposition and not due to methanation 

(CO + 3H2 → CH4 + H2O). This was confirmed by two experiments, which were 

performed using a 1 cm DOC followed by a 2 cm NSR catalyst, the first two catalysts in 

configuration B in group 2. In the first experiment, 3% CO and 1% H2 was used, while in 

the second experiment 0.5% C3H6 was added to 3% CO and 1% H2. The CH4 measured 

during these two experiments are plotted in Figure 8.6.  Only 13 ppm CH4 was detected 

in the absence of C3H6, indicating that the formed CH4 during the regeneration period 

largely originated from C3H6 breaking down and not through the methanation reaction. 
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   Table 8.4 Outlet reductant amounts as a function of temperature and catalyst 

configurations for group 2, as shown in Figure 8.1. 

 

 

Group 2  (Configuration A) 
 

Temperature 

(ºC) 

Reductant Inlet DOC Outlet DOC/Inlet 

NSR 

 

Outlet NSR 

 

200 

CO (%) 3  2.99  2.93  

H2 (%) 1 1 0.90 

C3H6  (ppm) 1667 1650  1620  

C2H4  (ppm) 0 3 4 

CH4   (ppm) 0 2 8 

 

 

350 

CO (%) 3  2.9  2.5 

H2 (%) 1 1.12 0.78 

C3H6  (ppm) 1667 1550  1400 

C2H4  (ppm) 0 15 30  

CH4   (ppm) 0 25  55  

 

 

500 

CO (%) 3  2.99 1.8 

H2 (%) 1 1.15 2 

C3H6  (ppm) 1667 1390 0 

C2H4  (ppm) 0 23  0 

CH4   (ppm) 0 250  1600  
 

Group 2 (Configuration B) 
 

Temperature 

(ºC) 

Reductant Inlet 1
st
 

DOC 

Outlet 1
st
 

DOC 

Outlet 1
st
 

NSR 

Outlet 2
nd

 

DOC 

Outlet 2
nd

 

NSR 

 

 

200 

CO (%) 3  2.95 2.94 2.93 2.88 

H2 (%) 1   1 0.91 0.91 0.88 

C3H6  (ppm) 1667 1640 1638 1637  1620  

C2H4  (ppm) 0 3  3  3  3.5  

CH4   (ppm) 0 1.5  3  3.5  6  

 

 

350 

CO (%) 3  2.89 2.75 2.72 2.3 

H2 (%) 1 1.1 0.90 1.30 0.88 

C3H6  (ppm) 1667 1540  1520 1480 1420  

C2H4  (ppm) 0 22  6  13  12  

CH4   (ppm) 0 30 17  16  10 

 

500 

CO (%) 3  2.9 2.1 2.24 1.82 

H2 (%) 1 1.11 1.7 1.9 1.7 

C3H6  (ppm) 1667 1180 750  625  0 

C2H4  (ppm) 0 130 55   420  40  

CH4   (ppm) 0 14 260  50  890  
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Figure 8.6   CH4 concentrations obtained at 500°C with (A) 1% H2, 3% CO and (B) 1% 

H2, 3% CO, and 0.5% C3H6 used in the regeneration phase, using a 1 cm 

DOC followed by a 2 cm NSR catalyst. 

 

 

8.4.2 Performance at 350ºC 

 

Similar experiments to those at 500°C were also carried out at 350°C to 

investigate the influence of temperature on the storage and reduction of NOX as a 

function of configuration. A summary of the results are also listed in Table 8.1. Again, 

the NOX performance improved when the catalysts were in the split configuration. The 

differences in trapping, in contrast with data at 500°C, were observed from the onset of 

the lean phase. The amounts trapped, however, were only slightly different, 261 and 267 

moles, and the amounts released were 3.6 moles and 3.3 moles for configurations A 

and B, respectively. The data still show an improvement in overall NOX performance 
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with the split configuration, though these differences are smaller than those observed at 

500°C. These small differences at 350°C compared to 500°C are related to high NO 

oxidation activity, with a lack of thermodynamic NO2 limitation, coincident with 

immediate trapping of the formed NO2 at 350°C [16], and thus the enhancement with the 

split configuration is less noticeable. For example, in a previous study [46], only small 

differences (on order of 2% in the NOX conversion) were observed in overall NSR 

performance with NO vs. NO2 as the inlet NOX source at 300°C, indicating that NOX 

performance is independent of NOX source in this temperature region.  Figure 8.7, again 

as observed at 500ºC, shows that the amounts NO and NO2 with the 4 cm and 2 cm DOC 

samples are the same.  

 

 

Figure 8.7 NO and NO2 outlet concentrations obtained at 350°C with group 1 

configurations. The lean gas mixtures were 250 ppm NO, 50 ppm NO2, 10% 

O2, 5% CO2, 5% H2O, and a balance of N2. The rich gas mixtures were 1% 

H2, 3% CO, and 0.5% C3H6, 5% CO2, 5% H2O, and a balance of N2. 
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Ammonia formation was again observed after the onset of the regeneration phase 

and reached a maximum when the released NOX concentration decreased to close to the 

baseline level. In terms of reductants, again there was an increase in the amounts of inlet 

H2, with a decrease in both CO and C3H6 to the 2
nd

 half NSR compared with 

configuration A, as shown in Table 8.2. These smaller differences in H2 amount, vs the 

slight decrease in CO and C3H6, also lead to the smaller differences observed between 

these two configurations in group 1 compared to what was observed with the 500ºC data.   

NOX reduction performance was also investigated using configurations A and B 

in group 2. The detailed NOX performance data are shown in Table 8.3. It should be 

mentioned that the trapping performance for both configurations is at first similar, 

complete, for the first 16 seconds of the lean phase. However, by the end of the lean 

phase, more NOX was observed with configuration A at the outlet compared to 

configuration B. The calculated NOX conversions were comparable with both 

configurations. Figure 8.8 compares the outlet NO and NO2 concentration profiles for 

each catalyst in group 2. It is apparent that there are now significant differences in the 

outlet amounts of NO and NO2 between the DOC for configuration A and the smaller 

DOC for configuration B. As at 500ºC, the 2
nd

 DOC in configuration B did oxidize some 

NO.  However, NO oxidation over the NSR is also appreciable at 350ºC [16, 45] and 

apparently this extra NO2 from the DOC had less impact compared to 500ºC. Comparing 

the reductant amounts between these two configurations, again there were only small 

differences, as shown in Table 8.4, which contributes to the comparable performances. 

Overall, the strong performance at 350ºC normally noted with NSR catalysts [51] makes 
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any enhancement with the split configuration less noticeable under the conditions of these 

tests. 

 

 
 

Figure 8.8   NO and NO2 outlet concentrations obtained at 350°C with group 2 

configurations. The lean gas mixtures were 250 ppm NO, 50 ppm NO2, 

10% O2, 5% CO2, 5% H2O, and a balance of N2. The rich gas mixtures 

were 1% H2, 3% CO, and 0.5% C3H6, 5% CO2, 5% H2O, and a balance of 

N2. 

 

 

8.4.3     Performance at 200ºC 

 

  The NOX storage and reduction performance was also investigated at 200°C using 

the configurations described in Figure 8.1. The cycle time was 40 seconds for storage and 

6 seconds for regeneration. The outlet NOX concentrations obtained using configurations 

A and B in group 1, as described in Figure 8.1, after steady cycle-to-cycle performance 

had been attained, are shown in Figure 8.9. As shown, complete NOX uptake was not 
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achieved. It is the presence of CO and C3H6 in the regeneration period that causes the 

decreased overall NSR catalyst performance, compared with those data at 350 and 500°C.  

 

 

Figure 8.9  NOX outlet concentrations obtained at 200°C with group 1 configurations. 

The lean gas mixtures were 250 ppm NO, 50 ppm NO2, 10% O2, 5% CO2, 

5% H2O, and a balance of N2. The rich gas mixtures were 1% H2, 3% CO, 

and 0.5% C3H6, 5% CO2, 5% H2O, and a balance of N2. 

 

 

Worth noting is a second NOX release peak during the transition from rich to lean, 

as highlighted in the figure. Such a feature has recently been reported [27, 52-54].  This 

NOX release peak originates from the oxidation of strongly bound isocyanate on barium 

sites [52], formed when CO was used as the reductant in the regeneration period 

(Ba(NO3)2 + 8CO  Ba(NCO)2 + 6CO2).  These surface isocyanates are readily 
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hydrolyzed by water into NH3 at T ≥ 250°C [27, 52-54], which subsequently acts as a 

reductant for NOX reduction. This is consistent with the data in this study, where a 

second NOX release peak was not observed during the rich-to-lean transitions at T ≥ 

350°C. At low temperature (~ T ≤ 250°C), Pt sites are strongly poisoned by CO, leading 

to decreased hydrolysis of the isocyanates to NH3. These isocyanates, however, are 

readily oxidized to NOX at the onset of the subsequent lean phase [52], and due to the 

slow NO oxidation kinetics at T ≤ 250°C, some of the NOX is released. Again, this is 

consistent with the data presented here, where NOX release was detected at the each rich-

to-lean transition at 200°C as shown in Figure 8.9. 

 

 

  Figure 8.10   NO and NO2 outlet concentrations obtained at 500°C with group 1 

configurations. The lean gas mixtures were 250 ppm NO, 50 ppm NO2, 

10% O2, 5% CO2, 5% H2O, and a balance of N2. The rich gas mixtures 

were 1% H2, 3% CO, and 0.5% C3H6, 5% CO2, 5% H2O, and a balance of 

N2. 
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 Overall, the data clearly show decreased performance at 200°C compared with 

350 and 500°C. The conversion of NO to NO2 was greater than 92% over both 

configurations, as shown in Figure 8.10, so the poor performance can not be explained by 

the low NO oxidation rates. It is the presence of CO and HC at low temperature 

poisoning Pt sites [20, 21] or Ba sites by residual isocyanates (NCO) [27, 31, 54] that 

causes this poor performance.  For example, in a previous study [21] the effects of CO on 

NSR catalyst performance at 200ºC were characterized, and a key inhibiting effect 

observed was that CO significantly inhibits the regeneration process by poisoning Pt-

catalyzed nitrate decomposition.   

 

 

Figure 8.11 NOX outlet concentrations obtained before steady cycle-to-cycle  

performance was reached at 200°C with 1% H2, 3% CO, and 0.5% C3H6 

used in the regeneration phase with group 1 configurations. 
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In comparing the results obtained at 200°C for the two configurations (group 1), 

the differences were small and mainly observed in terms of trapping performance. The 

NOX conversions were 27.5 and 29.4% for the two configurations, with the split sample 

configuration being better. If improved NO oxidation, or an overall larger dose of NO2, 

leads to improved performance, but CO poisoning hinders regeneration, the first several 

cycles of the test should show more significant differences. The first 10 cycles of the test 

are plotted Figure 8.11.  

Another set of experiments, identical to those described above, but using only 1% 

H2 as a reductant to isolate the poisoning effects by HCs and CO, was also performed, 

with the data shown in Figure 8.12. Again, the performance improved with the split 

configuration.  

The slight improvement with configuration B is still due to an overall larger dose 

of NO2 for the total NSR catalyst amount. As shown in Figure 8.10, the differences in the 

NO and NO2 concentrations are small, but some NO at the outlet of the 1
st
 NSR catalyst 

in configuration B is oxidized over the 2
nd

 DOC, resulting in more NO2 for the 2
nd

 NSR 

catalyst. Little to no WGS or steam reforming is evident at 200ºC (Table 8.2) leading to 

the similar extents of poisoning and therefore similar performance. This is consistent with  

a previous study [43] where the WGS reaction started at 225°C, but with little  H2 

formed, which contributed little to improved performance, while C3H6 steam reforming 

began at T ≥ 375°C.  Another set of experiments were also carried out using 

configuration A and B in group 2, to confirm the above findings. The exact same trends 

were observed and therefore the results are not shown.     
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Figure 8.12    NOX outlet concentrations obtained before steady cycle-to-cycle 

performance reached at 200°C with 1% H2 used in the regeneration phase 

with group 1 configurations. 

 

It should be highlighted that it is repeatedly reported in the literature that 

increasing the amount of NO2 upstream of an NSR catalyst will lead to improved NOX 

reduction performance, especially at low temperatures [55, 56]. This is because NO2 is 

sometimes considered a precursor for nitrate formation, and necessary for the 

disproportionation reaction [16]. In this study, NO oxidation to NO2 was significant, 

above 92% at 200°C with the DOC samples used. This clearly indicates that NO 

oxidation to NO2 is not an issue with the system used in this study at 200°C. However, 

the performance is still poor. This clearly demonstrates that the poisoning effects of CO 

and HCs offset any gains that could be realized by higher NO2 amounts. In application 



 229 

diesel exhaust can contain 2-6% CO and 0.3-0.92% hydrocarbons during regeneration 

[17-19]. Therefore, the NSR catalyst formulations will always be poisoned by CO and 

HCs at 200°C, which hinders regeneration and ultimately leads to poor catalyst 

performance. 

   

8.5 Conclusions  

 

In this study, NOX reduction using two different DOC/NSR configurations was 

evaluated. Overall performance was improved with the catalysts in a split configuration 

while maintaining the same overall catalyst volumes (DOC  NSR versus DOC  NSR 

 DOC  NSR). The differences in NOX conversion were more apparent at the highest 

temperature tested, 500°C, due to the NSR catalyst being exposed to a larger amount of 

NO2 and some of the CO and C3H6 being converted to H2 for better regeneration. At 

200°C, there were differences in both NOX trapping and release for the first several 

cycles, but then CO poisoning of Pt and Ba sites slowed regeneration to such an extent 

that the extra NO2 generated with the split configuration made little difference. At 350ºC, 

little difference in performance was observed under the conditions tested, since NO 

oxidation is significant, i.e. not kinetically or thermodynamically limited, and the 

poisoning effects of the CO and HC species are minimal.  
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Chapter 9 

 

9. Conclusions and Recommendations 

 

9.1 Conclusions 

 

The focus of this research was to provide a systematic and comprehensive 

understanding of both DOC and NSR catalysts when they are used individually and in 

series. The extent of inhibition reactions between reactant gases in simulated diesel 

exhaust was investigated over a monolith-supported DOC. A detailed discussion was 

provided, explaining why and how this inhibition occurred. Overall, there was inhibition 

between CO, hydrocarbons, and NO both individually and in mixtures with NO2. CO was 

less influenced among the other species because its light-off temperature was lower than 

that of the other species. DOCs are always placed upstream of NSR, DPF, and SCR 

catalysts. During the lean phase, or normal diesel exhaust conditions, DOCs can oxidize 

HCs, CO and NO. During the rich phase, reductants, such as HCs and CO, are available 

in appreciable amounts (e.g. 2-6% CO and 0.5% HCs) with H2O. Therefore, the second 

objective was to investigate H2 production from both HC steam reforming and water gas 

shift reactions over a DOC. The results showed that C3H6 and dodecane steam reforming 

started at 375 and 450°C, respectively, whereas the water gas shift reaction started at 

225°C. The formed H2 can be used as a reductant to reduce NOX species during the rich 

phase over a downstream NSR catalyst.  

 For NSR evaluation, investigations included using NO or NO2 as the NOX source, 

different regeneration protocols, and evaluating different reducing agents (hydrocarbons, 

H2, or CO).  Overall, the performance of catalyst was improved when NO2 was used as 

the NOX source. The primary reason for this improvement is that the monolith is an 
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integral reactor. With NO2 as the NOX source, NO2 can be readily trapped at the very 

inlet and along the catalyst length. This results not only in higher trapping amounts, but 

also in more interaction between reductant and stored NOX along the catalyst length. The 

next objective was to study the influence of different regeneration protocols on NSR 

catalyst performance. Different regeneration times were tested, 4, 8 and 16 seconds with 

4, 2, and 1% H2 as the reductant amounts, respectively, with constant lean times. With 

longer regeneration times, more nitrite/nitrate decomposition occurred, leading to a 

cleaner surface for the next lean phase. This led to improved catalyst performance at all 

temperatures except 500°C, where decomposition was more rapid than reduction so that 

the significant release of NOX during the rich phase led to poorer performance. The 

efficiency of hydrocarbons, H2, or CO as reducing agents to reduce NOX species to N2 

was also investigated.  At T ≤ 250°C, H2 was found best, while at higher temperatures 

both CO and HCs were comparable to H2 in regenerating the catalyst. The decreased 

performance with CO and HCs at 200°C was due to Pt site poisoning and at 250°C was 

caused by slower kinetics associated with CO and HC activation. Since the onset of 

propylene steam reforming occurred at 375°C, and with dodecane and m-xylene at even 

higher temperatures, the relatively good performance with HCs at T ≥ 300°C was not due 

to H2 production from HC steam reforming. The likely reason is the direct reaction of 

HCs with NOX species, as was proved during TPR experiments between NO and 

propylene.   

The performance when both the DOC and NSR catalyst are placed in series was 

also investigated. The performance was evaluated based on two different configurations. 

In one configuration, a DOC and NSR catalyst were placed in series whereas in the other 
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configuration, the DOC and NSR catalysts were divided into two equal volumes and 

placed in alternating series. The results show an improvement in the NOX performance 

with the split configuration at all temperatures tested, with small changes at 200°C due to 

poisoning effects of Pt and Ba sites by CO and hydrocarbons. The reasons for the 

improved performance with the split configuration were due to more NO2 being delivered 

to the downstream NSR, H2 production from steam reforming and WGS reactions 

increased, and reduced inhibition of the WGS reaction by hydrocarbons that were 

consumed over the first DOC and NSR catalysts. 

 

9.2 Recommendations 

 

 

The ultimate goal of this research was to offer detailed mechanisms, provide 

further understanding, and determine optimal conditions for the performance of both 

DOC and NSR catalysts individually, and in series.  However, there are still some issues 

and questions that need to be answered. The following are a number of recommendations 

proposed for future opportunities: 

 

 Diesel engine exhaust will typically contain SO2. The extent of inhibition and 

how the chemistry will differ over DOC catalysts when introducing SO2 into the 

inlet gases should be evaluated.   

 

 Along the same concept, what is the effect of thermal aging, arising from the 

desulphation process, on the performance of the DOC catalyst? 

 

 To better understand NSR chemistry, NOX trapping, release, and reduction 

characteristics, and formation of byproducts such as NH3 and N2O along the 



 237 

length of an NSR catalyst when either NO or NO2 is used as a NOX source, 

should be characterized using spatially-resolved capillary-inlet mass spectrometry 

(SpaciMS). This is especially critical for NO2 vs NO performance to discern if it 

is simply NO2 being trapped better at the front of the catalyst or if other chemistry 

is significant.  

 

 During our experiments over NSR catalysts, a high amount of NH3 was formed 

especially at high operating temperature. Therefore, it is would be beneficial to 

study the performance improvements with a downstream SCR catalyst in place.  

 

 When the DOC and NSR catalyst are placed in series, what would be the 

performance of the system after thermal aging? Is the improved performance with 

the split configuration the same? 

 

 According to the data obtained in this research, CO and HCs can regenerate the 

NSR catalyst as efficiently as H2 at T ≥300ºC, but not at low temperatures due 

poisoning of Pt and Ba sites. Therefore, it seems critical to find a catalyst that can 

preferentially reduce the amount of CO and HCs at low temperature to avoid the 

downstream poisoning effect and improve overall performance. 
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Appendix A:  

 

Statistical Analysis and Uncertainties 

 

  This experimental study involved many sample calculations to evaluate the 

performance of the DOC and NSR technologies. Statistical analysis and uncertainty 

(error) are very important in experimental studies, where they can be used to identify 

significant errors and hence provide guidance as to where more effort is needed to 

improve an experiment and assess the significance in the measurements. 

 

  Most of statistical analysis, including the one used in this section, is applied when 

the data are considered to follow a normal distribution. One simple test to check whether 

the data (sample) follows a normal distribution is using the normal probability plot. In 

applying this test, two sample sets were chosen; one from the diesel oxidation catalyst 

and the other from the NOX storage and reduction catalyst. In the second part of this 

section, the reproducibility and calculated standard deviation of some selected data for 

both catalysts are presented. This was to check and ensure that any performed experiment 

is representative of the mean results. In the last section, the associated error or uncertainty 

with each measurement (instrument) is provided. 

 

 

A.1 Normal probability plot 

 

A normal probability plot is a graphical technique to determine if a distribution is 

approximately normal. When the distribution is close to normal, the plotted points will lie 

close to a line. Systematic deviations from a line indicate a non-normal distribution. 
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To apply this test, the output data (response) should be first ordered from smallest 

to highest. Then, each value is ranked, with the smallest starting with 1. The probability 

of the data‟s rank is subsequently calculated with the following equation: 

 

P (rank) =      
 

N

i 5.0
            

where  i  is the rank of the data and N is the total number of data points. 

  

The next step is finding the expected value of the probability, the Z-value that 

corresponds to each value of “P” using a normal probability distribution table.  Last, the 

output data (responses) are plotted against a theoretical expected value of normal 

distribution in such a way that the points should form an approximate straight line, if it 

follows a normal distribution. One sample calculation will be provided for one selected 

data set for each catalyst type.  

 

 

1. Diesel Oxidation Catalyst (DOC) 

 

The sample calculation and normal probability plot is provided for C3H6 oxidation. 

In this set of experiments, C3H6 conversions were obtained during a temperature 

programmed oxidation (TPO) experiment with 1080 ppm C3H6, 10 % O2, 5% CO2, 5% 

H2O, and balance N2. The conversions (response) along with other calculations are listed 

in Table A.1 
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                   Table A.1 Normal probability plot table for C3H6 conversions 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conversion (%) Rank (i) 

 

P(rank) Expected Value 

0.000 

5.125 

10.277 

15.337 

20.492 

25.285 

30.287 

35.218 

40.823 

45.204 

50.577 

55.492 

60.449 

65.614 

71.209 

75.831 

80.454 

86.402 

90.575 

95.224 

         99.751 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

         21 

0.024 

0.071 

0.119 

0.167 

0.214 

0.262 

0.310 

0.357 

0.405 

0.452 

0.500 

0.548 

0.595 

0.643 

0.690 

0.738 

0.786 

0.833 

0.881 

0.929 

      0.976 

-1.981 

-1.465 

-1.180 

-0.967 

-0.792 

-0.637 

-0.497 

-0.366 

-0.241 

-0.120 

0.005 

0.120 

0.241 

0.366 

0.497 

0.637 

0.792 

0.967 

1.180 

1.465 

          1.981 
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  Figure A.1  Normal probability plot for C3H6 conversion 

 

The points on this plot form a nearly linear pattern with a correlation coefficient, r = 

0.985, the square root of R
2 

(the coefficient of determination), which indicates that the 

normal distribution is a good model for this data set. 

 

2. NOX storage and reduction (NSR) catalyst  

 

The sample calculation and normal probability plot is provided for the outlet NOX 

concentration during the lean phase when H2 was used as the reducing agent at 300°C. 

The detailed experiment conditions and flows are listed in Table A.2. The outlet NOX 

concentrations along with other calculations are listed in Table A.3. 
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Table A.2 Details of flow conditions used in the experiments 

Flow Conditions Trapping 

(lean) phase 

Regeneration 

(rich) phase 

Space velocity 25,000 hr
1
 25,000 hr

1
 

Concentrations 

NO 

O2 

CO2 

H2O 

H2 

N2 

 

330 ppm 

10% 

5% 

5% 

0 

Balance 

 

0 

0 

5% 

5% 

3% 

Balance 

 

Cycling ratio (sec) 
 

40 
 

4 

 

Table A.3 Normal probability plot table for NOx concentration 

Concentration (ppm) 

  

Rank (i) 

 

P (rank) 

 

Expected Value 

 

0 

1.178 

2.441 

5.160 

7.443 

10.081 

13.868 

16.182 

20.642 

23.311 

26.692 

30.260 

34.357 

39.414 

43.135 

47.813 

52.410 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

0.024 

0.071 

0.119 

0.167 

0.214 

0.262 

0.310 

0.357 

0.405 

0.452 

0.500 

0.548 

0.595 

0.643 

0.690 

0.738 

0.786 

-1.981 

-1.465 

-1.180 

-0.967 

-0.792 

-0.637 

-0.497 

-0.366 

-0.241 

-0.120 

0.005 

0.120 

0.241 

0.366 

0.497 

0.637 

0.792 
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            Figure A.2 Normal probability plot for outlet NOX concentration 

 

Again, the points on this plot form a nearly linear pattern with a correlation 

coefficient r = 0.954, the square root of R
2
 (the coefficient of determination), which 

indicates that the normal distribution is a good model for this data set. 

 

 

A.2 Reproducibility between repeated experiments 

 

In this section, the reproducibility, via standard deviation measurements, of 

selected experiments for a DOC and NSR catalyst were performed to ensure no 

significant variations in the measured performances.    
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 Standard deviation (σ) is a statistical term that measures the dispersion of a set of 

values about the mean value. If the standard deviation for the data is small, the data 

values are close to the mean value, while large standard deviation means that the data 

points are far from the mean. Standard deviation (σ) and mean can be calculated by the 

following equations: 

 













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



N

i
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NN

xxx
x

xx
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)(
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1
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

 

Where  is 50% conversion, or amounts of NOX trapped or released depending on the 

experiment. is the mean of  .        

 

(1) Diesel oxidation catalyst 
 

 

In this study, the oxidation of NO, CO, and different types of hydrocarbons was 

investigated individually and in mixtures with NO2. Hydrogen production via 

hydrocarbon steam reforming and water gas shift reactions was also investigated.  Table 

A.4 shows the 50% conversions for the selected experiments and their replicates. The 

mean and standard deviation for each repeated experiment were calculated and are 

reported in Table A.4. The repeated experiments of hydrogen production via C3H6 steam 

reforming and the water gas shift reaction during steady state and cycling experiments at 

450°C at the middle point of the catalyst (3cm) are shown in Table A.5 along with their 

mean and standard deviation. Table A.6 shows CO2 formation obtained during 

temperature programmed oxidation (TPO) experiments after C3H6 steam reforming at 
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450°C for 180 min and at 2 and 4 cm from the front of catalyst. Again, the mean and 

standard deviation associated with these experiments were calculated and reported in 

Table A.6. The detailed experimental descriptions were reported in previous chapters; 

Chapter 3 for Table A.4 and Chapter 4 for Tables A.5 and A.6. 

 

Table A.4    Statistical analysis for the 50% conversion for the selected repeated set of   

experiments  

 

 a: the 50% conversion of CO. 

 b: the 50% conversion of C3H6. 

 c: the 50% conversion of dodecane. 
 
*: a mixture of 200 ppm NO and 200 ppm NO2. 

Reactants Experiment 

(1) 

Experiment 

(2) 

Experiment 

(3) 

mean Standard 

Deviation 

(˚C) 

 

CO 

 

 

145 

 

143.8 

 

146.5 

 

145.1 
 

± 1.35 

 

C3H6 

 

 

162 

 

163 

 

162 

 

162 
 

± 1 

 

CO + C3H6 
 

 

170.1 
a 

176 
b 

 

172.2 
a 

177.7 
b
 

 

173.1 
a 

175. 7
b
 

 

171.8 
a 

176.47 
b
 

 

± 1.52 
a 

± 1.04 
b
 

C3H6 + 

Dodecane  

 

168 
b
 

164.4 c 

 

169.5 
b 

166.3 
c
 

 

167 
b 

165
c
 

 

168.2 
b 

165.3 
c
 

 

± 1.26 
b 

± 0.84 
c
 

 

Dodecane 

+NO 
c
  

 

 

164 

 

162.2 

 

165 

 

163.7 
 

±1.38 

 

C3H6+NO 
b
  

 

 

182 

 

184 

 

182.4 

 

182.8 
 

±0.95 

 

C3H6 + NO + 

NO2

b*
 

 

 

198 

 

199.5 

 

197.3 

 

198.3 
 

±1.11 
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Table A.5    Statistical analysis for hydrogen production (in ppm) for the selected 

repeated set of experiments.  

 

 

 a: Steady state experiment at 450˚C 

 b: Cycling experiment at 450˚C  

 

 

Table A.6     Statistical analysis for CO2 formation (in ppm) obtained during (TPO) 

experiments at 2 and 4 cm from the front of catalyst after C3H6 steam 

reforming experiments at 450ºC for 180 min. 

 

a: CO2 formation at 2 cm  

b: CO2 formation at 4 cm 

 

 

 

Reactants Experiment 

(1) 

Experiment 

(2) 

Experiment 

(3) 

mean Standard 

Deviation 

(ppm) 

 

C3H6
 a 

 

84 

 

88 

 

86 

 

86 
 

± 2 

 

 

C3H6
 b 

 

 

474 

 

480 

 

478 

 

477.3 
 

± 2.36 

 

CO
 a
 

 

1005 

 

1010 

 

1007 

 

1007.3 

 

± 2.12 

 

CO
 b

 

 

1124 

 

1127.5 

 

1123 

 

1124.8 

 

± 2.32 

Reactants Experiment 

(1) 

Experiment 

(2) 

Experiment 

(3) 

mean Standard 

Deviation 

(ppm) 

 

C3H6
 a 

 

80.6 

 

82.4 

 

78.5 

 

80.5 
 

± 1.95 

 

 

C3H6
 b 

 

 

164 

 

167 

 

169 

 

166.7 
 

± 1.95 
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(2) NOX storage and reduction catalyst 
 

 

In this study, the performance of the NOX storage and reduction catalyst was 

investigated based on (1) whether the NOX source was NO or NO2, (2) regeneration time 

and H2 concentration, and (3) reductant type. For Table A.7, the experiments were 

repeated three times when either NO or NO2 was the NOX source at 500°C. In Table A.8, 

two regeneration protocols; 4 sec rich and 4% H2 and 8 sec rich and 2% H2, were 

repeated at 400°C. In Table A.9, the reproducibility of the catalyst performance was 

investigated with either C12H26 or H2 used as the reductant at 250°C. The lean time was 

60 sec and rich time was 10 sec. The detailed experiment descriptions are reported in 

previous chapters; Chapter 5 for Table A.7, Chapter 6 for Table A.8, and Chapter 7 for 

Table A.9.  

According to the standards deviations listed in the tables, experiments were 

reproducible and show very little variation in the repeated experiments, as indicated by 

the small values of standard deviation. For example, H2 production during cycling C3H6 

steam reforming experiments was higher than that during steady state experiments over 

the DOC at 450ºC, as shown in Table A.5. The average H2 formed during cycling 

experiments was 477.3 ppm (with σ = ± 2.36 ppm) whereas 86 ppm (with σ = ± 2 ppm) 

were formed during steady state experiments. Therefore, even if the standard deviation is 

added/subtracted, these differences are still significant. Table A.9 shows the differences 

in the NOX trapping and released when either C12H26 or H2 was used as the reducing 

agent at 250ºC.  The average NOX trapped with C12H26 was 63.2 μmoles (with σ = ± 0.67 

μmoles) while 82.13 μmoles were trapped (with σ = ± 0.67 μmoles) with H2. Again, these 

differences are significant. 
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Table A.7    Statistical analysis of the effect of NOX source (NO or NO2) on the catalyst 

performance at 500ºC with 80 sec lean and 4 sec rich. 3% H2 was used as 

reducing agent. 

 

 

 Table A.8   Statistical analysis of the effect regeneration time on the catalyst 

performance. Comparison between condition A: 4 sec rich and 4% H2 and 

Condition B: 8 sec rich and 2% H2 at 400ºC.  

 

 

Performance 

   (μmoles) 

Experiment 

(1) 

Experiment 

(2) 

Experiment 

(3) 

mean Standard 

Deviation 

( μmoles ) 

NOX  Trapping 

    

    NO 

 

    NO2 
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 Table A.9    Statistical analysis of the regeneration of a model NOX storage /reduction 

catalyst using C12H26 and H2 as the reductant at 250ºC. The lean time was 60 

sec and rich time was 10 sec.  

 

 

 

A.3 Uncertainty with measurements 

Every measurement has a degree of error or uncertainty associated with it. 

Propagating the instrument‟s error is an important step to check whether the calculated 

differences between the experiments are significant or not, especially if a high error 

degree for the instrument is reported. The instruments used in this study can be divided 

into three categories; namely, the feed delivery system, reactor system, and gas analyzers. 

The uncertainties associated with each instrument are reported in Table A.10 and were 

obtained from the associated manuals. 

In all experiments, the gas flow rate was greater than 10 L/min, so the listed 

values are considered small, and therefore their effects are negligible. For the heating 
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systems and thermocouples, any differences smaller than 2ºC during the experiments 

were considered insignificant. Uncertainties associated with the gas analyzers were also 

very small. 

 

Table A.10 Uncertainties associated with instruments  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Instrument Type  Associated 

 Uncertainty 
 

Delivery system 

Main feed delivery system  

   Mass flowerers  

Water system 

   Mass flowerers 

   Heating System 

 

Hydrocarbon system 

  Mass flowerers 

  Heating System 

 

 

 
 

 

± (2- 4) ml 

 

 

 

± 2.5 ml 

       ± 0.8˚C 

 

 
 

± 2.5ml 

       ± 0.9˚C 

Reactor 
 

Thermocouples (K-type) 

 

± 1ºC 

Gas Analyzers 
 

FTIR (MKS) 

Mass spectrometry 

 
 

± 0.9 % 

± 2-5%  

of the reading 

 



 251 

Permissions 

 

 
SPRINGER LICENSE 

TERMS AND CONDITIONS 

 

Nov 22, 2010 

 

 
 

This is a License Agreement between Meshari Alharbi ("You") and Springer ("Springer") 

provided by Copyright Clearance Center ("CCC"). The license consists of your order 

details, the terms and conditions provided by Springer, and the payment terms and 

conditions. 

All payments must be made in full to CCC. For payment instructions, please see 

information listed at the bottom of this form. 

License Number 2552010744422 

License date Nov 18, 2010 

Licensed content publisher Springer 

Licensed content publication Catalysis Letters 

Licensed content title Investigating the Effect of NO Versus 

NO2 on the Performance of a Model 

NOX Storage/Reduction Catalyst 

Licensed content author Meshari AL-Harbi 

Licensed content date Jan 1, 2009 

Volume number 130 

Issue number 1 

Type of Use Thesis/Dissertation 

Portion Full text 

Author of this Springer article Yes and you are the sole author of the new 

work 

Title of your thesis / dissertation Application of Environmental Technology 

Management (ETM) to Automobile 

Exhaust Emission Reduction 



 252 

Expected completion date Nov 2010 

  

Introduction 

 

The publisher for this copyrighted material is Springer Science + Business Media. By 

clicking "accept" in connection with completing this licensing transaction, you agree that 

the following terms and conditions apply to this transaction (along with the Billing and 

Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), 

at the time that you opened your Rightslink account and that are available at any time 

at http://myaccount.copyright.com). 

Limited License 

 

With reference to your request to reprint in your thesis material on which Springer 

Science and Business Media control the copyright, permission is granted, free of charge, 

for the use indicated in your enquiry. Licenses are for one-time use only with a maximum 

distribution equal to the number that you identified in the licensing process. 

 

This License includes use in an electronic form, provided it is password protected or 

on the university's intranet, destined to microfilming by UMI and University repository. 

For any other electronic use, please contact Springer at 

(permissions.dordrecht@springer.com or permissions.heidelberg@springer.com) 

The material can only be used for the purpose of defending your thesis, and with a 

maximum of 100 extra copies in paper. 

Although Springer holds copyright to the material and is entitled to negotiate on rights, 

this license is only valid, provided permission is also obtained from the (co) author 

(address is given with the article/chapter) and provided it concerns original material 

which does not carry references to other sources (if material in question appears with 

credit to another source, authorization from that source is required as well). Permission 

http://myaccount.copyright.com/App/PaymentTermsAndConditions.jsp


 253 

free of charge on this occasion does not prejudice any rights we might have to charge for 

reproduction of our copyrighted material in the future. 

Altering/Modifying Material: Not Permitted 

However figures and illustrations may be altered minimally to serve your work. Any 

other abbreviations, additions, deletions and/or any other alterations shall be made only 

with prior written authorization of the author(s) and/or Springer Science + Business 

Media. (Please contact Springer at permissions.dordrecht@springer.com or 

permissions.heidelberg@springer.com) 

Reservation of Rights 

Springer Science + Business Media reserves all rights not specifically granted in the 

combination of (i) the license details provided by you and accepted in the course of this 

licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment 

terms and conditions. 

Copyright Notice 

Please include the following copyright citation referencing the publication in which the 

material was originally published. Where wording is within brackets, please include 

verbatim. 

"With kind permission from Springer Science+Business Media: <book/journal title, 

chapter/article title, volume, year of publication, page, name(s) of author(s), figure 

number(s), and any original (first) copyright notice displayed with material>." 

Warranties: Springer Science + Business Media makes no representations or warranties 

with respect to the licensed material. 

Indemnity 

You hereby indemnify and agree to hold harmless Springer Science + Business Media 

and CCC, and their respective officers, directors, employees and agents, from and against 

any and all claims arising out of your use of the licensed material other than as 

specifically authorized pursuant to this license. 

 



 254 

No Transfer of License 

This license is personal to you and may not be sublicensed, assigned, or transferred by 

you to any other person without Springer Science + Business Media's written permission. 

No Amendment Except in Writing 

This license may not be amended except in a writing signed by both parties (or, in the 

case of Springer Science + Business Media, by CCC on Springer Science + Business 

Media's behalf). 

Objection to Contrary Terms 

Springer Science + Business Media hereby objects to any terms contained in any 

purchase order, acknowledgment, check endorsement or other writing prepared by you, 

which terms are inconsistent with these terms and conditions or CCC's Billing and 

Payment terms and conditions. These terms and conditions, together with CCC's Billing 

and Payment terms and conditions (which are incorporated herein), comprise the entire 

agreement between you and Springer Science + Business Media (and CCC) concerning 

this licensing transaction. In the event of any conflict between your obligations 

established by these terms and conditions and those established by CCC's Billing and 

Payment terms and conditions, these terms and conditions shall control. 

Jurisdiction 

All disputes that may arise in connection with this present License, or the breach thereof, 

shall be settled exclusively by the country's law in which the work was originally 

published. 

 

 

 

 

 



 255 

ELSEVIER 

 

WHAT RIGHTS DO I RETAIN AS AN AUTHOR? 

As an author, you retain rights for a large number of author uses, including use by your 

employing institute or company. These rights are retained and permitted without the need 

to obtain specific permission from Elsevier. These include: 

 the right to make copies of the article for your own personal use, including for 

your own classroom teaching use; 

 the right to make copies and distribute copies (including through e-mail) of the 

article to research colleagues, for the personal use by such colleagues (but not 

commercially or systematically, e.g. via an e-mail list or list serve); 

 the right to post a pre-print version of the article on Internet web sites including 

electronic pre-print servers, and to retain indefinitely such version on such servers 

or sites (see also our information onelectronic preprints for a more detailed 

discussion on these points.); 

 the right to post a revised personal version of the text of the final article (to reflect 

changes made in the peer review process) on the author's personal or institutional 

web site or server, with a link to the journal home page (on   elsevier.com); 

 the right to present the article at a meeting or conference and to distribute copies 

of such paper or article to the delegates attending the meeting; 

 for  the author‟s employer, if the article is a „work for hire‟, made within the 

scope of the author‟s employment, the right to use all or part of the information in 

(any version of) the article for other intra-company use (e.g. training); 

 patent and trademark rights and rights to any process or procedure described in 

the article; 

 the right to include the article in full or in part in a thesis or dissertation 

(provided that this is not to be published commercially); 

 the right to use the article or any part thereof in a printed compilation of works of 

the author, such as collected writings or lecture notes (subsequent to publication 

of the article in the journal); and 

http://www.elsevier.com/wps/find/supportfaq.cws_home/electronicpreprints
http://www.elsevier.com/


 256 

 the right to prepare other derivative works, to extend the article into book-length 

form, or to otherwise re-use portions or excerpts in other works, with full 

acknowledgement of its original publication in the journal. 

Other uses by authors should be authorized by Elsevier through the Global Rights 

Department (for addresses see Obtaining Permissions), and authors are encouraged to let 

Elsevier know of any particular needs or requirements. 

Source: 

http://www.elsevier.com/wps/find/supportfaq.cws_home/rightsasanauthor 

 

 

 

 

 

 

http://www.elsevier.com/wps/find/supportfaq.cws_home/permissionusematerial

