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Abstract
Factor-Based Analysis
for the Qualitative and Quantitative Evaluation

of Voltammetric Data of Complex Liquids

Factor-based techniques were used for the qualitative and quantitative analysis of
voltammograms of complex liquids. Both normal pulse and square wave voltammetry were
evaluated, at a variety of conditions, and with different electrode materials. Square wave
voltammetry at a platinum electrode had the greatest variance in the resultant scores plots,
so this techniques was used in ali subsequent experiments.

Initially, individual scores plots were generated of fruit juices, beers, wines, coffees,
and milks. For qualitative analysis, principal components analysis was used to differentiate
sub-populations on scores plots. Enhanced differentiation of sub-populations was achieved
by selecting out a portion of the voltammogram, and regenerating the pattern recognition
plot.

For quantitative analysis, principal components regression and partial least squares
algorithms were compared for their predictive ability. Square wave voltammograms of
lactate, pyruvate, glucose and ethanol in beer were generated, over a known concentration
range of the individual species, and prediction of the individual concentrations was done
using PCR and PLS. To assess the accuracy and precision of PCR and PLS, correlation
coefficients, and mean square errors were calculated. Further, PCR and PLS were used to

predict individual concentrations of pyruvate, glucose and ethanol in a ternary mixture.
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Chapter 1 Introduction and Literature Review

1.1 Chemometrics —Definitions

Chemometrics can be generally defined as any of various methods used to extract
chemically relevant information from data produced in chemical experiments.! These
statistical and mathematical methods are used to transform chemical data into information
to generate a working model for further decision making.” These models range from
univariate analysis using classical least squares (CLS), to multivariate models such as
multilinear regression (MLR), principal components analysis (PCA), or the utilization of
artificial neural networks (ANN).

One advantage of these mathematical methods is the resolution of the components
of a mixture in far less time than would be required for methods involving prior physical or
chemical separations. Further, with modern computational systems, the analysis of mixtures
using whole-spectrum methods such as factor analysis can be faster than traditional
separation techniques and can also be more accurate and precise, provided that the problem
of factor optimization is correctly addressed and predictions are validated through error
analysis. Factor-based methods such as principal components analysis (PCA) begin with the
generation of abstract axes (factors) used to transform the entire data set. Once the data
matrix is decomposed factor analysis is used to determine the relative importance of these
abstract components in describing the total variance across a population. A plot of the

factors which contain the majority of the variance will yield groupings of the sub-



populations. In this way, data can be classified according to an inherent property. Principal
components regression (PCR) uses inverse least squares regression (ILS) on the principal
factors in order to generate prediction models. Similarly, partial least squares regression on
latent variables (PLS) can be used to generate a prediction model.

The factor-based techniques are examples of implicit models. Implicit models use
empirical models to extract information from a data set in the absence of clearly defined
relationships based on chemical or physical concepts. In these implicit models, validation is
critical to test the reliability of the predictive model. In contrast, explicit models have
clearly defined properties which are directly related to accepted concepts in chemistry or
physics, such as the relationship between absorbance and concentration, described by Beer’s
Law.

In both cases of model development, systematic evaluation of the experimental data
is essential and follows each of six stages recommended by Beebe.? The first stage is the
examination of the data to determine any obvious errors in measurements, then the second
stage is pre-processing of the data, if necessary. The third stage involves the generation of
the chemometric model, and is method-dependent. Afterthe calibration model is developed,
it is validated in stage four. This stage is perhaps the most important, as it involves
determining whether the model is reliable for prediction of the properties of the calibration
sample set. As the software will always produce a model, the chemometrician must
determine if the model is reasonable and useable. Finally, assuming that a reliable model

has been defined, it can be applied to the prediction of the properties of a new sample set.



1.2 Types of Implicit and Explicit Models®

Numerous procedures are available to relate instrumental measurements to analyte
concentrations. These calibration methods develop a model to predict analyte levels. The
choice of model is one of the most important decisions the chemometrician must make, as
it will define the experiment. Good experimental design requires that all important
parameters are considered and any extraneous or misleading information is accounted for.
Thus, knowing what kind of data to collect, and how to collect it are key steps in
experimental design. For example, a complex model is not required if a simple linear
relationship exists between a physical property and the chemical information of interest.

The most common example of calibration in analytical chemistry uses the simple
univariate linear model, which includes a calibration step involving instrumental
measurements on standard solutions, followed by a prediction step based on instrumental
readings obtained with unknown samples. Even this simple model requires time-consuming
data acquisition and analysis, and also requires extensive chemical and physical knowledge
of the unknown solutions.

Mathematically, the univariate model is defined as

Y. =bx +e (1)

where x and y are the analyte level and the instrumental measurement for the i specimen,
respectively; e is the error associated with the measurement; and b is the predicted model
parameter estimated by least squares regression of the instrumental measurements. For
simplicity, the intercept term has been omitted.

3



In the inverse model. the equation becomes
x, =byv -e (2)

Limitations to both models arise when the sample and its matrix are not clearly detined. In
cach case. the measured parameter must be highly selective for the analyte of interest and
the matrix must be non-interfering otherwise predictions are not considered reliable. Thus.
when the sample is more complex. or the matrix is unknown. univariate models may fail.

For multivariate analysis involving several analytes. the calibration step involves
multiple instrumental measurements on each of numerous standards. corresponding to the
analytes present in the samples. Numerous measurements are made on each sample to
generate calibration models which are linear sums of the absorbance of an analyte at several
wavelengths. Therefore. for several analytes a series of equations are generated.

As for univariate analvsis. a calibration and prediction step is required. For the
calibration step. equation 1 becomes a linear sum over multiple instrumental measurements
of each absorbing species. generated using independent assays.

For prediction of an analyte the prediction model will take the form of:

X=by+ by +byv,+.. by, 3)

"
where the % is the estimated concentration of the analyte of interest. y, is the i instrumental
measurement . and b, is the i regression coefficient obtained in the calibration step. whose
values differ according to the method used to develop the calibration model ( MLR. PCR.

or PLS).?



For example. the regression coefticients generated tor MLR are constrained to be no
greater than the number of instrumental measurements in the calibration set. For PCR and
PLS. the number of instrumental measurements can be unrestricted. hence the term full-
spectrum methods. Conversely. the model reduces to the simple predictive Beer's Law.
when only one instrumental parameter is used to predict an analyte. as for CLS methods.

Given a well understood mechanism. CLS provides a reliable and precise method to
determine analyte levels. Examination of the scatter of the predicted values from expected
values. and the subsequent slope and correlation indicates the predictive capability of the
model. If significant deviation is observed. an unaccounted interferent may be present. or
an unexplained phenomena is decreasing the reliability of prediction. As well. the presence
of outliers will reduce the predictive ability of the model.

MLR. a generalized form of CLS which operates over several instrumental
measurements. is useful to develop a model capable of performing over a broader range of
conditions. By choosing the optimal instrumental measurements to describe a system. the
model can compensate for interferences. The total signal then becomes a linear sum for a
specific analyte. However. the number of measurements is limited. as strong correlations
between measurements will decrease the stability of the resulting model. To decrease
instability of the model. a judicious choice of measurements. and knowledge of the system
studied is still required.

MLR does not necessarily require explicit knowledge of all interference levels or

matrix effects. since the multiple channels may compensate for any interferences. As these

measurements are often correlated with each other. selection of the appropriate measurement



channels is important to prevent instability entering into the model. Thus, knowledge about
the way measurements interact, and how the various physical variables affect instrumental

readings is required to select suitable experimental procedures.

1.3 Factor Analysis - Definitions

Factor analysis has its earliest beginnings in the field of behavioral studies with a
paper by Pearson* in 1901 on orthogonal regression lines, and expanded on by Hotelling® in
1933. As this was the pre-computer era, the underlying assumptions and simplifications
made factor analysis unreliable and irreproducible when different methods were used. Thus,
it wasn’t until the 1970's and later that the factor analysis method became reputable again.
Unfortunately, terminology used in factor analysis has also expanded based on different
methodologies and practitioners, and is only now slowly becoming standardized. As defined
by Malinowski® factor analysis is a multivariate technique to reduce matrices to their lowest
dimensionality by the use of mutually orthogonal factors and transformations. These factors
are formed from a weighted linear combination of the data matrix. Principal components
analysis (PCA) is one of the steps in factor analysis, and involves the determination of these
orthogonal factors or eigenvectors, and their eigenvalues. The optional precursor step to the
transformation procedure involves preprocessing of the data matrix, and a final regression
step is used to generate prediction values. In contrast, other authors’ use the terms factor
analysis and PCA interchangeably to refer to the transformation of a data matrix into its

respective eigenvalues and eigenvectors, then principal components regression (PCR) for the



final regression step. In this case, preprocessing, an optional pretreatment step of the data
matrix, would be considered separately.

Factor based methods such as PCR and PLS are among the most commonly used
multivariate techniques. In these, a large number of instrumental measurements are used
simultaneously, and the resulting model is a linear combination of the weighted instrumental
measurements for the sample.

In factor based model development®”’ the initial steps involve the decomposition of
the data matrix into a set of abstract factors, which represent axes in a new coordinate
system. For example, consider the entire data set as points in an xy plane, with each point due
to a voltammogram, or the vector corresponding to a specific sample. A new plane is drawn
which will attempt to encompass as many of the points as possible. In this new plane, an
axis is drawn which will attempt to capture as much of the variance in the data as possible.
This abstract axis is called the first principal component, or eigenvector, and the distance
the points are from intersection with this axis defines their variance. The projection the data
makes along the axis is defined as the scores, and the sum of the squares of the scores is
defined as the eigenvalue for that eigenvector. The eigenvalue is then a measure of the total
variance captured by the eigenvector, with the first eigenvalue having the largest value, and
the last eigenvalue corresponding to the last eigenvector equal to zero in a noise-free case.

A second axis, orthogonal to the first, is now drawn which will attempt to contain as
much of the remaining variance as possible. Subsequent axes are drawn, all mutually
orthogonal, until all the variance of the sample population is encompassed. These axes,

while generally not having any physical meaning, will contain the variance of the entire



populations, will be used in the calibration model, and in subsequent prediction models.
The determination of the principal components (PC), or factors, is called principal
components analysis (factor analysis) and is a necessary precursor to principal components
regression. A common algorithm used to generate the eigenvalues and eigenvectors is
singular value decomposition (SVD).

Generally the first principal component contains almost all the variance associated
with the total population variance, and is the most important factor. A plot of eigenvalues
vs. factor number (a Scree plot) will determine the number of factors required to span most
of the variance. Generally , if too few factors are kept, there will be a loss of variance
leading to incomplete pattern grouping, as some of the useful signal will be lost. However,
retaining too many factors will complicate the projections and incorporate noise. The issue
of how many factors to retain is a vital step in the development of the prediction model, and
is referred to as rank analysis.

For qualitative assessment, a plot of the scores associated with PC 1 and PC 2 is

made, and any clustering of sub-populations observed indicates similarity in some variables

between the analytes. This technique is commonly used to differentiate classes of species
in electronic noses and electronic tongues, mostly for qualitative analysis for classification.

In PLS"$, factors are generated for both the X- and the Y-data matrices, where X-
matrix contains the measurements generated, and the Y- matrix usually contains the
concentration data. The individual factors are then rotated towards each other angle the
angle between them becomes zero, in a noise-free case. The rotation is done in order to

restore optimal congruence such that the two planes are now fitted on top of each other, and
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the corresponding points match. In a noise-free case, the points would be congruent with
each other.

Thus, factor analysis or eigenanalysis will reduce a n-dimensional data set into n-
eigenvectors based on a matrix of correlations. Further, eigenanalysis of the data matrix by
reduction to a specified lesser number of abstract factors, will allow the resultant data matrix
to be more amenable to interpretation, as in pattern recognition techniques.

Principal component analysis is concerned with finding the appropriate number of
factors, while manipulation of the factors involves the use of further algorithms such as
principal component regression and partial least squares. The ultimate aim of any technique
of factor analysis is to define the nature and/or the source of the variance in the original data
set.

For voltammetric data, the variance-covariance matrix will be generated from a raw
data matrix in which each voltammogram forms a column (also referred to as a vector). Thus
the pattern of the voltammogram remains intact. From the computation of the eigenvectors
and eigenvalues, we can determine a number of significant underlying factors, called
common factors, that will be relevant in the physical interpretation. Other factors, called
unique factors, are commonly attributable to other phenomena such as noise. Again, the
number of significant factors can be determined from a Scree plot, where the most significant
factors will account for the majority of the variance. Each factor will consist of a weighted
linear combination of individual current measurements, at potentials corresponding to the
highest variance in the current measurements across sample populations.

Each sample is compared across vectors to determine the total variance associated



with that sample. By summing the square of each element across the factors we can
determine the amount of variance associated with each sample. The results of this
manipulation should be identical to the diagonal elements of the variance-covariance matrix
of the original data set. By squaring and summing over only two factors to generate a
communality value, the result will not be unity, but generally approaches 0.9. That is, the
first factor will contain the largest percentage of the variance present in the data, with
subsequent factors accounting for correspondingly less variance. The optimal number of
factors are chosen, such that those factors accounting for very little variance are discarded,
while those containing the signal information are kept. In this way, the dimensionality of the
original matrix is reduced.

Once the dimensionality has been reduced, and the number of significant factors has
been determined, a variety of analysis and interpretation techniques are available. For
quantitative analysis, further regression of the factors will yield a predictive model, while for
qualitative assignment of sub-population groups, a scores plot of the scores on the first two

factors is generally considered adequate.

1.3.1 Singular Value Decomposition

As mentioned, the procedure for calculating the abstract solution involves an
mathematical method known as principal component analysis or principal factor analysis
when the singular value decomposition method® (SVD) is used.

Factor analysis yields abstract solutions consisting of eigenvectors, with their
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associated eigenvalues that measure the relative importance of the associated vector. The
larger eigenvalues are generally associated with the more significant eigenvectors. The
factors can be a maximum of s-eigenvectors where s refers either to the number of rows, r,
or the number of columns, ¢, whichever is smaller. The principal factor solution will be
represented as the decomposition of the data matrix, D, into an abstract row matrix, R, and
abstract column matrix, C, as:

D=RC 4)

In SVD, the equation has the form

D=USV &)

ressasres

where, S is a diagonal matrix whose elements are the square roots of the eigenvalues and,

R =US

: (6)
V'=C

Each column of U is an abstract orthonormal eigenvector spanning row space and
each column of V is an abstract orthonormal eigenvector that spans column space, with both
sets of eigenvectors lying within the s-dimensional space defined by s-factors. V’ is defined
as the transpose of V. Each " eigenvector of U and V share the same jth eigenvalue, which
represents the portion of the total variance in the data at that poix_lt. Factors are then
successively ranked in decreasing order according to the amount of variance they represent,
with the first factor containing the most variance of the data, up to the s-factor with the

smallest eigenvalue, which is considered the least important.
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Now, the number of the factors which contain significant information can be
determined by sub-dividing the abstract factors into two sets, a primary set containing n-
factors of the real, measurable features of the data and a second set, the null set, which will
be predominately associated with the experimental error. This will allow the elimination of
secondary factors, and compress the model into n-factors which are considered to be
physically significant, with reduced error. The equation is then re-written as the properly
dimensioned abstract solution when the error factors are deleted, and subsequent analyses

are based on the use of this solution:

D=RC=USV @)

'
rsc rwasnn<c

To deduce the correct number of factors a stepwise procedure is used where each step is

computed, then compared

RE=D =D ®)

rec r«c

where R and C are the abstract matrices based on the j-factors, D is the data matrix
reproduction, which is compared to the original data matrix. As additional factors are
employed from the first most important factor, through the jth factor, to s-factors, data
reproduction becomes more accurate as greater variation is accounted for until the correct
number of factors (j=n) is determined, at which point the reproduced data matrix is equal
to the original data matrix. From this determination of the number of factors which describe

the data set further analysis can be done utilizing this solution.
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1.3.2 Rank Analysis

An important step in generating a useful calibration model is the determination of the
correct number of significant factors. Keeping the optimal number of factors is important
as too few factors will not adequately describe the data (thus our calibration model will not
be valid), while keeping too many factors will retain noise and introduce artifacts into the
model. To decide the number of factors which are to be kept, a number of tools are
available, such as the use of indicator functions, cross-validation and, especially, predicted
residual error sum of squares (PRESS).

Indicator functions are based upon analysis of the eigenvalues and their errors and
commonly use the method of Malinowski,® as in the F-test on reduced eigenvalues.
Eigenvalues associated with each eigenvector are equal to the amount of variance in the data
that is captured by that eigenvector, and typically decline rapidly with succeeding
eigenvectors over several orders of magnitude. The eigenvalues typically associated with the
error eigenvalues span little variance and should be statistically equal. Given that the
variance will measure the importance of the eigenvalue, it can be defined in terms of the
eigenvalue, A, as

. A j
variance = —; &)

>4

i=1
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In order to determine at which factor, the variance will be statistically equal, a Scree
plot can be drawn of the residual percent variance accounted for by a given factor. The
residual percent variance can be determined from the eigenvalues, as

2 4

j=n+l

2 4,
j=1

residual%variance = 10 (10)

where is the root mean square error associated with the difference between the raw data (d,)

and the reproduced data (d,, ") at the j-factor, with n-primary eigenvalues, and k-columns and

i-rows, as
Y X i —d)= ) A (it
i=1 k=1 j=n+1

A plot of the variance associated with either eigenvalues or reduced eigenvalues
against the number of factors, should show a minimum, or a levelling off at the optimum
rank. This point will distinguish between factors, which contain the majority of the variance
and those factors containing mostly noise. Ideally, the point should be sharp, and level off
to a constant level. Often however, non-ideal behaviour is observed as the reduced
eigenvalues begin to increase. This sort of behaviour will complicate the decision-making

process when the number of factors to keep is determined. For this reason other indicator
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functions should be used to gain an overall understanding of the optimal factors.
The reduced eigenvalue is defined as an eigenvalue corrected by appropriate degrees
of freedom as shown

REV = 4 /(r-j+Ic-j+1) (12)

7

As the reduced eigenvalues associated with the error are proportional to the standard
deviation, an F-test can be used. Using a standard table, and beginning with the smallest
eigenvalue, the significance level is compared to the reduced eigenvalue, until the desired
significance level (5%) is obtained. Moving from the smallest eigenvalue up the table, each
successive variance is added to the pool of eigenvalues, and this is compared to a standard
table. The eigenvalue corresponding to the number of factors at which the pool of
eigenvalues is larger than the standard table, corresponds to the optimal number of factors
to be retained. The F-values correspond to the ratios of two variances obtained from
independent sample pools with normal distributions, and is useful as a test statistic in
comparing variances from normally distributed error eigenvalues.

A more rigorous method, to determine if the optimal number of factors has been
chosen, requires that regression of the factors has been performed to generate predicted
concentrations using the calibration model. The calibration model is then used to predict
concentrations given an independent validation data set.” Prediction values are generated
for every possible number of factors and the predicted residual error sum of squares
(PRESS) is calculated, with the optimal number of factors corresponding to the lowest
PRESS. Consequently, a plot of the PRESS values at the given factor should show a sharp

decrease at the optimal factor, then a continuing decrease in error to zero.
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PRESS = 3, (Cpucses = Corpeca)’ (13)

If there is not an independent validation set available to calculate the PRESS, cross-
validation can be performed on the original training set to simulate a validation set. Cross-
validation involves an iterative leave-one-out (or leave n-out) procedure to predict the
concentrations of the components left in the training set and a subsequent sum-squared of
errors between expected and predicted values. Calibrations are generated for every possible
number of factors and the resulting PRESS values are plotted against the number of factors,
with the optimal number corresponding to the smallest PRESS. Often a plot of the cross-
validation results shows a sharp decrease at the optimum factor, then as the number of factors
increases, a rise in error is observed, as the factors containing mostly error are included.

After the optimal number of factors are determined it is expected the noise
eigenvectors have been discarded. Therefore the data can be regenerated in the new
coordinate system. To ensure noise has been discarded and meaningful information kept a
plot of the residuals should indicate only pure random noise at the optimal factor level and
no spectral or voltammetric features. Residuals may sometimes contain spectral or
voltammetric features if there is some feature incorporated into the experiment, which adds
an extra mode of variation into the voltammogram. This includes variation due to instrument
drift, interfering compounds or an unexpected experimental feature. This could then be the
trigger to investigate the sample for any of these anomalies that do not fit the sample into the

calibration model and hence affect the predictive ability.
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1.3.3 Principal Components Regression

Having generated the properly dimensioned abstract solution

b-RC-USV (14)

a transformation step can be performed in order to generate real solutions from the abstract
model as

D= RC= {RTH{T 'C}= XY (15)

where the transformation matrix T, and its inverse T™' are applied to generate the real
solution. The transformation matrix is obtained using a least-squares method in order to
match the predicted X which most closely matches the target X. Mathematically, the best
transformation matrix is obtained when the deviation between the predicted and the test X
are minimized by setting the sum of the derivatives of the squares of the differences equal
to zero.

The regenerated (predicted) data set calculated from the calibration model is then
compared to the original data set in order to assess the reliability. Further, having calculated
the appropriate transformation matrix (comparable to a regression matrix) unknown sample

concentrations can be predicted using their respective voltammograms.

1.3.4 Partial Least Squares

Partial least squares regression is a logical continuation of PCR in that abstract
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factors are generated for both the X and the Y-matrices which contain the concentration and
the voltammetric data sets. As mentioned, noise will deflect the eigenvectors out of the
theoretical plane, and as the concentration and voltammetric data sets both independently
contain noise, the eigenvectors associated with these data sets are deflected in random
directions. PLS compares the voltammetric vectors with the concentration vectors, assesses
the angle between them and, because this angle is due to the differences in noise between the
two vector, rotates the vectors back towards each other to restore optimal congruence. As
the X and Y-data planes are congruent with each other this will maximize the fit of the linear
regression between the projections of the X-factors and the projections of the Y-factors. As
these projections (scores) of the respective data sets are directly proportional, the calibration
solution will be of the form

Y=XB (16)

where X is the concentration factors, Y contains the voltammetric factors, B is the matrix of
proportionality constants (calibration constants) used to give the calibration matrix as

B = P(P'P)"' WQ' and a7

X=TB (18)
Again, T is the transformation matrix used on B to generate the prediction values. In the
case of PLS, the individual relationships for the matrices X and Y are calculated, and also

an inner relationship is determined. This gives three relevant equations as
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X=TP

Y=UQ+F (19 -21)
mp O g, mp

U=T

where E and F are the error matrices which are minimized by least squares, W contains the
loading weights that span the variance, Q and P contain the respective factors or the
projections of each w; on either the voltammetric or the concentration plane, and Uand T are
used to hold the extracted eigenvectors until PRESS is minimized.

In PLS successive eigenvectors will be defined by (w, t, q;, u;, p,), and the basis
vectors are chosen so as to optimize the linear regression between both spectral and
instrumental factors. As the fit between X and Y may be somewhat compromised in order
to improve the regression between the data sets, the residuals of PLS tend to be greater in
magnitude. Also residuals may contain some spectra-like features, as if there is any non-
linearity in the spectra these non-linearities tend to be rejected into the later factors. Some
of this non-linearity is now spanned by noise factors and as it tends to be in regions of strong
spectral activity, some of the spectral features are observed in the residuals.

Also, eigenvalues are not calculated in PLS, but pseudo-eigenvalues may be
generated in order to evaluate the amount of variance in the data that the factor models, in
order to determine optimal number of factors to be used in developing the calibration

solution.

19



1.4 Data Treatment

1.4.1 Preprocessing

Preprocessing is defined as any mathematical manipulation of the data prior to
analysis.? It is useful to remove any irrelevant sources of variation, but it will consequently
change any data given to the analysis model. There are many methods available for
preprocessing of the sample data.

Mean centering is a tool applied to account for an offset in the data, and is used to
preprocess row or column variables. The mean of the value of the variable is subtracted
from each of the elements of the vector in order to mean-center the resulting values about
zero. This has the effect of repositioning the centroid of the data to the origin of the
coordinate system, and preventing points at edges from having more influence than other
points. The disadvantage of using this method is that information is lost about eigenvalue
magnitudes and relative error. This method is one of the most useful techniques available
for factor analysis.

One of the more common preprocessing techniques is normalization of the sample
in order to perform qualitative identification. All samples are put on the same scale by
dividing each instrumental reading (such as the absorbance) by the sum of the squares of the
absorbance readings of the entire sample. This will equalize the magnitude of each sample.
While the magnitude of the distance of the data point from the origin is removed, the

direction is preserved, making this useful in the preparation of reference spectra for a
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qualitative identification library.

Scaling or standardization of variables can be performed over either the rows or the
columns of the data set so that the variation in all channels is weighted equally. Typically
this is done by either dividing by a constant so that the maximum intensity is equal (range
scaling), or dividing by the standard deviation in variance scaling. This will alter the
weighing of the variable, making low intensity peaks more significant and high intensity
peaks less. While this is useful when the dynamic range of the variables changes, but relative
noise stays the same, it tends to give more value to noise, at the risk of loss of signal. For
example, in variance scaling, the influence of variables where signal variation 1s large is
reduced, while the influence where the signal variation is small tends to be increased. This
can be detrimental to precision or robustness.

Another method used to preprocess row variables is variable weighting, which
involves multiplying all elements in a vector by some weight. The weight is chosen either
because of prior knowledge or by variable selection, where certain variables are multiplied
by zero. Knowledge of the chemistry of the system and an experienced operator are
necessary to use this method as those variables believed to contain the significant information
can be scaled up in importance, at the risk of losing information present in variables which
have been given lower weight.

It should be noted that any change to the data matrix made by using these
preprocessing techniques will result in subsequent changes in the eigenvalues. Since
eigenvalues are the sum of the squares of the scores, changing these will result in different

roots of the simultaneous equations and change the lengths of the axis used to define the
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principal components. The resultant information may differ significantly from that obtained
from data not preprocessed. Therefore, any data pretreatment should be based on knowledge
of the resultant effects pretreatment will have on the final outcome, and a sound basis of the

statistical criteria.

1.4.2 Errors

In optimizing the number of factors used in the calibration model, the
chemometrician is interested in the number of factors that best model the data. Given that
no data are error-free, the resulting eigenvalues produced from the factor analysis of
experimental data will be larger than if the theoretical error-free data was used.® In effect the
raw data matrix, D is the sum of the pure error-free data matrix, D* and the error matrix, E.

D=D +E (22)
Retention of all the factors, while perfectly reproducing the raw data, will include the
uncertainty into the model. Choosing the correct number of factors to include in the
calibration model will decrease the prediction errors, but will not completely eliminate them,
as it is impossible to remove all error.

The main factor analysis error terms used are extracted error (XE), real error (RE),
and imbedded error (IE).” Only extracted error is experimentally measurable, but the errors
can be expressed in a mutually dependant relationship as
(RE)’ = (IE)* + (XE)* (23)

where the real error is defined by Malinowski® as the residual standard deviation (RSD), and
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referred to as total error by Kramer.” Given that a relationship exists between the different

errors, it is possible to calculate RE and IE from XE as

RE = Jc/(c- p)XE 249)
IE=\p/(c- p)XE 25)

where there are p principal components chosen to model the data set and ¢ variables are

measured.®® The XE is given by
XE = RSD,|—F (26)

Imbedded error is a measure of the difference between the pure data and the
reproduced data, while real error is a measure of the difference between the pure data and the
experimental data. Given that factor analysis discards the noise factors, the IE will normally
be less than the RE.

The extracted error is identical to the root-mean-square (RMS) error® of prediction
and is one of the indicator functions used to determine the optimal number of factors. Other
indicator functions based on eigenvalues include analysis of the imbedded error, which will
decrease until the optimal number of factors, then increase again as the noise factors are fitted
back into the model.

Root mean square error (RMSE) and residual standard deviation (RSD) are closely
related, as the RMSE calculates the difference between the raw data and the factor-

regenerated data, while RSD measures the difference between the raw data and data
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containing no experimental error. Hence RMSE tends to be less that RSD, and its use as an

indicator function is not recommended.

1/2
RMS = (c c” ) (RSD) @7

(28)

_ )2
RMSEP = Z =)
Npred

RMSE is commonly used in the regeneration step as a measure of reliability of the
calibration solution. As RMSE is measured as the difference between the raw data and the
factor regenerated data, the optimal choice of eigenvectors has a direct effect on this error.
For example, using an excessive number of eigenvectors will minimize the RMSE, but will
also minimize the extracted error. Conversely, deleting an excessive amount of eigenvectors
will remove significant information from the model, and incorrectly describe the important
variables. When this occurs, the RMSE tends to be too large. To determine the RMSE
associated with regenerated and predicted data, and to assess the validity of the resultant
calibration solution, the RMSEC (root mean square error of calibration), and the RMSEP

(root mean square error of prediction) are calculated.

a2
RMSEC = J LG-9) 29)
Ncal-p
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where the sum of the squares of the differences between actual and predicted calibration or
prediction values are divided by either the difference between the number of calibration
samples (N_,) and the number of factors used (RMSEC), or by the number of prediction
samples (N,.s) in RMSEP. After regeneration is complete, prediction of validation samples
is performed using the calibration solution, and assessing the validity of the model using
RMSE is done.

Regeneration is the process where the portion of the variance that displaces the data
out of the ideal noise-free plane is discarded. Since noise is assumed to be isotropic, the
direction each point is displaced is completely random. Thus eigenvectors are slightly
displaced from the noise-free case, and the eigenvalues associated with the eigenvectors do
not decrease to zero for the last eigenvalue. Therefore by examination of the eigenvalues,
the error eigenvectors can be discarded. A plot of the residuals associated with retention of
a given number of eigenvectors should show only noise, when the optimal number of factors
has been chosen. Any remaining noise is spanned by the retained eigenvectors, and can be
described by the imbedded error, which will be equal to the real error when the residuals are

discarded.

1.5 Sensors and Multivariate Analysis

Initial development of chemical sensors focussed on sensors selective to a particular
chemical entity or property, with the goal of specificity. Signal analysis is relatively simple

with these selective sensors and often linear or Nernstian relationships exist between the
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chemical concentration and the instrumental measurement. For example, pH electrodes
utilize a conversion of emf to a pH scale, and an ion selective electrode is selective for a
certain ion in solution. For these cases, matrix effects and interferences must be known and
compensated for, otherwise inaccurate readings are obtained.

In recent years (1980 and onward) non-selective sensor arrays combined with
mathematical manipulations have come into use for the analysis of more complex liquids and
gases. Previously, many of these same liquids and gases could not be measured accurately
due to a lack of selectivity or sensitivity of available sensors. These non-selective sensors
and sensor arrays use pattern recognition and multivariate calibration techniques to analyse
either complex gas media as electronic noses or complex liquid media as electronic tongues,

for identification or for quantitation of components.

1.5.1 Voltammetry

Previous work in sensor arrays, coupled with an appropriate data analysis technique
has focused on semiconductor arrays, or ion selective electrodes as the signal generating
device. Voltammetry offers the advantage of high sensitivity, and versatility as the potential
range, electrode material and waveform can be chosen to optimize experimental conditions.
Square wave voltammetry, asmall amplitude controlled potential technique, provides several
advantages for sensitive and rapid detection. Small amplitude techniques tend to be more
sensitive and precise, as the signal can be more easily distinguished from the background,

charging currents are minimized and steady-state measurements can be made.’ In square
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wave voltammetry a small amplitude pulse (square wave) of frequency (f) and amplitude dE,
is superimposed onto a constant dc-potential ramp of increasing potential, E. The large
amplitude potential sets the surface concentration at the electrode. and the small amplitude
excitation periodically perturbs the surface concentration. The instantaneous faradaic current
is proportional to the surface concentration of redox active species. The base potential
increases by dE for each full cycle of the square wave. The current is measured at end of
each half-cycle, and the difference between the forward and the reverse current is the current
density plotted on a voltammogram with respect to the potential. The increment in square
wave voltammetry sensitivity is due to the measurement at each half-cycle, to give the
difference between forward and reverse currents.

Typically, the current is recorded for redox active species in solution, but any changes
on the electrode surface will also result in a change in current. As the change in current in
a diffusion controlled experiment tends to be proportional to the concentration of bulk
species, any species which tend to adsorb onto an electrode will also result in a current
change. The more common electro-active species are those containing nitro, thiol, carbonyl
and double bonded functional groups which can undergo reduction.'® For the complex
liquids used in this study, common groups present such as sugars and other carbohydrates'’,
ethanol'?, ascorbates'’ or citrates and molecular oxygen may be present in the matrix, and can
give asignal. As well, adsorption of redox inactive species will also affect the voltammetric
signal.

In a related study,'? an amperometric technique was used to determine levels of

ethanol, and common sugars at an platinum electrode. The authors found a combination of
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peaks, with ethanol response at -0.32 V, and sugars giving two peaks at -0.70 Vand -0.23 V.
The peak centered at -0.70 was larger than the other peaks observed. Further, for the
electroanalysis of ascorbic acid using cyclic voltammetry on a Pt electrode, a peak centered
at 0.30 V was observed, which tended to decrease in peak current due to the slow desorption
of the redox products from the metal surface."* This parallels the results obtained using
square wave voltammetry for this study, where two peaks, a large peak at -0.60 V, and
smaller peak at 0.30 V were observed. Given the different conditions used in these studies,
and the different methods, it is difficult to form a conclusion as to the electrochemical
process occurring on the voltammograms, but it is believed, that a combination of ethanol
and sugar reduction, combined with surface adsorption of species is responsible for the peaks
generated.

The application of a combination square wave voltammetry and PCA, was the first
step toward development of a multi-array system for the detection, and quantitation of species
present in a complex matrix. This first step towards an electronic tongue, after determination
of the optimal conditions and limitations, could be used for in a variety of media, without

resorting to any preliminary separation of compounds present in the matrix.

1.5.2 Electronic Noses

In mammals the ability to discriminate odours is a property of the olfactory system
as a whole. That is, both primary and secondary neurons work together to process a signal

from non-specific sensors.'* The process typically encodes a pattern of signals corresponding
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to a particular odour. Pattern classification techniques should thus be able to simulate this
process using mathematical methods to recognize a pattern corresponding to a particular
odour. Mathematical manipulation of the complex signals and pattern classification will
maximize the differences between the individual components of the signal for different
samples and allow discrimination of specific odour constituents. In this sense, the electronic
nose will be a mimic of the neural process involved in the biological sense of smell.

Interest in development of an electronic nose arose due to the relatively expensive or
inefficient means used to identify odours. For example, trained experts are required as
primary evaluators of perfumes, wines or foodstuffs. These experts (termed noses) are useful
only for short periods of time due to saturation of the human olfactory system, and are
expensive due to their rarity. Conventional analytical instruments such as gas
chromatography and GC-mass spectrometry can be used to sample odours, but these
techniques tend to be expensive and can suffer from a poor level of detection depending on
the type of odor or the matrix constituents. Hence, there is a demand for a low-cost, rapid
and portable system for odor detection and identification of flavor constituents.

The term electronic nose first appeared in the 1980's and was used initially at the 8*
International Congress of European Chemoreception Research Organization (1987).' The
first conference dedicated to electronic noses was held in 1990 as part of the NATO
Advanced Research Workshops in Iceland.'” Due to its relatively recent introduction, a
comprehensive definition for the term “electronic nose™ has not been clearly stated but for
the most part can be defined as an array of electronic sensors of partial or low selectivity

which, when coupled to an appropriate pattern recognition system, is capable of recognizing
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and quantifying simple and complex odours.'* The term electronic nose was applied to this
type of instrument due to its ability to mimic the olfactory system, which typically consists
of cells of low selectivity and uses neural processing to increase the sensitivity by several
orders of magnitude, allowing discrimination between several thousands of odours. The
concept of an electronic nose as a combination of a sensor array and an intelligent data
processing device for classification began with the work of Persaud and Dodd'®in 1982. The
limiting step in development of these systems has been data analysis. Research in electronic
noses has really parallelled the development of computer systems, and, due to the need for
partial selectivity, development in semiconductor sensor technology.

An electronic nose requires an array of partially selective sensors that respond to a
broad range of gases, so a large body of work in this area has been done using semiconductor
materials. These semiconductors range from inorganic oxides and catalytic materials to
sensors utilizing integrated thin films," oxides, and conducting polymeric materials. For
example, a multisensor array of conducting polymers was used to detect diacetyl in beer, a
component associated with off-taste.®®  Data analysis of the odorant response has also
ranged from unsupervised pattern recognition to classify the odours in fuel cells,>* to more
advanced methods using supervised learning artificial neural networks.> In most cases the
objective has been to correlate results from the sensor array to expected responses of the
human olfactory system.

Persaud and Dodd'® constructed an artificial olfactory system to model a mammalian
nose using commercially available semiconductor gas sensors to test responses to a wide

variety of odours. The voltage changes with odorant concentration were monitored over



three gas sensors, and ratios of the responses of the three sensors comprised the data set. A
comparison was made between the artificial nose and the sheep olfactory system, and it was
determined that the electronic nose was able to mimic the mammalian system at a superficial
level.

Tin-oxide semiconductors are commonly used in gas sensor arrays, as improvements
to selectivity of multicomponent analysis and drift compensation are possible when combined
with an appropriate pattern recognition system.” Examples of the use of semiconductor
systems for analysis of odorants include the separation and classification of gas samples and
flavour samples using a four-sensor array of doped thin-film-silicon-based micro gas
sensors.”* Sensitivity of the sensor to the gas was monitored as the ratio of the responses of
the sensors to the odorant to the response in air, and principal component analysis and neural
network analysis were used for pattern recognition. A pattern recognition plot generated
using an ANN gave a recognition probability of 100% over varying concentrations of 12 gas
samples and 93% recognition probability when was used to classify 6 flavour samples into
their respective clusters using PCA.

An array of five semiconductor gas sensors coated with different materials was used
to classify vintage years of wine” using PCA to generate a pattern recognition plot. By
selecting the array components it was possible to completely differentiate the vintages of the
wines, and to identify the years in which a barricatura process was used to age the wine, as
these years formed a unique sub-population group.

Organic electrically conducting polymers such as polypyrrole and polythiophene were

used as sensor coatings in semiconductor arrays to measure the response to pig malodours
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and food odours®® which are complex gas mixtures. Pattern recognition by principal
components analysis and artificial neural networks correlated fingerprints of the odours, and
were used to classify specific chemicals responsible for the odour. Different individual
chemicals were also quantified with correlation coefficients of 0.89 to 0.96. In classifying
a particular odour, electronic noses are not concerned primarily with all the underlying
constituents of that odour, but rather with detecting the global effect of all the chemical
species present to characterize the odour.”’” Therefore the cross-sensitivities of the array
components are important in determining an overall pattern of the particular odour, and
ultimately classifying it in a manner similar to the human olfactory system.

Presently, artificial neural networks are commonly used for data analysis in the
electronic nose, due particularly to their inherent similarity to the human neural system.
Neural networks are not always necessary, however. If classification of odours is desired,
a linear pattern recognition technique such as PCA is sufficient for data analysis and often
considered more robust than neural networks.?® For quantification of odour constituents,
neural networks offer advantages due to the non-linearity of sensor responses to some odour
constituents, which are better fitted by a non-linear mathematical model. However neural
networks require a large training data set which increases with the complexity of the array
and the sample complexity. An alternative to this is a self-organized map (SOM) which
requires less computational complexity while still modelling the biological process of
learning and associative classification. A hybrid neural network has been reported that used
a generalized perceptron network trained by a back-propagation algorithm and a SOM for the

recognition of patterns for binary mixtures.”” A sensor array of six quartz-crystal
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microbalances (QCM) coated with different polymers monitored the frequency response of
3 classes of binary gas mixtures with varying gas concentrations and passed the sensor
outputs to a neural network. Of the three classes of gas samples, one class was correctly
identified, while the other two classes had an identification rate of more than 80%.

QCM sensors are versatile for the identification of gas stream components, with
sensitivity of analysis depending on the coating of the QCM. For example, an array of
calixarene-coated QCM’s combined with pattern recognition methods from PCR and an
artificial neural network (ANN) distinguished between pentane, methanol, hexane and
chloroform present ina gas stream.’® Further, an epoxy-coated QCM was used as the sensing
device for wine recognition’' which, combined with a principal component plot, was able to
correctly (100%) separate out white, red and rose wines into their respective sub-population
groupings

Additional work on electronic noses has focused on the nonlinear relationship of the
regression technique to the sensor array and the use of mathematical techniques applied to
the neural network in order to either improve the prediction of the results or to reduce the size
of the required training set. One study has focused on the use of non-parametric techniques*
(smoothing methodology) to give an approximate relationship between the data from the
sensor array and the calculated results. Conductance measurements for mixtures of acetone
and methanol vapours on an interdigitated sensor were subjected to a reverse calibration
where the weights remained constant but the values entering the neural net were adapted
until stable output values were achieved. It was determined that the results obtained using

this method were closer to expected values than using conventional neural network analysis,
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in which the weights are varied and inputs remain constant.

Further work has been done on a sparse data set used for calibration, with different
computational methods to determine which is the most efficient and robust algorithm when
the size of the calibration set is minimized.*®> Seven methods, two linear and five non-linear,
were evaluated for their predictive ability with mixtures of octane and toluene vapours tested
by bulk-acoustic wave quartz crystal non-linear gas sensors coated with six different
polysiloxanes. Based on root mean square errors of prediction, artificial neural networks and
least squares estimation showed similar performance with a RMS error of 0.3 to 0.7% for the
least squares method and 0.4 to 0.8% for the ANN.

A more theoretical approach has been to design a sensor array consisting of a
multiplicity of semiconducting oxide electrodes with differing spacing in relationship to their
varying thickness of sensing material.>* Although not tested experimentally, the authors
speculate that, based on reaction diffusion effects, the response of the transistor should
allow gases in a mixture to be distinguished based on the differing reactions of the gases and
this effect on their diffusion rates.

More practically, neural network analysis was applied to predict gas levels using
responses generated by surface acoustic wave sensors. In one study®’ the detection of
differing NO, concentrations by frequency shifts at metallophthalocyanine coated sensors
gave prediction results of 98.9% on the training set and 82.8% on the prediction set.
Alternatively an attempt was made to mimic the mammalian olfactory system by coating an
array of twelve thickness shear mode acoustic wave sensors with various adsorptive

materials. Frequency responses were measured for various organic compounds such as



esters, ketones and aldehydes in a continuing study to distinguish aromas from various fruits
and essential oils.* Using pattern recognition techniques, organic classes were separated into
their respective clusters, and the different essential oils and fruit aromas had good separation
into their respective groups without overlap of sub-population groupings.

Identification of groups is not restricted to foods, as these same techniques can be
used to identify functional groups based on correlation to known spectral libraries. For
example, one study’’ that used near infrared gas phase analysis of 40 samples combined with
PCA was correctly able to classify 95% of the samples into aromatic and non-aromatic
groups; the PCA scores were then fed as inputs into a neural network, and used to identify
the functional groups present resulting in 95% correct identification for aromatics, 98% for
hydroxy and halogens and 98% for carbonyl groups.

Another study*® measured the fluorescence emission spectra of Nile Red immobilized
in a polymer array in the presence of nine organic vapors (amyl alcohol, amyl acetate,
butanol, butyl acetate, pentanol, pentyl acetate, benzene, toluene, xylene) and used neural
network analysis to generate the fluorescent fingerprint of each species resulting in correct
prediction of 99.5% in the training set and 90% in the prediction set.

A more complex study involved the use of fiber optic chemosensors to measure
organic odours.”® Both fluorescence amplitude and temporal variation were measured in
order to reproduce actual olfactory responses which vary with time. Neural network analysis
of the fluorescence signals from six fiber optic sensors correctly identified 71% of the test
patterns, and was considered a first approximation of an artificial olfactory system to a

biological model as it assumed a Gaussian shape for both the temporal variation and the
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amplitude of the spikes due to varying concentrations of the organic species.

1.5.3 Electronic Tongues

An electronic tongue is commonly defined as a non-selective multisensor array for
the detection and quantitation of components liquids, combined with appropnate
mathematical methods to process the signals.* Common uses of the electronic tongue have
been in the areas of food, environmental and process analysis. For food analysis, some
examples involved the classification of coffee from its infra-red spectrum,*' to monitoring
the process at a sugar plant for quality control.*> Qualitative differentiation of beverages*into
respective sub-populations was reported as well as the quantitation of adulteration of orange
juice samples. Further, quantitative analysis of fungicide treatments in the resulting wines
was also reported.*

For process control, sensors coupled with appropriate multivariate analysis have been
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used from on-line monitoring of plastic waste,*” to monitoring of stack emissions.*

Numerous review of the industrial use of sensor arrays and chemometric techniques for

I*® are also available.

analyte monitoring*’ and process contro

The first work on multisensor arrays combined with regression analysis using partial
least squares was the work by Otto and Thomas*® on the simultaneous analysis of calcium,
magnesium, potassium and sodium ions at typical physiological concentrations. Different

concentrations and combinations of the ions were examined using four ion selective

electrodes (ISE), and prediction results using classical least squares and PLS were compared.
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The ISEs used were commercially available sodium, potassium and calcium electrodes.
Calcium and magnesium were also measured with an ISE made of calcium bis{di[4-(1,1,3,3-
tetramethylbutyl)phenyljphosphate} immobilized in polyvinylchloride and either di-n-
octylphenylphosphonate (DOPP) for the calcium determination or decanol/DOPP for
magnesium determination. Prediction errors were only slightly lower for PLS over CLS when
synthetic intracellular fluids were measured, however when body fluid concentrations of the
ions were measured using an over-determined system of 5 or 8 sensors in the array, the
prediction errors using PLS dropped significantly from CLS.

This work was expanded by Beebe et. al. * to compare predictions of sodium and
potassium levels from ion selective electrodes using nonlinear projection pursuit regression
and the partial least squares technique of Otto and Thomas. Prediction errors using both
methods were comparable, leaving the authors to conclude that a future existed for the use
of non-selective sensors coupled with an appropriate analysis method. Further work used
artificial neural networks to process the data from an array of ion selective electrodes for the
determination of calcium and copper ions in mixtures and the simultaneous determination
of potassium, calcium, nitrate and chloride ions.”’ Using a combination of a glass pH
electrode with ISEs, simultaneous determination of ions was possible with a mean prediction
error of 8% for a binary mixture and 6% for the quaternary mixture. Unfortunately due to
the slow speed of computers in 1990, it took between 24 and 48 hours for training.

The rapid evolution of computer technology in the early 1990's resulted in rapid
growth in computer processing speeds, and subsequently caused an increase in the use of

chemometric techniques for the analysis of various liquid systems. Neural network analysis
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was applied to partially selective ISE arrays for the determination of sodium, potassium and
calcium ions in a model flow injection system® where the addition of noise, baseline shift
and peak height reduction was successfully modelled for 44 out of 56 possible ion
combinations with an error less than 10% for prediction of single ion levels in the various
mixtures.

Heavy metal and inorganic ions have been quantitated in multicomponent mixtures
using an ISE array consisting of chalcogenide glass membrane electrodes™ with various data
processing methods (MLR, PLS, and ANN) to determine the most appropriate method. The
array contained partially selective electrodes, and it was assumed thai interference occurred.
Therefore, MLR was initially used to estimate the degree of non-linearity of the sensor
response and PLS was used for the quantitative processing of data. For data exhibiting
extensive nonlinearity, ANN was found to be the method most likely to correctly fit response
and quantitative information together. The series of steps included pre-processing of the
data response matrix through pattern recognition by separation into separate classes, then
finally identification and calibration of the data to the unknown composition. For all three
methods (MLR, PLS, and ANN), the relative errors of prediction were used to determine the
optimal method. MLR results were the poorest, while the smallest errors were observed
when ANN was used. As ANN allows for non-linearity in the prediction of data this is not
a surprising outcome, as significant non-linearity was observed due to interfering species.

The work in this paper was expanded on to produce an electronic tongue, where the
sensor array was used to quantify ions in polluted river water.* An array of 22 electrodes

consisting of chalcogenide glass doped electrodes and conventional ISEs was used and a data
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set of 150 solutions of varying ion levels was split into two for use as the calibration and the
prediction sets. As in the previous study, MLR, PLS, ANN were the methods used for data
analysis along with nonlinear least squares (NLL). Again MLR was used to test for
departures from linearity, as errors in this method arise from nonlinearity. PLS also requires
linear relationships but prediction errors were smaller using this analysis method. NLL
allows for the use of non-linear data, so errors can be minimized to about the level of PLS.
ANN results indicated slightly lower error in predicting concentrations as compared to PLS;
this was expected due to the ability of ANN to be trained on the target data during the
training period. In all cases of data analysis by NLL, PLS and ANN the errors were
approximately similar and ranged from about 1% to 15%.

Further work on food analysis involved the combination of pattern recognition
coupled with partially specific sensors for the classification of beverages in an electronic
tongue. An early work to develop a taste sensor for beer’® or tomatoes*® where multisensor
arrays were used with lipid membrane transducers to develop a pattern recognition plot for
the classification of different types of either beer or tomatoes onto what the authors termed
a taste map. The taste map had subjective portions attached to the objective classifications
which correlated to human taste senses. Beverages generally fell into patterns correlating
with the human taste sensation. Further work correlating the taste senscs of bitter, sweet,
sour, and salty to specific foods to generate a taste map was done using an eight channel lipid
membrane coated electrode system and measuring the electrochemical potential.” The
measured potentials were then related to the areas of the taste map using pattern recognition.

A taste map relating amino acids to taste senses was also produced, as well as taste

39



maps for beers, mineral waters, coffees, sake and tomatoes. The authors were able to show
which channels correlated with which taste senses and reproduced this with the various
samples.

Evaluative classification of different beverages has been done to distinguish different
types of beverages - tea, coffee, juices, soft drinks, and beer- as a precursor to an electronic
tongue useful for quality control in the food industry.*® An array of 18-21 potentiometric
sensors was used with various beverage samples. Principal components analysis was used to
generate a pattern recognition plot, and artificial neural networks were used for monitoring
the aging of juice over time. For the qualitative classification, good discrimination was
observed among all the different types of beverages, as the samples fell into appropriate sub-
population groupings. Aging of orange juice was monitored and the resultant plot of
expected versus true aging time fell along a linear model.

An array of 29 different chemical sensors including chalcogenide glass, PVC
membrane, metal sensors (Pt, Sb), and conventional ion selective electrodes was used along
with principal components analysis to generate pattern recognition plots for wines and
mineral waters® for qualitative analysis. Further, quantitative analysis of components of the
waters and wines were also done using PCR. Concentrations of some ions (pH, fluoride,
chloride, sodium, potassium, bicarbonate) present in the waters and ethanol and organic acids
in the wines were determined with relative errors of 2 to 16% for the waters and 1 to 15% for
the wines.

An electronic tongue using large and small amplitude pulses as the excitation signal

was used to generate voltammetric scans from various beverages, and pattern recognition
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was used to classify the beverages into appropriate sub-population groups.®® As well, the
aging of juice was monitored over time, and a principal components plot was obtained of the
scores over time, clearly showing the changes in scores with time.

Another pulse electrochemical technique, dual pulse staircase voltammetry (DPSV),
was used for the simultaneous measurement of the quantities of ethanol, fructose and glucose
at an unmodified platinum electrode, using neural networks to analyse the data generated.*'

Initially it was found that the peaks did not merely grow as the concentration of each species

increased, indicating some interference of each analyte with the others. Peak response was
shown to contain responses due to each analyte, without merely being additive, as the total
current response was lower than if individual responses were summed. A possible reason can
be electrode fouling by one species in solution, thereby interfering with the oxidation of the
other species at higher potentials, as peak area is reduced with surface reduction, or the
formation of an insulating layer caused by adsorption of species onto the electrode. Also
saturation was postulated as another reason at higher concentrations, thereby reducing
sensitivity of response. The use of multivariate techniques means that this type of
voltammetric method can still be used to generate quantitative information, as multivariate
techniques allow for simultaneous separation of the ternary data into respective quantities
without the need for pre-separation by chemical or physical means. Comparison of ANN
with PCR and PLS showed that ANN had reduced error of prediction due to its inherently
greater ability to cope with varying blank responses, nonlinearity and interanalyte
interference.

Although chemometric techniques have become widely used for analysis of food, and
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for classification of beverage samples according to their intrinsic properties, a cautionary note
should be sounded for using these techniques without a full understanding of the
methodology involved. Frequent use of factor analysis as a “black box™ where prediction
values are obtained can lead to serious misconceptions when improper data selection of the

input variables, and inappropriate or inadequate validation is performed.5?

1.5.4 Chemometric Analysis of Other Instrumental Data

The use of chemometric techniques for data analysis are not restricted to
potentiometric input data, but other instrumental data can be used. Spectrophotometric data
is the most commonly used method for generating data sets, but mass spectral or
chromatographic methods are also common, as seen in the following examples.

The simultaneous quantitation of cobalt, copper and nickel in alloy samples using
spectrophotometry, and PLS has a distinct advantage for analysis of alloys, as no pre-
separation of the ions is required.®

The resolution and quantitation of pesticides in mixtures is another area where
chemometric methods are useful. Ternary mixtures of pesticides were examined by
spectrophotometry, then the resulting spectra were interpreted by various multivariate
methods, such as CLS, PCR, and PLS.* Using UV-visible spectrometry, a comparison of
the various mathematical techniques for the quantification of carbofuran, carbaryl and
fenamiphos in a ternary mixture showed that all three methods were adequate to predict

quantities of the three analytes, with PLS giving a lower root mean square error of prediction
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than PCR, which was slightly lower than using CLS.

Alternatively, high performance liquid chromatography coupled with PLS was used
for the detection and quantitation of folpet, procymidone and triazophos in a ternary mixture®
and iprodione, chlorothalonil, folpet, procymidone and triazophos in a five-component
mixture® using UV-vis diode array detection. A multi-component spectrum was obtained,
and analysis by PLS gave more accurate quantitation of the pesticide levels over that by PCR
using the root mean square error of prediction. Using PLS analysis and testing river samples
for spiked levels of the pesticides, recoveries of 80 - 110%, depending on the type of
pesticide, were obtained during prediction.

Quantitative analysis of pyrolysis mass spectral data of lysozyme, DNA, and RNA
in glycogen using artificial neural networks, and comparing the results to those obtained by
PCR and PLS, as well as using these methods to estimate the percentages of bacteria in a
ternary mixture of S. aureus, B. subtilis and E. coli was one of the first studies done to
directly compare the predictions of the three methods.®’” Using PCR and PLS, prediction
errors ranged from 1 to 6% and there were indications errors tended to be higher due to non-
linear relationships between the spectra. Neural networks, taking into account nonlinear
relationships, would then be more accurate for this type of data analysis and resulted in
prediction errors of 0.5% for the test data.

Further work in monitoring the fermentation process has ranged from process
monitoring to detection of recombinant proteins. The brewing process at Labatt Brewers was
monitored for ethanol production using ANNSs, to improve fermentation prediction.®®

Monitoring of bacteria to detect biomass, and successfully quantify microbial cell
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suspensions, using PCR and ANN, has been reported for yeast,*’ Bacillus thuringiensis,™
Penicillium chrysogenum,” and Escherichia coli.”

Dow Chemical has been using chemometric techniques for quality control and for
quantitation and identification of raw material and waste water streams since 1988.” Their
techniques include using near infrared spectroscopy (NIR) and SIMCA for quality control
probes of incoming materials for either quick acceptance or rejection of the sample; NIR and
PLS to analyse a caustic stream for acceptable salt concentration ranges; NIR and CLS to
predict olefin concentrations in another process stream; and analysis of organics in a waste
stream using proton-NMR and PLS to model the BODj levels after a 15-minute response
time.

Further applications of chemometrics are described in a summary paper that shows
the importance of chemometric stratagems in determining the important factors for enamine
synthesis, monitoring and improving a crystallization process, and quality control in cheese
making.™

One of the newest uses of chemometric techniques, especially hierarchal clustering
analysis has been in gene expression profiling. Patterns of gene expression can be deciphered
using clustering algorithms which recognize the underlying organization, or correlation
present in a data set. Thus genes can be classified according to a basic congruence in their
pattern of expression. Groupings generated by cluster analysis techniques may be used to
determine class membership and functionally related elements of a data set.

For example, clustering algorithms have been used successfully to cluster genes of

similar function in S. cerevisiae™. Alon et al. (1999), have employed hierarchal cluster
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analvsis to detect groups of related genes in several types of tissues’*. Their tindings suggest
a rudimentary organization of gene expression within tissues. The same investigators. using
atwo-way clustering algorithm. were able differentiate between malignant tumors and normal
tissue on the basis of gene expression patterns. Recently. hierarchal clustering analysis was
employed by Alizadeh et al. (2000). to classify B-cell lvmphomas on the basis of their gene
expression profiles”. Construction of a two-cluster self-organizing map has also been used
to distinguish between two types of leukemia based on gene expression profiles’. Factor
analysis. using partial least squares (PLS) on latent variables has been compared to principal
components analysis (PCA) in the discrimination of cancerous and normal patients based on
[CP-AES analysis of hair samples™. These reports support the use of pattern recognition as

an effective methodology in classifying tissues according to the groups of genes theyv express.

1.6 Thesis Organization

In this chapter an overview has been presented of the mathematical methods used in
obtaining research results covered in the following chapters, and a review of some of the
chemometric methods, with particular emphasis on the factor-based methods. that have been
applied for data analysis has been presented. Beginning with the work done by Winquist et
al on the use of an amperometric technique for discrimination of complex liquids. two
methods were used. under varving conditions and with different electrode materials to
attempt to generate scores plots to differentiate between different beverages.

Chapter 2 covers the materials and methods used to generate these scores plots, and
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also discusses the materials and methods used for quantitative analyses.

Chapter 3 includes all qualitative results and the discussion of the amperometric
techniques employed, the conditions used, and the electrode materials surveyed. Based on
a random selection of easily obtainable beverages, the discriminating ability of these
techniques, and the subsequent ability to generate scores plots which differentiated sub-
populations is presented. From the preliminary survey, square wave voltammetry with a
platinum (Pt) working electrode was chosen as the better combination. Amperometric scans
were generated of several types of beverages, and using PCA to generate scores plots on the
first two principal components, discrimination of these different beverages was obtained.
Having determined that PCA is adequate for qualitative analysis of complex liquids, a more
rigorous approach was proposed to use PCR for prediction of analytes in a complex liquid.

Chapters 4 and 5 cover the quantitative results obtained using both principal
components regression and partial least squares. Rank analysis is also included to illustrate
how the optimal number of factors was chosen. Chapter 4 is concerned with all results
obtained on individual component analysis in complex media, such as orange juice and beer,
while Chapter 5 contains research results of ternary mixtures of ethanol, glucose and pyruvate
in beer, and the results obtained from both PCR and PLS in determining the individual
concentrations in the ternary solutions. Chapter S was a logical extension of the work shown
in Chapter 4. Initially, individual analyte concentrations in de-alcoholized beer were
predicted using both PCR and PLS. Having ascertained that reliable and accurate prediction
results were obtained for glucose, lactate, pyruvate and ethanol, the next obvious step was

to combine the analytes and ascertain whether the simultaneous determination of individual
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analyte concentrations was possible. As shown, accurate, simultaneous prediction of

pyruvate, ethanol and glucose is possible in a beer sample.
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Chapter 2 Materials and Experimental Methods

2.1 Qualitative Analysis

2.1.1 Chemicals

Sodium phosphate, monobasic (Sigma, reagent grade) and sodium phosphate, dibasic
(Fisher, reagent grade) were used to prepare phosphate buffers. Gold electrodes were
cleaned in 3% hydrofluoric acid made from 49.1% hydrofluoric acid (Baker, ACS reagent
grade) and saturated chromic acid made from concentrated sulphuric acid (BDH, reagent
grade) and potassium dichromate (BDH, reagent grade). Platinum electrodes were cleaned
in methanol (BDH, reagent drum grade). All electrodes were polished using polishing
alumina (1.0 um, Buehler Micropolish II) in an aqueous slurry on polishing cloths
(Bioanalytical Systems, West Lafayette, IN).

The growth media were prepared from glucose, potassium phosphate, monobasic
(Fisher, reagent grade), potassium phosphate, dibasic (Aldrich, 98+%), trisodium citrate
(BDH, 99.0%), magnesium sulfate (BDH, ACS reagent grade), calcium chloride (Aldrich,
98+%), ammonium sulfate (Aldrich, 99+%) and ammonium chloride (Aldrich, 99.5+%).
The growth media were made for me by Gabriele Hager.

All solutions were prepared from distilled, deionized water (Nanopure).
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2.1.2 Samples

The samples consisted of 14 different brands of beer: Labatt Blue (1), Dave’s Honey
Brown (2), Sleemans Pale Ale (3), Sleemans Irish Ale (4), Waterloo Dark (5), Algonquin
Honey Brown (6), Rickert’s Red (7), President’s Choice Brew, De-alcoholized(8); Ruddles
Ale(9); Pilsner Urquell(10); Radegast Czech Beer(11); Holsten Festbock(12); Old English
Malt(13); Crest Lager(14); Wines and Liquors: De Paysage Blanc de Blanc, French White,
13% (34), Inniskillin Vidal, Canada, White, 10.5% (15), Inniskillin Riesling, Canada, White,
12% (16), Inniskillin Chardonnay, Canada, White, 12% (17), Inniskillin Gamay Noir,
Canada, Red, 12% (18), Inniskillin Cabernet Sauvignon, Canada, Red, 12% (19), Inniskillin
Old Vines Foch, Canada, Red, 12% (20), Inniskillin Vidal Ice Wine, Canada, White, 10.5%
(21), St. Remy Napoleon Brandy, France, 40% (22), Karlovarska Becherovka, Czech Herb
Liquor, 40% (23), Gossamer Bay Chardonnay, California, White, 13% (24), Ernest & Julio
Gallo Chardonnay, California, White, 13% (25), Chateau Roc de Minvielle Bordeaux,
France, White,11.5% (26), La Cour Pavillon Bordeaux, France, White,11.5% (27), Freixenet
Traditional Method Cava Sparkling Wine, Spain, 11.5% (28), The Balvenie Single Malt
Scotch Whiskey, Aged 10 years, 40% (29), Libertas Pinotage, South Africa, Red, 12.5%
(30), Valpolicella Classico, Italian Red, 12% (31), Balbi Vineyard Malbec Syrah, Argentina,
Red,13% (32), Heritage Zinfandel, California Red, 13.5% (33), Kittling Ridge Estates Ice
Wine and Brandy, Canada, 17% (34), Kittling Ridge Estates Gewurztraminer, Canada,
White, 12% (35)Wellesley Apple Cider (36); 12 types of fruit juice: Minute Maid Apple
Juice (37), Navel oranges, fresh squeezed(38), Zehr’s fresh squeezed orange juice(39),
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Tropicana Pure Premium Orange Juice, not from concentrate(40), Minute Maid Orange
Juice (41), Minute Maid Low Acid Orange Juice (42), Old South Orange Juice (43), Old
South Pulp-Free Orange Juice (44), President’s Choice Orange Juice (45), President’s Choice
No Pulp Orange Juice (46), No Name Brand Orange Juice (47); 10 types of coffee: Mother
Parker’s Mocha Java (48),Mother Parker’s Hazelnut Vanilla (49),Mother Parker’s Dutch
Chocolate (50), Mother Parker’s Columbian (51), Mother Parker’s Irish Cream (52), Mother
Parker’s Butter Pecan (53), Staff room Coffee (Mother Parker’s) (54), Second Cup Royal
Blend (55), Starbuck’s Espresso (56), Tim Horton’s Coffee (57); 3 types of milk: Neilson
1% milk (58), Neilson 3% milk (59), Neilson 10% cream (60); Evian Spring Water (61); .

The orange juices from concentrate were diluted as per package directions (1:3) with
distilled, deionized water. The navel oranges were cut and squeezed just before use. All other
samples were used as received. No other pretreatment of samples was performed prior to
analysis, unless otherwise noted.

For the bacterial study, samples of Escherichia coli JM105, Bacillus subtilis,
Staphylococcus aureus, and Saccharomyces cerevisiae were obtained from Technical
Services, Department of Biology on agar plates and grown into growth medium overnight.
Then 1 mL of the overnight culture was introduced into 50 mL of growth medium for
monitoring the growth curve and running concurrent square wave voltammograms and

optical density (OD) at 600 nm.
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2.2 Quantitative Analysis

2.2.1 Chemicals

Pyruvic acid (99+%), D-(+)-Glucose(ACS reagent grade), L-(+)-Lactate
Monohydrate (ACS reagent grade) were all purchased from Sigma and used as received.
Ethanol (99.98%, Chromatography grade) was purchased from EM Science.

For the assay to determine the amount of lactate, pyruvate or glucose present in
President’s Choice (PC) Brew, standards kits were purchased from Sigma Diagnostics for
the quantitative determination of each component using an enzymatic assay and measuring
the absorbance at 340 nm. The lactate assay contained lactate dehydrogenase, glycine buffer,
nicotinamide adenine dinucleotide, Grade I1I, and lactate standard solution. The glucose kit
contained glucose hexokinase reagent. The pyruvate kit contained
Tris(hydroxymethyl)aminomethane, 1.5 M and sodium azide, 0.05% as Trizma Base
solution; nicotinamide adenine dinucleotide, Grade III; pyruvic acid standard solution; and

lactate dehydrogenase.

2.2.2 Samples

Dilution experiments were done using Tropicana Pure Premium Orange Juice and
diluting with 0.050 M phosphate buffer (pH=7.02).

President’s Choice De-alcoholized Beer Beverage (nominally 0.5% alc/vol) was used
in all experiments when glucose, lactate, ethanol or pyruvic acid were added. When ternary
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additions of ethanol, glucose or pyruvic acid were added to 15.00 mL PC Beer, 0.050 M

phosphate buffer (pH 4.57) was added to make up volume to 20.00 mL.

2.3 Instrumentation

Measurements of pH were performed using a Coming pH meter (Model 430).

Measurements of OD were performed using a Cary 1 double-beam uv-visible
spectrophotometer set to read at 600 nm. Samples were pipetted into polystyrene disposable
cuvettes to record OD, then voltammetry was performed on the same samples.

Electrochemical experiments were performed using an EG&G Instruments
Potentiostat/Galvanostat (Model 263A) using a standard three electrode cell with either
platinum, glassy carbon or gold working electrodes (BAS), a silver/silver chloride 3 M

NaCl) reference (BAS) and a coiled NiChrome wire auxiliary electrode.

2.4 Procedures

2.4.1 Sample Treatment

Before any runs platinum and glassy carbon electrodes were polished using a slurry
of 1ym alumina in water on a polishing cloth, and sonicated in and rinsed with water.
Between samples, the platinum electrode was sonicated in reagent grade methanol, and
rinsed with Nanopure water, and the glassy carbon electrode was re-polished.

Between samples, gold working electrodes were cleaned three times in saturated
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chromic acid followed by 3% hydrofluoric acid. Electrodes were rinsed between each wash
with Nanopure water and were sonicated in water prior to use.

All samples were used as received, with no dilution or prior de-aeration, unless
otherwise stated, and all samples were used from freshly opened containers. Experiments
were performed at room temperature (25+2 °C).

Voltammograms of samples were run in random order, as samples became available.
Preliminary scans were generated of a small number of the samples, and as more samples
became available, further voltammograms were run. For the quantitative analysis,
voltammograms were generated over the entire concentration range, then these were split
into training (calibration), and validation dat sets.

Square wave voltammetry was performed from 1300 to -800 mV (v.s. Ag/AgCl) at
a frequency of 5.00 Hz, and pulse height of 50 mV, unless indicated otherwise. Normal pulse

voltammetry was performed from 900 to -500 mV.

2.4.2 Mathematical Treatment

Raw data were converted to spreadsheet format using Quattro Pro 8 (Corel
Corporation, Ottawa, Ont., 1996-1999), averaged (n=3 runs per sample) and converted to a
Lotus file for incorporation into MATLAB Ver. 5.3.1 (The MathWorks , Natick, MA.., 1994-
2000) programs. Each vector file (consisting of the averaged voltammogram for one sample)
was incorporated into matrix files for further analysis. The matrix of measurements was then
split into a training, and a validation data set. Respective concentrations corresponding to
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each vector were also saved in a different file.

Factor analysis (PCA, PCR and PLS) was performed using the Chemometrics
Toolbox of MATLAB (Version 2.3, The MathWorks, Inc., Natick, MA, 1998).

PCA involved generating the eigenvectors and scores of the training set. To
determine the optimal number of factors, rank analysis was performed on the training data
set. First, the reduced eigenvalues (REV) according to the method of Malinowski® were
obtained, and plotted against the number of factors. Another indicator function, the F-test
was also used to assess the optimal number of factors. Finally, a cross validation based on
a successive leave-one-out process was performed on the training data set, using the
excluded data as a validation set. The number of factors corresponding to the lowest PRESS
from the cross-validation analysis was determined to give a better estimate of the optimal
number of factors, than the previous indicator functions.

Finally, having decided on the optimal number of factors, the data were regenerated
using the optimal number of factors and a residual plot was also generated. This would show
only random noise if the number of factors had been chosen correctly. Finally, PCR was
performed using the calibration matrix to re-generate the training set concentrations, and to
predict the validation set concentrations.

Since validation data was available, Kramer’ recommends a further test to determine
if the optimal number of factors has been chosen. The PRESS of the validation data were
calculated based on the number of factors. The optimal number should agree with that
obtained using only the calibration data set. However, rank analysis was performed based
cn the optimal number of factors determined from cross-validation of the calibration data set.
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Graphing of calibration and prediction values and generation of all XY graphs, and
re-generation of scores plots was done using GraphPad Prism version 3.0 for Windows
(GraphPad Software, San Diego, CA., 1999). The predicted values were exported to Prism
where they are plotted against the actual values on an XY plot. Linear regression was
performed on each plot, and correlation coefficients calculated. Linearity based on the
value and correlation coefficients were all calculated using Prism.

To determine the r* value, the regression model is compared to the null hypothesis

model, as

30)

where SS,., is the sum of squares of the vertical distances of the best fit linear regression line,
and SS,,, is determined from the null hypothesis as the sum of squares of the vertical
distances of the points from the horizontal line which passes through the mean of all y-
values. The correlation coefficient® was calculated from a comparison of the x- and y-data

values, where y-values are the predicted, and x-values are the expected.

2y

ey =

Quantitative analysis was also performed using PLS2 and compared to PCR via the
above mentioned XY plots. PLS uses a different algorithm to generate regression vectors.

It generates abstract factors based on both the voltammetric data and the concentration data,
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then rotates the two towards each other to minimize prediction errors. The PLS algorithm
of MATLAB is used to generate the weights and abstract factors. As before, rank analysis
was performed to generate the optimal number of factors. The residuals were plotted to
ensure only noise is present, but in the case of PLS there may still be traces of the original
voltammograms in the residuals because PLS compromises the fit of the voltammogram
factors in attempting to fit the regression between the voltammogram data and the
concentration data. Finally prediction of the calculated values for the calibration and the
prediction sets was done and these values were exported to Prism as described previously.

In both qualitative and quantitative analysis it is possible to generate scores plots
which are two-factor plots of the resulting scores generated from PCA. These are useful
in classifying sub-populations of data sets to find qualitative correlations between the
groupings. The scores for factor one (PC 1) and factor two (PC 2) are exported to Prism in

order to plot the results.

2.5 Methods

2.5.1 Optimization of Voltammetric Conditions

To optimize the signals obtained from square wave voltammetry, pulse height,
frequency and filter conditions were varied using 1% milk sample, and scanning from 1.3
to -0.800 V (vs. Ag/AgCl) using a Pt working electrode. Pulse height and frequency were
initially maintained constant at 25 mV and 2 Hz, while scans were run with filter off, filter
at 5.3 Hz, and 590 Hz. Then the filter was turmed on and at both 5.3 Hz and 590 Hz,
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frequency was set at 2, 5, and 10 Hz while pulse height was constant at 25 mV. Then
frequency was alternated between 2 and S Hz, filter was set to 590 Hz, and pulse height
varied between 25 and 50 mV. Determination of pulse height and frequency was repeated
using spring water. The most noise-free signal chosen was under conditions of filter at 590
Hz, pulse height at SO mV and frequency at S Hz. All scans were subsequently run under
these conditions.

To determine the best electrode to use as the working electrode, platinum (Pt), glassy
carbon (GCE), and gold (Au) electrodes were used for scans set at 590 Hz filter, 5 Hz
frequency and 50 mV pulse height of samples of 1%, 3.25%, half-and-half milk, Spring
water, Minute Maid Apple juice, Algonquin Honey Brown, Rickert’s Red, Waterloo Dark,
Minute Maid orange, Minute Maid Low Acid orange, Old South, Old South Pulp free,
President’s Choice, President’s Choice Pulp Free, and No Name orange juices. Scans of
each sample were run in triplicate, imported into Quattro Pro, averaged, saved as Lotus files
for import into MATLAB Chemometrics Toolbox where factor analysis was performed.
PCA yielded two-factor scores plots for each electrode, and it was determined that platinum
was the best working electrode as it gave the most distinct sub-population groupings.

Using the 590 Hz filter, and the same samples as described above, normal pulse
voltammetry was run between 0 to 0.900 V, -0.400 to 0.900 V, -0.500 to 0.900 V, -0.400 to
1.300 V; and the reverse of these potentials was also run, using platinum, glassy carbon and
gold working electrodes. Data treatment was as described previously, and resulting scores
plots were compared. These results showed that square wave was the better technique to
separate out sub-populations. All subsequent experiments were run using square wave
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voltammetry.

Results from these and other optimization studies are presented in Chapter 3.

2.5.2 Pretreatment of Samples

Orange juice samples were scanned without pretreatment as well as with 15-minute
deaeration, and after filtration to remove pulp solids. Voltammetric scans showed no

obvious differences, therefore future runs did not include any pretreatment of the samples.

2.5.3 Bacterial Culture Study

After sterile inoculation, bacterial cultures were grown overnight in a shaker (200
rpm) at 30°C for B. subtilis, E. coli, St. aureus, and 24°C for S. cerevisiae. One mL of
overnight culture was pipetted into 50 mL of fresh growth medium in a fresh shake flask and
returned to grow in the shaker, and incubation time was recorded. Approximately one hour
later 2 mL were taken from the shake flask, and time was recorded for each subsequent
sampling. Each sample was measured for OD at 600 nm, and scanned using square wave
voltammetry, in triplicate. Further scans were run at half-hour intervals until an OD reading
indicated exponential growth was finished. Voltammetric scans were iinported into Quattro
Pro, replicates were averaged, vectors were combined into matrices, and transferred to
MATLAB for pattern recognition analysis. Two analyses were performed. First, scores
plots of the individual cultures were generated in two-factor space, and then data from all
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four cultures were incorporated together in one matrix in an attempt to differentiate the
different sub-populations. Finally, principal components regression was performed on the
individual species matrices to attempt to predict OD,y, values from the calibration data set
and overlay this with OD results obtained using UV-vis spectroscopy to generate growth

curves.

2.5.4 Dilution Study

Tropicana Pure Premium Orange Juice was successively diluted with 0.050 M
phosphate buffer (pH 7.02), and square wave voltammograms were generated. These were
imported into Quattro Pro, triplicate scans were averaged, and the final matrix was split into
a training set (9 vectors) and a validation set (5 vectors). Factor analysis using PCA and
PLS was performed in the Chemometrics Toolbox of MATLAB, resulting in a scores plot
after pattern recognition analysis and generating a calibration model and a prediction model.
The resulting calibration and prediction values were exported to Prism and compared to the

actual dilution values by plotting on an XY graph.

2.5.5 PC Brew and Ethanol, Lactate, Pyruvate, and Glucose

A series of experiments were made by adding increasing levels of ethanol, lactate,
pyruvate or glucose to PC Brew. Individual amounts of lactate, pyruvate or glucose were
added to 15.00 mL of PC Brew. Approximately 15 samples, per analyte, were run using
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square wave voltammetry. Concentrations were recorded, based on the added amounts in
the 15.00 mL. Ethanol was successively added to PC Brew in volume increments. In all
cases, a blank (PC Brew only) was also run. Over the twelve to fifteen samples run, 5
samples were removed to be used as a validation data set. These were chosen to be
representative over the entire concentration range scanned. Training sets were designed as
random data sets in order to ascertain if PCR and PLS could be used to predict both training
set and validation data set concentrations. In some cases, a further 3 to 5 samples were
withheld to be used as unknown samples, for the calibration solution to predict the analyte
levels.

The concentration ranges were chosen to be, roughly, representative of actual
amounts in beer samples®'#? which were pyruvate (0.2 to 1.2 mM), lactate (0.5 to 2.0 mM),
glucose (0.2 to 55 mM), and ethanol (0.5 to 12%). In all cases the dynamic range tested was
greater than literature values. The analytes, themselves, were chosen as representative of
the glycolytic pathway by which glucose is converted to ethanol.®* Pyruvate is a mid-stage
product of this pathway, and under anaerobic conditions, lacatate (instead of pyruvate) will
form.

Voltammograms were generated, the resulting data set was split into training(8 to 10
samples) and prediction(5 samples) sets, and after factor analysis, predicted concentration
values were plotted against the true values, as described previously.

Plots were generated of the calibration and prediction values based on the optimal
number of factors. As well, the number of factors used in the prediction were varied to

determine the effect on the final predicted concentrations. The effect that the number of
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factors had on the final prediction model was done by comparing the correlation coefficients
generated from the actual and the predicted values. To compare the factor-based predictions
to the actual values, RMSE of calibration (RMSEC) and prediction of the validation set

(RMSEP) was also determined.

2.5.6 Ternary Solutions of Ethanol, Pyruvate and Glucose in PC Brew

Varying levels of ethanol, pyruvate and glucose were added to 15.00 mL of PC Brew,
then 0.05 M phosphate buffer (pH 4.57) was added to make up to 20.00 mL. Final recorded
concentration levels were calculated based on amount added in the 20.00 mL. As before, the
analyte concentrations were representative of the amounts present in beer samples, and
comprised a random data set. Further, a larger data set was designed to cover the entire
possibie range from 0 to 1 (normalized values), and using structured combinations of the
three analytes. The concentration ranges again, were based on the actual concentration
ranges of analyte present in beer samples.

As mentioned in the previous section, samples were run using square wave
voltammetry, then scans were split into a training set and a validation set, and rank analysis
was performed to determine the optimal number of factors, and finally both PCR and PLS
were used to generate calibration and prediction matrices. Values calculated from these
algorithms were compared to the actual values as described previously. Again, different
numbers of factors were used to generate the calibration and prediction sets and the resulting

values were compared to the actual values.
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Chapter 3 - Qualitative Analysis

3.1 Results and Discussion

3.1.1 Preliminary Assessment

The initial requirements for this project were the identification of conditions for a
relatively noise free signal, giving good signal-to-noise ration, for a variety of complex
liquids. Relatively little work had been done on the combination of voltammetry and PCA
(see Chapter 1, Literature Review), yet the combination of a low-level detection technique,
and multivariate data analysis could be a powerful analytical method. Voltammetry is a
useful technique for low-level quantification of a wide range of possible species. Signals
are generated not only from reducible or oxidizable species, but also from chemi- or
physiosorbed species on the electrode. It also has the added advantage of simplicity and
speed. Atasolid electrode, oxidation of nitrogen and oxygen containing organic compounds
can be performed, which makes this technique advantageous for the types of complex liquids
discussed in this work.

Initially a survey was done to determine which combination of electrode and
voltammetric technique would generate the most useful voltammogram in terms of
resolution, signal-to-noise ratio, and variance in a scores plot. Electrodes used were
platinum(Pt), glassy carbon( GCE) and gold (Au), which were prepared as described in the
Materials and Methods chapter. Voltammetric techniques utilized were normal pulse

voltammetry ( forward and reverse scanned) and square wave voltammetry. Both techniques
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were tested with all electrodes. Initially, untreated milk samples (1%) were run with GCE
and Pt as the working electrodes in square wave and normal pulse voltammetry.

For square wave voltammetry, several scans of this sample were run to determine the
range, varying from 1.3 Vto 1 V starting potential (vs Ag/AgCl), and ending at between -0.4,
-0.6 or-0.800 V. With both Pt and GCE, a scan from 1.3 to -0.800 V, while covering a wide
range, resulted in a good baseline, and two regions where reduction may be observed.

Scan conditions were then optimized for Pt by varying frequency, pulse height and
low pass filter conditions. First, keeping the frequency at 2 Hz and the pulse height at 25
mYV, the filter was switched from off (A), to on at 590 Hz (B), to on at 5.3 Hz(C), as shown
in Figure 3.1. The 590 Hz filter gave a less noisy signal than when the filter was off, as well
as a smoother signal over the small peak area from 500 to -400 mV than the 5.3 Hz filter,
so subsequent tests were done using the 590 Hz filter. The 5.3 Hz filter is expected to filter
some of the signal as well as the noise.

Next, the frequency was varied from 2 to 10 Hz (Figure 3.2), keeping other
conditions constant. It was decided to use the 5 Hz frequency as the 2 Hz signal lost detail,
while the 10 Hz signal was too noisy. Figure 3.3 shows the effect of pulse height, where 50
mV pulse height (B) was better than 25 mV (A) which tended to give noisier signals also.
To determine if this combination was unique to the sample, the entire sequence was repeated
using untreated spring water (see Figure 3.4), a sample not expected to give a large signal.

The small signal generated was not noisy, hence these conditions should be adequate to
generate useable voltammograms for a wide variety of samples. The best combination then

was a 50 mV pulse generated at 5 Hz. This was adequate to perturb the double layer for a
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sufficient period in order to generate redox activity, without introducing noise to degrade
signal quality.

For all subsequent square wave voltammetric experiments, scans were therefore run
from a potential of 1.3 to -0.800 V, using a frequency of 5 Hz, pulse height of 50 mV and
keeping the filter on at 590 Hz. Based on these results, the GCE was tested under these
conditions and the collection of square wave voltammograms of a wide sample population
was begun using the GCE and the Pt electrodes. This will be presented in a subsequent
section.

Normal pulse voltammetry scan conditions were also varied. Figures 3.5 and 3.6
show voltammograms run from +0.900 V to -0.400 V, and from -0.400 V to +0.900 V,
respectively. Both experiments were run using the GCE and the Pt working electrodes, with
the GCE giving noisier and much weaker signals for all samples. In all cases, for normal
pulse voltammetry, the scan rate was S mV/sec and pulse width was 0.050 sec with step time
of 1.000 sec. From the normal pulse voltammetric results it quickly became obvious that
signals generated were not as well resolved, even at optimized operating conditions with the
Pt electrode. Signals were weak, and poorly differentiated between different samples,
especially with the carbon electrode. A possible explanation for the poorer results obtained
using normal pulse techniques, is the increased sensitivity of square wave voltammetry due
to the decreased non-faradaic (charging) current. Also, GCE could be subject to fouling (for
both voltammetric techniques), resulting in a decreased signal, and poorer differentiation of
signals between samples.

Pretreatment of samples by deaeration and filtering was investigated using square
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wave voltammetry, the Pt electrode, and either Waterloo Dark beer or Minute Maid orange
juice sample. Figure 3.7 shows the effect of a 15 minute deaeration to remove carbonation
from the beer sample. A small positive shift and intensity reduction may be observed, which
may be sufficient to change the outcome in subsequent factor analysis. Thus, in subsequent
experiments, the carbonated samples (beers and champagne) were pretreated by sonication
for 15 minutes. Next, solids were removed from an orange juice sample by filtration. No
obvious difference was found in the voltammograms, so further experiments did not use pre-
filtering.

The gold electrode was then examined using the same scan conditions and the same
sample set run with GCE and Pt. The difficulty with Au was immediately apparent as
extensive cleaning was required due to fouling of the electrode. However, square wave and
normal pulse scans were run with Pt, GCE, and Au electrodes on samples of orange juices,
3 beers ( Waterloo Dark, Honey Brown, Richards Red), 3 types of milk, spring water, apple
juice, and coffees to determine if scores plots would differentiate the sub-populations.
Despite the cleaning procedure done between sample scans, signals were weaker, in terms
of current recorded, than with either Pt or GCE. As well, little differentiation was observed

between sample classes.
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Figure 3.1 Square wave voltammograms of 1% milk with
frequency 2 Hz, pulse height 25 mV, and filter off (A), 5.3 Hz (B)
or 590 Hz (C)
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Figure 3.2 Square wave voltammograms of 1% milk with
pulse height 25 mV, filter of 590 Hz and frequency of applied
pulse 2Hz (A), S Hz (B) or 10 Hz (C)
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Figure 3.3 Square wave voltammograms of 1% milk with
frequency of pulse 5 Hz, filter of S90 Hz, and pulse height of
25 mV (A) or 50 mV (B).
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Figure 3.4 Square wave voltammograms with
frequency of pulse 5 Hz, filter of 590 Hz, and pulse height of
50 mV for 1% milk and spring water.
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Figure 3.5 Normal pulse voltammograms from 900 to —-500 mV
of milk, juice, water and beer samples obtained using a GCE (A)
and Pt electrode (B).
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Figure 3.6 Normal pulse voltammograms from —400 to 900 mV
of milk, juice, water and beer samples obtained using a GCE (A)
and Pt electrode (B).
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Figure 3.7 Square wave voltammogram of Waterloo Dark Beer
run at 5 Hz frequency, pulse height of S50 mV, before and after
sonication to remove carbonation.
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3.1.2 Sample population analysis

After the optimal conditions were determined for the two voltammetric techniques,
voltammograms of each sample were generated with both square wave or normal pulse
voltammetry, using Pt, GC, and Au electrodes. These voltammograms were then transferred
into a spreadsheet, and scores plots were generated for each technique and electrode material.
No data pretreatment was performed. Scores plots were used to assess the capability of the
different electrode materials and the two different amperometric techniques to differentiate
the juices, beer, water, and milks into their respective classes.

Normal pulse voltainmetry results are shown in Figures 3.8 for the Pt electrode, 3.9
for GCE, and 3.10 for Au. Square wave voltammetry scores plots are shown in Figures 3.11
for Pt, 3.12 for GCE, and 3.13 for Au. Initially, the same number and type of beer, juices,
water and milks was run to compare electrodes and techniques. As observed from the
respective scores plots, square wave voltammetry and the Pt electrode were able to
differentiate the classes with the greatest spread between classes. The scores plot generated
using the Au electrode and square wave voltammetry also was able to differentiate the sub-
populations, except for the beer samples, but the variance among classes was not as good as
when the Pt electrode was used. Further, with the Pt electrode, the sub-populations were
separated into distinct clusters, except for the coffees and milks, and the groupings tended
to be more tightly clustered in their respective classes. As the Au electrode also suffers from
fouling the best combination was Pt and square wave voltammetry.

With the Pt electrode, and square wave voltammetry, the variance between classes
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was wide, and subsequently clear clustering of the sub-populations was observed (Figure
3.11). Further studies using the combination of Pt electrode and square wave voltammetry
were then performed, adding samples as they became available. The aim in this portion of

the project was to collect voltammograms from as many representative samples as possible.
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Figure 3.8 Scores plot of milks, beer, and juices obtained
using normal pulse voltammetry with a Pt WE.

2.0x10-%
e+ milk
o~ 1.0x10 & ° - water
(3]
-4 o o beer
g 1.5'10'“- i o pices
[’
® _10x10%]
o
@
-2.0x10-%] . .
-3.0x10- r .
2.5x10-> 7.5%10-™ 1.2x10-® 1.8x10®

Scores on PC 1

75



Figure 3.9 Scores plot of milks, beer, and juices obtained

using normal pulse voltammetry with a GCE.
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Figure 3.10 Scores plot of milks, beer, and juices obtained

using normal pulse voltammetry with a Au WE.
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Scores on PC 2

Figure 3.11 Scores plot of milks, beer, and juices obtained

using square wave voltammetry with a Pt WE.
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Figure 3.12 Scores plot of milks, beer, and juices obtained
using square wave voltammetry with a GCE.
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Figure 3.13 Scores plot of milks, beer, and juices obtained
using square wave voltammetry with a Au WE.
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3.1.3 Pattern Recognition Analysis of Individual Classes

Fourteen types of beer were examined using square wave voltammetry and the Pt
working electrode, with two examples shown in Figure 3.14. Each voltammogram was
loaded as a vector (1051x1) into a matrix (1051x14). Using MATLAB factor analysis,
matrices of eigenvectors and eigenvalues were generated. For a qualitative scores plot only
the two principal factors which account for the majority of the variance were plotted, and
variances for these factors (98.22% for PC 1, 1.09% for PC2) were noted. A scores plot for
the beers (Figure 3.15) was generated, and shows a wide spread or variance between the
samples. No significant clustering of scores according to beer type occurred. From the
respective voltammograms generated, it was apparent that differences between the beers -
should translate into distinctiveness on the scores plots, as was observed. Even the two
honey brown beers (2 and 6) do not cluster near each other, but maintain enough of a
distance to be distinct. It is possible that the apparent lack of clustering was due to the
relatively small data set used where no attempt was made to test similar beers, or perhaps the
samples don’t cluster in this space.

This procedure was repeated for coffee samples with the generation of eigenvalues
and eigenvectors from a matrix of the square wave voltammograms. A typical square wave
voltammogram is shown in Figure 3.16. The resultant scores plot (Figure 3.17) showed two
regions at the opposing ends of the plot; the first due to all the coffee samples except the
espresso, and the other due to the espresso. For the scores plot, PC 1 contributed 97.31%

of the variance and PC 2 contributed 1.74%.
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From the voltammograms (Figure 3.16), the Royal Blend and the Mother Parkers
blend show similar peaks, while it can be seen that the Starbucks espresso shows a more
pronounced large peak at about -0.600 V. This clearly differentiates the espresso from the
other coffees, and indeed Starbucks is an outlier in the resulting scores plot (Figure 3.17).
Another interesting observation in the large cluster is the apparent split between those coffee
samples which were flavored (top) and non-flavored (bottom) types. Flavored coffees are
typically ground with a flavoring oil added, so this may account for the split within the
cluster. However, a definite conclusion based on these lines would require more
experimentation using a larger population base than given here, as this difference could also
be due to the location from which the coffees were obtained, as all the flavored coffees were
obtained from one location, while the other types came from various vendors.

The voltammograms of the juices tested (10 orange juices, apple cider and apple
juice) are shown in Figure 3.18 . The scores plot for the juices (Figure 3.19) differentiates
between a larger grouping of all the orange juice samples made from concentrate, the fresh
squeezed oranges (38), Tropicana fresh squeezed orange juice(40) and, in the opposite
quadrant a clear separation between the apple cider(36) and the apple juice(37). In this
population, PC 1 contributes 99.21% of the total variance and PC 2 contributes only 0.42%.

The voltammograms (Figure 3.18) show an observable difference between the apple
juice and the orange juice (both Minute Maid brands). This difference is clearly shown on
the scores plot (Figure 3.19) with apple juice (37) clearly separate from orange juice (41) as
expected from the large difference in their peak heights on the voltammogram which

translates into large variance on the scores plot. From the scores plot the apple cider (36) is
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also separated from the larger group of orange juices as well as from the apple juice.
Tropicana fresh squeezed orange juice (40) is also separated from the other brands, lying
closest in distance and hence closest in voltammetric similarity to the fresh squeezed orange
juice (38). It is interesting to note that the fresh squeezed orange juice from Zehr’s
Supermarket (39) actually lies within the grouping of orange juices reconstituted from
concentrate. In Figure 3.19, differences are also observed between the apple beverages and
the orange juices which form separate groups, as well as another grouping of orange juices
reconstituted from concentrates which also tend to cluster together. Possibly the
concentration or reconstitution process of the orange juices from concentrate causes similar
changes in all these samples.

Milk samples and spring water were run together (Figure 3.20) due to the small
sample size. Variance present in the first two factors is 98.66% for PC 1 and 0.79% for PC
2. The scores plot (Figure 3.21) shows spring water (61) at the opposite end of 1% milk (58),
with the whole milk (59) and cream (60) clustered together.

The voltammograms (Figure 3.20) show the expected differences between milks and
water, which are clearly observable on the scores plot (Figure 3.21). From this plot, water
(61) is quite dissimilar from the 1% milk and surprising more similar to the whole milk and
cream. However, this difference in distances can be attributed to the voltammetric results,
which show the largest differences in peak positions to occur between 1% milk and water.

Water, as expected, shows little activity on the voltammogram.
Finally, a variety of wines and liquors were scanned in the same manner, with

representative voltammograms shown in Figure 3.22. From the voltammogram, brandy
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appears to give no signal on the current scale shown. A much smaller scale, shows brandy
(and whiskey) with two broad peaks, at the same relative potentials as the other alcoholic
samples. It is postulated that the higher alcohol content gives the lower and broader peaks,
but no further examination was made. The resulting scores plot is shown in Figure 3.23. In
this scores plot, PC 1 contributes 95.39% of the variance and PC 2 contributes 3.95%.

The voltammograms of these samples (Figure 3.22) suggest that there should be
correspondingly greater differences between the samples on the scores plots, as each type of
wine or liquor clearly gives a distinct signal. This is shown on the scores plot (Figure 3.23)
with liquors clearly separate from the other types on opposing sides of the plot; a
commercially-available combination of ice wine and brandy (34) fall§ between the wines and
the brandy, as expected since it would contain characteristics of both. Unfortunately, white
wines can not be distinguished from red wines from the scores plots. Other more complex
matrix effects must be responsible for the separations and groupings. There is a grouping
of Inniskillin wines (15-19) in one cluster, however this cluster also contains wines from
other vineyards. Thus conclusions about wine type cannot be formed from this scores plot,

except for gross differences observed between wines and liquors.
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Figure 3.14 Square wave voltammogram of Dave’s Honey
Brown and Sleemans Ale, using a frequency of 5 Hz, pulse
height of 50 mV and a Pt WE.
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Scores on PC 2

Figure 3.15 Scores plot for beer samples.
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Figure 3.16 Square wave voltammogram of three coffees
(Staffroom, Royal Blend, Starbucks espresso), using a frequency
of 5 Hz, pulse height of 50 mV and a Pt WE.
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Figure 3.17 Scores plot for coffee samples.
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Figure 3.18 Square wave voltammogram of Minute
Maid apple and orange juice, using a frequency
of 5 Hz, pulse height of 50 mV and a Pt WE.
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Scores on PC 2

Figure 3.19 Scores plot for juice samples.
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Aj, A

Figure 3.20 Square wave voltammogram of 1% milk, cream,
and spring water, using a frequency of 5 Hz, pulse height of
50 mV and a Pt WE.
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Scores on PC 2, x 102

Figure 3.21 Scores plot for milk and water samples.
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Figure 3.22 Square wave voltammogram of Inniskillin
Vidal (white), Gamay Noir (red), Ice wine, and brandy,
using a frequency of 5 Hz, pulse height of 50 mV and a Pt WE.
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Figure 3.23 Scores plot for wines and liquors samples.
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3.1.4 Pattern Recognition Studies

Sample vectors from entire populations were incorporated into a larger matrix
(1051x61), and PCA was performed to generate the resultant scores on the first two principal
components. The scores plot shown in Figure 3.24 is based on these two factors (PC 1 has
96.24% of the variance and PC 2 has 2.42%). Clustering of the sub-populations shows
distinct sub-population groupings for juices, beers, and liquors, while a diffuse grouping can
be seen for the wines, and a cluster exists due to the coffees and milks. Although distinct
groupings are observed with the wines present in this plot, clear demarcation of the groups
is not ideal as the wines constitute a grouping with a large variance. Thus, for the interest
of clarity, the wines were removed from the matrix, and a new scores plot was generated
(Figure 3.25). After factor analysis, the scores plot of the two most significant principal
components (variance 0f 97.44% for PC 1, 1.47% for PC 2) showed clear separation between
the sub-populations which tended to cluster together in their respective sample classes. The
coffee and milk groups were still overlapped except for Starbucks espresso which is some
distance away.

In order to determine if the groupings were valid* and reproducible the matrix was
split into two, with each smaller matrix containing different voltammograms from each sub-
population. Eigenvalues and eigenvectors were generated using one matrix, and a scores plot
was made as shown in Figure 3.26 (A). These same eigenvectors were used to generate the
scores plot of the second matrix as shown in Figure 3.26 (B). The eigenvectors of the first

data set form the axes of the new abstract space. The respective samples in the dat set are
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then plotted as scores on these eigenvectors. The assumption is then, that similar samples
should project similarly onto the eigenvectors. Hence, by generating the scores of the second
data set, and plotting these on the eigenvectors (or first two PCs) of the first data set, similar
samples should cluster in the same grouping in both data sets. An alternative to splitting the
data sets into two, would be to plot replicates of a data set to ascertain if they cluster
similarly. However, the first method is more rigorous test of the validity of the model to
cluster samples into respective classes.

In both plots the groupings due to the sub-populations fall into the same regions as
before, and the overlay of the two plots regenerates the large pattern recognition plot (Figure
3.25).

Selection of the currents in the two major peak regions was then done on the
voltammograms to attempt to separate the coffee and milk populations. By selecting the
region between 100 and 400 mV, and excluding all alcoholic samples (beers , wines,
liquors), a clear separation of sub-populations was observed with the desired separation of
coffees and milks (Figure 3.27). For comparison, a scores plot containing only the non-
alcoholic liquids was generated using the entire voltammogram, as shown in Figure 3.28.
In this plot the coffees and milks still overlap. From the voltammograms - the entire scanned
region shown in Figure 3.29 (A) and the variable selected region shown in Figure 3.29 (B) -
the difference between samples is shown, with the largest differences occurring in the large
peaks which would account for the separation observed in the scores plot for the entire
voltammogram (Figure 3.28). To separate out the coffees and milks, more subtle differences

found in the smaller peak are required and variable selection eliminates the overwhelming
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influence of the large peaks near -0.500 V. It appears that subtle differences between the
non-alcoholic samples in the selected small peak region have sufficient variance to
effectively separate out the sample classes.

The resulting plot (Figure 3.27) not only separated the coffees and the milks, but also
separated the coffees according to their types such as flavored and non-flavored. From the
voltammograms which compare the scans obtained for the different samples (Figure 3.30)
it appears that the large peak shifts in position between the different liquids, but coffees and
milks are closest to each other in terms of peak potential. When only the variable-selected
portion is shown (Figure 3.30, B) peak differences are more distinct for the coffees and milks
while they tend to converge for the beers and wines. This could explain why the coffees and
milks separate into distinct sub-populations when variable selection is used, as the peaks are
now more distinct.

In the presence of the large peak, these subtle differences are swamped, as the
variance present due to the large peak effectively controls the resulting separations. An
examination of the large peak region (Figure 3.29A) shows the differences between
representative samples, and over a much larger scale than observed in the small peak region
(B). Itisobvious that the large peak region controls the subsequent variance determinations,
which is corroborated when only the large peak region is used, the resulting scores plots give

the same sub-population groupings as when the entire voltammogram is used.
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Figure 3.24 Scores plot of the entire matrix.

o Juice v Wine o Beer

o Coffee + Water +« Milk

3.0x10-%
2.0%10-% 12,49
1.0x10-04
0 0"10'“’? @ 293847'45
. , %O o <6
a3
-1.0x109% 2 o4
£
-2.0x1Q-04

0.0x10°2.5x10-% 5.0x100 7.5x1004 1.0x10-% 1.3%10-
Scores on PC 1

98



Scores on PC 2

Figure 3.25 Scores plot of the entire matrix,
excluding wines and liquors.
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Figure 3.26 Validation plots of the two separate sub-sets
generated by splitting the large data matrix into two

separate matrices, generating a scores plot for one set (A),
then using the eigenvectors of (A) to generate the scores plot
for the second set (B).
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Scores on PC 2, x 10+

Figure 3.27 Scores plot generated from a matrix
containing voltammograms for juices, coffee, milks
and water, using selected potential range from 100 to 400 mV.
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Scores on PC 2

Figure 3.28 Scores plot generated from a matrix
containing voltammograms for juices, coffee, milks
and water, using the entire potential range from
1300 to -800 mV.
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Aj, A

Figure 3.29 Square wave voltammograms using a Pt WE
covering the entire potential range (A), and the selected region
from 100 to 400 mV (B) for Waterloo Dark beer, Inniskillin

Vidal red wine, Royal Blend coffee, 1% milk, and Minute

Maid orange juice.
1.5%10-%_
A
1.0x10 %
A\
I \
o\
5.0x10 % .
"' \‘\\
l" \‘
l:
V4
0.0%x10® | S e i
15 1.0 0.5 0.0 -0.5 1.0
E, V (vs Ag/AgCl)
3.0x10%_
B
2.5%10 %
P i S
06 M -
2.0x10 % p: N\

1.5x10% ¢~
1.0x10-%_ Scaal
P i Yl ~ .

et P —a—— S
soxtoa] _.—-"" SR =
0.0x10® . . . ' _

0.4 0.3 0.2 0.1 0.0 0.1
E, V (vs Ag/AgCl)

103



3.1.5 Bacterial Cultures

Postulating that it may be possible to differentiate microorganisms based on
voltammograms recorded at different stages of growth, cultures B. subtilis, S. aureus, and E.
coli were investigated. Both OD(600) readings and square wave voltammetric scans were
recorded over time to generate growth curves at various points corresponding to the lag
phase, exponential growth, and the plateau or stationary phase. The voltammograms were
not distinguishable between species, or growth phases. For the resultant scores plot
representative vectors corresponding to the lag, the growth, and the stationary phase for each
of the bacterial cultures were plotted with 97.88% variance for PC 1 and 1.42% for PC 2.
The scores plot does not show differentiation of the cultures or of the phases, although for
S. aureus and E. coli an upward shift from lag, through growth to stationary phase was
observed. Differentiation of species or growth phases was not possible on the scores plots,
due to the indistinguishability of the representative voltammograms. Differentiation of the
bacteria may be possible if the voltammograms of species were done at set stages of the
growth curve, as species do show variance between each other at the different phases.
Scores of the species at the different phases are separate, but a more rigorous study needs to
be performed. This could involve the pre-separation of the individual bacterial species, or
a pre-concentration step to increase the detectable signal, and lessen the signal from the
matrix (mostly sugars, which could increase the signal significantly, and mask the bacterial
signal). As well, repetitive scans, and an increased number of bacterial types, could further

improve the resultant scores plots in terms of sub-population differentiation.
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Chapter 4 Quantitative Analysis of Individual Analytes

Quantitative analysis of components in different complex media involved a multi-step
procedure. After generation of the data set (split into calibration and validation), rank
analysis was performed on the calibration set. Based on the optimal number of factors, the
calibration solution was determined, and used in regression analysis to predict unknown
analyte levels in the validation set. The validity and accuracy of the model was determined
by calculating the root mean square error of calibration and prediction, the relative root
mean square error based on the range (RRMSE), and the correlation coefficient between
predicted and known analyte levels.

This Chapter presents the early experiments and data analyses done to determine if
the combination of square wave voltammetry and factor analysis was an effective
combination for the prediction of analyte levels in a complex liquid. Determination of
biomass in bacterial cultures was an extension of the work presented in the previous Chapter
(qualitative analysis of bacteria). The early series of experiments done, using the addition
of a phosphate buffer to orange juice, were performed to assess the predictive capability of
PCR and PLS. Following the success of these experiments, the determination of glucose,
lactate, pyruvate and ethanol in beer involved a more rigorous examination of the capabilities

of these models.
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4.1 Results and Discussion

4.1.1 Determination of Biomass in Bacterial Cultures

Three microorganisms ( Staphylococcus aureus, Bacillus subtilis, Escherichia coli
JM 105) were grown separately in shake flasks and monitored by turbidity, or optical density,
at 600 nm. Square wave voltammetry was performed on samples taken at the same time,
using the same conditions for optimal pattern recognition as described in Chapter 3.
Turbidity (ODgy values) were used as the expected or true values. Voltammograms were
analysed by factor analysis to determine the most significant factors, which were used to
generate the calibration solution. The predicted turbidity values were compared to the
measured turbidity values, and the error in slope deviation from 1.000 was obtained. Further,
both the expected and the predicted OD,, values were plotted versus time to obtain the usual
growth curve, and show a close correlation between the predicted and the expected values.

To test the ability of the calibration model to predict the turbidities corresponding to
unknown voltammograms, the matrix for each culture was divided, with 6 vectors used for
the calibration set and the remainder (4) used for the validation set. Again, after factor
analysis to determine the optimal number of factors to be used for lowest prediction errors,
the predicted ODg,, values for both the calibration and the prediction sets were obtained, and
are plotted on the growth curves as shown in Figures 4.1 t0 4.3. Five factors were optimal
for predicting unknown ODy,, values for both PCR and PLS analyses, based on prediction
errors from cross-validation. From this, predictions of turbidity were made for the remaining

four vectors which had been taken out of the original matrices and used in the validation set.
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The resulting predictions, along with those found from the calibration set and those
determined experimentally are given in Tables 4.1 to 4.3. Part A of the tables gives the
ODy values and part B give the resulting correlation coefficients and the 95% confidence
interval (interval within which 95% of the results lie).

Results from Chapter 3 from the qualitative determination of bacterial cultures at
various stages of the growth had been inconclusive. The scores plotted on the first two
factors were inadequate to accurately predict the growth stage of the bacteria. By performing
a rank analysis, and predicting turbidity values based on the higher number of optimal
factors, either PCR or PLS might be used for prediction of bacterial growth stages. This
preliminary study indicated promise for the use of multivariate data analysis for biomass
quantitation as OD,,, predicted values were closely correlated to the measured turbidity
values. Examination of the RMSE of calibration or prediction gave small errors, but a
relative RMSE which varied depending on the bacterial type. This makes the predicted
values accurate, but varying over a large range (to 15% RRMSE), hence affecting the
precision. Due to the small data set (6 calibration samples) used to develop the calibration
solution, and the retention of five factors from cross-validation making this multilinear
regression, rather than PCR, it was difficult to assess the ability of PCR to accurately and
precisely predict analyte levels. While multivariate methods appear to be promising in
prediction, a larger data set was required. Hence, a different media (orange juice) was
analysed to predict adulteration of the sample using PCR. This media, while still complex
in its matrix, does not contain as many uncertain variables as a fermentation broth, and was

used to assess the potential reliability of multivariate calibration solutions for further work.
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Table 4.1 Determination of OD values of E.coli from UV-Vis readings at 600 nm,

and predicted OD values from PCR of the calibration and validation set.

Time, OD(600 nm) OD(calibration) OD(validation)
min.

67 0.135 0.145

186 0.521 0.433
210 0.735 0.732

236 0.844 0.793
264 1.187 1.149

294 2.001 2.063

334 2.775 2.880
359 3.174 3.081

384 3431 3.425
439 3.904 3.669

Table 4.1 (B) Error Analysis

E.coli OD(cal) OD(val)
Pearsonr 0.952 0.988
RMSE 0.263 0.073
RRMSE, % 7.465 2.444
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Table 4.2 (A) Determination of OD values of B.subtilis from UV-Vis readings at

600 nm, and predicted OD values from PCR of the calibration and validation set.

Time, min. OD(600 nm) OD(cal) OD(val)
60.0 0.1767 0.1794

95.0 0.1938 0.1625
150.0 0.2538 0.2495

195.0 0.4284 0.4338

240.0 0.6252 0.661
270.0 0.8764 0.8578

300.0 1.127 1.1534

355.0 1.2389 1.0746
400.0 1.3027 1.2901

445.0 1.4559 1.1752

Table 4.2 (B) Error Analysis

B.subtilis OD(cal) OD(val)
Pearsonr 0.958 0.987
RMSE 0.035 0.164
RRMSE, % 3.192 16.229
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Table 4.3 (A) Determination of OD values of S.aureus from UV-Vis readings at 600

nm, and predicted OD values from PCR of the calibration and validation set.

Time, min. OD(600 nm) OD(cal) OD(val)
60.0 0.2029 0.2859

95.0 0.2191 0.1768
150.0 0.4152 0.4388

195.0 0.6196 0.6542

240.0 0.8161 0.8011
270.0 1.114 1.119

300.0 1.4169 1.186

355.0 1.6726 1.6687
400.0 1.9098 2.0147

445.0 2.003 1.9345

Table 4.3 (B) Error Analysis

S.aureus OD(cal) OD(val)
Pearsonr 0.970 0.990
RMSE 0.270 0.041
RRMSE, % 15.627 2.332
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Figure 4.1 Growth curve for E.coli JM 105 showing OD values
found from UV-Vis spectroscopy, and obtained from prediction
of calibration and validation data sets using PCR.
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Figure 4.2 Growth curve for B.subtilis showing OD values
found from UV-Vis spectroscopy, and obtained from prediction

of calibration and validation data sets using PCR.
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Figure 4.3 Growth curve for S.aureus showing OD values
found from UV-Vis spectroscopy, and obtained from prediction
of calibration and validation data sets using PCR.
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4.1.2 Orange Juice Dilution Studies

Successive dilutions of Tropicana Pure Premium Orange Juice with 0.050 M
phosphate buffer (pH=7.02) were performed , and square wave voltammograms of each
dilution were generated. These were divided into the calibration (16 points) and validation
(5 points) data sets. Validation points were taken randomly from the original data set, and
covered the range of possible values. The calibration data set is given in Table 4.4, and
validation data in Table 4.5. From cross-validation, it was determined that 4 factors would
minimize the PRESS, as the cross-validation errors drop sharply at this number of factors.
After 4 factors, very little variation is observed in the errors, indicating that these factors
contain mostly noise. After generating the calibration model (Figure 4.4A), prediction of the
volume fractions of orange juice (Figure 4.4B) was done resulting in a prediction error of
2.1% as deviation from a perfect slope.

Studies of orange juice dilutions showed good correlation between the predicted and
expected volume fractions in the validation set, with correlation coefficients of 0.987 (PCR)
and 0.978 (PLS). From the plot of the resulting predictions (Figure 4.4), only slight
deviations are observed from an ideal slope of 1.000. Further, high correlation between the
expected and predicted dilutions was obtained, as correlation coefficients were greater than
0.98 (PCR) for prediction of the validation set. This was reinforced by the low errors
calculated from RMSEDP, and the relative precision, where the deviations of the predicted
dilutions varied from 3 to 5% (RRMSEP) only. From this preliminary work, either PCR or

PLS show high predictive ability of the calibration solution, with both good accuracy and
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precision. From this, the potential reliability of either PCR and PLS for further use was
promising, and these methods were tested for the predictive capability of common individual
analytes in another complex medium, PC Brew.

A common fermentation process which produces a complex liquid is the production
of beer. The process proceeds from conversion of glucose by S. cerevisiae to the end-product
of ethanol. During the glycolysis process (described in Chapter 2), pyruvate or lactate may
also be produced. The end result is a complex liquid which not only contains glucose,
ethanol, pyruvate and lactate, but myriad other species. Thus, accurate measurement of the
desired components can be difficult if other species interfere or signals are masked by noise.
If the combination of square wave voltammetry, and PCR could prediction levels of these

analyte in this complex broth, it would provide a fast, reliable method for process control.
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Table 4.4 (A) Predicted dilutions of orange juice, diluted with phosphate buffer

using PCR and PLS (four factors retained) for prediction of calibration data.

Actual Dilution Predicted- PCR Predicted-PLS
Value

1.000 1.029 1.027
0.909 0.857 0.867
0.830 0.813 0.811
0.769 0.786 0.786
0.714 0.710 0.708
0.667 0.679 0.679
0.630 0.621 0.616
0.556 0.577 0.576
0.500 0.520 0.521
0.417 0.393 0.394
0.357 0.348 0.349
0.333 0.343 0.342
0.313 0.315 0.315
0.278 0.290 0.292
0.250 0.244 0.244
0.217 0.212 0.211
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Table 4.4 (B) Error Analysis

Calibration Set PCA PLS

Slope 0.995+0.022 0.996+0.020
Pearsonr 0.997 0.997
RMSE 0.023 0.021
RRMSE, % 2.781 2.560

Table 4.5 (A) Predicted dilution values of orange juice from the validation set using

either PCR or PLS on the validation data set.

Actual Dilution

Predicted-PCR

Predicted-PLS

Value
1.0000 1.0387 1.0364
0.8300 0.7646 0.7301
0.6300 0.6019 0.5946
0.5000 0.5364 0.5381
0.2800 0.2903 0.2915

Table 4.5 (B) Error Analysis

Validation Set PCA PLS
Slope 0.998+0.091 0.954+0.12
Pearson r 0.987 0.978
RMSE 0.026 0.034
RRMSE, % 3.449 4.609
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Figure 4.4 Plots of predicted volume fractions of Tropicana Pure
Premium Orange Juice dilute with buffer. Predicted results obtained
from PCR and PLS, for the calibration data (A) and validation data (B).
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4.1.3 Quantitation of Individual Chemical Constituents

For these series of experiments, President’s Choice De-Alcoholized Brew (0.5%
alcohol) was used exclusively, and addition of either ethanol, lactate, pyruvate or glucose
into the PC brew was done. A complex media, PC Brew de-alcoholized Beer, allowed a
more rigorous evaluation of the use of factor analysis for quantitation. After each addition,
square wave voltammetric scans were generated in triplicate, the data were averaged, and
imported into a spreadsheet format. Each analyte matrix was divided into two: the larger
matrix contained from 9 to 13 columns and was used to produce the calibration model, while
the smaller matrix contained 5 columns and was used as the validation or prediction set.

Data analysis consisted of transforming the data set into the abstract solution,
selection of the number of latent variables by plotting the reduced eigenvalues present at a
factor number and by determination of the PRESS, then prediction of analyte levels in the
validation sets. Rank analysis was performed using the calibration data set. A representative
example of rank analysis is presented for ethanol.

Increasing additions of ethanol to PC Brew were used to generate a calibration data
set (9 points), with the validation data set collected one week later (8 points). A plotof the
eigenvalues and reduced eigenvalues at a given number of factors, generated using PCA are
shown in Figure 4.5. Very little change in variance is observed, with a slight change in siope
at factor 3. This is more noticeable in the plot of reduced eigenvalues (A). A further
indicator function was used to determine optimal rank; cross-validation using the

calibration data was done. The resultant analysis (Figure 4.6) suggests four factors may
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generate the lowest PRESS on the calibration set. Both PCA and PLS results are shown, and
as observed very little change in slope is observed for either past two factors, indicating that
predictive ability may suffer when this model is used. Further it is observed that at 8 factors
for PCR, a large jump in PRESS occurs, as when all the factors are included, the
experimental error is added back in. Errors in the predictive capability of PCA are larger
than for PLS. This could be due to the ability of PLS to minimize angles between the X- and
Y-data sets, so as to optimize congruency. Thus, PLS attempts to optimize the fit between
the data and the concentration matrices, while PCA does not. Subsequent residual for four
factors, gave only noise indicating that the significant information was contained in the first
four factors. Due to the small change in slope, making selection of the optimal number of
factors difficult, residual analysis was also done for two factors. The plot of the residuals
showed retention of the voltammetric signal, indicating that at two factors retained, signal
would be discarded, and the resultant calibration model would not be optimized. Therefore,
four factors were retained, and this model was used in subsequent regression calculations.
This model was used in the subsequent PCR to regenerate the calibiation ethanol levels, and
to predict ethanol levels in the validation data set. Comparison of the predicted values were
then made to the actual values. These results are presented in Table 4.6 (calibration data)
and Table 4.7 (validation data), and plotted in Figure 4.7.

These Tables also show results predicted using PLS. Determination of the number
of factors to retain for PLS was done in a similar manner as for PCA, except that eigenvalues
generated using PLS are termed pseudo-eigenvalues, and provide a measure of the variance

spanned by the given latent variable. From residual analysis, when four latent variables were
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chosen, only noise was observed. Therefore, prediction of ethanol levels using PLS was also
done using the four factors (or latent variables in PLS).

Further, data manipulation of the voltammograms to select out the two potential
regions that correspond to the two peaks was done. This type of selection was tested to
improve correlations between predicted and expected results by choosing which peaks in the
voltammograms would be analysed by both PCR and PLS. The small peak in the
voltammogram (100 to 400 mV unless otherwise noted) was used for lactate, pyruvate and
glucose studies, while the large peak (-100 to -800 mV') was used for the ethanol matrix. The
choice of the small peak for the non-alcoholic chemicals, and the large peak for the ethanol
was due mostly to the results of Chapter 3, where variable selection of the small peak
allowed good separation of the non-alcoholic populations. Because the large peak contributes
the majority of the variance to the factor analysis, selection of the small peak provides an
idea of whether a smaller voltammetric range is adequate for quantitation by factor analysis.

For the analysis of ethanol percentages, based on the plot of reduced eigenvalues,
cross-validation and PRESS, four factors contain the meaningful information, while the
remaining factors mostly contribute noise. So, based on four factors, the prediction values
were generated for the calibration and the validation sets and are shown in Table 4.6 and
Table 4.7, respectively. The results are also plotted in Figure 4.7.

From the correlation coefficients, there is greater correlation between expected and
predicted values when the entire voltammogram is used. When voltammograms containing
only the large peak are used in subsequent calibration and prediction, a decrease in

correlation (from 0.98 drops to 0.91) is observed. The poor correlation observed when only
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selected regions of the voltammogram are used is illustrated in Figure 4.7. In the validation
set (B), deviation from the ideal slope of 1.000 is obvious for the selected portions, indicating
poor predictive ability of PCR and PLS for the selected ethanol levels. PCR on the entire
voltammogram gave the best fit between expected and predicted values, with a correlation
coefficient of 0.976. As well, prediction results obtained using PLS have poorer correlations
than PCR, indicating that for this set of analyses, PCR is the more accurate method to
predict ethanol levels.

From analysis of the validation results, the RMSEP and the RRMSEP, the poor
predictive ability shown from the plots is evident from the high relative error over the range,
from 17% to 67%. This shows the poor precision evident in the plots, which tend to deviate
from the ideal slope. Given the error between the predicted values determined from the
factor-based solution and the actual values (as shown in the RMSEP), accuracy of prediction
is also a problem. PCR (RMSEP=1.467%) gave the lowest predictive error, while PLS
(RMSEP=3.786%) obviously has poor accuracy of prediction. Both of the selected results
were unable to predict ethanol levels either accurately or precisely. Possibly, the difficulty
in correctly choosing the optimal number of factors explains this lose in accuracy, since the
RMSE is a measure of the difference between actual and factor-based predictions, and as it
was difficult to correctly identify the optimal number of factors, an increase in retaining the

experimental error would result in a poorer predictive solution.
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Table 4.6 (A) Prediction of ethanol percentage in PC Brew using PCR and PLS to

predict on the calibration set, and using variable selection (vs from -0.100 to -0.800 V).

Actual, PCR PLS PCR(vs) PLS(vs)
%

0.500 0.459 0.514 -0.382 -0.131
3.400 2.813 3.118 4.534 4.237
4.700 4.999 4.945 5.179 4.906
6.000 6.542 5.917 6.717 6.700
7.200 7.063 7.245 7.926 7.955
8.300 8.980 8.500 10.619 10.695
9.400 9.828 9.547 7.387 7.465
10.500 10.073 10.535 8.979 9.051
11.500 10.716 11.174 10.045 10.186

Table 4.6 (B) Error Analysis

Ethanol- PCR PLS PCR PLS
Calibration (vs) (vs)
Pearsonr 0.989 0.998 0912 0.921
RMSE, % 0.662 0.252 1.854 1.770
RRMSE, % 6.454 2.365 16.856 16.267
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Table 4.7 (A) Prediction of ethanol percentage in PC Brew using PCR and PLS to

predict on the validation set, and using variable selection (vs from -0.100 to -0.800 V).

Actual, PCR PLS PCR PLS

% (vs) (vs)
0.500 -0.615 6.214 3.868 3.380
3.360 2.208 7.342 6.115 6.073
3.900 2.287 6.303 4.999 4.865
4.940 4472 9.612 8.991 8.867
5.950 5471 9.960 8.490 8.381
7.400 6.315 10.919 9.940 9.950
8.780 7372 11.813 8.938 8.922
10.500 7.719 11.461 11.562 11.776

Table 4.7 (B) Error Analysis

Ethanol- PCR PLS PCR PLS
Validation (vs) (vs)
Pearsonr 0.976 0.915 0918 0.926
RMSE, % 1.467 3.786 2515 2.400
RRMSE, % 17.240 67.618 32.687 28.582
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Figure 4.5 Contribution of the reduced eigenvalues (A) and
eigenvalues (B) to total variance based on the number of factors
in PCA and PLS. PLS eigenvalues are “pseudo-eigenvalues”.
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PRESS

Figure 4.6 Predictive errors obtained from cross-validation
of the calibration set. Results are for ethanol.
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Figure 4.7 Plot of predicted ethanol values obtained for the
calibration (A) and validation (B) data sets using PCR and PLS.

Results shown for entire voltammograms and selected region
(vs=-100 to -800 mV)
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A similar series of experiments were performed with the addition of lactate to a fresh
sample of PC Brew. Voltammograms obtained for the eight calibration, and the five
validation data sets were used either in their entirety, or the currents corresponding to the
potential region between 0.100 and 0.400 mV were selected. Based on rank analysis of the
calibration set, six factors were found to contain the significant information (lowest PRESS
from cross-validation), and predicted values of lactate concentration for the calibration and
validation set were determined. The results are given in Table 4.8 for the calibration set and
Table 4.9 for the validation set. From the calibration set analysis, it appears that using the
entire voltammogram gives higher accuracy and improved precision with correlations greater
that 0.99 for both PCR and PLS. Plots of these results (Figure 4.8) bear out the excellent
correlation observed, as results appear classically linear for the results obtained over the
entire voltammogram. Figure 4.9, the variable selected data, still retains good linearity
(about 0.96 overali), with good correlation (about 0.98). However, subsequent experiments
utilized the entire voltammogram in the resulting matrices due to the slightly higher
correlations obtained, and the relative ease of using an entire voltammogram over pre-
seiecting out regions.

The excellent correlation obtained was also evident from the RMSE calculations,
with RMSEP showing the high accuracy of the calibration solution (both PCR and PLS had
RMSEP of 0.002 M). Given the RRMSEP of 1.453% for PCR and PLS, good precision and
accuracy of the predicted results was observed. The selected region also gave good, but

slightly higher, predictive errors over a narrow range (RMSEP about 0.01 M).
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Table 4.8 (A) Prediction of lactate concentrations from calibration set data using

PCR and PLS and also having variable selection (vs from 100 to 400 mV).

Actual, PCR PLS PCR PLS

M (vs) (vs)

0.237 0.238 0.237 0.228 0.235
0.215 0.214 0.215 0.204 0.206
0.169 0.167 0.167 0.174 0.170
0.140 0.144 0.142 0.155 0.151
0.103 0.102 0.102 0.120 0.115
0.085 0.085 0.085 0.066 0.070
0.055 0.055 0.056 0.046 0.047
0.045 0.045 0.045 0.060 0.058

Table 4.8 (B) Error Analysis

Lactate PCR PLS PCR PLS
Calibration (vs) (vs)
Pearsonr 1.000 1.000 0.980 0.988
RMSE, M 0.004 0.002 0.026 0.020
RRMSE, % 1.824 1.189 14.420 10.730
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Table 4.9 (A) Prediction of lactate concentrations from validation set data using

PCR and PLS and selecting for variable selection (vs from 100 to 400 mV).

Actual, PCR PLS PCR PLS
M (vs) (vs)
0.198 0.199 0.198 0.200 0.198
0.158 0.161 0.160 0.179 0.174
0.125 0.121 0.121 0.150 0.142
0.099 0.097 0.097 0.103 0.101
0.051 0.051 0.051 0.040 0.043
Table 4.9 (B) Error Analysis
Lactate PCR PLS PCR PLS
Validation (vs) (vs)
Pearsonr 0.999 0.999 0.979 0.986
RMSE, M 0.002 0.002 0.015 0.011
RRMSE. % 1.453 1.453 9.616 7.276




Figure 4.8 Results obtained using PCR and PLS to predict lactate
concentrations of the calibration set (A) and the validation set (B).

Results are from using the entire voltammogram.
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Figure 4.9 Results obtained using PCR and PLS to predict lactate
concentrations of the calibration set (A) and the validation set (B).
Results are from using selected potential regions of the voltammogram

(vs=100 to 400 mV).
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Similarly, voltammograms were obtained for addition of pyruvate to PC Brew, and
these were divided into the calibration (10 points) and the validation (5) set. Again,
prediction of pyruvate concentration was done using the entire voltammogram and the
selected region from 100 to 400 mV. After determination that four factors would contain the
meaningful information from cross-validation of the calibration set, the calibration and the
validation prediction results were found (Table 4.10 and 4.11). These results again indicate
that poorer correlations are seen when the variable selected region is used. Using the entire
voltammogram, factor analysis and subsequent prediction of the validation results indicate
that both PCR and PLS done on the entire voltammogram gave the best correlation (0.977
and 0.954, respectively) and were relatively precisc This is shown on the correlation plot
of Figure 4.10 (B) which showed good agreement between the expected and predicted
concentrations of the validation set. Due to the large deviations observed from the selected
regions, these were not plotted.

Analysis of the RMSEP shows the good agreement between predicted and actual
values, generated using this calibration solution over the entire voltammogram. These values
range over about 10% from expected, so some loss of precision was obtained. However, the
model was adequate to predict pyruvate levels in the media. RMSEP values obtained for the
selected regions show the poor accuracy and precision with RMSEP approximately double
and a range of predicted errors over 24%. As seen in previous experiments, no improvement
in predictive capability of the calibration solution was observed by using only a portion of

the voltammogram.



Table4.10 (A) Prediction of pyruvate concentration of the calibration set using PCR
and PLS (4 factors) and comparing to prediction of concentrations calculated from variable

selection of the voltammogram (vs from 0.100 to 0.400 V).

True, PCR PLS PCR PLS
mM (vs) (vs)
21.070 20.965 21.173 21.016 21.193
28.525 28.355 28.655 26.570 27.068
26.804 25.542 25.683 25.871 26.963
26.040 26.447 26.197 26.207 27.117
25.212 25.700 25.664 26916 25.447
24.459 24.155 24.197 22.743 23.199
23.830 24.994 24.790 25.697 24.925
22.680 22.237 22213 22.260 22.237
21.910 22.155 21.959 21.568 21.837
21.786 21.721 21.743 23.279 22.270

Table 4.10 (B) Error Analysis

Pyruvate PCR PLS PCR PLS
Calibration (vs) (vs)
Pearsonr 0.964 0.974 0.835 0.936
RMSE, mM 0.790 0.674 1.662 1.049
RRMSE, % 10.690 9.008 28.175 17.706




Table 4.11 (A) Prediction of pyruvate concentration of the validation set using PCR
and PLS (4 factors) and comparing to prediction of concentrations calculated from variable

selection of the voltammogram (vs from 0.100 to 0.400 V).

Actual, PCR PLS PCR PLS

mM (vs) (vs)

27.280 27.503 27.815 25.422 25.637
25.560 25.181 25.051 26.109 25.781
24.310 23.933 23.669 24.385 23.899
22.820 22.052 22.119 22.928 22.671
21.950 22.350 22.654 22.405 22.397

Table 4.11 (B) Error Analysis

Pyruvate PCR PLS PCR PLS
Validation (vs) (vs)
Pearsonr 0.977 0.954 0.900 0.944
RMSE, mM 0.466 0.623 0.892 0.792
RRMSE, % 8.547 10.945 24.081 23415




Figure 4.10 Results obtained using PCR and PLS to predict pyruvate
concentrations for calibration (A) and validation (B) data sets.
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As for lactate and pyruvate, square wave voltammograms were obtained for addition
of glucose to PC Brew, to give the calibration (10 points) and validation (5 points) data sets.
From cross-validation of the calibration data set, a possible five factors would be optimal for
predictive capability. Again, the predicted results of using the entire voltammogram are
compared to those obtained using the selected region from 100 to 500 mV (Table 4.12 and
4.13). From the correlation coefficients obtained, better correlation is obtained when the
entire voltammogram is used, as the correlation coefficients for the selected region are half
of the entire region results (0.928 and 0.495, PCR). While the correlation coefficients shown
for PCR (0.928) and PLS (0.933) using the entire voltammogram, are good, a plot of the
expected and predicted results in Figure 4.11 reveals significant problems with glucose
prediction of the validation set when only a selected portion of the voltammogram was used.
Very poor precision is observed, as significant qeviations from linearity occur. This was
clear from the RRMSEP which ranged from 57 to 62%, indicating that the calibration
solution is inadequate to accurately predict glucose concentrations.

Conversely, when the entire voltammogram was used, the model was adequate. with
a RMSEP of 0.5 mM for both PCR and PLS, and a RRMSEP of about 14%. Though the
range of predicted values do suffer from precision, based on the RRMSEP, the model was

still adequate to accurately predict glucose values.



Table 4.12 (A) Predicted glucose concentration using PCR and PLS and comparing

to variable selected (vs from 0.1 to 0.4 V) regions, using the calibration data.

Actual, PCR PLS PCR PLS

mM (vs) (vs)

16.580 16.237 16.319 16.055 16.652
16.040 16.087 16.083 15.637 15.935
14.870 15.180 15.077 14.303 14.975
13.920 13.931 13.966 13.881 13.621
13.310 12.807 12.954 14.955 13.447
12.900 13.171 13.135 13.393 13.019
12.460 12.757 12.711 12.482 12.399
11.970 12.011 11.974 10.925 11.924
11.650 11.558 11.521 11.620 11.679
10.590 10.555 10.551 10.924 10.641

Table 4.12 (B) Error Analysis

Glucose PCR PLS PCR PLS
Calibration (vs) (vs)
Pearson r 0.990 0.994 0.925 0.998
RMSE, mM 0.358 0.275 0.991 0.178
RRMSE, % 6.306 4.770 19.323 2.966
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Table 4.13 (A) Predicted glucose concentration using PCR and PLS and comparing

to variable selected (vs from 0.1 to 0.4 V) regions, using the validation data.

Actual, PCR PLS PCR PLS

mM (vs) (vs)

15.580 15.556 15.518 13.672 13.319
14.340 13314 13.373 14.161 13.785
12.730 13.115 13.233 14.061 13.882
12.400 12.753 12.648 12.092 11.825
11.890 11.885 11.916 13.142 12.802

Table 4.13 (B) Error Analysis

Glucose PCR PLS PCR PLS
Validation (vs) (vs)
Pearsonr 0.928 0.933 0.495 0.451
RMSE, mM 0.515 0.501 1.192 1.258
RRMSE, % 14.033 13.902 57.650 61.127
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Figure 4.11 Results obtained using PCR and PLS to predict glucose
concentrations for calibration (A) and validation (B) data sets. Results
are for the entire voltammogram, and for selected potential region
(vs=100 to 400 mV).
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Despite repeated experiments, problems of predicting glucose with precision and
accuracy continued, as poor correlations and precision continued. As the range of glucose
concentrations was limited, the range was expanded to ascertain if this would improve the
predictive capability. New voltammograms were obtained from thirteen glucose
concentrations (10 to 75 mM) and divided into calibration (8 points) and validation (5 points)
data sets. Cross-validation of the calibration set indicated that either three or seven factors
would minimize prediction errors. Using both three and seven factors, the predicted glucose
concentrations of the calibration and validation data sets were determined, and the results
were compared. Table 4.14 (calibration) and 4.15 (validation) show the predicted
concentrations, and Figure 4.12 and 4.13 the resultant correlation plots. As observed using
seven factors, the calibration data set was perfectly correlated. However, as this is based on
cross-validation determinations, seven factors should fit the data set perfectly. This also has
the effect of returning noise back to the model, which is seen in the lower correlation
coefficients of the validation data set. Using three factors, the correlation coefficients are
0.830 (PCR) and 0.792 (PLS), as opposed to poorer correlation using seven factors (0.599
for PCR and 0.596 for PLS). The perfect fit of the calibration data for seven factors, also
suggests overfitting, so three factors would be the optimal number to be used in predicting
the validation data. Plots of the expected and predicted results again suggest overfitting at
seven factors (Figure 4.13), as the calibration data is perfectly linear, and the validation data
has poor precision and accuracy. This was also evident in the RMSEC, and RRMSEC,
where at seven factors, the model was unable to accurately regenerate concentration values.

At three factors (Figure 4.12), the validation data is correlated, except at the highest
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concentration. Although the problem of poor precision, as the range of values tend to
fluctuate, and the loss in accuracy (RMSEP of 29 mM, and RRMSEP of 40%) indicate that
the calibration solution for 3 factors also suffers from the lack of precision and accuracy that
were present in any models used for glucose prediction. The Figures also indicate that
deviations from linearity occur, especially at the higher concentrations. This would affect
the entire model accuracy, as possibly if the range of tested glucose concentrations was kept
at a lower range, the model obtained would improve in accuracy.

Without further testing, it is difficult to determine if the final point, which shows
significant deviation, is real. For example, a possible explanation for the drop in predicted
concentration could be due to saturation at the electrode, resulting in a lower signal than

expected.
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Table 4.14 (A) Predicted glucose concentrations found by PCR and PLS using either

3 or 7 factors of the calibration set data.

Actual PCR PLS PCR PLS
mM 3) 3) (7) (7)
75.480 43.828 49.057 75.518 75.493
48.760 42.548 43.137 48.095 48.643
40.090 42.624 39.671 41.231 40.307
30.510 35.419 35.984 29.907 30.365
22.800 21.916 19.538 22.157 22.724
17.070 16.984 18.301 18.103 17.269
14.510 13.870 10.689 14.197 14.421
10.590 43.077 43.616 10.595 10.586

Table 4.14 (B) Error Analysis

Glucose PCR PLS PCR PLS
Calibration 3) 3) @) @)
Pearsonr 0.598 0.658 0.999 1.000
RMSE, mM 0.859 0.165 46.125 43.329
RRMSE, % 1.322 0.254 153.96 112.93
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Table 4.15 (A) Predicted glucose concentrations found by PCR and PLS using either

3 or 7 factors of the validation set data.

Actual PCR PLS PCR PLS
mM 3) 3) @) (7)
64.670 68.606 69.808 39.651 40.625
37.630 101.802 103.517 40.059 43.346
28.620 32.246 32.106 30.271 30.443
22.060 30.526 31.064 18.070 15.176
15910 29.238 30.199 16.910 16.303
Table 4.15 (B) Error Analysis
Glucose PCR PLS PCR PLS
Validation ) 3) (7) @)
Pearsonr 0.830 0.792 0.599 0.597
RMSE 29.651 30.545 11.415 11.503
mM
RRMSE % 40.862 41.661 49310 40.837
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Figure 4.12 Results obtained using PCR and PLS to predict glucose
concentrations for calibration (A) and validation (B) data sets. Results
are for the entire voltammogram, retaining three factors.
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Figure 4.13 Results obtained using PCR and PLS to predict glucose
concentrations for calibration (A) and validation (B) data sets. Results
are for the entire voltammogram, retaining seven factors.
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Overall, the results from these set of experiments have shown that for lactate, ethanol
and pyruvate, multivariate calibration can predict, with reasonable accuracy and precision,
individual analyte levels in a complex matrix. Results from glucose tend to show poor
precision and reproducibility, so further studies need to be done to ascertain the reasons. A
possible explanation could be due to non-linearities present in glucose analysis. Since PCR
and PLS are both linear techniques, a non-linear method could be applied. In this case, the
use of artificial neural networks could be used, as the combination of sigmoidal and linear
functions within the hidden layers of an ANN are capable of fitting most types of linear and

non-linear data, to return precise and accurate predictions.
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Chapter 5 Individual Analyte Quantitation in Ternary Solutions

The combination of square wave voltammetry and PCR or PLS was able to predict
individual analytes in PC Brew, with reasonable accuracy (see Chapter 4). A logical
extension was to combine pyruvate, ethanol and glucose into samples of PC Brew, and
perform simultaneous determination of the individual components.

Initially, a preliminary assessment of the feasibility of simultaneous determination
of the three analytes was done. Square wave voltammetry was performed on a series of
samples containing 15.0 mL PC Brew and varying amounts of glucose, ethanol and pyruvate
added in 20.0 mL total volume. A solution of 0.050 M phosphate (pH=4.57) was used to
dilute to volume. The calibration and validation data sets each contained nine data vectors.
A calibration study was done, and predicted analyte concentrations were compared to actual
values, to determine accuracy of the model. The concentrations shown are the added analyte
levels, as discussed previously.

Based on the promising results obtained, a new data set was constructed to cover a
wider range of possible values (0 to 0.5 to1.0, if the data were normalized). These varying
concentrations of ethanol, pyruvate and glucose were added to PC Brew, as a step towards
a structured data set. Varying the concentrations was also done to preclude any synergistic
effects combinations of the analytes might have on the resulting signal.

Finally, the effect of the number of factors on prediction of validation results was
assessed, by generating predicted concentrations of a validation data set at varying factor

number, and comparing the resultant correlations.
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5.1.1 Results of the Preliminary Assessment

Tables 5.1 and 5.2 shows actual and predicted sample compositions for calibration
and validation data sets obtained by PCR and PLS analysis of square wave voltammograms,
under previous optimized conditions, at a Pt working electrode, for ethanol. Tables 5.3 and
5.4 show the predicted results for glucose, and Tables 5.5 and 5.6 are the results for pyruvate.
As a single voltammogram was generated for each ternary mixture, rank analysis to
determine the optimal number of factors was done using cross-validation, and the resultant
optimal number of factors was utilized to predict the analyte levels. The matrix of
predictions generated using PCR or PLS was 3 columns, each column corresponding to one
of the three analytes.

From the cross-validation analysis, little change was observed in the PRESS over the
entire number of factors, indicating that little improvement in relevant information would be
obtained by choosing factors. Keeping all the factors for the calibration solution means this
is based on a multilinear calibration solution, and also indicates problems with the possible
reliability and robustness of the calibration model for prediction of the validation set. As the
number of factors is an indication of the important variables in the data set, keeping all
factors indicates that there are more than the three components present in the mixture. An
examination of the voltammogram (Figure 5.1) shows the signal generated for PC Brew (the
blank), and the signal when a representative ternary mixture is scanned by square wave
voltammetry. As the blank signal is relatively large in the two peak area of interest, it

appears certain that more than the added analytes contribute to the signal. This could have
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the effect of making any calibration solution matrix-dependant, as reliable predictions could
not be made when different beer samples are used.

From the calibration solution generated using all factors, predicted ethanol, glucose
and pyruvate concentrations were found for the calibration and the validation data set.
Prediction of ethanol percentages, showed good correlation with expected values, as
correlation coefficients were greater that 0.96 for both PCR and PLS. Glucose validation
results were also good with correlations greater that 0.97. Pyruvate results were poorer than
those for glucose and ethanol, with correlation coefficients 0of 0.921 (PCR) and 0.878 (PLS).
Pyruvate predictions tend to deviate significantly at the higher concentrations, however the
higher pyruvate concentrations were actually outside the calibration range, so this could just
be an indication of poor prediction of the calibration model for outliers.

Despite the relatively high correlations obtained, the predictive ability of the resultant
calibration solution was compromised by the poor RRMSEP. Predictive errors from RMSEP
tend to be high, resulting in deviations from accurate values from 24% (ethanol), 14%
(glucose), and 44% (pyruvate), based on RRMSEP. The validity of the calibration solution
to accurately and precisely predict these values was poor. This is illustrated in the Figures
of the validation results. Part of the poor predictive ability would be due to retaining all
factors in the resultant solution. This has the effect of retaining all the experimental error and
seriously affects the resultant solution, as was illustrated in the high RMSEP, and RRMSEP.

Figure 5.2 shows the plots obtained from prediction of the validation data set for
ethanol, glucose and pyruvate. As observed from these plots, precision is poor, despite the

relatively high correlation coefficients. Significant deviation from linearity is observed,
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especially for the pyruvate. While the model was able to accurately predict the calibration
data set, by retaining all factors, it was expected that the fit would be high as all variables are
fit back into the solution. The effect on the validation set was pcor accuracy, as the errors
in the calibration solution were high. To improve model accuracy, a larger data set which
would attempt to cover a wider range of values was required. By expanding the data set for
calibration, the predictive ability of the resultant model would improve, as more variables
affecting the final predictive capability would be included. Due to the complex nature of the
media (as seen from the voltammogram, Figure 5.1), retaining only those factors due to the
number of included variables (three in this case), may not be adequate to describe the
calibration solution. However, retaining all factors will merely retain the experimental error
present, and would adversely affect the final model.

From this preliminary analysis, while prediqtion of analyte levels of a ternary mixture
appears possible, precision will need to improve significantly, and the problem of factor

optimization will need to be addressed, especially in terms of matrix-dependancy.
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Table 5.1 (A) Calibration set results, using PCR and PLS, for ethanol prediction.

Actual, % Predicted, PCR Predicted, PLS
6.410 6.338 6.354
5.540 5.167 5.308
4.970 5.129 5.080
3.860 4.229 4.116
3.302 3.288 3.455
2.741 2.738 2.681
2.180 1.535 1.618
1.061 1.704 1.425
0.500 0.403 0.509

Table 5.1 (B) Error Analysis

Ethanol PCR PLS
Calibration
Pearsonr 0.982 0.991
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Table 5.2 (A) Prediction of validation set ethanol values.

Actual, % Predicted, PCR Predicted, PLS
6.410 6.611 6.247
6.110 6.674 6.195
4.970 5.424 4.985
4.430 5.606 5.254
3.302 4.383 4.247
2.741 1.855 1.921
1.619 5.412 2.515
1.061 1.894 1.620
0.500 0.666 0916
Table 5.2 (B) Error Analysis
Ethanol PCR PLS
Validation
Pearsonr 0.962 0.963
RMSE, % 1.453 0.630
RRMSE, % 24.189 11.809
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Table 5.3 (A) Predication of glucose concentration of the calibration data set.

Actual, M Predicted- PCR, M Predicted - PLS, M
0.0106 0.011 0.012
0.056 0.064 0.058
0.073 0.073 0.075
0.137 0.125 0.131
0.152 0.154 0.150
0.181 0.181 0.182
0.214 0.228 0.224
0.238 0.223 0.232
0.275 0.277 0.274
Table 5.3 (B) Error Analysis
Glucose PCR PLS
Calibration
Pearson r 0.995 0.998
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Table 5.4 (A) Predication of glucose concentration of the vaiidation data set.

Actual, M Predicted - PCR, M Predicted - PLS, M
0.011 -0.010 0.006
0.034 -0.004 0.017
0.082 0.062 0.079
0.108 0.052 0.066
0.149 0.103 0.108
0.182 0.181 0.178
0.228 0.167 0.163
0.241 0.202 0.210
0.262 0.253 0.245
Table 5.4 (B) Error Analysis
Glucose PCR PLS
Validation
Pearsonr 0.975 0.973
RMSE, M 0.038 0.032
RRMSE, % 14.389 13.418
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Table 5.5 (A) Prediction of pyruvate concentrations for calibration set.

Actual, M Predicted - PCR, M Predicted - PLS, M
2.720e-04 1.654e-03 1.266e-03
1.568¢-02 1.264e-02 1.476e-02
2.086e-02 2.249e-02 2.203e-02
4.668e-02 4.698e-02 4.492¢-02
5.291e-02 5.108e-02 5.156e-02
3.491e-02 3.543e-02 3.544e-02
2.745e-02 2.959e-02 3.145e-02
6.408e-03 5.942¢-03 4.189e-03
2.720e-04 -3.463e-04 -6.506e-05
Table 5.5 (B) Error Analysis
Pyruvate PCR PLS
Calibration
Pearsonr 0.996 0.995
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Table 5.6 (A) Prediction of pyruvate concentrations of the validation set.

Actual, M PCR,M PLS, M
1.203e-01 4.155e-02 3.502e-02
9.132e-02 6.377e-02 5.501e-02
7.259e-02 5.133e-02 4.516e-02
6.304e-02 5.332e-02 4.806e-02
4.418e-02 5.449e-02 5.212e-02
3.559¢-02 4.080e-02 4.104¢e-02
1.723e-02 2.484e-02 2.608e-02
9.363e-03 1.414e-02 1.197e-02
2.720e-04 -3.306e-03 -1.764e-03
Table 5.6 (B) Error Analysis
Pyruvate PCR PLS
Validation
Pearsonr 0.921 0.878
RMSE, M 0.029 0.033
RRMSE, % 43.690 57.957
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Figure 5.1 Square wave voltammogram of ternary mixture
containing ethanol, pyruvate and glucose in PC Brew (A),

and PC Brew (B) only.
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Figure 5.2 Results obtained using PCR and PLS to predict validation

data sets for ethanol (A), glucose (B), and pyruvate(C).

All seven factors are retained.
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5.1.2 Expanded Calibration Data Set

Therange of concentrations of the calibration set were expanded to cover a larger data
space (42 points). Square wave voltammograms of the ternary mixtures were generated in
triplicate, and averaged for further data analysis by PCR and PLS. The validation data set
consisted of 10 vectors. After determination of the optimal number of factors (nine) based
on the lowest PRESS found from cross-validation of the calibration data set, analyte levels
were predicted for the validation data set. These results are shown in Tables 5.7 (ethanol),
5.8 (glucose), and 5.9 (pyruvate). As well, plots of the correlation between the expected and
the predicted values for calibration and validation data sets are shown in Figures 5.3
(ethanol), 5.4 (glucose), and 5.5 (pyruvate).

For prediction of the validation set, ethanol prediction gave a good correlation of
about 0.98 for both PCR and PLS, and a narrow confidence interval, deviating less than 10%
from the expected results; pyruvate predictions gave correlations of 0.966 for PCR and
0.982 for PLS, and confidence intervals that deviate only slightly from expected at 15%
(PCR) and less than 8% (PLS). Therefore, the calibration model was adequate to predict
ethanol and pyruvate concentrations with good accuracy and precision. The same cannot be
said for glucose, because a negative correlation and very large confidence interval is
apparent. Prediction of glucose values cannot be done using this method.

In terms of reproducibility, some deviation of the replicates occurs about the expected
values obtained from PCR and PLS analysis of the calibration data. Averaged results

correlated closely to the expected results. The replicated results were plotted in Figures 5.3
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(ethanol), 5.4 (glucose) and 5.5 (pyruvate), and the mean and standard deviation associated
with the replicates is shown in Table 5.10. For ethanol and pyruvate in the calibration set (A
in the Figures) little deviation occurs, indicating good reproducibility.  For glucose,
however, there is greater deviation in the replicates, although they do average to the expected
results. As glucose prediction has been a problem in all of the previous experiments, this is
not surprising. The error analysis for the calibration solution was consistent with the results
obtained from correlation coefficients. For pyruvate and ethanol, RMSEP was low for both
PCR and PLS. For pyruvate a RMSEP of 0.006 (PCR) compares to 0.007 (PLS), indicating
no significant difference between PCR and PLS. Similarly for ethanol, RMSEP was 0.60
(PCR) and 0.63 (PLS). The RRMSEP was at 10% or less indicating relatively good ability
of the model to precisely predict accurate results. Predicted results obtained from the
calibration solution deviated 10% or less from expected values, making the model reliable
for the prediction of ethanol and pyruvate. As mentioned, glucose predicted results had poor
correlations, with the model unable to reliably and accurately predict validation results. The
RMSEP for glucose was consistent between PCR and PLS (0.074 and 0.080 M,
respectively), with the RRMSEP of 141%. This indicates the complete unreliability of the
calibration solution to accurately predict glucose. As mentioned, this has been an on-going
problem, with unreliable predictions of glucose. A more reliable model which would
account for the non-linearities present, or be capable of fitting both linear and non-linear
variables would be required.

Designing a larger calibration data set for model development has improved the

predictive ability of the resulting calibration solution, especially for ethanol and pyruvate.
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Validation results shown Part (B) of the Figures, show that the larger range of values used
resulted in increasing linearity of the plot, increased correlations, as determined by the
correlation coefficients, and improved error analysis as the error of the resultant model has
decreased, as measured by the RMSEP. Pyruvate and ethanol can be predicted with some
degree of accuracy and precision, and therefore multivariate calibration methods are
appropriate for their quantitation. Glucose will require a different model to more adequately

describe this system.
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Table 5.7 (A) Prediction of validation ethanol values from PCR and PLS.

Actual, % Predicted -PCR, % Predicted - PLS, %
8.7500 8.344 8.482
8.000 8.264 8.391
6.500 5.403 5.326
5.000 4.781 4.628
4.250 3.771 3.489
3.500 2.442 2.522
2.750 2.746 2.776
2.000 1.863 2.026
1.250 1.671 1.858
0.500 0.078 0.532
Table 5.7 (B) Error Analysis
Ethanol PCR PLS
Validation
Pearsonr 0.984 0.978
RMSE, M 0.595 0.637
RRMSE, % 7.201 9.612
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Table 5.8 (A) Prediction of glucose concentration of validation data using PCR and

PLS
Actual, M Predicted - PCR Predicted - PLS
0.011 0.119 0.141
0.024 0.120 0.151
0.050 0.154 0.152
0.072 0.154 0.149
0.081 0.148 0.145
0.104 0.123 0.112
0.113 0.125 0.111
0.137 0.111 0.095
0.150 0.116 0.097
0.169 0.102 0.102

Table 5.8 (B) Error Analysis

Glucose PCR PLS
Validation
Pearsonr -0.471 -0.879
RMSE, M 0.074 0.080
RRMSE, % 141.804 140.327
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Table 5.9 (A) Prediction of pyruvate concentrations of validation data using PCR

and PLS.
Actual, M PCR PLS
2.900e-04 5.486e-03 4.317e-03
5.926e-03 7.711e-04 5.957e-03
2.065e-02 2.117e-02 2.903e-02
3.984e-02 4.509e-02 4.905e-02
5.684e-02 6.666¢-02 6.843e-02
4.147e-02 4.591e-02 5.060e-02
3.452e-02 2.530e-02 3.088e-02
2.002e-02 1.421e-02 2.084¢-02
1.034e-02 1.077e-03 8.724e-03
2.900e-04 -4.226e-04 2.464e-03

Table 5.9 (B) Error Analysis

Pyruvate PCR PLS
Validation
Pearsonr 0.966 0.982
RMSE, M 0.006 0.007
RRMSE, % 9.545 10.471
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Table 5.10 Reproducibility of Structured Data Set Results. Predicted results shown

are the mean and standard deviation of the replicates.

Expected PCR PLS

Ethanol (0%) 0.023 £0.23 0.006 +£0.16
Ethanol (5%) 5.075 £0.28 5.035 £0.20
Ethanol (10%) 9.915 £0.51 9.968 +0.31

Glucose (0 M) 0.001 +0.01 0.004 +0.02
Glucose (0.085 M) 0.086 =£0.02 0.094 £0.03

Glucose (0.160 M) 0.162 £0.01 0.155 £0.01

Pyruvate (0 M) 0.000 £0.00 0.001 +0.00
Pyruvate (0.045 M) 0.046 £0.00 0.048 +0.00
Pyruvate (0.099 M) 0.096 +0.00 0.093 +£0.00
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Figure 5.3 Results obtained using PCR and PLS to predict
ethanol percent in calibration (A) and validation (B) data sets.
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Figure 5.4 Results obtained using PCR and PLS to predict
glucose concentration in calibration (A) and validation (B) data sets.
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Figure 5.5 Results obtained using PCR and PLS to predict
pyruvate concentration in calibration (A) and validation (B) data sets.
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5.1.3 Effect of Number of Factors on Prediction

A smaller data set (10 points for the calibration, 5 for the validation) was used to
determine the effect the number of factors had on the predictive ability of a calibration model.
It is assumed that predictive errors are minimized when the optimal rank is chosen. To
determine the optimal number of factors, PRESS at the relevant factor number was
computed based on the calibration data set (Table 5.11). From the cross validation results,
there is a minimum error of prediction for PCR at 4 factors, and 6 for PLS. Prediction of
analyte levels in the calibration and validation sets was done using 2, 4, 6, 9 and all 10
factors. Resulting correlation coefficients are given in Table 5.12 for PCR, and Table 5.13
for PLS.

When all factors are used to predict the calibration data, the correlation coefficients
are 1.000, as would be expected, since using all the factors simply regenerates the calibration
matrix. Using all factors in the model to predict validation results, however, gives lower
correlations, than a model based on smaller number of factors. This is expected, as noise is
fit back into the calibration model, and should decrease the accuracy of prediction.

Two factors used in the calibration model, for either PCR or PLS, resulted in poor
correlations in the validation set, except for glucose (0.225). However, glucose has shown
poor linearity and precision, despite its good correlation, from previous studies. Therefore,
glucose results, as indicated previously, are suspect. It is apparent from the lower
correlations associated with two factors, that not all relevant information has been included

in the model, thus deceasing its predictive capability.
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From analysis of the correlation coefficients at the other number of factors, it appears
that good correlation between predicted and expected values would be obtained with any of
these. For PLS, six factors were recommended from cross-validations studies, and overall,
six factors give the best correlations for the vaiidation data. In terms of the PCR results, four
factors, which had the minimized PRESS from cross validation, did not give the best overall
correlations. However, the correlations were still good, in all cases over 0.95 for the
validation data, with only slight improvement in correlation at the higher number of factors.
To avoid overfitting of the data as when nine factors were used, more importance should be
placed on cross validation results for the determination of the optimal rank.

This study emphasized the importance of correct factor retention, as correlations
between predicted and expected values drop sharply when too few factors are retained. This
affects the predictive ability of any resulting calibration solution. Retaining too many factors
fits the error back into the solution, and while improving the correlation of the calibration
data set, has a deleterious effect on prediction. As was presented in previous sections, too
many factors retained, resulted in poor predictions of the validation data, and poor validity
and reliability of the calibration solution.

Based on the results presented in this chapter, the use of either PCR and PLS for
development of an accurate and reliable calibration solution was shown for ethanol and
pyruvate. Glucose predicted results were generally unreliable, and a different model, perhaps

based on an ANN might improve the accuracy of prediction.
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Table 5.11 Square of the error (PRESS) from cross-validation performed on the

calibration data set.

Factors PCR PLS

1 28.249 3.307
2 14.062 2.332
3 6.886 1.042
4 0.735 0.462
5 0.970 0.248
6 2.689 0.236
7 3.480 0.326
8 3.376 0.389
9 14.491 0.399
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Table 5.12 Correlation coefficients for prediction of calibration and validation data

sets using PCR, at given number of factors.

Pearsonr 2 4 6 9 10
for:

EtOH -0.520 | 0972 0.989 0.998 | 1.000
Calibration

EtOH -0.374 | 0.962 0.995 0.999 | 0.997
Validation

Glucose 0.823 0.983 0.990 0.999 | 1.000
Calibration

Glucose 0.925 0.988 0.993 0.998 | 0.998
Validation

Pyruvate 0.510 0.998 0.999 1.000 | 1.000
Calibration

Pyruvate 0.672 0.966 0.973 0.980 [ 0.979
Validation

173



Table 5.13 Correlation coefficients for prediction of calibration and validation data

sets analysed by PLS, at the given number of factors.

Pearson r 2 4 6 9 10
for:

EtOH 0.845 0975 0.996 1.000 | 1.000
Calibration

EtOH 0.582 }0.970 0.999 0.998 | 0.997
Validation

Glucose 0.748 | 0.985 0.996 1.000 | 1.000
Calibration

Glucose 0.473 |0.991 0.997 0.998 | 0.998
Validation

Pyruvate 0.591 |0.997 0.999 1.000 | 1.000
Calibration

Pyruvate 0.578 | 0.967 0.976 0.980 | 0.979
Validation
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5.1.4 Summary

In general, the results obtained from these experiments, show that either PCR or PLS
are adequate calibration methods for the simultaneous determination of analyte levels from
a complex mixture. For ethanol and pyruvate, good correlation between predicted and
expected values were obtained, provided the optimal number of factors was chosen. As
observed, from the preliminary study which utilized all factors, and from the work done in
correlations and factor number, choosing the optimal number of factors will decrease the
prediction errors, hence improve the predictive capability of the calibration model.

Glucose, while generally giving good correlation coefficients, showed poor precision,
and reproducibility. Replicate experiments with glucose have resulted in correlations which
were not reproducible, and from the results presented in this Chapter, some of the problems
associated with glucose prediction were shown. Plots of the validation results for glucose
tend to show the lack of linearity. Hence further work needs to be done to address the
problem of glucose prediction. From the previous Chapter, glucose prediction was also poor,
and it was mentioned there may be a non-linear component to glucose measurement. Again,
an ANN might help resolve this, as inner functions in a feedforward neural network using
backpropagation, contain both sigmoidal and linear functions which are capable of simulating

most linear and non-linear problems.
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Chapter 6
6.1 Conclusions

This thesis has demonstrated the use of factor-based techniques such as PCR and PLS
for both qualitative and quantitative analysis of a variety of complex systems. As well, an
artificial neural network for the quantitation of glucose in a beer matrix has been successfully
implemented. The input matrices for PCR, PLS and ANN analysis consisted of column
vectors of entire voltammograms, thus allowing for whole matrix analysis, and reducing the
need for prior separation of specific signals due to the analy-tes of interest.

Determination of the optimal voltammetric technique to be analysed by PCR and PLS
required the prior assessment of normal pulse and square wave voltammetry at different
conditions. After scores plots were generated of the resulting matrices, the variance between
samples was greatest when a platinum electrode was used with square wave voltammetry.
Further, conditions for square wave voltammetry were varied to obtain the best signal at a
frequency of 5 Hz, pulse height of 50 mV, and the use of a low pass filter.

Utilizing the same conditions as described, a series of voltammograms were
generated of a variety of complex liquids, such as fruit juices, wines, beers, coffees, and
milks. Two peak areas observed between 100 to 400 mV, and -400 to -800 mV, were
common to voltammograms of all species, due to redox-active species (such as complex
sugars, ascorbate) present in all sample matrices, and redox-inactive adsorbing species.

Qualitative analysis was done by calculating the principal components from matrices



predicted biomass values were compared to the ODy, results on a growth curve. Predicted
biomass values from PCR parallelled expected values for all bacterial species.

For the next series of experiments, individual square wave voltammograms were
obtained from the addition of glucose, lactate, pyruvate or ethanol in known concentrations
into PC beer. Again, voltammograms for all analytes show similar responses as there are
two distinct peaks observed in the same regions (0.40 to 0.10 V and -0.40 to -0.60 V). Itis
presumed that these peaks arise from the reduction of matrix species, specifically sugars
present in the beer sample. Addition of the extra sugars or other analytes merely increases
the size of these peaks. In a similar study'?, but using dual staircase pulse voltammetry of
sugars and ethanol, researchers found peaks centered about -0.3 V due to ethanol, and two
peaks at -0.2 and -0.7 V due to sugars. Square wave voltammetry responses do not show a
peak at -0.7 V, but due to the large size of the peak in this area, it could be hidden.
Correspondingly, peaks due to the ethanol and sugar could be present in the same area as
mentioned by Bessant and Saini.

Based on the optimal number of factors, the calibration and validation data set
concentrations were predicted using both principal components regression (PCR) and partial
least squares (PLS) algorithms. These predicted concentrations were compared to the
expected values, and correlations and linearity were assessed. Each individual analyte had
its own factor analysis performed in order to determine the optimal number of factors to
decrease prediction error. In cases where the optimal number of factors was difficult to
assign, prediction values were assessed, and those factors giving the lowest predictive errors

were chosen.



Using both PCR and PLS, concentrations were predicted for glucose, lactate,
pyruvate and ethanol. The predictive ability of PCR and PLS for calibration data sets is very
high with correlations greater than 0.98. Correlations decrease slightly for prediction of
validation concentrations, but still within acceptable parameters, except for the glucose
results at a correlation of 0.688. Repeated results for glucose prediction showed matrix
dependent results, with correlations ranging from a low of 0.3 to a high of 0.9.

Error analysis using RMSEP and RRMSEP was done to assess the predictive ability
of the calibration solution. In most cases, when the correlation coefficients were high, and
resulting plots of expected and predicted values were linear and well correlated, the RMSEP
was low. The resultant calibration solution was considered reliable, as predicted results were
both accurate and precise. When deviation from linearity, observed on the plots, occurred,
the resultant calibration solution suffered in validity, as the RMSEP of the model increased.
The higher predictive errors were especially noted for glucose.

Predicting glucose reliably and repeatedly continued to be a difficulty throughout the
set of experiments. The possibility of using a neural network to predict glucose levels was
made in order to compensate for any non-linear relationships which exist between the
responses generated by a voltammogram and the ensuiné concentration.

A mixture of glucose, pyruvate and ethanol in varying concentrations was added to
PC brew, and the subsequent voltammograms were used as input vectdrs for factor analysis.
From the voltammogram of the ternary mixture, individual species cannot be resolved as the
peaks overlap in the same region. Therefore individual determination ofsepa:ate speciescan

best be done using factor analysis methods such as PCR and PLS.



6.2 Future Work

It is proposed that in several areas presented in this work, further studies are
required. While the generation of scores plots is an acceptable method for sub-population
classification, it is in the areas of quantitative analysis that the multivariate solutions
discussed show the strongest possibility.

While prediction results of either individual analytes or the ternary mixture
components were generally accurate, a more robust calibration solution would improve the
reliability and accuracy of the model, and decrease the RMSEP. A structured data set,
comprising all possible data space is required to improve the model. This would improve
the predictive capability of either PCR or PLS models. Further, while little improvement
was observed between PCR and PLS, a model incorporating non-linear functions might
improve the correlation, and decrease the RMSEP for prediction of glucose results. The
most common model, a feedforward artificial neural network with backpropagation
algorithm, incorporates both linear and non-linear functions.

Increased experimentation for the biomass study, incorporating more bacterial
species, and a larger data set might result in a sensor capable of detecting either bacterial
types or bacterial biomass in a complex broth, without the need for pre-separation. As well,
further work in using the combination of voltammetry and multivariate analysis in
fermentation media would increase the acceptance of these techniques for accurate and
reliable component analysis, without pre-separation or pre-treatment. This would be of use

in on-line process control, or as part of a larger multi-sensor array.
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