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Abstract 

 

We consider the distributed access enforcement problem for Role-Based Access Control 

(RBAC) systems. Such enforcement has become important with RBAC's increasing adoption, 

and the proliferation of data that needs to be protected. We provide a platform for assessing 

candidates for access enforcement in a distributed architecture for enforcement. The platform 

provides the ability to encode data structures and algorithms for enforcement, and to measure 

time-, space- and administrative efficiency. To validate our platform, we use it to compare the 

state of the art in enforcement, CPOL [6], with two other approaches, the directed graph and the 

access matrix [9, 10]. We consider encodings of RBAC sessions in each, and propose and justify 

a benchmark for the assessment. We conclude with the somewhat surprising observation that 

CPOL is not necessarily the most efficient approach for access enforcement in distributed RBAC 

deployments. 
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1. Introduction 

 

 Access control deals with the provision of regulated accesses to resources by principals. 

It is one of the most important aspects of security. In Figure 1, we show how access control is 

enforced. A user wishes to perform read and write operations on a file. The user makes a request 

that is mediated by an entity called a reference monitor. The reference monitor consults an access 

control policy to make its decision. An access control policy specifies the resources to which a 

user has access. The reference monitor either allows or denies the particular action.  

 

 
Figure 1 - A Reference Monitor and its use for access enforcement. The user attempts to read and write a file. The 

reference monitor mediates both attempts and after consulting the access control policy, allows him to read the file, but 

not write it. 

 A syntax for access control policies is Role-Based Access Control (RBAC) [2, 3]. RBAC 

is becoming the de-facto standard for access control in enterprise settings. In RBAC, rather than 

assigning a user directly to permissions, we assign a user to roles, and the roles to permissions. 

Also, the roles are associated with one another in a partial ordering called a role-hierarchy. An 

example of an RBAC policy is shown in Figure 2.  
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Figure 2 - An Example of RBAC policy. Users are shown in diamonds, roles in ovals and permissions in rectangles. Edges 

represent user-role, role-role and role-permission assignments. In the example, the user Alice is assigned to the role 

Project Manager and is therefore authorized to the permission Team Organization. She is also authorized to the role 

Developer, and therefore to Code Modification. 

. 

 We consider access enforcement in the context of RBAC. In RBAC, a user exercises 

permissions in sessions. A session is associated with a set of roles to which the user is authorized 

in the RBAC configuration. A user can create multiple sessions. In the example in Figure 2, 

users Alice and Bob may activate sessions sa and sb respectively. Alice may associate session sa 

with the role Software Engineer, which authorizes sa to the permissions Project Planning and 

Code Modification. Bob may associate sb with the roles Software Engineer and IT Consultant, 

which authorizes sb to the permissions Project Planning, Code Modification and Project Review. 

 Modern enterprises generate and archive large amounts of data. Such data needs to be 

protected by access control systems. The proliferation of data requires access control systems to 



3 
 

scale to tens of thousands of resources and permissions [1]. The time-efficiency of access 

enforcement is an important consideration for RBAC systems. The size of RBAC polices can be 

large (tens of thousands of permissions and users), and this can impact time-efficiency. For time-

efficiency, we may distribute access enforcement across several reference monitors. With such 

an approach, a single, monolithic reference monitor is no longer a performance bottleneck. Wei 

et al. [4] have proposed an architecture for such distributed enforcement (see Figure 3). 

 

 

Figure 3 - An architecture, for distributed access-enforcement in RBAC, and an associated flow. The PDP is a centralized 

entity at which the RBAC policy is maintained. Enforcement is performed at a PEP. The PEP is aided by an SDP. The 

SDP can be seen as a cache of a portion of the RBAC configuration from PDP. 
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In the architecture, the Policy Decision Point (PDP) is a centralized entity at which the 

RBAC policy is maintained. Enforcement is performed at Policy Enforcement Points (PEPs). 

PEPs are aided by Secondary Decision Points (SDPs). An SDP can be seen as a cache of a 

portion of the RBAC configuration from the PDP. In Figure 3, we show a typical chronological 

flow of events. In Step 1, a user activates a session at a PEP/SDP. In RBAC, users exercise 

permissions in sessions. A session is associated with a set of roles to which the user is authorized 

in the RBAC configuration. In the example in Figure 2, users Alice and Bob may activate 

sessions sa and sb respectively.  

The request to activate a session propagates to the PDP, which makes the decision on 

whether it is allowed. If it is, in Step 2, the PDP communicates a data structure to the SDP that 

the latter uses in Steps 3, 4 and 5 to make decisions on access requests that pertain to that 

session, that are communicated to it by the PEP.  

In adopting the architecture from Figure 3, a question that arises is: what are the data 

structure and associated algorithms we should use in an SDP, so that an access check is fast? In 

answering this question, we also need to consider other aspects that may be traded-off to achieve 

time-efficiency. Two such aspects are: 

 Space efficiency — this relates to the space that a particular data structure takes 

at the SDP. Space and time efficiency can be at odds; this is the classical time-

space trade-off.  

 Administrative efficiency — with this, we ask whether a particular data structure 

at the SDP lends itself to easy administration in the propagation of administrative 

changes that are made at the PDP, to the SDP. We quantify this as the time it 

takes to update the SDP when an administrative change is made to the RBAC 

configuration at the PDP.  

We provide a platform for assessing candidates for access enforcement in the architecture 

shown in Figure 3. The platform provides the ability to encode data structures and algorithms 

that may be used for enforcement, and to measure the time-, space- and administrative 

efficiency. 

To validate our platform, we use it to assess three approaches for the data structure at the 

SDP. They are: directed graph, access matrix [9, 10] and CPOL [6]. Apart from validating our 

platform, our intent with our assessment is to compare CPOL with two other approaches that are 
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natural candidates. CPOL is an approach to distributed access enforcement which, to our 

knowledge, is the state of the art from the standpoint of time-efficiency. The directed graph is a 

natural candidate as an RBAC policy can be perceived as a directed graph. The access matrix is a 

canonical and intuitively appealing representation for an access control policy. Consequently, we 

consider it a natural candidate as the data structure at an SDP.  

A challenge in conducting an empirical assessment is the lack of a meaningful 

benchmark. The establishment of meaningful benchmarks is seen as an important milestone in 

several settings in computing. We propose and adopt a benchmark in our work (see Chapter 4). 

Our objective is for what we propose to serve as a macro-benchmark [7] — one that has RBAC 

policies and session profiles that are realistic. 

In summary, our contribution is a platform for assessing approaches for distributed access 

enforcement in RBAC. Also, we validate its utility by assessing three approaches, one of which 

is the state of the art for access enforcement, but has not been previously used in the context of 

RBAC. The remainder of the thesis is organized as follows. In the next chapter, we discuss 

related work. In Chapter 3, we describe our architecture and the three approaches that we access. 

In Chapter 4, we describe our benchmark, and present our validation. We conclude in Chapter 5, 

with a rating of each of the three approaches for time-, space- and administrative efficiency. 

Portions of this work have been accepted to appear in a peer-reviewed publication [14]. 
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2. Related Work 

 

There is large amount of research in distributed access control, and in distributed RBAC 

in particular. However, there is relatively little work on efficient access enforcement in these 

contexts. To our knowledge, CPOL [6] is the state of the art in access enforcement in distributed 

settings. CPOL employs caching and a structure called an AccessToken that is application-

specific to speed-up access enforcement. The work on CPOL points out also that simply using 

database querying does not suffice for fast access enforcement. Our work is close also to those of 

Wei et al. [4], Tripunitara and Carbunar [5] and Liu et al. [8], that address the access 

enforcement problem in RBAC. Wei et al. [4] propose the architecture that we adopt in this 

paper (see Figure 3). In that context, they propose authorization recycling which is one of the 

approaches that we assess. Liu et al. [8] propose a technique that they call transformations for 

access checking in RBAC. We see a transformation as encoding RBAC in an access matrix; it is 

one of the approaches that we assess. 
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3. Design 

    

As we state in Chapter 1, our architecture for distributed access-enforcement in RBAC 

(see Figure 3), has two components. One is the PDP which the central repository of the RBAC 

policy. We store the policy as a directed graph at the PDP. The other component is an SDP. In 

our architecture, one or more SDPs may be associated with a PDP. In the following sections, we 

discuss our design of the PDP and SDP and rationalize it. 

 

3.1. Policy Decision Point (PDP) 
 

 

Figure 4 - PDP class diagram 

 

The PDP has the following two attributes.  
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public static RbacGraph g; 

public ArrayList<SecondaryDecisionPoint> sdp; 
 

One attribute is of type RbacGraph, which is our implementation of a directed graph as 

an adjacency list. The other is an array list of SDPs that are associated with this PDP. The 

methods associated with a PDP are as follows. 

 
public void init(FileReader fReader) throws IOException{...} 

 

We use init() to initialize the PDP with an RBAC policy from an input file. 

 
public abstract SDPDataStructure request(Session s, String[] roles); 

public abstract SDPDataStructure delete(int session_id); 

 

3.1.1. The RBAC Policy at a PDP 

 

As we mention in Section 3.1.1, the RBAC policy at a PDP is maintained as a directed 

graph.  

There are customarily two options for representing a directed graph [28]. One is as an 

adjacency matrix, and the other is as an adjacency list. We have chosen the adjacency list, as that 

lends itself to easier administration of an RBAC policy. Administration comprises changes to an 

RBAC policy, such as the addition and removal of users, the assignment and revocation of users 

to roles, and roles to other roles and permissions. The addition of a user-role relationship, for 

example, translates to the addition of an entry to a linked list in the adjacency list representation 

for a directed graph. Similarly, the removal of a role-permission relationship translates to the 

removal of an entry from a linked list. The reason why we do not care about time of checking the 

association between two vertices, is because we can assume that the PDP is of less importance 

for us, and that is run on powerful computer system, preferably fast with a lot of storage. When 

we say that the PDP is of less importance for us, we want to emphasise that the problem we are 

dealing with is more associated with the SDP than the PDP. The access checking itself is done at 
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the SDP. Only time we go to the PDP, is when we do not have that particular session on the SDP 

so we need to retrieve data from the PDP. In this case we only recalculate new structure that is to 

be sent back to the SDP.  

 

RbacGraph is a graph implemented as an adjacency list. It has array list of vertices. It is a 

direct graph with a particular structure – it is acyclic, and its vertices can be partitioned into three 

sets [14]. Vertices are: User-Vertex, Role-Vertex and Permission-Vertex. There are some 

constraints on edges between those sets, and they are explained later (Section 3.2.1). 

RbacGraph class implements RBAC class. RBAC class extends SDPDataStructure, 

which is an empty interface. The reason behind this is a need to have the same structure signature 

at any SDP. Having this implemented this way, we can implement its daughter classes in more 

elegant manner. 

 

RbacGraph class looks as follows.  

 
public class RbacGraph implements RBAC { 

 public ArrayList<Vertex> vertices; 

 public HashMap<String, UserVertex> users; 

... 

} 
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Figure 5 - Vertex class diagram 

In order to explain RbacGraph we have to go to a more basic unit that graph is made of. That 

unit is a vertex. Therefore we have to take a look at the Structures package which contains the 

Vertex class. List of classes of Structures package is as follows. 

 Vertex.java 

 UserVertex.java 

 RoleVertex.java 

 PermissionVertex.java 

 RBAC.java 

 

Vertex class As we can clearly see from the Figure 7, Vertex is an abstract class. All of the 

UserVetrex, RoleVertex and PremissionVertex extend Vertex class. 

 

Apart from identification argument, Vertex has an array list of other vertices, which are also of 

the Vertex type. This way we know which vertex is adjacent to which one. Since the graph is 
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directed and acyclic, by its definition we only have edges from top to bottom, meaning that no 

role can point to user. Other restrictions/conditions are as follows. 

 A role can point to another role only if it is of lower level of hierarchy 

 A role can point to permissions 

 A user can point to roles 

 A user can point to permissions 

 

Apart from usual methods (constructor, setters and getters methods) Vertex class includes some 

other methods. We only emphasise the importance of addNeighbour() and 

removeNeighbour() mehods, which we use to add a new neighbour to the adjacency list of 

neighbours, or delete a neighbour vertex from the list. Both methods take Vertex as an input 

parameter, as a neighbour which is to be added or removed from array list of neighbours. Method 

getNeighbours() will return a List<Vertex> of all the neighbours for particular vertex. 

 

Classes that extend Vertex class have additional argument, which is string representation of id. 

RoleVertex class also includes integer argument level, which is used to represent a level in 

the graph (hierarchy) of the particular role. As we state in conditions, role can only point to 

another role if that other role has lower level of hierarchy; in this case that is argument level. 

PermissionVertex class has one distinction from other two classes that extend Vertex 

class. When we try to add or remove a neighbour to a permission vertex, method throws an 

exception since this is not valid scenario according to our conditions from above. 

 

Class interfaces of all four classes are shown in appendix A. 

 

Now that we explained all the components of graph we can move to explaining the graph 

structure and its implementation. We also explain the implementation of the SDP and the 

algorithms and data structures we use at the SDP. 
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3.2. Secondary Decision Point (SDP) 
 

We show the SDP's class diagram in Figure 5. The attributes that we associate with an 

SDP are as follows: 

 
public ArrayList<Session> sessions; 

protected static int sdpId; 

public int id; 

public SDPDataStructure g;  

public PolicyDecisionPoint pdp; 

 

 

 

Figure 6 - SDP class diagram 

 

Apart from identifiers, each SDP has a number of sessions that are associated with it. It also 

includes the data structure that is specific for its implementation and the PDP with which it is 

associated. The methods with which an SDP is associated are as follows. 
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public abstract void destroySession(int sessionId); 

public abstract int initiateSessionRequest(String userId, String[] roles); 

public abstract boolean accessRequest(int sessionId, int permissionId); 

 

The communication between the PDP and the SDP occurs through 

initiateSessionRequest() and destroySession(). As with the PDP, the SDP's 

methods are abstract. They are concretized by a particular data structure that we use at the SDP. 

A user invokes initiateSessionRequest() to initiate a new session. A user issues 

accessRequest() when he wants to exercise a permission within a session. A user invokes 

destroySession() to delete a session. 

 

Each of the SDP's array list of sessions is of type Session. It contains information about the user 

that initiated the session, an identifier for it, and array list of permissions that he wants to access. 

Permissions in RBAC are opaque [2]. Therefore, we have chosen to represent permissions as 

strings. Class diagram of Session class is shown below. 

 

 

Figure 7 - Session class diagram 

We have concretized the SDP with three different data structures. This is part of our validation 

for the abstraction that we discuss in Section 3.1.1. In the following sections, we discuss each 

such data structure, and the manner in which we extend the abstract SDP class for the data 

structure. 
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3.2.1. Directed graph 
 

As we mention in the previous section our way of implementing directed graph is as an 

array list. We choose this particular implementation since the cost of updating the graph, which 

includes both deletion and adding an edge or vertex, is less than in matrix version of 

implementation. We leverage our implementation for a directed graph that we discuss in Section 

3.1.1. We explain the process of getting the graph structure that results at the SDP from our 

example sessions sa and sb (Chapter 1, Figure 2).  

When a session is activated, the PDP communicates to the SDP (Step 2 of Figure 3). Let 

ܵ ෠ be the complete RBAC configuration at the PDP perceived as a directed graph. Letܩ =

,ଵݏ}  … , ௡} be the set of sessions that are active at a PEP, and ܴ௜ݏ =  ൛ݎଵ, … ,  ௠೔ൟ be the set ofݎ

roles that are associated with the session si. Let ௜ܲ = ,ଵ݌}  … ,  ௞} be the set of permissions that݌

are reachable in ܩ෠  from the roles in ⋃ ܴ௜ ௜. Then the vertices of ܩ෠  are ܵ ⋃ܲ ⋃ܴଵ  ⋃… ⋃ܴ௡. 

The edges of G are ൛〈ݏ௜  , 〈௝ݎ ∶  where E(I) is the set of edges of the subgraph I of (ܫ)ܧ⋃ ௝ ߳ ܴ௜ൟݎ 

෠  that is induced by the vertices in ܲ ⋃ܴଵܩ  ⋃… ⋃ܴ௡. That is, G is similar to a subgraph of ܩ෠, 

except with sessions in place of users, and the edges induced by the vertices that are relevant to 

the sessions.  

The access 〈ݏ ,  is allowed if and only if the vertex p is reachable from s in G. We 〈݌

represent G as an adjacency list, which is a standard representation of a graph [11]. As an 

example, consider the sessions sa and sb from Section 1 for the RBAC policy in Figure 1. The 

session sa is activated by Alice and is associated with the role Software Engineer. The session sb 

is activated by Bob and is associated with the roles Software Engineer and IT Consultant. The 

resultant directed graph at the SDP is shown in Figure 8. 
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Figure 8 - The directed graph for our example sessions sa and sb that are discussed in the text, for the RBAC policy in 

Chapter 1, Figure 2. 

 

SDPRbacGraph and PDPRbacGraph As we can see from the PDP and the SDP class diagrams 

(Figures 4 and 5), PDPRbacGraph and SDPRbacGraph are specializations of the PDP and 

the SDP classes. They inherit all the parent’s class methods and arguments. These specializations 

are necessary since we could have three different implementations of the PDP and the SDP.  

In next paragraphs we discuss implementation of the SDP where we use RbacGraph 

structure as its way of storing data.Class SDPRbacGraph is a daughter class to the SDP class 

(see Figure 5). Class PDPRbacGraph is a daughter class to the SDP class (see Figure 4). One 

of the modifications is additional argument, which contains the copy of the graph structure that is 

at the SDP. 

 
public ArrayList<Vertex> requested; 

 

Following the flow from Figure 3 (see Chapter 1), we have couple of steps in this process.  
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1. User comes and activates a session at the SDP. User sends initiation request to the SDP 

with its unique identifier and with a set of roles. Set of roles contains roles’ string 

identifiers. At this step we call following method from the SDP class. 
 

public int initiateSessionRequest(String userId, String[] roles); 

 

2. This step corresponds to a step 2 from Figure 3. At this point the SDP creates a new 

session for particular user and propagates a request to the PDP that is assigned to. We 

accomplish this by calling a method request() from PDP.  
 

public SDPDataStructure request(Session s, String[] roles); 

 

Now it is up to the PDP to check and see if a user is authorized to access roles from the 

set he sent. If this checking is successful, new structure of graph will be sent back to the 

SDP. The graph structure has one vertex at the top level, which represents the session, 

and all the role vertices that user had requested in middle levels. At the bottom level of a 

graph structure are all the permission vertices that are assigned to those role vertices. In 

the following paragraph we explain the algorithm for getting a new graph structure. 

Firstly we create a new vertex with a session identifier as our top level vertex in the 

response graph. Secondly, we get induced graph of the user that requested the session 

initiation. Next step is to go through all roles from the set and check for each of them if 

the user is assigned to them. If a user is not assigned to at least one of them, we return the 

NULL value as a response. This means that user has tried unauthorised access, the 

method returns an appropriate warning message. If a role is indeed assigned to a user, we 

merge the whole subgraph of that role with a response graph. This previous step is critical 

one. There is possibility when adding more roles’ subgraphs that some of them could 

duplicate in each other’s graphs. However we avoid this case since when we check a new 

role, we check if it is already in the response graph. Only in the case if a role is not in the 

response graph, we add it to a array list of vertices of a response graph. At the PDP we 

update the array list requested with newly requested vertices. When we check all the 

roles, we return the response graph to the SDP.  
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3. Now, when we create the session and update the graph structure at the SDP, user tries to 

send access request. User sends a request to access some permission within its session.  

 
public boolean accessRequest(int sessionId, int permissionId); 

 

This whole process is done at the SDP level so we do not communicate with the PDP. As 

we can see from accessRequest() method’s signature, user sends sessionId and 

permissionId. We check whether the particular session is authorized to perform a 

particular session in a following way. First we fetch the vertex that has sessionId as 

its identifier (if there is such, if not we return a warning message). Secondly, we go 

through vertex’s subgraph trying to find a permission vertex with has matching identifier 

with a given input argument. If we manage to accomplish all this, we return a TRUE 

value. This indicates that access request is approved. In any other case, whether the 

session is inexistent or permission is inexistent, we return a FALSE value indicating that 

access request is denied. If we take Figure 3 in consideration this step corresponds to 

steps 3, 4 and 5 from Figure 3. 

 

4. The session at the SDP can be destroyed or invalidated. This could have probably been 

implemented as a time dependent feature, but for the testing purposes we have made our 

implementation to look as follows.  

When we call a destroySession() method from the SDP we do following. The SDP 

automatically invokes delete method from the PDP. At the PDP the idea is to delete the 

session vertex and all other vertices from its subgraph. The only condition when we 

delete a vertex is that it is not assigned to any other vertex from the rest of the graph. We 

do not operate with the graph structure from the PDP but rather with array list requested 

which contains duplicate of the SDP’s graph structure. When we complete deletion, we 

send a new graph structure to the SDP as a response. The SDP will replace its graph 

structure with new one. Signatures of the delete() and destroySession() 

methods are shown below. 

 
public void destroySession(int sessionId); 
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public SDPDataStructure delete(int sessionId); 

 

3.2.2. Access Matrix 
 

The access matrix [9, 10] is yet another very natural candidate to be used as a structure at 

the SDP. It is canonical and intuitively appealing representation for an access control 

configuration [14]. The encoding of RBAC session in an access matrix is straightforward. Rows 

are indexed by sessions and columns by permissions. Our entity in a matrix is a bit. For example 

if a session i is assigned to certain permission j, than field of the matrix [i, j] is going to have 

value of bit 1, in other case it is going to be 0. In Table 1, We show the access matrix that results 

at the SDP from our example sessions sa and sb (Figure 2).  

 

 

 Project Planning Code Modification Project Review 

sa 1 1 0 

sb 1 1 1 

Table 1 - Access matrix for our example from Chapter 1, for the RBAC policy in Figure 2. 

 

Encoding of RBAC in Access Matrix RbacMatrix class implements RBAC, it has three 

attributes. First one is a matrix and another two are the dimension of matrix (corresponding to 

number of rows and columns). Interface of the RbacMatrix class is shown below. 

 

public class RbacMatrix implements RBAC { 
 

 public String [][] matrix; 

 int M, N; 

  

 public RbacMatrix(); 

 public RbacMatrix(int M, int N) {...} 

 public RbacMatrix(int M) {...} 
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 public boolean isPair(int a, int b) {...} 

} 

 

First constructor is an empty constructor, second one initializes matrix of MxN dimension with 

all default values (zeros). Third constructor initializes matrix of MxM dimension. In this last case 

both dimensions are the same, however we only have one input parameter. Method isPair()is 

used so we can check whether a particular session has permission to access the permission (since 

we said that rows stand for sessions and columns stand for permissions). The value that a method 

returns, depends on a field [a, b] of the matrix, from given input parameters a and b. If that field 

is within the range of the matrix, we check its value. If the value is 1 (one), method returns 

TRUE, otherwise FALSE. 

 

SDPAccessMatrix and PDPAccessMatrix The communication between the SDP and the PDP 

stays the same as mentioned before (see Section 3.1.1). The only difference is the way we 

implement methods at the PDP level since the returning data structure is now access matrix. 

Methods at the SDP are the same, except the implementation of the access request method. In 

this method we use previously mentioned isPair() method (Section 3.3.1.) from 

RbacMatrix class which simply checks whether certain session is allowed to perform 

particular permission. The methods of the SDPAccessMatrix are shown below. 

 
public int initiateSessionRequest(String userId, String[] roles); 

public boolean accessRequest(int sessionId, int permissionId); 
public void destroySession(int sessionId); 

 

All methods’ signatures are the same as before. However when it comes to the implementation of 

methods at the PDP, there are quite a few changes forth of mentioning. The interface of the 

PDPAccessMatrix class looks like this. 

 
public class PDPAccessMatrix extends PolicyDecisionPoint { 

  

 public ArrayList<RecordData> record; 

 public ArrayList<Integer> sessions; 

 public ArrayList<Integer> permissions;  
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public PDPAccessMatrix() {...}  
public SDPDataStructure request(Session s, String[] roles) {...} 

public SDPDataStructure delete(int sessionId) {...} 

public SDPDataStructure matrixCreate() {...} 

} 

 

We can notice that in this specialization of the PDP we have fields than we did not have 

in previous one (Section 3.2.3.). In order to keep track which session issues request for which set 

of permissions, we introduce array list of RecordData. We implement RecordData as a 

separate class. An instance of that class is a session’s integer identifier and an array list of 

permissions assigned to that session. The general idea is to make process of reconstructing a 

matrix as easy as possible. Apart from argument record, PDPAccessMatrix class has two 

more arguments, both of them are implemented as array lists. Argument sessions, we use to 

store all the sessions that have requested initiation at the SDP level.  Argument permissions, 

we used to store all the permissions the sessions have requested to access to. It is worth of 

mentioning that this array list has property of a set, there is no duplicating of permissions in it. 

The methods of PDPAccessMatrix class have the same signatures but the implementation is 

different.  

When we send the initiation request from the SDP, we expect a new data structure to be 

returned from the PDP. We assume that initiation request is allowed at the SDP level. We go 

through the graph at the PDP and we automatically create new a new instance or RecordData 

as we collect all the permissions that user has requested for. Having that and the new session’s 

identifier, we add a new instance of RecordData to an array list. At the same time we populate 

two other array lists, making sure that we do not end up having duplicates in any one of them. 

After all this is done we create and return new matrix to the SDP. We create a new using method 

matrixCreate(). This method picks the permission with largest integer identifier and the 

session with largest identifier assigning them to the dimensions of the matrix. It can be noticed 

that doing that we might end up with half empty matrix, e.g. permissions that have not been even 

requested but their integer identifier is smaller than the one we picked. However this is 

space/time trade off that is inevitable in matrix case. When we create an empty matrix, the next 

step is to go through an array list of RecordData and match the sessions with its permissions. 

This way we fill in the matrix with its values. For example, if an element of an array list has a 
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session identifier with value of M, and the list of permissions with values {i, i+1, i+2, ..., n}, then 

we set the following fields in a new matrix to value 1; [M, i], [M, i+1], [M, i+2], ..., [M, n]. 

 When it comes to deleting a session, the SDP calls for the delete() method at the 

PDP. There are two cases in this. 

1. Session we try to delete is the last row in the matrix 

2. Session we try to delete is not the last row in the matrix 

 

In both cases we delete particular session from both record and sessions array list. 

However in the first we case reduce matrix’s row count by one and then recreate new matrix 

which we send as back to the SDP. Reconstructing a new matrix in the second case is done fast. 

The ordering of the columns and rows does not change, we simply delete the last element from 

the sessions and record array list, no reordering of the columns’ and rows’ indexes is 

necessary. In the second case after updating array list structures we return a NULL value. 

Returning NULL value signals to the SDP that it can just do invalidation of that session’s row. 

All the values for that row will be set to 0 (zero). This way we do not reconstruct a matrix, but 

we will have unused space. We could do this in the first case as well, without going to the PDP 

and reconstructing a new matrix.  

It is worth to mention that in this approach we are facing space/time trade off. We can see 

that access checking is constant, but the price we have to pay is that we have to store potentially 

very big matrix structure at the SDP. 

 

3.2.3. CPOL 
 

 CPOL [6] is an approach to distributed access enforcement that has been proposed in the 

context of trust management. In trust management, the configuration (or policy) is distributed as 

well. Also, the syntax of polices is different from RBAC. Consequently, we need to provide an 

encoding of RBAC sessions in CPOL. 

 In CPOL, an AccessToken is used to determine whether access should be granted or not. 

In the original design [6], an AccessToken is opaque – its structure is specific to an application. 

A policy comprises Rules; each Rule contains an AccessToken. To check whether an access 
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should be approved, we need to check the set of Rules and whether any of them contains 

particular AccessToken that will grant an access. 

 

Encoding of RBAC in CPOL Our encoding of RBAC in CPOL is as follows; we argue that this 

is the most natural encoding. We implement the SDP as a CPOL Cache [14]. Implementing a 

cache is one of the crucial things for CPOL performance, and that is why we want this to be as 

good as possible and close to original implementation in C++. Cache contains an array list of 

cache entries (CacheEntry.java). Cache entry contains CacheKey, an AccessToken and condition 

(which is Boolean type). We represent CacheKey as an integer sessionId. AccessToken is a set 

of permissions to which session is authorized [14]. Our study of the original CPOL 

implementation suggests that a manner in which a set of permissions should be implemented is 

of big importance for CPOL performances. We used Java library java.util.set to represent a set of 

permissions. In  Appendix B we show all the classes within Cpol package. Figure 9 shows class 

diagram of Cpol package. 
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Figure 9 - Cpol package class diagram 

 Class Rule.java is basically mapping of a Session as it is in other implementations 

(Sections 3.2.1. and 3.2.2.). To simplify this mapping we introduced a new class 

SessionCPOL, which extends Session class. As an only field, SessionCPOL class, 

contains Rule. We can now see the mapping with the Session more clearly and more logical. 

When implementing each class, we take care that it becomes worthy duplicate of its original 

implementation. Rule contains following fields; owner, licencee, accesstoken and condition. 
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Owner, which is type of String, is unused in our process of evaluation, and since it is used only 

by a system itself, we say that system is the owner. In our implementation we use licencee to 

represent userId. Licencee is a type of String. Since we map Rule to the Session, the only natural 

thing is for licencee to be userId. AccessToken is type of AccessToken, which is described 

above. Field condition is type of Boolean, and it is used to say whether a particular Rule is valid 

or not. 

 In our example of the sessions sa and sb from the RBAC policy (see Chapter 1, Figure 2), 

we have two CPOL Rules, Rulea and Ruleb, which contain AccessTokena and AccessTokenb 

respectively. AccessTokena is {Project Planning, Code Modification}. AccessTokenb is {Projec 

Planning, Code Modification, Project Review}. The cache has keys sa and sb, for the two access 

tokens. [14]  

 

SDPCPOL and PDPCPOL — The communication between the SDP and the PDP stays the same 

as mentioned before (see Section 3.1.1). Signatures of the SDP’s methods stay unchanged as 

before, but their implementation defers from previous ones as expected. We show interface of 

SDPCPOL below. 

 
public class SDPCPOL extends SecondaryDecisionPoint { 

  

 public Cache cache; 

 public ArrayList<SessionCPOL> sessions;  

  

public SDPCPOL(PolicyDecisionPoint pdp) {...}  
public int initiateSessionRequest(String userId, String[] roles); 

public boolean accessRequest(int sessionId, int permissionId); 
public void destroySession(int sessionId); 

 

} 

 

As mentioned before this instance of the SDP is implemented as a cache. At the SDP level we 

store Cache which has multiple CacheEntries and an array list of sessions, which are type of 

SessionCPOL. This list has actually properties of set, since there could not be two same Rules, 

therefore nor could exist two same SessionCPOL. This is exactly what we had mentioned in 
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previous section; in order to check whether a particular access should be approved, we check the 

set of Rules to determine if some contains an AccessToken. The other way of checking this is to 

go through a Cache, which is a keyed table, and as soon as we hit the requested entry we check 

whether an AccessToken within contains particular permissionId. This is however the way we do 

it in our implementation since the access request when issued has two parameters; sessionId and 

permissionId. When a session is to be deleted; we do this in two steps; first step is to invalidate 

entry with the key that is equal to sessionId, and the second step is to remove the rule that has 

been created for particular session. The way we did step three is very intuitive, we simply iterate 

through list of SessionCPOL and when we find a match we remove it from a list. At this point 

no communication with the PDP is required. However since we also keep copy of all the Rules at 

the PDP, we will invoke delete method from the PDP, so that the PDP updates its list as well. 

When a session initiation request is issued, we do next steps. First step is to create new instances 

of Rule and SessionCPOL of input parameters of the method. After this is completed we send 

a request to the PDP with new SessionCPOL and set of roles, as parameters. If all is in order 

(there is no violation of access of any kind), the PDP should return a new CacheEntry to the 

SDP. Newly created instance of Rule is being updated with AccessToken from new CacheEntry, 

and its condition is set to TRUE. After doing so, Rule is being assigned to a new instance of 

SessionCPOL. Finally both new CacheEntry and SessionCPOL are added to their lists, and so 

session initiation is being successful.  

 At the PDPCPOL, we have two methods; request and delete. First one is invoked by the 

SDP when there is an initiation of a session, second one when a session is to be deleted. As 

mentioned before, we keep array list of Rules at the SDP level as well. However instead of 

having the whole Rule structure we keep only its id at this level. When the user is identified, and 

when we make sure that all the roles he requested, he can access to, we will form a list of 

permissions. From a input parameter we extract a Rule’s id which will be placed in a list of 

Rules at the PDP. After all this is done successfully, we create new AccessToken, CacheKey 

(key itself is Rule’s id) and new CacheEntry, that is to be returned as a response to the SDP. If 

anything goes wrong, NULL value will be returned. Second method is delete method, which we 

invoke by the SDP when we want to delete a session. This method is mapping to a 

removeRule() method from original Cpol implementation [6]. Since Session is mapped to a 

Rule, now sessionId parameter is actually id of a Rule we want to remove from a list. 
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In our implementation of CPOL, we have adhered closely to the original implementation. 

In a Chapter 4, we discuss why we have based our assessment on a new implementation. Our 

implementation compares in performance to the original (see Chapter 4.). [14] 
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4. Validation 

 

4.1. Benchmark  
 

In this chapter we explain how using existing architecture that we developed, we can 

evaluate different implementations of access enforcement in RBAC. Doing this we wish to 

determine whether our platform is sound and independent of any possible data structures that 

might be used at the SDP level. Firstly we would like to describe the benchmark we used. 

Benchmark has two components: RBAC polices [29] and session profiles [14]. We have 

designed and implemented programs to generate data sets for the benchmark [14]. The programs 

are written in Java. Each one of them takes certain arguments that correspond to the 

categorizations we discuss in next sections. 

 

4.1.1. RBAC Profiles 
 

The RBAC policies that comprise our benchmark are from prior research in RBAC, and 

experience with RBAC deployments that have been documented in books and the research 

literature. We present a summary in Table 2. We categorize RBAC policies along the following 

axes. 

Source # Users # Roles # Permissions 
RH 

Depth 

RH 

Model 
Connectivity 

Literature 

500-999 

1000-1999 

2000-2999 

3000-3999 

5000-6000 

10000-40000 

10-200 

200 

100 

200-250 

200 

120-1300 

10-3000 

1000-3500 

100-2000 

1500-11000 

1500-2000 

100-11000 

1 - 5 

Stanford 

Hybrid 

Core 

Constant (range) 

to roles, 

Constant (range) 

to permissions, 

Distribution 

(e.g., Zipf, 

uniform) Synthetic 
40001-400000 

400001-1600000 

1600-16000 

16000-64000 

1500-2000 

1500-11000 
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Table 2 - Categorization of RBAC polices in the benchmark. 

Source We have two sources, “Literature”, and “Synthetic”. By Literature, we mean that we have 

directly acquired particular kinds of policies from literature that documents research and 

experience with RBAC. Our sources for these can be classified into three. 

1. Top —down design of RBAC polices [3, 15, 16, 17] 

2. Role mining and engineering [18, 19, 20, 21, 22, 23, 24, 25] 

3. Evaluation of approaches to access-enforcement [4, 5, 8] 

We also have created some new kinds of policies based on policies from the literature. We call 

these Synthetic policies. 

Number of users, roles and permissions The numbers of users, roles and permissions are 

typically co-dependant in RBAC policies from the literature. In Table 2, we show the number of 

users, and the corresponding numbers of roles and permissions for policies from the literature, 

and for Synthetic policies. We point out that roles do not grow, for example, linearly, with users, 

but more as a step function.  

We point out also that the number of permissions range from a fraction of the number of 

users, to a somewhat significant multiple. The reason for this range is that RBAC is deployed in 

one of two contexts. One is for high-level policies in which permissions are abstract. Another is 

at a much lower level, in which resources that are protected are individual files or email 

messages; in such systems, there can be a considerable number of permissions. (It is common for 

a permission to be a pair 〈݋,  where o is the object or resource that is protected, and r is a ,〈ݎ

privilege or right. However, this is not the only encoding as a permission that is meaningful; see, 

for example, the work of Crampton [26].)  

For our Synthetic policies, we consider numbers for typical enterprises that we have not 

already considered under Literature. The number of employees of an enterprise can be up to 1.6 

million [12]. If such enterprises deploy RBAC, we anticipate that they will want to model each 

employee as an RBAC user. For such policies, we anticipate that the number of roles will be in 

the same proportion to the number of users as for the largest range for users from the literature. 

We do not anticipate that the number of permissions will increase significantly. Consequently, 

we adopt for permissions similar numbers as the largest ranges from the literature. 
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Role hierarchy (RH) and connectivity  There are three categories we consider for the structure of 

RBAC policies. As Table 2 indicates, these are RH Depth, RH Model and Connectivity. By RH 

Depth, we mean the maximum path-length from a role to a permission. In our survey of the 

literature, the RH Depth does not exceed 5. 

We consider two RH Models, Stanford and Hybrid. In the Stanford model [3], roles are 

layered, and a role at layer i directly inherits roles only in layer i + 1, and is inherited directly 

only by roles in layer i - 1 (or by users, for the topmost layer of roles). The Stanford model arises 

in the top-down design of RBAC policies. Realizing the Stanford model in an enterprise 

typically results in 4 or 5 layers of roles [3]. The hybrid model arises in both the top-down design 

of RBAC policies and in role mining. In the hybrid model, the role hierarchy is some partial 

ordering, and not layered as in the Stanford model. A special case of the two models is when 

there is no role-role relationship. This is called Core RBAC and arises in role mining [8, 21]. 
 

4.1.2. Session profiles 
 

There is some prior work which has datasets on session profiles [5, 8, 13]. We augment 

those datasets with our own. We categorized session profiles into two; activation and access 

checks; Table 3 [14, 29]. 

 

Activation 

 Intra-session 

o Number of roles 

o Number of permissions 

o Nature of roles 

o Nature of permissions 

 Inter-session 

o Number of sessions 

o Arrival rate 

Access checks 

 Number 

 Nature 

Table 3- Session profile categories in our benchmark. 
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Under activation category, we consider attributes associated with activation of session. For intra-

session we have four arguments. Number of roles represents how many roles we would like to 

activate. This could be a fixed number or a range. Number of permissions is number of how 

many permissions we want to access. When we talk about nature of roles, there is quite a few 

ways this one is used. For example we may specify that only roles that are directly assigned to 

user are activated. Another would be that only roles that activate same sets of permissions are 

activated. This is also referred as separation-of-duty [3]. Nature of permissions gives us option to 

choose whether to activate only permissions user is assigned to, or rather any permission from 

the system. 

For inter-session we have two attributes. Number of session represents exactly number of 

sessions we would like to activate. The other one, arrival rate, is the kind of arrival we would 

like our session activations to show up in the system. We consider bursty and uniform arrival 

rate. By bursty arrival, we mean that session activations are interspersed with relatively long 

“quiet” periods in which we have no session activations. In between those activations, we have 

access checks for the existing sessions [14]. In uniform session arrivals, session activations are 

uniformly interspersed with access checks [14]. We conclude that bursty arrivals are more likely 

sessions directly used by humans, and on the other side, uniform arrivals would be possible for 

automated processes which activate the sessions. 

Our second category is relates to access checks. Here we have two attributes: the number and the 

nature of access checks. First one represents the actual number of sessions we would like to 

activate. Under nature of access checks, we characterize the permissions for which access checks 

needs to be made. For example one way is to perform all the access checks to all of permissions, 

until we reach the number of access check. The other way is to perform access checks only to 

permissions that are allowed for a user. 

 

4.2. Evaluation and methodology 
 

In next section we will talk about performance of three different approaches against our 

platform. We consider time, space and administrative efficiency. 
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4.2.1. Methodology 
 

Meaningful empirical assessment is a significant challenge in computing. For Java 

programs, non-determinism in making empirical observations can result from various factors, 

such as dynamic compilation and garbage collection. The methodology we adopt overcomes 

such non-determinism and is statistically rigorous. It is based on the work of Georges et al.[27]. 

Java programs run within an instance of a Virtual Machine (VM). We collect the average 

time across multiple VM invocations, as there can be variation across such invocations. Within a 

VM invocation, we need to avoid skew from the effects of starting up the VM and reach what is 

called steady-state [27]. For each VM invocation, we determine the number of benchmark 

iterations that we need to perform by finding at least k consecutive steady-state values for which 

the coefficient of variation (CoV) is less than some preset value (we have chosen 2%). The value 

of k starts at some value (4, in our case) and increases so long as the CoV decreases, upto the 

threshold. We record the mean of the k values for each VM invocation. Our final benchmark 

time is the mean across all VM invocations. 

To minimize the effects from garbage collection, we keep the heap size constant across 

VM invocations. Apart from the mean, we also compute confidence intervals. Our objective is 

for the confidence intervals to not overlap, as then, with a certain confidence (95%, in our case), 

we can assert that the two values are statistically distinct. All the values we report and graph in 

this paper are statistically distinct from other values. 

We have conducted our experiments on an isolated Intel dual core E8400 PC that runs at 

3 GHz, has 3.5 Gbytes of RAM and runs the Ubuntu Linux operating system. Our Java version is 

1.6.0_18, and we run the OpenJDK Runtime Environment. 

 

4.2.2. Evaluation 
 

Time efficiency For time efficiency we consider both inter-, and intra-session profiles. We have 

two inter-session attributes: the number of sessions, and the arrival rate. In Table 4 and Figures 

10, 11 and 12, we present our results for time efficiency, with the inter-session attributes as 

parameters. We also consider an intra-session attribute, the nature of RH. We discuss the results 
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that pertain to that in the next section. In each dataset we have 2500 users, each authorized to 

different numbers of roles and permissions. We have 100 roles in total, and 100 permissions. Our 

objective is to understand the behaviour of each approach as the two inter-session attributes 

change. Consequently, we consider from 2 through 15 sessions, and both bursty and uniform 

arrivals for the sessions. There are several observations we make from our results. 

 

Arrival rates We observe from Table 4 that none of the approaches is impacted by the session 

arrival rate (burst vs. uniform).  

 

Number of sessions The graphs in Figures 10, 11 and 12 show the impact of the number of 

sessions on each of three approaches. We observe that all three approaches are resilient to an 

increase in the number of sessions from the standpoint of time efficiency. That is, access check 

time does not necessarily grow with the number of sessions. We expect this to be the case, so 

long as the PEP/SDP is not stressed by adding too many sessions. None of the approaches has an 

access check algorithm whose time-complexity is parameterized by the number of sessions. 

It is not our objective to stress a PEP/SDP by considering large numbers of sessions. 

Indeed, the number of sessions a PEP/SDP can support without significant impact on its 

performance depends on its resources such as hardware. Our objective is gain broader insights 

into the three approaches, notwithstanding the resources available to a PEP/SDP, assuming some 

realistic model of computation (the “Random-Access Machine” model, for example [11]). 

 

Efficiency The access matrix is very time-efficient; in our tests, an access check takes less than 1 

µs. This is unsurprising as an access check is done in constant time with minimal additional 

overhead. CPOL is only slightly less efficient; for this particular dataset, we can perceive the 

number of permissions to which a session is authorized as constant. Consequently, the manner in 

which a CPOL AccessToken is realized does not impact time-efficiency. The directed graph is 

highly efficient for Core RBAC. This is because a path from a session vertex to a permission 

vertex is exactly 2; consequently, it is highly efficient when we have only up to a few hundred 

roles. We study the impact on time efficiency from intra-session attributes (e.g., a large number 

of permissions in a session) in the next paragraphs. 
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Jitter By jitter, we mean the variation in access check times as the number of sessions changes. 

We can quantify this as the percentage error in the mean; that is, the ratio of the standard 

deviation to the mean. We observe from Figures 10, 11 and 12 that this is quite small for the 

directed graph, access matrix and CPOL. In our datasets, a user is directly assigned to the same 

number of roles across each of the Stanford, Hybrid and Core policies. Consequently, there is 

more heterogeneity in the roles that a user may activate in the Stanford policy than in the other 

two. 

 

  Directed graph Access matrix CPOL 

 

Bursty 

Stanford 32.70 0.79 2.14 

Hybrid 9.41 0.80 3.12 

Core 5.17 0.74 2.87 

 

Uniform 

Stanford 29.47 0.62 1.50 

Hybrid 8.45 0.62 1.44 

Core 5.93 0.60 1.51 

Table 4 - Average access check times in µs with the inter-session attributes, and one intra-session attribute (nature of 

RH), as parameters. 

 

We have studied the impact of intra-session attributes on time-efficiency. We vary three 

parameters in our experiments in this context: the number of roles per session, the number of 

permissions per session and the nature of RH (Stanford, Hybrid and Core). Figures 10, 11 and 12 

shows the impact of the last attribute on time efficiency, and Figures 13, 14 shows average 

access check times in µs for Core RBAC, for which the number of roles and permissions range 

from small (10) to large (10,000). Such numbers are consistent with Table 2. 

 

Role hierarchy Table 4 and the graphs in Figures 10, 11 and 12 show the impact of Stanford vs. 

Hybrid vs. Core as the choice for RH. Only for the directed graph do we see an impact from the 

choice of RH. For the directed graph, a deeper RH results in an increased access check time as 

we need to traverse a longer path from a session vertex to a permission vertex. This is reflective 

of our dataset — a user is directly assigned to the same number of roles for all three of the 
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Stanford, Hybrid and Core RBAC policies. However, in the Stanford policy, he is authorized to 

more roles as a result of the deep RH.  

 

Scalability We observe from Figure 13 that the directed graph scales poorly as we increase the 

number of roles. The reason is that access checking for the directed graph is vertex reachability, 

which is linear in the size of the graph. For the access matrix and CPOL, the time for access 

checking is independent of the number of roles in a session. In this respect, they scale well with 

the number of roles. 

The access matrix and CPOL scale well also with the number of permissions, as Figure 

14 indicates. This is somewhat surprising as an AccessToken in CPOL is linear in the number of 

permissions in a session. As we mention earlier, it is crucial to the time efficiency of CPOL that 

this encoding be efficient. Notwithstanding this, up to 10,000 permissions, these issues appear to 

have no tangible impact on the time efficiency of these approaches. The directed graph fares 

poorly in this context as well. This is because the adjacency list approach often requires a linear 

search to find a vertex (permission, in this case).  

 

 

Figure 10 - Average access check time in µs and the corresponding standard deviation for CPOL. 
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Figure 11 - Average access check time in µs and the corresponding standard deviation for access matrix. 

 

Figure 12 - Average access check time in µs and the corresponding standard deviation for directed graph. 
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Figure 13 – Time efficiency for small (10) to large (10,000) numbers of roles in a session. 

 

 

Figure 14 - Time efficiency for small (10) to large (10,000) numbers of permissions in a session. 
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Space efficiency In this section, we analyze the space-efficiency of the three approaches. We 

base our assessment on what we have observed from our implementations, and an analysis of the 

data structures. The space needed for a directed graph grows linearly with the number of 

sessions. In the worst-case, it can also grow linearly with the number of permissions and roles 

per session. However, on average, the size of the directed graph is constant in the number of 

permissions and roles. This is because we expect roles and permissions to be shared by several 

sessions. 

The access matrix is highly space inefficient. The reason is that it grows quadratically 

with the number of sessions and the number of permissions to which any session is authorized. 

CPOL is linear in the number of sessions. It is linear also in the number of permissions per 

session, and therefore not as space efficient as the directed graph. It is agnostic to the number of 

roles in a session. In Figures 15, we present graphs that capture the above discussion. The graphs 

have been generated based on our implementations. The reason the access matrix is highly 

space-efficient for small numbers of sessions is that it is a bit matrix. However, as the number of 

sessions and permissions per sessions grow, its (quadratic) growth quickly negates the fact that 

each entry in the matrix is only a bit. 
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Figure 15 – The space efficiency of our approaches. In our data set that we used to generate this graph, the number of 

roles and permissions grows by a constant factor per session. We show that access matrix and CPOL are space inefficient, 

while directed graph is space efficient. 

 

Administrative efficiency An administrative change is the addition or deletion of a user-role, role-

role or permission-role relationship in an RBAC policy. The addition of a user at the PDP has no 

impact on an SDP. However, the removal of a user may impact an SDP, as that user's sessions 

need to be removed. This impact is linear in the number of sessions in the worst case for the 

directed graph, quadratic in the number of sessions and permissions in the worst case for the 

access matrix and linear in the number of sessions in the worst case for CPOL. 

The addition or removal of a permission can impact an SDP. The impact is constant-time 

for the directed graph, linear in the worst case in the number of sessions for the access matrix 

and linear in the number of sessions for CPOL. The addition or removal of a role can authorize 

or forbid a session, respectively, to several permissions. We can infer the impact on the three 

approaches from our discussions on permissions. 

In Table 5, we show the results of a proportional mix of administrative changes. The 

research literature on RBAC administration has focussed mostly on user-role changes, 

presumably because these are the most frequent in real-world deployments. We assume that 75% 
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of the changes are to user-role relationships. We conjecture that permission-role changes are the 

next most frequent (20%) and changes to roles are infrequent (5%). In our experiments, sessions 

overlap with one another in terms of permissions and roles to a constant factor. 

 

 Directed graph Access matrix CPOL 

100 13.45 2934.00 321.75 

200 22.20 9003.60 1644.00 

300 39.15 1741.05 5439.30 

400 45.80 3748.80 5053.00 

500 38.50 25097.25 12567.25 

600 87.30 20488.20 3492.00 

700 108.85 18676.70 1737.05 

800 142.00 33686.40 7352.00 

900 151.65 17543.25 17145.00 

1000 158.50 31068.00 6800.00 

Table 5 - The administrative overhead on a Core RBAC policy. We assume a proportion of 75% changes to user-role 

relationships, 20% to role-permission relationships, and 5% to role-role relationships. The number of sessions is 1000, 

and every user has at least one session. 

From the results from Table 6, we can see that the size of RBAC plays important role. 

For example, if the deployment is small in the size of the RBAC policy (e.g., only up to 100's of 

roles and permissions), then the access matrix is the best choice. However, if the deployment 

gets larger, then space and time efficiency gives poor results for access matrix. CPOL has the 

same scenario. While it performs good in terms of access checking times, it fails when it comes 

to administration and space efficiency considerations. If there is a need for balance reasonable 

space and access check time with ease of administration, then the directed graph is a good 

choice. 

We have assessed the three approaches to distributed access enforcement in RBAC. Our 

approach is empirical, and we have proposed and used a benchmark as the basis. Based on our 

quantitative results, we are able to provide guidance on the best approach from among the three 

for particular RBAC deployments. 
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  Directed graph Access matrix CPOL 

Time 
Inter-session fair good good 

Intra-session poor good good 

Space fair poor poor 

Admin good poor poor 

Table 6 - Our rating of "good", "fair", "poor" for each approach that we assess. While we argue that these ratings follow 

from our quantitative observation, they are somewhat subjective. 
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5. Conclusion 

 

 We have designed and implemented a platform for assessing distributed access 

enforcement in RBAC. We have validated it by using it to assess three approaches, one of which 

is CPOL [6], the state of the art in distributed access enforcement. Our assessment has provided a 

somewhat surprising result that CPOL is not necessarily the best choice for access enforcement 

in settings that are typical for RBAC.   

 In future work, we plan to explore the use of our platform for assessing approaches to 

access enforcement in contexts other then RBAC, such as trust management. Also, we plan to 

explore new trust models between the PDP and the SDP. We may perceive the PDP as 

outsourcing access enforcement to the SDP, but not fully trusting the SDP to, for example, keep 

the access state secret. 

 

  



42 
 

Bibliography 

[1]  Personal Communication, Open Text Corporation, Aug. 2010. 

[2]  R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access 

control models,” IEEE Computer, vol. 29, pp. 38-47, February 1996. 

[3]  D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-Based Access Control. Artech 

House, Apr. 2003. 

[4]  Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu, “Authorization Recycling in RBAC 

Systems,” in Proceedings of the 13th ACM Symposium on Access Control, Models and 

Technologies (SACMAT'08), pp. 63-72, 2008. 

[5]  M. Tripunitara and B. Carbunar, “Efficient Access Enforcement in Distributed Role-

Based Access Control (RBAC) Deployments,” in Proceedings of the 14th ACM 

Symposium on Access Control, Models and Technologies (SACMAT'09), pp. 155-164, 

2009. 

[6]  K. Borders, X. Zhao, and A. Prakash, “Cpol: High-performance policy evaluation,” in 

Proceedings of the 12th ACM Conference on Computer and Communications Security 

(CCS'05), pp. 147-157, 2005. 

[7]  S. Wilson and J. Kesselman, Java Platform Performance: Strategies and Tactics. Prentice 

Hall, May 2000. 

[8]  Y. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng, Y. Zhao, and J. Zhang., “Core 

role-based access control: Efficient implementations by transformations,” PEPM'06: 

Proceedings of the 2006 ACM SIGPLAN symposium on Partial Evaluation and 

semantics-based Program Manipulation, pp. 112-120, May 2006. 

[9]  G. S. Graham and P. J. Denning, “Protection — principles and practice,” in Proceedings 

of the AFIPS Spring Joint Computer Conference, vol. 40, pp. 417-429, AFIPS Press, May 

16-18 1972. 

[10]  M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating systems,” 

Communications of the ACM, vol. 19, pp. 461-471, Aug. 1976. 

[11]  T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. 

The MIT Press, 3 ed., Sept. 2009. 



43 
 

[12]  “Global 500.” Fortune Magazine, 2010. Available from 

http://money.cnn.com/magazines/fortune/global500/2010/. 

[13]  Q. Yao, A. An, E. Terzi, and X. Huang, “Finding and analyzing database user sessions,” 

Proceedings of the 10th International Conference on Database Systems for Advanced 

Applications (DASFAA), 2005. 

[14]  M. Komlenovic, M. Tripunitara, T. Zitouni, "An Empirical Assessment of Approaches to 

Distributed Enforcement in Role-Based Access Control (RBAC)," accepted to appear, 

ACM Conference on Data and Application Security and Privacy (CODASPY), Feb. 2011. 

(12 pages) 

[15]  A. Kern, M. Kuhlmann, A. Schaad, and J. Mo_ett, “Observations on the role life-cycle in 

the context of enterprise security management,” 7th ACM Symposium on Access Control 

Models and Technologies, June 2002. 

[16]  A. Schaad, J. Mo_ett, and J. Jacob., “The role-based access control system of a european 

bank: A case study and discussion,” proceedings of ACM Symposisum on Access Control 

Models and Technologies, pp. 3-9, May 2001. 

[17]  A. Kern, “Advanced features for enterprise-wide role-based access control,” Proceedings 

of the 18th Annual Computer Security Applications Conference, pp. 333-343, December 

2002. 

[18]  D. Zhang, K. Ramamohanarao, S. Versteeg, and R. Zhang., “Rolevat: Visual assessment 

of practical need for role based access control,” ACSAC, pp. 13-22, 2009. 

[19]  J. Vaidya, V. Atluri, and J. Warner, “Roleminer: mining roles using subset enumeration,” 

Proceedings of the 13th ACM conference on Computer and communications security 

(CCS'06), pp. 144-153, 2006. 

[20]  D. Zhang, K. Ramamohanarao, T. Ebringer, and T. Yann, “Permission set mining: 

Discovering practical and useful roles,” ACSAC'08: Proceedings of the 2008 Annual 

Computer Security Applications Conference, pp. 247-256, 2008. 

[21]  I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo, “Evaluating role mining 

algorithms,” Proc. ACM Symposium on Access Control Models and Technologies 

(SACMAT), pp. 95-104, 2009. 

[22]  C. Blundo and S. Cimato, “A simple role mining algorithm,” Proceedings of the 2010 

ACM Symposium on Applied Computing, pp. 1958-1962, 2010. 



44 
 

[23]  M. Frank, A. Streich, D. Basin, and J. Buhmann, “A probabilistic approach to hybrid role 

mining,” Proc. 16th ACM conference on Computer and Communications Security (CCS), 

pp. 101-111, 2009. 

[24]  I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo, “Mining 

roles with semantic meanings,” Proc. ACM Symposium on Access Control Models and 

Technologies (SACMAT), 2008. 

[25]  M. Jafari, A. Chinaei, K. Barker, and M. Fathian, “Role mining in access history logs,” 

Journal of Information Assurance and Security, 2009. 

[26]  J. Crampton, “On permissions, inheritance and role hierarchies,” in Proceedings of the 

Tenth ACM Conference on Computer and Communications Security (CCS-10), pp. 27-31, 

ACM Press, Oct. 2003. 

 [27]  A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java performance 

evaluation,” Proceedings of OOPSLA'07, pp. 57-76, May 2007. 

[28]  Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. and Stein, Clifford 

(2001). Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill. ISBN 0-262-

53196-8. 

[29]  T. Zitouni, “A Statistically Rigorous Evaluation of the Cascade Bloom Filter for 

Distributed Access Enforcement in Role Based Access Control (RBAC) Systems.” 

MASc Thesis, University of Waterloo, December 2010. 

  



45 
 

Appendix A 

 

package Structures; 

public abstract class Vertex { 

 public static int staticId; 

 public int id; 

 public ArrayList<Vertex> neighbours; 

 public Vertex() {...} 

 public int getId() {...} 

 public void addNeighbour(Vertex v) {...} 

 public void removeNeighbour(Vertex v) {...} 

 public List<Vertex> getNeighbours() {...} 

 public int getNumNeighbours() {...} 

 public Vertex getNeighbour(int i) {...} 

 public abstract String getStringId(); 

} 

public class UserVertex extends Vertex { 

 private String userId; 

 public String getUserId() {...} 

 public String getStringId() {...} 

 public UserVertex(String userId) {...} 

} 

public class RoleVertex extends Vertex { 

 public int level;  
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 private String roleId; 

 public RoleVertex(String roleId) {...} 

 public int getLevel() {...} 

 public void setLevel(int level) {...} 

 public String getRoleId() {...} 

 public String getStringId() {...} 

 public String getRoleType() {...} 

} 

public class PermissionVertex extends Vertex { 

 private String permissionId; 

 public String getPermissionId(){...} 

 public String getStringId(){...} 

 public PermissionVertex(String permissionId) {...} 

 public void addNeighbour(Vertex v) {...} 

 public void removeNeighbour(Vertex v) {...} 

} 
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Appendix B 

 

package Cpol; 

public class SessionCPOL extends Session { 

 public Rule rule; 

 public SessionCPOL(Rule rule) {...} 

 public Rule getRule() {...} 

 public void setRule(Rule rule) {...} 

} 

public class Rule { 

 public static int ruleId; 

 public int id;  

 public String owner;  

 public String licencee;  

 public AccessToken accesstoken; 

 public boolean condition; 

 public Rule(String sessionId) {...} 

 public Rule(String sessionId, AccessToken A) {...} 

 public Rule(int id, String owner, String licence, AccessToken 

accessToken, boolean condition) {...} 

 public void AddRule(int requester, String owner, String licence, 

AccessToken accessToken, boolean condition) {...} 

 public boolean removeRule() {...} 

 public int getId() {...} 
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 public void setId(int id) {...} 

 public String getLicencee() {...} 

 public void setLicencee(String licencee) {...} 

 public AccessToken getAccesstoken() {...} 

 public void setAccesstoken(AccessToken accessToken) {...} 

 public boolean getCondition() {...} 

 public void setCondition(boolean condition) {...} 

 public String getOwner() {...} 

 public void setOwner(String owner) {...} 

} 

 

public class Cache { 

 public ArrayList<CacheEntry> cache; 

 public Cache() {...} 

 public Cache(ArrayList<CacheEntry> cache) {...} 

 public ArrayList<CacheEntry> getCache() {...} 

 public void setCache(ArrayList<CacheEntry> cache) {...} 

 public void addEntry(CacheEntry entry) {...} 

 public void removeEntry(CacheEntry entry) {...} 

 public void invalidateEntry(int sessionId) {...} 

 public boolean isEntry(int sessionId, int permissionId) {...} 

} 

public class CacheEntry implements SDPDataStructure { 

 public CacheKey key; 
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 public AccessToken accessToken; 

 public boolean condition; 

 public CacheEntry(CacheKey key, AccessToken accesToken) {...} 

 public CacheKey getKey() {...} 

 public void setKey(int key) {...} 

 public AccessToken getA() {...} 

 public void setA(AccessToken accessToken) {...} 

 public boolean getCondition() {...} 

 public void setCondition(boolean condition) {...} 

 

} 

 

public class CacheKey { 

 public int sessionId; 

 public CacheKey(int key) {...} 

 public int getKey() {...} 

 public void setKey(int key) {...} 

} 

public class AccessToken { 

 public Set permissions; 

 public AccessToken() {...} 

 public AccessToken(Set permissions) {...} 

 public Set getPermissions() {...} 

 public void setPermissions(Set permissions) {...} 
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 public boolean checkPermission(int permissionId) {...}  

 public void add(AccessToken accessToken) {...} 

} 


