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Abstract

PrOs4Sb12 is the first known heavy fermion superconductor containing Pr. Many ex-
periments show results indicating unconventional superconductivity in this system. Most
notably, PrOs4Sb12 exhibits two superconducting transitions. The upper transition occurs
at Tc1 ≈ 1.89K and the lower transition occurs at Tc2 ≈ 1.72K. There are many features of
this system that are not understood and do not have a unified consensus among researchers.
Many issues remain unanswered, such as the origin of superconductivity, symmetry of the
superconducting energy gap, and the nature of the two superconducting transitions. We
present specific heat data for a single PrOs4Sb12 crystal. The data show two superconduct-
ing transitions. Variance in the lower superconducting transition (among various samples)
suggests multiple superconducting phases. Power law dependence of the low temperature
specific heat is indicative of asymmetric energy gap.

Cuprates are unconventional high temperature superconductors. The theory on origin
and characteristics of superconductivity in these systems is still a debated issue. Experi-
ments indicate presence of a phase in these systems that occurs above the superconducting
transition temperature which exhibits some common characteristics with the supercon-
ducting state. An important issue is the nature of this so-called “pseudogap” phase and
its relationship to the superconducting state. We have developed an experimental appa-
ratus and procedure for measuring the specific heat of a high temperature superconductor
and demonstrated it by measuring the heat capacity of a YBCO high-Tc superconductor
sample.

iii



Acknowledgements

I would like to thank Jan Kycia for his excellent guidance and advice as a supervisor,
his motivation, and his limitless patience. I will always be in debt to the incredible amount
of knowledge he has taught me over the last three years. I would also like to thank Robert
Hill for his assistance with the equipment and experiments, as well as helpful discussions
on the collected data. Frank Wilhelm taught a course on superconductivity which proved
to be an excellent introduction and basis for my understanding of the relevant concepts.
I would also like to express my gratitude to Jeff Quilliam. He has helped me in countless
ways during my thesis work, and has been a great source of knowledge and inspiration.

A special recognition is deserved by Jeff Hill and Jeff Mason who spent innumerable
hours with me working on and operating the dilution refrigerator used in these experiments.
I would also like to acknowledge Shuchao Meng and Chas Mugford for all their assistance
with various parts of my work. Patrick de Perio needs to be recognized for constructing
the probe used in the high-Tc experiments. I need to thank Paul Dube for allowing me
to participate and assist in performing the magnetic susceptibility experiments. Other
lab personnel that deserve special mention are: Luke Yaraskavitch, Halle Revell, Lauren
Persaud, and John Dunn.

I would also like to thank all the members of science machining shop, especially Andy
Coglough, Harmen Vander Heide, and Hiruy Haile. They have been of great assistance in
manufacturing various experimental components.

I need to acknowledge a few people for their friendship, encouragement and support:
Kayla Ryan, Darren Clark, Emily Atkinson, Michael MacKinnon, and Jason Hoyt.

Most importantly, I need to express my gratitude and appreciation to my family who
have been incredibly supportive throughout my entire academic career and all of my chal-
lenges.

iv



Dedication

This is dedicated to my parents.

v



Table of contents

List of Tables ix

List of Figures xv

1 Introduction 1

2 Superconductivity 3

2.1 Persistent Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Type I Superconductors . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Type II Superconductors . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Thermoelectric Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Energy Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 London Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 The BCS Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.1 Critical Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.2 Energy Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.3 Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.4 Flux Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Unconventional Superconductors . . . . . . . . . . . . . . . . . . . . . . . 17

vi



3 Specific Heat 19

3.1 Lattice Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 High Temperature Specific Heat: Dulong-Petit Law . . . . . . . . . 22

3.1.2 Low Temperature Specific Heat . . . . . . . . . . . . . . . . . . . . 23

3.1.3 Intermediate Temperature Specific Heat: Debye model . . . . . . . 24

3.2 Electronic Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Magnetic Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Specific Heat of Superconductors . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 PrOs4Sb12 36

4.1 Review of Previous Experimental Results . . . . . . . . . . . . . . . . . . . 37

5 Specific Heat of PrOs4Sb12: Experimental Procedure 53

5.1 Dilution Refrigerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Specific Heat Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 The Quasi-adiabatic Method . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2 The ac Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3 The Relaxation Method . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Temperature Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Proportional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2 Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.3 Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Resistance Measurement: 4 terminal technique . . . . . . . . . . . . . . . . 66

5.6 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7.1 Specific Heat Calculation . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



6 Specific Heat of PrOs4Sb12: Results and Discussion 71

7 Cuprates and YBCO 80

7.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Specific Heat of YBCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.1 Evidence for d-wave Pairing . . . . . . . . . . . . . . . . . . . . . . 88

7.2.2 Evidence for the Pseudogap . . . . . . . . . . . . . . . . . . . . . . 89

8 YBCO Experiment 93

8.1 Specific Heat of YBCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2 Magnetic Susceptibility of YBCO . . . . . . . . . . . . . . . . . . . . . . . 95

9 YBCO Results and Discussion 98

9.1 Specific Heat of YBCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.2 Magnetic Susceptibility of YBCO . . . . . . . . . . . . . . . . . . . . . . . 103

10 Conclusion 106

Appendices 107

Appendix A Anomalous Results 108

References 124

viii



List of Tables

2.1 Table of Few Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Debye Temperatures For Few Elements . . . . . . . . . . . . . . . . . . . . 27

4.1 Summary of Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Table of thermal conductivities and specific heats of various experimental
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



List of Figures

2.1 Behaviour of resistivity at the superconducting phase transition. . . . . . . 6

2.2 Temperature dependence of critical field. . . . . . . . . . . . . . . . . . . . 6

2.3 Magnetization curves for Type I and Type II superconductors. . . . . . . . 7

2.4 Current-Voltage characteristics of a normal-normal tunnel junction (green),
normal-superconductor tunnel junction at T = 0 (blue) and at finite tem-
perature (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Difference in the power reaching the detector between the superconducting
and normal states of tin as a function of frequency.[88] . . . . . . . . . . . 10

2.6 Temperature dependence of the energy gap in the BCS theory. . . . . . . . 15

2.7 Comparison of a s-wave gap function and a d-wave gap function. . . . . . . 18

3.1 The simplifications made in evaluating the low temperature specific heat of a
harmonic crystal. a)Typical normal-mode dispersion relations including the
optical modes (top) and acoustic modes (bottom). b) The approximation
that replaces a). Frequencies above kBT/~ don’t contribute significantly to
the specific heat. The optical branches are ignored. The acoustic branches
are replaces by linear branches. . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The Fermi function versus ε at a) T = 0 and b) T > 0. The two curves
differ only in the region of order kBT about µ because some electrons just
below εF have been thermally excited to levels just above εF . . . . . . . . . 30

3.3 Specific heat of a two level system with energy separation ∆E. . . . . . . . 31

3.4 Electronic specific heat of a superconductor. At the transition temperature
Tc, the specific heat changes from linear behaviour in the normal state to
exponential behaviour in the superconducting state. . . . . . . . . . . . . . 32

x



3.5 Normalized specific heat for a p-wave superconductor for several impurity
levels.[62] With increasing impurity, the specific heat jump becomes smaller,
the transition temperature shifts to lower temperatures, and there is a non-
zero residual heat capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Crystal structure of PrOs4Sb12 from [90]. . . . . . . . . . . . . . . . . . . . 37

4.2 Specific heat of PrOs4Sb12 from [66]. . . . . . . . . . . . . . . . . . . . . . 38

4.3 H-T phase diagram for PrOs4Sb12[41]. The superconducting state phase
boundary is determined from the electrical resistivity measurements. The
HFOP is obtained from the features observed in electrical resistivity, specific
heat, magnetization, and thermal expansion coefficient data. See paper for
original references. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Zeeman splitting of the Γ3 doublet and Γ5 triplet CEF levels. The doublet
and triplet cross at ∼ 4T and ∼ 10T , suggesting a stabilization of a different
ground state in this regime.[85] . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Thermal conductivity divided by temperature T versus T 2 for PrOs4Sb12

and PrRu4Sb12. The lines represent linear fits to the low temperature data
with an extrapolation to T = 0 K.[38] . . . . . . . . . . . . . . . . . . . . . 42

4.6 Magnetic field dependence of the extrapolated T = 0K thermal conductivity
of PrOs4Sb12 and PrRu4Sb12. The lines are guides to the eye in each case.
Lower inset: Field dependence of the conductivity normalized to the zero-
field value for PrOs4Sb12 both from this study and from earlier work[95].
Upper inset: Low-field dependence of the thermal conductivity divided by
temperature for PrOs4Sb12 at T = 0.1K. Open symbols are for sweeping
the magnetic field, closed symbols are from temperature sweeps at fixed
magnetic field.[38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 H-T phase diagram for PrOs4Sb12 obtained specific heat measurements and
ac susceptibility measurements in various magnetic fields.[36] . . . . . . . . 45

4.8 H-T phase diagram for PrOs4Sb12 obtained specific heat measurements in
various magnetic fields.[70] . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 PrOs4Sb12 phase diagram obtained by thermal transport measurements in
various magnetic field orientations.[44] The results indicate that the energy
gap has nodes, and that two transitions are due to the change of symmetry
of the order parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 Comparison of specific heat measurements of single crystal and powder sam-
ple from [65]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



4.11 Specific heat as for selected samples of PrOs4Sb12 from [67]. The insert
gives a zoom around the superconducting transition for the samples with a
double superconducting transition. The absolute value of C clearly depends
on the sample. A double superconducting transition appears in samples S1-
1, L1-1, L3-1, L2-1 while samples C1-1, C3 exhibit a broad single transition. 49

4.12 C/T at 2K and the total specific heat jump ∆(C/T ) versus RRR2K from
[67]. There is apparently a positive correlation between the three quantities.
All the samples exhibiting clear double superconducting transitions (batches
S1, L1 and L3) are within the large circle. They are of high quality: they
are characterized by a large RRR2K, a large C/T at 2K and a large specific
heat jump at the superconducting transition. . . . . . . . . . . . . . . . . . 50

5.1 Phase diagram of liquid 3He/4He mixtures at saturated vapour pressure.
Lambda line shows the superfluid phase transition of 4He . The shaded
region shows the phase separation region where the mixture separates into
two distinct phases: a dilute phase containing mostly 4He and a concentrated
phase containing mostly 3He .[82] . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Illustration of a typical dilution refrigerator.[21] . . . . . . . . . . . . . . . 56

5.3 Illustration of the sample holder used in this experiment. . . . . . . . . . . 61

5.4 Illustration of examples of PID temperature control. . . . . . . . . . . . . . 65

5.5 Circuit illustrating the basic idea behind a 4 terminal measurement. . . . . 67

5.6 Typical data for a single specific heat data point. Linear fit is performed for
the data before the heat pulse. Exponential fit is performed for the data after
the heat pulse. The change in temperature is calculated by extrapolating
these fits to the midpoint of the heat pulse. . . . . . . . . . . . . . . . . . . 69

6.1 Average of all PrOs4Sb12 specific heat measurement results for the tempera-
ture range 1.4K and 2.8K. The two transition temperatures are at 1.871K
and 1.63K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 PrOs4Sb12 specific heat measurement results for the temperature range 1.4K
and 2.8K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Heat capacity data from our results (black) and from [67] (cyan, blue, green,
red), [65] (magenta), [63] (green crosses), and [19] (cyan crosses). The up-
per transition temperature is sample independent while the lower transition
temperature varies among samples. . . . . . . . . . . . . . . . . . . . . . . 73

xii



6.4 Heat capacity data from our results (black) and from [67] (cyan, blue, ma-
genta, red), and [94] (green). The main plot shows our results along with
one sample with a single sharp transition and two samples with single broad
transitions. The inset shows our results along with two samples with single
sharp transitions. Samples with a single broad transition have a Tc that co-
incides with the upper transition. Samples with single sharp transitions have
Tc’s that coincide with the lower transition and the transition temperature
varies between samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Definition of transition temperatures, ∆Tc, and ∆(C/T ).[67] . . . . . . . . 76

6.6 PrOs4Sb12 specific heat measurement results for the temperature range 150mK
and 1.2K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.7 Power law and exponential fits to the specific heat data. n1 = 4.168 is red,
n2 = 3.703 is green, and exponential fit is cyan. n2 makes the best fit. . . . 77

6.8 Power law and exponential fits to the C/T data. n1 = 4.168 is red, n2 =
3.703 is green, and exponential fit is cyan. n2 makes the best fit. . . . . . . 79

6.9 Power law and exponential fits to the specific heat data on a logarithmic
scale. n1 = 4.168 is red, n2 = 3.703 is green, and exponential fit is cyan. n2

makes the best fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1 Crystal structure of YBCO.[1] . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Cuprate phase diagram from [77] . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Variation of the energy gap around the Fermi surface in a d-wave supercon-
ductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 Illustration of the temperature dependence of the Fermi surface in under-
doped cuprates. The d-wave node below Tc becomes an arc above Tc which
expands with increasing T to form the full Fermi surface at T ∗. . . . . . . 85

7.5 Possibilities for the relationship between the pseudogap and the supercon-
ducting state in the cuprates. The solid black line is the superconducting
transition temperature, and the red dashed line the pseudogap phase line. . 85

7.6 Two proposed theoretical phase diagrams for the cuprates. RVB scenario
(left panel) and quantum critical scenario (right panel) . . . . . . . . . . . 87

7.7 A test of the scaling relation for d-wave superconductor specific heat as it
relates to magnetic field and temperature.[112] The specific heat data is for
a YBCO sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.8 Electronic specific heat vs. T for YBa2Cu3O6+x for various doping levels x
from [58] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xiii



7.9 Electronic specific heat for (a) overdoped and; (b) underdoped Y0.8Ca0.2Ba2Cu3O7−γ.[59] 91

8.1 Illustration of the dip probe used for measuring the specific heat of a YBCO
sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Diamagnetism Magnetization is opposite the externally applied magnetic
field. Magnetic susceptibility is negative and independent of temperature. . 96

8.3 Paramagnetism Magnetization is in alignment with the applied magnetic
field. Magnetic susceptibility is positive and decreases with temperature
according to the Curie’s law. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.4 Simple illustration of a magnetometer. . . . . . . . . . . . . . . . . . . . . 97

9.1 Specific heat of the YBCO sample. . . . . . . . . . . . . . . . . . . . . . . 100

9.2 Total heat capacity of the YBCO sample and addenda (blue), an estimate
of the addenda contribution to the heat capacity (green), and the total heat
capacity of the sample minus the addenda heat capacity (red). Addenda
heat capacity is relatively small, however it is not insignificant. . . . . . . . 100

9.3 Heat capacity of the sample minus the addenda heat capacity from our
measurements (blue). YBa2Cu3O7 sample specific heat data from [91] (green).102

9.4 Resistance and temperature values used for calibration of the Cernox sample
thermometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.5 Output of a single magnetization measurement performed at 5K and mag-
netic field of 1000Oe (blue). Representation of the magnetization of a para-
magnetic material (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.6 Magnetic susceptibility of the YBCO sample as a function of temperature
measured under magnetic field of 1000Oe. There is no sign of a supercon-
ducting transition. It is behaving as a paramagnetic sample. . . . . . . . . 104

9.7 Magnetic susceptibility of YBCO samples measured under 1 T as a function
of temperature from [54]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1 Temperature dependence of the frequency shift due to the expulsion of mag-
netic flux from the interior of a PrOs4Sb12 sample. At T ≈ 450mK, a
supeconducting-transition-like drop in the magnetic penetration depth sets
in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2 Penetration depth variation at low temperatures. . . . . . . . . . . . . . . 109

A.3 1/T1 as a function of temperature. . . . . . . . . . . . . . . . . . . . . . . . 110

xiv



A.4 Upon application of a large heat pulse, the sample’s temperature (green)
would reach an “equilibrium” and be stable for extended period. . . . . . . 111

A.5 If the heat pulse is turned off, the sample’s temperature (green) would im-
mediately return to the mixing chamber temperature (blue). . . . . . . . . 111

A.6 Sometimes, the sample’s temperature (green) would unexpectedly and quickly
begin to increase until the heat pulse is turned off. Then it would decrease
and fall back down to the mixing chamber temperature (blue). . . . . . . . 112

xv



Chapter 1

Introduction

Superconductors are materials that, at low enough temperature, have the property of zero
electrical resistance. They are able to sustain an electrical current with no dissipation of
energy. This trademark property is just one of many remarkable physical characteristics
possessed by superconductors. The experimental and theoretical study of superconducting
materials has been one of the pivotal undertakings in modern physics. The ultimate goal of
expanding our understanding of superconductivity is to develop room temperature super-
conductors. However, on the road to attaining that goal, we are able to greatly enrich our
knowledge and increase our appreciation of the physical world and nature that surrounds
us.

The work presented in this thesis consists of two major parts.

The first was concerned with measuring the specific heat of a heavy fermion system
PrOs4Sb12. This compound is the first Pr based heavy fermion system that exhibits super-
conductivity. The transition from normal state to the superconducting state of PrOs4Sb12

is peculiar because it consists of two distinct transitions at two different temperatures.
The origin and nature of this double transition behaviour is still a highly contested issue.
Additionally, the underlying properties of the superconducting state are unclear. There is
a possibility that the superconductivity in this heavy fermion system is unconventional in
origin.

The second part of this thesis work appertains to measuring the specific heat of a
high temperature cuprate superconductor YBa2Cu3O7. The main goal of this work was to
design and develop an experimental method to measure the specific heat of a high tem-
perature superconductor and demonstrate it by determining the specific heat of a YBCO
sample. Cuprates are high temperature superconductors with possible transition tempera-
tures above the melting point of liquid nitrogen. They are unconventional superconductors
and exhibit many interesting properties. The mechanism for the unconventional supercon-
ductivity in cuprates is still not fully understood and there are many theoretical and
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experimental issues concerning the properties of cuprate systems that are debated and
remain unresolved.

The presentation of this work is sectioned in number of chapters. In chapter 2, we briefly
describe some of the key empirical properties of superconductors. We also present a very
short and qualitative summary of superconductivity theory and some of its most important
results. Chapter 3 provides the theoretical background that is relevant to understanding
the specific heat of superconductors. A brief overview of the relevant experimental work
and results related to PrOs4Sb12 that can be found in literature is summarized in chapter 4.
Chapters 5 covers the experimental apparatus and procedure used in performing the specific
heat measurements of a PrOs4Sb12 sample. The next chapter presents the discussion and
analysis of the results of these measurements. Chapter 7 briefly describes some of the
major properties and puzzles of superconductivity in cuprates. Chapters 8 and 9 divulge
the experimental method and results related to measuring the specific heat of YBCO.
Lastly, the final chapter provides a brief summary and few concluding remarks.
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Chapter 2

Superconductivity

In this chapter, we will briefly describe some of the unique empirical properties of super-
conducting materials. Then, we will give a brief qualitative overview of the BCS theory
that explains these unique physical properties, and we will state some of its prominent
theoretical predictions.

2.1 Persistent Currents

The most notable property of superconductors is that below a critical temperature Tc, the
electrical resistance of a superconducting metal abruptly drops to zero. Above this critical
temperature, the metal is in the normal state. The electrical resistance of normal metals
is governed by two processes: 1) the scattering due to impurities and defects resulting in a
constant minimum resistance ρ0, and 2) phonon scattering which contributes a temperature
dependent term BT 5.[110]1 Therefore, in the normal state, the resistivity is described by
ρ(T ) = ρ0 +BT 5. When the temperature is lowered below Tc, the metal suddenly enters a
new electronically ordered state, the superconducting state. The resistance of the metal in
the superconducting state is zero. This behaviour is described pictorially in Figure 2.1. If
one establishes an electrical current in a superconducting material, it will continue without
any measurable decay indefinitely. This remarkable property of persistent currents is the
trademark of superconductors. If the current exceeds a threshold value called the critical
current, the material will cease to superconduct and it will become normal.

1Electron-electron scattering contributes a T 2 term to the resistivity. However, in metals this term is
negligible due to the free electron approximation where electron-electron interactions are ignored.
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2.2 Magnetic Properties

Another extraordinary and defining characteristic of superconducting materials is perfect
diamagnetism. A material in superconducting state expels all magnetic flux and no mag-
netic field can pass through its interior. When a superconductor is cooled below its critical
temperature, the superconducting transition causes formation of electric currents that ex-
punge any magnetic field that is present inside. This effect is known as the Meissner effect.
It should be pointed out that this is not perfect conductivity (resistance being zero). Mov-
ing a perfect conductor from a region with zero magnetic field to a region with nonzero
magnetic field would cause the creation of screening currents inside the conductor that
would negate the magnetic field. Similarly, if a perfect conductor, initially in a magnetic
field, is moved to a region with zero magnetic field, it would develop eddy currents in
order to prevent the elimination of the magnetic field. This behaviour is expected since
Faraday’s law of induction

∇× E = −1

c

∂B

∂t
(2.1)

relates time varying magnetic field to the induction of electric field. Accordingly, in a
perfect conductor, the magnetic field inside should be time-independent, but its value is
undetermined. On the other hand, in a superconducting material, the magnetic field is
time-independent and its value is exactly zero.

In zero magnetic field at temperatures below Tc, the superconducting state has lower
free energy than the normal state and hence it is energetically favourable. In the pres-
ence of a magnetic field, screening eddy currents are created that eliminate the magnetic
field inside the superconductor. This process is energy consuming, thus increasing the free
energy of the superconducting state. As the magnetic field strength is increased above a
critical value Hc, the decrease in the magnetic field energy that would occur if the screening
currents disappeared and the magnetic field was allowed to penetrate the superconductor
becomes larger than the increase of the free energy caused by the transition from the super-
conducting state to the normal state. Hence the free energy of the normal state becomes
lower than the free energy of the superconducting state. The normal state becomes more
energetically advantageous, and the superconducting state is destroyed. The difference
between the free energy of the normal state and the free energy of the superconducting
state, the so called condensation energy, is related to the critical field:[106]

fn(T )− fs(T ) =
H2
c (T )

8π
(2.2)

where Hc(T ) is given by the empirical law depicted in Figure 2.2:[106]

Hc(T ) ≈ Hc(0)

[
1−

(
T

Tc

)2
]

(2.3)
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Critical currents arise because currents inside the superconducting materials generate
magnetic field above Hc causing it to go normal.

The behaviour in which superconducting materials respond to increasing magnetic field
strength and allow it to enter its interior differentiates two types of superconductors.

2.2.1 Type I Superconductors

In Type I superconductors, if the magnetic field strength is below a critical value Hc(T ),
the superconductor is able to create the necessary screening currents and no magnetic field
exists in the interior of the specimen. If the magnetic field strength is above Hc(T ), the
superconductor is unable to expel the magnetic field. It transitions into the normal state,
and the magnetic field is allowed to enter the superconductor. The strength of the critical
magnetic field Hc(T ) increases as temperature decreases below the critical temperature Tc.
The H − T phase diagram for Type I superconductors is shown in Figure 2.2.

2.2.2 Type II Superconductors

Type II superconductors exhibit different behaviour when magnetic fields are present. They
are characterized by two critical fields. If the magnetic field strength is less then the lower
critical field Hc1(T ), the superconductor is able to cancel the magnetic field perfectly. If
the magnetic field strength is above the upper critical field Hc2(T ), the superconductor
becomes normal and the magnetic field penetrates inside. In the intermediate region be-
tween Hc1(T ) and Hc2(T ), a new superconducting state develops called the mixed state. In
the mixed state, it is energetically advantages for the magnetic flux to partially penetrate
into the interior of the superconductor. This is accomplished through segregation of the
superconducting material into microscopic superconducting domains and normal domains.
The normal regions are called vortex lines. The magnetic field lines pass through the cores
of vortex lines. They are surrounded by screening currents that trap a quantized amount
of magnetic flux inside the cores. Vortex lines form a complex triangular array throughout
the superconducting material. In between the vortex lines is superconducting material that
contains no magnetic flux.

Figure 2.3 compares the magnetization curves of type I and type II superconductors.
In type I superconductors, magnetization is linear up to the critical field Hc; there is no
magnetic flux present inside. Above Hc, the sample is normal and there is perfect penetra-
tion of flux into the superconductor. In type II superconductors, magnetization is linear
up to the lower critical field Hc1 and superconductor behaves as a type I superconductor.
Between Hc1 and Hc2, there is partial penetration of magnetic flux into the specimen.
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Figure 2.1: Behaviour of resistivity at the superconducting phase transition.

Figure 2.2: Temperature dependence of critical field.
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Figure 2.3: Magnetization curves for Type I and Type II superconductors.
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Table 2.1: Table of Few Superconductors

Formula Type TC(K) HC1(mT ) HC2(T )
Al I 1.18 10.5
In I 3.41 22.5
Nb II 9.26 248 0.4
Pb I 7.20 80
NbTi II 9.2 12
UBe13 II 0.9 4.4 10
NbSe2 II 7.2 4 17.4

Above the upper critical field Hc2, the magnetic flux penetrates perfectly into the sample
as it is in normal state.

Table 2.1 lists some superconductors and the corresponding transition temperatures
and critical field values.[17]

2.3 Thermoelectric Properties

Another unexpected property of superconductors is that they are very inefficient conduc-
tors of heat. Normal metals make for fair thermal conductors because conduction elec-
trons transfer heat while carrying current. Superconductors exhibit completely different
behaviour. In superconductors, electrons that carry the persistent current do not transport
any entropy making metals in the superconducting state very poor conductors of thermal
energy.

2.4 Energy Gap

Superconductors exhibit an energy gap centered about the Fermi energy that represents
the difference between the ground state of the superconductor and the excited state of
the system. In other words, it takes an energy equal to the energy gap ∆ to remove an
electron from the superconducting state and into the normal state. The energy gap has its
maximum value at low temperatures (T = 0) and decreases with increasing temperature.

The most direct indication of the existence of an energy gap is by tunneling experi-
ments. Suppose two metals are brought together into close contact at thermal equilibrium.
Electrons will momentarily flow across the contact from one material and into the other
material in order to equate the chemical potentials of the two materials. In other words,
the Fermi energy of the two levels will be equal.
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Figure 2.4: Current-Voltage characteristics of a normal-normal tunnel junction (green),
normal-superconductor tunnel junction at T = 0 (blue) and at finite temperature (red).

If an electrical potential is applied across the two materials, more electrons tunnel
across the barrier. This occurs because the chemical potential of one of the materials is
increased with respect to the other material by the applied voltage. If the two materials
are both normal metals, the current created by the applied voltage obeys Ohm’s law. In
other words, the conductance across the junction between the two materials is constant
(independent of the applied voltage). The situation is very different for the case when one
of the materials is a superconductor. Low temperature experiments show no observable
tunneling current unless the potential difference is great enough such that eV > ∆.[106]
This means that the chemical potential must be lifted enough to provide adequate energy
to excite an electron out of the superconducting state and into the normal state. As the
temperature increases towards the critical temperature Tc, the required voltage decreases.
From this, we can conclude that the energy gap decreases with increasing temperature.
This behaviour is illustrated in Figure 2.4.

Specific heat experiments provide further evidence for the existence of the energy gap.
The electronic specific heat of a normal-state material is a linear function of temperature
Cen = γT . When a material undergoes the transition into the superconducting state the
behaviour of the specific heat is drastically altered. At the critical temperature Tc, a jump
in the specific heat is observed. As the temperature decreases below the transition tem-
perature, the electronic specific heat decreases exponentially e−∆/kBT . This suggest that
the excited (normal) state is an energy equal to 2∆ above the ground (superconducting)
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Figure 2.5: Difference in the power reaching the detector between the superconducting and
normal states of tin as a function of frequency.[88]

state.

Electromagnetic absorption experiments also give support to the idea of an energy gap
in superconductors.[88] It is observed that the absorption of AC radiation is identical in
normal and superconducting materials for radiation in the optical frequencies. However, in
the infrared region, superconducting materials start to exhibit different response to elec-
tromagnetic radiation. At microwave frequencies there is no absorption of electromagnetic
radiation in superconductors. The microwave radiation is well below the frequency ∆/~
and hence cannot be absorbed by the conduction electrons in the superconducting state.
Figure 2.5 shows one of the earliest attempts at measuring the superconducting energy
gaps of tin. It shows the difference in the power reaching the detector between the super-
conducting and normal states of tin as a function of frequency of electromagnetic radiation.

A similar situation occurs with sound waves. Sound waves can be attenuated as they
pass through materials by contributing some of their energy to the electrons near the
Fermi level. It is observed that this attenuation of sound waves is considerably smaller in
superconducting materials than in normal materials at frequencies hω < 2∆.[106]
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2.5 London Equations

London brothers first developed a simple description of superconductivity.[57] Lorentz force
law specifies the motion of the superconducting electrons in response to a uniform electric
field inside a perfect conductor:

mas = m
dvs

dt
= −eE (2.4)

The mean velocity of the electrons vs is related to the current density js by:

js = −evsns (2.5)

where ns is the number of superconducting electrons. Substituting this expression into
equation 2.4:

djs
dt

=
nse

2

m
E (2.6)

This equation describes perfect conductivity. In a normal conductor, the electric field is
counterbalanced by the resistance due to scattering and the electrons maintain a constant
drift velocity. Conversely, in a superconductor, the electrons experience a constant acceler-
ation due to the electric field. In equation 2.6, ns is the number density of superconducting
electrons. The model assumes that ns is a fraction of the total density of conduction elec-
trons n and that it varies continuously at temperatures T < Tc. At T � Tc, ns approaches
the limiting value of n. Similarly, when T = Tc, ns = 0. The superconducting electrons ns
are able to move freely with no resistance while the ”normal” electrons n−ns move usually
as in any normal conductor. Therefore, the superconducting electrons ns are responsible
for all of the current caused by any electric field (ie. j = jc).

Using equation 2.6 and Faraday’s law of induction 2.1, we can obtain the relationship
between current density and magnetic field:

∂

∂t

(
∇× j +

nse
2

mc
B

)
= 0 (2.7)

The above equation states that any static magnetic field B and static current density j are
possible solutions for a perfect conductor. However, this contradicts the behaviour detected
in superconductors. As stated earlier, no magnetic field exists inside superconducting
material. In order to describe the superconducting phenomenon, we have to be restrictive
and limit the possible solutions such that the the term inside the brackets in equation 2.7
is not only time-independent, but more specifically equal to zero:

∇× j = −nse
2

mc
B (2.8)
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Combining the above equation with the Maxwell equation:

∇×B = −4π

c
j (2.9)

leads to the equation:

∇2B = −4πnse
2

mc2
B (2.10)

∇2j = −4πnse
2

mc2
j (2.11)

This equation implies that any magnetic field that penetrates into a superconductor is
exponentially screened from the interior by electric currents. This is precisely the Meissner
effect. The magnetic fields penetrate into the sample a distance referred to as London
penetration depth and defined as:

λL =

(
mc2

4πnse2

) 1
2

(2.12)

2.6 The BCS Theory

Bardeen, Cooper, and Schrieffer put together a microscopic theory of superconductivity in
1957 which has become to be known simply as the BCS theory.[10] In this section we will
briefly and qualitatively describe some of the more pertinent aspects of the theory, and
present few notable theoretical results.

The basic underlying principle behind the theory of superconductivity is that there
exists a net attractive force between pairs of electrons. Given this assumption, Cooper
showed that there exists a bound state for pairs of electrons with energy that is negative
relative to the Fermi energy.[20] His approach was to examine the problem of two electrons
in a simple attractive potential with additional constraint that the effect of other electrons
limits the possible momenta of the two interacting electrons to those with wave vectors k >
kF . His calculations showed that, even though the electrons have kinetic energies higher
then Fermi energy, the negative contribution due to the attractive potential offsets this
excess energy and results in formation of a bound-pair state. In other words, in the presence
of any attractive interaction, regardless of how small it may be, two electrons will form
bound pairs called Cooper pairs. The electrons that constitute a Cooper pair have equal
and opposite momenta and spin, and have spherical symmetry, ie. they form an S state.
Cooper’s results also showed that only electrons with energies E ′ ∼ kBTc � ~ωD2 above

2ωD is a measure of the maximum phonon frequency and defined by ~ωD = kBΘD
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the Fermi energy are involved in the binding process. Thus, the transition temperature is
insignificant in relation to the other characteristic temperatures of the material and the
distribution of energy states pertinent to superconductivity is very narrow. Another crucial
result is that the size of the Cooper pairs, called the coherence length, is ξ0 ∼ ~vF/kBTc.
The importance of this is that the coherence length is much larger than the interparticle
distance. This means that Cooper pairs overlap; between two electrons forming a Cooper
pair, there are many other Cooper pairs.

The attractive interaction between electrons that is necessary for superconductivity
originates from the complex influence that the electrons and the motion of the ions have
on each other. Electrons experience mutual repulsion due to the electrostatic Coulomb
force. However, in a more complete analysis that considers atomic structure, it is possible
for the motion of ions to screen the Coulomb repulsion between the electrons. The result is
a net attractive interaction. An intuitive argument as to how this may happen is described
by Tinkham:[106]

The physical idea is that the first electron polarizes the medium by attracting
positive ions; these excess positive ions, in turn, attract the second electron,
giving an effective attractive interaction between the electrons. If this attraction
is strong enough to override the repulsive screened Coulomb interaction, it gives
rise to a net attractive interaction, and superconductivity results.

A more realistic picture that takes into account the effects of ionic motion on the electrons
can be approximated by an effective potential:[110]

V eff (q, ω) =
4πe2

q2 + k2
0

[
1 +

ω(q)2

ω2 − ω(q)2

]
(2.13)

where

q = k− k′; ω =
εk − εk′

~
and k0 is the Thomas-Fermi wave vector which is on the order of kF .[110]

Equation 2.13 describes the effective interaction between two electrons with wave vec-
tors k and k′ and energies εk and εk′ . The first term is the repulsive Coulomb force altered
to include the screening effects of the dielectric constant of the medium. This accounts for
the screening effect of the conduction electrons. The second term describes the effect of
the phonons on the interaction between a pair of electrons. The wave vector q = k − k′

represents the momentum of a phonon that scatters an electron with momentum wave
vector k to an electron with momentum wave vector k′. It is a statement of momentum
conservation. ω(q) is therefore the characteristic frequency of the phonons involved in the
scattering process. If the pair of electrons are separated by energy substantially higher
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than ~ω(q), the second term in equation 2.13 becomes negligible and the interaction is
repulsive. Since ω(q) is on the order of ωD, and the differences in electron energies are
generally orders of magnitude higher than ~ωD, only electrons with very similar energies
are considerably influenced by the phonon interaction. When the two electrons have en-
ergies very close together, then the denominator in the phonon contribution in equation
2.13 has a negative sign and larger magnitude. The result is that the effective interaction
becomes attractive, and the electrons form a bound pair.

The complete BCS theory extends the idea of bound pair formation to all electrons.
Each electron limits possible wave vectors of other electrons involved in the pair formation
process (as discussed earlier), and concurrently, it is involved in the formation of a bound
pair. Additionally, as stated earlier, the size of Cooper pairs is large compared to typical
spacing between electrons and hence there is large overlap between pairs. Hence, Cooper
pairs are not independent particles, but interact mutually in a very elaborate arrangement.
Thus, when a material undergoes a superconducting transition, the electrons ‘condense’
into the BCS ground state where electrons are bound, in pairs, into identical two-electron
states. Identical pair wave functions are essential to stability of superconducting state and
in explaining the phenomenon of persistent currents and the absence of thermal currents.

The BCS theory of superconductivity requires only that there is some attractive interac-
tion between electrons, and is not specifically concerned with the origin of that attraction.
To this effect, the electron-electron interaction is reduced to a very basic form:

Vkk′ =

{
−V if |εk| and |εk′ | ≤ ~ωD
0 otherwise

(2.14)

Even with this oversimplification, the BCS theory is able to make some important theo-
retical predictions.

2.6.1 Critical Temperature

When no magnetic field is present, the superconducting transition occurs at the critical
temperature given by:

kBTc = 1.13~ωce−1/N(0)V (2.15)

N(0) designates the electronic level density at the Fermi level of electrons with one spin
orientation, and ωc is the phonon cutoff frequency and is on the order of ωD. For typical
superconductors N(0)V � 1, and hence the transition temperature is orders of magnitude
below the Debye temperature ΘD even though ~ωc is on the order of kBΘD. Also note
that the theory predicts existence of a transition temperature as long as there exists an
attractive interaction with no consideration as to how weak the coupling potential V may
be.
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Figure 2.6: Temperature dependence of the energy gap in the BCS theory.

2.6.2 Energy Gap

The BCS theory also predicts a similar equation for the superconductivity energy gap at
zero-temperature in zero magnetic field:

∆(0) = 2~ωce−1/N(0)V (2.16)

Combining this equation with equation 2.15, one obtains a very useful relation:

∆(0)

kBTc
=

2

1.13
= 1.76 (2.17)

The above relation is generally is good agreement with experimental results for a multitude
of superconductors.

Temperature dependence of the energy gap is illustrated in Figure 2.6. At very low
temperatures, the energy gap can be approximated by its zero-temperature value and it
does not vary much with temperature, ie. ∆(T ) ≈ ∆(0). As the temperature approaches
the critical temperature, the energy gap drops promptly to zero. This means that the
energy gap is nearly constant until a significant number of Cooper pairs become broken
due to thermal excitations. Temperature dependence of the energy gap at temperatures
near the critical temperature is describe by the formula:

∆(T )

∆(0)
≈ 1.74

(
1− T

Tc

)1/2

T ≈ Tc (2.18)
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2.6.3 Specific Heat

The zero-field specific heat of electrons in the superconducting state is described by the
relation:

Cen
γTc

= 1.34

(
∆(0)

T

)3/2

e−∆(0)/T (2.19)

where γ is the coefficient of the linear term in the normal state specific heat of metals. The
above equation correctly describes the exponential behaviour in the specific heat that was
experimentally observed.

The BCS theory also shows that the specific heat should exhibit a discontinuity in the
electronic specific heat at the critical temperature in zero field:

∆C

Cen
= 1.43 T = Tc (2.20)

This relation is generally in fair agreement with the experimental measurements for most
superconductors.

2.6.4 Flux Quantization

One of the most crucial and extraordinary predictions of the theory of superconductivity
is the phenomenon of flux quantization. Any closed loop of superconducting current must
enclose a quantized amount of magnetic flux such that the total flux through the ring is
Φ = nΦ0 where

Φ0 =
hc

2e
= 2.0689× 10−7gauss− cm2 (2.21)

is a quantum of flux, or the fluxoid. This surprising property has been confirmed experimentally.[24,
25]

The idea of flux quantization has many important consequences. It plays a crucial role
in explaining the stability of the superconducting state and persistent currents as described
eloquently by Tinkham:[106]

This concept forms the basis for understaning the quantum nature of persistent
currents in a ring. The current cannot decrease by infinitesimal amounts, but
only in quantum jumps in which the fluxoid quantum number decreases by one
or more units. Such a quantum jump could occur readily if only a single electron
were involved, as in an atomic transition. However, in the superconductor
such a quantum jump for the macroscopic wavefunction ψ requires a collective
transition of all the pairs involved. The extremely long life of persistent currents
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results from the extreme improbability of such a simultaneous quantum jump
by ∼ 1020 particles. Until a quantum jump occurs, there is no decay whatsoever
of the persistent current.

Flux quantization has consequences for type II superconductors. In a type II super-
conductor that is in the mixed state, each vortex encloses a single quantum of magnetic
flux.

The quantization of magnetic flux has practical implications as well. It is a crucial idea
in operation of superconducting quantum interference devices (SQUIDs) used for sensitive
measurements of very weak magnetic fields.

2.7 Unconventional Superconductors

Superconducting material that can be described by the BCS theory are called conventional
superconductors. However, there are many materials that exhibit superconductivity and
properties that do not agree with the standard model of the BCS theory. These materials
are called unconventional superconductors.

The BCS model of superconductivity assumes that the attractive potential can be
described by a simple effective potential in equation 2.14. This framework works very well
for a large number of superconductors called ”weak coupling” superconductors. However,
for some materials, this effective potential is a gross oversimplification and does not yield
correct description of the superconducting properties. Lead and mercury are just a couple
of example of these ”strong coupling” superconductors. Even equation 2.13 is too crude
to be of practical relevance. A more accurate treatment of the electron-phonon interaction
must be employed to correctly describe strong coupling superconductors.

Cooper pairs in the BCS theory are bound in a singlet S state. Some unconventional
superconductors show anisotropy in the pairing (ie. there are nodes in the energy gap).
The energy gap can have different magnitudes along different crystallographic directions.
This concept is illustrated in Figure 2.7. An example of material with d-wave pairing is
the superconductor YBa2Cu3O7. Other superconductors may have Cooper pairs that form
a triplet state. This leads to a different pairing function, and hence unconventional energy
gap.

Some unconventional superconductors have unique properties because the source of the
attractive force between electrons is not due to interaction with the phonons. For example,
UPt3 is a superconductor with a magnetically mediated attractive interaction between the
electrons.[72]

High temperature superconductors is a class of materials that manifest superconduc-
tivity at unusually high temperatures. The transition temperatures of high temperature
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Figure 2.7: Comparison of a s-wave gap function and a d-wave gap function.

superconductors are usually above 30 K, and can even be above 100 K. These materials
exhibit many of the unusual properties mentioned above, such as anisotropy in the energy
gap. Their superconductivity and properties do not conform to the standard BCS theory,
and a new theory of superconductivity is required.
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Chapter 3

Specific Heat

In this chapter, we will make some general remarks about specific heat. Then, we will briefly
and succinctly describe various contributions to the specific heat of crystals. Expressions for
the contribution to the specific heat due to ionic vibrations at various temperature ranges
will be described in section on lattice specific heat. Next, the specific heat of electrons will
be quickly described. This is followed by a section on the specific heat contribution due to
magnetic moments. For completion, we will restate the specific heat of superconductors in
the final section.

The quantity of heat Q required to increase the temperature of a mass m of a certain
material from T1 to T2 is proportional to the temperature change ∆T = T2 − T1. Heating
two cups of water for coffee requires twice as much heat as heating one cup; ie. the heat
required is proportional to the mass of the material. Finally, the amount of heat also
depends on the material being heated. Putting everything together, the amount of heat
required to change the temperature of a material is:

Q = mc∆T (3.1)

where m is the mass of the material, ∆T is the temperature change, and c is the material
dependent proportionality constant called the specific heat of the material.

The state of a macroscopic system can be specified by its absolute temperature T
and some other macroscopic parameter y, such as the volume or the mean pressure of the
system. Suppose that the system is at some temperature T and the macroscopic parameter
y is held fixed. Then a more accurate or precise definition of heat capacity is given as the
ratio:

Cy = lim
dT→0

d̄Q

dT

∣∣∣∣
y

(3.2)
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where d̄Q is an infinitesimal amount of heat added to the system. The resulting change in
temperature dT depends on the nature of the system and on the particular macrostate of
the system, ie. Cy = Cy(T, y).

The heat capacity Cy depends on the amount of material. Therefore, it is customary to
define specific heat as a quantity that does not depend on the amount of material present,
but only on the nature of the system. Hence, specific heat per gram is:

cy =
1

m

d̄Q

dT

∣∣∣∣
y

(3.3)

where m is the mass of the substance. Likewise, molar heat capacity is:

cy =
1

n

d̄Q

dT

∣∣∣∣
y

(3.4)

where n is the number of moles of the substance, and hence has units of J/molK.

The second law of thermodynamics relates the heat d̄Q that a system absorbs during a
quasi-static infinitesimal process to the change of entropy of the system:

dS =
d̄Q

T
(3.5)

This means that we can relate the change in entropy of two macroscopic states (a and b)
of the system to the heat capacity of the system:

S(Tb)− S(Ta) =

∫ b

a

d̄Q

T
=

∫ Tb

Ta

Cy(T
′)dT ′

T ′
(3.6)

The above equation is important because it explicitly connects two different types of in-
formation about the system. The left hand side involves entropy which is related to a
microscopic knowledge of the quantum states of the system under consideration. The right
hand side of equation 3.6 involves the heat capacity which is a macroscopic characteristic
of the system. In other words, a macroscopic measurement of absorbed heat, which in turn
provides us with heat capacity, supplies us with information about microscopic nature of
the energy levels of the system.

If the external parameter being held fixed is the volume, then the system does no
macroscopic work, ie. d̄W = 0. Thus, the first law of thermodynamics1 allows us to equate

1A system’s equilibrium state is characterized by its internal energy Ē. If the system changes from one
macrostate to another, the resulting change in internal energy of the system is dĒ = d̄Q+d̄W , where d̄Q
is the heat absorbed by the system and d̄W is the work done by the system as a result of the system’s
change in external parameters.
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the heat absorbed by the system to the change in the average internal energy of the system:
d̄Q = dĒ. The heat capacity at constant volume then becomes:

CV =
∂Ē

∂T

∣∣∣∣
V

(3.7)

As stated earlier, heat capacity depends on the macroscopic parameter y that is being
held constant. Most commonly, it is convenient to keep either the volume constant or
the atmospheric pressure. This results in heat capacity at constant volume CV and heat
capacity at constant pressure Cp, respectively. These two quantities are related to each
other:

cp − cv = V T
α2

κ
(3.8)

where V is the molar volume of the substance, and α and κ are the thermal expansion
coefficient and the compressibility, respectively. In gases, the quantities cp and cV may be
substantially different. However, for liquids and solids, the right hand side is usually small,
and the two quantities differ negligibly. For solids, the difference may be a few percent at
room temperature and at atmospheric pressure.

For example, lead at room temperature and atmospheric pressure has the specific heat
at constant pressure cp = 26.4J/molK. The density of lead is 11.34g/cm3 and its atomic
weight is 207.2. Therefore, the molar volume of lead is V = 207.2/11.34 = 18.27cm3/mol.
The coefficient of expansion of lead is α = 87×10−6deg−1, and the Bulk modulus is 46GPa
resulting in κ = 2.17×10−11cm2/N . From equation 3.8, we compute cp−cV = 1.9J/molK.
Thus, the specific heat capacity at constant volume cV = 24.5J/molK and γ = cp/cV =
1.078. This means that for solids at low temperatures, there is no necessity to make any
distinction between the specific heats at constant pressure and constant volume.

3.1 Lattice Specific Heat

The atoms making up the lattice of crystalline materials are not static, but rather experi-
ence constant motion. It is the mean equilibrium position that determines their position
in the crystal structure. This motion of atoms contributes to the specific heat of the ma-
terial. When describing the kinetics of the atoms, it is useful to employ the Harmonic
approximation. The atoms are considered as simple harmonic oscillators experiencing
small displacements from their mean equilibrium position. The excitations of vibrational
modes of these simple harmonic oscillators, so called phonons, play a crucial role when one
considers the specific heat of solids.
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3.1.1 High Temperature Specific Heat: Dulong-Petit Law

At sufficiently high temperatures (room temperature is normally high enough), all of the
vibrational modes of the atoms are excited. The atoms experience small oscillations about
their equilibrium positions. The atoms can be approximated as classical independent
simple harmonic oscillators. Each atom can therefore be specified by three position and
three momentum coordinates. Thus the total energy of Na (Avagadro’s number) of atoms
is the same as that of 3Na independent one-dimensional harmonic oscillators:

E =
3Na∑
i=1

(
p2
i

2m
+

1

2
kiq

2
i

)
(3.9)

where pi are the momenta of the atoms, qi are the position coordinates, and ki are positive
constants. The first term in the above equation is the total kinetic energy and the second
term is the total potential energy of Na atoms in three dimensions. The equipartition the-
orem states that each degree of freedom that has quadratic form in the energy contributes
on average an amount equal to 1

2
kBT . Therefore, lattice vibrations have the total average

energy per mole:

Ē = 3Na ×
1

2
kBT × 2 = 3NakBT = 3RT (3.10)

where R is the gas constant. The molar specific heat (at constant volume) of a material is:

cV = 3R = 24.94J/molK (3.11)

The above result is known as the Dulong-Petit law. It states that at high temperatures,
the specific heat due to lattice vibrations of all solids approaches a constant value. The
Dulong-Petit law provides generally a fair approximation at temperatures of the order of
100K and above. However, it has its limitations.

The harmonic approximation uses the Taylor expansion2 to approximate the potential
energy φ(r)3 of the vibrating atoms about their equilibrium position. It is assumed that
the atoms do not deviate considerably from their equilibrium positions, and hence only
the quadratic term is considered significant (the linear term being zero4). However, at
sufficiently high temperatures, the atoms are energetic enough to drift far enough from
their equilibrium positions that the small displacement approximation becomes invalid.
The higher order terms in the Taylor expansion become considerable and cannot be ignored.

2f(r + a) = f(r) + a · ∇f(r) + 1
2 (a · ∇)2f(r) + 1

3! (a · ∇)3f(r) + · · ·
3φ(r) can be the Lennard-Jones potential for example, with r being the separation between a pair of

atoms.
4The linear term ∇φ is equal to the negative of the force exerted on a atom by other atoms. At

equilibrium, the net force is zero, and hence this term must vanish.
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The Dulong-Petit law fails even more catastrophically at lower temperatures. As the
temperature decreases, the specific heat of materials does not stay constant, but rather
it decreases towards zero as the temperature approaches zero. This breakdown occurs
because as temperature decreases, not all of the lattice vibrations will be excited. At low
temperatures, classical theory fails, and the quantum theory must be utilized in order to
explain the specific heat of lattice vibrations.

3.1.2 Low Temperature Specific Heat

The crystal is described by N-ion crystal with 3N independent oscillators. Energy eigenval-
ues Ei of the harmonic crystal contribute to the total energy, and depend on the frequencies
of the 3N classical normal modes of the oscillators. In a ”ladder operators” procedure anal-
ogous to the quantum theory solution of the single one dimensional harmonic oscillator,
the discrete possible energy values of a particular normal mode can be computed to be:

(ns(k) +
1

2
)~ωs(k) (3.12)

where ωs(k) is the angular frequency of the normal mode, and ns(k) is the excitation
number of the normal mode. In one dimension, the dispersion relation has two possible so-
lutions for the angular frequency giving rise to two ”branches”, the optical branch at higher
frequencies, and the acoustic branch at lower frequency. In three dimensions, this solution
is extended to three optical branches, and three acoustic branches. Thus, s specifies the
branch, and k specifies the wave number of the particular normal mode. The excitation
number specifies that the normal mode of a particular branch s with wave vector k is in
its ns(k)th excited state, ie. the number of phonons in the particular branch s with wave
vector k. The total energy is thus the sum of the energies due to all of the excited phonons
in the crystal:

E =
∑
ks

(ns(k) +
1

2
)~ωs(k) (3.13)

where the mean number of phonons of branch s with wave vector k, ns(k) is given by

ns(k) =
1

eβ~ωs(k) − 1
(3.14)

Therefore, the energy density is given by

u = ueq +
1

V

∑
ks

1

2
~ωs((k)) +

1

V

∑
ks

~ωs(k)

eβ~ωs(k) − 1
(3.15)
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where the first term ueq is the equilibrium energy of a static lattice, and the second term
is the zero-point energy of the ground state of the ionic oscillators. The specific heat of
the crystal is given by the temperature dependent third term:

cV =
1

V

∑
ks

∂

∂T

~ωs(k)

eβ~ωs(k) − 1
(3.16)

The above equation may be rewritten in an integral form in the limit of large crystals

cV =
∂

∂T

∑
s

∫
dk

(2π)3

~ωs(k)

eβ~ωs(k) − 1
(3.17)

where the integral is over the first Brillouin zone.

In order to get a result applicable at low temperature, we can make few simplifications.
Since normal modes with ~ωs(k) >> kBT will not contribute considerably to the specific
heat, the optical branches may be ignored from the integral. Near k = 0, the dispersion
relation can be approximated by the linear form

ω = cs(k̂)k (3.18)

The above approximations are illustrated in Figure 3.1.

Doing the integral in equation 3.17 with the above simplifications, one gets the result
for the lattice specific heat at low temperatures:

cV =
2π2

5
kB

(
kBT

~c

)3

(3.19)

where c is the average phase velocity of the three acoustic normal modes. The above
result is only valid at very low temperatures, while the Dulong-Petit law is valid at high
temperatures. Another model is required to describe the lattice contribution to the specific
heat in the intermediate temperature.

3.1.3 Intermediate Temperature Specific Heat: Debye model

The Debye model of lattice vibrations is an interpolation scheme that approximates the
acoustic branch and the optical branch by a single branch that is described by a linear
dispersion relation:

ω = ck (3.20)

In three dimensions, there are three dispersion relations all having the same wave prop-
agation velocities. Further simplification is made in equation 3.17 by doing the integral
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Figure 3.1: The simplifications made in evaluating the low temperature specific heat of a
harmonic crystal. a)Typical normal-mode dispersion relations including the optical modes
(top) and acoustic modes (bottom). b) The approximation that replaces a). Frequencies
above kBT/~ don’t contribute significantly to the specific heat. The optical branches are
ignored. The acoustic branches are replaces by linear branches.
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over a sphere in k-space. The size of the sphere is chosen so that it contains the number of
wave vectors equal to the number of ions in the crystal. Therefore, the sphere radius kD is
determined by the relation:

4

3
πk3

D =
(2π)3

V
×N (3.21)

The left side of the above equation is the volume of a sphere with radius kD. The right
hand side is the single wave vector volume in k-space multiplied by N wave vectors that
must be enclosed by the whole sphere. Simplifying the equation, density of ions can be
related to kD:

n =
k3
D

6π2
(3.22)

kD is therefore a measure of inverse interparticle spacing. In addition, it is customary to
define the Debye frequency ωD which is a measure of the maximum phonon frequency in
the model:

ωD = kDc (3.23)

and the Debye temperature ΘD:
kBΘD = ~ωD (3.24)

The Debye temperature is a measure of the temperature below which phonons begin to
”freeze out”. In other words, at low temperatures only oscillators with low frequencies are
thermally excited substantial amount and are important to the specific heat considerations.
At temperatures above ΘD, even high frequency vibrations start to become significant. ΘD

may also be regarded as a representation of the ”stiffness” of the crystal. Materials made
up of light and strongly bound atoms have very high Debye temperatures, whereas weakly
bound heavy atoms result in materials with low Debye temperatures. Qualitatively, it
signals the crossover temperature where high temperature classical statistical mechanics
become unsatisfactory and low temperature quantum mechanics must be applied.

In the Debye model, equation 3.17 simplifies to:

cV = 9nkB

(
T

ΘD

)3 ∫ ΘD/T

0

ex

(ex − 1)2
x4dx (3.25)

The Debye temperature ΘD is material dependent parameter that is empirically deter-
mined by fitting the above equation to the measured low temperature specific heat. Debye
temperature values for some materials are listed in table 3.1.[110]

In the limit of low temperatures (T � ΘD), the upper limit in the above integral may
be set to infinity, and the specific heat reduces to a T 3 dependent form:

cV =
12π4

5
nkB

(
T

ΘD

)3

(3.26)
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Table 3.1: Debye Temperatures For Few Elements

Element ΘD(K) Element ΘD(K)
Li 400 Ne 63
Au 170 Sb 200
Na 150 Zn 234
Be 1000 Fe 420
Al 394 Ni 375
In 129 Co 385
C (diamond) 1860 Au 170
Pb 88 Pr 74

In the limit of high temperatures (T � ΘD), ex ≈ 1 + x in the integrand in equation
3.25, and the specific heat reduces to the Dulong-Petit law.

3.2 Electronic Specific Heat

The most basic model used to describe electrons in metals is that of electron gas. It is
assumed that the nucleus of the atoms and core electrons form positive ions that are sta-
tionary. The valence electrons are detached from the ions and are free to move throughout
the metal forming an electron gas. The model then applied the kinetic theory of gas to this
electron gas, replacing the role of gas molecules with electrons. Any interactions between
the electrons making up the gas are ignored in the independent electron approximation.
Additionally, any electron-ion electromagnetic interaction are also neglected in the free
electron approximation. The model assumes that, in place of collisions, there exists some
scattering mechanism, without concern for the exact source of the scattering.

The ground state of an electron is a plane wave:

Ψk(r) ≈ eik·r (3.27)

with energy eigenvalue:

ε(k) =
~2k2

2m
(3.28)

Electrons are fermions. Therefore, they are subject to the Pauli exclusion principle. This
means that, with each wave vector k, we can pair up two electrons with opposite spins.
Therefore, a N-electron system ground state is built by placing two electrons in the lowest
possible energy level: ε = 0 with the corresponding wave vector k = 0. We then sequen-
tially insert electron pairs into higher levels with increasing energy values and wave vectors.
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This process continues until all N electrons are accounted for. In k-space, these electrons
form a sphere called the Fermi sphere, with the radius defined by:

n =
k3
F

3π2
(3.29)

where n = N/V is the electronic density. All energy levels with k < kF in the Fermi sphere
are occupied, and all energy levels with k > kF are unoccupied. The energy of the highest
occupied level is the Fermi energy given by:

εF =
~2k2

F

2m
(3.30)

The total energy of the ground state of the N-electron system is given my adding up the
energies of all the occupied levels. The energy density is then given by:

u = 2× 1

(2π)3

∫
k<kF

~2k2

2m
dk =

1

π2

~2k2
F

10m
(3.31)

Combining the above equation with equation 3.29, we get a formula for the energy per
electron:

E

N
=

3

5
εF (3.32)

It is useful to define the Fermi temperature TF such that:

εF = kBTF (3.33)

Fermi temperatures are on the order of 104 K.

Electrons, being fermions, obey Fermi-Dirac statistics. Therefore, the mean number of
electrons in the energy level with the energy ε(k) is determined by the Fermi function:

f(ε) =
1

e(ε−µ)/kBT + 1
(3.34)

where µ is the chemical potential of the material. At T = 0, the electron ground state
requires that electron levels with ε(k) < εF be occupied, and all electron levels with
ε(k) > εF be unoccupied, as shown in Figure 3.2. This requirement implies that in
the low-temperature limit (T = 0), the chemical potential is equal to the Fermi energy,
ie. µ = εF . At temperatures T � TF , which includes room temperature, the chemical
potential µ is shifted from εF by an amount on the order of (T/TF )2.[110]This implies that
for most temperatures, µ ≈ εF and the Fermi function differs from its zero temperature
shape only slightly, as illustrated in Figure 3.2. At finite temperatures (T > 0), electrons
with energies on the order of kBT lower then the Fermi energy are able to be thermally
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excited to a higher energy on the order of kBT above the Fermi energy. In other words,
the transition region in which the fermi function goes from a value close to 1 to a value
close to zero corresponds to an energy interval of order of kBT about µ. This implies that
the excitation energy of the electrons that become thermally excited at T > 0 is on the
order of kBT . Since the energy interval of excited electrons is on the order of kBT , the
total number of excited electron per unit volume is g(εF )×kBT , where g(εF ) is the energy
level density about the fermi energy:

g(εF ) =
3

2

n

εF
(3.35)

That means that the total change in energy due to the thermally excited electrons is
∆E ≈ g(εF )k2

BT
2. Hence the electronic specific heat is ce ≈ 2g(εF )k2

BT . A more rigorous
mathematical approach reveals that the correct result contains a factor of π2/6, giving the
electronic specific heat:[110]

ce(T ) =
π2

2
nkB

(
T

TF

)
(3.36)

3.3 Magnetic Specific Heat

Atoms with magnetic moments have a number of degenerate levels associated with the
different orientations of the magnetic moments. In particular, there are 2l + 1 energy
levels, where l is the quantum number corresponding to the magnetic moment. In the
presence of a magnetic field, this degeneracy is removed. The degenerate levels are split
into 2l + 1 distinct energy levels. This increases the degree of freedom of the system
resulting in additional contribution to the specific heat of the material. In cases when the
lowest energy levels are modestly separated from the other levels and the temperature is
low enough, the system may be treated as a simple two energy level system. It is useful
to define the characteristic temperature Θ associated with the energy difference ∆E of the
two energy levels using the relation:

∆E = kBΘ (3.37)

At low temperatures (T � Θ), the system will be in the lower energy state. As the
temperature increases, some magnetic moments may be thermally excited to the higher
energy state. The specific heat associated with this transition is:[82]

cm = N0kB

(
Θ

T

)2
eΘ/T

(1 + eΘ/T )2
(3.38)
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Figure 3.2: The Fermi function versus ε at a) T = 0 and b) T > 0. The two curves differ
only in the region of order kBT about µ because some electrons just below εF have been
thermally excited to levels just above εF .
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Figure 3.3: Specific heat of a two level system with energy separation ∆E.

where N0 is the total number of atoms. The heat capacity of a two energy level system
is illustrated in Figure 3.3. At lower temperatures, the specific heat falls exponentially to
zero:

cm = N0kB

(
Θ

T

)2

eΘ/T ; T � Θ (3.39)

At high temperatures, the specific heat can be approximates as:

cm = N0kB
1

4

(
Θ

T

)2

; T � Θ (3.40)

The maximum in the specific heat occurs at T = 0.42Θ and its height is given by 0.44N0kB.
The temperature at which the maximum in the magnetic specific heat occurs is a function
of the energy splitting ∆E. Since the nuclear magneton is about 1000 times smaller then
the Bohr magneton, nuclear magnetic moments are considerably smaller than the electronic
magnetic moments. This implies that the maximum in specific heat due to nuclear magnetic
moments occurs at much lower temperature then the maximum in specific heat due to
electronic magnetic moments.

In the absence of a magnetic field, the crystalline field of a material can lift the de-
generacy of the lowest electronic levels of ions. At low temperatures, the specific heat
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Figure 3.4: Electronic specific heat of a superconductor. At the transition temperature
Tc, the specific heat changes from linear behaviour in the normal state to exponential
behaviour in the superconducting state.

associated with this splitting of the energy levels can be large relative to the electronic and
lattice specific heat. The result is an increase in the specific heat. This feature is termed
a Schottky anomaly.

3.4 Specific Heat of Superconductors

When a material undergoes the transition into the superconducting state, the state of
the electrons is changed. This alters the behaviour of the electronic specific heat. As
specified earlier, the electronic specific heat of superconducting electrons is described by
the exponential formula:

Cen = 1.34γTc

(
∆(0)

T

)3/2

e−∆(0)/T (3.41)

Figure 3.4 illustrates the change in electronic specific heat of a superconductor from linear
behaviour to exponential behaviour. As stated earlier, the jump in the electronic specific
heat at the transition temperature is ∆C/Cen = 1.43 where Cen is the electronic specific
heat in the normal state.

The above holds true for conventional superconductors. According to “Anderson theo-
rem”, non-magnetic impurities have no effect on the energy gap and transition temperature
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Figure 3.5: Normalized specific heat for a p-wave superconductor for several impurity
levels.[62] With increasing impurity, the specific heat jump becomes smaller, the transition
temperature shifts to lower temperatures, and there is a non-zero residual heat capacity.

of conventional (s-wave) superconductors.[9] However, this is not the case for unconven-
tional (for example, d-wave or p-wave) superconductors. In unconventional superconduc-
tors, potential scattering impurities act as pairbreakers preventing formation of Cooper
pairs. The net effect of this is suppression of superconductivity, ie. the superconducting
transition occurs at lower temperatures. Additionally, due to reduction in Cooper pair
formation, there will be a change in the density of states in the superconducting state,
and hence the heat capacity.[40, 92] Instead of the usual exponential behaviour in the
specific heat, unconventional superconductors exhibit power law behaviour, such as T 2 or
T 3.[35, 74]. Thus, observation of a power law behaviour in the specific heat below the
superconducting transition is indicative of unconventional superconductivity, anisotropy
in the energy gap, and presence of point or line nodes. Also, if there are point of line
nodes in the energy gap, there will be uncondensed electrons even at T = 0K. This is
because electrons located at the point or line nodes will not form Cooper pairs because of
presence of impurities (which act as pairbreakers). Therefore, there will be residual heat
capacity due to unpaired electrons even at absolute zero. Figure 3.5 illustrates the effects
of impurities in a p-wave unconventional superconductor.
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The lattice contribution to the specific heat is unaltered by the superconducting tran-
sition and is given by the cubic relation in equation 3.19.

3.5 Summary

In this section we will briefly recap the important ideas we have developed thus far and
restate some of the more useful equations.

The low temperature total specific heat of a metal is given by:

C = γT + βT 3 (3.42)

where γ and β are numerical proportionality constants. The linear term is the electronic
contribution to the specific heat and γ is known as the Sommerfeld constant. The cu-
bic term is the lattice contribution to the specific heat due to vibrations of crystal ions.
For electrons, low temperature refers to temperatures far below the Fermi temperature
TF . For phonons, low temperature means temperature negligible compared to the Debye
temperature ΘD.

If we compare the low temperature electronic specific heat (equation 3.36) to the low
temperature lattice specific heat (equation 3.26), we get the following relation:5

Cph
Cel

=
24π2

5Z

TF
Θ3
D

T 2 (3.43)

The phonon specific heat and the electronic specific heat become comparable at tempera-
ture:

T = 0.145

(
ZΘD

TF

)1/2

ΘD (3.44)

The Debye temperatures are of the order of 100K while the Fermi temperatures are of
the order of 1000K to 10000K. This means that for most of the temperature range the
phonons are the dominant contribution to the specific heat, and the electronic specific heat
is negligible. However, at low temperatures of ∼ 10K, the contribution of the electrons to
the specific heat becomes significant. At even lower temperatures of few degrees Kelvin,
the electronic specific heat becomes the prevalent term.

When a material undergoes a transition from the normal state into the superconducting
state, there is a discontinuity in the specific heat of the material that manifests itself as

5n in the electronic specific heat is number of conduction electrons per unit volume, and n in the lattice
specific heat is number of ions per unit volume. They are related by ne = Zni where Z is the valence of
the atom.
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a jump in the specific heat data. The electronic specific heat changes as the electrons
enter the superconducting state. In the normal state, electronic specific heat is a linear
function of temperature. In the superconducting state, the electronic specific heat decays
exponentially with decreasing temperature (equation 3.41).

In some materials, the crystalline field can cause the splitting of energy levels associated
with different orientations of the electronic magnetic moments. This removal of degeneracy
introduces extra degrees of freedom and results in a bump in the specific heat called the
Schottky anomaly (see Figure 3.3).

Nuclear magnetic moments are orders of magnitude smaller than electronic magnetic
moments. This means that the removal of the degeneracy in the nuclear magnetic moments
occurs at much lower temperatures, and the energy splitting is usually very small compared
to the thermal energy. Therefore, the specific heat due to nuclear magnetic moments
becomes significant only at very low temperatures. Hence, the specific heat due to nuclear
magnetic moments usually can be approximated by the high temperature portion of the
Schottky anomaly (refer to Figure 3.3). The specific heat due to nuclear magnetic moments
has the form:

Cm = δT−2 (3.45)

where δ is a proportionality constant.
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Chapter 4

PrOs4Sb12

PrOs4Sb12 belongs to a group of compounds called filled skutterudites. The chemical
composition of the lanthanide filled skutterudites is given by RM4X12, where R is a rare
earth element or U ; M is Fe, Ru, or Os; and X is P, As, or Sb.[90] The crystal structure
of filled skutterudite compounds is shown in Figure 4.1. Each rare earth atom is located
at the center of a distorted icosahedron formed by twelve pnictogen atoms. Together they
form a body-centered cubic (bcc) lattice. In many of the antimonide compounds, the rare
earth atoms are poorly bonded to the pnictogen cage and experience displacement about
their equilibrium positions. This ”rattling” of the atoms in the cage is suspected to play
a role in some of the unusual properties of filled skutterdites. The transition metal atoms
form a simple cubic lattice.

In obtaining the electronic specific heat equation 3.36, we used the free-electron model;
electron-ion interactions were ignored. However, in real metals, we have to account for
the effect of lattice ions on the electrons and we have to take the complicated band struc-
ture of the crystal into consideration. We can treat the electrons as quasi-particles with
an effective mass m∗ that accounts for these additional interactions. Materials with large
effective mass of 50− 1000 times greater than the electron mass are called heavy fermion
systems. The same equations for specific heat still apply; the only alternation is that the
electron mass is exchanged with the effective mass m∗. The linear term γ in the electronic
specific heat depends on the electron mass through equations 3.33 and 3.29. Thus, for
heavy fermions, the linear term in the electronic specific heat is considerably larger than
in normal metals. For normal metals, γ is of the order 1mJ/molK2. In heavy fermion
systems, γ is generally greater than 400mJ/molK2.[72] Other than the large effective mass,
heavy fermion systems do not share many common characteristics and exhibit a wide range
of physical properties. Due to the large effective mass of the charge carriers, the electron-
phonon interaction is not very effective as the pairing mechanism for the heavy-fermion
superconductors. In contrast to the conventional superconductors, a heavy electron is un-
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Figure 4.1: Crystal structure of PrOs4Sb12 from [90].

able to escape fast enough from a location where it has caused a lattice distortion in order
to reduce the Coulomb repulsion of its partner. Therefore, heavy-fermion superconductors
are usually unconventional. In the usual BCS superconductors, the presence of magnetic
interactions destroys superconductivity. However, superconductivity in heavy-fermion sys-
tems commonly coexists along with magnetic order and the electron pairing is magnetically
mediated.[72]

4.1 Review of Previous Experimental Results

PrOs4Sb12 is a heavy fermion system. While there are other Pr based heavy fermion
systems (PrFe4P12 being another example[7]), PrOs4Sb12 is the first known heavy fermion
superconductor containing Pr. Evidence for heavy fermion behaviour comes from the
specific heat measurements.[66] Figure 4.2 shows the results of specific heat measurements
on a sample of PrOs4Sb12. From the specific heat measurements and the specific heat jump
at Tc, it is estimated that γ ∼ 500mJ/molK2 and that the effective mass of the electrons
is m∗ ∼ 50me. Other specific heat measurements provide comparable results measuring
γ ∼ 350 − 600mJ/molK2.[12, 64, 85] The other interesting feature in the specific heat
measurements is the existence of two specific heat jumps as shown more clearly in the insert
of Figure 4.2. The first specific heat discontinuity occurs at T ≈ 1.89K and the second at
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Figure 4.2: Specific heat of PrOs4Sb12 from [66].

T ≈ 1.72K. The two jumps raise the possibility that two superconducting transitions exist
in PrOs4Sb12. It also provides evidence for unconventional superconductivity in PrOs4Sb12

and that it is a strongly correlated system. Other experiments also confirm heavy fermion
behaviour.[98]

The broad bump feature with a peak at T ∼ 2.2K in the specific heat data is a Schot-
tky anomaly arising from a two level system. The exact crystal electric field (CEF) level
scheme is still a matter of debate and controversy. Inelastic neutron scattering (INS) ex-
periments, along with an analysis of magnetic susceptibility χ(T ) and specific-heat C(T)
data suggest that the Pr3+ energy scheme comprises of a nonmagnetic Γ3 doublet ground
state, a Γ5 triplet first exited state (∼ 8K), and higher energy Γ4 triplet (∼ 133K) and
Γ1 singlet (∼ 320K) excited states.[64] Electrical resistivity and magnetization experi-
ments performed by Ho provided additional support for this picture.[41]. Bauer[12] and
Vollmer[85] analyzed the magnetic field dependence of the specific heat. Their results also
suggest that the ground state is a Γ3 doublet. However, other experiments do not agree
with these findings. Goremychkin[34] and Kuwahara[52] also performed INS experiments
on samples of PrOs4Sb12. From their results, they concluded that the ground state is a Γ1

singlet. Neutron diffraction experiments[49] and dc magnetization experiments[104] also
show results consistent with this energy level scheme. Although the exact ground state is
still up to debate, all experiments agree that the ground state must be non-magnetic and
that the first excited state is the Γ5 triplet.
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Figure 4.3: H-T phase diagram for PrOs4Sb12[41]. The superconducting state phase bound-
ary is determined from the electrical resistivity measurements. The HFOP is obtained from
the features observed in electrical resistivity, specific heat, magnetization, and thermal ex-
pansion coefficient data. See paper for original references.

The case of Γ3 doublet ground state leads to a possibility of a new mechanism for heavy
fermion superconductivity called ”quadrupolar Kondo effect”[30]. In other heavy fermion
systems, such as UPt3, the heavy fermion superconductivity behaviour is magnetically me-
diated. The material consists of a lattice of magnetic ions. At low temperatures, these
systems experience magnetic ordering. The magnetic moments interact with the spins of
the conduction electrons resulting in a screening effect. The heavy fermion behaviour and
superconductivity results from this magnetically mediated screening developing coherently
throughout the lattice. In the quadrupolar Kondo effect, the role of ionic magnetic mo-
ments is replaced by the quadrupole moments. The Pr3+ Γ3 doublet ground state has the
electric quadrupole moment. The interaction between the Pr3+ quadrupole moments and
the charges of conduction electrons results in the observed heavy fermion behaviour and
superconductive pairing. Thus PrOs4Sb12 could exhibit a novel mechanism for the origin
of superconductivity that is neither electron-phonon mediated nor magnetically mediated.

Figure 4.3 shows the H-T phase diagram for PrOs4Sb12 derived from a number of
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measurements. The superconducting state phase boundary is derived from the electrical
resistivity[12, 41]. An interesting feature of the H-T phase diagram is the ordered phase
that occurs at high fields when superconductivity is extinguished. This high field ordered
phase (HFOP) is deduced from the features observed in number of experiments: electri-
cal resistivity[41] and specific heat[85], magnetization[64] and thermal expansion[79]. The
dashed line is a measure of the energy difference between the Pr3+ Γ3 ground and Γ5 first
excited state[63, 85]. The measurements indicate that the ordered phase occurs at tem-
peratures below 1.3K in fields above 4.5T and below the maximum field of 14T . Neutron
diffraction experiments suggest that the HFOP exhibits antiferro-quadrupolar order.[49] It
is suggested that the HFOP may be due to the mixing of the ground state and the first
excited state caused by the increase in magnetic field as illustrated in Figure 4.4.[85] One
crossing of the upper level of the Γ3 doublet and the lowest level of the Γ5 triplet states
occurs at magnetic field of ∼ 4.5T . At fields ∼ 10T , the lowest levels of the Γ3 triplet
states cross with the lowest states of the Γ5 tripled resulting in a new ground state. These
crossing may induce the HFOP.

The double jump in the specific heat data of PrOs4Sb12 suggests unconventional su-
perconductivity. Further evidence for unconventional superconductivity comes from the
uncharacteristic value of the specific heat jump at the transition temperature. A mea-
sured value of ∆CSC/γTC ≈ 3[85] is higher than the weak coupling BCS value of 1.43
suggesting strong coupling superconductivity. Values for ∆/kBTC have been determined
to be 2.6 by nuclear quadrupole resonance measurements[51], 2.1 by muon spin relaxation
experiments[61], and 3.7 by specific heat measurements[36]. These are higher than the
BCS prediction of 1.76 further suggesting strong coupling.

In order to try and resolve this issue, it is useful to experimentally determine the sym-
metry of the energy gap and whether it exhibits any nodes on the Fermi surface. Once
the Schottky anomaly and the lattice contributions are eliminated from the specific heat
data, specific heat measurements suggest that superconducting specific heat has a power
law dependence CS(T ) ∼ T n with n = 2.5[63].1 If the gap function has nodes at the
Fermi surface, then there is a considerable number of unpaired electrons that contribute
to the specific heat. Therefore, a power law dependance in the superconducting specific
heat implies that the energy gap vanishes along some directions in k-space.[15]Experiment
measuring magnetic field orientation dependence of specific heat suggest that there are
nodes in the energy gap.[23] Thermal transport measurements performed by Izawa et al.
also point to existence of nodes in the gap function.[44] Nuclear quadrupole resonance mea-
surements also suggest presence of gap nodes.[75] Fits to the data of magnetic penetration
depth in various magnetic field orientations also suggest that the energy gap has nodes.[18]
However, other experiments have contradictory results. Measurements of the magnetic

1A value of n = 3.9 is obtained when the Schottky anomaly contribution is not subtracted from the
specific heat data.[64]
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Figure 4.4: Zeeman splitting of the Γ3 doublet and Γ5 triplet CEF levels. The doublet and
triplet cross at ∼ 4T and ∼ 10T , suggesting a stabilization of a different ground state in
this regime.[85]
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Figure 4.5: Thermal conductivity divided by temperature T versus T 2 for PrOs4Sb12 and
PrRu4Sb12. The lines represent linear fits to the low temperature data with an extrapola-
tion to T = 0 K.[38]

penetration depth using muon spin relaxation technique concluded that the energy gap
is isotropic.[61] Analysis done by an Sb nuclear quadrupole study found that PrOs4Sb12

has an isotropic gap.[51] Scanning tunneling spectroscopy measurements conclude that the
superconducting gap is fully open over entire Fermi surface.[97] Low temperature thermal
conductivity under magnetic field experiments suggest that PrOs4Sb12 may exhibit multi-
band superconductivity with isotropic gaps; there are two types of electrons at the Fermi
level with different energy gaps.[95, 94] Another study of thermal conductivity under var-
ious magnetic fields found evidence for multiband superconductivity in PrOs4Sb12.[38, 86]
Their data suggests that, in the limit of zero temperature, PrOs4Sb12 has a finite and sig-
nificant residual electronic conduction as shown in Figure 4.5. This property is indicative
of nodes present in the energy gap. Field dependence of the thermal conductivity shows
that it increases quickly at low fields before reaching a plateau at higher fields and then
increasing rapidly up to the normal state value at Hc2 (Figure 4.6). The authors state
that this behaviour is consistent and suggestive of multiband superconductivity. They
argue that PrOs4Sb12 has one band with a nodal order parameter and another distinct
anisotropic band that is fully gapped. Andreev spectroscopy study also shows evidence in
support of this proposed multiband and multisymmetry scenario for PrOs4Sb12.[89]
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Figure 4.6: Magnetic field dependence of the extrapolated T = 0K thermal conductivity of
PrOs4Sb12 and PrRu4Sb12. The lines are guides to the eye in each case. Lower inset: Field
dependence of the conductivity normalized to the zero-field value for PrOs4Sb12 both from
this study and from earlier work[95]. Upper inset: Low-field dependence of the thermal
conductivity divided by temperature for PrOs4Sb12 at T = 0.1K. Open symbols are for
sweeping the magnetic field, closed symbols are from temperature sweeps at fixed magnetic
field.[38]
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Another important question concerns the nature of the two superconducting transitions
observed in experiments. The fundamental issue is whether the two transitions are intrin-
sic to the system, ie. are the two transitions associated with two distinct superconducting
phases. The other option is that the system has only one superconducting phase with
different transition temperatures in segregated regions due to sample inhomogeneity. In
order to shed light on this problem, Grube et al. performed specific heat measurements
and ac susceptibility measurements in various magnetic fields.[36] The resulting H-T phase
diagram is shown in Figure 4.7. With decreasing temperature, the onset of superconduc-
tivity first occurs at the transition temperature Tc1 = 1.86K with an upper critical field
Bc2(T ). The maximum value of the upper critical field is Bc2(0) = 2.3T . The second
transition B∗c2(T ) starts at T ∗c = 1.75K, follows Bc2(T ), increasing to the maximum value
B∗c2(0) = 2.1T . Magnetic field dependence of both transitions is proportionate; ie. they
can be scaled to one another with approximately the same scaling factors for the B and T
axis B∗c2(0)/Bc2(0) ≈ T ∗c (0)/Tc(0). This suggests that the two transitions are not intrinsic.
Instead, they are due to sample inhomogeneity.

Magnetic dependence of the specific heat measurements conducted by Measson et al.
produce an H-T phase diagram shown in Figure 4.8.[70] Their results also show that Tc2
has the same magnetic field dependence as Tc1 (up to a scaling factor). This asserts that
the superconducting transition at the lower temperature is not intrinsic.

Low temperature dc magnetization measurements of PrOs4Sb12 also show that the
magnetic field dependence of the second superconducting transition is similar to that of
the first superconducting transition.[104] This provides further evidence that the second
transition is due to sample inhomogeneity.

Izawa et al. carried out thermal transport measurements in various magnetic field
orientations relative to the PrOs4Sb12 sample crystal axes.[44] Their data analysis produced
another H-T phase diagram depicted in Figure 4.9. Their results indicate that the two
transitions do not scale, and hance are intrinsic to the system. In other words, there exist
two superconducting phases with different energy gaps. The second transition is due to
the change of symmetry of the order parameter. Their results also indicate that there are
nodes at the Fermi surface in the energy gap.

Measson et al. performed specific heat measurements at low temperature and under
high pressure.[69] They investigated the double superconducting transition behaviour at
various pressure values up to maximum pressure of 4.3GPa. Above 1GPa the behaviour
of the two transitions becomes similar, and Tc1 − Tc2 stabilizes to a constant value. They
argue the two superconducting transitions are extrinsic in nature with the lower transition
being intrinsic to the system. They suggest that the double transition behaviour is caused
by Pr vacancies.

In order to further clarify this issue, experimentalists investigated the effects of sample
quality on superconducting properties of PrOs4Sb12. Seyfarth et al. found that when
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Figure 4.7: H-T phase diagram for PrOs4Sb12 obtained specific heat measurements and ac
susceptibility measurements in various magnetic fields.[36]

Figure 4.8: H-T phase diagram for PrOs4Sb12 obtained specific heat measurements in
various magnetic fields.[70]
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Figure 4.9: PrOs4Sb12 phase diagram obtained by thermal transport measurements in
various magnetic field orientations.[44] The results indicate that the energy gap has nodes,
and that two transitions are due to the change of symmetry of the order parameter.
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they reduced the size of a sample crystal, specific heat measurements produced a single
superconducting transition at Tc2.[94] This result indicates that the two superconducting
transitions manifest because of sample inhomogeneity.

McBriarty et al. compared the properties of single crystal samples and powder samples.[65]
In particular, they were interested whether the upper transition may be caused by Pr ion
deficiency in regions near the sample surface. In specific heat measurements, the single
crystal sample displayed standard double transition behaviour with a sharp upper tran-
sition at 1.85K and a broad lower transition at 1.7K. One of the interpretations of the
broad characteristic of the upper transition is that it is due to a distributions of Tc1’s. This
suggests that the upper transition is due to inhomogeneous superconductivity. The powder
sample exhibited a single broad transition at approximate temperature 1.75K. Comparison
of the two results is shown in Figure 4.10. They also found that single crystal sample had
much higher ∆C/T (1000mJ/molK2) than the powder sample (140mJ/molK2). The re-
sults also indicated that the powder sample had much lower and broader Schottky anomaly.
They also found that annealing the powder sample increased the specific heat jump. Their
findings led them to three conclusions:

First, it is unlikely that the anomaly at Tc1 is due to a minority phase. Pow-
dering has the advantage over polishing or slicing that does not discard any
material. Thus, if the secondary phase was present in the crystal it should also
exist in the powdered sample. Second, the results disagree with the possibil-
ity of the anomaly at Tc1 due to Pr vacancies. Again, powdering is not likely
to improve the quality of material and reduce the concentration of vacancies.
Third, the anomaly at Tc1 does not seem to be related to any kind of defects
near the surface. Powdering strongly increases the ratio of surface to volume
and thus would rather promote such defects.

Specific heat measurements on a number of PrOs4Sb12 samples from various batches
suggested that sample quality has great effect on the double transition behaviour.[68]
The results exhibit a broad scatter of values of the ratio of the two specific heat jumps
∆C(Tc1)/∆C(Tc2) on crystals from different batches and even within the same batch.
Furthermore, there was a single sample with a sharp superconducting transition with Tc of
1.73K. These findings argue against the double superconducting transition being intrinsic
in nature.

Measson et al. performed a comprehensive characterization of numerous PrOs4Sb12

samples and examined the relationship between sample quality as defined by the residual
resistivity ratio (RRR) and their superconducting properties.[67] Figure 4.11 shows the
specific heat data for a number of samples surveyed in the study. There does not appear to
be any substantial dependance between the upper superconducting transition and sample
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Figure 4.10: Comparison of specific heat measurements of single crystal and powder sample
from [65].

quality. Tc1 increases slightly from a minimum value of 1.805K to a maximum value of
1.897K with increasing RRR. However, the lower superconducting transition seems to be
highly sample dependent. While a number of samples have Tc2 values in the range between
1.716K and 1.761K, there are three samples with much lower values of Tc2: 1.53K, 1.535K
and 1.685K. Samples with a single broad transition seem to be of poorer quality as their
RRR values are small. However, it is interesting that some samples with a single broad
transition have higher RRR values than some samples that exhibit two superconducting
transitions. There are also few samples with single sharp transition that seems to occur
at similar temperatures as Tc2 in double transition samples. These samples may be char-
acterized as being high quality as they have high RRR values. There also seems to be
correlation between RRR values of samples and their specific heat data. Samples with
high RRR seem to have higher specific heat at 2K and their superconducting jump at the
transition temperature is higher. In summary, high quality samples are characterized by
having large RRR, a large C/T at 2K and a large specific heat jump at Tc, as indicated in
Figure 4.12. It seems that all double transition samples meet this criteria, and hence may
be considered to be of high quality.

All samples with single sharp superconducting transition are very small. Furthermore,
they seem to have higher normalized specific heat jumps than samples showing two tran-
sitions. Additionally, the width of the superconducting transition in these samples is
considerably narrower than the width of the second transition in double transition sam-
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Figure 4.11: Specific heat as for selected samples of PrOs4Sb12 from [67]. The insert gives
a zoom around the superconducting transition for the samples with a double supercon-
ducting transition. The absolute value of C clearly depends on the sample. A double
superconducting transition appears in samples S1-1, L1-1, L3-1, L2-1 while samples C1-1,
C3 exhibit a broad single transition.
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Figure 4.12: C/T at 2K and the total specific heat jump ∆(C/T ) versus RRR2K from [67].
There is apparently a positive correlation between the three quantities. All the samples
exhibiting clear double superconducting transitions (batches S1, L1 and L3) are within the
large circle. They are of high quality: they are characterized by a large RRR2K, a large
C/T at 2K and a large specific heat jump at the superconducting transition.
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ples. Measson et al. argue that these results suggest that single sharp transition samples
are of higher quality than samples displaying two transitions.

Their studies also showed that the upper transition at Tc1 disappears after crystal sam-
ples have been polished. This suggests that the two transitions occur due to macroscopic
segregation of the samples. The authors argue that the broad transition at Tc1 and the
sharp transition at Tc2 indicate two domains in the samples. One part of the sample has a
distribution of Tc’s below Tc1 and the other part has a single sharp transition at Tc2. The
transition at Tc1 is always broader than the transition at Tc2. Additionally, all single transi-
tion samples become superconducting at Tc ∼ Tc2. These observations suggest that the Tc2
superconducting transition is intrinsic to the system. The authors dismiss the argument
that the upper transition may be intrinsic but disappears due to poor sample quality. They
argue that this would broaden the lower transition, and point out the existence of samples
with single and very sharp transition. One perplexing issue is why do some samples exhibit
much lower Tc2; ie. why does Tc2 seem to be so sensitive to the sample quality while Tc1 is
relatively stable in all samples.

Table 4.1 summarizes some of the major results obtained from various experiments. It
is obvious that there does not seem to be a consensus on many of the crucial properties de-
scribing the superconducting state of PrOs4Sb12. Data from many and various experiments
seems to lead to contradictory interpretations. Even same experiments performed by dif-
ferent groups result in dissimilar conclusions. This cannot be accounted for by irregularity
in sample quality as samples with same sources have results that disagree. Perhaps, there
is inconsistency in sample quality from different batches even if the source is the same. It
is also likely that various experiments are challenging to perform on this material and data
is ambiguous and difficult to interpret.

In conclusion, some of the questions concerning PrOs4Sb12 that still have no clear
consensus are:

• What is the exact energy level scheme of PrOs4Sb12?

• Is the observed superconductivity conventional or unconventional in nature? What
is the source of superconductivity in PrOs4Sb12?

• Does the energy gap have nodes at the Fermi surface? Is the energy gap isotropic or
anisotropic?

• Are the two superconducting transitions intrinsic or extrinsic? Are they just a man-
ifestation caused by sample quality?
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Table 4.1: Summary of Experimental Results

Result Experiment Sample Source
Γ3 doublet Inelastic neutron scattering (INS) experiments, Maple
ground state magnetic susceptibility, and specific heat[64]

Electrical resistivity and magnetization[41] Maple
Magnetic field dependence of the specific heat[12, 85] Maple

Γ1 singlet INS experiments[34] Maple
ground state INS experiments[52] Sugawara

Neutron diffraction experiments[49] Sugawara
dc magnetization experiments[104] Sugawara

Nodes in Power law dependence of low T specific heat[63] Maple
energy gap Magnetic field orientation dependence of Sugawara

specific heat[23]
Thermal transport in various magnetic fields[44] Sugawara
Nuclear quadrupole resonance[75] Sugawara
Magnetic penetration depth[18] Sugawara

Multiband and Thermal conductivity in various magnetic fields[38, 86] Maple
multisymmetry Andreev spectroscopy[89] Maple
Isotropic Magnetic penetration depth using muon spin Maple
energy gap relaxation technique[61]

Sb nuclear quadrupole study[51] Sugawara
Scanning tunneling spectroscopy[97] Canfield
Low T thermal conductivity in various magnetic field[95] Lapertot
Low T thermal conductivity in various magnetic field[94] Sugawara

Transitions Specific heat measurements and ac susceptibility Maple
due to sample measurements in various magnetic fields[36]
inhomogeneity Specific heat at low T under high pressure[69] Lapertot

Magnetic field dependence of specific heat[70] Sugawara
Low temperature dc magnetization[104] Sugawara
Specific heat[94] Lapertot
Specific heat[65] Andraka

Transitions Thermal transport in magnetic fields[44] Sugawara
are intrinsic Thermal transport in magnetic fields[38, 86] Maple

Andreev spectroscopy[89] Maple
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Chapter 5

Specific Heat of PrOs4Sb12:
Experimental Procedure

The goal of this experiment was to measure the specific heat of a PrOs4Sb12 sample in two
temperature ranges: high temperature range (∼ 1.4 − 2.8K) and low temperature range
(∼ 0.3 − 1.2K). The high temperature range is interesting because the double transition
behaviour occurs at these temperatures. The low temperature range is useful for studying
the low temperature behaviour of the superconductor’s specific heat. The sample studied
had approximate dimensions 1mm × 0.5mm × 0.5mm and mass of 5.6mg. The single
crystals of PrOs4Sb12 studied in this work were grown using an Sb flux method[30, 29] by
Brian Maple at UC San Diego. This chapter will describe the equipment and experimental
procedure utilized in performing the specific heat measurements.

5.1 Dilution Refrigerator

Figure 5.1 shows the phase diagram for mixtures of 3He and 4He for various temperatures
and 3He concentrations. Pure 4He liquid will undergo a transition into the superfluid state
at 2.177K. The temperature at which this transition occurs decreases as the concentration
of 3He increases. When the 3He concentration reaches 67.5% and temperature becomes
0.867K, the superfluid transition disappears. At 3He concentrations above 6.6%, and
temperatures below 0.867K, 3He/4He mixtures separate into two distinct phases, much
like water and oil. This region is noted as the shaded region in Figure 5.1. One phase
contains mostly 4He . The other phase contains mostly 3He and floats on top of the 4He-
rich phase due to its smaller density. As the temperature approaches absolute zero, 3He-
rich phase (also known as the concentrated phase) becomes a pure 3He liquid. However,
4He-rich phase (also called the dilute phase) never becomes a pure 4He liquid. Instead
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it contains 6.6% 3He even at absolute zero. The idea that a 3He/4He mixture does not
separate into pure 3He and pure 4He , but exhibits a finite solubility of 3He in 4He is critical
to the operation of a dilution refrigerator. The specific heat of 3He in the dilute phase is
greater than the specific heat of 3He in the concentrated phase. This implies that the
enthalpy of 3He in the dilute phase is larger than the enthalpy of 3He in the concentrated
phase. Therefore, if one can force 3He atoms in the concentrated phase to cross the phase
boundary and enter the dilute phase, it is possible to use the heat of mixing to provide
cooling power. This process is analogous to evaporation; in order to evaporate a liquid
into a gas, heat must be put into the system from its surroundings. Due to the quantum
mechanical properties of 3He and 4He , a 3He/4He mixture is inclined to maintain a finite
concentration of 3He . Another crucial fact is that if one pumps on a 3He/4He mixture,
3He evaporates preferentially. Hence, it is possible to pump on the dilute phase removing
3He atoms from it. This process then forces 3He atoms to cross the phase boundary from
the concentrated phase into the dilute phase in order to maintain the preferred ratio. This
process provides cooling power and is the basic principle behind the cryogenic properties
of dilution refrigerators.

A schematic illustration of various components of a dilution refrigerator is depicted in
Figure 5.2. The 1K pot acts as a usual 4He refrigerator. Dilution refrigerators contain a
helium bath that surrounds the interior contents and also acts as a source of liquid helium
for the 1K pot. A mechanical pump is used to pump on the helium bath in the 1K pot
and lower its temperature to approximately 1.5K through evaporative cooling. The 3He
gas comes from 3He/4He mixture gas handling system sitting at room temperature. It is
initially cooled to 4.2K by passing through the 4He bath. It then passes through the 1K
pot helium bath where it is condensed and precooled to ∼ 1.5K. The condensation of 3He
occurs through the use of a flow impedance that creates pressure large enough to condense
the 3He gas into liquid. Liquid 3He passes through heat exchangers that are thermally
connected to the still. This brings the temperature of 3He down to ∼ 0.7K. Next, the 3He
liquid passes through another flow impedance and a set of heat exchangers that bring its
temperature low enough so that it may enter the mixing chamber. The mixing chamber is a
critical part of a dilution refrigerator. The 3He/4He phase separation occurs in the mixing
chamber. This is where 3He crosses the boundary from the concentrated phase to the dilute
phase. Hence, the cooling power and the base temperature of a dilution refrigerator are
provided by the mixing chamber. Inside the mixing chamber, the 3He concentrated phase
floats on top of the dilute phase. A small pipe is located in the lower dilute phase inside
the mixing chamber. It leaves the mixing chamber and passes through the heat exchangers
used to precool the incoming 3He . The tube ends inside the still. A heat exchanger
attached to the still keeps the temperature of the still at approximately 0.6− 0.7K. This
temperature maintains the ratio of 3He to 4He in the vapour phase of the still as large
as possible. Mechanical pumps are used to pump on the dilute phase liquid bath in the
still. Since 3He evaporates preferentially, its concentration will decrease. This develops an
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Figure 5.1: Phase diagram of liquid 3He/4He mixtures at saturated vapour pressure.
Lambda line shows the superfluid phase transition of 4He . The shaded region shows
the phase separation region where the mixture separates into two distinct phases: a dilute
phase containing mostly 4He and a concentrated phase containing mostly 3He .[82]
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Figure 5.2: Illustration of a typical dilution refrigerator.[21]
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osmotic pressure difference that drives 3He from the dilute phase in the mixing chamber
up the pipe and into the still. This leads to a decrease in concentration of 3He in the dilute
phase inside the mixing chamber. To maintain the desired concentration of 3He in the
dilute phase, 3He atoms must then cross the phase boundary from the concentrated phase.
3He pumped away from the still is sent into a closed gas handling system. This system,
then feeds the 3He gas back into the dilution refrigerator where it is again condensed,
liquified, precooled and routed into the mixing chamber. This continuous cycle provides
the cooling power of a dilution refrigerator.

In order to keep the efficiency and base temperature of a dilution refrigerator as optimal
as possible, radiation shields are usually attached at various temperature stages. These
shields surround the inside components protecting the fridge and any experiments from
unwanted radiative heating. Electrical leads coming into the dilution refrigerator need to
be thermally anchored at various points for heat sinking purposes. This is usually done at
multiple stages, such as at the 1K pot, at the still, and at the mixing chamber.

5.2 Specific Heat Measurements

Low temperature specific heat measurements are essential in developing an understanding
about lattice and electronic properties of materials. They are especially useful in studying
the characteristics of the superconducting transitions. There are a few different method-
ologies available in performing experiments to measure a sample’s specific heat.

5.2.1 The Quasi-adiabatic Method

The definition of the specific heat, equation 3.2, is the inspiration for the quasi-adiabatic
method of measuring the heat capacity of a material. A current is passed through a heater
resistor delivering a heat pulse d̄Q to the sample. A thermometer is used to measure
the change in temperature dT of the sample. It’s impossible to have the sample perfectly
isolated thermally since it is must be connected to the dilution refrigerator stage. Therefore,
it is desirable that the thermal connection between the sample and the stage is such that
the relaxation time constant is adequately long. During data analysis, it is necessary to
account for any possible heat loss that occurs during the application of the heat pulse.

5.2.2 The ac Method

In the ac specific heat measurement, ac current is passed through a heater resistor coupled
to the sample. The result is an oscillating heating current of frequency 1

2
ω that causes a
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temperature response at frequency ω[99]:

Tac =
Q̇

2ωC

[
1 +

1

ω2τ 2
1

+ ω2τ 2
2 +

2Kb

3Ks

]−1/2

(5.1)

where τ1 is the relaxation time of the sample to the stage, τ2 is the response time of
the sample, heater, and thermometer to the heat input, Kb is the thermal conductivity
between the sample and the stage, Ks is the sample thermal conductivity, and C is the total
heat capacity of the sample, wire support, the heater, and the thermometer. If the internal
response time τ2 can be made insignificant compared to 1/ω, the sample-to-stage relaxation
time τ1 can be made much larger with respect to 1/ω, and the sample thermal conductivity
Ks can be made considerable greater than the sample-to-stage thermal conductivity Kb,
then equation 5.1 becomes a very simple measure of the total heat capacity:

C =
Q̇

2ωTac
(5.2)

One of the advantages of the ac specific heat measurements is its sensitivity to small
changes in heat capacity.

5.2.3 The Relaxation Method

The relaxation method is based on the relation between the heat capacity C of a sample
(and the addendum) and the thermal conductivityK of the contact wires and the relaxation
time constant τ1 between the sample and the stage:[8]

C = Kτ1 (5.3)

In this technique, the sample is heated (by a resistance heater) a small ∆T above the
reference temperature of the stage. The temperature of the sample is described by:

T (t) = T0 + ∆Te−t/τ1 (5.4)

Therefore, after the sample has been heated, its temperature exponentially decays to the
steady state temperature of the stage T0. If the thermal conductivity K of the supporting
wires is known, then by measuring the relaxation time τ1 taken by the sample to reach the
equilibrium temperature T0, one can calculate the total heat capacity. Signal averaging
numerous decays at a given T0 allows the relaxation method to improve the signal-to-
noise ratio of results. The thermal conductance and the addenda heat capacity have to be
determined independently. It is possible to adjust thermal conductivity K by selecting a
particular type of wire contact and by choosing the wire diameter. If K is too large, then
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the internal conductivity of the sample must be large. Otherwise, internal time constant τ2

might be long and thermal lag between the sample and the stage may cause problems. If
the relaxation time τ1 is not considerably larger compared to all internal relaxation times
of the system, the temperature dependence may not be a simple exponential function. In
the limit of low thermal conductivity, the relaxation method becomes the quasi-adiabatic
method. A disadvantage of this method is the difficulty in analyzing the data to determine
the relaxation time correctly. The base temperature of the stage T0 must be accurately
accounted for by subtracting it from the exponential decay. Then the logarithm of the
measurement data is taken, and a least-squares fit of the resulting line provides a value for
the time constant.

In this work, measurements were performed using the quasi-adiabatic method.

In order to measure the heat capacity of a particular material, we have to cool it to the
initial temperature TI . Then, a known amount of heat Q is applied to the sample. The
sample attains the final temperature TF . The specific heat at the intermediate temperature
T = (TF + TI)/2 may be calculated as

C =
Q

TF − TI
(5.5)

There are a number of problems and considerations that need to be taken into account
when performing heat capacity measurements. Inherently, in determining the heat capac-
ity, it is not the absolute temperature that is important, but instead it is the difference in
temperature that is of significance. This means that great amount of experimental preci-
sion is required. Properties of the thermometers, such as calibration, stability, sensitivity,
and accuracy, need to be well known and are of utmost importance for obtaining high pre-
cision and high resolution heat capacity data. The sample needs to be supported in some
sort of holder, and it needs to be connected to a cryostat/refrigirator stage that provides
the necessary temperature control. This gives rise to a number of issues that have to be
considered. Since the sample needs to be thermally anchored to the stage in some way,
the heat pulse is not genuinely adiabatic. Any heat loss through the thermal links has
to be properly accounted for in order to acquire precise data. The electronic leads to the
sample heater and thermometer need to be of very low thermal conductivity (ideally su-
perconducting if possible) and need to be heat sunk at nearly the same temperature as the
sample temperature. These precautions are necessary in order to minimize any heat flow
into/out of the sample. A heater and a thermometer need to be on the sample. Therefore,
their heat capacities and the heat capacities of any additional addenda (such as the wires
providing electrical connections) need to be insignificant relative to the heat capacity of the
sample. Alternatively, they need to be accurately measured and subtracted from the data
in order to calculate correct specific heat of the sample. Thermal contacts between the
sample and the heater and the thermometer need to be very good in order to minimize time
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constants needed for thermal equilibrium between these components. Also, time needed
for the entire sample to thermally equilibrate needs to be fast, or carefully accounted for.
It is important that the power used to measure the thermometer is insignificant so that it
does not input any considerable heat into the sample. Furthermore, any other sources of
heat (such as radiation) need to be minimized and considered for accurate measurements.
Great care must be taken to avoid any interference from outside sources of electromagnetic
radiation. Dilution refrigerators may be contained inside shielded rooms to keep radio
frequency interference away from the electrical leads and from the thermometers to avoid
unintended heating. Electrical leads and the thermometer should be shielded from RF as
they may be prone to absorb stray RF energy. Electrical leads should be twisted in pairs
to minimize the total flux through the loop and reduce any induced currents. Another con-
sideration with electrical wires and devices is grounding. A circuit with multiple ground
references gives rise to a possibility of current flow from one ground point to another that
may interfere with the signal.

5.3 Experimental Apparatus

Figure 5.3 illustrates the custom machined copper sample holder used to secure and mount
the sample onto the dilution refrigerator. No substrate was used in assembling the com-
ponents. Elimination of the substrate minimizes addendum that needs to be considered
in performing heat capacity measurements. Instead, the sample heater and thermometer
were coupled directly to the sample itself. This was done in order to maximize the thermal
conductivity (ie. minimize the thermal equilibrium time constant) between the sample and
the heater/thermometer. The sample heater was a 20kΩ metal-film resistor. The sample
thermometer was a RuO2 resistor with room temperature resistance of ∼ 1kΩ. Both chips
had their substrates polished away. This was done with two purposes in mind. Firstly, it
reduces the masses of the chips, and hence their specific heat. This further minimizes the
specific heat of the addendum. Secondly, polishing of the substrate improves the thermal
contact between the chips and the sample reducing the time necessary for all of the com-
ponents to reach thermal equilibrium. The sample thermometer and the sample heater
were affixed to the sample using a small amount of GE varnish. The sample itself was held
in place by very thin nylon strands. It was attached to the the nylon threads using GE
varnish. The very thin nylon strands were used in order to minimize any parasitic heat
leaks into or out of the sample.

The electrical leads to the sample heater/thermometer were six NbTi wires with 6µm
diameter and length of approximately 5mm. The individual wires were obtained by dis-
solving the copper-nickel cladding of multifilamentary NbTi wires using a solution of nitric
acid. Four of the wires were connected to the thermometer in order to read the temperature
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Figure 5.3: Illustration of the sample holder used in this experiment.

by measuring its resistance using the 4-terminal technique (described below in section 5.5).
Two remaining wires were connected to the heater resistor in order to apply the heating
current. The connections were made using silver epoxy. The rationale for selecting these
wires is to minimize the thermal conductivity of the electrical leads. Heat transported by
a thermal link connecting two objects at temperatures T1 and T2 is determined by:[82]

Q̇ =
A

L

∫ T2

T1

κ(T )dT (5.6)

where A, L, and κ(T ) are the cross-section area, length, and thermal conductivity of the
thermal link. The superconducting transition temperature of NbTi is ∼ 9.2K. This means
that in the temperature range of importance in these measurements, the electrical leads
will be superconducting. The thermal conductivity of normal electrons is a linear function
of temperature (κe,n ∝ T [110]). In a superconducting metal, electrons that are condensed
into Cooper pairs carry no entropy. Therefore, they do not transport any heat. So, thermal
transport properties of a superconducting metal are determined by the number of unpaired
electrons which decreases exponentially with temperature. Hence, thermal conductivity of
electrons in a superconductor is κe,s ∝ Te−∆E/kBT . This means that at low temperatures
(T � TC), the thermal conductivity of a superconductor becomes miniscule1. To further

1Thermal energy may be transported by phonons. However, this contribution is insignificant compared
to heat transport due to electrons.
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Table 5.1: Table of thermal conductivities and specific heats of various experimental com-
ponents

Thermal Conductance (W/K) Specific Heat (J/K)
Sample 8.75× 10−3 1× 10−5

Weak Link (PtW) 2× 10−9 1× 10−9

Thermometer > 5× 10−8 1× 10−8

Heater > 5× 10−8 1× 10−8

Electrical Leads (NbTi) < 1× 10−10 Negligible
Nylon Threads < 1× 10−10 Negligible

decrease the heat transported by the electrical leads, the diameter of the wires used is
chosen to be very small.

In the high temperature range (1.4− 2.8K), the thermal transport between the sample
and the sample holder is governed by the thermal weak link which is a PtW wire with
diameter of 25µm. Silver epoxy was used to join the ends of the wire to the sample
and the sample holder. We wanted the time constant of relaxation to be long (τ ∼ 1
hour). This in turn determined our requirement for the thermal conductance of the weak
link (KWL = C/τ). Thermal conductance depends on the thermal conductivity of PtW
(κ ∝ T ), cross-section area A of the wire, and the length l of the wire. Thus, the desired
length of the PtW wire l = κA/KWL was determined to be approximately 1.5cm.

In the low temperature range (0.3mk − 1.2K), the heat capacity C of PrOs4Sb12 de-
creases quickly due to the Schottky anomaly. This means that the PtW weak link becomes
inadequate in providing the necessary time constant of approximately one hour. For mea-
surements in this temperature range, the PtW weak link was removed. Hence, all thermal
transport was through the superconducting wires acting as electrical leads. At these low
temperatures, the thermal conductance of the superconducting NbTi wires is very small
providing the necessary long time constant.

Table 5.1 shows approximate values for thermal conductivity and specific heat of various
components. Sample thermal conductivity is estimated from [86] and specific heat from
[66]. Thermometer and heater (alumina substrates) heat capacities are estimated using
data from [11]. All other values are estimated using data from [82]. All estimates are at
T = 1.5K.

The sample holder in Figure 5.3 was contained in a small box machined out of copper.
The box enclosed the entire sample holder to provide shielding from any radiation that
might cause parasitic heating of the sample. All electrical leads were heat sunk to this
box before reaching the sample holder. Thermal anchoring of the leads was performed
by gluing them on a Cu rod. A layer of cigarette paper was glued around the rod with
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GE varnish to separate the electrical leads from the rod. This was done as a preventive
measure in case there are any sharp edges or burrs on the metal post which might damage
the wire insulation. The thermometer and heater resistor used for temperature control
were also affixed onto this casing. The heater was a 1.3kΩ metal film resistor. In the high
temperature range (1.4−2.8K), the container was connected to the mixing chamber using a
stainless steel screw. At low temperatures, stainless steel has very low thermal conductivity
(κ ∼ 0.1W/cmK). Thus, it enabled us to raise the temperature of the casing (and hence
the sample holder) to the desired level while the dilution refrigerator was still operating at
its base temperature (∼ 5 − 10mK). For the low temperature range (0.3 − 1.2mK), the
casing was coupled directly to the mixing chamber of the dilution refrigerator.

In the high temperature range, the thermometer used for temperature control and as
a reference for calibration of the sample thermometer was the thin film ceramic zirconium
oxynitride (CERNOX) resistor. CERNOX resistors are manufactured commercially and
the thermometer used in this experiment was purchased calibrated. These thermometers
are stable, have good sensitivity, and have fast response times (time constant is about
1 − 1.5ms)[2]. At 4.2K, the CERNOX model (CX-1030) used in our measurements has
typical values for resistance: 574.20Ω, dR/dT : −97.344Ω/K, (T/R) · (dR/dT ): −0.71.[2]
At ∼ 1.5K, the resistance of the thermometer used in our measurements is ∼ 3kΩ.

In the low temperature range, the temperature control and reference thermometer was
a calibrated germanium resistance thermometer (GRT). GRT thermometers consist of Ge
sensing element encapsulated in a gold plated copper casing with helium gas used as an
exchange gas for thermal coupling. GRT thermometers have good sensitivity and show
great stability. Typical resistance values of the GRT thermometer used in our experiments
were ∼ 60− 250Ω in the low temperature range.

5.4 Temperature Control

Temperature control of the experimental system was performed by Lakeshore Model 370
AC resistance bridge using the proportional-integral-derivative (PID) control loop feedback
method. The Lakeshore temperature controller measures the resistance of the reference
thermometer used for temperature control (CERNOX or GRT) using the 4-terminal tech-
nique (see below section 5.5). It then calculates the error from the current resistance
reading (representing the current temperature of the system) and the desired resistance
(ie. the desired temperature called the setpoint). The feedback control circuit tries to
minimize this error by adjusting the dc power output to the temperature control heater.
The PID control algorithm depends on three parameters: the proportional (P), the integral
(I), and the derivative (D).
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5.4.1 Proportional

In order to maintain the temperature of our heat capacity cell that is above the base
temperature of the mixing chamber, the temperature controller must apply power across
the heater resistor in order to combat the cooling power of the dilution refrigerator. This
output is determined by the proportional parameter P (also called gain):

HeaterOutput(P ) = Pe(t) (5.7)

where e(t) is the error between the current temperature reading and the setpoint. In this
case, the proportional parameter has to be non-zero for any output, and the output is
proportional to the error. A high P value results in large heater output for small error.
A too high value of P can result in the temperature of the system to oscillate about
the setpoint and become unstable as shown in Figure 5.4. A small P value results in
a insensitive temperature controller since the controller may not apply enough power to
correct the error.

In a steady state, the temperature controller operating only with the P parameter will
not settle at the desired temperature. The output is proportional to the error. Therefore,
at some point, the output produced by the heater will exactly cancel the cooling power of
the dilution refrigerator, and the system will settle at some temperature below the setpoint
(see Figure 5.4). This error is called the droop.

The proportional parameter depends on the characteristics of the experimental setup,
heater range output, and cooling power of the dilution refrigerator. It is usually determined
through trial and error.

5.4.2 Integral

In order to correct for the offset in the proportional setting, integral parameter is utilized.
The output due to the integral parameter depends on the magnitude of the error, and the
duration of the error. Accumulated error is calculated by integrating the instantaneous
error over time. The accumulated error is multiplied by the I parameter to determine the
contribution to the heater output:

HeaterOutput(I) = PI

∫
e(t)dt (5.8)

If the system temperature is extremely different from the setpoint, then the integral con-
tribution accelerates the heating to increase the temperature of the system to the desired
level faster. Too high of a value for I can cause the system to overshoot the setpoint, and
create oscillations. The integral parameter may also eliminate the droop. At this point,
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Figure 5.4: Illustration of examples of PID temperature control.
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the error is zero and the output due to the proportional parameter is zero. The steady
state is therefore maintained by the integral parameter. However, if the value of the I
parameter is too low, the droop may not be entirely eliminated. The integral parameter
depends on the time constant of the experiment load.

5.4.3 Derivative

If the use of integral setting causes overshoot in the temperature control, derivative pa-
rameter may be used to minimize this effect. The rate of change of the temperature is
calculated by determining the slope of the error over time. Multiplying this rate of change
by the derivative gain D gives the contribution to the heater ouput:

HeaterOutput(D) = PD
d

dt
e(t) (5.9)

The derivative term slows the rate of change of the controller output. This effect is most
noticeable when the temperature approaches the controller setpoint. The derivative param-
eter is used to reduce the magnitude of the overshoot produced by the integral component.
It should be noted that differentiation of the error amplifies noise in the error. Therefore,
if the noise and the derivative gain are large, this can cause the temperature to become
unstable.

The total heater output is calculated by combining the total contributions of the three
parameters:

HeaterOutput = P

[
e(t) + I

∫
e(t)dt+D

d

dt
e(t)

]
(5.10)

5.5 Resistance Measurement: 4 terminal technique

In low temperature experiments, resistance thermometry has to be performed at very low
powers. Therefore, it is necessary to have the ability to measure very small voltages in order
to measure thermometer resistances. For this reason, conventional direct current voltage
measurements are not satisfactory as they cause unacceptable heating. Alternating current
has to be utilized in order to avoid these problems and to achieve higher sensitivities.
Furthermore, very accurate resistance measurements are essential for obtaining precise
temperature readings. This means that lead resistances of electrical connections to the
thermometer resistors inside the dilution refrigerator must be eliminated. The solution
to these issues is to use an AC bridge to measure thermometer resistance using the 4
terminal measurement. The essential idea of a 4 terminal measurement is illustrated in
the circuit diagram in Figure 5.5. The resistance of the thermometer RT needs to be
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Figure 5.5: Circuit illustrating the basic idea behind a 4 terminal measurement.

accurately measured, while eliminating the resistances r of the leads. A power supply
provides a current to the thermometer resistor that is measured by the ammeter. The
voltmeter measures the voltage drop across the thermometer resistor. The resistance RT

may be calculated using Ohm’s law. The main idea is that the leads to the voltmeter carry
minimal current and therefore drop insignificant amount of voltage.

5.6 Experimental Procedure

The sample was placed in the sample holder, which was then enclosed in the copper casing
as described above. This arrangement was then affixed to the mixing chamber of a dilu-
tion refrigerator. Thermal coupling of the system to the mixing chamber was through a
stainless steel in the high temperature range, or by direct contact in the low temperature
range. Dilution refrigerator was cooled down to its base temperature. Lakeshore Model
370 AC resistance bridge was used to provide temperature control of the experimental
system by monitoring the resistance of the reference thermometer, and applying current
to the heater resistor necessary to maintain the specified temperature setpoint. To ob-
tain the heat capacity measurements of the sample, a known heat pulse was applied to
the sample, and the resulting change in temperature was measured. The heat pulse was
administered by applying voltage across a large current limiting resistor (600kΩ) in series
with the sample heater. The analog output channel of a National Instruments DAQ-card
was used as the power source for the heat pulse. The duration of the heat pulses was
approximately 20− 30s in the high temperature range, and about 12− 20s in the low tem-
perature range. The relatively short duration of the heat pulses minimizes the heat loss
that occurs during the application of the heat pulse. The sample thermometer resistance
data was obtained using a Linear Research LR700 ac resistance bridge by performing the
4 terminal measurement. The excitation level used to measure the resistance was set such
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that self heating was insignificant while still maintaining a low level of data noise. Temper-
ature control, experimental procedure, and data acquisition were all automated through
the use of a computer running custom written LabVIEW software. In order to acquire
the specific heat measurement, following steps were performed. Firstly, the temperature
of the experiment stage was set to the desired level. To accomplish this, the program used
the known calibration for the reference temperature control thermometer to calculate the
equivalent resistance value. This resistance value was set as the setpoint on the Lakeshore
temperature controlled. Enough time was allowed so that the temperature controller sta-
bilized at the desired temperature, and for the sample to reach thermal equilibrium. The
program then applied the heat pulse to the sample, and waited for the sample temperature
to fall back down to the equilibrium temperature. This completes the data acquisition for
a single specific heat data point. A new setpoint was determined, and the whole routine is
repeated at a different temperature. The temperature steps between adjacent data points
ranged from 15mK to 25mK. All of the data was recorded in a data file to be analyzed
later.

5.7 Data Analysis

5.7.1 Specific Heat Calculation

Figure 5.6 shows a typical single data point for the measurement of the heat capacity
of PrOs4Sb12. Before the heat pulse is applied, the heat capacity stage and the sample
are allowed enough time to come to thermal equilibrium. This part of the data is used
for calibration of the sample thermometer. Average resistance of a flat portion of the
sample thermometer data is correlated with the temperature measured from the reference
thermometer used for temperature control. This calibration is carried out at every heat
capacity data point. To obtain the resistance-temperature relationship between calibra-
tion points, a linear interpolation is performed. A linear fit is calculated for the sample
temperature data before the heat pulse, and an exponential fit is calculated for the data
after the heat pulse. The lower temperature TL is determined by using the linear fit to cal-
culate the temperature half way through the heat pulse. Likewise, the upper temperature
TU is obtained by using the exponential fit to calculate the temperature of the sample at
the midpoint of the heat pulse. The change in temperature is given by ∆T = TU − TL.
This method compensates for the heat loss that occurs during the application of the heat
pulse. The heat Q applied to the sample is calculated by multiplying the power applied
to the heater by the duration of the pulse. Therefore, the specific heat is obtained by
C = Q/∆T . This specific heat value corresponds to the average temperature during the
heat pulse T = (TU + TL)/2.
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Figure 5.6: Typical data for a single specific heat data point. Linear fit is performed for
the data before the heat pulse. Exponential fit is performed for the data after the heat
pulse. The change in temperature is calculated by extrapolating these fits to the midpoint
of the heat pulse.
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5.7.2 Error Analysis

In order to calculate the errors in the values for TU and TL, the 66% prediction interval
for each extrapolated value of the fit function was determined. The propagation of error
in TU and TL into calculations of specific heat were tracked using formulas:

f = aA± bB; σ2
f = a2σ2

A + b2σ2
B (5.11)

f =
A

B
;

(
σf
f

)2

=
(σA
A

)2

+
(σB
B

)2

(5.12)

In other words, the error in ∆T and average temperature were calculated using equation
5.11, and the error in specific heat was calculated using equation 5.12.
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Chapter 6

Specific Heat of PrOs4Sb12: Results
and Discussion

The results of specific heat measurements of PrOs4Sb12 for the temperature range between
1.4K and 2.8K are shown in Figure 6.1. These results were derived from an aggregation of
multiple specific heat experiments on PrOs4Sb12 shown in Figure 6.2. The broad feature
in the data is the Schottky anomaly discussed in chapter 4. The data clearly exhibit the
double superconducting transition behaviour. In order to analyze our data and compare
it with other previous reports, transition temperatures, ∆Tc, and ∆(C/T ) are defined
according to Figure 6.5.

The upper transition is a broad transition at approximate temperature Tc1 = 1.871K
and the lower transition is very sharp at temperature Tc2 = 1.63K. The upper transition
occurs at temperature comparable to previous results (Tc1 ≈ 1.85K − 1.89K). The lower
transition occurs at temperature that is lower then most previous results (Tc2 ≈ 1.72K −
1.76K). However there have been previous reports of PrOs4Sb12 samples with Tc2 transition
temperatures occurring at lower temperatures (1.53K − 1.68K)[67]. The specific heat
amplitude at the second transition is 3.353J/molK2 which is comparable to values usually
reported in other works. Figures 6.3 and 6.4 show the results from these measurements
alongside some of the previously published data. As is easily seen in the figure, the upper
transition is sample independent and is extremely stable among all of the samples. On
the other hand, the lower transition is very sample sensitive as its critical temperature
varies between many samples. One possible explanation for such behaviour is that the
two transitions are due to two different superconducting phases. It seems that the upper
transition is not sensitive to impurities in the sample. This implies that it exhibits s-wave
superconductivity.[9] Conversely, the lower transition seems to be affected by impurities
suggesting that its order parameter is asymmetric. This interpretation is consistent with
the results and the multiband scenario proposed in [38, 86, 89]. However, one puzzling
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Figure 6.1: Average of all PrOs4Sb12 specific heat measurement results for the temperature
range 1.4K and 2.8K. The two transition temperatures are at 1.871K and 1.63K.

Figure 6.2: PrOs4Sb12 specific heat measurement results for the temperature range 1.4K
and 2.8K.

72



Figure 6.3: Heat capacity data from our results (black) and from [67] (cyan, blue, green,
red), [65] (magenta), [63] (green crosses), and [19] (cyan crosses). The upper transition
temperature is sample independent while the lower transition temperature varies among
samples.
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Figure 6.4: Heat capacity data from our results (black) and from [67] (cyan, blue, magenta,
red), and [94] (green). The main plot shows our results along with one sample with a
single sharp transition and two samples with single broad transitions. The inset shows our
results along with two samples with single sharp transitions. Samples with a single broad
transition have a Tc that coincides with the upper transition. Samples with single sharp
transitions have Tc’s that coincide with the lower transition and the transition temperature
varies between samples.
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question is the existence of samples with single transitions. As seen in Figure 6.4, samples
with a single broad transition have a Tc that coincides with the upper transition. On the
other hand, samples with a single sharp transition have a Tc that is in the temperature
range of the lower transition of samples with two superconducting transitions. Additionally,
this transition temperature varies between samples.

In order to characterize the sample, we can examine certain aspects of the supercon-
ducting transition data and compare them to other samples reported in [67]. The C/T
at 2K for our sample is approximately 2.89J/molK2. This value is quite high. All of the
“high quality” samples in the referenced paper have values for C/T at 2K in the range
between 2.6J/molK2 and 3J/molK2. The total specific heat jump ∆(C/T ) in our data
is 0.503J/molK2. The “high quality” samples exhibit 0.6J/molK2 − 0.8J/molK2 for the
total specific heat jump. This is slightly higher than the value obtained for our sample.
The width of the first superconducting transition is ∆Tc1 = 121mK. This is slightly larger
than most other reported values. However, given the broad and ill-defined nature of this
transition, it is expected that there will be large range of values for its width. The width
of the second superconducting transition is ∆Tc2 = 47mK and is comparable to other
published results. The height of the first superconducting transition is approximately half
of the height of the second superconducting transition. If the two transitions are due to
inhomogeneity, then this suggests that large and comparable fractions of the sample are
undergoing superconducting transitions at two different temperatures.[65]

If we assume the BCS model weak coupling prediction:

∆C

γTC
= 1.43 (6.1)

we can get the estimate for the Sommerfeld constant γ ≈ 350mJ/molK2. This value is in
agreement with other results and confirms the heavy fermion behaviour of PrOs4Sb12. If
we follow the calculations and approximations performed in [12], this Sommerfeld constant
corresponds to effective electron mass m∗ = 50me.

Figure 6.6 shows the results of specific heat measurements from approximately 150mK
to approximately 1.2K. The upturn in the specific heat data that occurs below T ≈ 450mK
is due to nuclear magnetic moments (see section 3.3). The low temperature range is
interesting because unconventional superconductors with nodes in the energy gap exhibit
a power law (CS ∝ T n) dependance in the superconducting specific heat instead of the
usual exponential behaviour. In order to obtain a power law fit to the specific heat data,
two different methods were used. First, a general power law function (f(x) = axb+c) was fit
to the specific heat data. Second, a linear function (f(x) = bx+ c) was fit to the logarithm
of the specific heat data. Temperature range used for the fitting was from 450mK to 1.2K.
Below this temperature range, the nuclear magnetic moments contribution to the specific
heat starts to become significant. From the two methods, we obtained two values for the
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Figure 6.5: Definition of transition temperatures, ∆Tc, and ∆(C/T ).[67]

exponent in the power law behaviour. Using the first fit model, we calculated exponent
value n1 = 4.168. Using the second method, the power law behaviour is described by
the exponent n2 = 3.703. Figure 6.7 shows the two fits (n1 is red and n2 is green) as
they compare to the specific heat data and Figure 6.8 shows the two fits as they compare
to the C/T data. For completeness, Figure 6.9 shows the two fits and the specific heat
data on a logarithmic scale. It can be deduced from the plots that n = 3.703 exponent
provides generally a better fit to the specific heat data. This exponent value is in very good
agreement with n = 3.9 obtained in previous measurements[64]. The power law behaviour
of the low temperature specific heat in the superconducting state suggests the the order
parameter is anisotropic. This is in direct agreement with the results obtained by Andreev
spectroscopy study done on crystal samples from the same batch as our sample.[89]

One way to improve on our analysis would be to measure the specific heat of PrOs4Sb12

at higher temperatures to approximately 8K. Unfortunately, the RuO2 resistor used as the
thermometer in this study loses the sensitivity necessary for accurate temperature mea-
surements at temperatures above 5K.[71] With the data for the specific heat up to 8K,
it could be possible to model the Schottky anomaly in the specific heat. By subtracting
the Schottky anomaly from the total specific heat, a more accurate calculation of the elec-
tronic specific heat could be obtained. A similar procedure was performed on the specific
heat data from [64]. This changed the value of the power law exponent from n = 3.9 to
n = 2.5.[63] The power law dependance of the electronic specific heat in the superconduct-
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Figure 6.6: PrOs4Sb12 specific heat measurement results for the temperature range 150mK
and 1.2K.

Figure 6.7: Power law and exponential fits to the specific heat data. n1 = 4.168 is red,
n2 = 3.703 is green, and exponential fit is cyan. n2 makes the best fit.
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ing state implies anisotropic energy gap and unconventional superconductivity. Further
enhancements are possible by measuring the specific heat to even lower temperatures. It
would be useful to model the nuclear magnetic contribution to the specific heat by fitting
a T−2 function to this low temperature data. Accuracy of the results could be improved
by subtracting this term.
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Figure 6.8: Power law and exponential fits to the C/T data. n1 = 4.168 is red, n2 = 3.703
is green, and exponential fit is cyan. n2 makes the best fit.

Figure 6.9: Power law and exponential fits to the specific heat data on a logarithmic scale.
n1 = 4.168 is red, n2 = 3.703 is green, and exponential fit is cyan. n2 makes the best fit.
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Chapter 7

Cuprates and YBCO

7.1 General Remarks

The discovery of superconductivity of mercury at liquid helium temperature in 1911[106]
stimulated a search for materials with higher transition temperatures. In 1973, super-
conductivity in Nb3Ge was observed to occur at a critical temperature of approximately
23K.[32] In about sixty years the transition temperature of superconductors was raised
from ≈ 4K of liquid helium to ≈ 23K. Nb3Ge remained the highest-Tc superconductor
for next thirteen years. In 1986, Bednorz and Muller found that the cuprate compound
La2−xBaxCuO4 becomes superconducting at approximate temperature of 30K.[13] This
finding sparked a revolution in research of superconducting materials. The next pivotal
breakthrough was the creation of superconducting cuprate YBa2Cu3O7 (YBCO) by Wu et
al.[113] The transition temperature of YBCO was found to be as high as 90K, above the
boiling point of liquid nitrogen at temperature of 77K. Further research led to develop-
ment of other cuprates with even higher critical temperatures, such as HgBa2Ca2Cu3O8+δ

with the transition temperature of 133K.[14]

The crystal structure of cuprates is relatively simple. Most cuprates consist of CuO2

planes separated by a spacer layer. The crystal structure of YBCO is shown in Figure 7.1.
It is made up of CuO2 planes and CuO4 ribbons perpendicular to these planes. The yttrium
atoms are located between the CuO2 planes, and the barium atoms are located between
the CuO4 ribbons and the CuO2 planes. Most superconducting properties of cuprates are
determined by the electronic structure of the CuO2 planes.

Cuprates belong to a category of materials called Mott insulators. Conventional band
theory predicts that these materials should be conductors. This is because the standard
tight-binding theory predicts that the energy band associated with the 3d orbitals of the
Cu ions is half filled due to the presence of odd number of electrons. However, this is in
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Figure 7.1: Crystal structure of YBCO.[1]
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contradiction to experimental results which show that cuprates are insulators. The discrep-
ancy arises because the tight-binding method used in conventional band theory assumes
the independent electron approximation. However, for a proper description of cuprates,
electron-electron interactions must be considered. The Hubbard model was developed as an
extension to the tight-binding approximation to include the electron-electron interactions.
The Hubbard model contains two terms. It contains the term t associated with kinetic
energy of electrons hopping from one atom to one of its neighboring atoms. The second
term is known as the Hubbard U and accounts for the electron-electron interactions. It
represents the potential energy associated with the Coulomb repulsion arising when one
electron hops from one Cu site to a neighboring atom. If this intersite Coulomb repulsion
is greater than the gain in kinetic energy due to electron hopping (U � t), the electrons
become localized. Due to the Pauli exclusion principle, two parallel spins are forbidden
to reside at the same Cu site, but antiparallel spins are not. In this case and at low
temperatures1, virtual hopping of antiparallel spins between Cu ions causes the formation
of antiferromagnetic order between the Cu ion spins. This superexchange interaction is
established by the separating O atoms and has the exchange energy J = 4t2/U .[110] The
actual situation in cuprates is more elaborate due to the hybridization of Cu 3d and O 2p
orbitals[78], but the crucial idea remains the same.

If the cuprates are chemically hole doped, different physical behaviour emerges. Hole
doping can be achieved by removing cations from the spacer layer or replacing them with
atoms that have lower valence. In order to sustain charge neutrality, electrons from the
CuO2 planes transfer into the spacer layer leaving behind holes. The removal of electrons
from the CuO2 planes severs the magnetic interaction between the adjacent Cu ions. Thus,
introducing holes into cuprate CuO2 planes tends to destroy the antiferromagnetic order.
As the hole doping is increased, cuprate materials seize to be antiferromagnetic, and instead
become superconductors. The critical temperature forms a “dome” as a function of hole
doping. The transition temperature increases with increasing hole doping, reaching a
maximum when doping is approximately 15%. As doping is increased beyond this value,
the transition temperature decreases. At approximately 25% hole doping, cuprates lose
their superconducting properties and become ordinary metals. This behaviour is illustrated
in the phase diagram of cuprates shown in Figure 7.2.

The superconducting state in cuprates exhibits many properties characteristic of con-
ventional BCS superconductors.[77] It has zero electrical resistance and possesses the
Meissner effect characteristic of Type-II superconductors. The electrons condense forming
Cooper pairs. One unusual property is that cuprates have very short coherence length.
For usual superconductors, the coherence length is of the order 103Å. In cuprates, the
coherence length is of order 20Å in CuO2 planes and 2Å between the CuO2 planes.2 A

1At temperature below the Néel temperature, TN .
2The coherence length between the planes is so short that cuprate materials behave like a stack of
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Figure 7.2: Cuprate phase diagram from [77]

Figure 7.3: Variation of the energy gap around the Fermi surface in a d-wave supercon-
ductor.
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more significant and atypical characteristic is that the symmetry of the superconducting
energy gap is not spherical as is the case in the conventional BCS superconductors. Instead
of the usual s-wave symmetry, the order parameter in cuprates shows evidence for d-wave
symmetry[101] (Figure 7.3). This was directly measured on single crystals of YBCO by
Wollman et al.[111] and Tsuei et al.[107]. The anisotropy in the order parameter suggests
that the cause of pairing in cuprates is unconventional, ie. the pairing mechanism is not
phonon mediated.

The most interesting and controversial feature is the evidence for existence of another
phase, the so-called pseudogap, in cuprates with small hole doping level. Early experiments
such as NMR measurements[108], Knight shift measurements[4], and magnetic suscepti-
bility measurements[46] showed a reduction in spin response in cuprates. Such reduction
occurs in conventional superconductors in the superconducting state when Cooper pairs
condense into a spin singlet state. The remarkable finding here is that this effect occurs
in cuprates at temperatures above the critical temperature and no anomalous results are
detected at the superconducting transition. This indicates the possibility of formation of
spin singlet state at temperature T ∗, which is above Tc. Experiments also indicate that,
unlike the critical temperature, T ∗ increases with decreasing hole doping (see phase dia-
gram in Figure 7.2). Historically, pivotal data suggesting the presence of the pseudogap
came from angle resolved photoemission spectroscopy (ARPES) experiments performed
by Loeser et al.[56] and Ding et al.[76] Another crucial indication that there is something
strange about the normal state of cuprates came from thermal transport measurements[39]
which show the breakdown of the Wiedmann-Franz law3. This suggests that the normal
state does not behave as a typical metal described by the Fermi-liquid theory; fermions
are not responsible for heat transport in cuprates in normal state. Over the years, there
have been numerous experiments performed in order to detect and study the pseudogap.
Evidence for the existence of another phase above the superconducting state has been ob-
served in various experiments including ARPES, scanning tunneling microscopy, Cu NMR,
resistivity, specific heat, infrared conductivity, and inelastic neutron scattering. A review
of experimental techniques and results related to investigating the pseudogap has been
performed by Timusk and Statt in [105] and in books Handbook of High-Temperature Su-
perconductivity: Theory and Experiment[93] by J.S. Brooks and J. Robert Schrieffer, and
Superconductivity: Conventional and Unconventional Superconductors[14] by Karl-Heinz
Bennemann and John B. Ketterson.

There are a couple of findings from the ARPES experiments worth mentioning here.
First, the experiments show that the anisotropy of the pseudogap is the same as that of
the superconducting energy gap, ie. the pseudogap has the same k dependence as the

superconductor-insulator-superconductor Josephson junctions.[48]
3The Wiedmann-Franz law states that the ratio of the thermal to the electrical conductivity of metals

is directly proportional to the temperature: κ
σ ∝ T .[110]
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Figure 7.4: Illustration of the temperature dependence of the Fermi surface in under-
doped cuprates. The d-wave node below Tc becomes an arc above Tc which expands with
increasing T to form the full Fermi surface at T ∗.

Figure 7.5: Possibilities for the relationship between the pseudogap and the superconduct-
ing state in the cuprates. The solid black line is the superconducting transition tempera-
ture, and the red dashed line the pseudogap phase line.

superconducting energy gap. Moreover, measurements of the temperature dependence
of the pseudogap show that the Fermi surface becomes gapped in different directions of k
space at different temperatures. Results show the pseudogap opens at T ∗ and continuously
grows into the superconducting energy gap at Tc. These observations are consistent with
data obtained from other experiments, such as thermal conductivity[100]. These ideas are
illustrated in Figure 7.4.

A comprehensive review of results and features of the pseudogap obtained from experi-
ments, a detailed survey of theoretical models used to describe the pseudogap, and further
references to original papers can be found in the books mentioned above.

The most intriguing, puzzling, and disputed issue concerning cuprates is the nature of
the pseudogap and its relationship to the superconducting state. Various possibilities for
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how the pseudogap phase may be associated with the superconducting state in cuprates
are illustrated in Figure 7.5.

The first scenario is that the pseudogap phase is a precursor to the superconducting
state (panel (1) in Figure 7.5). This means that the pseudogap phase represents a state
from which antiferromagnetic order arises at low doping levels, or the superconducting
state forms at higher doping levels. In this scenario, the pseudogap is not an ordered state
and T ∗ is a crossover line and not a true transition temperature. A possible theory for the
pseudogap phase is that of preformed pairs. Cuprates exhibit very short superconducting
coherence length, low charge carrier density, and are quasi-two dimensional due to CuO2

planes. The main idea behind preformed pairs suggests that Cooper pair formation is
possible above the critical temperature, but strong phase fluctuations4 prevent any long
range phase coherence. Thus, the pseudogap is associated with the spin gap created by
the formation of spin singlet pairs. There are experimental evidence in support of the idea
of preformed pairs, such as [100]

A related theory is that of spin liquid state or ”resonating valence bond” (RVB)
state.[5, 6] The RVB theory suggest that, although increase in hole doping destroys the
antiferromagnetic order, it still allows for antiferromagnetic interaction between the spins.
It postulates that any one spin can be paired with one of its neighbouring spins to form a
spin singlet. However, these spin singlet bonds fluctuate from being paired to not paired,
thus forming a ”spin liquid”. Authors in [78] suggest a useful analogy. They compare the
spin liquid fluctuations to the situation of C-C bonds in benzene rings where each bond
alters between being a single bond and a double bond. An interesting idea in the RVB
model is that of spin-charge separation. The spin is associated with “spinons” which have
spin of 1/2 and no charge, while charge of +e is carried by “holons” which have no spin.
Spinons form singlet pairs at temperatures below T ∗ creating the spin gap associated with
the pseudogap. Hole doping has a disruptive effect of formation of pairs just as it destroys
the antiferromagnetic order, ie. the energy gain associated with pair formation is in oppo-
sition with the kinetic energy associated with a hole hopping from one ion to another. This
implies that T ∗ should decrease with increasing hole doping. On the other hand, doped
holes, which carry the charge, become phase coherent only below certain temperature Tφ
that is proportional to hole doping level. There is not much experimental evidence for the
coherence transition, and Tφ line is ill defined. Below both of these temperatures, it is
possible to have spin pairing and long range phase coherence, creating the superconduct-
ing state. This idea is illustrated in Figure 7.6 (a). There are additional consequences of
RVB model. Spin-charge separation only occurs in the CuO2 planes. Therefore, experi-
mental measurements detecting spin response (such as NMR) should be able to observe
the spin gap associated with pair formation, while experiments associated with charge

4The wavefunction of a superconductor is represented by ψ(x) = |ψ|eiφ(x) where φ is the phase of the
wavefunction.
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Figure 7.6: Two proposed theoretical phase diagrams for the cuprates. RVB scenario (left
panel) and quantum critical scenario (right panel)

transport (such as in plane conductivity) should not be greatly effected. This is observed
experimentally.[43] On the other hand, spinons and holons must bind into actual electrons
in order to leap between the planes. This should have a significant effect on any measure-
ments performed on the axis perpendicular to the planes. Experimental evidence is also
consistent with these predictions.[83]

Another theory proposed for cuprate superconductors is that of stripes. In this model,
doped holes form layers of one-dimensional “stripes” which act as mobile charge carri-
ers. In between these stripe layers, spins arrange into magnetic domains that possess
antiferromagnetic order. There has been some experimental evidence in support of this
model.[31, 27]

A second possibility is that the pseudogap phase and the superconducting state are
unrelated. Instead, they are in competition with each other over the Fermi surface, and as
one wins the other loses. This idea is illustrated in panel (2) of Figure 7.5. In this scenario,
the pseudogap represents an ordered state and T ∗ represents a well defined transition
temperature. Some theoretical ideas for competing order in the pseudogap involve spin
density waves or charge density waves[16, 93] and orbital currents[96]. There have been
some experimental arguments in support of this scenario[102, 103]. In this scenario, the
pseudogap phase is an ordered state at low doping levels, and Fermi liquid is a disordered
phase at high doping levels. These two phases meet at a quantum critical point that is
surrounded by the superconducting state. This version of the phase diagram is illustrated
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in Figure 7.6 (b).

Authors in [77] suggest a third possibility that has not received much consideration
in current experimental and theoretical research. As illustrated in panel (3) of Figure
7.5, it is possible that the pseudogap phase represents some order that is replaced by the
superconducting phase, and that T ∗ terminates at the Tc.

The major hurdle in understanding and developing a theory of high-Tc superconductiv-
ity in cuprates is inherently linked to our insight of the pseudogap phase and its relation to
the superconducting state. The important issue is whether the pseudogap phase exhibits
true long range order or whether it is merely a form of a precursor state. The difficulty in
answering this question stems from the fact that experimental results have not been able
to clearly define the T ∗ line and there is no consensus on the correct phase diagram for
cuprates.

7.2 Specific Heat of YBCO

7.2.1 Evidence for d-wave Pairing

For conventional superconductors with s-wave symmetry in the energy gap, low temper-
ature electronic specific heat is characterized by an exponential function of temperature
as described in chapter 2. However, in case of d-wave pairing, low temperature elec-
tronic specific heat is proportional T 2[74]. For type-II d-wave superconductors, in the
presence of magnetic field, the low temperature specific heat is predicted to be of the form
B1/2T .[93, 50] At higher temperatures, and at low magnetic fields, the electronic specific
heat is represented by both a T 2 term that is independent of the magnetic field, and a
temperature independent term that is proportional to the magnetic field. The crossover
between these two regions is determined by the parameter z = B−1/2T and occurs when
zc = B

−1/2
c Tc. Analysis of low temperature specific heat of YBCO is further complicated

because additional terms need to be considered and accounted for. These terms include
a magnetic term due to paramagnetic centers5, a term due to nuclear magnetic moments,
phonon specific heat term, and a residual linear term associated with impurities. Moler
et al. were first to perform measurements and analysis of low temperature specific heat
of YBCO samples. Their results exhibited behaviour described above providing evidence
for unconventional superconductivity and d-wave pairing in YBCO.[73] There have been
other specific heat measurements looking for similar d-wave scaling relations in order to
find evidence for unconventional pairing in YBCO.[112, 87, 109]. Figure 7.7 shows the spe-

5These are related to chemical impurities, or, in the case of chemical substitutions on the Cu sites, the
moments of the substituent ions or moments they induce on neighboring Cu sites.
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Figure 7.7: A test of the scaling relation for d-wave superconductor specific heat as it relates
to magnetic field and temperature.[112] The specific heat data is for a YBCO sample.

cific heat results and scaling from [112]. Similar d-wave behaviour was observed in specific
heat measurements of the cuprate compound (La1.85Sr0.15)CuO4.[28]

7.2.2 Evidence for the Pseudogap

As stated in chapter 3, a measurement of the specific heat is a direct probe of the quantum
states of a system. Therefore, it can be used to study the pseudogap in order to determine
the behaviour of electrons in this phase and their density of states. However, cuprates are
high temperature superconductors, meaning that their superconducting transition occurs
at relatively high temperatures. Additionally, the temperature range of interest in studying
the pseudogap is above the critical temperature Tc, when the material is in its normal state.
Therefore, the presence of a large phonon term at these temperatures makes the task of
determining the electronic specific heat experimentally very challenging. This problem
occurs because lattice specific heat is significantly larger then the electronic contribution
at these temperatures (see chapter 3).

Loram et al. used a differential technique in order to measure the electronic specific heat
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Figure 7.8: Electronic specific heat vs. T for YBa2Cu3O6+x for various doping levels x
from [58]

of cuprates.[84] In the differential technique, the heat capacity of the sample of interest and
the heat capacity of a reference sample are measured concurrently. The reference sample is
chosen such that its phonon contribution to the specific heat is comparable to that of the
sample. The reference sample is also assumed to have zero electronic specific heat. The au-
thors obtained the specific heat difference between the sample of interest and the reference
sample providing them with the measure of electronic specific heat. The complete analysis
is more involved since a number of complications have to be accounted for. For example,
oxygen doping in YBCO samples changes their phonon heat capacity and these effects
need to be taken into consideration. They performed their experiments on YBCO and
Y0.8Ca0.2Ba2Cu3O7−γ samples with various doping levels.[58, 59, 47] Y0.8Ca0.2Ba2Cu3O7−γ
was measured because it is characterized by a wider range in the underdoped regime, hav-
ing optimal doping at higher doping level then YBCO. Some of their results are shown in
Figure 7.8 and Figure 7.9.

These results show interesting behaviour at temperatures above the critical temperature
Tc. In overdoped samples, the normal state electronic specific heat seems to be independent
of temperature and hole doping. This is in contrast with the behaviour observed for
underdoped samples. The electronic specific heat starts to decrease at a temperature above
Tc. This suggests that in underdoped samples, there is a loss of entropy at temperatures
above Tc while the material is still in its normal state. Another noticeable difference in the
electronic specific heat at various doping levels is the decrease in the specific heat jump
at the critical temperature at higher doping levels. Similar results are obtained for the
cuprate La2−xSrxCuO4.[47]
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Figure 7.9: Electronic specific heat for (a) overdoped and; (b) underdoped
Y0.8Ca0.2Ba2Cu3O7−γ.[59]
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The authors use the analysis of these specific heat results to argue that the pseudogap
phase is not a precursor to the superconducting state, but rather is unrelated to it.[102,
103] Their argument is in support of the scenario (2) in Figure 7.5. They state that the
pseudogap should be regarded as a separate phenomenon that is in competition with the
superconducting state. Above Tc, the electronic specific heat data does not show any phase
transition anomaly. Therefore, T ∗ is not a temperature at which the pseudogap appears.
They suggest that T ∗ represents the energy scale for the pseudogap. They also argue that
the T ∗ line cuts through the superconducting dome, ending at a quantum critical point at
a doping level slightly above the optimal doping.
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Chapter 8

YBCO Experiment

8.1 Specific Heat of YBCO

The goal of this project was to design and develop an experimental method to measure
the specific heat of a high temperature superconductor and demonstrate it by determining
the specific heat of a YBCO sample. Therefore, the temperature range of interest in this
experiment is from about 10 K to approximately 200 K.

The essential methodology for the experiment is similar to the concepts and procedures
described in Chapter 5. The experimental setup is illustrated in Figure 8.1. It consists
of a dip probe constructed out of stainless steel. The central stainless steel rod contains
regularly spaces baffles. These serve a number of purposes. They provide thermal contact
to the stainless steel can that encloses the entire apparatus. They are also used for thermal
anchoring of electrical leads going to the experiment stage. Thermal anchoring is achieved
by winding the electrical leads around a small copper post. The copper post is then affixed
to the baffles. Lastly, the baffles act as radiation shields preventing hot room temperature
radiation from reaching the experiment stage.

At the bottom of the probe is a copper block used for mounting the experiment com-
ponents. The heater resistor used for temperature control was attached to this block. The
stage heater will be discussed in more details later. Additionally, all electrical wires were
coupled to the copper block for heat-sinking purposes. The temperature control thermome-
ter was a calibrated Cernox CX-1070 thermometer that was fixed to the sample holder. The
sample holder that enclosed the experiment sample was fundamentally the same as the one
described in Chapter 5. The sample heater was a very small (0.5mm×1.0mm×0.254mm)
10kΩ thin-film resistor. The sample thermometer was a Cernox CX-1070 chip thermome-
ter. Both components were directly coupled to the sample using a small amount of GE
varnish. The electrical leads to the sample heater and the Cernox thermometer were six
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Figure 8.1: Illustration of the dip probe used for measuring the specific heat of a YBCO
sample.
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NbTi wires with 6µm diameter and length of approximately 5mm. These wires were also
used as the thermal weak link.

To perform the experiment, the apparatus was enclosed in the stainless steel case. The
whole setup system is vacuum tight. A turbopump was used to remove the gas from the
probe. The equipment was then cooled down in two steps. The apparatus was submerged
into a dewar of liquid nitrogen reducing the temperature to approximately 80K. Subse-
quently, it was submerged into a dewar containing liquid helium (4He). Liquid nitrogen has
a much greater latent heat of evaporation than liquid helium. Additionally, at tempera-
tures about 80K, most of the heat capacity of the apparatus has been removed. Therefore,
it is considerably more cost and time efficient to pre-cool the experiment with liquid ni-
trogen before using liquid helium to reach lower temperatures. The base temperature of
the equipment is approximately 16K. This is where an equilibrium is reached between the
cooling power of the liquid helium and heat leaks from the room temperature air surround-
ing the top of the probe sitting outside the dewar. For temperatures above 80K, the only
cryoliquid used for refrigeration was liquid nitrogen.

Specific heat measurements were performed using the quasi-adiabatic method. Tem-
perature control, data acquisition, and data analysis were performed in the same manner
as specified in sections 5.4, 5.6, and 5.7.

8.2 Magnetic Susceptibility of YBCO

Magnetic susceptibility of a material describes its response to an applied magnetic field.
Magnetic susceptibility is defined as:[110]

χ =
∂M

∂H
(8.1)

where M is the magnetization density of the material, and H is the applied magnetic field.
The behaviour of materials in the presence of a magnetic field can be classified in a number
of major groups.

Diamagnetism When an external magnetic field is applied to a diamagnetic material,
the object creates a magnetic field that counters the applied magnetic field, thus causing a
repulsive effect. Most materials that are considered “non-magnetic” (such as water, wood,
plastic, etc.) are diamagnetic. Diamagnetic materials consist of atoms that have zero net
magnetic moment. Since diamagnetic materials oppose the applied magnetic field, their
magnetic susceptibility is less than zero. Figure 8.2 illustrates the magnetization and the
magnetic susceptibility of a diamagnetic material. It should be noted that the magnetic
susceptibility is negative and independent of temperature.
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Figure 8.2: Diamagnetism Magnetization is opposite the externally applied magnetic field.
Magnetic susceptibility is negative and independent of temperature.

Figure 8.3: Paramagnetism Magnetization is in alignment with the applied magnetic field.
Magnetic susceptibility is positive and decreases with temperature according to the Curie’s
law.

Paramagnetism Paramagnetic materials contain atoms or ions with non-zero net mag-
netic moments arising from the presence of unpaired electrons in partially filled orbitals.
Therefore, in the presence of an externally applied magnetic field, the constituent atoms
of a paramagnetic material align in the direction of the applied magnetic field. Figure
8.3 shows the magnetization and the magnetic susceptibility of paramagnetic materials.
As the temperature is increased, heat thermally excited electrons creating thermal dis-
order and destroying the magnetic order. Hence, magnetic susceptibility decreases with
temperature.1

The basic principle behind equipment used for measuring magnetic susceptibility is
illustrated in Figure 8.4. A superconducting magnet is used to generate a static magnetic
field. The applied magnetic field magnetizes the sample to be measured. The sample is

1This is Curie’s law and it states that the magnetic susceptibility is inversely proportional to tempera-
ture (χ ∝ 1/T ).
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Figure 8.4: Simple illustration of a magnetometer.

made to oscillate in position relative to the detection coil. The purpose of the detection
coil is to measure the flux change as the magnetized sample is moved up and down. The
motion of the magnetic moment of the sample induces an electric current in the detection
coil system. Therefore, the induced current in the pickup coil is proportional to the sample’s
magnetic moment. The output of the detection coil is sent to circuitry used to analyze the
signal. Here, a superconducting quantum interface device (SQUID) acts as a very sensitive
current-to-voltage converter. The current variations in the detection coils generate changes
in the SQUID output. The SQUID output voltage then may be analyzed to determine the
magnetic moment of the sample. Magnetic susceptibility may be measured in this way for
various magnetic field strengths or as a function of temperature.

Susceptibility measurements can be used as a tool for determining the critical tempera-
ture of superconducting materials. Above the transition temperature, superconducting ma-
terials usually have small magnetic susceptibility. When in the superconducting state, the
materials become perfect diamagnets. Hence, its magnetic susceptibility becomes χ = −1.
In actual experiments, the critical temperature is signaled by an appearance of a significant
negative nonzero magnetic susceptibility.

For this experiment, magnetic susceptibility of a YBCO sample was measured using
a commercial Quantum Desigh SQUID magnetometer at McMaster University by Paul
Dube.
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Chapter 9

YBCO Results and Discussion

9.1 Specific Heat of YBCO

The YBCO sample used in the experiment was YBa2Cu3O6+x with x = 0.355. The YBCO
crystal were made by the self-flux method using BaZrO3 crucibles[55] by Doug Bonn at Uni-
versity of British Columbia. The sample is in the underdoped region, ie. it is below optimal
doping. The sample showed prominent discoloration. It was very brittle. When we tried
to place it into the experimental assembly, the sample fragmented into a number of pieces.
This led us to believe that the sample has been damaged. Chemical reactions of YBCO
with water deteriorate the sample quality and have adverse effects on its superconduct-
ing properties.[60, 42] The products of these chemical reactions are non-superconducting
Y2BaCuO5, copper oxide, barium hydroxide, and barium carbonate. We proceeded with
the experiment as a proof of concept and to determine the performance of the equipment.
We used the biggest piece of the remnants of our YBCO sample. Unfortunately, the sample
was considerably smaller. The mass of the sample used in the experiment was 1.5mg. The
results of the heat capacity measurements are shown in Figure 9.1. The data show no signs
of a superconducting transition. Instead, they exhibit behaviour consistent with a phonon
contribution to the heat capacity.

Unfortunately, since the sample broke into smaller fragments, the specific heat of the
addenda was not insignificant and had a sufficient contribution to the total heat capacity.
There are a few steps that may be taken in order to minimize this contribution of the
addenda. The ideal solution would be to use a bigger sample so that its heat capacity
is the dominant term. Polishing the heater and the thermometer chip substrates would
reduce their mass and hence their heat capacity contribution. Another option would be
cutting the chips along their length. This may reduce their size considerably and smaller
lead wires may be required and wire bonding may have to be utilized in order to make
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electrical connections.

In order to estimate the contribution to the heat capacity of the addenda, we developed
a crude model. Cernox thermometer chip is comprised of silicon oxynitride (Si2N2O) sensor
material on alumina (Al2O3) substrate with gold pads for electrical connections. The heater
resistor chip is made up of nichrome alloy (80% Ni, 20% Cr) resistor material on alumina
substrate with gold soldering pads. Each chip has a mass of ≈ 1mg. In our model, we
assumed that each chip is mostly made up of the alumina substrate material; 70% of the
mass was attributed to the substrate material. Gold soldering pads made up 10% of the
mass of each chip. The remaining 20% were attributed to the oxynitride material for
Cernox thermometer, and the nichrome for the heater chip. The specific heat contribution
of the alumina substrate, nichrome and silicon oxynitride were modeled using the Debye
model (Equation 3.26). The Debye temperatures ΘD of alumina, nichrome, and silicon
oxynitride are 980K[3], 428K[53], and 738K[26] respectively. The data for specific heat of
gold in our temperature range was taken from [33]. We also included an estimate of the heat
capacity contribution of GE varnish used for fixing the chips to the sample. We estimated
that the amount of GE varnish used was approximately 0.1mg. There are reported data
for specific heat of GE varnish from 1K to 4K[81], 4K to 18K[22], 2K to 80K[37], and
from 200K to 400K[45]. In our analysis, we used the data from [37]. The amount of silver
epoxy used for electrical connections is extremely small (smaller then the size of the chip
gold pads) and we assumed that its contribution is negligible. The heat capacity from
our measurements with an estimate of the addenda contribution are plotted in Figure 9.2.
The addenda heat capacity is relatively small, however it is not insignificant. Figure 9.3
shows our specific heat data after the subtraction of the addenda contribution along with
YBa2Cu3O7 crystal specific heat data from [91]. Considering that the two samples are of
different doping levels, our sample is damaged, and the very crude analysis of our addenda,
the two results are in relatively close agreement.

As can be seen in the figures, there seems to be some noise in our heat capacity data.
There are a few possibilities for sources of these fluctuations. One of our initial concerns
was that there might be a discrepancy between the heat pulses requested by the software
controlling the experiment and the actual applied heat pulses. We checked this by analyzing
the output of the DAQ card using a digital oscilloscope and comparing them to the data
stored by the software. Although the pulse lengths are different from what was specified
in the software, they did match to the data recorded by the software; ie. if we requested a
20s heat pulse, the actual heat pulse applied was not precisely 20s, however the software
recorded the actual and correct length of the heat pulse in its data output. It is not likely
that the source of the noise in the data is due to software since we used a similar program
for data acquisition for PrOs4Sb12. If the noise was due to discrepancy in heat pulses it
would be present in the low temperature data and it would be more evident since we applied
shorter pulses for that set of data. Another possibility is that there is a radiation leak into
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Figure 9.1: Specific heat of the YBCO sample.

Figure 9.2: Total heat capacity of the YBCO sample and addenda (blue), an estimate of
the addenda contribution to the heat capacity (green), and the total heat capacity of the
sample minus the addenda heat capacity (red). Addenda heat capacity is relatively small,
however it is not insignificant.

100



our sample holder causing the sample to warm up and be at different temperature then
our calibrated thermometer. This seems an unlikely explanation. Our sample holder was
enclosed and any holes were covered to prevent any stray radiation. There is another check
for this. We calibrated our sample thermometer at almost every data point. If there were
points during which stray radiation was warming up the sample we would see these points
in the calibration data as noise. More precisely, there would be spikes in the calibration
data curve where the sample thermometer has lower resistance (higher temperature) than
would be expected. Figure 9.4 shows our resistance and temperature calibration data for
the Cernox sample thermometer. We inspected the data, and there are no noticeable spikes
or any noise in the data. Instead most data points follow a nice curve. However, there
does seem to be a small shift in the calibration between some of the different data sets
(shown in inset). This would not cause random noise in our final data. Additionally, noise
in the data is present even in single data sets that have only a single calibration curve.
Another possibility is that the noise is due to different settings (such as resistance range
or excitation level) used on the LR700 ac resistance bridge. This is very unlikely since we
kept these setting as consistent as possible. It is possible that our experiment is somehow
sensitive to some outside sources of noise, such as radiation or vibrations. Perhaps the
level of liquid helium cryoliquid present in the dewar has some unforseen effects. Though
it seems unlikely that our experiment would be extremely sensitive to these effects since
the temperature range of interest is relatively high. Another possibility is that the source
of the noise is due to electronics. It is possible that the LR700 is the culprit; this particular
device has been damaged and repaired before. My first suggestion for trying to pinpoint
the cause of the noise is to replace the LR700 with a device that is known to behave
correctly and produce reliable measurements. Another possibility is that sample’s specific
heat actually changes between different data sets. We tried to keep the sample in vacuum.
However, we did have to bring it to outside atmosphere when we were working on setting
up the experiment (for example, when fixing electrical connections). Also, the vacuum
in the probe was not perfect and over long time some air would leak into the interior.
Perhaps, the sample could react with water vapour or absorb some gases. This could alter
its specific heat.

There are a few remarks that need to be made in regards to the experimental arrange-
ment. One of the initial concerns was with the NbTi wires being used as the weak link for
thermal relaxation. Due to the wide range in temperature of interest in the experiment, it
was uncertain whether the properties of the weak link would need to be altered in order to
provide a satisfactory time constant. As the experiment was performed and measurements
were taken, we found that the NbTi wired maintained an adequate time constant in the
entire temperature range.

In performing the experiment, we encountered an issue with temperature control. We
used a 1kΩ resistor as a temperature control heater. We found that the Lakeshore temper-
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Figure 9.3: Heat capacity of the sample minus the addenda heat capacity from our mea-
surements (blue). YBa2Cu3O7 sample specific heat data from [91] (green).

Figure 9.4: Resistance and temperature values used for calibration of the Cernox sample
thermometer.
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ature controller required a very long time to heat the experimental apparatus and change
the temperature to a new setpoint. This problem started to occur at temperatures around
40 − 50K. The Lakeshore output is 10V and up to 100mA. This means that maximum
power of 1W occurs for heater resistors of 100Ω. However, resistors we were using have
power rating of 125mW . To solve this problem, we connected another 1kΩ resistor in
parallel with the original heater resistor. After this alteration, the temperature controller
was able to change the setpoint temperature in a reasonable amount of time. Similar issue
occurred at temperatures about 140K. Adding another 1kΩ resistor in parallel resolved
the issue once more.

Another issue that arose is that the output of the DAQ-card was not sufficient to provide
adequate heat pulse to the sample heater. This problem developed at approximately 60K.
This difficulty was solved by changing the current limiting resistor from 600kΩ to 200kΩ.

9.2 Magnetic Susceptibility of YBCO

Magnetic susceptibility may be used to test whether a material sample has undergone a
superconducting transition and to determine its superconducting transition temperature. If
a sample is in superconducting state, then it behaves as a diamagnet. Thus, the sample’s
magnetization is opposite the applied magnetic field. Figure 9.5 shows the output of
the magnetization measurement on our YBCO sample at temperature of 5K and applied
magnetic field 1000Oe. The green line represents the applied magnetic field.1 The blue
data points represent the sample’s magnetization. At this temperature, the YBCO sample
should be in the superconducting state. Thus, the sample should be diamagnetic, and its
magnetization should be reverse of the applied magnetic field. However, the data shows
that the sample’s magnetization is in alignment with the applied magnetic field.

Figure 9.6 shows YBCO magnetic susceptibility as a function of temperature. It is
clear that the sample does not exhibit any sign of a superconducting transition. Instead,
it behaves as a paramagnetic material. For contrast, Figure 9.7 shows YBCO magnetic
susceptibility measurements from previously published work.[54]

1More accurately, the green line represents the magnetization of a paramagnetic material whose mag-
netic moments are aligned with the applied magnetic field.
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Figure 9.5: Output of a single magnetization measurement performed at 5K and magnetic
field of 1000Oe (blue). Representation of the magnetization of a paramagnetic material
(green).

Figure 9.6: Magnetic susceptibility of the YBCO sample as a function of temperature
measured under magnetic field of 1000Oe. There is no sign of a superconducting transition.
It is behaving as a paramagnetic sample.
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Figure 9.7: Magnetic susceptibility of YBCO samples measured under 1 T as a function
of temperature from [54].
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Chapter 10

Conclusion

The measurements of the specific heat of PrOs4Sb12 clearly indicate the double transition
behaviour with the upper transition temperature of 1.87K and lower transition tempera-
ture of 1.63K. The properties of the two transitions are generally in fair agreement with
the previously reported results. The low temperature specific heat exhibits power law de-
pendence. This property suggests presence of nodes in the superconducting gap indicating
the possibility of unconventional superconductivity in this heavy fermion system. Addi-
tionally, the presence of multiple samples with equal upper transition temperatures but
different lower transition temperatures suggest that the upper transition and lower transi-
tion are due to different phases. The lower transition is sensitive to sample quality which
implies that the order parameter is asymmetric. In future work, it would be beneficial
to expand the temperature range of the measurements so that modeling of the Schottky
anomaly may be performed and included in the analysis of the data.

In the second part of our work, we have successfully developed an experimental appa-
ratus and procedure for measuring the specific heat of a high temperature superconductor.
The experimental method was demonstrated by measuring the specific heat of a sample
from temperature of about 15K to about 160K. The method can be easily extended
to higher temperatures. Improvements are possible by reducing the size of the addenda.
Polishing the substrates of the heater and thermometer chips would reduce their mass
significantly. Additionally, it is possible to reduce their size by cutting them along their
length. Having larger YBCO samples would also make the heat capacity of the addenda
less significant. Suggestions for future work are to measure the specific heat of a number
of YBCO samples with various doping levels. Additionally, it would be very beneficial to
develop a method to account for the specific heat of the crystal lattice in order to determine
the electronic specific heat. This would enable one to study the pseudogap properties in
hopes of developing an accurate phase diagram for YBCO.
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Appendix A

Anomalous Results

While measuring the specific heat of PrOs4Sb12 on the dilution refrigerator, we noticed
some unexpected and peculiar features in our results at approximately 500mK. Other
measurements have reported anomalous results in this temperature range. Ozcan et al.
performed penetration depth measurements and observed a drop in the magnetic pene-
tration depth at T ≈ 450mK that is indicative of a superconducting transition (see Fig-
ure A.1).[80] Another magnetic penetration depth study reported some strange results in
this temperature range (see Figure A.2).[18] Nuclear quadrupole resonance measurements
performed by Kotegawa et al. noticed an upturn of unknown origin in their results at
temperatures around 600mK.[51] These results are shown in Figure A.3. Cichorek et. al
measured data that exhibit unexpected enhancement of the lower critical field and critical
current at around 600mK.[19] They speculate that these observations reflect a transition
into another superconducting phase. Since we were aware of these unusual results, we
decided to further investigate our specific heat measurements with more scrutiny.

We observed that at temperatures around 500mK, we could apply a very large heat
pulse without causing a great change in temperature of the sample. Instead, the sample
would warm up to an “equilibrium” temperature and it would remain at that temperature
as shown in Figure A.4. The sample would remain at approximately this temperature until
the the heat pulse is turned off (see Figure A.5). However, sometimes it would suddenly
and unexpectedly start to continuously warm up until the application of heat is stopped
(shown in Figure A.6). This behaviour is somewhat reminiscent of a phase transition with
latent heat. However, it is puzzling in many respects. During some measurements, the
sample’s temperature would be stable at the “equilibrium” temperature indefinitely; we
have continuously applied the heat pulse to the sample for 3 − 4 hours with the sample’s
temperature remaining stable. This indicates an extremely large latent heat. On the other
hand, during some measurements, the sample temperature would remain stable only for
a short time (few minutes) before it would suddenly and quickly begin to increase until
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Figure A.1: Temperature dependence of the frequency shift due to the expulsion of mag-
netic flux from the interior of a PrOs4Sb12 sample. At T ≈ 450mK, a supeconducting-
transition-like drop in the magnetic penetration depth sets in.

Figure A.2: Penetration depth variation at low temperatures.
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Figure A.3: 1/T1 as a function of temperature.
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Figure A.4: Upon application of a large heat pulse, the sample’s temperature (green) would
reach an “equilibrium” and be stable for extended period.

Figure A.5: If the heat pulse is turned off, the sample’s temperature (green) would imme-
diately return to the mixing chamber temperature (blue).
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Figure A.6: Sometimes, the sample’s temperature (green) would unexpectedly and quickly
begin to increase until the heat pulse is turned off. Then it would decrease and fall back
down to the mixing chamber temperature (blue).

the heat pulse was turned off. At this point, the sample would return to the background
temperature of the mixing chamber. Additionally, if the sample’s temperature remained
at the “equilibrium” temperature for a very long time, and the heat pulse was turned off,
it would immediately return to the setpoint temperature of the dilution refrigerator. This
behaviour is inconsistent with a phase transition with latent heat. In this case, one would
expect the sample’s temperature to remain at the “equilibrium” temperature even after
the termination of the heat pulse.

We spent a long time performing specific heat measurements trying to observe some
consistent behaviour and make sense of the results we were obtaining. In order to eliminate
the possibility that these anomalous results are an artifact caused by our equipment, we
placed our PrOs4Sb12 sample on another dilution refrigerator. After repeating the specific
heat measurements on a different dilution refrigerator, we did not observe any unusual
behaviour at T ≈ 500mK.

We came up with one explanation to resolve the original strange behaviour we observed.
We believe that we had a very small 4He leak in our dilution refrigerator. At these very
small temperatures, 4He would be a superfluid. We suspect that the superfluid 4He would
creep across the thermal link, dental floss, and electrical contacts and cover our sample. At
about 500mK, the heat pulse would cause the 4He coating the sample to warm up and start
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to evaporate. Therefore, what we were detecting was the latent heat of evaporation of 4He
film covering our sample. This model is consistent with the behaviour we observed. The
“equilibrium” temperature could be stable for extended periods of time because there could
be a continuous supply of superfluid 4He creeping onto the sample. When the heat pulse
is terminated, the sample temperature would return to the mixing chamber temperature
as expected since there is no actual phase transition in the sample and no latent heat.
Also, it is possible that the supply of superfluid 4He may become discontinuous at some
periods. Then, the heat pulse would quickly warm up the sample, suddenly increasing its
temperature until the heat pulse is turned off.

Although this makes our initial findings wrong, it is fortunate that we were careful
enough to detect and avoid a potential error in our results. It is also a very interesting
effect to observe and clearly demonstrates some of the amazing properties of 4He liquid.
One could also imagine a possible way to utilize this effect in order to detect and check for
very small helium leaks in dilution refrigerators.

113



References

[1] http : //upload.wikimedia.org/wikipedia/commons/a/a1/Y BCOstructure.jpg.
xiii, 81

[2] http : //www.lakeshore.com/temp/sen/crtdts.html. 63

[3] http : //www.oxmat.co.uk/Crysdata/al2o3.htm. 99

[4] H. Alloul, T. Ohno, and P. Mendels. y89 nmr evidence for a fermi-liquid behavior in
YBa2Cu3O6+x. Phys. Rev. Lett., 63(16):1700–1703, Oct 1989. 84

[5] P. W. Anderson. The Resonating Valence Bond State in La2CuO4 and Superconduc-
tivity. Science, 235(4793):1196–1198, 1987. 86

[6] P. W. Anderson. The Theory of Superconductivity in the High-TC Cuprates. Princeton
University Press, 1997. 86

[7] Yuji Aoki, Hitoshi Sugawara, and Hideyuki Sato. Heavy fermion behaviors in the
pr-based filled skutterudites. Journal of Alloys and Compounds, 408-412:21 – 26,
2006. Proceedings of Rare Earths’04 in Nara, Japan, Proceedings of Rare Earths’04.
37

[8] R. Bachmann, Jr. F. J. DiSalvo, T. H. Geballe, R. L. Greene, R. E. Howard, C. N.
King, H. C. Kirsch, K. N. Lee, R. E. Schwall, H.-U. Thomas, and R. B. Zubeck. Heat
capacity measurements on small samples at low temperatures. Review of Scientific
Instruments, 43(2):205–214, 1972. 58

[9] A. V. Balatsky, I. Vekhter, and Jian-Xin Zhu. Impurity-induced states in conventional
and unconventional superconductors. Rev. Mod. Phys., 78(2):373–433, May 2006. 33,
71

[10] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys.
Rev., 108(5):1175–1204, Dec 1957. 12

114



[11] T. H. K. Barron and Guy K. White. Heat capacity and thermal expansion at low
temperatures. Kluwer Academic/Plenum, New York :, 1999. 62

[12] E. D. Bauer, N. A. Frederick, P.-C. Ho, V. S. Zapf, and M. B. Maple. Supercon-
ductivity and heavy fermion behavior in PrOs4Sb12. Phys. Rev. B, 65(10):100506.1–
100506.4, Feb 2002. 37, 38, 40, 52, 75

[13] J. G. Bednorz and K. A. Mller. Possible high tc superconductivity in the ba-la-cu-o
system. Zeitschrift fr Physik B Condensed Matter, 64(2):189–193, 1986. 80

[14] K. H. Bennemann and J. B. Ketterson. Superconductivity. Springer, 2008. 80, 84

[15] Werner Buckel and Reinhold Kleiner. Superconductivity Fundamentals and Applica-
tions. WILEY-VCH Verlag GmbH and Co. KGaA, second edition, 2004. 40

[16] Sudip Chakravarty, R. B. Laughlin, Dirk K. Morr, and Chetan Nayak. Hidden order
in the cuprates. Phys. Rev. B, 63(9):094503, Jan 2001. 87

[17] Jr. Charles P. Poole. Handbook of Superconductivity. Academic Press, 2000. 8

[18] Elbert E. M. Chia, M. B. Salamon, H. Sugawara, and H. Sato. Probing the supercon-
ducting gap symmetry of PrOs4Sb12: A penetration depth study. Phys. Rev. Lett.,
91(24):247003, Dec 2003. 40, 52, 108

[19] T. Cichorek, A. C. Mota, F. Steglich, N. A. Frederick, W. M. Yuhasz, and M. B.
Maple. Pronounced enhancement of the lower critical field and critical current deep
in the superconducting state of PrOs4Sb12. Phys. Rev. Lett., 94(10):107002, Mar
2005. xii, 73, 108

[20] Leon N. Cooper. Bound electron pairs in a degenerate fermi gas. Phys. Rev.,
104(4):1189–1190, Nov 1956. 12

[21] Nathaniel Craig and Ted Lester. Hitchhikers guide to the dilution refrigerator. http :
//marcuslab.harvard.edu/howto/Fridge.pdf . xii, 56

[22] J.L. Cude and L. Finegold. Specific heat of ge 7031 varnish (4 - 18 k). Cryogenics,
11(5):394 – 395, 1971. 99

[23] Jeroen Custers, Yukie Namai, Takashi Tayama, Toshiro Sakakibara, Hitoshi Sug-
awara, Yuji Aoki, and Hideyuki Sato. Field-orientation dependence of the specific
heat of PrOs4Sb12. Physica B: Condensed Matter, 378-380:179 – 181, 2006. Pro-
ceedings of the International Conference on Strongly Correlated Electron Systems -
SCES 2005. 40, 52

115



[24] Bascom S. Deaver and William M. Fairbank. Experimental evidence for quantized
flux in superconducting cylinders. Phys. Rev. Lett., 7(2):43–46, Jul 1961. 16
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