
Case Study of Feature-Oriented

Requirements Modelling, Applied to

an Online Trading System

by

Ana Krulec

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Ana Krulec 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The Feature-Oriented Requirements Modelling (FORM) combines the requirement en-

gineering style structuring of requirements documents with the feature-orientation of the

Feature Oriented Software Development, resulting in a feature-oriented model of the func-

tional requirements of a system-under-development (SUD). A feature is a distinguishable

unit of added value to the SUD. The objectives of FORM are to model features as indepen-

dent modules, to allow the addition of new features with minimal changes to the existing

features, and to enable automatic generation and checking of properties like correctness,

consistency, and non-determinism. FORM structures requirements into three models: a

domain model, a collection of behavioural models, and a collection of functional models.

A feature is modelled by a distinct behavioural model. This dissertation evaluates FORM

by applying it to a new application that can be thought of in terms of features, namely

an online trading system (OTS) that receives requests from customers about buying or

selling securities on a stock market. The OTS offers variability in terms of the types of

orders that customers can request, (e.g. market order, limit order and stop order). The

case study revealed six deficiencies of the FORM notation, three of which were easily over-

come. The dissertation presents the results of the case study, resolutions to three of the

six deficiencies, and an outline of an approach to resolve the other three deficiencies.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Joanne Atlee for her help with the dissertation.

She gave me inspiration, has lent me guidance and knowledge for the past two years, and

has provided me with much needed ideas. I would also like to thank Pourya Shaker for

guidance and help with FORM and Alloy.

I would like to thank Dr. Daniel Berry and Dr. Michael Godfrey who took their time

to read my thesis and provide valuable input to improve quality of this research.

Finally, I would like to thank Dr. Andrej Brodnik who opened the possibility for

studying abroad for me; and my mom and brother, for much needed encouragement to

finish what I started.

iv

Mami, očetu, in Roku

v

Table of Contents

List of Figures x

1 Introduction 1

2 An Example of an Online Trading System 4

2.1 Terminology . 7

2.2 Types of Orders . 8

2.2.1 Summary . 11

3 Feature-Oriented Requirements Modelling 12

3.1 Requirements . 13

3.2 Requirements Modelling . 13

3.3 Feature-Oriented Software Development 15

3.4 Alloy . 17

3.4.1 Alloy Notation . 18

3.5 FORM . 25

3.5.1 Domain Model . 27

3.5.2 Behavioural Model . 30

3.5.3 Functional Model . 38

3.6 Feature Oriented Requirements Modelling in Alloy 39

3.6.1 Summary . 43

vi

4 Modelling the Online Trading System in FORM 44

4.1 Domain Model . 45

4.2 Base Feature Model . 47

4.3 Enhancement Feature Models . 48

4.3.1 Buy Bracket Order . 48

4.4 Summary . 51

5 Results and Evaluation 52

5.1 Alloy Analysis of a FORM Domain Model 52

5.2 Evaluation of the FORM Notation . 53

5.2.1 Extended the Scope of the Trigger Event of Feature-Machine Con-

structors . 55

5.2.2 Fixed Domain-Model Constraints 57

5.2.3 Added Frame Predicates . 58

5.3 Workarounds and Deficiencies . 59

5.3.1 Added Time and Timeouts . 59

5.3.2 Policy Language . 60

5.3.3 Referencing the Base Feature Machine 64

5.3.4 Inheritance of Feature Machines . 65

5.3.5 Polymorphism for Messages . 66

6 Conclusion 67

References 68

APPENDICES 71

A The Domain Model of the Online Trading System in Alloy Notation 72

vii

B The Behavioural Model of the Online Trading System in Feature Ori-

ented Requriements Modelling 81

viii

List of Figures

2.1 An example message flow between customer, online trading server, trading

engine and providing trading system . 6

3.1 A simple UML class diagram of the online-trading system 14

3.2 An example of an Alloy instance trace . 19

3.3 An example of an Alloy function CreateTransaction 26

3.4 A simple FORM domain model of an online trading system 28

3.5 A FORM feature machine for a market order 32

3.6 A FORM enhancement feature machine for a limit order 35

4.1 Domain model of an online trading system 46

4.2 A FORM enhancement feature machine for a bracket order 49

5.1 The first domain-state instance of an Alloy-generated trace of the OTS domain 53

5.2 The second domain-state instance of an Alloy-generated trace of the OTS

domain . 54

5.3 OTS domain model augmented with compliance rules 61

5.4 OTS market order feature machine augmented with compliance rule checking 62

B.1 The FORM domain model of an online trading system 82

B.2 Market order modelled as a FORM feature model 83

B.3 Buy-limit order modelled as a FORM feature model 84

ix

B.4 Buy-stop modelled as a FORM feature model 85

B.5 Buy-stop-limit order modelled as a FORM feature model 85

B.6 Limit-on-open order modelled as a FORM feature model 86

B.7 Limit-on-close order modelled as a FORM feature model 87

B.8 Market-to-limit order modelled as a FORM feature model 87

B.9 Good-till-cancelled order modelled as a FORM feature model 88

B.10 Good-till-date/time order modelled as a FORM feature model 88

B.11 Bracket order modelled as a FORM feature model 89

x

Chapter 1

Introduction

Software development starts when customers sit down with engineers and discuss the re-

quirements of a proposed software system, hereafter called the system under development

(SUD). The customers and engineers have to work together to describe in detail the be-

haviour and properties of the SUD. After they agree on the requirements, the engineers can

start discussing how they will implement the system. The requirements are expressed in

terms of the benefits and effects that the SUD will have on its environment. Requirements

engineering (RE) strives to organize, structure and describe the detailed requirements in

terms of multiple views: a behavioural or functional model of the SUD, a structural or

object-oriented (OO) model of the phenomena of the SUD’s environment, and constraints

on the SUD and its environment. Object Oriented Analysis (OOA) is representative of

such RE methods [11].

Feature Oriented Software Development (FOSD) is a software development process that

structures an SUD’s design and implementation in terms of its features. A feature is a “dis-

tinguishable characteristic of the software that is important to individuals in developing

the product” [12, 3]. Every feature adds value to the SUD, either in the form of new func-

tionality or new nonfunctional qualities. Because each feature is a distinct enhancement,

stakeholders often discuss and reason about an SUD in terms of its constituent features,

and express changes to the system by adding, modifying, or deleting individual features.

In most cases of software development, there is no clean mapping between features

defined in the early stages of requirements and the features’ respective implementations.

In contrast, FOSD tries to explicate features at all stages of software development, and

1

in all artifacts of the development. An SUD is constructed by combining and integrating

features, and feature modules can be components of multiple software systems [1].

Shaker et al.’s Feature-Oriented Requirements Modelling (FORM) methodology com-

bines the RE-style structuring of requirements documents with the feature-orientation of

FOSD, resulting in a feature-oriented model of the functional requirements of an SUD. The

objectives of FORM are to combine modularity, so that features can be modelled as inde-

pendent modules; modifiability, so that new features can be added with minimal changes

to the existing features; and precision, to enable automatic generation and checking of

properties like correctness, consistency, and non-determinism. The FORM methodology

structures requirements into three models: a domain model, a collection of behavioural mod-

els, and a collection of functional models. Features are modelled as distinct behavioural

models. The FORM methodology assumes that there are one or more base features that

specify the required behaviour of the SUD. Features that override the base functionality

are modelled as enhancement features, which in turn may again be base features for some

other enhancement features. Unplanned feature interactions are resolved with predefined

precedence rules [12].

The purpose of this dissertation is to evaluate FORM by applying it to a new appli-

cation domain that can be thought of in terms of its features. An evaluation modelled an

online trading system (OTS) that receives requests from customers about buying or selling

securities on a stock market. The OTS offers variability in terms of the types of orders

that customers can request (e.g., market order, limit order, stop order, etc.). In the OTS,

each type of order is modelled as a different feature. Market orders are modelled as base

features. Other types of trade orders are modelled as enhancement features that extend

or override the market-order feature. The OTS is smart enough to process orders until

they are ready to be entered into the market. As such, the provider trading system (PTS)

will not be aware of a requested limit order until the price of the stock on the market has

reached the required limit price.

The case study revealed six deficiencies of the FORM notation: three that we were

able to resolve through small extensions to FORM and three deficiencies that require more

substantial consideration. In the latter cases, we provide sketches of how FORM might be

extended to address the new behaviour.

In the rest of the dissertation, Chapter 2 describes a trading system and required ter-

2

minology to understand the system we modelled. Chapter 3 describes Feature Oriented

Requirements Modelling (FORM). Sections 3.1 and 3.2 describe requirements modelling.

Section 3.3 then describes Feature Oriented Software Development which breaks down

a software system into distinguishable characteristics. After that, Section 3.5 describes

FORM that addresses a particular part of FOSD. Section 3.4 describes the Alloy mod-

elling language and how it is employed in FORM. Chapter 4 describes our application of

FORM to the modelling an online trading system. Section 4.1 describes the domain model

and sections 4.2 and 4.3 describe behavioural models. Chapter 5 describes our experi-

ences conducting the case study. Section 5.2 discuses minor deficiencies in FORM that we

encountered and for which we successfully devised new notation constructs or modelling

guidelines and section 5.3 discusses major deficiencies for which we devised workarounds,

but which need future investigation. Chapter 6 is a conclusion. The complete FORM

models are given in the appendices.

3

Chapter 2

An Example of an Online Trading

System

In order to understand trading systems, the dissertation first presents the basic terminology

and a short history of how trading evolved, that is derived from the description of the

Stock Market in Wikipedia, [4]. The rest of the terminology required to understand this

dissertation is given in Section 2.1. Section 2.2 describes different types of orders for buying

and selling stocks.

A trade is “a voluntary, often asymmetric, exchange of goods, services, or money,” [4]

and a mechanism that allows trading is called a market. This dissertation concentrates on a

stock market, which is a “public market for the trading of company’s stock and derivatives

at agreed price.” [4] The first origins of the stock market are believed to have been in

the 12th century in France, when “courratiers de change” were managing and regulating

trade with agricultural communities on behalf of the banks. In the 13th century, the family

Van der Beutze had a building in Antwerp where most of the merchants were performing

trades. New places soon opened across Europe, and by the middle of the 13th century

Venetian bankers began to trade government securities. The Dutch later started joint

stock companies, so shareholders could invest in business ventures and get a share of their

profits or losses. In 1602, the Dutch East India Company issued the first share on the

Amsterdam Stock Exchange and became the first company to issue stocks and bonds. In

the 17th century, the Amsterdam Stock Exchange introduced continuous trade [4].

There are several ways to exchange stocks on the stock market. Some exchanges happen

4

at physical locations, where traders meet face-to-face, and some are virtual, in which

computers find matching buy and sell orders. Probably the most common association

when mentioning a stock exchange is the pit of a trading floor where traders are standing

in a circle around computer screens shouting and hand-signalling when placing bids, i.e.,

offers, and asks, i.e., requests for stocks. When the bidding and asking prices match, sales

take place on a first-come-first-serve basis [4].

For example, the New York Stock Exchange is an example of a physical exchange. Mem-

bers of the exchange enter orders with a floor broker, a person located in the exchange

building who walks to the trading pit of that stock and trades the order. The specialist

at the pit matches buy and sell orders. Once the trade has been made, the details are

reported and sent back to the brokerage firm, which notifies investors. Today most of the

processes, like order matching and data publishing, are starting to be managed electroni-

cally. NASDAQ is a completely virtual exchange market in which parties use a computer

network for communication. It allows dealers to electronically enter their trades, which

are matched automatically by a matching algorithm [4]. NASDAQ allows users to specify

orders that are to be executed based on market prices or at a specific time; these options

make trading easier for users who are not able to follow the market continuously.

More and more stock exchanges are turning into electronically managed trading sys-

tems, where investors or their brokers can enter orders electronically and have them

matched automatically. Trading Exchange Expert defines a Trading System as “a set

of rules, parameters, and indicators that determine entry and exit points during trading”

[5]. It is composed of two parts: an online trading server and a trading engine. The

online trading server is responsible for accepting orders from clients and sending ACK or

NACK responses back to the client to communicate the receipt or rejection of the order,

respectively. It also keeps a history, called an order book, of chronologically sorted buy and

sell orders. At the back-end, the trading engine is responsible for executing the trades,

i.e., performing matching algorithms on orders, and for related activities, like transferring

shares and funds between accounts. If the matching function results in an actual match

of a buyer and a seller, the trading server will communicate a success message back to the

parties involved in the transaction. Whenever the trading engine makes a material change

to the state of the order book, the trading server is charged with publishing the results of

the trade, which are seen by the public.

Figure 2.1 shows an example message flow between a customer, an online trading server,

5

Customer Online Trading
Server

Trading Engine

3) store information
about request
.
8) modify memory

Providing Trading
System

1) buy 100 shares
of IBM security

.
2) customer wants
to buy 100 shares

of IMB security

4) buy 100 shares
of IBM security

5) return protocol
dependant workflow

6) negotiate

7) confirm/deny
 trade

9) return info

10) return info

Figure 2.1: An example message flow between customer, online trading server, trading

engine and providing trading system

6

a trading engine, and a providing trading system. The online trading server receives a

request from the customer to process a quote or trade request according to a particular

protocol. The server sends a request to the trading engine, where the details are stored and

the request is forwarded to the providing trading system (PTS). The provider application

selects the appropriate protocol-dependent work-flow for the request and responds with a

series of messages. The trading engine updates its records with the new state for the quote

or trade. The online server then communicates the appropriate confirmations, notices,

ACKs and other information back to the customer-trading application or the PTS based

on the expected work-flow.

In this scenario, the online-trading server’s main task is to pass messages between the

customer and the trading engine, and to keep a book of orders. We have made our trading

server smarter in order to model the variability between different order protocols. We treat

the trading engine and PTS as one entity and call it an online trading system (OTS). The

OTS accepts all of the orders and forwards them to the PTS only when they are eligible to

be executed, i.e., when they become market orders. We still depend on the trading engine

to keep track of whether an order is filled completely and how much there is still left to

be filled. This design decision simplifies the OTS, so that it does not have to continually

check the current availability of securities and their prices on the market, and it does not

match buy and sell orders.

2.1 Terminology

Before we describe the different types of orders, we define the most commonly used terms in

trading. The definitions are taken from Finance Library [7], U.S. Securities and Exchange

Commission [6], and Wikipedia [4]:

• A security is a negotiable instrument that proves ownership of stocks, bonds, or

other investments.

• A share is the smallest unit of a security that can be bought or sold. For example,

IBM is the security, and one can buy 100 shares of IBM security.

• A ticker provides information about a particular stock: its last trade price, its last

trade time, the change in price, the stock exchange name, the total volume, the last

7

open price, the last close price, and its ticker symbol, which is an abbreviation for

shares of a that stock on a particular stock market.

• A quote is information about a particular stock that includes the last trade price,

the last trade time, the change in price, the stock exchange name, the total volume,

the last open price, the last close price, etc.

• Exchange trading is the trading of securities via facilities that are constructed for

the purpose of trading, for example a stock exchange.

• Over-the-counter trading is the trading of securities directly between two parties.

2.2 Types of Orders

An investor has several options when it comes to placing an order to buy or sell securities.

He or she can choose for his or hers orders to be executed on condition of the prices of

securities, and can choose the time period for which his or hers orders are valid.

• Market Order A market order is a basic request to buy or sell some number of

shares of some security. When the order is executed, the securities are bought or sold

at the current market price. Unless a user specifies otherwise, an order is entered as

a market order.

As long as there are willing buyers and sellers, the user is almost always guaranteed

that his or her order will be executed. However, the price that the user pays may

not always be the price obtained from a real-time quote service, especially in fast-

moving markets where security prices are more volatile. The larger the the number of

shares to be bought or sold, the greater the chance that the user will receive different

prices for parts of the order. The other types of orders vary depending on price

manipulation and time to market.

• Limit Order A limit order is usually placed to secure the selling (or purchase) of a

security at a higher (or lower) price than the current market price in order to limit

losses. A buy-limit order can be executed only at the limit price or lower, and a

sell-limit order can be executed only at the limit price or higher.

8

However, there are some points a customer should keep in mind before placing an

order. First, if the security market price never falls (or rises), then a buy-limit (or

a sell-limit) order may never be executed. Second, limit orders are executed in the

order in which they are received. Therefore, it is possible that the order will not be

filled if the price fluctuates above or below the limit before the order rises to the front

of the waiting line.

For example, suppose that a security has a current value of $12.00/share on the

market. A customer wants to make sure that he or she does not pay more than

$10.00/share for the security, therefore the customer enters a limit-buy order at

any limit-price up to $10.00. Doing so, the customer avoids buying a security at

$20.00/share and suffering immediate losses if the security drops later in the day or

weeks ahead.

• Stop Order A stop order is placed to protect or ensure profits. A buy-stop order

specifies for a security a price above the current market price, and a sell-stop order

specifies a price below the current market price. Once the market price of the re-

quested security reaches the stop-price, the order becomes a market order and gets

executed. Note that the order might not be executed at the preferred price, since

once it turns into market order, the order is filled at the current market price. A

stop order is particularly advantageous to an investor who is unable to monitor his

or hers securities for a period of time. However, a stop order may be activated by a

short-term fluctuation in a security’s price.

For example, let’s say a customer purchases 100 shares of XYZ security for $30.00/share.

The customer wants to limit a loss, so he or she places a sell-stop order at $28.00/share.

If the price falls to $28.00 or below, the stop order is activated and sell-market order

for 100 shares of XYZ security is initiated.

The use of a stop order is common for a security that trades on an exchange market

rather than in an over-the-counter market. Sometimes broker-dealers may not allow

stop orders on some securities.

• Stop-Limit Order A stop-limit order combines the features of a stop order and

a limit order. Once the stop-price is reached, the order becomes a limit order at

a specified limit-price. Once the limit price is reached, the limit order becomes a

market order.

9

In order to avoid the risk of a stop order being executed in a fast-moving market, the

customer can place a buy-stop-limit order. Suppose that the current market price of

XYZ security is $20.00. A customer decides to place a buy-stop-limit order with stop

price $30.00 and limit price $31.00. If the market price of XYZ passes $30.00, the

order will be placed as a buy-limit order. If the market price rises rapidly to $35.00,

the limit order will not be executed until it falls which may be never. However, the

customer avoids getting a bad fill.

• Bracket Order A bracket order combines market, limit and stop orders to help the

customer limit losses and guarantee profits by bracketing an order with two opposite

side orders. A limit-buy order is bracketed by a high-side sell-limit order and low-side

sell-stop order, and a limit-sell order is bracketed by a high-side buy-stop order and

low-side buy-limit order.

The order quantities of the high- and low-side bracket orders match the quantity of

the original order. The bracketed orders have a default $1.00 offset from the original

price. The offset can be changed for a specific order. Once a price rises or falls and

one of the bracket orders is executed, the order on the other side is cancelled.

For example, suppose a customer submits a buy-bracket order for 100 shares of XYZ

security at a limit-price of $83.87/share and offset $1.00. When the price drops below

the limit-price, the limit order is executed. Immediately, two new orders are placed.

A sell-limit order for $84.87/share and a sell-stop order for $82.87/share, both for

100 shares of XYZ security. If the price of the security on the market falls and the

sell-stop order is executed, the high-side sell-limit order is cancelled. If instead the

price of the security rises and the sell-limit order is executed, the low-side sell-stop

order is cancelled.

• Market-to-Limit Order A market-to-limit order is first executed as a market order

at the current best market price. If the order is only partially filled, the rest is

cancelled and submitted as a limit order at the price with which the already-filled

market order was executed.

For example, a customer wants to buy 500 shares of XYZ security at the current

market price. When the order gets filled, only 400 shares are bought at $20.00/share.

The rest of the order is cancelled and a new buy-limit order is placed for 100 shares

10

of XYZ security at $20.00/share. The new order will only be executed if the market

price of XYZ security falls under $20.00/share.

• Limit-on-Close/Open Order A limit-on-close order will execute at the closing of

the market, if the closing price of the security is at or better than the limit-price.

Similarly, a limit-on-open order will execute at the opening of the market, if the

opening price of the security is at or better than the limit-price. Otherwise the order

is cancelled.

• Immediate-or-Cancel Order An immediate-or-cancel order is executed as a mar-

ket order. If it is executed only partially, the rest of the order is immediately can-

celled.

• Good-till-Cancelled/Date/Time Order An order cannot be cancelled by a cus-

tomer, unless it is specified as a good-till-cancelled order. A good-till-cancelled order

is executed as a market order and stays active until it is filled completely or the

customer cancels it. Similarly, a good-till-date/time order is executed as a market

order and stays active until it is filled completely or until the specified ending date

and time have passed.

• Fill-or-Kill Order A fill-or-kill order requires a complete order to be executed

immediately as a market order. If the order is not filled completely when it is accepted

by the market, the entire order is automatically cancelled.

• All-or-None Order An all-or-none order is executed as a market order, but only if

a complete order can be filled all at once. The order remains active until a complete

order is filled or it is cancelled at the close of the market.

2.2.1 Summary

This chapter describes an example of an online trading system that forms a case study that

we are evaluating. In the course of this dissertation, all orders described in the previous

section are modelled. The next chapter describes Feature Oriented Modelling Language

that is used to model the example of the described online trading system.

11

Chapter 3

Feature-Oriented Requirements

Modelling

The purpose of this dissertation is to evaluate Shaker’s language for modelling the require-

ments of a software system to be developed, with special emphasis given to the features

to be supported [12]. Before the reader understands how we approached modelling the

online trading system (OTS), he or she should understand Shaker’s approach to organizing

the requirements of a system under development (SUD). The approach extends already

established requirements engineering (RE) approaches, like the Object Oriented Analysis

(OOA) methodology for specifying an SUD. Section 3.1 first defines requirements modelling

for an SUD. Section 3.2 introduces RE modelling, using Larman’s OOA methodology as

a representative approach. Section 3.3 describes the Feature-Oriented Software Develop-

ment (FOSD) paradigm, which extends the UML language, but with respect to features.

Section 3.4 describes the basics of the Alloy language , and its notation which are adapted

by FORM to describe its notation. Section 3.5 upgrades FOSD with Feature-Oriented

Requirements Modelling (FORM) developed by Shaker et. al, and Section 3.6 shows how

the notation is used in FORM.

12

3.1 Requirements

When developing a software system, it is common for software engineers to first create a

description of the proposed software system together with clients, because “the description

is the clay in which software developers fashion their works” [9]. The most important part

of creating the description of the software is distinguishing between the requirements, which

describe what the software should do, and the design, which describes how the software

should be built. The requirements description includes the system-under-development

(SUD); its domain which describes environment in which SUD will run; and use and

purpose of the SUD. The purpose of the software should be looked for outside of the

software: in the real world, where the effects and benefits of the SUD will be observed,

interpreted, assessed and enjoyed. On the other hand, the design describes the internal

components, interconnections, data structures and algorithms of the SUD [9].

3.2 Requirements Modelling

There are many languages for expressing requirements [10, 2, 11, 8]. At a high level they

all advocate a common collection of views of the requirements. We describe RE-style

modelling using Larman’s OOA methodology, because it does a throughout job describing

the Unified Modelling Language (UML) that is known to most readers [11].

The UML is “a visual language for specifying, constructing, and documenting the arti-

facts of systems” [11]. In general, it describes diagrams that can be used either to represent

concepts in the real world or software elements in an object-oriented design.

The first product of analyzing and designing a software-under-development (SUD) in

an OOA manner is the domain model, which describes all noteworthy concepts, vocabulary

and information content in the SUD’s environment. The domain model can be considered

a visual representation of the real-world objects and concepts in the domain. In the UML,

a domain model is illustrated as a set of class diagrams that show domain objects or

conceptual classes and their attributes, and the associations between them. A conceptual

class can be an idea, a thing, or an object [11].

To create a domain model, one must identify the conceptual classes, draw them in a

UML class diagram, and add associations and attributes. For example, in an online trading

13

system (OTS), it makes sense to consider objects like a transaction, a user and a providing

trading system (see Figure 3.1). One should keep in mind that a domain model is not a

data model, which shows persistent data to be stored. Therefore, one should not exclude

a class just because there is no need to remember the information, or because a class has

no attributes [11].

Transaction

id: TransactionID

User

id: UserID

Providing Trading
System (PTS)

id: PTSIDn UserTransaction 1
user transaction

Figure 3.1: A simple UML class diagram of the online-trading system

If a concept carries information that needs to be remembered, the information is repre-

sented as attributes. An attribute is a “logical data value of an object” [11]. An attribute

should not be a complex domain concept. When deciding whether concept data should be

expressed as an attribute or a component class, one keeps in mind that attributes are usu-

ally primitive data types, e.g. strings or numbers. For example, each of the three classes

in the OTS domain model in Figure 3.1 carries information about a class’s own unique ID.

If concept data are of a complex type, they are modelled as a component class, and a

line connects the compound class to the component class. An association is “a relationship

between instances of classes that indicates some meaningful and interesting connection”

[11]. An association has a name and is represented as a line between the related classes.

Each end of an association is called a role and includes a name, and a multiplicity expres-

sion. For example, in the OTS domain model in Figure 3.1 there is an association between

a user and transaction. The association name is UserTransactions and role names are

user and transaction, respectively.

The second product of OOA is a behavioural model of the SUD, which defines the

SUD’s behaviour in terms of externally visible inputs from the environment and the SUD’s

outputs, which affect the state of the environment. The behavioural model describes the

SUD’s reaction “to three different events: external events from actors, timer events, and

faults or exceptions” [11].

Larman uses System Sequence Diagrams (SSD) as the notation to express an SUD’s

14

behaviour. An SUD illustrates related input and output events. An input to the SUD is a

system event, which is generated by an actor, e.g. User, and handled by a system operation

[11]. An SSD has a graphical representation that shows events created by external actors,

their order, and the SUD’s corresponding responses.

System operations are modelled using operation contracts that specify pre- and post-

conditions. Each contract consists of four sections: the name of the operation and its

signature; cross references to related operations; the precondition, which lists noteworthy

assumptions about the state of the domain before the operation executes; and the post-

condition, which describes the state of the domain after the operation is completed [11].

A contract is a way to describe an SUD’s functionality in a way that one can focus on

what the final effects of the operation on the domain are, rather than on how the operation

is implemented. The effects an SUD can have on the domain state include the creation

or deletion of objects, the creation and deletion of associations, and changes to attribute

values.

3.3 Feature-Oriented Software Development

Breaking down the SUD into distinguishable characteristics creates a collection of features

that can be composed according to needs of a user. From a collection of features, different

software systems can be generated that have well-defined commonalities as well as differ-

ences. The “set of software systems generated from a set of characteristics” is also called

a software product line [1].

Feature-Oriented Software Development (FOSD) is “a paradigm for the construction,

customization, and synthesis of large-scale software systems” [1]. The central concept

of FOSD is a feature, which is a “distinguishable characteristic of the software that is

important to individuals involved in developing the product” [12, 3]. It can be considered

as a unit of functionality of an SUD that corresponds to a distinct set of requirements and

may also correspond to one or more design decisions and potential configure options [1].

In FOSD, a family of SUDs is described in terms of their commonalities and variabilities

in analysis, design, and implementation. FOSD favours the use of the feature concept in

all phases of the software cycle, so that features specified during the analysis phase can be

15

traced through the design and implementation. These features can be reused in multiple

products, and product instances of the product line vary in the features they provide [1].

FOSD focuses on three major research problems [1]:

Feature Modelling: Feature-Oriented Domain Analysis (FODA) was the first ap-

proach in this area. It introduced the concept of a feature, and uses features to

describe common and variable properties of a software system. It introduced the

notion of a Feature Model (FM), which describes the relationships and dependencies

among features in a product line. However, features are explicit only in analysis and

not in later stages of development, e.g., not in design and code.

Feature Interaction: This research focuses mainly on run-time interactions among

features. A feature interaction is defined as a “situation in which two or more features

exhibit unexpected behaviour that does not occur when the features are used in

isolation” [1]. Given any two features, they might run independently, i.e., not interact

at all, they might be designed to interact, or they might interact unexpectedly.

Feature Implementation: This research makes feature explicit at the source-code

level (e.g., features are separated from the base code). This separation allows de-

velopers to trace features from the problem space to their realization in the solution

space.

The domain analysis part of FOSD includes defining features that are part of an SUD

or part of a software product line. Developers learn about the scope of the product line,

the features it includes, and how features cooperate. The goal is to define common and

distinguishable properties in the product line, and to express them with FMs. Some FOSD

approaches strive to enrich feature models with additional information about feature car-

dinalities, constraints, and non-functional properties of features, but they risk making the

FM less understandable to users who are not domain experts. The FOSD methodologies do

not offer a complete solution for requirements modelling (RM) in terms of features. In par-

ticular, they are not complete, detailed, or precise enough to reason about the behaviours

of collections of features in a specific product. Therefore, Shaker et. al decided to de-

velop Feature Oriented Requirements Modelling (FORM), which is RE-style requirements

modelling combined with FOSD, resulting in a feature-oriented model of the functional

requirements of an SUD.

16

3.4 Alloy

Feature Oriented Requirements Modelling (FORM) uses Alloy notation to describe the

domain model and constraints on it. Therefore, we first present Alloy in this section, and

its notation in the following subsection (3.4.1). FORM is presented in section 3.5 and

FORM’s application of the language is described in section 3.6.

Alloy is a declarative language. Its logic describes a problem in terms of sets of objects

(entities), relationships between objects, and constraints on allowable values of object

sets and relations. Alloy represents a complex object as a relation, and its properties

as constraints. An operation specifies allowable changes, in terms of a pre- and a post-

condition, on each objects and relations [8].

The Alloy language offers a flexible type system with subtypes and unions of types.

It also supports modular specifications, which enable reuse of generic declarations and

constraints in different contexts [8].

Alloy analysis supports automatic simulation and checking. Given a logic formula, the

analyzer attempts to find model states or executions that satisfy, via an example model

state, or violate, via a counterexample model state, the Alloy specification. The search

space is defined by the user and is limited by the number of objects of each type, called

the scope. Defining the scope gives the user control over the examined space, and makes

it feasible for the analyzer to exhaustively examine all instances within it. Some examples

may require a smaller scope for some entities, and a higher scope for others [8].

Following Dijkstra’s dictum that “program testing can be used to show the presence of

bugs, but never to show their absence” [8], Alloy assumes a small scope hypothesis. The

hypothesis states that “all flaws in models can be illustrated by small instances, since they

arise from some shape being handled incorrectly, and whether the shape belongs to a small

or large instance makes no difference” [8]. The advantage of this hypothesis is that one

can use the Alloy analyzer to check properties about an infinite number of model instances

on a finite number of small model instances.

17

3.4.1 Alloy Notation

The following subsection is a summary of the Alloy language notation [8]. The Alloy logic

uses relational logic, which “combines the quantifiers of first-order logic with the operators

of the relational calculus” [8].

An Alloy model is an entity-relationship model, like a UML class diagram, which de-

scribes the set of possible states. Each model state represents a specific domain state

(DS) (i.e., a particular valuation of object sets and relationships), a pair of states, or an

execution trace of states. The Alloy analyzer searches for instances that satisfy the set of

given definitions and constraints. For example, Figure 3.2 shows an example of an Alloy

trace. In the first state, Ticker1 has a symbol and a price and it is observed by User1 with

UserId0. In the second state, User0 becomes an observer of the same Ticker1.

An object structure in an Alloy model is built from atoms, which are basic entities,

and relations, which are relationships between atoms. An atom is a primitive entity that

cannot be divided into smaller parts; its properties do not change over time, and it does

not have any built-in properties. For example, a user’s ID can be represented as an atom

of type UserID.

Each object in Alloy is declared as a signature, which is a type declaration. For example,

a simplified version of the domain model of an OTS presented in Chapter 3, shown in Figure

4.1, has the following set of signatures:

sig User {}

sig PTS {}

sig Transaction {}

Every entity, message, and relationship in a FORM domain model has its own signature.

In order to build objects that are more complex, Alloy uses relations to capture internal

structure. A relation consists of a set of tuples, where each tuple represents a sequence of

atoms. For example, given the following sets:

Transaction = {(t0), (t1)}

TransactionID = {(0), (2)}

then the following relation, transaction id, between structures Transaction and TransactionID

transaction_id: Transaction -> TransactionID

18

Figure 3.2: An example of an Alloy instance trace

19

is a type declaration for relationship transaction id, whose value set is the cross product

of the domain and the range:

transaction_id = {(t0, 0), (t0, 1), (t1, 0), (t1, 1)}

A relationship can also be represented as a three-way mapping between concepts. Every

complex object is represented as a signature and its attributes are represented as three-

way relationships between the object, its attribute, and attribute type. For example,

the attribute transaction id of a Transaction object represents a three-way mapping

between the Domain State (DS) of the OTS, a Transaction, and its type TransactionID.

It has the following signature:

sig DS {

transaction_id: Transaction -> TransactionID

}

Alloy offers two different categories of operators to manipulate objects, sets of objects,

and relations: set operators and relational operators. In a set operator, the order of tuples

is irrelevant, but their arity and types matter. Whereas in a relational operator, the order

of tuples is essential, but their arity does not play an important role. In Alloy, a set is

represented as a relation, and a scalar is represented as singleton set. This representation

allows the any operators, including the relational join operator, to be applied to scalars,

sets, and relations.

The following operators are set operators and each can be applied to any pair of relations

as long as they have the same arity. Since a scalar is interpreted as a singleton set, no

additional braces ({}) are needed when operating over scalars [8]:

+ union

& intersection

- difference

= equality

Alloy provides a constant literal none to represent an empty set. Alloy also supports

a range of relational operators, but FORM extensively uses only one, so we will omit

20

descriptions of the others (for descriptions of other relational operators, please refer to

Jackson [8]).

The operator dot join (.) is a relational operator for composing tuples. In order to

join two tuples, s1− > ...− > sm and t1− > ...− > tn, the last atom of the first tuple,

sm, and the first atom of the second tuple, t1, must be the same atom. The result is

the following tuple, in which the matching atoms, sm and t1, are omitted: s1− > ...− >

sm−1− > t2− > ...− > tn. If there are no matching atoms sm and t1, the result of the

join is empty. The tuples can have any arity, as long as they are not both unary. If

tuples represent functions, then the composition is also a function, and the dot operator

represents functional composition. For example, let UserTransactions be the relationship

between users, User, and their transactions, Transaction, defined in the following way:

user: UserTransactions -> User

transaction: UserTransactions -> Transaction

Let us further assume that every Transaction has an ID, and every User has an ID,

specified in the following way:

transaction_id: Transaction -> TransactionID

user_id: User -> UserID

If one wants to find the user for a specific transaction given a transaction ID, tID, one

applies the dot join operation between user, transaction, user id, and transaction id.

(1) To retrieve a specific transaction from the set of all transactions whose ID is value tID,

one first applies the dot join operator to tID and the relation transaction id:

transaction_id.tID: Transaction

(2) To retrieve the associated element of UserTransactions, one applies the dot join

operation to the relation transaction and the transaction from step (1):

transaction.(transaction_id.tID): UserTransactions

(3) To find the user who is associated with the transaction, one applies the dot join operator

to the element of UserTransactions from step (2) and the relation user:

(transaction.(transaction_id.tID)).user: User

(4) Finally, to find the user id of the user identified in step (3), one applies the dot join

operation to the user and the relation user ids:

21

((transaction.(transaction_id.tID)).user).user_id: uID

The result is the user id, uID, that is the ID of the user who is associated with the

transaction whose ID is value tID.

FORM uses Alloy syntax in two ways: as an expression language over model elements,

and as an action language for writing assignments to model variables. A relational operator

is used to navigate a FORM model and to isolate the objects, object sets, attributes,

and relations that are to be evaluated and manipulated. For example, when an OTS is

processing a limit order, it constantly receives updates for ticker prices. When it receives

an update, it has to check if the new price has reached the required price. Suppose that the

FORM feature machine that processes the order self stores information about the required

price in a local variable LOBFMLimitPrice in the behavioural state (bs). LOBFMLimitPrice

is a relation between the LOBFM feature machine and the Price stored in the behavioural

state, bs:

LOBFMLimitPrice: LOBFM -> Price

In order to access the variable value, Price, one applies the dot join operator to the

behavioural state (BS) and the variable. FORM defines the literal self, which is a pointer

to the feature machine’s own instance, and bs which is a complex Alloy structure that

represents the behavioural state of the behavioural model. To check whether the newly

received price has reached the limit price, LOBFMLimitPrice, one applies less-or-equals

operator between variables:

self.bs.LOBFMLimitPrice <= price

FORM also uses relational operators for expressing constraints on model elements in

order to isolate objects, sets of objects, attributes, or relationships that are being con-

strained. For example, to restrict the number of user id attributes that a User entity can

have, our FORM model specifies the following cardinality constraint:

all user: Users | #user.user_id = 1

This constraint includes a quantifier, stating that every (all) object in the set Users must

have only one ID. Alloy logic supports the following quantifiers for expressing constraints:

• all x: e | F formula F holds for every x in e;

22

• some x: e | F formula F holds for some x in e;

• no x: e | F formula F holds for no x in e;

• lone x: e | F formula F holds for at most one x in e;

• one x: e | F formula F holds for exactly one x in e.

As mentioned earlier in this section, Alloy also offers analysis, which can be used to

either find examples that satisfy or counterexamples that do not satisfy given assertions.

An assertion is expressed as an expected constraint on allowable model instances. For

example, the following set of assertions specifies constraints on the numbers of the roles

status and transaction in the relationship TransactionStatus:

all transaction_status: TransactionStatuss | #transaction_Status.status = 1

all transaction_status: TransactionStatuss | #transaction_Status.transaction = 1

Quantifiers can be applied to Alloy expressions as well:

• some e e has some tuples;

• no e e has no tuples;

• lone e e has at most one tuple;

• one e e has exactly one tuple.

For example, user id relates each UserID to exactly one User, which means that no two

users can have the same id. This constraint is specified as part of the definition of a

user id:

user_id: User one -> UserID

Constraints are used to express facts and assertions. Facts are constraints that are

assumed to always hold. They can be written as signature facts, which means that they

apply to every member of a signature; such facts are expressed in the second ellipsis of the

signature. For example, a FORM domain model always model always has a set of signature

facts. Let us assume that a domain model has users each of whom has a unique ID. In the

Alloy declaration of the domain state (DS) the connection between a user and his or her

23

ID is given in the first ellipsis, and the constraint on the number of IDs each user can have

is given in the second ellipsis:

sig User {}

sig UserID {}

sig DS {

user_id: User -> UserID

}{

all user: Users | #user.user_id = 1

}

Assertions are also intended to be valid in a model instances, but the analyzer does not

assume that they always hold. The analyzer checks the assertions against the rest of the

model. If it is possible for a model instance to violate an assertion, the analyzer returns a

counterexample. For example, no two users in an OTS are allowed to have the same ID. In

order to check if the constraint is satisfied, one declares an assertion which states that for

all instances of the domain state DS, and for all users in each instance of the DS, user id

maps each user u to exactly one ID:

assert unique_user_id {

all ds: DS | all u: ds.Users | #u.(ds.user_id) = 1

}

Alloy is a declarative language, so operations are expressed by specifying the state of

objects before and after the operation. For example, in the OTS model, we assume that

the set of Tickers stays the same throughout the execution. In order to express this

constraint, two different names for two different domain states are needed: ds, referring

to the domain state before the operation, and ds’, referring to the domain state after the

operation. We can then write expressions and constraints on the values of model elements

in the two domain states:

pred DSexec(ds: DS, ds’: DS) {

ds.Tickers = ds’.Tickers

}

All expressions that can be reused are packaged as functions in Alloy. For exam-

ple, the enhanced feature machine for limit order (shown in Figure 3.6) uses functions

24

CreateTransaction and ForwardOrder. The function CreateFunction is defined as a

predicate. A predicate in Alloy has the same functionality as a function but it evaluates

to true or false, whereas functions evaluate to a set. The complete Alloy function with

signature is given in Figure 3.3. (1) A function adds a new limit-order object to the set

of Orders. The object’s attribute values are assigned by adding mappings (object ->

new value) to the attributes’ relations, time stamp and status volume (see lines 6-8 in

Figure 3.3). (2) The function adds a Transaction object with new links to its attributes

(see lines 10-15 in Figure 3.3). (3) At the end, the function adds the new relationships

transaction status and user transactions and their associated roles: one role for each

entity involved in the relationship (see lines 17-23 in Figure 3.3).

3.5 FORM

Shaker et al.’s Feature-Oriented Requirements Modelling (FORM) methodology combines

Requirements Engineering (RE) style requirements modelling with FOSD resulting in a

feature-oriented model of the functional requirements of an SUD. It takes into account how

detailed software requirements should be modelled, and further structures those models

with respect to features. The goals of the methodology are modularity, such that features

are modelled as independent modules; modifiability, which allows new features to be added

with minimal changes to the existing features; and precision, which enables automatic

checking of properties like correctness, consistency, and non-determinism. This section is

a summary of their work [12].

The methodology uses the notion of requirements as described by Zave and Jackson

[9, 13]. The domain of a system under development (SUD) is the “environment or context

in which the SUD will operate” [12]. The requirements of an SUD “are desired effects of

the SUD on its domain” [12]. Requirements are expressed solely in terms of observations

and manipulations of the domain phenomena — that is, in terms of what the system does.

System phenomena — that is, descriptions of how the system works, such as the internal

components, communications, and system interface phenomena, like sensors and actuators

and their exact inputs and outputs — are not considered in this methodology.

The methodology structures requirements into three models: a domain model, a be-

havioural model, and a functional model. This decomposition takes into account already

25

1 pred CreateTransaction[ds, ds’: DS, t: Transaction, order: Ordered,

2 transaction_status: TransactionStatus,

3 user_transactions: UserTransactions, ttype: TransactionType,

4 taction: TransactionAction, tticker_symbol: TickerSymbol,

5 tvolume: Volume, tuser: User] {

6 ds’.Ordereds = ds.Ordereds + order

7 ds’.time_stamp = ds.time_stamp + order->currTime

8 ds’.status_volume = ds.status_volume + order->tvolume

9

10 ds’.Transactions = ds.Transactions + t

11 ds’.type = ds.type + t->ttype

12 ds’.action = ds.action + t->taction

13 ds’.ticker_symbol = ds.ticker_symbol + t->tticker_symbol

14 ds’.volume = ds.volume + t->tvolume

15 ds’.phase = ds.phase + t->initiated

16

17 ds’.TransactionStatuss = ds.TransactionStatuss + transaction_status

18 ds’.status = ds.status + transaction_status->order

19 ds’.status_transaction = ds.status_transaction + transaction_status->t

20

21 ds’.UserTransactionss = ds.UserTransactionss + user_transactions

22 ds’.user = ds.user + user_transactions->tuser

23 ds’.transaction_user = ds.transaction_user + user_transactions->t

24 }

Figure 3.3: An example of an Alloy function CreateTransaction

26

established views of requirements modelling and further structures the views according

to features. Each of the models is described in detail in the following subsections, 3.5.1,

3.5.2, and 3.5.3, respectively. Small examples will be drawn from the online trading system

(OTS) example described in Chapter 2. Chapter 4 presents a more complete description

of our application of FORM to the OTS case study.

The methodology first considers each feature in isolation, and then offers methods

to address feature interactions to create a complete working product. The methodology

assumes there is one or more base features in the SUD that can be enhanced by one or

more enhancement machines which in turn can be again enhanced. If a feature is designed

to override the behaviour of another feature, we say this is a planned interaction, and the

new feature is modelled as an enhancement feature. Other features that add functionality

to the SUD without interacting with the base system may be additive features that operate

in isolation. Such features may have unplanned interactions, such as conflicting actions or

inconsistent assumptions about the domain or the base feature. Unplanned interactions

are resolved with precedence rules.

3.5.1 Domain Model

A domain model is a structured description of the domain of an SUD expressed in a

notation similar to a UML class diagram. For example, Figure 3.4 shows a simple domain

model of an online trading system (OTS). A domain model consists of a set of uniquely

identifiable objects that can have attributes, a set of relationships that have roles, a set of

constraints, and an initialization predicate. An object can either be an entity (e.g. User),

a relationship (e.g. UserTransactions), or a message (e.g. RequestOrder).

An entity is a persistent object that can be either active (e.g. influence other objects)

or passive. Our OTS example has two actor types: PTS and User. Passive objects can

be controlled by the SUD, the domain or both. For example, a Ticker can be controlled

by the OTS or the domain, while a Transaction is a record produced by the OTS and is

purely controlled by the SUD.

A relationship is a UML association between other objects in the domain. Each re-

lationship end point represents the role that that object plays in the relationship (note,

an n-ary relationship has n roles). For example, our simple OTS example has the follow-

27

«actor»
User

id: UserID

«source» RequestOrder(type: TransactionType, action: TransactionAction, ticker_symbol: TickerSymbol, volume: Volume)
.
«target» TransactionCompleted(transaction_id: TransactionID)

«actor»
Providing Trading System (PTS)

id: PTSID

«source» SendTransactionID(id: TransactionIDPTS)
«source» TransactionFilled(transaction_id: TransactionIDPTS, confirmation_no: Integer, volume: Volume, price: Price)
«source» PTSTransactionCompleted(transaction_id: TransactionIDPTS)
.
«target» SendOrderToPTS(action: TransactionAction, ticker_symbol: TickerSymbol, volume: Volume)

«sud»
Transaction

transaction_id: TransactionID
id_pts: TransactionIDPTS
ticker_symbol: TickerSymbol
type: {market, limit, stop, stop_limit, market_to_limit, limit_on_close, ...}
act ion: {buy, sel l}
phase: {initiated, inprocess, accepted, denied, cancelled, suspended}

«sud»
Filled

price: Price
confirmation_no: Integer

«sud»
Status

time_stamp: Time
volume: Volume

«sud»
Ordered

transaction status
TransactionStatus

Domain Model Constraints

Invariants:
 #PTSs = 1
 no disj u, u': Users | u.user_id = u'.user_id
 no disj t, t': Transactions | t.transaction_id = t'.transaction_id
 no disj t, t': Transactions | t.id_pts = t'.id_pts

Frame Constraints:
 DS_exec() {
 all ds, ds': DS |
 (all u: ds.Users, u': ds'.Users | u = u' => u.(ds.user_id) = u'.(ds'.user_id)) and
 (all t: ds.Transactions, t': ds'.Transactions | t = t' => t.(ds.transaction_id) = t'.(ds'.transaction_id)) and
 (all t: ds.Transactions, t': ds'.Transactions | t = t' => t.(ds.id_pts) = t'.(ds'.id_pts)) and
 (all t: ds.Transactions, t': ds'.Transactions | t = t' => t.(ds.ticker_symbol) = t'.(ds'.ticker_symbol))
 }

user

transaction

.
UserTransactions

Figure 3.4: A simple FORM domain model of an online trading system

28

ing relationships: UserTransaction, which connects User and Transaction objects, and

TransactionStatus, which connects Transaction and Status objects.

A message is an object that represents an interaction between the SUD and an actor

in the domain. A message can have one or more parameters with corresponding types,

and an end point which is either the source or target of the message. For example, our

OTS example has several messages that are sent and received by Users and the PTS. A

User initiates a transaction by sending a RequestOrder message to the OTS. This message

contains additional information in the form of parameters: the type of transaction (type),

an indication of whether the request is to buy or sell shares (action), the ticker symbol of

the share (ticker symbol), and the number of shares to be traded (volume).

A domain model describes the set of allowable domain states. A domain state represents

an “instance of the domain model with particular set of objects with a particular attribute

values” [12]. A domain state is transient if it includes messages, and persistent otherwise.

The domain model can be augmented with constraints that place additional restrictions on

what constitutes an allowable domain state. Specially, domain-model constraints restrict

the values and instances of domain entities and relationships and are expressed in the Alloy

modelling language. For example, the constraint that every user has a unique id in the

domain model of an OTS is expressed in the following way:

no disj u, u’: Users | u.user_id = u’.user_id

Constraints on the domain that are imposed by the SUD are specified in the behavioural

model.

As is described in the next section, a FORM behavioural model monitors and modifies

the domain model of an SUD. A domain change event (DCE) indicates a change to the

domain state of the domain model that may trigger the behavioural model to impose a set

of domain change actions (DCAs). For example, a user transmits a request for a trade,

via a RequestOrder message. The resulting RequestOrder+ DCE triggers a set of DCAs

that creates a transaction object, +CreateTransaction, and sends a request for trading

to the ProvidingTradingSystem (PTS), +SendOrderToPTS.

FORM makes use of UML stereotypes to extend the notation for describing the domain

model of an SUD. It uses stereotypes to define whether a concept in the SUD is an actor

(<<actor>>), is domain controlled (<<domain>>), or is SUD controlled (<<sud>>). It

29

also uses stereotypes to indicate whether an actor is a target, <<target>>, or a source,

<<source>>, of a message (see Figure 4.1).

3.5.2 Behavioural Model

A behavioural model consists of a set of feature machines (FMs), one for each feature.

Every FM describes the requirements of a feature, including its name, parameters, and

constraints. The feature is modelled as a state machine with a set of states and a set of

transitions. Each FM monitors the domain state and issues actions that change it. The FM

of different features run concurrently and use precedence rules to solve feature interactions.

A feature that is designed to interact with another feature f is expressed as an enhance-

ment feature machine (EFM) that overrides feature f . In this case, f is the base feature

but f may itself be an enhancement feature over another feature. For example, suppose a

customer decides to trade some stocks. If the customer does not have any special requests,

the trade request is transmitted as a market order. If the customer wants to limit losses,

he or she can request a limit order. We model a limit order as an enhancement of a basic

market order.

The rest of this section describes general FMs and then describes how new features

that enhance existing features are modelled as EFMs.

General Feature Machine

A feature machine (FM) is a hierarchical state machine that is constructed from a set of

local variables, a set of control states, a set of transitions between them, and a construc-

tor. Transitions in a FM represent changes in the behaviour of the modelled SUD. Each

transition is labelled with the event that triggers the transition, a guard condition that

limits the situations in which the transition fires, and a set of actions that are performed

whenever the transition fires. A state can either be basic with no internal components, or

composite, if it is composed of several component states. The set of control states that an

FM is currently in is the FM’s state configuration. A valid state configuration contains one

basic state and all of its ancestor states.

A local variable has a name and a type, which may be a concept in the domain model,

and stores information that is needed for the duration of the FM. A transition label may

30

refer to objects, attributes, states, or variables in the domain or behavioural model. FORM

introduces macros to help simplify transition labels and make the model easier to read. A

macro is defined with a let key word and is referenced with a letter $. For example, in

order to reference the user in MOFM who initiated the order, the machine MOFM, self,

needs to look for local variable MOFMUser in the behavioural state, bs. Since the notation

to access the local variable is a bit cumbersome, a macro $user is defined:

let user = self.(bs.MOFMUser)

Each transition can either be a constructing, regular, overriding, or terminating tran-

sition. A regular transition has a source state, a label, a priority, and a destination state.

A constructing transition fires when the FM is initialized by its constructor. The source

state of a constructing transition is the machine’s initial pseudo-state (depicted as a black

circle). A terminating transition has a destination state that is depicted as an X to indicate

the end of the machine’s execution. Overriding transitions only appear in enhancement

feature machines (EFM); they are described in the section on EFMs.

For example, Figure 3.5 shows the FM for market orders. It has two states: MOWaitingForAck

and MOWaitingForExecution. The market order FM keeps local variables that refer to

the market-order transaction (MOFMT) and the requesting user (MOFMUser). The local vari-

ables in the behavioural model are used to store information that the FM needs to refer to

during execution. Local variables persist only for the duration of the FM or can be aliases

to elements in the domain model. The variable MOFMT is an alias for a transaction stored

in the set of transactions in the domain model of the OTS.

The FM for the market-order has four transitions: the constructing transition t1, which

fires when the FM is invoked; transition t2, in which the transaction ID is received from

the PTS; transition t3, in which the PTS sends information about partial transactions

that have been filled; and transition t4, which terminates the FM when the transaction is

completed.

A transition label consists of a trigger, which is a domain change event: a guard, which

is an Alloy constraint over domain elements and local variables, and a set of actions.

Looking at the transitions more closely: Once an order is sent to the PTS (t1), and the

transaction ID has been assigned (t2), the OTS waits in state MOWAitingForExecution

for messages from the PTS. Whenever the order is partially filled, the PTS sends a mes-

sage TransactionFilled to the OTS with information about the filled transaction. This

31

t4
:

 P
T

S
T

ra
n

sa
ct

io
n

C
o

m
p

le
te

d
+

(o
,

t_
id

,
e

p
)[

$
tr

a
n

sa
ct

io
n

.d
s.

id
_

p
ts

=
t_

id
]

/
+

T
ra

n
sa

ct
io

n
C

o
m

p
le

te
d

(n
e

w
 T

ra
n

sa
ct

io
n

C
o

m
p

le
te

d
,

$
tr

a
n

sa
ct

io
n

.d
s.

id
,

$
u

se
r)

+
+

T
ra

n
sa

ct
io

n
.p

h
a

se
($

tr
a

n
sa

ct
io

n
,

co
m

p
le

te
d

)

t1
:

 [
tr

u
e

]
/

o
rd

e
r=

n
e

w
 O

rd
e

re
d

+
O

rd
e

re
d

(o
rd

e
r,

 t
im

e
_

s
ta

m
p

=
c

u
rr

T
im

e
,

v
o

lu
m

e
=

v
o

lu
m

e
)

t=
n

e
w

 T
ra

n
s

a
c

ti
o

n
+

T
ra

n
sa

ct
io

n
(t

,
tr

a
n

sa
ct

io
n

_
id

=
n

e
w

 T
ra

n
sa

ct
io

n
ID

,
id

_
p

ts
=

n
o

n
e

,
ti

ck
e

r_
sy

m
b

o
l=

ti
ck

e
r_

sy
m

b
o

l,
 a

ct
io

n
=

a
ct

io
n

,
ty

p
e

=
m

a
rk

e
t,

 p
h

a
se

=
in

it
ia

te
d

)
+

T
ra

n
sa

ct
io

n
S

ta
tu

s(
n

e
w

 T
ra

n
sa

ct
io

n
S

ta
tu

s,
 t

ra
n

sa
ct

io
n

=
t,

 s
ta

tu
s=

o
rd

e
r)

+
U

se
rT

ra
n

sa
ct

io
n

s(
n

e
w

 U
se

rT
ra

n
sa

ct
io

n
s,

 t
ra

n
sa

ct
io

n
=

t,
 u

se
r=

$
u

se
r)

+
+

M
O

F
M

.M
O

F
M

T
(s

e
lf

,
t)

+
S

e
n

d
O

rd
e

rT
o

P
T

S
(n

e
w

 S
e

n
d

O
rd

e
rT

o
P

T
S

,
a

ct
io

n
=

t.
d

s.
a

ct
io

n
,

 t
ic

ke
r_

sy
m

b
o

l=
t.

d
s.

ti
ck

e
r_

sy
m

b
o

l,
 v

o
lu

m
e

=
t.

d
s.

vo
lu

m
e

,
$

p
ts

)

M
a

rk
e

t
O

rd
e

r

M
a

cr
o

s:

le
t

tr
a

n
sa

ct
io

n
 =

 s
e

lf
.b

s.
M

O
F

M
T

le

t
p

ts
 =

 d
s.

P
T

S
s

le

t
u

se
r

=
 s

e
lf

.b
s.

M
O

F
M

U
se

r

V
a

ri
a

b
le

s:

M
O

F
M

U
se

r:
 U

se
r

M

O
F

M
T

:
T

ra
n

sa
ct

io
n

C
o

n
st

ru
ct

o
r:

R

e
q

u
e

st
O

rd
e

r+
(

o
,

ty
p

e
,

a
ct

io
n

,
ti

ck
e

r_
sy

m
b

o
l,

 v
o

lu
m

e
,

e
p

)

/

+
M

O
F

M
(

n
e

w
 M

O
F

M
,

M
O

F
M

T
=

n
o

n
e

,
M

O
F

M
U

se
r=

e
p

)

M
O

W
a

it
in

g
F

o
rA

ck

t2
:

 S
e

n
d

T
ra

n
sa

ct
io

n
ID

+
(

o
,

id
,

e
p

)
 /

+
+

T
ra

n
sa

ct
io

n
.p

h
a

se
($

tr
a

n
sa

ct
io

n
,

in
p

ro
ce

ss
)

+
+

T
ra

n
sa

ct
io

n
.i

d
_

p
ts

($
tr

a
n

sa
ct

io
n

,
id

)

M
O

W
a

it
in

g
F

o
rE

xe
cu

ti
o

n

t3
:

 T
ra

n
sa

ct
io

n
F

ill
e

d
+

(o
,

tr
a

n
sa

ct
io

n
_

id
,

co
n

fi
rm

a
ti

o
n

_
n

o
,

vo
lu

m
e

,
p

ri
ce

,
e

p
)

[$
tr

a
n

sa
ct

io
n

.d
s.

id
_

p
ts

=
tr

a
n

sa
ct

io
n

_
id

]
/

fi
ll

e
d

=
n

e
w

 F
il

le
d

+
F

il
le

d
(f

il
le

d
,

ti
m

e
_

st
a

m
p

=
cu

rr
T

im
e

,
vo

lu
m

e
=

vo
lu

m
e

,
p

ri
ce

=
p

ri
ce

,
co

n
fi

rm
a

ti
o

n
_

n
o

=
co

n
fi

rm
a

ti
o

n
_

n
o

)
+

T
ra

n
sa

ct
io

n
S

ta
tu

s(
n

e
w

 T
ra

n
sa

ct
io

n
S

ta
tu

s,
 t

ra
n

sa
ct

io
n

=
$

tr
a

n
sa

ct
io

n
,

st
a

tu
s=

fi
ll

e
d

)

Figure 3.5: A FORM feature machine for a market order

32

transition has a guard that ensures that the transition fires only if the transaction ID in

the message matches the machine’s market order, MOFMT. When a matching message is

received, the OTS performs two events: (1) it creates a new object, a Filled transaction,

that records information about the completed trade:

filled = new Filled

+Filled(filled, time_stamp, volume, price, confirmation_no)

(2) It creates a new relationship between the matching market order MOFMT and the new

filled object. This action makes use of a macro to more easily refer to the FM’s associated

market order object in the domain model.

+TransactionStatus(new TransactionStatus, transaction=$transaction,

status=filled)

Lastly, every FM has a constructor. When an FM is invoked, its constructor is called.

The constructor contains a trigger and a guard, and generates a fresh instance of the FM.

For example, an instance of an market-order FM in Figure 3.5 is constructed whenever a

User sends a message RequestOrder of any type.

RequestOrder+(type, MOFMAction, MOFMTickerSymbol, MOFMVolume)

The constructor’s actions create a new instance of the FM, MOFM, and initialize the local

variables. For example, the user variable is linked to the user who requested the order (i.e.,

the end point of the message):

+MOFM(new MOFM, MOFMT=none, MOFMUser=ep)

The FM’s associated transaction, MOFMT, is initially set to none — the value is changed

by the set of actions performed by the constructing transition. Upon instantiation of the

FM, the constructing transition fires. In that transition, (1) a new transaction object is

created and linked to the local variable:

t=new Transaction

+Transaction(t, transaction_id=new TransactionID, id_pts=none,

ticker_symbol=MOFMTickerSymbol, action=MOFMAction, type=market,

phase=initiated)

+MOFM.MOFMT(self, t)

(2) The newly created transaction is linked to the user:

33

+UserTransactions(new UserTransactions, transaction=t, user=$user)

(3) A new status relationship is created and linked to the newly created transaction:

order=new Order

+Order(order, time_stamp=currTime, volume=MOFMVolume)

+TransactionStatus(new TransactionStatus, transaction=t, status=order)

(4) A message is sent to the PTS containing information about the order:

+SendOrderToPTS(new SendOrderToPTS, action=t.ds.action,

ticker_symbol=t.ds.ticker_symbol, volume=t.ds.volume,

$pts)

Enhancement Feature Machine

A feature that is designed to interact with another feature is called an enhancement feature

and is modelled in an enhancement feature machine (EFM). It is designed to add new

behaviour (i.e., new states, transitions, guards, and actions) to the behaviour of another

feature, modelled either as a general feature machine or an EFM of yet another feature.

An EFM executes concurrently with its base feature’s FM, and can monitor and control

actions of the base machine [12]:

• an EFM transition guard can refer to the execution state of its base FM,

• an EFM can asset an invariant (i.e., a constraint) over the state configuration of its

base FM,

• an EFM can change the execution state of the base FM, and

• an EFM transition can override a transition in the base FM. In this case, the EFM

transition is labelled with an <<override query>> stereotype, which means that,

if enabled, the EFM transition takes precedence over and prohibits the concurrent

execution of any enabled transition of the base FM.

For example, suppose that a user submits a specific kind of trade order that is to be

executed only if the market price of a security reaches a certain price. In that case, the

34

order is transmitted as a limit order. Since a limit order transforms into a market order as

soon as the market price reaches the limit price, a limit-order FM can be modelled as an

EFM shown in Figure 3.6, whose base feature is the market-order FM (shown in Figure

3.5).

Limit Order Buy

LOBWaitingForUpdate

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($limit_price<new_price)] /

++Ticker.price((ds.symbol).symbol, new_price)
+GetTickerFromPTS(new GetTickerFromPTS, $transaction.ds.ticker_symbol, $pts)

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol), ($limit_price>=new_price)] /
++Ticker.price((ds.symbol).symbol, new_price)

ForwardOrder($transaction, $pts)
++MOFM.MOMain(self.bs.LOBFMBase, MOWaitingForAck)

[true] /
«override query: $base»

t=new Transaction
CreateTransaction(t, type, action, ticker_symbol, volume, $user)
+GetTickerFromPTS(new GetTickerFromPTS, ticker_symbol, $pts)

++LOBFM.LOBFMT(self, t)
++LOBFM.LOBFMBase(self, $base)

$base.MOFMT=$transaction
++MOFM.MOMain($base, MORoot)

Macros:
 let me = $user
 let user = self.bs.LOBFMUser
 let transaction = self.bs.LOBFMT
 let pts = ds.PTSs
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let limit_price = self.bs.LOBFMLimitPrice

Variables:
 LOBFMUser: User
 LOBFMLimitPrice: Price
 LOBFMT: Transaction
 LOBFMBase: MOFM
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, volume, limit_price, ep)[type=limit, action=buy] /
 +LOBFM(new LOBFM, LOBFMLimitPrice=limit_price, LOBFMT=none, LOBFMBase=none , LOBFMUser=ep)

Functional Model

CreateTransaction(t: Transaction, type: TransactionType, action: TransactionAction,
 ticker_symbol: TickerSymbol, volume: Volume, u: User)
 order=new Ordered
 +Ordered(order, t ime_stamp=currTime, volume=volume)
 +Transaction(t, transaction_id=new TransactionID, id_pts=none,
 ticker_symbol=ticker_symbol, action=action, phase=initiated,
 type=limit)
 +TransactionStatus.status(new TransactionStatus, order)
 +UserTransactions(new UserTransactions, transaction=t, user=$user)

ForwardOrder(t: Transaction, pts: PTS)
 ++Transaction.type(t, market)
 +SendOrderToPTS(new SendOrderToPTS, action=t.ds.action,
 ticker_symbol=t.ds.ticker_symbol, volume=t.ds.volume, pts)

Figure 3.6: A FORM enhancement feature machine for a limit order

A new instance of a limit order FM is created whenever a User sends a message

RequestOrder of type limit. Since a buy-limit order differs from a sell-limit order, two

different FMs are designed. A buy-limit order FM (from now on addressed as limit-order-

buy (LOB) FM) is invoked by the following constructor that has a guard over the type

and action:

RequestOrder(type, action, ticker_symbol, volume, limit_price) [type=limit, action=buy]

35

As a result, a new instance of the LOB FM is created and all local variables are initialized.

Note, this FM carries two local variables: LOBFMLimitPrice, which stores the user-specified

limit price, and LOBFMBase, which is a reference to the base FM:

+LOBFM(new LOBFM, LOBFMLimitPrice=limit_price, LOBFMT=none, LOBFMBase=none,

LOBFMUser=ep)

Recall that this RequestOrder will also activate a new instance of a market-order FM, be-

cause the constructor of that FM reacts to RequestOrder messages of all types. The con-

structor of the limit-order EFM overrides the constructing transition of the base machine to

create a limit-order Transaction in the domain rather than a market-order Transaction.

<<override query: ($base)>>

order=new Ordered

+Ordered(order, time_stamp=currTime, volume=volume)

t=new Transaction

+Transaction(t, transaction_id=new TransactionID, id_pts=none,

ticker_symbol=ticker_symbol, action=action, phase=initiated,

type=limit)

+TransactionStatus.status(new TransactionStatus, order)

+UserTransactions(new UserTransactions, transaction=t, user=$user)

++LOBFM.LOBFMT(self, t)

The new transaction is also linked to the base machine’s transaction:

$base.MOFMT=$transaction

However, the order is not sent to the PTS, until the market price is at or below user’s

specified limit price. Instead, a request for information about the security is sent to the

PTS:

+GetTickerFromPTS(new GetTickerFromPTS, ticker_symbol, $pts)

An override query can change the state of the base machine. If the EFM is to execute

in parallel with the base machine, then the base machine is put into some valid state

configuration. If the base machine is to be suspended, then the base machine’s execution

state is set to the most appropriate composite state. In that case, the base machine can

execute only transitions whose source state is the composite state or any ancestor state;

but it cannot respond to any event that triggers a transition from a descendant state. In

36

this example, the only composite state in the base feature MOFM is the root state, MORoot.

Therefore, MOFM is sent to the root state with the following command:

++MOFM.MOMain($base, MORoot)

When a user transmits a trade request, both FMs, base and enhancement FM, are

constructed. In order for the EFM to monitor and control actions of the base FM, it needs

to have a reference to it. This reference is established by finding the base FM that is active

and that has the same user as the EFM in the behavioural state bs:

(bs.MOFMUser).LOBFMUser

Since a user can have more than one transaction, this constraint can return more than

one base FM. When the system initially receives a trade request, both newly instantiated

machines have same user and both have an empty transaction. Therefore, we specify

a second constraint that returns all base FMs that have an empty transaction in the

behavioural state bs:

(bs.MOFMT).none

We intersect both constraints to reference the base machine that has the same user as

LOBFMUser and has an empty transaction. Thus, LOBFM’s reference to the base FM in

LOBFM is set in the following way:

++LOBFM.LOBFMBase(self, (bs.MOFMUser).LOBFMUser & (bs.MOFMT).none)

After construction, the LOB FM waits for updates about the security’s market price. If

the price reaches the specified limit price, the LOB FM is terminated and the market-order

base feature resumes execution in state MOWaitingForAck:

UpdateTicker+(symbol, new_price)[$transaction.ds.ticker_symbol=symbol,

LOBFMLimitPrice>=limit_price]

++MOFM.MOMain($base, MOWaitingForAck)

In addition, the LOB FM’s terminating transaction updates the ticker price in the domain

with the new price:

++Ticker.price((ds.symbol).symbol, new_price)

The type of the transaction order changes to a market order:

37

++Transaction.type($transaction, market)

Finally, the market-order with corresponding information about the transaction is sent to

the PTS:

+SendOrderToPTS(new SendOrderToPTS, action, ticker_symbol, volume, $pts)

All FMs, general and enhancement, must follow certain well-formedness rules that

forbid two actions in the same step to conflict with each other. For example, if one action

adds an object or relationship to the domain state, the other cannot remove it in the

same step. Also, two actions can also not set in the same transition different values to

the same attribute of an object, the same local variable or the state configuration of the

base FM. In addition, FMs must be deterministic. If more than one transition is enabled

simultaneously, one must have a higher priority than the other.

3.5.3 Functional Model

Behavioural models can become complicated overtime when some transitions require long

sequences of actions. Moreover, some actions are performed repeatedly by multiple tran-

sitions. Thus, FORM includes a functional model, which is a “collection of functions that

describe named groupings of changes to the domain state” [12]. The functional model can

be used to simplify transition labels in behavioural models and improve modifiability, since

a function is written once but can be reused multiple times.

A function has a name, a list of parameters, a precondition, and a set of atomic domain

changes. For example, when a customer submits an order to the OTS, a new Transaction

object is created. When a new transaction is created, two new relationships are also always

created: TransactionStatus and User object. Since this is a common step in most of

FMs, we create a function CreateTransaction, that takes a reference to a Transaction

object, information to initialize the transaction (type, action, ticker symbol, volume) and

a reference to User object:

CreateTransaction(t: Transaction, type: TransactionType, action: TransactionAction,

ticker_symbol: TickerSymbol, volume: Volume, u: User)

This function does not have any preconditions, so the function looks like the following:

38

CreateTransaction(t: Transaction, ttype: TransactionType, taction: TransactionAction,

tticker_symbol: TickerSymbol, tvolume: Volume, u: User)

Pre-condition: [true]

Post-conditions:

order=new Ordered

+Ordered(order, time_stamp=currTime, volume=tvolume)

+Transaction(t, transaction_id=new TransactionID, id_pts=none,

ticker_symbol=tticker_symbol, action=taction, type=ttype,

phase=initiated)

+TransactionStatus(new TransactionStaus, transaction=t, status=order)

+UserTransactions(new UserTransactions, transaction=t, user=u)

3.6 Feature Oriented Requirements Modelling in Al-

loy

Section 3.4 introduces Alloy syntax using examples from the online trading system (OTS)

model. This section describes how to systematically represent a Feature Oriented Require-

ments Modelling (FORM) domain model in Alloy. Every domain model (DM) is an Alloy

model that is composed of signatures for all types defined in the domain model (feature

models, concepts, messages, relationships, ...).

Recall that an Alloy model represents a collection of model instances. Each instance

represents a distinct model state, a pair of states, or an execution trace. Similarly, a

domain state (DS) of a FORM domain model is an instance of the domain-model space,

representing a particular valuation of sets of objects and relationships. When running the

Alloy analyzer on a domain model, it returns all valid DSs that adhere to the model’s

definitions and constraints.

The rest of this section describes guidelines for constructing an Alloy model for a FORM

DM. sig DS{...}{...} represents the DS space. The first list of definitions are elements

of the DS that appear in the first ellipsis of the definition of the DS:

1. Every concept in the DM has its own signature that is a type definition, and a set

of objects of that type in the DS. For example, concept User has corresponding type

definition:

39

sig User {}

and set of User objects in the DS { }:

Users: set User

2. Every attribute is defined as a relation in the DS that maps the parent concept to the

attribute type. For example, the attributes of the Transaction concept are defined

as follows:

transaction_id: Transaction -> TransactionID

id_pts: Transaction -> TransactionIDPTS

ticker_symbol: Transaction -> TickerSymbol

action: Transaction -> TransactionAction

phase: Transaction -> TransactionPhase

type: Transaction -> TransactionType

status: Transaction -> TransactionStatus

3. Similarly, every role is defined as a relation between its association and the role

type (i.e., concepts). Similarly, every message parameter is defined as a relation

between its message and the parameter type, and every message end point is defined

as a relation that maps the message to the active entity that sends or receives the

message. For example, GetTickerInfo has the following definition, which relates the

message to exactly one User:

ep_GTI: GetTickerInfo -> one User

4. Every SUD-controlled concept has an associated relation in the DS that maps the

concept to all of the DM actors that can observe the object. There is a similar

relation for each of the SUD-controlled concept’s attributes, roles, and parameters.

For example, Transaction is a passive concept in the OTS example. It can only be

observed by the OTS, the user who is involved in the transaction, and the PTS. This

constraint is expressed as the following Alloy type definition:

TransactionObs: Transaction -> (User + PTS)

Since all of a transaction’s attributes are also observable by the user and the PTS,

all of Transaction’s attributes have similar relations:

40

transaction_id_obs: Transaction -> (User + PTS)

id_pts_obs: Transaction -> (User + PTS)

ticker_symbol_obs: Transaction -> (User + PTS)

action_obs: Transaction -> (User + PTS)

phase_obs: Transaction -> (User + PTS)

type_obs: Transaction -> (User + PTS)

status_obs: Transaction -> (User + PTS)

As mentioned earlier, a FORM domain model comes with a set of constraints that repre-

sent well-formedness conditions on the model and domain constraints on the requirements.

These constraints are listed in the second ellipsis of the DS signature.

1. Every DS lists domain-specific constraints. For example, the OTS has a constraint

on the number of PTSs:

#PTSs=1

2. For each role of each relationship (and each parameter of message) whose type is

a concept, there is a constraint that makes sure that an instance of that role (or

attribute) is given in the DS if an only if the associated link (or concept) is also in

the DS. For example, the UserTransactions relationship has two roles, user and

transaction. user’s type is concept User. Therefore, if the user is in the DS,

then it has a corresponding member in the set of Users. The following constraint

expresses these relationships:

(UserTransactions.user in Users) and (user.User in UserTransactionss)

3. For each end-point of a message, there is a constraint that makes sure that an end-

point is in the DS if and only if the message and the end-point concept are also in the

DS. For example, a relationship ep GTI is in the DS, if and only if its corresponding

message, GetTickerInfo, and its end-point, User, are in the DS:

(GetTickerInfo.ep_GTI in Users) and (ep_GTI.User in GetTickerInfos)

4. The same is true for all SUD-controlled concepts. For example, a relation that

connects a concept Transaction to its observer, TransactionObs, is in the DS, if

41

and only if both the Transaction object and the corresponding observing active

entities, PTS + User, are in the DS:

(Transaction.TransactionObs in (PTSs + Users)) and

((PTS + User).TransactionObs in Transactions)

5. Each passive object has a constraint that states that if the passive object cannot be

observed by some active entity, then neither can its attributes, roles, and parameters.

For example, Transaction together with its attributes are only observable by its

user, the OTS, and the PTS. The following operation uses state subset notation if

an entity can observe an attribute of a Transaction, it must be able to observe the

Transaction itself:

all transaction: Transactions |

{ transaction.TransactionIDObs in transaction.TransactionObs

transaction.IDPTSObs in transaction.TransactionObs

transaction.TickerSymbolObs in transaction.TransactionObs

transaction.TypeObs in transaction.TransactionObs

transaction.ActionObs in transaction.TransactionObs

transaction.PhaseObs in transaction.TransactionObs }

6. For every attribute, parameter, or role instance in the DS, the corresponding con-

tainer instance (object, message, association, respectively) is also in the DS. For

example, object User has attribute user id. The model ensures that if an instance

of user id is in the DS, then its object User is in the DS, as well:

user_id.UserID in Users

7. Every attribute, role, or parameter has a constraint about its cardinality. For ex-

ample, the relationship TransactionStatus has two roles, each having cardinality

1:

all transaction_status: TransactionStatuss | #transaction_Status.status = 1

all transaction_status: TransactionStatuss | #transaction_Status.transaction = 1

8. Every message has a constraint that links it to at most one active entity. For example,

each GetTickerInfo message has at most one (User) sender:

42

#ep_GTI.GetTickerInfos =< 1

9. Finally, no two elements of the same relationship can relate the same objects in the

DS. For example, there exists no two distinct (no disj) elements of the TransactionStatus

relationship that would relate the same instances of roles, status and transaction:

no disj s, t: TransactionStatuss |

{ s.status = t.status, s.transaction = t.transaction}

3.6.1 Summary

This chapter describes requirements engineering and its approach to feature oriented mod-

elling. It places FORM withing FOSD approach and describes FORM’s notation. The

next chapter describes modelling an online trading system with FORM.

43

Chapter 4

Modelling the Online Trading

System in FORM

Shaker et al. developed the FORM on a motivating example, a telephony system, that

had already been thought out and clearly defined in terms of features. The services and

features of a telephony system can be freely combined to form different configurations; each

telephone call is configured with the features to which the caller and callee subscribe. The

features can interact in different ways, including expected and unexpected interactions.

A caller is not aware of the features a callee has, and a callee is not aware of the caller’s

features. For example, suppose that a user has Automatic Call Back enabled, and he or she

calls a user who has Call Waiting enabled. In this case, Call Waiting takes precedence over

Automatic Call Back, so that if the callee ignores the call waiting signal, the Automatic

Call Back feature takes effect and records information to reestablish the second call once

the first call ends.

On the other hand, an online trading system (OTS) is not primarily thought of as a

set of distinct features. It offers variability in terms of different types of trade orders, but

these orders do not interact with each other. A user can create unlimited number of orders,

each of which invokes its own feature machine (FM) that runs independently. Some orders

create and block other FMs, but the interactions are all planned and are included in the

FM models. That is, the features themselves interfere only when they are designed to do

so. Furthermore, different trading systems never interact with each other. The OTS is

our system-under-development (SUD) and the domain describes the OTS’s environment,

44

and the behaviour model describes the SUD’s behaviour in terms of the SUD’s effect on

its environment. We assume that there is only one Providing Trading System (PTS) that

provides data about securities and their prices.

The OTS case study is an evaluation of only the expressiveness of the FORM notations.

Specifically, the case study evaluates the ability to which FORM’s notations are able to

model all aspects of the requirements for an OTS including planned interactions between

features. The case study does not evaluate FORM’s approach to resolving unplanned

interactions between features.

Section 4.1 first describes the domain model of the OTS. Sections 4.2 and 4.3 describe

the behavioural model. We chose to describe three FMs describing the behaviour of the

OTS in detail. Examples of other FMs can be found in Appendix B. First, the simplest,

base FM (market order) is described. Then an example of EFM that overrides the base

FM, limit order, is given. Finally, section 4.3.1 gives an example of an EFM that spawns

and kills instances of other EFMs, bracket order, is given.

4.1 Domain Model

A simple version of the OTS domain model was presented in Section 3.5.1 as means to

show key aspects of a FORM domain model. The full version includes an additional entity,

Ticker, and additional messages between the OTS and two actors, Users and the PTS (see

Figure 4.1). A Ticker is an entity that is controlled by both the domain and the system

under development (SUD).

Each User has a unique ID. It has a set of trade transactions that are being processed

or have been processed. Ownership is shown by way of an association, UserTransaction,

that has two roles: user and transaction. Users are the source of several messages for the

OTS, like GetTickerInfo(), RequestOrder(), and Cancel(); and are the target of several

messages from the OTS, like ForwardTIToCustomer(), TimeExpired(), OrderCancelled,

and TransactionCompleted().

The PTS also has a unique ID. It communicates only with the OTS, therefore, it is the

source and target of multiple messages from the OTS.

Each Transaction is an entity that holds information about the status and results of

some trade request. Each time an order is placed, a Transaction object is created that

45

«actor»
User

id: UserID

«source» GetTickerInfo(ticker_symbol: TickerSymbol)
«source» RequestOrder(type: TransactionType, action: TransactionAction, ticker_symbol: TickerSymbol, volume: Volume
 limit_price: Price, stop_price: Price, time: Time)
«source» Cancel(transaction_id: TransactionID)
.
«target» ForwardTIToCustomer(ticker_symbol: TickerSymbol, ticker_price: Price)
«target» TimeExpired(transaction_id: TransactionID)
«target» OrderCanceled(transaction_id: TransactionID)
«target» TransactionCompleted(transaction_id: TransactionID)

«actor»
Providing Trading System (PTS)

id: PTSID

«source» SendTransactionID(id: TransactionIDPTS)
«source» TransactionFilled(transaction_id: TransactionIDPTS, confirmation_no: Integer, volume: Volume, price: Price)
«source» PTSTransactionCompleted(transaction_id: TransactionIDPTS)
«source» UpdateTicker(ticker_symbol: TickerSymbol, ticker_price: Price)
«source» PTSCancelConfirm(transaction_id: TransactionID)
.
«target» SendOrderToPTS(action: TransactionAction, ticker_symbol: TickerSymbol, volume: Volume)
«target» GetTickerFromPTS(ticker_symbol: TickerSymbol)
«target» CancelOrder(transaction_id: TransactionID)

«sud»
Transaction

transaction_id: TransactionID
id_pts: TransactionIDPTS
ticker_symbol: TickerSymbol
type: {market, limit, stop, stop_limit, market_to_limit, limit_on_close, ...}
act ion: {buy, sel l}
phase: {initiated, inprocess, cancelled, completed}

«both»
Ticker

symbol: TickerSymbol
price: Price

«sud»
Filled

price: Price
confirmation_no: Integer

«sud»
Status

time_stamp: Time
volume: Volume

«sud»
Ordered

transaction status
TransactionStatus

user

transaction

.
UserTransactions

Domain Model Constraints

Invariants:
 #PTSs = 1
 no disj u, u': Users | u.user_id = u'.user_id
 no disj t, t': Tickers | t.ticker_symbol = t'.ticker_symbol
 no disj t, t': Transactions | t.transaction_id = t'.transaction_id
 no disj t, t': Transactions | t.id_pts = t'.id_pts

Frame Constraints:
 DS_exec() {
 all ds, ds': DS |
 (ds.Tickers = ds'.Tickers) and
 (all t: ds.Tickers | all t': ds'.Tickers | t=t' => t.(ds.ticker_symbol) = t'.(ds'.ticker_symbol)) and
 (all u: ds.Users, u': ds'.Users | u = u' => u.(ds.user_id) = u'.(ds'.user_id)) and
 (all t: ds.Transactions, t': ds'.Transactions | t = t' => t.(ds.transaction_id) = t'.(ds'.transaction_id)) and
 (all t: ds.Transactions, t': ds'.Transactions | t = t' => t.(ds.id_pts) = t'.(ds'.id_pts)) and
 (all t: ds.Transactions, t': ds'.Transactions | t = t' => t.(ds.ticker_symbol) = t'.(ds'.ticker_symbol))
 }

Figure 4.1: Domain model of an online trading system

46

holds of all the corresponding data. Whenever an order is (partially) filled, that same

transaction is updated with information about the filled order. The Transaction object

has a unique ID that is used by the OTS. It also has an ID assigned by the PTS that the

PTS uses to distinguish it from other transactions in the PTS. We require both IDs because

transactions may exist in the OTS for a long time before they become known to the PTS

and are assigned a PTS ID. For example, in a limit-on-open order, the user transmits a

request for trade, but the request does not get processed before the next morning. After

the stock market opens in the morning, the OTS checks with PTS the market price of the

stock. If the price does not match the limit price, the order is never transmitted and the

OTS sends the user a notification about the cancelled order. In this case, the only ID that

the corresponding Transaction object has is the OTS ID (see Figure B.6).

Each Transaction object also holds information about the stock being traded (tickerSymbol),

the action to be performed (whether it is a buy or a sell order), the current phase of the or-

der (initiated, in process, accepted, denied, cancelled, or suspended), the type of the order

(whether it is market, limit, stop, bracket, etc.), and the status of the order (whether the

order has been placed, and all information about partial fills of the order). A Transaction

is completely controlled by the SUD, since it holds information generated only by the OTS.

It is created when the order is placed, and is updated when the order is processed. On

the other hand, a Ticker object is controlled both by the environment and the SUD. It

holds information about securities, including the name (symbol) and the market price of

the security. The domain controls the set of tickers that can be traded by the SUD, and

the SUD updates ticker information (i.e., price) each time it receives information from the

PTS.

A complete Alloy representation of the domain model is given in Appendix A. It was

modelled with guidelines described in section 3.5.1 and includes the domain model of the

OTS together with constraints.

4.2 Base Feature Model

The most basic type of trade order is a market order: a request to immediately buy or sell

some number of shares of a stock, at the current market price. All other types of trade

orders turn into market orders once a specified set of rules are satisfied. Therefore, we

47

chose to model market orders as a general feature machine (FM) and model all other types

of trade orders as enhancement FMs (EFMs) that augment and override a market order

or some other order. Our model for market order was presented in its entirety in Section

3.5.2.

4.3 Enhancement Feature Models

All other types of trade orders can be considered as enhancements of a market order. They

either suspend the market order FM to perform some preprocessing, or they allow the

market order to proceed and they modify the results. For example, a buy-limit order is

modelled as an EFM that suspends the execution of an associated market order FM, waits

until the market price of a particular stock has reached a set limit price, and then allows

the market order FM to execute the trade.

We modelled nine different EFM models for different types of orders. They are all

presented in Appendix B: a limit order (see Figure B.3), a stop order (see Figure B.4), a

stop-limit order (see Figure B.5), a limit-on-open order (see Figure B.6), a limit-on-close

order (see Figure B.7), a market-to-limit order (see Figure B.8), good-till-cancelled order

(see Figure B.9), a good-till-date/time order (see Figure B.10), and a bracket order (see

Figure B.11).

4.3.1 Buy Bracket Order

A bracket order combines market, limit, and stop orders so that a customer can limit

losses and guarantee profits by limiting an order with two opposite-side orders. A bracket

order FM is an example of a more complex EFM. It not only adds actions to the base

FM behaviour but also creates other EFMs. When the EFM completes, its completion

transition creates two more EFMs. When one of the EFMs sends an order to the PTS, the

other one is cancelled.

A buy bracket-order FM (BOBFM) is constructed whenever a user sends a request for

an order, whose type is equal to bracket and whose action is equal to buy (see Figure

4.2):

RequestOrder(type, action, ticker_symbol, volume, offset)[type=bracket, action=buy]

48

Bracket Order Buy

«override query: ($base)»
t=new Transaction

CreateTransaction(t, type, action, ticker_symbol, volume, $user)
++BOBFM.BOBFMT(self, t)

$base.MOFMT=$transaction
+LOBFM(new LOBFM, LOBFMLimitPrice=limit_price, LOBFMT=t, LOBFMBase=$base, LOBFMUser=$user)

++MOFM.MOMain($base, MORoot)

BOWaitingForLimitOrder

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($limit_price>=new_price)] /

+LOSFM(new LOSFM, LOSFMLimitPrice=$limit_price+$offset,
LOSFMT=$transaction, LOSFMBase=self.bs.BOBFMBase, LOSFMUser=$user)

+SOSFM(new SOSFM, SOSFMStopPrice=$limit_price-$offset,
SOSFMT=$transaction, SOSFMBase=self.bs.BOBFMBase, SOSFMUser=$user)

BOWaitingForBracketOrders

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($limit_fm.LOSFMLimitPrice<=new_price)] /

-SOSFM($stop_fm)

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($stop_fm.SOSFMStopPrice>=new_price)] /

-LOSFM($limit_fm)

Variables:
 BOBFMUser: User
 BOBFMLimitPrice: Price
 BOBFMOffset: Price
 BOBFMT: Transaction
 BOBFMBase: MOFM
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, volume, limit_price, offset, ep)[type=bracket, action=buy] /
 +BOBFM(new BOBFM, BOBFMLimitPrice=limit_price, BOBFMOffset=offset, BOBFMT=none, BOBFMBase=none, BOBFMUser=ep)

Macros:
 let me = $user
 let user = self.bs.BOBFMUser
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let limit_fm = (bs.LOSFMUser).$me & (bs.LOSFMT).($transaction)
 let stop_fm = (bs.BOSFMUser).$me & (bs.BOSFMT).($transaction)
 let transaction = self.bs.BOBFMT
 let limit_price = self.bs.BOBFMLimitPrice
 let offset = self.bs.BOBFMOffset
 let pts = ds.PTSs

Figure 4.2: A FORM enhancement feature machine for a bracket order

49

In the constructing transition, a new Transaction object is created, with correspond-

ing type, action, ticker symbol, and volume. The transition also constructs a buy-limit

order FM (LOBFM) and associates it with the same transaction. At the same time, a mar-

ket order FM is created (in response to the same RequestOrder message). The BOBFM’s

constructing transition disables MOFM, and enters state BOBWaitingForLimitOrder.

While in state BOBWaitingForLimitOrder, the BOBFM keeps track of ticker updates

from the PTS (which are issued in response to requests from the LOBFM). When the

ticker price reaches the limit price, the terminating transition of the LOBFM transforms

the order into a market order and sends the order to the PTS. At the same time, the

BOBFM creates two new orders, a sell-limit order and a sell-stop order. The correspond-

ing FMs are created, LOSFM and SOSFM, whose prices are updated with the BOBFM

offset: $limit price+$offset and $limit price-$offset. BOBFM transitions to state

BOBWaitingForBracketOrders.

The BOBFM again keeps track of ticker updates from the PTS system. If the ticker

price rises on the market:

UpdateTicker+(symbol, new_price) [$limit_fm.LOSFMLimitPrice<=new_price]

the LOSFM reacts by turning the order into a market order (e.g. modifying the domain

state) and activating the base feature machine (changes the state of an MOFM, see Figure

3.6). At the same time, BOBFM terminates the SOSFM:

-SOSFM()

Alternatively, if the ticker price falls on the market, the SOSFM reacts:

UpdateTicker+(symbol, new_price) [$stop_fm.SOSFMStopPrice>=new_price]

the SOSFM reacts by turning the order into a market order and activating the base feature

machine, MOFM. At the same time, BOBFM terminates the LOSFM:

-LOSFM()

In both scenarios, the BOBFM exits its waiting state and terminates. At this point, the

base FM, MOFM, continues and executes the desired order.

50

4.4 Summary

This chapter describes modelling the online trading system with FORM. It describes do-

main, behavioural, and functional model in detail. The next chapter describes the analysis

of modelling the online trading system with FORM.

51

Chapter 5

Results and Evaluation

This chapter relates our experience in performing the case study and presents our evaluation

of the FORM notation. Section 5.1 first presents our results of using the Alloy analyzer

to check our FORM domain model. Section 5.2 gives evaluation of the FORM modelling

language and introduces changes made to the methodology. Section 5.3 gives examples

of workarounds and deficiencies of FORM encountered while modelling an online trading

system (OTS).

5.1 Alloy Analysis of a FORM Domain Model

We used the Alloy analyzer to perform simple checks of our Alloy model for the FORM

domain model of the OTS example. We were interested in whether the model was over-

constrained (i.e., whether the analyzer was unable to find example of instances), and

whether any of the generated model instances looked inappropriate. Recall that the an-

alyzer looks for instances that either satisfy or violate constraints. If the analyzer does

not return any instances, then the model is overconstrained. When limiting the scope

of the analysis to two domain states, two Users and two Tickers, the analyzer returned

several instances of the model, which showed that we did not over-constrain the model.

After manually inspecting the instances, we found two flaws in FORM: (1) objects had

attributes that are not in the domain state, and (2) constraints were true for all instances

in the universe, so the analyzer generated the model with instances that we are not in-

terested in. After modifying the constraints on the domain system, we reran the analyzer

52

and concluded that all instances of domain state represented the model in the correct way.

Figures 5.1 and 5.2 show an example of an instance trace returned by the analyzer. The

trace shows only User, Ticker and GetTickerInfo objects with their attributes. In the

first domain state (see Figure 5.1), User1 with the UserID initiates a GetTickerInfo re-

quest for a Ticker0 with TickerSymbol1 and Price1. The next domain state (see Figure

5.2) is the same, except that User1 becomes an observer of the Price of objects Ticker0

and Ticker1. We can see that tickers do not change their symbols, and users keep their

user ID. We notice that the price of Ticker0 changes (in the first domain state it has a

link to Price0 and in the second domain state it has a link to Price1), which is not a

problem since ticker prices do change over time. We also notice that all constraints on

the cardinality of attributes hold: message GetTickerInfo has only one link to a ticker

symbol and one link to an end point; user has only one Id; tickers have only one ticker

symbol; and tickers have only one price value at a time although their values can change.

Figure 5.1: The first domain-state instance of an Alloy-generated trace of the OTS domain

5.2 Evaluation of the FORM Notation

This dissertation evaluates the expressiveness of the Feature-Oriented Requirements Mod-

elling (FORM) notation by modelling the requirements for a system-under-development

(SUD) that can be thought of in terms of its features. We modelled an online trading

system (OTS) that receives requests from customers about buying or selling stocks and

53

Figure 5.2: The second domain-state instance of an Alloy-generated trace of the OTS

domain

forwards requests to a providing trading system (PTS). The OTS offers variability in terms

of the types of orders that customers can request (e.g., market order, limit order, stop or-

der, etc.). In our model, each type of order is represented as a different feature. A market

order is modelled as a base feature machine (FM), and other order types are modelled

as enhancement features (EFMs) that extend or override the market-order feature. The

OTS is smart enough to process orders until they are ready to enter into the market. For

example, the PTS will not be aware of a limit order until the market price of the stock to

be traded has reached a required limit price.

In order to successfully model the OTS example using FORM, we required six changes

to the FORM modelling language, three of which were successfully adopted into the FORM

definition. First, the scope of the triggering event of the constructor of a feature machine

needed to be extended to include the constructing transition (5.2.1). Second, we identified

some deficiencies in the set of well-formedness constraints on a domain model. Existing

constraints were modified to operate on only elements in a domain-state (DS) instance

rather than on types, and an additional constraint was added (5.2.2). Third, frame predi-

cates had to be added to specify that some variables don’t change value during execution

(5.2.3). The changes are described in detail in the following subsections. Dissertation uses

terms “pre-dissertation FORM” and “post-dissertation FORM” to refer to how the FORM

methodology worked before and after the case study, respectively. All examples presented

in the dissertation so far and in the appendices use the post-dissertation FORM notation.

54

5.2.1 Extended the Scope of the Trigger Event of Feature-Machine

Constructors

As described in Section 3.5.2, every FM in a FORM model has a constructor. The con-

structor is invoked when a particular domain change event (DCE) happens that enables

the constructor’s guards. For example, a new instance of a Market-Order Feature Machine

(MOFM) is created when a user sends a message RequestOrder, which carries information

about the order type, the type of action (buy or sell), the ticker symbol, and the amount

the customer wants to buy or sell. Figure 3.5 shows that the constructor of the MOFM

invokes the machine and initializes the local variables:

+MOFM(new MOFM, MOFMTransaction=none, MOFMUser=ep)

The MOFM keeps information about the user who initiated the request, MOFMUser, and

the new transaction to be processed, MOFMTransaction. The constructor of an FM does

not make any changes to the domain state, because there is no notion of overriding the

constructor of an FM and all feature actions should be override-able. Therefore, the local

variable MOFMTransaction is initialized to none in the constructor and is reassigned when

the new Transaction is created.

In pre-dissertation FORM, the scope of a constructor’s trigger event was limited to

just the constructor, so in order to use parameters of the RequestOrder in creating the

Transaction object in the constructing transition, the MOFM would need to create ad-

ditional local variables to hold the parameter values. This is wasteful because it forces

the declaration of a number of additional local variables that are used only in the initial-

izing transition. The following lines show how the MOFM constructor and constructing

transition would be modelled in pre-dissertation FORM:

Local variables:

MOFMTransaction: Transaction

MOFMType: TransactionType

MOFMAction: TransactionAction

MOFMTickerSymbol: TickerSymbol

MOFMVolume: Volume

MOFMUser: User

Constructor:

55

RequestOrder+(o, type, action, ticker_symbol, volume, ep)

+MOFM(new MOFM, MOFMTransaction=none, MOFMType=type, MOFMAction=action,

MOFMTickerSymbol=ticker_symbol, MOFMVolume=volume, MOFMUser=ep)

Constructing transition:

order=new Ordered

+Ordered(order, time_stamp=currTime, volume=self.bs.MOFMVolume)

t=new Transaction

+Transaction(t, transaction_id=new TransactionID, id_pts=none,

ticker_symbol=self.bs.MOFMTickerSymbol, action=self.bs.MOFMAction,

type=market, phase=initiated)

+TransactionStatus(new TransactionStatus, transaction=t, status=order)

+UserTransactions(new UserTransactions, transaction=t, user=self.bs.MOFMUser)

++MOFM.MOFMTransaction(self, t)

In consultation with Shaker et al., we modified the semantics of FORM and extended

the scope of the constructor to include the first transition that executes, called the con-

structing transition. With this change the domain change actions (DCA) in the construct-

ing transition in MOFM can access directly the parameters of the RequestOrder message.

Thus, MOFM’s constructor and the constructing transition modelled in post-dissertation

FORM is as follows:

Local variables:

MOFMTransaction: Transaction

MOFMUser: User

Constructor:

RequestOrder+(o, ttype, taction, tticker_symbol, tvolume, ep)

+MOFM(new MOFM, MOFMTransaction=none, MOFMUser=ep)

Constructing transition:

order=new Ordered

+Ordered(order, time_stamp=currTime, volume=tvolume)

t=new Transaction

+Transaction(t, transaction_id=new TransactionID, id_pts=none,

56

ticker_symbol=tticker_symbol, action=taction, type=market,

phase=initiated)

+TransactionStatus(new TransactionStatus, transaction=t, status=order)

+UserTransactions(new UserTransactions, transaction=t, user=self.bs.MOFMUser)

++MOFM.MOFMTransaction(self, t)

5.2.2 Fixed Domain-Model Constraints

The Alloy analyzer tries to find an example or a counterexample model instance that

satisfies or violates the given specification. Since a FORM domain model (DM) can be

completely translated into the Alloy notation, we are able to perform type checks and check

well-formedness constraints. When running tests, we discovered some minor flaws in the

original FORM constraints for a DM.

First, we discovered that we need a constraint that is comparable to constraint number

2 in section 3.6, but in case where attributes, parameters, or roles are of non-concept types.

The constraint states if a concept’s attributes, parameters, or roles of some non-concept

type are in domain state (DS), then the concept itself must also be in the DS: For every

attribute, parameter, or role “A” of each concept “C” where “A” has non-concept type “T”:

A.T in Cs For example, the object User has attribute user id that is of non-concept type

UserID. Our model has to make sure that if an attribute (e.g. user id) of User object is

in DS, then its object, User must be in the DS, as well:

user_id.UserID in Users

Second, recall that each concept has a signature in the DM, and a set of elements in

the DS space. For example, the set of users in the OTS example is first defined with a

signature in the DM, and then with its set in the DS:

sig User {}

sig DS {

Users: set User

}

In pre-dissertation FORM, constraints were defined over types. For example, the following

constraint states that each user has only one user ID:

57

all user: User | #user.user_id = 1

However, we are interested only in constraining instances in the DS. Therefore, such a

constraint should refer instead to elements of the concept set in the DS. In post-dissertation

FORM, the above constraint is correctly modelled as:

all user: Users | #user.user_id = 1

The same change applies to constraints on the number of a message’s end-points. Thus

#ep_GTI.GetTickerInfo =< 1

is corrected to be

#ep_GTI.GetTickerInfos =< 1

This update also applies to constraints on the number of same-relationship links between

two objects in the DS. Thus

no disj r1, r2: TransactionStatus |

{r1.status = r2.status, r1.transaction = r2.transaction}

is corrected to be

no disj r1, r2: TransactionStatuss |

{r1.status = r2.status, r1.transaction = r2.transaction}

5.2.3 Added Frame Predicates

Every DM in a FORM model comprises of set of signatures, an initialization predicate,

and a definition of the DS space. When the Alloy model is constructed, one can analyze

it using the Alloy analyzer and explore different instances of the model. In particular, we

consider execution traces of domain-state instances. In Alloy, operations specify pre- and

post-conditions on the domain state. However, Alloy expects the post-conditions to cover

all elements of the domain state, not just the elements whose values are changed by the

operation. Frame predicates are used to invariably constrain values that never change, so

that the invariants need not be explicitly included in the definition of every operation. For

example, the set of tickers our OTS offers is always the same. Therefore, we added frame

predicate, DS exec, to the domain model:

58

pred DS_exec() {

all ds, ds’: DS | ds.Tickers = ds’.Tickers

}

5.3 Workarounds and Deficiencies

This section describes workarounds that we had to devise in order to model our system

correctly. Section 5.3.1 describes the adding of the notion of time and timeouts to the

feature machine and to the domain model. Section 5.3.2 describes the problem of modelling

compliance rules in out OTS example, where trade orders are processed only if they satisfy

compliance rules. Section 5.3.3 describes the workaround for enhancing feature machines

to reference their base feature machine(s) that had to be developed. Sections 5.3.4 and

5.3.5 describe suggestions for incorporating inheritance and polymorphism, which would

make FORM modelling easier.

5.3.1 Added Time and Timeouts

Modelling an OTS requires notion of time and timeouts. All transactions include a time-

stamp attribute that records the date and time when the transaction was created. More-

over, some types of transaction orders enable customers to specify deadlines in which an

order is cancelled, if the order is not executed by a certain date and time (e.g., a Good-

till-Date/Time Order). To be able to model these types of orders, we added a primitive

type Time to our FORM domain model (DM). We also created a new keyword currTime

that evaluates to the current time, and a new keyword after(given time) that defines a

domain change event that occurs at the time given time.

For example, the feature model for Good-till-Date/Time Order expressed in post-

dissertation has a transition with a DCE after(end time) that triggers the cancellation

of the order, where end time denotes some date or time in the future:

after(self.bs.end_time) /

+CancelOrder(new CancelOrder, self.bs.GTDTOFMTransaction.id_pts, ds.PTSs)

59

5.3.2 Policy Language

Customers using an OTS must abide by compliance rules, which are regulations and laws

that govern trading. Pre-trade compliance rules are checked before an order can be placed.

For example, when a user decides to buy IBM shares, the system has to check whether

the order is within the trade regulations: whether the security is currently being traded,

whether there is a limit on how many shares of the security can be bought or sold, at what

price, etc. These rules offer a second example of the variability in an OTS.

In general, there is a question about how to model policies, which are high-level variable

constraints on allowable behaviour. Policies have not been incorporated into FORM so we

did not include compliance rules officially in our case study. However, we did attempt to

model them, and we sketch here a possible approach that still needs to be investigated.

We suggest modelling compliance rules using functional models and invoking the func-

tions as guards on any transition, in which a new order is requested. Rules and their

parameters are represented as entities in the domain model (see Figure 5.3). We at-

tempted to model two simple rules: a trade-block rule and a trade-quantity-limit rule. A

Trade-Block Rule suspends order placements and trade for a particular ticker. The rule

carries information about the ticker symbol, the start and end time of the suspension, the

entry time of the rule, and whether it is the buying or selling of shares that is forbidden. A

Trade-Quantity-Limit Rule restricts the volume on order placements for particular ticker.

The rule carries information about the ticker symbol, lower or upper limits on the volume

traded, whether the limit applies to the buying or selling of shares, and the entry date of

the rule.

We added a new concept to the domain model of the OTS, Rule, that can either be

TradeQuantityLimitRule or TradeBlockRule. A rule can apply to a particular ticker

or a particular user, so we added two relationships to the domain model, UserRule for

restrictions on a user, and TickerRule for restrictions on a Ticker. We also modified the

Market-Order FM (MOFM) (see Figure 5.4) to include a new step that checks all relevant

compliance rules. When the MOFM is instantiated, it creates a transaction and transfers

into intermediate state MOcheckingComplianceRules. There are two transitions that exit

this state: one that is triggered by the function CheckComplianceRules evaluating to true,

and that leads to the rest of the FM:

[! CheckComplianceRules($transaction, $user)] /

60

«domain»
TradeBlockRule

id: TBRuleID
start_time: Time
end_time: Time

«domain»
TradeQuantityLimitRule

id: TQLRuleID
lower_limit: Volume
upper_limit: Volume

«domain»
Rule

ticker_symbol: TickerSymbol
entry_time: Time
type: RuleType

user rules
UserRule

ticker rules
TickerRule

User

...

Ticker

...

Figure 5.3: OTS domain model augmented with compliance rules

+OrderNotCompliant(new OrderNotCompliant, $transaction.ds.transaction_id, $user)

++Transaction.phase($transaction, non_compliant)

and one transition that is triggered by the function CheckComplianceRules evaluating to

false, and that terminates the FM:

[CheckComplianceRules($transaction)] /

+SendOrderToPTS(new SendOrderToPTS, action=$transaction.ds.action,

ticker_symbol=$transaction.ds.ticker_symbol,

volume=$transaction.ds.volume, $pts)

CheckComplianceRules is a functional model that navigates the domain state and

invokes the functional model of every rule that is associated with the trade order’s use

and the ticker symbol of the shares being traded. In this way, the functional model for

CheckingComplianceRules can be context independent and can be reused in the guard of

any FM:

pred CheckComplianceRules(t: Transaction, u: User) {

all ds: DS |

TradeQuantityLimit[ds, u, t,

((ds.transaction_status_transaction).t).(ds.transaction_status_status)] and

TradeBlock[ds, u, t,

((ds.transaction_status_transaction).t).(ds.transaction_status_status)]

61

t5: PTSTransactionCompleted+(o, t_id, ep)[$transaction.ds.id_pts=t_id] /
+TransactionCompleted(new TransactionCompleted, $transaction.ds.id, $user)

++Transaction.phase($transaction, completed)

Market Order

Macros:
 let transaction = self.bs.MOFMT
 let pts = ds.PTSs
 let user = self.bs.MOFMUser

Variables:
 MOFMUser: User
 MOFMT: Transaction
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, volume, ep) /
 +MOFM(new MOFM, MOFMT=none, MOFMUser=ep)

MOWaitingForAck

t3: SendTransactionID+(o, id, ep) /
++Transaction.phase($transaction, inprocess)

++Transaction.id_pts($transaction, id)

MOWaitingForExecution

t4: TransactionFilled+(o, transaction_id, confirmation_no, volume, price, ep)
[$transaction.ds.id_pts=transaction_id] /

fi l led=new Filled
+Filled(fi l led, time_stamp=currTime, volume=volume, price=price,

confirmation_no=confirmation_no)
+TransactionStatus(new TransactionStatus, transaction=$transaction, status=filled)

t1: [true] /
order=new Ordered

+Ordered(order, t ime_stamp=currTime, volume=volume)
t=new Transaction

+Transaction(t, transaction_id=new TransactionID, id_pts=none,
ticker_symbol=ticker_symbol, action=action, type=market, phase=initiated)

+TransactionStatus(new TransactionStatus, transaction=t, status=order)
+UserTransactions(new UserTransactions, transaction=t, user=$user)

++MOFM.MOFMT(self, t)

MOChecking
ComplianceRules

t2: [CheckComplianceRules($transaction, $user)] /
+SendOrderToPTS(new SendOrderToPTS, action=$transaction.ds.action,

 ticker_symbol=$transaction.ds.ticker_symbol, volume=$transaction.ds.volume, $pts)

t6: [!CheckComplianceRules([$transaction, $user])] /
OrderNotCompliant(new OrderNotCompliant, $transaction.ds.transaction_id, $user)

++Transaction.phase($transaction, non_compliant)

Functional Model

CheckComplianceRules(transaction: Transaction, user: User)
 TradeQuantityLimit(transaction, user)
 TradeBlock(transaction, user)

TradeQuantityLimit(transaction: Transaction, user: User)
 (Rules.ticker_symbol = ts and
 Rules.type = a and
 Rules.lower_limit <= v and
 Rules.upper_limit >= v and
 UserRules.user = u
) or (
 Rules.ticker_symbol = ts and
 Rules.type = a and
 Rules.lower_limit <= v and
 Rules.upper_limit >= v and
 TickerRules.ticker.ticker_symbol = ticker_symbol
)

TradeBlock(transaction: Transaction, user: User)
 (Rules.ticker_symbol = ts and
 Rules.type = a and
 Rules.begin_time <= t and
 Rules.end_time >= t and
 UserRules.user = u
) or (
 Rules.ticker_symbol = ts and
 Rules.type = a and
 Rules.begin_time <= t and
 Rules.end_time >= t and
 TickerRules.ticker.ticker_symbol = ticker_symbol
)

Figure 5.4: OTS market order feature machine augmented with compliance rule checking

62

}

In addition, we created for each specific type of compliance rule a functional model that

checks adherence to that rule. For example, the TradeQuantityLimit function checks that

the volume on an order of a restricted security within allowed bounds:

pred TradeQuantityLimit[ds: DS, u: User, t: Transaction, s: Status] {

(some r: ds.UserRules |

(ds.Rules).(ds.rule_ticker_symbol) = t.(ds.ticker_symbol) and

(ds.Rules).(ds.rule_type) = t.(ds.action) and

(ds.Rules).(ds.lower_limit) >= s.(ds.volume) and

(ds.Rules).(ds.upper_limit) <= s.(ds.volume) and

(r.(ds.user_rule_user) = u)

) or (some r: ds.TickerRules |

(ds.Rules).(ds.rule_ticker_symbol) = t.(ds.ticker_symbol) and

(ds.Rules).(ds.rule_type) = t.(ds.action) and

(ds.Rules).(ds.lower_limit) >= s.(ds.volume) and

(ds.Rules).(ds.upper_limit) <= s.(ds.volume) and

(r.(ds.ticker_rule_ticker).(ds.symbol) = t.(ds.ticker_symbol))

)

}

Similarly, the TradeBlock functional model checks whether a requested order is for a

security whose trade is currently being blocked:

pred TradeBlock(ds: DS, u: User, t: Transaction, s: Status) {

(some r: ds.UserRules |

(ds.Rules).(ds.rule_ticker_symbol) = t.(ds.ticker_symbol) and

(ds.Rules).(ds.rule_type) = t.(ds.action) and

(ds.Rules).(ds.start_time) >= s.(ds.time_stamp) and

(ds.Rules).(ds.end_time) <= s.(ds.time_stamp) and

(r.(ds.user_rule_user) = u)

) or (some r: ds.TickerRules |

(ds.Rules).(ds.rule_ticker_symbol) = t.(ds.ticker_symbol) and

(ds.Rules).(ds.rule_type) = t.(ds.action) and

(ds.Rules).(ds.start_time) >= s.(ds.time_stamp) and

(ds.Rules).(ds.end_time) <= s.(ds.time_stamp) and

63

(r.(ds.ticker_rule_ticker).(ds.symbol) = t.(ds.ticker_symbol))

)

}

Such an approach seems promising as long as the compliance rules are simple and

stateless. If a compliance rule is stateful, then it would need to be modelled using a

behavioural model, and the coordination between feature machines and compliance-rules

machines would need to be worked out.

5.3.3 Referencing the Base Feature Machine

FORM is a context-dependent modelling language, in that each enhancement feature must

know about the feature(s) it is overriding. When we first modelled enhancement FMs

(EFM), each EFM referred to the base FM associated with the user who requested the

order. However, in practise, each user may have multiple orders pending at the same

time. Fortunately, a user may submit only one order at a time, i.e., no one can submit

multiple orders in parallel. When a user submits a new RequestOrder, the message triggers

the construction of both the base and enhanced FM. At this point, there are only two

machines in the system that have both the same user and an empty transaction object.

The constructing transition of the EFM is modified to find the newly constructed base FM

in the behavioural state and that has the same user as the EFM as is processing an empty

transaction object; the EFM associates this FM with a local variable in the EFM.

The FM is described in the behavioural model. Each model state represents a specific

behavioural state (BS) of the FM (i.e., a particular valuation of object sets and transitions).

Since FORM only has a formal description of terms of traces, we introduced an Alloy

syntax for referring to BS variables. For example, every FM has a reference to the user

that initiated the request for transaction:

MOFMUser

In order to find a reference to that variable, the variable needs to be searched for in the

behavioural state (BS):

bs.MOFMUser

64

When a user transmits a trade request, both FMs, base and enhancement FM, are con-

structed. In order for the EFM to monitor and control actions of the base FM, it needs to

have a reference to it. This reference is established by finding the base FM that is active

and that has the same user as the EFM in the behavioural state bs:

(bs.MOFMUser).LOBFMUser

Since a user can have more than one transaction, this constraint can return more than

one base FM. When the system initially receives a trade request, both newly instantiated

machines have same user and both have an empty transaction. Therefore, we specify

a second constraint that returns all base FMs that have an empty transaction in the

behavioural state bs:

(bs.MOFMT).none

We intersect both constraints to reference the base machine that has the same user as

LOBFMUser and has an empty transaction. Thus, LOBFM’s reference to the base FM in

LOBFM is set in the following way:

++LOBFM.LOBFMBase(self, (bs.MOFMUser).LOBFMUser & (bs.MOFMT).none)

5.3.4 Inheritance of Feature Machines

FORM uses functional models to capture common actions that are performed multiple

times. For example, an OTS uses a functional model to represent all of the actions that

are performed whenever a new trade transaction is recorded. When a transaction is created,

it is stored in the DS, and the FM has a local variable that is an alias to the object. Ideally,

the signature of the function would include a reference to the feature machine (FM):

CreateTransaction(fm: FM, type: TransactionType, action:TransactionAction,

ts: TickerSymbol, volume: Volume, u: User)

so that a new transaction can be added to the domain state and the alias to the local

variable can be set inside the function:

transaction=new Transaction

++fm.FMTransaction(self, transaction)

65

However, the type of the FM is different for each feature, and FORM is context dependent,

the function cannot take a reference to a derived type of a FM. Instead, the transaction is

created outside of the function, before the function is called:

t=new Transaction

the function takes the reference to a newly created Transaction object:

CreateTransaction(t: Transaction, type: TransactionType, action:TransactionAction,

ts: TickerSymbol, volume: Volume, u: User)

and the linking of newly updated object to associated local variable is performed after the

CreateTransaction function is called:

++MOFM.MOFMTransaction(self, t)

5.3.5 Polymorphism for Messages

A RequestOrder message carries information about a trade order that a user wishes to be

performed, including the type of the order, whether the user wants to sell or buy shares,

the ticker symbol of the security to be traded, and the volume of the trade. The message

may additionally carry information about the requested limit price, stop price, date to

cancel transaction, etc. The extra information is not always needed, so it would be useful

to allow messages to be polymorphic. Currently, RequestOrder always has the following

signature:

RequestOrder(type: TransactionType, action: TransactionAction,

ticker_symbol: TickerSymbol, volume: Volume, limit_price: Price,

stop_price: Price, time: Time)

although parameters limit price, stop price, and time are often set to none.

66

Chapter 6

Conclusion

This dissertation evaluates the expressiveness of the FORM notations. It evaluates the

extent to which we were able to model all aspects of the requirements for an OTS, includ-

ing planned interactions between features. The dissertation does not evaluate FORM’s

approach to resolving unplanned interactions between features.

We modelled an OTS that receives requests from customers about buying or selling

securities on a stock market. The OTS offers variability in terms of the types of orders

that customers can request (e.g. market order, limit order, stop order, etc.). In the OTS,

each type of order is modelled as a different feature. The market order was chosen as a

base feature that other features enhance. The OTS is smart enough to process orders until

they are ready to be entered into the market.

The case study revealed two classes of deficiencies of the FORM notation. We were

able to resolve the first class of deficiencies through simple fixes and extensions to FORM.

First, the scope of the triggering event of an FM’s constructor needed to be extended to

the FM’s constructing transition. Second, we identified some deficiencies in the set of well-

formedness constraints. The constraints were modified to operate only over elements in the

domain-state instance, and an additional constraint was added. Third, frame predicates

were added to specify which variables do not change value during execution. We also

successfully translated the domain model into the Alloy notation and checked the well-

formedness constraints.

However, there was a second class of deficiencies of the FORM notation that was not as

amenable to resolution through small changes to the FORM notation. These deficiencies, of

67

which there were three, require more substantial changes, along the lines that we sketched

in this dissertation. First, we added language constructs for modelling time and timeouts.

Second, introduced an approach to express compliance rules or policies using the FORM

functional model, and invoking the functions as guards on transitions in behavioural model.

Third, we devised a method by which an enhancement FM could be linked to its base

FM(s). However, these solutions need to be further formalized and evaluated.

68

References

[1] Apel, S., Kastner, C.: An Overview of Feature-Oriented Software Development. Jour-

nal of Object Technology 8 (2009) 2, 15, 16

[2] Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., Jeremaes, P.:

Object-Oriented Development: The Fusion Method. Pretence Hall (1994) 13

[3] Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Appli-

cations. Addison-Wesley Professional (2000). 1, 15

[4] Wikipedia: Stock Market. http://en.wikipedia.org/wiki/Stock market 4, 5, 7

[5] Trading Systems Expert. http://www.tradingsystemsexpert.com/ 5

[6] U.S. Securities and Exchange Commission: www.sec.gov 7

[7] Finance Library: www.finance-lib.com 7

[8] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press

(2006) 13, 17, 18, 20, 21

[9] Jackson, M.: Software Requirements and Specifications: A Lexicon of Practice, Prin-

ciples and Prejudices. ACM Press/Addison-Wesley Publishing Co. (1995) 13, 25

[10] van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models

to Software Specifications. Wiley (2009) 13

[11] Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Anal-

ysis and Design and the Unified Process (3rd Edition). Prentice Hall (1994) 1, 13, 14,

15

69

[12] Shaker, P., Atlee, J. M.: Feature-Oriented Requirements Modelling. Proceedings of

the 32nd ACM/IEEE International Conference on Software Engineering - Volume 2.

(2010) 1, 2, 12, 15, 25, 29, 34, 38

[13] Zave, P., Jackson, M,: A component-based approach to telecommunication software.

IEEE Software (1998) 25

70

APPENDICES

71

Appendix A

The Domain Model of the Online

Trading System in Alloy Notation

72

sig User {}

sig UserID {}

sig PTS {}

sig PTSID {}

sig Ticker {}

sig TickerSymbol {}

sig Price {}

sig Volume {}

sig Transaction {}

sig TransactionID {}

sig TransactionIDPTS {}

enum TransactionAction {buy, sell}

enum TransactionPhase {initiated, inprocess, cancelled, completed }

enum TransactionType {market, stop, limit, stop_limit, market_to_limit, limit_on_open,

limit_on_close, immediate_or_cancel, good_till_canceled, good_till_datetime, bracket_order}

sig TransactionStatus {}

abstract sig Status {}

sig Filled extends Status {}

sig Ordered extends Status {}

sig Time {}

sig ConfirmationNumber {}

sig UserTransactions {}

// messages PTS

sig SendTransactionID {}

sig TransactionFilled {}

sig PTSTransactionCompleted {}

sig UpdateTicker {}

sig PTSCancelConfirm {}

sig SendOrderToPTS {}

sig GetTickerInfoFromPTS {}

sig CancelOrder {}

// messages User

sig GetTickerInfo {}

sig RequestOrder {}

sig Cancel {}

sig ForwardTIToCustomer {}

sig TimeExpired {}

sig OrderCanceled {}

sig TransactionCompleted {}

sig DS {

73

// <<actor>>

Users: set User,

user_id: User -> UserID,

PTSs: set PTS,

pts_id: PTS -> PTSID,

// <<sud>>

Transactions: set Transaction,

transaction_id: Transaction -> TransactionID,

id_pts: Transaction -> TransactionIDPTS,

ticker_symbol: Transaction -> TickerSymbol,

action: Transaction -> TransactionAction,

phase: Transaction -> TransactionPhase,

type: Transaction -> TransactionType,

status: Transaction -> TransactionStatus,

TransactionObs: Transaction -> (User + PTS),

transaction_id_obs: Transaction -> (User + PTS),

id_pts_obs: Transaction -> (User + PTS),

ticker_symbol_obs: Transaction -> (User + PTS),

action_obs: Transaction -> (User + PTS),

phase_obs: Transaction -> (User + PTS),

type_obs: Transaction -> (User + PTS),

status_obs: Transaction -> (User + PTS),

UserTransactionss: set UserTransactions,

user_transactions_user: UserTransactions -> User,

user_transactions_transaction: UserTransactions -> Transaction,

UserTransactionsObs: UserTransactions -> (User + PTS),

user_transactions_user_obs: UserTransactions -> (User + PTS),

user_transactions_transaction_obs: UserTransactions -> (User + PTS),

TransactionStatuss: set TransactionStatus,

transaction_status_status: TransactionStatus -> Status,

transaction_status_transaction: TransactionStatus -> Transaction,

TransactionStatusObs: TransactionStatus -> (User + PTS),

transaction_status_status_obs: TransactionStatus -> (User + PTS),

transaction_status_transaction_obs: TransactionStatus -> (User + PTS),

Statuss: set Status,

time_stamp: Status -> Time,

volume: Status -> Volume,

StatusObs: Status -> (User + PTS),

time_stamp_obs: Status -> (User + PTS),

74

volume_obs: Status -> (User + PTS),

Filleds: set Filled,

transaction_price: Filled -> Price,

confirmation_number: Filled -> ConfirmationNumber,

FilledObs: Filled -> (User + PTS),

transaction_price_obs: Filled -> (User + PTS),

confirmation_number_obs: Filled -> (User + PTS),

Orderds: set Ordered,

OrderedObs: Ordered -> (User + PTS),

// <<both>>

Tickers: set Ticker,

symbol: Ticker -> TickerSymbol,

price: Ticker -> Price,

// messages User

GetTickerInfos: set GetTickerInfo,

GTITickerSymbol: GetTickerInfo -> TickerSymbol,

ep_GTI: GetTickerInfo -> one User,

RequestOrders: set RequestOrder,

ROType: RequestOrder -> TransactionType,

ROAction: RequestOrder -> TransactionAction,

ROTickerSymbol: RequestOrder -> TickerSymbol,

ROVolume: RequestOrder -> Volume,

ep_RO: RequestOrder -> one User,

Cancels: set Cancel,

CTransactionID: Cancel -> TransactionID,

ep_C: Cancel -> one User,

ForwardTIToCustomers: set ForwardTIToCustomer,

FTITCTickerSymbol: ForwardTIToCustomer -> TickerSymbol,

FTITCTickerPrice: ForwardTIToCustomer -> Price,

ep_FTITC: ForwardTIToCustomer -> one User,

TimeExpireds: set TimeExpired,

TETransactionID: TimeExpired -> TransactionID,

ep_TE: TimeExpired -> one User,

OrderCanceleds: set OrderCanceled,

OCTransactionID: OrderCanceled -> TransactionID,

ep_OC: OrderCanceled -> one User,

TransactionCompleteds: set TransactionCompleted,

75

TCTransactionID: TransactionCompleted -> TransactionID,

ep_TC: TransactionCompleted -> one User,

// messages PTS

SendTransactionIDs: set SendTransactionID,

STIDTransactionID: SendTransactionID -> TransactionIDPTS,

ep_STID: SendTransactionID -> one PTS,

TransactionFilleds: set TransactionFilled,

TFTransactionID: TransactionFilled -> TransactionIDPTS,

TFConfirmationNumber: TransactionFilled -> ConfirmationNumber,

TFVolume: TransactionFilled -> Volume,

TFPrice: TransactionFilled -> Price,

ep_TF: TransactionFilled -> one PTS,

PTSTransactionCompleteds: set PTSTransactionCompleted,

PTSTCTransactionID: PTSTransactionCompleted -> TransactionIDPTS,

ep_PTSTC: PTSTransactionCompleted -> one PTS,

UpdateTickers: set UpdateTicker,

UTTickerSymbol: UpdateTicker -> TickerSymbol,

UTPrice: UpdateTicker -> Price,

ep_UT: UpdateTicker -> one PTS,

PTSCancelConfirms: set PTSCancelConfirm,

PTSCCTransactionID: PTSCancelConfirm -> TransactionIDPTS,

ep_PTSCC: PTSCancelConfirm -> one PTS,

SendOrderToPTSs: set SendOrderToPTS,

SOTPTSAction: SendOrderToPTS -> TransactionAction,

SOTPTSTickerSymbol: SendOrderToPTS -> TickerSymbol,

SOTPTSVolume: SendOrderToPTS -> Price,

ep_SOTPTS: SendOrderToPTS -> one PTS,

GetTickerInfoFromPTSs: set GetTickerInfoFromPTS,

GTIFPTSTickerSymbol: GetTickerInfoFromPTS -> TickerSymbol,

ep_GTIFPTS: GetTickerInfoFromPTS -> one PTS,

CancelOrders: set CancelOrder,

COTransactionID: CancelOrder -> TransactionIDPTS,

ep_CO: CancelOrder -> one PTS

}{

// domain constraints

#PTSs=1

// every user has unique id

no disj u, u’: Users | u.user_id = u’.user_id

// every ticker has unique ticker symbol

no disj t, t’: Tickers | t.symbol = t’.symbol

76

// every transaction has unique internal id and unique id from PTS

no disj t, t’: Transactions | t.transaction_id = t’.transaction_id

no disj t, t’: Transactions | t.id_pts = t’.id_pts

// non-concept attributes constraints

user_id.UserID in Users

pts_id.PTSID in PTSs

transaction_id.TransactionID in Transactions

id_pts.TransactionIDPTS in Transactions

ticker_symbol.TickerSymbol in Transactions

action.TransactionAction in Transactions

phase.TransactionPhase in Transactions

type.TransactionType in Transactions

status.TransactionStatus in Transactions

time_stamp.Time in Statuss

volume.Volume in Statuss

transaction_price.Price in Filleds

confirmation_number.ConfirmationNumber in Filleds

symbol.TickerSymbol in Tickers

price.Price in Tickers

ROType.TransactionType in RequestOrders

ROAction.TransactionAction in RequestOrders

ROTickerSymbol.TickerSymbol in RequestOrders

ROVolume.Volume in RequestOrders

// concept attributes constraints

(UserTransactions.user_transactions_user in Users) and (user_transactions_user.User in

UserTransactionss)

(UserTransactions.user_transactions_transaction in Transactions) and (

user_transactions_transaction.Transaction in UserTransactionss)

(TransactionStatus.transaction_status_status in Statuss) and (transaction_status_status.Status

in TransactionStatuss)

(TransactionStatus.transaction_status_transaction in Transactions) and (

transaction_status_transaction.Transaction in TransactionStatuss)

// message attributes and endpoint are in domain state

CTransactionID.TransactionID in Cancels

Cancel.ep_C in User and ep_C.Users in Cancels

#ep_C.Users =< 1

FTITCTickerSymbol.TickerSymbol in ForwardTIToCustomers

FTITCTickerPrice.Price in ForwardTIToCustomers

77

ForwardTIToCustomer.ep_FTITC in User and ep_FTITC.Users in ForwardTIToCustomers

#ep_FTITC.Users =< 1

TETransactionID.TransactionID in TimeExpireds

TimeExpired.ep_TE in User and ep_TE.Users in TimeExpireds

#ep_TE.Users =< 1

OCTransactionID.TransactionID in OrderCanceleds

OrderCanceled.ep_OC in User and ep_OC.Users in OrderCanceleds

#ep_OC.Users =< 1

TCTransactionID.TransactionID in TransactionCompleteds

TransactionCompleted.ep_TC in User and ep_TC.Users in TransactionCompleteds

#ep_TC.Users =< 1

STIDTransactionID.TransactionIDPTS in SendTransactionIDs

SendTransactionID.ep_STID in PTS and ep_STID.PTSs in SendTransactionIDs

#ep_STID.PTSs =< 1

TFTransactionID.TransactionIDPTS in TransactionFilleds

TFConfirmationNumber.ConfirmationNumber in TransactionFilleds

TFVolume.Volume in TransactionFilleds

TFPrice.Price in TransactionFilleds

TransactionFilled.ep_TF in PTS and ep_TF.PTSs in TransactionFilleds

#ep_TF.PTSs =< 1

PTSTCTransactionID.TransactionIDPTS in PTSTransactionCompleteds

PTSTransactionCompleted.ep_PTSTC in PTS and ep_PTSTC.PTSs in PTSTransactionCompleted

#ep_PTSTC.PTSs =< 1

UTTickerSymbol.TickerSymbol in UpdateTickers

UTPrice.Price in UpdateTickers

UpdateTicker.ep_UT in PTS and ep_UT.PTSs in UpdateTickers

#ep_UT.PTSs =< 1

PTSCCTransactionID.TransactionIDPTS in PTSCancelConfirms

PTSCancelConfirm.ep_PTSCC in PTS and ep_PTSCC.PTSs in PTSCancelConfirms

#ep_PTSCC.PTSs =< 1

SOTPTSAction.TransactionAction in SendOrderToPTSs

SOTPTSTickerSymbol.TickerSymbol in SendOrderToPTSs

SOTPTSVolume.Price in SendOrderToPTSs

SendOrderToPTS.ep_SOTPTS in PTS and ep_SOTPTS.PTSs in SendOrderToPTSs

#ep_SOTPTS.PTSs =< 1

GTIFPTSTickerSymbol.TickerSymbol in GetTickerInfoFromPTSs

GetTickerInfoFromPTS.ep_GTIFPTS in PTS and ep_GTIFPTS.PTSs in GetTickerInfoFromPTSs

#ep_GTIFPTS.PTSs =< 1

78

COTransactionID.TransactionIDPTS in CancelOrders

CancelOrder.ep_CO in PTS and ep_CO.PTSs in CancelOrders

#ep_CO.PTSs =< 1

// cardinality constraints

all user: Users | { #user.user_id = 1 }

all pts: PTSs | { #pts.pts_id = 1 }

all transaction: Transactions | { #transaction.transaction_id = 1 }

all transaction: Transactions | { #transaction.id_pts = 1 }

all transaction: Transactions | { #transaction.ticker_symbol = 1 }

all transaction: Transactions | { #transaction.action = 1 }

all transaction: Transactions | { #transaction.phase = 1 }

all transaction: Transactions | { #transaction.type = 1 }

all transaction: Transactions | { #transaction.status = 1 }

all user_transactions: UserTransactionss | { #user_transactions.user_transactions_user = 1 }

all user_transactions: UserTransactionss | { #user_transactions.user_transactions_transaction

= 1 }

all transaction_status: TransactionStatuss | { #transaction_status.transaction_status_status =

1 }

all transaction_status: TransactionStatuss | { #transaction_status.

transaction_status_transaction = 1 }

all status: Statuss | { #status.time_stamp = 1 }

all status: Statuss | { #status.volume = 1 }

all filled: Filleds | { #filled.transaction_price = 1 }

all filled: Filleds | { #filled.confirmation_number = 1 }

all ticker: Tickers | { #ticker.symbol = 1 }

all ticker: Tickers | { #ticker.price = 1 }

all request_order: RequestOrders | { #request_order.ROType = 1 }

all request_order: RequestOrders | { #request_order.ROAction = 1 }

all request_order: RequestOrders | { #request_order.ROTickerSymbol = 1 }

all request_order: RequestOrders | { #request_order.ROVolume = 1 }

all cancel: Cancels | { #cancel.CTransactionID = 1 }

all forward_ti_to_customer: ForwardTIToCustomers | { #forward_ti_to_customer.FTITCTickerSymbol

= 1 }

all forward_ti_to_customer: ForwardTIToCustomers | { #forward_ti_to_customer.FTITCTickerPrice

= 1 }

all time_expired: TimeExpireds | { #time_expired.TETransactionID = 1 }

79

all order_canceled: OrderCanceleds | { #order_canceled.OCTransactionID = 1 }

all transaction_completed: TransactionCompleteds | { #transaction_completed.TCTransactionID =

1 }

all send_transaction_id: SendTransactionIDs | { #send_transaction_id.STIDTransactionID = 1 }

all transaction_filled: TransactionFilleds | { #transaction_filled.TFTransactionID = 1 }

all transaction_filled: TransactionFilleds | { #transaction_filled.TFConfirmationNumber = 1 }

all transaction_filled: TransactionFilleds | { #transaction_filled.TFVolume = 1 }

all transaction_filled: TransactionFilleds | { #transaction_filled.TFPrice = 1 }

all pts_transaction_completed: PTSTransactionCompleted | { #pts_transaction_completed.

PTSTCTransactionID = 1 }

all update_ticker: UpdateTickers | { #update_ticker.UTTickerSymbol = 1 }

all update_ticker: UpdateTickers | { #update_ticker.UTPrice = 1 }

all pts_cancel_confirm: PTSCancelConfirms | { #pts_cancel_confirm.PTSCCTransactionID = 1 }

all send_order_to_pts: SendOrderToPTSs | { #send_order_to_pts.SOTPTSAction = 1 }

all send_order_to_pts: SendOrderToPTSs | { #send_order_to_pts.SOTPTSTickerSymbol = 1 }

all send_order_to_pts: SendOrderToPTSs | { #send_order_to_pts.SOTPTSVolume = 1 }

all get_ticker_info_from_pts: GetTickerInfoFromPTSs | { #get_ticker_info_from_pts.

GTIFPTSTickerSymbol = 1 }

all cancel_order: CancelOrders | { #cancel_order.COTransactionID = 1 }

// two elements in the same relationship cannot relate same objects

no disj s, t: TransactionStatuss | { s.transaction_status_status = t.transaction_status_status

and s.transaction_status_transaction = t.transaction_status_transaction }

no disj s, t: UserTransactions | { s.user_transactions_user = t.user_transactions_user and s.

user_transactions_transaction = t.user_transactions_transaction }

}

80

Appendix B

The Behavioural Model of the Online

Trading System in Feature Oriented

Requriements Modelling

81

«actor»
User

id: UserID

«source» GetTickerInfo(ticker_symbol: TickerSymbol)
«source» RequestOrder(type: TransactionType, action: TransactionAction, ticker_symbol: TickerSymbol, volume: Volume
 limit_price: Price, stop_price: Price, time: Time)
«source» Cancel(transaction_id: TransactionID)
.
«target» ForwardTIToCustomer(ticker_symbol: TickerSymbol, ticker_price: Price)
«target» TimeExpired(transaction_id: TransactionID)
«target» OrderCanceled(transaction_id: TransactionID)
«target» TransactionCompleted(transaction_id: TransactionID)

«actor»
Providing Trading System (PTS)

id: PTSID

«source» SendTransactionID(id: TransactionIDPTS)
«source» TransactionFilled(transaction_id: TransactionIDPTS, confirmation_no: Integer, volume: Volume, price: Price)
«source» PTSTransactionCompleted(transaction_id: TransactionIDPTS)
«source» UpdateTicker(ticker_symbol: TickerSymbol, ticker_price: Price)
«source» PTSCancelConfirm(transaction_id: TransactionID)
.
«target» SendOrderToPTS(action: TransactionAction, ticker_symbol: TickerSymbol, volume: Volume)
«target» GetTickerFromPTS(ticker_symbol: TickerSymbol)
«target» CancelOrder(transaction_id: TransactionID)

«sud»
Transaction

transaction_id: TransactionID
id_pts: TransactionIDPTS
ticker_symbol: TickerSymbol
type: {market, limit, stop, stop_limit, market_to_limit, limit_on_close, ...}
act ion: {buy, sel l}
phase: {initiated, inprocess, cancelled, completed}

«both»
Ticker

symbol: TickerSymbol
price: Price

«sud»
Filled

price: Price
confirmation_no: Integer

«sud»
Status

time_stamp: Time
volume: Volume

«sud»
Ordered

transaction status
TransactionStatus

user

transaction

.
UserTransactions

Domain Model Constraints

Invariants:
 #PTSs = 1
 no disj u, u': Users | u.user_id = u'.user_id
 no disj t, t': Tickers | t.ticker_symbol = t'.ticker_symbol
 no disj t, t': Transactions | t.transaction_id = t'.transaction_id
 no disj t, t': Transactions | t.id_pts = t'.id_pts

Frame Constraints:
 DS_exec() {
 all ds, ds': DS |
 (ds.Tickers = ds'.Tickers) and
 (all t: ds.Tickers | all t': ds'.Tickers | t=t' => t.(ds.ticker_symbol) = t'.(ds'.ticker_symbol)) and
 (all u: ds.Users, u': ds'.Users | u = u' => u.(ds.user_id) = u'.(ds'.user_id)) and
 (all t: ds.Transactions, t': ds'.Transactions | t = t' => t.(ds.transaction_id) = t'.(ds'.transaction_id)) and
 (all t: ds.Transactions, t': ds'.Transactions | t = t' => t.(ds.id_pts) = t'.(ds'.id_pts)) and
 (all t: ds.Transactions, t': ds'.Transactions | t = t' => t.(ds.ticker_symbol) = t'.(ds'.ticker_symbol))
 }

Figure B.1: The FORM domain model of an online trading system

82

t4: PTSTransactionCompleted+(o, t_id, ep)[$transaction.ds.id_pts=t_id] /
+TransactionCompleted(new TransactionCompleted, $transaction.ds.id, $user)

++Transaction.phase($transaction, completed)

t1: [true] /
order=new Ordered

+Ordered(order, t ime_stamp=currTime, volume=volume)
t=new Transaction

+Transaction(t, transaction_id=new TransactionID, id_pts=none,
ticker_symbol=ticker_symbol, action=action, type=market, phase=initiated)

+TransactionStatus(new TransactionStatus, transaction=t, status=order)
+UserTransactions(new UserTransactions, transaction=t, user=$user)

++MOFM.MOFMT(self, t)
+SendOrderToPTS(new SendOrderToPTS, action=t.ds.action,

 ticker_symbol=t.ds.ticker_symbol, volume=t.ds.volume, $pts)

Market Order

Macros:
 let transaction = self.bs.MOFMT
 let pts = ds.PTSs
 let user = self.bs.MOFMUser

Variables:
 MOFMUser: User
 MOFMT: Transaction
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, volume, ep) /
 +MOFM(new MOFM, MOFMT=none, MOFMUser=ep)

MOWaitingForAck

t2: SendTransactionID+(o, id, ep) /
++Transaction.phase($transaction, inprocess)

++Transaction.id_pts($transaction, id)

MOWaitingForExecution

t3: TransactionFilled+(o, transaction_id, confirmation_no, volume, price, ep)
[$transaction.ds.id_pts=transaction_id] /

fi l led=new Filled
+Filled(fi l led, time_stamp=currTime, volume=volume, price=price,

confirmation_no=confirmation_no)
+TransactionStatus(new TransactionStatus, transaction=$transaction, status=filled)

Figure B.2: Market order modelled as a FORM feature model

83

Limit Order Buy

LOBWaitingForUpdate

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($limit_price<new_price)] /

++Ticker.price((ds.symbol).symbol, new_price)
+GetTickerFromPTS(new GetTickerFromPTS, $transaction.ds.ticker_symbol, $pts)

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol), ($limit_price>=new_price)] /
++Ticker.price((ds.symbol).symbol, new_price)

ForwardOrder($transaction, $pts)
++MOFM.MOMain(self.bs.LOBFMBase, MOWaitingForAck)

[true] /
«override query: $base»

t=new Transaction
CreateTransaction(t, type, action, ticker_symbol, volume, $user)
+GetTickerFromPTS(new GetTickerFromPTS, ticker_symbol, $pts)

++LOBFM.LOBFMT(self, t)
++LOBFM.LOBFMBase(self, $base)

$base.MOFMT=$transaction
++MOFM.MOMain($base, MORoot)

Macros:
 let me = $user
 let user = self.bs.LOBFMUser
 let transaction = self.bs.LOBFMT
 let pts = ds.PTSs
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let limit_price = self.bs.LOBFMLimitPrice

Variables:
 LOBFMUser: User
 LOBFMLimitPrice: Price
 LOBFMT: Transaction
 LOBFMBase: MOFM
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, volume, limit_price, ep)[type=limit, action=buy] /
 +LOBFM(new LOBFM, LOBFMLimitPrice=limit_price, LOBFMT=none, LOBFMBase=none , LOBFMUser=ep)

Functional Model

CreateTransaction(t: Transaction, type: TransactionType, action: TransactionAction,
 ticker_symbol: TickerSymbol, volume: Volume, u: User)
 order=new Ordered
 +Ordered(order, t ime_stamp=currTime, volume=volume)
 +Transaction(t, transaction_id=new TransactionID, id_pts=none,
 ticker_symbol=ticker_symbol, action=action, phase=initiated,
 type=limit)
 +TransactionStatus.status(new TransactionStatus, order)
 +UserTransactions(new UserTransactions, transaction=t, user=$user)

ForwardOrder(t: Transaction, pts: PTS)
 ++Transaction.type(t, market)
 +SendOrderToPTS(new SendOrderToPTS, action=t.ds.action,
 ticker_symbol=t.ds.ticker_symbol, volume=t.ds.volume, pts)

Figure B.3: Buy-limit order modelled as a FORM feature model

84

Stop Order Buy

SOBWaitingForUpdate

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($stop_price>new_price)] /

++Ticker.price((ds.symbol).symbol, new_price)
+GetTickerFromPTS(new GetTickerFromPTS, $transaction.ticker_symbol, $pts)

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol), ($stop_price<=new_price)] /
++Ticker.price((ds.symbol).symbol, new_price)

ForwardOrder($transaction, $pts)
++MOFM.MOMain(self.bs.SOBFMBase, MOWaitingForAck)

[true] /
«override query: ($base)»

t = new Transaction
CreateTransaction(t, type, action, ticker_symbol, volume, $user)
+GetTickerFromPTS(new GetTickerFromPTS, ticker_symbol, $pts)

++SOBFM.SOBFMT(self, t)
$base.MOFMT=$transaction

++LOBFM.SOBFMBase(self, $base)
++MOFM.MOMain($base, MORoot)

Macros:
 let user = self.bs.SOBFMUser
 let me = $user
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let transaction = self.bs.LOBFMT
 let stop_price = self.bs.LOBFMStopPrice
 let pts = ds.PTSs

Variables:
 SOBFMUser: User
 SOBFMStopPrice: Price
 SOBFMT: Transaction
 SOBFMBase: MOFM
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, volume, stop_price, ep)[type=stop, action=buy] /
 +SOBFM(new SOBFM, SOBFMStopPrice=stop_price, SOBFMT=none, SOBFMBase=none, SOBFMUser=ep)

Figure B.4: Buy-stop modelled as a FORM feature model

Macros:
 let me = $user
 let user = self.bs.SLOBFMUser
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let transaction = self.bs.SLOBFMT
 let limit_price = self.bs.SLOBFMLimitPrice
 let stop_fm = (bs.SOBFMUser).$me & (bs.SOBFMT).$transaction

Figure B.5: Buy-stop-limit order modelled as a FORM feature model

85

Limit-on-Open Order Buy

 /
«override query: ($base)»

t=new Transaction
CreateTransaction(t, type=limit, action, ticker_symbol, volume, $user)

++LOOBFM.LOOBFMT(self, t)
++LOOBFM.LOOBFMBase(self, $base)

$base.MOFMT=$transaction
++MOFM.MOMain($base, MORoot)

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($limit_price<new_price)] /

+OrderCanceled(new OrderCanceled, $transaction.ds.id, $user)
-MOFM(self.bs.LOOBFMBase)

LOOBWaitingForUpdate

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($limit_price>=new_price)] /

+LOBFM(new LOBFM, LOBFMLimitPrice=$limit_price, LOBFMT=$transaction,
LOBFMBase=self.bs.LOOBFMBase, LOBFMUser=$user)

Variables:
 LOOBFMUser: User
 LOOBFMLimitPrice: Price
 LOOBFMT: Transaction
 LOOBFMBase: MOFM
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, limit_price, volume, ep)[type=Limit_on_open, action=buy] /
 +LOOBFM(new LOOBFM, LOOBFMLimitPrice=limit_price, LOOBFMT=none, LOOBFMBase=none LOOBFMUser=ep)

Macros:
 let me = $user
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let user = self.bs.LOOBFMUser
 let transaction=self.bs.LOOBFMT
 let limit_price = self.bs.LOOBFMLimitPrice
 let pts = ds.PTSs

LOOBWaitingFor
BeginningOfDay

after(beginning_of_day) /
+GetTickerFromPTS(new GetTickerFromPTS, $transaction.ds.ticker_symbol, $pts)

Figure B.6: Limit-on-open order modelled as a FORM feature model

86

Limit-on-Close Order Buy

/
«override query: ($base)»

t=new Transaction
CreateTransaction(t, type=limit, action, ticker_symbol, volume, $user)

++LOCBFM.LOCBFMT(self, t)
++LOCBFM.LOCBFMBase(self, $base)

$base.MOFMT=$transaction
++MOFM.MOMain($base, MORoot)

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($limit_price<new_price)] /

+OrderCanceled(new OrderCanceled, $transaction.ds.id, $user)
-MOFM(self.bs.LOCFMBase)

LOCBWaitingForUpdate

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($limit_price>=new_price)] /

+LOBFM(new LOBFM, LOBFMT=$transaction, LOBFMBase=self.bs.LOCFMBase, LOBFMUser=$user)

Variables:
 LOCBFMUser: User
 LOCBFMLimitPrice: Price
 LOCBFMT: Transaction
 LOCBFMBase: MOFM
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, limit_price, volume, ep)[type=limit_on_close, action=buy] /
 +LOCBFM(new LOCBFM, LOCLimitPrice=limit_price, LOCBFMT=none, LOCBFMBase=none, LOCBFMUser=ep)

Macros:
 let me = $user
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let user = self.bs.LOCFMUser
 let transaction = self.bs.LOCFMT
 let limit_price = self.bs.LOCBFMLimitPrice
 let pts = ds.PTSs

after(end_of_day) /
+GetTickerFromPTS(new GetTickerFromPTS, $transaction.ds.ticker_symbol, $pts)

LOCBWaitingFor
EndOfTheDay

Figure B.7: Limit-on-close order modelled as a FORM feature model

Market-to-Limit Order Buy

 [true] /
++SLOBFM.SLOBFMBase(self, $base)

«override query: self.bs.MTLOBFMBase»
TransactionFilled+(o, t_id, confirmation_no, volume_filled, price, ep)

[($transaction.ds.id_pts=t_id), (volume_filled<$transaction.ds.volume)] /
fi l led=new Filled

+Filled(fil led, time_stamp=currTime, volume=volume_filled, price=price, confirmation_no=confirmation_no)
+TransactionStatus.status(new TransactionStatus, filled)

+LOBFM(new LOBFM, LOBFMLimitPrice=price, LOBFMT=$transaction,
LOBFMBase=self.bs.MTLOBFMBase, LOBFMUser=$user)

+CancelOrder(new CancelOrder, $transaction.ds.t_pts, $pts)
++MOFM.MOMain($base, MORoot)

MTLOBWaitingForMarketOrder

Variables:
 MTLOBFMUser: User
 MTLOBFMT: Transaction
 MTLOBFMBase: MOFM
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, volume, ep)[type=market_to_limit, action=buy] /
 +MTLOBFM(new MTLOBFM, MTLOBFMT=none, MTLOFMBase=none, MTLOBFMUser=ep)

Macros:
 let me = $user
 let pts = ds.PTSs
 let user = self.bs.MTLOBFMUser
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let transaction = (self.bs.MTLOBFMBase).MOFMT

PTSTransactionCompleted+(o, t_id, ep)[$transaction.ds.id_pts=t_id] /

Figure B.8: Market-to-limit order modelled as a FORM feature model

87

Good-till-canceled Order

[true] /
++GTCOFM.GTCOFMBase(self, $base)

GTCOWaitingForMarketOrder

Cancel+(o, id, $user)[$transaction.ds.id=id] /
+CancelOrder(new CancelOrder, $transaction.ds.id_pts, $pts)

TransactionCompleted+(o, t_id, ep) [$transaction.ds.id_pts=t_id] /

Variables:
 GTCOFMBase: MOFM
 GTCOFMUser: User
Constructor:
 Order+(o, type, action, ticker_symbol, volume, ep)[type=good_till_canceled] /
 +GTCOFM(new GTCOFM, GTCOFMUser=ep)

Macros:
 let me = $user
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let user = self.bs.GTCOMFUser
 let transaction = (self.bs.GTCOFMBase).MOFMT
 let pts = ds.PTSs

PTSCancelConfirm+(o, id, ep)[$transaction.ds.pts_id=id] /
+OrderCanceled(new OrderCanceled, $transaction.ds.id, $user)

++Transaction.phase($transaction, canceled)
-MOFM(self.bs.GTCOFMBase) GTCOWaitingForCancelConfirmation

TransactionCompleted+(o, t_id, ep) [$transaction.ds.id_pts=t_id] /

Figure B.9: Good-till-cancelled order modelled as a FORM feature model

Good-till-date/time Order

[true] /
++GTDTOFM.GTDTOFMBase(self, $base)

GTDTOWaitingForMarketOrder

after(self.bs.GTDTOFMTime) /
+CancelOrder(new CancelOrder, $transaction.id_pts, $pts)

TransactionCompleted+(o, t_id, $pts)[$transaction.ds.id_pts=t_id] /

Variables:
 GTDTOFMTime: Time
 GTDTOFMBase: MOFM
 GTDTOFMUser: User
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, volume, time, ep)[type=good_till_date_time] /
 +GTDTOFM(new GTDTOFM, GTDTOFMTime=time, GTDTOFMBase=none, GTDTOFMUser=ep)

Macros:
 let me = $user
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let user = self.bs.GTDTOMFUser
 let transaction = (self.bs.GTDTOFMBase).MOFMT
 let pts = ds.PTSs

PTSCancelConfirm+(o, id, $pts)[$transaction.ds.pts_id=id] /
+OrderCanceled(new OrderCanceled, $transaction.ds.id, $user)

++Transaction.phase($transaction, canceled)
-MOFM(self.bs.GTDTOFMBase) GTDTOWaitingForCancelConfirmation

TransactionCompleted+(o, t_id, $pts)[$transaction.ds.id_pts=t_id] /

Figure B.10: Good-till-date/time order modelled as a FORM feature model

88

Bracket Order Buy

«override query: ($base)»
t=new Transaction

CreateTransaction(t, type, action, ticker_symbol, volume, $user)
++BOBFM.BOBFMT(self, t)

$base.MOFMT=$transaction
+LOBFM(new LOBFM, LOBFMLimitPrice=limit_price, LOBFMT=t, LOBFMBase=$base, LOBFMUser=$user)

++MOFM.MOMain($base, MORoot)

BOWaitingForLimitOrder

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($limit_price>=new_price)] /

+LOSFM(new LOSFM, LOSFMLimitPrice=$limit_price+$offset,
LOSFMT=$transaction, LOSFMBase=self.bs.BOBFMBase, LOSFMUser=$user)

+SOSFM(new SOSFM, SOSFMStopPrice=$limit_price-$offset,
SOSFMT=$transaction, SOSFMBase=self.bs.BOBFMBase, SOSFMUser=$user)

BOWaitingForBracketOrders

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($limit_fm.LOSFMLimitPrice<=new_price)] /

-SOSFM($stop_fm)

UpdateTicker+(o, symbol, new_price, ep)[($transaction.ds.ticker_symbol=symbol),
($stop_fm.SOSFMStopPrice>=new_price)] /

-LOSFM($limit_fm)

Variables:
 BOBFMUser: User
 BOBFMLimitPrice: Price
 BOBFMOffset: Price
 BOBFMT: Transaction
 BOBFMBase: MOFM
Constructor:
 RequestOrder+(o, type, action, ticker_symbol, volume, limit_price, offset, ep)[type=bracket, action=buy] /
 +BOBFM(new BOBFM, BOBFMLimitPrice=limit_price, BOBFMOffset=offset, BOBFMT=none, BOBFMBase=none, BOBFMUser=ep)

Macros:
 let me = $user
 let user = self.bs.BOBFMUser
 let base = (bs.MOFMUser).$me & (bs.MOFMT).none
 let limit_fm = (bs.LOSFMUser).$me & (bs.LOSFMT).($transaction)
 let stop_fm = (bs.BOSFMUser).$me & (bs.BOSFMT).($transaction)
 let transaction = self.bs.BOBFMT
 let limit_price = self.bs.BOBFMLimitPrice
 let offset = self.bs.BOBFMOffset
 let pts = ds.PTSs

Figure B.11: Bracket order modelled as a FORM feature model

89

	List of Figures
	Introduction
	An Example of an Online Trading System
	Terminology
	Types of Orders
	Summary

	Feature-Oriented Requirements Modelling
	Requirements
	Requirements Modelling
	Feature-Oriented Software Development
	Alloy
	Alloy Notation

	FORM
	Domain Model
	Behavioural Model
	Functional Model

	Feature Oriented Requirements Modelling in Alloy
	Summary

	Modelling the Online Trading System in FORM
	Domain Model
	Base Feature Model
	Enhancement Feature Models
	Buy Bracket Order

	Summary

	Results and Evaluation
	Alloy Analysis of a FORM Domain Model
	Evaluation of the FORM Notation
	Extended the Scope of the Trigger Event of Feature-Machine Constructors
	Fixed Domain-Model Constraints
	Added Frame Predicates

	Workarounds and Deficiencies
	Added Time and Timeouts
	Policy Language
	Referencing the Base Feature Machine
	Inheritance of Feature Machines
	Polymorphism for Messages

	Conclusion
	References
	APPENDICES
	The Domain Model of the Online Trading System in Alloy Notation
	The Behavioural Model of the Online Trading System in Feature Oriented Requriements Modelling

