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Abstract 

The impact of soot on human health and the environment is a function of its size and 

morphology. Thus, it is important to have a method to quickly and accurately determine the 

aggregate size distribution of soot. 

Elastic light scattering is considered as a method to determine the aggregate size 

distribution in an aerosol. The relationship between the scattered light and the aggregate size 

distribution is derived and a robust inversion method is presented. The method is validated 

against artificial data. It is then applied to experimental data from a flame condition at which a 

distribution obtained from TEM analysis exists, and found to work quite well. 

Finally, optimization is applied to the experimental angles at which light is measured. 

The results showed that there is indeed an optimal angle setup, and that the error at that optimal 

setup is reduced over other angular setups. 
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Chapter 1             

Introduction 

1.1 Fundamentals of Soot 

Soot aggregates form through incomplete combustion; the presence of soot implies 

inefficiencies in a combustion process, and a potential risk to human health and the environment. 

This chapter will present the background of the study of soot aerosols, explain why soot is of 

interest, discuss the properties of soot, and finally put forward the basic experimental 

methodology on which this thesis is based.  

The study of soot aerosols has shown two important reasons for understanding soot 

aggregate morphology:  to achieve greater efficiency for combustion devices and to minimize 

particulate matter in the air that can have an adverse affect on the environment and human 

health. 

One must understand how soot is formed to further understanding in these two areas. 

Soot particles are unburned fragments of fuel, made up mainly of carbon and hydrogen, which 

agglomerate into nanospheres. These spheres then coalesce to form soot aggregates through 

aerosol dynamics (Puri, et al. 1993). These aggregates are long chains of particles, called mass-

fractals, that cannot be represented by simple geometric shapes. Two typical soot aggregates 

imaged via transmission electron microscopy (TEM) are shown in Figure 1.1. 
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1.2 Motivation of Research 

Soot is potentially harmful and represents inefficiencies in a combustion process. To 

understand the effect soot has in these two areas, an overview of the current research and usage 

of soot in four fields is presented: its role in combustion applications, its adverse affect on the 

environment, its potential harm to humans if inhaled, and its purposeful creation in some 

industrial applications.  

1.2.1 Role in Combustion 

Soot can be useful in certain combustion processes. For instance, soot is very efficient at 

radiating energy compared to gas-phase radiation, which is useful in a boiler. The soot within the 

flame radiates the energy of combustion to the walls where it is transferred to the working fluid. 

However, this principle is undesirable in an internal combustion engine, where losing heat to the 

walls decreases the efficiency of the engine and requires that materials capable of resisting 

higher temperatures be used (Shaddix and Williams 2007).  

 

Figure 1.1 –Typical soot aggregates, courtesy of Dashan Wang, National Research Council,  

                   Canada  
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The radiative efficiency of soot can have devastating effects in certain situations. For 

example, this property can greatly increase the damage caused by a pool fire, where the fuel 

source is a pool of liquid hydrocarbons. Because of the way the air moves around a pool fire the 

flame is fuel rich, which promotes soot formation. The soot then rises above the pool and 

radiates most of its energy back to the liquid. This vaporizes more fuel, which generates more 

soot, and the cycle continues. This radiative feedback mechanism increases the rate at which the 

fuel combusts and also increases the radiant loading of surrounding surfaces. This effect makes 

such fires difficult to extinguish, and in many cases they must simply be allowed to burn until the 

fuel source is depleted. This is often the case when vehicles that have a great deal of fuel on 

board crash (Shaddix and Williams 2007).  

Furthermore, the presence of soot in any combustion reaction inherently means that the 

reaction is not continuing as efficiently as possible, as soot is formed from unburned fuel. There 

is a drive to use fuel as efficiently as possible, and a method to quantify the soot aggregates 

present within the exhaust gas in situ would be invaluable. 

1.2.2 Environment 

Soot has been tentatively linked to climate change. Once cooled, soot is very dark in 

colour and is highly absorptive. If soot settles on a surface it can greatly increase the heat 

absorbed. This can raise the temperature of the surrounding area (this is similar to the ―heat 

island‖ effect in cities due to dark-coloured roads and buildings) and in the case of snow or ice, 

may promote melting. It is speculated that soot deposition is one of the reasons why the polar ice 

caps are melting faster than the current models predict (Jacobson 2002). Some larger soot 

aggregates can form condensation nuclei for water droplets in the atmosphere, promoting cloud 
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formation. Increasing cloud formation can lead to global dimming, where the increased cloud 

cover reflects more of the sun‘s energy, reducing the energy that reaches the surface of the 

planet. This is especially important because light is necessary for photosynthesis in plants and 

hence for all life. A decrease in the amount of light may potentially reduce the productivity of a 

plant. As well, increasing clouds might cause an increase in rainfall, changing the weather 

patterns of a given area. These two effects combined might have some small affect on crops, but 

most research so far points to the change in crop productivity being minor with small to 

moderate changes in global dimming. In fact, global dimming might, in some specific cases, 

cause an increase in crop productivity (Stanhill and Cohen 2001). 

Other studies have suggested that global dimming may have a much stronger effect. One 

of the largest factors in climate change is thought to be the Surface Solar Radiation (SSR), which 

is the amount of solar energy reaching the surface of the earth. The SSR is directly affected by 

global dimming (Wild 2009). In turn, global dimming is thought to be affected by the presence 

of particulate matter in the atmosphere (above and beyond the somewhat minor effect of cloud 

nucleation by particulate matter (Wild 2009)). A reduction in the SSR can potentially lead to 

reduced winds and rainfall, such as was seen in the sub-Sahara in northern Africa in the 1980‘s, 

which caused drought and famine that affected millions (Folland, Palmer and Parker 1986). 

Research is ongoing as global dimming directly counteracts global warming, making it appear to 

be a good thing. There is a tentative link between global dimming and disastrous climate change, 

however, and a great deal of research is being carried out on the topic to quantitatively determine 

its impact. One of the biggest problems is a lack of data on the particulate matter in the 

atmosphere going back far enough to make conclusive arguments (Wild 2009).  
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1.2.3 Health Effects 

Soot plays an important role in human health. The effects of soot aggregates on human 

health and the environment have been debated for years. Pope and Dockery (2006) performed a 

comprehensive review of the studies concerning the effects of particulates on human 

cardiovascular health that had been carried out up to that time. They noted that extreme cases of 

air pollution were linked with an increase in both the frequency and severity of cardiovascular 

disease. The existence of this link is no longer in question, although there is still uncertainty as to 

the level of particulate matter in the air that causes morbidity. For a number of decades after the 

link was determined it was thought that mid- to high-level concentrations of particulate matter 

were needed to cause disease. Recent work, however, has shown that even low levels of 

particulate matter can also potentially cause disease; this has lead to the conclusion that 

aggregate morphology is just as important as the particulate mass and volume fractions in human 

cardiovascular health.  

This is particularly worrisome given the increase in smog in urban centres. Smog is made 

up of particulate matter as well as water droplets condensed around aggregates. Such particulate 

matter, when inhaled, has different effects on the body, depending on aggregate size. Very small 

particulates are generally less soluble than large aggregates, which may allow them to translocate 

from the lungs directly into the bloodstream across the pleural membrane rather than being 

trapped in the lungs as larger particles tend to be. Long-term build-up of aggregates in the lungs 

can lead to breathing trouble as well as infection, and even death (Pope and Dockery 2006).  
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1.2.4 Industrial Applications 

While soot can have adverse effects on human health and the environment, some 

industrial processes utilize the beneficial properties of specifically generated particles, known as 

carbon black. These particles differ from flame-generated soot in their chemical makeup; carbon 

black is near to 97% carbon, whereas soot is generally less than 60% carbon. For years these 

aggregates have been added to certain rubbers, generally as hardening agents in tires, as well as 

for pigment in ink used in printer toner. The industrial processes that produce carbon blacks must 

generate aggregates of a specific size, as the desired functionality depends on the size of the 

aggregate. As well, soot aggregates were the original source for carbon nanotubes and bucky 

balls, which are of significant interest to those studying nanotechnology, due to their unique 

engineering properties (Shaddix and Williams 2007, Carbon Black User's Guide 2004).  

1.3 Experimental Methodology  

This section presents a more in-depth look at the fractal nature of soot aggregates and 

lays out light scattering theory, which is used to recover the probability density function of the 

aggregate size distribution. The ill-posedness of the system is then considered, along with 

methods for managing it. 

1.3.1 Light Scattering From Fractal Soot Aggregates 

When flames were first studied scientifically, it was assumed that soot aggregates could 

be modelled as spheres, or some other such simple shape. This can be seen in the early work in 

the field of light scattering from soot aerosols (Gans 1928, P. Debye 1944, LaMer and Sinclair 

1949, Engelhard and Friess 1949). It wasn‘t until much later that the theory of fractals, 

developed by Benoit Mandelbrot (1977), was applied to describe soot aggregates (Forrest and 
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Witten 1979). Fractals are recursive in nature, such that viewing an aggregate at different 

magnifications reveals a similar structure. Modeling soot aggregates as fractals has provided a 

mathematically rigorous framework in which to work.  

If a fractal nature is assumed, the number of primary particles per soot aggregate, , is 

related to the radius of gyration, , of an aggregate by  

 (1.1) 

where  is the fractal prefactor,  is the fractal dimension, denoting the ―openness‖ of an 

aggregate (  is a solid sphere and  is a line), and  is the diameter of the primary 

particles in an aggregate. It is generally assumed that  is constant (Brasil, Farias and Carvalho 

1999), so the aggregate size distribution for an aerosol varies by  alone. 

To determine the impact of a soot aerosol on human health and the environment, the 

number of aggregates in the aerosol as a function of the number of primary particles per 

aggregate, called the aggregate size distribution, must be determined. One way to do this is to 

collect aggregates from the flame and view them using electron microscopy as done, for 

example, by Dobbins and Megaridis (1987). However, this method is time consuming, and 

certain aggregate sizes may be preferentially attracted to the sampling slide. A sampling of TEM 

images are shown in Figure 1.1. Another method is to shine light through the aerosol and 

measure the angular distribution of the scattered light, using the experimental apparatus shown in 

Figure 1.2. The laser shines a specified wavelength of collimated and vertically polarized light at 

through the flame atop the burner. The light is scattered by the soot, and the detector measures 
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this scattered light. The measurement is then converted into the intensity of the light scattered in 

the measurement direction, which is the experimental data used throughout this thesis.  

The angular scattering measurements are strongly related to the aggregate size 

distribution. Each aggregate scatters light in a different angular distribution, depending on the 

morphology. The angular scattering from three different sized aggregates is shown in Figure 1.3. 

An aerosol is made up of a wide range of aggregates of varying sizes, and the measured signal is 

the integration of the scattering from all aggregate size classes combined. This makes recovering 

the aggregate size distribution difficult, and necessitates measuring the scattering at multiple 

angles, to help narrow down the possibilities.  

 

 

 

Figure 1.2 – Experimental Apparatus 
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1.3.2 Ill-posedness and Regularization 

The dependence of the scattered light on the probability density function of the aggregate 

size distribution is described by a Fredholm integral equation of the first kind, 

 (1.2) 

where  is the angular light scattering data,  is a scaling constant, is the kernel 

function that contains system information, and  is the probability density function of the 

aggregate size distribution. The term  physically describes the probability of a given 

aggregate in an aerosol having a certain number of primary particles. The determination of this 

unknown distribution is the end goal of this thesis.  

What makes this quantity so difficult to recover, however, is the ill-posedness of the 

problem. Hadamard (1923) was the first to define a mathematically well-posed problem as one 

that has a solution that is both unique and stable. Inversion of Eq. (1.2) is ill-posed because its 

solution is not unique or stable. Instead, there are an infinite number of solutions that explain the 

data within experimental accuracy. This is caused by a ‗blending‘ property of the kernel, 

whereby specific details in the aggregate size distribution are smoothed or smeared into much 

more subtle details in the measured data. These smeared, subtle effects are generally much 

 

Figure 1.3 – Angular scattering for an aggregate of (a) 50 primary particles, (b) 125 primary 

         particles, and (c) 250 primary particles 

1 0 1 2

1

1

θ

(a)

1 0 1 2 3 4

1

2

(b)

2

1

2

2 0 2 4 6

2

2 (c)



   

 

10 

 

smaller in magnitude, and can easily be lost among the inherent noise in the measurements. 

While the inversion process can amplify such subtle details, in doing so the noise would also be 

amplified, leading to large variations in the aggregate size distribution recovered.  

 Essentially, ill-posedness arises from the fact that the governing equations provide 

inadequate information to uniquely specify a solution due to the smearing of the kernel function. 

Accordingly, one must add additional assumed information to recover a solution, a process 

called regularization. There are two main classes of regularization methods: linear and iterative. 

A popular linear method, Tikhonov regularization, work by converting Eq. (1.2) into a matrix 

equation,  

 (1.3) 

and adding another matrix to the system. In this equation,  is the discrete form of the kernel 

matrix,  is the discrete aggregate size distribution, and  is the measured light scattering data at 

various discrete angles. The second matrix adds another set of equations to the system that push 

the solution in the direction of what is assumed to be the true solution. For instance, a matrix  

that promotes smoothness can be added to give  

 (1.4) 

where λ is the regularization parameter that controls the importance of the additional equation on 

the solution. The solution to this augmented matrix equation will best satisfy both the original 

equation and the additional equation.   

 Another popular linear method is Truncated Singular Value Decomposition (TSVD). 

This method works by decomposing the matrix equation into orthonormal basis vectors and 

considering the singular values, which are weights that determine how strongly the solution 
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depends on a given basis vector. If the singular value is small (relative to the other singular 

values) then it is truncated, and the solution does not depend on the associated basis vector. This 

prevents large and highly oscillatory basis vectors from dominating the inverse problem.  

 One final linear method is Conjugate Gradient Iteration, which is an iterative linear 

method that is guaranteed to solve an  matrix equation in  steps or less. The method works 

by forming the residual between the current solution and the true solution, which is used to form 

both the step length and step direction for the next iteration. The step is taken, and the process 

repeated, up to  times. This method is only applicable to matrices that are both symmetric and 

positive definite.  

 Iterative methods are the other major class of regularization. These methods start from an 

initial guess of the solution and progressively move towards the true solution. Many such 

methods use the residual between the current guess and the measured data to determine the step 

length at each iteration, and some form of the Jacobian matrix to determine the step direction 

(Hansen 1998).  

A problem arises when adding one piece of information is not adequate to recover the 

solution. Bayesian inference was employed to add multiple assumed characteristics to the 

system, known as priors, in a mathematically rigorous manner. The probability of a given 

solution being correct is  

 (1.5) 

where  is the probability of  being correct given ,  is the probability of  

occurring given a distribution  (which is also called the likelihood function),  is the 
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marginal probability of the data and  is the probability that the solution is correct given 

a prior. Other regularization methods can be derived from Bayesian inference; for instance, Eq. 

(1.4) is derived from this equation when  is a smoothness prior.  

Multiple priors (from multiple known features of the system) are simply multiplied onto 

Eq. (1.5) to give an overall probability of the solution being correct. This method can always be 

written in an iterative form, but in many cases a linear form can also be derived. Due to the 

complexity of the problem, the linear form is generally solved iteratively as well, such that a 

solution is found and checked for validity, something is changed and the problem is solved 

again. This is advantageous as solving a linear equation many times takes far less computational 

power than solving a non-linear iterative equation.  

1.4 Scope of Problem 

The present study will recover the aggregate size distribution from an ethylene co-flow 

diffusion flame using light scattering data measured at different angles. Bayesian inference will 

be employed to add information to the system in a mathematically rigorous manner. The angles 

at which the scattering data should be collected will be optimized to produce the least ill-posed 

system, although theses optimal angles are not tested experimentally.  
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1.5 Outline of Thesis  

The remainder of this thesis is divided into six main sections. 

Chapter 2 presents a review of the relevant literature in two distinct areas: first, the use of 

light scattering to determine properties of soot aggregates; and second, a review of the inversion 

techniques that have been employed to solve for the soot aggregate size distribution.  

Chapter 3 presents the derivation of the governing equations, beginning at the radiative 

transfer equation. As well, a comparison of the different structure factors is laid out, sources of 

uncertainty are mentioned, and the nonlinearity of the governing equation is discussed 

In Chapter 4 the experiment is explained in detail, covering each optical component the 

light travels through between the laser and the detector. The spatial resolution of the 

measurements is discussed, as are sources of uncertainty.  

In Chapter 5 the method for applying regularization to the system is laid out, both for the 

linear and the nonlinear case, an artificial data set is generated and inverted as a proof of concept, 

and the experimental data is then inverted.  

Chapter 6 presents the optimization of the experimental procedure and apparatus, 

considering the size and conditioning of the matrix equation. The sensitivity matrix is derived 

and applied to the system to optimize the angle set, and the resulting angles are shown, 

theoretically, to reduce the regularization and perturbation errors inherent in the system.  

Finally, Chapter 7 summarizes the results obtained in Chapters 5 and 6, and considers the 

benefits of employing regularization to invert this problem. Recommendations for future work 

are presented.  
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Chapter 2                 

Literature Review 

2.1 Introduction 

The goal of this chapter is to present the literature relevant to the current research. There 

are two key sections to this review: the development of light scattering theory from soot 

aggregates, and application of inverse analysis to infer aerosol characteristics from light 

scattering experiments. In the section covering light scattering from soot aerosols, the 

development of light scattering as a diagnostic technique for recovering the size of soot 

aggregate size distributions will be presented. The section covering inverse analysis of light 

scattering from aerosols will deal with both linear and nonlinear regularization schemes as 

applied to the recovery of the soot aggregate size distribution from light scattering data, and lay 

out other methods that can add additional information to the system, reducing the amount of 

regularization required. 

2.2 Light Scattering From Soot Aerosols 

Using scattered light to infer attributes of aerosolized nanoparticles was pioneered by 

Tyndall (1869). His work showed that microscopic particles scatter concentrated beams of light. 

He employed this technique to determine if there were such particles in a given sample of air. 

Soon after that, Lord Rayleigh expanded the theory, as reviewed by Gans (1928). In the early 

1940‘s a number of scientists began to explore the use of light scattering to determine particle 

size within an aerosol (P. Debye 1944, LaMer and Sinclair 1949, Engelhard and Friess 1949).  
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Debye (1946) was one of the early proponents of light scattering as an experimental 

technique, although he did little work with soot aggregates. He developed one of the first angular 

light scattering measurement instruments (Debye 1946) along with techniques to determine 

homogeneities in solids via light and x-ray scattering (Debye and Bueche 1949). This led to the 

use of x-rays as a diagnostic technique for inconsistencies and structural deformities in human 

bones (Patel and Khanduala 1984).  

Tabibian et al. (1956) looked at light scattering from single spheres, using Mie theory to 

correlate the measured scattering to the physical spheres that caused it. Mie theory was 

developed by Gustov Mie (1908) to work with single spheres that are too large to satisfy 

Rayleigh scattering, and that are approximately the same size as the wavelength of light. The 

theory is an analytical solution of Maxwell‘s equations dealing with scattering of 

electromagnetic radiation, and is covered in many sources, for example (van de Hulst 1981, 

Bohren and Huffman 1983). They found that Mie theory almost exactly explained the scattering 

they observed experimentally, and therefore concluded that Mie theory was accurate for 

spherical particles. They did notice that the refractive index of the scatterers should be known 

very accurately to apply the theory.  

Early work showed that the aggregation of colloids formed aggregates that were not 

spherical (see, for instance, (Wada 1967), (Granqvist and Buhrman 1976)). Thus, while an 

approximation could be made that soot aggregates were spherical with an effective radius, 

satisfying Mie scattering, the resulting predicted scattering did not match experimental 

observations (Dobbins and Megaridis 1991).  
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Because aggregates are long chains of primary particles classified as mass-fractal in 

nature, a more accurate theory was needed to describe how they scattered light. First, a model for 

the scattering and absorption cross-sections was needed. These cross-sections essentially 

describe the ‗apparent‘ area of an object that is presented to incoming radiation in relation to the 

object‘s capacity to affect the path of the light (Siegel and Howell 2002). There was a great deal 

of work in this field, such as that undertaken by Charalampopoulos and Chang (1991), Ku and 

Shim (1991), and Dobbins and Megaridis (1991), resulting in equations that relate light 

scattering and absorption by soot aggregates to the size of the aggregates. Eymet et al. (2002) 

presented a straightforward representation of these cross sections, which were used in this thesis. 

The physics of light scattering by an aggregate is not trivial. The intensity of scattered 

light is dependent on the size of the aggregates, the electromagnetic properties of the soot, the 

wavelength of the scattered light, and the angle of scattering. The variations in the scattering can 

be split into different regimes, pictured in Figure 2.1, which is a plot of the modulus of the 

scattering wave vector squared, defined as  where  is the wavelength of 

the incident light, versus the relative intensity of the light, . 

The Rayleigh regime consists of very small particles, much smaller than the wavelength 

of light, and small-angle scattering. The scattering of light in this regime is invariant with respect 

to the scattering wave vector, and hence the relative intensity of the light is also invariant, giving 

a horizontal line graphically.  
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The Guinier regime is defined as occurring when , where  is the radius of 

gyration of the aggregate. This describes small-angle scattering where  

 (2.1) 

and was originally considered for small-angle x-ray scattering by André Guinier (1955), but then 

expanded to aggregates in general. The relative intensity in the Guinier regime is almost linear 

when plotted against  on the horizontal axis, giving rise to Eq. (2.1). This allows the effective 

radius of gyration to be easily determined. 

For large aggregates and angles, the slope again becomes linear with a value of , as 

the relative light scattering becomes invariant to the size of the aggregates. This section is known 

as the power-law regime. Only two measurements in this regime are required to fully describe it.  

The physics underlying the transition regime is quite ambiguous. It is bounded by the 

Guinier regime and the power-law regime. There is no simple equation to describe it, and there 

 

Figure 2.1 – Light scattering regimes 
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are no particularly useful known graphical features in this regime. The regime is exaggerated in 

Figure 2.1 to show its positioning.  

A function known as a structure factor is defined that carries information about the 

underlying structure of the particulates that scattered the incoming light. This structure factor 

must span all of the regimes because it must describe the scattering of light in every regime. A 

great deal of work has been done on developing a structure factor that is consistent with fractal 

aggregate theory (Sorensen 2001, Weiz and Oliveria 1984, Schaefer, et al. 1984, Freltoft, Kjems 

and Sinha 1986, Lin, et al. 1989). A more complete review of the structure factor is carried out in 

Section 3.3.  

The scattering of light from soot aggregates falls under Rayleigh-Gans scattering, which 

works for composites consisting of smaller elements. Each smaller element is assumed to be a 

Rayleigh scatterer that scatters independently from the rest of the particles in the aggregate, and 

that the refractive index of each smaller element is similar to that of the surroundings.  

When Farias et al. (1995) assembled these light scattering concepts into a consistent 

theory, it was named the Rayleigh-Debye-Gans Fractal Aggregate (RDG-FA) theory, which 

encompasses the light scattering work of Debye and the Rayleigh-Gans scattering nature of soot 

aggregates together.  This theory is accurate for single scattering aggregates consisting of 

spherical primary particles that do not overlap. A number of studies have considered the validity 

of the RDG-FA theory, finding it to provide scattering properties within 10% to the more 

accurate but more computationally intense integral equation formulation for scattering (IEFS) 

theory (Farias, Köylü and Carvalho 1996, Eymet, et al. 2002). These studies also found that 
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assuming an equivalent volume sphere is only valid for aerosols with little aggregation, or for 

small aggregates.  

2.2.1 Soot Characterization from Light Scattering Experiments 

In contrast to other metrology techniques, light scattering can be used to characterize a 

flame in a non-intrusive way. Jagoda et al. (1980) used light scattering to characterize 

polystyrene and polypropylene flames, and found that the concentration of soot aggregates was 

largest near to the fuel-rich portion of the flame front, where the actual combustion was 

occurring. In the central region of the flame the concentration was much lower.  

Schaefer et al. (1984) and Martin et al. (1986) applied the theory of fractal aggregates to 

soot particulates, using both light and x-ray scattering measurements, to recover the fractal 

dimension, which was in agreement with the theoretical power-law decay for the structure factor.  

Sorensen et al. (1995) used light scattering to characterize the crossover or transition 

regime between Guinier and power-law regimes, which allowed them to calculate the soot 

aggregate distribution width in the aerosol. However, the fractal dimension and the structure 

factor cut-off function must be known accurately to employ this method.  

In characterizing light scattering in a flame, Sorensen‘s review of the subject (Sorensen 

2001) should be considered. While it is by no means an exhaustive review, it is extensive and is a 

very good starting place. The review begins with the physics of light scattering and builds a 

heuristic model of light scattering. The review includes a great deal of discussion on formulating 

both a monodisperse and a polydisperse structure factor, the complex index of refraction, and 

how light scatters from a fractal aggregate. Note, however, that Sorensen (2001) does not 

provide an explicit formulation for the scattering cross sections, nor a derivation of the kernel 
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function, neither of which are necessary if a specific distribution type (such as a scaling, self-

preserving distribution) is chosen to represent the soot aggregate size distribution in the aerosol.  

2.2.2 Expanding the Range of Measurements 

One of the drawbacks of a light scattering experiment is that the range that the scattering 

measurements can be taken at is physically restricted. It is useful to measure data in each of the 

regimes to properly characterize the scattering, and a number of researchers have put effort into 

expanding the angles at, or the regimes in, which scattering can be measured.  

Sztucki et al. (2007) made use of x-ray scattering at small angles to greatly increase the 

range of the scattering wave vector. They also employed a custom-designed analyzer crystal that 

allowed them to make narrow-angle measurements, well below what is generally possible using 

commercially available equipment. They used this apparatus to study the growth of soot primary 

particles, which they found to reach a maximum radius of gyration of approximately 27 nm; they 

also studied the growth of aggregates in the aerosol, which they found to have a maximum radius 

of gyration of approximately 250 nm. The small angle x-ray measurements allowed for a 

complete characterization of the power-law regime so that the fractal dimension could be 

determined experimentally.  

Oltmann et al. (2009) made use of mirrors to expand the angular range at which 

scattering measurements could be made. The method allows for almost simultaneous 

measurements over a wide range of angles, which might be employed using a pulsed laser to 

study turbulent flames.  
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2.3 Inversion of Soot Aerosol Data 

The end goal of taking light scattering measurements from soot aerosols is to characterize 

the flame that scattered the light. This can take the form of determining the soot aggregate 

concentration, the fractal dimension, or, as is the goal of this thesis, the aggregate size 

distribution.  

2.3.1 Applications 

Using simulated aggregates Mountain and Mullholland (1988) showed how light 

scattering measurements could be employed to find the soot aggregate concentration, fractal 

dimension, size and radius of gyration, allowing for a more complete characterization of the 

aerosol.  

Soot aggregates, of course, are not single spheres, but chains of spheres that are varying 

lengths. Dobbins and Jizmagian (1966) worked to develop a mean scattering cross section for a 

polydisperse aerosol, which they found to depend on the second and third moments of the 

distribution. They employed this technique to find the mean particle size, although they were 

unable to determine the distribution shape of the aerosol. 

2.3.2 Linear Inversion Methods 

Regularization theory has a long and rich background, both in mathematics and  in the 

light scattering community. One of the first researchers to attempt to find a general inverse for an 

integral equation of the first kind, such as that given in Eq. (1.2), was Phillips (1962). Phillips 

created a linear inverse method that worked reasonably well if the unknown distribution were 

smooth. The method employed a simple quadrature rule method (Baker 1977) to convert the 

kernel function into a matrix, and added a smoothing matrix to augment the system. The purpose 
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of the smoothing matrix was to augment the information contained in the kernel with additional, 

prior information that the recovered distribution should be smooth. 

Twomey (1963) took the work of Phillip (1962) and improved it by rewriting the 

equation such that only one matrix inversion need by computed, increasing the speed at which 

such an inversion could be completed. Furthermore, Twomey‘s method allowed for the 

computation of a solution in the case where the matrix produced by quadrature of the kernel was 

not square, greatly increasing its practicality.  

In a recent paper, di Stasio et al. (2006) used Tikhonov regularization on small-angle x-

ray scattering to recover the aggregate radius of gyration, related to the number of primary 

particles in an aggregate by Eq. (1.1), at different heights above burner. They made use of a 

software package called GNOM (Svergun, Semenyuk and Feigin 1988) to recover the 

distribution of aggregate radii of gyration. Because they were looking at low heights in the 

flame, little aggregate had occurred, and they were thus recovering the radius of gyration of non-

aggregated primary particles or very small aggregates. 

2.3.3 Iterative Inversion Methods 

Grassl (1971) used an iterative method on spectral attenuation data to recover the 

aggregate size distribution found in aerosols. His work led to the iterative work of Twomey 

(1975). This work was originally purposed to find aggregate size distributions in the atmosphere, 

which are not smooth, so that the Phillip-Twomey linear inversion method was not applicable.  

The distributions generated using Twomey‘s iterative method tend to be rough (Crump 

and Seinfeld 1982), which lead Markowski (1987) to propose an improved algorithm that added 

a second layer of iteration. After the Twomey iterative method had reached convergence, a 
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smoothing algorithm was applied and the smoothed function was used as the initial guess for 

Twomey‘s iterative algorithm. This was repeated until both a smoothness criterion and a 

convergence criterion for Twomey‘s method were met. 

Newton‘s method was applied to the problem to form an iterative method, resulting in 

what is commonly known as Landweber iteration, (Hansen 1998, Baker 1977). This iterative 

method uses something akin to the Jacobian matrix from the Newton method as the kernel, but 

also employs a weighting scheme that can be set heuristically to promote convergence on a given 

problem. However, there are a number of schemes that have been presented to generate the 

weighting factors in a more rigorous manner. The stopping criterion is not well defined, 

however, which can lead to some problems in implementing this method.  

Inversion of the soot aerosol system requires the addition of some form of information 

into the system to augment what is already there. One of the most common ways of doing this is 

to assume that the distribution is governed by a certain distribution type, such as a lognormal 

distribution or a scaling distribution (Sorensen 2001). This procedure introduces an inherent bias 

into the analysis, as the underlying distribution might not be the assumed shape. Furthermore, as 

shown by Link et al. (2010), there is a large set of parameters that give the same residual value, 

so that finding the best fit values is difficult, if not impossible.   

2.3.4 Compound Methods to Stabilize the Inversion 

Rather than using regularization, the ill-posedness of the inversion can be reduced by 

adding additional measurement data to the problem that is different from, and complementary to, 

the light scattering data. A number of such compound methods proposed. Combining data from 

relative light scattering and absolute light scattering, extinction measurements, or laser-induced 
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incandescence (LII) measurements can help to quantify the aggregate size distribution or the 

variables that are used to construct it.  

D‘Alessio et al. (1975, 1977) characterized the nucleation zone of a methane-oxygen 

flame using light scattering at different fuel to air ratios. They found that soot aggregates grew 

larger as they rose in the flame, both in terms of increasing numbers of primary particles and 

surface growth on the particles themselves. One prominent result presented was that scattering 

and extinction ratios allow for a more accurate measure of particle size than does the non-

symmetry between the forward and backward scattering.  

Other techniques have been developed that use LII to determine certain properties of the 

aerosol particles. Laser-induced incandescence makes use of a pulsed laser beam to heat 

refractory nanoparticles (most often aerosolized soot) to incandescence, and the decay of the 

radiance is measured. The decay curve can be compared to that of an aerosol of known volume 

fraction to obtain the particle volume fraction of the aerosol. While such techniques are not used 

directly in this thesis, valuable information can be obtained from them (Snelling, Smallwood, et 

al. 2005, Liu, Thomson and Smallwood 2008),. By analysing the time-resolved incandescence 

decay, the primary particle diameter of the soot aggregates can also be determined, which is 

useful in light scattering analysis. Techniques have been developed to incorporate both LII and 

light scattering diagnostics into a single instrument, such as that of Reimann et al. (2009).  

Link et al. (2010) considered both relative and absolute intensity measurements, to 

overcome the inherent coupling between the distribution width and the fractal dimension. They 

point out that certain parameters, such as refractive index scattering function,  and the 

primary particle diameter must be known accurately in order to make use of this method.  
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Iyer et al. (2007) looked at combining elastic light scattering with extinction 

measurements to determine the aggregate size distribution without knowing the primary particle 

diameter or the aggregate morphology. The paper presents a good overview of RDG-FA theory 

for soot aggregates as well as the common method of assuming a distribution type to fit the light 

scattering data in order to determine the aggregate size distribution.  
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2.4 Summary 

Soot aggregates have been of interest for many years, both because their size and 

presence are an indication of the efficiency of a flame and because they can adversely affect 

human health and the environment. The study of soot has been progressing for more than half a 

century. However, the advent of the fractal theory in 1977 for soot aggregates has spurred a great 

deal of attention to the problem of characterizing the soot aggregate size distribution. Similarly, 

light scattering from aerosols has been investigated since the late nineteenth century, but it was 

only once the fractal nature of soot aggregates was known that its rapid advance began as a 

diagnostic for combustion applications. Finally, inversion as applied to light scattering from 

fractal aggregates also has a long history, yet it also advanced rapidly once soot was recognized 

to be a fractal aggregate. All of these pieces had to be in place before the inversion of light 

scattering from fractal aggregates could be attempted in a mathematically rigorous way.  

 

 

 

  



   

 

27 

 

Chapter 3                          

Derivation of Light Scattering 

Equations 

3.1 Introduction 

In order to use the light scattering data in recovering the aggregate size distribution, there 

must be a model that relates the scattered data to the size distribution of soot aggregates that 

generated it. This chapter will begin by deriving such a relationship between the angular 

distribution of scattered light and the aggregate size distribution, noting the assumptions made, 

and will then consider a number of structure factors that have been reported in literature. 

Following that, the uncertainty in some of the system variables will be recognized. Finally the 

linearity of the problem will be discussed.  

3.2 Derivation of the Light Scattering Equations 

The experimental optics setup that was used to measure elastic light scattering are shown 

in Figure 3.1. The derivation of the governing equation for light scattering from a soot aerosol 

begins with the Radiative Transfer Equation (RTE) (Siegel and Howell 2002),  

 (3.1) 

where the optical depth, or the opacity of the medium, is given by 
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 (3.2) 

and the source function is defined by  

 (3.3) 

where  is the extinction coefficient,  is the absorption coefficient,  is the scattering 

coefficient,  is the optical thickness,  is the radiation intensity,  is the blackbody intensity, 

 is the background intensity,  is the source function,  is a finite solid angle,  is the 

wavelength of the radiation,  is the scattering phase function and  is the scattering albedo.  

 Equation (3.1) gives the intensity of light measured in a specified direction from all 

sources, including scattering, absorption, emission, and background blackbody radiation. The 

source function in Eq. (3.3) is the source of the intensity scattered or emitted along the optical 

path under consideration.  

 

Figure 3.1 – Experimental optics for multiangle elastic light scattering 
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To simplify the governing equations, the absorption and emission of light between the 

probe volume and detector is assumed to be negligible relative to the intensity of the scattered 

light. Emission can be neglected since the wavelength of laser light used in the measurement is 

shorter than the characteristic emission wavelengths of soot in the flame. Neglecting the 

absorption is reasonable because the flame is optically thin, as demonstrated by Snelling et al. 

(2005). That the flame is optically thin can be shown by properly calibrating the laser to a known 

scatterer, such as nitrogen gas, and then comparing the known measurement to that of the 

scattering from a soot aerosol.   

 The third assumption is that the laser light undergoes only single scattering between the 

laser and the detector. The laser light is vertically polarized on the laser side, and single 

scattering dictates that it should still be vertically polarized on the detector side. This was 

verified by looking at the vertical-horizontal scattering measured by the detector, which was 

negligible in comparison to the vertical-vertical scattering. This indicated that the scattering from 

the soot aggregates was only single scattering, since multiple scattering would produce a strong 

horizontally polarized component. 

 The fourth assumption made is that the value of the background intensity that reaches the 

detector is zero. In the experiment, this was ensured by subtracting the value of the background 

intensity from each measurement. The frequency of the detector measurements was 10kH and 

the frequency of the laser was 5kH, such that every other measurement was strictly the 

background radiation. The measurements of the laser intensity could then be reduced by the 

background measurements. The background intensity was far less than one percent of the laser 

laser intensity, however, so even if the background intensity is not removed from the 

measurements the term  in the RTE can be taken to be zero. 
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 The fifth assumption is that the laser beam obeys a top-hat profile (constant intensity 

across the beam width). In reality the beam obeys a Gaussian profile. However, experimental 

work by researchers at the National Research Council Canada suggested that the difference 

between the two profiles was negligible. This hasn‘t been proven conclusively, but is assumed 

true throughout this work.  

 Since emission is negligible, the  term is zero, and the source function simplifies to  

 (3.4) 

where  is a function of the wavelength of light and the properties of the soot itself. The 

derivation and value of the scattering albedo is considered in more detail in Appendix B.3.  

Adding this to the RTE, along with the other assumptions mentioned gives 

 (3.5) 

 If the substitution from Eq. (3.2) is applied to the system, and letting , 

Eq. (3.5) becomes 

 (3.6) 

where  is the length from the laser beam to the detector. Now, because of the assumption of 

single scattering, the laser light scattered in the direction of the detector can only come from 

within the path of the beam itself, so the scattering coefficient is equal to zero everywhere else. 

Thus, the exponential term in Eq. (3.6) becomes unity, indicating that there is no loss of signal 

between the scattering event and the light reaching the detector. As well, the inscattering integral 

in Eq. (3.6) is equal to zero in every direction except the direction of the laser beam. This gives 
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(3.7) 

In this equation,  is the small, but finite, solid angle that is subtended by the laser beam. If 

the laser beam is assumed to have a uniform intensity over the entire width, known as a top-hat 

profile, then the length of the path of intersection between the detector view and the laser beam is 

given by , where  is the angle formed between the laser beam and the detector. 

Furthermore, the scattering phase function does not depend on the laser angle and detection 

angle, but rather the angle formed by the intersection between the laser path and the detection 

path, . Thus, Equation (3.7) becomes 

 (3.8) 

where  is a coefficient containing all terms that are independent of both  and , 

 (3.9) 

where  is a scaling parameter containing all scaling parameters known from the 

experimental apparatus. 

Equation (3.8) gives the basic relationship between the observed scattered light and the 

system that scattered it. However, more simplifications can be made by implementing an 

expression for each of the functions. For vertically polarized light, the scattering phase function 

is given by 
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 (3.10) 

where  and  are the average scattering and vertical polarization cross sections of the soot 

aggregates, respectively (Eymet, et al. 2002). As well, the scattering coefficient is given by 

 
(3.11) 

where  is the aggregate number density. If these two terms are multiplied together, it gives 

 (3.12) 

where  is the aggregate size distribution in the soot aerosol, and  is the number of 

primary particles in an aggregate. The vertical polarization cross section is given by 

  
(3.13) 

where  is the polarization cross section of a primary particle, 

 is the modulus of the scattering wave vector,  is 

the complex scattering function,  is the complex index of refraction,  is the 

wavenumber,  is the size parameter,  is the primary particle diameter,  is the 

aggregate radius of gyration, and  is the structure factor.  

 Substituting all of these terms into Eq. (3.8) gives 

 
(3.14) 

 All of the terms containing either  or , except for the aggregate size distribution (the 

determination of which is the overarching goal of this thesis), are gathered together into one 

term, called the kernel function,  
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 (3.15) 

and all the other terms are collected into a coefficient,  

 (3.16) 

resulting in the following Fredholm integral equation of the first kind, Eq. (1.2),  

  

where  is written as . 

3.3 Structure Factors 

The structure factor contains information about the form of the aggregate that scattered 

the light. In literature, a number of structure factors have been proposed. For instance, Sorensen 

(2001) lists seven distinct structure factors that could be considered, but suggests that the 

hypergeometric structure factor is the best choice. The hypergeometric function is defined as 

 (3.17) 

and a Matlab implementation of it can be found in Appendix A.6.  is the Gamma function, the 

implementation of which can be found in a sub-function in the implementation of the 

hypergeometric function. In the case of the structure factor for the soot aerosol system, 

, , and .  

One consideration in using the hypergeometric function is the use of the cutoff function, 

as noted by Sorensen (2001). At a critical value of , which is the product of the scattering 
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wave vector and the radius of gyration of an aggregate, the hypergeometric function is replaced 

by the cutoff function 

 (3.18) 

where the value of  is dependent on the cutoff function used. In this work, the Gaussian cutoff 

function suggested by Sorensen was used, such that . The 

value of  at which this cutoff is implemented is very much up to debate. Sorensen suggests 

that the cutoff should be applied for , whereas Eymet et al. (2002) suggest that the cutoff 

should be applied at . 

 Another problem with the hypergeometric function is that there appears to be no simple 

implementation, and to determine accurate results the sum must be taken to as high a value as 

possible. This is complicated due to the transcendental Gamma function, which is written as an 

infinite product that must be approximated to a large number of terms to achieve a reasonable 

degree of accuracy. These two facts combine to produce a function that requires a great deal of 

computational expense to calculate the structure factor. A simpler form of the structure factor 

that is computationally inexpensive yet sufficiently accurate is needed.  

 Such a structure factor was proposed by Yang and Köylü (2004), 

 (3.19) 

which is a heuristic fit to the power-law and Guinier scattering regimes, spanning the transition 

regime between the other two regimes.  
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 A comparison of the hypergeometric and Köylü structure factors was carried out. Each 

structure factor is a variable of , so a range of values was chosen to represent the entirety of 

the problem. The modulus of the scattering wave vector is defined as  and, 

because soot aggregates are fractals, the fractal scaling law applies, given by Eq. (1.1). From 

TEM experiments that have considered this specific flame, aggregates that contain more than 

500 primary particles are rare, so that number is taken as the upper bound. Experimentally, the 

maximum angle that can be considered is . As well, because , , 

 and  are the values applicable to this flame, an upper limit for  of 

roughly 7.5 was calculated.  

 For a range of , the two structure factors were calculated with the cutoff taken at 

. The results are plotted in Figure 3.2 (a). The two agree quite well, save for a small 

spike around . This spike is caused by numerical error creeping into the hypergeometric 

function, as the simulations were not capable of computing the sum to enough accuracy. This is 

the case because the factorial term and the term  both reach the upper limit at which a 

computer is capable of computing them. If an additional term is used to approximate the Gamma 

function, one of these terms goes to infinity, whereas in reality there is a finite value for each of 

them that cannot be calculated. The greatest discrepancy between the hypergeometric and Köylü 

structure factor occurs within the transition regime, which is notoriously difficult to properly 

assess (Sorensen, Lu and Cai 1995). However, if the Eymet cutoff value is used the result is 

closer, although there is still a jump when the hypergeometric function transitions to the cutoff 

function. This is shown in Figure 3.2 (b).  
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We conclude that the Köylü structure factor is sufficiently close to the more accurate, yet 

computationally expensive hypergeometric structure factor for the purpose of this analysis. The 

main variation comes in the transition range, where both functions simply span the distance 

between the Guinier and power-law regimes, because characterization of the transition regime is 

especially challenging.  

3.4 Sources of Uncertainty 

There are a number of sources of uncertainty in the above equations, some of which can 

be mitigated and some of which cannot. The first source of uncertainty is the primary particle 

diameter. When RDG-FA theory is applied, it is almost always assumed that all soot aggregates 

in an aerosol contain uniformly-sized particles. This is not actually the case. Brasil et al. (1999) 

note that the primary particle diameter in an aerosol can vary by up to 25%, although in a single 

aggregate the size tends to be constant. Reimann et al. (2009) considered the primary particle 

size distribution by looking at soot aggregates using transmission electron microscopy (TEM). 

 

Figure 3.2 – Comparison of Structure Factors: (a) Cutoff at  and (b) Eymet Cutoff 
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They fit a lognormal distribution to the resulting histogram. This was ignored in this treatment of 

the problem, as it greatly increases the complexity of the calculations.  

One of the greatest areas of uncertainty in dealing with soot aggregates is the complex 

index of refraction, . As a complex number, the complex index of refraction is made up of two 

parts: the real part is the speed of light in the material relative to the speed of light in a vacuum, 

and the complex part is related to the light that is lost due to absorption. This variable contains a 

great deal of uncertainty, both in the value it should take and what factors affect it. Sorensen 

(2001) noted almost a dozen different values reported in the literature, and there are many more. 

He pointed out that the uncertainty in determining the value of the refractive index may be 

greater than the actual value of the refractive index itself. The refractive index is of particular 

concern if the experiment is dealing with absolute scattering, whereas it is less of a concern in 

the case of relative scattering, which was used throughout this thesis. The complex index of 

refraction is still found in the value of the constant  in the case of this derivation, so that it is a 

necessary value.  

Another source of uncertainty is the fractal dimension, . Recent work by Link et al. 

(2010) has shown that the fractal dimension is a strong function of the distribution width by 

means of inversion of light scattering measurements through an assumed distribution. A plot of 

the distribution width versus the fractal dimension reveals a long, wide valley of near-identical 

residuals of the fit solutions for lognormal distributions. Even if the distribution width is set, 

there are a wide range of fractal dimensions that are capable of reconstructing the problem. 
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3.5 Nonlinearity of the Governing Equation 

Up to this point the coefficient in Eq. (1.2) has been taken to be a constant. However, 

contained in this coefficient, , is the aggregate number density, , which is defined as 

 
(3.20) 

where  is the soot volume fraction. In this relation the aggregate number density is a function 

of the soot volume fraction, which can be obtained using line-of-sight-attenuation (LOSA) 

measurements, and the aggregate size distribution. Thus, when the soot volume fraction is used 

to determine the aggregate number density, the scaling coefficient, , is actually a function of 

, and thus Eq. (1.2) is nonlinear.  

 can be determined in another fashion. For instance, a condensation particle counter 

(CPC) can be used to accurately determine the number aggregate density of an aerosol (Agarwal 

and Sem 1980), but it cannot be done at the same time as a light scattering measurement. Hence, 

two separate experiments must be carried out to prevent this experiment from becoming 

nonlinear. Another method, which has been used in this thesis, is to treat the coefficient  as an 

additional unknown in the multiangle angular scattering experiment. This is done iteratively, as 

part of the solver working to find the aggregate size distribution. In this manner  is treated as 

just another unknown value and solved along with everything else, which greatly decreases the 

complexity of the problem by making Eq. (1.2) linear in .  
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Chapter 4                

Experiment 

4.1 Introduction 

This chapter will describe the experimental setup used to obtain the light scattering data 

used throughout this thesis. As with any experiment, there were many things to take into account 

and optimize to properly carry out the experiment, and some of these will be discussed. First, the 

setup of the experiment will be presented. Second, the details of burner will be considered, 

including position with respect to the optics. Third, the spatial resolution of the detector will be 

considered. Fourth, other sources of error will be noted. This experimental setup was built by 

Oliver Link at the Institute for Combustion Processes and Environmental Technology, National 

Research Council Canada, and used by the author between May and June, 2010, to collect data 

for use in this thesis. The specific angle and measurement set used throughout this work can be 

seen in Appendix B.6. 

4.2 Experimental Setup 

The basic experimental setup used to measure scattered intensity from soot aggregates is 

described by Link et al. (2010). The laser source was a diode-pumped, Q-switched Nd-YLF laser 

that operated at a wavelength of 527 nm. The average power of the laser was 400mW at 5 kHz. 

The laser beam was expanded and collimated through two lenses to a diameter of 3mm before 

traveling through a half-wave plate that rotated the linear polarization, reducing the energy 

transmitted. The beam then traveled through a polarizer in order to control its energy and 

orientation, before a final wave plate ensured that the polarization was vertical. The beam then 
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traveled through a final lens that focused it down to between 150µm and 200µm. Before 

reaching the aerosol, the beam passed through shielding to block any light scattered by the 

optical components. This setup is shown in Figure 4.1.  

The detector optical components were mounted on a planar rotation stage capable of 

moving the detector to various angles around the flame. The forward direction, the direction of 

propagation of the laser beam, was denoted as 0°. The rotation stage was limited to movement 

approximately between 10° and 160° due to the physical constraints of the setup. The laser was 

aligned such that its beam passed through the axis of rotation of the rotation stage. The burner 

was positioned so that the feature of interest was located at the centre of rotation of the rotation 

stage. The overall setup of the detector optics is shown below in Figure 4.2. 

The scattered laser intensity seen by the detector was reduced by placing one or more 

filters in series in the path of the light prior to the detector optics. After passing through the 

filters the light travelled through a collection lens that collimated the light. The collection lens 

had a focal length of 20 cm, and was situated 20 cm from the center of rotation of the rotation 

 

Figure 4.1 – Experimental setup: laser 
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stage on a horizontal plane. An aperture decreased the diameter of the lens to 17mm.  The 

collimated light passed through a polarizer that ensured the light reaching the detector was 

strictly vertically polarized. Following the polarizer the light travelled through a bandpass filter 

set to 527nm. The light then passed through a second lens, also with a focal length of 20 cm, 

which imaged the light onto a final aperture, selected as a 50 µm slit, and then on the 

photomultiplier. This setup is shown in Figure 4.3. 

 

  

 

Figure 4.2 – Experimental setup: detector optics 
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4.3 The Burner 

The soot source that was used in this experiment was the Gülder laminar co-annular 

diffusion flame (Snelling, Thomson, et al. 1999). The burner consisted of coaxial tubes, one 

carrying fuel and the other carrying air. The inner tube, carrying ethylene at a flow rate of 326 

sccm (standard cubic centimetre per minute), was made of steel with an inner diameter of 10.8 

mm and an outer diameter of 12.7 mm. The outer tube, carrying air at a flow rate of 284 slpm 

(standard litre per minute), was made of aluminum with an inner diameter of 88.4 mm.  

The burner could be moved in three degrees of freedom through the use of multiple 

translation stages. Each stage corresponded to one of the principle axes of the setup: the first 

stage was aligned parallel to the direction of propagation of the laser, the second stage was 

aligned to be parallel to the collection optics when set at 90˚ to the laser propagation direction, 

and the third stage allowed vertical movement of the burner, allowing different measurement 

heights within the flame. The movement of each stage was controlled by a micrometer screw, 

allowing for fine adjustments of the burner position. The stages were attached to a basic rack that 

 
Figure 4.3 – Experimental setup: collection apparatus 
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was levelled to ensure that the flame didn‘t vary in the horizontal plane due to any misalignment 

of the burner itself. 

4.4 Positioning the Burner 

It is important, when considering spatially resolved scattering measurements, to properly 

position the portion of the flame that is of interest. Having a refined spatial resolution is of no 

use if it is pointing at the wrong position in the flame. First, the center of rotation of the rotation 

stage must be found. This was done by centering a pin above the burner and viewing the 

movement of the tip of the pin with respect to the laser beam as the stage rotated through a full 

sweep. The pin was allowed to move in two axes on the plane defined by the laser beam 

propagation direction and the collection optics, and was adjusted until the tip did not move as the 

rotation stage turned. A schematic of the pin setup is seen in Figure 4.4 (a). 

Once the pin was set in place, a second laser was added to shine through the collection 

optics in the reverse direction (in the direction from the photomultiplier to the burner) and the 

optics adjusted until the laser intersected the pin head. The vertical height of the collection optics 

was adjusted to be of the same height as the laser beam.Because the slit aperture was used rather 

than a circular aperture, however, the exact vertical alignment of the collection optics and the 

laser beam was not as essential as in the case when a circular aperture was used. The alignment 

setup is seen in Figure 4.4 (b).  
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4.5 Spatial Resolution 

One of the key requirements of laser diagnostics on soot aerosol systems is having a refined 

spatial resolution. The flame produced by the Gülder burner has strong gradients in soot 

concentration and, as a consequence, in the laser intensity measured by the detector. A horizontal 

scan through the flame at a height above the burner of 42 mm is seen in Figure 4.6. Equation 

(1.2) was derived assuming that only single scattering takes place. That is, light scattered from an 

aggregate travels directly to the detector without encountering any other aggregates. Therefore, 

any light that reaches the detector must have been scattered from the path of the laser beam. The 

intersection of the detector viewing angle and the laser beam is called the sample volume, as 

shown in Figure 4.5.  

 

Figure 4.4 – Positioning the laser: (a) the pin setup, and (b) aligning detector optics 
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One of the assumptions made in using light scattering data is that the flame within the 

sample volume was invariant with respect to intensity. If the angle the collection apparatus 

makes with the laser propagation direction is denoted as θ, the sample volume length in the 

 

Figure 4.5 – Sample Volume at (a) 90˚ and (b) 10˚ 

 

Figure 4.6 – Horizontal scan through the Gulder burner at 42mm. 
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direction of the laser beam propagation is defined as the beam width multiplied by the cosine of 

θ and added together with the width of the aperture in the collection optics before the 

photomultiplier, which is all divided by sine of θ. As is seen in Figure 4.5, the length of the 

sample volume in the laser propagation direction grows larger the closer the angle becomes gets 

to . It is important, then, that the length of the sample volume not exceed the length of the 

roughly flat section in the centre of the flame, which is defined as not varying by more than 10%.  

It was found that using a 50µm slit on the detector in conjunction with a 200µm laser 

beam width produces a sample volume length that does not exceed 1.5 mm at 10°. The flat 

portion of the flame at 42mm HAB is found to be roughly 1.8mm, such that the sample volume 

will actually fit within it. It is therefore acceptable to use angles as small at 10° if need be. It 

should be noted that the intensity of the flame is not exactly constant across this central region, 

which is a potential source of error in the system.  

Light scattering measurements are taken at different angles around the burner, but no one 

has really provided an in-depth analysis of how to choose the angles. One suggestion was made 

by Sorensen (2001) to choose the angles uniformly in the scattering wave vector ( ) domain. 

Following that advice, twenty-one angles uniformly spaced in the -domain were chosen and 

angular measurements taken. For completeness,  and  were included to make 

use of the entire angular range, increasing the total number of angles at which light scattering 

data was measured to twenty-three. This choice of angle set is reconsidered in Chapter 6. 

4.6 Error Sources 

For the purpose of repeatability it was assumed that throughout the experiment the laser 

source was always operating at its specified wavelength and output power. It is possible that the 
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power of the laser oscillated or varied over the course of a number of experiments, but no data 

was collected to determine if this was the case. One could determine this by measuring the laser 

intensity over a long period of time (some hours at least) to determine if there is a change. The 

laser was always allowed a few minutes to ‗warm up‘ before actual measurements were taken, to 

ensure that if it took some time to reach full power the results would not be skewed.  

 Another concern was flame stability. As noted by Kevin Thomson in his PhD thesis - 

(Thomson 2000), some form of shroud should be placed around the flame to ensure that air 

movement in the room does not disturb it. This is crucial, as even the opening of a door across 

the room can cause the flame to waver by up to a centimetre. Because of the significant increase 

in intensity in the annular region of the flame, seen in Figure 4.6, that amount of movement 

could easily cause the annulus to move into the sample volume, strongly skewing the 

measurements. Due to this instability measurements were generally taken at times when no one 

else would be in the lab, although portable wall divisions were eventually moved around the 

experiment to ensure that extraneous air currents didn‘t affect the experiment.  
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Chapter 5                  

Inversion of Light Scattering 

Data 

5.1 Introduction 

The angular distribution of light scattered from a soot aerosol contains information about 

the system that can be employed to determine the aggregate size distribution within the aerosol. 

However, these two quantities are related by a Fredholm integral equation of the first kind, 

which is inherently ill-posed. Thus, it is necessary to add additional information to the problem, 

through regularization, to recover the aggregate size distribution. This chapter will first 

demonstrate the ill-posedness of this problem. Then, it will introduce Tikhonov regularization, 

one of the most popular regularization techniques, which will then be demonstrated by 

recovering the aggregate size distribution from an artificially generated data set. Finally, the 

chapter concludes with a more sophisticated and generalized technique called Maximum a 

Posteriori (MAP) inference, which will be applied to recover the soot aggregate size distribution 

from the experimental data set. 
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5.2 Ill-posed Problem 

Light scattering from a soot aerosol is related to the aggregate size distribution by a 

Fredholm integral equation of the first kind, Eq. (1.2), 

 (1.2) 

the deconvolution of which is ill-posed. Hadamard (1923) gave the criterion for a well-posed 

problem: the solution must exist, the solution must be unique, and the solution must be stable, 

i.e. adding small amounts of noise to the measured data should produce equally small variations 

in the recovered solution. At the time, Hadamard considered problems that violated these 

conditions to be nothing more than mathematical curiosities, something that would not be found 

in nature. It has since been discovered that such problems, called ill-posed problems, are found in 

most fields of science and are ubiquitous. The discussion in Section 1.3.2 on the smoothing 

effect of the kernel posits that the inversion of light scattering data from a soot aerosol is an ill-

posed problem. To deal with the inherent ill-conditioning of the matrix equation, more 

information must be added to the problem through a process called regularization. 

5.2.1 Presumed Distribution Type 

The most prevalent way of regularizing this particular problem in the literature is to 

assume that the aggregate size distribution is a specific distribution type, such as a lognormal 

distribution, defined as 

 (5.1) 
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where  is the width of the distribution and  is the geometric mean. Assuming such a 

distribution greatly reduces the ill-posedness of the problem, by limiting the degrees-of-freedom 

to two. The objective, then, is to identify the set  that minimize the residual of Eq. 

(1.3). Figure 5.1 (a) plots the residual function, , over the domain of these 

two variables. Three points have been chosen in the long narrow valley, which is made up of 

solutions that solve the problem within experimental accuracy. Figure 5.1 (b) shows the 

lognormal distributions corresponding to these three points, which vary greatly in shape, and yet 

all accurately reconstruct the light scattering data. This shows that the inverse analysis of elastic 

light scattering by soot aggregates violates Hadamard‘s second criterion, i.e. the solution is not 

unique, even with an assumed aggregate size distribution type.  

 

 

Figure 5.1 – Multiple lognormal distributions that all recover the Elastic Light Scattering (ELS) 
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5.2.2 Discrete Ill-Conditioned Matrix Equation 

To quantify the ill-posedness of this problem, Eq. (1.2) is first converted into a matrix 

equation, Eq. (1.3),  

 
(1.3) 

where  is generated by 

 (5.2) 

 A perturbation analysis is now carried out on the matrix equation. First, define the 

perturbation in the measured data and the recovered solution as  and , respectively. The 

matrix equation is perturbed by these errors,  

 
(5.3) 

The left hand side is expanded and the equation rearranged to give  

 
(5.4) 

The original matrix equation, Eq.(1.3), is taken to hold true, so that the bracketed term in Eq. 

(5.4) is zero. The remaining terms can be rearranged to give   

 
(5.5) 

The two-norm is applied to both sides of the equation, giving  

 
(5.6) 

and the right-hand side is separated into two separate norms, producing the inequality  
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(5.7) 

If the same analysis is done to Eq. (1.3) the following is found 

 

 
 

 

 

(5.8) 

Equations (5.7) and (5.8) are multiplied together, so that  

 (5.9) 

where  is defined as the condition number of the matrix . This term quantifies the 

ill-conditioning of this matrix equation, and by extension the ill-posedness of original integral 

equation. Equation (5.9) is an upper bound on the perturbation in the system. If the matrix is 

invertible (and hence non-singular) then the condition number will be close to or equal to one. 

Thus there is a one-to-one correlation between the error in the data and the error in the solution. 

A small error in the data begets a small error in the solution, and a large error in the data 

produces a large error in the solution.  

 However, in the case of an ill-posed problem, the condition number is generally very 

large. Thus a small error in the data can lead to a large error in the solution, violating 

Hadamard‘s third criterion, i.e. stability. It should be noted that this is simply an upper bound of 

the error; it is possible, though highly unlikely, that in some cases a small error in the data will 

produce a small error in the solution.  
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The upper limit of the condition number is infinity, which occurs when the matrix is 

singular. In this case there are an infinite number of solutions that satisfy the governing equations 

and hence there is no unique solution. In linear algebra terms, there is a non-trivial nullspace that 

gets mapped by the matrix to zero. Hence, any linear combination of the vector or vectors in the 

nullspace added to the solution is also a solution; and thus there are an infinite number of 

solutions that can exactly satisfy the problem. This violates Hadamard‘s second criterion that the 

solution must be unique.  

5.3 Tikhonov Regularization  

When the governing Fredholm integral equation of the first kind is recast as an ill-

conditioned matrix equation, it is possible to add extra information to the problem using linear 

regularization. One of the earliest regularization techniques is known as Tikhonov regularization, 

which was developed by Andrey Tikhonov (1943, 1963, Tikhonov and Arsenin 1977).  

5.3.1 Smoothing Matrix 

Tikhonov regularization works by augmenting the matrix equation with a smoothing 

matrix, which can be defined in several different ways. The most common option is appending 

the identity matrix to the kernel matrix, , which is known as standard Tikhonov regularization. 

The equation is given as 

 (5.10) 

where  is the regularization parameter that determines the extent of regularization that is used. 

Using the identity matrix to augment the kernel matrix promotes a small solution as the 

augmented section of the matrix equation is satisfied when the recovered solution is zero, i.e. the 

prior information used here is that the solution should be small in magnitude. This makes sense 
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because the unregularized solution (Figure 5.4) is highly oscillatory with high frequency, and so 

if the magnitude of  is kept small, this should remove many of the unwanted components that 

have large noise inherent in them.  

 Another option for the smoothing matrix is the discrete approximation of a differential 

operator. Using a first order finite difference approximation, the first derivative is 

 (5.11) 

which, in matrix form is given as 

 (5.12) 

having the same number of columns as the kernel matrix, and one less row. This matrix promotes 

a smooth solution, and is satisfied when  is uniform. The solution promoted by this matrix 

equation is smooth, such that the variations between two adjacent points in the vector  do not 

vary greatly from each other in value. This variance is of course relative and the variation can 

sometimes be very large, for example when the kernel matrix dominates the problem. 

 A third option is the first order finite difference approximation of the second derivative,  

 (5.13) 

giving the smoothing matrix 
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 (5.14) 

which promotes a distribution that is  continuous (Hansen 1998).  

5.3.2 Regularization Parameter 

It is crucial that the presumed information added to the system (prior) have an appropriate 

emphasis relative to the original ill-posed equations, which is done using the regularization 

parameter.  

For the case of Tikhonov regularization, the regularization parameter scales the 

smoothing matrix. The larger the parameter, the more weight is given to the smoothing over the 

original ill-posed problem. Because there is obviously a point where too little regularization is 

used (when the regularization parameter is equal to zero) and a point where the regularization is 

too great (when the regularization parameter is so great that the solution is a constant value), and 

because the parameter varies continuously between these two limiting cases, the mean value 

theorem is applied to the problem to show that there should indeed be an optimal value 

somewhere between the two extremes.  

A number of methods have been proposed to find this optimal value for the regularization 

parameter, two of which will be discussed here. The first method is called the Discrepancy 

Principle (Morozov 1966), which works under the assumption that the residual, , 

cannot be known to a greater degree of accuracy than the error in the system. Hence,  should be 

chosen such that , where  is the upper bound for the two-norm of the error 

vector, . This method is useful if there is an estimate of the error. Unfortunately, in 
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this problem the noise contaminating the light scattering data is not sufficiently characterized to 

make such a prediction.  

Another method of determining the value of the regularization parameter is the L-Curve 

Criterion (Hansen and O'Leary 1993). This method makes use of an interesting graphical feature 

of the plot of  vs. . The plot of these two values generates a curve 

that is the shape of an uppercase L, where the vertical segment of the curve denotes where the 

problem is dominated by the original matrix equation and the horizontal segment of the curve is 

dominated by the regularization. These two sections of the curve are referred to as 

undersmoothing and oversmoothing, respectively.  

For the undersmoothing section of the curve, the regularization parameter is slowly 

increased, which begins to smooth the curve and move it towards the uniform solution that 

minimizes , but has little affect on the residual, . After a certain point, 

however, the curve becomes oversmoothed, so that it is nearing a uniform value at all points, 

such that increasing  does little to change , but greatly increases . This is 

because in the oversmoothed region the curve no longer works to solve the original problem but 

instead is trying to solve the augmented problem, causing the solution to depart from the true 

solution. Thus, the optimal value of  is found at the intersection of these two segments, at the 

corner of the L-Curve. An example of an L-Curve is seen in Figure 5.2 
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To find the corner of an L-Curve, the curvature function is employed, defined as (Kline 

1967) 

 (5.15) 

This equation is applied at every value of  to determine the curvature of the L-Curve, with 

 and . The curvature function is then plotted as a 

function of  and the maximum value determined. Obviously, the maximum value of the 

curvature function is the point of maximum curvature of the L-Curve, which should correspond 

to the corner. This point is denoted in the plot of the curvature function shown in Figure 5.2.  

 This method is not perfect. The value of the regularization parameter is taken at discrete 

points so the derivatives required for the curvature function must be determined using an 

approximate derivative method, such as finite differences. This introduces some numerical error 

into the equation and can occasionally lead to the corner being chosen slightly off from where it 

 

Figure 5.2 – (a) Typical L-Curve and (b) curvature function for this problem 
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appears that it should be. One way to get around this is to calculate higher order approximations 

for the derivatives, which can reduce some of the numerical noise.  

5.4 Application to Artificial Data 

Before a method is employed to solve experimentally obtained data, it should be 

validated by recovering a known distribution using synthetic data. By taking a distribution 

reported in the literature and numerically integrating Eq. (1.2), an artificial data set was 

generated with a known distribution that could then be used as a test case for regularization 

methods. This was done using the numerical integration scheme presented in Appendix B.1. 

 From previous experiments (Tian, et al. 2004) there was a large set of TEM images of 

soot aggregates captured from this flame at the same height and operating conditions as the light 

scattering experiment that could be analyzed. A histogram was formed by splitting the 

aggregates into bins based on the number of primary particles, which were summed to form 

points of the cumulative distribution function (CDF). The CDF of a lognormal distribution was 

then fitted to the histogram CDF by means of a least-squares fitting algorithm, and the result was 

taken as the distribution for the artificial data set. This procedure is described in more detail in 

Appendix B.4. 

 Once a distribution had been chosen and numerically integrated to produce an artificial 

data set, artificial noise was added. In Tikhonov regularization, the vertical portion of the L-

Curve is generated by the noise inherent in the problem, hence noise is required to accurately 

determine the optimal amount of regularization needed to reproduce the system. The noise was 

taken to be normally distributed with a 3% standard deviation relative to the intensity at each 
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angle. The data were contaminated with this noise and Tikhonov regularization applied. The 

resulting distribution is in Figure 5.3 (a), with the L-Curve shown in Figure 5.3 (b).  

 This method is able to recover the features of the original curve, for the most part, but 

one feature that cannot be accurately recovered is the peak found at the small  section of the 

curve. The reason for this discrepancy can be seen by examining the kernel function, Eq.  (3.15), 

 (3.15) 

which has  a strong dependency on the number of primary particles squared. Thus, the value of 

the kernel for large aggregates will dwarf the value for small aggregates. This essentially 

overwhelms any information the smaller aggregates provide and makes recovering the 

distribution in the small aggregate range very difficult. Outside of the small aggregate range the 

recovered distribution matches the original distribution quite well.  

 Recovering a known distribution from an artificial data set has proven to be possible, 

although the solution is by no means a perfect match to the distribution used to generate the data. 

Thus, while Tikhonov regularization is a powerful inversion method, it is not necessarily capable 

 

Figure 5.3 – a) Recovered distribution using Tikhonov regularization on artificial data 
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of recovering the aggregate size distribution in this case, and a more powerful method should be 

considered that is able to provide additional more information about the system.  

5.5 Maximum a Posteriori Inference 

Tikhonov regularization is unable to accurately reconstruct the aggregate size distribution 

over the entire range of aggregate sizes under consideration, and hence an alternative method of 

regularization is sought that is capable of adding additional assumed information to the system.  

A powerful regularization method is Maximum a Posteriori (MAP) inference, which is 

derived from Bayes‘s theorem, named for Thomas Bayes who first laid the groundwork for the 

theory (Bayes 1763). It is sometimes referred to as the principle of inverse probability (Zellner 

1971). This technique is useful in cases when a set of data is available from an experiment and 

the objective of the analysis is to infer the process that generated the data, such as determining 

the aggregate size distribution of a soot aerosol from elastic light scattering data. The basic form 

of Bayes‘s theorem is given as  

 (1.5) 

where  is the probability that the distribution  is correct given an observed data set , 

 is the probability that the data set  is correct given a distribution  (which is also known 

as the likelihood function),  is the marginal probability of the data, and  is the prior 

probability of the distribution being correct, which will be denoted as  to indicate that 

this is information that is known prior to applying regularization. Usually  is neglected 

because it doesn‘t affect the distribution that maximizes Eq. (1.5), but only scales it.  
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If no assumptions are made about the nature of , then no prior information can be added 

and , which is called an uniformed prior. This is equivalent to directly solving the 

matrix equation given in Eq. (1.3) with no regularization, which produces the nonphysical results 

shown in Figure 5.4.  

If, however, information is known a about the system, then informed priors can be 

generated, and a best-estimate of the original distribution can be determined. If a distribution 

exists that satisfies the original matrix equation, Eq. (1.3), then that distribution is a MAP 

estimate (Andrews and Hunt 1977). Because a single solution exists, there must therefore be a 

most likely distribution. The method of applying an algorithm to determine the most likely 

original distribution from observed data is known as MAP estimation or MAP inference 

(Rosenfeld and Kak 1982).  

 

Figure 5.4 – Recovered distribution with no regularization 
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If the matrix equation is assumed to be linear, such that , and assuming that the 

data has been contaminated with Gaussian-distributed error that has the same variance for each 

data point , then the likelihood function is  

 (5.16) 

The optimal solution distribution is found when this equation is maximized, which occurs when 

 is minimized.  

 In this problem the noise inherent in the data is relative to the intensity of the scattering, 

hence the variance is also a function of the intensity of the scattering. To express this problem in 

the form of Eq.(5.16), the matrix equation must be scaled so that the variance is the same at each 

measurement angle. This is accomplished by scaling the measured data to equal one and scaling 

each row of the matrix equation by the same amount,  

 

 

(5.17) 

so that the equation then becomes 

 

 
(5.18) 

This is assumed to have been done from this point on; however,  will not be written as a vector 

of ones but will continue to be written as , with the assumption that it has been scaled.  

Prior information is needed to solve for the aggregate size distribution, and one piece of 

prior information that is known about this system is that the distribution should be smooth, as is 
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seen in the Tikhonov regularization smoothing matrix. This prior is known as the Gibbs prior, 

and can be written as 

 (5.19) 

where  is the Tikhonov smoothing matrix. Similar to the regularization parameter from 

Tikhonov regularization,  determines the appropriateness of this prior, allowing it to be scaled 

to affect the solution more or less, which can be determined heuristically. If the Gibbs prior and 

the likelihood function are added to Eq. (1.5), the objective function becomes  

 (5.20) 

By minimizing Eq. (5.20) Bayesian inference with the Gibbs prior is equivalent to Tikhonov 

regularization (Hansen 1998).  

 Bayesian analysis allows for the incorporation of other prior information. For example, 

by definition the probability density of the aggregate size distribution must be nonnegative. This 

can be enforced by  

 
(5.21) 

where  is the indicator function, which is equal to zero when  is outside the interval indicated 

and unity otherwise. This is multiplied onto Eq. (5.20) to give 

 (5.22) 

which gives a zero probability when  contains any negative terms and a positive probability 

otherwise.  
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 Finally, if need be, a prior may be added that promotes a certain type of distribution. This 

is to be avoided if at all possible; the recovered distribution should depend on the original matrix 

equation to as great an extent as possible, so that the solution is not biased by the priors. If, 

however, adding the nonnegative prior to Tikhonov regularization is insufficient by itself to 

accurately reconstruct the size distribution, then promoting a certain distribution type may be 

required. This is done by using the prior (Johnson 2004) 

 (5.23) 

where  is a regularization parameter that allows the relative importance of this prior to be set, 

and  is the best fit of a prescribed distribution, such as a lognormal distribution, to the 

current solution  in an iterative manner. The vector  contains the parameters of the prescribed 

distribution, fitted using a Kolmogorov-Smirnov goodness-of-fit statistic (Press, et al. 2007), 

(Kolmogorov 1933), the algorithm of which is explained in Appendix B.2. 

 If all of these priors are added together, and the substitutions  and  

are made, the objective function becomes 

 (5.24) 

Due to the monotonic nature of the natural logarithm, this can be rewritten as  

 (5.25) 

where the optimal  maximizes this equation. Many optimization schemes work by minimization 

rather than maximization, so this is rewritten as 
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 (5.26) 

 This equation can be rewritten in an iterative linear form, where each step is linear but the 

steps are taken iteratively, as 

 (5.27) 

The first step of this objective function must be taken with , as  is fitted to the 

distribution from the previous step. Hence, the first step is the nonnegative Tikhonov solution. 

Generally, the value of  is chosen heuristically for this method, as there is no graphical method 

synonymous with the L-curve that can solve two variables simultaneously.  

5.6 Application to Experimental Data 

Within this regularization framework, measurement data from the actual experimental 

apparatus was inverted using strictly Tikhonov regularization. The goal was to use the least 

amount of regularization possible to solve the problem so that the solution would be dependent 

mainly upon the data available from the problem and not the priors that were added.  

 There is one main problem with solving for the aggregate size distribution of the soot 

aerosol system; the scaling coefficient . As noted in Chapter 3, this coefficient can be 

determined from experimental measurements provided the scattering signal is calibrated and the 

soot aggregate number density is known; in the case of this experiment these values were not 

known. Hence,  is treated as another variable to be solved for during the regularization process.  

 First, Tikhonov regularization was applied to the problem. This was done by choosing a 

range of values of the scaling coefficient and setting a constant value of the regularization 
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parameter, . The problem was inverted using Tikhonov regularization with the first order 

smoothing matrix at each value of  and . The residual, , 

was calculated at each set of values as well, and the results are shown below in Figure 5.5 (a). 

This shows that there is no optimal solution when using strictly Tikhonov regularization, with no 

other priors. In other words, any value of  is almost equally able to solve the problem. Thus, 

more information is needed to determine the  coefficient.  

Next, the nonnegative prior was added to the problem, and the same procedure was 

undertaken, with the residual  employed. The 

results were much the same, as shown in Figure 5.5 (b). Even with both smoothing and 

nonnegativity added as priors, an optimal value of the scaling coefficient cannot be recovered. 

Therefore, more information was needed, added in the form of a prescribed distribution.  

 To add a prescribed distribution, however, a value for the regularization parameter  had 

to be chosen. Considering Figure 5.5,  should be chosen to be somewhere between  and 

; hence, heuristically,  has been chosen to be equal to .  

By adding the prescribed distribution, a minimum value for the scaling parameter 

appears, allowing both the scaling parameter, , and the weighting parameter for the prescribed 

distribution, , to be determined simultaneously. The residual in this case is 

. The plot of the scaling parameter 

versus the residual is shown below in Figure 5.6, with the minimum denoted by a diamond. The 

optimal value of the scaling coefficient, , is determined to be .  
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Figure 5.5 – Residual plotted over a range of  and  values for (a) Tikhonov regularization, 

         and (b) Tikhonov regularization with nonnegativity prior added 
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These residuals were used, rather than simply , because the 

system being solved is the augmented matrix given in Eq. (5.27). Because MAP inference is 

being employed to solve this problem, the total probability should be used, rather than only the 

likelihood function. Hence, Figure 5.6 is generated with the augmented matrix equation.  

By setting , , and , the probability density function of the 

aggregate size distribution was recovered using Eq. (5.27). The resulting distribution is given in 

Figure 5.8, plotted alongside the lognormal distribution fitted to the TEM histogram for this 

flame. Also plotted is the fitted prescribed lognomal distribution, . The recovered 

distribution was then used in Eq. (1.3) to reconstruct the scattering data, which is plotted in 

Figure 5.7 against the actual measured data.  

 

Figure 5.6 – Residual plotted over a range of values for the scaling parameter with  

        nonnegativity and a prescribed distribution 
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Figure 5.7 – Reconstructed scattering data  

 

Figure 5.8 – Recovered distribution 
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5.7 Discussion of the Recovered Solution 

This chapter showed how the probability density function of the aggregate size distribution 

of soot aggregates is recovered from multiangle scattering data. Due to the severe ill-posedness 

of the problem there are an infinite number of solutions that accurately reconstruct the measured 

light scattering data, so it is necessary to impose extra information in the form of assumed 

solution attributes, or priors, through regularization. 

The recovered solution displays similar trends to the expected solution from TEM analysis 

of this flame. There is an initial spike of smaller aggregates, and then the distribution slowly 

decreases towards zero. There is a section in the middle of the curve that doesn‘t match at all 

well, but there is the initial spike, and the tail of the curve also matches the TEM distribution 

quite well. Overall, this technique has been quite successful.  

A great deal of regularization was needed to actually solve this problem. Three distinct 

priors were added before the problem became specific enough to determine the scaling parameter 

and the two regularization parameters required. Furthermore, these values were determined by 

inspection in a heuristic manner. A more rigorous, and automated, method should be developed 

before this technique is put into use outside of a laboratory. 

The recovered distribution does reproduce the light scattering data to within experimental 

accuracy. Thus, this result is an entirely plausible solution, recovered without forcing a specific 

distribution type. That is one of the key points of using regularization over assuming a specific 

distribution type. This method promotes a lognormal distribution, but does not force it. This is 

made clear in Figure 5.8, where the final solution and the prescribed distribution are both shown. 

The final recovered distribution is not exactly the lognormal distribution that was used in Eq. 
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(5.27), but has deviated from that distribution because the solution of the objective function led 

in that direction. This is also supported by Figure 5.9, which is a plot of the objective function 

, where  is constrained to be a lognormal distribution. One interesting note is 

that the prescribed distribution, , does not lie in the valley of solutions that all recover the 

measured data to within experimental accuracy, although it is very close. This provides evidence 

that the solution can depart from the optimal lognormal solution if the other priors suggest that 

such a move would be beneficial.  

   

 

Figure 5.9 – Objective function of lognormal distributions with three distributions of interest  
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Chapter 6                    

Optimal Design of Experiment 

6.1 Introduction 

Most researchers who work on light scattering from soot aggregates heuristically choose 

the angles at which light scattering measurements are made, most often at uniform angular 

increments. But one might wonder if there is indeed a better solution, a more precise method for 

determining the optimal angles in this experiment, or even if such a set of optimal angles exist. 

As described in Chapter 3, Sorensen (2001) suggested that angles be chosen to be uniform in the 

q-domain, rather than in the angular domain, because the inverse of the scattering wave vector is 

the length scale of the scattering experiment, giving physical insight into the scattering 

mechanics of the aggregates. This was the method used to determine the experimental angles at 

which light scattering measurement data were taken for this experiment. 

This chapter will determine if there is an optimal configuration of angles that produce the 

best defined system, consider the size of the matrix equation that should be chosen in Eq. (1.3), 

introduce a rigorous method for determining an optimal angle set, and justify the choice of such 

an angle set by demonstrating that it reduces the error inherent in the problem. 
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6.2 Optimal Size of the Kernel Matrix 

The kernel matrix is simply the discrete form of the kernel function, and while the number 

of rows of the matrix is set by the number of angular measurements, the number of columns can 

be chosen however one pleases. Is there an optimal way to set the number of columns of this 

matrix? What is the advantage of having more or less columns, or is there even an advantage?  

The first consideration is the refinement of the aggregate size distribution. The final 

solution should be as refined as possible, which suggests adding more columns to the kernel 

matrix. Recalling the basic matrix equation 

 (1.3) 

it is apparent that the more columns there are in , the more points there are in the discrete 

distribution . If there is a set upper bound to the number of primary particles in an aggregate, 

these additional points will improve the solution resolution and produce smoother curves, as well 

as allow for smaller features of the curves to appear. An example of this is shown in Figure 6.1, 

where two curves of the same function, a bimodal distribution, were generated with vastly 

different numbers of points.  

To understand how this affects the system, however, one should look at the singular value 

decomposition of the kernel matrix. Any matrix, real or complex, square or rectangular, can be 

decomposed using singular value decomposition into 

 (6.1) 
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where the matrix  is an orthonormal basis for the input vector, , and  is the conjugate 

transpose of . The matrix  is an orthonormal basis for the space that contains the measured 

data, .  is a diagonal matrix and contains the singular values of the system. The singular values 

are essentially weights that determine how strongly the solution depends on each of the basis 

vectors of . If the singular values are small the measured data does not depend greatly on the 

corresponding basis vector. Furthermore, if any of the singular values are equal to zero, the 

matrix is singular and cannot be inverted using normal algebra. If a square matrix is singular, 

there exist one or more basis vectors  that map to zero. Hence,  and so there exist an 

infinite set of linear combinations of these vectors that exactly satisfy the problem. Suppose the 

vector  is an exact solution, such that ; then the solution  is also an 

exact solution. Hence, the solution is not unique, and Hadamard‘s second criterion is violated, so 

this is an ill-posed problem. 

 

Figure 6.1 – Bimodal distribution at two different levels of refinement. 
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If the  matrix is defined to be rectangular, of size  such that , there are only 

 singular values. Hence,  will be of the form 

 (6.2) 

Thus, every vector  such that  will have no effect on the solution, and will be a portion of 

the solution space that is unreachable. This is demonstrated by the rank-nullity theorem, which 

states that for an  matrix ,  

 
(6.3) 

The nullity of  is defined as the number of nonzero vectors that, when multiplied by , produce 

the zero vector. This is one of the reasons that this problem is very ill-posed when formed as a 

rectangular matrix equation. There is an infinite set of vectors that are scalar multiples of the null 

basis vectors which, when added to the solution vector, adequately solve the problem. In 

mathematical form this is given as 

 
(6.4) 

The problem is that  can change the shape of the aggregate size distribution greatly yet have 

no effect on the reconstructed measuring data, and hence no effect on the objective function, Eq. 

(5.16).  

 To reduce the nullity of  the matrix should be defined as close to square as possible. 

This reduces the nullity to zero, or close to zero, and reduces the section of the basis that cannot 

be mapped to or, in the case of the forward problem, mapped from. However, reducing the 

nullity to zero doesn‘t necessarily solve the problem. The other thing to look at is the actual 

singular values themselves. 



   

 

76 

 

6.3 Singular Values 

The singular values for the experimental data set with 23 angles chosen uniformly in the q-

domain are shown in Figure 6.2. This range of singular values is exactly what is expected from 

an ill-posed problem (Hansen 1998). Attempting to invert this problem using the singular value 

decomposition method gives a great deal of insight into the problem these singular values pose. 

 Using singular value decomposition as defined in Eq. (6.1), Eq. (1.3) can be rewritten as 

 (6.5) 

Thus,  can be written as  

 (6.6) 

recalling that the inverse of an orthogonal matrix is simply the transpose of the matrix. This can 

be written as a sum of vector multiplication,  

 
(6.7) 

where  and  are column vectors of  and , respectively. It should be noted that because  is 

a diagonal matrix the inverse is simply the diagonal matrix whose entries are the reciprocals of 

the diagonal entries of . Thus, if there are very small singular values, as in the case shown in 

Figure 6.2, the corresponding basis vectors of  and  will dominate the problem, and will 

generally cause the solution of  to be very large and oscillatory. For this reason regularization is 

added to the problem, to damp out these highly unrealistic solutions. 
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 The question remains as to whether the error in the solution can be reduced, however, and 

hence decreasing the amount of regularization required, by means of optimizing the angles at 

which the light scattering is measured. 

6.4 Sensitivity Matrix 

In order to optimize the angles of the problem, an objective function must first be formed 

that varies with the set of angles used and is optimal when the set of angles is optimal. The 

starting point of determining this objective function is defining the ellipse of possible solutions. 

This is given as (Press, et al. 2007) 

 

Figure 6.2 – Singular values of the kernel matrix defined with experimental angles. 
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(6.8) 

This decomposition shows that the errors inherent in the recovered solution are linearly 

independent; the vectors  are orthogonal basis vectors that form the principal axes for the 

confidence ellipse.  

 The ellipse formed by the error terms in Eq. (6.8) is not a confidence interval, but instead 

generates the shape of the ellipse that follows the contours of the objective function. The column 

vectors of  are the eigenvectors of the problem, and the reciprocal of the singular values give 

the relative length of the ellipse along a principle axes. Thus, if the ratio between the largest and 

smallest eigenvalues is two, which implies that the length of the error ellipse along the direction 

of the eigenvector corresponding to the largest eigenvalue should be two times larger than that in 

the direction of the eigenvector corresponding to the smallest eigenvalue. This is shown in 

Figure 6.3.  

To determine a confidence interval, we begin with the Chi-Squared function, defined as 

 (6.9) 

where  is an independent random variable that is normally distributed. This random variable 

must have zero mean and unitary standard deviation. Consider the logarithm of the likelihood 

function (Eq. (5.16)); this function is normally distributed with a mean of zero. However, the 

standard deviation of  is not unitary, and so  must be included to scale the equation to 

have unitary standard deviation. Thus, Eq. (6.9) can be written as 



   

 

79 

 

 (6.10) 

where  is a row vector of . Equation (5.16) is the summation of the squares of normal 

distributions, producing the probability of the data being correct given a certain distribution. 

Similarly, integrating the chi-square probability distribution (Özisik and Orlande 2000) from 

zero to  with Equation (6.10) as the argument gives the probability of a vector  producing a 

value that is smaller than .  

Because the normal distributions have all been scaled, in Eq. (5.17), the standard 

deviations are all the same, i.e.  for all . Hence, this becomes 

 (6.11) 

If this is rewritten in matrix form, it becomes 

 

Figure 6.3 – Ellipse of solutions in two dimensions 
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 (6.12) 

Decomposing  is into , then gives 

 (6.13) 

and by the assumption that  this simplifies to 

 (6.14) 

where  defines the boundaries of an ellipse that forms a confidence interval. The percentage of 

the solutions that fall within the confidence interval is determined by the value of ; a list of 

specific values can be found in both Press et al.  (2007) and Özisik and Orlande (2000).  

 This equation is equivalent to the equation given by Press et al.  (2007) and Emery and 

Fadale (1996), 

 (6.15) 

where  is the covariance matrix. Özisik and Orlande (2000) define the covariance matrix as 

 (6.16) 

where  is the sensitivity matrix and  is the standard deviation. Because of the linearity of the 

soot aerosol system, the sensitivity matrix is identical to the kernel matrix. This is derived in 

Appendix B.5. 

Considering Eq. (6.14), both  and  are constants; hence, to reduce the length of the 

vector  from the centre of the ellipse to the edge the term  should be maximized. There are 

a number of potential ways to maximize this matrix. Maximizing the determinant as suggested 
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by Özisik and Orlande (2000) is the method used in this work. Thus, the objective function 

employed to shrink the size of the ellipse is given by 

 (6.17) 

This objective function works by maximizing the singular values of the kernel matrix . 

By definition,  

 
 

(6.18) 

 

where the ‘s are the singular values of the kernel matrix, . Thus, by maximizing the 

determinant of the kernel matrix, the singular values are made as large as possible, and hence the 

inversion is made less ill-posed. As well, the condition number of a matrix is the ratio of the 

largest to smallest singular values, so by making the small singular values as large as possible, 

the conditioning of the kernel matrix is made as large as possible.  

Next, a simple test case will be undertaken to demonstrate some of these concepts. 

6.4.1 A Two-Dimensional Example 

To begin, define a two dimensional linear system,  

 (6.19) 

with the ‗kernel‘ matrix 

 
(6.20) 

and the ‗data‘ vector 
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(6.21) 

 The solution to this system is readily obvious as  

 
(6.22) 

and Eq. (6.7) is able to reconstruct this answer quite accurately. This system was chosen because 

it is ill-posed and the values in the solution vector are the same. Hence relative error in the 

solution vectors will also be identical. This is important because it allows this system to be 

written in the form of Eq. (6.14). Computing the singular value decomposition provides two 

important pieces of information: first, the singular values for this matrix; and second, the basis 

vectors for the solution, the columns of the  matrix. These are given as 

  (6.23) 

 The data is contaminated with 3% normally distributed error relative to the data, and Eq. 

(6.19) is inverted using Eq. (6.7). This process is repeated one hundred times, with the resulting 

vectors  plotted in Figure 6.4, along with the ellipse defined by Eq. (6.8). As well, the true 

solution is plotted as a square.  

Next, a confidence interval must be determined. Equation (6.8) is not a confidence 

interval because it does not scale with error in the measured data; the ellipse is always the same 

size and shape. It does, however, provide the ratio of the lengths of the axes of the ellipse, which 

follow the contours of the objective function and remain consistent. 
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If the axes of the ellipse in Eq. (6.8) are defined as  and , then in 

general, for any error ellipse in this test case, the ratio of the axes should be , 

which is the condition number of the matrix .  

Written in matrix form, Eq. (6.16) becomes 

 (6.24) 

The goal, then, is to determine the length of the principle axes of the ellipse.  

If a confidence interval is chosen, there is a corresponding  value that is specified. A 

list of some common values are given in Press et al. (2007) and Özisik and Orlande (2000). The 

standard deviation must be determined, which is simply the standard deviation inherent in the 

measured data. This is determined by solving the problem a great number of times and 

 

Figure 6.4 – Solutions to two-dimensional test case, 3% normal error, Eq. (6.8) ellipse shown 
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determining the standard deviation of each point in the solution vector. This should be the 

standard deviation of the artificial noise added to the data, scaled by the solution vector. Because 

the solution vector was chosen so that each value is identical, the standard deviations should also 

be identical, and can simply be multiplied into the entire matrix in Eq. (6.24).  

To determine the values of , consider Figure 6.5. By employing similar triangles,  

 

 

 

(6.25) 

 If  is written as , and substituting in Eq. (6.25), then along the vector labelled  

in Figure 6.5, Eq. (6.24) becomes 

 (6.26) 

where  can be isolated to give 

 (6.27) 
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 By solving Eq. (6.27) for 3% normally distributed relative error and specified confidence 

interval, the horizontal component of one principle axis of the ellipse is determined. By 

employing Eq. (6.25) the vertical component of the axis can also be calculated, and hence by 

Pythagorean Theorem the length of that principle axis of the ellipse is found. This process can 

then be repeated along the other axis, which completely defines the error ellipse. A plot of both 

the 90% and 99% confidence intervals is shown in Figure 6.6, derived with a 3% standard 

deviation in the measured data.  

This simple example demonstrates that for a given confidence interval, , the error 

ellipse can be reduced in size by maximizing the sensitivity matrix. That is, by making the matrix 

 larger, the matrix  is also made larger; hence the principle axes of confidence interval 

determined through Eq. (6.27)  are shrunk.  

 

 

Figure 6.5 – Principle axes of a confidence interval 
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6.4.2 Application to the Soot Aerosol System 

The objective function given in Eq. (14) was applied to the soot aerosol system with 

twenty-three angles (based on the author‘s experimental work) using the nonlinear programming 

algorithm fmincon in Matlab to determine the best angle set at which light scattering 

measurements should be taken. This algorithm uses a sequential quadratic programming method, 

which estimates the Hessian of the Lagrangian to determine the step direction, and performs a 

line search to determine the step length. The objective function, however, is by no means 

smooth. By choosing values for twenty two of the angles, and varying the remaining angle, the 

objective function shown in Figure 6.7 is found (the angle chosen to vary was the twentieth). It is 

quite easy to see that around the angle in question the objective function is very noisy, and thus 

finding the true minimum using non-linear programming should prove difficult.  

 

Figure 6.6 – 90% and 99% confidence intervals for the two-dimensional test case 
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Due to the inherent noise in the objective function, another approach was adopted to 

determine the optimal angle set. Because nonlinear programming generally works by finding the 

best downhill direction to step in, it can potentially find a local minimum rather than the global 

minimum. Furthermore, it can find different local minima depending on the initial condition 

chosen. To overcome this, a simulated annealing procedure was applied to the problem.  

When a metal is heated, its molecules have high energy, and are able to move quite 

freely. If the metal is then cooled quickly (quenched) the molecules drop down into the closest 

low-energy state, whatever that happens to be. The lowest energy state is one where every 

molecule is lined up in a crystal lattice, but in quenching the molecules form smaller sections of 

crystalline lattice that aren‘t all aligned properly, and are at a higher energy state than a perfect 

lattice. If the metal is instead allowed to cool slowly, the molecules have time to align 

 

Figure 6.7 – Objective function, varying the twentieth angle over the acceptable range, with the 

                     original value of said angle noted  
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themselves, and they reach the lowest energy state. This occurs because the molecules are able to 

temporarily jump up to a higher energy state and then drop into an even lower energy state than 

the one they were in.  

A simulated annealing program attempts to replicate this behaviour (Press, et al. 2007). 

Because the objective function is noisy, there are many local minima that are not the global 

minimum. Simulated annealing algorithms allow the objective to move in a direction other than a 

nearby minimum occasionally, if the move will bring it to a lower energy state. Thus, in places 

where nonlinear programming algorithms would get ‗stuck‘ in a local minimum, the simulated 

annealing algorithm can continue optimizing. Using this algorithm, a new angle set was 

determined. 

Three sets of angles are listed in Table 6.1: a set of angles that are uniform in ; a set of 

angles that are uniform in ; and the set of angles found by applying simulated annealing. The 

singular values of the kernel matrix formed by each of these angle sets are shown in Figure 6.8. 

From Figure 6.3 we can see that the length of the principle axes of the error hyperellipse is a 

function of the reciprocal of the singular values. Thus, by considering the singular values shown 

in Figure 6.8 it can be seen that for the optimal angle set determined using simulated the 

principle axes of the error hyperellipse have been made smaller. As well, the angle set that is 

uniform in the q-domain produces a smaller error ellipse than the angle set that is uniform in the 

-domain. 
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Figure 6.9 shows the plot of the relative intensity versus modulus of the scattering wave 

vector squared for the three angle sets, and shows interesting graphical features that may explain 

why certain angle sets are more optimal. The angles that are uniformly spaced in the -domain, 

shown in Figure 6.9 (a), and the -domain, shown in Figure 6.9 (b), are clustered towards the 

large end of the curve. However, as mentioned in Section 2.2, the power-law regime should be a 

straight line when plotted in this way, and hence only requires two points to fully describe it. 

Therefore, a great number of points from these angle sets are not optimally placed, as they 

provide duplicate information to the problem. Likewise, there are few points in the transition 

regime, which suggests that this regime is not fully described and might therefore contain more 

information that could reduce the ill-posedness of the problem. It should be noted that the regime 

positioning in Figure 6.9 is not exact, as it is very difficult to properly determine where the 

transition regime is located.  

 

Figure 6.8 – Singular values of the kernel matrix using three angle sets 
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The optimal angle set and resulting relative scattering distribution is shown in Figure 6.9 

(c). There are more points throughout the transition regime than in the uniform angle data sets, 

which will help gather as much information from that regime as possible. The Guinier regime is 

also a straight line when plotted in this manner, but its boundaries are difficult to determine, and 

any extra points in that regime are likely in the transition regime. The number of points in the 

power-law regime is far fewer than the other angle sets, but more than expected. This suggests 

that by having fewer angles the ill-conditioning of the matrix equation could be further reduced. 

 
Figure 6.9 – Plot of angular scattering distributions: (a) uniform in θ-domain; (b) uniform in q- 

          domain; (c) optimal 
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6.5 Reducing the Error 

The point of finding an optimal angle set is to reduce the error inherent in the problem, 

hence reducing the need for regularization. There are two types of error that optimizing the 

problem should reduce: the perturbation error and the regularization error. If a perturbation 

analysis is done on Eq. (1.3), both of these error terms appear. 

 

 

 
(6.28) 

In this derivation,  is the regularized pseudo-inverse of . The term  is defined to be the 

perturbation error, and the term  is defined to be the regularization error.  

6.5.1 Perturbation Error 

Determining whether the perturbation error is reduced by working with an optimized data 

set, a perturbation analysis is performed. In an artificial problem, the error in the data, , is 

slowly increased, and the corresponding error in the solution, , is plotted.  

This was accomplished by forming three separate data sets, , using the three sets of 

angles given in Table 6.1. These angles were used, along with a known distribution, to 

numerically integrate Eq. (1.2). The kernel matrix was also formed for each of these angle sets. 

The problem was first solved with no error at all, finding the least amount of 

regularization required. Then a small amount of error was added, and the problem solved again. 

This was repeated with increasing error until an arbitrary stopping point was reached. The results 

are shown in Figure 6.10.  
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As expected, the magnitude of the error in the distribution, , increases with error in the 

measured data, . Employing the optimal angle set with a set amount of error in the data 

produces less error in the solution distribution than does the same amount of error added to the 

angle set that is uniform in the q-domain, which in turn has produces less error in the solution 

than does the data set with uniform angles in the -domain. Thus there is wisdom in picking 

angles in the q-domain over the -domain, as suggested by Sorensen (2001), but there is 

potentially an even better angle set.  

 

 

Figure 6.10– Perturbation analysis with linear fits 
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Table 6.1– Angle sets used throughout this chapter. 

Uniform in  Uniform in q-domain Optimal 

10.000 10.000 10.000 

23.044 14.455 11.778 

29.565 19.314 13.670 

36.087 24.208 15.288 

42.609 29.147 16.740 

49.130 34.143 18.114 

55.652 39.206 19.461 

62.174 44.350 20.829 

68.696 49.590 22.244 

75.217 54.943 23.749 

81.739 60.430 25.369 

88.261 66.075 27.144 

94.783 71.906 29.127 

101.304 77.962 31.386 

107.826 84.288 34.009 

114.349 90.948 37.125 

120.870 98.028 40.929 

127.391 105.653 45.757 

133.913 114.016 52.175 

140.435 123.450 61.283 

146.957 134.625 75.635 

153.478 149.400 102.013 

160.000 160.000 160.000 
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6.5.2 Regularization Error – No Noise in the Data 

 The next step is to prove that the regularization error is reduced for the optimal solution 

as well. This is done in two parts: first, with no error in the problem; and then with error added. 

Recalling the recovered solution shown in Figure 5.4, the soot aerosol problem cannot be 

inverted using normal algebraic methods, and as such some regularization must be added. To 

begin, regularization was added by employing truncated SVD (TSVD). This works by 

eliminating the small singular values and the corresponding basis vectors that cause highly 

oscillatory solutions. Singular values are systematically removed from the problem until the 

solution matches the exact solution, which is known because this is an artificial case.  

This was done for each of the angle sets for a bimodal distribution. The purpose of using 

a bimodal distribution is that the distribution contains higher frequencies. Regularization tends to 

remove higher frequency solutions, and hence if the correct solution could be recovered, the 

procedure is very likely robust. For the case of the angle set that is uniform in the -domain the 

solution was recovered by truncating thirteen singular values out of the original twenty-three. For 

the angle set that is uniform in the q-domain only ten singular values were truncated to produce 

the solution. Finally, for the optimal angle set, only six singular values needed to be truncated to 

reproduce the original bimodal distribution. This is shown in Figure 6.11. 
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In determining the number of singular values that needed to be truncated, two things have 

been determined: first, that the optimal angle set does appear to reduce the amount of 

regularization required, and hence the regularization error, and second, that the level of 

truncation needed to invert the problem is decreased. This is important because standard 

Tikhonov regularization, using the identity matrix, can be written in the same manner as TSVD 

by using filter factors. For TSVD the filter factors are defined as 

 (6.29) 

where  is defined as the truncation parameter (Hansen 1998). For example, using the optimal 

data set . However, there is a definition for the filter factors for standard 

Tikhonov regularization, given as 

 

Figure 6.11 – Regularization analysis – recovering a bimodal distribution with TSVD 
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 (6.30) 

If the TSVD solution is known, then the regularization parameter for standard Tikhonov 

can be determined as , and using this value the problem can be inverted. This may be 

somewhat of a convoluted method to solve the problem, but doing so gives a clear indication of 

the different levels of regularization required to recover a solution using the different angle sets. 

This is presented in Table 6.2. Thus, using the optimal angle set when no error is present in the 

problem reduces the regularization required to solve the problem.   

6.5.3 Regularization Error – With Noise in the Data 

There is, of course, noise in the actual problem. Therefore noise must be added to the 

problem. This, unfortunately, complicates the problem greatly, as error in the problem increases 

the difficulty of recovering a solution, as seen in Chapter 5.  

To determine if the optimal angle set still produced better results with noise present in the 

data, the perturbation error and the regularization error, originally defined in Eq. (6.28), were 

calculated for a range of . However, the actual expression used for the regularization error is 

given by Hansen (2010) as 

Table 6.2 – Regularization required to recover a bimodal distribution with no error. 

Angle Set Number of Singular Values 

Truncated 

Regularization Parameter, 

λ 

Uniform in θ-domain 13 9.875 

Uniform in q-domain 11 2.232 

Optimal 7 0.0670 



   

 

97 

 

 (6.31) 

where  are the filter factors for standard Tikhonov regularization for a given λ. Similarly, the 

perturbation error is defined as  

 (6.32) 

These values were determined over a range of λ‘s and plotted to produce a graph, shown 

in Figure 6.12. The total error in the problem is the sum of the regularization and perturbation 

errors, and the optimal amount of regularization is given at, or around, the value of the 

regularization parameter where both errors have the same value. This point has the smallest 

combined error, and hence is the value of the regularization parameter that should be employed 

in recovering the aggregate size distribution through Tikhonov regularization. This is shown 

graphically in Figure 6.12. 
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 This shows that the optimal angle set requires less regularization than the angle set that is 

uniform in the q-domain, which requires less regularization than the angle set that is uniform in 

the -domain. As well, although the difference is less than 10%, the total error in the solution 

also follows this trend, and hence the optimal angle set reduces the total error, although the 

reduction is minimal.  Thus, optimizing the problem has had the desired effect, reducing the error 

inherent in the system and reducing the need for regularization. However, it should be noted that 

optimization of only the angles cannot reduce the need for regularization of the noise-free system 

to zero.  

 

 

Figure 6.12 – Total Error – noisy data 
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6.6 Summary 

 This procedure has shown that the conditioning of the matrix equation can be made better 

by the proper choice of measurement angles. Optimizing the matrix equation reduces the 

regularization error and the perturbation error, which in turn imply that less regularization is 

needed to properly invert the problem, and furthermore, error inherent in the data will produce 

marginally smaller error in the solution than with other data sets. This is important because the 

solution to the soot aerosol should depend on the original kernel matrix to as great an extent as 

possible, to reduce potential bias from the added priors; optimizing the measurement angles 

helps to achieve this. Hence, the optimization of this experimental setup has, theoretically, been 

shown to be a success. Obviously, the next step would be to test this experimentally.  
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Chapter 7              

Conclusions 

7.1 Summary of Results 

The overall goal of this thesis was to use regularization to recover the soot aggregate size 

distribution from elastic light scattering data. This was shown to be possible, in theory, using an 

artificially generated data set. The resulting distribution matched the original distribution quite 

well for most of the range chosen, but in the small aggregate range the two distributions 

departed. This is due to the nature of the underlying physics, as the light scattered is proportional 

to the number of primary particles squared. Thus, small aggregates affect the light scattering 

measured at each angle very little, making it very difficult to recover the distribution properly in 

that range. 

However, when put into practice with experimentally obtained data, the results were less 

than desirable. While the scaling constant was known for the artificial case, in the experimental 

case it was unknown and had to be solved for as a variable. This was done for standard Tikhonov 

regularization and it was discovered that there was no distinct optimal value for the scaling 

constant. Adding the nonnegativity constraint did nothing to improve the situation, and so a 

prescribed distribution was added to the regularization to properly recover the aggregate size 

distribution. However, the solution was quite good, compared to a distribution obtained by 

collecting and sizing thousands of aggregates via TEM analysis. 
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Optimization has also been applied to the problem, something that has not, to the best of 

the author‘s knowledge, been done before. It was shown that by optimizing the angles that light 

scattering is measured at, the ill-posedness of the problem can be reduced. However, the 

reduction in the ill-posedness is small, which is to say that the underlying system is so badly 

conditioned that the optimization has only a small effect.  

7.2 Benefits of Proposed Method 

There are substantial benefits to solving this problem using regularization. Unlike 

techniques that force a distribution, regularization only promotes a distribution, allowing the 

solution to vary from the prescribed distribution type if such a solution is better. This method 

also allows for the regularization to be dialled accordingly if specific information is known about 

the problem.  

Furthermore, solving the problem by regularization provides a rigid mathematical 

framework in which to work. In the case when a distribution is forced to be lognormal, there is a 

long, narrow valley of solutions that all satisfy the problem. Finding the true minimal solution is 

very difficult if not near-impossible due to the error in the system. Even a small amount of error 

in the system can lead to a large amount of error in the recovered solution parameters, which can 

shift the solution far away from its true value. However, least-squares fitting, as is commonly 

used, does not have a rigorous method for pushing the solution towards the true solution in the 

long narrow valley of almost equally valid solutions.  

 Converting the system to a matrix equation, and looking at it in view of singular value 

decomposition provides a great deal of insight into the difficulties in actually recovering a 

solution. The singular values vary in size by up to sixteen orders of magnitude, showing that in 
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the forward problem certain basis vectors are important while in the inverse problem other 

vectors are important. This method allows for some optimization to be done to reduce the range 

of singular values and hence reduce the ill-posedness of the problem.   

7.3 Recommendations for Future Work 

The optimization performed on this system was successful, in that the error inherent in 

the problem was reduced. However, a great deal of work can still be done to improve on these 

results. 

7.3.1 Experimental Work 

First and foremost, the optimization should be experimentally validated. Though 

numerical analysis has shown that the optimal angles produced a better solution, it was outside of 

the power of the author to experimentally validate this. Hence, setting up the experiment and 

generating data for the optimal angle set and using that data to recover the soot aggregate size 

distribution should be carried out to determine if the optimization truly had any effect.  

7.3.2 Other Optimization 

While optimizing the angles proved effective numerically at reducing the ill-posedness of 

the problem, other variables could potentially be optimized, such as the laser wavelength. The 

wavelength of the laser is crucial in determining the positioning of the measurements in the q-

domain; while the angular range is set by physical constraints, the wavelength could be varied to 

shift the range of values in the q-domain towards the smaller regimes and away from the power-

law regime. Thus, an optimization algorithm could be designed to optimize the wavelength of the 

laser and the angle set simultaneously, allowing for the best possible experimental setup to be 

determined. 
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Another potential avenue of optimization could be determining the range and placement 

of the aggregate sizes  that are used to generate the kernel matrix. While initial optimization 

on this set of sizes suggested that uniform was best, the work was by no means in-depth and 

future could potentially improve the conditioning of the kernel matrix by means of optimizing its 

columns. 

7.3.3 Other Flames 

Obviously this research is in its early stages, and consideration for other flames, and other 

aerosols laden with soot, is still some way off. However, the end goal of this research is to 

produce a device that can accurately measure the aggregate size distribution from any soot laden 

aerosol by means of light scattering. Hence, expanding the work to include other techniques that 

are able to determine the myriad of parameters that are needed to recover the aggregate size 

distribution at the same time would be beneficial. For instance, the fractal dimension and primary 

particle diameter must both be known prior to attempting to recover the aggregate size 

distribution, and having a technique to determine those values using some form of measurement 

at the same time that light scattering is measured would potentially make the process more 

robust.  
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This section contains the MATLAB code that was used in preparing for and writing this 

thesis.   

A.1 Lgnrm.m 

function Logi = Lgnrm(sigma,mu,NP) 

% This calculates the value of the lognormal function at discrete points, 
% given by NP 
  
% Inputs 
% --------- 
% sigma - standard deviation (or log of the width) of the distribution 
% mu - log of the geometric mean 
% NP - aggregate size under consideration (can be either a vector or a 
%   single point) 
  
% if we've defined this badly, the initial value of NP is zero, and  
% anything/0 is a really bad thing, so I added a line to just make the  
% value zero.  
if NP(1) == 0 
    NP(1) = 100; 
    Logi = exp(-1*(log(NP)- mu).^2./(2*sigma^2))./(NP.*sigma.*sqrt(2.*pi())); 
    Logi(1) = 0; 
else 

    % this is what the expression looks like if we don't consider NP = 0 
    Logi = exp(-1*(log(NP)- mu).^2./(2*sigma^2))./(NP.*sigma.*sqrt(2.*pi())); 
end 
end 

 

A.2 Kernel3.m 

function Phase = Kernel3(np,theta,scal) 

% This function determines the value of the kernel function 
  
% Inputs 
% ----------- 
% np - the aggregate size in question 
% theta - the angle under consideration 
% scal - do we consider the sample volume in the kernel? Scal = 1 -> no 
  
% Df - fractal dimension 
% kg - fractal prefactor 
% a - primary particle diameter (or radius?) 
% lambda - laser wavelength 
Df = 1.72; kg = 2.4; a = 29; lambda = 527; 
% eta -  wavenumber 
eta = 2*pi()/lambda; 
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%rg - radius of gyration 
rg = a*((np/kg)^(1/Df))/2; 
% q - scattering wave vector 
q = 2*eta*sin(theta/2); 
% this one is self-explanatory 
qrg = q*rg; 

%fqrg - form factor or structure factor (taken from Koylu and Faeth 
fqrg = (1 + 8*(qrg).^2./(3*Df) + (qrg).^8).^(-Df/8); 
%Phase - Kernel Function 
if scal == 1 
    Phase = np^2*fqrg; 
else 
    Phase = np^2*fqrg/sin(theta); 
end 
end 
  

A.3 miniquad.m 

function Ker = miniquad(npmax,npmin,theta,scal,delnp) 
% This is a simple 6-point Gauss quadrature that integrates a strip around  
% a given NP value 
 % Inputs 
% ---------- 
% npmax is the upper bound of the strip. 
% npmin is the lower bound of the strip. 
% theta is the angle at which we're looking. 
% scal determines if we consider sample volume in the kernel: scal = 1 -> 
%   no, we don't. 
% delnp is the width of the strip. 
  
% Gaussian weighting factors 
C = [0.171324492, 0.360761573, 0.467913935, 0.467913935, 0.360761573, ... 
    0.171324492]'; 
% NP values, chosen by Gaussian quadrature 
NP(1) = ((npmax + npmin) + (npmax-npmin)*(-0.932469514))/2; 
NP(2) = ((npmax + npmin) + (npmax-npmin)*(-0.661209386))/2; 
NP(3) = ((npmax + npmin) + (npmax-npmin)*(-0.238619186))/2; 
NP(4) = ((npmax + npmin) + (npmax-npmin)*(0.238619186))/2; 
NP(5) = ((npmax + npmin) + (npmax-npmin)*(0.661209386))/2; 
NP(6) = ((npmax + npmin) + (npmax-npmin)*(0.932469514))/2;  
% Pre-allocating 
Phi = zeros(6,1); 

% Determining the Kernel function at each of the above six points. 
for i = 1:6 
    Phi(i) = Kernel3(NP(i),theta,scal); 
end 

% Gauss quadrature gives that dNP = (max_NP - min_NP)*dNP_n/2 
Lgn = Phi*(npmax-npmin)/2; 

% Multiplying by the weighting factors. 
Lgn2 = Lgn.*C; 
% Summing to get the integral over the strip centred at NP. 
Ker = sum(Lgn2)/delnp; 
end 
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A.4 gausste5.m 

function Integ2 = gausste5(logs,mnp,q1,sigma,mu,scal) 
% This function takes in a number of parameters, and returns a numerically 
% integrated integral equation, defined as the integration of a kernel 
% function (dealt with in the function miniquad.m) multiplied by an initial 
% distribution (given by logs). 
  

% Inputs 
% ------------ 
% logs - the shape you've chosen as your initial distribution. For 
%   instance, if we choose lognormal, logs = @Lgnrm 
% mnp - maximum NP, or the upper limit to the dependent variable you're 
%   numerically integrating 
% q1 - the set of angles you're working with 
% sigma - standard deviation (or log of the width) of the distribution 
% mu - log of the geometric mean 
% scal - determining if we work the sample volume in to the data or the 
%   kernel (or either). Scal = 1 -> sample volume dealt with in data, and not 
%   included in the kernel. 
  
format long 
% Num is the number of angles currently being used 
num = length(q1); 

% Letting the number of intervals the integral is split up into start at 1 
n=2; 

% Initial difference set so it will go past the first iteration: 
dif = 1000; 
% Error - this can be changed depending on how accurate an integration is 
% required 
epsilon = 1e-5; 

  

%******************************************************************** 
% Gaussian Weighting Factors 
C = [0.171324492, 0.360761573, 0.467913935, 0.467913935, 0.360761573,... 
    0.171324492]'; 

%******************************************************************** 
% Pre-allocating size of some vectors for speed. 
Integ3 = ones(1,num); 
NP = zeros(6,1); 
Integ = zeros(n,1); 
Phi = zeros(6,num); 
%******************************************************************** 
% The main while loop 
while dif > epsilon && n<1e5 
    % This for loop goes through all the different strips we have split this 
    % function in to. 
    for j=2:n 
        % Here we find the points, for each interval chosen, that are used  
        % by the six-point Gaussian Quadrature. j defines the interval in  
        % question. On a plot, these are the x-axis points 
        NP(1) = (mnp/n*j + mnp/n*(j-1))/2 + (mnp/n*j - mnp/n*(j-1))/2*... 
            (-0.932469514); 
        NP(2) = (mnp/n*j + mnp/n*(j-1))/2 + (mnp/n*j - mnp/n*(j-1))/2*... 
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            (-0.661209386); 
        NP(3) = (mnp/n*j + mnp/n*(j-1))/2 + (mnp/n*j - mnp/n*(j-1))/2*... 
            (-0.238619186); 
        NP(4) = (mnp/n*j + mnp/n*(j-1))/2 + (mnp/n*j - mnp/n*(j-1))/2*... 
            (0.238619186); 
        NP(5) = (mnp/n*j + mnp/n*(j-1))/2 + (mnp/n*j - mnp/n*(j-1))/2*... 
            (0.661209386); 
        NP(6) = (mnp/n*j + mnp/n*(j-1))/2 + (mnp/n*j - mnp/n*(j-1))/2*... 
            (0.932469514); 

        % The distance between successive values of NP 
        delnp = NP(2)-NP(1); 

        % Reallocation 
        L2 = zeros(6,num); 
        L3 = zeros(6,num); 
        % This for loop goes through the num different angles 
        for i=1:num 

            % This loop does a mini Gaussian integration, also a six-point 
            % Gauss quadrature, at each value of NP for more accuracy 
            for k = 1:6 
                Phi(k,i) = miniquad(NP(k)+delnp/2,NP(k)-

delnp/2,q1(i),scal,delnp); 
            end 
        % The value of the integral at each of the six points over the  
        % current strip 
        L2(:,i) = Phi(:,i).*logs(sigma,mu,NP).*(mnp*j/n - mnp*(j-1)/n)./2; 
        % Multiplying the Gaussian weights by the values of the integral  
        % function 
        L3(:,i) = L2(:,i) .* C; 
        % Summing up the six points we have calculated. 
        Integ(j,i) = sum(L3(:,i)); 
        end 
    end 
    % More reallocating. 
    Integ2 = zeros(1,num); 
    dif1 = zeros(1,num); 

    % This for loop goes through each angle, and sums up all the different  
    % strips we've integrated. 
    for i=1:num 
        Integ2(1,i) = sum(Integ(:,i)); 
    end 

    % Here we define our difference, or the residual between our current  
    % integral and the previous one. This is divided by the value of the 
    % previous integral to give the relative residual, rather than the 
    % absolute. As well, we take the absolute value in the off chance that 
    % the previous integral is bigger than the current value, giving a 
    % negative residual and ending the loop early. 
    dif1(1,i) = abs((Integ2(1,i) - Integ3(1,i))/Integ3(1,i)); 

    % Setting the previous integral equal to the current integral, for the 
    % next step. 
    Integ3 = Integ2; 
    % We double n for the next step. This is faster than a linear increase, 
    % and if twice as many strips doesn't give a significantly better 
    % result, then we've likely integrated well enough.  
    n = 2*n; 

    % Displaying n so that we can keep track of where we are.  
    disp(n); 
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    % We take the average of the differences calculated above, and use that 
    % to determine if we've reached convergence. Some parts of the 
    % integration may have, but we need the entire integral to do so. 
    dif = sum(dif1(1,i))/num; 
    % We print this so that we can see something happening, and determine  
    % how close it is to convergence 
    disp(dif); 
end 

% Finally, set it equal to it's transpose so that it is a column vector, 
% and return it as the answer. This could of course be done much earlier.  
Integ2 = Integ2'; 
end 

  

A.5 Ker.m 

function Phase = Ker(deltanp,qb,num2,samp,NP) 
% calculating a full kernel matrix 
  
% Inputs 
% ---------- 
% deltanp - the distance between the discrete NP values 
% qb - the angles under consideration 
% num2 - the number of discrete aggregate sizes (NP's) under consideration 
%      - num2 = length(NP) 
% samp - is the sample volume accounted for in the kernel? samp = 1 -> no 
% NP - the discrete aggregate sizes under consideration 
  
% The Kernel matrix 
%---------------------------- 
% The number of angles under consideration 
num = length(qb); 
% Df - fractal dimension 
% kg - fractal prefactor 
% a - primary particle diameter (or radius?) 
% lambda - laser wavelength 
Df = 1.72; kg = 2.4; a = 29; lambda = 527; 
% eta -  wavenumber 
eta = 2*pi()/lambda; 
% Predefining variables of given sizes. 
Phase = zeros(num,num2); 
npab = zeros(6,1); 
rg = zeros(6,1); 
qrg = zeros(6,1); 
fqrg = zeros(6,1); 
Pha = zeros(6,1); 

% Gaussian integration, six-point quadrature - points 
xd =[-0.932469514,-0.661209386,-0.238619186,0.238619186,... 
    0.661209386,0.932469514]; 
% Gaussian integration, six-point quadrature - weights 
C = [0.171324492,0.360761573,0.467913935,0.467913935,0.360761573... 
    ,0.171324492]'; 
%========================================== 
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% moving over the rows and columns of the Kernel matrix 
for i = 1:num 
    for j = 1:num2 

        % the maximum and minimum number of primary particles in this 
        % particular 'bin' 
        Npminj = NP(j)-deltanp/2;  
        Npmaxj = NP(j)+deltanp/2;  
        % the scattering wave vector at the angle qb(i) 
        q = 2*eta*sin(qb(i)/2); 
        % Another integration, this time over the strip of the function 
        % that we're dealing with. 
        for k = 1:6 
            % This is the number of primary particles that we are currently  
            % dealing with, as determined by Gaussian quadrature 
            npab(k) = ((Npmaxj + Npminj) + (Npmaxj-Npminj)*xd(k))/2; 
            % rg - radius of gyration  
            rg(k) = a*((npab(k)/kg)^(1/Df))/2; 

            % qRg - self explanatory 
            qrg(k) = q*rg(k); 

            % fqrg - form factor or structure factor: from Koylu 
            fqrg(k) = (1 + 8*(qrg(k)).^2./(3*Df) + (qrg(k)).^8).^(-Df/8); 
            % This is the value of the kernel matrix at a specific point in 
            % the strip 
            if samp == 1 
                Pha(k) = npab(k)^2 * fqrg(k)*(Npmaxj-Npminj)/2; 
            else 
                Pha(k) = npab(k)^2 * fqrg(k)/sin(qb(i))*(Npmaxj-Npminj)/2; 
            end 
        end 
        % This is integrating over the strip, giving the value of the 
        % kernel matrix at the current i and j. 
        Phase(i,j) = Pha'*C/deltanp; 
    end 
end 
end 

 

A.6 hypergeo.m 

function g = hypergeo(D,qRg) 
    % calculating the hypergeometric structure factor, as suggested by 
    % Sorensen (2001). 
     
    % number of iterations to go through. Matlab can't handle much beyond 
    % this number, for larger qRg values.  
    nu = 170; 
    % the three parameters that define the hypergeometric function 
    a = D/2; 
    b = 3/2; 
    z = -((qRg)^2)/D; 
    % reallocating 
    g2 = zeros(nu,1); 
    % two dummy variables that are the gamma functions of a and b 
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    braca2 = Gams(a); 
    bracb2 = Gams(b); 

    % This is the actual hypergeometric function 
    for i = 1:nu 
        % two more dummy variables that are the ratio of two gamma 
        % functions 
        braca = Gams(a+i)/braca2 ; 
        bracb = Gams(b+i)/bracb2; 
        % the ratio of the ratios multiplied by the other variable 
        g2(i) = braca/bracb * z^i/factorial(i); 
    end 
    % the value of the hypergeometric function is the sum of all these 
    % values plus one. Adding more values theoretically increases the 
    % accuracy of the function.  
    g = sum(g2) + 1; 
end 

  
function mul = Gams(tau) 
    % This integrates a gamma function by using the fact that n! = 
    % Gamma(n+1).  
    % we want to calculate (n-1)! = Gamma(n) 
    tau2 = tau - 1; 
    % how many iterations do we go through before we call it quits 
    p = 30000; 
    % defining this as unity, as this is a multiplication term 
    mul = 1; 
    % and actually calculating the gamma function at n. If p is larger, it 
    % becomes more accurate, but takes longer to compute.  
    for k = 1:p 
        mul = mul*((k+1)/k)^tau2*((k)/(tau2 + k)); 
    end 
end 

 

A.7 Kolmogorovfits.m 

function dif = Kolmogorovfits(theta) 

    % This is a simple implementation of the Kolmogorov-Smirnov goodness 
    % -of-fit statistic, which finds the maximum difference between a given 
    % distribution and a lognormal distribution defined by the values given 
    % in theta.  
     
    % loading the distribution, xd; the length of the distribution, num2d; 
    % and the discrete vector of number of primary particles, NPd; I saved        
    % these values in the worksheet I am calling from, using  
    % save Oct6a xd num2d NPd 
    load Oct6a xd num2d NPd 
    x = xd; 
    num2 = num2d; 
    NP = NPd; 

     
    %----------------- 
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    % Generating the initial lognormal distribution 
    phi0 = Lgnrm(theta(1),theta(2),NP); 
    % this is just in case the initial distribution is poorly defined. 
    if phi0(1) == inf 
        phi0(1) = 10^3; 
    end 
    % Preallocating 
    cdfx = zeros(num2,1); 
    cdfphi = zeros(num2,1); 

    % The summation of the heights of each distribution, as a rough 'value 
    % under the curve' 
    sumx = sum(x); 
    sumphi = sum(phi0); 

  

    % converting to a Cumulative Distribution Function 
    for i = 1:num2 
        if i == 1 
            cdfx(i) = x(i)/sumx; 
            cdfphi(i) = phi0(i)/sumphi; 
        else 
            cdfx(i) = cdfx(i-1) + x(i)/sumx; 
            cdfphi(i) = cdfphi(i-1) + phi0(i)/sumphi; 
        end 
    end 
    % Finding the distance between the two graphs 
    D1 = zeros(num2); 
    for i = 1:num2 
        D1(i) = abs(cdfx(i) - cdfphi(i)); 
    end 
    % the Goodness of fit is the difference between the two.  
    dif = max(D1(:)); 
end 
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B.1 Numerical Integration 

Equation (1.2) has no analytical solution; there is no simple way to determine the 

intensity of the light scattered at a specified angle for a given distribution of aggregates. To 

generate an artificial data set with a known distribution, a numerical integration scheme must be 

implemented. For the purposes of this work, the six-point Gauss quadrature scheme was chosen 

(Chapra and Canale 1988).  

A function is integrated using this scheme by choosing six optimally chosen points on the 

interval [-1,1] and evaluating the function at each point. A change of variables must be carried 

out to transform the optimal points from the unit interval to the interval of interest, as follows 

 (B.1.1) 

 

where the value of  is the optimal integration point on the interval [-1,1], and the variables  

and  are the limits of integration. As well, this change of variables requires that the change 

 (B.1.2) 

 

be carried out as well. These changes allow Eq. (1.2) to be rewritten as 

 

(B.1.3) 

 

Once these substitutions are made, the integral is not evaluated, but rather the integrand is 

evaluated at each value of  and the resulting values are multiplied by a weighting factor and 

summed,  
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 (B.1.4) 

 

where  is the integrand evaluated at the given point. The values of the optimal arguments, , 

and the weighting factors, , are given in Table B.1.  

Table B.1 - Weighting factors and function arguments for Gauss six-point integration  

Index (d) Weighting Factor ( ) Optimal Argument ( ) 

0 0.171324492 -0.932469514 

1 0.360761573 -0.661209386 

2 0.467913935 -0.238619186 

3 0.467913935 0.238619186 

4 0.360761573 0.661209386 

5 0.171324492 0.932469514 

 This process can be repeated on increasingly fine intervals until convergence between the 

integrated values at two consecutive steps is found. That is to say, the function is integrated over 

the entire interval using this procedure; the interval is then split in half and both halves are 

integrated and the values summed. If the variation between the two integration values is within a 

set tolerance the procedure is stopped; otherwise, the halves are split in half and each quarter is 

integrated. The intervals are continually split in half and the integrand integrated over all the 

intervals until convergence is met.  
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B.2 Kolmogorov-Smirnov Goodness-of-fit Statistic 

The Kolmogorov-Smirnov goodness-of-fit statistic works by determining the maximum 

distance between a distribution of interest and a reference distribution. In the case of work 

carried out for this thesis, the reference distribution was a lognormal distribution. This works by 

computing the cumulative density function (CDF) of each distribution, defined as 

 (B.2.1) 

 

The CDF determines how much of the probability density function (PDF) has occurred up to a 

given . The CDF is used rather than the PDF because small blips away from the area of 

interest (for instance, at large ) have less effect on the overall distribution than for a PDF.  

 In the discrete case, such as was used in this thesis, the CDF of the reference distribution 

and the distribution of interest were calculated at each of a set of discrete points, by 

 (B.2.2) 

 

where p is the size of interest, with .  

Once the two CDF‘s are generated it is a simple thing to find the difference between them 

and then find the maximum difference, which is the goodness-of-fit parameter, .  

 (B.2.3) 

This process is depicted below in Figure B.0.1.  
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Figure B.0.1 - Fitting a reference lognormal CDF to the distribution of interest 
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B.3 The Scattering Albedo of Soot 

Some consideration should be given to the scattering albedo, which appears in Eq. (3.3) 

in Section 273.2. The scattering albedo is a constant property of soot that depends on the 

underlying soot properties, including fractal dimension, , number of primary particles, , 

primary particle diameter, , the wavelength of the incident radiation, , the complex index of 

refraction, , and others.  

The scattering albedo is defined as 

 
(B.3.1) 

where  is the scattering coefficient and  is the absorption coefficient. From Modest (1993) 

the scattering and absorption coefficients are defined as  

 

 

 

(B.3.2) 

where  is the aggregate number density and  and  are the aggregate scattering and 

absorption cross sections, respectively.  

 From Eymet, et al. (2002) the cross sections are given as  

 

 

 

(B.3.3) 

for the aggregate cross sections and 
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(B.3.4) 

for the primary particle cross sections. In these equations,  is the particle size 

parameter and  is the wavenumber.  

 Finally, from Köylü and Faeth (1994), the aggregate total scattering factor, , 

is defined as 

  

 

 

(B.3.5) 

where  is the aggregate scattering parameter and  is the aggregate radius of 

gyration.  

Thus, over all aggregate sizes, the scattering and absorption coefficients become 

 

 

 

(B.3.6) 

Integrating equations (B.3.6) and substituting into equation (B.3.1) gives a value for the 

scattering albedo of , which is in the range expected (Thomson 2000).  
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B.4 TEM Histogram Analysis 

Transmission electron microscopy (TEM) was used to image soot aggregates captured 

from a flame through thermophoresis. The sampling was carried out at a height of 42mm above 

the burner at the same operating conditions detailed in Chapter 4. There were 3238 aggregates 

collected at this height and imaged, allowing the formation of an accurate histogram.  

The number of primary particles in the aggregates captured in these images was then 

computed (making use of computer software to help this along) by means of the projected area 

method (PAM) (Köylü, McEnally, et al. 1997). This method makes use of the equation 

 (B.4.1) 

where  is the projected area of the aggregate measured from the TEM image,  is 

the projected area of a primary particle,  is a projected area prefactor, and  is an empirical 

exponent of the projected area  (Köylü, Faeth and Farias, et al. 1995), (Brasil, Farias and 

Carvalho 1999).  

 Using this technique the size of each aggregate imaged by TEM is calculated. The size 

distribution is then created by splitting the aggregates up into uniformly spaced bins, and scaling 

each bin by the total number of aggregates. This produces a probability density function, as 

shown in Figure B.0.2. 

To fit a lognormal distribution (Eq. (5.1)) to this distribution, the cumulative density 

function (CDF) is generated. This function gives the probability of an aggregate in the 

distribution being of a specific size or smaller. Mathematically, this is given as 
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 (B.4.2) 

 

or, in the case of a discrete TEM distribution, 

 (B.4.3) 

 

where  is the number of aggregates in each discrete strip of the distribution shown in Figure 

B.0.2 and  is the total number of strips. The CDF of the TEM histogram is shown in Error! 

Reference source not found..  

A similar method is carried out for a lognormal distribution to produce another CDF. A 

least-squares fitting procedure is applied to fit the lognormal distribution to the TEM data, 

perhaps using as an objective the Kolmogorov-Smirnov goodness-of-fit statistic (Appendix B.2). 

The resulting fitted distribution is shown in Figure B.0.4.  

The benefit of fitting the CDF rather than the probability density function (PDF) is that it 

is an unbiased estimator (Press, et al. 2007). As well, while different distributions give different 

CDF‘s, all CDF‘s agree on the minimum and maximum values of 0 and 1, respectively. As well, 

 

Figure B.0.2 – TEM histogram 
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in the case of the soot aggregate size distribution, the minimum value occurs at the point  

for all distributions.  

 

 

Figure B.0.3 – CDF of the TEM histogram 

 

 

Figure B.0.4 – TEM histogram with fitted lognormal distribution 
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B.5 Derivation of the Matrix J 

To determine a set of optimal angles, Özisik and Orlande (2000) suggest maximizing the 

determinant of the matrix , where  is the sensitivity matrix. The form of the sensitivity matrix 

is derived starting with the ordinary least-squares objective function, defined as (Özisik and 

Orlande 2000) 

 (B.5.1) 

 This equation can be rewritten in matrix form as 

 (B.5.2) 

 Next, this objective function must be minimized, which is accomplished by finding the 

value of the unknown parameter, , at which the derivative of  is equal to zero.  

 
(B.5.3) 

This can be rewritten in gradient matrix form by taking the derivative of the matrix 

equation, Eq. (1.3), with respect to . 

 (B.5.4) 

where  is given by 

 (B.5.5) 

 The sensitivity matrix, , is defined as 
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(B.5.6) 

where  

 
(B.5.7) 

 If each value  is assumed to be independent of every other value , then Eq. (B.5.6) can 

be written as 

 (B.5.8) 

which is just the kernel matrix, . Thus, the sensitivity matrix is, in this case, simply the kernel 

matrix, which is also called the Jacobian Matrix. Thus, to find the optimal angles, the 

determinant of  is maximized. 
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B.6 Experimental Data 

The following data was collected by the author between May 13 and June 30, 2010, at the 

National Research Council, Canada.  

Angle Measurement 

10.000 642.430 

14.455 627.188 

19.314 606.754 

24.208 589.385 

29.147 556.212 

34.143 534.844 

39.206 496.267 

44.350 478.798 

49.590 431.245 

54.943 401.522 

60.430 368.817 

66.075 342.999 

71.906 318.337 

77.962 290.651 

84.288 268.234 

90.948 245.670 

98.028 226.149 

105.653 208.422 

114.016 191.990 

123.450 177.023 

134.625 164.570 

149.400 153.725 

160.000 148.592 

 

 


