

A Platform for Assessing the Efficiency of Distributed

Access Enforcement in Role Based Access Control

(RBAC) and its Validation

by

Marko Komlenović

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

© Marko Komlenović 2011

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

We consider the distributed access enforcement problem for Role-Based Access Control

(RBAC) systems. Such enforcement has become important with RBAC's increasing adoption,

and the proliferation of data that needs to be protected. We provide a platform for assessing

candidates for access enforcement in a distributed architecture for enforcement. The platform

provides the ability to encode data structures and algorithms for enforcement, and to measure

time-, space- and administrative efficiency. To validate our platform, we use it to compare the

state of the art in enforcement, CPOL [6], with two other approaches, the directed graph and the

access matrix [9, 10]. We consider encodings of RBAC sessions in each, and propose and justify

a benchmark for the assessment. We conclude with the somewhat surprising observation that

CPOL is not necessarily the most efficient approach for access enforcement in distributed RBAC

deployments.

iv

Acknowledgements

This thesis was submitted in December 2010 to the University of Waterloo, Canada, for the

degree of MASc in the faculty of Electrical and Computer Engineering.

I would like to thank all the people from University of Waterloo who helped me along the way of

my graduation.

First and foremost, I acknowledge my professor and supervisor Dr Tripunitara Mahesh, who

always had a good advice throughout our many constructive discussions, gave me support and

always pushed me to reach up my potential.

I would like to thank my colleague T.Zitouni, for his contribution on measurements part.

I would also like to thank readers of this thesis for their help and suggestions.

v

Table of Contents

List of Tables .. vi

List of Figures .. vii

1. Introduction ...1

2. Related Work ..6

3. Design ...7

3.1. Policy Decision Point (PDP) ...7

3.1.1. The RBAC Policy at a PDP ..8

3.2. Secondary Decision Point (SDP) ... 12

3.2.1. Directed graph .. 14

3.2.2. Access Matrix .. 18

3.2.3. CPOL ... 21

4. Validation ... 27

4.1. Benchmark ... 27

4.1.1. RBAC Profiles ... 27

4.1.2. Session profiles .. 29

4.2. Evaluation and methodology ... 30

4.2.1. Methodology .. 31

4.2.2. Evaluation .. 31

5. Conclusion .. 41

Bibliography ... 42

Appendix A... 45

Appendix B ... 47

vi

List of Tables

Table 1 - Access matrix for our example from Chapter 1, for the RBAC policy in Figure 2. 18

Table 2 - Categorization of RBAC polices in the benchmark. .. 28

Table 3- Session profile categories in our benchmark. ... 29

Table 4 - Average access check times in µs with the inter-session attributes, and one intra-

session attribute (nature of RH), as parameters. ... 33

Table 5 - The administrative overhead on a Core RBAC policy. We assume a proportion of 75%

changes to user-role relationships, 20% to role-permission relationships, and 5% to role-role

relationships. The number of sessions is 1000, and every user has at least one session............... 39

Table 6 - Our rating of "good", "fair", "poor" for each approach that we assess. While we argue

that these ratings follow from our quantitative observation, they are somewhat subjective. 40

vii

List of Figures

Figure 1 - A Reference Monitor and its use for access enforcement. The user attempts to read and

write a file. The reference monitor mediates both attempts and after consulting the access control

policy, allows him to read the file, but not write it. ..1

Figure 2 - An Example of RBAC policy. Users are shown in diamonds, roles in ovals and

permissions in rectangles. Edges represent user-role, role-role and role-permission assignments.

In the example, the user Alice is assigned to the role Project Manager and is therefore authorized

to the permission Team Organization. She is also authorized to the role Developer, and therefore

to Code Modification. ...2

Figure 3 - An architecture, for distributed access-enforcement in RBAC, and an associated flow.

The PDP is a centralized entity at which the RBAC policy is maintained. Enforcement is

performed at a PEP. The PEP is aided by an SDP. The SDP can be seen as a cache of a portion of

the RBAC configuration from PDP. ..3

Figure 4 - PDP class diagram ..7

Figure 5 - Vertex class diagram ... 10

Figure 6 - SDP class diagram .. 12

Figure 7 - Session class diagram .. 13

Figure 8 - The directed graph for our example sessions sa and sb that are discussed in the text, for

the RBAC policy in Chapter 1, Figure 2. ... 15

Figure 9 - Cpol package class diagram .. 23

Figure 10 - Average access check time in µs and the corresponding standard deviation for CPOL.

 ... 34

Figure 11 - Average access check time in µs and the corresponding standard deviation for access

matrix. .. 35

Figure 12 - Average access check time in µs and the corresponding standard deviation for

directed graph. .. 35

Figure 13 – Time efficiency for small (10) to large (10,000) numbers of roles in a session. 36

Figure 14 - Time efficiency for small (10) to large (10,000) numbers of permissions in a session.

 ... 36

viii

Figure 15 – The space efficiency of our approaches. In our data set that we used to generate this

graph, the number of roles and permissions grows by a constant factor per session. We show that

access matrix and CPOL are space inefficient, while directed graph is space efficient. 38

1

1. Introduction

 Access control deals with the provision of regulated accesses to resources by principals.

It is one of the most important aspects of security. In Figure 1, we show how access control is

enforced. A user wishes to perform read and write operations on a file. The user makes a request

that is mediated by an entity called a reference monitor. The reference monitor consults an access

control policy to make its decision. An access control policy specifies the resources to which a

user has access. The reference monitor either allows or denies the particular action.

Figure 1 - A Reference Monitor and its use for access enforcement. The user attempts to read and write a file. The

reference monitor mediates both attempts and after consulting the access control policy, allows him to read the file, but

not write it.

 A syntax for access control policies is Role-Based Access Control (RBAC) [2, 3]. RBAC

is becoming the de-facto standard for access control in enterprise settings. In RBAC, rather than

assigning a user directly to permissions, we assign a user to roles, and the roles to permissions.

Also, the roles are associated with one another in a partial ordering called a role-hierarchy. An

example of an RBAC policy is shown in Figure 2.

2

Figure 2 - An Example of RBAC policy. Users are shown in diamonds, roles in ovals and permissions in rectangles. Edges

represent user-role, role-role and role-permission assignments. In the example, the user Alice is assigned to the role

Project Manager and is therefore authorized to the permission Team Organization. She is also authorized to the role

Developer, and therefore to Code Modification.

.

 We consider access enforcement in the context of RBAC. In RBAC, a user exercises

permissions in sessions. A session is associated with a set of roles to which the user is authorized

in the RBAC configuration. A user can create multiple sessions. In the example in Figure 2,

users Alice and Bob may activate sessions sa and sb respectively. Alice may associate session sa

with the role Software Engineer, which authorizes sa to the permissions Project Planning and

Code Modification. Bob may associate sb with the roles Software Engineer and IT Consultant,

which authorizes sb to the permissions Project Planning, Code Modification and Project Review.

 Modern enterprises generate and archive large amounts of data. Such data needs to be

protected by access control systems. The proliferation of data requires access control systems to

3

scale to tens of thousands of resources and permissions [1]. The time-efficiency of access

enforcement is an important consideration for RBAC systems. The size of RBAC polices can be

large (tens of thousands of permissions and users), and this can impact time-efficiency. For time-

efficiency, we may distribute access enforcement across several reference monitors. With such

an approach, a single, monolithic reference monitor is no longer a performance bottleneck. Wei

et al. [4] have proposed an architecture for such distributed enforcement (see Figure 3).

Figure 3 - An architecture, for distributed access-enforcement in RBAC, and an associated flow. The PDP is a centralized

entity at which the RBAC policy is maintained. Enforcement is performed at a PEP. The PEP is aided by an SDP. The

SDP can be seen as a cache of a portion of the RBAC configuration from PDP.

4

In the architecture, the Policy Decision Point (PDP) is a centralized entity at which the

RBAC policy is maintained. Enforcement is performed at Policy Enforcement Points (PEPs).

PEPs are aided by Secondary Decision Points (SDPs). An SDP can be seen as a cache of a

portion of the RBAC configuration from the PDP. In Figure 3, we show a typical chronological

flow of events. In Step 1, a user activates a session at a PEP/SDP. In RBAC, users exercise

permissions in sessions. A session is associated with a set of roles to which the user is authorized

in the RBAC configuration. In the example in Figure 2, users Alice and Bob may activate

sessions sa and sb respectively.

The request to activate a session propagates to the PDP, which makes the decision on

whether it is allowed. If it is, in Step 2, the PDP communicates a data structure to the SDP that

the latter uses in Steps 3, 4 and 5 to make decisions on access requests that pertain to that

session, that are communicated to it by the PEP.

In adopting the architecture from Figure 3, a question that arises is: what are the data

structure and associated algorithms we should use in an SDP, so that an access check is fast? In

answering this question, we also need to consider other aspects that may be traded-off to achieve

time-efficiency. Two such aspects are:

 Space efficiency — this relates to the space that a particular data structure takes

at the SDP. Space and time efficiency can be at odds; this is the classical time-

space trade-off.

 Administrative efficiency — with this, we ask whether a particular data structure

at the SDP lends itself to easy administration in the propagation of administrative

changes that are made at the PDP, to the SDP. We quantify this as the time it

takes to update the SDP when an administrative change is made to the RBAC

configuration at the PDP.

We provide a platform for assessing candidates for access enforcement in the architecture

shown in Figure 3. The platform provides the ability to encode data structures and algorithms

that may be used for enforcement, and to measure the time-, space- and administrative

efficiency.

To validate our platform, we use it to assess three approaches for the data structure at the

SDP. They are: directed graph, access matrix [9, 10] and CPOL [6]. Apart from validating our

platform, our intent with our assessment is to compare CPOL with two other approaches that are

5

natural candidates. CPOL is an approach to distributed access enforcement which, to our

knowledge, is the state of the art from the standpoint of time-efficiency. The directed graph is a

natural candidate as an RBAC policy can be perceived as a directed graph. The access matrix is a

canonical and intuitively appealing representation for an access control policy. Consequently, we

consider it a natural candidate as the data structure at an SDP.

A challenge in conducting an empirical assessment is the lack of a meaningful

benchmark. The establishment of meaningful benchmarks is seen as an important milestone in

several settings in computing. We propose and adopt a benchmark in our work (see Chapter 4).

Our objective is for what we propose to serve as a macro-benchmark [7] — one that has RBAC

policies and session profiles that are realistic.

In summary, our contribution is a platform for assessing approaches for distributed access

enforcement in RBAC. Also, we validate its utility by assessing three approaches, one of which

is the state of the art for access enforcement, but has not been previously used in the context of

RBAC. The remainder of the thesis is organized as follows. In the next chapter, we discuss

related work. In Chapter 3, we describe our architecture and the three approaches that we access.

In Chapter 4, we describe our benchmark, and present our validation. We conclude in Chapter 5,

with a rating of each of the three approaches for time-, space- and administrative efficiency.

Portions of this work have been accepted to appear in a peer-reviewed publication [14].

6

2. Related Work

There is large amount of research in distributed access control, and in distributed RBAC

in particular. However, there is relatively little work on efficient access enforcement in these

contexts. To our knowledge, CPOL [6] is the state of the art in access enforcement in distributed

settings. CPOL employs caching and a structure called an AccessToken that is application-

specific to speed-up access enforcement. The work on CPOL points out also that simply using

database querying does not suffice for fast access enforcement. Our work is close also to those of

Wei et al. [4], Tripunitara and Carbunar [5] and Liu et al. [8], that address the access

enforcement problem in RBAC. Wei et al. [4] propose the architecture that we adopt in this

paper (see Figure 3). In that context, they propose authorization recycling which is one of the

approaches that we assess. Liu et al. [8] propose a technique that they call transformations for

access checking in RBAC. We see a transformation as encoding RBAC in an access matrix; it is

one of the approaches that we assess.

7

3. Design

As we state in Chapter 1, our architecture for distributed access-enforcement in RBAC

(see Figure 3), has two components. One is the PDP which the central repository of the RBAC

policy. We store the policy as a directed graph at the PDP. The other component is an SDP. In

our architecture, one or more SDPs may be associated with a PDP. In the following sections, we

discuss our design of the PDP and SDP and rationalize it.

3.1. Policy Decision Point (PDP)

Figure 4 - PDP class diagram

The PDP has the following two attributes.

8

public static RbacGraph g;

public ArrayList<SecondaryDecisionPoint> sdp;

One attribute is of type RbacGraph, which is our implementation of a directed graph as

an adjacency list. The other is an array list of SDPs that are associated with this PDP. The

methods associated with a PDP are as follows.

public void init(FileReader fReader) throws IOException{...}

We use init() to initialize the PDP with an RBAC policy from an input file.

public abstract SDPDataStructure request(Session s, String[] roles);

public abstract SDPDataStructure delete(int session_id);

3.1.1. The RBAC Policy at a PDP

As we mention in Section 3.1.1, the RBAC policy at a PDP is maintained as a directed

graph.

There are customarily two options for representing a directed graph [28]. One is as an

adjacency matrix, and the other is as an adjacency list. We have chosen the adjacency list, as that

lends itself to easier administration of an RBAC policy. Administration comprises changes to an

RBAC policy, such as the addition and removal of users, the assignment and revocation of users

to roles, and roles to other roles and permissions. The addition of a user-role relationship, for

example, translates to the addition of an entry to a linked list in the adjacency list representation

for a directed graph. Similarly, the removal of a role-permission relationship translates to the

removal of an entry from a linked list. The reason why we do not care about time of checking the

association between two vertices, is because we can assume that the PDP is of less importance

for us, and that is run on powerful computer system, preferably fast with a lot of storage. When

we say that the PDP is of less importance for us, we want to emphasise that the problem we are

dealing with is more associated with the SDP than the PDP. The access checking itself is done at

9

the SDP. Only time we go to the PDP, is when we do not have that particular session on the SDP

so we need to retrieve data from the PDP. In this case we only recalculate new structure that is to

be sent back to the SDP.

RbacGraph is a graph implemented as an adjacency list. It has array list of vertices. It is a

direct graph with a particular structure – it is acyclic, and its vertices can be partitioned into three

sets [14]. Vertices are: User-Vertex, Role-Vertex and Permission-Vertex. There are some

constraints on edges between those sets, and they are explained later (Section 3.2.1).

RbacGraph class implements RBAC class. RBAC class extends SDPDataStructure,

which is an empty interface. The reason behind this is a need to have the same structure signature

at any SDP. Having this implemented this way, we can implement its daughter classes in more

elegant manner.

RbacGraph class looks as follows.

public class RbacGraph implements RBAC {

 public ArrayList<Vertex> vertices;

 public HashMap<String, UserVertex> users;

...

}

10

Figure 5 - Vertex class diagram

In order to explain RbacGraph we have to go to a more basic unit that graph is made of. That

unit is a vertex. Therefore we have to take a look at the Structures package which contains the

Vertex class. List of classes of Structures package is as follows.

 Vertex.java

 UserVertex.java

 RoleVertex.java

 PermissionVertex.java

 RBAC.java

Vertex class As we can clearly see from the Figure 7, Vertex is an abstract class. All of the

UserVetrex, RoleVertex and PremissionVertex extend Vertex class.

Apart from identification argument, Vertex has an array list of other vertices, which are also of

the Vertex type. This way we know which vertex is adjacent to which one. Since the graph is

11

directed and acyclic, by its definition we only have edges from top to bottom, meaning that no

role can point to user. Other restrictions/conditions are as follows.

 A role can point to another role only if it is of lower level of hierarchy

 A role can point to permissions

 A user can point to roles

 A user can point to permissions

Apart from usual methods (constructor, setters and getters methods) Vertex class includes some

other methods. We only emphasise the importance of addNeighbour() and

removeNeighbour() mehods, which we use to add a new neighbour to the adjacency list of

neighbours, or delete a neighbour vertex from the list. Both methods take Vertex as an input

parameter, as a neighbour which is to be added or removed from array list of neighbours. Method

getNeighbours() will return a List<Vertex> of all the neighbours for particular vertex.

Classes that extend Vertex class have additional argument, which is string representation of id.

RoleVertex class also includes integer argument level, which is used to represent a level in

the graph (hierarchy) of the particular role. As we state in conditions, role can only point to

another role if that other role has lower level of hierarchy; in this case that is argument level.

PermissionVertex class has one distinction from other two classes that extend Vertex

class. When we try to add or remove a neighbour to a permission vertex, method throws an

exception since this is not valid scenario according to our conditions from above.

Class interfaces of all four classes are shown in appendix A.

Now that we explained all the components of graph we can move to explaining the graph

structure and its implementation. We also explain the implementation of the SDP and the

algorithms and data structures we use at the SDP.

12

3.2. Secondary Decision Point (SDP)

We show the SDP's class diagram in Figure 5. The attributes that we associate with an

SDP are as follows:

public ArrayList<Session> sessions;

protected static int sdpId;

public int id;

public SDPDataStructure g;

public PolicyDecisionPoint pdp;

Figure 6 - SDP class diagram

Apart from identifiers, each SDP has a number of sessions that are associated with it. It also

includes the data structure that is specific for its implementation and the PDP with which it is

associated. The methods with which an SDP is associated are as follows.

13

public abstract void destroySession(int sessionId);

public abstract int initiateSessionRequest(String userId, String[] roles);

public abstract boolean accessRequest(int sessionId, int permissionId);

The communication between the PDP and the SDP occurs through

initiateSessionRequest() and destroySession(). As with the PDP, the SDP's

methods are abstract. They are concretized by a particular data structure that we use at the SDP.

A user invokes initiateSessionRequest() to initiate a new session. A user issues

accessRequest() when he wants to exercise a permission within a session. A user invokes

destroySession() to delete a session.

Each of the SDP's array list of sessions is of type Session. It contains information about the user

that initiated the session, an identifier for it, and array list of permissions that he wants to access.

Permissions in RBAC are opaque [2]. Therefore, we have chosen to represent permissions as

strings. Class diagram of Session class is shown below.

Figure 7 - Session class diagram

We have concretized the SDP with three different data structures. This is part of our validation

for the abstraction that we discuss in Section 3.1.1. In the following sections, we discuss each

such data structure, and the manner in which we extend the abstract SDP class for the data

structure.

14

3.2.1. Directed graph

As we mention in the previous section our way of implementing directed graph is as an

array list. We choose this particular implementation since the cost of updating the graph, which

includes both deletion and adding an edge or vertex, is less than in matrix version of

implementation. We leverage our implementation for a directed graph that we discuss in Section

3.1.1. We explain the process of getting the graph structure that results at the SDP from our

example sessions sa and sb (Chapter 1, Figure 2).

When a session is activated, the PDP communicates to the SDP (Step 2 of Figure 3). Let

ܵ ෠ be the complete RBAC configuration at the PDP perceived as a directed graph. Letܩ =

,ଵݏ} … , ௡} be the set of sessions that are active at a PEP, and ܴ௜ݏ = ൛ݎଵ, … , ௠೔ൟ be the set ofݎ

roles that are associated with the session si. Let ௜ܲ = ,ଵ݌} … , ௞} be the set of permissions that݌

are reachable in ܩ෠ from the roles in ⋃ ܴ௜ ௜. Then the vertices of ܩ෠ are ܵ ⋃ܲ ⋃ܴଵ ⋃… ⋃ܴ௡.

The edges of G are ൛〈ݏ௜ , 〈௝ݎ ∶ where E(I) is the set of edges of the subgraph I of (ܫ)ܧ⋃ ௝ ߳ ܴ௜ൟݎ

෠ that is induced by the vertices in ܲ ⋃ܴଵܩ ⋃… ⋃ܴ௡. That is, G is similar to a subgraph of ܩ෠,

except with sessions in place of users, and the edges induced by the vertices that are relevant to

the sessions.

The access 〈ݏ , is allowed if and only if the vertex p is reachable from s in G. We 〈݌

represent G as an adjacency list, which is a standard representation of a graph [11]. As an

example, consider the sessions sa and sb from Section 1 for the RBAC policy in Figure 1. The

session sa is activated by Alice and is associated with the role Software Engineer. The session sb

is activated by Bob and is associated with the roles Software Engineer and IT Consultant. The

resultant directed graph at the SDP is shown in Figure 8.

15

Figure 8 - The directed graph for our example sessions sa and sb that are discussed in the text, for the RBAC policy in

Chapter 1, Figure 2.

SDPRbacGraph and PDPRbacGraph As we can see from the PDP and the SDP class diagrams

(Figures 4 and 5), PDPRbacGraph and SDPRbacGraph are specializations of the PDP and

the SDP classes. They inherit all the parent’s class methods and arguments. These specializations

are necessary since we could have three different implementations of the PDP and the SDP.

In next paragraphs we discuss implementation of the SDP where we use RbacGraph

structure as its way of storing data.Class SDPRbacGraph is a daughter class to the SDP class

(see Figure 5). Class PDPRbacGraph is a daughter class to the SDP class (see Figure 4). One

of the modifications is additional argument, which contains the copy of the graph structure that is

at the SDP.

public ArrayList<Vertex> requested;

Following the flow from Figure 3 (see Chapter 1), we have couple of steps in this process.

16

1. User comes and activates a session at the SDP. User sends initiation request to the SDP

with its unique identifier and with a set of roles. Set of roles contains roles’ string

identifiers. At this step we call following method from the SDP class.

public int initiateSessionRequest(String userId, String[] roles);

2. This step corresponds to a step 2 from Figure 3. At this point the SDP creates a new

session for particular user and propagates a request to the PDP that is assigned to. We

accomplish this by calling a method request() from PDP.

public SDPDataStructure request(Session s, String[] roles);

Now it is up to the PDP to check and see if a user is authorized to access roles from the

set he sent. If this checking is successful, new structure of graph will be sent back to the

SDP. The graph structure has one vertex at the top level, which represents the session,

and all the role vertices that user had requested in middle levels. At the bottom level of a

graph structure are all the permission vertices that are assigned to those role vertices. In

the following paragraph we explain the algorithm for getting a new graph structure.

Firstly we create a new vertex with a session identifier as our top level vertex in the

response graph. Secondly, we get induced graph of the user that requested the session

initiation. Next step is to go through all roles from the set and check for each of them if

the user is assigned to them. If a user is not assigned to at least one of them, we return the

NULL value as a response. This means that user has tried unauthorised access, the

method returns an appropriate warning message. If a role is indeed assigned to a user, we

merge the whole subgraph of that role with a response graph. This previous step is critical

one. There is possibility when adding more roles’ subgraphs that some of them could

duplicate in each other’s graphs. However we avoid this case since when we check a new

role, we check if it is already in the response graph. Only in the case if a role is not in the

response graph, we add it to a array list of vertices of a response graph. At the PDP we

update the array list requested with newly requested vertices. When we check all the

roles, we return the response graph to the SDP.

17

3. Now, when we create the session and update the graph structure at the SDP, user tries to

send access request. User sends a request to access some permission within its session.

public boolean accessRequest(int sessionId, int permissionId);

This whole process is done at the SDP level so we do not communicate with the PDP. As

we can see from accessRequest() method’s signature, user sends sessionId and

permissionId. We check whether the particular session is authorized to perform a

particular session in a following way. First we fetch the vertex that has sessionId as

its identifier (if there is such, if not we return a warning message). Secondly, we go

through vertex’s subgraph trying to find a permission vertex with has matching identifier

with a given input argument. If we manage to accomplish all this, we return a TRUE

value. This indicates that access request is approved. In any other case, whether the

session is inexistent or permission is inexistent, we return a FALSE value indicating that

access request is denied. If we take Figure 3 in consideration this step corresponds to

steps 3, 4 and 5 from Figure 3.

4. The session at the SDP can be destroyed or invalidated. This could have probably been

implemented as a time dependent feature, but for the testing purposes we have made our

implementation to look as follows.

When we call a destroySession() method from the SDP we do following. The SDP

automatically invokes delete method from the PDP. At the PDP the idea is to delete the

session vertex and all other vertices from its subgraph. The only condition when we

delete a vertex is that it is not assigned to any other vertex from the rest of the graph. We

do not operate with the graph structure from the PDP but rather with array list requested

which contains duplicate of the SDP’s graph structure. When we complete deletion, we

send a new graph structure to the SDP as a response. The SDP will replace its graph

structure with new one. Signatures of the delete() and destroySession()

methods are shown below.

public void destroySession(int sessionId);

18

public SDPDataStructure delete(int sessionId);

3.2.2. Access Matrix

The access matrix [9, 10] is yet another very natural candidate to be used as a structure at

the SDP. It is canonical and intuitively appealing representation for an access control

configuration [14]. The encoding of RBAC session in an access matrix is straightforward. Rows

are indexed by sessions and columns by permissions. Our entity in a matrix is a bit. For example

if a session i is assigned to certain permission j, than field of the matrix [i, j] is going to have

value of bit 1, in other case it is going to be 0. In Table 1, We show the access matrix that results

at the SDP from our example sessions sa and sb (Figure 2).

 Project Planning Code Modification Project Review

sa 1 1 0

sb 1 1 1

Table 1 - Access matrix for our example from Chapter 1, for the RBAC policy in Figure 2.

Encoding of RBAC in Access Matrix RbacMatrix class implements RBAC, it has three

attributes. First one is a matrix and another two are the dimension of matrix (corresponding to

number of rows and columns). Interface of the RbacMatrix class is shown below.

public class RbacMatrix implements RBAC {

 public String [][] matrix;

 int M, N;

 public RbacMatrix();

 public RbacMatrix(int M, int N) {...}

 public RbacMatrix(int M) {...}

19

 public boolean isPair(int a, int b) {...}

}

First constructor is an empty constructor, second one initializes matrix of MxN dimension with

all default values (zeros). Third constructor initializes matrix of MxM dimension. In this last case

both dimensions are the same, however we only have one input parameter. Method isPair()is

used so we can check whether a particular session has permission to access the permission (since

we said that rows stand for sessions and columns stand for permissions). The value that a method

returns, depends on a field [a, b] of the matrix, from given input parameters a and b. If that field

is within the range of the matrix, we check its value. If the value is 1 (one), method returns

TRUE, otherwise FALSE.

SDPAccessMatrix and PDPAccessMatrix The communication between the SDP and the PDP

stays the same as mentioned before (see Section 3.1.1). The only difference is the way we

implement methods at the PDP level since the returning data structure is now access matrix.

Methods at the SDP are the same, except the implementation of the access request method. In

this method we use previously mentioned isPair() method (Section 3.3.1.) from

RbacMatrix class which simply checks whether certain session is allowed to perform

particular permission. The methods of the SDPAccessMatrix are shown below.

public int initiateSessionRequest(String userId, String[] roles);

public boolean accessRequest(int sessionId, int permissionId);
public void destroySession(int sessionId);

All methods’ signatures are the same as before. However when it comes to the implementation of

methods at the PDP, there are quite a few changes forth of mentioning. The interface of the

PDPAccessMatrix class looks like this.

public class PDPAccessMatrix extends PolicyDecisionPoint {

 public ArrayList<RecordData> record;

 public ArrayList<Integer> sessions;

 public ArrayList<Integer> permissions;

20

public PDPAccessMatrix() {...}
public SDPDataStructure request(Session s, String[] roles) {...}

public SDPDataStructure delete(int sessionId) {...}

public SDPDataStructure matrixCreate() {...}

}

We can notice that in this specialization of the PDP we have fields than we did not have

in previous one (Section 3.2.3.). In order to keep track which session issues request for which set

of permissions, we introduce array list of RecordData. We implement RecordData as a

separate class. An instance of that class is a session’s integer identifier and an array list of

permissions assigned to that session. The general idea is to make process of reconstructing a

matrix as easy as possible. Apart from argument record, PDPAccessMatrix class has two

more arguments, both of them are implemented as array lists. Argument sessions, we use to

store all the sessions that have requested initiation at the SDP level. Argument permissions,

we used to store all the permissions the sessions have requested to access to. It is worth of

mentioning that this array list has property of a set, there is no duplicating of permissions in it.

The methods of PDPAccessMatrix class have the same signatures but the implementation is

different.

When we send the initiation request from the SDP, we expect a new data structure to be

returned from the PDP. We assume that initiation request is allowed at the SDP level. We go

through the graph at the PDP and we automatically create new a new instance or RecordData

as we collect all the permissions that user has requested for. Having that and the new session’s

identifier, we add a new instance of RecordData to an array list. At the same time we populate

two other array lists, making sure that we do not end up having duplicates in any one of them.

After all this is done we create and return new matrix to the SDP. We create a new using method

matrixCreate(). This method picks the permission with largest integer identifier and the

session with largest identifier assigning them to the dimensions of the matrix. It can be noticed

that doing that we might end up with half empty matrix, e.g. permissions that have not been even

requested but their integer identifier is smaller than the one we picked. However this is

space/time trade off that is inevitable in matrix case. When we create an empty matrix, the next

step is to go through an array list of RecordData and match the sessions with its permissions.

This way we fill in the matrix with its values. For example, if an element of an array list has a

21

session identifier with value of M, and the list of permissions with values {i, i+1, i+2, ..., n}, then

we set the following fields in a new matrix to value 1; [M, i], [M, i+1], [M, i+2], ..., [M, n].

 When it comes to deleting a session, the SDP calls for the delete() method at the

PDP. There are two cases in this.

1. Session we try to delete is the last row in the matrix

2. Session we try to delete is not the last row in the matrix

In both cases we delete particular session from both record and sessions array list.

However in the first we case reduce matrix’s row count by one and then recreate new matrix

which we send as back to the SDP. Reconstructing a new matrix in the second case is done fast.

The ordering of the columns and rows does not change, we simply delete the last element from

the sessions and record array list, no reordering of the columns’ and rows’ indexes is

necessary. In the second case after updating array list structures we return a NULL value.

Returning NULL value signals to the SDP that it can just do invalidation of that session’s row.

All the values for that row will be set to 0 (zero). This way we do not reconstruct a matrix, but

we will have unused space. We could do this in the first case as well, without going to the PDP

and reconstructing a new matrix.

It is worth to mention that in this approach we are facing space/time trade off. We can see

that access checking is constant, but the price we have to pay is that we have to store potentially

very big matrix structure at the SDP.

3.2.3. CPOL

 CPOL [6] is an approach to distributed access enforcement that has been proposed in the

context of trust management. In trust management, the configuration (or policy) is distributed as

well. Also, the syntax of polices is different from RBAC. Consequently, we need to provide an

encoding of RBAC sessions in CPOL.

 In CPOL, an AccessToken is used to determine whether access should be granted or not.

In the original design [6], an AccessToken is opaque – its structure is specific to an application.

A policy comprises Rules; each Rule contains an AccessToken. To check whether an access

22

should be approved, we need to check the set of Rules and whether any of them contains

particular AccessToken that will grant an access.

Encoding of RBAC in CPOL Our encoding of RBAC in CPOL is as follows; we argue that this

is the most natural encoding. We implement the SDP as a CPOL Cache [14]. Implementing a

cache is one of the crucial things for CPOL performance, and that is why we want this to be as

good as possible and close to original implementation in C++. Cache contains an array list of

cache entries (CacheEntry.java). Cache entry contains CacheKey, an AccessToken and condition

(which is Boolean type). We represent CacheKey as an integer sessionId. AccessToken is a set

of permissions to which session is authorized [14]. Our study of the original CPOL

implementation suggests that a manner in which a set of permissions should be implemented is

of big importance for CPOL performances. We used Java library java.util.set to represent a set of

permissions. In Appendix B we show all the classes within Cpol package. Figure 9 shows class

diagram of Cpol package.

23

Figure 9 - Cpol package class diagram

 Class Rule.java is basically mapping of a Session as it is in other implementations

(Sections 3.2.1. and 3.2.2.). To simplify this mapping we introduced a new class

SessionCPOL, which extends Session class. As an only field, SessionCPOL class,

contains Rule. We can now see the mapping with the Session more clearly and more logical.

When implementing each class, we take care that it becomes worthy duplicate of its original

implementation. Rule contains following fields; owner, licencee, accesstoken and condition.

24

Owner, which is type of String, is unused in our process of evaluation, and since it is used only

by a system itself, we say that system is the owner. In our implementation we use licencee to

represent userId. Licencee is a type of String. Since we map Rule to the Session, the only natural

thing is for licencee to be userId. AccessToken is type of AccessToken, which is described

above. Field condition is type of Boolean, and it is used to say whether a particular Rule is valid

or not.

 In our example of the sessions sa and sb from the RBAC policy (see Chapter 1, Figure 2),

we have two CPOL Rules, Rulea and Ruleb, which contain AccessTokena and AccessTokenb

respectively. AccessTokena is {Project Planning, Code Modification}. AccessTokenb is {Projec

Planning, Code Modification, Project Review}. The cache has keys sa and sb, for the two access

tokens. [14]

SDPCPOL and PDPCPOL — The communication between the SDP and the PDP stays the same

as mentioned before (see Section 3.1.1). Signatures of the SDP’s methods stay unchanged as

before, but their implementation defers from previous ones as expected. We show interface of

SDPCPOL below.

public class SDPCPOL extends SecondaryDecisionPoint {

 public Cache cache;

 public ArrayList<SessionCPOL> sessions;

public SDPCPOL(PolicyDecisionPoint pdp) {...}
public int initiateSessionRequest(String userId, String[] roles);

public boolean accessRequest(int sessionId, int permissionId);
public void destroySession(int sessionId);

}

As mentioned before this instance of the SDP is implemented as a cache. At the SDP level we

store Cache which has multiple CacheEntries and an array list of sessions, which are type of

SessionCPOL. This list has actually properties of set, since there could not be two same Rules,

therefore nor could exist two same SessionCPOL. This is exactly what we had mentioned in

25

previous section; in order to check whether a particular access should be approved, we check the

set of Rules to determine if some contains an AccessToken. The other way of checking this is to

go through a Cache, which is a keyed table, and as soon as we hit the requested entry we check

whether an AccessToken within contains particular permissionId. This is however the way we do

it in our implementation since the access request when issued has two parameters; sessionId and

permissionId. When a session is to be deleted; we do this in two steps; first step is to invalidate

entry with the key that is equal to sessionId, and the second step is to remove the rule that has

been created for particular session. The way we did step three is very intuitive, we simply iterate

through list of SessionCPOL and when we find a match we remove it from a list. At this point

no communication with the PDP is required. However since we also keep copy of all the Rules at

the PDP, we will invoke delete method from the PDP, so that the PDP updates its list as well.

When a session initiation request is issued, we do next steps. First step is to create new instances

of Rule and SessionCPOL of input parameters of the method. After this is completed we send

a request to the PDP with new SessionCPOL and set of roles, as parameters. If all is in order

(there is no violation of access of any kind), the PDP should return a new CacheEntry to the

SDP. Newly created instance of Rule is being updated with AccessToken from new CacheEntry,

and its condition is set to TRUE. After doing so, Rule is being assigned to a new instance of

SessionCPOL. Finally both new CacheEntry and SessionCPOL are added to their lists, and so

session initiation is being successful.

 At the PDPCPOL, we have two methods; request and delete. First one is invoked by the

SDP when there is an initiation of a session, second one when a session is to be deleted. As

mentioned before, we keep array list of Rules at the SDP level as well. However instead of

having the whole Rule structure we keep only its id at this level. When the user is identified, and

when we make sure that all the roles he requested, he can access to, we will form a list of

permissions. From a input parameter we extract a Rule’s id which will be placed in a list of

Rules at the PDP. After all this is done successfully, we create new AccessToken, CacheKey

(key itself is Rule’s id) and new CacheEntry, that is to be returned as a response to the SDP. If

anything goes wrong, NULL value will be returned. Second method is delete method, which we

invoke by the SDP when we want to delete a session. This method is mapping to a

removeRule() method from original Cpol implementation [6]. Since Session is mapped to a

Rule, now sessionId parameter is actually id of a Rule we want to remove from a list.

26

In our implementation of CPOL, we have adhered closely to the original implementation.

In a Chapter 4, we discuss why we have based our assessment on a new implementation. Our

implementation compares in performance to the original (see Chapter 4.). [14]

27

4. Validation

4.1. Benchmark

In this chapter we explain how using existing architecture that we developed, we can

evaluate different implementations of access enforcement in RBAC. Doing this we wish to

determine whether our platform is sound and independent of any possible data structures that

might be used at the SDP level. Firstly we would like to describe the benchmark we used.

Benchmark has two components: RBAC polices [29] and session profiles [14]. We have

designed and implemented programs to generate data sets for the benchmark [14]. The programs

are written in Java. Each one of them takes certain arguments that correspond to the

categorizations we discuss in next sections.

4.1.1. RBAC Profiles

The RBAC policies that comprise our benchmark are from prior research in RBAC, and

experience with RBAC deployments that have been documented in books and the research

literature. We present a summary in Table 2. We categorize RBAC policies along the following

axes.

Source # Users # Roles # Permissions
RH

Depth

RH

Model
Connectivity

Literature

500-999

1000-1999

2000-2999

3000-3999

5000-6000

10000-40000

10-200

200

100

200-250

200

120-1300

10-3000

1000-3500

100-2000

1500-11000

1500-2000

100-11000

1 - 5

Stanford

Hybrid

Core

Constant (range)

to roles,

Constant (range)

to permissions,

Distribution

(e.g., Zipf,

uniform) Synthetic
40001-400000

400001-1600000

1600-16000

16000-64000

1500-2000

1500-11000

28

Table 2 - Categorization of RBAC polices in the benchmark.

Source We have two sources, “Literature”, and “Synthetic”. By Literature, we mean that we have

directly acquired particular kinds of policies from literature that documents research and

experience with RBAC. Our sources for these can be classified into three.

1. Top —down design of RBAC polices [3, 15, 16, 17]

2. Role mining and engineering [18, 19, 20, 21, 22, 23, 24, 25]

3. Evaluation of approaches to access-enforcement [4, 5, 8]

We also have created some new kinds of policies based on policies from the literature. We call

these Synthetic policies.

Number of users, roles and permissions The numbers of users, roles and permissions are

typically co-dependant in RBAC policies from the literature. In Table 2, we show the number of

users, and the corresponding numbers of roles and permissions for policies from the literature,

and for Synthetic policies. We point out that roles do not grow, for example, linearly, with users,

but more as a step function.

We point out also that the number of permissions range from a fraction of the number of

users, to a somewhat significant multiple. The reason for this range is that RBAC is deployed in

one of two contexts. One is for high-level policies in which permissions are abstract. Another is

at a much lower level, in which resources that are protected are individual files or email

messages; in such systems, there can be a considerable number of permissions. (It is common for

a permission to be a pair 〈݋, where o is the object or resource that is protected, and r is a ,〈ݎ

privilege or right. However, this is not the only encoding as a permission that is meaningful; see,

for example, the work of Crampton [26].)

For our Synthetic policies, we consider numbers for typical enterprises that we have not

already considered under Literature. The number of employees of an enterprise can be up to 1.6

million [12]. If such enterprises deploy RBAC, we anticipate that they will want to model each

employee as an RBAC user. For such policies, we anticipate that the number of roles will be in

the same proportion to the number of users as for the largest range for users from the literature.

We do not anticipate that the number of permissions will increase significantly. Consequently,

we adopt for permissions similar numbers as the largest ranges from the literature.

29

Role hierarchy (RH) and connectivity There are three categories we consider for the structure of

RBAC policies. As Table 2 indicates, these are RH Depth, RH Model and Connectivity. By RH

Depth, we mean the maximum path-length from a role to a permission. In our survey of the

literature, the RH Depth does not exceed 5.

We consider two RH Models, Stanford and Hybrid. In the Stanford model [3], roles are

layered, and a role at layer i directly inherits roles only in layer i + 1, and is inherited directly

only by roles in layer i - 1 (or by users, for the topmost layer of roles). The Stanford model arises

in the top-down design of RBAC policies. Realizing the Stanford model in an enterprise

typically results in 4 or 5 layers of roles [3]. The hybrid model arises in both the top-down design

of RBAC policies and in role mining. In the hybrid model, the role hierarchy is some partial

ordering, and not layered as in the Stanford model. A special case of the two models is when

there is no role-role relationship. This is called Core RBAC and arises in role mining [8, 21].

4.1.2. Session profiles

There is some prior work which has datasets on session profiles [5, 8, 13]. We augment

those datasets with our own. We categorized session profiles into two; activation and access

checks; Table 3 [14, 29].

Activation

 Intra-session

o Number of roles

o Number of permissions

o Nature of roles

o Nature of permissions

 Inter-session

o Number of sessions

o Arrival rate

Access checks

 Number

 Nature

Table 3- Session profile categories in our benchmark.

30

Under activation category, we consider attributes associated with activation of session. For intra-

session we have four arguments. Number of roles represents how many roles we would like to

activate. This could be a fixed number or a range. Number of permissions is number of how

many permissions we want to access. When we talk about nature of roles, there is quite a few

ways this one is used. For example we may specify that only roles that are directly assigned to

user are activated. Another would be that only roles that activate same sets of permissions are

activated. This is also referred as separation-of-duty [3]. Nature of permissions gives us option to

choose whether to activate only permissions user is assigned to, or rather any permission from

the system.

For inter-session we have two attributes. Number of session represents exactly number of

sessions we would like to activate. The other one, arrival rate, is the kind of arrival we would

like our session activations to show up in the system. We consider bursty and uniform arrival

rate. By bursty arrival, we mean that session activations are interspersed with relatively long

“quiet” periods in which we have no session activations. In between those activations, we have

access checks for the existing sessions [14]. In uniform session arrivals, session activations are

uniformly interspersed with access checks [14]. We conclude that bursty arrivals are more likely

sessions directly used by humans, and on the other side, uniform arrivals would be possible for

automated processes which activate the sessions.

Our second category is relates to access checks. Here we have two attributes: the number and the

nature of access checks. First one represents the actual number of sessions we would like to

activate. Under nature of access checks, we characterize the permissions for which access checks

needs to be made. For example one way is to perform all the access checks to all of permissions,

until we reach the number of access check. The other way is to perform access checks only to

permissions that are allowed for a user.

4.2. Evaluation and methodology

In next section we will talk about performance of three different approaches against our

platform. We consider time, space and administrative efficiency.

31

4.2.1. Methodology

Meaningful empirical assessment is a significant challenge in computing. For Java

programs, non-determinism in making empirical observations can result from various factors,

such as dynamic compilation and garbage collection. The methodology we adopt overcomes

such non-determinism and is statistically rigorous. It is based on the work of Georges et al.[27].

Java programs run within an instance of a Virtual Machine (VM). We collect the average

time across multiple VM invocations, as there can be variation across such invocations. Within a

VM invocation, we need to avoid skew from the effects of starting up the VM and reach what is

called steady-state [27]. For each VM invocation, we determine the number of benchmark

iterations that we need to perform by finding at least k consecutive steady-state values for which

the coefficient of variation (CoV) is less than some preset value (we have chosen 2%). The value

of k starts at some value (4, in our case) and increases so long as the CoV decreases, upto the

threshold. We record the mean of the k values for each VM invocation. Our final benchmark

time is the mean across all VM invocations.

To minimize the effects from garbage collection, we keep the heap size constant across

VM invocations. Apart from the mean, we also compute confidence intervals. Our objective is

for the confidence intervals to not overlap, as then, with a certain confidence (95%, in our case),

we can assert that the two values are statistically distinct. All the values we report and graph in

this paper are statistically distinct from other values.

We have conducted our experiments on an isolated Intel dual core E8400 PC that runs at

3 GHz, has 3.5 Gbytes of RAM and runs the Ubuntu Linux operating system. Our Java version is

1.6.0_18, and we run the OpenJDK Runtime Environment.

4.2.2. Evaluation

Time efficiency For time efficiency we consider both inter-, and intra-session profiles. We have

two inter-session attributes: the number of sessions, and the arrival rate. In Table 4 and Figures

10, 11 and 12, we present our results for time efficiency, with the inter-session attributes as

parameters. We also consider an intra-session attribute, the nature of RH. We discuss the results

32

that pertain to that in the next section. In each dataset we have 2500 users, each authorized to

different numbers of roles and permissions. We have 100 roles in total, and 100 permissions. Our

objective is to understand the behaviour of each approach as the two inter-session attributes

change. Consequently, we consider from 2 through 15 sessions, and both bursty and uniform

arrivals for the sessions. There are several observations we make from our results.

Arrival rates We observe from Table 4 that none of the approaches is impacted by the session

arrival rate (burst vs. uniform).

Number of sessions The graphs in Figures 10, 11 and 12 show the impact of the number of

sessions on each of three approaches. We observe that all three approaches are resilient to an

increase in the number of sessions from the standpoint of time efficiency. That is, access check

time does not necessarily grow with the number of sessions. We expect this to be the case, so

long as the PEP/SDP is not stressed by adding too many sessions. None of the approaches has an

access check algorithm whose time-complexity is parameterized by the number of sessions.

It is not our objective to stress a PEP/SDP by considering large numbers of sessions.

Indeed, the number of sessions a PEP/SDP can support without significant impact on its

performance depends on its resources such as hardware. Our objective is gain broader insights

into the three approaches, notwithstanding the resources available to a PEP/SDP, assuming some

realistic model of computation (the “Random-Access Machine” model, for example [11]).

Efficiency The access matrix is very time-efficient; in our tests, an access check takes less than 1

µs. This is unsurprising as an access check is done in constant time with minimal additional

overhead. CPOL is only slightly less efficient; for this particular dataset, we can perceive the

number of permissions to which a session is authorized as constant. Consequently, the manner in

which a CPOL AccessToken is realized does not impact time-efficiency. The directed graph is

highly efficient for Core RBAC. This is because a path from a session vertex to a permission

vertex is exactly 2; consequently, it is highly efficient when we have only up to a few hundred

roles. We study the impact on time efficiency from intra-session attributes (e.g., a large number

of permissions in a session) in the next paragraphs.

33

Jitter By jitter, we mean the variation in access check times as the number of sessions changes.

We can quantify this as the percentage error in the mean; that is, the ratio of the standard

deviation to the mean. We observe from Figures 10, 11 and 12 that this is quite small for the

directed graph, access matrix and CPOL. In our datasets, a user is directly assigned to the same

number of roles across each of the Stanford, Hybrid and Core policies. Consequently, there is

more heterogeneity in the roles that a user may activate in the Stanford policy than in the other

two.

 Directed graph Access matrix CPOL

Bursty

Stanford 32.70 0.79 2.14

Hybrid 9.41 0.80 3.12

Core 5.17 0.74 2.87

Uniform

Stanford 29.47 0.62 1.50

Hybrid 8.45 0.62 1.44

Core 5.93 0.60 1.51

Table 4 - Average access check times in µs with the inter-session attributes, and one intra-session attribute (nature of

RH), as parameters.

We have studied the impact of intra-session attributes on time-efficiency. We vary three

parameters in our experiments in this context: the number of roles per session, the number of

permissions per session and the nature of RH (Stanford, Hybrid and Core). Figures 10, 11 and 12

shows the impact of the last attribute on time efficiency, and Figures 13, 14 shows average

access check times in µs for Core RBAC, for which the number of roles and permissions range

from small (10) to large (10,000). Such numbers are consistent with Table 2.

Role hierarchy Table 4 and the graphs in Figures 10, 11 and 12 show the impact of Stanford vs.

Hybrid vs. Core as the choice for RH. Only for the directed graph do we see an impact from the

choice of RH. For the directed graph, a deeper RH results in an increased access check time as

we need to traverse a longer path from a session vertex to a permission vertex. This is reflective

of our dataset — a user is directly assigned to the same number of roles for all three of the

34

Stanford, Hybrid and Core RBAC policies. However, in the Stanford policy, he is authorized to

more roles as a result of the deep RH.

Scalability We observe from Figure 13 that the directed graph scales poorly as we increase the

number of roles. The reason is that access checking for the directed graph is vertex reachability,

which is linear in the size of the graph. For the access matrix and CPOL, the time for access

checking is independent of the number of roles in a session. In this respect, they scale well with

the number of roles.

The access matrix and CPOL scale well also with the number of permissions, as Figure

14 indicates. This is somewhat surprising as an AccessToken in CPOL is linear in the number of

permissions in a session. As we mention earlier, it is crucial to the time efficiency of CPOL that

this encoding be efficient. Notwithstanding this, up to 10,000 permissions, these issues appear to

have no tangible impact on the time efficiency of these approaches. The directed graph fares

poorly in this context as well. This is because the adjacency list approach often requires a linear

search to find a vertex (permission, in this case).

Figure 10 - Average access check time in µs and the corresponding standard deviation for CPOL.

35

Figure 11 - Average access check time in µs and the corresponding standard deviation for access matrix.

Figure 12 - Average access check time in µs and the corresponding standard deviation for directed graph.

36

Figure 13 – Time efficiency for small (10) to large (10,000) numbers of roles in a session.

Figure 14 - Time efficiency for small (10) to large (10,000) numbers of permissions in a session.

37

Space efficiency In this section, we analyze the space-efficiency of the three approaches. We

base our assessment on what we have observed from our implementations, and an analysis of the

data structures. The space needed for a directed graph grows linearly with the number of

sessions. In the worst-case, it can also grow linearly with the number of permissions and roles

per session. However, on average, the size of the directed graph is constant in the number of

permissions and roles. This is because we expect roles and permissions to be shared by several

sessions.

The access matrix is highly space inefficient. The reason is that it grows quadratically

with the number of sessions and the number of permissions to which any session is authorized.

CPOL is linear in the number of sessions. It is linear also in the number of permissions per

session, and therefore not as space efficient as the directed graph. It is agnostic to the number of

roles in a session. In Figures 15, we present graphs that capture the above discussion. The graphs

have been generated based on our implementations. The reason the access matrix is highly

space-efficient for small numbers of sessions is that it is a bit matrix. However, as the number of

sessions and permissions per sessions grow, its (quadratic) growth quickly negates the fact that

each entry in the matrix is only a bit.

38

Figure 15 – The space efficiency of our approaches. In our data set that we used to generate this graph, the number of

roles and permissions grows by a constant factor per session. We show that access matrix and CPOL are space inefficient,

while directed graph is space efficient.

Administrative efficiency An administrative change is the addition or deletion of a user-role, role-

role or permission-role relationship in an RBAC policy. The addition of a user at the PDP has no

impact on an SDP. However, the removal of a user may impact an SDP, as that user's sessions

need to be removed. This impact is linear in the number of sessions in the worst case for the

directed graph, quadratic in the number of sessions and permissions in the worst case for the

access matrix and linear in the number of sessions in the worst case for CPOL.

The addition or removal of a permission can impact an SDP. The impact is constant-time

for the directed graph, linear in the worst case in the number of sessions for the access matrix

and linear in the number of sessions for CPOL. The addition or removal of a role can authorize

or forbid a session, respectively, to several permissions. We can infer the impact on the three

approaches from our discussions on permissions.

In Table 5, we show the results of a proportional mix of administrative changes. The

research literature on RBAC administration has focussed mostly on user-role changes,

presumably because these are the most frequent in real-world deployments. We assume that 75%

39

of the changes are to user-role relationships. We conjecture that permission-role changes are the

next most frequent (20%) and changes to roles are infrequent (5%). In our experiments, sessions

overlap with one another in terms of permissions and roles to a constant factor.

 Directed graph Access matrix CPOL

100 13.45 2934.00 321.75

200 22.20 9003.60 1644.00

300 39.15 1741.05 5439.30

400 45.80 3748.80 5053.00

500 38.50 25097.25 12567.25

600 87.30 20488.20 3492.00

700 108.85 18676.70 1737.05

800 142.00 33686.40 7352.00

900 151.65 17543.25 17145.00

1000 158.50 31068.00 6800.00

Table 5 - The administrative overhead on a Core RBAC policy. We assume a proportion of 75% changes to user-role

relationships, 20% to role-permission relationships, and 5% to role-role relationships. The number of sessions is 1000,

and every user has at least one session.

From the results from Table 6, we can see that the size of RBAC plays important role.

For example, if the deployment is small in the size of the RBAC policy (e.g., only up to 100's of

roles and permissions), then the access matrix is the best choice. However, if the deployment

gets larger, then space and time efficiency gives poor results for access matrix. CPOL has the

same scenario. While it performs good in terms of access checking times, it fails when it comes

to administration and space efficiency considerations. If there is a need for balance reasonable

space and access check time with ease of administration, then the directed graph is a good

choice.

We have assessed the three approaches to distributed access enforcement in RBAC. Our

approach is empirical, and we have proposed and used a benchmark as the basis. Based on our

quantitative results, we are able to provide guidance on the best approach from among the three

for particular RBAC deployments.

40

 Directed graph Access matrix CPOL

Time
Inter-session fair good good

Intra-session poor good good

Space fair poor poor

Admin good poor poor

Table 6 - Our rating of "good", "fair", "poor" for each approach that we assess. While we argue that these ratings follow

from our quantitative observation, they are somewhat subjective.

41

5. Conclusion

 We have designed and implemented a platform for assessing distributed access

enforcement in RBAC. We have validated it by using it to assess three approaches, one of which

is CPOL [6], the state of the art in distributed access enforcement. Our assessment has provided a

somewhat surprising result that CPOL is not necessarily the best choice for access enforcement

in settings that are typical for RBAC.

 In future work, we plan to explore the use of our platform for assessing approaches to

access enforcement in contexts other then RBAC, such as trust management. Also, we plan to

explore new trust models between the PDP and the SDP. We may perceive the PDP as

outsourcing access enforcement to the SDP, but not fully trusting the SDP to, for example, keep

the access state secret.

42

Bibliography

[1] Personal Communication, Open Text Corporation, Aug. 2010.

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access

control models,” IEEE Computer, vol. 29, pp. 38-47, February 1996.

[3] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-Based Access Control. Artech

House, Apr. 2003.

[4] Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu, “Authorization Recycling in RBAC

Systems,” in Proceedings of the 13th ACM Symposium on Access Control, Models and

Technologies (SACMAT'08), pp. 63-72, 2008.

[5] M. Tripunitara and B. Carbunar, “Efficient Access Enforcement in Distributed Role-

Based Access Control (RBAC) Deployments,” in Proceedings of the 14th ACM

Symposium on Access Control, Models and Technologies (SACMAT'09), pp. 155-164,

2009.

[6] K. Borders, X. Zhao, and A. Prakash, “Cpol: High-performance policy evaluation,” in

Proceedings of the 12th ACM Conference on Computer and Communications Security

(CCS'05), pp. 147-157, 2005.

[7] S. Wilson and J. Kesselman, Java Platform Performance: Strategies and Tactics. Prentice

Hall, May 2000.

[8] Y. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng, Y. Zhao, and J. Zhang., “Core

role-based access control: Efficient implementations by transformations,” PEPM'06:

Proceedings of the 2006 ACM SIGPLAN symposium on Partial Evaluation and

semantics-based Program Manipulation, pp. 112-120, May 2006.

[9] G. S. Graham and P. J. Denning, “Protection — principles and practice,” in Proceedings

of the AFIPS Spring Joint Computer Conference, vol. 40, pp. 417-429, AFIPS Press, May

16-18 1972.

[10] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating systems,”

Communications of the ACM, vol. 19, pp. 461-471, Aug. 1976.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.

The MIT Press, 3 ed., Sept. 2009.

43

[12] “Global 500.” Fortune Magazine, 2010. Available from

http://money.cnn.com/magazines/fortune/global500/2010/.

[13] Q. Yao, A. An, E. Terzi, and X. Huang, “Finding and analyzing database user sessions,”

Proceedings of the 10th International Conference on Database Systems for Advanced

Applications (DASFAA), 2005.

[14] M. Komlenovic, M. Tripunitara, T. Zitouni, "An Empirical Assessment of Approaches to

Distributed Enforcement in Role-Based Access Control (RBAC)," accepted to appear,

ACM Conference on Data and Application Security and Privacy (CODASPY), Feb. 2011.

(12 pages)

[15] A. Kern, M. Kuhlmann, A. Schaad, and J. Mo_ett, “Observations on the role life-cycle in

the context of enterprise security management,” 7th ACM Symposium on Access Control

Models and Technologies, June 2002.

[16] A. Schaad, J. Mo_ett, and J. Jacob., “The role-based access control system of a european

bank: A case study and discussion,” proceedings of ACM Symposisum on Access Control

Models and Technologies, pp. 3-9, May 2001.

[17] A. Kern, “Advanced features for enterprise-wide role-based access control,” Proceedings

of the 18th Annual Computer Security Applications Conference, pp. 333-343, December

2002.

[18] D. Zhang, K. Ramamohanarao, S. Versteeg, and R. Zhang., “Rolevat: Visual assessment

of practical need for role based access control,” ACSAC, pp. 13-22, 2009.

[19] J. Vaidya, V. Atluri, and J. Warner, “Roleminer: mining roles using subset enumeration,”

Proceedings of the 13th ACM conference on Computer and communications security

(CCS'06), pp. 144-153, 2006.

[20] D. Zhang, K. Ramamohanarao, T. Ebringer, and T. Yann, “Permission set mining:

Discovering practical and useful roles,” ACSAC'08: Proceedings of the 2008 Annual

Computer Security Applications Conference, pp. 247-256, 2008.

[21] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo, “Evaluating role mining

algorithms,” Proc. ACM Symposium on Access Control Models and Technologies

(SACMAT), pp. 95-104, 2009.

[22] C. Blundo and S. Cimato, “A simple role mining algorithm,” Proceedings of the 2010

ACM Symposium on Applied Computing, pp. 1958-1962, 2010.

44

[23] M. Frank, A. Streich, D. Basin, and J. Buhmann, “A probabilistic approach to hybrid role

mining,” Proc. 16th ACM conference on Computer and Communications Security (CCS),

pp. 101-111, 2009.

[24] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo, “Mining

roles with semantic meanings,” Proc. ACM Symposium on Access Control Models and

Technologies (SACMAT), 2008.

[25] M. Jafari, A. Chinaei, K. Barker, and M. Fathian, “Role mining in access history logs,”

Journal of Information Assurance and Security, 2009.

[26] J. Crampton, “On permissions, inheritance and role hierarchies,” in Proceedings of the

Tenth ACM Conference on Computer and Communications Security (CCS-10), pp. 27-31,

ACM Press, Oct. 2003.

 [27] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java performance

evaluation,” Proceedings of OOPSLA'07, pp. 57-76, May 2007.

[28] Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. and Stein, Clifford

(2001). Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill. ISBN 0-262-

53196-8.

[29] T. Zitouni, “A Statistically Rigorous Evaluation of the Cascade Bloom Filter for

Distributed Access Enforcement in Role Based Access Control (RBAC) Systems.”

MASc Thesis, University of Waterloo, December 2010.

45

Appendix A

package Structures;

public abstract class Vertex {

 public static int staticId;

 public int id;

 public ArrayList<Vertex> neighbours;

 public Vertex() {...}

 public int getId() {...}

 public void addNeighbour(Vertex v) {...}

 public void removeNeighbour(Vertex v) {...}

 public List<Vertex> getNeighbours() {...}

 public int getNumNeighbours() {...}

 public Vertex getNeighbour(int i) {...}

 public abstract String getStringId();

}

public class UserVertex extends Vertex {

 private String userId;

 public String getUserId() {...}

 public String getStringId() {...}

 public UserVertex(String userId) {...}

}

public class RoleVertex extends Vertex {

 public int level;

46

 private String roleId;

 public RoleVertex(String roleId) {...}

 public int getLevel() {...}

 public void setLevel(int level) {...}

 public String getRoleId() {...}

 public String getStringId() {...}

 public String getRoleType() {...}

}

public class PermissionVertex extends Vertex {

 private String permissionId;

 public String getPermissionId(){...}

 public String getStringId(){...}

 public PermissionVertex(String permissionId) {...}

 public void addNeighbour(Vertex v) {...}

 public void removeNeighbour(Vertex v) {...}

}

47

Appendix B

package Cpol;

public class SessionCPOL extends Session {

 public Rule rule;

 public SessionCPOL(Rule rule) {...}

 public Rule getRule() {...}

 public void setRule(Rule rule) {...}

}

public class Rule {

 public static int ruleId;

 public int id;

 public String owner;

 public String licencee;

 public AccessToken accesstoken;

 public boolean condition;

 public Rule(String sessionId) {...}

 public Rule(String sessionId, AccessToken A) {...}

 public Rule(int id, String owner, String licence, AccessToken

accessToken, boolean condition) {...}

 public void AddRule(int requester, String owner, String licence,

AccessToken accessToken, boolean condition) {...}

 public boolean removeRule() {...}

 public int getId() {...}

48

 public void setId(int id) {...}

 public String getLicencee() {...}

 public void setLicencee(String licencee) {...}

 public AccessToken getAccesstoken() {...}

 public void setAccesstoken(AccessToken accessToken) {...}

 public boolean getCondition() {...}

 public void setCondition(boolean condition) {...}

 public String getOwner() {...}

 public void setOwner(String owner) {...}

}

public class Cache {

 public ArrayList<CacheEntry> cache;

 public Cache() {...}

 public Cache(ArrayList<CacheEntry> cache) {...}

 public ArrayList<CacheEntry> getCache() {...}

 public void setCache(ArrayList<CacheEntry> cache) {...}

 public void addEntry(CacheEntry entry) {...}

 public void removeEntry(CacheEntry entry) {...}

 public void invalidateEntry(int sessionId) {...}

 public boolean isEntry(int sessionId, int permissionId) {...}

}

public class CacheEntry implements SDPDataStructure {

 public CacheKey key;

49

 public AccessToken accessToken;

 public boolean condition;

 public CacheEntry(CacheKey key, AccessToken accesToken) {...}

 public CacheKey getKey() {...}

 public void setKey(int key) {...}

 public AccessToken getA() {...}

 public void setA(AccessToken accessToken) {...}

 public boolean getCondition() {...}

 public void setCondition(boolean condition) {...}

}

public class CacheKey {

 public int sessionId;

 public CacheKey(int key) {...}

 public int getKey() {...}

 public void setKey(int key) {...}

}

public class AccessToken {

 public Set permissions;

 public AccessToken() {...}

 public AccessToken(Set permissions) {...}

 public Set getPermissions() {...}

 public void setPermissions(Set permissions) {...}

50

 public boolean checkPermission(int permissionId) {...}

 public void add(AccessToken accessToken) {...}

}

