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ABSTRACT

An important problem in component-based software development is tesung for correct
interactions of components. A promising approach is to use formal state-space models and
analysis techniques for effective and automated testing. However, existing techniques are not
feasible as models and test cases are difficult enough for people to create, or alternatively, too

complex for automatic tools to analyze.

To overcome these two problems, this thesis presents an object-oriented modelling language
that is casy to use for software design, but it also has formal semandcs to allows models to be
re-used for interaction testing. Formal coverage criteria and test requirements can be defined
for the models, and test cases can be generated using a model-checking approach. The thesis
also presents new algorithms created to contain the state explosion that occurs in test
generation from large models of software components. The algorithms allow the analysis of
much larger models than previously possible. The feasibility of using these techniques for
interaction testing is demonstrated by an experiment on the design of an example software

system.
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Chapter 1

INTRODUCTION

Component-based software development is expected to be an effective and widely used
method of creating sofrware. However, a major problem 1s to ensure that components tiat
were developed separately work properly together. Little research and very few techniques
exist for testing component interactions, compared to testing individual components or whole
systens. The cffectiveness of the proposed techniques is largely unknown, and the techniques

may involve significant manual effort.

Formal models of component interactions can simplify testing of component interactions by
formally defining testing requirements for interacgons, and automatically generatng required
test cases using model-checking technology. The approach allows more rigorous testing, since
formal models and test sclection criteria do not require individual interpretation by testers.
Thus, the effectiveness of the test selection techniques can be evaluated objectively and various
techniques compared. In addition, the techniques can be applied automatcally, to ensure
thorough testing and reduce cost at the same ume. Formal models also benefit other areas of
development such as debugging designs, or regression test generadon. Automated generation

of regression tests can ensure that design information is kept up-to-date with changes in code.

Several researchers have proposed the use of model-checking technology to generate test cases
from formal models. The technique has been applied to hardware[+1], protocols[25][29], and
specifications of simple control systems{3][43] [20], but has never been applied to more
complex models of software components. Previous applications have been necessarily simple

as state explosion severely limits the size of models that can be model-checked.

Another obstacle in applying formal models is that they are seen as being difficult to create and
understand, compared to informal models. The problem is more pronounced when modelling
software components, as compared to hardware, protocols, or simple software specifications.

The usual formal description techniques used for test generation tend to be hard to use, lack a
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friendly notadon, or lack features for modelling sofrware designs. Conversely, more friendly

languages tend to be informal, or very difficult to model-check.

Thus, current methods ure not feasible for testing component interactions. They either require
too much manual effort for modelling and testing, or create models that are much too
complex for amalysis. To be feasible, two major obstacles must be overcome: the state
explosion problem and the cost of creating formal models of software components. The goal
of this thesis is to provide techniques to overcome these two obstacles and make component
interaction testing from formal models more feasible. This goal is very ambitious as sofrware

design models are far beyond the ability of current model-checking technology.

1.1 Contributions

This dissertation presents results of research to make interaction test generation feasible.

First, it presents a formal, object-oriented modelling language, called ObjectState, which
balances cfficiency of analysis with ease of modelling. The language is based on the popular,
but informal, object-oriented modelling notadon UML for Real-Time([52], combined with a
Pascal-like programming language to model local component data. A formal semantics is given
for the language in terms of labelled transiton systems (LTSs). LTS is a formalism used to
study correctness of concurrent systems, and caprures the essental characteristics of

component interactions.

In additon, the language is extended to model formal test requirements and a formal

definition is given for the event-flow coverage criteria[50] for selecting interaction test cases.

Unfortunately, ObjectState models tend to be too large for even advanced model-checking
techniques to handle. Thus, this thesis also presents new algorithms to reduce state explosion
for test generation. The new algorithms are specifically designed for test generation, and can
achieve much greater reduction than previous algorithms for verification. The new algorithms

remove many types of redundancy that cause state explosion.

To evaluate the techniques in this thesis, tools were created to compile and analyze ObjectState
descriptions. A large example software model was modelled in ObjectState, the call-processing

software of a private branch exchange (PBX), and was analyzed using the tools. The results
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showed that the model was reasonably easy to create, and that the algorithms allow useful

subsets of the model to be analyzed, where previous techniques fail.

1.2 Overview

The next chapter reviews existing techniques of interaction testing coverage criteria; formal
semantcs for design modelling languages; and reduction algorithms for model-checking.
Chabrer 3 introduces the syntax and semantics of the ObijectState language, and compares it to
other modelling techniques. It also presents the formal semantics for the Event-flow coverage
criteria for interaction testing. Chapter 4 presents two algorithms to enable scalable model
checking for test generaton. Proofs of correctness are included, as well as comparisons with
other reduction algorithms. Chapter 5 evaluates the effectiveness of the modelling language
and the algorithms using an example model of a realistic software design. Chapter 6 presents

conclustons and future work.



Chapter 2

BACKGROUND AND RELATED WORK

2.1 Chapter overview

This chapter starts with an overview ot the models and test coverage in component inreracuon
testing, and their advantages and limitadons. It then describes previous techniques that use
formal models to generate test cases, how they apply to component interaction testing, and
their advantages and limitations. In particular, it discusses methods to handle state explosion.
Finally, it describes the approach taken in this thesis, which attempts to adopt the advantages

of previous techniques and address the limitatons.

2.2 Testing concepts

Testing evaluates the quality of a program by running the program with actual input stimuli
and examnining the actual output behaviour. Testing is an appropriate technique for evaluaung
many quality factors, such as correctness, reliability, robustness, usability, performance, ctc.
This thesis focuses on correctness testing, which aims to detect the presence of defects in the
program. In contrast, the related technique of reliability testing aims to evaluate the probability

of failure of the program.

A program is defined to be correct if its output conforms to its specification for all input. Since
it is impractical to run any significant fraction of the possible inputs of a program, correctness
testing focuses on testing for the presence of likely defects of the program. A defect s a part
of the program which does not satsty its postcondition given its preconditions, or which
requires preconditions that are not satisfied by the program. Usually these preconditions and

postconditions are informal assumptons in the mind of the developer(s).

The key concepts in correctness testing are program models and coverage criteria. The
program model represents some aspects of a program that affects correctness of the program.

The coverage criteria selects tests based on the program model that are likely to reveal defects.
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For example, path testing is a test selection technique based on the control flow graph, a
representation of possible sequences of events in a program’s execution. One coverage criteria
is that each node in the control flow graph must be covered, which corresponds to selecung
tests that exercise each statement in the program. Another technique, domain testing, is based
on a partition of the possible values of a parameter to a program. The coverage criteria results

in selecting tests that use an input from each class in the parauon.

Program models and coverage criteria are formal if there is a mathemadcal relaton berween
executions of the program and coverage of the model. For example, path testng is formal. In
sequential, imperative programming languages, it is possible to define the situatons under
which statements in the language (i.e. nodes in the control flow graph) are exccuted. Domain
testing is also formal, as it is possible to define the situations under which a parameter value is
in a class of the partidon. In contrast, for informal descriptons of a program, such as an
informal flowchart. there is no mathematical relation berween the test executon and when a
statement has been covered. (Beizer's book[5] thoroughly covers these and other testing

models and coverage criteria.)

Testing with formal models and coverage allows better control of quality because it 1s more
independent of individual testers, and easier to quantfy. Thus, the effectveness of different
coverage criteria can be experimentally validated and compared. At the same time, formal

methods allow greater automation, and reduce cost.

2.3Component interaction testing

This section discusses models and coverage that are relevant to testing interactions.

While many techniques exis for testing a whole program or individual program components,
few models and coverage criteria exist for testing interactions between program components.

The main obstacle has been obtaining models that capture information about interactions

between components.

Unit and system testing models are simply not adequate. By definition, interacton errors

cannot be found by looking at components in isolaton. These errors occur when one
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component’s precondition on the behaviour of the rest of the system is not sadsfied, or its

post-condition does not satisfy other components’ assumptons.

For example, consider a part of a program that allocates memory but does not free it. This is
not an error, necessarily, as another part of the program may be responsible for frecing it. In
that case, it would be an error to free the memory twice. However, it often happens that no

part of the program eventually frees the memory, resulting in memory leaks.

Thus, it can be seen that interaction errors cannot be found by unit testing, and are very
difficult to find by system testing as they involve problems with internal actions. These actions

are very difficult to observe and control from the system level.

Hence, the first requirement for systematically testing component interactions is a model that

captures interactions, which in turn, requires a definiuon of component interactions.

2.3.1 Code-based interaction models

One view of interactions comes from the perspective of the source code.

o Call-graphs — Components are procedures, and an interaction is calling another

procedure. Coverage requires each procedure call to be exercised.

o Interprocedural dataflow — Components are procedures, and an interaction is the
definition of a variable in one procedure and the use of the variable in another
procedure. Coverage requires each definiton of a variable in one procedure and its

subsequent use in another procedure to be covered.

e Module coupling — Components are modules. An interaction is calling a procedure in
another module, passing values, data structures, references, or defining and using
exported module variables. Offurt{56] defines coverage based on various levels of
coupling. Module coupling coverage includes coverage from call-graphs (control-
coupling) or interprocedural data-flow (data-coupling). It also covers, for example,

“tramp coupling paths”: paths from a definition of a variable in module A, through a call

to B, to its use in C.

Other types of interactons can be concurrent object communicaton, such as Java

synchronized methods and blocks, and Ada rendezvous.
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Code-based models have the advantage that they are formal, and can be derived automatcally
from the code. One disadvantage is that many kinds of interactions cannot be seen from the
source code. For example, when components are processes and interactions are inter-process
communication, such as file /O, message passing, remote procedure calls, and so on, these
interactions are not distinguished from internal procedures. Another disadvantage is that the

control-flow and data-flow information can be too detailed for testing interactons, and leads

(e dele)
SO IR 8810

3

any test cases thar averlan unir resting Ar rhe same nime, resting focuses on use and
definition of variables, but not the actual values of variables. Values of vanables also affect the

component’s interactions, and hence problems can be missed by the code-based techniques.

2.3.2 Destgn-bused interaction models

In general, it is better to view interactions from the perspective of the object-oriented design

models.

Design models capture both the code-level interactions and interactons not visible in the
code. In an object-oriented design model, an interaction is a “set of messages exchanged
among a set of objects to accomplish a pardcular purpose”([58]. They are abstract concepts to
be designated by the designer. Testing from design models targets the interactions that exist in
the mind of the designer—a more appropriate level of abstraction than source code or

requirement specificatdons.

Many popular object-oriented modelling notations use informal, extended finite-state
machines (FSMs) to specify behaviour of components. The notation defines messages and
events, which cause the state machine to make a transition, or are caused by a transition of the

state machine.

FSM models are convenient for defining informal interaction coverage criteria. One example is
every transition from every state of a state machine must be exercised. Intuitvely, this allows

the testing of other components against all the “different cases” of behaviour of 2 component.

The MM-path approach{+45] is more thorough than testing each transition. It requires the tester
to identify MM-paths, which are sequences of transitions that are ‘basic units’ of interacton.

Various heuristic rules are given to allow testers to identify MM-paths. MM-paths may overlap
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(have identical sub-sequences), and, presumably, every interaction must belong to an MM-
path. Thus, this technique covers not only every transition, but also the uses of the transinon

in different cases.

Because the informal state machine models lead to informal test requirements, there 1S no
mathematical relation between test cases and coverage. Thus, the tester must interpret the
model and the test selection criteria, manually determine the tests to run, and subjectvely
evaluate coverage. For example, it is not possible to formally define when a transition has been
“exercised”, nor to generate a test case to exercise a transition. To allow automation, a formal
modelling language is needed. With a formal model, the techniques can also be experimentally

compared and validated objectvely (independent of individual testers).

2.3 7 Formel interaction modesls

To overcome the limitation of testing from informal models various techniques have been

proposed for testing from formal models.

In the Flattened REgular Expression (FREE) approach(7}, the tester is required to denve
formal state machine models suitable for generatng executable test cases from the
implementation. The tester creates the FREE state model by defining states as sets of values
for component variables. That is, the component s in a state if the values of its variables are an
clement of the set of values of the state. Interactions are designated by the modeller, including
function call and return, or interrupt and return. Transitions are triggered by interactons, and
the destination states of the transitions are derived from the values of the variables after the

interaction.

To test interactions among components, the local state models are combined into 2 FREE
mode machine, with internal interactions hidden. From the mode machine, test selection is
based on Chow’s method[16]: breadth-first generation of a tree of transitions from the inidal

state, and exercising every branch in the tree.

This method is impractical, firstly, because it is very difficult to create the FREE state machine.

Identifying appropriate partitions of variable values, and transitons between them is very
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labour-intensive. Worse sdll, the construction of the mode machine causes state explosion

(Section 2.5), and makes test selection using Chow’s method intractable.

2.4 Testing from formal models

The approach of testing from formal models has been explored many times. Much work has
focussed on the theory of testing, formally relating coverage and test generation to some
concept of correctness. Much of the work in protocol testing(8] has been in this category.
Other formal techniques, such as ASTOOT(17], targeted system testing from formal
specificadons of individual classes, or modules, or systems as a whole. These works did not

address the following issues that are basic requirements for practical interaction tesung;

e creating complex interacton models,
e deriving formal test criteria and generaung test cases,
e and analyzing large interaction models.

This thesis adopts the same basic ideas for test selection and test generation from state space
models as previous studies, but focuses on efficiency of creating and analyzing models. Finally,
there has been practical work on handling non-deterministic responses from the system, and
generating executable test cases. While these issues are not addressed in this thesis, but would

be important in actual applicauons to testing.

241 Formal modeliing lanesages

The first problem is to create a formal model suitable for testing as easily as an informal design
model. Rather than directly creating the formal state space models, as in the FREE method,
they would be automatically generated from an object-oriented design model with a formal
notation. However, many formal notations for state space models are not suitable for this task.
Their mathematical concepts and syntax are unfamiliar and difficult, and they lack facilides for
simple modelling of components and local component dara. In addition, many notatons

generate state spaces that are too large to analyze for testing, or even infinite.

Previous formal testng techniques used notation designed for modelling hardware,
communication protocols, software specifications, such as LOTOS[13}, Esterel[43],

SDL[28}[20], and SCR[3]. Esterel and SCR focus on the control aspect and ignore the data
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aspect of systems. Thus, they are difficult to use for modelling software components
interaction, which depend on complex data types. However, they do have the advantage of
keeping models small and facilitating analysis. SDL and LOTOS simplify specificatons by not
setting « pr7orr bounds on model elements (such as number of processes or communication
buffer sizes), leading to huge or infinite models. They can support data types through the ACT
ONE algebraic specificaton language, which also causes large or infinite models. As a result,
only very simple systems can be modelled and analyzed. Of these. SDI. has notadon and
features that are most suitable for object-oriented design models, but it produces the state

spaces that are hardest to analyze due to its use of infinite buffers.

Researchers have also defined formal languages for object-oriented modelling for purposes of
simulation, code generadon, or verification of architecrure, rather than test generation.

Examples are vPromela[46], BDL[64], Wright[1], ROOM([62], and Rapide[53].

These languages are similar in that they simplify modelling of components by emulating
features of popular, informal object-oriented modelling languages. These languages generally

deal with three aspects:

e An architectural description language (ADL), with a graphical representadon of

componcnts and connections

e A behavioural language, with a graphical state-machine representation of the behaviour

of each component

e A\ dara manipulaton language, for detailed annotadons of the effect of transitions on
local ccmponent data. Annotations can be in informal text, a programming language, or

a formal modelling language.

However, most of these languages still suffer from the problems of complex mathematical

notation, lack of support for data, and/or generation of huge state spaces.

BDL[64] and Wright[l] focus on sequences of events and lack facilides to handle data
structures. BDL extends IDL with specifications of allowable sequences of interactions. BDL
semantics is based on partial-ordering of events, and has four different translations to LTS.

Once in LTS form, the models can be used for test generation, but no applications for test
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generation have been given so far. Wright uses annotatons in CSP[33], where the semantcs

are similar to LTS and are appropriate for test generaton.

ROOM[62] and vPromela[46] facilitate handling of dara by using imperatve programming
constructs. ROOM models can be annotated with C++, which allows code generation, butare
hard to analyze for test generadon. The vPromela language adds UML modelling features to
Promela, the C-like modelling language for SPIN. Promela is designed to be efficient for
analysis. However, Promela lacks local scopes for procedures and varables, making it

unnecessarily difficult to model dara and data tpes.

Rapide[53] also allows the definition of complex data types in a manner similar to algebraic
specifications. However, 1ts notation and semantics are based on constraints on data values
and partial ordering of event sets. Thus far, the models have only been applied to simulation,

and not model-checking or test generaton.

2.4.2 Test setectson from formil models
Once formal models have been obtained, there are various approaches to deriving test cases

from them.

One class of methods follows the protocol conformance testing approach. These methods
both select and generate test cases automatically from the state-based model. The FREE mode
machine testing technique falls into this category. These methods assume the implementation
is a formal FSM or LTS like the specificatdon. They can generate tests that ensure a reladon
between the specification and implementation, such as the implementation has the same states
and transitions as the specification. Direct application of these methods to software is not
practical for realistic software models since they attempt to check all states and transitions of
the model. The state explosion problem implies an explosion also in the number (or length) of

tests. An overview of the methods in this area is given by Bochman and Petrenko(8].

Another class of methods does not attempt to blindly cover all states and transitions, but
require ‘other informaton’ to partiion behaviour into classes. Each class is called a test

requirement since at least one test is required for each class. The ‘other informaton’ is given in

several ways:
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o User-specified pairs of events, for which sequencing constraints are derived from the

model[13];

o Temporal logical requirement specifications, for which pardtons of sequences are

derived from the model {43];
¢ Muration operations on the formalism used to create the model[3];

o User-specified sets of related events, for which event-flow sequences are derved from

the model[50};

e Explicit test requirements in a formal notaton such as MSC[28], extended TTCN{51], or

Promela ‘never claims’[20].

These techniques may be appropriate for generating test requirements for interaction tests if
they are applied to models of component interactions, and the *other information’ focuses on
interactions. The MM-path method can be applied using this approach, by writing each MM-
path as a formal test requirement. Similarly, event-flow can be used for interacuons by
selecting related events to be interactions between components. More investigation is needed

to determine the effectiveness of these methods for interaction testing,

24,7 Generating lest cases for formsal lest requirements

Once the formal test requirements are created, the next step Is to generate test cases using
model-checking, Model-checking s a popular method for verifying models of hardware,
communication protocols, or software requirements. Model-checking algorithms determine
whether a temporal logic property holds for all sequences of transitions in a state space
description. If the property does not hold, most algorithms can output a sequence of

transitions of the state space that does not have the required property.

The same model-checking algorithms can be used to generate test cases by finding sequences
of transitions to satisfy the test requirement, and then outputung the sequence. The sequence
of transitions is the basis of the test case, since the transitions include information on inputs to
the system, and outputs of the system (and also internal events in the system). For infinite

models, such as for models in SDL, bounded search is used.
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2.5 State explosion problem

Test generation using model-checking algorithms has complexity that is linear in the size of the
state space. In general, the number of global states grows exponentially with the number of
components and variables. This problem is known as state explosion. State explosion severely
limits the size of models that can be analyzed, since adding a single variable to an analyzable
model can make it impossible to analyze. Advances in computer hardware alone will have no

significant effect on making larger models analvzable, and better algorithms are needed.

Using test requirements to generate test cases may alleviate the state explosion problem, since
only states that belong to sequences that satisfy the test requirement need to be considered by
the algorithm. However, test requirements may also exacerbate the problem if they do not

sufficiently constrain the number of states, while requiring long sequences to sausty.

In general, previous formal testing techniques have relied on standard model-checking tools
and algorithms for verificadon. They have not attempted to create more efficient algorithms
railored for test generation. As a result, the applications have been necessarily simple, such as
hardware (cache coherence protocol[41]), protocols (DREX[25], sliding window, ctc.[13]), and
specifications of simple control systems (cruise control[3], Automatic Protection Switching
(APS) system[43], Intelligent Network(20]). Bounded search was applied to protocols
(INRES[28] and SCCOP[29)).

25,1 State space reduetion afgorrthms
Many algorithms have been proposed to deal with the state explosion problem. They are based
on the fact that not all the information in the formal model is necessary for deciding whether

some property holds for the state space.

A basic reduction technique is to generate the state space ‘on the fly’, thatis, as required by the
model-checking algorithm. The SPIN model-checker is a well-known implementation of this
technique[3+]. If the property can be checked without constructing the endre state space, the
state space construction can stop early. In addidon, search algorithms for model-checking only
require that the states that have been explored be stored, but not the transitions berween them.
In the worst case, however, the technique only reduces time and space required by a constant

factor.
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Valmari[66] categorizes advanced reduction algorithms into four basic strategies:

e Model pre-processing
e Packed state space
[ ]

Process-algebraic compositionality
e Commutatvity methods

These are described in more detail in the following sectons.

2.5.1.1 Moded pre-processing
Pre-processing techniques work during the construction of the state space from the model

written in some modelling notation. They create a smaller state space by removing irrelevant

information contained in the model.

One pre-processing technique is to climinate remnant variable values. For example, an
advanced implementaton of this is included in SPIN[38]. Remnant variable values are values
of variables that lead to the same possible future behaviours. For example, when the value of a
variable is not used untl it is eventually overwritten, it cannot affect the future behaviour of
the system. Thus, instead of exploring states with a different value of the unused variable, this
technique removes all the different remnant variable values by setting the unused variable to an

“uninitgalized” value.

Another pre-processing technique is coarsening of atomicity, where a sequence of transidons
of a component’s model is merged into a single transition (e.g. in SPIN(38])). This technique
works correctly when the merged sequence does not contain multiple critical references, that
is, interacts with other components muldple times (through shared variables, or other

communication mechanisms).

These pre-processing techniques are subsumed by more powerful techniques using

compositionality or commutativity, but pre-processing is useful, as it is easy to implement.

Pre-processing techniques for data-independent systems can reduce the number of data values

used for a variable. Many systems such as protocols or cache memory are independent of the
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actual data being transferred or cached. Theories exist to find the minimum number of data

values that are needed for verificaton[59].

2.5.1.2 Packed state space

Packed state space methods efficiently represent the states and transitions, using an implicit

representation.

The supertrace method uses lossy compression on the bit vector representauon of the states,
using a hashing technique. Using lossy compression implies a possibility of incorrect answers,
and there is only a constant reduction in the memory requirements. Data structures for lossless
compression of states include GE-sets[30] and deterministic finite automata[57]. However,

with lossless compression, there is always a chance that the size of states is actually increased.

The binary decision diagram (BDD) represents a set of bit-vectors efficiently by sharing sub-
BDDs. BDDs can successfully compress systems with huge numbers of states. However, they
rely on a good ordering of the bit-variables representing the bit vector, where the values of
variables that are far apart in the order should not be dependent on each other. Hu[39] showed
that they are unsuitable for high-level designs of systems, since different parts of the system
depend on many other parts in a network. As a result, there are no good variable orders, and
the BDD size explodes exponentially. Hu suggests the inter-dependency can be removed by
replacing the dependent variables with explicit functions of the independent variables, but the

task is very difficult and impractcal for complex dependencies.

Symmetry reduction depends on bijections that preserve the structure of the state space (and
the property being checked). That is, the bijection mappings preserve transidons between
mapped states. By knowing the set of bijections, only one representative of an equivalence
class of states needs to be explored and stored. The set of bijections can be computed
dynamically, resulting in long computation times, or manually encoded into the model source
code (such as in the Murphi[42] language), which may miss possible reducdons. The amount
of reduction depends greatly on the available symmetry of the system. For example, a system
with a ring topology can have a constant reduction, while a fully connected topology can have

an exponental reduction.
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Other efficient representations have been proposed for systems with hierarchical structure{2]
or reversible rules[40]. In these cases, some states can be derived easily from others, and hence

only ‘representative’ states need to be stored.

2.3.1.7 Process-algebraic compositronality

Process-algebraic models of state spaces define the concepts of behaviourally equivalent
models and composition of components. Compositional methods construct the global state
space hierarchically, by replacing the state space of each component with a smaller, equivalent
state space. The reduced components are composed and each composition, in turn, is replaced
with a smaller, equivalent state space. At the end, the methods produce a reduced global state
space equivalent to the full composition. The reduced model is equivalent in the sense that it
can be used to check a prcdcﬁncd set of properues, and give the same answers as the original

state space.

These methods reduce effort if the composition of subsets of components is smaller than
composition of the whole system. However, that is not always the case as *‘a subsystem that is
isolated from its proper context may exhibit lots of ‘spurious’ behaviour; that it does not have
when it is a part of the systemn as a whole™[66]. To alleviate this problem, interface processes
are introduced during the compositon of subsystems, to restrict the number of spurious

behaviours[63][15].

However, constructing an appropriate interface process for each composition is very difficult.
The best interface process is simply the rest of the system, but that causes state explosion in
the interface process. Proposed techniques allow user-defined interface processes. To prevent
the possibility of user-defined processes restricting too many behaviours of the composition,
and thus vielding incorrect answers in the model-checking, the correctness of the interface
processes are also checked while checking the model property. If the interface processes are

found to be incorrect, the user must try another one.

2.5.1.4 Commmtatitity
A major source of state explosion is the concurrent execution of a set of actions by concurrent
components. The final effect of the set of actions is independent of the order in which the

actions are taken, but different orderings result in different intermediate states. Commutatvity-
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based algorithms[67]){27] (also called partial-order algorithms) select acdons that need not be
explored from a state, using information about which actions that are guaranteed to be enabled
later. The actdons must not affect the property being checked. The algorithms depend on
deriving guarantees from the modelling notation about enabled actons in future states. The
better the information on guaranteed actions, the more reduction is possible. Nevertheless, itis
nou possible to obtain opumal reductdons, as there is not enough informadon at a state to
determine which actions should he explared immediarely, and which should be deferred to

later states. Overall, these algorithms eliminate an important source of redundancy.

2.5.2 Structural rs. semanitc algorithms

Reduction algorithms can also be distinguished based on how much information they use
about the system and the property being checked. For example, on-the-fly methods search the
states of a svstemn in the same order regardless of the meaning of the states of the system or
the property that is been checked. The only information it cares about is the current state and
possible successor states. On the other hand, commutativity-based reduction requires
information about actions that are guaranteed to be enabled in the future. Compositionality-
based reduction requires information about the hierarchical structure of the system, and

perhaps abstractions of subsystems (as interface processes).

Taken to the extreme, the best technique is to manually abstract a model specifically for the
property to be checked. Holzmann([37] showed it is possible to create very small models to
check useful properties—less than 100 states. Obviously, manual abstraction is very difficulr,
but the important lesson is that the more specific the reduction algorithm, the more reduction
is possible. For test generation from component interaction models, algorithms should take
advantage of characteristics of component interacion models, such as models of many
components with loose coupling, as well as characteristics of test generation, such as the abilicy

to incrementally generate test cases.

2.6 Approach of thesis

Effective testing of component interactions requires formal models of interactions and formal
test criteria. The most promising techniques use formal state space models. Formal state space
models should not be created by hand, but should be automatically generated from object-

oriented design models created in a friendly notadon. In addition, the large size of object-
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oriented design models requires new algorithms specifically designed for generating test cases

from them.



Chapter 3

FORMAL OBJECT-ORIENTED MODELLING

3.1Chapter overview

In order to tacilitate interacuon tesung, a formai modei of the components’ interacuons must
be created. The model can be obtained cost-effectively by reusing design models created for
object-oriented analysis and design. Popular modelling techniques, like UML[60], are informal,
5o are not suitable for automatic test selection and test generation. Alternatively, most of the
formal languages suffer from the problems of complex mathematical notaton, lack of support

for data types, and/or generation of huge state spaces.

The ObjectState modelling language was developed to show the feasibility of creatng tormal
design models for interactions test generation. ObjectState balances the needs of a friendly
notation for object-oricnted design, formal state-space semandcs for test selection, and an

efficient resulting state space for test generaton.

This chapter presents the syntax and formal semantics of ObjectState. The formal semantics is
given as a transladon of language feature to labelled transidon systems (LTS). To support test
generation, ObjectState notation and semantics are extended to caprure formal test
requircments, and event-flow coverage criteria is formally defined for ObjectState models.

Finally, the language is compared to related work in modelling languages.

3.2 Formal models of interactions

The semantics of ObjectState models will be defined using labelled transition systems (LTSs).
The LTS is a verv popular mathematical model for correctness of concurrent systems. [tisa
simple, intuidve formalism that models distributed state, interfaces berween components,
sequences of interactons, and state-based interacdons. It has mature theoretcal foundations,

including many research tools for analysis. Hence, it is very suitable for interaction testing.

19
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3.2.1 Definition of labelled transition systems
The following definition of LTS follows Fernandez and Mounier(22]. An LTS is defined as a

wple (G, A, T, 4) where

e (isasetof states

A is a set of labels (representing actions or events)

e 7is a set of transiuons, ¢, —«—> 45, Where ¢, ¢4:€ ¢/ and «€ .-f

#€ Qs the ininal state

A special label, 7, is used to represent actions that are “hidden”. It is used to simplify the

behaviour of an LTS model. The weak transiton relation, written as ¢, === ¢, where there

exists a sequence of transitions

g —T= =T .. — T2 §,—d G — T s where 21, 220

Using the weak transition relation, the observable behaviour of the system is unatfected by any

number of hidden acuons. .

A system S in which only labels in a set L are visible, and the rest are hidden, is denoted

S<UL>.

7.2.2 Bebarionr and equivalence of models
In an LTS, we are interested only in the sequences of actions that the model can have, and the

actions that are enabled or disabled at each state. An action «is enabled ata state gif there is a

transition g==%=> ¢. for some ¢..

In particular, the identities of the states are not important. In fact, two states have the same
behaviour if they have the same set of enabled events, and the destnation states of all

transitions are considered equivalent; thus, they can be considered equivalent.

Formally, we define a family of relatdons between states:

. R=XO
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o R..={(py) | Ve
Vol == p = Iplp == pn(pypie R) A
VP:,@: === ﬂ'."=> ap;(pl ——_":A"‘@llfge R}

The (observation) equivalence relation is detined as ~ = [ R, . Thus. p,~p if (9, 2)€ R, for all
k=0

£.

Two LTS models are defined to be equivalent if their inital states are equivalent: Le. the

models always have the same behaviour, starting from the initial state.

For example, in the top LTS of Figure 3-1, the two states shaded grey are equivalent: both can
Brey q
perform action ‘c’ and nothing afterwards. Thus, the LTS is equivalent to the bottom one in

Figure 3-1.

Figure 3-1 Observationally equivalent LTS

Note the two states shaded black are not equivalent, as one can perform ‘@’ and ‘b’, while the

other can only perform ‘b’. Thus, one state can perform all the behaviour of the other.

Many notions of equivalence have been defined for LTS, such as safety equivalence, trace
equivalence, branching bisimuladon equivalence, and so on. Because the purpose of this thesis
is simply to use equivalence for deriving algorithms for model reducton, observadon
equivalence is sufficient: [t preserves more than enough properties of the model for testng, so
that it does not limit the kind of analysis that may be done after reduction. For example, using
observation equivalence to reduce the model does not imply the implementation is required to
be observation equivalent to the model. (In the language of protocol testing, the

“implementation reladon” does not have to be observation equivalence.) It is more suitable
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than the other equivalences because it is simpler to understand, and simpler for deriving

algorithms.

2.2.7 Example: list structure
To illustrate how the definitdon of LTS can be used to model software, consider the example

of a simple list dara structure, with elements restricted to {1, 2, 3}. The list has the following

operations:

1. new() --- make the list into a new (emprty) list

2. append(x) --- append v to the current list

3. a=get(j --- get the £th element of the list and return it (x) or rerurn ERROR if there are

less than /items

This example list omits the remove operadon, since the example is already complicated

without it.
The initial state is the empty list (¢). The following transitions are possible from 4

e for get operatons: as there are no elements in the empty list, all will return ERROR; the

state of the dam structure does not change (remains at ¢,

g0 —ERROR=get 1 > ¢,
¢y —FERROR=get 2= g,
g0 —ERROR=get 3= ¢,

¢ the new also does not change the state since g, is already the empty list

T —nen—> G

¢ appending an element moves the data structure to a new state, depending on the element

inserted

o —append 1= g,

o —append 2= g,
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o —append 3= ¢,
From ¢, we have transidons such as
g —1=ger 12 4,
g —ERROR=get 2> ¢,
¢y —nen— g,
g —append 1 > ¢,

The graph in Figure 3-2 shows the possible states of a list with 2 clements or less:

new
ERROR=get 1 # _
ERROR=get2
ERROR=get 3

Figure 3-2 LTS of a list data structure with 2 elements or less. Grey
transitions are kabelled with ‘new’.

This simple example is already very complicated. A remove operation would further
complicate the diagram, by adding transitions to a previous level. Obviously, it is not
convenient to create a LTS model directly. Instead, the LTS is usually obtained using a

modelling notation.

So far, the example does not specify a maximum length of the list. If we assume a maximum
length, say 3, then we can define the model of the list using an array (say of size 3) to store the

elements of the list, and a variable to store the length of the list. We can label the states with
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the values of the variables. Thus, the state with 0 elements, and 1 in each element of the array
is labelled as g,,,;. Operatons that change the value of the variables make a transidon to the

state with the new label. An example of a transinon 1s

Yot _f’/)/"’”’/?-") fin

Note however, that there are more states in this model than the previous one. For example,
there are many possible representations ot the empty list: g1y OF fzs OF s, €1C However, all
the states are (observation) equivalent to each other. There are 84 states in the second
representation, compared to 40 in the first, even though the two models have the same

behaviour. The size of a system greatly affects the ability to analyze the system.

2.24 Moae! reduction
Models can be reduced by merging all equivalent states. Given a classification of the states of

S, where [/ denotes the class of g, the grosentof S, is the LTS [} = (A, -+ [ 1], [4]) where

. (4= i) forall €0
o [(N={lpl—e x| —w> € 7}

If all the states in a class are equivalent, |p] = 2] implies p,~2, then the quodent LTS is

equivalent to the original LTS, 5~ [f], and usually has fewer states.

For the example of the list, we can put all states representng the empty list (g, OF gy OF
sy, £LC) into one class, all states representinga list of the single element, 1, into one class, and

so on. The quotient, with respect to this classification, is the original representation of the list.

3.2.5 Composition of models

LTSs have the ability to model concurrent processes and their interacton using composition.

The composition of two LTSs, S'= (G, A, T, 410) and 7= (Qs, s, Ty g), is the LTS S| |
7, defined as (&, A, 7, 4,) where

o A= AU,

o ,Q = »\O_IXQD
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e Tis the set of transitions of the form (4, #,) —# (42 432) defined by one of the

following rules

o if s .-\, and g, —a—> g3, then (g1, g21) —4 (412 7) for any g,

o if s -1, and g, —w—> g, then (g1y, ) —4=> (711, 420 forany g,

e and if «€ .-f"\-Land ¢, —w—> gy and gy —«> 7o, then (g, gn) —« (912, 720
e the inital state 1s 4, = (0, ¢)

In the composition S | | 7, cach component S'and 7'can perform any actions not in A,

independently of the other. Otherwise, both .§"and 7 must perform the acton in .-f,Mu-1,

simultaneously. Thus, composition models synchronous communications.

Figure 3-3 Composinon of two LTSs

From the definition, the composition operation is commutadve, S||7 = 7]|J, and

... || J. Note that the rules of composition imply that all components in a mult-way

associative, (J] | 7J] | L= 51| (7| {). Hence, we write multi-way composition as J; | | J;

composition that share an acton label will synchronize on that acton (all components execute

it at the same tme, or not at all).

3.3 Formal interaction models with ObjectState
The ObjectState modelling language combines the architecture description features of UML
for Real-Time{52]. a hierarchical state-machine model for high-level behaviour of components,

with a Pascal-like language for detail-level modelling of component data.
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In the following, each feature of ObijectState is explained, its syntax is given in a version of
BNF, and its mapping to LTS is described informally. An example is shown with the

corresponding UML for Real-Time description.

In the syntax description, the notation ‘<<item>>’ indicates a non-terminal symbol, *|” indicates
a choice, while all other symbols are terminal symbols. White-space (including tabs or end-of-

line) is only important as separators between symbols.

.21 Component Confignration
The architectural description part of ObjectState is based on UML for Real-Time, the real-ume
extension of UML. UMI. lacks the nodon of connections between components, but UML for

Real-Time employs a more complete architectural descripdon notaton.

The collaboraton diagram of UML for Real-Time describes the possible pattern of
communications between a set of capsules (i.e. components) that execute concurrenty.

Capsules have no knowledge of the existence of other capsules outside themselves. Capsules

<<system>> ::= CCNFIG {
<<capsule instantiations>>
<<cport connections>>
)i
<ccapsule instantiation>> ::= CCMP <<capsule-name>> => <<capsule-class-name>>;
<ccapsule class>> ::= DEFINE <<capsule-class-name>> => PROCTYPE {
<cport declarations>>
<<proctype behaviours>>
b
<cport declaration>> ::= PORT <cport-array-names>> =>
<<protocol-role-names>;
<<protocol roles>> ::= DEFINE <cprotocol-role-name>> => PORTTYPE {

<<message definitions>>

}i

<cmessage definition»> ::= <<message-name>> => [ <<message params>> |
<cmessage param>> ::= <<param-name>> => <<param type>>
<cport connection>> ::= CONNECT({<<capsule-port-index-l-name>> =>

<<capsule-port-index-2-name>>};
| EXTERNAL(<<capsule-port-index-names>>);

Figure 3-4 Syntax of component configurations
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communicate with the rest of the system or with the environment through their ports only. In
particular, there are no global data variables. Connections berween ports determine which
capsules communicate with which capsules. Ports are associated with a protocol that defines
the messages that may be exchanged via the ports. Capsules can contain other capsules

hierarchically in UML/RT, but not in ObjectState.

An ObjectState system is defined by instantating capsules and connecting their ports (Figure
3-4). A capsule instantation declares a capsule of a given name to be of a given capsule class.
The ports and the behaviour of a capsule are defined in its capsule class. A port declaragon
declares a port of a given name and muluplicity to have a given protacol role. The protocol

role defines the messages that can be sent on a port.

The configuration diagram maps to its LTS semantics in a very simple way: A system maps to
a composiuon of LTS models, capsules to simple LTS models, a protocol role maps to a set of
event labels, and connections map to renaming of event labels. The renaming functon
replaces the port identifier in the labels with the connection identifier, so that the same
messages sent along the same connection are given the same labels, but the same messages
sent along different connections are given different labels. Ports of compatible protocol roles
are connected using CONNECT. If a port is not connected to another capsule, butitis visible to
the environment of the system, then it is declared exTervAL Otherwise, a port is

“disconnected” and no messages will be exchanged at that port.

2311 Example

This example shows how the following system is written in ObjectState, and represented as an
LTS. The UML for Real-Time collaboration diagram in Figure Figure 3-5 specifies User is a
capsule of class Userclass and Counter is capsule of class counterclass. The muldplicity of
User is 2, hence there are two capsules, called User (1] and User(2]. User (1] has a port
User(1].p, and User(2] has User(2].p of the same protocol role (porttype),
counterProtccol. The Counter has two ports, Counter.p(1] and Counter.p(2}, whose

protocol role is also counterProtocol.
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2
User:userClass

p:counterProtocol~

Counter:
counterClass

p{2}:p:counterProtocol

Figure 3-5 Configuration diagram of example system

There is ambiguity in the connection line drawn: It can represent two pairs of connections,

either

User(i].p connected to Counter.pii] and User (2] .p connected to Counter.p(2]
or

User (2] .p connected to Counter.p (1] and User (1] .p connected to Counter.p(2].
The following ObijectState description assumes the first pair of connections is desired:

DEFINE ‘userClass’ =»> PROCIYPE |

PORT 'p’ =»> ‘counterProtocol’;

}i
DEFINE ‘counterClass’ => PROCTYPE |
PORT ‘'p(l..2]* => ‘counterProtocol’;

}i
CONFIG {
COMP ‘User(l]’ => ‘userClass’;
COMP ‘User{2]’ => ‘userClass’;
COMP ‘Counter’ =»> ‘counterClass’;
CONNECT ('User({1].p’ => ‘Counter.pll]l’}:
CONNECT ('User (2} .p’ => ‘Counter.p(2}’');
}:

The configuration diagram did not show the messages in counterProtacol. Assume the

protocol is defined as follows:

counterProtocol = PORTTYPE {
‘on’ => [],
‘off! => [],

‘iner’ => [‘lock’ => ‘boolean’l},
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‘decr’ => [],
‘val’ => [‘value’ => ‘integer'},
};

The protocol defines message names on, off, incr, decr, and val. The incr message has a

parameter lock, of type boolean, and the val message has a parameter value, of tvpe integer.

The formal semantics of the model consists of three LTS models, User (1], User(2], and
countar. Transitions in the LTS madels are ariginally labelled as pore . message. For example.
in user(2], the label p.incr(false) means send or receive incr(false) via the port

User (2] .p.

To allow communication through connections, messages are renamed on both components to
the same name. For example, suppose the idenufier for connection benween User (21 .p and
Counter.p(2] is Conn2. Then, for the components to communicate through the signal
incr(false), renamep.incr{false) in User{2] to the label conn2 . incr(false) and rename

p(2] .incr(false) in Counter also to Conn2.incr(false).

3.3.2 Component Beharsonr

Component behaviours are modelled at a high level by hierarchical finite state machines

(FSM).

States have names, transitons, and substates. States may define exit actions, entry actions, and

signal handlers. All transitions of superstates automatdcally become transidons of all substates.

Transitons and actons can consist of several steps. The syntax and semantics of steps are
similar to Promela[36}, which in turn is based on CCS and CSP. Steps are composed of
alternative sequences of atomic actions of the component, called basic steps. Note that this

implies transitions of the FSM model are not atomic. Only basic steps are atomic.

A transition waits for conditions that allow the execution of the first basic steps (called
triggering conditions) in each alternative sequence. Once a transition has begun executing, it
will not be interrupted even if the triggering condition for other transitions become true; this is

the so-called run-to-completion semantics[52]. By default, a transiton returns to the same
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<<proctype behaviour>> ::= <<data declarations>>
<cstates>>
<<state>> ::= DEFINE 'state-name' => STATE {

<<substates>>;
<<transitions>>

}i

<<substate>> ::= SUBSTATE <<state-names>>;
<<transitions>» ::= WAIT {<<steps>> };

I INIT lccstenss> };

| ONEXIT {<<steps>> };

| WHEN <<signal-name>> => HANDLE {<<steps>>};

| DEFINE <<signal-name>> => SEQUENCE {<<steps>>};
<<step>> ::= <<basic-step>>
ENTER <<state-name>>;
CALL <<signal-name>>;
IF [<<steps>>} OR {<<steps>>} ... OR {<<steps>>}:
DO {<<steps>>} OR {<<steps>>} ... OR {<esteps»>};
GOTO <clabel-name>>;

LABEL <<label-names>;

<<basic-step>>

OF <<condition>>, <<send|receives>>, <<action»>;
| SELECT [<<var-name>> => <<var-type»>j
<ccondition»>, <c<send|receives>, <<actions>;

Figure 3-6 Syntax for component behaviour

state, unless a new destinadon state is specified with ENTER. If the transidon enters a new state,

the exit and entry actions are executed in the order of states exited and entered.

Transitions in substates can raise signals to be handled by superstates, similar to exception
handling in many programming languages. The cALL operation causes the handler defined in a
superstate for ‘signal-name’ to be executed. If no superstate defines a handler for this signal, it
is simply ignored. If several superstates define a handler for the same signal, they are executed
in order from the innermost superstate to the outermost. Control is returned to step after the

call operation, unless the signal handler enters a new state.

Subroutines similar to those in procedural programming languages are also supported. They

can be defined using SEQUENCE, and can be called in any state of the component using CALL.

Each basic step can have any combination of the following parts:
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e 2 conditon on local variables, and message parameters if receiving a message
e 1 message send or receive
e operadons on local variables

A useful extension of a basic step is the non-deterministic basic step, which non-

deterministically selects a value from a range of possible values.

Transitions can consist of more complex steps that do different processing based on ditterent
interactons and conditions. In an ‘IF-0R’ step, a sequence of steps is chosen to execute
depending on the triggering condition of the inidal step of cach sequence. If conditons for
several sequences are true, one sequence is chosen non-determinisdcally. [f none are true, the
process waits undl one is true. It is similar to the *if :: £i’statement in Promela. The ‘00-0R’
step loops contnually, choosing an alternadve and executing it. The loop can be exited using
GoTo or ENTER. The destination of the GoTo is the location of the LABEL statement for the same

‘label-name’.

The translation to LTS is accomplished by expanding the FSM to a graph of basic steps, where

each basic step is linked to other basic steps by equating their sources and destnatons.

The steps of a single transition are linked as follows:

e The source of the first step in a transiton is the transition’s source state.
e The destination of the ENTER step is the destinadon state.

¢ By default, a transition loops back to its source state, so the destination of the last step of

the transition is the source state.
e The source of each succeeding step is the destination of the previous step.
e The destination of the GoTo step is the source of the step after the LABEL statement.

e Every alternative step in an IF or Do construct has the same source. The destnaton of

the alternative steps of a Do construct loop back to the source.

The hierarchy of states is handled by expanding the model:
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e Transitions of superstates are added to the set of transitions of substates. That is, for

each transition of the superstate, each substate gets a copy of the transitdon, where the

source of the first step is set to the substate.

e Signal handler steps of superstates are pasted into the location of the CALL steps. This
means the source of the first step in the signal handler is the source of the cALL step, and

the destnartion of the last step is the destination of the caLL step.

e Entry and exit steps of corresponding states are pasted into the locaton of the ENTER
steps.

The above rules lead to a confusing feature of ObjectState: If a substate and superstate both

define a transitions that are enabled under the same conditons, the transition to execute is

chosen non-deterministically. Users may rather prefer to have the substate’s transition override

the superstate’s transition. Instead, this design choice stays close to the language’s formal roots

in CSP and CCS[54].

If the model does not contain any variables, then the basic steps immediately map to its LTS

semantics:

e Each source and destination of a step is a state in the LTS, and each step is an LTS

transition between its source and destination LTS states.
e Steps without a send or receive are internal steps, labelled with .

» Steps with message send or receive are labelled with pertname .messagename (params)

Note that the translation into LTS semantics does not distinguish berween sends and receives.
Thus, it is possible to abuse the notation and cause components to communicate via a pair of
sends, or a pair of receives. For simplicity of modelling, the compiler should ensure that only
one side of a connection is allowed to send a given message, while the other side is only
allowed to receive that message. Also, by not distinguishing sends and receives, the semantcs

allows further extensions of the language that use simultaneous, muld-way synchronizatons.

With data variables, the mapping must take into account the values of the data varables, as

explained in the next secton.
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<<data declaration>> ::= VAR <cvariable-name>> => <<Murphi-type>>;

| CONST <<symbol-name>> => <<Murphi-values>;

<<condition>> ::= ‘{<<Murphi-expression>>]’
cesend>> ::= ‘<<port-names>!<c<message-name>>(<<params>>}’
<creceives> ::= ‘<<port-names>?<c message-name>>{<<params>>)’
<<param>> ::= <<Murphi-expression>>

| [<<Murphi-expression>>]

<cacticn>> ::= ‘<<Murphi-statementss»>’

Figure 3-7 Syntax for transinon annotanons

2.2 3 Transttion annotalions

ObijectState provides a very simple programming notaton for actions on data, using the
Murphi modelling language(42]. Murphi was chosen because it manipulates data procedurally,
using syntax and capabilities similar to Pascal: procedures, records, arrays, iteration, recursion,
cte. Also, it supports automatic verification, by restnicung data types to be finite, and
disallowing dvnamic structures (e.g. pointers). Finally, the Murphi compiler provides a

convenient way to translate basic steps into LTS.

Murphi has features to support efficient verification, such as scalarsets, or mulusets, but
ObjectState does not currently support these features. Murphi syntax will not be discussed
further, aside from noting that it is similar to Pascal. Interested readers may refer to the

Murphi manual[42].

A basic step without send or receive is executable if the Murphi expression of the condition (if
any) evaluates to true using the current value of the local variables. If the basic step is sending a
message, the step is executable if, in additon, the component receiving the message has a
receive step that is executable. If the basic step is receiving a message, the triggering condition
is satisfied if, in addition, the component sending the message has an executable send step, and

the message parameters satisfy the constraints in the receive.

The constraints on receive parameters are as follows:

e <<Murphi-expression>> signifies any value is acceptable, and the value is assigned to the

value of the expression (the expression must evaluate to an ‘l-value))
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® [<<Murphi-expression»>>] signifies the parameter must evaluate to the same value as the

expression inside the brackets

e _signifies any value is acceptable. The value is not stored.

Translaton of data to LTS proceeds as in the example in Section 3.2.3. The data in the capsule

is expanded into the states of the LTS. Values of variables are used 10 label the LTS states.

Given a state trom the £3M transiaton, it is expanded to a set of states, indexed Ly the valucs
of the variables. For example, it there are three varables. and the values of the ‘vari’is 3,
‘var2’is 3, ‘var3’is |, then a previous state p will be mapped to a set of states, including the

ST Pisy-

A transition between states pand ¢ is expanded to a set of transitions, from the values of the
variables before the transition’s action to the value of the variables after the transiton’s acton.
For example, if the transition’s acton is ‘varl := 27, then the LTS transinon will be
Pr—T— ¢, where the values of the variables in the first state are 3, 3, and 1 respecuvely. A
SELECT step is translated to a set of transitions, one tor cach value of the variables in the

SELECT.

A send evaluates the expression in each parameter and puts the value in the label. For example,
‘oimsg(var1l+1)’ creates the label p.msg(3). A receive creates a transition for each possible
parameter value that satisfies the parameter constraints. The labels of the transitions are simply
the parameter values. For example, ‘p?msg(var1)’ creates the transitions with labels p.msg (1),
p.msqg(2), p.msg(3), assuming that var1 has domain in 1..3. In the destinadon state, the
variable will be assigned the value of the parameter (e.g. var1 willequal 1, 2, or 3 depending on

the message sent).

Note that each step exccution is still translated into an atomic transition of the LTS. More
complicated data manipulations using procedure and loops are treated the same as a simple

assignment: as an atomic step.

3371 Exampte
The example is the behavioural model of a counter from 1 to 3. The counter responds to the

messages as follows:
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e On — starts the counter with an inidal value of 1

o Off - deactivates the counter (disallow increment and decrement)

e Incr(lock) — increments the counter if possible (if count < 3), and respond with the new

value of counter; if not possible, the user must wait. In addidon, if the parameter ‘lock’ 1s

‘true’, locks the counter, so that no increment is allowed unal the counter 1s decremented

e Decr - decrements the counter, unlocking it if it had been previously locked

OFF . ON \

inc(false) [count<3]/
count++, wal(count)

OPEN decr [count>1}/
count-, val(count)

decr/ \mcr((me) {count<3]/
count-, val{count) count++, \al(count}
LOCKED J

Figure 3-8 State chart diagram of counter component

The UML state machine in Figure 3-8 has annotations in a C++-like notaton. The state

machine is represented in ObjectState as

CONST ‘MAXCOUNT' => ‘3’;
VAR ‘counter’ => 'l..MAXCOUNT';

DEFINE ‘OFF’ => STATE {
WAIT { OP ‘p?on()’; ENTER 'ON’; };

}i

DEFINE 'ON’ => STATE {
SUBSTATE 'OPEN’, ‘'LOCKED';
INIT { OP ‘counter:=1’; ENTER 'OPEN'; };
WAIT { OP ‘p?off()’; ENTER 'OFF’; };

}i

DEFINE ‘OPEN’ => STATE {

WAIT [ OP *[counter< MAXCOUNT]', ‘p?inc{{true]}’, ‘counter:=counter+l’;



CHAPTER J3: FORMAL OBJECT-ORIENTED MODELLING 36

OP ‘'p!val(counter)’; ENTER ‘'LOCKED’;

)i

WAIT { OP ' [counter< MAXCQUNT]', ‘'p?inc((false])’, ‘counter:=counter+l’;
OP ‘plval{counter)’;

}s

WAIT { OP ‘[counter>1]’, 'p?dec()’, ‘counter:=counter+l’; Vi

}i

DEFINE ‘locked’ => STATE {
WAIT { OP 'p?dec()’, ‘counter:=counters+l’; ENTER ‘OPEN; Vs

}i

Without taking into account the data, the corresponding LTS is shown in Figure 3-9.

p.incr(true)

p.value{counter)

Figure 3-9 Counter model expanded to LTS

With data, the expanded LTS in Figure 3-10 shows that the open state is expanded into three

states (for value of the counter = 1..3). The LOCKED state is expanded into two states (counter

cannot equal | if locked). The oFF state and T transitions have been left out to reduce clutter.
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CKED

Figute 3-10 The OPEN and LOCKED states of counter LTS
expanded with data, t transigons hidden.

3.4 Formal test requirements with ObjectState

Test requirements, also called test purposes(8], specify interesting sequences of component
interactions that should be tested, where the definiton of “interesting” is left to the tester. Test
requirements are usually written informally. However, formal test requirements allow
automatic test generation, can be reused when system is modified, and can be analyzed for

regression test selection.

The tester should only specify the important interactions in the sequence, not every detail of
inputs and outputs that needs to take place to cause the important interactions. For example,
for Jorgensen’s MM-paths testing technique, the key interactions comprising the MM-path can

be identified and specified formally, without specifving all the data values.

341 Extension to ObpectState

To write formal test requirements, ObjectState is extended. ObjectState can already specify
sequences of interactions a component can have with other components. The same method is
used to model a test requirement, only it is specifying interesting interactions. The only
additional concept needed is to know when a test requirement is satsfied: this is specified by
the AccepT step. Test requirements connect to port of components whose interactions are of
interest, using the TESTCONN declaration. Then, the interactions of the component must match
one of the alternatives specified in the test requirement or the test requirement will not be

satisfied.
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<<step>>

ACCEPT;
<cport connections>> ::= TESTCONN {<<test -capsule-port-index-1-rame>> =>
<<test-capsule-port-index-2-name>>};

Figure 3-11 Additonal syntax for test requirements

J.4.2 Forml semantics

The test requirement is composed with the rest of the system in exactly the same way as other
components. By LTS semantics, all components that have the same labels synchronize on
those labels. This implies that interactions not allowed by the test requirement are not enabled
in the composed system. The ACCEPT statement generates a special action labelled .-{CCEPT,

which signifies that the execution of the system has satsfied the test requirement.

3.5Formal coverage criteria with Eventflow

With a formal semantics for state-based models, it is simple to define a formal reladon
between coverage criteria and the model. This sccuon presents as an example, the
formalization of event-flow coverage[50]. Event-flow exercises pairs of ‘related interactions’ in
the component models. Related interactons are user-specified. For example, they can be the

set of sends and receives on a partcular port.

Event-flow definitions are motivated by data-flow testing. To determine which sequences of
interactions to test, event-flow looks at the place in the FSM model the interacton occurs.
Even if the same interaction occurs in two places in the model, separate tests would be
required for the interactions. The idea is to use the locaton of the interaction to partton
interactions into different ‘cases'—the interactions are assumed to occur in different parts of

the global state space.

3.3.1 Defenttrons

To enable testing based on locaton of interaction, the event-flow definitions are based on
steps of the model. A r2/used ssgpis a step in transidon of the design state-machine model with a
related interaction. A redused path is defined as a path through the design state machine that
starts with the first related step, ends with the second related step, and between them, there are

no other related steps.
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Several levels of coverage can be defined using related paths. The most thorough is all related
paths are considered test requirements. Due to the presence of loops, the number of test

requirements can be excessive. A less stringent requirement to test one related path for each

related step.

A promising level of coverage is to test one related path for each pair of related steps. This
level is more thorough than simply exercising every interaction in the design state-machine
models (assuming every interaction is part of a related set of interactions). The idea is that the
first related interaction creates an crroneous global conditon, and the second related
interaction could detect the error. Itis less thorough, but more practcal, than exercising every

transition in the global composition of state machines.

Note that the problem of infeasible paths from dataflow testing exists here also. Some related
paths cannot be exccuted once data variables are taken into account, or paths that are
executable in the individual state machines cannot be executed once composed with the rest of
the system. The advantage of automatically generating test cases to achieve coverage is that
infeasible paths can be discovered automatically (if no test can be found to satsfv the test
requirement). Infeasible requirements are not taken into account when evaluatng the test suite

coverage.

7.3.2 Formal semantzcs
The formal semantics of coverage depends on the level of coverage. The basic idea is to create

a test requirement for each path, or each pair of related steps, or each related step, as

appropriate.

The test requirements described in the previous section can only match the interactons to take
place, but not the step in the model where the interacdon is occurring. To allow test
requirements to specify which steps must be executed, the formal model of the ObjectState
components must be altered: an additional transidon is added after each step in the
component’s state machine, labelled with the idendifier for the step. Then the test requirement

can specify the exact set of steps that must be taken.



CHAPTER 3: FORMAL OBJECT-ORIENTED MODELLING 40

For the requirement of one related path for each pair, only the steps with related interactions
are labelled with the step identifier. Suppose the pair of related steps have identifiers Spl and
JSrp2, and all steps with related interactions are idendfied as Sz, Then, the following test

requirement LTS is added to the system:
go—S1ep/—> g —Srep2— g —ACCEPT> g,

g S0ep" > 4

The LTS specifies that the second related step must directly follow the first related step
without any other related steps in between, which is the definidon of a related path berween

the two steps. Any number of unrelated steps may berween the two steps.

3.6 Related work
This scction compares ObijectState with previous modelling languages, based on modelling

features, formal semantics, test requirement notaton, and definition of interaction coverage.

J.6.1 Modelling fecitures

In comparison with informal modelling notation, such as UML, ObjectState lacks many useful
features for design modelling. However, ObjectState does not need all the features of UML
since its purpose is to demonstrate the feasibility of using a formal design language to test
interactions. Defining a formal action semantics for UML is a very complicated task[55],
especially the interaction berween behavioural diagrams with the class diagram (such as
associations berween classes). Some features, such as hierarchical components, are convenient

for organizing models, but introduce no new semantic elements.

Other features are left out because they result in large models, notably asynchronous
communications, dynamic component creaton and dynamically allocated data structures,
passing and interacting with references to components. If needed, all these fearures can be
simulated by explicit buffer components for asynchronous interaction, and arrays and indices

for dynamic processes or passing references.

Note that synchronous models are sufficient for systems that are implemented using the

following communication mechanisms:
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e sequential, event-driven object-oriented programs interacting through class methods

e concurrent programs interacting through Java synchronized blocks ot methods, Ada
rendezvous, Occam message passing, remote procedure call, send-receive-reply, or other

svnchronous communicaton methods

e desynchronizadon—a provably correct asynchronous implementation of synchronous
design(6).
As noted in the example in Section 3.3.1.1, ObjectState resolves an ambiguity in the graphical
configuration diagram of UML for Real-Time regarding connecuons berween muluplicity of
ports and capsules. One way to resolve the ambiguity is to allow every port on one end of a
multiple connection to connect to every port on the other end. This means cach message send
becomes a broadcast. However, if one port can connect to many ports, there is no need for
multiplicities on ports. Instead, ObjectState requires the modeller to explicitly specify a

connection for each pair ot ports.

In addidon, ObjectState state machines are simpler than UML state charts. For example, there
is no concurrency within a component, nor is history kept when states are exited. Transitions
of the FSM model are not atomic, and only basic steps are atomic. This avoids problems with

the semantics of ‘micro-steps’ in state charts.

Another difference is the handling of exit actions. In UML for Real-Time, a state is exited as
soon as an exiting transiton 1s enabled. Thus, exit actions of the state are taken before the
actions of the transition. In ObjectState, states are exited only when the ENTER step is taken,
leading to a simple understanding of exactly when exit and entry actions take place. This
semantics also obviates the need for special handling of ‘chaining states’; they are treated the

same way as regul:xr states.

Most object-oriented modelling languages employ a graphical notation for architecture and
behaviour models. Currendy, ObjectState is textual, similar to StateText[32]. However, it

would be simple to adapt a graphical representation and editor from another language.

Compared to other formal modelling languages, ObjectState is unique in its use of imperaave

programming notation for data manipulation. ObjectState allows the free use of dama
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structures, which gready simplifies modelling. However, it also causes large models. Rather
than burden the modeller with creatng an etficient model of the darta, it relies on automatdc

algorithms to reduce the model.

The vPromela language adds UML modelling features to Promela, the C-like modelling lan-
guage for SPIN. Hence, it is similar to ObjectStare, except Promela has limited ability to model
data types. The models can only be analyzed using SPIN. In additon, a version ot ObjectState

using Promela is also available, but it is slightly more difficult to use than the Murphi version.

Some formal notations allow protocol roles to have behaviour models, for example, Wright,
Rapide, or, in theory, UML/RT. ObjectState does not. Behaviour in protocol roles allows
checking for observance of the rules of the protocol, similar to an advanced form of type-
checking. However, behaviours for protocols are not needed to model component interactions

or to generate tests, and they are not used by object-oriented design methods.

3.6.2 Formal semantris

ObjectState’s semantics is better for test generation compared to other modelling languages.
The LTS semantcs provide a simple definition of formal coverage critena and efficient
algorithms for test generation. Partially-ordered event sets semantcs in Rapide, and
programming languages like C++ in ROOM do not have cfficient algorithms for test

generaton (i.e. model-checking).

ObjectState’s semantics is weaker than others for verification, simulation, or code generation.
For example, using C++ for the detail level in ROOM enables more efficient code to be
generated. Also, use of arbitrary, though finite, data fypes makes verification more difficult.
Nevertheless with the appropriate tools, ObjectState can fully support verification, simulatdon,

or code generaton.

An advantage of ObjectState’s semantics is the translation of each step executon into an
atomic transiton of the LTS. Thus, complicated manipulations of local data using procedure
and loops are performed in an atomic step. The only situadons that require multple steps are
sends, receives, and non-deterministic executions. Compared with Promela, this removes the

need for the ‘atomic’ or ‘d_step’ statements, as well as complex statement-merging algorithms.
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3.6.3 Formral test requirement notation

There have been several notations proposed for writing formal test requirements, such as
message sequence charts (MSC)[28], an extended version of TTCN[51}, or Promela’s ‘never’
claims[20]. MSCs have the advantage of being a graphical notaton, but cannot easily specify
complicated alternative sequences. TTCN[4] is a standard language for writing test cases, sO

extended TTCN can be useful in situations where TTCN is already familiar. Similarly, ‘never’

claims are useful when Promela d

are useful when mela ic need as the modelling laneguage. and ObiectState’s test

requirement extensions are useful when ObjectState is also the modelling language.

The Assertion Definition Language (ADL)[61] is an example of a formal test requirement

language for testing correct data handling, rather than correct sequences of interactions.

3.6.4 Formal interaction corerqge iritersa

Event-flow is just one of many coverage criteria that may be defined for ObjectState models.
[t has the advantage of not requiring much information other than the models (only the
definition of related events, which can default to all the interactions at a porr). Also, it attemnpts
to strike a balance between covering each step in each component, and covering each step in

the global composition. However, the various approaches listed in Secuon 2.4.2 should be

evaluated.

3.7 Chapter conclusions

This chapter presents the object-oriented modelling language. ObijectState, and shows how it is
useful for modelling designs. The language combines architecture description features of UML
for Real-Time with a Pascal-like language for modelling component data. At the same tdme, it
has a formal semantdcs that allows it to be reused for interaction testing. Formal test
requirements can be defined and test cases can be generated efficiently. However, design
models of components tend to generate large state spaces. Effective reduction algorithms must

be devised to reduce these state spaces to enable test generation.



Chapter 4

SCALABLE ALGORITHMS FOR TEST GENERATION

4.1 Chapter overview

Formal software component models generate iarge, compiex state spaces, which ure much
more complex than models of hardware, protocols, or software specificatons. Existng
algorithms for state-space reduction are not sufficient for generating test cases from sotrware
design models. This chapter describes rwo new algorithms specifically developed to efficiently

generate test cases from component models: incremental test case generation and interaction

abstracdon.

4.2 Strategies for scalable algorithms
Test generation from design models of components must overcome different challenges than
verification of hardware, protocols, or software specificatons. Difficuldes include the

following:

e Sofrware designs have a greater number of complex components that interact with many

other components

e Components use data and complex data types, and there are complex dependencies be-

wween data of different components

e Testing models must be general and detailed: it is not possible to create a specialized

abstraction for checking each property

These characteristics prevent the use of abstraction mechanisms used in verification, such as

BDDs, normal compositional techniques, or manual abstraction.

On the other hand, test generation is simpler than verification of complicated properties. Test
generation is simply a check for reachability of a state. In addition, software models appear
more complex than they are. Much of the size of software models comes from the large num-
ber of different functionality and aspects that software must deal with. However, when testing

a particular aspect, most of the complexity in other aspects can be ignored.

44
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As discussed in Section 2.5.2, reduction algorithms that take advantage the characteristcs of
component models and test generation will perform better than algorithms that are more

general. There are three basic strategies:

e Slicing: remove the other parts of the model that do not affect the parts of interest.

e Abstraction and incremental refinement: remove details of model and analyze; gradually

add details to the computed resuil.

e Compositional analysis: do as much work locally as possible, as effort spent reducing
each part can pay off exponentially in the compositon; avoid composing loosely-coupled

components, as unconstrained composition presents the worst case of state explosion.

Two new algorithms based on these strategies are presented.

4.3 Incremental test case generation algorithm

The first algorithm takes advantage of the fact that test cases can be generated incrementally by
parts. The algorithm computes partial test cases, with a subset of inputs and ourputs, then
expands them to a full test case. By taking a subset of inputs and outputs at a time, the other
inputs and outputs can be hidden. Hence, the complexity of the model involved in generating
the behaviour of the other inputs and outputs can be abstracted away and the system greatly
reduced. The algorithm makes use of slicing and abstraction with incremental refinement by
abstracting away complexity associated with other inputs and outputs, and then adding more
inputs and outputs to the partial test case. The effort to extract each portion of the test case

can be exponentially less than the effort to extract the entire test case at once.

For the purposes of this thesis, a test case can be considered a sequence of inputs and outputs.
In practice, a test case should be more than a single sequence. For example, it needs to handle
non-deterministic output. Previous works have dealt with these issues[23](28], but this thesis is
concerned with reducing the complexity of analysis. Hence, all that is required to generate a
partial test case is 2 model-checker that finds a path to ACCEPT, and keep the sequence of
inputs and outputs along the path.

The algorithm proceeds as follows:
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1. Select one of the ports in the ObjectState model declared as ExTERNAL, and hide all the
messages at the rest of the EXTERNAL ports.

2. Minimize each LTS of the components, and extract a path to .-{CCEPT using a model-
checking algorithm (preferably an on-the-fly algorithm, to avoid constructng the
compositon).

3. Create 2 new LTS with the sequence of inputs and outputs along the extracted path. This

o TS 1
~ e -

e

a nornion of rhe final tesr case.

»

4. Compose the new LTS with the system to constrain the behaviour of the system with the
inputs and outputs selected so far. The new LTS restricts the number of possible behaviours
of the system, so it hopefully reduces the size of the system for model-checking.

5. Select the next external port and repeat the above untl no external ports remain.

6. The last search for a path will result in a path with all the external inputs and outputs of
the system, and thus is the final test case.

The algorithm is very simple, but can be very effective when the number of external ports is

large compared to the number of internal connectons.

4.4Interaction abstraction algorithm

The standard observational minimization algorithms preserve all the internal interactions
between components, eren if those inveractions cannol kead 1o dijferent external bebarsonr. Clearly, if
there are few external actions of interest, and there are many internal connections, then there s
great redundancy being left in the LTSs of components. The second algorithm improves the

abstraction of LTSs of components by abstracting interactions that do not lead to different

external actons.

The interaction abstraction algorithm{49] is a clever algorithm that removes redundant
information from the model, while preserving all information necessary to generate the test
case. It differentates berween ‘distinguished’ and ‘non-distinguished’ acdons. For test
generation, actions visible to the environment are distinguished, but an interaction between
components is not distinguished. For interactions that are not distinguished, it preserves only

the “effect’ of the interaction with the rest of the system.

The algorithm is clever in that even if two interactions do not move the other component into

the same state, but equivalent states, then the two interactions can still be merged. However, it
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is not possible to know which states in one component are equivalent until the equivalence of
states has been determined in the components it interacts with, and vice versa. Hence, the
algorithm must proceed iteratively: it optimistcally merges interactions inidally, but when it
processes the other components, it may find it made a mistake. Then it re-processes the

component. The algorithm ends when it finds no more mistakes. The algorithm is guaranteed

to terminate.

Since the algorithm reduces each process individually in an iterative computation, it avoids
problems with state explosion. It is very effective when only a subset of the system’s actons is

of interest—in particular, when combined with incremental test generaton.

Experiments show that it reduces state spaces dramatically in the cases when only a small
subset of the system’s actions is of interest. In particular, it is useful for generaung test cases

from design models using the incremental algorithm.

LA 1 Effect of interacirons

To get an intuition for how the algorithm works, consider the compositon of two systems,
J /| 7, in Figure 4-1. The goal is to find reduced versions, (J] and [7], so that (S || T)<a, «,,
a> ~ () [ [ID< ayy 3>

c2d4 345
(‘5: /’_Cl—\3 { i
‘ a bl b2~

Figure 4-1 Example system with two LTS,

The component on the left can be thought of as a simple model of a telephone, and the
component on the right can be thought of as a simple model of a phone directory. Thus, the
telephone can go offhook (41), then a ‘1’ is dialled (41), then the number is found to be

incomplete (¢1), in which case, a 2’ is dialled (42), and it is found to be a complete, and valid
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number (3). The telephone then connects to the other phone (2), and so on. On the other
hand, dialling a second ‘1’ would result in an invalid number (:2), and the telephone would give

a busy tone (#3).

Suppose we are interested only in the actions ofthook, connect, or busy tone («1, &2, 43). In
particular, we are not interested in which numbers are dialled (41, 42), nor the internal
interactions between the components (<1, 2). Intuigvely, the directory model can be reduced
to just three states: from the iniual state, it can move to a state with a valid phone number, ot

an invalid one. The telephone model can be reduced to move from state 2 directly to Sor4.

The idea is to achieve the reduction is to record the effect of the interactions of the
components, rather than the actual labels. As a first attempt, we can use this idea directly, and
relabel the directory model as in Figure 2. For example, the transition 1—41—2 is relabelled
by the effect of the interaction on the phone model. The phone model makes the transition

2—41 -3, so the directory model gets the transition 1—23—2.

3%

27w
J ¥
LA
2%y ng

Figure 4-2 LTS companent relabelled with effect of interacuons.

This relabelling allows the merging of states {+,7}, {2,3} and {5,6}. However, the reduced
graph is still unsatisfactory in that the merged state {2,3} is distinguished from state {1}. That
means the model tracks how many numbers must be dialled to get a complete number.
However, from the point of view of observatdonal equivalence, it does not matter how many

internal steps occur between externally visible steps.

The approach to obtain full reduction is to label the model with the transitive closure of the

effects of individual interactions. Part of the model labelled with the transigve closure is shown
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in the left part of Figure 3. The labelling shows the source and destinaton of the other

component after a sequence of internal interactions. An extra transition berween states land 4

has been added.

333555 3235 55%

333523 25 32352225

3332 21:% 23253335 33 21512 22253235
33322322 32322222

33 32 2% 32322,

Figure 4-3 Part of component relabelled with tansinve etfect of
Interacnons.

Unforrunately, the model sull cannot be further reduced, as state 1 has a transition —23— that

leads to state 2. while state 2 does not have a transiton —23— that leads to an equivalent
state. The problem is the phone model’s states 2 and 3 are distinct. But they do not need to be,
as they do nor result in different external behaviour (as internal interactons are not
observable). If states 2 and 3 of the phone model can be merged (labelled as *2), then the
portion of the directory model becomes the right side of Figure 3, where it can be seen that

states 2 and | can be merged.

The idea is to track whether interactions cause the other model to move to equivalent states,
rather than just the same states. Unfortunately, which states can be considered cquivalent in
the other model also depends on which states can be considered equivalentin this model, and

vice versa. Thus, the equivalence reduction needs to be computed iteratively.

At the end, the interaction labels in the two reduced models must be matched in order to allow

the models to compose.

£.4.2 Afgorstbm

The steps of the interaction abstraction algorithm for one component are as follows:

1. Calculate transitve effect of interactions:
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e Store tuple (p, ¢ 2 ¢J iff whenever the state (p,4) is reachable, there is a transition

pg=T=2@ ) in (S [[ <L>

2. For a given classification [7], of 7, relabel S with assumed equivalent effects, to obrain
S
e Remove all ransitions with labels notin LU{ T}
o Adda crancition 10—71{71”—)/7'(0\' each ruple (. a. ‘n', {/3

3. Classifv J; 1o obain [f];:

o [ali=[al it p~pin S

The iteration for two components is as tollows:
4. Repear steps 2 and 3 undl [ ], and {7], are the same as [S],, and [ 7]

e Update [7], using [J]., if changed, and vice versa

5. Finally, label interacdons in [J]=[J}, and [7]=]7].

¢ Remove transidons with labels notin L

e For each wple (p, ¢ 2, ¢) add tansitons [A—{ [Alpll71—=lp] in [1], and
[d—Aldlpllyi=lglin (7]
After step 5, [J] and {7] can be composed using the “tuple labels™.

A.4.7 Proof of correctness

We want to prove that, at the end of the algorithm, (S [/ n<L> ~ (9] || [MH<L> by
proving that for all (p4) reachable, (59 ~ ([4.[4l). And since the inidal state (a,4) is
reachable, then the two compositons are equivalent. First, we prove some properties of the

algorithm.
LEMMA 1: If [5]=[2]. then all of the tollowing are true:
a) for all transitions p==T=p, there exists a transition such that p=T=p where [2]=[n].

b) for all transitons p=T=>p,there exists a transition such that p=T=>p/where [5] =[p].



SCAILABLE ALGORITHMS FOR TEST GENERATION 51

&) for all tples (4, 4 A, 7, there exists a wple (s, 4, 25 49 where (2] =[a], and (7=l
d) for all ruples (s, . 2 73, there exists a wple (71, 4, 21 4 where [a].= (2], and (71711
PROOEF:
ol =l

= p,~pin S, by definition of [f],

= for all transitions p===>p, there exists a transiton p=uw=p) where p~pin S, by

corollary to the definiton of ~

= for all transitions A==T=>p, there exists a transidon p=T=p where [¢],,=

(4 e1» by definition of [7],,, by which follows cases (a) and (b).
For cases (c) and (d), a tuple (2, 4. 2/, 4

= p—Agla =4

= there exists a transidon 2=} ., =) where FAREIPA DY

Since tuples contain transitive effects (Step 1), there exists a wple (2, ¢, oo 79 where [7]¢

=lalern
[ |

LEMMA 2:

a) If there exists a transiton (p,=T=>(p"¢} in (J || 7)<L> then there exists a transition
(Ald=r=(lpLlg)) in (S] /[ {TD<L>

b) If there exists a transition p=w=5p’in J, where «& L, then there exists a transition

P==1in 4]
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PROOF:

Proof of (a):

(rd=t=(p'g) in (5 || T<L>

= exist tuples (4, . 7' 7 by Step |

= exist tansitions [—{AlAl1l71-12] in 1J], and (A—{d[dle1lg1 =1y in [7] by Seep 5

= (A==l 1lg)) in (9] /] [T)<L> by composidon.

Proof of (b): True since the quotient keeps transitions of clements of a class, and the algonthm

does not relabel transitions with label zin L.

LEMMA 3 (inverse of Lemma 2):

a) If there exists a transition ([A[A/=t=([21,[7]) in (J] |/ [N <I> and (p,g) is reachable,
then there exists a transition (9=T=>(2iq) in (J [| 7J<L> where AR

b) If there exists a transidon [A===>[p] in [J}, where «& L, then there exists a transition

p==p/in S where [p]=[p].

PROOF:

Proof of (a):

(A d=r=(lolleD

Since the only interactions are through the “interacton labels”,

= exist transitions [A={Al4[p]l7]=p] in [4] and [A=HAlAl1l71=g] in (7]
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Since [J].=[S4 and [7]=[7]1s

=  exist wansitons [g=T=>[a—Aldllz]=lel=r=] in [J], and

[A=r={a—AlAR g 1= lgd=t=lg1 in (7], and [2]=[4, [2]=(4, [2I=[]. [20=1g] by
Step 5

= exist transitions p—als1,—4  in 5, and z—a[p) >4 in T, where [p] =2~ s

lplede [ Ela [ ol =l

= exist tuples (2, 4, A 9, where (2] =4 [A]=[01
Since 2] =4, and [#1].=[4]. then by Lemma 1(c) and (d),
= exist wples (2, 41, 2 7). where (4] =4,

= exist tuples (9, 4 21, 9

= if (pg) is reachable, then there exists a transidon (L H=T=(prq) in (J || )]<L> where
[#1={g1 and [2]={2]

Proof of (b): True by definition of quoticnt and by Lemma 1(a) and (b).
]
THEOREM: If (5,9 reachable in (5 /| 7)<L>, then (p,9) ~ ([4,[4]) in (S /1 {TDH<L~>.

PROOEF:

The proof is a simple application of the definitons. It only uses the propertes of the algorithm

given in Lemmas 2 and 3.

Obviously for all (9,9 reachable, ((2,9), ([4,(4) in R

Assume for all (9,9) reachable, ((2.9), ((4.[A)) in Ry
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(Lg=—=>(p’g) where zin L

=5 (A I=T=> (P p—a—>(pegd=T=>(pg) by definition of ==

= (A ld=t=>(l L) == (A [#)=T=((p1.l7)) by lemma | (a) and (b)

= ([A. A ==([p1.[#1) by detinidon of ==

And by induction hypothesis, ( (2777, ([21.Ig) ) in R,

For the other direcuon:

(A== (2 1lg1)

= (A A== )——= (e l)=T=([2].l¢]) by definition of ==

= (=T (Pugf—= (Pogd=T=(pagy where AR VAR A FARIA S VARUASIPAR
(=[], and [g=(71 by lemma 2 (3) and (&)

= (pg=mpld where [)=[p1, and [7=17]

And by induction hypothesis, ( (24, (P1lg]) ) in R
Thus, ( (29), (A4 ) in Re

|

Next, it is necessary to show the algorithm always terminates, which can be done using the

following lemma.

LEMMA: Let the classification [7], be a refinement of the classification [7]4,. Then [J]..,
computed using [ 7], is a refinement of [S], computed using the labelling (7] ;.

PROOF:
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Suppose [#] =[]« We want to show that [5] ., =[2] e, or if o, ~ g in S, then gy ~ o in Jo.

Since [7;] is a refinement of [73], if labels #[g], = [z, then labels 4[4, = alzl- Thus, if
rwo transitions in J, have the same labels using the labelling ==,(#],=>, the transitions in 55

will sdll have the same labels using the labelling ==, [#:] .=

Supose o, ~ 2 in S,

& for any transition o, =4 => p;, there is a corresponding transition 2, ==4=> poand g/~ pin

5

= for any transition p, =« => 2, there is a corresponding transition g == psand g/~ plin

3., since the labels of the two transitions are guaranteed to be the same in ..
o o/~ plin S,
|

The lemma shows that the algorithm is monotonic, that is, each itcration computes a
refinement of the classification of the previous iteration. Since the number of refinements is

finite, the number of iterations is finite and the algorithm must terminate.

A4 Multple comporents, and mults-way inferactions
It has been shown how to compute the reduction for two components. To handle multiple

components with 2-way interactions, we collect and label interactions between pair of

components SCPZIIZIICI}'.

For Step 1 of the algorithm, we can simply store S.J3(2, 2, 2, £} if there is a transition (2, 4)
=T=> (p, p) in (S, [ | S)<L>. This sadsfies the conditon that SJS3(p, 2, oi 23 is stored iff

whenever the state (...2,..., 2,...) is reachable, there is a transiton o Paenos Paeen) =T=

oo )i (S [ ] oo [] SI<L>

For Step 2, for given classifications [J], of , use the following condidons to compute [S};:
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a) for all wples 55302, g, A1, 9, and for all [g:},=(gi]., there exists a wple S5, ¢, 25 4,
where w;:[pllh [7111\:[_¢llo and

b) for all ples S.S3(o, ¢ 25 79, and for all [7],=[g], there exists a wple S53(a, T Pio T
\thrc lp’Jl:[Dl]l' [q:lﬂ:[{/ll"

For the iteration step 2, update [J] if any [J],, with which it interacts has changed. For step 3,
add transitons [p—S.5:pli2l )21 olp] for all wples S3:(o, 2, 27 p) in ] and add
transitions [p}—J.53 ()21 (o121 (] for all wples S.5:(2, 2, 21 2 in [S].

[.emma 1 is changed to

¢) If there exists a transiton (...2,..., p,...) == (opien pr)in (8 [ [ 3)<L>

then there exists a transiion (..[p).... [h-) == (..[o}.... [2)..) in

(SR Y I N BN A g

d) If there exists a transition pm=~=p, in J, where «& [, then there exists a transition

Ll==(p) in [ ]

Lemma 2 and the proofs are all changed similarly: p, ¢ is replaced with ...2,..., 2,... and

S || Tis replaced with S, [/ ... [[ J,

The proof of the theorem is changed so that a T-transidon (/... ) =T= (py,..., py in
(S, /| ... || $I<L> must be broken down into a sequence of constituent T-transitons with

pair-wise interactions, such as (...2,..., 2,...) == (...p,:...,p/',...). Then, the lemmas are

applied to each constituent 7-transiton.

For muld-way interactions, interactions for each subset of interacting components is collected

and labelled separately. For example, for a 3-way interaction, the stored vectors are S, 5.55(2;,
P P P ps pd if there is a wansidon (g, 2, py) = o Py P in

S ]SS5 ] - | ] SI<L>. The conditions, the other steps, and the proof proceed
similarly.
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LA 5 Afporsthm complexaty

An upper bound for the algorithm complexity can be obtained by adding up the cost of basic

operagons.

Since interactions with each pair of components are collected separately, reductions for a
component can be computed without composing the rest of the system. The number of stored
interactions for a component J, (for 2-way interactions) is 5,500, pa p p3. Thus, the maximum
number of stored interactions is the number of interacting components, S, umes the fourth
power of the number of states of the components (2, 2, 2o 23 Thus, the number of
interactions of S is at worst #7 for a system of #components, all with 7 states. For muld-way

interactions, the number of interactions is at worst 27 if there are at most £ way interactions.

Minimization of each component by observational equivalence can be performed in () s,
where ¢is the number of transitions of the relabelled components. The number of transitons
is the number of interactions plus the number of vistble transitons. At worst, this is 47 + 22/,
where /is the number of externally visible labels. Assuming /is unrelated to #zand 7 then the
number of transitions is (X##"). Thus, the minimization has complexity (/7 #"). (For £-way

interactions. the minimization has complexity (7 77%).)

During one iteraton, at most # minimizadons are required. The number of iterations is at most
the sum of the states of the components, because the size of one reduced component must
increase, or clse the algorithm terminates. Thus, the number of iterations is at most (X 7,

and the overall complexity is O(#'#). (For £-way interactions, the complexity is X' )

4.6 Afporsthm notes

Collecting interactions with each pair of components separately means reductions can be
computed without composing the rest of the system. However, the disadvantage is that
interactions with different components are being distinguished from each other, thus lessening
the amount of reduction possible. For example, interacdons of S, with two different
components would stll be distinguished even if the interactons do not change the states of

either of the other components. In partcular, a system with ##labels hidden would not reduce

to a set of 1-state abstractions!
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Collecting interactions with each pair of components stll results in adding many transitions in
the relabelled components. In many cases, the same edges in .f (labelled p,[2.]) may cause many
different edges in 7 (labelled ¢,[4]). But, for the purpose of reducing the components, many
of the labels #[g] are redundant. Two labels # (] are redundant if they always appear

together in all transidons labelled 2], since they can never be used to distinguish any states

in J.

Formally, it is safe to merge the labels «and 4if, whenever there is a transidon labelled with

P == p, then there is also a transiton labelled with p, =/= p., and vice versa. In addiuon,

duplicate transidons (same source, label, and destination) can then be removed.

Experiments show this optimizaton greatly reduces the number of transitons, and

significantly speeds up the minimization of components.

4.5 Related work
This section compares incremental test case generation and interaction abstraction with
previous reduction techniques, especially their ability o exploit characteristics of test

generation from models of sofrware components.

4.5.7 Incremental rest generation
There are no techniques similar to the incremental test case generation algorithm, although

some work has been done to create algorithms for test case generaton.

Goal-oriented execution for LOTOS[31] specifications can be used to efficiently generate test
cases. They rely on static analysis of the specification source code to prune away any expansion
of the state space that is guaranteed not to lead to states of interest. This technique is useful
when the states of interest are isolated in small parts of the specification source code. In that

case, much of the other behaviour can be essendially ‘sliced’ away, using the special expansion

rules.

Two other studies applied existing reduction techniques to test generadon. One study
modified the compositional model generation algorithm to preserve information needed for

deterministic testing. The algorithm was applied to the simple examples in Carver and Tai’s
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study[13]. The other study adapted partial-order methods for efficient bounded search of
SDL[65].

None of the algorithms considered generating test cases incrementally. Incremental generation
is important because the fewer behaviours of a model that are needed, the greater the

reduction that can be obtained.

It should be noted that a practical test generation tool does more than generate a sequence of
inputs and outpurs. For example, it nceds to handle non-deterministic ourput. Exisung
techniques for generating test cases should be incorporated into the algorithm by replacing the
path generator in Step 2 of the algorithm. Instead, a tool would generate a portion of a useful
test case as an LTS that handles inputs and outputs. That LTS of the portion of the test case is

then used in the rest of algonthm.

£.3.2 Interaction abstraction

Interaction abstracton is effective for models of sofrware components, which have the

following charactenstcs:

e the system is made up of many loosely-coupled components; cach component

communicates with a limited number of other components

e each component is small enough to be generated and minimized, but compositons of

components are too large

e large components are the result of handling many loosely-related aspects, and many

connections with other components

e only a small part of the system’s behaviour is of interest at one time.

Note that interaction abstraction preserves observational equivalence for all externally visible
behaviour. In particular, liveness properties are also preserved. Thus the algorithm is suitable
for use in general verification tasks, and not just for test generation. The algorithm can yield
useful reductions for verification if the number of undistinguished interactions is large, and the

number of distinguished interacdons is small.
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Interaction abstraction is able to effectively reduce a wider range of useful systems than other
techniques, which depend on very restrictive forms of models. For example, BDD-based
reduction can be very effective in case of systems with a linear topology, but it is ineffectve in

systems with a net topology where many parts of the system interact with each other.

Interacton abstraction is similar to other techniques that require a specific type of redundancy,
such as data-independence or symmetry. It requires models to have unrelated or loosely related
aspects, but only one aspect is of interest at a ime. This kind of redundancy is likely to exist in
general-purpose models of a system, rather than models specifically designed to verify a
partcular property, such as suggested by Holzmann([37]. In addidon, the algorithm is able to
work together with other algorithms to handle models with many kinds of redundancy. Itis
expected to work particularly well with commutatvity-based methods (Secton 2.5.1.4), since

interaction reduction results in a large number of small components.

Interaction abstraction is able to reduce global state spaces exponentally, whereas other
general reduction techniques, such as on-the-fly search or supertrace (Sectons 2.5.1 and

2.5.1.2), can only offer linear reductions in size.

The techniques most similar to interaction abstraction are compositional minimization
algorithms (Section 2.5.1.3). In contrast to those algorithms, interaction abstraction uses many
contexts to reduce each component; it does not need tc compose contexts, not user-created

contexts.

Interaction abstraction also differs from compositional minimization in that it does not require
composing components to obtain reduction. Instead, it reduces each process by itself using
information about interactions with other processing. Thus, it avoids the state explosion

problem altogether.

The goal of interaction abstraction often differs from compositional minimization, which
typically tries to construct a minimal global model on which many different propertes can be
evaluated. Interaction abstraction is much more effective when creating a different reduced
model for each property of interest. Construction of different reduced models is cost-effective

since each specific reduced model is, in general, exponentially smaller than a general model.
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4.6 Chapter conclusions

Two new algorithms are presented that aim to efficiently generate test cases from formal state
space models of components. The first incrementally builds a complete test case by generating
partial test cases for subsets of inputs and outputs. By reducing the number of behaviours of
interest at one time, the size of the models can be reduced greatly. The other algorithm reduces
sizes of components by abstracting away behaviour that is not of interest. It s proved that it
nreserves behaviour ~f intreresr, bur ahsrracts uninteresting interactions. preserving only their
effect on interesting behaviour. The reduction algorithm does not suffer from state-explosion

as it does not compose components, but iteratively reduces each component individually.



Chapter 5

IMPLEMENTATION AND EVALUATION

5.1Chapter Overview

This chapter evaluates the feasibility ot generaung test cases from formal design modeis. The
method is feasible if a formal design model can be created with not much more etfort than an
informal model, and the algorithms to analyze the models can handle realistic componentsina

reasonable amount of ume.

The modelling of a realistic software design in ObjectState is evaluated. The model was found
to be easy to understand and it was reasonably easy to create compared to an informal

model—as simple as writing a short program.

Next, the performance of analysis algorithms on this model is examined. The example model
is found to be too large for standard algorithms to handle, but using the incremental and
abstraction algorithms, useful test cases can be generated from pordons of the model. The new
algorithms are shown to be very effective in situations of state explosion where previous

reduction methods are ineffecdve.

5.2Tool implementation

5.2.7 ObpectState Translator

The translator tool converts ObjectState model and coverage criteria into their LTS semantics.
The translator steps are shown in Figure 5-1: it expands the ObjectState model into its graph
of steps, then translates the steps into Murphi code, and finally the Murphi code generates LTS

transitions from each step.

The language Perl was used to greatly simplify the task of creating the translator. Only 1300
lines of Perl were required (Table 5-1). The flexibility of Perl allowed ObjectState models to be
written directly as Perl code. The statements in ObjectState, such as PROCTYPE or WATT, call Perl
functions to generate the graph of the steps of the model, and eventually generate the Murphi

code. In effect, the Perl compiler acts as the parser for the ObjectState program.

62
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Each component is translated into a separate Murphi program. The component’s variables are
translated into Murphi variables and each step is translated into a Murphi rule. The start-rule
sets the initial values of the variables and inital state. Executing the Murphi code expands the
steps of the model with all reachable data values. To generate an LTS, the standard Murphi
compiler was modified to use the BCG library, which is part of the Caesar-Aldebaran
Development Package (CADP)[24] toolkit. The BCG library allows reading and writing of

T v Ty ™ N et N e~
LTS models in By Coded Graph BCG) format

ObjectState
model

Test
requirements

Eventflow
requirement

»- trans

/

Murphi

——

mu

Y

BCG (LTS) pl (script)

Figure 5-1 Structure of translator tool.

Test requirements are treated as regular components. In the current prototype, the translator
does not support multi-way synchronization. Thus, the TESTCONN declaration is not supported,

and a test requirement must CONNECT to a component’s free ports.

The event-flow coverage generator creates test requirements that guarantee one related path
for each related pair. Related events are defined as the interactions at a given port. The
implementation of the coverage generator realizes another benefit of using Perl to represent
ObjectState models: that is, the full power of Perl is available to automate the creation of

ObijestState models, such as test requirements.
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Config.class 27

Config.pm 107
Genconfig.prog 133
Genmodel.pm 255
Parsemodel.pm 723
Wrapreq.pm 63
Total 1313

Table 3-1 Lines of code tfor tanslator.

In additon. a second translator exists for Promela-annotated ObjectState models. The model
is expanded into steps in the same way, but then the steps are translated into Promela code.
Note that the Promela model would generate a different, but similar, transition svstem than a
corresponding Murphi model, due to the differences in the languages and semantcs. This

difference impacts the comparison of performance of analysis.

5,02 State Space Anaiyger
The analyzer abstracts the model and generates a path that satsfies the test requirement. The

three components of the analyzer are basic operatons, abstraction, and path generation.

Configuration
script

abstraction
(incremental test generation,
interaction abstraction)

[
\ . 4
basic operations (Aldzatatgrgingfr:gitor
(C. C++ code, CADP tools) Araprod)

Figure 5-2 Components of the analyzer tool.

Basic operations manipulate LTS models in BCG format, such as minimizaton, composition,

and relabelling. Most of the functionality is provided by the CADP toolbox[24]. The CADP
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dynbitvec.h 30
maps.h 83
transitive.C 393
weakreduct.c 136
maps.C 229
merger.C 38
transops.C 533
transops.i 62
analysis.pl 701
config.p! 620
toara.pl 55
toprom.pl 34
Total 2914

Table 5-2 Lines of code of analyzer

toolbox is very uscful because it uses LTS as a very general and powerful input/output format.
Many other tools, such as SPIN, use a very tool-specitic modelling language, which would not
have been appropriate to implement the analyzer. A convenient Perl interface is provided for

the basic operations.

However, the CADP tools do not provide manipulatons transigve closure of interactons, and
reduction of interaction labelled transitions (Section +.4.6). Since there are potendally a large
number of interactions, the interactions were manipulated as BDDs, using the BuDDy

package([48].

The abstractor implements both the incremental test generation algorithm and the interaction

abstracton algorithm. The abstractor is implemented in Perl, and uses the basic operatons to

transform the LTS.

The path generator performs model-checking on the composition of components, to generate

test sequences. The analyzer interfaces with two model-checkers:
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e Exhibitor, part of the CADP toolbox, using simple on-the-{ly breadth-first search

e Araprod implements on-the-fly breadth-first search with partal-order reducton

In addition, the SPIN model-checker is used to analyze the version of ObjectState that uses

Promela.

5.3 Example software model

A software design was modeiied using ObjectState. The soltwite tinages the call proc
of a private branch exchange (PBX). The call processing software is responsible for
monitoring the state of the PBX hardware for changes in the state, such as phones going oft-
hook and on-hook, and phone digits being dialled. The software responds to changes in state
by causing appropriate changes in the hardware state, such as connecting a phone to a dialtone,
or connecting the ring generator to a phone. The hardware state is detected and modified

through a memory-mapped interface.

This example was chosen because it represents a realistic, complex sottware design. It has a
fair number of components that interact in complex ways. This sofrware example has been
used as a course project|19] for an undergraduate software engineering course by the Electrical
and Computer Engincering Department at the University of Waterloo. A group of tour
students is expected to design and implement the system over a four-month term. On the

other hand, the example is small enough to be modelled completely, and in detail.

3. 3.1 Design structure

The model of the PBX is based on the design of an actual implementation. The design

comprises the following processes:

e Linescan (LS): receives requests from other processes to monitor the switchhook starus
of phones. It polls the phone hardware and notifies the process when the switchhook

status has changed.

o Call manager (CM): waits for nodficadon of a phone going off-hook, then assigns an
available call handler process to handle the interacdons for making a call. Also responds

to queries about whether a phone is currently involved in a call.

e Database (DB): stores the directory numbers of phones, as well as the in-service status.
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Linescan

Database

TTscan I

Figure 3-3 Configuration of the components of PBN software
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e Resource manager (RM): allocates available channels and touchtone receivers to

requesn'ng processcs.

¢ Multiple touchtone scanners (TS): poll the touchtone receiver hardware state and notifies

the process that requested information about digits dialled.

o Multple call handlers (CH): interact with telephonc users by telling the PBX hardware

state to set up connections between phones and tone generators, touch-tone receivers,

etc.

The ObjectState source for the models is given in Appendix A.1-A.G.

Callhandler.pm

Callmanager.pm
Connectreq.pm
Database.pm
Linescan.pm
Resource_manager.pm
Datatypes.pm

Porttypes.pm
Total

101
26
42
85
65

219

100

939

Table 5-3 Lines of ObjectState source for PBX model components
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3.2.2 Modeliing ¢ffort

The model of the PBX was found to be quite easy to create and understand. Although it was
certainly more difficult to create than an informal model, it was similar to writing a small
program. The formal model was 1000 lines of ObjectState (Table 5-3). In companson, a
detailed, informal model in SDL runs about 20 pages. If each SDL symbol can be compared to

a line of code, then the informal model is between a third to a half of the size of the formal

model, The implemenrarion 1s 16000 lines of C.

Most of the complexity of the formal model was in the code for maintaining data structures
like sets and tables. The code for interactions (sending/receiving messages) and for transitng
berween states was quite simple and direct. The formal model could be greatly improved with
support from librarics of data types and a graphical notaton. Table 5-3 shows about 20% of
the code is in Datatypes.pm, which implements set and table data types and basic algorithms.
It is reasonable to expect a quarter of the code can be eliminated with better data tvpe support
and a graphical notation. Then, the tormal model would be close to the complexity of an
informal model. Note that the key criteria for library code would be ease of use, and not

efficiency, as the model is only used for analysis, not code generaton.

A great advantage of the formal model is thatitis executable, and hence itis easier to correctly
model complicated sequences of events. Inidally, a mistake was made in creating the call
handler model. By abstracting the interactions of the model and displaying the abstracted LTS
graphically, the problem was easily identfied and fixed. Without seeing the actual dynamic

behaviour, the problem would have been very difficult to find.

The software was also modelled using Promela annotations (in order to use SPIN to analyze
the model). In comparing the Murphi annotated model against the Promela annotated model,
the Murphi language was found to be much easier to use, due to the ability to create

procedures with local variables.

5.3.3 Model compilexaty
The language was found to be expressive enough to handle some tough modelling problems,

such as the system’s dynamic communication patterns.
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Hierarchical state machines are well suited to the modelling of the PBX software. The use of
entry and exit actions gready simplified modelling of the complicated call-handling
component. In partcular, it was used to separate the resource management aspect from the
main problem of call handling. As shown in Figure 5-4, many of the superstates deal with
resource management. Entry and exit actions of these states obtained and released resources

transparently for each part of the call handling sequence.
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Figure 5-4 State hierarchy and connections for call handler
component.
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In addition, signal handlers were used to allow each part of the model to add its own code to
respond to an event. For example, different actions need to be taken in response to an onhook
message, depending on which state the call handler is in. In some states, dmers or linescan
requests have to be cancelled or redirected. Signal handlers allow states to share certain acdons,

while adding other actions.

An interesting feature of the model is its dynamic communication pattern. For example,
depending on which touchtone receiver was allocated to a call handler, it would communicate

with different touchtone scan processes to obtain digit information. Similarly, the linescan
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process will accept a request from one process to notfy a different process of the switchhook

status of a phone. In essence, processes need to pass and use references to other processes.

To model dynamic communications, a component would have a port connected to each
processes with which it may need to communicate. The ID of each port would be the ID of
the component it was connected to. The component [Ds then could be passed as parameters

in messages, and used to select components to communicate with.

The effect of the dynamic communication is to increase the number of states and transitions in
LTS semantics. Each component would add one transidon for each interaction at each port.

The more components that it can possibly communicate with, the more transitions there are in

its LTS model.

The greatest benetir of using a modelling notaton, such as ObjectState, is that details of the
communications between components  are abstracted. Most of the C code of the
implementation deals with details of inter-process communications, such as marshalling and

unmarshalling parameters.

5.4 Algorithm performane

This section investigates the performance of different algorithms under different condidons of
statc-explosion. Paths were generated for subsets of the PBX model using different algorithms
and the time required were compared. The new algorithms performed significantly better than
previous algorithms on the PBX model. While previous algorithms were able to analyze only
two components of the PBX, the new algorithms were able to generate tests for useful subsets
of five components. The results show the new algorithms are effective against the kind of

state-explosion that occurs in the PBX model and other design models.

J.4.7 Experiment decisions
‘The PBX model is a good test of the feasibility of component interaction testing from formal
models. It is a complete model of components and their interactions, and conrtains many

loosely related aspects, such as resource handling, dialling, and call processing.

In comparison, example formal models used in previous studies are not good tests of the

feasibility of interaction testing. Firstly, those examples model either hardware, protocols, or
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software specificatons (see Section 2.4.2). Secondly, in order to be analyzable by tools, either
they are very small models, or they are heavily redundant in one specific aspect, which can be
exploited by an algorithm. As a result, they lack the complexiges of components and
interactions that make analysis difficult for interaction testng. In addition, they lack
redundancy that results from a complete model of sofrware that has to handle many aspects,

but only some aspects are of interest for each test case.

The following model-checking tools and algorithms were compared:

e Exhibitor (simple breadth-first search),

e SPIN (depth-first, partial-order reduction, supertrace),
e Araprod (breadth-first, partial-order reducton),

.

Aldebaran (minimal model generation, BDD),
e new analvzer with incremental test generaton,

e new analvzer with incremental test generation, and interaction abstracton.

The parameters given for each tools are shown in Appendix A.

The tools were chosen because they implement advanced and successful model-checking
algorithms. [n addition, the tools should be able to handle LTS input (with the exception of
SPIN) and give LTS output. SPIN cannot take LTS input, but was chosen specifically because
it is a very advanced system, and can be considered a standard for tools. Also, Aldebaran’s
minimal model generation algorithm can only compute if a path exists, but cannot generate a
path. It is not appropriate for test generation, but it was included to compare the effectiveness

of the compositional minimization algotithm. All the tools are freely obtainable for research

purposes.

The tests were conducted using a simple test requirement: the system must connect two
phones in a conversation, two times. (The source code for the test requirement is in Appendix
A.7.) This test requirement was chosen to provide a strenuous test for the algorithms as it

would require a long sequence of interactions to sadsfy. To connect two phones, one phone
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must go offhook, resources must be available to make a call, the number of another phone

must be dialled, and the phone must be picked up, and so on.

The sequence of all the events that must occur is not specified in the requirement, and must be
computed by the analyzer. The test requirement also does not specify which phone or phones
must call and which phone or phones must answer. Any sequence that involves at least two

connections will sausfy the requirement.

5.4.2 Test resulis
Beginning with only one component, the tools were given mote components to analyze unul

they exceeded available memory or failed to give an answer in a reasonable amount of tme.

The PBX model is much too large for the tools to handle. Even for the simplest case of
finding a path for a single call handler process, the BDD and commutatvicy algorithms failed.
SPIN failed for the interaction of a call handler with the database process. The simple breadth-
first search in Exhibitor performed better than the more complex algorithms, but it eventually

failed to compute a path for a call handler with the database and call manager.

REQ DB CM LS CH1 CH2 CH3

REQ +CH 7 85956

REQ +CH +DB 7 291 85956

REQ +CH +DB +CM 7 291 146 85956

REQ +2xCH +DB +CM 7 579 390 85956 85956

REQ +3xCH +DB +CM 7 579 390 85956 85956 85956
REQ +2xCH +DB +CM +LS 7 579 390 41371 85956 85956

Table 5-4 Sizes of models: original number of states for model
components

Searched states Expected coverage
REQ +CH 3000 >=99.9% on avg.
REQ +CH +DB 1,120,840 >=99.9% on avg.

Table 5-5 Number of states searched by SPIN
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With incremental test generation, an additional component can be analyzed. Adding
interaction abstraction, five components can be analyzed: three call handlers, the database and

the call manager. However, it also fails when the linescan process was included.

The results are shown in Table 5-6. The sizes of the models are shown in Table 5-4. Each row
shows a subset of components that was analyzed. Note that the same component in different
subsets has a number of states because the component has to interact with different numbers

of other components, and hence requires more states. The names of the components are

abbreviated as follows:

e REQ - test requirement

e CH - Call handler 3XCH means 3 call handlers, while CH1 refers to the first call

handler)

Incremental +

| e Incremental . A
PROD Aldebarar SPIN  Exhibitor test generatio interaction

abstraction

REQ+CH Memory Timeout 554 790 365 3079

out
REQ +CH - - Not 7644 534 5159
+DB found
REQ +CH - - - Memory 677 6061
+DB +CM out
REQ - - - - Time out 7374
+2xCH
+DB +CM
REQ - - - - - 13558
+3xCH
+DB +CM
REQ - - - - - Time out
+2xCH
+DB +CM
+L.S

Table 5-6 Times (seconds) for generating paths
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e DB - Database
o CM — Call manager
e LS - Linescan

For the Promela-annotated models, Table 5-5 shows the number of states searched by SPIN.
Although the Promela-annotated models were implemented as similarly as possible to the
Murphi-annotated ones. Promela semantics are somewhat different, and the number of states
of each component would differ a little. SPIN does not give a count of the number of states

for each component.

5.4 7 Scalubiltly of new afgortthms

Such a small sample cannot give a general indication of the scalability of the new algonthms.
However, there are several encouraging aspects in the experimental results. In spite of the
rough nature of the protorype implementation, the analyzer tool is able to handle quite large

components.

In theory, the abstraction algorithm avoids state explosion by avoiding compositon ot
components and abstracting each component individually. Nevertheless, the theoretical
complexity of XA ) looks quite daunting for practical use. However, the actual situaton is

much better in the experiment.

The major factor in the cost is the set of interactions between two components. This set has a
theoretical size complexity of ("), which seems to actually occur, such as with the linescan
component (see Section 5.4.4.4). It is important to realize, however, that this complexity
simply results from interactions between two components. Any type of model checking that

takes into account interactions between components must face at least this level of complexity.

Let us assume that individual components are small, so that the tools built are able to handle
compositions of two components in a reasonable (i.e. constant) dme. This assumption
eliminates the four powers of z Also at the most four iteradons of reductions were required
for each component in experiments. That is much better than the worst case of (X#7)
minimizations of each component. Further, assume that components only interact with a

limited (i.e. bounded) number of other components. This eliminates one more power of
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Thus, for well-behaved models under these assumptions, the actual complexiry is proportonal

to O(#) and the effort depends linearly on the number of components.
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Figure 3-3 Maximum time for reductions over all external port
reductions.

The maximum times for reductions are shown in Figure 5-5. The times for reducton differs
depending on the external port being hidden. The figure shows that dmes for reduction do not
depend on the number of components, but rather on the number of interactions between
components. The test run shown in the rightmost bar has the same number of components as
the test run for the second right-most bar. The large time requirement for reducton in the
rightmost bar is caused by the linescan component, which has a huge number of interactons

with other components.

Even though the reducton algorithms can avoid state-explosion, the path generation
algorithms must still deal with the composition of the reduced components. Thus, the
scalability of this step depends on the reducdons achieved. Table 5-7 shows that impressive
reductions were achieved (compare with Table 5-4). The table shows the maximum sizes of
the components after reduction. The sizes after reduction differ depending on the external
port being considered. The actual sizes for each step are usually much smaller than the

maximum Sizes.
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DB CM LS CH1 CH2 CH3

REQ +CH 5 374
REQ +CH +DB 5 3 510
REQ +CH +DB +CM 5 4 56 759
REQ +2xCH +DB +CM 5 7 116 135 224
REQ +3xCH +DB +CM 5 10 258 135 149 759
REQ +2xCH +DB +CM +LS 5 7 148 881 312 286
Table 5-7 Maximum numbers of states for components (over all
external ports reducnions) atter reducton by interaction abstracuon
b
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Figure 5-6 Maxumum times for pargal path generation over all
external port reductions.

The maximum times required to generate a path is shown in Figure 5-6. The figure shows that
in most of the test runs, the time to extract a partial path is kept to a few seconds.
Nevertheless, as the number of states of each component grows slowly, the number of global
states grows exponentially. The exponential growth can be seen in the rightmost bar, as the

number of states and components is largest.

S.4.4 Analysis of state explosion
To understand the scalability of the algorithms requires understanding the factors that cause

state explosion and the effect of the algorithms on these factors. This secdon compares the
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effectiveness of each reducton algorithm on different sources of state explosion and their

effecdveness in exploiting redundancies in the models.

AA. ] Larpe state spaces from expanded data struciures

BDD reduction algorithm performed very poorly on the example models: it could not analyse
even a single call handler component with 80000 states. This result is in stark contrast to work
in hardware verificaton, where huge state spaces, greater than 10™ states, can be analyzed([12].
The difference, of course, is that the hardware models were very regular in structure, whereas
the call handler model is a monolithic LTS with no apparent structure. BDD-based algorithms
depend on finding a goed ordering of the BDD variables, where variables far apart in the
ordering should not depend on each other. The LTS model does not provide any informaton
on how to find a good ordering. In any case, as discussed in Hu’s thesis(39], high-level models
such as software designs contain variables that correlate with many other variables, so that no

good ordenings exist.

The reason the LTS models are so large is that data structures and variables are used liberally in

the models. Expanding the data causes the explosion in the LTS size.

The partial-order algorithm also does not help data complexiry, since there is only one
component and a test requirement and hence little interleaving of actons. The simple breadth-
first search algorithm performed better simply because it did not have the overhead of
attempting to compute reductions. However, it is very susceptible to state explosion with

increasing numbers of components, as seen in the table.

A solution for the problem of data is proposed for verification. The approach is to try various
abstract interpretations of the data structures in the model{18}, undl one is found that
sufficiently reduces the state space, while providing an answer that is guaranteed to hold for
the concrete system. The idea behind abstract interpretation is that only some propertes of the
dara structure are relevant to the verification, rather than all the details of the data structure.
The abstract interpretation only models that aspect, and throws away the information that is
not relevant. If it happens that the discarded information is actually relevant to the verification,

then the answer is not guaranteed to be valid.
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REQ DB CM LS

REQ +CH 5 12790

REQ +CH +DB 5 4 12390

REQ +CH +DB +CM 5 4 125 12790

REQ +2CH +DB +CM 5 7 223 12790 12790

REQ +3CH +DB +CM 5 7 223 12790 12790 12790
REQ +2CH +DB +CM +LS § 7 223 1685 12790 12790

Table 3-8 Numbers of states after reducnon using observagon
equivalence

Choosing abstract interpretations requires much manual effort. A similar, but automatic,
method is to abstract states based on the visible actions of the component. Details of the data
structures that are only internal, and invisible to other components, cannot affect the
verificaton of properties of the system, nor test generation. This technique is used in the
compositional minimization algorithm, which alternates minimization with composition of
parts of the system in an attempt to avoid the state-explosion that results from composing all

components at once.

The sizes of components reduced by observational equivalence are shown in Table 5-8
(compare with Table 5-4). A particular benefit of minimization by observatonal equivalence is
that remnant variable values are automatically removed (see Section 2.5.1.3). Thus, it saves the
modeller from having to optimize the model by un-initializing variables when they are not

needed.

Inecremental test generaton
Observational equivalence yields greater reduction when fewer actions are visible.
Unfortunately, it leaves a large state-space if a component has a “wide” interface, that is, has
many actions that interact with other components or the environment. Incremental test
generation is effective because it initally hides all external port actions except for the acuons at
one port. Once a path is extracted for this port, the actons the next port is made visible.
However, the previous path for the first external port is also composed into the system, and

constrains the states that will be explored. This continues, so that even as larger models are



CHAPTER 5: IMPLEMENTATION AND EVALUATION 79

REQ CH Extracted paths

Ext 1 5 633

Exts1.2 5 1038 11
Exts1.3 5 1038 11,8
Exts1..4 5 1038 11,8, 1
Exts1..5 512390 11,8,1,5
Exts1.8 512715 11,8,1,55
Exts1..7 512790 11,8,1,5,5,12

Table 5-10 Numbers of states of REQ+CH atter reducnon via
incremental test generton, plus extracted paths.

considered, the models are constrained further, and thus, cach path generaton needs to

explore relatively few states.

REQDB CM CH Paths extracted

Ext 1 5 4 42 5769

Exts1.2 5 4 4212465 1
Exts1.3 5 4 4212465 11,8
Exts1.4 5 4 4212465 11,8,3
Exts1.5 5 4 4212790 11,.8,3,3
Exts1.6 5 412512790 11,8,3,3,12

Table 5-9 Numbers of states of REQ+CH+DB+CM after reduction
via incremental test generation, plus extracted paths.

Table 5-10 shows its effect on reductions of the simplest case of one call handler. Inidally

reduces models to 5 and 633 states. Those models are obtained by hiding all external

interactions except those belong to external port 1 (‘Ext 1°). This is significantly less than 7 and

85956 (‘Raw’). From the reduced models, it obtains a path for these interactons consisting of

11 states, or 10 interacdons. Next, it hides all external interactions except external ports 1 and

2, which leads to bigger models of 5 and 1038 states. However, the constraint from the

previously generated path means much fewer states are actually explored. Indeed, dmes taken

to extract each path remain quite constant (Figure 5-7).
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Figure 3-7 Times to extract paths for each extermal port

The reduction is not as impressive in the larger case of three components (CH +DB +CM) in
Table 5-9. Less reduction is obtained because tewer ports are external, and more ports connect
with other components; hence, they cannot be hidden. However, the dme required to extracta

path remains flat, same as in the previous case (Figure 5-7).

With more components and connections, and fewer external ports, incremental test generation

alone will fail to create much benetit.

Interaction abstraction
The interaction abstraction algorithm is more clever than the previous approaches in finding
regularity in the structure of the state space. It looks at how the state space is actually used by
(i.e. interacts with) other components of the system. Then, all states that are used in the same
way can be merged. Its effect is similar to abstract interpretation, but its reduction always yields
valid results for model checking. It may not reduce models as much as a cleverly chosen
abstract interpretation, but it is completely automatic. The reductions achieved with the algo-

rithm are impressive (Table 5-7).

It can be seen from Figure 5-8 to Figure 3-8 that interactdon abstracton is much more
effective than incremental test generation alone. The figures compare the reduction of model

size for each step. For the component, the size at each step is plotted as a percentage of the
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size of the observationally minimized model. As the number of components increase,
incremental test generation alone quickly loses any ability to reduce model sizes. However,

interaction abstraction continues to be very effective.

Furthermore, with incremental test generaton, model sizes increase as more external ports are
considered. However with interaction abstraction, the previously generated paths are used to
abstract the models, with the result that the model sizes remain almost constant. Not only do
the model sizes remain constant, the time to extract paths and compute reductons also remain

constant (Figure 5-13 and Figure 5-14).
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Figure 5-8 Size of reduced REQ+CH as a percent of observanonally
munimized models. (Number 1n brackets 1s size of observanonally
mintmized models.)
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Figure 5-14 Time (seconds) to compute interaction abstraction for
each step from models.

Note that interaction abstracdon would not work well without incremental test generadon,

since it does not abstract external actions at all. If all external actions are distinguished, many

states must remain distinct, and there is little opportunity to abstract interactions.

5.4.4.2 Redundancy in similar data values

The depth-first algorithm with supertrace performed very poorly for a Call handler

with a

Database component. It actually completed without finding a path sadsfying the test
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REQ +CH 554

REQ +CH +DB 27H (Not found )
Reduced REQ +CH +DB 370
Reduced REQ +CH +DB +CM Time out

Table 5-11 Effect of reducing dara in Promela model on model-
checking ame with SPIN

requirement, in spite of the fact that coverage was estimated to be >99.9%% of the states in the

model.

Again, the difficulty is due to the data. In the model, there are more than 144 2-digit directory
numbers than can be dialled, but only two that correspond to phones (as there are only 2
phones in the system). In the simple case withouta database, any directory number dialled can
be considered a valid telephone number, since the database’s responses are controlled

externally. Otherwise, only 2 of 144 are valid.

If the search chooses an exccution path where an invalid directory number is dialled, a
connection cannot be made, but the search will continue along that path. The breadth-first
algorithm performed better because it does not commit to a particular path, but continues to
search along all execution paths equally. However, the amount of storage required to track all

execution paths can be exponential in the length of the paths.

To demonstrate the effect the redundant data had on the search, the model was modified so
that there were only two invalid telephone numbers. Then the depth-first algorithm
successfully computed a path in only a few minutes (Table 5-11). (Nevertheless, SPIN was not

able to extract a path for even the reduced model with four components.)

Clearly, it is not necessary to explore so many paths with invalid directory numbers. For this
test requirement, they all behaved similarly: no connecton can be made. Thus, by taking
advantage of knowledge about the test requirement, the model can reduce significantly.

However, it is not practical to do this manually for each test requirement.
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Again, interaction abstraction is of great benefit as it takes advantage of which actons are
distinguished by the test requirement and which are not: those: that cause a transition berween
the same pair of states are not distinguished (or those that do not cause any transition at all).

Hence, similar data is merged, and only one representative path needs to be searched.

To see how effective interaction abstracton is, compare the values of Figure 5-15. The first
value is the number of states of the call handler with all actions visible, reduced by
observational equivalence. The second value shows call handler’s interactions with the
database completely hidden. The large difference benween them is completely due to the range
of possible directory numbers. The third value is shows the database interactions abstracted
with the actual database, which effectively eliminates the many similar directory numbers, and

coalesces them into two distnct abstract interactons.

5.4 A5 Redundiney in similar components

In addition to not distinguishing invalid directory numbers, the test requirement does not
distinguish between call handlers. That is, 1t does not matter which call handler(s) make the
connections between phones. Thus, only one call handler is needed to satsfy the test

requirement, and any extra call handlers are redundant.

14000 12736
12000
10000
8000
6000
4000
1810
2000 1438 1
—
0 N N -
Ali interactions Database Database
visible interactions interactions
hidden abstracted

Figure 5-15 Comparison of number of states with interactons
hidden versus interactions abstracted.
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Incremental test generaton and interaction abstraction can take advantage of redundant
components to reduce model sizes. From Table 5-12, showing the progress of analyzing
REQ+3CH+CM+DB, it can be seen that the first 11 extracted paths have one state, which
means there are zero interactions. The first 11 extracted paths are for the external ports of the
first two call handlers. Thus, they are not used act all to satisfy the test requirement: all
connections are made by the third call handler. As a resulr, the composition of the extracted

parhs with the svsrem reduces the first two call handlers to only two states.

The reason the tirst two call handlers are not used is because the breadth-first search finds the
shortest path satisfying the requirement. When considering the first call handler, actons of one

of the external ports are visible. Hence, its abstraction is larger than the abstraction of the last

REQ DB CM CH1 CH2 CH3 Pathsextracted

Ext 1 5 10 258 135 105 105

Exts 1..2 5 7 204 6 105 105 1
Exts 1..3 5 7 204 2 105 105 1
Exts 1..4 5 7 221 5 105 105 1
Exts 1..5 5 7 221 5 105 105 1
Exts 1..6 5 7 114 2 105 105 1
Exts 1..7 5 7 114 2 105 105 1
Exts 1..8 5 5 118 2 149 105 1
Exts 1..9 5 4 81 2 2 105 1
Exts 1..10 5 4 81 2 2 105 1
Exts 1..11 5 4 81 2 2 135 6
Exts 1..12 5 4 147 2 2 135 12
Exts 1..13 5 4 147 2 2 759 3
Exts 1..14 5 4 147 2 2 158 3
Exts 1..15 5 4 147 2 2 139 8
Exts 1..16 5 2 154 2 2 183 11

Table 5-12 Numbers of states of REQ+3CH+CM+DB after
reducton via interaction abstraction, plus length of paths extracted
for each external port
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5 7148861 312 256 12365.7 27300.9
5 4124529 19 258 3677.5 2952.8
5 4124529 5 258 1462.4 730.5
5 4124529 5 258 14949 7313
- - - - - - Time out -

Table 5-13 Number of states reduced via interaction abstracrion,

plus omes to  extract path  for each external  port,
REQ+2CH+CM+DB +LS

two call handlers, which have all external port acuons hidden. Hence its interactions will
produce longer paths than the last two call handlers, the test requirement would be sadsfied

using the shorter, abstract paths from the last two call handlers.

In situatons of redundant components, the algorithm will bypass parually abstracted
components and use fully abstracted components to satisfy the test requirement. Thus, the
additional cost of redundant components is the cost of the fully abstracted versions, rather
than each partially abstracted version. 1deally, the fully abstracted components are very small,
so that the state-explosion is controlled. Table 5-6 shows that the ume required by the

algorithm grows very slowly with the number of call handlers.

5.4 A A Highly-correlated dutu

The limitation of interaction abstraction can be seen when the linescan process is added to the
analysis. Table 5-13 shows the reduced number of states for the analysis. There is a large
reduction, but the reduced sizes are sdll very large. The other notable fearure is the jump in the
time required for abstracton over other models (from thousands of seconds per analysis to ten

thousands of seconds).

The reason for the large jump in reduction time is the linescan process. The process is basically
a large table that stores which process has requested to be notified of onhook or offhook
events for each phone. New requests overwrite previous requests for a phone. Since table
items can be arbitrarily added or changed, the model has many transitions from one state to
many other states. In many data structures, the state space is highly interconnected, and there
is 2 transidon berween nearly every pair of states. As a result, the reduction time has

complexity ().
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In addition to longer abstraction times, the reduced components arc also relatvely large with
linescan. The reason is that linescan introduces very complicated interacdons berween
components. If one component overwrites another’s request for notification, the other
component will not receive any notfication. Thus, the interaction of each component with
linescan depends closely on the interaction of the other components with linescan. Hence,

almost all the informarion in the linescan component must be retained. This causes a domino

cffect in the other components so that they must alsn keen mare informarion abour rthe

interacton with linescan.

As an experiment, the linescan model was changed to reduce its raw size. Instead of having
linescan poll the hardware and issue phone hook notifications at predefined intervals, the
model was changed so that linescan could poll a phone and issue a nodficaton at any ume.
This reduced the raw number of states of linescan to 11675 compared to 41371, Interesungly,
however, the reduced size of linescan after the first external port reduction rematned at 861,
This experiment shows that the remaining complexity of the reduced linescan component is

‘intrinsic’ to the design, and not an accident of the particular model code.

J.A.5 Applicability of afyorithms

Although the algorithms gave impressive results on this example, one sample is not enough to
say definitvely if it can perform as well on other models. However, the previous analvsis of the
results showed several strengths and weaknesses of the algorithms, which may indicate is

effectiveness on other models.

The algorithms performed well because there were 144 phone numbers, but only two phones.
The same behaviour may be expected for models with data structures, such as lists or sets,
when the contents of the data structures are not related to the behaviours of interest. For
example, the phone numbers can be longer sequences of digits, and more phones can be

added, but the reduced models would remain the same.

Another reason the algorithms worked well was that hiding external ports produced small
reduced models, and short test paths. (Short paths greatly reduce the time for extracting paths.)
On the other hand, the algorithms zwadd not have work well if arbitrary actons were hidden.

For example, if some phone numbers and phone offhook were hidden, but other numbers and
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phone onhook were visible, then very little reduction would be obtained. It is necessary to hide
and expose all the phone numbers together, and hide and expose onhook and ofthook

together.

Intuitively, most sofrware models would have the property that actions at a partcular port
would be highly related to each other, and hiding them as a whole would abstract away a whole
aspect of the behaviour of the software model. In the same way, actions at different ports
would involve different aspects, and would affect each other little. Hence, we may expect the

same kind of reduction for other models.

On the negative side, the PBX model has a high degree of concurrency: components do not
have to wait for each other very much. As well, there are many redundant, relanvely
independent components. Certainly, the more independent the component, the better the
reduction obtained by interaction abstraction. This suggests that the algorithms would have
more problems with systems that have tighty-coupled components. For these cases, there ts
probably not much that can be done, since the complexiry is intrinsic to those systems, and not
an accidental feature of the representation. They would be very difficult to handle tor

intelligent humans as well.

In fact, the weakness of the algorithm shown in the example was the handling of the linescan
component. The tight coupling and large set of interactions of the component caused the
algorithms to fail. This may point to a serious weakness, because message queues used in
buffered communications have the same characteristics. Further research is required to
develop techniques to handle these situations. One possible approach is to use the interaction
abstraction algorithm to abstract more than two interacung components at a tme. That s,
instead of distinguishing interactions of a component with two different components, view the
interaction among all three components as the same kind of interaction (Section 4.4.4). New

techniques may be needed to handle the explosion in the number of interactions that result.

5.5 Conclusions
This chapter shows that the techniques proposed in this thests provide foundations for feasible

interaction testing from formal models.
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The ObjectState language proved to be suitable for modelling the call processing software for
a private branch exchange. The model was found to be simple, and the effort required was

reasonable. It required a little more effort compared to an informal model, but it was easier to

ensure the model’s correctness.

The algorithms to analyze the models can handle realistic components in a reasonable amount
of tme. The PBX model was too large to fully analyze. However, the interaction abstraction

algorithms combined with incremental test generation allowed useful subsets of the models to

be analyzed.

The new algorithms were found to be effective at exploiting the type of redundancy that exist
in models of software components. In particular, software models for testing must conrain
many loosely related aspects, and the algorithms were able to exploit these redundancies. They
dramatically reduced large state spaces due to liberal use of data, exploiting redundant daca
values and components. However, the algorithms were not able to prevent state explosion in

the case of components that interact closely through a data strucrure.



Chapter 6

CONCLUSIONS

This thesis introduces techniques that provide foundatons for feasible interaction testing trom
formal models. It presents an object-oriented modelling ianguage that s casy o use fof
software design, but it also has formal semantics for re-use in interaction testng. Formal
coverage criteria and test requirements can be defined for the models, and test cases can be
generated using a model-checking approach. Advanced algorithms were created to contain
state explosion in the analysis of the formal models for test generation. An experiment using a
realistic software model showed that the techniques could handle usetul component models

with reasonable effort.

6.1 Contributions

The following contributions were made in this thesis.

A formal model of component interactions was selected. Labelled transition systems capture
the essential characteristics of interactions. LTS models have a rich theory and a body of
efficient algorithms, which allow efficient tools to be created for test generadon, simulation, or
verification. The formal model is appropriate for sequential, event-driven object-oriented
programs, or concurrent programs that interact synchronously, such as by Java’s synchronizing

methods, Ada rendezvous, or remote procedure calls.

Coverage criteria for interaction testing was formally defined. The formal model and definiton
of previously informal coverage criteria enables automatic analysis of coverage of a test suite,
automatic generation of test cases to achieve required coverage, and objective experiments on

coverage criteria effectiveness (not dependent on individual testers).

A formal language was created to model designs of component-based software. The language,
ObijectState, combines an easy-to-use informal object-oriented modelling language, such as
UML/RT, with a Pascal-like programming language. High-level component interactions are
modelled in the object-oriented modelling language, while detailed manipulaton of component

92
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data is modelled in the programming language. The language was given a formal semantics as

LTS.

As an experiment, the call-processing software of a private branch exchange (PBX) was

modelled. The features of ObjectState made the model simple and easy to create.

The language was extended to model test requirements, allowing test requirements to be

formally specified in a simple way.

The main contribution in the thesis was the creaton of two new algorithms to enable test
generation from LTS models of sofrware. The incremental test generation and interaction
abstraction algorithms significantly reduce the state-explosion problem when analyzing LTS
models. The algorithms enable the analysis of far larger models than previous algorithms could

handle. At the same time, the algorithms can be used in conjunction with previous algorithms

to further increase the size of models that can be analyzed.

The incremental test generadon algorithm takes advantage of the fact that test cases can be
generated incrementally. Generating a part of a test case only requires a small amount of
information, which means the system can be reduced exponentially. As a result, extracting each

portion of the test takes much less effort than extracting the entire test case at once.

The interaction abstraction algorithm cleverly removes redundant informaton from the
model, while preserving all information necessary to generate the test case. It is especially
effective working with incremental test generation, since it means only a portion of the system
behaviour is of interest at a time. The interaction abstraction algorithm avoids state explosion
by iteratively minimizing each component. It is shown to have complexity O(#'77), where ris
the number of components, and sz is the number of states of a component. (This complexity
holds for components with rwo-way communicaton. For simultaneous, 4-way interactions,

the complexity is (7' #*").) The correctness of the algorithm is proved.

Interaction abstraction is effective for models of software components, which have the

following characteristcs:
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e the system is made up of many loosely-coupled components; each component

communicates with a limited number of other components

e each component is small enough to be generated and minimized, but composidons of

components are too ]:u'ge

e large components are the result of handling many loosely-related aspects, and many

connections with other components
e only a small part of the system’s behaviour is of interest at one ume.

Under these reasonable assumptions, the algorithm depends linearly on the number of

components, while potendally reducing the global state space exponentially.

Additonally, the interaction abstraction algorithm 1 useful for general model-checking
purposes, especially for verificaton of properties that depend on a small subset of the actuons

of a system.

Experiments conducted on the model of the PBX showed the algorithms effectively reduce
realistic models of software for test generation. They eliminate redundancy in models that use
dara structures and variables, contain vardables with similar data values, and redundant
components. The experiment showed the feasibility of analyzing useful, realistic models for

generating test cases.

6.2 Limitations and Future work

The following limitations of the current work need to be addressed.

6.2.7 Testing analysis

The algorithms in this thesis reduce state space models to enable test case generation.
However, the paths generated by a standard model-checker are not satisfactory test cases. For
example, they do not allow for non-deterministic output from the system. Several previous
studies have developed techniques for generating executable test cases from state space
models[23][28]. These techniques need to be combined with the reduction algorithms to

generate test cases for sofrware component interaction.
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Beyond test generation, the formal definidon of coverage criteria allows many other types of

testing analysis, such as

e generating a minimalset of test cases to satisfy a coverage criteria
e evaluating the level of coverage given a set of test cases

e csumatng the minimal number of (further) test cases needed to achieve a level of

coverage
e seclecting tests that are needed for regression testng, given a notion of change in model

Efficient algorithms should be derived for thesc questons.

6.2.2 Modelling langnage

The ObijectState language only shows the feasibility of creating formal design models using
object-oriented modelling features and an imperative programming language. However, many
more features are needed in a practical, formal modelling language. Foremost, a graphical
notation and editor should be adapted from an informal languages, such as UML for Real-
Time. In addition, features such as dynamic process creation and dynamic communication
patterns should be supported. The features can be simulated using ObjectState language

constructs, but are common enough to warrant being included in the modelling language.

The most difficult part of detailed models, such as the PBX model, is the code relatng to the
data structures. The model could be simplified significantly by providing easy-to-use,

predefined data types.

6.2.7 Alfgorithms
Although the algorithms given in this thesis significantly increase the size of models that can
be analyzed, they are stll too limited for most applicatons. One of the key problem areas 1s

when many components interact closely using data structures.

A possible direction to explore is extending the interacton abstraction algorithm to consider
interactions with a group of components together, rather than distnguishing between

interactions with different components (as currently done in Section 4.4.4). Many issues would
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need to be solved, such as how to prevent an explosion in the number of interactions, or how

to compose components that have been reduced in this way.

Another incremental improvement can be obtained by extending the algorithm to handle
coarser equivalence relations, such as safety equivalence([9], or trace equivalence. Currently, the
algorithm preserves observation equivalence, which is stronger than necessary for testng. A

coarser reladon would allow greater reducuon.

An attractve idea is to create a similar algorithm that preserves pardal-order or symmetry
equivalence in addition to observaton cquivalence, using for example, Valmar's technique

([66], page 511).

To go beyond incremental improvements would likely require manipulating data in symbolic
rather than expanded form (as concrete transitions and states). A combination of interaction

abstraction with abstract interpretation may be useful.

6.2.4 Tooks

While prototype tools have been implemented for the techniques in this thesis, the ideas
should be incorporated into industrial-strength tools in order to be used for practcal
applications. In particular, the implementation of the algorithms can be greatly speeded up if

tools supported hook transitions directly. For example, minimization tools should trear them

as internal transitons.



Appendix A

OBJECTSTATE MODELS OF PBX

A.1Model of Call handler

#!Perl

package models: :Callhandler;
use strict;

use trans::Parsemodel;

use models: :Porttypes;

DEFINE call_handler proc => PROCTYPE {

QnsT

'‘digit_1_timeout : 5;
digit_2_timeout : 10;
ringing timecut : 120;

fast_busy timecut : 120;
slow_busy timecut : 120;':

PORT
Timer => 'timer_interface',
Call_manager => 'call manager_interface',
Line_scan => 'line_scan_interface',
Database => 'office_database interface',
"TTRX_scarmer [ttrx_EN} ¢ => *TTRX_scanner_interface’,
Resource manager => 'resource_manager_interface',
HW => 'hardware_interface',

VAR
Handled phone EN => ‘phone EN',
Dialled IN => 'directory_mumber’,
Dialled digit => 'digit’,
Dialled phone EN => 'phone EN',
Dialled phone status => 'equipment status’,

TIRX => 'ttrx_EN',
Qut_charmel => 'chammel id’,
In charmel => 'chammel_id',

’

# the code:
STATES 'wait for call', 'handle call';
ENTER ‘'wait for call';

#H44HEHE main sequence
DEFDE 'wait for call' => STATE {
WAIT {
OF 'Call manager?handle_call (Handled phone EN)';
ENTER ‘hardle call';
};
Vi
DEFINE 'handle call' => STATE {
STATES 'get resources', 'has resources’;
INIT {
OP 'Line scan!request (MYPID, Handled phone EN, cnhook) ' ;
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ENTER ‘get resources‘;

Y

NEXIT

OP 'Call manager!finished call(Handled phone EN) ',
‘undefine Handled phene EN';

)

WAIT {

OP 'Line scan?notify (Handled phare EN, {onhook])';
CALL 'handled phane anhock';

OP 'Line_scan!request (call_manager pid, Handled phcre EN, of fhook) ' ;

ENTER 'wait for call';

};
WHEN 'idle handled chene' => HANDLE {

OP ‘Line scan!cancel (Handled phone EN)'; # need this?

OP 'Line scan!request (call_manager pid, Handled phcne EN, cnhock) ' ;
ENTER 'wait for call’;

}:
};

SHHHEBHRHE resources part
DEFINE 'get resources' => STATE {
INIT {
OP 'Rescurce manager!request()';
IF {
OP 'Rescurce manager?grant_all(In chamnel, Qut_channel, TTRX)';
ENTER 'get dialled mumber';
}oRr |
OP 'Rescurce_manager?grant_channels (In_channel, Cut_channel)’;
ENTER 'fast busy phone';
}or
OP 'Rescurce_manager?refuse() ';
CALL ‘'idle handled phane';
}i
}i
}:
DEFINE 'has resources' => STATE {
STATES 'fast busy phane', 'slow busy phone',
‘try ring phane', ‘call dialled phone', 'get dialled EN';
QNEXIT {
OP 'Resource manager!release channels(In channel, Qut_channel)';
CALL 'set idle comecticn’;
)
}i
SESHHEHHHIEEEE dialing part
DEFINE 'get dialled EN' => STAIE |
STATES 'has dialing resources’, 'lock up dialled IN';
QNEXIT {
OP ‘undefine Dialled IN';
}
}:
DEFINE 'has dialing resources' => STATE {
STATES 'get dialled rumber';
CQNEXIT {
OP 'Resource manager!release TIRX(TTRX)';
)
DEFINE 'get dialled mumber' => STRIE {
INTT {
OP 'Timer!set (digit 1_timeocut}’;
OP 'initialize(Dialled IN)';
CALL 'set dial tome commectian';
}i
CNEXIT {
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CALL ‘remove dial comnection'; # TIRX
}:
WAIT
OP 'Timer?timecut()';
ENTER 'fast busy phaone’;
}i
WAIT {
OP 'TTRX scarmer (TTRX] ?digit_dialled(Dialled digit)’',
'append digit (Dialled DN, Dialled digit); undefine Dialled digit';
CALL 'set idle tone comnectian’';
IF {
OP ' [is_complete(Dialled IN) & is_valid(Dialled IN)]',
'Timer!cancel (}';
ENTER 'look up dialled DN';

bor |
OP '[!is_complete(Dialled IN) & is_valid(Dialled DN)]',
*Timer!set (digit_2 timecut}'; # cancel first?
bR |

OP '[!is_valid(Dialled [N)}',
'Timer!cancel () ';
ENTER 'fast busy phone’;
}i

b
WHEN 'handled phone anhock' => HANDIE {
OP 'Timer!cancel()';
}i
}i
DEFINE 'lock up dialled IN' => STATE {
INIT {
OP 'Database!request EN(Dialled [N.Digits[1], Dialled DN.Digits(2])';
OP 'Database?reply EN(Dialled phone N, Dialled phene status)';
IF {
OP '[!is_error EN(Dialled phone EN) & is_active(Dialled phane status)]',
'undefine Dialled phone status';
ENTER 'try ring phone';
b or |
OP '[is_error EN(Dialled phore EN) | !is_active(Dialled phone status)]',
'undefine Dialled phone EN; undefine Dialled phone status';
ENTER 'fast busy phone';

#eH#HE4 ringing part
DEFINE 'try ring phone' => STATE {
INIT {
OP 'Call manager!get_phcne(Dialled phone EN) ';
IF {
OP 'Call_manager?phane busy(_)',
'wndefine Dialled phone EN';
ENTER 'slow busy phone';
}or |
OP 'Call_manager?phone_cbtained(_)':
ENTER 'wait pickup phcne';
}:
Vi
}:

BESHHESEE call dialled phone
DEFINE ‘call dialled phane' => STATE {
STATES 'wait pickup phone', 'caversation';
CONEXTT {
OP 'Call_manager!release_phane (Dialled phone EN) '
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}:
WHEN 'idle dialled phone' => HANDLE {
OP 'Line scan!request(call manager pid, Cialled phone EN, onhock) ';
}:
}i
DEFINE 'wait pickup phone' => STATE (
INIT {
OP 'Line_scan!request (MYPID, Dialled phone EN, offhock) *;
CP 'Timer!set (ringing_timecut)';
CALL 'set ringing carnection';
}i
ONEXIT
CALL, 'veove ringing comnecticon':
}:
WAIT
OP 'Line scan?notify([Dialled phone EN], (offhock])';
OP 'Timer!cancel()';
ENTER 'conversation’;
};
WAIT
OP 'Timer?timecuc()';
OP 'Line_scan!cancel (Dialled phone EN}';
ENTER 'fast busy phone';
}:
WHEN 'handled phone anhock' => ‘-{ANDLE{
0P 'Line_scan!cancel (Dialled phone EN)';
OP 'Timer'!cancel()';
}i
}:
DEFINE 'cemversation' => STATE
INIT {
OP 'Line_scan!request (MYPID, Dialled phone EN, anhook)';
CALL 'set conversation connection';
}i
CNEXIT {
CALL 'remove canversation camection';
}:
WAIT
OP 'Line scan?notify([Dialled phone ENJ, (anhook] ) ' ;
CALL 'idle dialled phone’;
CALL 'idle hardled phone’;
}i
WHEN 'handled phone onhock' => HANDLE {
CALL 'idle dialled phcone';
}:
}i

HHERHEHEH tones part
DEFINE 'slow busy phone' =»> STAIE {
INIT {
CALL ‘set slow busy camection';
OP 'Timer!set (slow busy timecut)';
}:
WAIT {
OP 'Timer?timecut ()} ';
ENTER ‘fast busy phone';
}:
WHEN 'handled phone onhock' => HRNDLE {
OP 'Timer!cancel()';
)
DEFINE °*fast busy phone' => STATE
INIT {



APPENDIX A: OB[ECTSTATE MODELS OF PBX 101

CALL ‘set fast busy camection';
OP 'Timer!set (fast_busy timecut)}';
}:
WAIT {
OP 'Timer?timecut(}’;
QALL ‘'idle handled phane';
}:
WHEN ‘handled phane onhock' => HANDLE
OP 'Timertcancel()';
}:
}:

HEHHHEHEEYE connect ion parT
DEFINE 'set dial tone comection' => SBQUENCE
0P 'HW!set idle(Harndled phone EN, idle off)’;
OP 'HW!cornect (Handled phone EN, TTRX, Qut_¢ cbannel)"
OP 'HW!camnect (Dial_tane EN, Harﬂled_phme_m In_chamel)';
b

DEFIME 'set idle tane camecticn' => SEBQUENCE
OP 'HW!'comnect (Idle_tane EN, Handled phone EN, In_channel)';

b

DEFINE 'remove dial commection' => SBQUENCE
OP 'HW!discormect (Qut_channel} ';

}:

DEFINE 'set ringing comection' => SBURNCE
OP 'HW'!carmect (Ring tone EN, Handled phene EN, In_chamnel)’;
OP 'HW!set_ringing(Diailed phcne N, rirging on) ';

Vi

DEFINE 'remove ringing commection' => SHUENCE {
OP 'HW!cormect (Idle tone EN, Handled phone EN, In channel}':
OP 'HW!set_ringing(Dialled phone EN, ringing off)';

)

DEFINE 'set idle cormecticn’ => SBEQUENCE {
OP 'HWiset_idle(Handled phone EN, idle on)';
}:

DEFINE 'set conversation commection’ => SBQUENCE {
OP 'HW!set_idle(Dialled phone EN, idle off)';
0P 'HW!connect (Dialled phone EN, Handled phone EN, In charmel) '
OP 'HW!commect (Handled phane EN, Dialled phone EN, Out_chamnel)’;
}i

DEFINE 'remove canversation carmection' => SEQUENCE
OP 'HW!discamect (In_charmel) ';
oP 'HW!discamect (Cut_chamnel) *;
OP 'HWiset_idle(Dialled phone EN, idle an}';

}:

DEFINE 'set siow busy camection' => SBQUENCE {

OP 'HW!carmect {Slow busy tone EN, Handled phone EN, In_chamel)';
}:
DEFINE 'set fast busy camection' => SEQUENCE

OP 'HW!carmect (Fast_busy tone EN, Handled phone EN, In_chamel) ';
}i

}; # proctype
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A.2Model of Call manager

#!Perl
package models: :Callmanager;

use trans::Parsemodel ;
use models::Porttypes;

DEFINE call manager proc => PROCTYPE {
PCRT
'Handlers (handler pid]l' => 'call_manager_interface’,

Line scan => 'line_scan_ interface',

VAR
Free_handlers => 'set _of handler pids’,
Free phones => 'set_of phcne ENs',
Handler => ‘handler pid’,
EN => 'phone EN':;

CP 'set_initialize handler pids(Free_handlers):
for 1 : handler pid do
set_insert_handler pids(Free_handlers, i);
end;
set_initialize_phcne ENs(Free phones):';
4 send all the requests
oo {
# order of scan requests is nct determined
SELECT [Next EN => 'phone EN'] =>
'[ tset_exists_phone ENs (Free phanes, Next EN) ',
# Next_EN != error EN &
‘Line scan!request (M/PID, Next_EN, offhoak)’,
'set_insert_phone ENs(Free phones,Next_IN):';
}er |

oP ' [forall i : phone EN do set_exists_phone ENs (Free phones, i) end] *;

% i=error EN |
ENTER 'handle requests’;

}i

DEFDME 'handle requests' => STATE {
WAIT
OP 'Line_scan?notify(EN, [anhock])',
'set_insert_phone ENs(Free_phones, EN)';
OP 'Line scan!request (MYPID, EN, offhock)’,
‘undefine EN';
}i
WAIT {
OP 'Line_scan?notify(EN, (offhock])’,
‘set_remove_phone ENs (Free_phones, EN) '
1F {
4 which handler is not determined
SELECT (Free_harndier => 'handler pid' ] =>
' [set_exists_handler pids(Free_handlers, Free handler)]",
'set_yemove handler pids(Free_handlers, Free handler);
Handler := Free_handler';
P ‘Handlers[Handler] !handle call(EN)',
'undefine EN; undefine Handler';
b or |
OP 'Line scan!request (MYPID, EN, anhock)',
' [set_no_more_handler pids(Free handlers)]’,
'set_remove phone ENs(Free phones, EN);
undefine EN';

102



APPENDIX .4: OBJECTST.ATE MODELS OF PBY

WAIT {

0P 'Hardlers(Handler]?finished call(EN)',
'set_insert_handler pids(Free_handlers, Hardler);
udefine Handler; undefine EN';

b
WAIT {
CP ‘Handlers[Handler] ?cet_phcne (EN) ',
' [set_exists_phone ENs(Free_phenes, Message_Phane)] ',
'set_remove phone ENs (Free phones, EN)‘;
OP 'Hardlers (Hardler] !phone cbtained (EN) ',
'undefine Handler; undefine EN';
¥
WAIT {
OP 'Handlers {Handler] ?get_phane (EN) ',
'[tset_exists _phone ENs(Free phones, Message Phane)]';
OP 'Handlers [Handler] !phone busy(EN) ',
‘undefine Handler; undefine EN';
}:
WAIT {
OP ‘Hardlers(_]?release _phcne(EN) ',
‘set_insert_phone ENs (Free_phones, EN);
undefine EN';
b
}; # state
Vi
if (@) |
QST

SCANINTEFVAL => 'l',
BCRT

Timer =»> 'timer_interface';
WAIT {

QF 'Timer?timecuc(}’;

OP 'Timer!set (SCANINTERVAL) '
b

};

; % done, restart timecut

1;

A.3Model of Linescan

#!Perl

package models: :Linescan;

use strict;

BEGIN {
use Exporter ()
use vars qw (SVERSION @ISA GEXFORT GEXFORT OK $EXPORT_TAGS) ;
@ISA = qw(Exporter) ;
@EXPORT = gwi$scanreq table);

}

use vars GEXPORT;

use trans::Parsemodel;
use models::Datatypes;
use models: :Porttypes;

$scanreq table = table of {'scanreq’

DEFINE line scan _proc => PROCIYPE (
CCNST
'SCANINTERVAL : 4;',

'

, 'phone EN'=> 'process_id', 'hock_status');

10

D



APPENDIX A: OBJECTSTATE MODELS OF PBYX 104

BORT
'Reqline [process_id]' =» '‘line_scan_interface’,
HW => 'hardware_interface’,
VAR 4 these names get aliased
En => 'phone EN',
Requestor => 'process_id’,
Hook => 'hook_status’,
Table => 'table of scanregs',

STATES 'wait';

ST ‘table inivialize moanweqsiTaple) o'

ENTER 'wait';

DEFINE 'wait' => STATE {
WAIT {
OP 'Regliine( ] Prequest (Requestor, En, Hook) ',
‘table_set_scanreqgs (Table, En, Requestor, Hook) *;
}i

WAT
OP ‘Reqline(_}?cancel(En)’,
'table remove_scanregs(Table, En);';

}:
WAIT {
SELECT [Check EN => 'phone EN'] =>
' [table_exists_scanregs(Table, Check EN)]',
‘table get_scanregs (Table, Check EN, Requestor, Hook) ;
En := Check EN';
IF {
OP 'HW?hook_status([En], (Hookl)';
OP 'Reqgline [Requestor] !notify (En, Hock)',
'table_remove_scanregs (Table, n);';
bR {
OP 'HW?heck_status((En], _)°',
' [Message_Status != Hook]';
}
Vi
};
Vi
if (@ {
FORT
Timer => 'timer_interface',
VAR

Iter => 'set_of phone ENs',

OP 'Timer!set (SCANINTERVAL) ' ;
OP 'set_initialize process_ids(Iter);";
WAIT
OP 'Timer?timecut()';
CALL ‘scan';
OP 'Timer!set (SCANINTERVAL) ';
}i
DEFINE 'scan' => SEQUENCE {
CP 'for i : phone EN do
if table exists_scanreqs (Table, i} then
set_insert process_ids(Iter, 1);
end;
end;';
oo {
SELBCT [Next EN => 'phone EN'] =>
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* {set_exists_phone ENs(Iter, Next EM)]',
'set_remove phone ENs(Iter, Next EN);

table_get_scanreqgs (Table, Next EN, Requestor,

En := Next EN;';
IF {
OP 'HW?hook_status{ {En], [Hock])';
OP 'Reqline(Requestor] tnotify(En, Hoak)',

'table_remove_scanregs (Table, Requestor);’;

bor |
OP 'HW?hook_status([Enl, _)',
' [Message_Status != Hock]'

}or
OP ' {set_no_more_process_ids(Iter)}';
GO0 'erdloop’;
b
'endloop’ ;
}:

}

1;
A.4 Model of Database

#'!Perl

package models: :Database;
use strict;

use trans::Parsemcdel;
use models: :Datatypes;
use models: :Porttypes;

DEFINE office_database_proc => FRCCTYFE {
FORT

Hock) ;

‘Regline (handler pid]' => 'office database_interface',

VAR
Digitl => 'digit’,
Digit2 =»> ‘'digit',
Requestor => 'handler pid',
[NTable => 'array [1..8] of array [1..2] of digit',

OP 'INTable(1] (1]

:= keyl; DNTable(1] (2] := keyl;
INTable {2] [1] := key4; INTable(2] [2] := keyd;
INTable (3] (1] := keyS; INTable(3] (2] := key3;
INTable (4] [1] := key2; INTable([4] {2] := key3;
INTable(S] (1] := keyS; DNTable(S] (2] := key2;
INTable(6] (1] := key?7; NTable[6] (2] := keyd;
INTable(7] (1) := key4; DNTable(7] [2] := key3;
{[NI‘able[B] (1) := ; DNTable(8] (2] := key6';
oo
oP iReqli.ne [Requestor] ?request_EN(Digitl,Digit2)':
IF

op '{forall Phane : phone EN do
Phone = error EN |

(ONTable [Phane] (1] != Digitl | INTable[Phane] (2] != Digit2)

end] ',

'Reqgline [Requestor] ! reply EN(error EN, inactive)';

b or {
SELECT [Phane => 'phone EN') =>
' [Phone != erxor EN &

(ONTable [Phone] [1] = Digitl & INTable[Phone] [2] = Digit2)]',

'Reqline [Requestor] ! reply EN(Phone,active) ';
}
}
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}

A.5Model of Port types

#1Perl

package models: :Porttypes;
use strict 'vars';

use strict 'refs’';

BEGIN {
use Exporter ();
use vars qw (SVERSION 2ISA GEXPORT ZEXFCRT OK $EXPORT_TAGS) ;
@ISA = qw(Exporter) ;

GEXPORT = qw(&forgetful buffer of ):
}
use vars SEXFORT;
use trans::Parsemodel;

DEFINE timer_ interface => PORTTYPE
‘set' => [ Time => 'timeout_interval' ],
timeout => { ],
cancel => (],

)i

DEFINE line scan_interface => PORTTYFE {
request => [ Requestor => 'process_id’,

Phone => 'phan_B*l',

Hock => 'hook_status'},
notify => [ Fhone => 'phone EN',

Hook => 'hook_status'},
cancel => [ Phone => 'phone EN', ],

)

DEFINE call _manager_interface => PCRTTYFE {
handle call => [ Phone => 'phone EN'],
finished call => [ Phone => 'phone EN'J,
get_phone => { Phone => 'phone EN'],
release_phone => [ Phone => 'phone EN'J,
phone_busy => [ Phone => 'phone EN'],
phone_cbtained => [ Phone => 'phone EN'],

}i

DEFINE office database_interface => PORTIYPE {
request_EN => [ Digitl => 'digit', Digit2 => 'digit’ ],
reply EN => [ Phone => 'phane EN',

Status => 'equipment_status'],

}i

DEFINE TTRX scamner_interface => PORTTYPE (
request => [ ],
cancel => [ 1},
digit_dialled => [ Digit => 'digit'],
}
DEFINE resource manager_interface => PORTTYPE {
request => [ ],
grant_all => [ Charmell => 'chammel id',
Charmel2 => 'channel id',
TIRX => 'ttrx EN'],
grant_chammels => [ Charnell => 'chamnel id’',
Charmel2 => 'chammel id',},
refuse => (],
release channels => [ Chammell => 'chammel id’,
Charmel2 => 'charmel_id'},
release TTRX => [ TIRX => ‘ttrx EN'],
)i
DEFINE hardware_interface => PORTTYPE
'set_idle' => [ EN => 'phone EN',
Status => 'idle status'],
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'cormect' => [ EN1 => 'equipment murber’,
EN2 => 'ecuipment_mmber',
Charmel => 'chamnel_id'},
discamect => [ Charmel => 'chamnel id'],
‘set_ringing' => [ Line => 'phane EN',
Status => 'ringing_status'}],
hook_status => [Line => ‘phone EN',
Status =>'hook_status'},

}i

1;

A.6 Model of Data types

#!Perl

package models::Datatypes;

use strict;

BEGIN {
use Exporter (};
use vars qw{SVERSICN @ISA GEXPORT SEXPORT CK $EXPCRT_TAGS) ;
PISA = qw(Exporter) ;

SEXPORT = qwi{Sphone_types $set_of phone EN $set_of hardler pid
Sdirectory_mumber_type &set of stable of);
}
use vars GEXFORT;
use trans::Config:

HH4EREEIULEEBEHRERERRENEE PEX-specific data types SHRHEHHSMBIRGHRRNEHERNER
Sphone_types = sub {
DECLARE 'oenst
erxor_EN : NUM_PHONES + 1;
FIRST TTRX_EN : error EN + 1;
LAST TTRX_EN : FIRST_TTRX_EN + NUM_TTRXES-1;
FIRST TONE EN : LAST TTRX_EN;
Dial_tone EN : FIRST_TONE EN+1;
Idle_tone EN : FIRST TONE EN+2;
Ring tane EN : FIRST TONE EN+3;
Slow busy_tone EN : FIRST TONE_EN+4;
Fast_busy tone EN : FIRST TQME_EN+5;
LAST_TQMNE EN : Fast_busy tone EN;
LAST EN : LAST TONE EN;';
DECLARE 'type
phone EN : 1..error EN;
ttrx EN : FIRST TIRX EN..LAST TTRX_EN;
equipment_number : 1 .. LAST EN;

charmel_id : Scalarset (NUM_CHANNELS) ;
equipment_status : emm {active, inactive};
hook_status : emm {offhock, onhook};

ringing status : emm {ringing_off, ringing cn};
idle status : emm {idle off, idle an};

timeout_interval : 1..600;';
DECLAREPRCC '
functien is error EN(EN : phone EN) : boolean;
return EN = error EN;
erd;
function is active(Status : equipment_status) : boolean;
return Status = active;
end;
INCIADE $directory rumber_ type;
}i
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$directory murber_type = sub {

DECIARE 'type
digit : emm {key0,keyl, key2, key3, key4, keys, key6, key7, key8, key9,
keyhash, keystar};

directory rumber : record
Digits : array [1..2] of digit;
NumDigits : 0..2;
end;';
DECLAREFPRCC !
procedure append_digit (var IN:directery murber; Digit:digit}:
begin
if DN.NumDigits < 2 then
N MmDigits:=0N. NMumDigits+1;
[N.Digits [DN.NumDigits] := Digit;
end;
erd;
function get_digit (IN:directcry mumber; DigitMum : 1..2) : digit;
begin
return IN.Digits [DigitNum] ;
end;
procedure initialize(var N:directory_mumber);
begin
IN.NumDigits:=0;
end;
functicn is_complete (IN:directory murber) : boolean;
return IN.NMumDigits = 2;

end;
function is valid{(IN:directory_mumber} : boolean;
begin
retum forall i : 1..2 do
(i > DN.MumDigits) | ((CN.Digits{i] != keyhash) & (IN.Digits[i]
end;

Sset_of phone EN = set_of ('phone_EN');
$set_of handler pid = set_of ('handler pid');

BEBLBEREREEEHBABRREHERENE generic data types HERBEHEHARBUBHRHES
# table, set

# inplementation of sets
sub set_of {
my Selemtype = shift;
retwrn sub {
DECLARE "type
set_of_S{elemtype}s : Array [ ${elemtype} ] of boolean;";
DECLAREPROC "

'= keystar})

procedure set_initialize ${elemtype}s (var set : set of ${elemtype}s);

for i : ${elemtype} do
set[i] := false;
end;
erd;

procedure set_insert_${elemtypels (var set : set_of ${elemtype}s;
elem : ${elemtype});

if isundefined(elem) then
retumm;

end;

set [elem] := true;
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erd;

procedure set_remove_$({elemtype}s (var set : set_of ${elemtypels;
elem : S{elemtype});

begin
if isundefined{elem) then
returmn;
end;
set [elem] := false;
erd;

functicn set exists_S${elemtype}s (set : set_of_${elemtype}s;
elem : S{elemtype}) : boolean;

begin

if isundefined(elem} then

return false;

end;

return set {elem] ;
end;

functicn set_ro more_${elemtypel}s (set : set_of_${elemrype}s)
: boolean;
begin
return forall i : ${elemtype} do
set[i] = false
end;
erd;";

!
}

sub table of |

my Stabletype = shift;
my Sindextype = shift;
my @elemtypes = @_;
my Sparamdecl = "";
my Svarparamdecl = "";

my Sparamsets = "";
my Sparamgets = "";
for (my $i=0; $i< @elemtypes; $i++) {
Sparamdecl .= "\n p${i} : Selemrypes{$il;";
$varparamdecl .= "\n  var p${i} : Selemtypes($il:";
Sparamsets .= "\n  p${i} := table(index].p${i};":
= "\n table(index] .ps{i} := p${i};";

DECLARE "type
element of_${tabletype} : Record
in set : boolean; ${paramdecl}
end;
table of ${tabletype}s : Array [ ${indextype} | of element_of_${tabletype};";
DECLAREPRCC "
procedure table initialize ${tabletype}s (var table : table of_${tabletype}s);
begin
for i : ${indextype} do
table(i].in set := false;
end;
end;

procedure table set ${tabletype}s (var table : table of ${tabletype}s;
index : ${indextype}; ${paramdecl});
if isundefined(index) then
returmn;
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end;

${paramgets}

table(index] .in set := true;
end;

procedure table get ${tabletype}s (table : table of_${tabletypels;
index : ${indextype}; ${varparamdecl});:

begin

if isundefined(index) then

retumn;

end;

${paramsets}
and -

procedure table remove ${tabletype}ls (var table : table of_${tabletvpe}s:
index : ${indextype}):
begin
if isurdefined(index) then
retum;
end;
undefine tablef{index];
table [index] .in_set := false;
end;

function table exists_${tabletype}s (table : table of ${tabletypels:;
index : ${indextype}) : boolean;
begin
if isundefined(index) then
return false;

end;
return table(index] .1n_set;
end;
functicn table no more_${tabletype}s (table : table of_${tabletype}s)
: boolean;
begin

return forall i : ${indextype} do
table(i] .in_set = false

end;

erd;";

b
}
A.7Model of Test requirement

#i1bperl

package medels: :Camectreq;
use strict;

use trans::Parsemodel;

use models: :Porttypes;

DEFINE cannect_2_req => PROCTYPE {
VAR
Comected => '1..3';
PCRT
'HWlhandler pid]' => 'hardware interface';
OP 'Camected := 1';
Do { OP 'HW[ J?camect(_, _, _)°'.
' (Message EN1 <= MM _FHONES & Message EN2 <= NUM PHONES & Comected < 3]°,
'Camected := Comected + 1';

OR { OP 'HW([_]J?comect{_, _, _)'.
' [Message EN1 <= NUM_PHONES & Message EN2 <= NUM_PHONES & Camected = 31
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ACCEPT;

}

OrR { OP 'HW([ ]J?camect(_,_, )';}
OR { OP 'HW(_]2disconnect( )';}
CR { OP 'WW(_]?sec_idle{_, )';}
OR { OP 'HW(_]?set_ringing(_, }

v;}
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Appendix B

PARAMETERS FOR PATH GENLERATION

B.1 Parameters for Araprod
araprod -s -m 18000000 -o comp -M acceptstate -T file.lts -t
file.lts
probe comp
query volatile verbose bspan(true) %1
where acceptstate is the name of the state where the test requirement is satisfied and file.lts 1s

the LTS representations (in ARA format) of a component and test requirement.

B.2 Parameters for Exhibitor

exp.open file.exp exhibitor < accept.seq
where file.exp contains the composition expression of the LTS representations of the
components, and accept.seq is a sequence pattern specifyving the satisfacdon of the test

requirement.

B.3 Parameters for Aldebaran
aldebaran -pequ -bdd -bddsize 120 -labels 40000 -hide
conn.hide file.exp accept.aut
where file.exp contains the composition expression of the LTS representations of the

components, and accept.aut is an LTS specifying the satisfaction of the test requirement.

B.4 Parameters for Spin
spin -a analyzer.prom
gcc -DBITSTATE -DMEMLIM=200 -DSAFETY -DVECTORSZ=2000 pan.c
./a.out -w28

where analyzer.prom is the Promela descripdon of the system of components with the test

requirement..
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