
Collection Disjointness Analysis in

Java

by

Hang Chu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Computer Software

Waterloo, Ontario, Canada, 2011

c© Hang Chu 2011

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis presents a collection-disjointness analysis to find disjointness relations

between collections in Java. We define the three types of disjointness relations

between collections: must-shared, may-shared and not-may-shared. The collection-

disjointness analysis is implemented following the way of a forward data-flow analysis

using Soot Java bytecode analysis framework. For method calls, which are usually

difficult to analyze in static analysis, our analysis provide a way of generating and

reading annotations of a method to best approximate the behavior of the calling

methods. Finally, this thesis presents the experimental results of the collection-

disjointness analysis on several tests.

iii

Acknowledgements

It is a pleasure to thank the many people who made this thesis possible.

It is difficult to express my thanks and gratitude to my supervisor Dr. Patrick

Lam. With his enthusiasm, his breadth and depth of knowledge, and his patience,

he helped to make research fun for me. I am thankful I had the opportunity to

learn from him. Throughout my thesis writing period, he provided encouragement,

good advice, and lots of good ideas. I was really moved when he read through my

draft, words by words, times by times, to help me correct my spellings and English

grammars.

I would also like to thank my thesis committee members Dr. Tan and Dr. Ray-

side for their time and effort to read my thesis during this very busy time.

I also appreciate my colleagues Aakarsh Nair, Xavier Nombassi and Jon Eyolfson for

taking time to discuss my problems and provide helpful suggestions.

iv

Dedicated to my parents and my girlfriend. I really appreciate
their support, understanding, encouragement and sacrifices.

Without them I could have not completed it. . .

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

Table of Contents vi

List of Figures vi

1 Introduction 1

1.1 Approach . 2

1.2 Results . 4

1.3 Limitations . 4

1.4 Thesis Contributions . 5

1.5 Thesis Outline . 6

2 Background Knowledge 7

2.1 Static Analysis . 7

2.2 Data-Flow Analysis . 8

2.3 Points-to Analysis and SPARK . 11

2.4 Object Representatives . 12

2.5 Soot and Jimple . 12

3 Implementation 14

3.1 Problem Definition . 14

3.2 Data-flow Set . 16

3.3 Merge Point . 18

3.4 Transfer Functions . 21

3.4.1 Basic Operations . 21

Instantiations . 21

Assignment . 24

3.4.2 Collection Operations . 27

3.4.2.1 Group of Add Methods 28

vi

3.4.2.2 Group of Remove Methods 30

3.4.2.3 Other Methods . 32

3.4.3 Method Calls . 34

3.4.3.1 Analyze Annotations 35

3.4.3.2 Method Ordering 38

3.4.4 Additional Operations . 38

3.4.4.1 Sharedness . 39

3.4.4.2 Update object representatives 41

3.5 Initial Values . 43

4 Experimental Results 45

4.1 Benchmarks . 45

4.2 Results . 45

4.2.1 Discussion on Annotations . 46

4.2.2 Discussions on Experimental Results 50

4.2.2.1 createParser() . 50

4.2.2.2 createLexer() . 52

5 Related Work 56

5.1 Object Representatives . 56

5.2 Disjointness Analysis for Java-like Languages 56

5.3 Conditional Must Not Aliasing Analysis 57

5.4 Static Reasoning about Contents of Containers 58

5.5 iComment . 58

6 Conclusions and Future Work 60

6.1 Future Work . 61

Bibliography 63

Appendix A - Counting the number of Add and Remove Methods 66

vii

List of Figures

1.1 A Collection-Disjointness Example. 2

1.2 Result of the collection-disjointness analysis example after line 9 . . 3

1.3 Result of the collection-disjointness analysis example after line 11 . . 4

2.1 Example Java Code. 8

2.2 Java Code to be Analyzed. 9

2.3 A simple data-flow analysis example. Sets on the right indicate de-
fined local variables . 10

2.4 Java Method in the Original Form 13

2.5 Jimple Representation for Java Method in Figure 2.4 13

3.1 Collection-disjointness abstraction on collections L1 and L2 15

3.2 Merge Point Operation Example . 18

3.3 Result after line 6 in the merge point example. 19

3.4 Result after line 8 in Figure 3.2 before the merge point operation. . . 20

3.5 Result after line 8 in Figure 3.2 after the merge point operation. . . 20

3.6 Result at the end of the method in Figure 3.2 20

3.7 Instantiation Example . 22

3.8 Result after line 6 in Figure 3.7 . 23

3.9 Result after line 7 in Figure 3.7 . 23

3.10 Assignment Example . 24

3.11 Result after line 6 in Figure 3.10 . 25

3.12 Result after line 7 in Figure 3.10 . 26

3.13 Field Write and Read Example . 27

3.14 Collection Disjointness Analysis on Collection Operations 28

3.15 Result of the group of add() methods after line 8 in Figure 3.14. . . 30

3.16 Result of the group of remove() methods after line 11 in Figure 3.14. 33

3.17 Result of the clear() method after line 12 in Figure 3.14. 33

3.18 Result of the set() method after line 14 in Figure 3.14. 34

3.19 Annotations Example . 35

3.20 Sharedness operation: Case 1 . 40

3.21 Sharedness operation: Case 2 . 40

3.22 Sharedness operation: Case 3 . 42

3.23 Updating Object Representatives Example 43

viii

4.1 Benchmark Information . 46

4.2 Experimental Results . 46

4.3 Test Example without Annotations. 47

4.4 Test Example with only Pre-Annotations. 48

4.5 Test Example with all annotations 49

4.6 Jimple code of the createParser() method: Part One. 51

4.7 Result in the createParser() method: Part Two. 52

4.8 Results of the createParser() method in Figures 4.6–4.7 53

4.9 Results of the createLexer() method in Figure 4.10 54

4.10 Jimple code of the createLexer() method. 55

“You can avoid reality, but you cannot avoid the consequences of avoiding reality.”

- Ayn Rand

x

Chapter 1

Introduction

A collection in Java is a “container” object, which stores multiple elements in a

single unit. Containers are widely used to reduce programming effort and increase

programming speed and quality by reusing known-good components which have well-

understand behaviours. Two collections are disjoint if they do not contain objects

pointing to the same heap location. We are interested in the disjointness relations of

collections in Java because they enable light-weight specifications, thereby helping

program understanding and parallelization. For example, if we store some impor-

tant information in a collection and we wish to ensure that only operations on this

collection can get or change the information, we can just specify that this collec-

tion must be disjoint with all other collections and check if this specifications is

achieved by analyzing the disjointness relations between this collection and all other

collections. Disjointness relation of any two collections therefore helps provide better

understanding of our code. For parallelization, if we can find two collections that

are completely disjoint in all executions, we can execute operations in parallel.

Programmers can check the disjointness of collections by comparing the contents of

collections while running the code with test inputs—a dynamic analysis approach.

However, the disadvantage of any dynamic analysis is that checking the disjointness

in this way generally will not exhaustively cover all test cases with respect to infinite

(or even, large) intractably input spaces. Therefore, we employ static analysis to

analyze the disjointness relations of collections in Java. The benefit is that we can

estimate the behavior of our code and find disjointness relations while accounting

for all possible inputs.

1

1. Class C {

2. public static void main(String [] args) {

{ }

3. List l1 = new LinkedList ();

{ }

4. List l2 = new LinkedList ();

{ }

5. List l3 = new LinkedList ();

{ }

6. Object o1 = new Object ();

{ }

7. Object o2 = new Object ();

{ }

8. l1.add(o1);

{(0(l1),3(o1))}

9. l2.add(o2);

{(0(l1),3(o1)),(1(l2),4(o2))}

10. l3.add(o1);

{(0(l1),3(o1)),(1(l2),4(o2)),(2(l3),3(o1)),(0(l1),2(l3)}

11. l3.add(o2);

{(0(l1),3(o1)),(1(l2),4(o2)),(2(l3),3(o1)),

(2(l3),4(o2)),(0(l1),2(l3)),(1(l2),2(l3))}

12. }

13. }

Figure 1.1: A Collection-Disjointness Example.

In this thesis, we describe the design and implementation of a data-flow analysis on

Java code to analyze the disjointness relations between collections. Our collection

disjointness analysis works on a single method at a time. By using the disjointness

analysis, programmers can compute or verify the disjointness relations between any

two collections at any program point of the source code. With the information of the

disjointness relations, programmers can provide light-weight specifications and better

understand their code, and compilers can better optimize concurrent programs.

1.1 Approach

In our approach, we use a data-flow analysis to go through each method, tracking

disjointness relations between all collections in the method. Our analysis starts with

an initial data-flow set at the start of each method and applies transfer functions

according to the statements in the method. Statements that change the data-flow

set include collection operations and method calls. The data-flow set contains all

of the information we need to find the disjointness relations. We can query the

data-flow set at any program point to find the disjointness relations between any

two collections at that point, although usually we are most interested in disjointness

at the end of a method.

2

l1:

o1

l2:

o2

Figure 1.2: Result of the collection-disjointness analysis example after line 9

Suppose we wish to find the disjointness relations of collections in the method main()

for the simple Java program in Figure 1.1. The main method of this program runs

several add operations on three lists to make some of them contain common objects.

Chapter 3 presents precise definitions for the contents of the data-flow set. Here we

only want to show the basic approach of our collection-disjointness analysis. The

data-flow set is initialized to be an empty set at the beginning of the main() method.

From line 3 to line 7, the statements do not change the contents of the data-flow

set, so the data-flow set after line 7 is still an empty set: object instantiations do

not provide any disjointness information. After line 8, the add() operation on list l1

changes the data-flow set to {(0(l1), 3(o1))}, where 0 and 3 represents objects in the

heap while l1 and o1 are variable references, implying that list l1 contains an object

reference o1. Statements at line 8 to line 11 also change the contents of our data-flow

set. The final result of our data-flow set after going through the main() method is

{(0(l1),3(o1)),(1(l2),4(o2)),(2(l3),3(o1)),(2(l3),4(o2)),(0(l1),2(l3)),(1(l2),2(l3))}. Sup-

pose we are interested in the disjointness relations between l1 and l3 at the end of

the method. If we query the data-flow set after the statement at line 9, we will find

that l1 and l3 are not-may-shared at this point since there is no pair consisting of

l1 and l3 in our data-flow set, which means that no object in l1 may alias an object

in l3. If we query the data-flow set after the statement at line 10, we will find that

l1 and l3 are may-shared since there is a pair (0(l1), 2(l3)), which means there is at

least one object in l1 may alias an object in l3.

Figures 1.2 and 1.3 depict graphically the results from the above example after line 9

3

l1:

o1

l3:

o2

l2:

Figure 1.3: Result of the collection-disjointness analysis example after line 11

and at the end of the main() method respectively, showing the disjointness relations

between l1, l2 and l3. the box represents a cell of the linked list, and the line to a

round object indicates that this cell contains on. Figure 1.2 indicates that l1 and l2

are disjoint, and Figure 1.3 indicates that l1 and l2 are shared since they contain

common objects.

We have now seen a brief example of the workings of our analysis. In the following

chapters we present our implementation, along with more complicated examples.

1.2 Results

We run our collection disjointness analysis on two benchmarks for experiment. We

successfully found eight disjoint collections from these two benchmarks. In chapter

4 we will present in more detail about our experimental results.

1.3 Limitations

Since our analysis employs a static data-flow analysis to determine disjointness re-

lations between collections, our analysis has the limitations of all static analyses.

4

Because our analysis does not actually run the code, it can not provide fully pre-

cise results and must use approximations. Those approximations mostly arise from

estimating the effects of statements that cause branches, such as the if statement.

Another limitation to our analysis is that the correctness of our analysis depends on

developer-provided information while analyzing method calls. Although our analysis

provides a way of generating annotations automatically, it still allows programmers

to write their own annotations for convenience. If the annotations provided by the

programmers are incorrect, our analysis may fail to give the correct answers.

1.4 Thesis Contributions

This thesis makes the following contributions.

1) Collection-disjointness analysis: This thesis presents a method for deter-

mining collection-disjointness which indicates whether two collections contain

objects pointing to same heap location. We employ a data-flow analysis to

determine the disjointness relations of collections. Our analysis assumes that

Java collections are the primary way that programs maintain data structures,

and uses this assumption to simplify its task—it processes the collection ma-

nipulation operations to understand the contents of collections.Our analysis

employs a new type of data-flow set which easily shows the disjointness rela-

tions of all collections in the analyzing methods. Our analysis allows users to

find disjointness relations between any two collections at any program points.

2) Annotations for collection disjointness: The thesis applies developer-

provided annotations to our static analysis abstraction and presents a way

of statically analyzing methods by generating and reading annotations. An-

notations provides information about a program without affects program be-

haviour. Our analysis generates post-annotations from the pre-annotations of

the method and then reads the post-annotations to verify developer-provided

annotations and figure out the collection-disjointness relations.

3) Collection-disjointness Analysis Implementation: The data-flow anal-

ysis is implemented in Java under the Soot framework. The implementation

allows developers to check the disjointness relations of any two collection at

any program points.

5

4) Experimental Results: The thesis shows the experimental results at the end,

which show the correctness of the implementation of our collection disjointness

analysis.

1.5 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 describes some background knowledge related to this thesis. This back-

ground knowledge helps understand basic concepts employed in the rest of the thesis.

Chapter 3 presents the details of the implementation of the collection-disjointness

analysis. It provides all details of the data-flow analysis.

Chapter 4 presents the experimental results.

Chapter 5 presents works related to our collection-disjointness analysis. Finally, we

present the conclusions and future work in Chapter 6.

6

Chapter 2

Background Knowledge

In this chapter, we present background knowledge and techniques used in our col-

lection disjointness analysis. In particular, we use static analysis as the fundamental

analysis method and employ a data-flow analysis, a specific type of static analysis, to

build data-flow sets which indicate disjointness. Moreover, we use points-to analysis

to define the elements of the data-flow sets, using object representatives as a sum-

mary of the heap objects in our points-to analysis. Our implementation of collection

disjointness analysis is based on the Soot [18, 19] framework with the SPARK [10]

points-to analysis. Therefore, we will present some background information on static

analysis, data-flow analysis, points-to analysis, SPARK, object representatives, and

Soot in the next few sections.

2.1 Static Analysis

Static Analysis is a technique for analyzing the source code of a program without

running it. It estimates the behavior of the given program. Applications of static

analysis include providing better understanding of the code for developers during

testing and maintenance, as well as program optimization. Contrast static analysis

with dynamic analysis. Dynamic analysis examines code by executing the program

and considering its behavior on given inputs. Static analysis instead considers the

program text independent of inputs (or, for all inputs). Since the input space of

even simple programs is usually intractable, dynamic analysis will not generally

exhaustively cover all test cases. It is therefore difficult to ensure that a dynamic

analysis covers all program behaviors. Static analysis, on the other hand, typically

7

1. if (...)

2. x =1;

3. else

4. x =0;

Figure 2.1: Example Java Code.

returns results valid for all inputs without executing the code. However, because it

does not actually run the code, static analysis can not provide fully precise results

and must use approximations. In principle, this is due to the halting problem, but

in practice, approximations mostly arise from estimating the effects of statements

that cause branches, such as conditional statements and method calls.

For instance, consider the conditional statements in Figure 2.1. If we execute the

code, x is either 0 or 1 because only one branch of the if statement is actually

executed. However, without running the code, static analysis is in general not able to

determine which branch will be executed. Static analysis therefore usually assumes

that either branch may be executed. More generally, static analysis assumes any

branch of a program may be executed during analysis. Although there are some

techniques which can evaluate some branch conditions, the general treatment of

branches introduces imprecision in static analysis results.

Although static analysis is not fully precise, it can still get useful and sound approxi-

mate results. The soundness here means that all approximation results provided are

true. Data-flow analysis is one of the most useful techniques for performing static

analysis.

2.2 Data-Flow Analysis

Data-flow analysis is a technique for calculating the effect of each program statement

with respect to the possible sets of values in some abstract domain [13]. We can then

gather information from the sets of values that the data-flow analysis computes. This

information can be used for understanding, debugging and optimizing the original

program. We explain the general concept of data-flow analysis by presenting an

analysis to identify variables which are guaranteed to be defined. Figure 2.2 presents

the code that we will analyze.

We set up this data-flow analysis in six steps [8]:

8

1. void foo () {

2. String a;

3. int b;

4. int c;

5. a = "xyz";

6. if (a.equals("xyz"))

7. b = 2;

8. else

9. c = 3;

10. a = new String ();

11. }

Figure 2.2: Java Code to be Analyzed.

1. What is the problem? In our example, we wish to find all local variables with

constant values at a given program point.

2. Forward or backward analysis? A forward data-flow analysis starts at the entry

statement of a control flow graph and propagates information forward from there. A

backward data-flow analysis starts at the exit statement of a control flow graph and

propagates information back from that statement. In our example, we use forward

analysis since we want to determine how each statement affects our input data-flow

set.

3. What is in the data-flow sets? Since we are trying to determine if a local variable

has a constant value at a given program point, our data-flow set should contains the

local variables with constant values at the given program point.

4. What is the operation at the merge point, union or intersection? A merge point

is a confluence of branches, which are usually caused by conditional statements. In

our example, we have an if statement with two branches. Since static analysis can

not figure out which branch is actually executed, our analysis needs to go through

each branch and, at the end of each branch, combine the resulting data-flow sets.

In our example, since we want a false negative result—all locals in our data-flow set

must be guaranteed to have a constant value at the given program point—we use

intersection to merge the sets generated by different program branches.

5. What are the transfer functions? Transfer functions calculate the changes of

the data-flow set after a program statement.They rely on two sets for each program

statement. The Gen set is a set of values to be added to the data-flow set while the

Kill set is a set of values to be removed from the data-flow set. In our example, the

transfer function is very simple. If a local variable has a constant value (e.g. x=5),

we include it into our Gen set. If a local variable had a constant value but does not

9

1. void foo () {

{}

2. String a;

{}

3. int b;

{}

4. int c;

{}

5. a = "xyz";

{a}

6. if (a.equals("xyz"))

7. b = 2;

{a, b}

8. else

9. c = 3;

{a, c}

{a}

10. a = new String ();

{}

11. }

Figure 2.3: A simple data-flow analysis example. Sets on the right indicate
defined local variables

have it anymore, we include it into our Kill set. Note since we use intersection as

the merge point operation in this example, in branches we must include “possibly

generated” variables to the Gen set and “definitely killed” variables to the Kill set.

6. What are the initial values? The initial value of a data-flow analysis is the

contents of the data-flow set at the beginning (or end, for backward analysis) of a

method. In our example, it is obviously the empty set since no locals are initialized

and assigned with constant values at the beginning of each method.

Figure 2.3 shows an example of operation of our analysis.

At the beginning of this method, before line 1, our data-flow set is initialized to be

the empty set. Lines 2–4 are local declarations with no assignments. Our transfer

function does not change the data-flow set on these lines. At line 5 we define string

a to be “xyz”. The Gen set is {a} and the Kill set is ∅. Thus, the data-flow set

after line 5 is {a}. Lines 6–9 contain an if statement. As we mentioned previously,

our analysis needs to go through each branch and intersect the results at the merge

point. At line 7, b is defined to be 2. Thus, the Gen set is {b} while the Kill set

is ∅. The result after line 7 is {a, b}. Similarly, the result after line 9 is {a, c}.
Now we compute the intersection of sets generated from both branches and get the

result {a}, which means at the end of the if statement, only a is guaranteed to have

constant value. This result contains false negatives since either b or c has constant

value at this point but our analysis does not know exactly which one has and our

10

abstraction cannot represent such information. At line 10, a is assigned with a new

String object, so that a no longer have a constant value. Therefore, the Gen set is

∅ and the Kill set is {a}.

In our disjointness analysis, we will also employ data-flow analysis to compute dis-

jointness between collections contents. The data-flow set at each program point will

contain the results of the analysis at that point.

2.3 Points-to Analysis and SPARK

Many languages such as C and Java use pointers and dynamic storage, which makes

static analysis difficult: finding exact run-time values of variables in static analysis

is generally uncomputable [9]. In the presence of pointers, variables may alias each

other. We define aliasing as follows. Two or more variables alias each other if they

point to the same memory location. Changing the contents of one variable will result

in the same changes to all other aliased variables. Furthermore, if a new variable r1

aliases with another variable r2, r1 also aliases with all other variables aliasing with

r2.

Points-to analysis (pointer analysis) is a technique for determining the set of memory

locations which a variable may point to [14]. A points-to set for a variable x repre-

sents a set of heap locations that x may point to. By examining the points-to sets

of different variables, we can find the aliasing relations between them. In particular,

there are three types of aliasing: may alias, must alias and may not alias. If two

variable x and y point to the same heap location in some execution of the program,

we say x and y may alias; if two variables x and y point to the same heap location

in all executions of the program, we say x and y must alias; if two variable x and y

never point to the same heap location in all execution of the program, we say x and

y may not alias.

In the collection disjointness analysis, we need to check not only if two collections

contain the same variable but also if two collections contain variables that alias

with each other, which makes the points-to analysis very useful. In particular, if

two collections contain variables that must-alias with each other, we can conclude

that these two collections are must-shared. To get points-to sets of variables in

a program, we use the SPARK [10] Java points-to analysis framework, which is

integrated into the Soot [18, 19] framework. The Soot framework also employs the

11

object representatives [1], which represents variables abstractly, highlighting their

points-to relations. In the next section, we will present some background knowledge

about object representatives.

2.4 Object Representatives

Object representatives are a notation which integrate pointer analysis results from

flow-insensitive interprocedural analysis with the results from flow-sensitive intrapro-

cedural analysis [1]. A flow-sensitive analysis takes the order of program statements

into account while a flow-insensitive analysis does not. By using object representa-

tives, analysis can easily determine whether two variables point to the same heap

object or point to different heap objects. The object representative for a variable a

is in the form of m(a), where the integer m represents an object in the heap while

a represents the variable reference for easy understanding. To determine whether

two variable point to the same heap object, we compare object representatives by

provided MustAlias and NotMayAlias analysis.

In the collection disjointness analysis, we employ object representatives and use them

as the elements in the data-flow set to represent the aliasing relations. Using the

object representative simplifies the implementation of our analysis. We will provide

more details in chapter 3.

2.5 Soot and Jimple

Soot [18, 19] is a Java optimization framework to analyze and transform Java byte-

code using a suite of intermediate representations.

Jimple [18, 19] is a three-address code intermediate representation of Java bytecode

used by Soot. It linearizes and names expressions so that most statements only ref-

erence at most 3 local variables or constants. It also introduce new local variables for

implicit stack locations. The most convenient advantage of Jimple is that an analy-

sis implementation only needs to handle 15 statements in the Jimple representation,

compared to more than 200 possible instructions in Java byte code [3].

Figure 2.5 shows the Jimple representation for the example source code shown in

Figure 2.4. temp$0 at line 11 is a local variable introduced by Jimple, as are temp$1

12

1. public static void main (String [] args) {

2.

3. List <String >l1 = new LinkedList <String >();

4. String str = "xyz";

5. l1.add(str);

6. System.out.println(l1.toString ());

7. }

Figure 2.4: Java Method in the Original Form

1. public static void main(java.lang.String [])

2. {

3. java.lang.String [] args;

4. java.util.List l1;

5. java.util.LinkedList temp$0;

6. java.lang.String str , temp$3;

7. boolean temp$1;

8. java.io.PrintStream temp$2;

9.

10. args := @parameter0: java.lang.String [];

11. temp$0 = new java.util.LinkedList;

12. specialinvoke temp$0.<java.util.LinkedList: void <init >() >();

13. l1 = temp$0;

14. str = "xyz";

15. temp$1 = interfaceinvoke l1.<java.util.List:

boolean add(java.lang.Object)>(str);

16. temp$2 = <java.lang.System: java.io.PrintStream out >;

17. temp$3 = interfaceinvoke l1.<java.util.List:

java.lang.String toString ()>();

18. virtualinvoke temp$2.<java.io.PrintStream:

void println(java.lang.String)>(temp$3);

19. return;

20. }

Figure 2.5: Jimple Representation for Java Method in Figure 2.4

at line 15, temp$2 at line 16 and temp$3 at line 17. All variables are given explicit

types, like boolean and java.util.List. Jimple converts Java bytecode or source code

into its simplified three-address code. For example, method add() at line 5 and

method toString() at line 6 in the original code are represented by the interfaceinvoke

statement in Jimple at line 15 and line 17 respectively. Our collection disjointness

analysis analyzes Jimple statements instead of Java bytecode instructions, which

makes our analysis easier to implement. We will explain our treatment of each

Jimple statements in more detail in chapter 3.

13

Chapter 3

Implementation

In Chapter 2, we introduced some background knowledge related to our collection

disjointness analysis, including static analysis, data-flow analysis, points-to analysis

and SPARK, object representatives and Soot. In this chapter, we provide a de-

tailed description of our collection disjointness analysis and include details about

our implementation.

Since our collection disjointness analysis is implemented in Soot as a data-flow anal-

ysis, in this chapter we focus on the six steps of implementing a data-flow analysis.

Chapter 3.1 describes the problem definition; chapter 3.2 describes the contents of

the data-flow sets; chapter 3.3 shows the merge operation. Chapter 3.4 is the most

important section: it provides a detailed description of our transfer functions and

discusses their implementations. Finally, chapter 3.5 describes the initial values of

the data-flow set.

3.1 Problem Definition

Our collection disjointness analysis checks whether two given collections contain ob-

jects that may point to the same heap location (see Figure 3.1). Our heap abstraction

operates on a set of abstract objects O. O has an interesting subset L, the subset

of collection objects. We only track the containment relation starting with objects

in L. Our goal is to find if two objects in L contain any objects that may overlap in

the heap.

14

L1 :

o1 o2 o3 o4

L2 :

o5 o6 o7

...

...

The blue circles represent the objects, the gray rectangles represent references in the
lists and the red rectangles represent the rest of the lists. In this example, L1 and

L2 are not disjoint.

Figure 3.1: Collection-disjointness abstraction on collections L1 and L2

Now we introduce the abstraction we use for objects. Since Java does not allow

programmers to access a physical memory address in any way (contrast this with

languages such as C/C++), programmers can only get references to objects and

cannot manipulate a pointer to get different object. It therefore suffices to model

the object-typed variables in the program by object representatives.

We define three types of disjointness relations: may-shared, not-may-shared and

must-shared. Recall the definitions of aliasing relations in points-to analysis in Chap-

ter 2.3. By using these definitions we can define our disjointness relations as follows:

if collections l1 and l2 contain at least one object that must alias, we say l1 and l2

are must-shared; if on any execution two collections l1 and l2 contain at least one

objects that may alias, we say l1 and l2 are may-shared; if two collections l1 and l2

contain no objects that may alias, we say l1 and l2 are not-may-shared, i.e. disjoint.

Note that objects in L may contain other objects in L. In general, a collection l1

may contain another collection l1′. To take this condition into account, we modify

our definition of disjointness:if two collections l1 and l2 contain at least one object

that must alias or at least one collection that is must-shared, we say l1 and l2 are

must-shared; if two collections l1 and l2 contain at least one object that may alias

or at least one collection that is may-shared, we say l1 and l2 are may-shared; if

15

two collections l1 and l2 contain no objects that may alias or no collections that are

may-shared, we say l1 and l2 are not-may-shared.

Since at any program point, we want to see how the transfer function of current

statement takes effect to our input data-flow set which shows the disjointness rela-

tion, we implement our disjointness analysis as a forward data-flow analysis. For

each method, the analysis runs from the top of the method’s control flow graph

(entry points) to the bottom of the control flow graph, including all branches of

this method. For the whole program, the analysis runs from method to method,

organized depending on the caller and callee relations generated by the call graph.

Our disjointness analysis should always analyze a callee method prior to its caller

method. However, a call graph may contain cycles. For example, imagine that

method A calls method B, method B calls method C and method C calls method A.

Our analysis applies a fix point technique to this case. The detailed implementation

of method ordering is covered in Chapter 3.4.3.2.

Our analysis may return false negatives in the following sense: for instance, if we

say that two collections are not-may-shared with each other, it is true that they are

not-may-shared with each other no matter what approximations we made during the

analysis process. On the other hand, if we say that two collections are may-shared

or must-shared with each other, there is a chance that, on some executions, they are

not-may-shared with each other because of our approximations, such as the merge

point operation. In the next session, we will discuss the contents of our data-flow

set, which track the sharedness relation at any program point.

3.2 Data-flow Set

Elements of our data-flow set are “connections”. A connection C [5] is a set of

pairs H = O × O, where O is a set of abstract objects in the heap. We use object

representatives to represent abstract objects. For example, if there is a pair (o1, o2)

of abstract objects, in our representation, the pair is shown as (m(o1), n(o2)) where

m and n are natural numbers representing the object representatives of o1 and o2

respectively. Soot computes the object representative for each variable and updates

the map automatically, so that we can simply assume that object representatives are

available and accurate.

Our abstraction stores two types of pairs H in the connection C:

16

1) containment pairs: If a collection l1 has an element o1 in it, H includes a

containment pair (m(l1),n(o1)). m(l1) is the containing element while n(o1) is

the contained element. That is, in a containment pair, the containing element

is the first element in the pair while the contained element is the second element

in the pair. Containment pairs are created after collection operations such as

l1.add(o1).

2) sharedness pairs: Sharedness pairs describe non-disjointness relations between

collections (We call non-disjointness relations as the “sharedness” relations in

the rest of this thesis.). For example, a may-shared relation between l1 and l2

gives rise to a sharedness pair (m(l1),n(l2)), which means l1 and l2 contain at

least one object that may alias or at least one collection that is may-shared;

The sharedness pairs may be created after each statement by our sharedness

method (presented in Chapter 3.4.4.1, which pairs collections if they contain

aliasing objects or shared collections. Sharedness pairs may also be created

after collection operations such as l1.addAll(l2).

A pair consisting of two collections can be either a containment pair or a sharedness

pair. For example, pair (m(l1),n(l2)) can be a containment pair if l1 contains l2 or

a sharedness pair if they are must-shared. Since these two types of pairs are created

differently, we also store sharedness pairs in a separate list and query the list when

we need to figure out if a pair is a containment pair or a sharedness pair.

Since our abstraction operates at the level of object representatives, we only care

about the value of the object representative and include the variable names in the

parentheses as a convenience to the reader. If two references o1 and o2 have the

same object representative n, we consider the representations n(o1) and n(o2) to be

equal since references having the same object representative must point to the same

heap location. If two pairs contain the same pair of object representatives (order

does not matter), we say these two pairs are equal. For example, pair (m(a), n(b)) is

equal to pair (m(c), n(b)), as is (n(b),m(c)). Our connection only contains distinct

pairs. For pairs that are equal, we arbitrarily choose one of them and store it in our

connection.

The semantics of our pairs are as follows:

1) If there is a containment pair (m(l),n(o)) in the connection, collection l may

contain object o. Otherwise, l definitely does not contain o.

17

1. List l1 = new LinkedList (); // l1 has object representative 0.

2. List l2 = new LinkedList (); // l2 has object representative 1.

3. Object o1 = new Object (); // o1 has object representative 2.

4. Object o2 = new Object (); // o2 has object representative 3.

5. if (...)

6. l1.add(o1);

{(0(l1),2(o1))}

7. else

8. l1.add(o2);

{(0(l1),3(o2))}

{(0(l1),2(o1)), (0(l1),3(o2))}

9. l2.add(o1);

{(0(l1),2(o1)), (0(l1),3(o2)), (1(l2),2(o1)), (0(l1),1(l2))}

Figure 3.2: Merge Point Operation Example

2) If there is a sharedness pair (m(l1),n(l2)) in the connection, l1 and l2 are either

may-shared or must-shared. Otherwise, they are not-may-shared. Currently

our analysis does not differentiate between a sharedness pair that represents a

may-shared relation or a must-shared relation. Our analysis accurately iden-

tifies not-may-shared relationships.

Our data-flow sets, connections, contain these two types of pairs. Containment pairs

are created by transfer functions and are used for further calculation by transfer

functions. Sharedness pairs are created by the sharedness method and sometimes

by the transfer functions and they show the disjointness relations we are looking

for. In the next section, we will discuss the merge point operation, which combines

connections at control-flow merges.

3.3 Merge Point

Since we employ a data-flow analysis, our analysis must run on every branch in the

code. Thus we need a merge point operation to compute our result at control flow

merges. Because we want to have only false negatives in our result, we choose union

to properly gather information from every branch as our merge point operation.

Consider the example in Figure 3.2. Let us only consider the contents of the data-

flow set in this example. We will present our transfer functions in more detail in the

next section. From line 1 to line 4 we instantiate four objects. Two of them are lists

and two of them are objects. From line 5 to line 8, there is an if statement resulting

in two branches. After line 6, in the first branch, the data-flow set is {(1(l1), 3(o1))},
reflecting the fact that o1 was added to l1. After line 8, in the second branch, the

18

l1 :

o1

...

...l2 :

l1 contains o1 in the first branch.

Figure 3.3: Result after line 6 in the merge point example.

data-flow set is {(1(l1), 4(o2))}, reflecting the fact that o2 was added to l1. Note that

these two sets are both calculated from the data-flow set after line 4. The set after

line 8 is not calculated from the set after line 6 because the code in line 4 and the code

in line 6 are independent. Since we do not know which branch runs during the code

execution at line 9, l1 may contain o1 from line 6 and l1 may contains o2 from line 8.

Thus our data flow set should include all possibilities from each branch to represent

that the list l1 may contains either o1 or o2. Therefore, we use union to merge the

data-flow sets after line 6 and line 8 and the result is {(1(l1), 3(o1)), (1(l1), 4(o2))}.

The data-flow set after line 9 illustrates the correctness of our merge point operation.

The list l2 contains object o1 after line 9 and the list l1 may contain o1 from the

previous code. Since l1 and l2 contain the same object o1, we can conclude that l1

and l2 are may-shared. Therefore, our sharedness method adds a sharedness pair

(1(l1), 2(l2)) to the data-flow set. The sharedness pair (1(l1), 2(l2)) in the data

flow set shows the may-shared relation between l1 and l2, so our analysis correctly

indicates that l1 and l2 are may-shared.

Figures 3.3–3.6 depict graphically the results of the merge point operation example.

In the next section, we will discuss the transfer functions we used to calculate the

data-flow set after each statement.

19

l1 :

o2

...

...l2 :

l1 contains o2 in the second branch.

Figure 3.4: Result after line 8 in Figure 3.2 before the merge point operation.

l1 :

o1 o2

...

...l2 :

l1 may contain o1 and o2 after the merge point operation.

Figure 3.5: Result after line 8 in Figure 3.2 after the merge point operation.

l1 :

o1 o2

...

l2 : ...

l1 and l2 are may-shared or must-shared.

Figure 3.6: Result at the end of the method in Figure 3.2

20

3.4 Transfer Functions

Transfer functions in data-flow analysis are functions used to account for changes of

the data-flow set caused by each program statement. In particular, transfer functions

compute two sets for each statement: the Gen set and the Kill set. The Gen set

contains elements that must be added to the data-flow set after the given statement

while the Kill set contains elements that may be removed from the data-flow set

after the given statement. In Chapter 3.4.1, we will present transfer functions for

basic Java statements including object instantiation and assignment; in Chapter

3.4.2, we will present transfer functions for collection operations, such as add() and

remove(); in Chapter 3.4.3, we will present transfer functions for method calls; and

in Chapter 3.4.4 , we will present transfer functions for some additional functions

such as generation of sharedness pairs.

3.4.1 Basic Operations

We consider the following basic operations:

Instantiations The process of creating an object of a class is called instantiation.

An object is always an instance of a class. The instantiation process in Java is

almost always followed by an assignment to a variable. This variable can be a newly

declared variable or a previously assigned variable. For transfer functions at an

object instantiation statement, we consider three cases:

1) If there is an instantiation of an object assigned to a newly declared variable o,

since this statement does not change any containment or sharedness relations,

the transfer function does not change the data-flow set. Therefore, the Gen

set is ∅ and the Kill set is ∅.

2) If there is an instantiation of an object, other than a collection, assigned to

a previously assigned variable o, since this statement does not change any

containment or sharedness relations, the transfer function also does not change

the contents of the data-flow set. Therefore, the Gen set is ∅ while the Kill set is

∅. Note that if some collection l has contained the previous object o before this

statement, we should keep the containment pair (m(l), n(o)) in the Connection

since the list l still contains a reference pointing to the heap location of the

21

1. List l1 = new LinkedList (); // l1 has object representative 0.

2. List l2 = new LinkedList (); // l2 has object representative 1.

3. Object o = new Object (); // o has object representative 2.

4. l1.add(o);

{(0(l1),2(o))}

5. l2.add(o);

{(0(l1),2(o)), (1(l2),2(o)), (0(l1),1(l2))}

6. o = new Object ();

{(0(l1),2(o)), (1(l2),2(o)), (0(l1),1(l2))}

7. l1 = new LinkedList ();

{(0(l1),2(o)), (1(l2),2(o)), (0(l1),1(l2))}

Figure 3.7: Instantiation Example

variable o pointed to before this statement. The object representative for o

after the instantiation will, however, be a fresh object.

3) If there is an instantiation of a collection assigned to a previously assigned

collection l, although this statement makes l points to a fresh collection, it

does not change the containment and sharedness relations of the collection

object l previously pointed to. Therefore, the Gen set is ∅, and the Kill set is

∅, too. Like the previous condition, the object representative for l1 after this

statemetn will be a fresh object.

Figure 3.7 shows an example of how our analysis works on object initializations and

adds.

At lines 1–3, three objects are instantiated and assigned to three newly declared

variables l1, l2 and o, respectively. Thus, following condition one, the Gen set is ∅
and the Kill set is ∅ after each statement. At line 4, the add() operation on list l1

adds containment pair (0(l1), 2(o)) to the connection. Similarly, at line 5 the add()

statement on list l2 adds containment pair (1(l2), 2(o)) to the connection. At line 6,

since there is an instantiation of an object other than a list to a previously assigned

variable o, following Condition two the Gen set is ∅ and the Kill set is ∅. Note that

after this statement, the object representative of the object that variable o points is

not 2 any longer. However, since list l1 and l2 still contain a reference pointing to an

object with object representative 2 that o pointed to previously, our analysis keeps

containment pairs (0(l1), 2(o)) and (1(l2), 2(o)) in the connection. At line 7, there is

an instantiation of a list to a previously assigned list l1. Following Condition three,

the Gen set is ∅ and the Kill set is ∅.

Figures 3.8 and 3.9 depict graphically the results of the instantiation example.

22

l1 :

O

...

l2 : ...

Both l1 and l2 contain the reference pointing to the object O, which was also
pointed by the reference o before line 6.

Figure 3.8: Result after line 6 in Figure 3.7

...l1 :

The list pointed by l1 : ...

O

l2 : ...

l2 contains the reference pointing to the object O, which was also also pointed by
reference o before line 6. l1 does not contain object O but the collection it

previously pointed to (with object representative 0) still contains O.

Figure 3.9: Result after line 7 in Figure 3.7

23

1. List l1 = new LinkedList ();

2. List l2 = new LinkedList ();

3. Object o1 = new Object ();

4. Object o2 = new Object ();

5. l1.add(o1);

6. l2.add(o2);

{(0(l1),2(o1)),(1(l2),3(o2))}

7. o2 = o1;

{(0(l1),2(o1)),(1(l2),3(o2))}

8. l2 = l1;

{(0(l1),2(o1)),(1(l2),3(o2))}

Figure 3.10: Assignment Example

Assignment Next, consider assignment statements. An assignment statement in

Java replaces a reference to an object with a reference to another object. Assignment

statements always have Gen=Kill=∅. We will discuss the reason for this below. We

classify the transfer functions of assignment statements as follows:

1) For an assignment statement o2 = o1, if a non-collection variable o1 with object

representative m is assigned to another variable o2 with object representative

n, the Gen set is ∅ and the Kill set is ∅ since this assignment does not change any

containment or sharedness relations but does change the object representative

for o2 . As in condition two of object instantiation above, note that we still

keep all containment pairs (lkey(l), n(o2)) where a collection l with object

representative lkey contains o2, since the collection l still contains a reference

pointing to the heap location of the variable o2 pointed to before this statement,

represented by object representative n. However, the object representative

analysis will change the representative of o2 to m.

2) For a collection assignment statement l2 = l1, if a collection l1 with an object

representative m is assigned to another collection l2 with an object represen-

tative n, the object representative of l2 is changed to n after this statement.

Now reference l2 points to the collection object that reference l1 points to.

Since this statement does not create any new containment and sharedness re-

lations, and the collection object pointed by l2 with the object representative

n keeps its containment and sharedness relations, the Gen set for a collection

assignment is ∅ and the Kill set is ∅.

Figure 3.10 shows an example of how our analysis deals with the above types

of assignment statement.

24

l1 :

O1

l2 :

O2

...

...

l1 contains the reference pointing the object O1, which is also pointed by reference
o1; l2 contains the reference pointing to the object O2, which is also pointed by

reference o2.

Figure 3.11: Result after line 6 in Figure 3.10

After line 6, the connection is (0(l1), 2(o1)), (1(l2), 3(o2)) after the instantia-

tions from line 1 to line 4 and the add operations from line 5 to line 6. At

line 7, object o1 with object representative 2 is assigned to o2 with the object

representative 3. Following condition one, the Gen set is ∅ and the Kill set is

∅. At line 8, list l1 with the object representative 0 is assigned to the list l2

with the object representative 1. Following condition two, the Gen set contains

the containment pair (0(l2), 2(o1)) (because l1 contains object o1). The Kill

set contains the containment pair (1(l2), 3(o2)). Since the connection already

contains pair (0(l1), 2(o1) which is identical to (0(l2), 2(o1)), pair (0(l2), 2(o1))

in the Gen set is not actually added to the connection.

Figures 3.11 and 3.12 depict graphically results of the Assignment Example.

3) For a field read l = o.f , where l is a collection and o.f is a collection field of an

object o, it is difficult to track the containment relations and sharedness rela-

tions of l since we must understand other updates of the field o.f . Techniques

like Object Histories [12] or Thin Slicing [15] can track the updates of a field

o.f but our analysis can not. Figure 3.13 shows an example of a field read.

Lines 18–20 define a class CollectionField with two collection fields a,b. Lines

1–11 defines a method m in which we write two may-shared collections l1 and

l2 to fields lf.a and lf.b respectively. l1 and l2 are may-shared because we add

25

l1 :

O1

l2 :

O2

...

...

l1 contains the reference pointing the object O1, which is also pointed by references
o1 and o2; l2 contains the reference pointing to the object O2, which was previously

pointed by reference o2 before the object assignment.

Figure 3.12: Result after line 7 in Figure 3.10

object o defined at line 4 to l1 and l2 at line 5 and 6 respectively. Lines 12–17

defines a method foo in which we read fields lf.a and lf.b and assign them to

collections l3 and l4 respectively. l3 and l4 should have been may-shared if we

call method m immediately before the method foo. However, our connection

after line 16 does not show the expected result. In order to solve this problem,

we designate all collections assigned from field reads are grouped as external

collections, which we store in a list. We assume that all external collections

are may-shared with all collections (In fact, external collections are may-shared

with all collections except collections newly instantiated. Our analysis cannot

track if a collection is initialized but never assigned. The assumption does not

effect the correctness of our results since our results only contain false nega-

tives to indicate if two collections are not-may-shared.) As with our data-flow

sets, our analysis stores object representatives of external collections in the list.

We express the formal definition as follows: if a collection l with object rep-

resentative m is assigned from a collection read o.f with object representative

n at an assignment statement, we call collection l1 a external collection and

add object representative n(l) to the list of external collections. Note that we

add n(l) because the object representative of l changes to n after the assign-

ment. (Behind the scenes, since the Jimple codes for l = o.f are l1 = temp$1

26

1. m(CollectionField lf) {

...

2. Collection l1 = new LinkedList ();

3. Collection l2 = new LinkedList ();

4. Object o = new Object ();

5. l1.add(o);

6. {(1(l1),6(o))}

7. l2.add(o);

8. {(1(l1),6(o)) ,(2(l2),6(o)) ,(1(l2),2(l2))}

9. lf.a = l1;

10. lf.b = l2;

...

11. }

12. foo(CollectionField lf) {

13. Collection l3 = new LinkedList ();

14. Collection l4 = new LinkedList ();

15. l3 = lf.a; // l3 has object representative 1

16. l4 = lf.b; // l4 has object representative 2

{ }

...

17. }

18. class CollectionField {

19. Collection a,b;

20. }

Figure 3.13: Field Write and Read Example

and temp$1 = o.〈O: java.util.Collection f〉, where temp$1 is a local variable

introduced by Jimple, the object representative we actually add to the list of

external collections is n(temp$1). n(l) and n(temp$1) are identical since the

numbers in these two object representatives are equal, as we presented in the

previous chapter. In our thesis, we use the collection name instead of temp

variable for ease of understanding.)

Note since any object can be a collection at the runtime, we extend our external

collections to include all objects o1 in the field read o1 = o.f .

In this section, we described the transfer functions on basic Java operations such as

instantiation and assignment. In the next section, we will discuss transfer functions

on basic collection operations in Java.

3.4.2 Collection Operations

We need only consider collection operations which change the contents of collections,

since only those operations affect collection disjointness. Figure 3.14 shows our col-

lection disjointness analysis operating on code that calls the most common collection

operations.

27

1. List l1 = new LinkedList ();

2. List l2 = new LinkedList ();

3. Object o1 = new Object ();

4. Object o2 = new Object ();

5. l1.add(0, o1);

{(0(l1),2(o1))}

6. l2.addFirst(o2);

{(0(l1),2(o1)),(1(l2),3(o2))}

7. l2.addLast(o1);

{(0(l1),2(o1)),(1(l2),3(o2)),(1(l2),2(o1)),(0(l2),1(l2))}

8. l1.addAll(l2);

{(0(l1),2(o1)),(1(l2),3(o2)),(1(l2),2(o1)),(0(l1),1(l2)),

(0(l1), 3(o2))}

9. l1.remove(o1);

{(0(l1),2(o1)),(1(l2),3(o2)),(1(l2),2(o1)),(0(l1),1(l2)),

(0(l1), 3(o2))}

10. l2.removeFirst ();

{(0(l1),2(o1)),(1(l2),3(o2)),(1(l2),2(o1)),(0(l1),1(l2)),

(0(l1),3(o2))}

11. l2.removeAll(l1);

{(0(l1),2(o1)),(0(l1),3(o2))}

12. l1.clear ();

{ }

13. l2.add(o1);

{(1(l2),2(o1))}

14. l2.set(0, o2);

{(1(l2),2(o1)), (1(l2),3(o2))}

Figure 3.14: Collection Disjointness Analysis on Collection Operations

We classify the methods in java.lang.Collection as follows: adds, removes and others.

3.4.2.1 Group of Add Methods

There is a group of “add” methods in classes that implement the list interface. They

are add(), addElement(), addFirst(), addLast(), addAll().

1) add()/addElement(): The most common add() method from the Collection

interface takes an object as its argument: add(Object). If there is a collection

l and an object o, the Gen set for l.add(o) is {(m(l), n(o))} where m is the

object representative of l and n is the object representative of o at the current

statement; the Kill set is ∅.

There is an additional add() method from the AbstractList class supplementing

the previous one. It is add(int, Object) where int is the index of the position

in the list where the Object is to be added. Since we are only interested

in whether an object is in the list, not the index of the object, the transfer

function for add(int, Object) is identical to that of add(Object). The Gen set is

also {(m(l), n(o))} where m is the object representative of l and n is the object

28

representative of o at the current statement; the Kill set is ∅. The addElement()

method from the Vector class takes an object o as an argument, in the form of

addElement(Object). Our analysis works on this method in exactly the same

way our analysis works on the add(object) method.

2) addFirst()/addLast(): Both of those methods are from the LinkedList class.

addFirst(Object) adds the object to the head of the list while addLast(Object)

adds the object to the tail of the list. The transfer functions for these two

methods are exactly the same as the regular add() method, since the index of

the object added does not matter in determining the disjointness of lists. We

only care if a list contains an object without considering the position of the ob-

ject. Therefore, if there is a list l and an object o, the Gen set for l.addFirst(o)

or l.addLast() is {(m(l), n(o))} where m is the object representative of l and n

is the object representative of o at the current statement; the Kill set is ∅.

3) addAll(): The addAll(Collection) from the Collection interface takes a col-

lection as its argument and adds all elements in the collection to the base

collection. The transfer function for addAll() is more complex than the previ-

ous add() methods. For two collections l1 and l2, the Gen set for l1.addAll(l2)

consists of all pairs (m(l1), xkey(x)) where xkey(x) are all elements in contain-

ment pairs of the form (n(l2), xkey(x)). m is the object representative of l1; n

is the object representative of l2; xkey is the object representative of x which

is contained in l2. The Kill set is ∅. In other words, l1.addAll(l2) adds all

elements in l2 to the collection l1. There is another addAll() method from

the List interface of the form addAll(int, Collection), which supplements the

previous one. Our analysis just ignores the index and analyzes this method

exactly just like the plain addAll() method, since our analysis only considers

the content of the list without considering the order of the contents.

There is one more case to note. Consider two collections l1 and l2 and two objects

o1 and o2. If l1 is aliased with l2 and o1 is aliased with o2, then l1.add(o1) not

only adds o1 to l1, but also adds o2 to l1, o1 to l2 and o2 to l2 because of the

aliasing relations. This condition shows the benefit of using pairs of object repre-

sentatives instead of using pairs of objects themselves in the connection. If we use

pairs of objects in the data-flow set, to account for aliasing relations we have to add

four pairs—(l1, o1), (l1, o2), (l2, o1), (l2, o2)—for a single statement l1.add(o1). How-

ever, if we use pairs of object representatives of objects, since aliased objects must

29

l1 :

o1 o2

l2 :

...

...

Both l1 and l2 contain o1 and o2; l1 and l2 are must-shared.

Figure 3.15: Result of the group of add() methods after line 8 in Figure 3.14.

have the same object representatives, (m(l1), n(o1)), (m(l1), n(o2)), (m(l2), n(o1))

and (m(l2), n(o2)) are identical according to the definition in Chapter 3.2. There-

fore, for a single statement l1.add(o1), our analysis only adds (m(l1), n(o1)) to the

connection, which represents all four pairs. Thus, using object representatives makes

the connection simpler and easier to read.

Lines 5–8 in Figure 3.14 illustrate our analysis on different types of add methods. At

line 5, l1.add(0, o1) adds (0(l1), 2(o1)) to the connection; on line 6, l2.addFirst(o2)

adds (1(l2), 3(o2)) to the connection; at line 7, l2.addLast(o1) adds (1(l2), 2(o1)) to

the connection, and the sharedness pair (0(l1), 1(l2)) is generated by the sharedness

function and added to the connection (the sharedness function will be explained

in Chapter 3.4.4.1); at line 8, l1.addAll(l2) adds (0(l1), 2(o1)) and (0(l1), 3(o2))

to the connection based on the object representative for l2 being 1 and because

(1(l2), 2(o1)) and (1(l2), 3(o2)) are in the connection. Since (0(l1), 2(o1)) is already

in the connection, l1.addAll(l2) actually only adds (0(l1), 3(o2)) to the connection.

Figure 3.15 depicts graphically the results of the group of add() methods for the

example in Figure 3.14.

3.4.2.2 Group of Remove Methods

The group of remove methods consists of remove(), removeFirst(), removeLast(),

removeElement(), removeElementAt(), removeRange(), removeAll().

30

1) remove(): The remove() method takes an index or an object as the argument.

When it is in the form of remove(Object) from the Set interface, if there is a set

s and an object o, the Gen set for statement s.remove(o) is ∅ and the Kill set

is {(m(s), n(o))} where m is the object representative of s and n is the object

representative of o at the current statement. If the remove() method operates

on collections other sets, the Kill set is ∅ since one object may have multiple

occurrences in the collection, and our analysis cannot track the number of

occurrences of the object in the collection. When remove() takes an index

as the argument and intends to remove the element of the given index, our

analysis can do nothing, since our analysis does not know the contents of the

collection. Therefore, if there is a collection l and an integer i, the Gen set for

l.remove(o) is ∅ and the Kill set is also ∅.

2) removeFirst()/removeLast(): Both methods are from the LinkedList class. The

removeFirst() method removes the first element of the list and the remove-

Last() method removes the last element of the list. Transfer functions for

these two methods are similar to the previous remove() method that takes an

integer as the argument: since we do not know the order of elements in the

list during execution time, our analysis can not do anything. If there is a list

l, the Gen set for l.removeFirst() or l.removeLast() is ∅ and the Kill set is also

∅.

3) removeElement()/removeElementAt()/removeRange(): The first two methods

are from the Vector class. removeElement(Object) takes an object as its ar-

gument and removes the first occurrence of this object from the vector. Our

analysis can not track the number of occurrences of this object in the vector

so we do not know whether the vector still contains this object after the re-

moveElement statement. Since our analysis only contains false negatives, it

does nothing to the connection after this method. removeElement(int) takes

an integer as the argument and removes the object of the given index from

the vector. Since our analysis does not know the sequence of the contents of

the vector, it does nothing to the connection after this method. Similarly, our

analysis does nothing to the connection after the method removeRange(int,

int) from the AbstractList class which removes elements from a beginning in-

dex to an end index. The Gen set and Kill set for these three methods are

∅.

31

4) removeAll(): The removeAll() method from the Collection interface takes a col-

lection as the argument and removes all elements in the collection from the base

collection. If there are two collections l1 and l2, the Gen set for l1.removeAll(l2)

is ∅ and the Kill set consists of all pairs (m(l1), xkey(x)) where xkey(x) rep-

resents all elements in containment pairs in the form of (n(l2), xkey(x)). m

is the object representative of l1; n is the object representative of l2; xkey

is the object representative of x which is contained in l2. The kill set also

contains a sharedness pair (m(l1), n(l2)). Note that removeAll makes l1 and

l2 not-may-shared if l1 and l2 are connected but not identical previously.

Appendix 7 shows that programmers use remove operations less frequently than us-

ing add operations. Although our transfer functions do not affect the connection for

most remove operations except remove() on sets and removeAll, the approximation

is still reasonable due to the less frequent use of remove methods.

Lines 9–11 in Figure 3.14 show our analysis on different types of remove methods.

At line 9, l1.remove(o1) does nothing to the connection since we do not know the

number of occurrences of o1 in l1. At line 10, l2.removeFirst() does nothing to the

connection since we do not know the order of the elements in the list. At line 11,

l2.removeAll(l1) removes containment pairs (1(l2), 2(o1)) and (1(l2), 3(o2)) from the

connection since there are containment pairs (0(l1), 2(o1)) and (0(l1), 3(o2)) showing

l1 contains o1 and o2. Our analysis also removes the sharedness pair (0(l1), 1(l2))

from the connection since they no longer have references pointing to the same heap

location after this statement.

Figure 3.16 depicts graphically the results of the group of remove() methods for the

example in Figure 3.14.

3.4.2.3 Other Methods

The clear() method from the Collection interface removes all elements from the col-

lection. There is a removeAllElements() method from the Vector class having similar

functionality. For a collection l, the Gen set for l.clear() is ∅ and the Kill set contains

all containment pairs (m(l), okey(o)) and all sharedness pairs (m(l), ckey(collection))

where m is the object representative of l, okey is the object representative of o and

ckey is the object representative of collection before this statement. If there is a

32

l1 :

o1 o2

...

...l2 :

l1 contains o1 and o2; l1 and l2 are not-may-shared.

Figure 3.16: Result of the group of remove() methods after line 11 in Figure 3.14.

...l1 :

...l2 :

l1 and l2 are not-may-shared.

Figure 3.17: Result of the clear() method after line 12 in Figure 3.14.

vector v, the Gen set for v.removeAllElements() is ∅ and the Kill set contains all

containment pairs (m(v), okey(o)) and all sharedness pairs (m(v), ckey(collection)).

Line 12 in Figure 3.14 shows the result of our analysis on the clear method. We

remove containment pair (0(l1), 2(o1)) and (0(l1), 3(o2)) from the connection. Since

there is no sharedness pair containing l1 in the connection before this statement, our

analysis does not remove any sharedness pairs in this example.

Figure 3.17 depicts graphically the result of the clear() method for the example in

Figure 3.14.

The set method from the List interface takes an integer and an object as the ar-

gument. It replaces the element at the given index in the list with the specified

element and retains the replaced element. Since our analysis does not know the

sequence of the contents of the list, the identity of the element be removed from the

list is unknown. Therefore, our analysis treats the set method exactly like the add

method.For a list l, an integer index and an object o, the Gen set for l.set(index, o)

33

...l1 :

o1 o2

l2 : ...

l2 contains o1 and o2; l1 and l2 are not-may-shared.

Figure 3.18: Result of the set() method after line 14 in Figure 3.14.

is {m(l), okey(o)} and the Kill set is ∅ where m is the object representative of l and

okey is the object representative of o before this statement.

Line 14 in Figure 3.14 shows our analysis on the set method. We add the containment

pair (1(l2), 3(o2)) to the connection. Although, at run time, o1 is the first element

in l2, and should be replaced by o2, our analysis does not know this. Therefore, our

analysis will keep the containment pair (1(l2), 2(o1)) in the connection. Figure 3.18

depicts graphically the result of the set() method for the example in Figure 3.14.

3.4.3 Method Calls

It is usually difficult to analyze method calls in static analysis since we do not know

what the callee method does. We must use a call graph to identify potential callee

methods. To best approximate changes to the connection resulting from method

calls, our collection disjointness analysis tries to read annotations for the callee

method, which can be either user-defined annotations written by programmers or

generated annotations computed by our analysis itself based on pre-annotations.

We use SPARK’s call graph [10] to determine the set of possible callee methods. In

chapter 3.4.3.1, we will focus on a single method, showing how our analysis reads

user defined post-annotations or generated post-annotations and how to compute

generated post-annotations from user defined pre-annotations. In chapter 3.4.3.2,

we will show how we organize the order of the methods to be analyzed.

34

1. public @interface ExampleAnnotation {

2. String pre();

3. String post ();

4. String generatedPostAnnotations ();

5. }

6.

7. @ExampleAnnotation(pre = "NotMayShared(l1, l2); MustShared(l2, l3)",

post = "", generatedPostAnnotation = "MayShared(l1, l2);

NotMayShared(l2, l3)")

8. public static void foo (List l1, List l2, List l3) {

9. l1 = l2;

10. l3.clear ();

11. }

Figure 3.19: Annotations Example

3.4.3.1 Analyze Annotations

Annotations provides information about a program without affecting the operation

of the program. Static analysis tools such as Soot can exploit annotations by reading

their contents to facilitate the analysis process. Since programmers can manually

provide modify annotations, annotations enable communication between program-

mers and static analysis tools.

The annotations we use for our disjointness analysis are multi-valued annotations:

they contain multiple values. We also define a domain specific annotation language

to represent disjointness information. First, the name and order of values are manda-

tory. There are three values in the annotation. They are all String types: pre is

the first value representing the user defined pre-annotations; post is the second value

representing the user defined post-annotations; generatedPostAnnotation is the last

value representing the generated post-annotations by our analysis, which is optional.

The content of the value must be string nodes in the following three forms: Not-

MayShared(l1, l2), MayShared(l1, l2) and MustShared(l1, l2). A value can contain

multiple nodes, separated by ”; ”. We choose these three forms because our analysis

only needs to know the disjointness relations after method calls. Figure 3.19 shows

an example of annotations of a method foo.

Lines 1–5 show the creation of the annotation ExampleAnnotation. Lines 7–8 shows

the use the annotation ExampleAnnotation of method foo. The pre-annotations

of foo are NotMayShared(l1, l2) and MustShared(l2, l3); the user defined post-

annotations of foo are empty; the generated post-annotations are MayShared(l1,l2)

and NotMayShared(l2, l3).

35

A method call in our Jimple intermediate representation implements the Jimple In-

vokeExpr interface. When our analysis finds a method call, it tries to find callee

methods in the call graph, then reads the annotations of these methods and changes

the content of the connection according to the effect of the method call recorded

in the post-annotations (either user defined post-annotations or generated post-

annotations). We parse the post-annotations using Java regular expressions.

We describe one last preliminary step. Methods take formal parameters, which

are replaced by actual parameters when the method is called. The problem is that

annotations of the method only indicate the functionality of the method using formal

parameters. In figure 3.19, the pre-annotation tells the not-may-sharedness between

parameters l1 and l2 and the must-sharedness between l2 and l3. However, if in

another method, we want to analyze calls to method foo, with locals a, b, c as actual

parameters, by reading the annotations our analysis knows nothing about how foo

take effect on lists a, b and c. Therefore we need to map a to l1, b to l2 and c to l3.

Then when the generated post-annotations show MayDisjoint(l1, l2), our analysis

knows a and b are may-shared after calling foo(a, b,c). The mapping process is

simple. We create a list of locals the method takes as argument in order and a list

of parameters of the method. We map elements from the first list to the second list

one by one. When our analysis read the post-annotations, it finds the disjointness

relations between formal parameters and replaces every formal parameter with the

actual parameter mapped to it.

If the post-annotation shows a may-shared or must-shared relation between two

locals, we add the sharedness pair of these two locals to the connection. If the post-

annotation show a not-may-shared relation between two locals, we remove the pair

of these two locals from the connection. Let us recall the annotation example in

Figure 3.19. If the analyzing method calls foo(a, b,c), our analysis adds sharedness

pair (m(a), n(b)) to the connection and remove pair (n(b), p(c)) from the connection,

where m,n, p are object representatives of a, b, c respectively.

Usually programmers cannot write all post-annotations of all methods since there

are too many annotations to write. Our analysis can compute the generated post-

annotation if programmers can provide the pre-annotation, which halves the number

of annotations required. To generate post annotations, we proceed as follows:

First, before analyzing a method, our analysis checks whether programmers provides

36

pre-annotations for that method. If so, our analysis reads the contents of the pre-

annotation. If it mentions the may-sharedness or must-sharedness relation between

two collections, our analysis adds a sharedness pair of the two collections to the

connection. If it mentions the not-may-sharedness relation, our analysis removes the

sharedness pair from the connection.

For example, if the pre-annotation of the method contains a string MayDisjoint(l1,

l2) where l1 and l2 are parameters of this method, the sharedness pair {(Unknown(l1),

Unknown(l2))} should be added to the connection. Our analysis reads pre-annotations

before analyzing the first Jimple statement of the annotated method. Jimple presents

its first statement of any methods with parameter(s) as a parameter assignment

statement. Since our transfer functions do nothing to an assignment statement, as

mentioned in chapter 3.4.1, adding sharedness pairs according to pre-annotations

after the assignment statement only affects the assigned parameter. Thus, the ob-

ject representative of one collection in the sharedness pair may be updated from

Unknown to its value after the assignment statement.

For the above example, if collection l1 is the first parameter of the annotated method

and its object representative is 0 after the parameter assignment, the sharedness pair

added to our data-flow set is {0(l1), Unknown(l2))} instead. However, note that

at least one object representative of these two collections is still Unknown at this

point. Therefore, we will use an update operation to update the value of the object

representatives when they are available. The update operation will be introduced in

chapter 3.4.4.2. After adding the sharedness pairs from the annotations, we apply

the standard data-flow analysis for the method as described in this chapter.

Finally, when the analysis finishes computing the connection at the last statement of

the method, the analysis must verify or generate post-annotations. To do so, it reads

the connection to find collections appearing in the pre-annotations and generates

post-annotations, verifying that the connection applies the stated post-annotations.

For example, suppose the pre-annotation contains a declaration MayShared(l1, l2),

where l1 and l2 are method parameters. If at the end of the method, the connection

does not contain the pair (m(l1), n(l2)), indicating that l1 and l2 are not-may-shared.

Then the generated post-annotation should contain NotMayShared(l1, l2). Or, if the

connection does contain the pair (m(l1), n(l2)), meaning l1 and l2 are may-shared,

the generated post-annotation would contain MayShared(l1, l2).

37

Since our analysis reads developer-provided-post-annotations first then the generated-

annotations, the effect of reading generated-annotations will overide the effect of

reading developer-provided-post-annotations. For instance, if developer-provided-

post-annotations state that collections l1 and l2 are not-may-shared while generated-

annotations state that l1 and l2 are may-shared, our analysis will remove the pair

of l1 and l2 first according to the developer-provided-post-annotations and then add

this pair back according to the generated-annotations. In this way, the generated-

annotations automatically verify the developer-provided-post-annotations. However,

developers can avoid the automatic verification by adjusting the contents of the pre-

annotations. As we mentioned above, our analysis only generates annotated pairs

that appeares in the pre-annotations. Therefore, developers can keep the provided-

post-annotations, by not including the pairs that are in the provided-annotations in

pre-annotations. Figure 4.5 shows an example of this condition we met during the

tests on a benchmark. We will present this example in more detail in Chapter 4.2.

3.4.3.2 Method Ordering

If method A calls method B, and method B calls method C, what is the order of

these methods we need to analyze if we are analyzing method A? We perform a

topological sort on methods in the call graph depending on the caller-callee relations

to make sure our analysis analyzes a callee prior to its caller. Our analysis stores the

result of the topological sort in a list, sortedMethods. If there is a cycle in our call

graph, we just break the back edge to make our graph acyclic and store the whole

cycle in another list, cycles.

Then our analysis tries to analyze all methods in the sortedMethods list in order. If

a method belongs to any cycle in the cycles list, we keep analyzing all methods in

the cycle until no generated post-annotations of all methods in the cycle change.

3.4.4 Additional Operations

Besides the above operations, our analysis employs two additional operations. The

Sharedness operation generates sharedness pairs if two collections contains the same

object or aliasing objects. The Update operation updates objects having unknown

object representatives, representing that this object aliases everything. In chapter

38

3.4.4.1, we will show how our Sharedness operation works; in chapter 3.4.4.2, we will

show how Update operation works.

3.4.4.1 Sharedness

The sharedness pairs describe disjointness relations between collections. Some of

the sharedness pairs are created by reading annotations of methods called as seen in

chapter 3.4.3. Besides that, they are mainly created by the sharedness operations,

which add pairs of lists to the connection when they are may-shared or must-shared,

based on the contents of the lists. Recall the definition of disjointness relations from

chapter 3.1: if two collections l1 and l2 contain at least one object that must alias

or at least one collection that is must-shared, we say l1 and l2 are must-shared; if

two collections l1 and l2 contain at least one object that may alias or at least one

collection that is may-shared, we say l1 and l2 are may-shared; if two collections

l1 and l2 contain no objects that may alias and no collections that are may-shared,

we say l1 and l2 are not-may-shared. By this definition, the Sharedness operation

adds a pair of collections either if they contain at least one object that may alias or

at least one collection that is may-shared or if they contain at least one object that

must alias or at least one collection that is must-shared.

The implementation of the Sharedness operation works in the following way:

1) After each statement, go through every containment pair in the connection

and check it with other containment pairs.

2) Case 1 : For containment pairs (m(l1), o1key(o1)) and (n(l2), o2key(o2)) where

l1 and l2 are collections, o1 and o2 are objects, m,n, o1key, o2key are object

representatives of l1, l2, o1, o2 respectively, if o1 and o2 may alias or must alias,

a sharedness pair (m(l1), n(l2)) is added to the connection (Figure 3.20).

3) Case 2 : For containment pairs (m(l1), p(l3)) and (n(l2), q(l4)) where l1, l2, l3

and l4 are collections, m,n, p, q are object representatives of l1, l2, l3, l4 respec-

tively, if there is an sharedness pair (p(l3), q(l4)) in the connection, meaning

l3 and l4 are may-shared or must-shared, a sharedness pair (m(l1), n(l2)) is

added to the connection (Figure 3.21). Note that all external collections are

may-shared with others, we also check if p(l3) or q(l4) is in the list of external

collections. If either p(l3) or q(l4) is an external collection, the sharedness pair

(m(l1), n(l2)) should also be added to the connection.

39

l1 :

O1

l2 :

O2

...

...may-alias

l1 contains o1 and l2 contains o2. If o1 and o2 may alias, l1 and l2 are may-shared.

Figure 3.20: Sharedness operation: Case 1

l1 :

l3 :

l2 :

l4 :

...

...

...

...

contains

contains

may-shared

l1 contains l3 and l2 contains l4. If l3 and l4 are may-shared, then l1 and l2 are
may-shared.

Figure 3.21: Sharedness operation: Case 2

40

4) Case 3 : If there is no new sharedness pair added to the connection after

going through every containment pairs in the connection, stop. Otherwise, go

through every containment pair in the connection again until no new sharedness

pair is added to the connection.

The following example motivates our analysis. Consider containment pairs

(m(l1),p(l3)), (n(l2),q(l4)), (p(l3),o1key(o1)), ((p(l3),o2key(o2)), (q(l4),o1key(o1))

and (q(l4),o3key(o3)) in the connection where l1, l2, l3 and l4 are collections,

o1, o2 and o3 are objects and m, n, p, q, o1key, empho2key, empho3key are

object representatives of l1, l2, l3, l4, o1, o2, o3 respectively. Since both l3

and l4 contain object o1, the sharedness pair ((p(l3), q(l4)) should be added

to the connection first. Then another sharedness pair (m(l1), n(l2)) should

also be added since l1 contains l3, l2 contains l4 and l3, l4 are may-shared or

must-shared (Figure 3.22). However, if our analysis has already gone through

containment pairs (m(l1), p(l3)) and (n(l2), q(l4)), the second sharedness pair

will not be added to the connection during the first iteration. That is why

the Sharedness operation keeps running through the connection until no new

sharedness pairs are added to the connection.

3.4.4.2 Update object representatives

Unknown object representatives are arise when analyzing methods with annotations.

when our analysis reads the pre-annotation of a method and adds sharedness pairs

of collections to the connection, the initial object representatives of these collections

is Unknown. We should update the object representatives of these collections when

they are available. Since our annotations only contain parameters of the annotating

method. These collections with Unknown object representatives are all parameters

of the current method. Therefore the object representatives a collection will be

available after parameter assignment of this collection. Thus this update operation

is simple and obvious: it update the Unknown object representative of a annotated

collection after the parameter assignment statement of this collection.

Figure 3.23 shows how our update operation works. In this example we want to

analyze the main() method in the UpdateTest class. The main() method calls an

annotated method foo(), taking two lists as arguments. As presented in chapter

3.4.3.2, a callee method must be analyzed before its calling method, our analysis

works through the foo() method first. Lines 1–7 show how our analysis works on

41

l1 :

l3 :

o1 o2

l4 :

o3

...

...

...

...l2 :

contains

contains

Iteration 1: may-shared

Iteration 2: may-shared

l3 and l4 are may-shared at the first step. l1 and l2 are may-shared at the second
step.

Figure 3.22: Sharedness operation: Case 3

the Jimple code of the foo() method. As presented in Chapter 3.4.3.1, our analysis

adds sharedness pairs according to the pre-annotations after the first parameter

assignment statement for convenience. Therefore, after line 4, a sharedness pair

{0(l1), Unknown(l2))} is added to the connection because of the pre-annotation

MustShared(l1, l2). Since l1 has already been updated, our update operation does

nothing on this statement. After line 5, our update operation updates the object

representative of l2 from Unknown to −1. Note that the object representatives

for parameters are decreasing negative integers from 0. For example, the object

representative is 0 for the first parameter, -1 for the second parameter and -2 for

the third parameter. After line 6, the sharedness pair (0(l1),−1(l2)) is removed from

the connection due to the clear() operation on l1, as presented in chapter 3.4.2.3.

42

public class UpdateTest {

public static void main (String [] args) {

List a = new LinkedList ();

List b = new LinkedList ();

Object o = new Object ();

a.add(o);

b.add(o);

foo(a,b);

}

@Value_Annotation(pre = "MustShared(l1 , l2)",post = "")

public static void foo (List l1, List l2) {

l1.clear ();

}

public @interface Value_Annotation {

String pre();

String post ();

}

}

1. public static void foo(java.util.List , java.util.List)

2. {

3. java.util.List l1 , l2;

{ }

4. l1 := @parameter0: java.util.List;

{(0(l1), UNKNOWN(l2))}

5. l2 := @parameter1: java.util.List;

{(0(l1), -1(l2))}

6. interfaceinvoke l1.<java.util.List: void clear ()>();

{ }

7. return;

{ }

}

Figure 3.23: Updating Object Representatives Example

3.5 Initial Values

The entry initial value represents the contents of the connection before the first

statement at the beginning of the method. Local variables at the beginning of a

method have no value until they are initialized. If the initialization gives local a

newly-instantiated list, then the new list contains no object. If it loads from a field,

we record that we do not know about the contents of that field. When we create

a new object, if it does not appear in the annotation, we consider it is fresh and

does not related to any exist objects in the heap. Then entry initial value is set to

be an empty set. If the analyzing method has pre-annotations, our analysis reads

these pre-annotations, adds sharedness pairs to the connection to get the entry initial

value.

43

The new initial value represents the contents of the connection copied to the in-set

and out-set of every statement. Since we keep tracking a single connection through

the whole method at every program point, the new initial value is set to be this

connection.

44

Chapter 4

Experimental Results

In chapter 3, we provided a detailed description of our collection disjointness analysis

and included details about our implementation. In this chapter, we describe our

experience using our implementation of our collection disjointness analysis on two

open source Java projects.

4.1 Benchmarks

SableCC [4] is an open source parser generator in Java designed by Etienne Gagnon.

It is used to build compilers, interpreters and other text parsers by generating object-

oriented frameworks. SableCC automatically generates intuitive strictly-typed ab-

stract syntax trees and tree walkers. It also employs a technique that separates

machine-generated code and user-written code, which shortens the development cy-

cle. JavaCC [6] (Java Compiler Compiler) is a second open source parser generator

in Java. It generates top-down parsers from a formal grammar written in Extended

Backus-Naur Form (EBNF). It includes a tree builder, JJTree, which builds trees

from the bottom up. Note that we analyze the parser generators rather than any

generated parsers. Figure 4.1 summarizes benchmark characteristics.

4.2 Results

Figure 4.2 shows the results of our experiments, including the execution time of our

collection disjointness analysis for each of the benchmarks. We ran the tests on

45

sableCC javaCC

Version 3.2 4.2

Lines of Code 35408 48162

Number of Classes 285 155

Figure 4.1: Benchmark Information

sableCC javaCC

Methods analyzed 1824 1066

Total time (seconds) 213 278

Peak memory usage (Mb) 772.86 1754.89

Methods containing Collection operations 549 134

Methods taking Collections as arguments 46 28

Annotated methods 1 6

Not-May-Shared pairs of Collections found 12 0

Figure 4.2: Experimental Results

a desktop computer with a 3.20 GHz Intel Pentium D with 3.5GB memory. Our

analysis analyzed 1824 methods in SableCC and 1066 methods in javaCC, taking

213 seconds and 278 seconds respectively. Among those methods, 549 methods in

SableCC contain Collection operations while 134 methods in javaCC contain Col-

lection operations. Of these methods, SableCC contains 267 methods and javaCC

contains 45 methods, which manipulate only a single collection. In such methods

contains no not-may-shared relations, since only one collection appears in it.

4.2.1 Discussion on Annotations

Figure 4.2 also shows that 46 methods in SableCC and 28 methods in javaCC take

Collections as arguments. We added pre-annotations to all methods that take at

least two collections as arguments. Thus we annotated 1 method in SableCC and

6 methods in javaCC. The others take only one collection as an argument. We

also added selected post-annotations to avoid bad approximation from the static

analysis. Figures 4.3–4.5 present an example of how pre-annotations and developer-

provided post-annotations contribute to our analysis results. Both methods are in

the LookaheadWalk class in JavaCC. Method genFollowSet() (lines 13–18) calls the

listSplit() method (lines 1–12), which splits a given list into two parts by a mask.

These two parts are stored separately into two lists.

46

1. private static void listSplit(List toSplit , List mask ,

List partInMask , List rest) {

2. OuterLoop:

3. for (int i = 0; i < toSplit.size (); i++) {

4. for (int j = 0; j < mask.size (); j++) {

5. if (toSplit.get(i) == mask.get(j)) {

6. partInMask.add(toSplit.get(i));

7. continue OuterLoop;

8. }

9. }

10. rest.add(toSplit.get(i));

11. }

{(-3(rest),-2(partInMask)),(-3(rest),6(temp\$7)),

(-2(partInMask), 5(temp\$6))}

12. }

13. public static List genFollowSet(List partialMatches ,

Expansion exp , long generation) {

...

{ }

14. List v = ...

15. List v1 = new ArrayList (); //v1 has an object representative 5

16. List v2 = new ArrayList (); //v2 has an object representative 6

17. listSplit(v, partialMatches , v1, v2);

{ }

...

18. }

Figure 4.3: Test Example without Annotations.

Figure 4.3 shows our analysis on the method call in the genFollowSet() method with-

out annotations. Our analysis analyzes the listSplit() method first due to the caller-

callee relation and finds useful results: at the end of the listSplit() method, the con-

nection contains two containment pairs (-3(rest),6(temp$7)) and (-2(partInMask),

5(temp$6)), where temp$7 and temp$6 are local variables introduced by Jimple, and

a sharedness pair (-3(rest),-2(partInMask)), indicating that rest and partInMask are

may-shared at the end of the callee method. However, without annotations, our in-

traprocedural analysis of genFollowSet() does not know about the behaviour of its

callee, listSplit(). Naively, one might say that the connection after line 17 does not

change and is still an empty set. However, this naive result is incorrect, since we

may conclude wrong disjointness relations from it such as v, partialMatches, v1 and

v2 are not-may-shared. Conservatively, we would have to say that all collections

are may-shared after every method call. Therefore, we need to add annotations to

usefully analyze these methods.

Figure 4.4 shows our analysis on the same example with pre-annotations. For method

listSplit(), we notice that it uses list mask to divide list toSplit into two parts: part-

InMask and rest. Therefore, before the method call, list mask and list toSplit are

47

0. @list_ano(pre="MayShared(toSplit , mask); NotMayShared(partInMask , rest)",

post="")

1. private static void listSplit(List toSplit , List mask ,

List partInMask , List rest) {

{(0(toSplit),UNKNOWN(mask)}

2. OuterLoop:

3. for (int i = 0; i < toSplit.size (); i++) {

4. for (int j = 0; j < mask.size (); j++) {

5. if (toSplit.get(i) == mask.get(j)) {

6. partInMask.add(toSplit.get(i));

7. continue OuterLoop;

8. }

9. }

10. rest.add(toSplit.get(i));

11. }

{(-3(rest),-2(partInMask)),(-3(rest),6(temp\$7)),

(-2(partInMask), 5(temp\$6)) ,(0(toSplit),-1(mask))}

12. }

13. public static List genFollowSet(List partialMatches ,

Expansion exp , long generation) {

...

14. List v = ... //v has an object representative 3

15. List v1 = new ArrayList (); //v1 has an object representative 5

16. List v2 = new ArrayList (); //v2 has an object representative 6

17. listSplit(v, partialMatches , v1, v2);

{(3(v),0(partialMatches)) ,(5(v1), 6(v2))}

...

18. }

Figure 4.4: Test Example with only Pre-Annotations.

may-shared since they may contain the same objects, while partInMask and rest

are not-may-shared since they are used to store different parts of toSplit. Thus,

we add pre-annotations “MayShared(toSplit, mask); NotMayShared(partInMask,

rest)” at line 0. Our analysis adds the sharedness pair (0(toSplit),Unknown(mask))

at the beginning of this method and the connection after line 11 contains one

more sharedness pair (0(toSplit),-1(mask)). Since we have pre-annotations for this

method, our analysis will generate post-annotations based on the connection after

line 11. The generated annotations in this example are “MayShared(toSplit, mask);

MayShared(partInMask, rest)” since the connection contains these two sharedness

pairs, which also appear in the pre-annotations. For the caller method genFol-

lowSet(), our analysis reads the generated annotations for method call listSplit at

line 17 and adds two sharedness pairs (3(v),0(partialMatches)) and (5(v1), 6(v2))

to the connection. The pre-annotations therefore improve the analysis of listSplit()

but not genFollowSet(). However, the result after line 17 is still incorrect. Because

v is divided into two parts and stored in v1 and v2, v and v1 and v and v2 should

have been may-shared. But from the connection after line 17, we can conclude that

v and v1 are not-may-shared, as are v and v2. We provide post-annotations to solve

48

0. @list_ano(pre="MayShared(toSplit , mask); NotMayShared(partInMask , rest)",

post="MayShared(toSplit , partInMask); MayShared(toSplit , rest);

MayShared(mask , partInMask)")

1. private static void listSplit(List toSplit , List mask ,

List partInMask , List rest) {

2. OuterLoop:

3. for (int i = 0; i < toSplit.size (); i++) {

4. for (int j = 0; j < mask.size (); j++) {

5. if (toSplit.get(i) == mask.get(j)) {

6. partInMask.add(toSplit.get(i));

7. continue OuterLoop;

8. }

9. }

10. rest.add(toSplit.get(i));

11. }

{(-3(rest),-2(partInMask)),(-3(rest),6(temp\$7)),

(-2(partInMask), 5(temp\$6)) ,(0(toSplit),-1(mask))}

12. }

13. public static List genFollowSet(List partialMatches ,

Expansion exp , long generation) {

...

14. List v = ... //v has an object representative 3

15. List v1 = new ArrayList (); //v1 has an object representative 5

16. List v2 = new ArrayList (); //v2 has an object representative 6

17. listSplit(v, partialMatches , v1, v2);

{(3(v),5(v1)),(3(v),6(v2)) ,(0(partialMatches),5(v1)),

(3(v),0(partialMatches)) ,(5(v1), 6(v2))}

...

18. }

Figure 4.5: Test Example with all annotations

this problem.

Figure 4.5 shows our analysis with both pre-annotations and developer-provided-

post-annotations. For method listSplit, we notice that at the end of the method,

toSplit and partInMask and toSplit and rest are may-shared since toSplit is possi-

bly stored in both partInMask and rest. mask and partInMask are also may-shared

since all masked elements in toSplit determined by mask is possibly stored in part-

InMask. Therefore, we add “MayShared(toSplit, partInMask); MayShared(toSplit,

rest); MayShared(mask, partInMask)” to the developer-provided post-annotations

at line 0. Therefore, for the method call at line 17, our analysis adds sharedness

pairs (3(v),5(v1)),(3(v),6(v2)), and (0(partialMatches),5(v1)) to the connection ac-

cording to the three statements in developer-provided post-annotations respectively,

showing the may-shared relations between v and v1, v and v2, and partialMatches

and v1.

Note that for methods that take a single collection as arguments, we conservatively

treat this collection as an external collection, which is may-shared with all collections.

49

For methods that takes more than one collection as arguments (rare in practise),

the developer must provide pre-annotations. Otherwise, our analysis may generate

incorrect answers.

4.2.2 Discussions on Experimental Results

We did not find any not-may-shared pairs of collections in javaCC. In SableCC, we

find 12 not-may-shared pairs of collections. 8 are in the createParser() method from

the org.sablecc.sablecc.GenParser class; the rest 4 are in the createLexer() method

from the org.sablecc.sablecc.GenLexer class. We have verified that these collections

are not-may-shared through manual inspection as well as simple tests. Figures 4.6–

4.7 and 4.10 show the Jimple code for the above methods. For convenience, we only

show the relevant lines of code.

4.2.2.1 createParser()

Figure 4.8 depicts graphically the results of our analysis on the createParser()

method. After analyzing the connection and removing all normalization pairs at the

end of this method, we find nine containment pairs (79(r170),949(r173)), (949(r173),962($205)),

(949(r173),1341($r244)), (949(173),1355($r226)), (949(173),1398($r254)),

(87(r277),362(r279)), (362(r279),371($r303)), (362(r279),562($r319)),

(99(r351),134($r386)). None of the above collections appears in the list of external

collections. We conclude that there are 8 not-may-shared pairs: (79(r170),(99(r351)),

(79(r170),87(r277)), (79(r170),362(r279)), (949(r173),(99(r351)),

(949(r173),87(r277)), (949(r173),362(r279)), (99(r351),87(r277)),

(99(r351),362(r279)).

Figures 4.6–4.7 show the Jimple code of the createParser() method.

1) Vector r173 is instantiated at lines 9–11. Then four arrays of int $r205, $r205,

$r205 and $r205 are added to r173 at lines 13, 15, 17 and 19 respectively.

Then r173 is added to another vector r170 at line 21. After that r170 calls

the method elements() to return an enumeration of its contents at line 24.

After that the code makes no more changes to vectors r170 and r173 and just

writes the contents to the output stream.

50

1. private void createParser ()

2.{ ...

3. java.util.Vector r170 , r173 , r277 , r279 , r351;

...

4. label25:

5. $r169 = new java.util.Vector;

6. specialinvoke $r169.<java.util.Vector: void <init >() >();

7. r170 = $r169;

...

8. label26:

9. $r172 = new java.util.Vector;

10. specialinvoke $r172.<java.util.Vector: void <init >() >();

11. r173 = $r172;

...

12. label33:

13. virtualinvoke r173.<java.util.Vector:

void addElement(java.lang.Object)>(\ $r205);

...

14. label35:

15. virtualinvoke r173.<java.util.Vector:

void addElement(java.lang.Object)>(\ $r226);

...

16. label36:

17. virtualinvoke r173.<java.util.Vector:

void addElement(java.lang.Object)>(\ $r244);

...

18. label37:

19. virtualinvoke r173.<java.util.Vector:

void addElement(java.lang.Object)>(\ $r254);

...

20. label39:

21. virtualinvoke r170.<java.util.Vector:

void addElement(java.lang.Object)>(r173);

...

22. label40:

23. $i36 = virtualinvoke r170.<java.util.Vector: int size ()>();

24. r265 = virtualinvoke r170.<java.util.Vector:

java.util.Enumeration elements ()>();

...

25. label46:

26. $r276 = new java.util.Vector;

27. specialinvoke $r276.<java.util.Vector: void <init >() >();

28. r277 = $r276;

...

29. label47:

30. $r278 = new java.util.Vector;

31. specialinvoke $r278.<java.util.Vector: void <init >() >();

32. r279 = $r278;

...

33. label52:

34. virtualinvoke r279.<java.util.Vector:

void addElement(java.lang.Object)>($r303);

...

35. label53:

36. virtualinvoke r279.<java.util.Vector:

void addElement(java.lang.Object)>($r319);

...

37. label55:

38. virtualinvoke r277.<java.util.Vector:

void addElement(java.lang.Object)>(r279);

...

Figure 4.6: Jimple code of the createParser() method: Part One.

51

39. label56:

40. $i58 = virtualinvoke r277.<java.util.Vector: int size ()>();

41. r332 = virtualinvoke r277.<java.util.Vector:

java.util.Enumeration elements ()>();

...

42. label62:

43. $r350 = new java.util.Vector;

44. specialinvoke $r350.<java.util.Vector: void <init >() >();

45. r351 = $r350;

...

46. label69:

47. virtualinvoke r351.<java.util.Vector:

void addElement(java.lang.Object)>($r386);

...

48. label71:

49. $i68 = virtualinvoke r351.<java.util.Vector: int size ()>();

50. r400 = virtualinvoke r351.<java.util.Vector:

java.util.Enumeration elements ()>();

...

51.}

Figure 4.7: Result in the createParser() method: Part Two.

2) Vector r279 is instantiated at lines 30–32. Then two arrays of int $r303 and

$319 are added to r279 at lines 34 and 36 respectively. Then r279 is added to

another vector r277 at line 38. After that r277 calls the method elements()

to return an enumeration of its contents at line 41. After that the code makes

no more changes to vectors r277 and r279 and just writes the contents to the

output stream.

3) Vector r351 is instantiated at lines 43–45. Then an String object $r386 is

added to it at line 47. After r351 turns to an enumeration at line 50, the

length of its contents is written to the output stream.

After inspecting the above Jimple code, we can verify the results returned by our

analysis and depicted in figure 4.8.

4.2.2.2 createLexer()

Figure 4.9 depicts graphically the results of our analysis on the createLexer() method.

After analyzing the connection at the end of this method, we find four containment

pairs (292(r133),502(r136)), (502(r136),644($r154)), (53(r177),112(r182)) and (112(r182),

232($r200)). None of the above collections is in the list of the external collections.

We conclude there are four pairs of not-may-shared collections: (292(r133),53(r177)),

(292(r133),112(r182)), (502(r136),53(r177)) and (502(r136),112(r182)).

52

r170 :

r173 :

$r205 $r244 $r226 $r254

r351 : $r386

$r303 $r319

r279 :

r277 :

contains

contains

The above five collections are not-may-shared with each other except (r170,r173)
and (r277,r279).

Figure 4.8: Results of the createParser() method in Figures 4.6–4.7

Figure 4.10 shows the Jimple code of the createLexer() method.

1) Vector r136 is instantiated at lines 9–11. Then an array of int $r154 is added

to r136. Then r136 is added to another vector r133 at line 13. After that

r133 calls the method elements() to return an enumeration of its contents at

line 18. After that the code makes no more changes to vectors r133 and r136

and just writes the contents to the output stream.

2) Vector r182 is instantiated at lines 24–26. Then an Integer object $r200 is

added to r182. Then r182 is added to another vector r177 at line 30. After

that r177 calls the method elements() to return an enumeration of its contents

53

r133 :

r136 : $r154

r182 : $r200

r177 :

contains

contains

The above four collections are not-may-shared with each other except (r133,r136)
and (r177,r182).

Figure 4.9: Results of the createLexer() method in Figure 4.10

at line 33. After that the code makes no more changes to vectors r177 and

r182 and just writes the contents to the output stream.

After inspecting the above Jimple code, we can verify the results returned by our

analysis and depicted in figure 4.9.

54

1. private void createLexer ()

2.{

3. java.util.Vector r133 , r136 , r177 , r182;

...

4. label18:

5. $r132 = new java.util.Vector;

6. specialinvoke $r132.<java.util.Vector: void <init >() >();

7. r133 = $r132;

...

8. label19:

9. $r135 = new java.util.Vector;

10. specialinvoke $r135.<java.util.Vector: void <init >() >();

11. r136 = $r135;

...

12. label20:

13. virtualinvoke r136.<java.util.Vector:

void addElement(java.lang.Object)>($r154);

...

14. label21:

15. virtualinvoke r133.<java.util.Vector:

void addElement(java.lang.Object)>(r136);

...

16. label22:

17. $i21 = virtualinvoke r133.<java.util.Vector: int size ()>();

18. r167 = virtualinvoke r133.<java.util.Vector:

java.util.Enumeration elements ()>();

...

19. label29:

20. $r176 = new java.util.Vector;

21. specialinvoke \$r176.<java.util.Vector: void <init >() >();

22. r177 = $r176;

...

23. label30:

24. $r181 = new java.util.Vector;

25. specialinvoke $r181.<java.util.Vector: void <init >() >();

26. r182 = $r181;

...

27. label31:

28. virtualinvoke r182.<java.util.Vector:

void addElement(java.lang.Object)>(\ $r200);

...

39. label32:

30. virtualinvoke r177.<java.util.Vector:

void addElement(java.lang.Object)>(r182);

...

31. label33:

32. $i31 = virtualinvoke r177.<java.util.Vector: int size ()>();

33. r206 = virtualinvoke r177.<java.util.Vector:

java.util.Enumeration elements ()>();

...

34.}

Figure 4.10: Jimple code of the createLexer() method.

55

Chapter 5

Related Work

We discuss five main related works in this chapter: object representatives, heap

reachability analysis, conditional must not aliasing analysis, static reasoning about

contents of containers and iComments.

5.1 Object Representatives

Our collection-disjointness analysis relies on good points-to analysis information.

Object representatives provide precise aliasing information based on the MustAlias

and NotMayAlias analysis [1]. Our analysis employ object representatives to rep-

resent abstract objects in our data-flow sets, which simplifies the transfer function

calculations and makes our data-flow sets easy-to-understand.

Object representatives can actually be used as a disjointness analysis to determine

whether two objects are disjoint in the heap. Our disjointness analysis therefore

can be seen as a generalization of object representatives from individual objects to

collections.

5.2 Disjointness Analysis for Java-like Languages

The disjointness analysis for Java-like languages by Jenista and Demsky provide a

method of determining disjointness properties of selected objects in Java-like lan-

guages [7]. It finds disjointness relations from the reachability information with

56

static reachability graphs which contain nodes to represent objects and edges to

represent heap references. In their approach, two objects are disjoint if they are

not reachable in the reachability graph. Therefore. their disjoint analysis can find

disjointness relations of data-structures, like collections, by reasoning about whether

objects contained in the data-structures are disjoint or not.

Our collection-disjointness analysis focuses on sharedness relations between collec-

tions. The main difference is that they keep track all of the structures of the heap via

the reachability graph while we use collections methods. Our abstraction uses the

containment pairs to represent the containment relations, which say whether a col-

lection contains an object, and sharedness pairs to represent the sharedness relations,

which say whether two collections may contain aliased objects or shared collections.

Our analysis also defines three types of sharedness relations: may-sharedness, must-

sharedness and not-may-sharedness. We use a data-flow analysis to find disjointness

relations based on the containment relations and annotations of method calls.

5.3 Conditional Must Not Aliasing Analysis

The conditional must not aliasing analysis by Naik and Aiken provide a method

for static race detection. We say a multi-threaded program contains a race if two

threads can access the same memory location without worrying about the order [11].

Instead of analyzing a piece of code directly by a must-alias analysis, this analysis

start with locks in a multi-threaded program and reasons about locations in the

locks. If two locks are different then their guarded locations must be disjoint.

Compared to our analysis, Naik and Aiken’s analysis provides a complementary

method for determining disjointness relations. Our analysis does not need the code

to acquire a lock in a multi-threaded program, but instead determines disjointness

relations to find whether we need to lock the collection operations. The condi-

tional must not aliasing analysis can find the disjointness relations of any locations

guarded by locks, while our analysis can only find disjointness relations of collections.

However, our analysis is more flexible since it can find the disjointness relations of

collections at any program points without regarding locks.

57

5.4 Static Reasoning about Contents of Containers

The static technique for reasoning about contents of containers by Dillig, Dillig and

Aiken provides a method of precisely and automatically monitoring the contents of

containers [2]. Their precise reasoning technique firstly defines a simple statically-

typed language with concrete operational semantics to formalize their technique.

Then they provide abstract semantics to define the abstract domain and the abstract

model of containers. Based on the abstract domain and model, they provide abstract

semantics to analyze container operations and iterations.

They classify containers into two types: position-dependent containers and value-

dependent containers. The key insight of their technique is to focus on understanding

the contents of containers without regarding how those containers are implemented.

Therefore, they model any container as a function that converts a key to an abstract

index of type integer, and then map the index to a value, which is the value of ele-

ments in the container [2]. They present abstract semantics on container operations

for reading from, writing to, and allocating containers.

In our analysis, we also track the contents of collections, which are containers, for

finding disjointness relations. The key difference between our approach and their

static reasoning techniques is that our abstraction is different. In particular, it

is more lightweight. We define containment pairs to monitor objects contained in

containers and employ object representatives to represent contained objects. Our

analysis tracks the contents of collections by analyzing explicit collection operations

rather than grouping them into reading from, writing to, and allocating containers.

Our analysis on the contents of collections is not as precise as their approach is,

due to our lighter-weight abstraction. However, our analysis can still provide sound

results in finding not-may-shared collections.

5.5 iComment

iComment by Tan, Yuan, Krishna and Zhou combines technique of Natural Lan-

guage Processing (NLP), Machine Learning, Statistics and Program Analysis to

automatically analyze comments written in natural language and detect inconsis-

tencies between comments and code. Since our analysis reads annotations of callee

methods in method calls, we are interested in their method of reading comments to

58

determine disjointness relations. Their technique of reading comments is to build

a rule generator to extract “hot” comments that specify certain assumptions and

requirements (referred to as rules). The rules can be checked against source code.

Note that the developer-provided annotations in analysis are “rule-like” languages.

These annotations specify assumptions and requirements about collection disjoint-

ness relations, and the developer-provided-post-annotations can be verified by our

generated-post-annotations computed from the source code. The “rule-like” prop-

erty of annotations may possibly enhance our analysis to read and write annotations

in a more flexible way, instead of restricting annotations in only three forms as

presented in chapter 3.4.3.1.

59

Chapter 6

Conclusions and Future Work

In this thesis, we defined the notion of disjointness relations, explained how to com-

pute these relations and implemented a disjointness analysis relying on the collection

API in Java. We also presented experimental results. Our collection-disjointness

analysis enables light-weight specifications, thereby helping program understanding

and parallelization.

We defined three types of disjointness relations between collections: may-shared,

not-may-shared and must-shared. If two collections contain at least one object that

must alias or at least one collection that is must-shared, we conclude that these

two collections are must-shared; if two collections contain at least one object that

may alias or at least one collection that is may-shared, we conclude that these two

collections are may-shared; and if two collections contain no objects that may alias

or no collections that are may-shared, we conclude that these two collections are

not-may-shared. These definitions enable us to formally describe the disjointness

relations between collections.

After giving the definitions, we presented rules for calculating and implementing our

collection-disjointness analysis using the Soot [18, 19] Java bytecode optimization

framework. We employed a forward data-flow analysis and used pairs of object

representatives as the contents of our data-flow sets. We defined the initial value of

our data-flow sets and presented transfer functions on Java statements that change

the contents of our data-flow sets appropriately upon object instantiation, object

assignment, collection operations and method calls. Method calls are usually difficult

to analyze in static analysis since we do not know what the callee method does.

60

To solve this problem and better approximate our analysis results, we designed

and implemented a way of reading developer-provided annotations on the callee

methods to provide disjointness information as the result of the method calls. We

also provided a way of generating post-annotations from pre-annotations to reduce

the work of programmers.

After the implementation, we finally reported experimental results from our collection-

disjointness analysis. Our analysis finds not-may-shared collections correctly on two

benchmarks.

6.1 Future Work

Our work on collection-disjointness analysis suggests to a number of possible en-

hancements in the future:

1. A graphical user interface for users to query data-flow sets to find disjointness

relations of any two collections. Currently, to use our collection-disjointness

analysis, users need to add a line of code to their source code to query the

disjointness relations. A graphical user interface would make our analysis easier

to use, even for those users who know nothing about our analysis and just want

to use it to determine disjointness relations between selected collections.

2. A more precise analysis to distinguish the must-shared relations from the may-

shared relations. Currently, our analysis can not distinguish between a must-

shared relation and a may-shared relation due to our current approximation

mechanisms. Note our reported results are still sound: any time our analy-

sis reports not-may-shared, this is true. However, an extended analysis can

provide additional information, which can enable programmers to better un-

derstand theirs programs.

3. A more flexible analysis to allow user to write annotations and allow our anal-

ysis to read annotations in more “flexible” languages. Currently, contents

of the annotations must be string nodes in the following three forms: Not-

MayShared(l1, l2), MayShared(l1, l2) and MustShared(l1, l2). Instead, if con-

tents of the annotations are not restricted by the above forms, it is easier

for programmers to write and understand annotations. Tan et al’s research

61

on reading and verifying comments [16] in programming languages provides a

potential technique to achieve this goal.

62

Bibliography

[1] Eric Bodden, Patrick Lam, and Laurie Hendren. Object representatives: a

uniform abstraction for pointer information. In Proceedings of the 1st Interna-

tional Academic Research Conference of the British Computer Society (Visions

of Computer Science), pages 391–405, 2008.

[2] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs

using containers. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, POPL ’11, Austin, USA,

2011.

[3] Arni Einarsson and Janus Dam Nielsen. A survivor’s guide to Java program

analysis with Soot. July 2008.

[4] Etienne Gagnon. SableCC, Last Accessed in Novemver 2010. URL http://

sablecc.org/.

[5] Rakesh Ghiya and Laurie J. Hendren. Connection analysis: A practical inter-

procedural heap analysis for C. International Journal of Parallel Programming,

24(6):547–578, 1996.

[6] java.net. JavaCC. Last Accessed November 2010. URL https://javacc.dev.

java.net/.

[7] James C. Jenista and Brian Demsky. Disjointness analysis for java-like lan-

guages. Technical Report Technical Report UCI-ISR-09-1 REVISED, April

2009.

[8] Patrick Lam. Compiler fundamentals. Lecture notes for ECE750-T5: Static

Analysis for Software Engineering, University of Waterloo, September 2008.

63

http://sablecc.org/
http://sablecc.org/
https://javacc.dev.java.net/
https://javacc.dev.java.net/

[9] William Landi. Undecidability of static analysis. ACM Lett. Program. Lang.

Syst., 1:323–337, December 1992. ISSN 1057-4514. doi: http://doi.acm.org/10.

1145/161494.161501. URL http://doi.acm.org/10.1145/161494.161501.

[10] Ondřej Lhoták. Spark: A flexible points-to analysis framework for Java. Mas-

ter’s thesis, McGill University, December 2002.

[11] Mayur Naik and Alex Aiken. Conditional must not aliasing for static race detec-

tion. In Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, POPL ’07, pages 327–338, New York,

NY, USA, 2007. ACM. ISBN 1-59593-575-4. doi: http://doi.acm.org/10.1145/

1190216.1190265. URL http://doi.acm.org/10.1145/1190216.1190265.

[12] Aakarsh Nair. Object histories in Java. Master’s thesis, University of Waterloo,

April 2010.

[13] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program

Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999. ISBN

3540654100.

[14] Michael I. Schwartzbach. Lecture notes on static analysis. University of Aarhus,

2008.

[15] Manu Sridharan, Stephen J Fink, and Rastislav Bodik. Thin slicing. In Proceed-

ings of the 2007 ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’07, pages 112–122. ACM, June 2007.

[16] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. iComment: Bugs

or bad comments? In Proceedings of the 21st ACM Symposium on Operating

Systems Principles (SOSP07), October 2007.

[17] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,

Hayden Melton, and James Noble. Qualitas corpus: A curated collection of Java

code for empirical studies. 2010 Asia Pacific Software Engineering Conference

(APSEC2010), December 2010.

[18] Raja Vallée-Rai. Soot: a Java bytecode optimization framework. Master’s

thesis, McGill University, July 2000.

[19] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice

Pominville, and Vijay Sundaresan. Optimizing Java bytecode using the Soot

64

http://doi.acm.org/10.1145/161494.161501
http://doi.acm.org/10.1145/1190216.1190265

framework: Is it feasible? In Compiler Construction, 9th International

Conference (CC 2000), pages 18–34, 2000. URL www.sable.mcgill.ca/

publications.

65

www.sable.mcgill.ca/publications
www.sable.mcgill.ca/publications

Appendix A - Counting the

number of Add and Remove

Methods

With help from Derek Rayside, we examined 99 Java programs and roughly counted

the number of statements containing add() methods and remove() methods by string

matching. The purpose of this examination is to prove that programmers use the

group of remove() methods our analysis cannot handle less often than the group of

add() methods.

The group of add() methods we checked consists of add(), addFirst(), addLast(),

addElement() and addAll(), and the group of remove() methods we checked consists

of remove(), removeFirst(), removeLast(), removeElement(), removeElementAt(),

and removeRange().

Note that the analysis we presented in Chapter 3 does nothing to removeElement()

statements on vectors and remove() statements on collections other than sets since

it cannot track the number of occurrences of the object in the collections. Our

analysis also does nothing to removeFirst(), removeLast(), removeElementAt() and

removeRange() since it cannot track during run-time the sequence of the contents

of collections.

We just roughly count numbers by string matching to determine the program be-

haviour. The results not only include the number of add and remove operations but

also include the number of method declarations of add and remove. For example,

if a program has a method declaration “void add(Object o) {...}”, we just count

add(Object o) as one occurrence of the add operations. The results also ignore the

case when programmers declare their own add or remove methods. For example, if

66

a program has a method “void addF(Object o) {*.add(o);}”, all add() operations by

using method addF() are not counted. However, since we only roughly approximate

the behaviour of a program, these results give a good idea of the overall trends in

our examination.

The results proved our assumption. The number of add() method calls occurring

in 99 programs is 72782 while the number of remove() method calls is 9603, which

shows that programmers use the group of add() methods about ten times as often

as using the group of remove() methods.

The list of programs we examined are from the Qualitas Corpus, a standard corpus

of open-source Java software for use in empirical studies of software[17]:

Ant 1.8 Antlr 3.2 ArgoUML 0.3

ArtOfIllusion 2.5.1 AspectJ 1.0.6 Axion 1.0-M2

Azureus 4.3.1.4 C-JDBC 2.0.2 Checkstyle 4.3

Cobertura 1.9 Colt 1.2 Columba 1.0

Compiere 2.5 Derby 10.1.1.0 DisplayTag 1.1

Dr.Java 20050814 DrawSWF 1.2.9 Eclipse 3.6

Emma 2.0.5312 FindBugs 1.0 FitJava 1.1

FitLibraryForFitness 20050923 FreeCS 1.2

FreeCol 0.9.2 GT2 2.2 Galleon 1.8

Gantt 1.11.1 HSQLDB 1.8.0.4 HTMLUnit 1.8

Heritrix 1.8 Hibernate 3.5.3 Informa 0.6.5

JPF 1.0.2 JREFactory 2.9.19 JSPWiki 2.2.33

Jag 5.0.1 James 2.2 JasperReports 1.1

JavaCC 3.2 Jena 2.5.5 Jext 5.0

Jung 2.2.0.1 Log4J 1.2.13 Lucene 3.0.1

MVNForum 1.0 Marauroa 2.5 Megamek 20051011

MyFaces 1.2 NakedObjects 3.0.1 NekoHTML 0.9.5

OSCache 2.3 OpenJMS 0.7.7a3 PMD 3.3

POI 2.5.1 PicoContainer 1.3 Pooka 060227

Proguard 3.6 Quartz 1.5.2 QuickServer 1.4.7

Quilt 0.6a5 RSSOwl 1.2 Roller 2.1.1

SableCC 3.1 Sandmark 3.4 SpringFramework 1.2.7

SquirrelSQL 2.4 Struts 1.2.9 Sunflow 0.07.2

Tomcat 5.5.17 Trove 1.1b5 Velocity 1.5

WebMail 0.7.10 Weka 3.7.1 XMojo 5.0

Xalan 2.7 Xerces 2.8 eXoPortal 1.0.2

iReport 0.5.2 iText 1.4.5 iVataGroupware 0.11.3

jASML 0.1 jChemPaint 2.0.12 jEdit 4.3 pre14

jFinDateMath R1.0 jFreeChart 1.0.1 jGraph 5.13

jGraphPad 5.10.0.2 jGraphT 0.7.3 jGroups 2.6.2

jHotDraw 6.0b1 jMeter 2.3.4 jMoney 0.4.4

jOggPlayer 1.1.4 jParse 0.96 jRat 0.6

jRuby 1.0.1 jTOpen 4.9 jUnit 4.8.1

jsXe 0.4b

67

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Approach
	1.2 Results
	1.3 Limitations
	1.4 Thesis Contributions
	1.5 Thesis Outline

	2 Background Knowledge
	2.1 Static Analysis
	2.2 Data-Flow Analysis
	2.3 Points-to Analysis and SPARK
	2.4 Object Representatives
	2.5 Soot and Jimple

	3 Implementation
	3.1 Problem Definition
	3.2 Data-flow Set
	3.3 Merge Point
	3.4 Transfer Functions
	3.4.1 Basic Operations
	Instantiations
	Assignment

	3.4.2 Collection Operations
	3.4.2.1 Group of Add Methods
	3.4.2.2 Group of Remove Methods
	3.4.2.3 Other Methods

	3.4.3 Method Calls
	3.4.3.1 Analyze Annotations
	3.4.3.2 Method Ordering

	3.4.4 Additional Operations
	3.4.4.1 Sharedness
	3.4.4.2 Update object representatives

	3.5 Initial Values

	4 Experimental Results
	4.1 Benchmarks
	4.2 Results
	4.2.1 Discussion on Annotations
	4.2.2 Discussions on Experimental Results
	4.2.2.1 createParser()
	4.2.2.2 createLexer()

	5 Related Work
	5.1 Object Representatives
	5.2 Disjointness Analysis for Java-like Languages
	5.3 Conditional Must Not Aliasing Analysis
	5.4 Static Reasoning about Contents of Containers
	5.5 iComment

	6 Conclusions and Future Work
	6.1 Future Work

	Bibliography
	Appendix A - Counting the number of Add and Remove Methods

