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Abstract

This is an expository thesis. In this thesis we study out-orientations of hypergraphs,
where every hyperarc has one tail vertex. We study hypergraphs that admit out-orientations
covering supermodular-type connectivity requirements. For this, we follow a paper of
Frank.

We also study the Steiner rooted orientation problem. Given a hypergraph and a subset
of vertices S ⊆ V , the goal is to give necessary and sufficient conditions for an orientation
such that the connectivity between a root vertex and each vertex of S is at least k, for
a positive integer k. We follow a paper by Kiraly and Lau, where they prove that every
2k-hyperedge connected hypergraph has such an orientation.
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Chapter 1

Introduction

1.1 Overview

This is an expository thesis. In this thesis we study out-orientations of hypergraphs, where
every hyperarc has one tail vertex.

In Chapter 2, we study hypergraphs that admit out-orientations covering supermodular-
type connectivity requirements. We follow a paper of Frank [3], where a result for graphs
is proved. We prove such result for hypergraphs.

In Chapter 3, we study the Steiner rooted orientation problem. Given a hypergraph
and a subset of vertices S ⊆ V , the goal is to give necessary and sufficient conditions for
an orientation such that the connectivity between a root vertex and each vertex of S is at
least k, for a positive integer k. We follow a paper by Király and Lau [7], where they prove
that every 2k-hyperedge connected hypergraph has such an orientation.

Before every major step in Chapter 2 and Chapter 3, we present a high-level explana-
tion. Moreover, the thesis has detailed arguments for the last parts of Chapters 2 and 3,
filling in some of the details missing from the original papers.

Throughout this thesis, k will denote a nonnegative integer. Throughout, we refer to a
mathematical item numbered i (by latex) as Equation i; even if the item is not an equation.
The remainder of Chapter 1 is devoted to definitions and results on hypergraphs. We also
present some key results on orientation of hypergraphs.

1.2 Graphs and hypergraphs

In this section, we define graphs and hypergraphs.
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Figure 1.1: On the left, a hypergraph H with two hyperedges. On the right, its bipartite
representation B(H).

Definition 1. A graph is a pair G = (V,E) such that V is a set, and E is a multiset
whose members are 2-element subsets of V .

We only consider loopless graphs, as in the definition.

In this thesis, we are mainly interested in hypergraphs, a generalization of graphs, where
instead of edges we have hyperedges. Every hyperedge is a subset of the set of vertices.
That is, we drop the assumption that an edge has size 2. More formally,

Definition 2. A hypergraph is a pair H = (V,E) such that V is a set, and E is a multiset
whose members are nonempty subsets of V .

Hence, a hyperedge e ∈ E is a nonempty subset of V of any size. Although the definition
allows hyperedges of size 1, we assume that there are none. We let V (H) denotes the set
of vertices of H and E(H) denotes the multiset of hyperedges of H.

For an easier way to picture a hypergraph, we will construct a graph that captures the
essential properties of the hypergraph.

Given a hypergraph H = (V,E), we say that B(H) = (VB, EB) is the bipartite repre-
sentation of H if VB = V ∪ E and EB = {ve : v ∈ V, e ∈ E, v ∈ e}. In words, B(H) is
the graph that has a vertex for every vertex in H and a vertex for every hyperedge of H.
There is an edge between a vertex v ∈ V and a vertex e ∈ E if v is in the hyperedge e.
We say that the vertices of B(H) are normal vertices if they correspond to vertices of H,
and we say they are hyperedge vertices if they correspond to hyperedges of H. We picture
a hypergraph H as the drawing of B(H) (see Figure 1.1).

A path in a hypergraph H is an alternating sequence, without repetition, of vertices
and hyperedges, v1, e1, v2, e2, ...ek, vk+1 such that for i = 1, .., k, ei contains vi−1 and vi.

To picture a path in a hypergraph H, we refer to the bipartite representation B(H).
A path in H will be a path in B(H) where both end vertices correspond to vertices of H
(see Figure 1.1).
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Given a hypergraph H, and v, w ∈ V (H) we say that v and w are connected if there
exists a path between them. We say H is connected if any two vertices of H are connected.
We say that a set S ⊆ V (H) is k connected if for every pair of vertices from S there exist
k edge disjoint paths between them. For X ⊆ V (H), we say a hyperedge e enters X if
e ∩X 6= ∅ and e ∩ (V −X) 6= ∅. We define δH(X) to be the set of hyperedges that enter
X, and dH(X) = |δH(X)|.

1.3 Directed hypergraphs

In this section, we present two different definitions of directed hypergraphs. We first present
directed graphs.

Definition 3. A directed graph is a pair G = (V,E) such that V is a set, and E is a
multiset whose members are ordered pairs of elements of V .

We say that V is the set of vertices of D, and A is the set of arcs of D, and we denote
these as V (D) and A(D) respectively.

More precisely, for an arc a = (v, w) of D, we say that v is the tail and w is the head of
a. A dipath in directed graph D is an alternating sequence, without repetition, of vertices
and arcs, v1, a1, v2, a2, ...ak, vk+1 such that for i = 1, .., k, vi is the tail of ai and vi+1 is the
head of ai.

There are at least two natural ways to define a directed hypergraph. One way is via
directed out-hypergraphs (called star hypergraphs in [1]).

Definition 4. A directed out-hypergraph is a pair D = (V,A) where V is a set and A
is a multiset of subsets of V , and a relation which assigns to every member e of D a tail
vertex tail(e) ∈ e.

We say that the members of A are the hyperarcs of D. Let D be a directed out-
hypergraph. As for directed graphs, the idea of directing a hypergraph comes from the use
in paths. In this case, we have a tail vertex for every hyperarc. For a hyperarc a, we say
the vertices different from tail(a) are head vertices of a. A dipath in D is an alternating
sequence, without repetition, of vertices and hyperarcs, v1, a1, v2, a2, ...ak, vk+1 such that
for i = 1, .., k, vi is the tail of ai and vi+1 is a head of ai.

Another way for defining a directed hypergraph, used in [4], is via directed in-hypergraphs.
.

Definition 5. A directed in-hypergraph is a pair D = (V,A) where V is a set and A is a
multiset of subsets of V , and a relation. This relation assigns to every hyperarc e of D a
head vertex head(e) ∈ e.

3



tail vertex

Figure 1.2: A directed out-hyperarc and its bipartite representation. (A directed in-
hyperarc would simply have out-degree one at the hyperarc vertex.)

The only change is that, instead of having one tail vertex, we have one head vertex,
and all non head vertices of a hyperarc are called tail vertices. The definition of a dipath
is the same.

In this thesis, we are concerned with the connectivity properties that a hypergraph can
maintain when orienting its hyperedges. This leads to the following definitions.

For a directed hypergraph D, if we forget about the tail (head) vertex designation
of each hyperarc, we are left with a hypergraph H. We say that H is the underlying
hypergraph of D. We say an in-orientation (out-orientation) of a hypergraph H is a
directed in-hypergraph (out-hypergraph) D whose underlying hypergraph is H.

As for hypergraphs, we wish to picture a directed hypergraph. Let D = (V,A) be a
directed in-hypergraph (out-hypergraph) and H its underlying graph. We will construct
a bipartite representation for D. Let B(D) be the directed graph given by orienting the
edges of B(H) as follows. For a in D, let e be its corresponding hyperedge in H. An edge
ve of B(H), with v ∈ e, will be oriented as (v, e) in B(D) if v is a tail of a in D. Otherwise,
if v is a head of a, it will be oriented as (e, v). (We call a vertex of B(D) a hyperarc vertex
if it corresponds to a hyperarc of D, and we call it a normal vertex if it corresponds to a
vertex of D.) See Figure 1.2.

For an orientation D of H and X ⊆ V , we say that a hyperarc a enters X if there is a
head of a in X and a tail of a in V −X. We use δin

D (X) to denote the set of hyperarcs that
enter X; din

D (X) = |δin
D (X)|. Analogously, we say that a hyperarc arc leaves X if it enters

V −X. We denote the set of hyperarcs that leave X as δout
D (X); and dout

D (X) = |δout
D (X)|.

When it is not ambiguous, we omit the subscript in this notation.

We say that a directed in-hypergraph (out-hypergraph) D is k-hyperarc connected if it
has k-hyperarc disjoint dipaths from v to w, for every pair of vertices v, w ∈ V (D).
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1.4 Menger’s theorem

Consider a directed graph D = (V,A). For S, T ⊆ V we say that a dipath is an S, T -
dipath if its start vertex is in S and its end vertex is in T . A set C of vertices is called
S, T -disconnecting if C intersects each S, T -dipath (C may intersect S ∪ T ). For vertices
s, t ∈ V , we say that a set of arcs C is an s, t- cut if C = δout(U) for some subset U of V
with s ∈ U , t/∈ U . For graphs, hypergraphs, and directed hypergraphs we define S, T -paths
and dipaths in an analogous way. We also define an s, t-cut in the same way.

Menger [8], gave a min-max theorem for the maximum number of disjoint S, T paths
in an undirected graph.

Theorem 1. (Menger’s theorem, directed vertex-disjoint version.) Let D = (V,A) be a
digraph and let S, T ⊆ V . Then the maximum number of vertex disjoint S, T -dipaths is
equal to the minimum size of an S, T -disconnecting vertex set.

As a corollary, we have that for vertices s, t the maximum number of arc disjoint s, t
dipaths is equal to the minimum size of an s, t−cut.

Corollary 1. (Menger’s theorem, directed arc-disjoint version.) Let D = (V,A) be a
digraph and s, t ∈ V . Then the maximum number of arc disjoint s, t dipaths is equal to the
minimum size of an s, t-cut.

An edge-disjoint version of this theorem holds for undirected graphs.

Corollary 2. (Menger’s theorem for hypergraphs, hyperedge-disjoint version.) Let H =
(V,E) be an undirected hypergraph. Then the maximum number of hyperedge disjoint s,t-
paths is equal to the minimum size of an s, t-cut.

Proof. We construct a directed graph for which every s, t dipath corresponds to an s, t
path in the hypergraph. We then apply Corollary 1.

Let G = (V ′, A′) be the directed graph with a vertex v for each v ∈ V and two vertices
xe and ye for every hyperedge e ∈ E. Like in the bipartite representation, we will add
arcs between a hyperedge vertex and a normal vertex if the vertex is in the corresponding
hyperedge. We have an arc starting in v and ending in xe if v ∈ e. Similarly, we have an
arc starting in ye and ending in v if v ∈ e. Finally, there is an arc (xe, ye) for every e ∈ E
(see Figure 1.3).

Note that a dipath between two normal vertices in G corresponds to a path between
the same two vertices in H and vice versa. The corollary now follows from Corollary 1.
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xe ye

Figure 1.3: The bipartite representation B(H) on the left. On the right we present D,
the digraph constructed for the proof of Corollary 2. In particular, there is a one-to-one
correspondence between the paths in H and the dipaths in D with end points in normal
vertices.

Corollary 3. (Menger’s theorem for directed in-hypergraphs (out-hypergraphs), hyperarc-
disjoint version.) Let H = (V,A) be a directed in-hypergraph (out hypergraph). Then the
maximum number of hyperarc disjoint s,t paths is equal to the minimum size of an s, t-cut.

The proof of this corollary follows by applying Corollary 1 to the bipartite representa-
tion of H.

1.5 Flows and connectivity requirements

In this section we present the Edmonds-Giles theorem. We refer the reader to Schrijver’s
book [11] for background information. Given a ground set V , and X, Y ⊆ V we say that
X and Y are intersecting if X ∩ Y,X\Y, Y \X are all non empty. We say that a family F
of subsets of V is intersecting if X ∪ Y , X ∩ Y are in F for every pair of intersecting sets
X, Y ∈ F . We say that a function h on an intersecting family of subsets F is intersecting
supermodular if

h(X) + h(Y ) ≤ h(X ∪ Y ) + h(X ∩ Y )

for every pair of intersecting sets X, Y ∈ F .

Given a hypergraph H = (V,E) and an intersecting supermodular function h on F ⊆
2V , we say that an orientation D of H covers h if din(X) ≥ h(X) for every X ∈ F . We say
that h is a connectivity requirement of H. Throughout this thesis all functions are integral.

For a ground set V we say that X, Y ⊆ V are crossing if they are intersecting and
X ∪ Y 6= V . Furthermore, we say that a family of subsets F of V is crossing if X ∪ Y ,
X ∩ Y are in F for every pair of crossing sets X, Y ∈ F .
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Let D = (V,A) be a digraph and C be a crossing family of subsets of V . A function
f : C → R is called crossing submodular if

h(X) + h(Y ) ≥ h(X ∪ Y ) + h(X ∩ Y )

for every pair of crossing sets X, Y ∈ C.
For a vector x : S → R, and S ′ ⊆ S we denote

∑
i∈S′ xi by x(S ′). Given such D, C, f

the submodular flow polyhedron B consists of vectors x ∈ RA satisfying

x(δin(U))− x(δout(U)) ≤ f(U) for each U ∈ F .
We say that a polyhedron B ⊆ Rn is box-integer if for all c, d ∈ Zn, the polytope

B ∩ {x ∈ Rn|d ≤ x ≤ c}
is integer.

Theorem 2. (Edmonds-Giles theorem.) For a digraph D = (V,A) and a crossing submod-
ular function f on a crossing family C of subsets of V , the submodular flow polyhedron is
box-TDI. Furthermore, if f is integer valued, the submodular flow polyhedron is box-integer.

This theorem is used to prove many results on graph orientation problems. In this
thesis, we use it to provide an algorithm for the existence of a Steiner rooted k-hyperarc
connected orientation for a given indegree specification. As an example of its use, in the
next section we use the Edmonds-Giles theorem to prove Nash-Williams’ weak orientation
theorem.

1.6 Nash-Williams’ theorems

In this section we present two theorems by Nash-Williams. Both theorems are predecessors
of the results presented in this thesis.

Theorem 3. (Nash-Williams’ Weak Orientation Theorem) An undirected graph G has a
k-arc connected orientation if and only if G is 2k-edge connected.

Proof. From Menger’s theorem it follows that a graph that has a k-arc connected orienta-
tion is 2k-edge connected. It remains to prove that if G is 2k-edge connected, then there
exists an orientation that is k-arc connected. Let D = (V,A) be an arbitrary orientation
of G. Consider the polyhedron B ⊆ RA such that x ∈ B if

x(δin
D (U))− x(δout

D (U)) ≤ din
D (U)− k, for each U ⊂ V, where U 6= ∅. (1.1)

7



It is easy to see that din(U)− k is crossing submodular. Hence, by the Edmonds-Giles
Theorem (Theorem 2), B is box-integer. It follows that B′ = {x ∈ B : 0 ≤ xa ≤ 1, a ∈ A}
is an integral polyhedron. Note that the vector x := 1

2
× 1 satisfies Equation 1.1 because

every cut of G has size at least 2k; hence B′ is nonempty. Therefore, B′ has an integer
solution x. Let D′ be the orientation resulting from D by reversing the orientation of
the arcs a of D such that xa = 1. By Menger’s Theorem, D′ will be a k-arc connected
orientation if and only if din

D′(U) ≥ k for every U ⊂ V . From the definition of D′ and the
fact that x satisfies Equation 1.1, we have

din
D′(U) = din

D (U)− x(δin(U)) + x(δout(U)) ≥ din
D (U)− (din

D (U)− k) ≥ k.

For a graph G and an orientation D of G, let λG(s, t) denote the maximum number of
edge-disjoint s, t paths in G, and λD(s, t) denote the maximum number of arc-disjoint s, t
dipaths in D. The following is a deep result for which an analogous for hypergraphs is not
known.

Theorem 4. (Nash-Williams’ Strong Orientation Theorem [9]) Any undirected graph G =
(V,E) has an orientation D = (V,A) with

λD(s, t) ≥
⌊

1

2
λG(s, t)

⌋
, ∀s, t ∈ V. (1.2)

1.7 Edge-disjoint spanning trees

In this section, we analyze possible extensions to hypergraphs of the following result for
graphs.

Theorem 5. (Tutte [12]; Nash-Williams [10]) An undirected graph G = (V,E) has k edge-
disjoint spanning trees if and only if for every partition P = {V1, ...Vt} of V , the number
of edges with end vertices in different members of P is at least k(t− 1).

When G is a 2k connected graph, there will be at least k(t−1) edges connecting different
sets of the partition P . That is, when G is 2k connected there are k edge-disjoint spanning
trees. The next theorem, due to Bang-Jensen et al.[1], implies that a simple analogue of
this fact does not hold for hypergraphs.

Theorem 6. [1] For every positive integer k there exists an undirected hypergraph H that
is k-hyperedge connected, and does not contain two hyperedge-disjoint spanning connected
subhypergraphs.
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Nevertheless, Frank et al. [5] proved an analogue to Tutte’s theorem.

We say that a hypergraph is k-partition connected if the number of hyperedges with
endpoints in at least two members of P is at least k(t − 1), where t is the number of
members of P .

Theorem 7. [5] An undirected hypergraph is k-partition connected iff it can be decomposed
into k hyperedge-disjoint 1-partition connected subhypergraphs.

Note that a connected hypergraph may have just one hyperedge, but a 1-partition
connected hypergraph has at least |V |−1 hyperedges (consider the partition into singletons,
see Figure 1.4).

Hyperedge vertices

Figure 1.4: The bipartite representation of a 3-hyperedge connected hypergraph. Note
that it has only 3 hyperedges. By taking the partition of the vertices consisting of the
singletons, it follows that this hypergraph is not 1-partition connected.

1.8 Steiner graphs and Steiner hypergraphs

Throughout this thesis, we work with Steiner hypergraphs. For a hypergraph H = (V,E)
and a designated set of vertices S ⊆ V , we say that the Steiner vertices are the vertices in
V − S. We say that a vertex in S is a terminal vertex, and sometimes we refer to it as a
terminal.

9



It is natural to try to extend Theorem 5 or theorems like the Nash-Williams orientation
theorems to the setting of Steiner graphs. Unfortunately, most of these problems on Steiner
graphs are NP-hard and so there exist no good characterizations or min-max theorems,
assuming NP 6= co-NP.

1.9 Reversing paths

A key operation that will be used in the thesis is what we call reversing a path.

Consider a hypergraph H = (V,E) and an out-orientation D = (V,A) of H. Let−→
P = (v1, a1, ..., ak, vk+1) be a dipath in D, where ei is the corresponding hyperedge in
H of ai. We say that D′ is the orientation obtained from D by reversing P if D′ is an
out-orientation of H, where the tails are assigned in the same way as in D except for
e1, ...ek, and for i = 1, ..., k, we assign ei to have tail vi+1; thus vi is a head of ei. Note that←−
P = (vk+1, ek, vk, ek−1, ..., e1, v1) is a dipath of D′.

1.10 Some results on in-orientations

The hypergraph orientation problem is to find an orientation of a hypergraph that covers a
given connectivity requirement function. We say that an orientation of a hypergraph is out-
rooted k-hyperarc connected if there exists a vertex r such that there are k-hyperarc disjoint
dipaths from r to every other vertex. We say that it is in-rooted k hyperarc connected if
there exists a vertex r such that there are k hyperarc disjoint dipaths from every other
vertex to r.

Most results that can be proved for in-orientations can be translated to equivalent
results for out-orientations, and vice versa. We do not mean that the same result will hold
for both, but that any in-orientation can be reversed to give an out-orientation, where the
‘opposite” result will hold. For example, if a hypergraph admits an out-orientation that
is out-rooted k-hyperarc connected (k paths from the root to each vertex), then it admits
an in-orientation that is in-rooted k-hyperarc connected (k paths from each vertex to the
root).

In [3], Frank studies the graph orientation problem. He gives a characterization for
intersecting supermodular connectivity requirements. Two decades later, Frank et al. [4]
studied the hypergraph orientation problem, this time using crossing supermodular con-
nectivity requirements, and they proved the following theorem.

Theorem 8. Let H = (V,E) be an undirected hypergraph, and let h be a non-negative
crossing supermodular set function. There is an in-orientation of H covering h if and only

10



if ∑
X∈P

h(X) ≤ |{e ∈ E : e ∈ δ(X), X ∈ P}|,∑
X∈P

h(V −X) ≤
∑
e∈E

max{0, (|{X ∈ P : e ∈ δ(X)}| − 1)}

for every partition P of V .

Theorem 8 can be used to prove that, for any 2k-hyperedge connected hypergraph H
and a root vertex r ∈ V (H), H has an in-rooted k-hyperarc connected in-orientation. This
is done by defining appropriate connectivity requirements.

For non-negative integers k ≥ l, a directed hypergraph is called (k, l)-edge-connected if
there is a node s ∈ V such that there are k edge-disjoint dipaths from s to every other
node, and there are l edge-disjoint dipaths to s from every other node. For non-negative
integers k ≥ l, a hypergraph H is called (k, l)-partition-connected if the number of edges
that have end vertices in different members of P is at least k(t− 1) + l for every partition
P with t members. More precisely, if |{e ∈ E : ∃X ∈ P , e ∈ δ(X)}| ≥ k(t− 1) + l. When
l = 0 we simply call it k-partition connected.

Corollary 4. [4] An undirected hypergraph has a (k, l)-edge-connected in-orientation if
and only if it is (k,l)-partition-connected.

11



Chapter 2

Orienting Hypergraphs

2.1 Introduction

In this chapter, we present a result by A. Frank [3] in the setting of hypergraphs. Frank’s
theorem characterizes graphs that can be oriented to satisfy certain connectivity require-
ments.

The main result of this chapter, Theorem 10, is similar to Theorem 8 with three main
differences. The first one is that Theorem 10 allows for negative values of the requirement
function. This directly gives a corollary on orienting mixed hypergraphs (a hypergraph with
directed hyperedges and undirected hyperedges). Another difference is that in Theorem
10 the requirement function h does not have to be defined on all subsets of V . Finally, the
functions for Theorem 10 are a bit more general than supermodular functions.

Recall from Chapter 1, that dG(X, Y ) denotes the number of edges between X\Y and
Y \X.

Definition 6. Given a graph G = (V,E) and an intersecting family F of subsets of V , we
say that f : F → Z is relaxed supermodular if for every two intersecting sets X and Y
from F ,

f(X) + f(Y ) ≤ f(X ∪ Y ) + f(X ∩ Y ) + dG(X, Y ).

We say that P = {V1, ..., Vt} is a subpartition of V if Vi ⊆ V for all i = 1, ..., t, and
furthermore, if i 6= j, then Vi ∩ Vj = ∅. For a family F of subsets of a ground set V , we
say that a subpartition P = {V1, ..., Vt} of V is a subpartition from F if every member of
P is in F . For a subpartition P of V , we use e(G,P) to denote the number of edges that
either have end vertices in different members of P or have one vertex in ∪{Vi : Vi ∈ P},
that is e(G,P) = |{e ∈ E : ∃Vi ∈ P , e ∈ δ(Vi)}|.
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Theorem 9. ([3], Theorem 2] For an undirected graph G = (V,E), an intersecting family
F of subsets of V such that ∅ /∈ F , V ∈ F , and a relaxed supermodular function f : F → Z
such that f(V ) = 0, G has an orientation that covers f if and only if

e(G,P) ≥
∑
Vi∈P

f(Vi) (2.1)

for every subpartition P = {V1, ..., Vt} from F .

Note that, Frank uses the term convex functions to denote relaxed supermodular func-
tions. Instead of saying that F is an intersecting family of subsets of V , he explicitly adds
the definition to the theorem. Besides the notational differences, this is the same theorem
presented by Frank in [3].

In this chapter, we extend Theorem 9 to out-orientations of hypergraphs. More pre-
cisely, for a hypergraph H and a requirement function f , we state necessary and sufficiency
conditions for the existence of an out-orientation of H that covers f . In this chapter, we
refer to directed out-hypergraphs simply as directed hypergraphs, and out-orientations
simply as orientations.

In Section 2 we introduce notation specific to this chapter. In Section 3 we state the
main theorem of this chapter and discuss some applications. Section 4 presents an overview
of the proof together with some results about tight sets. Section 5 presents the proof of
the main theorem.

2.2 Preliminaries

In this section, we extend some notation, commonly used in graphs, to hypergraphs.

2.2.1 Notation

We recall some terms and notation from Chapter 1. Given a hypergraph H = (V,E) and
X ⊆ V , we say a hyperedge e enters X, if e∩X 6= ∅ and, at the same time, e∩(V −X) 6= ∅.
We define δH(X) to be the set of hyperedges that enter X, and dH(X) = |δH(X)|. For an
orientation D of H and X ⊆ V , we say that a hyperarc a enters X if there is a head of
of a in X and a tail of a in V − X. We use δin

D (X) to denote the set of hyperarcs that
enter X; din

D (X) = |δin
D (X)|. Analogously, we say that a hyperarc arc leaves X if it enters

V −X. We denote the set of hyperarcs that leave X as δout
D (X); and dout

D (X) = |δout
D (X)|.

As we have already mentioned, in this chapter we work only with directed out-hypergraphs,
and we refer to them simply as directed hypergraphs. Recall that an out-orientation D of
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Hyperedges

Vertices

δ(X,Y) (P)

X Y P

Γ

Figure 2.1: On the left, the bipartite representation of a hypergraph, subsets of vertices
X, Y , and the hyperedges (hyperedge vertices) in δ(X, Y ). On the right, the bipartite
representation of a hypergraph, a subpartition P , and the hyperedges (hyperedge vertices)
in Γ(P)

a hypergraph H, assigns to every hyperedge of H a tail vertex. For a hyperarc a ∈ A(D)
we use tail(a) to denote the tail vertex of a.

When extending Theorem 9 to hypergraphs, some difficulties arise. Namely, d(X, Y )
and e(G,P) are not well defined for hypergraphs. We extend the definitions of d(X, Y )
and e(G,P) to the setting of hypergraphs in such a way that the meaning of these symbols
for graphs remains the same.

Given a hypergraph H = (V,E) and X, Y ⊆ V , we let δH(X, Y ) denote the set of
hyperedges that enter Y \X and X\Y but do not enter X ∩ Y ; dH(X, Y ) = |δH(X, Y )|.
Note that d(X, Y ) is defined only for hypergraphs, and not for directed hypergraphs. If
D is an orientation of H, we say that δD(X, Y ) = δH(X, Y ); dD(X, Y ) = dH(X, Y ). See
Figure 2.1.

Lemma 1. Let H = (V,E) be a hypergrah, and D be an orientation of H. Then, for
X, Y ⊆ V , we have

din
D (X) + din

D (Y ) = din
D (X ∪ Y ) + din

D (X ∩ Y ) + dD(X, Y ). (2.2)

Proof. Each term in the equation is the cardinality of a set of hyperarcs. Hence it suf-
fices to show that every hyperarc of D will appear the same number of times in the sets
corresponding to the values of LHS as of the sets corresponding to the values of the RHS.

For the inequality din
D (X) + din

D (Y ) ≤ din
D (X ∪ Y ) + din

D (X ∩ Y ) + dD(X, Y ): Let a be a
hyperarc of D. If a enters X but not Y , then either a enters X ∪ Y , a enters X ∩ Y or a
is in δD(X, Y ). So a appears on the RHS at least the same number of times as it appears
in the LHS. The case where a enters Y , but not X, is analogous. If a enters both X and
Y , its tail is not in X ∪ Y so it must enter X ∪ Y , and it either enters X ∩ Y , or it is in
δD(X, Y ).
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For din
D (X) + din

D (Y ) ≥ din
D (X ∪ Y ) + din

D (X ∩ Y ) + dD(X, Y ): First consider a hyperarc
a that enters X ∪ Y . Without loss of generality, we can assume that a enters X. Note
that a cannot enter X ∩ Y and be in δD(X, Y ) at the same time. If a enters X ∩ Y then a
enters Y . If a is in δD(X, Y ), then a must enter Y . Now consider a hyperarc a that does
not enter X∪Y . If the right-hand-side is zero then we are done. Therefore we may assume
that either a enters X ∩Y or a is in δD(X, Y ), but not both. If a enters X ∩Y , then either
a enters X, or a enters Y . If a is in δD(X, Y ), then it either enters X or it enters Y .

Definition 7. For an undirected hypergraph H = (V,E), and a subpartition P = {V1, ...Vt}
of V , we say that a hyperedge e is mishandled by P if e is contained in ∪t

i=1Vi and e enters
at least one of the members of P.

Let Γ(P) denote the set of hyperedges that are mishandled by P , and let γ(P) = |Γ(P)|.
We define eH(P) = (

∑
Vi∈P d(Vi)) − γ(P). See Figure 2.1. When it is not ambiguous, we

simply use e(P).

Note that a graph G = (V,E) is a hypergraph with hyperedges of size two (edges),
e(G,P) = |{e ∈ E : ∃Vi ∈ P , e ∈ δ(Vi)| = (

∑
Vi∈P d(Vi))− γ(P) = e(P). The definition of

e(P) allows us to relate the connectivity properties of a hypergraph with the connectivity
properties of an orientation of the same hypergraph.

The following proposition differentiates an out-orientation of a hypergraph from other
ways of defining an orientation; if D is an orientation such that the number of tail and
head nodes is arbitrary, then an equality comparing din

D and dH would be more difficult, if
even possible, to obtain.

Proposition 1. Let D = (V,A) be an orientation of a hypergraph H. Let C be a subset
of V such that no hyperarcs from D leave C, and let P = {V1, ..., Vt} be a partition of C.
Then

e(P) =
∑
Vi∈P

din
D (Vi) (2.3)

Proof. For a hyperedge e and its corresponding hyperarc −→e , e contributes to e(P) as much
as −→e contributes to

∑
Vi∈P d

in
D (Vi). If tail(−→e ) is in C, e is either mishandled by P or it is

not mishandled by P . In the latter case neither e nor −→e contribute to the equation because
e is contained in a member Vi of P . So assume that e is mishandled by the partition, then
e contributes one more to

∑
Vi∈P dH(Vi) than −→e to

∑
din

D (Vi). On the other hand, e also
contributes one to γ(P), and this is subtracted from e(P). If tail(−→e ) is not in C, then e
contributes to

∑
Vi∈P dH(Vi) the same number as the contribution of −→e to

∑
din

D (Vi).

For a hypergraph, we define a relaxed supermodular function in the same way as for
graphs.
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Definition 8. Given an undirected hypergraph H = (V,E) and an intersecting family F
of subsets of V , we say that f : F → Z is relaxed supermodular if

f(X) + f(Y ) ≤ f(X ∪ Y ) + f(X ∩ Y ) + dH(X, Y ), (2.4)

for all intersecting pairs X, Y ∈ F .

2.3 The main theorem and its applications

The main result of this chapter is the following characterization of hypergraphs that admit
orientations covering relaxed supermodular connectivity requirements.

Theorem 10. Let H = (V,E) be an undirected hypergraph and F an intersecting family
from V such that ∅ /∈ F , V ∈ F . Let f be a relaxed supermodular function on F such that
f(V ) = 0. Then H has an orientation that covers f if and only if, for every subpartition
P = {V1, ...Vt} from F ,

e(P) ≥
∑
Vi∈P

f(Vi). (2.5)

We present two applications of Theorem 10. For the first application, we first define a
mixed hypergraph.

Definition 9. We say that H = (V,E,
−→
A ) is a mixed hypergraph if E is a multiset of

hyperedges of V and
−→
A is a multiset of hyperarcs of V .

For a mixed hypergraph H = (V,E,
−→
A ), we have the associated hypergraphs HE =

(V,E) and HA = (V,A), where A is the set of hyperedges induced by the hyperarcs in
−→
A .

We also have an associated directed hypergraph D−→
A

= (V,
−→
A ). Let eE(P) denote eHE

(P),
d−→

A
(X, Y ) be dHA

(X, Y ) and din−→
A

be din
DA

(X). We have the following extension of Theorem
10 for mixed hypergraphs.

Corollary 5. Suppose H = (V,E,
−→A) is a mixed hypergraph. Let F be an intersecting

family of subsets from V such that ∅ /∈ F , V ∈ F . Let f be a relaxed supermodular
function on F with f(V ) = 0. Then H has an orientation that covers f if and only if, for
every subpartition P = {V1, ...Vt} from F ,

eE(P) ≥
∑
Vi∈P

f ′(Vi) (2.6)

where f ′ : F → Z is given by f − din−→
A

.
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Proof. Notice that f ′ is relaxed supermodular on F : for intersecting sets X,Y from F ,
recall that Lemma 1 states that din−→

A
(X) + din−→

A
(Y ) = din−→

A
(X ∪ Y ) + din−→

A
(X ∩ Y ) + d−→A(X, Y ).

By changing the signs and deleting d−→A(X, Y ) from the inequality, we obtain that−din−→
A

(X)−
din−→
A

(Y ) ≤ −din(X ∪Y )−→A − din−→
A

(X ∩Y ). This, together with the relaxed supermodularity of

f implies that f ′ is relaxed supermodular, and the corollary follows from Theorem 10.

Essentially, this corollary allows us to cope with mixed hypergraphs, where the hypearcs
are out-oriented. If the hyperarcs of the mixed graph are not out-oriented, then we cannot
guarantee that f ′ is relaxed supermodular.

Another application of Theorem 10 pertains to the rooted hypergraph orientation prob-
lem. In this problem, we are given a hypergraph, and we wish to find an orientation such
that the connectivity from a given root vertex to the rest of the vertices is maximized.

Corollary 6. Let H = (V,E) be an undirected hypergraph. Fix an arbitrary vertex r to be
the root vertex. If H is 2k-hyperedge connected, then there exists an orientation of H such
that there are k hyperarc disjoint dipaths from r to every other vertex.

Proof. Let F= 2V − ∅. Define a function f : F → Z by

f(X) =

{
k if r /∈ X
0 otherwise.

(2.7)

By Menger’s Theorem, an orientation that covers f has k hyperarc disjoint dipaths from
r to every other vertex. Notice that f is relaxed supermodular. By Theorem 10, there
exists an orientation covering f if and only if e(P) ≥ ∑Vi∈P f(Vi) for every subpartition
P = {V1, ...Vt} of V . We need to show that the inequality holds for every subpartition.

Let P = {V1, ..., Vt} be a subpartition such that r /∈ ∪t
i=1(Vi), hence

∑
Vi∈P f(Vi) = kt.

On the other hand, because H is 2k-hyperedge connected, d(Vi) ≥ 2k. Note that for
a hyperedge to be in Γ(P), it has to enter at least two members of P , hence γ(P) ≤∑

Vi∈P d(Vi)/2. Taking all this into account, e(P) ≥ ∑Vi∈P d(Vi)/2 ≥ 2kt/2 = kt, thus
e(P) ≥∑Vi∈P f(Vi).

If r ∈ ∪t
i=1(Vi), then

∑
Vi∈P f(Vi) = k(t−1), nevertheless, the same analysis shows that

e(P) ≥ k(t− 1).

2.4 Overview of the proof

In this section, we give a high-level description of the proof of Theorem 10. We also discuss
some small, but important propositions that are used throughout the proof.
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2.4.1 Overview

For the proof of Theorem 10 we follow Frank’s proof of the corresponding theorem for
graphs [3]. The proof consists of an induction over val(f) =

∑{f(X) : X ∈ F , f(X) ≥ 0}.
We construct a relaxed supermodular function f ′ : F → Z such that f ′ ≤ f and val(f ′) <
val(f). By the induction hypothesis, there exists an orientation D of H that covers f ′.
We then modify this orientation so that it covers f . For this, we construct a directed
hypergraph D(f ′) by adding some arcs to D. In this new directed hypergraph, we find a
set of hyperarcs whose reorientation gives us an orientation that covers f .

2.4.2 Tight sets

First, we study some properties of orientations that cover f . Let H, F , f be as in Theorem
10. Let D be an orientation of H that covers f . A set of terminals X is said to be tight
with respect to f if din

D (X) = f(X). Note that a set may be tight with respect to an
orientation and not with respect to undirected hypergraphs.

In the proof of Theorem 10, the following two propositions might be used without
mention.

Proposition 2. The union and the intersection of every two intersecting tight sets is tight.

Proof. Let X and Y be two intersecting tight sets. The first and last term of the inequality
sequence below are equal:

din
D (X) + din

D (Y ) = f(X) + f(Y )

≤ f(X ∪ Y ) + f(X ∩ Y ) + dD(X, Y )

≤ din
D (X ∪ Y ) + din

D (X ∩ Y ) + dD(X, Y )

= din
D (X) + din

D (Y )

This means that

f(X ∪ Y ) + f(X ∩ Y ) + dD(X, Y ) = din
D (X ∪ Y ) + din

D (X ∩ Y ) + dD(X, Y ),

hence f(X ∪Y ) = din
D (X ∪Y ) and f(X ∩Y ) = din

D (X ∩Y ). That is, X ∪Y and X ∩Y are
tight.

Proposition 3. The intersection of a family of tight sets is a tight set, provided it is
nonempty. If a family of tight sets forms a connected hypergraph, then their union is tight.

Proof. Both statements follow by a repeated application of Proposition 2.
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2.5 The proof

We present the proof of Theorem 10.

2.5.1 The induction

We use induction on val(f) =
∑{f(X) : X ∈ F , f(X) ≥ 0}. It is straightforward that

every orientation is good when val(f) = 0. More precisely, if val(f) = 0, any orientation
covers f .

Assume that val(f) > 0. Our goal is to construct a function f ′ : F → Z such that
f ′ ≤ f and val(f ′) < val(f). Let X be a set of terminals X such that f(X) > 0. Then
from Equation 2.5 it follows that there exists a hyperedge Z that enters X. Let b and a
be in Z such that b is in X and a is not. We say that a subset Y of V is a ba set if b ∈ Y
and a /∈ Y . Define a function f ′ on F as follows:

f ′(Y ) =

{
f(Y )− 1 if Y is ba set

f(Y ) otherwise.
(2.8)

2.5.2 About f ′

Note that f ′ is relaxed supermodular with respect to F . Furthermore, val(f ′) < val(f).
Hence we can use the induction hypothesis. Let D be an orientation of H that covers f ′.
Assume that D does not cover f . Then there exists a ba set X with din

D (X) = f ′(X).

For the rest of this chapter, unless specified, we refer to a tight set, as tight with respect
to f ′ and the above D. The following is a neat property of tight sets.

Proposition 4. Any tight ab set A and any tight ba set B are disjoint.

Proof. For a contradiction, suppose A ∩ B 6= ∅. Because b /∈ A and a /∈ B, A and
B must be intersecting. By the inequalities below, we derive that din(A) + din(B) <
din(A ∪B) + din(A ∩B) + d(X, Y ), contradicting Lemma 1.

The series of inequalities below is derived from the fact that D covers f ′, the fact that
f is relaxed supermodular, and that f ′ and f have the same values on A ∪ B and A ∩ B
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(since neither A ∪B nor A ∩B are ba sets).

din
D (A) + din

D (B) = f ′(A) + f ′(B)

= f(A) + f(B)− 1

< f(A ∪B) + f(A ∩B) + dH(X, Y )

= f ′(A ∪B) + f ′(A ∩B) + dH(X, Y )

≤ din
D (A ∪B) + din

D (A ∩B) + dH(X, Y ).

This shows that din
D (A) + din

D (B) < din
D (A ∪ B) + din

D (A ∩ B) + dH(X, Y ), which is a
contradiction to Lemma 1.

2.5.3 How do we modify the orientation?

Because D covers f ′, it is natural to try to add an incoming hyperarc to every ba tight set.
If the smallest tight set containing b also contains a, then there is no ba tight set. Hence
D covers f . Therefore, it is natural to try an induction over the size of the smallest tight
set containing b.

Let T (x) denote the intersection of all tight sets containing a vertex x. This is well
defined since V is tight. Proposition 3 tells us that the intersection of tight sets is tight,
hence T (x) is tight. Furthermore, T (x) is the smallest tight set containing x.

As we have already mentioned, we can assume that T (b) does not contain a, otherwise
D covers f . From Equation 2.5 it follows that f ′(T (b)) = f(T (b)) − 1 < d(T (b)). Hence

there exists a hyperarc
−→
Z leaving T (b). Let y be the tail of

−→
Z (then y ∈ T (b)) and let z be

a head of
−→
Z that is not in T (b). Let D′ be the orientation resulting from D, by reorienting

the hyperarc
−→
Z to have tail z, and denote the resulting hyperarc as

−→
Z ′. Hence,

−→
Z ′ enters

T (b). The smallest tight set containing b in D′ would no longer be T (b). If D′ covers f ′,
we could try an induction over the size of T (b). Unfortunately, there is no guarantee that

D′ covers f ′. When we reorient
−→
Z the sets that contain z may lose an incoming hyperarc.

However, the only sets where the connectivity requirements might fail are the tight sets
that contain z.

We could repeat the process, reorienting an outgoing arc of T (z), to be incoming. The
question remains, when will we stop? If at some point, we reorient a hyperarc to have tail
in a vertex c, for which T (c) contains both a and b, it seems that we could stop the process.
It turns out that such a vertex c does exist. Furthermore, if we get such a vertex c, where
the least number of reorientations is needed, then the new orientation will cover f .
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The following directed hypergraph captures the process just mentioned. Let D(f ′) be
the directed hypergraph obtained from D by adding the following arcs, which we call red
arcs (these are simply hyperarcs consisting of two vertices). Add a red arc from x to every
other vertex of T (x), for all x ∈ V . Note that there is no red arc leaving a tight set, since
the opposite would contradict the minimality of T (x) for some x ∈ V .

The process for finding a new orientation that covers f can be stated in a simple way.
We need to find a dipath in the extended hypergraph D(f ′), such that when reversing the
dipath and deleting the red arcs, the orientation of H that remains covers f .

Let C denote the set of vertices which can be reached from b by a dipath in D(f ′).

Observation 1. There is no red arc, nor hyperarc, leaving C. Furthermore, C is the union
of tight sets T (x), x ∈ C.

If there was a red arc leaving C, then there would be a vertex not in C, that can be
reached from b, which would be a contradiction. This also implies that ∪x∈CT (x) ⊆ C.
The other containment is trivial, since x ∈ T (x) for every vertex.

Proposition 5. There exists a vertex x in C for which a, b ∈ T (x)

Proof. For a contradiction, suppose there is no such vertex x. Consider the hypergraph
formed by the vertices of C and the hyperedge given by the sets T (x), x ∈ C. By Proposi-
tion 3, the components of this hypergraph partition C into tight sets V1, ...Vt, where Vi ∈ F ,
for all i = 1, .., t.

Assume that a,b ∈ Vi for some i ∈ {1, ..., t}. Then there exists a sequence of hyperedges
X1, ...Xs, such that a ∈ X1, b ∈ Xs and Xi ∩Xi+1 6= ∅. Let this sequence be of minimum
length. Because we are assuming that there is no vertex x ∈ C such that a, b ∈ T (x),
then s > 1. Hence A = ∪s−1

i=1Xi (an ab set) and B = Xs (a ba set) are not disjoint. This
contradicts Proposition 4. Therefore, a and b must be in different components.

Let P = {V1, ..., Vt}. Without loss of generality, assume that b ∈ V1 and a is not.
Then f ′(V1) = f(V1) − 1, and because every member of P is tight it follows that f(Vi) =
f ′(Vi) = din

D (Vi) for every Vi ∈ P − V1. Remember that there are no hyperarcs leaving C.
By Proposition 1, e(P) =

∑
din

D (Vi) =
∑
f ′(Vi) =

∑
f(Vi)−1, which contradicts Theorem

10’s hypothesis, that is, Equation 2.5.

Let P be a dipath in D(f ′), from b to a vertex c, such that a, b ∈ T (c) and the length
of P is as small as possible. We shall often use the property that a tight set containing c
also contains both a and b.
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X
X

Figure 2.2: On the left, a dipath P with a red arc, represented by a dotted arrow. On the
right, dipath P reversed. Note that din(X) decreases by one. In the general case, din(X)
decreases by at most dout

P red(X) (without taking ε(X) into account).

2.5.4 Reversing P fixes the orientation

Lemma 2. Let D′ be the orientation of H obtained by reversing P in D(f ′) and deleting
the red arcs of D(f ′). Then D′ covers f .

Let ε be a function defined on F as follows:

ε(X) =


−1 if X is a cb-set

+1 if X is a bc-set

0 otherwise

Observation 2. Let dout
P red(X) denote the number of red arcs from P leaving X. Then,

din
D′(X) ≥ din

D (X) + ε(X)− dout
P red(X).

If there were no red arcs in P leaving X, then the inequality would be straight forward.
In this case, din

D′(X) would be one more than din
D (X) in bc sets, one less in cb sets, and

otherwise it would be the same. If there are red arcs in P leaving X, when we reverse the
hyperarcs from P , then X might have fewer incoming arcs in D′ than in D. However, the
number of incoming hyperarcs to X decreases by at most dout

P red(X) (see Figure 2.2).

To prove Lemma 2 we only need to prove that

din
D (X) + ε(X)− dout

P red(X) ≥ f(X). (2.9)
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2.5.5 The slack is enough

It is easy to check that ε(X) + ε(Y ) = ε(X ∩ Y ) + ε(X ∪ Y ). This with Lemma 1 and the
fact that f is relaxed supermodular show that α(X) = din

D (X)−f(X)+ε(X) is intersecting
submodular with respect to F , that is α(X) + α(Y ) ≥ α(X ∩ Y ) + α(X ∪ Y ). Think of
α(X) as the amount of slack that a set has in D, that is the number of incoming hyperarcs
a set can afford to lose, before the orientation is no longer good in this set. We now prove
that the slack of a set is always greater or equal than the number of incoming hyperarcs
that it might lose when reversing P .

Proposition 6. dout
P red(X) ≤ α(X)

Note that this proposition proves Lemma 2 and with it Theorem 10.

Proof. We use induction on dout
P red(X). For this, we first prove that α(X) ≥ 0 for all

X ⊂ V . This is equivalent to proving that din
D (X) ≥ f(X)− ε(X).

If X is a cb set, because T (c) is a subset of every tight set containing c, X is not tight.
Thus, din(X) ≥ f ′(X) + 1 = f(X) − ε(X). If X is a bc set, then din

D (X) ≥ f ′(X) ≥
f(X) − ε(X). Consider the case where X is neither a cb-set or a bc set. If X is a ba set
containing c, then X cannot be tight hence din(X) ≥ f ′(X) + 1 = f(X) − ε(X). Finally,
if X is none of the above, then din

D (X) ≥ f ′(X) = f(X)− ε(X). Hence α(X) ≥ 0 and the
base case is proven.

Assume that the proposition holds when dout
P red(X) = n. We prove that it also holds

when dout
P red(X) = n + 1. Let X be a set where dout

P red(X) = n + 1 and let zy be the first
red arc on P , leaving X. Note that T (z) cannot contain both a and b, otherwise we could
replace c by z and delete the subpath of P from z to c, contradicting the minimality of P .
If c ∈ T (z), then T (c) ⊆ T (z), so a, b ∈ T (z), and we have already noted that this is not
possible. Hence we can assume that c is not in T (z) and that either a or b is not in T (z).

Claim 1. Consider a set Y of vertices such that c /∈ Y and either a /∈ Y or b /∈ Y . Then
Y is tight if and only if α(Y ) = 0

If Y does not contain b, then ε(Y ) = 0. On the other hand, f(Y ) = f ′(Y ). Thus
α(Y ) = 0 = din(Y )− f(Y ) + ε(Y ) if and only if din(Y ) = f(Y ) = f ′(Y ), that is when Y is
tight.

Now, assume that Y contains b. Then Y cannot contain a. Hence ε(Y ) = 1 and we
have f ′(Y ) = f(Y )− 1 hence Y is tight if and only if din(Y ) = f ′(Y ) = f(Y )− 1, that is
α(Y ) = 0. If Y does not contain a nor b, then ε(Y ) = 0, f(Y ) = f ′(Y ), hence α(Y ) = 0 if
and only if din(Y ) = f(Y ), i.e., Y is tight. The claim is proved.
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Recall that T (z) is the smallest tight set containing z, also recall that T (z) is not
contained in X because zy is a red arc leaving X, hence T (z) ∩X is not tight. Note that
Claim 1 applies to T (z) and its subsets because c /∈ T (z) and a /∈ T (z) or b /∈ T (z). It
follows from the claim that α(T (z)) = 0 because T (z) is tight and α(T (z)∩X) ≥ 1, because
T (z) ∩ X is not tight. Hence, from the submodularity of α, α(X) = α(X) + α(T (z)) ≥
α(T (z) ∩X) + α(T (z) ∪X) ≥ α(T (z) ∪X) + 1.

Claim 2. dout
P red(T (z) ∪X) = dout

P red(X)− 1.

For the claim, recall that no red arc leaves a tight set, hence no red arc leaves T (z). Then
dout

P red(T (z)∪X) ≤ dout
P red(X)−1 because zy is a red arc of P leavingX and y ∈ T (z). On the

other hand, there is no other red arc vw of P leaving X with its head w in T (z), otherwise
we could replace the subpath z, y..., v, w of P by z, w, contradicting the minimality of P ;
recall that zy is the first red arc of P leaving X, hence it would precede vw in P . Hence
dout

P red(T (z) ∪ Z) = dout
P red(X)− 1.

From the claim, we have that dout
P red(T (z)∪X) = dout

P red(X)−1. Then, by the induction
hypothesis dout

P red(T (z)∪X) ≤ α(T (z)∪X) and thus α(X) ≥ α(T (z)∪X)+1 ≥ dout
P red(T (z)∪

X) + 1 = dout
P red(X).
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Chapter 3

Orienting Steiner Hypergraphs

3.1 Introduction

This chapter is based on a paper by Tamás Király and Lap Chi Lau [7]. We work with
out-orientations, which we simply denote as orientations.

Given a Steiner hypergraph H with a designated set of terminal vertices S ⊆ V (H)
and a designated root vertex r ∈ S, we say that an orientation is Steiner rooted k-hyperarc
connected if there exists a terminal vertex r such that there are k-hyperarc disjoint dipaths
from r to every other terminal vertex. The Steiner rooted orientation problem is to find
an orientation of a hypergraph that maximizes the connectivity between a root vertex r
to every other terminal vertex. In this chapter, we study the Steiner rooted orientation
problem.

Theorem 11. ([7] Theorem 1.1.) Suppose H is an undirected hypergraph, with set S
of terminal vertices, and root r ∈ S. Then H has a Steiner rooted k-hyperarc-connected
orientation if S is 2k-hyperedge connected in H.

Throughout this chapter, we use some abbreviations. We refer to a Steiner rooted
k-hyperarc connected orientation, simply as rooted k connected. We refer to 2k-hyperedge
connected on S simply as 2k connected on S.

In Section 2 we give a brief overview of the proof. Section 3 is devoted to notation
specific to this chapter. Section 4 introduces the extension property, one of the main tools
used in the proof of Theorem 11, and uses it to formulate Theorem 12, a stronger version
of Theorem 11. In Section 5 we study the properties of a minimal counterexample to the
stronger theorem. In Section 6, we prove that the choice of the root vertex is irrelevant.
Section 7 introduces the degree-specified orientation problem, a key tool for the proof of
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Theorem 11. Then, in Section 8, we apply the degree-specified orientation problem to our
setting. Section 9 and 10 are devoted to checking that the necessary properties of the
degree-specified problem hold, hence the Steiner rooted k-hyperarc connected orientation
exists.

3.2 Overview of proof

The proof of Theorem 11 contains two key ideas. One is the extension property (Defini-
tion 3.2), the other one is an extension of a theorem by Hakimi [6] on degree specified-
orientations.

The extension property imposes new constraints on orientations; see Section 4 for de-
tails. To prove Theorem 11, we prove something even stronger: for a hypergraph H that
is 2k connected on S ⊆ V , there exists a rooted k connected orientation that satisfies the
extension property (Theorem 12). To prove this, we consider a minimal counterexample
H. By applying the extension property, we show that H has a nice structure; in particular
the Steiner vertices of H are incident only to hyperedges of size 2, and moreover, no two
of these vertices are adjacent.

We wish to find an orientation of B(H) (the bipartite representation of H) that is
rooted k-connected and where hyperedge vertices have indegree one. We make a guess and
assume that the Steiner vertices will have indegree equal to half of the number of incident
edges. Now, the goal is to show that there exists an orientation of B(H) that satisfies
the requirement of rooted k-connectivity of terminals, and the indegree requirements of
the nonterminals. For this, we first prove an extension of Hakimi’s theorem on degree-
specified orientations (Theorem 14 below). This gives Theorem 15 below. Using this new
result, we achieve the goal by showing that there exists an orientation of B(H) satisfying
the connectivity and indegree requirements. This guarantees an orientation of H that is
rooted k-connected, and, moreover, satisfies the extension property, contradicting the fact
that H is a counterexample.

3.3 Notation

This section gives notation specific to this chapter.

Let H = (V,E) be an arbitrary hypergraph, and D = (V,A) an orientation of H.
Let δin

D (X|Y ) be the set of hyperarcs of H that enter X and are disjoint from Y . More
precisely, δin

D (X|Y ) = {a ∈ δin(X) : a ∩ Y = ∅}; din
D (X|Y ) = |δin

D (X|Y )| (See Figure 3.1).

Note that if Y is the empty set, then δin
D (X|Y ) is the same as δin

D (X). Let
−→
ED(X, Y |Z)
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X Y X Y

Hyperedge vertices Hyperedge vertices
δD
in(X|Y)

ED(X,Y)
→

Figure 3.1: On the left, the bipartite representation of a hypergraph, a hyperedge in
δin
D (X|Y ) (with full line arrows) and one not in δin

D (X|Y ) (with dotted arrows). On the

right, the bipartite representation of another hypergraph, and the hyperedges in
−→
ED(X, Y )

denote the set of hyperarcs a of D such that a leaves X, a enters Y and a ∩ Z = ∅. We

use
−→
d D(X, Y |Z) to denote |−→E (X, Y |Z)|. If Z is the empty set, we simply use

−→
ED(X, Y )

to denote
−→
ED(X, Y |Z) and

−→
d D(X, Y ) to denote |−→E (X, Y )| (See Figure 3.1).

3.4 A stronger theorem

In order to prove Theorem 11, we prove a stronger theorem, for which we need the following
definition.

Definition 10. (Figure 3.2) Given an undirected hypergraph H = (V,E), S ⊆ V and a
vertex s ∈ S, a Steiner rooted orientation D of H extends s if:

• 1. (Sink property) din
D (s) = dH(s);

• 2. (Preflow property) din
D (Y |s) ≥ −→d D(Y, s) for every Y ⊆ V − S.

It is important to familiarize ourselves with this definition. The first property states
that all hyperarcs of D that contain s will enter s. In other words, s will be the head of
every hyperarc that contains it. The second property states that the number of hyperarcs
that enter Y and do not contain s is at least the number of hyperarcs that leave Y and
enter {s}. We are now ready to state the stronger theorem.
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Y
s

Y
s

din
D (Y |s) ≥ −→d D(Y, s)

Figure 3.2: The preflow property: the number of hyperedges in δin
D (Y |s) must be at least−→

d D(Y, s).

Theorem 12. Suppose H is an undirected hypergraph, S is a subset of terminal vertices
with a specified root vertex r ∈ S. Then H has a Steiner rooted k-hyperarc-connected
orientation if S is 2k-hyperedge connected in H. In fact, given any vertex s ∈ S of degree
2k, H has a Steiner rooted k-hyperarc connected orientation that extends s.

The only difference between Theorem 11 and Theorem 12 is that we guarantee that for
a terminal vertex s, there will be a rooted k-connected orientation that extends s. This
extra property is essential to the proof of Lemma 4, which is a key tool for proving Theorem
11.

3.4.1 The choice of the root is irrelevant

We use the following result stating that the choice of the root vertex is irrelevant.

Lemma 3. Suppose there exists a Steiner rooted k-hyperarc connected orientation that
extends s, with r as the root. Let v be a terminal vertex distinct from s. Then there exists
a Steiner rooted k-hyperarc connected orientation that extends s with v as the root.

We sketch a proof and defer the detailed proof to Section 3.6. Let D be a Steiner
rooted k connected orientation that extends s with root r. For v ∈ S − {s, r} , there exist
k hyperarc disjoint paths from r to v. Let D′ be the orientation resulting from reversing
these paths. Then it is easy to see that D′ is rooted k-connected with root v. This follows
because any v, r-cut has k incoming paths, and any other cut separating v from another
terminal vertex, has the same number of incoming hyperarcs as in D. The extension
property is also preserved, but this needs formal verification.
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3.5 Properties of a minimal counterexample

Theorem 12 is proved by contradiction. Let H = (V, E) be a counterexample, with the
(i) minimum number of hyperedges, and subject to (i) with the (ii) minimum number of
vertices, and subject to (i) and (ii) with

∑
e∈E |e| minimum.

Definition 11. We say that a subset X of vertices is tight if dG(X) = 2k; we call it
nontrivial if |X| ≥ 2, |V −X| ≥ 2, and both X and V −X contain at least one terminal.

Lemma 4. There is no nontrivial tight set in H.

U V-U

U V-U

H1 H2

r
s

v1 v2

s

Figure 3.3: Hypergraphs H1 and H2 constructed from H by contracting U and V − U ,
respectively (construction for Lemma 4). The sinks of H1 and H2 are v1 and s, respectively.
The roots of H1 and H2 are r and v2 , respectively.

We give a sketch of the proof, followed by a detailed proof. Assume U is a non trivial
tight set of H. This implies that V − U is also a nontrivial tight set. For a vertex s ∈ S
of degree 2k, we wish to find a rooted k-connected orientation of H that extends s. We
construct two hypergraphs, one by contracting U and another by contracting V − U . We
define the terminal vertices of these hypergraphs in a natural way. Both hypergraphs are
smaller thanH, and their terminals are 2k-connected. SinceH is a minimal counterexample
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of Theorem 12, there exist rooted k-connected orientations for the smaller hypergraphs.
Moreover, the extension property holds for both of the smaller hypergraphs. From these
two oriented hypergraphs, we construct an orientation for H. We then prove that the
orientation is rooted k-connected and that it extends s. This orientation contradicts the
minimality of H, implying that there are no nontrivial tight sets in H. The extension
property of H follows from the extension property of the smaller hypergraphs. The fact
that the orientation of H is rooted k-connected comes not only from the fact that the
orientations of the smaller hypergraphs are also rooted k-connected, but also from the
extension property of the smaller hypergraphs. The extension property is essential for this
proof.

Proof. Suppose that U is a nontrivial tight set. Without loss of generality, we can assume
that s /∈ U (since V − U is also a nontrivial tight set), moreover, by Lemma 3 we may
assume r ∈ U . Moreover, by Lemma 3, we may assume r ∈ U . Let H1 be the hypergraph
obtained from H by contracting V − U and naming the resulting vertex v1; and let H2

be the hypergraph resulting from H by contracting U , and naming the resulting vertex
v2. Hence, V (H1) = U ∪ {v1} and V (H2) = (V − U) ∪ {v2}. Each hyperedge e ∈ δH(U)
corresponds to hyperedges e1 = (e ∩ V (H1)) ∪ {v1} in H1 and e2 = (e ∩ V (H2)) ∪ {v2} in
H2. This implies a one to one mapping between the hyperedges in δH1(v1) and the ones in
δH2(v2).

Since U is nontrivial, both H1 and H2 are smaller than H. Let S1 = (S ∩U)∪ {v1} be
the set of terminals of H1 and S2 = (S ∩ (V −U))∪ {v2} be the set of terminals of H2. In
other words, the terminals of H1 and H2 are the vertices coming from the terminals of H
(both v1 and v2 come from at least one terminal). Note that S1 is 2k connected in H1, and
so is S2 in H2. Moreover, v1 has degree 2k in H1, and the vertices of H1 and H2 have the
same degrees as in H. In particular s has degree 2k in H2. Hence, from the minimality
of H, there exist rooted k-connected orientations D1 of H1 that extends v1 and D2 of H2

that extends s. Furthermore, by Lemma 3, we can choose where each of this orientations
is rooted; assume that r is the root of D1 and v2 is the root of D2. Let D be an orientation
of H given by the concatenation D1 and D2. By a concatenation, we mean the following:

For a hyperedge e, we define it’s tail as follows:

• If e /∈ δH(U), e will have a corresponding hyperedge in H1 or H2, but not both. We
define the tail of e to be the one defined for the corresponding hyperedge which is in
H1 or H2.

• If e ∈ δH(U), we define the tail of e to be the one defined for e1 in D1, where e1 is
the corresponding edge of e in H1.
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Using Menger’s Theorem and the extension property for H1 and H2, we will verify that
D is a rooted k-connected orientation that extends s.

By Menger’s Theorem, D is a rooted k-connected orientation iff din
D (X) ≥ k for any

X ⊆ (V (H)) for which r /∈ X and X ∩ S 6= ∅.
Let X ⊆ V be such that X ∩ S 6= ∅ and r /∈ X. Assume first that X ∩ U ∩ S 6= ∅.

Then din
D1

(X − (V − U)) ≥ k by the properties of the orientation D1 of H1. Since v1

is the sink of H1, there is no hyperarc going from V − U to U in D. Hence we have
din

D (X) ≥ din
D1

(X − (V −U)) ≥ k. Now, suppose that X ∩U ∩S = ∅. Let X1 = X ∩V (H1)
and X2 = X ∩ V (H2). If X1 = ∅ then the properties of H2 imply that din

D (X) ≥ k. So we
can assume that both X1 and X2 are non-empty, implying that X1 ⊆ V − S, and X2 has
at least one terminal. Then,

din
D (X) ≥ din

D1
(X1|v1) + din

D2
(X2)−−→d D(X1, X2). (3.1)

It can be seen that the RHS is at least din
D2

(X2) because
−→
d D1(X1, v1) ≥ −→d D(X1, X2),

and by the preflow property of the extension, din
D1

(X1|v1) ≥ −→d D1(X1, v1) ≥ −→d D(X1, X2).
Hence din

D (X) ≥ din
D2

(X2) ≥ k, where the second inequality holds because D2 is rooted
k-connected orientation. It is here where the preflow property of the extension is essential.

Without it, the arcs counted in
−→
d D(X1, X2), which do not contribute to din

D (X), could be
more than the arcs in din

D1
(X1|v1), implying that din

D (X) < k.

We have proved that D is a rooted k-connected orientation of H. It remains to check
that D extends s. It is clear from our construction that s is a sink of D. Hence, we just
need to verify the preflow property.

Consider a subset Y ⊆ V − S. Let Y1 = Y ∩ V (H1) and Y2 = Y ∩ V (H2). Then

din
D (Y |s) ≥ din

D1
(Y1|v1) + din

D2
(Y2|s)−−→d D(Y1, Y2|s). (3.2)

From the preflow property of the extension property of D1, we can verify that

din
D1

(Y1|v1) ≥ −→d D1(Y1, v1) ≥ −→d D(Y1, Y2|s) +
−→
d D(Y1, s).

From this and Equation 3.2, it follows that

din
D (Y |s) ≥ −→d D(Y1, s) + din

D2
(Y2|s)

By the preflow property of the extension property of D2, we have din
D2

(Y2|s) ≥ −→d D2(Y2, s).
Putting the last two inequalities together it follows that

din
D (Y |s) ≥ −→d D(Y1, s) +

−→
d D2(Y2, s) =

−→
d D(Y, s),

31



as required. Thus D is a rooted k-connected orientation that extends s, which contradicts
that H is a minimal counterexample of Theorem 12.

The extension property is essential for proving the above lemma. The sink property is
used to define the concatenation of the orientations of H1 and H2. Without the preflow
property, we would not be able to prove that the concatenation of such orientations is
actually rooted k-connected.

Lemma 4 implies the following two results.

Corollary 7. Every hyperedge of H of size at least 3 contains only terminal vertices.

Proof. For a contradiction, let e be a hyperedge of size at least 3 containing the Steiner
vertex v. Let e′ = e− v, and H ′ = H− e+ e′. Note that H ′ is smaller than H. We claim
that H ′ cannot be 2k-connected on S. Otherwise, there would exist an orientation of H ′

with the requirements of Theorem 12, which would imply an orientation of H with the
requirements of Theorem 12.

Hence, assuming that H ′ is not 2k-connected on S, it follows that there exists a set of
vertices X such that both X and V −X contain at least one terminal and dH′(X) < 2k.
But dH(X) ≥ 2k, hence e ∈ δH(X) and dH(X) = 2k. Then e − v must be contained in
either X or V −X and v must be contained in the other set; then both X and V −X have
at least two vertices, since one contains e− v and the other one contains v and a terminal
vertex. This means that X is a nontrivial tight set, contradicting Lemma 4.

The following result is proved by similar arguments.

Corollary 8. There is no edge between two Steiner vertices in H.

Proof. For a contradiction, let e be an edge which connects two Steiner vertices. Then
H − e cannot be 2k-connected on S because that would contradict the minimality of H
(for the same reasons as in the proof of Corollary 7). Hence, there exists a set X ⊆ V
such that both X and V −X have at least one terminal and dH(X) = 2k, dH−e(X) < 2k,
that is e ∈ δH(X). Note that X contains a terminal vertex and one endpoint of e which is
a Steiner vertex, hence |X| ≥ 2. Analogously, |V −X| ≥ 2. Therefore, X is a nontrivial
tight set, which contradicts Lemma 4
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3.6 Proof of Lemma 3

Recall that Lemma 3 states that, for a hypergraph H, if there exists a Steiner rooted
k-connected orientation that extends s, with r as the root, then for any other terminal
vertex v, distinct from r,s, there exists a Steiner rooted k-hyperarc-connected orientation
that extends s with v as the root. In this section we prove this lemma.

Proof. Lemma 3.

Let D be a Steiner rooted k hyperarc connected orientation that extends s with root

r. Fix v ∈ S− s. Then there exist k hyperarc disjoint paths {−→P 1, ...,
−→
P k} from r to v. Let

D′ be the orientation resulting from D by reversing {−→P 1, ...,
−→
P k} (defined in Section 1.9).

Let
←−
Pi be the path in D′ given by reversing

−→
P i. Then {←−P1, ...,

←−
Pk} are k hyperarc disjoint

paths in D′ from v to r. We will now show that D′ satisfies the hypothesis of the Lemma.

First, we verify that D′ is Steiner rooted k hyperarc connected. Let X ⊆ V (H) − v
with X ∩ S 6= ∅. If r ∈ X, {←−P1, ...,

←−
Pk} imply that din

D′(X) ≥ k. If X does not contain

r, then it contains neither endpoint of each path
−→
Pi . Furthermore,

−→
P i enters and leaves

X the same number of times, hence din
D′(X) = din

D (X). Moreover, din
D ≥ k by assumption,

hence, din
D′(X) ≥ k.

Now, we verify that D′ extends s. Since s is a sink in D and s is not an endpoint of any

of the paths {−→P 1, ...,
−→
P k}, hyperarcs containing s will still be incoming to s after reversing

{−→P 1, ...,
−→
P k}. Hence, s is a sink in D′. For the preflow property of the extension, consider

Y ⊆ V (H) − S. We wish to prove that din
D′(Y |s) ≥

−→
d D′(Y, s). Note that

−→
Pi enters and

leaves Y the same number of times, thus we may form a pairing on the hyperarcs of
−→
P i

that enter or leave Y . Let a1 and a2 be hyperarcs of Pi such that, in D, a1 enters Y and
a2 leaves Y . Let Da1,a2 be the orientation given by taking the orientation of a1 and a2 in
D′, and the rest of the hyperedges oriented as in D. To check that the preflow property
holds for Da1,a2 we consider four different cases, where it is easy to verify that the preflow
property holds.

1. s ∈ a1 and s ∈ a2. Then din
Da1,a2

(Y |s) = din
D (Y |s) ≥ −→d D(Y, s) =

−→
d Da1,a2

(Y, s).

2. s ∈ a1 and s /∈ a2. Then din
Da1,a2

(Y |s) = din
D (Y |s) + 1 ≥ −→d D(Y, s) + 1 =

−→
d Da1,a2

(Y, s).

3. s /∈ a1 and s ∈ a2. Then din
Da1,a2

(Y |s) = din
D (Y |s)− 1 ≥ −→d D(Y, s)− 1 =

−→
d Da1,a2

(Y, s).

4. s /∈ a1 and s /∈ a2. Then din
Da1,a2

(Y |s) = din
D (Y |s) ≥ −→d D(Y, s) =

−→
d Da1,a2

(Y, s).

Recall that
−→
Pi enters and leaves Y the same number of times. By a repeated application

of the above case analysis, D′ has the preflow property.
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3.7 Degree-specified orientations

Steiner vertices

s0

Steiner vertices

s0

Hyperedge Vertices

Figure 3.4: A Steiner hypergraph H on the left (as in Theorem 13). A bipartite graph B
on the right, representing H. Construction done for Theorem 13. Terminal vertices are
represented with full black circles.

We have proved in Corollary 7 that for H, no Steiner vertex is incident to a hyperedge
of size greater than two, that is, they are incident only to edges. Furthermore, in Corollary
8 we proved that there are no edges between Steiner vertices, thus every edge incident to
a Steiner vertex has its other endpoint at a terminal. These two corollaries are key points
of the proof of Theorem 12. It follows that in order to finish the proof of Theorem 12 we
only need to prove following theorem.

Theorem 13. Let H = (V,E) be an undirected hypergraph. Suppose that S is 2k-connected
in H, there is no edge between two Steiner vertices, and no hyperedge of size at least 3
contains a Steiner vertex. Let s0 ∈ S be a vertex of degree 2k. Then H has a Steiner
rooted k-hyperarc-connected orientation that extends s0.

We will construct a bipartite representation of H. Let B = (V ′, E ′) be a bipartite
graph, with V ′ = V ∪ E ′ where E ′ are the hyperedges that do not contain Steiner vertices.
We say that S are the terminal vertices of B, (V − S) are the Steiner vertices and E ′ the
hyperedge vertices. Every terminal vertex t of B will be adjacent to the Steiner vertices
adjacent to t in H and to the hyperedge vertices that contain t in H. More specifically,
E(B) = {ve : v ∈ V (H), e ∈ E ′, v ∈ e} ∪ {vw : v ∈ S,w ∈ V − S, vw ∈ E} (Figure 3.4).

We wish to find an orientation of B that corresponds to an orientation of H that satisfies
the conclusions of Theorem 13. For this, we would need the indegree of every hyperedge
vertex to be one and the indegree of s0 to be 2k. It is natural to assume that the Steiner
vertices would have indegree bd(v)/2c. It turns out that such an orientation exists. To
prove it, we extend the following result by S.L Hakimi [6].

For a hypergraph H = (V,E) and X ⊆ V , let i(X) denote |{e ∈ E : e ⊆ X}|.
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Theorem 14. ([6]) Let G = (V,E) be an undirected graph, m : V → Z an indegree
specification, and h : 2V → Z+ a non-negative function. Then G has an orientation D
such that din

D (X) ≥ h(X) for all X ⊆ V and din
D (v) = m(v) for every v ∈ V if and only if

m(V ) = |E| and
m(X) ≥ i(X) + h(X) for every X ⊆ V.

We wish to extend this theorem to the setting of Steiner graphs. Unfortunately, unless
NP=co-NP, this is not possible. For example, the following problem is NP-hard [7]: given
a graph with a terminal set S and root r, orient the edges to maximize k, such that the
orientation is Steiner rooted k-arc connected. It turns out that, if the Steiner vertices
have an indegree specification, this problem is no longer NP-hard, and there exists a good
characterization. We now proceed to extend Hakimi’s theorem to the setting of Steiner
graphs, where an indegree specification exists for the Steiner vertices, and a connectivity
requirement exists for the terminal vertices. This results in Theorem 15, which is given
below. Theorem 15 is used in the next section to prove Theorem 13, completing the proof
of Theorem 12.

Consider a Steiner graph G = (V,E) with terminal set S ⊆ V and an indegree specifi-
cation m : (V − S)→ Z+ for the Steiner vertices. For a connectivity requirement function
h : 2S → Z+, we say that h∗ : 2V → Z is the Steiner extension of h if h∗(X) = h(X ∩ S)
for all X ⊆ V . We wish to cover h∗. From Theorem 14, a vector m′ : S → Z+ together
with m, is the vector of indegrees of an orientation of G that covers h∗ iff

• m′(S) = |E| −m(V − S),

• i(Z) ≤ m(Z) for every Z ⊆ V − S
• m′(X)+m(Z) ≥ h∗(X∪Z)+i(X∪Z) = h(X)+i(X∪Z) for every X ⊂ S,Z ⊆ V −S.

For a fixed X, the last requirement depends on all posible subsets Z of V − S. In other
words, it is satisfied iff m′(X) ≥ h(X) + maxZ⊆V−S(i(X ∪ Z)−m(Z))). Let h′ : 2S → Z+

be the function defined by

h′(X) := h(X) + max
Z⊆V−S

(i(X ∪ Z)−m(Z)).

It follows that m′ : S → Z+ together with m, is the vector of indegrees of an orientation
of G that covers h∗ iff m′(S) = |E| −m(V − S), i(Z) ≤ m(Z) for every Z ⊆ V − S and
m′(X) ≥ h′(X) for every X ⊂ S. If we concentrate on intersecting supermodular functions,
we can determine when there exists such a vector of indegrees for the terminal vertices,
guaranteeing, by Hakimi’s theorem, the existence of an orientation covering h′.
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Theorem 15. Let G = (V,E) be an undirected graph with a terminal set S ⊆ V . Let h :
2S → Z+ be a non-negative intersecting supermodular set function and m : (V − S)→ Z+

be an indegree specification. Then G has an orientation covering the Steiner extension h∗

of h with the specified indegrees if and only if i(Z) ≤ m(Z) for every Z ⊆ V − S and for
every partition F of S.∑

X∈F

(h(X) + max
Z⊆V−S

(i(X ∪ Z)−m(Z))) ≤ |E| −m(V − S).

We have already discussed that G has an orientation covering h∗ with indegree m′ at
the terminal vertices iff m′(S) = |E| −m(V − S), i(Z) ≤ m(Z) for every Z ⊆ V − S and
m′(X) ≥ h(X) + maxZ⊆V−S(i(X ∪ Z) −m(Z))) for all X ⊆ S. It remains to show that
m′ : S → Z+ exists if and only if∑

X∈F

(h(X) + max
Z⊆V−S

(i(X ∪ Z)−m(Z))) ≤ |E| −m(V − S).

From the fact that h is intersecting supermodular, it turns out that h′ is intersecting
supermodular.

Lemma 5. The set function h′ is intersecting supermodular if h is intersecting supermod-
ular.

Proof. Let X1 ⊆ S and X2 ⊆ S be two intersecting sets. There are sets Z1 ⊆ V − S
and Z2 ⊆ V − S such that h′(X1) = h(X1) + i(X1 ∪ Z1) −m(Z1) and h′(X2) = h(X2) +
i(X2 ∪Z2)−m(Z2). By the properties of the set functions involved, we have the following
inequalities:

• h(X1) + h(X2) ≤ h(X1 ∩X2) + h(X1 ∪X2).

• i(X1 ∪ Z1) + i(X2 ∪ Z2) ≤ i((X1 ∩X2) ∪ (Z1 ∩ Z2)) + i((X1 ∪X2) ∪ (Z1 ∪ Z2)).

• m(Z1) +m(Z2) = m(Z1 ∩ Z2) +m(Z1 ∪ Z2).

Thus

h′(X1) + h′(X2) = h(X1) + h(X2) + i(X1 ∪ Z1) + i(X2 ∪ Z2)−m(Z1)−m(Z2)

≤ h(X1 ∩X2) + i(X1 ∩X2) ∪ (Z1 ∩ Z2)−m(Z1 ∩ Z2)

+h(X1 ∪X2) + i(X1 ∪X2) ∪ (Z1 ∪ Z2)−m(Z1 ∪ Z2)

≤ h′(X1 ∩X2) + h′(X1 ∪X2).
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Claim 3. For a non negative intersecting supermodular set function h : 2S → Z+, there
is a vector m′ : S → Z+ such that m′(X) ≥ h(X) for all X ⊆ S such that m′(S) =
|E| −m(V − S) if and only if

• h(∅) = 0,

• ∑X∈F h(X) ≤ |E| −m(V − S) for every partition F of S.

Using this claim with h′ , Theorem 15 follows. We now prove the Claim.

Proof. The necessity is straightforward. We only need to prove the sufficiency. Letm0 ∈ ZS

be such that m0(X) ≥ h(X) for all X ⊆ S, and m0(S) is minimum. Let F be the set of
all partitions of S. We will prove that m0(S) ≤ maxF∈F

∑
X∈F h(X) ≤ |E| −m(V − S).

It is straightforward that if this is true, then there exists a vector m′ : S → Z+ such that
m′ ≥ m0 and m′(S) = l. Hence, it remains to show that m0(S) ≤ maxF∈F

∑
X∈F h(X).

Let α = maxF∈F
∑

X∈F h(X). Assume that m0(S) > α. For every a ∈ S we will show
that there exists a set Xa such that m0(Xa) = h(Xa). Assuming the contrary, let a ∈ S
be such that Xa does not exist. Then, for every X ⊆ S such that X 3 a, m0(X) > h(X)
holds. Let m′ ∈ ZS be such that m′(v) = m0(v) for v ∈ S − a and m′(a) = m0(a) − 1.
Then m′ also covers h, but m′(S) = m0(S)− 1, which contradicts that m(S) is minimum.

Hence, for every a ∈ S, there exists a set Xa such that m0(Xa) = h(Xa). We call
these subsets tight. Note that h is intersecting supermodular, hence, it follows that the
intersection and union of intersecting tight sets is tight (see Proposition 2 in Chapter 2),
and that ∪a∈SXa = S. This implies that there is a partition P of S such that every member
of P is tight. Hence, m0(S) =

∑
X∈P h(X) ≤ α.

3.8 Using Theorem 15

We recall the bipartite representation of H = (V, E). We say that B = (V ′, E ′) is the
bipartite representation of H if B is bipartite with a vertex for every vertex in V and
one for every hyperedge of H that has no Steiner vertex. A partition of B is given by S
and (V − S) ∪ E ′ where E ′ are the hyperedges that do not contain Steiner vertices. We
say that S are the terminal vertices of B, (V − S) are the Steiner vertices and E ′ the
hyperedge vertices. Every terminal vertex t of B will be adjacent to the Steiner vertices
adjacent to t in H and to the hyperedge vertices that contain t in H. More specifically,
E(B) = {ve : v ∈ S, e ∈ E ′, v ∈ e} ∪ {vw : v ∈ S,w ∈ V − S, vw ∈ E (Figure 3.5).
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Steiner vertices

s0

Hyperedge vertices
indegree d(v)/2indegree 1

indegree 2k

Figure 3.5: The indegree requirements for the Steiner vertices of B, the graph constructed
to represent H (of Theorem 13).

We have designed Theorem 15 to work for our setting. Namely, graph B with terminal
set S ′ = S − s0 and the following indegree specification.

m(v) :=


bdH(v)/2c if v is a Steiner vertex

1 if v is a hyperedge vertex

2k if v = s0 is the sink.

We shall show that if B has a Steiner rooted k-connected orientation with the specified
indegrees, then H has a Steiner rooted k-connected orientation that extends s0. By Theo-
rem 15, B has a rooted k-connected orientation with the specified indegrees if and only if
the following conditions hold:

i(Z) ≤ m(Z) for every Z ⊆ V ′ − S ′ (3.3)

∑
X∈F

(h(X) + max
Y ′⊆V ′−S′

(iB(X ∪ Y )−m(Y ))) ≤ |E| −m(V ′ − S ′), (3.4)

for every partition F of S ′, where

h(X) =

{
k if ∅ 6= X ⊆ S ′ − r
0 otherwise.

(3.5)

It is easy to see that equation 3.3 is always satisfied, since the only edges spanned by
V ′ − S ′ are those incident to s0 and dB(s0) = 2k = m(s0).
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Note that k(|F| − 1) =
∑

X∈F h(X) for any partition F of S ′. It follows that Equation
3.4 holds iff

k(|F| − 1) +
∑
X∈F

max
Y ′⊆V ′−S′

(iB(X ∪ Y )−m(Y )) ≤ |E| −m(V ′ − S ′). (3.6)

for every partition F of S ′. Note that this inequality applies to the bipartite representation
B.

Proposition 7. Equation 3.6 holds if the following holds for the hypergraph H. Every
subpartition F of V such that every member of F has at least one terminal, and F restricted
to S is a partition of S − s0 satisfies

∑
e∈E

(|{X ∈ F : e ∩X 6= ∅| − 1) +
∑

v∈V−(∪X∈FX+s0)

⌈
dh(v)

2

⌉
≥ k(|F| − 1). (3.7)

Note that Equation 3.7 is in terms ofH, while Equation 3.6 was in terms of the bipartite
representation B.

3.9 Proposition 7

In this section we prove Proposition 7 by contrapositive. At a glance, the equations in this
section might seem complicated, but most of them come from a straight forward analysis
of hypergraphs.

Proof. We will show that if Equation 3.6 does not hold, then Equation 3.7 does not hold
either.

Suppose that there is a partition F of S ′ where Equation 3.6 does not hold. Hence

k(|F| − 1) +
∑
X∈F

max
Y⊆V ′−S′

(iB(X ∪ Y )−m(Y ))) > |E ′| −m(V ′ − S ′). (3.8)

We will show that Equation 3.8 implies that Equation 3.6 does not hold. For X ∈ F ,
we can determine the set YX where the maximum of Equation 3.8 is reached. We can
assume that s0 will not be in YX , since its addition to YX would increase m(YX) in 2k,
while i(X ∪ YX) can increment in at most 2k. By the same analysis, we can also assume
that a Steiner vertex v will be in YX if and only if |{e ∈ E : v ∈ e ⊆ X + v}| > bdH(v)/2c,
because v would increase m(YX) by bdH(v)/2c and would increase i(X ∪ YX) by |{e ∈ E :
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v ∈ e ⊆ X + v}|. In the same way, a hyperedge vertex e in E ′ (recall that we defined
E ′ to be the set of hyperedges that do not contain a Steiner vertex) will be in YX if and
only if |e ∩ X| > 1. For X, define X∗ = X ∪ (YX ∩ (V − S)), where YX is the set where
the maximum is attained in Equation 3.8. Note that for disjoint sets X1, X2 ⊆ S − s0,
X∗1 and X∗2 will be disjoint because a Steiner vertex v cannot have more than bdH(v)/2c
edges to two disjoint sets. Hence, F∗ = {X∗ : X ∈ F} is a subpartition of V , for which
each member contains a terminal, and S ∩ (∪X∗∈F∗X

∗) = S − s0. Note that no hyperedge
vertex is in (∪X∗∈F∗X

∗). Using the fact that Equation 3.8 holds for F , then

k(|F∗| − 1) = k(|F| − 1) > |E ′| −m(V ′ − S ′)−
∑
X∈F

max
Y⊆V ′−S′

(i(X ∪ Y )−m(Y )). (3.9)

We will now show, that the right hand side of Equation 3.9 is at least as much as the
left hand side of Equation 3.7, showing that Equation 3.7 does not hold. For this, we note
some identities.

Recall that E ′ are the hyperedges of H that contain no Steiner vertex. Note that, for
a hyperedge e ∈ E ′, there are |e| edges in B, and for a hyperedge e ∈ E − E ′ there is one
edge in B. It follows that

|E ′| = |E|+
∑
e∈E ′

(|e| − 1).

Recall that the indegree requirement m has value one on hyperedge vertices, bdH(v)
2
c in

Steiner vertices, and 2k in the sink s0. Hence,

m(V ′ − S ′) = |E ′|+ 2k +
∑

v∈V−S

⌊
dH(v)

2

⌋
.

Recall that for a set X we defined X∗ = X ∪ (YX ∩ (V −S)) where YX is the set such that
maxY⊆V ′−S′(iB(X ∪ Y )−m(Y )) is attained. It follows that

max
Y⊆V ′−S′

(iB(X ∪ Y )−m(Y )) =
∑
e∈E

max{0, |e ∩X∗| − 1} −
∑

v∈X∗∩(V−S)

⌊
dH(v)

2

⌋
.
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Steiner vertices

s0

X

YX

X*

U

Figure 3.6: Hypergraph H, a partition F of the vertices S − s0, and its extension to a
subpartition of V − s0; consider the bipartite representation B of H; for a member X of
F , YX is a subset of V ′ − S ′ where the maximum of Equation 3.8 is attained.

Plugging these three identities into the right hand side of Equation 3.9, we get

|E| +
∑
e∈E ′

(|e| − 1)− |E ′| − 2k −
∑

v∈V−S

⌊
dH(v)

2

⌋

−
∑
X∈F

∑
e∈E

max{0, |e ∩X∗| − 1} −
∑

v∈X∗∩(V−S)

⌊
dH(v)

2

⌋ .

So we started with an equation about the graph B and now we have an equation about
the hypergraph H. Let F ∗ = ∪X∗∈F∗X

∗ and T = (V −S)−F ∗, thus T is the set of Steiner
vertices excluded from ∪X∗∈F∗X

∗. Agglomerate terms together to obtain

|E|+
∑
e∈E ′

(|e| − 2)−
∑
e∈E

∑
X∗∈F∗

max{0, |e ∩X∗| − 1} − 2k −
∑
v∈T

⌊
dH(v)

2

⌋
.

Note that, for a hyperedge e ∈ E−E ′, |e|−1 = 1, hence |E|+∑e∈E ′(|e|−2) =
∑

e∈E(|e|−1).
Hence, the last expression can be transformed into∑

e∈E

(
|e| − (

∑
X∗∈F∗

max{0, |e ∩X∗| − 1})− 1

)
− 2k −

∑
v∈T

⌊
dH(v)

2

⌋
.

For a hyperedge e ∈ E , note that |e∩F ∗|−|{X∗ ∈ F∗ : e∩X∗ 6= ∅}| = ∑X∗∈F∗ max{0, |e∩
X∗| − 1}). Hence, we get∑

e∈E

(
|e ∩ (V − F ∗)| + |{X∗ ∈ F∗ : e ∩X∗ 6= ∅| − 1

)
− 2k −

∑
v∈T

⌊
dH(v)

2

⌋
.
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Because s0 is adjacent to 2k hyperedges, we can push −2k into the sum as follows:

∑
e∈E

(
|e ∩ (V − (F ∗ + s0)|+ |{X∗ ∈ F∗ : e ∩X∗ 6= ∅}| − 1

)
−
∑
v∈T

⌊
dH(v)

2

⌋
.

Note that V − (F ∗ + s0) = T and, because T consists only of Steiner vertices, every
edge that intersects it does so in only one vertex, hence

∑
e∈E |e ∩ (V − (F ∗ + s0))| =∑

v∈T dH(v), hence
∑

e∈E |e ∩ (V − (F ∗ + s0))| −
∑

v∈T

⌊
dH(v)

2

⌋
=
∑

v∈T

⌈
dH(v)

2

⌉
. Using

this in the last equation we obtain the left hand side of Equation 3.7

∑
e∈F

(|{X∗ ∈ F∗ : e ∩X∗ 6= ∅}| − 1) +
∑
v∈T

⌈
dH(v)

2

⌉
.

So, we started with Equation 3.9, which states the following.

k(|F∗| − 1) = k(|F| − 1) > |E ′| −m(V ′ − S ′)−
∑
X∈F

max
Y⊆V ′−S′

(i(X ∪ Y )−m(Y )).

We then proved that the right hand side of this inequality is at least the left hand side of
Equation 3.7. More precisely, that it is at least∑

e∈F

(|{X∗ ∈ F∗ : e ∩X∗ 6= ∅}| − 1) +
∑
v∈T

⌈
dH(v)

2

⌉
.

This shows that

k(|F| − 1) >
∑
e∈F

(|{X∗ ∈ F∗ : e ∩X∗ 6= ∅}| − 1) +
∑
v∈T

⌈
dH(v)

2

⌉
.

Hence, Equation 3.7 does not hold.

3.10 The orientation exists if H is 2k-connected on S.

To finish the proof of Theorem 13, we prove that Equation 3.7 holds when H is 2k-
connected on S. If Equation 3.7 holds then there exists an orientation DB of B that is
rooted k-connected with the indegree specification given by m. Let D be the orientation
of H induced by DB. Then D is rooted k-connected, since DB has indegree of one at every
hyperedge vertex and DB covers the Steiner extension h∗ of h. We will also check that this
orientation extends s0.
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First, we prove that the bipartite representation B of H has the desired degree-specified
orientation. For this, we will show that Equation 3.7 from Proposition 7 holds when H is
2k-connected on S; recall that Equation 3.7 applies to H, not to B.

Let F be a subpartition of V such that every member has at least one terminal, and F
restricted to S is a partition of S − s0. Let E1 be the set of hyperedges from H that enter
only one of the members of F ; and let E2 be the set of hyperedges that enter at least two
parts of F . Let dE1(X) := |δ(X)∩E1| and dE2(X) := |δ(X)∩E2|. Let U = V −(∪X∈FX+s0).
Then the hyperedges that are disjoint from every member of F are the edges between U
and s0. Recall that Steiner vertices are incident only to edges that have a terminal as one
of their endpoints, hence

∑
v∈U

dH(v)

2
=
dH(U, S)

2
=
dH(U, S − s0)

2
+
dH(U, s0)

2
(3.10)

For X ∈ F , consider e ∈ δ(X) ∩ E1; either e is incident to s0 or e is not incident to s0

and so is incident to a vertex in U . Hence,∑
X∈F

dE1(X) = dH(U, S − s0) + dH(V − U − s0, s0)

and therefore,

dH(U, S − s0)− dH(U, s0) =
∑
X∈F

dE1(X)− dH(s0) =
∑
X∈F

dE1(X)− 2k (3.11)

With the help of Equations 3.10 and 3.11, we will show, by a series of inequalities, that
Equation 3.7 from Proposition 7 holds.

Recall Equation 3.7∑
e∈E

(|{X ∈ F : e ∩X 6= ∅| − 1) +
∑

v∈V−(F+s0)

⌈
dh(v)

2

⌉
≥ k(|F| − 1)

Consider the left hand side of Equation 3.7. By taking the first sum and transforming
it into a smaller sum, subtracting dH(U, s0), and getting the ceiling operator out of the
second sum we obtain the following.

∑
e∈E

(|{X ∈ F : e ∩X 6= ∅| − 1) +
∑
v∈∪U

⌈
dh(v)

2

⌉
≥

∑
X∈F

dE2(X)

2
− dH(U, s0) +

∑
v∈U

dH(v)

2
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By plugging in Equation 3.10 we obtain that the right hand side of the last inequality is
equal to ∑

X∈F

dE2(X)

2
+
dH(U, S − s0)

2
− dH(U, s0)

2
.

If we plug in Equation 3.11 into the last expression, we get∑
X∈F

(
dE2(X) + dE1(X)

2

)
− k.

Recall that dE1(X) + dE2(X) ≥ 2k for all X ∈ F . It follows that the last expression is
at least k(|F| − 1). This proves that Equation 3.7 from Proposition 7 holds.

From Theorem 15 and Equation 3.7, it follows that there is a rooted k-connected orien-
tation DB of B with the indegree specification m. This orientation induces an orientation
D of H that is rooted k hyperarc connected (because every hyperedge has indegree one).
To finish proving Theorem 13 we only need to check that this orientation extends s0.

From the indegree specification, it follows that every hyperarc of D that contains s has
s as a head vertex, hence s is a sink in D. It remains to see that the preflow property

holds, namely that din−→
H

(Y |s0) ≥ −→d −→H (Y, s0) for every Y ⊆ V − S. So let Y ⊆ V − S. Since

s0 is of degree 2k and S is 2k-connected in H, each vertex v ∈ Y has at most bd(v)/2c
edges to s0 (otherwise d({s0, v}) < 2k contradicting the connectivity properties). Recall
that the indegree of v in the orientation is bd(v)/2c and that there are no edges between
two Steiner vertices, hence all the incoming hyperarcs to a Steiner vertex v ∈ Y come from
V − Y . By Corollary 8 these incoming hyperarcs are of size 2, i.e., do not intersect s0.

Hence din(Y |s0) ≥ −→d (Y, s0), as needed.

Since a minimal counterexample H to Theorem 12 must satisfy the hypothesis of The-
orem 13, then Theorem 13 proves that H does not exist. This proves Theorem 12 and
Theorem 11.

3.11 An algorithm

Theorem 16. Suppose G = (V,E) is an undirected graph, S is a subset of terminal vertices
with a specified root vertex r ∈ S, and m is an in-degree specification on the Steiner vertices
(i.e. m : (V − S) → Z+). Then deciding whether G has a Steiner rooted k-arc-connected
orientation with the specified indegrees can be solved in polynomial time.

Proof. Let h : 2S → Z be the function defined by,
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h(X) =

{
k if ∅ 6= X ⊆ S − r
0 otherwise

Note that h is non-negative intersecting supermodular set function. Let h′ : 2S → Z be
the function defined as follows.

h′(X) := h(X) + max
Z⊆V−S

(i(X ∪ Z)−m(Z))

We proved in Lemma 5 that h′ is non-negative intersecting supermodular. To prove the
theorem, we only need to show that in polynomial time we can decide if there is a suitable
indegree specification for the terminal vertices, that satisfies the hypothesis of Theorem 14.
For this, we show that the the following polyhedron is box-integer, implying that, by the
Complexity analysis of Theorem 60.1 [11], it can be decided in polynomial time if there is
a suitable indegree specification for the terminal vertices.

B := {x ∈ RS : x(X) ≥ h′(X) for X ⊆ V, x(S) = |E| −m(V − S)}

We will construct a digraph and a crossing submodular function where we will apply
Edmond-Giles Theorem to show that B is box-integer.

Let S ′ = S ∪ {z}, and C = 2S ∪ {z}. Note that C is a crossing family of subsets from
S ′. We now define a crossing submodular function on C.

f(X) =

{
−h′(X) if X ⊆ S

|E| −m(V − S) if X = {z}

The crossing submodularity of f comes from the intersecting supermodularity of h′.
Let D = (S ′, A), where A = {(z, a) : a ∈ S}. By the Edmond Giles Theorem, B′ = {x ∈
RA : x(δin(U)) − x(δout(U)) ≤ f(U),∀U ∈ C} is box integer. We will see, that if we look
at RA as RS, where the isomorphism between the two spaces is given by (z, a) → a, then
B = {−x′ : x′ ∈ B′}. Hence B is box integer.

Let x ∈ B, define x′ = (−x). Note that for U ⊆ S, x′(δin(U)) − x′(δout(U) =
x′(δin(U)) = −x(U) ≤ −h′(U) = f(U). Also, because x ∈ B, x(S) = |E| − m(V − S),
hence x′(δin({z})) − x′(δout{z}) = −x′(δout{z}) = x(S) = |E| − m(V − S) = f({z}).
Hence x′ ∈ B′. If x′ ∈ B′, then defining x = −x′, and the previous reasoning shows that
x ∈ B.
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