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Abstract

In this thesis we study the problem of how to effectively manage and operate
a market that attracts trading agents to compete for resources in it. In order to
attract more agents to the market, the market needs to have incentive policies.
We are particularly interested in the research of the incentive matching policy. We
propose a new matching policy with loyalty incentive features. In order to cooperate
and improve its performance, we also propose a new accepting policy to work with
the matching policy. We use the CAT platform as our test-bed. We describe all
the policies and techniques used in the CAT competition in detail. In addition we
carry out experiments which further support our proposal.
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Chapter 1

Introduction

The Continuous Double Auction (CDA) [6] is a mechanism to match buyers and

sellers of a particular good, and to determine the prices at which trades are exe-

cuted. The beauty of CDA is that, at any point of time, any traders (buyers or

sellers) can enter into the market and submit offers. A trade would take place

instantly if there is a matching offer in the market. CDA has been used in stock

markets for trading securities and other financial commodities.

Most of the existing work and research on CDA addresses ways of designing

effective strategies to maximize the trader’s profit. For instance, in the classic

Trading-Agent Competition (TAC Classic), entrants were motivated by the desire

to develop automated strategies for buyer and seller software agents to achieve op-

timum profits in the virtual market place. The trading rules or interaction mech-

anisms are fixed by the TAC Classic organizers, and competition entrants play

against one another by creating agents to trade in accordance with these prede-

fined rules. However, in today’s globalized market environment, stocks are often
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traded simultaneously in different markets around the world. Meanwhile, markets

need to differentiate themselves and improve their value propositions to attract

more active and profitable traders to become their members. As such, there is

growing demand for research in this area to expand its focus to include design

strategies from a market’s perspective. Our study is a valuable step toward this

research direction.

The TAC Market Design Competition (CAT) [15] provides a test-bed for explor-

ing the problem of designing competitive and efficient markets. CAT is the exact

reverse of TAC Classic: the software trading agents are created by the organizers,

while the game participants compete by defining rules for matching buyers and sell-

ers and setting commission fees for providing relevant services. Entrants compete

against each other in attracting buyers and sellers, as well as generating maximum

profits from completed trading. This can be achieved by having effective matching

rules and setting appropriate fees that strikes a strategic trade-off between making

profits and attracting traders.

We are particularly interested in the trading agents’ reactions when they face

a variety of matching policies1. How to attract buyers and sellers by setting up

different matching policies is the focus of the research. CAT served as an ideal

test-bed for our proposed matching policies, because the agents’ reactions can be

measured directly by the performance of market share2. In other words, construct-

ing a matching policy that can maximize market share is the main objective of the

thesis.

1The matching policy generates matching pairs between buyers and sellers.
2Market share is the proportion of traders registered with one specific market.
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Besides the matching policy, we are also interested in how the accepting policy3

could cooperate with the matching policy to generate better market performance.

The motivation of this research direction is that the accepting policy and the match-

ing policy work as a combination in most cases. Variances in the combination of

accepting and matching policies represent unique features of each market and thus

have direct impact on market performance.

We based our empirical testing for this research in the CAT game. As all our

suggested new approaches and algorithms were tested under the CAT game, we

will discuss the details of CAT specifications in the ensuing chapter.

1.1 Contributions

The key contributions of this thesis are as follows:

WaterCAT Accepting Policy: We present an accepting policy that can deter-

mine which shouts4 are accepted according to the market condition. Unlike

the traditional fixed policy [15], our proposed policy can dynamically adjust

the accepting level according to market activities in a real-time fashion. Com-

paring with the classic equilibrium-beating accepting policy [15], our policy

accepts a wider range of agents to enter the market. However, even with the

wider range, the policy can still maintain a high Transaction Success Rate5.

3The accepting policy determines which bids or asks are accepted into the market.
4Shouts are the general term asks and bids.
5TSR is the proportion of bids and asks placed with that specialist which that specialist is

able to match.
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WaterCAT Matching Policy: We propose a new matching policy based on price

ranking and loyalty ranking. We design a new method, Bonus Factor, that

aggregates the price ranking and loyalty ranking to compose a final ranking,

with which all the matching pairs will be generated. We also show that the

new policy outperforms the base model equilibrium matching policy in our

empirical setting.

Analysis on Different Charging Fees: We analyze the trading agent’s sensitiv-

ity and reaction against different charging fees in fixed charging policy. During

the test we found a winning setting for charging fees that can maximize the

specialist’s profits. In addition to the fixed charging policy, we propose several

adaptive charging policies that are still being developed as prototypes.

Applications on other CDAs: Our research can also help the design of other

CDAs competitions. Our approaches are generic and are applicable to other

models. With the demonstrated performance, other researchers can adapt

our approaches to their models.

1.2 Guide to the Thesis

In this section we outline the chapters for the rest of the thesis:

Chapter 2 - CAT Test-bed Specifications: In this chapter we discuss the de-

tailed specifications and requirements of the CAT game.We also provide the

background information of trading agent strategies as used in this thesis. The

four trading strategies (ZI, ZIP, GD and RE) used by CAT are also explained

in detail.
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Chapter 3 - Policy Designs for CAT Specialists: In this chapter we review

all the current policies designed for the CAT game. We then expound our

modifications to the existing policies with particular focus on the accepting

and the matching policies. Toward the end of the chapter, we also analyze

the impacts of charging fees on the trading agents.

Chapter 4 - Post-game Analysis: We begin this chapter by describing the com-

petition setup of the CAT tournament. We then decompose the winning rea-

sons of our trial game and what caused the performance issues in the official

game. By reporting the game re-run results with the post-tournament agents,

we conclude this chapter by evaluating the performance of updated policies.

Chapter 5 - Related Research: In this chapter we discuss other relevant re-

search in this area. We list two interesting research directions for the CAT

competition.

Chapter 6 - Conclusion: In this chapter we conclude our work with a review of

our contributions and a discussion of future directions.
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Chapter 2

CAT Test-bed Specifications

This chapter provides an overview of the specifications and requirements of the

CAT game. The general concept and overview of the CAT game are provided first.

We then describe the concept of the trading agent, the requirements of the spe-

cialist, and the assessment criteria of the game. Besides the CAT game setup, the

bidding strategies used by the trading agents in the game are also explained in this

chapter.

2.1 The CAT Game Overview

The CAT game consists of trading agents, i.e., buyers, sellers and specialists. Each

specialist operates and sets the rules for a single exchange market, and traders buy

and sell goods in one of the available markets. In the CAT competition the trading

agents are provided by the CAT game, whereas specialists (and the rules of the

markets) are designed by the entrants. Each entrant is limited to operate a single

6



market.

A typical CAT game consists of a CAT server and several CAT clients, which

may be traders or specialists. CAT clients do not talk to each other; instead they

connect to the CAT server through sockets and the server responds to messages

from clients and forwards information if needed.

A CAT game lasts a certain number of days, each day consists of rounds, and

each round lasts a certain number of milliseconds. Trading is only permitted during

rounds, and hence during a day. After a day closes, information on the profit made

by each specialist and the number of traders registered with it are disclosed. This

allows specialists to change their market rules, adapting these rules to improve their

competitiveness. Between days traders may change the specialist that they trade

with, and they can migrate to specialists that allow more profitable trades [16].

2.1.1 Trading Agent

Each trading agent is endowed with a trading strategy and a market selection strat-

egy, and is assigned private values for the goods being traded. The traded goods are

assumed to be homogenous and non-divisible. Furthermore, each buyer and seller

has a certain demand and supply. Private values and the demand and supply of

the markets are allocated by the CAT server, and are reset at the start of each day.

Although private values remain constant during a day, these values may change

from day to day.
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The trading strategy is used to generate bids and asks (both also called shouts),

whereas the market selection strategy is used to select a market or specialist. Each

trader is furthermore endowed with a limited budget that they can spend within

a trading day. This budget prevents a trader from paying excessively high fees.

Budget sizes are unknown to the specialist.

2.1.2 Specialist

Specialists facilitate trade by matching bids and asks, and determining the trading

price in an exchange market. Each specialist operates its own exchange market.

Each entrant in the game is required to design a single specialist or market, which

is achieved by implementing the following policies:

• Charging Policy. This policy sets the fees which are charged to traders and

other specialists who wish to use the services provided by the specialist. Each

specialist is free to set the level of the charges. These are the following:

– Registration fees. Fees charged for registering with a specialist.

– Information fees. Fees for receiving market information from a specialist.

– Shout fees. Fees for successfully placing bids and asks.

– Transaction fees. A flat charge for each successful transaction.

– Profit fees. A share of the profit made by traders, where a trader’s profit

is calculated as the difference between the shout and transaction price.

• Accepting Policy. This policy determines which shouts are accepted. A spe-

cialist has the option to reject shouts which do not conform to the specialist’s

8



policy. For example, a “beat the quote” policy requires a shout to beat the

market quote. If the received shout violates this, it can be immediately re-

jected and will not be considered for a transaction, allowing the trader to

submit a new shout. The policy may reject any shout that is unlikely to

trade so as to increase the specialist’s transaction success rate, which is one

of the assessment criteria for CAT game.

• Clearing Policy. This policy determines the way in which bids and asks are

matched. For example, the specialist can sort the accepted bids and asks in

order and select one from each group by applying pre-designed algorithms

• Pricing Policy. This policy determines the transaction price of a matched bid

and ask. The most common is to set the price half way between the bid and

ask.

2.1.3 Assessment

The entrants are assessed on multiple criteria, which will be evaluated on a number

of trading days. In order to avoid effects arising from the fact that the tournament

has a start-day and end-day, not all the trading days will be used for assessment

purposes.

Each specialist is assessed on three criteria on each assessment day, and these

criteria are then combined into a single score for that day. These three criteria are

as follows:

• Profits: The profit score of a specialist on a particular day is given by the

total profits obtained by that specialist on that day as a proportion of the
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total profits obtained by all specialists on that same day.

• Market Share: Of those traders who have registered with a specialist on

a particular day, the market share score of a specialist on that day is the

proportion of traders that have registered with that specialist on that day.

• Transaction Success Rate: The transaction success rate score (TSR) for a

specialist on a given day is the proportion of bids and asks placed with that

specialist on that day which that specialist is able to match.

Each of these three criteria results in a value for each specialist for each day. The

three criteria are then weighted equally and added together to produce a combined

score for each specialist for each assessment day. Scores are then summed across

all assessment days to produce a final game score for each specialist. The specialist

with the highest final score is declared the winner of the tournament.

2.2 The Bidding Strategies of the CAT Game

In the CAT competition each trader is equipped with both a bidding strategy for

generating bids and asks, and a specialist selection strategy for selecting specialists

each day. The specific details of the learning component of specialist selection, and

the occasions on which it is applied, are private information to the traders, and are

not provided to specialists. Thus, we could only provide some general introduction

on the bidding strategies available to the traders

Each trader of the CAT game uses one of the following four strategies: ZI (Zero

Intelligence), ZIP (Zero Intelligence Plus), GD (Gjerstad Dickhaut) and RE (Roth

10



and Erev) [8].

2.2.1 Zero Intelligence

The Zero-Intelligence (ZI) strategy is derived from a concept first put forward by

Gode and Sunder [10]. In their description of a ZI agent, Gode and Sunder wrote

that “it has no intelligence, does not seek or maximize profits, and does not observe,

remember, or learn. It seems appropriate to label it as a zero-intelligence trader”.

In other words, ZI represents a non-history-based and non-reactive strategy.

Gode and Sunder used these computer agents to simulate market transactions

in double auctions. There are two type of ZI traders,constrained and unconstrained

Zero-Intelligence traders, labeled receptively as ZI-C and ZI-U traders. ZI-C traders

are subject to budget constraints and the traders are not allowed to trade at loss.

ZI-U traders have no limit on their shouts. They can submit shouts that are higher

than their limit prices. In this case, the traders would suffer loss from the transac-

tions.

In the CAT game, we only consider ZI-C traders. The shouts are drawn from a

uniform distribution over a given range. The ZI-C buyer forms a bid from a value

drawn from a uniform distribution between 0 and pmin. The ZI-C seller forms an

ask from a value drawn from a uniform distribution between its cost price and pmax.

pmin and pmax are the prices below or beyond which we assume no transaction can

take place.
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2.2.2 Zero-Intelligence Plus

The Zero-Intelligence Plus strategy has been primarily used for agents in auctions

with multiple buyers and sellers [2]. The main feature of ZIP agents is that they

learn a bidding strategy based only on information provided by the results of the

previous auction. The ZIP strategy estimates the agent’s profit margin based on

the history of market information. The agents can adjust their profit margin to

remain competitive in the market. The profit margin is calculated as the difference

between the agent’s limit price and the shout price.

The ZIP agent works in the following way when adapted to the CAT game. At

the beginning of the trading day, the agent (the buyer or the seller) generates a low

profit margin arbitrarily. When events in the market indicate that it could acquire

a unit at a lower price than its current shout price, the ZIP buyer could increase

its profit margin. For a ZIP seller, if the last shout resulted in a transaction and its

shout price was less than the transaction price, this indicates that it could transact

at a higher price which would necessarily increase its profit margin. Conversely,

ZIP buyers and sellers reduce their profit margin when the margin is too high to

remain competitive. The bidding behavior of the ZIP trader can be summarized

in Figure 2.1, where pbi(t) and psj(t) are the most profitable offer to buy or sell for

ZIP buyer i and seller j respectively at any time during the trading period. s(t)

denotes the price of the most recent shout [8].

The profit margin is modified based on the Widrow-Hoff algorithm [23]. At any

given time t, the ZIP trader i calculates the shout price according to the equation

pi(t) = li(1 + ui(t)), where li is the trader’s limit price, and ui(t) is the trader’s

profit margin. The ZIP trader can adjust its margin by increasing or decreasing

12



Adaptive Rules for the ZIP Seller:

if (the last shout was accepted at price s(t))

any seller j for which psj(t) ≤ s(t) should raise its profit margin

if(the last shout was a bid)

any active seller j for which psj(t) ≥ s(t) should lower its margin

if (the last shout was an offer)

any active seller j for which psj(t) ≥ s(t) should lower its margin

Adaptive Rules for the ZIP buyer:

if (the last shout was accepted at price s(t))

any buyer i for which pbi(t) ≥ s(t) should raise its profit margin

if(the last shout was an offer)

any active seller i for which pbi(t) ≤ s(t) should lower its margin

if (the last shout was a bid)

any active seller i for which pbi(t) ≤ s(t) should lower its margin

Figure 2.1: The ZIP Trading Strategy

ui(t), ui(t) ∈ [0,∞).

The initial value of the profit margin, ui(0), is drawn from a uniform distribu-

tion over the range [0.1, 0.5] at the beginning of the game. The learning mechanism

of the profit margin is constructed by the function of:

ui(t+ 1) = (pi(t) + Γi(t+ 1))/li − 1

The Γi(t+ 1) is defined as Γi(t+ 1) = γiΓi(t) + (1− γi)∆i(t), where Γi(0) = 0,

∆i(t) = βi(τi(t)− pi(t)) and τi(t) = Ri(t)s(t) + Ai(t)
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The learning coefficient, βi ∈ [0.1, 0.5], determines the rate of convergence of

the trader’s shout price toward the target price τi(t). Ri is a randomly generated

coefficient that sets the target price relative to the submitted shout price q(t). Ai(t)

is an absolute perturbation. Ai(t) is drawn from a uniform distribution over [0,0.05]

for an increase and over [-0.05,0] for an decrease.

2.2.3 Gjerstad-Dickhaut

The Gjerstad-Dickhaut (GD) strategy for continuous double auction (CDA) is a

memory based agent architecture [9]. GD traders have a strategy for shout price

selection based on maximizing expected profit. The maximization of expected profit

relies on the GD trader forming a belief and utility functions. The shout price (bid

b∗ and ask a∗) is constructed as the product of the belief function (q̂(b), p̂(a)) and

risk-neutral utility function (π(b), π(a)).

b∗ = arg max
b∈(oask,obid)

[π(b) · q̂(b)]

a∗ = arg max
a∈(oask,obid)

[π(a) · p̂(a)]

Belief Function

The traders form their beliefs on the basis of the history of observed market data

and on the frequencies of submitted bids and asks and of accepted bids and asks

resulting in a transaction. The GD strategy also considers the notion of recency,
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limiting the trader’s memory length to a few transactions.

The bid and ask frequencies used in the belief function are defined in the fol-

lowing. ∀d ∈ D, where D is the set of all permissible shout prices in the market,

B(d) is the total number of bid offers made at price d, TB(d) is the frequency of

accepted bids at d, and RB(d) the frequency of rejected bids at d. A(d) is the total

number of ask offers made at price d, TA(d) is the frequency of accepted asks at d,

and RA(d) the frequency of rejected asks at d.

The Seller’s Belief Function for each potential ask price, a, is defined as:

p̂(a) =

∑
d≥a TA(d) +

∑
d≥aB(d)∑

d≥a TA(d) +
∑

d≥aB(d) +
∑

d≤aRA(d)

The Buyer’s Belief Function for each potential bid price, b, is defined as:

q̂(b) =

∑
d≤b TB(d) +

∑
d≤aA(d)∑

d≤a TB(d) +
∑

d≤aA(d) +
∑

d≥aRB(d)

The seller’s belief function, p̂(a), is based on the following assumptions.

• If an ask a′ < a has been rejected, then an ask, a, will also be rejected.

• If an ask a′ > a has been accepted, then an ask submitted at a will also be

accepted.

• If a bid b′ > a is made, then an ask a′ = b′ would have been taken, since they

assume that this ask a′ would be acceptable to the buyer who bid b′.

Similar assumptions are made about the buyer’s belief function, q̂(b).
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The seller’s belief function is modified to satisfy the spread reduction rule1.

Thus, for any ask that is higher than the current outstanding ask, the belief func-

tion is set to 0. Similarly, for the buyer, the belief function is set to 0 when any

bid submitted is lower than the outstanding bid.

Utility Function

Gjerstad and Dickhaut view traders as risk-neutral, whose utility function is linear.

Their profits can be calculated as the difference between the seller’s ask price and

its cost price, and the difference between the buyer’s bid price and its limit price.

When the trader’s maximum expected surplus is negative, there is no incentive to

submit a bid or an ask and the trader abstains from bidding. Thus, the trader’s

utility function is formulated as follows:

For a buyer i,

π(b) =

 `i − b if b < `i

0 if b ≥ `i

For a seller j,

π(a) =

 a− cj if a > cj

0 if a ≤ cj

1Any ask that is permissible must be lower than the current outstanding ask, so each new ask
either results in a trade or it becomes the new outstanding ask. A similar remark applies to bids.
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2.2.4 Roth-Erev

The Roth-Erev algorithm was designed to model how humans play in repeated

games against multiple strategic players. The strategy is based on probabilistic

choices: agents are faced with a given set of actions, each of which produces a

particular reward at each time-step. The information about these rewards enables

them to associate an action to a propensity. All the propensities are translated

into probabilities to choose an action when the agent needs to act. For the detailed

information and its adaption to the CAT game please refer to [4, 8].

2.3 Summary

In this chapter, we provided the detailed information about the CAT system. We

looked at the overview of the game, trading agents, specialist setup, and the game

assessment criteria. In addition, the trading strategies (ZI, ZIP, GD, and RE) used

by trading agents are also provided.
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Chapter 3

Policy Designs for CAT Specialists

Our objective is to design a specialist that maximizes its overall game score. In

this chapter we provide an overview of the different kinds of policies (Accepting

Policy, Pricing Policy, Clearing Policy and Charging Policy) that can be adjusted

to achieve better results. We then describe the modified policy strategies we pro-

pose for our entrant specialist named WaterCAT. Test results from actual games

are presented to provide empirical support for our proposed policy modifications.

The policies can be organized into two categories: Market Policy and Charg-

ing Policy. It is possible to further divide the market policy into three interrelated

components: the accepting policy, the clearing policy and the pricing policy. In the

rest of this chapter we discuss each of them and our policy design strategies for the

WaterCAT specialist.
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3.1 Market Policy - Accepting Policy

The accepting policy determines which shouts (i.e., bids and asks) should be ac-

cepted. A specialist has the option to reject shouts when they do not conform

to the specialist’s policy, so that the maximization of TSR score can be assured.

The WaterCAT accepting policy is designed based on the Equilibrium-beating ac-

cepting policy, but the original Equilibrium-beating accepting policy [15] does not

have the capability of adjusting itself in response to market feedback. In order to

enable the specialist to reset its accepting range dynamically, we added the mar-

ket monitoring function and took into account the possible skewness of trader offers.

3.1.1 Equilibrium-beating accepting policy

The original equilibrium-beating accepting policy calculates the market price based

on previous transactions. First, the policy calculates the equilibrium market quote,

which is estimated through learning algorithms such as sliding-window-average

learning [15]. The window size is set to α days, and the learner calculates the

average transaction price of the past α days. The result is the equilibrium market

quote, the expected value of the past α days’ transactions.

E: Equilibrium price

P t: Transaction price of day t

α: Window size
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E =

∑i+α
t=i P

t

α

Delta, δ, is another component of the equilibrium-beating accepting policy.

Delta defines the accepting range of market quotes. Two bar values are set for bids

and asks, labelled as ExpectedLowestBid and ExpectedHighestAsk. The Ex-

pectedLowestBid is calculated by subtracting δ from the equilibrium market quote

and ExpectedHightstAsk is the sum value of that quote and δ. With this range

component, bids and asks will receive additional margin to meet the accepting stan-

dard. The bids that are lower than but very close to the equilibrium market quote

will be accepted into the market. Such an accepting policy releases the single-value

restriction in a reasonable scale while still keep its tightness by having a proper

value of δ. ExpectedHighestAsk follows the same logic but in the opposite direc-

tion. In short, as long as the discrepancies are within the range defined by Delta,

the market would accept the bids that are higher than the ExpectedLowestBid, and

the asks that are lower than the ExpectedLowestAsk.

• ExpectedLowestBid=Equilibrium Market Quote - δ

• ExpectedHighestAsk=Equilibrium Market Quote + δ

In Figure 3.1, the solid line is the equilibrium market quote in the time series

of trading days. We set δ = 5. According to the formula, two extra lines are gener-

ated, ExpectedLowestBid (dot line) and ExpectedHighestAsk (dash line). All the

bids above the ExcpectedLowestBid line and those asks below the ExpectedHigh-

estAsk line would be allowed into the market. In this way, the trading agents are
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Figure 3.1: Quotes chart of equilibrium-beating accepting policy

given extra margin to enter the market and complete the transactions.

The original design of the δ is a fixed value that applies equally to both bid

and ask sides throughout the game. The delta can be the percentage of the market

quote or a predefined absolute value. However, the absolute value approach needs

to identify the appropriate range of the market quote with extreme caution; other-

wise, the specialist may specify unrealistic accepting margins that may invite too

much unqualified traders.

In the CAT game, therefore, the percentage approach is often preferred [15],

especially because the traders’ pricing range is confidential to the specialist. The

percentage design would work well if the agents (bids and asks) were of the same
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quality. The same delta value would allow both sides to have the same level of

tolerance. However, if one side outperforms the other, assigning the same delta

would lead to an inefficient solution. Such quality imbalance occurs more often

than not, both in simulation and in real market transactions, because the market

needs to deal with a large variety of agents. For instance, when the market receives

heavily skewed numbers of overqualified bids and underqualified asks in one round,

assigning the same delta value to both sides may lead to the case where the good

bids are outnumbered for a matching pair because the market may reject too many

asks that could still be matched if the policy recognized the skewness of partici-

pating agents. Thus, the next question becomes how to set up an accepting policy

that can calculate the delta values dynamically and respectively for asks and bids

in line with actual market conditions.

3.1.2 Market Monitoring Function

As discussed above, the equilibrium quote price is the average transaction price of

the last α days, and the traditional percentage approach is to set the delta to a

certain percentage of the quote price. This setup works well for most conditions,

but it would fail to optimize the matching mechanism if the variance of the trading

agent offers is irreconcilable.

Let us look at an example demonstrating how the process works.

We assume the current equilibrium quote E is 5, and Delta is set at 1, 20% of

the equilibrium quote. According to the functions in the previous section, we have
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ExpectedLowestBid=5-1=4

ExpectedHighestAsk=5+1=6

The accepted agents would be the bids with offering price 4 or more and asks

with offering price 6 or less. If the true distribution of the agent offers is close to

this case, then this model works well. However, if the distribution of the asks is

around price 1, the ExpectedLowestBid 4 would not be the true reflection of the

market. The market would reject bids with price range from 1 to 4, all of which

could still be matched with the asks. In other words, the rigidly preset, single-value

percentage delta excludes many potentially matchable pairs, depriving the special-

ist of some profit-generating transactions.

In order to make our accepting policy adjust itself according to the market con-

dition dynamically, we add two learner functions to the policy, namely AskQuote

and BidQuote. AskQuote learns the average ask offers in a sliding window, while

BidQuote learns the average bid offers in the same window. Compared with the

equilibrium quote price that calculates the average transaction price in a sliding

window, AskQuote and BidQuote compute the expected value of all shouts, not

just the transaction prices.

aski: Ask price of agent i

bidi: Bid price of agent i

n: Number of agents
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AskQuote =

∑n
i ask

i

n

BidQuote =

∑n
i bid

i

n

The reason we introduce AskQuote and BidQuote is that we want to have two

separate delta values for asks and bids, namely δa and δb. In this way, our amended

policy could adjust the accepting bar value according to actual market conditions.

Recall that the original formulas ExpectedLowestBid=Equilibrium Market

Quote - δ and ExpectedLowestAsk=Equilibrium Market Quote + δ. The

new formulas with δa and δb are

ExpectedLowestBid=Equilibrium Market Quote - δa

ExpectedHighestAsk=Equilibrium Market Quote + δb

Note that b and a are applied on the equations for the other side of the matching

game, because the distribution of bids would affect the accepting range of asks and

the distribution of asks would impact the accepting level of bids. In other words,

the distribution of the shouts would alter the accepting bar of the opposite group.

The δa and δb are calculated in two steps. In Step 1, we calculate the absolute

value of the difference between the AskQuote/BidQuote and the MarketQuote. In

Step 2, we multiply the value by an adjustment factor, α.

The definitions of the new deltas are summarized in the following,

δa=|Q− Askq| × αa
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δb=|Q−Bidq| × αb

Where Q is the Equilibrium Market Quote; Askq is the AskQuote; Bidq is the

BidQuote.

The adjustment factors αa and αb are used to adapt the levels of deltas. We

can amplify the level by setting α > 1 or discount the level by setting α < 1 but

> 0. The alpha can be adjusted individually for bids and asks. In our experiments,

we set the alpha at 80% level.

As illustrated above, the quality of the bids and asks should also be considered.

If the market faces a condition where the quality of one side of the traders (either

bids or asks) is better than the other side, the accepting bar value of the other side

may drop substantially. This would result in an imbalance between the accepted

bids and the accepted asks, causing a low TSR score. Thus, a counter N is also

defined in our policy to monitor the difference between the two sides. If the counter

reached a preset limit, our market would not accept the over-supplied shouts. In

this way, the market can generate the matching pairs as many as possible while

still maintaining a good balance between the two sides. In our experiments, we set

N = 5.

3.1.3 Experiments

Before presenting our empirical results in the CAT experiments, let us briefly review

the other two kinds of accepting policies included in our empirical tests. In addi-
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tion to the equilibrium-beating accepting policy, the always accepting policy and

the quote-beating accepting policy are also commonly used in the CAT competition.

1. Always accepting policy. This is the loosest policy which basically accepts

any submitted shout. It gives agents complete freedom to enter the market

with no restrictions, so as to maximize the potential capture of market share.

But since many inferior shouts would be allowed in the market, the TSR score

may suffer significantly.

2. Quote-beating accepting policy. This policy only accepts the shouts

which are more competitive than the corresponding market quote — the price

at which the last transaction is processed. As such, when the market is

exposed to a high level of pricing volatility , the accepting price will witness

much fluctuation accordingly. This has been commonly used in the real stock

markets, and is also called the “NYSE rule” [22].

We describe the CAT experiments in two parts. Part one explains why the

Equilibrium-beating accepting policy is selected as the base model of the Water-

CAT accepting policy. Part two shows the improvement in results achieved by the

suggested policy modifications.

All experiments ran for 100 trading days with 10 rounds per day. The trader

population comprised 50 ZIP traders, 50 RE traders, 50 ZI-C traders and 50 GD

traders. Buyers and sellers were evenly split in each trader sub-population. We ran

the tests ten times and take the average scores.
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Base Model Selection

The first experiment uses just two specialists named M1 and M2. M1 is using the

always accepting policy and M2 is using the quote-beating policy. For M1 and

M2, all the other policies are identical. Table 3.1 shows the summary of the tests.

Except the Market Share score, M2 outperformed M1 in other categories by a re-

markable margin. The reason that the Market Share score of M1 was better than

M2 is because M2 drove out extra-marginal traders1 and those traders were forced

into the M1. Yet the slightly larger market share didn’t improve M1’s competitive

position, as the extra-marginal traders obviously drag down its scores in TSR and

Profit.

Specialist Market Share Profit TSR Total Score

M1 53.98% 19.20% 71.30% 48.16
M2 46.02% 80.80% 96.42% 74.41

Table 3.1: Always Accepting Policy (M1) versus Quote Beating Accepting Policy (M2)

The quote-beating accepting policy in M2 performed well on the Transaction

Success Rate because it is a tighter policy — only the shouts that can beat the

current market quote could enter the market. However, because of its tightness,

the market loses some relatively good shouts (bids slightly lower or asks slightly

higher than the current market quote) that could be cleared in the later rounds.

Since each trading day includes multiple rounds, the policy results in, unnecessar-

ily, fewer trading agents and fewer matched bid-ask pairs in the market. Thus, the

quote-beating policy limits the Market Share and Profit scores while keeping a high

1An intra-marginal buyer (resp. seller) is expected to trade in the market because of its limit
price is higher (resp. lower) than the market price. The remaining traders are considered as
extra-marginal. For detailed information, please refer to the Section Matching Policy
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Transaction Success Rate.

The next experiment demonstrates why we select the equilibrium-beating ac-

cepting policy as our base model. The specialists M1, M2 and M3 are all generic

double auctioneers with the same policy setups except for the accepting policy. The

equilibrium-beating policy with δ=20% was applied to M1. M2 used the quote-

beating policy and M3 was equipped with the always accepting policy. We ran the

game ten times and the average scores were compared. Table 3.2 shows that M1

and M2 both surpassed M3 by a significant margin. Among the two leading poli-

cies, however, M1 beat M2 in all three scoring criteria, albeit by smaller margins.

As can be seen from the chart, even though M1 has a relatively looser accepting

policy than that of M2, it achieved larger market share, generated more matching

pairs, and achieved a better TSR.

Specialist Market Share Profit TSR Total Score

M1 34.01% 39.656% 97.613% 57.093
M2 32.175% 34.68% 92.772% 53.209
M3 33.815% 25.665% 76.938% 45.473

Table 3.2: Equilibrium-beating (M1) versus Quote-beating (M2) versus Always Accept-
ing (M3)

These results supported our choice of the equilibrium-beating policy as our base

model. We were particularly encouraged to find the TSR score was even improved

by the introduction of an extra accepting margin.
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The Improvement of WaterCAT Accepting Policy

We ran a series of tests using specialists M1(WaterCAT Accepting), M2(Equilibrium-

beating), M3(Quote-beating) and M4(Always Accepting). All the other policies of

the specialists were specified identically. Table 3.3 summarizes the results. As pre-

dicted, M1 (WaterCAT Accepting) reported the best performance. Although it was

not dominant in all three criteria, its leading position was very consistent through

all the test games. The reason that M4 (Always Accepting) had the best score

on the Market Share was that all the extra-marginal traders restricted by other

markets turned to M4. As we discussed earlier, the increase in market share still

failed to generate performance benefits for M4 in the other two more important

criteria.

Specialist Market Share Profit TSR Total Score

M1 25.345% 28.065% 96.576% 49.995
M2 25.005% 23.857% 95.85% 48.237
M3 21.875% 28.333% 92.099% 47.436
M4 27.775% 19.742% 75.015% 40.844

Table 3.3: WaterCAT Accepting (M1) versus Equilibrium-beating (M2) versus Quote-
beating (M3) versus Always Accepting (M4)
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3.2 Market Policy - Clearing Policy

This section discusses another component of our market policy design — the clear-

ing policy, which specifies when and how to clear the market. When to clear defines

the time to clear the matched pairs. The specialist has the option to set the clearing

time as per round, per day or by random. How to clear focuses on the method of

finding matched pairs. The specialist sorts the accepted bids and asks in order and

selects one from each group by applying pre-designed algorithms.

There are several ways to condition the when to clear policy. One approach

is to collect all the bidding and asking offers from each round and clear the market

at the end of the trading day. The specialist can maximize profits by matching the

highest bid with the lowest ask first. Then the specialist clears the matched pairs

from the market and repeats the process on the remaining offers. However, because

traders bid for a single unit at a time, this approach would imply that traders have

the opportunity to strike only one deal per day and become unable to trade the

rest of their multi-unit endowments.

An alternative approach is to maximize the number of transactions (instead of

profits) by a continuous clearing rule — if the newly accepted trader could find a

matched trader, the market would clear them immediately. The cleared trader can

get the opportunity of submitting another offer to the market and seek multiple

transactions for each trading day. The disadvantage, however, is that this policy

may limit the profits by settling the offers on a timing basis instead of the best

offer basis.
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The strategy we propose for our specialist WaterCAT adopts a rule positioned

somewhere between the two above-mentioned approaches - we suggest clearing the

market at the end of each round. For a typical CAT game setup, there are ten

rounds per day. The market collects all the shouts from the traders till the end

of the round and then triggers the matching function. All the matched pairs will

be completed off the list. Then the market starts accepting new shouts for the

next round. The cleared traders can submit their shouts in the new round and the

remaining/unmatched traders can have new opportunities to shop for a matching

pair. In this way, the specialist can be almost as efficient as clearing at the end of

the day, while allowing the traders to take the advantage of multiple submissions.

By so doing, we will obtain most of the benefits from both approaches without the

drawbacks.

The second part of the Clearing Policy is how to match. This is one of the

most important policies in the thesis. We would discuss the related knowledge and

our design in the next section - the matching policy.
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3.3 Market Policy - Matching Policy

The third component in our market policy design is the matching policy. The

matching policy defines how a market matches shouts submitted by traders. The

market receives shouts (bids and asks) from the traders and needs to generate the

matching pairs. When the bids and asks satisfy the criteria set by the matching

policy, the market would clear the pairs to finish the transactions.

Before we start discussing the details of the policy, we first take a look at the

classic demand and supply curve [7]. Figure 3.2 demonstrates that the supply curve

and the demand curve cross each other at the Equilibrium Point. The left side

of the Equilibrium Point is called the Intra-Marginal area and the right side the

Extra-Marginal area. Traders make profits when the transaction is executed in

the Intra-Marginal area, where the supply price is lower than the demand price.

Conversely, they carry losses when the transactions fall in the Extra-Marginal area

as the supply price exceeds the demand price limit. The supply-and-demand curve

can be adopted to the bids-and-asks model simply by applying bids to the demand

curve and asks to the supply curve. The agents in the left side are called Intra-

Marginal since they can make profits and the ones in the right side are called

Extra-Marginal. Sometimes we also refer to Intra-Marginal traders as good traders

and Extra-Marginal traders as bad traders.

There are basically two types of matching policies, the equilibrium matching

and the Max-volume matching. The equilibrium matching policy tends to gener-

ate the maximized profits for the trading agents, while the Max-volume matching

policy attempts to catalyze the maximum amount of matching pairs.
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Figure 3.2: Supply and Demand Curve with Equilibrium Point, Intra and Extra Marginal
area

• Equilibrium matching

This policy clears the market at the reported equilibrium price and matches

the intra-marginal asks with the intra-marginal bids. It can also be called

the Good-Good matching policy, because both bids and asks are from the

Intra-Marginal area. The policy has a profit-maximizing feature by matching

the highest bid with the lowest ask.

• Max-volume matching

This policy aims to increase transaction volume based on the observation

that a high intra-marginal bid can match with a lower extra-marginal ask.
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In this case, the highest bid offer and the highest but reasonable2 ask offer

would be the matched pair. This policy generates the most matched pairs and

transactions for a given set of offers. It is also called the Good-Bad matching

policy, because one of the matched pair is from the intra-marginal area and

the other is from the extra-marginal side.

In the following examples we demonstrate how the two matching policies work.

Two sorted lists are provided, one for the bids in a descending order and the other

for the asks in an ascending order.

• Bids: $5, $4, $3, $2, $1

• Asks: $1, $2, $3, $4, $5

Under the equilibrium matching policy, the intra-marginal bids are matched

with the intra-marginal asks. In Table 3.4, the best bid is $5 and the best ask is $1.

The $5 bid is matched with the $1 ask, yielding a profit of $4 ($2 to each trader

if the profit is evenly split). Following the same rule, the $4 bid is matched with

the $2 ask and the $3 bid is matched with the $3 ask. The policy leaves the rest

unmatched, because it can not generate a matching pair if the bid price is less than

the ask.

Under the max-volume matching policy, the highest bid is matched with the

highest (less or equal than the bid price) ask. In Table 3.5, the $5 bid is matched

2Value is less or equal than the bid price
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Bid Ask

$5 $1
$4 $2
$3 $3
$2 $4
$1 $5

Table 3.4: Equilibrium Matching

with the $5 ask. The same rule applies to the other traders.

Bid Ask

$5 $5
$4 $4
$3 $3
$2 $2
$1 $1

Table 3.5: Max-volume Matching

As seen from the two tables, with the equilibrium matching policy, two agents

make profits but the Transaction Success Rate is 60% (3 out of 5). While with the

max-volume matching policy, the market clears all the shouts and achieves 100%

Transaction Success Rate, but no agent makes profit.

If the specialists offer a free market (all the charges are zero) to the agents,

they may hardly earn any profit from such volume-maximizing transactions. Let

us recall the scoring function [16], which is the weighted average of Market Share,

Profit and Transaction Success Rate (TSR). Thus, under the max-volume scenario,

the overall score would only receive contributions from Market Share and TSR.

35



Let us assume a simple market competition scenario, in which two markets

with almost identical setup compete with each other and the only difference lies in

the matching policy — Equilibrium matching versus Max-volume matching. From

the simple examples described above, it still seems possible that the max-volume

matching policy will have competitive advantage over the equilibrium matching

policy by scoring a significantly better Transaction Success Rate (100% over 60%).

An open question is whether this would actually be verified in practice.

To answer this question, we conducted a series of tests. All the basic game

setups resemble those specified in Section 3.1. The aim of the tests is to learn how

the traders react to the matching policies when other policy parameters are the

same. Interestingly, the result ran against to what we expected - the equilibrium

matching policy totally outperformed its max-volume counterpart. The test shows

that agents are sensitive to the profits they could acquire from the transactions.

If the agents earn no profit or less than what they expected, they tend to switch

market. Between making profits and sealing transactions, the traders are willing to

work with the market that provides them with more profits but fewer transactions.

As discussed in the previous work by Niu et al. [15], dominating the market share

remains as the key to success, and therefore we will use the equilibrium matching

policy as our base model.

Equilibrium Matching can generate good profit and overall performance, but

the market only scores 60% on Transaction Success Rate. How can we improve the

TSR without sacrificing the traders’ profit? The solution is to impose a tighter ac-

cepting policy, which stops those low quality extra-marginal traders from entering

the market. As we discussed in the accepting policy section, Accepting and Match-
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ing policies can complement each other in achieving better specialist performance.

In the next section, we propose a design that combines the benefits of the Wa-

terCAT accepting policy and the equilibrium matching policy.

3.3.1 WaterCAT Matching Policy - a Modified Equilibrium

Matching

To summarize the discussions we have presented so far, there are a number of prop-

erties desirable in our performance-enhancing matching policy. Some of them ,

however, are unavailable in the standard equilibrium matching policy.

Attracting more agents to the market while maintaining the existing agents:

We propose a policy that could attract new traders to enter the market while

sustaining the loyalty of the existing agents. In this way, we can increase our

market share.

Be fair to all the agents: Fairness to agents is accomplished by ranking bidding

priority according to shout prices. In other words, the higher price the agent

is bidding, the higher priority the agent has. Higher priority means better

chance for a high-bidding buyer to be match with a good ask. Although our

matching policy does not rely only on ranking the agents by their shout prices,

the main idea is still to follow the shout price ranking.

Be profitable for the agents: The agents are seeking profits through transac-

tions. Our policy would generate fair amount of profits to agents
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Maintaining a high Transaction Success Rate: Transaction success rate is a

key factor of the scoring function. Our policy should keep a satisfactory TSR

while allowing traders to make profits. As we have already illustrated in

the previous examples, there exists a trade-off between securing profits and

maximizing TSR.

Computational feasibility: Computational requirements are also important be-

cause the running time of each round is limited.

To satisfy those criteria, we start with preparing some ordered lists. The pri-

mary job of the matching policy is to generate ordered lists of shouts. The simplest

solution is obviously to rank by shout prices, assigning the top position to the high-

est bid or the lowest ask. Table 3.6 illustrates a descending rank list for bidders.

ID Price

5 $5
2 $4
3 $3
4 $2
1 $1

Table 3.6: Bid Price Ranking

In reality, however, many shops adopt special programs to motivate their cus-

tomers (i.e., Shoppers Points of Shoppers Drug Mart shop). The shops try to keep

their customers by giving bonus or other benefits to their loyal customers or first

time buyers. We adapt the same idea to our policy. In the CAT game specifica-

tion, it is not allowed to attract agents by giving them money from our account.

Our alternative solution is to set another ranking by loyalty (Table 3.7) and assign

better matching pairs to the loyal agents so that they could profit more from the
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transactions. The loyalty ranking is based on the association between the agent ID

and the number of times that agent has registered with our market specialist.

ID Loyalty

1 9
4 7
3 5
2 3
5 1

Table 3.7: Loyalty Ranking

The next problem is how to actually aggregate the two very different rankings.

Figure 3.3: How can we aggregate the two rankings together?

The rank aggregation problem occurs when we need to combine many different

rank orderings on the same set of candidates for the purpose of designing an order-

ing with better features. Most ranking aggregation methods are generated under
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the same or similar criteria [5, 19, 3]. But the orderings we try to combine here are

from two totally different groups (one by price and the other by loyalty). If we use

those well-known methods such as Kemeny-Young from the voting system [13, 25],

the result will be too biased to make sense. One extreme case could be the “most

loyal but worst agent”, who may appear to be loyal by bidding constantly at $1

throughout the whole game.

After scouring the available aggregation methods, we designed a very simple

solution — the Bonus Factor. Bonus Factor is generated from the loyalty ranking

but is combined with the price ranking to construct a new adjusted ranking. Our

matching policy would be based on the new ranking, Price with Bonus Factor

Ranking (short as PBF Ranking).

The definition of Bonus Factor is described as:

• ni: The number of times that agent i has registered in the market.

• N : max(n1, · · · , ni) Maximum value in the loyalty ranking.

Vi =
ni
N

where Vi is the value that is used for the lookup table in the next step.

BonusFactori =


α Vi ∈ (0, x]

β Vi ∈ (x, y]

γ Vi ∈ (y, 1]

where α, β, γ > 1 and 0 6 x 6 y 6 1.
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α, β, and γ can be assigned to any value. Since we want to have the bonus

effect for the loyal agents, we assign them with values greater than or equal to one.

However, cautions should be taken for the upper range of α, β, and γ because we

also do not want the bonus effect to be exaggerated.

The Bonus Factor can be then applied to shout prices to construct the new PBF

ranking. For bids, it is achieved by multiplying the Bonus Factor with the shout

price. For asks, the value is arrived by dividing ask shout price by bonus factor.

• Bids: priceBF = priceshout ×BonusFactor

• Asks: priceBF = priceshout ÷BonusFactor

After applying the Bonus Factor to the Price Ranking, the policy has some new

properties in PBF Ranking:

• The loyal agents get better rankings. They also make more profits from

transactions by matching with better pairs. A loyal buyer from PBF Rank-

ing would match a seller with lower price comparing with the seller from the

original Price Ranking. In Table 3.8, we have a loyal buyer with a shout price

$4 and a Bonus Factor 1.5. By being listed in the PBF Ranking, the buyer

enjoys a better ranking (1st instead of 2nd) in comparison with its position

in the original Price Ranking. The new matching policy can benefit the loyal

buyers by enabling them to make more profits through transactions (match-

ing pair $4 and $1 instead of $4 and $2).
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Price Ranking PBF Ranking
Bid Ask Bid Ask

$5 $1 $4× 1.5 $1
$4 $2 $5 $2
$3 $3 $3 $3
$2 $4 $2 $4
$1 $5 $1 $5

Table 3.8: Comparison between Price Ranking and PBF Ranking

• This method also solves the ranking problem when agents submit shouts with

the same price. In Table 3.9, there are 2 bids with the same shout price $4. In

the original Price Ranking, it would be ambiguous to determine the proper

ranking for the two agents. In PBF Ranking, however, thanks to the ad-

ditional variance introduced by the Bonus Factor, the market would have a

lower probability of ranking ambiguity.

Price Ranking PBF Ranking
Bid Ask Bid Ask

$5 $1 $5 $1
$4 $2 $4× 1.1 $2
$4 $3 $4 $3
$2 $4 $2 $4
$1 $5 $1 $5

Table 3.9: Solving the same price issue

• This method could also attract new trading agents. Bonus Factor can be set

to a value greater than one when Vi = 0. The new entrants thus reap better

profits from transactions comparing with what they can in the other markets.

Consequently, our market can move upward in the trading agent’s market

preference list.
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Although our WaterCAT matching policy seems promising by using PBF Rank-

ing, there are a few issues we need to be aware of.

The first is how to set up the proper value of Bonus Factor (value of α, β, γ).

We rank the shouts by priceBF using PBF Ranking, but the transaction price still

uses the original shout price,priceshout. If the Bonus Factor is set to a value that

would raise certain traders’ ranking dramatically, the matching policy may face the

case where the trader in the high ranking could not be cleared, while the lower

ranking trader could make the deal. In Table 3.10, there is a buyer with shout

price $2 and Bonus Factor 2. In PBF Ranking, the ranking of the buyer increases

from the fourth to the third. The bid $2 will match with ask $3 according to

the PBF Ranking. This is impossible to clear, because the market can not clear a

transaction with the bid price less than the ask price. However, the fourth buyer $3

could clear the ask $3 which would increase TSR from 40% to 60% under the same

setup. We solved this issue by checking the next N traders with lower priority. N

is configurable by the users.

Price Ranking PBF Ranking
Bid Ask Bid Ask

$5 $1 $5 $1
$4 $2 $4 $2
$3 $3 $2×2 $3
$2 $4 $3 $4
$1 $5 $1 $5

Table 3.10: Proper Bonus Factor value for PBF Ranking

The second issue is the Canceling Effect. If we apply the Bonus Factor to

both side of asks and bids, the matched pair for either side may not be the opti-
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mum response. In Table 3.11, buyer $4 and seller $2 both have Bonus Factor 2,

and they are our loyal traders. According to the design of the PBF Ranking, they

should match with the shouts that could give them better profits. In this case, the

best response for buyer $4 is ask $1 and the best response for seller $2 is bid $5.

However, after applying Bonus Factor to both sides, bid $4 and ask $2 become the

matching pair, which clearly is not the best response for both sides. The solution

is to apply the Bonus Factor only to either the bids or the asks side, depending on

the market condition. If there are fewer buyers in the market, the market should

apply Bonus Factor to the bids side to attract more buyers to our market.

Price Ranking PBF Ranking
Bid Ask Bid Ask

$5 $1 $4×2 $2÷2
$4 $2 $5 $1
$3 $3 $3 $3
$2 $4 $2 $4
$1 $5 $1 $5

Table 3.11: Canceling Effect of PBF Ranking

3.3.2 Implementation

The most straightforward implementation of the matching policy would be main-

taining a sorted list of all shouts. However, this approach is not efficient enough for

the CAT game. In the game, the specialist is dealing with a large number of agents,

who may submit multiple offers in each round. The specialist needs to organize all

the offers and generate matching pairs with the imposed time constraints. We can

improve the efficiency by employing two sorted lists, one for the bids and one for

the asks. Once again, the efficiency of Insert, Delete and Generate matching pairs
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is not good enough, especially when the market is dealing with a large number of

agents.

A better solution is to develop four heap structures to organize the shouts [1, 18].

We adapted the four heap algorithm developed by Wurman and his colleagues [24].

The shouts are categorized into matched shouts (asks and bids) and unmatched

shouts (asks and bids). The four heaps are:

Bin: Contains all of the bids that are in the current match set. The heap priority

is the minimal price with Bonus Factor, so that the lowest priced bid with

the Bonus Factor is on the top.

Bout: Contains all of the bids that are not in the current match set. The heap

priority is the maximal price with Bonus Factor.

Ain: Contains all of the asks in the match set. The heap priority is the maximal

price with Bonus Factor.

Aout: Contains all of the asks not in the match set. The heap priority is the

minimal price with Bonus Factor.

bin, bout, ain and aout are the top nodes of Bin, Bout, Ain and Aout, respectively.

Value(n) is the value of node n. The following constraints are enforced:

• Value(bin) > Value(bout)

• Value(aout) > Value(ain)
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• Value(aout) > Value(bout)

• Value(bin) > Value(ain)

The 4-heap algorithm was originally designed for the single bid auction, but

the CAT game is a competition involving multiple units. Therefore a split func-

tion is added to make the matching with the same quantities. The split function

would choose the lower quantity of the matched pair as the standard quantity, and

then split the high quantity shout according to the standard quantity. Finally, the

split function makes the matching with the same quantities and put the remaining

shouts back to the heap.

Update agent loyalty history
Calculate Bonus Factor and apply to the shout
if ((Value(anew) 6 Value(bout)) and (Value(ain) 6 Value(bout)) then

Put(anew, Ain)
b←Get(Bout)
Put(b, Bin)

else if (Value(anew)<Value(ain)) then
a←Get(Aout)
Put(a, Aout)
Put(anew, Ain)

else
Put(anew, Aout)

end if

Figure 3.4: Pseudo code for receiving a new ask

After the policy place all the shouts in the four heaps, the matching procedure

would easily improve its efficiency. The program can just pop the shouts from Bin

and Ain, and then match the bids and asks with the same quantities by using the

split function.
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3.3.3 Experiments

To further examine the validity of our proposed WaterCAT matching policies, we

conduct a series of games with the same setup as those defined in Section 3.1.

Experimental setup

Out aim is to examine the performance of our modified WaterCAT matching policy

against that of the original equilibrium matching policy. The same scoring criteria

were used as those in the tournament but we assess all the game days. We ran the

game 20 times and evaluate the average scores of the games.

Experiment Result

As expected, the WaterCAT matching policy outperformed the Equilibrium match-

ing policy.

Matching
Policy

Average
Market
Share

Maximum
Market
Share

Average
Trans-
action
Success
rate

Maximum
Trans-
action
Success
Rate

Average
Overall
Score

Maximum
Daily
Score

WaterCAT
Matching

76.54% 98% 92.466% 98.3% 56.33 0.647

Equilibrium
Matching

72.09% 88% 93.35% 97.3% 55.144 0.607

Table 3.12: WaterCAT Matching Policy V.S. Equilibrium Matching Policy

From Table 3.12, the WaterCAT matching policy produced better results than

the equilibrium matching policy in almost all scoring criteria.
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• Market Share: WaterCAT leads in both average and maximum scores. The

4.45% advantage in average score represents a significant improvement, con-

sidering that the other specialists use the same policies except for our sug-

gested additions for the WaterCAT specialist.

• Transaction Success Rate:The equilibrium matching policy outperforms the

WaterCAT in the average category, but the difference is less than one percent.

In the maximum value category, WaterCAT leads the equilibrium matching

policy by one percent. It is reasonable to say that the two policies are on a

par when TSR is the measurement.

• Profit: We did not apply any charging policy to the test, because we want to

test the performance of the matching policy under a free market condition.

But suppose we apply charges to agents, assuming the same charging policy

to all the specialists, WaterCAT would probably outperform the equilibrium

matching rival, because WaterCAT leads in market share and larger market

share would generate more transactions to increase profits.

• Overall Score: The WaterCAT leads in Market Share and Profit and ties

in Transaction Success Rate. Overall the WaterCAT policy outperforms the

equilibrium matching one.

48



3.4 Pricing Policy

We now turn the fourth part of our policy design discussion. The pricing policy is

responsible for determining the transaction price for matched ask-bid pairs. The

decision may involve only the prices of the matched ask and bid, but other infor-

mation may also be relevant, such as the market quotes.

The Pricing Policy we chose for our WaterCAT specialist is discriminatory k-

pricing policy with k=0.5 [15]. This policy sets the transaction price of a matched

ask-bid pair at somewhere in the interval between the two prices. The parameter k

in [0,1] controls which points is used and usually takes the value of 0.5 to avoid the

bias in favor of either buyers or sellers. Beside the discriminatory k-pricing policy,

there are other possible alternatives.

• Side-biased pricing. This is basically discriminatory k-pricing policy with k

set to split the profit in favor of the side where fewer shouts exist.

• Uniform k-pricing. This policy sets the transaction price for all matched ask-

bid pairs at the same point between the ask quote and the bid quote.

We choose the discriminatory k-pricing policy with k=0.5 over the side-biased

policy because we failed to observe any performance improvement from the side-

biased pricing in our previous tests. Moreover, the discriminatory k-pricing policy

is an independent policy that counts only on the matched pair, which makes it

fast to be calculated and superior in terms of algorithm efficiency. The difference
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between the discriminatory and the uniform k-pricing policies is that the former

sets the transaction price for each matched pair, so that the specialist can generate

a list of different transaction prices for each cleaning round or day3. The uniform

policy, in comparison, sets only one transaction price for all the matched pairs.

The major disadvantage of such a policy is that it cannot be used together with the

max-volume matching policy, because the price intervals of some matched ask-bid

pairs do not cover the spread between the ask quote and the bid quote. Thus, we

decided to use the discriminatory 0.5-pricing policy.

3Clearing time depends on the clearing policy setup
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3.5 Charging Policy

The final ingredient of policy recipe comes from the charging policy. The charging

policy determines the specific charges levied upon the traders in the system. A

registration fee is paid by the traders to register with the market specialist of their

choices at the beginning of the day, irrespective of whether they transact or not.

An information fee is required if transaction history information is obtained. The

shout fee and the transaction fee are the amount paid respectively when a shout

is placed and when a transaction occurs. The profit fee is the percentage of the

difference between the accepted shout and the transaction price that is paid by the

traders to the market.

3.5.1 Fixed Charging Policy Approach

We first study the agent’s sensitivity towards the charging fees. We set up two

generic double auction specialists adopting the same policies (equilibrium-beating

accepting policy, discriminatory 0.5-pricing policy, round clearing policy, equilib-

rium matching policy and fixed charging policy). We ran a series of tests with one

specialist charging different kinds of agent fees and the other offering free access to

the market. We monitor the Market Share to measure the sensitivity. If the Market

Share drops dramatically once the specialist starts demanding a specific fee, we can

conclude that the agents are sensitive to the fee. We categorized the results in the

following chart.

According to the experiments, the agents seem very sensitive to the fees, espe-

cially the registration fee, the shout fee and the transaction fee. Probably because
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Fee Name Market Share Drop Percentage Reaction

Registration Fee 36.46% Very Sensitive
Shout Fee 23.47% Sensitive

Transaction Fee 10.08% Sensitive
Profit Fee 5.23% Not Sentitive

Table 3.13: Fees Study

the information fee charges the other data-requesting market specialists rather than

the trading agents, we observed that it has limited impact on criteria such as the

transaction success rate, so we focussed our study on the registration, shout, trans-

action and profit fees.

As seen from the test results, our market should not charge the registration fee.

Once the market start charging registration, its market share drops remarkably.

The reason is simple. Nobody likes paying fees without getting any promise of

making profits. In the CAT game, this means few agents would pay the registra-

tion fee without being assured that they could be matched and generate profit from

the market.

The shout fee has a similar effect as the registration fee. The difference is that

the market charges the shout fee only after the agent has become an member of

the market. In other words, the agents are like “sitting ducks”. They have to pay

for each shout without much promise of completing the transaction. Depending on

the agent’s market selection strategy, it will leave the market and select another

specialist in the next round if the fee is deemed unfair. In the long run, these two

fees would inevitably decrease the market share.
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The transaction fee and the profit fee are of the same kind — they charge the

agents when the market completes a transaction. During a transaction, as both

sides obtain some profit, the specialist is allowed to take a portion of that profit.

The difference is that the transaction fee is of a fixed value and the profit fee is

by percentage. The agents would not leave the market if the transaction fee is

required by a fair amount, although, admittedly, it is difficult for the specialist to

determine a proper value. The decision factors may involve the shout value of the

matched pair and the profit generated from the transaction. In contrast, the profit

fee is much easier and will not overcharge agents because of its percentage property.

Based on the exhaustive study on each possible charging scheme, our conclusion

is that we should charge Profit Fee if we decide include the charging policy.

Winning Number of the Profit Fee

The profit fee is a portion of the profit made by the traders, calculated as the dif-

ference between the shout and the transaction price. As explained above, we chose

the profit fee as the only charging scheme in our policy design. But how much

should we charge? We will provide the answer by running some explorative tests

to see if there is a winning number.

All the basic game setups remain the same as those described in the previous

sections. As shown in Table 3.14, the profit fee started from 0% and went up to 90%

by an increment of 10% each time. Surprisingly, we did find a magic number — 20%.

53



Profit Fee 1 (Score) Profit Fee 2 (Score) Result

20% (79.98) 0% (51.37) 20% win by 55.7%
20% (68.58) 10% (62.84) 20% win by 9.1%
20% (74.77) 30% (54.6) 20% win by 32.1%
20% (72.46) 40% (59.04) 20% win by 22.7%
20% (73.95) 50% (57.29) 20% win by 29.1%
20% (73.58) 60% (57.64) 20% win by 27.6%
20% (70.68) 70% (60.59) 20% win by 16.6%
20% (73.79) 80% (56.18) 20% win by 31.3%
20% (71.71) 90% (58.99) 20% win by 21.6%

Table 3.14: 20% VS other Profit Fees

From the table we can see that the 20% level beats all the other numbers. To

be sure of this result, we also ran a series of experiments with fee levels around

20%. We did not observe any convincing alternative as either the winning margin

is too small or there is no consistent wins. As a result, we will use 20% Profit Fee

as our percentage charging policy.

3.6 Summary

In this chapter, we provided an overview of all the policy candidates for our design

effort, including the Accepting Policy, the Pricing Policy, the Clearing Policy and

the Charging Policy. Particularly, we presented detailed suggestions for the Wa-

terCAT accepting and matching policies built on top of the baseline models. We

explained the rationales behind each proposed modification, and then reported test

results based on the actual CAT game experiments. In most cases, our suggestions

were supported by significant improvement in specialist performance.
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Chapter 4

Post-game Analysis

As described in the previous chapter, the majority of our policy suggestions received

positive support in individual tests. However, the effectiveness of our overall strat-

egy remains to be substantiated. To do so, WaterCAT, our designated specialist

entered CAT Tournament 2009. In this chapter we will describe the game strategies

used by our WaterCAT specialist and examine the reasons behind both successes

and failures. Because of the technical issue during the official games, we did not

fully test the performance of our specialist. In order to demonstrate WaterCAT’s

performance, we tested our specialist in the tournament re-run simulations using

post-tournament specialists. Our specialist WaterCAT completed the games as one

of the top three in both short and long period simulations.
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4.1 Trial Game Analysis

Each CAT simulation consists of a single tournament that runs for a number of

trading days. All games were carried out with the JCAT server and all clients were

connected remotely. The trial game ran for 250 trading days with 10 rounds per day.

The trader population was 400, and buyers and sellers were split evenly. Although

the game organizer did not reveal the distribution of the trading agent strategies,

we have reasons to believe that the distribution in the trial game was similar to

the setup in the official games, which are presented in the next section. Each team

was permitted to have two specialists in the game. The specialists of the trial game

include: BazarganZebel, CrocodileAgent, IAMwildCAT, IAMwildCAT2, Merta-

cor, Mertacor2, MetroCat, PSUCAT, PSUCAT2, PersianCAT, TWBB, TWBB1,

TWBB2, Tianuani, UMTac09, UMTac091, WaterCAT1, WaterCAT2, cestlavie,

cestlavie2, jackaroo, jackaroo2, rucat0 and rucat1.

Out team was a knockout success in the trial game. We had two agents, Wa-

terCAT1 and WaterCAT2, and both of them ended as one of the top two. The

strategy setup of the two specialists were the same except for the charging policy.

Trial Game Strategy Setup

Accepting Policy: WaterCAT Accepting Policy

Clearing Policy: Round Clearing + WaterCAT Matching Policy

Pricing Policy: Discriminatory 0.5 Pricing Policy

Charging Policy: Fixed Charging Policy (WaterCAT1: Free Market; WaterCAT2:

20% Profit Charging)
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Figure 4.1: Market Share(upper) and TSR(lower) Distributions of WaterCAT1 and
WaterCAT2

The reason we introduced some variance in the charging policy is that we wanted

to further test the performance of the different charging policies when the special-

ist was facing a more sophisticated and competitive environment. We would pick

the winning one as our official competition specialist. Figure 4.1 shows that Wa-

terCAT1 outperformed WaterCAT2 in Market Share and TSR. Because of its free

market strategy, WaterCAT1 attracted more agents to participate its bidding pro-

cess. Thus, WaterCAT1 created a better chance of matching pairs and clearing

them. As the game proceeded, WaterCAT2’s Market Share caught up with Wa-

terCAT1’s. The main reason was that the loyal intra-marginal traders would get
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better matching pairs and thus brought about more profits for WaterCAT2, a re-

sult of the WaterCAT matching policy. After trying out the other markets, the

intra-marginal traders decided to stay in our market, producing a stable stream

of ongoing profit. Our Market Share also increased as the game unfolded. As

discussed in the system design chapter, the intra-marginal agents can be easily

matched and cleared. Because the market secured a steady group of intra-marginal

traders, WaterCAT2’s TSR also increased with desirable consistence. In Figure 4.1,

we can see that after Day 150, as the Market Share of WaterCAT2 started climb-

ing up, its TSR maintained at a high and steady level (over 90%) with less volatility.

Figure 4.2: Profit Distribution of WaterCAT2

WaterCAT1 performed better than WaterCAT2 in terms of Market Share and

TSR, but the final winner was WaterCAT2. That is because WaterCAT2’s lead in

the Profit score seemed to offset its lags in the other two criteria. We can observe

such nuanced dynamics even more clearly if we examine Figure 4.1 and Figure 4.2

together. As the Market Share started soaring around Day 150, the time when Wa-

terCAT2 obtained a steady group of intra-marginal traders, the Profit also started

to rise. Since the intra-marginal traders can generate more profits. WaterCAT2
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managed to preserve a relatively high level of profit gains comparing with its scores

in the early stage. Thus, the total score of WaterCAT2 win over that of WaterCAT1.

Specialist Overall Score Market Share Score Profit Score TSR Score

WaterCAT2 86.819 14.188 38.269 208.006
WaterCAT1 85.422 20.95 0 235.345
PersianCAT 82.372 21.462 0 225.665

cestlavie 81.585 15.604 25.968 203.168
jackaroo2 76.651 13.166 50.717 166.063
cestlavie2 72.822 17.299 3.92 197.261
UMTac09 68.025 14.397 19.981 169.704

CrocodileAgent 59.771 14.441 9.028 155.886
Mertacor 58.073 11.688 26.958 135.568
jackaroo 57.561 14.59 6.927 151.19

IAMwildCAT 56.827 11.442 1.821 157.203
UMTac091 55.138 11.536 10.108 143.778
TWBB1 51.415 7.977 7.377 138.909
PSUCAT 45.255 10.496 0 125.263
Mertacor2 40.751 9.044 8.445 104.781

IAMwildCAT2 36.918 9.865 0 100.889
MetroCat 36.85 4.164 30.91 75.484
TWBB 30.865 7.388 7.679 77.536
rucat1 23.47 6.823 0.043 63.536

TWBB2 20.574 5.054 0.991 55.658
rucat0 18.923 5.362 0.178 51.233

Tianuani 8.051 2.069 0.693 21.375
BazarganZebel 2.89 0.981 0.012 7.681

Table 4.1: Trial Game Score Summary

Based on the result of the trial game, we chose to use WaterCAT2’s strategies

for our competition specialist.

4.2 Game Analysis

We entered the 2009 TAC Market Design Tournament Final Games confident with

the success in the trial game. However, the end result is not what we expected,

which can be largely explained by the platform changes exerted by the game orga-
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nizer. We will discuss the causes in details in the following section.

4.2.1 CAT Game Setup

The entrants of the final contest were: BazarganZebel, CUNY, Cheshire, Cor-

codileAgent, IAMwildCAT, Jackaroo, Lancashire, Mertacor, MertroCat, PSUCAT,

PersianCAT, TWBB, Tiannuani, UMTac09, WaterCAT, cestlavie and rucat0. The

contest included three games, each ran for 500 trading days with 10 rounds per

day. The trader population was 400. Buyers and sellers were evenly split with 200

each group. However, several aspects of the setup differ from game to game, and

the details are listed as follows.

GAME G1:

• Assessment (scoring) days

Start day = 12; End day = 480

• Numbers of traders of each type (out of 200)

GD = 50; ZIP = 60; RE = 50; ZIC = 40

• Range of private values

Buyer.minvalue = 30; Buyer.maxvalue = 130

Seller.minvalue = 30; Seller.maxvalue = 130

GAME G2:
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• Assessment (scoring) days

Start day = 23; End day = 491

• Numbers of traders of each type (out of 200)

GD = 60; ZIP = 40; RE = 70; ZIC = 30

• Range of private values

Buyer.minvalue = 80; Buyer.maxvalue = 180

Seller.minvalue = 80; Seller.maxvalue = 180

GAME G3:

• Assessment (scoring) days

Start day = 17; End day = 477

• Numbers of traders of each type (out of 200)

GD = 60; ZIP = 50; RE = 60; ZIC = 30

• Range of private values

Buyer.minvalue = 60; Buyer.maxvalue = 160

Seller.minvalue = 60; Seller.maxvalue = 160

4.2.2 Failure Analysis

The CAT competition organizer released a new version of the game platform right

before the official game’s commencement. The update was deemed necessary be-

cause some competition entrants experienced time-out issues during the trial game.
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According to the release note, the organizer revised the related connection timeout

functions and the new platform was compatible with the old version. However,

from what we witnessed in the game and analyzed afterwards, we found that the

organizer also changed some of the shout handling functions. To be specific, they

altered the type of the shout from a generic Object class to a specific Shout class.

Such a modification may not affect other entrants, but it had a deadly impact on

us, leading our matching policy to malfunction.

Figure 4.3: Market Share Distributions of WaterCAT

In order to implement the loyalty ranking of our matching policy, we created

a new class called WaterCATShout. When an agent enters into the market, the

system converts the Shout to the WaterCATShout object first. Then the market

calculates the Bonus Factor of the agent according to the loyalty ranking and stores

the value into the WaterCATShout object. In the old system, since the type of the

shout was Object, we could keep the critical value of our matching policy during

the interaction 1 with the server. After the platform change, however, we could

1There are several interaction processes between the server and the specialist before making
the matched pairs.
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not complete this process due to the casting of the Shout from an Object class to

a specific Shout class. The end result was that we did not offer any promotive

policies to the intra-marginal traders. Figure 4.3 is the Market Share distribution

of WaterCAT in Game 1. The Market Share started dropping from the beginning

of the game. Most of the agents that left us were intra-marginal traders. Because

of the combination of our accepting policy and matching policy, WaterCAT can

only match intra-marginal traders. As the number of intra-marginal traders kept

decreasing, matching pairs became increasingly difficult for WaterCAT. Because of

the discouraging policies we appeared to be offering, WaterCAT had a low position

in the trading agent’s preference ranking. On Day 38( Figure 4.4), we experienced

the first zero TSR day. The TSR dropped from an average 89.47% of the previous

days to zero. This caused our overall score dropped significantly. Since then,

because of the small number of participating agents, WaterCAT kept getting zero

TSR for most of the days.

Figure 4.4: TSR Distributions of WaterCAT

Recall that strategy was to use the profit score to offset the decrease from the

market share. This approach proved to be effective as we tested in the trial game.
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But in the official game, since the market share dropped below the critical level2,

our market could not generate profits from the transactions. Thus, WaterCAT did

not obtain the profit benefit as it did in the trial game. From Figure 4.5 we can see

that the profit distribution stuck at a low level because of the zero TSR. Zero TSR

means zero profit. In this situation, the profit obviously can not offset the decrease

from the market share any more.

Figure 4.5: Profit Distributions of WaterCAT

We had a similar situation in the Game 2. Given that we were not aware of the

disabling issue of shout type change, we did not change policies because we wanted

to check whether what happened in Game 1 was a rare case or not. Figure 4.6 is

the result distributions of all three scoring criteria of Game 2. They are similar

with the ones of Game 1.

In Game 3 we changed the charging policy to free market at the beginning

to attract traders and start charging profit fee after the early stage. During the

2The specialists can not match trading pairs when they do not have enough number of agents.
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Specialist Overall Score Market Share Score Profit Score TSR Score

CUNY 241.574 47.147 213.503 464.04
IAMwildCAT 187.33 57.651 29.322 475.042
BazarganZebel 183.833 45.781 21.947 483.758
CrocodileAgent 170.69 33.264 28.4 450.391

Tianuani 165.887 73.477 0.075 424.123
rucat0 163.889 24.027 48.997 418.675

Jackaroo 161.43 32.825 33.041 418.464
cestlavie 144.526 49.977 45.602 338.026

PersianCAT 115.594 22.844 16.419 307.544
UMTac09 108.902 36.263 25.088 265.335
PSUCAT 101.621 20.657 9.317 274.926
TWBB 53.786 23.838 6.149 131.422

WaterCAT 49.296 17.194 14.021 116.744
Mertacor 42.057 15.122 8.135 102.939

MetroCAT 0 0 0 0
Cheshire 0 0 0 0

Lancashire 0 0 0 0

Table 4.2: Game 1 Score Summary

Specialist Overall Score Market Share Score Profit Score TSR Score

PSUCAT 219.624 63.937 126.494 468.414
Jackaroo 217.372 54.564 115.024 482.527
UMTac09 201.752 52.085 84.21 468.93

IAMwildCAT 181.15 51.146 19.914 472.43
Mertacor 168.68 75.604 36.138 394.295
TWBB 167.567 39.781 20.173 442.757
rucat0 153.72 18.116 54.789 388.243
CUNY 149.001 26.73 25.142 395.161

PersianCAT 68.522 21.507 1.536 182.559
cestlavie 56.975 27.945 7.984 135.018

WaterCAT 50.567 21.873 5.422 124.447
Tianuani 44.56 29.947 1.177 102.588

BazarganZebel 34.533 5.398 1.424 96.697
CrocodileAgent 31.083 11.344 0.597 81.185

MetroCAT 0 0 0 0
Cheshire 0 0 0 0

Lancashire 0 0 0 0

Table 4.3: Game 2 Score Summary

game, we also changed the matching policy from the WaterCAT matching to max-

volume matching in order to generate more matching pairs. As we demonstrated

in the accepting policy section, max-volume matching would not help increase TSR

because of the drop of the Market Share. However, since our market share was

already at a miserably low level, switching to the max-volume matching did help
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Figure 4.6: Market Share, TSR and Profit Distributions of WaterCAT in Game 2

us generate more matching pairs. Figure 4.7 shows that the TSR was better than

the previous two days. However, market share is still the definitive factor to win

the contest. Better market share generates better profit and TSR. Although we

rearranged the policies to improve the market share during the game, because of

the collapse of our matching policy, the final result was disappointing.

4.3 Competition Re-run Analysis

We experienced technical failure during the official games. In order to evaluate our

specialist’s performance in recognition of the shout class change, we conducted a

number of experiments using the post-tournament version of specialists, found in

the TAC agent repository. The specialists we used for the re-run analysis were:
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Figure 4.7: Market Share, TSR and Profit Distributions of WaterCAT in Game 3

Specialist Overall Score Market Share Score Profit Score TSR Score

PSUCAT 209.532 50.214 115.665 462.699
Mertacor 208.664 93.176 82.538 450.296
Jackaroo 200.413 41.013 81.184 479.062
cestlavie 191.539 50.626 51.952 472.049

IAMwildCAT 180.588 46.389 24.877 470.468
CUNY 175.707 28.805 62.478 435.834

PersianCAT 162.771 35.75 18.499 434.067
BazarganZebel 117.6 22.438 2.345 328.004

rucat0 109.072 17.272 27.188 282.748
UMTac09 97.619 25.574 10.702 256.567
TWBB 95.462 25.899 16.247 244.231

WaterCAT 91.387 25.747 3.259 245.205
Tianuani 69.666 25.628 1.796 181.559

CrocodileAgent 30.858 11.421 1.222 79.848
MetroCAT 0 0 0 0
Cheshire 0 0 0 0

Lancashire 0 0 0 0

Table 4.4: Game 3 Score Summary
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IAMWildCAT, Jackaroo, CUNY, Mertacor and TWBB. We did not manage to in-

clude other specialists because of their unavailability at the time. We analyze the

performance of our specialist against other competitors in two different durations

of the game. We adopt a similar experimental setup as in the competition, with

games running over 100 and 500 trading days and with 10 trading rounds each day.

4.3.1 Short Period Re-run Test

The top three players of the 100-day re-run were Jackaroo (51.427), WaterCAT

(44.084), IAMwildCAT (37.684). Comparing with the official competition result

that top-ranked Jackaroo, CUNY, IAMwildCAT, our specialist WaterCAT replaced

CUNY and took the second place. Interestingly, CUNY had performance issues in

the competition re-run and finished in last place.

Specialist Overall Score Market Share Score Profit Score TSR Score

Jackaroo 51.427 16.32 42.858 95.092
WaterCAT 44.084 17.275 24.591 90.395

IAMwildCAT 37.684 16.31 2.614 94.142
Mertacor 35.682 29.015 0 78.023
TWBB 33.687 9.685 15.084 76.301
CUNY 23.516 11.395 3.738 55.433

Table 4.5: Short Period Re-run Score Summary

Figure 4.8 shows the Market Share distribution of the re-run. WaterCAT’s mar-

ket share kept at a stable level and seemed competitive with other specialists. The

winner of the market share was Mertacor because of the free market they offered.

However, as discussed in the previous chapter, the profit gain will offset the loss

from the market share and generate the winning margin for the fee-charging spe-

cialists. The fourth overall finish of Mertacor again demonstrates that winning the
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Figure 4.8: Market Share Distribution of Short Period Re-run

market share might not win the competition. The implication is that the special-

ist needs to construct the best combination between the market share and the profit.

Figure 4.9: Profit Distribution of Short Period Re-run

Figure 4.9 is the Profit Distribution of the game. At the beginning of the game,

WaterCAT offered free market in order to attract trading agents. After the ini-

tialization period, WaterCAT launched the 20% profit charging policy. Jackaroo
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turned out to be the winner of the Profit section. Because of their high value agents

and better charging policy management, Jackaroo dominated the Profit score at the

second half of the game. The Profit score of the second half provided the winning

edge for the Jackaroo.

Figure 4.10: TSR Distribution of Short Period Re-run

The Transaction Success Rate score of WaterCAT stayed reasonably good through-

out the whole game. It managed to accept a proper number of agents and clear

them through the transactions. Figure 4.10 illustrates the TSR scores. Most of the

specialists had good performance except CUNY. CUNY had similar result of what

WaterCAT experienced in the official games, hitting a number of zero TSR at the

second half of the game. This is the main reason why they were ranked last in the

game.
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4.3.2 Long Period Re-run Test

Surprisingly the top three finalists of the 500 trading days re-run were Mertacor

(237.109), Jackaroo (220.406), and WaterCAT (201.876). Mertacor won the sim-

ulation thanks to its aggressive charging policy at the later stage of the game. It

started charging fees from Day 122 and the extra profit offset the losses occurred

in the early stage. It also managed to keep a good score on the market share even

after installing a charging policy, which helped the specialist to achieve the best

combination of market share and profit during the long period simulation. Thus,

it emerged as the winner of the game.

Specialist Overall Score Market Share Score Profit Score TSR Score

Mertacor 237.109 148.623 152.266 410.472
Jackaroo 220.406 88.188 121.546 459.469

WaterCAT 201.876 65.53 105.619 434.794
IAMwildCAT 196.853 107.417 25.578 457.479

TWBB 157.546 44.308 22.25 406.079
CUNY 122.83 39.515 35.661 282.292

Table 4.6: Long Period Re-run Summary

Figure 4.11 shows the market share, profit and TSR distribution of the 500 day

simulation. WaterCAT’s overall performance appeared consistent in the long period

test. As can be seen, its market share kept at a stable level all through the game.

At the early stage, because of our comparatively aggressive charging policy, the

market share started dropping on a minor scale. However, the decrease did not af-

fect our overall performance. The profit distribution chart shows that WaterCAT’s

profit during that stage outperformed most of the other specialists. Our market

share started increasing after day 250 when the other specialists exercised more

aggressive charging policies. WaterCAT was able to maintain the performance in

both categories at a constant level afterwards. Our TSR performance also remained

71



satisfactory, thanks to the tight and dynamically adjusted accepting policy.

Figure 4.11: Market Share, Profit and TSR Distribution of the 500 Day Simulation

Overall, we are satisfied with the performance of WaterCAT in the re-run games.

It ended up among the top three finishers in both short and long period re-run sim-

ulations, and maintained stable and competitive scores on Market Share and TSR.

This can be attribute to the solid performance of WaterCAT Accepting and Match-

ing policies. Nevertheless, Jackaroo had a better overall performance. WaterCAT

was very competitive with it in terms of Market Share and TSR, but the winning
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margin of Jackaroo came from its profit-generating charging policy, while Water-

CAT was equipped with a simple fixed charging policy. We tried different charging

fee combinations, but we did not manage to beat Jackaroo using fixed charging

policy in the simulations. However, we believe that with a better charging policy

setup3, WaterCAT has the potential to be the winning specialist.

4.4 Summary

In this chapter we analyzed the performance of WaterCAT in the trial and official

games. We explained the winning reasons of the trial games and explored the

technical failure in the official games. Due to a technical issue of classification, we

did not have a successful performance in the official games. In order to evaluate our

policy after fixing the technical malfunction, we conducted game re-run using post-

tournament version agents. The result shows the solid performance of the policies

we designed. WaterCAT achieved as one of the top three finishers in the re-run,

indicating its potential to compete against the top players in the official game.

3Some dynamic charging policies are proposed in the future research section.
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Chapter 5

Related Work

In this chapter we introduce literature related to our research and discuss our

contributions to the field of trading market design. We first review the related

literature on how to attract intra-marginal traders across the markets by using

registration fees. Then we study the related work in generalization properties of

CAT entries.

5.1 Attracting Intra-marginal Traders across Mul-

tiple Markets

The cornerstone strategy of winning the CAT game is to capture market share as

much as possible. In particular, in order to win the game the specialist needs to

attract those high-value and intra-marginal traders that can give the specialist a

higher transaction success rate and generate more profit both for the trader and

for the specialist. To become appealing for the trader, we intentionally excluded

registration fees. Our assumption was that including registration fees would put
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off potentially profit-generating traders. However, this assumption may not hold in

light of another body of research on trader behaviors. For instance, Niu et al. [15]

reported that using registration fees has been shown to be a simple and effective

way to attract intra-marginal traders. Sohn et al. [20] studied this approach more

formally by using a game theory model. Their model is built on the trader market

selection behavior to study why registration fees attract intra-marginal traders and

drive extra-marginal traders away.

Two Intra-marginal Traders Case

Sohn and his colleagues’ simulation starts with two free markets, M1 and M2. There

are two trading agents, an intra-marginal buyer with a private value of 125 and an

intra-marginal seller with a private value of 75. If they are matched, the transaction

price is set to p=100, giving both the buyer and the seller a profit of 25. The case

can be analyzed by a normal-form game model as shown in Table 5.1.

Seller selects M1 Seller selects M2
Buyer selects M1 (25,25) (0,0)
Buyer selects M2 (0,0) (25,25)

Table 5.1: Normal-form market selection model, as reported by Sohn et al. (2009).
Bold typeface denotes Nash Equilibrium

Apparently this is a battle-of-the-sexes game. The Nash Equilibria of the mar-

ket selection strategy is (Buyer, Seller)=(M1,M1) or (M2,M2). As simple as this

basic case is. Sohn et al. intended to verify that this battle-of-the-sexes framework

can be extended into n-trader cases in general. They started by considering four

trader cases with two buyers and two sellers.

Four Intra-marginal Traders Case

75



Consider the case that there two intra-marginal buyers B1(private value of 140)

and buyer B2(private value of 120), and two intra-marginal sellers S1(private value

of 60) and seller S2(private value of 80). The payoff matrix of the normal game

form can be constructed in Table 5.2.

S1 selects M1 S1 selects M2
B1 selects M1 (40,40,20,20) (30,0,0,30)
B1 selects M2 (0,30,30,0) (40,40,20,20)

B2 selects M1, S2 selects M1

S1 selects M1 S1 selects M2
B1 selects M1 (40,40,0,0) (0,0,0,0)
B1 selects M2 (30,30,30,30) (40,40,0,0)

B2 selects M1, S2 selects M2

S1 selects M1 S1 selects M2
B1 selects M1 (40,40,0,0) (30,30,30,30)
B1 selects M2 (0,0,0,0) (40,40,0,0)

B2 selects M2, S2 selects M1

S1 selects M1 S1 selects M2
B1 selects M1 (40,40,20,20) (0,30,30,0)
B1 selects M2 (30,0,0,30) (40,40,20,20)

B2 selects M2, S2 selects M2

Table 5.2: Normal-form market selection model for four intra-marginal traders, as re-
ported by Sohn et al. (2009). Bold typeface denotes Nash equilibrium

The Nash equilibria under four intra-marginal traders (B1,S1,B2,S2) are (M1,M1,M1,M1),

(M1,M1,M2,M2), (M2,M2,M1,M1) and (M2,M2,M2,M2). In these NEs, the higher-

valued buyer B1 and seller S1 tend to be together and so do the lower-valued B2

and S2.

Two Intra-marginal and Two Extra-marginal Traders Case

Let us consider another case when there are two intra-marginal traders and two

extra-marginal traders. The private values of intra-marginal traders B1 and S1 are
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140 and 60. The private values of the extra-marginal traders B2 and S2 are 90 and

110. The payoff matrix of the normal game form can be seen in Table 5.3.

S1 selects M1 S1 selects M2
B1 selects M1 (40,40,0,0) (15,0,0,15)
B1 selects M2 (0,15,15,0) (40,40,0,0)

B2 selects M1, S2 selects M1

S1 selects M1 S1 selects M2
B1 selects M1 (40,40,0,0) (0,0,0,0)
B1 selects M2 (15,15,15,15) (40,40,0,0)

B2 selects M1, S2 selects M2

S1 selects M1 S1 selects M2
B1 selects M1 (40,40,0,0) (15,15,15,15)
B1 selects M2 (0,0,0,0) (40,40,0,0)

B2 selects M2, S2 selects M1

S1 selects M1 S1 selects M2
B1 selects M1 (40,40,0,0) (0,15,15,0)
B1 selects M2 (15,0,0,15) (40,40,0,0)

B2 selects M2, S2 selects M2

Table 5.3: Normal-form market selection model for two intra-marginal traders and two
extra-marginal traders, as reported by Sohn et al. (2009). Bold typeface denotes Nash
equilibrium

The intra-marginal trader pair (B1,S1) selects either (M1,M1) or (M2,M2) and

the extra-marginal traders B2 and S2 do not have preference to which market they

are in. Thus, from the result of the NE it is possible to draw the conclusion that

intra-marginal traders tend to stay in the same market in order to maximize their

transaction profit.

Extending the Model into n-Trader Case

Sohn et al. extend the model into n-trader case by using brute-force NE search
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program. The program calculates the trader payoffs and search Nash equilibrium.

The program results also confirm the NE results in Table 5.2 and 5.3 which are

generated by hand calculation.

Incorporation of Registration Fee

Based on the arrangements of previous free markets, Sohn et al. demonstrated

the traders’ market selection behavior under several different registration values

and their effect on the resultant NE. The authors showed that as the registration

fee increases, the intra-marginal traders and extra-marginal traders are separated

into different markets, and the extra-marginal traders tend to move to the free

markets. When the registration fee reaches higher level, low-value intra-marginal

traders leave the registration fee market. At the end, when the registration fee

is too high for the traders to make profits, the remaining intra-marginal traders

leave the market. The authors also indicated that the corresponding number of NE

decreases as the value of registration fee increases.

Sohn and his colleagues worked in the direction of formally modeling the effects

of market policy on trader market selection behavior. In the future, they plan to

extend the model to more complex market environments. It is necessary to study

the intertwined effects of different market policies and trader populations on Nash

equilibrium. However, because of the dynamics of trader’s market-selection behav-

ior, Sohn et al. also point out that Nash equilibrium is not necessarily the best

construct for the model. Concepts such as coalition-proof Nash equilibrium appear

to be another more appropriate model for market-selection decisions.

Sohn et al’s paper not only provides an example about how to explore the pol-

78



icy issue from a game theory perspective, it also sheds light on how to incorporate

registration fees in our future study on policy design. While our empirical results

indicated that imposing registration fees will lead to a decrease in market share,

Sohn et al. suggested that registration fee could, at least theoretically, drive out

the extra-marginal traders to improve overall specialist performance. An interest-

ing topic for future research is how to balance the benefits and costs of including

registration fees.

5.2 Empirical Evaluation of the Generalization

Ability of the CAT Entries

While Sohn et al’s work may help us to understand how trader behavior might

exert impacts on the specialist performance, there are other factors we have left

out of our current study. Specifically, we neglected the external factors across all

markets, which are subject to the specifications of the organizer. These factors,

however, may also influence the specialist’s performance significantly.

Some researchers have made empirical attempts in this direction. For instance,

Robinson et al. [17] presented a very interesting research about the generalization

property of specialists in CAT competition. The objective of their research is to

validate whether and how a specialist might favor certain trading strategies. In

order to explore the generalization properties, Robinson et al. used the 2008 CAT

tournament specialists to test the specialists’ performance under different testing

environments. The results suggested that the specialist can be affected by a number

of factors, including trading agent population, presence of other specialists and the
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scoring period setup.

Robinson et al. first showed that some specialists’ performances could be af-

fected by the different mixes of trader type. The authors conducted a number of

simulations using different distributions of trading strategies and the result revealed

that some specialists’ rankings changed under different environments. Robinson and

his colleagues then carried out similar simulations with different selections of the

specialists. Certain specialists’ rankings changed when their competing specialists

were changed. In addition, Robinson et al. showed even under the same envi-

ronment, selecting different period as scoring period could also change specialists’

rankings.

The findings of Robinson et al. are of particular interest to our study because

we adopted a simpler view of the external environment faced by the specialist. In

our study, all the factors discussed in Robinson et al were hold constant or left out

of our design scope. But if these factors are indeed present and influential, we need

to examine how our proposed policy modifications can hold true in a more complex

market environment. Research in this direction seems to be fruitful as the market

conditions in real practice are often more complicated than we assumed.

5.3 Summary

In this chapter we reviewed two interesting streams of research that are closely re-

lated to this thesis. The first is about how to attract intra-marginal traders across

the markets by using the registration fee. The reviewed research represented the

extant effort in the direction of formally modeling the effects of market policy on
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trader market selection behavior. The second line of research studies the generaliza-

tion properties of CAT entries. The authors demonstrated that the specialists can

be sensitive to trading strategies, other specialist’s setup and the scoring period.
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Chapter 6

Conclusion

In this thesis we describe the WaterCAT specialist, designed for the TAC Market

Design game which is part of the International Trading Agent Competition. The

objective of an agent in this competition is to effectively manage and operate a

market that attracts traders to compete for resources in it. This market, in turn,

competes against markets operated by other competition entrants and the aim is to

maximize the market and profit share of the agent, as well as its transaction success

rate. To do this, the agent needs to continually monitor and adapt, in response

to the competing marketplaces, the rules it uses to accept offers, clear the market,

price the transactions and charge the traders. Given this context, this thesis details

WaterCAT strategic behavior and describes the techniques we developed.

In this chapter, we summarize the contributions of this thesis. We also describe

some directions for future work.
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6.1 Contributions

The main contributions of this thesis were:

• WaterCAT Accepting Policy - A new model of accepting policy with market

monitor feature

• WaterCAT Matching Policy - A new model of matching policy with the loyalty

ranking feature

• Analysis on different charging fees

• Applications on other CDAs

6.1.1 WaterCAT Accepting Policy

Based on the logic of equilibrium-beating approach, we present an accepting policy

that can determine which shouts are accepted. We modified the static policy in

use so that it can dynamically change the accepting level according to the market

condition in real-time. This allows a wider range of agents entering the market

with the consideration of maintaining a high Transaction Success Rate.

6.1.2 WaterCAT Matching Policy

We propose a new equilibrium matching policy that has a loyalty ranking feature.

We also propose a new method, Bonus Factor, that aggregates the price ranking

and loyalty ranking together. We show that our proposed new policy outperforms

the original equilibrium matching policy in the simulation tests.
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6.1.3 Analysis on Different Charging Fees

We analyze the trading agent’s sensitivity towards the different charging fees in

fixed charging policy. We find a winning number of profit charging fees. We also

propose several adaptive charging policies.

6.1.4 Applications on other CDAs

Besides the specific purpose for the CAT competition, our research can also help

the design of the competing market, especially in the area of the exchange market

and other CDAs competitions. Our approaches are generic and are applicable to

other models. With the demonstrated performance, other researchers can adapt our

approaches to their models. Our research can also help the design of the marketing

strategies. We can simulate the market activities by proper setup of the specialists

and agents in the CAT platform. People can use the model to test the performance

of new policies against other competitors and adjust the policies to achieve the best

market reaction.

6.2 Directions for Future Work

In this section we outline some directions for future research based on the results

of our study.

6.2.1 Adaptive Charging Policy Approach

We have discussed the fixed charging policy in detail. But the game we face is

very competitive. The game is assessed by the overall performance of three crite-
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ria. We demonstrated that the specialist could get a better overall score by giving

up a certain level of market share. The profit score not only offsets the decrease

in market share, but also generates additional margin. This leads to new ques-

tions: what percentage of market share is the specialist willing to lose and how

much profit the market is expecting to get? To answer this question, we need to

build a market that can make decisions automatically according to the real-time

market conditions. Although we need future research to simplify the complexity

of the scenarios, we postulate some prototypes for the adaptive charging policy here.

The Adaptive Charging Policy consists of two stages. The first α rounds would

be Stage 1 - free market. From the experiments we learned that at the beginning

of the game, the agents keep switching markets due to their market selection strat-

egy. During this initialization period the agents learn different policies from all

assessable markets and they will make decisions based on their market selection

functions. The specialist need to provide the most attractive policy to occupy a

better position in the agents’ market selection rankings. At this stage, the main

objective is to increase market share.

After the initialization period, optimally the market should already have a good

market share, or at least be at a very competitive level. In the next stage a sophisti-

cated engine needs to generate charging policies according to the market conditions.

The engine would make the decisions among increasing charges, decreasing charges

and keeping current charges. We designed several engines to facilitate the decisions

and possible approaches are listed in the following.
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• Expectation-beating Approach: The engine compares the current market

share with a target value that is either predefined or generated from the

market. As long as the current market share surpasses the target level, the

predefined charging policy will keep on posing charging fees. When the market

share is below the target, however, the engine will disable the predefined

charging policy. This approach is the easiest to implement but it is often

impractical because it is very difficult to determine the target value. There

are too many undetermined elements to generate a proper target value.

• Relative Progress Approach: We define α days as one session. After the

initialization period, the engine activates the predefined charging policy and

monitors the average market share of each session. If the average market

share is more/less than the previous session, the engine increases/decreases

the charging amount. We tested this approach against the fixed charging

policy defined in the previous section and the result is not convincing. When

the engine changes the charging amount by a small percentage, the result

is very close to that of the fixed charging policy. If the engine changes the

charging amount by a large scale, the fixed charging policy beats the relative

progress approach, because adjusting charging policy in a large scale generates

an unstable market environment and an unstable market generates a lower

overall score. The overall score is affected mainly by the drop in the market

share section.

• Random Sampling Approach: The engine generates some random charging

samples with limited range and tests each sample for a certain period. The

engine selects the best performance sample as the standard charging policy.

The advantage of this approach is that it could generate the best performing
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policy dynamically according to the game entrants and setup. The disadvan-

tage is that it is hard to normalize the sample results because of the dynamic

environment, thus the sample results are biased.

Research on developing efficient charging policies is still at a stage of infancy.

Although we have explained the approaches adopted in this thesis to comply with

the CAT game specifications, future research should explore how other policy de-

sign strategies may produce better results in other settings.

6.3 Summary

In this thesis we studied the relationship between matching rules and market share

in continuous double auctions. We provided a new matching policy based on the

price ranking and the loyalty ranking criteria. We also provided a new accepting

policy that can dynamically adjust the accepting level in response to real-time mar-

ket situations. We use CAT as the test-bed to test the performance of our proposed

policy modifications, and the results were mostly supportive. As an entrant of CAT

tournament 2009, we analyzed the success and failure reasons and reported how the

WaterCAT performance changed in the competition re-run. In the end we provided

some adaptive charging policy approaches as future research directions.
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