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Abstract 

This study is part of the Diavik Waste-Rock Pile Project taking place at the Diavik 

Diamond Mine in the Northwest Territories, Canada. The project involves the construction of 

three 15m-scale low sulfide test waste-rock piles and monitoring of fluid flow, geochemical 

reactions, heat and gas transport within the waste-rock piles and characterization of the 

physical properties of the waste-rock piles. The focus of this thesis is characterizing grain-

size distribution of the waste-rock and quantifying gas transport in the test waste-rock piles. 

Grain size of waste rock ranges from millimeters to meters. Sieve analysis typically 

only provides information of grain size <0.1 m at a single location. A computer program was 

developed using digital image-processing techniques to obtain a spatial grain-size 

distribution from photographs of tip faces of the test waste-rock piles acquired in the field. 

The program characterizes grain size >0.1 m and employs a region-growing algorithm for 

segmentation of waste-rock grains with pre- and post-processing techniques to improve the 

accuracy of segmentation. The program was applied to photographs of six different tip faces 

of the test waste-rock piles. For grain size <0.1 m, data from sieve analyses were attached to 

the grain-size curves generated from image grain-size analyses to obtain a full spectrum 

grain-size analyses ranging from boulders to fines. The results show that fine fractions are 

retained at the top of the tip faces and grain size increases non-linearly from top to bottom of 

a waste-rock pile. Calculations show that although the greatest mass is associated with the 

medium and coarse fractions, the greatest surface area is associated with the fine fractions. 

The results are consistent with field observation that the initial solute concentrations are 

greatest at the top of the pile and saturated hydraulic conductivity are lower at the top of the 
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pile than in the pile interior. Statistical moments show that the test waste-rock piles have 

mean grain size of granules and are very poorly sorted, coarse skewed and leptokurtic. 

Permeability is calculated using empirical formulae and good agreement is obtained between 

calculated values and field measurements. The heterogeneity of grain size obtained from this 

study can provide a basis for future modeling efforts. 

Gas transport analysis focused on 1) substantiating the relationship between wind 

flow external to the waste-rock pile and gas pressures within the pile, 2) determining the gas 

flow regime in the pile, and 3) quantifying the temporal variation in wind speed and direction 

and determining the relevant time scales. Differential gas pressures were measured in 2008 at 

49 locations within one of the three test waste-rock piles and 14 locations on the surface of 

the pile at one-minute intervals. Wind speed and direction were measured at 10-min 

intervals. Correlations between wind vectors and pressure measurements show that the wind 

influences pressure fluctuations in the test pile. The strength of the correlation is roughly 

inversely proportional to the distance between measurement ports and the atmospheric 

boundary. The linear relationship between internal pressure measurements and surface 

pressure measurements demonstrate that gas flow is Darcian within the test waste-rock pile. 

Spectral analysis of wind data and a one-dimensional analytical solution to the flow 

equations show that the persistence of wind in a certain direction has most pronounced 

effects on transient gas flow within the pile. The penetration depth of wind-induced gas 

pressure wave is a function of the periodicity of the wind and permeability of the waste-rock 

pile. 
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Chapter 1: Introduction 

Open-pit mining results in the generation of waste rock, which is the large volume of 

rock whose mineral content is too low to be economically recovered. Waste rock is typically 

retained in large unsaturated stockpiles at the mine site. When sulfide minerals are present in 

waste-rock piles, acid mine drainage (AMD) can be produced by sulfide oxidation. Waste-

rock piles that have a relatively low sulfide content, also may have low acid neutralizing 

potential, and therefore may generate AMD.  The generation of AMD can persist for a long 

period of time and is one of the most costly environmental challenges for the mining industry 

(Singer and Stumm, 1970; Nordstrom and Alpers, 1999; Moncur et al., 2005). 

Sulfide oxidation is a complex process involving several steps of reactions. The 

generally accepted overall reaction for pyrite oxidation is: 

FeS2+3.5O2+H2O→Fe2++2SO4
2−+2H+    (1) 

The processes in waste rock piles that affect the rate of sulfide oxidation include gas 

transport, thermal transport, water flow, and geochemistry. Gas transport controls oxygen 

supply and becomes the limiting factor of sulfide oxidation in many cases (Cathles and Apps, 

1975; Pantelis and Ritchie, 1992; Ritchie, 1994; Garvie et al., 1997: Lefebvre et al., 2001a, 

b). The mechanisms of gas transport include diffusion, advection due to thermal gradients, 

barometric pumping and wind-driven pressure gradients (Ritchie, 1994; Bennett et al., 1995; 

Lefebvre et al., 2001a; 2001b; Massmann and Farrier, 1992; Auer et al., 1996; Anne and 

Pantelis, 1997; Ritchie and Miskilly, 2000; Moghtaderi et al., 2000).  
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Gas transport has been studied extensively using numerical models. Bennett et al. 

(1995) applied the numerical model FIDHELM, which accounts for gas transport caused by 

convection and diffusion, to a waste-rock pile at the Heath Steele mine in New Brunswick, 

Canada with the goal of determining gas-transport mechanisms.  Using homogeneous domain 

and constant boundary conditions, the model was unable to predict oxygen concentrations 

observed in the field. The authors concluded that the pressure change at the boundary, and 

heterogeneity might have contributed to the observed variations in oxygen concentration. 

Lefebvre et al. (2001a,b) conducted a multiphase modeling study using TOUGH AMD to 

simulate sulfide oxidation in two different waste-rock piles and proposed gas-transport 

control strategies. Anne and Pantelis (1997), and Ritchie and Miskilly (2000) coupled 

computational fluid dynamics (CFD) models to simulate wind-induced gas transport. The 

results show that wind flow may have significant effects on oxygen transport and sulfide 

oxidation. Amos et al. (2009a,b) measured wind-induced pressure gradients in a waste-rock 

pile and compared results to a numerical model using a homogeneous domain. The 

discrepancy between the field observations and modeling results suggests that the 

heterogeneity of the waste-rock pile influences gas transport significantly. 

Thermal transport plays a key role in limiting sulfide oxidation, especially in cold 

northern regions. This limitation occurs because when the temperature drops below zero, 

water, one of the reactants in the sulfide oxidation reaction freezes. Furthermore, thermal 

conditions affect gas convection within the waste rock piles. Kyhn and Elberling (2001) 

demonstrated that thermal covers are effective in limiting acid mine drainage from mine 

tailings using a one-dimensional numerical model. Arenson and Sego (2007) showed that a 
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coarse rock cover on top of tailings ponds may promote freezing of the tailings underneath. 

Ritchie (1994) identified thermal gradient as the most important process in driving gas 

convection in waste-rock piles.  

Water flow provides reactants for sulfide oxidation and also carries oxidation 

products. Therefore, understanding water flow is key in determining the extent and duration 

of acid mine drainage. Water flow in unsaturated water rock piles is greatly influenced by the 

heterogeneity. Preferential flow patterns often are observed in waste-rock piles. Murr et al. 

(1981) conducted leaching and dye-staining experiments on mine heap leach materials and 

found relatively small amounts of waste rock produced the majority of the leached metals. 

Nichol et al. (2004) described a tracer test on a waste-rock pile at Cluff Lake mine, Canada, 

but was unable to quantify wetting front velocity and the relative contributions from matrix 

flow and preferential flow.  

Ultimately, the extent of AMD generation is determined by geochemical reactions. 

Sulfide oxidation is affected by mineralogy, surface area and microbiology. Mineralogy 

controls the stoichiometry of the oxidation reaction and hence the amount of acid and metal 

released by the reactions. Material with a larger surface area reacts faster than the same 

material with a smaller surface area because the larger surface area allows oxygen to reach 

the reaction site faster (Berner, 1980; Hollings et al., 2001). Heterogeneity controls the 

distribution of surface area and hence the reaction rate. Bacteria may act as catalysts for 

sulfide oxidation and have significant effect on the rate of sulfide oxidation. A. thiooxidans 

and A. ferrooxidans are the two most commonly found bacterial species in mine wastes 

(Gould and Kapoor, 2003). A. ferrooxidans requires O2 and CO2 for growth. Gas transport 
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controls O2 and CO2 supply and is an important factor controlling maintaining bacterial 

growth and the sulfide oxidation rates. 

 Coupling between the physical and biogeochemical processes active in a waste-rock 

pile is highly complex. Cathles and Apps (1975) developed a one-dimensional transient 

model of copper-waste dump incorporating an oxygen balance, a heat balance and air 

convection and applied the model to a small copper waste dump. Pantelis and Ritchie (1992) 

identified the physiochemical processes and suggested when the geochemical reactions do 

not limit the oxidation, physical process that controls oxygen supply controls AMD 

production. Hockley et al. (1995) identified the types of coupling between physiochemical 

processes into one-way, two-way and indirect coupling. Lefebvre et al. (2001a) proposed an 

oxygen-supply conceptual model: gas first enters waste rock piles through diffusion and 

wind-induced gradients. Because the oxidation of pyrite is highly exothermic, it creates a 

thermal gradient, which drives convective gas transport. Also, as oxygen is consumed by 

sulfide oxidation, the concentration gradient between the interior of the waste-rock pile and 

the atmosphere drives oxygen transport. The concentration of the effluent is controlled by the 

coupling between unsaturated water flow and chemical reactions. Malstrom et al., (2000) 

suggested the difference in reaction rate between laboratory tests and field investigations is 

the result of significant channelization of flow and incomplete flushing of oxidation products. 

Smith and Beckie (2003) showed that the greatest uncertainty in predicting solute mass 

loading is associated with the quantification of transient unsaturated flow. Wagner et al. 

(2006) monitored the geochemical and hydrological condition of an instrumented waste rock 

pile over a period of 4 years. The authors found that sulfate concentrations negatively 
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correlate with flow rates during short periods of time such as an individual rainfall event 

when the macro flow is active but positively in the long term (monthly scale).  

 Much of the discrepancy between numerical modeling results and field observations 

of gas transport (Bennett et al., 1995; Amos et al., 2009) and water flow (Smith and Beckie, 

2003; Neuner 2009) are due to lack of knowledge of heterogeneity. Reactive transport 

simulations also are influenced by heterogeneity because they are linked to hydrological 

models. In addition, the grain-size distribution and particle surface area provide a basis for 

estimates of the rate of sulfide oxidation. Much effort has been put into characterizing 

heterogeneity of waste-rock piles. Stockwell et al. (2006) conducted sieve analysis on over 

60 samples at random locations in a waste-rock pile. The results showed a large variation of 

grain size but similar grain-size distributions. The authors did not account for particles > 

0.1m due to the limitation posed by sieve size. Smith (2009) conducted grain size analysis on 

over 500 samples from two different waste-rock piles and measured sulfur content of various 

grain size fractions. The author also conducted a single large-scale grain-size measurement. 

Traditional sieve analysis is limited by sieve size and is poorly suited for analyzing waste-

rock piles that contain large particles. 

This thesis addresses two fundamental questions: how can the heterogeneity of the 

waste-rock piles be characterized better to determine the effects of physical characteristics on 

transport processes and AMD generation; and what is the impact of wind-induced gas 

transport on the processes involved in AMD generation from waste-rock piles.  
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1.1 Site description 

This thesis is part of a waste-rock research project taking place at the Diavik 

Diamond Mine in Canada’s Northwest Territory. The Diavik Diamond Mine is located on a 

20 km2 island in Lac de Gras, approximately 300 km from Yellowknife, NWT, Canada. The 

Diavik mine consists of three kimberlite pipes located beneath the waters of Lac de Gras with 

a total mine life of 16 to 22 years (DDMI, 2009).  The mine started as an open-pit mine and, 

at the time of this study, is in transition into underground mining operations.  

The Diavik country rock is comprised of approximately 75% granites, 14% granitic 

pegmatites, 10% metasedimentary biotite schists and 1% diabase dykes. The granite and 

granitic pegmatite contain only trace amount of sulfide minerals and are considered to be 

non-acid generating (Smith, 2009). However, because the carbonate content of this rock is 

very low (Smith, 2009), their neutralization potential also is very limited.  The biotite schist 

contains the sulfide mineral pyrrhotite (Fe1-xS), which oxidizes rapidly in the open air (Jansen 

et al., 2000). The carbonate content of the biotite schist also is very low (Smith, 2009).  Static 

tests indicate biotite schist is potentially acid generating due to the balance between acid 

generating potential and acid neutralization capacity. Diabase dykes are geochemically 

insignificant due to their small volume. 

Country rock (waste rock) excavated during mining operations at Diavik Diamond 

Mine is analyzed for sulfur content and segregated into Type I, Type II and Type III. Type I 

rock is comprised primarily of non-acid generating granite with sulfur content < 0.04 wt% S 

and is primarily used as construction material. Type II rock is predominantly granite with 

some biotite schist having sulfur content of 0.04 to 0.08 wt% S and is considered to have 
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little acid generating potential. Type III rock is classified as having acid-generating potential 

with sulfur content > 0.08 wt% S and is comprised of granite with a greater proportion of 

biotite schist. 

Three instrumented waste-rock piles were constructed using the Diavik country rock 

from 2004 to 2007. The piles were designated Type I ‘TI’, Type III ‘TIII’, Test Cover ‘TC’ 

based on their country-rock type. The TI pile is constructed with Type I rock and the TIII pile 

is constructed with rock designated as Type III within the open pit. The TC pile has a core of 

TIII rock and an engineered cover composed of a 1.5 m layer of till overlain by 3 m of TI 

rock. Chemical analysis of samples collected during construction indicate the Type I test pile 

has an average sulfide content of 0.035 wt. %, the Type III test pile has an average sulfide 

content of 0.053 wt. % S and the interior of the TC pile has an average sulfide content of 

0.082 wt.%. S.  

The test piles are 15 m high with an upper surface area of 20 m by 50 m. The angle of 

repose is about 37.5 degrees (1.3 horizontal vs. 1 vertical) for the TI and TIII piles and 18.4 

degrees for the TC pile (3 horizontal vs. 1 vertical). The test piles were constructed using 

standard waste-dump method from an access ramp. Instruments were installed on the base of 

the pile and tip faces of the piles. Instruments installed include: a basal drain system on an 

impermeable liner at the base of each pile to capture the drainage water, soil-water solution 

samplers (SWSS) to analyze pore-water chemistry, time-domain reflectometer (TDR) probes 

to measure volumetric water content, thermistors to monitor the thermal state of the piles, 

gas-sampling lines to measure O2, CO2 and differential pressure, air-permeability probes to 

obtain point permeability measurements, thermal conductivity access ports, and 
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microbiology access ports to determine bacteria population (Smith, 2009). The 

instrumentation was designed to allow three dimensional analysis and modeling of the three 

piles.  

1.2 Scope 

This thesis consists of four chapters featuring image grain-size analysis of the TI and 

TIII test piles (Chapter 2) and data analysis and modeling of gas transport in the TIII test pile 

(Chapter 3). These two chapters are written in journal article format. Chapter 1 provides a 

global introduction and Chapter 4 provides conclusions and recommendations for future 

work. 

Chapter 2 of this thesis describes the development and application of an image grain-

size analysis method to obtain grain-size information from digital photographs. These grain- 

size analyses were used to assess the spatial variability of grain size within the test waste-

rock piles, and to determine the presence of any systematic trends in grain-size distribution. 

In addition, the grain-size measurements were used in conjunction with previously 

established correlation techniques to estimate the permeability of the test piles. Comparisons 

between the estimated permeability values and measurements of gas permeability made at the 

field site indicate close agreement between these estimates. The grain-size distribution 

information was used to assess the spatial variability of permeability.  

Chapter 3 of this thesis focuses on wind-induced gas transport. Wind-induced gas 

transport in waste-rock piles is the less well understood than diffusion and convection. Most 

studies of wind-induced gas (oxygen, in particular) transport employ modeling tools (Anne 
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and Pantelis, 1997; Ritchie and Miskilly, 2000; Moghtaderi et al., 2000). There are few field 

investigations of wind-induced subsurface gas transport.  Weeks (1993) used regression 

analysis to correlate gas discharge from an open borehole in Yucca Mountain to wind speed 

and wind direction. Amos et al. (2009a,b) presented wind-induced pressure gradients in a test 

waste-rock pile and compared the results to numerical models. However, Amos et al. (2009a, 

b) did not quantify the relationship between wind and pressure change within the waste-rock 

pile. Chapter 3 of the thesis provides a more in-depth investigation the pressure data 

presented by Amos et al. (2009a,b) and describes a transient model of wind-induced pressure 

fluctuation in the test waste-rock pile.  
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Chapter 2: Waste-rock pile grain-size analysis using digital image 

processing 

2.1 Overview  

Recent developments in digital image processing provide an opportunity to gain a 

better understanding of large-scale grain-size distribution that is otherwise difficult to obtain 

through mechanical sieve analysis. An innovative method to obtain grain-size distribution 

information from photographs of waste-rock piles was developed and applied to a well-

characterized study site in the Canadian arctic. The method is based on a region-growing 

algorithm with edge enhancement and image dilation as pre- and post-processing techniques 

and demonstrates sound reproducibility. The method was applied to photographs of six 

exposed faces of two test-scale waste-rock piles. The results are presented both as grain-size 

distribution curves and d50 contours. The results show that fine fractions are retained at the 

top of the tip faces and grain size increases non-linearly from top to bottom of the test-scale 

waste-rock pile. Calculations show that although the greatest mass is associated with the 

coarse fractions, the greatest surface area is associated with the fine fractions. Statistical 

moments demonstrate that these waste-rock piles have mean grain size of granules and are 

very poorly sorted, coarse skewed and leptokurtic. Field large-scale grain-size measurements 

are consistent with the image grain-size analysis results. Permeability is calculated using 

Hazen and Kozeny-Carmen empirical formulae, and reasonable agreement between field and 

laboratory measurements was obtained. The results also are consistent with the observation 

that the initial solute concentrations are greatest at the top of the pile and saturated hydraulic 

conductivity is lower at the top of the pile than in the pile interior. 

 

2.2  Introduction 

Mining requires the excavation of large volumes of rock to gain access to ore bodies. 

Rock with a mineralized content too low to be economically recovered as ore usually is 

retained in unsaturated waste-rock piles at the mine site. The oxidation of sulfide minerals 
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such as pyrite and pyrrhotite in waste-rock piles has the potential to lead to the release of acid 

mine drainage (AMD) that may pose an environmental threat (Ritchie, 2003). 

Much effort has been put into characterizing waste-rock piles in the last decade 

(Lefebvre et al., 2001a; Tran et al., 2003; Ritchie, 2003; Sracek et al., 2004; Montero et al., 

2005; Stockwell et al., 2006; Azam et al., 2007). One property of primary concern is the 

grain-size distribution of a pile. Grain size controls key parameters such as reactive surface 

area and permeability of the pile, and thus controls various processes such as fluid flow, 

chemical composition and the oxidation rate of sulfide minerals. Hollings et al. (2001) 

showed that oxidation of pyrite strongly depends on grain size using laboratory kinetic cells. 

Through numerical modeling studies, Molson et al. (2005) suggest sulfide oxidation may 

vary two orders of magnitude due to small changes in moisture content and grain size. Smith 

(2009) showed that the fine fraction of waste rock tends to have higher sulfur content.  

Waste-rock piles contain variable grain sizes (Munroe et al., 1999). The most 

common and routinely used method to determine grain-size distribution, sieve analysis, is 

limited by the largest sieve size and only reveals grain-size distribution at a single sampling 

location. For the results to be representative of a large pile, large numbers of samples need to 

be collected and analyzed. Stockwell et al. (2006) conducted sieve analysis on over 60 

samples at random locations in a test waste-rock pile, and results showed a large range of 

grain sizes but similar grain-size distributions. Smith (2009) conducted grain-size analysis on 

over 500 samples from two different test-scale waste-rock piles and sulfur content of various 

grain-size fractions was measured. These analyses only considered grain size of the less than 

< 0.1m fraction. Little work has been done to characterize the two-dimensional spatial 

variation of waste-rock grain sizes considering the full spectrum of grain size within the 

waste-rock piles. In other fields of science and engineering, researchers have attempted 

grain-size analyses using digital image processing (DIP) techniques and yielded encouraging 

results (Mora et al., 1998; Kwan et al., 1999; Mora and Kwan, 2000; Fernlund, 2005a, b, c, 

Igathinathane et al. 2008).  However, images for these methods are acquired in highly 

controlled laboratory environments. Waste-rock images taken from the field suffer from 

problems such as shadows and blurry rock grain boundaries caused by natural lighting and 
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limited resolution that pose considerable challenges to digital image processing. The 

objective of this study is to develop an image analysis technique to provide information on 

the full spectrum of grain size within a test-scale waste-rock pile, ranging from fines to 

boulder size. The technique is applied to a well- characterized study site.  

2.3 Background 

Three test-scale waste-rock piles (“test piles) were constructed at the Diavik Diamond 

Mine located 300 km northeast of Yellowknife, NWT, Canada and from 2004 to 2007. The 

test piles are approximately 15 m high and were instrumented so that detailed measurements 

can be obtained including water flow, aqueous chemistry, gas pressure and concentration, 

temperature and microbiological evolution. During construction samples were collected for 

the grain-size and sulfur and carbon analyses (Smith, 2009). The piles were named Type I 

‘TI’, Type III ‘TIII’, and Test Cover ‘TC’ (Figure 2 - 1). The TI test pile is comprised 

primarily of non-acid generating rock with average sulfur content of 0.035 wt% S. The TIII 

test pile is classified as having acid-generating potential with average sulfur content of 0.053 

wt% S. The TC test pile contains TIII core with an engineered cover composed of a 1.5 m 

layer of till overlain by 3 m of TI rock. The TI and TIII piles are the focus of this study. 

The test piles were constructed using standard mining equipment dumping waste rock 

from an access ramp. Both end dumping with haul trucks and dozer push dumping 

techniques were used. The test piles are 15 m high. The upper surfaces are 20 m by 50 m, 

and the angle of repose is approximately 37.5 degrees (1.3 horizontal vs. 1 vertical) for the TI 

and TIII piles. The rock piles have grain sizes ranging from sub-millimeters to meters. 

During the construction samples of < 50 mm fraction were taken for grain-size analysis 

according to ASTM standard D422-63 (ASTM, 2002). A total of 244 samples were taken 

from the TI pile and 313 samples were collected from the TIII pile. The d50, the diameter 

that 50 % of the material is finer than, is approximately 7 mm for the < 50 mm fraction of the 

TIII and 9 mm for the < 50 mm fraction of the TI pile (Neuner, 2009). Two large-scale grain 

size measurements for the <900 mm fraction of the TI and TIII pile were taken: one 

consisting of a single truck load of TI run of mine (ROM) collected prior to construction of 
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the test piles in 2006 (Neuner, 2009) and another consisting of a single truck load of TIII 

ROM collected after construction in 2010.  

2.4 Methods 

2.4.1 Digital images 

Images of multiple colors were represented as stacking a group of single-color 

images. The digital photographs taken for the project were acquired in RGB color format, 

which consists of a Red matrix, a Green matrix and a Blue matrix. The three matrices were 

overlaid to generate a variety of colors. The photographs of waste rock were fairly 

monotonic. All three matrices had similar pixel intensity distribution and provide similar 

information and one matrix was sufficient to represent the features in the image. Each single-

color digital image was represented as an intensity matrix. Each pixel in the image has a 

unique entry (x, y) in the matrix, and was assigned a value corresponding to the intensity of 

the pixel. In Matlab coordinate convention, an N pixel x N pixel intensity image was 

represented in matrix form as: 

 
Photographs for image analysis were taken of the exposed tip faces of the TI and TIII 

piles. These exposed faces include the east, west and north faces of the TI pile (TIE, TIW and 

TIN, respectively) and the north, south and west faces of the TIII pile (TIIN, TIIIS and 

TIIIW, respectively). Photographs of the faces were taken with a Nikon D5000 digital 

camera from ground surface in May 2010. The distance from the foot of the pile to the 

camera was approximately 30 m. Perspective corrections were made with GNU software 

GIMP’s backward perspective transformation tool before the grain size analyses were 

performed (GIMP, 2009). 
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2.4.2 Survey of methods 

To construct a grain-size distribution curve from a waste-rock image, the image was 

first divided into regions each containing a rock particle through a process called 

segmentation. There are three main categories of segmentation techniques (Fu and Mui, 

1981): clustering, edge detection and region extraction. Clustering is a multidimensional 

version of thresholding, which is a simple and widely used technique. In thresholding, an 

upper and lower bound of a feature value such as intensity is chosen and pixels with 

intensities within that range are selected. Two or more features are used to perform a 

clustering segmentation (Wacker, 1969). The advantage of edge detection is that boundaries 

between objects in an image have more abrupt intensity changes. For example, in a rock 

image, pixels at the boundaries of rocks are darker than interior rock pixels. There is an array 

of techniques in this category: including watershed transformation methods, and partial-

differential equation based methods e.g., the level-set method and the snake method (Osher 

and Fedkiw, 2002; Kass, et al., 1988). The idea of the region extraction method is to divide 

the image into regions of similar properties (Zucker, 1976). This can be accomplished by 1) 

region-growing: starting with small regions and merging similar regions, 2) region splitting: 

starting with large regions and splitting them 3) or a combination of both methods (Fu and 

Mui, 1981). 

2.4.3 Region-growing segmentation 

Region-growing was chosen as the segmentation technique here for its simplicity. 

The principal approach of region-growing is to take a set of arbitrary or user-chosen seed 

regions as input. The seed regions mark the objects to be segmented. These regions grow 

iteratively by including more neighboring pixels of similar properties until no more pixels 

can be included or the maximum iteration is reached (Figure 2 - 2).  Intensity is the most 

commonly used property and was used in this study.  

Two major challenges exist when segmenting waste-rock images with the region-

growing method. First, unlike in the laboratory where the light source is controlled, natural 

lighting and the angular nature of rocks result in heavy shadows and “salt-and-pepper” noise 

in the photographs. Second, boundaries are often blurry which causes “leakage” or 
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overgrowth problems. Pre- and post-processing techniques were employed to overcome these 

challenges. Instead of using seed points, seed regions were used at the start of the program so 

that “salt-and-pepper” noises were averaged out when the mean of the region is calculated. In 

addition, regions were dilated after region-growing is performed to fill in the “holes” caused 

by imperfect rock surfaces and a Sobel mask is added to the original gray scale image to 

enhance the rock edges (Duda and Hart, 1973). 

Image dilation is a morphological operator that enlarges region boundaries. Holes in 

the region can be filled or reduced in size. To perform dilation, two inputs are needed: the 

target image and a structure element (Gonzalez and Woods, 1992). The structure element 

specifies the extent of dilation. An example is shown in (Figure 2 - 3a). The original image is 

a binary image in which 1 is represented as white and 0 is black. In a dilation operation with 

a 3x3 structure element, for each black pixel, all its eight neighboring pixels are checked, and 

if at least one white pixel is detected, the respective black pixel is changed to a white pixel. 

The resulting white boundary of the region is enlarged or “dilated”. More importantly, small 

holes in the region are filled by dilation (Figure 2 - 3b), which makes it a useful post-

processing technique to fill the holes left by region-growing. The dilation operation causes a 

slight artificial enlarging of the grain size, but the introduced error is relatively small 

compared to the size of an image that is tens of thousands of pixels. 

A Sobel mask is a 2D filter that enhances object boundaries in an image by 

calculating the derivatives of the image. A 3x3 Sobel mask is 

  
for horizontal edge enhancement and, 

  
for vertical edge enhancement. A filter is applied to an image by moving it across the image 

and calculating the product of the filter and the image. In the case of the Sobel mask, the 

product is the derivative of the image, which amplifies abrupt changes. The boundaries of a 
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rock are normally darker than the interior. The intensity difference is amplified by the Sobel 

mask and hence the boundaries are enhanced. 

A white 1m x 1m PVC square is included in each photograph as a link between length 

in the image and a defined distance (Figure 2 - 4). Rock particle-size information is translated 

into sieve size by bounding the particle with a rectangle (Figure 2 - 5). Because rock particles 

orient themselves to pass the sieves, the shorter side length of the bounding square defines 

the sieve size of the particle. The final algorithm is shown in Figure 2 - 6.  

2.4.4 Reproducibility and limitations 

The image segmentation and hence grain-size curve results depend heavily on the 

selection of seed points/regions. Because the user defines this information, uncertainties are 

introduced into the results. It is difficult to quantify the overall uncertainty because each 

image is different and each user is different. As a demonstration, five users were asked to run 

the algorithm two times each on the same image and results are presented in Figure 2 - 7. The 

fluctuation of grain size distribution is approximately within 10% of the mean grain-size 

distribution.  

There were two additional limitations in the use of this algorithm. 1) The size 

reference, the white 1m x 1m PVC square, was considered of constant size throughout the 

image. However, because the perspective transformation was not perfect, the reference size 

may vary at different locations of the pile. But the influence of this difference on the final 

grain-size results was modest compared to the variation in grain diameters, which vary by 

orders of magnitude. 2) The minimum grain size detectable in an image using this method 

was about 5 pixels. Depending on the image, this minimum size may correspond to grain 

sizes of 0.01 m to 0.2 m. To overcome this limitation, for the grain size fraction of less than 

0.1 m, mean grain-size distribution from sieve analysis on hand samples was attached to all 

image grain size analysis results to obtain full grain-size distributions. Because the grain-size 

curves obtained from sieve analysis fall closely together (within +/- 2 standard deviation), 

mean grain-size distribution from the entire pile was used to represent the less than 0.1 m 

fractions for each tip face.  
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2.5 Results and discussions 

2.5.1 Image-analysis results and observations 

Each photo was divided into a grid of squares, three vertical by six horizontal, and the 

segmentation algorithm was applied to each square to obtain a grain size curve for each 

square (Figure 2 – 8). Grains that cross boundaries of multiple squares were considered as 

smaller grains in each square. Considering each square contains tens to hundreds of grains, 

the errors induced by cutting several large grains at boundaries into smaller grains are not 

very significant when overall grain-size distribution is examined. Squares are labeled using 

the convention “(row, column)”, with (1,1) representing the upper left corner of the 

photograph. The elevation of each square is referred to as “top”, “middle” and “bottom” 

instead using physical scales because the physical coordinates were unevenly skewed by the 

imperfect perspective transform. The photograph and the grain-size distribution for TIN are 

presented in Figure 2 - 9a and b. The photographs and grain-size distribution for the 

remaining faces are included in Appendix A. Curves representing squares of the same 

vertical displacement are presented using the same color, and curves representing squares of 

the same horizontal displacement are presented using the same marker symbol. All 18 curves 

of a face form an “envelope” that defines overall grain-size property of the face.  

Grain-size distributions for the six exposed faces of the TI and TIII piles (Figure 2 – 

10) show a wide range of grain size distribution. The proportion of fines, defined as grains 

with diameters < 0.01 m, ranges from ~10% to over approximately 40%. In general, the 

upper portions of the faces, represented by red curves in each plot, have significantly more 

fine grains than the lower portions of the faces. This is likely the result of compaction from 

the heavy vehicle traffic on the top of the pile. The blue and green curves lie more closely 

together, indicating the middle and the lower portion of the faces are more similar in grain 

size. The steepness of a grain-size-curve envelope reflects the homogeneity of the grain-size 

distribution of the individual face. The narrower the envelope of grain-size curves, the more 

homogeneous the grain size distribution is across a tip face. The TIIIW, TIN and TIW faces 

have the narrowest grain-size distributions, suggesting that segregation of these faces is less 

extensive than on other faces. The TIIIN face has the broadest distribution suggesting that 
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segregation was extensive on this face. It should be noted that TIIIW and TIN are dump 

faces, i.e., the faces from which waste rock was dumped. Direct push by dozers during the 

construction may have resulted in less extensive particle segregation and a more uniform 

grain-size distribution.  

The large-scale grain-size measurements obtained of TI and TIII materials are 

compared to the image grain-size analysis results (Figure 2 - 11). The measured grain-size 

distribution falls within the envelope of each face determined by image analysis, suggesting 

there is reasonable consistency between the measurement techniques. Furthermore, because 

each of the large grain-size analysis is a single truckload with no segregation, the distribution 

of each grain-size envelope determined by image analysis around the measured truckload 

grain size is consistent with the hypothesis that tip faces represent segregated truckloads. 

Assuming grains are ideal spheres, surface area and mass distribution among different 

grain-size fractions were calculated based on 1 kg of sample (Figure 2 - 12). The results 

indicate that although the greatest mass on the faces is associated with the coarse grains, the 

greatest surface area is associated with the fine-grain fraction (< 0.01 m). To obtain method 

of moment statistics, grain-size distributions were converted to logarithmic Udden–

Wentworth grade scale using  where  is converted Udden–Wentworth grade 

scale value and d is grain diameter in millimeters (Udden, 1914; Wentworth, 1922). 

Statistical moments for each grain-size curve were calculated using logarithmic method of 

moments (Krumbein and Pettijohn, 1938). The results are listed in Table 2 - 1 and 

summarized in Figure 2 - 13. The four moments (equations included in Appendix C) are: 1) 

mean grain size, 2) standard deviation (sorting) of grain size, 3) skewness, the degree of 

preferential spread to one side of the mean and 4) kurtosis, the degree of concentration 

around the mean. A brief description of how values of the moments correspond to physical 

interpretations is included in the table caption. Both the TI and TIII piles have mean grain 

size of granules and are very poorly sorted, coarse skewed and leptokurtic (which means the 

distribution is more concentrated around the mean grain size than spread-out among all grain 

sizes).  
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In addition to grain-size distribution curves, d-n values, the diameter of grain that n% 

of the material is finer than, are determined on the 3 x 6 grid for each face to visualize the 

spatial grain-size variations. Trial-and-error showed that d50 contours provide the most 

detailed information regarding pile heterogeneity (Figure 2 - 14). All photos are included in 

Appendix A for reference and comparison with d50 contours. Visual inspection shows that 

the method provides reasonable accuracy and detail in representing pile heterogeneities 

(Figure 2 - 9a and c and Figures A1 to 5). The d50 ranges from approximately 0.01 m to 0.4 

m. The finer grains are mainly retained at the top of the test piles. Vertically, grain size 

increases from top to bottom of the piles, demonstrating the effects of gravity sorting, and 

raveling of large boulders on the tip face. The average d50 value at each vertical 

displacement is plotted and a similar pattern is observed as for the grain-size curves (Figure 2 

- 15a). The slopes are gentler from middle to bottom of the test piles than from top to middle 

of the test piles indicating a more distinct grain-size variation within the upper half of the test 

piles. TIIIN shows an anomaly with a vertically symmetric d50 distribution pattern with the 

highest d50 value in the middle and decreasing towards both higher and lower height. TIIIW 

also shows a high d50 value in the middle of the face. This pattern may reflect placement of a 

single load, dominated by large boulders at this location. Although not as significant as in the 

vertical direction, d50 varies horizontally; however, there is no clear relationship between 

horizontal displacement and d50 values (Figure 2 - 15b). Horizontally, the relative magnitude 

of d50 values is consistent at different vertical displacements. For example, in Figure 2 - 16, 

at the top of TIN, Location 1 and 3 have smaller d50 values than Location 2, and at the same 

horizontal displacement but the bottom of the face, Location 1’ and 3’ have smaller d50 than 

Location 2’. These bands of coarse and fine grain sizes (dashed lines in Figure 2 - 13) are 

likely the result of truck dumping and dozer pushing during the construction. For instance, if 

an individual truckload of waste rock is finer than another one, a vertical band of finer-

grained material may result. 

2.5.2 Implications 

This analysis demonstrates that the fine fraction of the waste rock is preferentially 

retained at the top of the exposed tip face of the test piles and as a consequence, grain size 
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varies non-linearly along a pile face with the upper half finer than the lower half. Since the 

internal tip faces were constructed using the same truck-dumping and dozer-pushing 

methods, the interior of the pile is expected to of similar heterogeneity. The proportion of 

fine-grained material determines surface area and permeability of a waste rock pile and hence 

affects fundamental acid-generating processes including reaction rate, water flow and gas 

flow. This analysis is limited to tip faces and cannot account for filling of open voids by 

deposition of subsequent loads of waste rock over the tip face. 

2.5.2.1 Permeability 

Permeability is an intrinsic property directly affected by grain-size distribution that 

has a strong influence on the physiochemical processes in the waste rock piles. Permeability 

was calculated using both Hazen (1911) and Kozeny–Carmen (Kozeny, 1927; Carmen 1938; 

Carmen 1956) formulae and compared to field measurements obtained using air permeability 

balls (Amos et al., 2009a and b). Despite formulae were developed for finer sandy materials, 

reasonable agreement between predicted values and field measurements is obtained (Table 2 

- 2). The d10 of individual squares within each analyzed face of the test-piles ranges between 

0.0001 m to 0.01 m, which corresponds to a permeability of 10-11 m2 to 10-7 m2 using the 

Hazen formula and 10-12 m2 to 10-8 m2 using the Kozeny-Carmen formula. The range of 

average calculated permeabilities for each row of the analyzed faces is 10-10 m2 to 10-8 m2 

using Hazen formula and 10-11 m2 to 10-9 m2 using Kozeny-Carmen formula. This is 

consistent with the range of measured permeabilities, which range 10-10 to 10-9 m2, but are 

limited to six points in each test pile. Permeability contours are constructed using Kozeny-

Carmen formula (Figure 2 -17). The contours show that permeability is lowest in the top 

layers of the test piles and highest in the middle layers of the piles. Neuner (2008) conducted 

permeameter tests on a 16 m3 waste rock sample from the Diavik site. The reported saturated 

hydraulic conductivity was 10-2 m/s, which corresponds to a permeability of 10-9 m2. 

However, the results may have been limited by the screen pipe at the drain of the 

permeameter. Neuner (2008) concluded that the permeability is at least 10-9 m2. The 

calculated permeability values in this study were up to 10-7 m2. This is consistent with the 

measurements by Neuner (2008).  



 

  21 

2.5.2.2 Reaction rate 

Fine grains correspond to higher surface area and hence greater potential for 

oxidation. Reaction rates are generally assumed to be proportional to the surface area of 

minerals exposed at the particle surface. Using batch reactors Stromberg and Banwart (1999) 

demonstrated that there is a difference in sulfur-mineral reaction rates between fine and 

coarse grains, with the fine-grained fraction reacting more quickly than the coarse-grained 

fraction. Smith (2009) analyzed samples of the < 50 mm fraction of the Diavik TI and TIII 

test pile material and determined that the fine-grained fraction contains a higher 

concentration of sulfur, suggesting that the greatest potential reactivity is associated with the 

fine-grained fraction. Calculations based on assuming a unit mass at the face of the TI and 

TIII piles indicate that although the greatest mass on the face is associated with the large 

particles, the greatest proportion of surface area is associated with the fine fraction (Figure 2 

- 12). This suggests the top of the tip face has the highest reactivity and is of greatest 

concern. 

In addition to affecting the rate of sulfide oxidation, the grain-size distribution 

controls the waste-rock porosity and permeability and hence affects the oxygen-diffusion rate 

and the hydraulic conductivity of a waste-rock pile. The availability of oxygen may limit 

sulfide mineral oxidation. Molson et al. (2005) demonstrated that there is a trade-off between 

grain size and oxidation rate because finer grains have lower permeability and slower oxygen 

diffusion, but the high surface area provided by finer grains increases the oxidation rate. Gas 

concentration measurements consistently indicate that the TIII test pile has atmospheric 

levels of O2 and CO2 througout the pile over time, suggesting that oxygen availability does 

not limit oxidation reactions (Amos et al., 2009b). Hence, reactions should become less 

extensive from top to bottom of the test piles. This inference is consistent with early-time 

analysis of pore water samples collected from soil water solution samplers (SWSS) located at 

various depths within the TIII test pile, which show concentrations of sulfate and ferrous iron 

decrease from the top to the bottom of the pile (Bailey et al., in progress). 
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2.5.2.3 Water flow 

The grain size curve envelopes obtained from the analysis can be used to represent 

grain-size distribution on the scale of a representative elemental volume (REV) of the waste 

rock piles, which was previously represented by only one large-scale grain size measurement. 

Fine grains retained at the top of the piles will result in lower hydraulic conductivity in this 

region. At the field facility, samples taken from the top of the TIII pile after the construction 

was completed have mean saturated hydraulic conductivity of 3.3 x 10-6 m/s compared to 1.7 

x10-5 m/s for samples representing the interior of the pile (Neuner et al., 2009). Although the 

measurements are made at a smaller scale than those presented here, these measurements 

provide a consistent indication that the rock in the upper portion of the test pile is more fine-

grained than the lower zones. Previous modeling by Neuner et al. (2009) demonstrats that a 

homogeneous domain does not adequately describe the hydrogeological field data. The 

heterogeneity information obtained from the analysis can provide a basis for future modeling 

efforts. 

2.5.2.4  Gas flow 

Thermal convection and diffusion are often considered the most important 

mechanisms for gas flow in waste-rock piles (Ritchie, 1994; Bennett et al., 1995; Lefebvre et 

al., 2001a; 2001b). It has been recently demonstrated by Amos et al. (2009a and b) and Chi, 

et al. (Chapter 3) that wind-driven advection is an important factor contributing to gas 

transport in the Diavik test-scale waste-rock piles. Previous modeling assuming a 

homogeneous permeability structure showed that the most significant response to wind flow 

over a waste-rock pile is focused at the upper edges of the rock pile (Anne and Pantelis, 1997 

and Ritchie and Miskilly, 2000). The accumulation of fine-grained material at the upper 

region of the pile observed from the analysis presented here can be expected to 1) limit gas 

flow by lowering permeability and 2) promote oxygen consumption through oxidation 

reactions enhanced by the higher surface area of the rock in this zone. However, due to the 

relatively low oxidation rate of the Diavik test piles, and the relatively high permeability, 

oxygen depletion is not observed despite the finer grained materials.  Amos et al. (2009a) 

measured gas-pressure data for the Type III test pile and were unable to obtain reasonable 
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agreement between gas-pressure data and simulation results using a homogeneous pile 

configuration. Amos et al. (2009a) concluded that the discrepancy probably was due to a 

combination of heterogeneity within the test pile and irregular landscape surrounding the test 

pile. The heterogeneity information provided by this study can be useful in modeling gas 

transport. 

2.6 Conclusions   

A digital image analysis method was developed to analyze large-scale grain-size 

distributions. The image analysis method combined with traditional sieve analysis was 

applied to photos taken of experimental waste-rock piles in the Canadian arctic. The results 

were able to quantify the wide range of grain-size variations observed in the piles and 

provided an analysis of the spatial heterogeneity of the piles. Important observations 

included: 1) fine-grained material is preferentially retained at the top of the test piles, 2) grain 

size decreases non-linearly from top to bottom of the test piles and also varies horizontally 

but with an inconsistent trend, 3) The greatest surface area is associated with fine fractions, 

4) The Diavik test-scale waste-rock piles have mean grain size of granules and are very 

poorly sorted, coarse skewed and leptokurtic. 5) Permeability can be reasonably estimated by 

empirical formulae based on d10 values obtained from combined image analysis and sieve 

analysis grain-size distributions. The observations are consistent with permeability 

measurements, measured large-scale grain-size analysis performed in the field, pore-water 

chemistry demonstrating higher reactivity in the finer material at the top of the test piles, and 

hydraulic conductivity measurements showing lower hydraulic conductivity at the top of the 

piles compared to within the piles. The d50 contours provide a visual demonstration of the 

heterogeneity of the test piles and show distinct trends in grain size with depth and 

horizontally across tip faces. The interior of the test piles are expected to have similar 

property because the internal tip faces were constructed using the same methods. 

The method provides a means to quantify grain-size distributions for waste-rock piles, 

which is difficult and expensive to accomplish by traditional sieve analysis. It also provides a 

two-dimensional visualization of the heterogeneity of waste-rock piles. This information can 

provide a basis for implementing fluid-flow and gas-transport models in the future.  
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2.7 Tables 
Face H V Mean Standard 

deviation 

Skewness Kurtosis Face H V Mean Standard 

deviation 

Skewness Kurtosis 
TIE 1 1 -4.5 3.5 0.5 2.3 TIIIN 1 1 -7.2 2.8 1.9 6.1 
 1 2 -5.5 3.5 0.8 2.7  1 2 -5.8 3.4 1.0 3.0 
 1 3 -5.0 3.5 0.7 2.5  1 3 -6.1 3.6 1.0 2.9 
 1 4 -6.1 3.5 1.1 3.1  1 4 -5.0 3.6 0.6 2.4 
 1 5 -4.7 3.6 0.5 2.3  1 5 -4.1 3.5 0.3 2.3 
 1 6 -4.2 3.4 0.5 2.4  1 6 -5.5 3.7 0.7 2.5 
 2 1 -6.5 3.2 1.4 4.1  2 1 -7.9 2.2 2.7 11.0 
 2 2 -6.3 3.2 1.3 3.8  2 2 -7.2 2.8 1.9 6.0 
 2 3 -6.1 3.5 1.1 3.1  2 3 -6.1 3.0 0.7 3.5 
 2 4 -6.6 3.3 1.4 4.0  2 4 -7.4 2.9 1.9 5.9 
 2 5 -7.0 3.0 1.7 5.1  2 5 -7.3 2.8 1.9 6.1 
 2 6 -6.9 3.1 1.5 4.5  2 6 -5.7 3.3 0.5 2.7 
 3 1 -6.1 3.6 1.0 2.9  3 1 -7.1 3.1 1.6 4.8 
 3 2 -6.4 3.4 1.2 3.4  3 2 -5.1 3.7 0.6 2.2 
 3 3 -6.2 3.6 1.0 2.9  3 3 -6.5 3.3 1.3 3.8 
 3 4 -6.6 3.4 1.3 3.5  3 4 -6.5 3.3 1.3 3.7 
 3 5 -6.8 3.3 1.4 4.0  3 5 -6.0 3.6 1.0 2.8 
 3 6 -6.8 3.4 1.4 3.8  3 6 -4.6 3.7 0.4 2.1 
TIW 1 1 -6.1 3.4 1.1 3.3 TIIS 1 1 -4.6 3.7 0.3 2.1 
 1 2 -7.0 2.9 1.7 5.4  1 2 -4.3 3.6 0.2 2.1 
 1 3 -5.0 3.6 0.6 2.4  1 3 -5.9 3.6 0.9 2.7 
 1 4 -7.2 2.7 1.9 6.4  1 4 -5.4 3.8 0.7 2.3 
 1 5 -7.1 3.1 1.7 5.0  1 5 -3.8 3.5 0.2 2.3 
 1 6 -5.2 3.6 0.6 2.4  1 6 -5.2 3.7 0.6 2.2 
 2 1 -6.9 2.4 1.3 6.0  2 1 -5.4 3.6 0.7 2.5 
 2 2 -7.7 2.3 2.6 10.3  2 2 -6.0 3.4 0.9 3.0 
 2 3 -7.7 2.5 2.4 8.5  2 3 -6.4 3.5 1.2 3.3 
 2 4 -7.7 2.4 2.5 9.6  2 4 -6.1 3.5 1.0 2.9 
 2 5 -7.7 2.5 2.4 8.9  2 5 -6.5 3.4 1.2 3.4 
 2 6 -8.0 2.2 2.9 11.8  2 6 -6.2 3.6 1.0 3.0 
 3 1 -6.9 3.2 1.5 4.4  3 1 -4.7 3.5 0.0 2.2 
 3 2 -7.6 2.8 2.1 6.9  3 2 -4.7 3.5 -0.1 2.1 
 3 3 -6.7 3.4 1.3 3.5  3 3 -5.5 3.4 0.3 2.4 
 3 4 -7.3 2.9 1.9 5.7  3 4 -6.0 3.3 0.8 3.0 
 3 5 -3.7 3.4 -1.1 2.4  3 5 -6.2 3.5 1.1 3.1 
 3 6 -7.6 2.8 2.1 6.7  3 6 -7.2 3.1 1.8 5.3 
T1N 1 1 -7.0 3.2 1.6 4.6 TIIIW 1 1 -5.9 3.4 1.0 3.0 
 1 2 -6.9 3.2 1.5 4.4  1 2 -6.5 3.3 1.3 3.8 
 1 3 -5.7 3.6 0.9 2.7  1 3 -6.5 3.2 1.3 4.0 
 1 4 -6.9 3.2 1.5 4.4  1 4 -6.7 3.1 1.5 4.5 
 1 5 -5.7 3.5 0.9 2.8  1 5 -4.3 3.4 0.5 2.4 
 1 6 -6.3 3.5 1.2 3.3  1 6 -4.2 3.6 0.3 2.2 
 2 1 -7.8 2.3 2.6 10.4  2 1 -7.4 2.6 2.1 7.2 
 2 2 -7.4 1.9 1.4 8.5  2 2 -7.3 2.8 2.0 6.5 
 2 3 -7.9 2.2 2.8 11.2  2 3 -7.7 2.5 2.4 8.8 
 2 4 -7.7 2.5 2.4 9.0  2 4 -7.4 2.7 2.0 6.8 
 2 5 -7.3 2.8 1.9 6.3  2 5 -7.4 2.5 2.2 7.9 
 2 6 -7.6 2.6 2.3 8.0  2 6 -7.3 2.7 2.0 6.7 
 3 1 -7.0 3.0 1.7 5.1  3 1 -7.5 2.7 2.1 7.1 
 3 2 -8.1 2.1 3.1 13.1  3 2 -7.0 2.8 1.8 5.7 
 3 3 -8.2 2.1 3.2 13.9  3 3 -6.9 3.1 1.6 4.7 
 3 4 -8.0 2.4 2.8 10.7  3 4 -6.7 3.2 1.4 4.1 
 3 5 -8.0 2.2 2.9 11.8  3 5 -6.8 3.3 1.5 4.1 
 3 6 -7.9 2.5 2.7 9.7  3 6 -7.5 2.7 2.1 7.2 

 3 5 -8 2.23 2.91 11.8  3 5 -

6.83 

3.26 1.45 4.13 
 3 6 -7.92 2.47 2.65 9.6  3 6 -

7.52 

2.7 2.14 7.17 

Table 2 - 1: Moments calculations. *H: horizontal coordinate and V: vertical coordinate. 

According to Udden-Wentworth scale, cobbles = -11 to -6 phi, pebbles = -6 to -2 phi, 

granules = -2 to -1 phi, sand = -1 to 4 phi, silt = 4 to 8 phi and clay = 8 to 9 phi (Udden, 1914 

and Wentworth, 1922). Standard deviation/sorting: < 0.7 = well sorted, 0.7 to 1 = moderately 
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sorted and >1 = poorly sorted. Skewness:  >0.43 = fine skewed, -0.43 to 0.43 = symmetrical 

and <-0.43 = coarse skewed. Kurtosis: <2.55 = platykuritic, 2.55 to 3.7 = mesokurtic and 

>3.7 = leptokurtic (Krumbein and Pettijohn, 1938). 

 

 

Measured (m2) 
Pile Row 

Mean d10 
(m) 

Kozeny-Carmen† 
(m2) 

Hazen*          
(m2) Min Max Mean 

TI Top 4.57E-4 3.48E-11 2.09E-10 5.0E-10     3.0E-9   1.84E-09 

 Middle 5.26E-3 4.62E-09 2.77E-08  

 Bottom 2.59E-3 1.12E-09 6.71E-09  

 Average  1.92E-09 1.15E-08  

TIII Top 3.52E-4 2.07E-11 1.24E-10 2.0E-10    4.0E-9    1.85E-09 

 Middle 1.60E-3 4.27E-10 2.56E-09  

 Bottom 6.12E-4 6.26E-11 3.75E-10  

 Average  1.70E-10 1.02E-09  

 

Table 2 - 2: Mean calculated permeability for each row of the Type I and Type III test piles 

compared to mean measured permeability. 

†Kozeny-Carmen:  where , , n =porosity=0.23 

(Neuner, 2009),  = 10% passing  

     

*Hazen:  where k = permeability, C = Hazen empirical coefficient, usually assumed 

to be 100,  =10% passing 
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2.8 Figures 

 

 

Figure 2 - 1: Aerial photo of the Diavik test-pile waste rock research area. 
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Figure 2 - 2: Illustration of a region-growing algorithm. (a) The algorithm starts with a 

seed point, (b) The seed point’s 8 neighboring pixels are checked. If the 

difference between mean of the seed region and neighboring pixels is 

smaller than the tolerance, the neighboring pixel is added to the set, (c) 

The seed region keeps growing until no more pixels can be included. The 

mean of the region is updated after each iteration. 
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Figure 2 - 3: Image dilation. (a) A region is dilated by 1 pixel. The gray pixels in the 

right figure show the original pre-dilated region for comparison. (b) 

Image dilation fills the holes in the image. 
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Figure 2 - 4: A typical face of the piles with 1m x 1m PVC reference square. 
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Figure 2 - 5: The rock-bounding square. The minimum value of a and b is used as the 

passing sieve size. 
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Figure 2 - 6: The region-growing algorithm flowchart. 

 

Construct	
  grain	
  size	
  curve	
  

Post-­‐processing:	
  dilation	
  

Region	
  growing	
  

Pre-­‐processing:	
  edge	
  enhancement	
  

User	
  selects	
  seed	
  points	
  and/or	
  regions	
  

Load	
  image	
  and	
  convert	
  to	
  single-­‐layer	
  intensity	
  image	
  



 

  32 

 

 

 

Figure 2 - 7: Grain size curves demonstrating the reproducibility of the algorithm. The 

algorithm was applied to the inset photograph ten times by five different 

users. 
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Figure 2 - 8: (a) A test pile face image with a trapezoid marking the region for image 

analysis (b) The region after perspective transformation (c) The region 

divided into 3 x 6 sub-regions. 
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Figure 2 - 9: a) Photo of face TIN b) grain size distribution of TIN obtained from image 

grain size analysis with sieve analysis results attached for grain size <0.1 

m c) d50 contour of TIN. The d50s are interpolated on the center of each 

square defined in Figure 2 – 8 (dashed lines) to obtain the contours. 
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Figure 2 - 10: Grain size curves for the six exposed faces of the TI and TIII test piles. 

The curves are labeled using the coordinates of the respective squares as 

defined in Figure 2 – 8. 
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Figure 2 - 11: Field sample of grain size compared with image analysis results. 
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Figure 2 - 12: a) Mass and b) surface area distribution among different grain sizes based 

on 1 kg of sample. Each line represents a particular sub-region as 

described in Figure 3 – 8. 
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Figure 2 - 13: Histogram of four statistical moments. 
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Figure 2 - 14: The d50 contours for the six exposed faces of the TI and TIII test piles. 

The x-axes represent horizontal displacement and z-axes represent 

elevation. 
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Figure 2 - 15: (a) d50 plotted against vertical displacement, (b) d50 plotted against 

horizontal displacement. 
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Figure 2 - 16: Grain size bands observed on Face TIN. 
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Figure 2 - 17: Permeability distributions calculated using Kozeny-Carmen formula. The 

contours are in log10-scale. 
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Chapter 3: Implications of wind-induced pressure in a waste rock 

pile 

3.1 Overview 

Wind-induced gas transport in a test-scale unsaturated waste rock pile was 

investigated at the Diavik Diamond Mine, 300 km northeast of Yellowknife, NWT, Canada. 

Differential gas pressures were measured in 2008 at 49 locations within the test waste-rock 

pile and 14 locations on the surface of the pile at one-minute intervals. Wind speed and 

direction were measured at 10-min intervals and decomposed into north, south, east and west 

vectors. Correlations between wind vectors and pressure measurements show that the wind 

influences pressure fluctuations in the pile. The strength of the correlation is roughly 

inversely proportional to the distance between measurement ports and the atmospheric 

boundary. The relationship between the magnitude of the wind vector and pressure 

fluctuations on the surface of the test waste-rock pile was found to be non-linear. However, 

the relationship between internal pressure measurements and surface pressure measurements 

was found to be linear, suggesting that gas flow within the pile follows Darcy’s Law. 

Spectral analysis demonstrates that the dominant periods of the wind ranged from 1 to 50 

days.  A 1D analytical solution to the flow equation demonstrated that the 50-day period had 

the most pronounced effect on transient gas flow within the pile and the penetration depth of 

wind induced gas pressure wave is a function of wind periodicity and permeability of the test 

waste-rock pile.  
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3.2 Introduction  

The recovery of ore from open pit or underground mining operations involves the 

removal of uneconomical waste rock, which is often stockpiled in large unsaturated piles at 

the mine site. The biochemical oxidation of sulfide minerals present in the waste rock can 

result in the generation of acid mine drainage (AMD), characterized by low pH, high 

dissolved metal content and high concentrations of sulfate, as described by the reaction, 

FeS2 + 15/4O2 + 7/2H2O → Fe(OH)3+ 2SO4
2- + 4H+  (1)     

Discharge of AMD poses an environmental risk to both surface and groundwater.  

The rate and extent of AMD generation can be dependent on a number of factors including 

the availability of sulfide minerals, the rate of oxygen transport, and the thermal state of the 

waste rock piles. In many cases the rate of oxygen supply can become the rate-limiting 

process (Cathles and Apps, 1975; Pantelis and Ritchie, 1992; Ritchie, 1994; Garvie et al., 

1997: Lefebvre et al., 2001b) with diffusion and convection generally considered as the 

dominant oxygen-transport mechanisms (Ritchie, 1994; Bennett et al., 1995; Lefebvre et al., 

2001a; 2001b). In northern environments, where the annual average temperature is below 0 
0C, freezing can inhibit water flow while cold temperatures may slow the rates of sulfide 

oxidation (Neuner et al., 2009; Smith et al., 2009). In waste rock, conduction and density 

driven convection are typically considered the most significant thermal transport mechanisms 

(Lu and Zhang, 1997; Lefebvre, 2001a). The availability of oxygen and the thermal state of 

the waste rock are therefore dependent on the mechanisms and rate of gas transport within 

the pile. 

Anne and Pantelis (1997) and Ritchie and Miskilli (2000) demonstrated the 

significance of wind driven advective gas transport in waste rock piles. These studies used 

numerical simulations to demonstrate that wind-induced pressure gradients around a waste-

rock pile could significantly enhance oxygen transport into the pile. Similarly, Moghtaderi et 

al., (2000) simulated gas transport and oxidation in a coal stockpile. These authors found that 

wind induced advection significantly altered the gas-transport regime within the stockpile, 

resulting in increased maximum temperatures.  Each of these studies assumed a constant 

wind speed from a fixed direction, and a homogenous internal structure of the piles. 
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At the Diavik Diamond Mine, in Canada’s Northwest Territories, a multidisciplinary 

project has been conducted to study the physical and geochemical processes controlling 

AMD generation in waste rock piles in a permafrost environment. The project has involved 

the construction and instrumentation of three 15 m-scale test waste rock piles (“test piles”), 

monitoring of thermal, hydrological and geochemical conditions within the pile, and 

characterization of the physical properties of the waste rock. Amos et al. (2009a) measured 

gas pressures within and on the surface of one of the test piles and demonstrated that pressure 

gradients develop within the test pile due to ambient wind conditions, and that the observed 

gradients could result in significant oxygen transport. In a subsequent study, Amos et al. 

(2009b) described improvements to the pressure-monitoring system to reduce noise levels. 

That study more clearly demonstrated the relationship between external wind speed and wind 

direction to pressures measured within the test pile. Together, the studies showed that erratic 

changes in wind speed and wind direction have a considerable effect on internal pressure 

gradients. Furthermore, the observed gradients are distinctly different from those determined 

from the numerical modeling studies, suggesting that internal heterogeneity is affecting air 

flow through the pile. Thermal studies of the test piles indicate that the wind driven advection 

may have significant effects on the depth of the seasonal freeze/thaw layer (Pham et al., 

2009) 

This paper provides a more detailed and quantitative analysis of the data presented in 

Amos et al. (2009b) with the specific objective of 1) substantiating the correlation between 

wind flow external to the test pile and gas pressures within the pile, 2) determining the gas 

flow regime in the pile, 3) quantifying the effects of changes in wind speed and direction and 

determining the relevant time scales. 

 

3.3 Site description 

At the Diavik Diamond Mine three large-scale experimental waste-rock piles were 

constructed as described by Smith et al. (2009). This study focuses on the Type III test pile, 

which contains the highest sulfide content of the waste rock deposited at the site. The rock is 

predominantly granite, pegamtitic granite and biotite schist with an average sulfide content of 
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0.052 ± 0.035 wt. % S (n=419). The pile is 15 m high and was constructed by end dumping 

off a waste rock access ramp using standard mining equipment. The upper surface of the test 

pile measures 20 m by 50 m and side slopes are at the angle of repose, 1.3 vertical to 1 

horizontal (Figure 1). The slopes of the Type III pile are exposed to the atmosphere on the 

north, west and south sides. Furthermore, there is no physical separation between the eastern 

margin of the Type III pile and the ramp used for construction. 

Measurements of gas pressures are obtained through 3.2 mm (1/8”) or 6.4 mm (1/4”) 

O.D polypropylene tubes placed within the waste rock. During construction of the pile, 

bundles of 15 tubes encased in 50 mm (2”) flexible PVC conduit were laid along tip faces at 

2.5 and 7.5 m north and south of the east/west centerline. Individual polypropylene tubes in 

each bundle were terminated through holes in the PVC at 1.3 m intervals to achieve a 1 m 

vertical sample resolution. Four separate tip faces were instrumented at 20, 15, 10 and 5 m 

from the external western edge of the pile; labeled faces 1 through 4 in Figure 1.  

Pressure measurements were recorded on a subset of the gas-sampling tubes using an 

automated data-logging system. The system measures differential gas pressures at 49 

locations within the test pile and 14 locations on the surface of the pile at one-minute 

intervals. A detailed description of the data-logging system is given by Amos et al. (2009a) 

with further enhancements described by Amos et al. (2009b). Briefly, for sampling points 

within the pile, differential pressure is measured between the sampling point and a reference 

point approximately 25 mm below the surface of the pile at the location of the sampling 

bundle using a Modus Series T (±50 Pa) differential pressure transducer. Solenoid valves are 

employed to allow one transducer to measure seven individual sampling points at each 

bundle. For sampling points on the surface of the test pile, an additional pressure sensor is 

located in an instrumentation hut on the top of the pile. This sensor records differential 

pressure between the surface sampling points and a reference point on the surface at bundle 

32N2 (Figure 3 - 1A). Sample tubing for surface pressure measurements are run from the 

instrumentation hut to the sampling locations through 50 mm PVC conduit to minimize wind 

effects on the tubing. Additionally, the exposed ends are covered with crushed rock to 

minimize wind effects on the tubing ends. 
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Pressure data is recorded at one-minute intervals with a Campbell Scientific CR1000 

data-logger. Wind speed and wind direction are recorded at 10 minute intervals using an RM 

Young Model 05305 wind monitor mounted approximately 7 m above the Type III pile. 

Pressure data presented in this report was collected from June 9 through November 18, 2008. 

Data are averaged every 10 minutes to eliminate the short-term oscillations caused by erratic 

wind changes.   

The labels for the measurement ports are shown on Figure 3 - 1. The labeling 

convention for measurement ports within the pile is as follows: 31N2-12: Type ‘3’ pile, face 

‘1’, offset ‘N’ (north) of centerline, ‘2’ = 2.5 m offset (7 = 7.5 m offset), ‘-12’ = 12 m deep 

from top surface of the pile (‘-S’ = surface measurement ≈25 mm deep). For measuring 

points on the side slopes of the pile the labeling convention is: 3SS-14: Type ‘3’ pile, ‘SS’ = 

south slope (NS= north slope, WS = west slope), ‘-14’ = 14 m, vertical distance from the top 

of the pile (Figure 3 - 1B).  

3.4  Results and discussion 

3.4.1 Wind characteristics 

Wind speed and direction were recorded every 10 minutes from June 10, 2008 to 

March 15, 2010 (Figure 3 - 2A). Wind speed was highly variable and frequently exceed 20 

km/hr. The average wind speed was 15 km/hr and the median wind speed was 13.4 km/hr 

(Figure 3 - 2B). North and southward winds were most frequent and westward wind was the 

least frequent (Figure 3 - 2C). 

3.4.2 Correlation of wind and pressure measurements 

To understand the relationship between pressure and wind from different directions, 

the original wind speed and wind direction data were decomposed into north, south, west and 

east vectors. Figure 3 - 3 shows examples of internal pressure measurements 31N2-4, -8, -12 

and 32S7-4, -8, -12 plotted against south, north and west vectors with linear regression lines 

and R2 values on each plot. The test pile is not exposed to the east and therefore the pressure 
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response to the east wind vector is weak. The pressure response pattern observed in these 

plots is typical for other bundles. The response is generally less apparent with winds less than 

20 km/hr, and stronger with winds greater than 20 km/hr. The pressure response is different 

for each wind vector. The responses to north and south vectors are more significant than west 

because wind is more predominant from the north and south (Figure 3 - 2C), and in addition, 

structures external to the test pile may influence the impact of a westward wind on the 

pressures observed within the test pile. The residuals from the linear regression, i.e. the 

difference between the data and the values predicted by the regression equations, show 

uneven distributions around zero for high correlation responses (Figure 3 - 4). 

Surface pressure measurements at sampling points 3NS-1, -7, -14 and 3SS-1, -7, -14 

plotted against south, north and west wind vectors are shown in Figure 3 - 4. Similar pressure 

response patterns are observed as for the internal pressure measurements with the strongest 

pressure responses observed at wind speeds greater than 10 to 20 km/hr depending on the 

location. The strongest pressure responses are observed on the windward side of the pile with 

residuals unevenly distributed around zero. For example, 3NS measurements show a very 

weak response to the south and west wind vectors, but a strong response to the north wind 

vector with the residuals distributed around zero following systematic trends (Figure 3 - 5). 

These patterns are typical for other surface measurements. 

To quantify the relationship between measured wind speed and wind direction with 

pressure measurements, Pearson’s correlation coefficient for four wind vectors and pressure 

measurements on the surface and within the piles were calculated. The coefficient was 

between 0 and 1 with 1 being a perfect linear correlation and 0 being no correlation. The 

closer the coefficient is to 1, the stronger the correlation between the variables (Howell, 

2004).  In an attempt to account for the non-linear effects on correlation results, Spearman’s 

rank correlations were also calculated. However, because the erratic pressure responses 

disturbed the ranking, in most cases rank correlations were even weaker than linear 

correlations.  In general, because the relationship between the wind vector and the pressure 

measurements were only weakly non-linear at high wind speeds, linear correlations appeared 

to be sufficient to quantify the trends in the data. 
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The calculated correlation coefficients for pressure measurements on the surface and 

within the test piles to the north, south, east, and west wind vectors are shown in Figure 3 - 5. 

For surface measurements (enclosed in dashed rectangle), the correlation to the north wind 

vector was strong with an average correlation of 0.64 and a maximum correlation of 0.91 for 

the 14 surface points. The correlation to the south wind vector was slightly weaker with an 

average correlation of 0.41 and a maximum correlation of 0.84. The correlations to west and 

east wind vectors were weak with average correlations of 0.32 and 0.20, respectively. This 

difference occurs because the wind was more predominant from the north and south and the 

test pile was not exposed to atmosphere from the east (Figure 3 - 1 and Figure 3 - 2C).  

In general the correlations to wind vectors were weaker for internal measurements 

compared to surface pressure measurements. The correlations to the south vector were 

strongest with an average correlation of 0.41 and a maximum correlation of 0.81. The 

correlation to the north wind vector was slightly weaker with an average correlation of 0.37 

and a maximum correlation of 0.72. The correlations to the west and east vectors were weak 

with average correlations of 0.25 and 0.12, respectively.  

The degree of wind-pressure correlation was roughly proportional to the distance 

between measurement port and the atmospheric boundary (Figure 3 - 6). For example, a 

measurement port located close to the north face of the test pile may correlate the north 

vector with a coefficient of 0.6, but 0.1 with the south vector. The decrease in the correlation 

coefficient with distance from the atmospheric boundary was likely due to damping of the 

amplitude of the pressure wave within the pile, and the effects of pile heterogeneity.  

3.4.3 Flow regime  

As mentioned above, a non-linear relationship exists between the wind vectors and 

measured pressures within and on the surface of the pile (Figures 3 - 3 and 3 - 4). For 

example, for 31N2-4, -8, -12 and the north wind vector, the pressure increase is not 

significant (~ 0 Pa/(km/hr)) with the magnitude of the wind vector at less than 20 km/hr but 

increases to 2 Pa/(km/hr) when the wind vector exceeds 20 km/hr. The “tipping point” in the 

magnitude of the wind vector differs at different locations. For example, for 32S7-4, -8, -12 
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and the south wind vector, the “tipping point” is about 10 km/hr. A similar pattern is 

observed between wind and surface pressure measurements. However, when internal 

pressure measurements are plotted against surface pressure measurements, visual inspection 

shows that the relationship is clearly more linear (Figure 3 - 7). The residuals from the linear 

regression also show fairly even distributions around zero (Figure 3 - 8). Since the variations 

can be described by linear models reasonable well, Darcy’s Law is considered to be 

sufficient in describing gas transport in the test piles. This observation also suggests that the 

non-linearity observed between wind and internal pressure measurements is caused by non-

linearity between wind speed and surface pressure measurements.  

Reynolds numbers can be calculated to investigate the extent to which fluid inertia 

dominates the viscous forces, and hence the degree to which the fluid is nonlinear. Reynolds 

numbers are calculated using: 

 (2) 

where V is the velocity of fluid, L is the traveled length of the fluid and ν is the kinematic 

viscosity of the fluid. Laminar flow occurs when the Reynolds number is low (order of 10). 

Transitional flows have typical Reynolds numbers in the hundreds or thousands, and fully 

turbulent flow occurs when Reynolds number is >4000 (Holman, 2002). Considering wind 

flow over the test pile, using the measured mean wind flow velocity of 15 km/hr (4.2 m/s), 

the height of the pile (15 m) as a typical length, and 10-5 m2/s as kinematic viscosity for air, a 

Reynolds number of 6.3 x 105 is calculated. The high Reynolds number indicates that the 

wind flow over the piles is turbulent and, therefore the pressures induced on the surface of 

the pile would not be expected to vary linearly in response to the wind speed. Considering 

gas flow within the test pile, based on the observed common pressure gradient 1 Pa/m, 

kinematic viscosity of air 10-5 m2/s and measured permeability 10-9 m2, a gas-flow velocity of 

10-4 m/s is calculated (Amos, et al., 2009). The d30, the diameter of particle that 30% of the 

material is finer than, was determined from image grain size analysis to be approximately 

0.01 m (Chi et al., Chapter 2). Using d30 as typical length, a typical flow velocity of 10-4 m/s 
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and kinematic viscosity10-5 m2/s, a Reynolds number of 1 is calculated, indicating that the 

flow is laminar.  

3.4.4 Relevant time scales  

The data and analysis presented above demonstrate that the observed pressure 

gradients within and on the surface of the waste rock pile are highly affected by the 

variability in wind speed and wind direction. In practice, the extent to which wind penetrates 

the pile will depend on the persistence of wind events. To understand the timescales relevant 

to this problem, spectral analysis is performed on wind data collected from June 10, 2008 to 

March 15, 2010.  

The time series of the velocities C(t) was decomposed into a sum of sine and cosine 

components of different frequencies/periods and amplitudes:  

 (3) 

where ω is frequency and t is time. By decomposing a time series into various frequency 

components we can investigate the relative importance of these components. The 

significance, or power, of each component is determined by the magnitude of . The 

larger  is, the more important the component is. The continuum of all components 

is represented by the power spectrum. The spectral analysis was implemented by calculating 

the Discrete Fourier Transform (DFT) of a signal or time series. (Press et al., 1992). The 

resulting power spectrum is presented in Figure 3 - 8. Frequency is converted to period 

 in the plot. The dominant wind components are of periods of approximately 14 

days, 17 days and 50 days (Figure 3 - 8A and C). There are also a number of dominant wind 

components between 1 day and 6 days. These dominant wind periods roughly represent 

daily, weekly and monthly cycles. 

Gas transport can be the main process governing oxygen and thermal transport 

processes in waste rock piles. Previous modeling efforts on gas flow in waste rock piles 

assumed constant pressure boundary conditions (Anne and Pantelis, 1997, and Ritchie and 

Miskilly, 2000). The current observations, however, indicate that the pressure imposed by 

changes in wind speed and direction can alter gas transport within the waste-rock pile. An 
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analytical model using the frequency information obtained from spectral analysis is used to 

investigate the effect of time-dependent boundary conditions. The response to forcing of a 

single constant frequency (often termed steady state response) at the boundary was 

considered.  Were the forcing to begin from a state of rest, the complete solution would 

consist of a transient signal that would tend to the steady state response over time.  However, 

the transient cannot increase the depth of penetration into the pile of the pressure imposed at 

the pile surface.  For this reason the conceptually simpler single constant frequency response 

was considered. The selection of different initial conditions does not influence the results of 

single constant frequency response. 

Consider a 1D transient gas flow in porous media problem governed by Darcy’s Law: 

 (4) 

where P is pressure, t is time, D is diffusivity with respect to gas flow (  where k is air 

permeability, µ is viscosity and S is gas storage factor) and x is distance from the left 

boundary. Imposing the boundary condition P (x=0,t)= P0 cos(ωt), (i.e. the pressure 

fluctuates with an amplitude  P0 periodically with frequency ω at the pile-atmosphere 

interface) and P(x=∞,t)=0 (i.e. pressure fluctuations damp out completely very deep into the 

pile), the analytical solution to Equation 3 is:  

 (5) 

Pressure profiles for six different times from 0 to 125 days, using a pressure fluctuation 

period T = 50 days, ω = 1/T =  Hz and D = 10-3 m s-1 (calculated based on measured 

permeability 10-9 m2, Amos et al., 2009 and assuming gas storage factor is 1,), are shown in 

Figure 3 - 9. Initially, pressure is highest at the left boundary and exponentially decreases 

deeper into the pile. The flow direction is towards the pile interior. After 25 days, the 

pressure peak moves into the pile but the flow direction is still generally towards the pile 

interior.  After 50 days, the pressure peak moves to 100 m into the pile and gas flows both 

into and out of the pile. After 75 days, pressure at left boundary drops and the flow direction 

is from the interior of the pile to the pile-atmosphere boundary. After 100 days, the pressure 
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at the left boundary starts to increase but the flow direction is still generally from the pile 

interior to the pile-atmosphere boundary. After 125 days, the process has almost completed 

one cycle, and the pressure profile is back to approximately its initial condition. The change 

in pressure distribution P/P0 from 370 m to deeper within the pile remains below 0.01 over 

the entire cycle. 

The 1-D simulation demonstrates that in a large-scale waste-rock pile the pressure 

within the pile would fluctuate periodically, which would cause periodic changes in the gas 

flow directions.  Pressure fluctuations are most significant close to the pile-atmosphere 

boundary and drop exponentially deeper into the pile. The degree of pressure drop as depth 

increases is primarily controlled by the exponential  term. Given that the diffusivity D is 

fixed, the smaller ω is, the smaller the  term is and the larger |P(x,t)| is at a fixed 

location. Hence, pressure caused by wind with the longest period “penetrates” deepest into 

the pile. For example, the penetration depth defined where P/P0 <0.01 drops from 370 m with 

a period of 50 days to 250 m with a period of 14 days, 130 m with a period of 6 days and 47 

m with a period of 1 day. If ω is fixed and permeability is lowered from 10-9 m2 to 10-8 m2 in 

the above example, the penetration depth is reduced from 370 m to 100 m. The test-scale 

waste rock pile has a maximum width of 60 m, which is well below estimated P/P0 < 0.01 

penetration depth of 370 m for a wind period of 50 days. This explains why pressure 

fluctuations are observed even at the deepest measurement ports within the test pile. The 1-D 

analytical solution also explains why pressure measurements closer to the atmospheric 

boundary respond to, and correlate better with, the wind. This is because more high 

frequency/short period wind components can be felt at a shallow depth. 

3.5 Conclusions 

Correlations between wind and pressure measurements suggest that gas pressures 

inside a test-scale waste-rock pile responded to wind speed and wind direction external to the 

pile. A linear relationship between surface and internal pressure measurements suggests a 

Darcian flow regime within the test pile. Spectral analysis of wind data shows that the most 
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predominant wind periods are 1, 6, 14, 16 and 50 days. 1-D analytical simulations 

demonstrated that the penetration depth of the pressure wave was a function of the 

periodicity of the wind and the permeability of the waste-rock pile. Based on the properties 

of the test-scale waste-rock pile and ambient wind conditions measured at the site a 

penetration depth of 370 m would be expected in a large-scale waste rock pile.  
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3.6 Figures 

 

 

Figure 3 - 1: Illustration of test pile geometry. A: plan view. The symbols on the slopes 

of the pile represent single sampling points; the symbols shown on top of 

the pile represent bundles of sampling points. B: Cross section along the 

line indicated in A. 
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Figure 3 - 2:  A: wind time series from June 10, 2008 to March 15, 2010, B: wind speed 

histogram and C: wind direction histogram. Count is the total number of 

measurements of a particular wind speed. Direction is related to degree 

by: north = 360 deg, west = 270 deg 
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Figure 3 - 3: Differential pressure measurements at internal sampling points 31N2-4, -8, 

-12 and 32S7-4, -8, -12 plotted against south, north and west vectors. The 

line in each plot is the best-fit least-square regression line representing 

linear relationship the pressure measurement and the wind vector. The 

number in each plot is the R2
 value showing the degree of fit. 
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Figure 3 - 4: Residual from the regression lines in Figure 3 – 3. Residual = pressure 

data - pressure values predicted by the linear models using wind data. 
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Figure 3 - 5: Differential pressure measurements at surface sampling points 3NS-1, -7, -

14 and 3SS-1, -7, -14 plotted against south, north and west vectors. The 

line in each plot is the best-fit least-square regression line representing 

linear relationship between the pressure measurement and the wind 

vector. The number in each plot is the R2
 value showing the degree of fit. 
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Figure 3 - 6: Residuals from the regression lines in Figure 3 – 5. 
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Figure 3 - 7: Correlations coefficients between four wind vectors and all pressure 

measurements. Dashed rectangle encloses correlations for all surface 

pressure measurements. “TOP”, “W”, “S”, “N” at the bottom of the 

dashed rectangle indicate location of the surface measurements (From 

left to right, “TOP” = 32N2-S, 33N2-S, 34N2-S, 32N7-S, 32S2-S, 32S7-S. 

“W” = 3WS-14, 3WS-7, 3WS-1. “S” = 3SS-14, 3SS-7, 3SS-1. “N” = 3NS-

14, 3NS-7, 3NS-1).  “31N2” etc. indicate internal pressure measurement 

bundles.  Measurement port depth increases for each internal bundle 

from left to right: -2, -4, -6, -8, -10, -12, -14 m. 
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Figure 3 - 8: A: Correlation coefficients of the north wind vector and pressure 

measurements plotted against distance between pressure measurements 

to atmospheric north boundary of the pile. B: Correlation coefficients of 

the south wind vector and pressure measurements plotted against 

distance between pressure measurements to atmospheric south boundary 

of the pile. The overall trends are quantified using linear regression of the 

mean correlations for each bundle. 
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Figure 3 - 9: Internal pressure measurements 31N-4, -8, -12 and 33N2-4, -8, -12 plotted 

against surface pressure measurement 3NS-1, -7, and -14.  Correlation 

coefficients are shown in each plot. The line in each plot is the best-fit 

least-square regression line representing relationship between the 

pressure measurements. The number in each plot is the R2
 value showing 

the degree of fit. 
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Figure 3 - 10: Residuals from the regression lines in Figure 3 – 9. 
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Figure 3 - 11: Power spectral density of wind measurements June 10, 2008 to March 15, 

2010. The higher the power, the more important the respective period is. 

The arrows indicate the predominant periods as discussed in the text. 
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Figure 3 - 12: Pressure profile snapshots at 25 days interval from 1-D analytical 

solution to the flow equation. The arrow in each plot indicates the 

direction of major pressure gradient. 
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Chapter 4: Conclusions 

This thesis addresses two issues in waste-rock pile studies that often limit our ability 

in quantitatively predicting field observations using conceptual and numerical models. These 

include the heterogeneity of waste-rock piles, and the significance and time-dependence of 

wind-induced gas transport in waste rock piles.  

Heterogeneity was characterized by quantifying spatial grain-size distribution of the 

test-scale waste-rock piles (“test piles). A digital image processing method was developed to 

exact grain-size distribution information from photographs of the test pile tip faces. The 

method was applied to photographs of six tip faces of two test piles. In conjunction with 

sieve analysis, the image analysis results provide a full-spectrum grain-size distribution, 

accounting for grain sizes ranging from boulders to sub-millimeter fines. The results show a 

systematic trend in grain-size distribution: fine-grained material is retained at the top of the 

test piles and average grain size increases non-linearly from the top to the bottom of the test 

piles. Calculations show that although the greatest mass is associated with the medium and 

coarse fractions, the greatest surface area is associated with the fine fractions, which is 

supported by pore-water chemistry showing more extensive reactions at the top of the test 

piles and saturated hydraulic conductivity being lower at the top of the test piles than in the 

pile interior. Statistical moment calculations show that the test piles have mean grain size of 

granules (17.26 mm< mean diameter <242 mm) and are very poorly sorted, coarse skewed 

and leptokurtic. These calculations suggest that the permeability of the upper portion of the 
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test piles are lower than that of the lower zones.  Previous measurements also show lower 

saturated hydraulic conductivity values at the top of the test piles than in the pile interior.  

Wind-induced gas transport was studied by substantiating the relationship between 

wind external to the test piles and pressure within one of the test piles. The correlations 

between differential pressure data and wind data show that wind has an influence on the 

pressure fluctuation within the test pile. The strength of the influence is roughly inversely 

proportional to the depth of the sampling point within the test pile. Pressure responds to wind 

in a non-linear manner such that the response is more significant at high wind speeds than at 

low wind speeds. This is likely the result of wind being more persistent in a certain direction 

at high wind and the non-linear effects exterior to the test pile. The assumption that gas flow 

within the test pile is Darcian is supported by the observation that there is a linear 

relationship between pressure measurements made on the surface of the test pile and within 

the test pile.  A one-dimensional analytical solution is used to demonstrate that the depth of 

wind-induced pressure wave penetration is a function of the frequency of wind and the 

permeability of the test pile. Based on the properties of the test-scale waste-rock pile and 

ambient weather conditions, the penetration depth of a large-scale waste-rock pile is 

estimated to be 370 m. The depth of wind influence is important in understanding the 

interaction between wind-induced gas transport and other gas, thermal and water transport 

processes. 

The characterization of heterogeneity and time-dependence of wind-induced gas 

transport can be used in conjunction with conceptual and numerical models such as those 

described by Bennett et al. (1995), and multi-phase models, for example, described by 
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Lefebve et al. (2001a,b), to provide improved description of gas transport in waste-rock piles. 

Because wind brings both gas and thermal energy into the waste rock piles, the following 

implications to systems of coupled processes can be considered: 1) wind-induced pressure 

fluctuation is a significant mechanism driving gas transport and potentially an important 

source of oxygen supply for sulfide oxidation; 2) thermal transport may include wind-driven 

energy. The estimation of surface-area obtained by grain-size analysis provides a key 

parameter in geochemical speciation calculations. Multi-dimensional geochemical modeling 

may help better understand the spatial systematic patterns in aqueous chemistry observed in 

the field. The spatial permeability distribution will provide a conductivity field for 

hydrological, thermal and gas flow and transport models.  

Recommendations 

Since the relative magnitude of spatial permeability can be estimated from the grain-

size distribution obtained from image grain size analysis using empirical formulae, inverse 

modeling methods calibrated against hydrological or geochemical data may be effective in 

determining permeability distributions. The comparison between estimates made using 

empirical formulae, inverse modeling, field observations and possibly theoretical 

development would provide insight into the factors controlling permeability of waste-rock 

piles. In addition, approaches to quantify the non-linear relationship between wind and 

pressure should be explored. Darcy’s Law with Brinkman’s extension can be tested to 

describe the flow in the “boundary layer” at the wind-atmospheric boundary. 
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The rich spatial and temporal data set obtained from the Diavik waste-rock project 

provides an opportunity to examine the coupled relationship between hydrological, 

geochemical, thermal processes. At the time of this thesis, the field data have only been 

examined independently or in pairs. Multivariate analysis of the data may reveal more details 

on the relationship between observations. Specifically, principal component analysis can be 

conducted to lower the dimensions of variations and identify the processes that account for 

majority of the variation. Therefore, the relative importance of processes may be determined. 

Cluster analysis may be used to understand the spatial variation of field measurements.  

To limit wind-induced gas transport, waste-rock piles can be constructed to orient the 

tip faces in the low wind direction. Topographical structures can be constructed around the 

waste-rock piles to reduce the strength of incoming wind. 
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Appendix A 

 

The appendix includes grain size analysis results for five faces. 
 

Photograph of the face 

Grain size distribution 

d50 contour 
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Figure A 1: TIW. 
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Figure A 2: TIE. 
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Figure A 3: TIIIN 
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Figure A 4: TIIIW 
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Figure A 5: TIIIS. Note that this photo has lower resolution than the others.  
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Appendix B 

This section includes the Matlab code used to implement the region-growing based 
image grain-size analysis method in Chapter 2. The code was built under Matlab 2008a with 
digital image processing toolbox. Below is a brief description of the m-files. The user can 
refer to the comments in the m-files for more detailed functions of each file.  

M-files include: 

interface.m: user interface. 

flood_fill_square.m: the main region-growing algorithm. 

check_kernal.m: part of flood_fill_square.m.. It checks whether the pixel is the boundary of a 
region. 

Overlay.m: overlay a green mask to show each step of region-growing. Memory consuming. 
Turn off unless for demonstration. 

stats.m: moments calculations. 

surface_area: surface area and mass distribution calculations. 

select_bins: put grain-size analysis results into bins in Udden-Wentworth scale. 

kc.m: Kozeny-Carmen permeability calculations. 

larger_bins: surface area plotting. 

thesis_figures: results visualization.  
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flood_fill_square.m 

close all 

 

% define intensity range of fine grains 

if fine~=0 

    f(f<fine)=60; 

end 

 

f = double( f(:,:,1) ); 

[fm,fn]=size(f); 

f_orig = f; 

 

%% get coordinates from user input 

imshow(f,[]);hold on 

nrect = 1; 

rect = ones(1,4);% dummy first row 

while waitforbuttonpress ==0 % if no button is pressed 

    new_rect = getrect; 

 

    % make sure rectangle falls inside image 

    if new_rect(1) + new_rect(3) - fn >=0 

        new_rect(3) = fn - new_rect(1)-2; 

    end 

    if new_rect(1) <= 0 

        new_rect(1) = 2; 

    end 

    if new_rect(2) + new_rect(4) - fm >0 

        new_rect(4) = fm - new_rect(2)-2; 

    end 

    if new_rect(2) <= 0 
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        new_rect(2) = 2; 

    end 

 

    plot(new_rect(1),new_rect(2),'ro'); 

    rect = [rect;new_rect]; % cat new coordinates to rect 

    nrect = nrect + 1; 

 

end 

 

% round coordinates to intergers otherwise MATLAB will crash 

rect = round(rect); 

if size(rect) == [1 4] 

    error('No seed points assigned'); 

end 

rect = rect(2:end,:); 

[m n] = size(rect); 

 

%% edge enchancement 

h = fspecial('sobel'); 

ff = imfilter(f,h+h','replicate'); 

% overlay filtered on original 

% (This step is very important) 

f = ff+f; 

 

%% main flood fill program 

 

% pre-allocate space for mask 

mask = zeros(size(f)); 

% start with seed squares 

for ii = 1:m 
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    mask(rect(ii,2):rect(ii,2)+rect(ii,4),... 

        rect(ii,1):rect(ii,1)+rect(ii,3)) = ii; 

end 

mask_outline = mask; 

 

% close off boundaries 

f(1,:) = max(f(:))+11; 

f(end,:) = max(f(:))+11; 

f(:,1)=max(f(:))+11; 

f(:,end)=max(f(:))+11; 

 

 

% pre-allocate space for mean 

region_mean = ones(m,1); 

for ii = 1:m 

    region_mean(ii,1) = mean(f(mask==ii)); 

end 

thresh = 50; 

keep_going=1; 

counter = 0; 

 

% region growing starts 

while keep_going    && counter<50 

 

    keep_going = 0; 

    for ii = 1:m 

        % [rows cols] = find(mask==ii); 

        [rows cols] = find(mask_outline==ii); 

        %mask_outline = zeros(size(f)); 

        mask_outline(mask_outline==ii) = 0; 
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        % expand in 8 directions 

 

        for n = 1:length(rows) 

 

 

            r = rows(n); 

            c = cols(n); 

            if check_kernal(r,c,rect(ii,:)) == 0 

 

                % Up 

                if abs(f(r-1,c)-region_mean(ii))<thresh && mask(r-1,c)==0 

                    mask(r-1,c) = ii; mask_outline(r-1,c) = ii; 

                    keep_going = 1; 

                end 

 

                % Down 

                if abs(f(r+1,c)-region_mean(ii))<thresh && mask(r+1,c)==0 

                    mask(r+1,c) = ii;mask_outline(r+1,c) = ii; 

                    keep_going = 1; 

                end 

 

                % Left 

                if abs(f(r,c-1)-region_mean(ii))<thresh && mask(r,c-1)==0 

                    mask(r,c-1) = ii;mask_outline(r,c-1) = ii; 

                    keep_going = 1; 

                end 

 

                % Right 

                if abs(f(r,c+1)-region_mean(ii))<thresh && mask(r,c+1)==0 
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                    mask(r,c+1) = ii;mask_outline(r,c+1) = ii; 

                    keep_going = 1; 

                end 

 

                % Up Left 

                if abs(f(r-1,c-1)-region_mean(ii))<thresh && mask(r-1,c-1)==0 

                    mask(r-1,c-1) = ii;mask_outline(r-1,c-1) = ii; 

                    keep_going = 1; 

                end 

 

                % Down Left 

                if abs(f(r+1,c-1)-region_mean(ii))<thresh && mask(r+1,c-1)==0 

                    mask(r+1,c-1) = ii;mask_outline(r+1,c-1) = ii; 

                    keep_going = 1; 

                end 

 

                % Up Right 

                if abs(f(r-1,c+1)-region_mean(ii))<thresh && mask(r-1,c+1)==0 

                    mask(r-1,c+1) = ii;mask_outline(r-1,c+1) = ii; 

                    keep_going = 1; 

                end 

 

                % Down Right 

                if abs(f(r+1,c+1)-region_mean(ii))<thresh && mask(r+1,c+1)==0 

                    mask(r+1,c+1) = ii;mask_outline(r+1,c+1) = ii; 

                    keep_going = 1; 

                end 

 

                seg = find(mask==ii); 

                region_mean(ii) = mean(f(seg)); 
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            end % check_kernal 

 

 

        end % end of for-loop 

    end 

 

 

    counter = counter + 1; 

    %  Overlay(f_orig, mask); % uncomment this line to output to screen 

 

end % end of while-loop 

 

%% dilation 

if fine == 0 

    se = strel('disk',5); 

    mask = imdilate(mask,se); 

end 

figure;imshow(mask,[]) 

 

%% grain size curve 

diam = zeros(m,1);area_mask = zeros(m,1); 

for ii = 1:m 

    [rd cd] = find(mask==ii); 

    if isempty(rd) || isempty(cd) 

        rd =0;cd=0; 

    end 

    % min of two sides of rectangle 

    diam(ii) = min(max(cd)-min(cd),max(rd)-min(rd)); 

    area_mask(ii) = length(find(mask==ii)); 

end 
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plotm = [diam,area_mask]; 

plotm = sortrows(plotm,1);% sort by diameters 

plotm(:,2) = cumsum(plotm(:,2));% cumulatively sum colum 2 

 

area_fine = fm*fn - plotm(end,2); 

plotm(:,2) = plotm(:,2) + area_fine; 

 

max(plotm(:)) 

 

%plotm(:,2) = plotm(:,2)/max(plotm(:)); 

plotm(:,2) = plotm(:,2)/(fm*fn); % convert to pecentage 

 

 

check_kernal.m 

function a = check_kernal(r,c,rect) 

 

% a = 1 if (r,c) is in the kernal 

 

if r-(rect(2)+1)>0 && r-(rect(2)+rect(4)-1)<0 ... 

    && c-(rect(1)+1)>0 && c-(rect(1)+rect(3)-1)<0 

    a = 1; 

else 

    a = 0; 

end 

 

 

interface.m 

% This script is a interface that allows user to select images,  

% assign seed regions, run region-growing algorithm and convert results 
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% to various formats for statistical analysis 

% 

% - run first cell to load and divide an image 

% - run second cell to region-grow each sub-image 

% - run third cell to convert all results to formats for statistics 

 

% ask for user input 

photo = input('Name of the photo, please?','s'); 

 

% load file 

path_name = strcat('/Users/Sheldon/Desktop/Test Piles grain size photos/matlab/',photo,... 

    '.jpg'); 

CO=imread(path_name); 

% convert to gray scale 

CO = double(CO(:,:,1)); 

 

% divide into sub-regions 

if strcmp(photo,'T3W') == 1 || strcmp(photo,'T3N') == 1 

    C = mat2cell(CO,[500 500 500],[500 500 500 500 500 500]); 

elseif strcmp(photo,'T3S') == 1 

    C = mat2cell(CO,[400 400 400],[300 300 300 300 300 300]); 

elseif strcmp(photo,'T1E') == 1 || strcmp(photo,'T1W') == 1 ... 

        || strcmp(photo,'T1N') == 1 

    C = mat2cell(CO,[400 400 400],[500 500 500 500 500 500]); 

else 

    C = mat2cell(CO,[500 500 500 500],[500 500 500 500]); 

end 

 

% initialize a workspace to save outputs 

work_space_name = strcat(photo,'.mat'); 
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shit = 0; 

if exist(work_space_name) == 0 

    save(work_space_name,'shit') 

end 

 

 

 

%% Region-growing 

 

%%%%%%%%%%%%%%%%%%%%%% 

% change these to run algorithm on different sub-regions 

x = 3; y = 6; 

%%%%%%%%%%%%%%%%%%%%%% 

 

% load a small region and run region growing 

f=C{x,y}; 

fine = 0; 

flood_fill_square 

 

% save grain size curve in a vairable 

name = strcat('c',int2str(x),int2str(y));% curve name 

eval([name '=' 'plotm']); 

% save variable in workspace 

%save(work_space_name,name,'-append') 

 

%} 

 

%% attaching hand sample sieve analysis measurements 

%  and prepare for statistics (run once after all region-growings are done) 

%  
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% cxx: [diamter_in_pixels, %] 

% cxxe: divided by reference [diameter_real, %] with Lianna's hand samples 

% cxxlog: [-log2(diameter_real), %] with Lianna's hand samples 

% cxxm: statistical moments 

 

% TIII:[mm %] 

TIII = [ 

    72.40 100.00 

    40.00 90.36 

    28.00 81.24 

    20.00 72.33 

    14.00 63.61 

    10.00 56.24 

    5.00 44.03 

    2.50 35.16 

    1.25 27.82 

    0.63 21.04 

    0.32 14.70 

    0.16 8.88 

    0.08 4.67]; 

% convert to m  

TIII(:,1) = TIII(:,1)/1000; 

TIII(:,2) = TIII(:,2)/100; 

 

largest_grain = TIII(1,1); 

% flip so in same order as image analysis 

% [m %] 

TIII = flipud(TIII); 

 

load refs.mat 
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for ii = 1:6 

 

 

    % load one group of curves 

    reference = refs{ii,2}; 

    eval(['load ' char(refs(ii,1))]) 

 

 

 

    for i = 1:3 

        for j = 1:6 

            % divide by reference size 

            % e.g.  c11e = [c11(:,1)/150 c11(:,2)] 

            % 'e' for extended 

            ce = num2str(['c' num2str(i) num2str(j) 'e']); 

            c_col1_div_ref = num2str(['c' num2str(i) num2str(j) '(:,1)/'... 

                num2str(reference)]); 

            c_col2 = num2str(['c' num2str(i) num2str(j) '(:,2)']); 

            eval([ce '=[' c_col1_div_ref ' ' c_col2  '];']); 

 

            % truncate small sizes to attach lianna's 

            % e.g.: c11e = c11e(c11e(:,1)>0.07,:) 

            eval([ce '=' ce '(' ce '(:,1)>' num2str(largest_grain) ',:);']  ); 

 

            % attach lianna's 

            min_percent = eval(['min(' 'c' num2str(i) num2str(j) 'e(:,2))'  ]); 

            T_attach = [TIII(:,1),TIII(:,2)*min_percent]; 

            eval(['c' num2str(i) num2str(j) 'e=' ... 

                '[T_attach;' 'c' num2str(i) num2str(j) 'e(2:end,:);];']); 
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            % store log2 (phi)-scale data in  'cXXlog' 

            % e.g: c11log = [-log2(c11e(:,1)*1000), c11e(:,2)] 

            % NOTE: remember it's log2 and need to convert to mm by *1000 

            eval(['c' num2str(i) num2str(j) 'log=[' ... 

                 '-log2(' 'c' num2str(i) num2str(j) ... 

                 'e(:,1)*1000),c' num2str(i) num2str(j) 'e(:,2)];']);    

             

            % calculate surface area 

            % e.g. c11s = surface_area(c11e) 

            % c11s: 

            % [diam, mass_fraction, tot_surf, tot_surf./mass_fraction]; 

            eval(['c' num2str(i) num2str(j) 's=surface_area(' ... 

                 'c' num2str(i) num2str(j) ... 

                 'e);' ]);          

              

            % calculate mass distribution with larger bins 

            % e.g. c11b = surface_area(c11b) 

            % c11s: 

            % [diam, mass_fraction, tot_surf, tot_surf./mass_fraction]; 

            eval(['c' num2str(i) num2str(j) 'b=larger_bins(' ... 

                 'c' num2str(i) num2str(j) ... 

                 's);' ]);          

                           

              

            % calculate moments 

            % 'select_bins' first to convert to phi-scale 

            % e.g. c11m = stats(select_bins(c11log)); 

            eval(['c' num2str(i) num2str(j) 'm=stats(select_bins(' ... 

                 'c' num2str(i) num2str(j) ... 
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                 'log));' ]);               

                                     

            % save in workspace 

            % e.g: save('T1E.mat',c36e, '-append' ) 

            eval(['save('''  char(refs(ii,1)) '.mat'''... 

                ', ''c' num2str(i) num2str(j)... 

                'e'',''c' num2str(i) num2str(j)... 

                'log'', ''c' num2str(i) num2str(j)... 

                's'',''c' num2str(i) num2str(j)... 

                'm'',''-append'' )']); 

             

 

        end 

    end 

 

end 

 

stats.m 

function gstats = stats(cxxlog) 

% calculates moments using GRAISTAT.pdf page 5 

% Manual of sedimentary petrology, 1983, available at DC 

% 'g' for grain size 

 

m_phi = cxxlog(:,1); 

f = cxxlog(:,2)*100; 

f_shift = [0; f(1:end-1)]; 

f = f-f_shift; % convert to non-cum 
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plot(m_phi,f,'.') 

 

gmean = sum(f.*m_phi)/100; 

 

gstd = sqrt(sum(f.*(m_phi-gmean).^2)/100); 

 

gskew = sum(f.*(m_phi-gmean).^3)/100/gstd^3; 

 

gkur = sum(f.*(m_phi-gmean).^4)/100/gstd^4; 

 

gstats = [gmean gstd gskew gkur]; 

 

Overlay.m 

function Overlay(f, mask) 

 

    m = max(f(:)); 

    fr = f; 

    fg = f + mask / max(mask(:)) * m/2; 

    fb = f; 

    

    imshow(reshape([fr fg fb],[size(f,1) size(f,2) 3])/m, []); 

     

 

    drawnow; 

 

select_bins.m 

function bins = select_bins(cxx) 

% convert to 'phi'-scale 

% Manual of sedimentary petrology, 1983, available at DC 
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diam = cxx(:,1); 

perc = cxx(:,2); 

 

perc_shift = [0; perc(1:end-1)]; 

perc = perc -perc_shift;% convert to non-cum 

 

%plot(diam, perc) 

% [-9 -7 -5 -3 -1 1 3] 

 

% 

n_9 = perc(diam<-8 & diam >-10); 

%perc_9 = max(n_9)-min(n_9) 

perc_9 = sum(n_9); 

if isempty(perc_9)==1 

    perc_9 = 0; 

end 

 

n_7 = perc(diam<-6 & diam >-8); 

%perc_7 = max(n_7)-min(n_7) 

perc_7 = sum(n_7); 

if isempty(perc_7)==1 

    perc_7 = 0; 

end 

 

n_5 = perc(diam<-4 & diam >-6); 

%perc_5 = max(n_5)-min(n_5) 

perc_5 = sum(n_5); 

if isempty(perc_5)==1 

    perc_5 = 0; 

end 
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n_3 = perc(diam<-2 & diam >-4); 

%perc_3 = max(n_3)-min(n_3) 

perc_3 = sum(n_3); 

if isempty(perc_3)==1 

    perc_3 = 0; 

end 

 

n_1 = perc(diam<0 & diam >-2); 

perc_1 = sum(n_1); 

if isempty(perc_1)==1 

    perc_1 = 0; 

end 

 

p_1 = perc(diam<2 & diam >0); 

%perc_p_1 = max(p_1)-min(p_1) 

perc_p_1 = sum(p_1); 

if isempty(perc_p_1)==1 

    perc_p_1 = 0; 

end 

 

p_3 = perc(diam<4 & diam >2); 

%perc_p_3 = max(p_3)-min(p_3) 

perc_p_3 = sum(p_3); 

if isempty(perc_p_3)==1 

    perc_p_3 = 0; 

end 

 

 

bins = [perc_9 perc_7 perc_5 perc_3 perc_1 perc_p_1 perc_p_3]; 
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bins = [-9 -7 -5 -3 -1 1 3;bins]'; 

plot(bins(:,1),bins(:,2),'o-') 

%} 

 

 

surface_area.m 

function garea = surface_area (cxxe) 

% This function calculates surface area and mass distrbution of each 

% grain size fraction  

% input: cxxe as in interface.m, the extended and di-referenced grain size 

%        distribution 

% output: described below 

 

diam = cxxe(:,1); % diameter 

perc = cxxe(:,2); % percentage 

density = 2650;% kg/m3 

mass_tot = 1;% total mass of sample is 1kg 

 

% conver to non-cumulative 

perc_shift = [0; perc(1:end-1)]; 

perc = perc -perc_shift;% convert to non-cum 

 

plot(perc) % just to check  

 

mass_fraction = mass_tot*perc;% mass for each fraction 

gvol = pi/6*diam.^3; % ideal particle volume  

gmass = gvol*density; % ideal particle mass 

num_grain = mass_fraction./gmass; % number of particles of each fraction 

surf_each = 4*pi*(diam/2).^2;% ideal surface area 

tot_surf = surf_each.*num_grain;% surface area for each fraction 
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% [diamter, mass of each fraction, total surface area, rario of mass and 

% surface area] 

garea = [diam, mass_fraction, tot_surf, tot_surf./mass_fraction]; 

 

 

larger_bins.m 

function cxxb = larger_bins(cxxs) 

% put image results in larger bins so that no disconnect in mass figure 

% cxxb b for bins 

cxxb = cxxs(1:13,1:2); 

cxxb = [cxxb;0.2 sum(cxxs(cxxs(:,1)>0.0724 & cxxs(:,1)<0.2,2))]; 

 

cxxb = [cxxb;0.3 sum(cxxs(cxxs(:,1)>0.2 & cxxs(:,1)<0.3,2))]; 

cxxb = [cxxb;0.4 sum(cxxs(cxxs(:,1)>0.3 & cxxs(:,1)<0.4,2))]; 

cxxb = [cxxb;0.5 sum(cxxs(cxxs(:,1)>0.4 & cxxs(:,1)<0.5,2))]; 

cxxb = [cxxb;0.6 sum(cxxs(cxxs(:,1)>0.5 & cxxs(:,1)<0.6,2))]; 

cxxb = [cxxb;0.7 sum(cxxs(cxxs(:,1)>0.6 & cxxs(:,1)<0.7,2))]; 

cxxb = [cxxb;0.9 sum(cxxs(cxxs(:,1)>0.7 & cxxs(:,1)<0.8,2))]; 

cxxb = [cxxb;0.9 sum(cxxs(cxxs(:,1)>0.8 & cxxs(:,1)<0.9,2))]; 

cxxb = [cxxb;1 sum(cxxs(cxxs(:,1)>0.9 & cxxs(:,1)<1,2))]; 

cxxb = [cxxb;1.1 sum(cxxs(cxxs(:,1)>1 & cxxs(:,1)<1.1,2))]; 

cxxb = [cxxb;1.2 sum(cxxs(cxxs(:,1)>1.1 & cxxs(:,1)<1.2,2))]; 

 

kc.m 

function permeability = kc(d10) 

% Koseny-Carmen permeability 

n = 0.23; 

rho = 1000;% kg/m3 

g = 9.8;% m/s2 
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mu = 1e-5;% Ns/m5 

Ck = 8.3e-3; 

 

fn = n^3/(1-n)^2; 

 

permeability = rho*g/mu*Ck*fn*d10^2*mu/rho/g; 

 

thesis_figures.m 

%% dilation 

dil_test = zeros(50,50);dil_holes = zeros(50,50); 

 

dil_holes(10:40,10:40) = 1; 

dil_test = zeros(10,10);dil_test(4:6,4:6)=1;dil_test(3,4)=1;dil_test(6,7)=1; 

 

for ii = 1:20 

    dil_holes(ceil(10+30*rand),ceil(10+30*rand)) = 0; 

end 

 

 

se = strel('diamond',3); 

se = strel('rectangle',[3 3]); 

dil = imdilate(dil_test,se);dilh = imdilate(dil_holes,se); 

 

%% 

dil(4:6,4:6)=0.5;dil(3,4)=0.5;dil(6,7)=0.5; 

subplot(121);pcolor(dil_test);title('Original','FontSize',15) 

axis equal;axis([1 10 1 10]);set(gca,'Xtick',[],'Ytick',[]) 

subplot(122);pcolor(dil);title('Dilated','FontSize',15) 

 

axis equal;axis([1 10 1 10]);set(gca,'Xtick',[],'Ytick',[]) 
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saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/dilation.jpg') 

 

 

%% dilate to fill holes 

subplot(121);imshow(dil_holes,[]);title('Original','FontSize',15) 

subplot(122);imshow(dilh,[]);title('Dilated','FontSize',15) 

saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/dilation_holes.jpg') 

 

%% 

dem = imread('demostration_pic.jpg'); 

rg = imread('region_growing.jpg'); 

rd = imread('region_dilated.jpg'); 

gsc = imread('curve.jpg'); 

subplot(221);imshow(dem,[]);title('Original image') 

subplot(222);imshow(rg,[]);title('Region growing') 

subplot(223);imshow(rd,[]);title('Segmentation') 

subplot(224);imshow(gsc,[]);title('Grain size curve') 

saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/flow.jpg') 

 

%% reproducibility 

% T3F2 c43 

%load reprod.mat 

%load reproMultiUsers.mat 

clf 

% 

minl = 31; 

run_avg = ones(minl,1);run_std = ones(minl,1); 

for ii = 1:minl 

    run_avg(ii) = mean([run1(length(run1)+ii-minl,2),run2(length(run2)+ii-minl,2),... 

        run3(length(run3)+ii-minl,2), run4(length(run4)+ii-minl,2),... 
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        run5(length(run5)+ii-minl,2), run6(length(run6)+ii-minl,2),... 

        run10(length(run10)+ii-minl,2), run9(length(run6)+ii-minl,2),... 

        run8(length(run8)+ii-minl,2), run7(length(run7)+ii-minl,2),... 

        ]); 

    run_std(ii) = std([run1(length(run1)+ii-minl,2),run2(length(run2)+ii-minl,2),... 

        run3(length(run3)+ii-minl,2), run4(length(run4)+ii-minl,2),... 

        run5(length(run5)+ii-minl,2), run6(length(run6)+ii-minl,2),... 

        run10(length(run10)+ii-minl,2), run9(length(run6)+ii-minl,2),... 

        run8(length(run8)+ii-minl,2), run7(length(run7)+ii-minl,2),... 

        ]); 

end 

%} 

 

semilogx(run1(:,1)/70,run1(:,2)*100,'.-',run2(:,1)/70,run2(:,2)*100,'o-'... 

    ,run3(:,1)/70,run3(:,2)*100,'+-',run4(:,1)/70,run4(:,2)*100,'*-',... 

    run5(:,1)/70,run5(:,2)*100,'--',run6(:,1)/70,run6(:,2)*100,'d-',... 

    run7(:,1)/70,run7(:,2)*100,'x-',run8(:,1)/70,run8(:,2)*100,':',... 

    run9(:,1)/70,run9(:,2)*100,'v-',run10(:,1)/70,run10(:,2)*100,'s-') 

hold on 

semilogx(run6(:,1)/70,run_avg*100,'y^-','LineWidth',2) 

semilogx(run6(:,1)/70,90*(run_avg),'m^-','LineWidth',1.5) 

semilogx(run6(:,1)/70,110*(run_avg),'g^-','LineWidth',1.5) 

legend('Run1','Run2','Run3','Run4','Run5',... 

    'Run6','Run7','Run8','Run9','Run10','Mean','Mean - 10%',... 

    'Mean + 10%','Location','Northwest') 

xlabel('Sieve size (m)');ylabel('% Passing') 

 

axis([0.1 2.5 0  100]) 

 

saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/reproducbility.jpg') 
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%% Curves 

 

close all 

% reference info stored in refs.mat 

load refs.mat 

cName = 'T1E';ref = 0; 

% extract reference length 

for ii = 1:6 

    str1 = refs{ii,1}; 

    if strcmp(cName, str1)==1 

        ref = refs{ii,2}; 

    end 

end 

if strcmp(cName,'T1E') 

    ref = 130; 

end 

 

disp(cName);disp(ref) 

if ref == 0 

    error('Reference not found') 

end 

 

eval(['load ' cName '.mat']); 

set(0,'defaultaxesfontsize',15); 

set(0,'defaultlinelinewidth',1.5); 

 

%%%%%%%% normal x 

 

load refs.mat 
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color = {'r','g','b'};sty = {'-','-o',':','-+','-v','-.'}; 

 

for ii = 1:3 

    for j = 1:6 

        px = strcat('c',int2str(ii),int2str(j), 'e' ); % 'e' for extended 

        eval(['plot(' px '(:,1)' ',' px '(:,2)*100' ','... 

            '''' color{ii} sty{j} '''' ')']) 

        hold on 

    end 

end 

 

%saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/cT1E.jpg') 

 

%axis([0.01 10 0 100]) 

%legend('11','12','13','14','21','22','23','24','31','32','33','34','41','42','43','44') 

legend('11','12','13','14','15','16','21','22','23','24','25','26','31','32','33','34','35','36') 

xlabel('Sieve size (m)'); 

ylabel('Percent passing (%)') 

set(gcf,'color','w'); 

eval(['saveas(gcf,''/Users/Sheldon/Desktop/grain size plots/', 'c',cName,'.jpg'')']); 

 

%%%%%%%% log-x 

 

figure 

for ii = 1:3 

    for j = 1:6 

        px = strcat('c',int2str(ii),int2str(j),'e'); 

        eval(['semilogx(' px '(:,1)' ',' px '(:,2)*100' ','... 

            '''' color{ii} sty{j} '''' ')']) 
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        hold on 

    end 

end 

 

axis([1e-5*5 10 0 100]) 

%legend('11','12','13','14','21','22','23','24','31','32','33','34','41','42','43','44') 

legend('(1,1)','(1,2)','(1,3)','(1,4)','(1,5)','(1,6)',... 

    '(2,1)','(2,2)','(2,3)','(2,4)','(2,5)','(2,6)','(3,1)','(3,2)','(3,3)','(3,4)','(3,5)','(3,6)') 

ylabel('Percent passing (%)') 

xlabel('Sieve size (m)'); 

 

set(gcf,'color','w'); 

eval(['saveas(gcf,''/Users/Sheldon/Desktop/grain size plots/', 'c',cName,'log.jpg'')']); 

%saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/cT1Elog.jpg') 

%% 

close all 

perm =1; 

d50_mean = ones(1,6);d10_mean = ones(1,6);row_mean = zeros(1,3); 

row_mean = zeros(6,3); 

for k = 1:6 

    figure 

    clf 

    % loop thru faces 

    load refs.mat 

    eval(['load ' char(refs(k,1))]) 

    cName = char(refs(k,1)); 

    pp = ones(3,6); pp10 = ones(3,6);%permeability = ones(3,6); 

    for ii = 1:3 

        for j = 1:6 

            % load extended, ./referenced data 
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            px = strcat('c',int2str(ii),int2str(j),'e'); 

            % find d50 

            px1 = eval([px '(:,1)']);px2 = eval([px '(:,2)']); 

            % d50 

            eval(['fiftyp=px1' '(round(' 'px2'  '*10)/10==0.5);']); 

 

            % d10 for Hazen permeability 

            eval(['tenp=px1' '(round(' 'px2'  '*10)/10==0.1);']); 

            if isempty(fiftyp) == 0 

                pp(ii,j) = fiftyp(1) ; 

            else 

                pp(ii,j) = 0; 

            end 

            if isempty(tenp) == 0 

                pp10(ii,j) = tenp(1) ; 

            else 

                pp10(ii,j) = 0; 

            end 

            permeability(ii,j) = kc(pp10(ii,j)); 

          

            eval(['p', char(refs(k,1)) '(ii,j)=pp(ii,j);']); 

            eval(['d10', char(refs(k,1)) '(ii,j)=pp10(ii,j);']); 

        end 

        row_mean(k,ii) = mean(permeability(ii,:));           

    end 

 

            disp('max') 

            max(permeability(:)) 

disp('min')     

min(permeability(:)) 
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% 

 

 

    if perm == 1 

        contourf(flipud(log10(permeability)));colormap gray 

    else 

        contourf(flipud(pp10));colormap gray 

    end 

    colorbar 

    h = colorbar; 

    if perm == 0  

        xlabel(h,'m'); 

    elseif perm == 1  

        xlabel(h,'m^2'); 

    end 

    set(h,'FontWeight','bold') 

    axis equal;axis([1 6 1 3]) 

     

    if perm == 0 

   %     caxis([0 0.4]) 

    else 

        caxis([-12 -7]) 

    end 

     

    set(gcf,'color','w'); 

    %title('d50 contour') 

    axis off 

%} 

 

    d50_mean(k) = mean(pp(:)); 



 

  118 

    d10_mean(k) = mean(pp10(:)); 

    if perm == 0 

 %       eval(['saveas(gcf,''/Users/Sheldon/Desktop/grain size plots/', cName,'.jpg'')']); 

    elseif perm ==1 

        eval(['saveas(gcf,''/Users/Sheldon/Desktop/grain size plots/', 
cName,'permeability.jpg'')']);         

    end 

 

end 

 

%over all, not used  

d10meanT1 = mean(d10_mean(1:3));d10meanT3 = mean(d10_mean(4:6)); 

d50meanT1 = mean(d50_mean(1:3));d50meanT3 = mean(d50_mean(4:6)); 

 

% d10 mean 

for k = 1:6 

    eval(['Row' char(refs(k,1)) '=mean(d10' char(refs(k,1)) ',2);']) 

end 

RowT1 = (RowT1N+RowT1W+RowT1E)/3; 

RowT3 = (RowT3W+RowT3N+RowT3S)/3; 

%% 

% veritcal gradient of d50 

clf 

set(0,'defaultlinelinewidth',2); 

d50MeanT1E = ones(1,3);d50MeanT1N = ones(1,3);d50MeanT1W = ones(1,3);... 

    d50MeanT3N = ones(1,3);d50MeanT3S = ones(1,3);d50MeanT3W = ones(1,3); 

for ii = 1:3 

    d50MeanT1E(ii) = mean(pT1E(ii,:)); 

    d50MeanT1N(ii) = mean(pT1N(ii,:)); 

    d50MeanT1W(ii) = mean(pT1W(ii,:)); 

    d50MeanT3N(ii) = mean(pT3N(ii,:)); 
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    d50MeanT3S(ii) = mean(pT3S(ii,:)); 

    d50MeanT3W(ii) = mean(pT3W(ii,:)); 

end 

height = 1:3; 

plot(height,d50MeanT1E,'b-o',height,d50MeanT1N,'b--',height,d50MeanT1W,'b:',... 

    height,d50MeanT3N,'r-o',height,d50MeanT3S,'r--', height,d50MeanT3W,'r:') 

 

 

hold on 

 

d50Mean = (d50MeanT1E + d50MeanT1N + d50MeanT1W +... 

    d50MeanT3N + d50MeanT3S + d50MeanT3W)/6; 

plot(height,d50Mean,'g--','LineWidth',6) 

hold off 

set(gca,'XTickLabel',{'Top';' ';''; '';'Bottom';}) 

xlabel('Pile position');ylabel('d50 (m)') 

legv = legend('TIE','TIN','TIW','TIIIN','TIIIS','TIIIW','Mean','Location','SouthEast',... 

    'Orientation','Horizontal'); 

set(legv,'FontSize',10) 

eval(['saveas(gcf,''/Users/Sheldon/Desktop/grain size plots/vgradient.jpg'')']); 

 

%% 

% horizontal gradient of d50 

clf 

 

d50MeanT1E = ones(1,6);d50MeanT1N = ones(1,6);d50MeanT1W = ones(1,6);... 

    d50MeanT3N = ones(1,6);d50MeanT3S = ones(1,6);d50MeanT3W = ones(1,6); 

for ii = 1:6 

    d50MeanT1E(ii) = mean(pT1E(:,ii)); 

    d50MeanT1N(ii) = mean(pT1N(:,ii)); 
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    d50MeanT1W(ii) = mean(pT1W(:,ii)); 

    d50MeanT3N(ii) = mean(pT3N(:,ii)); 

    d50MeanT3S(ii) = mean(pT3S(:,ii)); 

    d50MeanT3W(ii) = mean(pT3W(:,ii)); 

end 

height = 1:6; 

plot(height,d50MeanT1E,'b-o',height,d50MeanT1N,'b--',height,d50MeanT1W,'b:',... 

    height,d50MeanT3N,'r-o',height,d50MeanT3S,'r--', height,d50MeanT3W,'r:') 

hold on 

 

d50Mean = (d50MeanT1E + d50MeanT1N + d50MeanT1W +... 

    d50MeanT3N + d50MeanT3S + d50MeanT3W)/6; 

plot(height,d50Mean,'g--','LineWidth',6) 

hold off 

set(gca,'XTickLabel',{'Left';' ';''; '';'';'';'';'';'';'';'Right';}) 

xlabel('Pile position');ylabel('d50 (m)') 

 

leg = legend('TIE','TIN','TIW','TIIIN','TIIIS','TIIIW','Mean','Location','SouthEast',... 

    'Orientation','Horizontal'); 

set(leg,'FontSize',10) 

 

 

eval(['saveas(gcf,''/Users/Sheldon/Desktop/grain size plots/hgradient.jpg'')']); 

 

 

%% 

% compare lianna/stacey's measurements 

clf 

set(0,'defaultaxesfontsize',15); 

set(0,'defaultlinelinewidth',1); 
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comp = 'T3W'; load refs.mat 

eval(['load ' comp '.mat']); 

load lia_plot.mat 

%color = {'r','g','b'};sty = {'-','-o',':','-+','-v','-.'}; 

stacey = [406.4 0.865 

    254 0.737 

    152.4 0.525]; 

 

semilogx(c11e(:,1),c11e(:,2)*100,'k');hold on 

%semilogx(lia_plot(:,1)/1000,lia_plot(:,2),'ko-','LineWidth',4) 

semilogx(stacey(:,1)/1000,stacey(:,2)*100,'ko-','LineWidth',4) 

%axis([0.01 10 0 100]) 

set(gcf, 'DefaultTextFontSize',30) 

leg = legend('Image analysis','Sample','Location','Northwest'); 

set(leg,'FontSize',15) 

for ii = 1:3 

    for j = 1:6 

        px = strcat('c',int2str(ii),int2str(j),'e'); 

        eval(['semilogx(' px '(:,1)' ',' px '(:,2)*100' ',''k'''... 

            ',''HandleVisibility'',''off'')']);% dont show in legend 

        %   '''' color{ii} sty{j} '''' ')']) 

        hold on 

    end 

end 

 

%eval(['text(10e-5, 50,'''  comp  ''')']) 

%legend('11','12','13','14','15','16','21','22','23','24','25','26','31','32','33','34','35','36','Sample',
'Location','Best') 

ylabel('Percent passing (%)') 

xlabel('Sieve size (m)'); 
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axis([1e-5 10 0 100]) 

eval(['saveas(gcf,''/Users/Sheldon/Desktop/grain size plots/',comp,'comp.jpg'')']); 

 

 

%% Contour 

load T3F2.mat 

 

pp = ones(4); 

for ii = 1:4 

    for j = 1:4 

        px = strcat('c',int2str(ii),int2str(j)); 

        px1 = eval([px '(:,1)'])/110;px2 = eval([px '(:,2)']); 

        eval(['fiftyp=px1' '(round(' 'px2'  '*10)/10==0.5)']) 

        if isempty(fiftyp) == 0 

            pp(ii,j) = fiftyp(1) ; 

        else 

            pp(ii,j) = 0; 

        end 

 

    end 

end 

x = 1:4; y = 1:4; 

xmin = 1; ymin = 1; xmax = 4; ymax = 4; 

xv = linspace(xmin, xmax, 100); 

yv = linspace(ymin, ymax, 100); 

[Xinterp,Yinterp] = meshgrid(xv,yv); 

Zinterp = griddata(x,y,pp,Xinterp,Yinterp); 

 

contourf(flipud(Zinterp)) 
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set(gcf,'color','w'); 

 

 

 

%% Lianna 92kg samples 

load lia_plot.mat 

semilogx(lia_plot(:,1)/1000,lia_plot(:,2),'o-','LineWidth',2) 

xlabel('Diameter (m)','FontSize',15);ylabel('Percent passing (%)','FontSize',15) 

saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/Lianna.jpg') 

 

%% 

cT3W = imread('/Users/Sheldon/Desktop/grain size plots/T3W.jpg'); 

cvT3W = imread('/Users/Sheldon/Desktop/grain size plots/cT3Wlog.jpg'); 

cvlT3W = imread('/Users/Sheldon/Desktop/grain size plots/cT3Wlog.jpg'); 

%subplot(2,2,[1 2]); 

%imshow(cT3W,[]); 

subplot(121); 

imshow(cvT3W); 

subplot(122); 

imshow(cvlT3W); 

saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/curveT3W.jpg') 

 

 

%% plot diameter vs. surface area 

% [diam, mass_fraction, tot_surf, tot_surf./mass_fraction]; 

load refs.mat;set(0,'defaultlinelinewidth',.1); 

close all 

%color = {'r','g','b'};%sty = {'-','-o',':','-+','-v','-.'}; 

 color = {'-k.','.k-','.k-'}; 

for k = 1:6 
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    eval(['load ' char(refs(k,1))]) % load each face 

    for ii = 1:3 

        for j = 1:6 

            px = strcat('c',int2str(ii),int2str(j), 's' ); 

            eval(['semilogx(' px '(:,1)' ',' px '(:,3)' ','... 

                '''' color{ii} '''' ')']) 

            hold on 

 

        end 

    end 

end 

xlabel('Grain size (m)','FontSize',15);ylabel('Surface area (m2)','FontSize',15); 

axis([10e-6 10 0 1.1]) 

title('Surface area distribution','FontSize',20) 

saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/surf.jpg') 

%% plot diam vs. mass 

% [diam, mass_fraction, tot_surf, tot_surf./mass_fraction]; 

load refs.mat 

close all 

%color = {'r','g','b'};%sty = {'-','-o',':','-+','-v','-.'}; 

color = {'k.-','.-k','.-k'}; 

mass_matrix=[]; 

for k = 1:6 

    eval(['load ' char(refs(k,1))]) % load each face 

    for ii = 1:3 

        for j = 1:6 

            px = strcat('c',int2str(ii),int2str(j), 'b' ); 

            eval(['semilogx(' px '(:,1)' ',' px '(:,2)' ','... 

                '''' color{ii}  '''' ')']) 

            hold on 
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        end 

    end 

end 

 

axis([10e-6 10 0 .3]) 

title('Mass distribution','FontSize',20) 

xlabel('Grain size (m)','FontSize',15);ylabel('Mass of fraction ','FontSize',15); 

saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/mass.jpg') 

%% plot moments 

load refs.mat 

 

mean_all = []; std_all = []; skew_all = []; kur_all = []; 

 

 

for k = 1:6 

    eval(['load ' char(refs(k,1))]) % load each face 

 

    for ii = 1:3 

        for j = 1:6 

            px = strcat('c',int2str(ii),int2str(j), 'm' ); 

            eval(['std_all = [std_all;' px '(2)];' ]) 

            eval(['mean_all = [mean_all;' px '(1)];' ]) 

            eval(['skew_all = [skew_all;' px '(3)];' ]) 

            eval(['kur_all = [kur_all;' px '(4)];' ]) 

        end 

    end 

end 

 

close all 

subplot(221) 
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hist(mean_all) 

h = findobj(gca,'Type','patch');set(h,'FaceColor','k','EdgeColor','w') 

xlabel('Mean','FontSize',15);ylabel('Count','FontSize',15); 

subplot(222) 

hist(std_all); 

h = findobj(gca,'Type','patch');set(h,'FaceColor','k','EdgeColor','w') 

xlabel('Standard Deviation (Sorting)','FontSize',15); 

ylabel('Count','FontSize',15); 

subplot(223) 

hist(skew_all) 

h = findobj(gca,'Type','patch');set(h,'FaceColor','k','EdgeColor','w') 

xlabel('Skewness','FontSize',15);ylabel('Count','FontSize',15); 

subplot(224) 

hist(kur_all) 

h = findobj(gca,'Type','patch');set(h,'FaceColor','k','EdgeColor','w') 

xlabel('Kurtosis','FontSize',15);ylabel('Count','FontSize',15); 

saveas(gcf,'/Users/Sheldon/Desktop/grain size plots/stats.jpg') 

 

%% 

stats_all = [mean_all std_all skew_all kur_all]; 

save stats_all.txt stats_all -ASCII 
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Appendix C 

This section lists the formulae used for method of moment calculations. Grain size 
diameters are converted to logarithmic Udden–Wentworth grade scale using  
where  is converted Udden–Wentworth grade scale value and d is grain diameter in 
millimeters. The formulae are mortified from (Krumbein and Pettijohn, 1938). 

,  

where  f is the frequency in percent, 

  is the mid-point of each fraction in -scale, 

  is standard deviation, 

 is skewness, and  

 is Kurtosis. 

 

Reference 

Krumbein, W.C., Pettijohn, F.J. 1938. Manual of Sedimentary Petrography. Appleton-
Century-Crofts: New York. 

 

 


