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Abstract

Asynchronous exception handling is a useful and sometimes necessary alternative form of com-

munication among threads. This thesis examines and classifies general concepts related to asyn-

chrony, asynchronous propagation control, and how asynchronous exception handling affects

control flow. The work covers four advanced topics affecting asynchronous exception-handling

in a multi-threaded environment.

The first topic is concerned with the non-determinism that asynchronous exceptions introduce

into a program’s control-flow because exceptions can be propagated at virtually any point during

execution. The concept of asynchronous propagation control, which restricts the set of exceptions

that can be propagated, is examined in depth. Combining it with a restriction of asynchrony that

permits propagation of asynchronous exceptions only at certain well-defined (poll) points can

re-establish sufficient determinism to verify a program’s correctness, but introduces overhead, as

well as a delay between the delivery of an asynchronous exception and its propagation. It also

disturbs a programmer’s intuition about asynchronous propagation in the program, and requires

the use of programming idioms to avoid errors.

The second topic demonstrates how a combined model of full and restricted asynchrony can

be safely employed, and thus, allow for a more intuitive use of asynchronous propagation control,

as well as potentially improve performance.

The third topic focuses on the delay of propagation that is introduced when a thread is

blocked, i.e., on concurrency constructs that provide mutual exclusion or synchronization. An

approach is presented to transparently unblock threads so propagation of asynchronous termina-

tion and resumption exceptions can begin immediately. The approach does not require additional

syntax, simplifies certain programming situations, and can improve performance.

The fourth topic explores usability issues affecting the understanding of (asynchronous) ex-

ception handling as a language feature. To overcome these issues, tools and language features are

presented that help in understanding exception handling code by providing additional run-time

information, as well as assist in testing.

For all topics, the necessary extensions to the syntax/semantics of the language are discussed;

where applicable, a prototypical implementation is presented, with examples that demonstrate the

benefits of the new approaches.
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Chapter 1

Introduction

Structured exception-handling introduces a new form of control flow into a programming lan-

guage. While there are many details and variations, the main contribution of exceptional control-

flow is the termination of an arbitrary number of routine invocations and/or the transfer of con-

trol to a dynamically-determined location, which are powerful capabilities. In the same sense

that exception-handling extends the control-flow features of a sequential programming language,

asynchronous exception handling is the analogous extension of the control-flow capabilities of a

concurrent language. Instead of treating exception handling and concurrent control-flow as or-

thogonal concepts, asynchronous exception handling is integrated into and extends the concurrent

control-flow.

This thesis covers, at the programming-language level, advanced concepts in asynchronous

exception handling. These concepts are asynchronous propagation control, safe full-asynchrony,

exceptional unblocking, and exception usability, which address questions that arise when asyn-

chronous exceptions are included in a programming language. Any language that includes sup-

port for asynchronous exception handling or, in fact, any asynchronous transfer of control (e.g.,

signals), invariably is confronted with several important questions: How can asynchronous ex-

ception handling safely coexist with existing control-flow mechanisms (asynchronous propaga-

tion control, safe full-asynchrony)? How can asynchronous exceptions be integrated with existing

concurrency constructs (exceptional unblocking)? How can the additional complexities of intro-

ducing asynchronous exception handling be tamed so control flow remains comprehensible to the

programmer? The answers to these questions, provided by this thesis, constitute building blocks

in designing a comprehensive model for asynchronous exception handling in a programming lan-

1



guage. The following sections define the terms and concepts used in this work, and, in particular,

what is meant by ‘asynchronous exception handling’.

1.1 Asynchronous Exception Handling

An exception is the manifestation of an exceptional situation, which is ancillary to the normal

algorithmic path of a program and often considered rare. An exception comes into being when

an instance of its exception type is raised. Exception handling is a mechanism by which a raise

causes a transfer of control to a block of code called a handler. This transfer of control is called

exceptional or abnormal control-flow. Propagation, as defined in this thesis, denotes the process

by which an appropriate change of control flow as result of an exceptional raise is determined

and facilitated, ultimately leading to (but excluding) the execution of a handler matching the

exception. A sequential program has a single thread executing on a single stack. Collectively,

the stack (or equivalent mechanism), and any other state necessary for execution (e.g., registers,

signal masks, etc.), make up an execution. An exception is said to be active if its propagation is

in progress; at most one exception can be active in an execution. A complex sequential program

(one thread, many stacks), e.g., employing coroutines or continuations, differs from a concurrent

program (many threads, many stacks) in that multiple executions can run simultaneously only in

the concurrent case. Both complex-sequential and concurrent programs have multiple executions,

and thus, can have multiple simultaneously-active exceptions. Communication between the raise

and its handler is often essential, allowing a handler to receive information from the raise and/or

about the location of the raise.

In general, multiple executions do not proceed in isolation; information is communicated to

an execution at creation, to/from it during execution, and from it at termination. Normally, com-

munication is performed synchronously: One execution stops until the other execution accepts

the communication, processes it, and possibly returns a result. A common mechanism for facili-

tating synchronous communication is a routine call. Within the routine, various forms of control

flow are used to delay one execution and restart the other, e.g., suspend/resume for coroutines

or wait/signal for tasks. In this complex scenario, a situation, e.g., a failure, in the callee execu-

tion can result from or affect the interaction. For example, incorrect data is communicated to the

callee, which could raise an exception during processing. However, this situation cannot be reme-

died in the callee but rather must be rectified by the calling execution. Therefore, the caller has to

be made aware of the situation. A natural means to perform the necessary communication is to

2



transfer the exception between the executions. Hence, mechanisms are necessary for exceptions

to cross execution boundaries and for executions to react to these exceptions.

1.1.1 Motivation for Asynchronous Transfer of Control

Inter-execution communication is made more complex when performed asynchronously between

threads (e.g., out-of-band communication): One execution triggers a change in control flow in

another execution to accept a communication. Often an execution must be interrupted and forced

to accept a communication, e.g., an exception, at some reasonable point. Unlike the synchronous

case, where the exception can only flow from callee to caller, in the asynchronous case, both

directions of communication are possible. This kind of communication has its detractors be-

cause it is difficult to achieve correctness if transfers occur at non-deterministic points. At the

same time, asynchronous communication also seems to be a necessary mechanism in multiple

programming domains, e.g., real-time, networks, distributed, control, embedded, etc. Possible

applications for such a feature are speculative computation, timeouts, user interrupt, or resource

exhaustion [MJMR01]. As a result, several programming languages and operating systems at-

tempt to provide at least some rudimentary form of asynchronous interaction (see Section 1.6,

p. 13). Exception handling allows for complex and flexible changes in control flow, which makes

it suitable for modelling the necessary asynchronous transfer of control. It is therefore impor-

tant not to think of asynchronous exception handling simply as a way of taking a synchronous

exception in one execution and making it accessible to another. While this application is possi-

ble, it is too narrow. Instead, this work is concerned with ways for one execution to facilitate an

asynchronous transfer of control in another using the exception handling model.

1.1.2 Definitions and Terms

Unlike a regular synchronous raise (e.g., throw), which flows into propagation directly, an asyn-

chronous raise separates the execution paths of raise and propagation. The raising execution

performs an asynchronous raise at the propagating execution, where raising and propagating

execution could be the same. The terms raising task and propagating task are also used. Asyn-

chronous propagation is propagation resulting from an asynchronous raise. Similarly, an asyn-

chronous exception is an exception raised asynchronously. The propagating execution need not

perform any special operations to receive the asynchronous exception, and its propagation can

start at arbitrary points (called full asynchrony) or only at certain well-defined points (called re-

3



stricted asynchrony), i.e., between any instructions or only at designated points (poll points),

respectively. The asynchronous nature of the raise results in non-determinism in the propagating

execution not present with a synchronous raise. A programming language may provide asyn-

chronous propagation control allowing a programmer to indicate which asynchronous exceptions

may be propagated; i.e., asynchronous exception types can be enabled or disabled over a body of

code denoted by some mechanism in the language. Propagation control can thus mitigate some

non-determinism. In detail, asynchronous exception handling involves:

1. Raise: a raising execution executes an asynchronous raise statement (analogous to a syn-

chronous raise).

2. Delivery: responsibility for the exception is transferred to the propagating execution.

3. Detection: a delivered exception is examined and, if eligible according to asynchronous prop-

agation control, its propagation is initiated.

4. Propagation: involves handler matching, possible stack unwinding (along the call chain),

and transferring control flow to a designated handler matching the active exception, all in the

context of the propagating execution.

5. Handling: the designated handler, having caught the exception, is executed in the context of

the propagating execution, deactivating the exception and designating it handled.

6. Completion: when a handler completes (i.e., it does not reraise the handled exception or

raise a new one), control transfers to a point after the handler (termination) or detection point

(resumption).

Propagation, handling, and completion are identical to the synchronous case, while detection

and delivery are unique to the asynchronous case. Implementations may combine some steps,

e.g., raise and delivery, and an asynchronous raise can originate in the run-time system. The

sub-system of a language/run-time that is responsible for implementing exception handling is the

exception handling mechanism (EHM).

Termination involves propagating an exception to a dynamically-located handler, and after

completion, control continues at a point lexically after the handler (i.e., static return). This form of

exception handling is used when the computation between raise (synchronous case) or detection

point (asynchronous case), respectively, and the corresponding handler has to be discarded in

light of the exceptional situation, e.g., it contains an unfixable error.
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Resumption involves propagating an exception to a dynamically-located handler, and after

completion, control returns to the raise point (synchronous case) or detection point (asynchronous

case), respectively (i.e., dynamic return). This form of exception handling is used when the

computation between raise/detection-point and handler remains correct or can be fixed when

the exceptional situation occurs, so execution can continue at the point of detection, e.g., after

a correction made by the handler. While the nature of resumption is similar to a routine-call

with dynamic lookup, e.g., using function pointers or virtual members, these techniques offer

no simple replacement for resumption. In order to look up handlers along the call chain, the

equivalent function or object pointers need to be passed down the call chain, which constitutes

a maintenance problem: Since all routines whose call the handlers can potentially guard need

to reserve a parameter for each handler, their parameter lists can grow to large sizes. Also,

whenever a new handler is added in upper-level code, all routines down the call chain need to be

augmented by an additional parameter, changing their signatures, which requires recompilation.

Hence, such a scheme does not support pre-compiled code. Alternatively, the handling routines

can be maintained at a central repository, e.g., a stack of function/object pointers, potentially

with additional techniques to allow for the exact guarding of syntactic blocks. Such a scheme

basically attempts to re-implement resumption, but is complex and error-prone to maintain by

the programmer, and requires the definition of many functions or classes. Language-supported

resumption, on the other hand, attaches handlers directly to guarded blocks without burdening the

programmer with maintaining the handler stack. It takes advantage of syntactic symmetry with

terminating semantics by defining resumption handlers using the same syntax as for terminating

handlers, e.g., using a _CatchResume clause instead of a catch clause, making its use more

intuitive.

Interruption occurs when the control flow of an execution is altered by something external

to the execution. Any asynchronous transfer of control necessarily involves an interruption of

the altered execution. A common example of interruption is provided by the (POSIX) signalling

mechanism [IEE01]. It allows programs to dynamically register routines called signal handlers

that are called when certain events (signals), e.g., timer events, are raised at it by the operating

system or another program. On signal propagation, the operating system interrupts the propa-

gating task at a non-deterministic location and transfers its control flow to the appropriate signal

handler. If the signal handler returns, the task’s control flow resumes immediately after the point

of interruption. Hence, signal handling constitutes a form of resumption (see Section 1.6.3, p. 16).
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Cancellation is a mechanism through which one execution can terminate another, i.e., the

cancelled execution’s stack is unwound, and the execution is brought to a terminated state. Can-

cellation is often performed asynchronously. If an asynchronous exception is handled to com-

pletion by a terminating handler immediately preceding an execution’s exit-point (e.g., the end

of main), the resulting control flow is that of cancellation. Hence, asynchronous exceptions can

emulate cancellation, and cancellation is a limited form of terminating exception handling.

1.2 Motivating Example

Putting everything together, a raising execution can raise an asynchronous exception simply by

directing it to an identifier associated with the intended propagating execution, e.g.,

_Throw Ex() _At taskB;

The throw does not wait for the exception to be handled or any kind of response, and the raising

task blocks for no more than the short time required to facilitate delivery. The task taskB is

defined as

_Task Worker {
. . .
void main() {

. . .
try {

s0;
.

s1;
.

. . .
.

sn−1;
} catch ( Ex ) { . . . }

}
} taskB;

and propagation (.) can theoretically occur between any two statements si or even between arbi-

trary instructions. For taskB to properly handle Ex, it must be ensured that asynchronous propa-

gation is confined to within the try-block, which is the role of asynchronous propagation control

(see Chapter 2).

For a concrete scenario in which asynchronous exceptions can be useful, imagine tasks in-

volved in a conversation [BW97], e.g., two tasks using sensor data to determine aircraft position.

Each task queries its own sensor, which can take some time; if one fails, the others’ data becomes

irrelevant. Hence, if a task fails, it needs to inform the other task involved in this conversation,

so they can terminate the conversation together. An asynchronous exception with terminating

semantics is well-suited for facilitating this control flow. Its propagation terminates the sensor-
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querying code and its handler can restart the failed conversation, e.g.,

for ( int attempts = 1; ; attempts++ )
try {

try {
try {

res = read_sensor(); // read sensor data
} catch ( . . . ) {

reset_sensor(); // cleanup in case of any failure
_Throw; // reraise

}
} catch ( MySensorReadFailure msrf ) {

SensorReadFailure fail( msrf ); // document reason for overall failure
_Throw fail _At otherTask; // inform the other task
_Throw fail; // throw synchronously as well

}
if ( all_success() )

break; // if all succeed, break out of loop
} catch ( SensorReadFailure srf ) { // otherwise

/* analyze srf to know what happened */
if ( attempts == MAX_TRY ) // if maximum retries reached

_Throw; // escalate issue, otherwise retry
}

If one of these tasks cannot fulfill its part, it needs to inform the other, which is done using

a SensorReadFailure exception. The handler for SensorReadFailure decides whether to retry

reading the sensor, or escalate the problem to higher-level code by reraising the exception. Note

that cancellation is not a suitable replacement for asynchronous exception handling in this case

as local state (the attempts count) needs to be preserved to correctly complete the protocol. Other

local state, hidden in the example, might exist if this particular sensor reading is but a small part

of the overall task, e.g., taking multiple readings and calculating an average. In fact, the position-

reading conversation could be part of a larger trajectory-determining conversation, which could

itself be part of a larger automated-landing conversation. In general, even when no local state

must be preserved, the cost of cancelling and disposing of an execution with subsequent creation

of a replacement can be computationally more expensive than re-using the existing execution

after a handled exception.

Resumption can be employed when actions are not to be terminated, but rather additional

information or a correction is supplied. In the preceding example, imagine one sensor-reading

task discovers a high variance in its readings and decides to take additional readings. This fact

can be communicated to the other task by an asynchronous exception using resumption semantics.

The propagating task executes the following code:
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for ( int i = 0; i < max; i++ )
try {

. . .
res = read_sensor(); // read sensor data
. . .

} _CatchResume( TakeMoreReadings tmr ) { // in case of resumption propagation,
max = tmr.newmax; // update max and return to point

} // of interruption

If it receives a TakeMoreReadings exception, the propagating task interrupts its work, executes

the resumption handler (which updates max), and then, after the handler completes, resumes its

work at the point of interruption.

1.3 Identifying Potential Exception Occurrences

All code locations in which exceptions can be propagated should be known to the programmer.

Otherwise, an exception may go unhandled and terminate the program, or even if the exception is

handled, propagation can start inside vulnerable code, i.e., code in which propagation leaves the

program in an inconsistent state.

2 More precisely, the locations where exceptional control-flow can occur should

be known. Note, in this work, the term propagation and its derivatives are used

universally as the cause for exceptional control-flow inside the propagating exe-

cution. It is possible to distinguish between the initial raise of an exception and

its propagation up the call chain since, in the synchronous-raise case, exceptional

control-flow can be due to a raise, or due to propagation caused by a call to a rou-

tine that raises/propagates an exception. However, it is possible to think of a syn-

chronous raise as a propagation through a hypothetical throw routine1, so all excep-

tional control-flow in the synchronous case can be regarded as due to propagation.

In the asynchronous-raise case, a possible exceptional control-flow can only occur in

the propagating execution, and thus, due to propagation. The term ‘propagation’ can

therefore be used without loss of generality in all cases of exceptional control-flow.

2

Using local information about which exceptions can propagate, it is possible to verify that no ex-

ception propagations can occur inside vulnerable code, or that all vulnerable code is protected

1There are C++ compilers that convert throw statements into routine calls, e.g., to _ _cxa_throw.
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(e.g., by handling exceptions, or using the resource acquisition is initialization (RAII) tech-

nique [Str97]). It is further possible to leverage such local information and extend guarantees

to higher levels, e.g., the STL vector<T> :: erase method guarantees not to raise an exception if

T’s copy constructor/assignment cannot raise one [Abr98]. For sequential programs, identifying

the potential propagations can be as simple as code inspection and informal annotation of called

routines. However, this approach relies on external documentation (e.g., for pre-compiled code)

and is error-prone. More formal methods exist in the form of exception specifications, also called

exception lists [BHM02, §6.5]. Languages with single-level propagation (an exception can only

be handled by the immediate caller), such as in Goodenough’s work [Goo75] or CLU [LS79],

naturally require the declaration of raisable exceptions for each routine as the raisable exceptions

are an integral part of the interface between caller and callee. This approach provides a way to

identify all potential propagations, but can be tedious for the programmer and over-clutter the

code. In languages that allow multi-level propagation, e.g., Java, Ada, C++, the handler site can

be far from the raise site, yet every routine call along the path between raise and catch propa-

gates the exception, with the potential to leave the program in an inconsistent state. C++ and Java

provide a means to explicitly declare the exceptions that can be propagated by a routine. While

there are arguments against the use of exception specifications [BHM02, Eck07], they help to

ensure code safety and verifiability of a program when used properly. At compile-time, the Java

compiler checks the agreement of throws-declarations with the rest of the program, i.e., either

the corresponding exceptions are handled within the caller of the routine, or the caller declares

them in its own exception specification (it propagates them). Exceptions involved in this static

process are called checked exceptions. C++’s check occurs only at run-time, and unless explicitly

declared otherwise, any exception can propagate through a routine, which significantly reduces

the usefulness of this feature. However, it can sometimes aid in more efficient code generation

and does not burden the programmer with the tedium of maintaining throw declarations.

Java also has unchecked exceptions [GJSB00], which are exceptions whose potential raise

need not be declared by a routine, and hence, are not part of the static check. The reasons for

declaring an exception as unchecked are that it can be raised in a great multitude of locations

(e.g., arithmetic overflow), and explicit declaration would be too tiresome for the programmer, or

that they logically cannot be anticipated by the program. The latter case is due to a programming

error detected by the run-time system (e.g., using an illegal subscript to access an array) or an

entirely external cause, e.g., a hardware failure. Unchecked exceptions can cause problems since
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they open a hole in the safety of the exception specification checks, potentially subverting the

underlying mechanism2. For this reason, it is recommended to only use unchecked exceptions

for unrecoverable errors, i.e., errors that are not caught [ZHR+], reducing the propagation of an

unchecked exception to merely a named unwinding of the stack.

1.4 Interruptibility Problem

Asynchronous exceptions are similar to unchecked exceptions in that they can originate from

outside the propagating execution (though not necessarily from outside the program), or may not

be a direct consequence of the propagating execution’s actions. More importantly, since they

are asynchronous, the starting location of their propagation inside the propagating execution can-

not be anticipated. This non-determinism can cause serious errors in a program if asynchronous

exceptions start propagating within vulnerable code (e.g., recall the STL guarantee about not rais-

ing exceptions inside certain methods). Buhr et al. call this the non-reentrant problem [BHM02].

However, this name is misleading as there need not be a re-entrance of some routine for the

problem to occur. If propagation starts when program data is in an inconsistent state and consis-

tency cannot be restored before this data is accessed, the program fails. For example, imagine a

list manipulation routine being interrupted by an exceptional propagation while the list is in an

inconsistent state, and termination semantics cause the rest of the routine to be aborted; alterna-

tively, imagine a resumption handler accessing that list as part of recovery. While re-entrance is

certainly a case in which this problem can occur, a better term to describe this phenomenon in

general is the interruptibility problem.

Recall from Section 1.3 the two ways to ensure exception safety:

1. Verification that no exception propagation can occur within vulnerable code: Unlike the syn-

chronous case, asynchronous propagation need not originate from a routine call, but can occur

anywhere. Hence, if a region in which asynchronous exceptions can occur contains vulnerable

code, this vulnerable code needs to be protected.

2. Protection of vulnerable code through handlers or cleanup constructs (e.g., finally in Java3 or

2Incidentally, Eckel promotes a technique that converts checked into unchecked exceptions, so that the mechanism

can be subverted more efficiently [Eck07].
3Weimer [Wei06] points out the complexities of using finally correctly, and presents the idea of the compensation

stack, a language extension to ensure the fulfillment of commitments such as resource cleanup in the presence of

exceptions.
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RAII in C++).

Protection of vulnerable code is significantly more difficult in the asynchronous case. Consider

the example in Figure 1.1. Resources db1 and db2 need to be released/closed, but only if they have

been acquired/opened. The left example attempts to solve the problem by handling the excep-

tion. In the synchronous case, assuming only the call to potentialRaise can propagate exceptions,

it suffices to close db1 and db2 in the catch clause (and re-propagate the exception) to protect this

code from exceptions. In the asynchronous exception case, assuming that asynchronous excep-

tions can be raised anywhere within this code, it is impossible to tell where exactly propagation

begins. It could begin between the calls to db1.open and db2.open, in which case closing db2

inside the handler could be an error. In fact, the exception could occur before or during db1.open,

so closing db1 in the handler may not be correct either.

The example on the right attempts to solve the problem using the RAII approach by clos-

ing db1 and db2 inside the destructor ~RAIIopen, which is only executed if its corresponding

constructor RAIIopen, which contains the open, runs to completion. However, suppose the asyn-

chronous exception starts propagation after the call to db.open but before the constructor com-

pletes. Since the Database object is open, it needs to be closed, but since construction of the

RAIIopen object is incomplete, its destructor is not executed, and the Database object is not

closed. If the programmer tries to improve this solution by writing

RAIIopen() try { // special constructor-try-block
DB.open();

} catch (. . .) {
DB.close();
throw;

}

then it can still fail if the exception propagates while inside the try-block, but before any ac-

tions are committed that require the closing of DB, e.g., while executing the first statement of

Database::open. The call to DB.open itself could be wrapped into an RAII-wrapper, as well as

the individual statements that comprise open, etc., and such a scheme might possibly work. In

general, however, this is not a usable programming method.

The interruptibility problem can be characterized as follows. In the synchronous case, a con-

tiguous piece of code contains a few well-defined locations at which exceptions can propagate

and interrupt the contiguous control-flow. Safety can be maintained by protecting these few lo-

cations with the methods presented above, which produces a kind of atomicity with regard to

synchronous exceptions that is suitable for the usual programming methodology of structuring
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try/catch RAII

. . .
Database db1, db2;
try {

db1.open();
db2.open();
potentialRaise();
. . .
db1.close();
db2.close();

} catch (. . .) {
db1.close();
db2.close(); // necessary?
throw; // reraise

}

struct RAIIopen {
Database &DB;
RAIIopen(Database &db)

: DB(db) { DB.open(); }
~RAIIopen() { DB.close(); }

};
Database db1, db2;
{

RAIIopen raiidb1( db1 );
RAIIopen raiidb2( db2 );
potentialRaise();
. . .

}

Figure 1.1: Protecting vulnerable code from exceptional propagation

programs out of smaller building blocks. The non-determinism of asynchronous exceptions con-

ceptually breaks up contiguous pieces of code into instruction-sized pieces. Apart from the fact

that programming languages generally do not offer the granularity to protect single instructions4,

it is difficult and error-prone to protect this many locations in order to form one exception-atomic

region of code. Add to this the possibility of pre-compiled code (whose source is inaccessible)

that is also subjected to asynchronous exceptions.

1.5 Asynchrony Models

As stated in Section 1.1.2, p. 3, there are different models of asynchrony. Full asynchrony has the

greatest non-determinism where propagation can potentially begin at any instruction. This kind

of asynchrony matches the common intuition and is assumed implicitly in the previous sections.

Examples of full asynchrony include POSIX threads (pthreads) cancellation in its asynchronous

mode, or POSIX signals [IEE01].

A different model is restricted asynchrony5, in which control-flow is still non-deterministic,

but the propagation (or interruption) causing this non-determinism is restricted to occur only at

certain well-defined locations called poll points. Poll points are like routine calls that, in the case

of exceptions, can propagate a synchronous exception, and thus, the programming methodology

used in the synchronous case to deal with exceptions can also be used with restricted asynchrony.

Upon encountering a poll point, the list of delivered (pending) exceptions is traversed, and if one

4See [Cha94] for suggestions on how to implement asynchronous exceptions by breaking a program down into

small (potentially instruction-sized) pieces and providing restartable handlers protecting these pieces.
5[MJMR01] calls it semi-asynchrony.
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is enabled, it is propagated. Examples of restricted asynchrony include pthread cancellation in its

deferred mode (POSIX calls poll points cancellation points), or µC++ up to version 5.6.0. Pure

poll points, i.e., routines whose only purpose is to poll, are a convenient way for a programmer

to trigger propagation. Examples include pthread_testcancel and µC++’s uEHM::poll.

The motivation behind restricted asynchrony is that programming under full asynchrony is

very difficult. By restricting asynchrony to a few well-defined points in a program, verifying its

correctness becomes much easier compared to the full-asynchrony model. In addition, a com-

mon programming mind-set is to implement the main algorithm first, and then, often (and un-

fortunately) as an afterthought, deal with deviations such as errors or exceptions (i.e., boundary

cases) [SGH10]. Restricted asynchrony appeals to this mind-set as the programmer starts out with

normal deterministic code as a base line in which a few abnormalities (propagations through poll

points) need to be dealt with subsequently. Full asynchrony, on the other hand, implies that non-

determinism is the base line, and a programmer has to struggle with the interruptibility problem,

i.e., reason about deviating (exceptional) control-flow, essentially at all points in order to write

correct programs. This approach is more complex and also contrary to the common programming

mind-set, so it is not surprising that it is more error-prone than using restricted asynchrony.

On the other hand, restricted asynchrony can cause delays when timely propagation is impor-

tant since control needs to reach a poll point for propagation to occur. With full asynchrony, no

delay is necessary as propagation can begin immediately. This trade-off is similar to the general

problem in concurrency, where serializing constructs make it easier to write predictable programs,

but at the same time restrict concurrency, and thus, performance. Furthermore, restricted asyn-

chrony requires the programmer to be aware of what operations are poll points, and where these

are located in a program. This knowledge may not always be intuitive, and the need to have poll

points for propagation may require unintuitive programming idioms. Finally, polling incurs a

run-time cost even when no exceptions are being raised.

1.6 Related Work

A number of publications address extending exception semantics to a multi-execution domain,

and they are classified in three different ways.
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1.6.1 High-Level Systems

These systems are largely concerned with asynchronous exceptions only as a means to implement

high-level mechanisms, e.g., distributed interactions, and do not examine the underlying language

mechanics, or the problems inherent in asynchronous transfer of control, e.g., [CR86, RXR98b,

MT02, PRP04].

1.6.2 Synchronous Propagation

Other work mentions asynchronous exceptions, but not in the sense as they are used in this work.

An asynchronous computation of some kind causes exceptions to cross from one execution to

another, but this transfer requires an explicit action by the propagating execution, e.g., a mes-

sage receive [IY91], a synchronization with the raising execution [Iss91], or the access of a

future-value [Rin06]. Other examples include [KO02, CC05]. Since exception propagation is

synchronous (in some form) in the propagating execution, the issue of asynchronous transfer of

control is not addressed, which is at the heart of this thesis.

1.6.3 Asynchronous Propagation

Some publications, and a few main-stream languages, address an asynchronous exception model

similar to the one used in this thesis, i.e., one that is primarily characterized by an asynchronous

transfer of control. Systems supporting only restricted asynchrony technically can be classified as

employing synchronous propagation. Whether their propagation is considered asynchronous shall

additionally depend on a subjective assessment of how often poll points occur, how surprising

the occurrence is, and whether there are other language mechanisms that can cause surprising

exceptional control-flow generated by asynchronous interaction with another execution.

Szalas and Szczepanska [SS85] propose an hypothetical concurrent language in which an

asynchronous signal (exception) is caused by a raise to another process (execution). The system

supports termination and resumption semantics, as well as asynchronous propagation control,

and works under full asynchrony. It does not permit synchronization between processes, nor are

raised exceptions retained when their target is inactive (blocked) or has exception propagation

disabled.

In [FFS96] Fleiner et al. discuss the problems of performing thread cancellation in an object-

oriented system such as pSather. They conclude that based on their criteria, “[...]it is not possible
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to have an easy, safe and efficient parallel, object oriented language [...] that offers a way to

asynchronously stop a thread.” In this thesis, I am going to show that, based on my criteria,

intuitive, safe asynchronous exception handling (and thus cancellation) is indeed possible with

acceptable performance.

An extension to Concurrent Haskell [MJMR01] employs an asynchronous-exception model

similar to the one in this work, albeit in a functional language. Exceptions are explicitly raised

at another thread using the throwTo primitive. It supports limited propagation control using block

and unblock, and operates under full asynchrony. Asynchronous propagation while holding a

mutual exclusion lock is implicitly disabled, which can postpone propagation indefinitely (e.g.,

see [FFS96]). Asynchronous exceptions may be propagated under certain circumstances even if

propagation is disabled.

Erlang’s message sending is asynchronous, but its message reception is synchronous, i.e.,

requires an explicit receive [Eri]. Two processes can be linked. A terminating process emits an

exit signal to all processes to which it is linked; these exit signals are received asynchronously

and, if termination was abnormal, cause the abnormal termination of the recipient. A process can

trap exit signals, which turns them into messages, thus deferring the ‘propagation’ of a received

exit signal, and enabling its handling. This trap mechanism can be considered a limited form

of propagation control. Processes can emit exit signals without terminating, and a kill message

cannot be trapped, i.e., cancellation cannot be controlled by the cancellee.

Modula-3’s Alert mechanism [Bir89] provides thread interruption functionality. A thread can

alert another, which turns on the target’s alert-pending status. If an alerted thread calls TestAlert

(or AlertWait), it propagates an Alerted exception.

Ada [Int95] allows an exception to cross execution boundaries during rendezvous synchro-

nization. It also offers an asynchronous transfer of control (ATC) facility through asynchronous

select on the client-side [BW97, §10.7];[BW03], which crudely approximates asynchronous ex-

ceptions.

Java’s Thread class supports a stop method, which facilitates thread cancellation, but can be

used to raise arbitrary Throwable objects inside the called thread. An exception raised in this

way between two executions (threads) is fully asynchronous. However, catching an exception

raised through the stop mechanism is only permitted if it is reraised subsequently, i.e., the han-

dler must not complete; thus, the mechanism is only suitable for thread cancellation as opposed
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to general asynchronous exception handling. Furthermore, Thread.stop is deprecated in current

Java versions for safety reasons [Sun]. Similarly to Modula-3, Java supports thread interrup-

tion through Thread.interrupt, which can interrupt a thread under restricted asynchrony (requiring

an interrupted thread to explicitly check its status) or, using the real-time extension, full asyn-

chrony [BHR02]. This mechanism cannot directly raise an arbitrary exception, nor can threads

be asynchronously interrupted (using real-time semantics) while executing synchronized state-

ments, further limiting this feature’s use: For example, similar to the limitations of Concurrent

Haskell, threads holding a resource through a synchronized statement cannot be cancelled through

asynchronous exceptions.

The .NET framework supports asynchronous thread cancellation through the Abort mech-

anism of System.Threading [Mica], which is similar to Java’s Thread.stop; it can only raise

ThreadAbortException.

POSIX threads [But97, IEE01] also support thread cancellation, which can either be deferred

(restricted asynchrony), with checking at cancellation points in a limited number of system rou-

tines, or (fully) asynchronous. POSIX signals cause an asynchronous call to a dynamically-

determined routine, and thus, constitute a crude form of asynchronous resumption, but are a

heavy-weight feature requiring user/kernel mode switching. POSIX is an operating-system inter-

face, not a programming language.

Note, thread cancellation does not constitute exception handling because the cancellation

cannot be handled, and thus, only provides a very limited form of termination. Java, Concurrent

Haskell, Ada, and .NET6 do not support resumption. Modula-3, Java and .NET do not support

certain high-level concurrency-concepts, e.g., Ada-style rendezvous7.

Finally, [BM00] proposes an asynchronous-exception model that serves as the basis of this

thesis. It is characterized by explicit asynchronous raises, restricted asynchrony, asynchronous

propagation control, and support for termination semantics using the C++ model, as well as re-

sumption using proprietary syntax. Its shortcomings are the restricted asynchrony it employs, as

well as the inability of blocked tasks to propagate asynchronous exceptions. Part of this thesis is

concerned with mitigating these shortcomings, as well as their analogues in other languages.

6Visual Basic supports a form of synchronous resumption.
7This restriction is relevant in Chapter 4.
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1.7 About This Work

To avoid misunderstandings or misconceptions about the nature of this work, the following sec-

tions explain its focus and level of abstraction.

1.7.1 What This Thesis is About

Throughout this thesis, it is implicitly assumed that asynchronous exceptions are a useful feature

that is best integrated directly into a concurrent programming language (see Section 1.1.1, p. 3).

Source code, being the expressions of a programming language, is therefore found throughout

this document. µC++ is the main language of study for which the features proposed in this work

are implemented; therefore, µC++ is naturally the language of choice for many of these source

code examples. Appendix A contains a short introduction to µC++’s extensions to C++, and gives

an overview of the features discussed in this thesis. The model of asynchronous exceptions used

in this work is µC++’s [BM00]. Since µC++ is based on C++, and C++-like models are often assumed

in this thesis, understanding of C++, particularly its exception-handling model and mechanism, is

essential for understanding this work (see [KS90, Str94, Str97]). Nevertheless, the majority of the

concepts presented in this work are directly applicable to most modern programming languages,

and many of its ideas and implementations are transferable to other systems with similar notions

of asynchronous exception handling or transfer of control. For ease of understanding, some of

the example programs in the main part of this thesis are incomplete or use simplified syntax; the

complete versions with full syntax can be found in Appendix B.

1.7.2 What This Thesis is Not About

This thesis deliberately does not give an introduction into the development of structured

exception-handling, its motivation and advantages, major milestones, or its proliferation and

prevalence. There are many interesting publications that cover these areas, e.g., [Goo75, LS79,

Cri82, Knu84, YB85, Geh92, LS98, Kri02, BHM02, RS03].

While some of the motivation for the existence of asynchronous exceptions is touched upon

in Section 1.1.1, p. 3, an exhaustive examination of such a motivation constitutes a thesis in

itself, and is therefore not the focus of this work. Readers who still dispute the usefulness of

asynchronous exceptions are encouraged to suspend their disbelief and evaluate this work on its

own merit given the assumptions from Section 1.7.1. This work does not define a new model
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for the transfer of asynchronous exceptions from one execution to another. It builds upon the

model devised in [BM00], thoroughly analyzes parts of this model, and extends the model with

advanced features. This thesis does not analyze the merits of different asynchronous-exception

models as such analysis is beyond its scope. Readers who do not agree with the asynchronous

exception model used in this thesis are encouraged to evaluate this work on the basis of how it

improves upon the underlying asynchronous exception-handling model.

This thesis is not about software engineering or distributed systems. Obviously, programming

languages are the tools employed in software engineering, and the results in this thesis can be

employed when implementing a distributed system, but such additional work occurs at a higher

abstraction level and is not within the scope of this thesis. In particular, this work does not

try to interpret how multiple agents can collaboratively handle an exceptional situation, what

an exception in one thread might appear like to another thread, or how real-world exceptional

situations are best modelled as (asynchronous) exceptions8. A limited selection of interesting

publications that do focus on such topics are [CR86, RXR98a, MT02, DUV06, FFM+10, KT10].

1.7.3 Remainder of This Document

Having established the asynchronous-exception model assumed herein and the issues surround-

ing the interruptibility problem, the rest of this thesis addresses several areas around this topic.

Chapter 2 thoroughly explores the concept of asynchronous propagation control, which has an

essential role in writing programs with asynchronous exception handling. Building upon the

analysis and classification of that chapter, Chapter 3 then proposes a new approach of adjusting

the asynchrony model depending on the propagation control that is in effect, in order to allow

for safe, more intuitive programming with potentially better performance. Chapter 4 explores the

issue of raising an asynchronous exception at a task that is blocked, and shows how to resolve

this issue for a variety of blocking instruments. Finally, Chapter 5 explores how the additional

complexities of programming with asynchronous exceptions can be tamed by providing powerful

ways to test asynchronous-exception code, as well as additional run-time information to assist

programmers’ understanding.

8There are no examples featuring travel agents in this document, but there is one featuring a barber.
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Chapter 2

Asynchronous Propagation Control

Even with restricted asynchrony, programming with asynchronous exceptions is still difficult,

and the non-determinism introduced by the interruptibility problem can affect a program in unex-

pected ways. As mentioned in section Section 1.4, p. 10, determinism can be restored by desig-

nating regions of code as uninterruptible or exception-atomic. To deal with the non-determinism

caused by concurrency, atomicity is generally achieved by employing locks. However, locking

does not help with the interruptibility problem since only one thread is involved in propagation.

Hence, exception-atomicity requires a mechanism designed specifically for this purpose, i.e., to

restrict the set of asynchronous exceptions that can be propagated in an execution within a re-

gion of code. I refer to this mechanism as asynchronous propagation control (e.g., see [BMZ92,

p. 766];[BM00, §16.3]), which this chapter explores in detail. It shows the essentiality of asyn-

chronous propagation control, analyzes different approaches including combining approaches,

and discusses the implications each approach has with respect to asynchronous-propagation se-

mantics. This chapter serves as a reference for language designers wishing to support asyn-

chronous exception handling.

The essential nature of asynchronous propagation control with full asynchrony is easy to

demonstrate. Consider the following example:

unsafe_to_interrupt(); // unsafe to interrupt
try {

safe_to_interrupt(); // safe to interrupt with respect to Ex
} catch ( Ex ) { }

Suppose the call to safe_to_interrupt can be safely interrupted by a propagation of Ex, with the

try-block and catch-clause placed to handle the exception. However, this example is still incorrect
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as there is no way to guarantee that a propagation of Ex cannot start outside the try-block, e.g., in

unsafe_to_interrupt. Hence, there must be a way to restrict propagation to a region in which it can

be properly handled, the try-block in this example, which is the role of asynchronous propagation

control.

With restricted asynchrony, propagation is restricted to occur only from poll points. Situations

such as above can therefore be avoided if no poll points are encountered outside of the try-block.

However, poll points may be frequently encountered in code that cannot be interrupted safely or

that cannot handle all possible exception propagations, e.g., inside the call to unsafe_to_interrupt.

While one solution is to make such code safely interruptible, such a conversion is generally

difficult and may be impossible depending on the circumstances. Hence, there must be a way for

a program to protect itself against propagations occurring at such poll points.

To further illustrate the need for asynchronous propagation control, consider Java’s

Thread.stop mechanism. It allows for fully-asynchronous thread cancellation, but has no asyn-

chronous propagation control. Consequently, Thread.stop has been found to be unsafe in general

and has been deprecated in more recent Java versions [GJSB05, Sun]. Similarly, the lack of

propagation control for thread abortion in Microsoft’s .NET framework leads to function calls

like Monitor.Enter gaining keyword-like semantics as they cause code-generation restructuring in

order to ensure correct cleanups [Duf07].

The ability to turn all propagation off or on is the minimum mechanism required

(e.g., [MJMR01]). However, a region of code may be able to safely handle the propagation of one

exception type but not the propagation of another. Therefore, it is preferable to specify a set of

exception types whose propagation is allowed or disallowed. Furthermore, with full asynchrony,

the initial state, i.e., before the first explicit use of propagation control, should be such that no

asynchronous propagation should be allowed; otherwise an execution could be interrupted before

it has an opportunity to turn off asynchronous propagation. For symmetry and ease of use, the

same semantics should apply for restricted asynchrony as well.

With asynchronous propagation control, if asynchronous propagation of a set of exceptions

is allowed, the set (or its propagation) is said to be enabled, otherwise, it is disabled. There are

several different approaches to asynchronous propagation control, each with different scope or

extent. Scope refers to the visibility of the state introduced by a propagation-control directive,

i.e., is the state visible only in the local scope or everywhere? Similarly, extent refers to the life
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time of such state, i.e., does it have a limited life-time with a definite beginning and ending at

compile-time, or does it persist indefinitely?

2.1 Dynamic

The simplest version is called the dynamic approach and is characterized by an infinite scope

and extent, i.e., the propagation-control state is visible in every scope and persists until changed

explicitly. Asynchronous propagation is dynamically enabled until it is disabled by an opposing

call. Such a call pair encloses a region of asynchrony, i.e., one that is interruptible with regard to

the asynchronous propagation of a set of exceptions, e.g.,

enableException( Ex ); // enable propagation of Ex
. . . // can be interrupted with regard to Ex
safe_to_interrupt(); // can be interrupted with regard to Ex
. . . // can be interrupted with regard to Ex
disableException( Ex ); // disable propagation of Ex

whereas the opposite pairing is used to create a region of atomicity with regard to the asyn-

chronous propagation of a set of exceptions, e.g.,

disableException( Ex ); // disable propagation of Ex
. . . // propagation of Ex precluded
unsafe_to_interrupt(); // (unsafe) propagation of Ex precluded
. . . // propagation of Ex precluded
enableException( Ex ); // enable propagation of Ex

The extension to Concurrent Haskell [MJMR01] has unblock and block operations to enable and

disable, respectively, the propagation of all exceptions using dynamic semantics. Its propagation

control does not distinguish between different exception types, i.e., it only works on all exception

types. A possible cause for this restriction is that exception types in Haskell cannot be easily

extended and organized in a hierarchy, and thus, one exception type is often used universally1.

Another example of the dynamic approach are the enableContext/removeContext routines in the

Guardian model [MT02].

Unix/POSIX signals also work under the dynamic approach, being controlled by calls to

sigprocmask [IEE01]. POSIX threads [But97], too, employ a dynamic approach to control can-

cellability, i.e., the pthread_setcancelstate and pthread_setcanceltype routines. A pthread’s can-

cellation cannot commence after the most recent call to pthread_setcancelstate is performed with

the argument PTHREAD_CANCEL_DISABLE. In this way, a pthread can protect sections of its

code from cancellation. Pthread cancellation is enabled as the default, which is a reasonable

1Marlow proposes a solution for this limitation and its integration with OOHaskell [Mar06].
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design decision as cancellation is rare and terminates the thread (i.e., cannot be handled).

In theory, using paired calls of pthread_setcancelstate with PTHREAD_CANCEL_DISABLE

and PTHREAD_CANCEL_ENABLE, it is possible to protect the code between the calls from

interruption through cancellation and structure the code thus.

The simple dynamic approach allows almost arbitrary structuring of asynchronous propaga-

tion control, but the infinite extent implies a need to pair dynamic calls precisely, which consti-

tutes a potential source of error. If a programmer forgets to disable propagation after enabling it,

the program may be interrupted in unexpected places. This situation is analogous to the use of

mutual-exclusion locks in concurrency; while providing a flexible mechanism to ensure mutual

exclusion, the need to precisely pair acquisition and release of a lock is a potential source of error.

2.2 Semi-dynamic

In order to avoid the pairing issues mentioned above, the semi-dynamic approach to asynchronous

propagation control tries to add robustness to the dynamic approach while sacrificing flexibil-

ity. It is characterized by an infinite scope and a finite extent, i.e., the propagation-control

state is visible in all dynamically nested scopes and persists until the end of a block. Con-

current Haskell’s unblock and block operations are also available as scoped combinators, e.g.,

block ( vulnerableCall x ), which have semi-dynamic characteristics.

Another example of the semi-dynamic approach is employed by µC++. The _Enable /_Disable

statement enables or disables the asynchronous propagation of exception sets within its dynamic

scope. Consider the example in Figure 2.1. In this example, all code inside the _Enable block

and outside of the _Disable block is logically designated as interruptible (by DeadlineAlarm and

ServerFailure exceptions). In particular, statements s1 and s2, as well as the calls and execu-

tion of doSomething and doSomethingElse can be interrupted by arriving DeadlineAlarm and

ServerFailure exceptions (and all exceptions derived from these). The call to doNotInterrupt can-

not be interrupted by any asynchronous exception, and propagation is deferred at least until the

end of the _Disable block (assuming doNotInterrupt does not contain _Enable statements). Note

that all asynchronous exceptions are initially disabled in µC++ to guarantee that try-blocks with

handlers can be set-up before an exception can propagate.

An unusual example of propagation-control can be found in [SS85], which employs enable

and disable statements to control propagation of an arbitrary set of exceptions. The effects of
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void foo() {
_Enable < DeadlineAlarm > < ServerFailure > {

s1;
doSomething();
s2;
_Disable { // means disable all exceptions

doNotInterrupt();
}
doSomethingElse();

}
}

Figure 2.1: Controlling asynchronous propagation in µC++

these statements are visible inside the module in which they are issued and in all modules called

from it, i.e., infinite scope, but revert once the module is left. Classifying the extent of this

approach depends on what exactly is meant by module. If module refers to a procedure, then

the extent is finite. If module refers to a translation unit (e.g.., Pascal unit), then the extent,

while technically still finite, would be so large as to be almost infinite–a three-quarter-dynamic

approach, possibly. In this system, an exception raised, but whose propagation is disabled, is

lost. These semantics do not seem appropriate for an asynchronous setting. Since the raising and

the propagating execution are not synchronized, the source cannot anticipate whether the target

is ready to propagate the exception, with the result that the exception may be lost. While the

raising execution is notified whether its exception is propagated, it is difficult to imagine writing

predictable programs under this scheme without requiring some synchronization between raising

and propagating execution.

2.3 Static

When both extent and scope are finite, i.e., the propagation-control state persists until the end

of a block and is only visible when statically therein, I call the resulting approach static. Imag-

ine a hypothetical Static_Enable statement, which results from taking a semi-dynamic _Enable

statement and restricting its scope to its lexical block, e.g., in

void bar() {
. . . // E is not enabled when called from foo

}
void foo() {

s1;
Static_Enable < E > {

s2; // E is enabled because inside lexical scope
bar(); // call leaves lexical scope
s3; // E is enabled because inside lexical scope

}
s4; // E is not enabled because beyond scope/extent

}
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propagation of E is enabled for statements s1 and s2, but not while control is inside the body of

bar.

A real-world example using this approach is the real-time specification for Java (RTSJ) [BBD+00],

which specifies that exceptions of type AsynchronouslyInterruptedException can be asyn-

chronously propagated within routines whose checked-exception specification includes this ex-

ception type. Java exception-specification semantics apply statically within a routine; the result-

ing asynchronous propagation control can therefore be classified as having finite scope and extent

(static approach). For example, in the following RTSJ code

class ServerFailure extends AsynchronouslyInterruptedException { . . . }
class SynchronousEx extends Exception { . . . }
. . .
public void foo() throws ServerFailure, SynchronousEx {

s1;
someCall(); // Finite scope: ServerFailure not enabled inside call
s2;

}

the statements s1 and s2 are interruptible2 by ServerFailure, whereas execution of someCall is

not (unless that routine has asynchronous exceptions in its throws-list). Exception SynchronousEx

can only be propagated synchronously.

Note, it is unclear whether these asynchronous propagation semantics were chosen and then

the exception-specification mechanism adapted because it provided the desired scope/extent, or

if conversely, the static propagation-control is simply a consequence of attaching propagation-

control semantics to Java’s exception specifications. In either case, it seems unsatisfactory to

restrict propagation-control granularity to entire routine bodies since exception handling itself

(i.e., placement of try-blocks and handlers) has finer granularity. Furthermore, the concept of

exception specifications is orthogonal to propagation control (also see Section 2.6.2, p. 49),

so combining these two is questionable. In particular, when using such combined exception-

specification/propagation-control semantics, exceptions that can be raised asynchronously can

only be (re-)raised synchronously if the exception is caught within the raising routine; otherwise,

if the exception is propagated to the caller, it must be listed in the routine’s exception specifica-

tion, which implicitly turns on asynchronous propagation where it is not necessarily safe. For

example, imagine in the previous example that foo is called by another function bar. Recall that

2While non-call poll-points are conceivable, poll points are usually function calls, and calling such a function

moves control out of the scope of static propagation-control. For simplicity of the discussion, it is therefore helpful to

assume a full-asynchrony approach with static propagation-control.
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foo can be asynchronously interrupted by ServerFailure:

public void bar() throws ServerFailure {
s1;
try {

foo();
} catch ( ServerFailure e ) {

. . . // analyze problem
throw e; // cannot fix problem, reraise exception to caller

}
s2;

}

The asynchronous ServerFailure exception is propagated synchronously into bar where it is po-

tentially reraised (synchronously) to its caller. Since it can potentially propagate a ServerFailure,

Java requires bar to list it in its exception specification. However, due to its double-duty as prop-

agation control, asynchronous propagation of ServerFailure is now enabled within bar itself–a

subtle and potentially critical error as there is no guarantee that s1 and s2 are safely interruptible.

Even if a programmer realizes the potential problem, rectifying it, e.g., by modularizing s1 and s2

into routines in order to move them out of the scope of the exception-specification/propagation-

control, requires significant code restructuring. Finally, RTSJ’s propagation is always disabled

in synchronized blocks, i.e., those that provide mutual exclusion, which is a restriction of the

language not dictated by the concept of propagation control itself.

2.4 Semi-static

When the scope is finite and extent is infinite, i.e., the propagation-control state introduced is

visible inside a limited scope, e.g., a block, and is remembered when control re-enters the scope,

I call the resulting approach semi-static. An equivalent concept with the same attributes is a local

C++ variable with static storage class, which is visible only inside the scope in which it is defined

(finite scope), and persists for the life time of the program (infinite extent).

With such a combination, it is unclear what the correct scope bounds need to be in order

to gain additional semantics compared to the static approach. If the scope is defined in a strict

sense, i.e., as for the declaration of variables, the resulting semantics are that the propagation-

control directive is visible from the point of its issuance until the end of the current block, e.g.,
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void bar1() {
. . .
if ( condition ) {

s1;
enable E; // hypothetical semi-static directive
s2;

} else {
. . .

}
s3;

}

In the example above, statement s1 does not see that E is enabled, and only s2 sees the enabling

as the scope is exited after s2. However, the semantics of this example are equivalent to those of

the following example using static propagation control:

void bar2() {
. . .
if ( condition ) {

s1;
Static_Enable < E > { // hypothetical static directive

s2;
}

} else {
. . .

}
s3;

}

It is easy to see that with such strict scoping rules, the semi-static approach provides no additional

semantics compared to the static approach. Note, the RTSJ approach from Section 2.3, p. 23

could conceivably be classified as semi-static since the semantics of the static and semi-static

approach are identical using RTSJ’s routine scope. However, it seems prudent to classify it under

the simplest scheme that allows for the observed semantics, which is the static approach.

Extending the definition of scope for the semi-static approach produces unintuitive results.

For example, a routine-scope could be defined, implying changes made to propagation control

inside the routine revert once the routine terminates, but are restored when the routine is called

again and are visible in its entirety. Such semantics would be surprising for many programmers.

Reducing the scope to just the block in which the directive resides does not help. If, in the

example above, bar1 is called and condition is true and then called again with a true condition,

E would be enabled in s1 even though the enabling statement occurs further down in the block.

When condition is false when bar1 is called initially, then when statement s1 is first encountered,

propagation of E is disabled. If the scope is defined in some arbitrary manner, e.g., from the point

of the enable/disable until the routine scope is left, the result is equally confusing, e.g., what is

the propagation-control state at s3? While unambiguous semantics can be defined, the behaviour
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is going to be unusual, and it seems questionable whether anyone could intuitively write correct

programs using such schemes.

In conclusion, the semi-static approach is either redundant or difficult to understand, and

is therefore ignored for the remainder of this document. Table 2.1 summarizes the different

classifications for asynchronous propagation control based on scope and extent.

2.5 Finite vs. Infinite Extent

The existence of propagation-control implementations with finite and infinite extent justifies a

discussion about the merits of each approach. Since finite extent always implies some kind of

block being employed, this approach shall also be denoted block-based and these two terms are

used interchangeably where appropriate. Similarly, infinite extent implies the use of some kind

of routine call, so the term routine-based shall have the same meaning.

While this section studies extent in the context of asynchronous propagation control, the dis-

cussion can largely apply to any block/begin-end language construct in comparison to its routine-

based/single-statement analogue. For example, an exception handler guarding a try-block has

block characteristics, and a mechanism that registers handler routines, e.g., by pushing them onto

a central cleanup-handler stack, is its routine-based counterpart. A similar analogy exists between

monitors and mutex locks [Bri73].

To illustrate finite extent, µC++’s _Enable /_Disable blocks are used. For infinite extent, a

hypothetical routine

prop_control_t set_prop_control( exception-type, prop_control_t )

is used, which is modelled after pthread’s cleanup-control functions or those controlling POSIX

signals. The set_prop_control routine has two parameters, the first of which specifies the excep-

tion type controlled, and the second whether it is to be disabled or enabled. It also returns the state

of propagation control before the routine is invoked (for easy restoration). Restricted asynchrony

(poll) is assumed for simplicity in this section.

2.5.1 Advantages of Finite Extent

Consider the example in Figure 2.2. The block structure of _Disable guarantees that while inside

the lexical scope of the block, the propagation of E exceptions is disabled. Hence, a programmer

is always aware of the exceptions that can be propagated inside a block; this concept shall be
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PPPPPPPPPScope
Extent

∞ �∞

∞
dynamic

(e.g., pthread_setcancelstate)
semi-dynamic

(e.g., µC++ _Enable)

�∞ semi-static
static

(e.g., RTSJ)

Table 2.1: Propagation-control approaches

_Disable < E > {
bar();
poll(); // cannot propagate E

}

Figure 2.2: An example of propagation control using finite extent

called block awareness. Block awareness is a by-product of syntactic requirements with regard to

proper block nesting: In order to use blocks correctly, a programmer needs to be aware of where

it starts, where it ends, and what statements it contains. Violation of block-nesting rules results

in a compile-time error, which is the preferred time at which errors should manifest themselves.

The most important advantage from a practical standpoint is that in using a propagation-control

block, a programmer cannot forget (without causing a compile-time error) to close a block and

thus turn off the propagation-control directive that the block establishes. The role of finite-extent

propagation-control compared to the infinite-extent approach is thus analogous to the way mon-

itors ensure mutual exclusion in a more structured way, automatically releasing resources and

preventing deadlocks due to forgetfulness, compared to mutual-exclusion locks.

Note, block awareness does not extend into the dynamic scope (see discussion in Section 2.6,

p. 48). For example, inside of bar, E exceptions may be enabled, and subsequently propagated

up the call-stack and into the _Disable block. Nevertheless, it is certain that all code inside

the lexical scope of the _Disable block, e.g., a call to poll, cannot trigger an E exception to be

propagated. This guarantee removes uncertainty and helps the programmer in statically analyzing

the program, leading to more robust code.

2.5.2 Disadvantages of Finite Extent

While this method is intuitive and very robust, it precludes certain forms of control. In particular,

it may be necessary to enable the propagation of an exception inside a block, but with the actual

propagation occurring outside that block, e.g.,
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void turniton() {
// enable E}

void useit() {
poll();

}

_Disable < E > {
turniton();
useit();

}

In the above example, the programmer needs the poll inside useit to propagate an E excep-

tion. If enabling E is done through the block-based approach (i.e. _Enable <E> { } in turniton),

then clearly, this enable has no influence on code inside of useit, and subsequently, the call

to poll from useit cannot propagate an E exception. Only if the enabling of E persists beyond

block boundaries – through some mechanism that has a ‘global’ effect, e.g., a function call like

set_prop_control(E, ENABLE), can procedure turniton ensure that the call to poll inside useit

causes propagation of an E exception.

Practical Restrictions

The situation above can occur with software libraries, which may sometimes require the program-

mer to follow a certain sequence of function calls (protocol) that communicate with each other or

their invoker using asynchronous exceptions, e.g., opening and closing an I/O device.

More specifically, consider a display_ok_cancel_box routine that one thread calls in order to

create another thread to display and manage a dialog box. The user’s choice is then communicated

back to the original thread through an asynchronous resumption exception (say BoxResult). In

order for this scheme to work, the original thread needs to have the propagation of BoxResult

enabled. Ideally, display_ok_cancel_box should enable the propagation of the exception as this

enabling is necessary exactly when that routine is used, e.g.3,

void * ok_cancel_box( void *arg ) {
int res = GUI_dialog_box( CANCEL ); // display dialog box and wait for result

_Resume BoxResult( res ) _At arg; // forward result to original thread
} // through asynchronous raise
void display_ok_cancel_box() {

set_prop_control( BoxResult, ENABLE ); // routine-based enable of BoxResult
startThread( ok_cancel_box, thisTask ); // start new thread, does NOT block

}

3This example uses a hypothetical language inspired by pthread-like threading and µC++-like exception handling.
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void eventLoop() {
. . .
try {

. . .
display_ok_cancel_box(); // display box without blocking
for ( . . . ) {

. . . // continue independent work
}

} _CatchResume( BoxResult e ) { // resumption handler
set_prop_control( BoxResult, DISABLE ); // routine-based disable of BoxResult
/* extract result and use it */

}
}

With block-based propagation-control, such a design is impossible since enabling inside

display_ok_cancel_box only affects code called/executed from within that routine, but not code

that gets executed after display_ok_cancel_box returns. Instead, the programmer must wrap the

entire code sequence in which the exception could be propagated into an _Enable block, e.g.,

void eventLoop() {
. . .
try {

. . .
_Enable < BoxResult > {

display_ok_cancel_box(); // display box without blocking
for ( . . . ) {

. . . // continue independent work
}

}
} _CatchResume( BoxResult e ) { // resumption handler

/* extract result and use it */
}

}

Note that in this example, unlike in the previous ideal solution, BoxResult remains enabled after

returning from the resumption handler, e.g., inside the for-loop, which may be undesirable. Fur-

thermore, imagine display_ok_cancel_box is called from within another (much larger) library

routine. The programmer must enable propagation for the call of the large library routine as a

whole. Finally, if, unlike above, the resumption handler for the BoxResult exception is provided

by the library as well, the programmer requires a deeper understanding of implementation details

in order to place the _Enable block correctly for an exception it never handles.

A similar problem occurs when user code is executed by library routines through a call-

back mechanism as there is no easy way for a user to wrap the affected routine invocations with

an appropriate _Enable /_Disable block. Imagine an open and a close routine provided by the

programmer but called by library code. Without control over the invoking (library) code, the use

of block-based control to enable an exception for exactly the time between the calls to open and

close is impossible. For example, ideally, a programmer may want to write
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void open_socket() {
/* open communication socket */
set_prop_control( ServerFailure, ENABLE );

}
void close_socket() {

set_prop_control( ServerFailure, DISABLE );
/* close communication socket */

}
int main() {

. . .
generic_IO_send( open, close, . . . ); // invoke library routine, supply call-backs

}

but with only block-based propagation-control, the programmer must write

int main() {
. . .
_Enable < ServerFailure > {

generic_IO_send( open, close, . . . ); // invoke library routine, supply call-backs
}

}

instead, which enables the propagation of ServerFailure over the entire invocation of the

generic_IO_send library routine.

Syntactic Restrictions

The finite extent approach suffers from another class of restrictions resulting from the nature of a

language block. Imagine a parameter being passed to a routine that determines whether a certain

exception should be propagated, e.g.,

void foo( bool propE ) {
if (propE)

set_prop_control( E, ENABLE );
else

set_prop_control( E, DISABLE );
/* algorithmic code */
. . .
poll();

}

With block-based propagation-control, the same scenario requires substantial code duplication or

restructuring:

void foo( bool propE ) {
if ( propE )

_Enable < E > {
/* algorithmic code */
. . .
poll();

}
else

_Disable < E > {
/* algorithmic code */
. . .
poll();

}
}
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In an attempt to avoid code duplication, it may be possible to implement the block-based approach

to accept dynamically evaluated directives, i.e., _Mask <true, E> instead of _Enable <E> and

_Mask <false, E> instead of _Disable <E>. With such a block-based mechanism, the code from

above can be written as

void foo( bool propE ) {
_Mask< propE , E > {

/* algorithmic code */
. . .
poll();

}
}

Alternatively, the algorithmic code can be factored into a routine and the call to this routine

duplicated instead of the entire code, reducing the problem. This kind of solution may still

require extensive rewrites, e.g., when variables are used inside the algorithmic code, but these

variables are defined outside of it, or if the algorithmic code contains return or goto statements.

It is possible to conceive of other situations in which the required block structure and its

implications (e.g., with regard to the life time of objects) conflict with the intended program de-

sign. After all, a propagation-control block is merely supposed to indicate a range of instructions

in which certain exceptions can be propagated, whereas a syntactic block has more extensive

semantics. Consider an object which is instantiated automatically inside a propagation-control

block. The propagation-control semantics do not require its life time to be restricted to within

that block, but the rules for syntactic blocks do.

Note that, in general, it is impossible to separate the propagation-control block from the block

structure of the language (and thus avoid the previously described interaction) as this can produce

situations with unclear semantics. Imagine the following piece of code:

void foo() {
if ( propE ) {

_Enable < E > {
}//if

}//_Enable
}

Such a construction has no intuitive semantics and conflicts with the rules of control flow. Hence,

even if propagation-control blocks were not fully-featured language blocks, they would at least

have to be properly contained withing the block structure of the program (nesting).

Finally, since block activation occurs on the run-time stack, it can only affect the current

execution. Imagine a scenario in which one execution wants to send an exception to another

execution, even if the recipient is not prepared to handle it. In order to ensure exception propa-
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gation, the raising execution would have to enable propagation for the propagating execution. A

slight extension to the routine-based approach, i.e., an additional parameter to specify the target

execution in set_prop_control could be used in this case. Note that such a situation differs from

the propagation-control concepts introduced so far, and would probably only occur in trusted

situations among tasks, but nonetheless, the block-based approach cannot be used in this case.

2.5.3 Advantages of Infinite Extent

A propagation-control approach with infinite extent is more general than the block-based one as

_Disable < E > {
. . .

}

can be emulated4 by

{
prop_control_t oldSetting = set_prop_control( E, DISABLE );

. . .
set_prop_control( E, oldSetting );

}

and, unlike block-based propagation-control, this approach allows enabling/disabling an excep-

tion between arbitrary blocks.

2.5.4 Disadvantages of Infinite Extent

A propagation-control approach with infinite extent also has several disadvantages.

Error-proneness

Since routine-based control affects the entire program/execution, regardless of where they are

issued, the routine-based approach is more error-prone and can lead to counter-intuitive results as

in the transformation of the example from Figure 2.2, p. 28:

prop_control_t oldSetting = set_prop_control(E, DISABLE);
bar();
poll(); // may or may not propagate E
bar();
set_prop_control(E, oldSetting);

It is uncertain what can happen when poll is called since the propagation-control state may be

changed inside bar and not reset, e.g.

4A slightly more complex emulation using RAII is needed to ensure exception-safety.
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void bar() {
. . .
set_prop_control(E, ENABLE);

}

The more powerful ability to affect propagation control beyond block boundaries inevitably in-

troduces higher complexity and greater potential for errors.

Vulnerable Handlers

As a further disadvantage, infinite extent can make it difficult to safely handle an exception

since the type of the propagated exception is still enabled when control transfers to the han-

dler [MJMR01], e.g., in

try {
set_prop_control(E, ENABLE); // enable E
poll(); // propagate E exceptions

} catch ( E ) {
/* E is still enabled here */
set_prop_control(E, DISABLE); // too late?
. . .

}

when control reaches the handler, there can be a race between the disabling of E and potential

additional propagations of E, even if the call to set_prop_control(E, DISABLE) is the first state-

ment inside the handler5. POSIX signals circumvent this problem by implicitly disabling further

signals of the same kind inside the signal handler (by default). A possible solution to the problem

above is for the catch handler to have analogous semantics, i.e., E is automatically disabled within

the handler. Alternatively, if mixing of block- and routine-based propagation-control is possible,

an explicit disabling can be achieved by writing

catch ( E ) _Disable < E > { // E is explicitly disabled for the extent of the handler
. . .

}

where the semantics of such a catch-specific _Disable guarantee that potential propagation can

only occur inside the block, i.e., when the disable directive is in effect (also see the accept-specific

try-block in Section 4.3.2, p. 102).

Summary

In most cases, the functionality provided by the block-based propagation-control approach is

sufficient and even preferred, so replacing it entirely by the routine-based method is undesirable

5Imagine full asynchrony in this case.
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given its disadvantages. Nonetheless, as Section 2.5.2, p. 28 illustrates, there are situations in

which the block-based approach is lacking and for which the availability of the routine-based

approach is useful. Hence, it could be advantageous to support both approaches in one EHM.

2.5.5 Block and Routine Conflicts

Supporting two such different approaches for propagation control is problematic as there may

be situations where one conflicts with the other, and for these situations, there must exist a clear

strategy to avoid or resolve the conflict. There are two basic scenarios in which a conflict occurs:

Routine conflict: A routine-based control directive conflicts with an earlier block-based one,

e.g.,

_Disable < E > {
. . .
set_prop_control(E, ENABLE);
. . .

}

Block conflict: A block-based control directive conflicts with an earlier routine-based one, e.g.,

set_prop_control(E, DISABLE);
. . .
_Enable < E > {

. . .
}

Note, a conflict does not have to be between an enable and disable, it can equally occur between

an enable and enable or a disable and disable (homogeneous conflict) where one is routine-based,

and the other block-based. Also, there may be even more cases/conflicts to distinguish if enabling

and disabling are assigned different priorities, e.g., disables are regarded as more important and

are thus made stronger, i.e., able to supersede a conflicting enable. However, as the following

sections establish, homogeneous conflicts are irrelevant, and enable and disable are analogous

and of equal priority. Hence, without loss of generality, only the conflicts in which an enable

follows a disable in the manner depicted above are investigated here.

Homogeneous Conflicts

With regard to homogeneous conflicts, i.e., between enable and enable or disable and disable,

e.g.,

_Enable < E > {
. . .
set_prop_control( E, ENABLE );

}
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it is clear that actual conflicts can only arise with regard to an earlier opposite directive, a

disabling of E in the example above. So the conflict reduces to how the _Enable < E > be-

haves with regard to a preceding set_prop_control( E, DISABLE ) (block conflict), or how the

set_prop_control( E, ENABLE ) behaves with regard to a surrounding _Disable < E > (routine

conflict). Similarly, in a homogeneous conflict like

set_prop_control( E, ENABLE );
. . .
_Enable < E > {

. . .
}

there is no conflict between the two propagation-control directives depicted, but rather a potential

conflict with regard to a preceding directive. As the following section shows, enable and disable

are completely analogous, so no further distinction is necessary.

Prioritizing

A further distinction could be made if a conflict between an enable following an earlier disable

were resolved differently from one in which a disable follows an earlier enable (independent of

whether they are block-based or routine-based). This distinction is motivated by the fact that

enable and disable mainly serve different purposes in a program even though they are analogous

in principle.

Indeed, the most common case in which a user wants to disable asynchronous propagation

occurs when a section of code needs to execute without interruption due to stack unwinding from

propagation, e.g.,

/* suppose propagation of E is enabled here */
_Disable { // needs to be at least as strong as preceding enable

/* protected code */
}

Note, again, this protection is only effective for the extent of the block, but can be sufficient if the

programmer has adequate knowledge of the code therein.

Clearly, the situation above requires making disable at least as strong as enable. Hence, in

the block conflict case, disabling E works as intended as the _Enable is at least as strong as the

preceding disable. Block awareness inside the _Enable block is therefore preserved. In the rou-

tine conflict case, in order to maintain block awareness, disabling needs to be even stronger than

enabling in order to still protect the rest of the lexical block from incoming/pending exceptions;

i.e., the routine-based enabling of E would have no effect as it is overruled by the earlier disable.

36



Note, the initial setting would usually be (and is for µC++) for the propagation of all exceptions

to be turned off as this allows for guarded regions to be set-up safely. Now, if disabling had higher

priority, it would be impossible or at least difficult to enable any exceptions at all since any

subsequent enabling (using either form of propagation control) would be defined to be weaker.

The obvious solution would be to treat the initial implicit disable differently from an explicit

disable; this, however, results in yet another increase in design complexity, along with the non-

trivial question of how to restore this initial state after it has been changed.

On a more abstract level, it can be argued that enabling an exception is just as critical for

correct control-flow as disabling. Imagine a task waiting for an exception to be propagated in

order to continue execution, e.g.,6

_Disable { // disable propagation of all exceptions
_Enable < E > { // now just propagation of E is possible

for ( ;; ) {
poll(); // busy wait for E

}
}

}

In this case, the task polls actively until an E exception gets propagated, after which the stack is

unwound and the for-loop terminated so that the task can continue its execution after the handler

(not depicted). If the _Disable directive (in its block- or routine-based form) had higher priority

than the _Enable statement, the loop would continue forever.

Note that in this case, the E exception is used as a way of synchronizing between tasks.

While such active polling is clumsy at best, it is equally conceivable that a task could be sig-

nalled/awakened from a condition variable by means of an exception, e.g.,
_Disable {

_Enable < E > {
cond.wait();

}
}

This intuitive method of signalling (see Chapter 4) would be precluded by giving disabling higher

priority than enabling.

Theoretically, it may be possible to distinguish between empty _Disable statements (i.e.,

those that disable all exceptions) and those that block specific exception types; by making the

empty _Disable block at most as strong as the enabling one, the above example would work even

if a ‘regular’ disable had higher priority than enable. However, this solution would only work in

this particular case, and in general, the resulting semantics would be very complex and confusing.

6Note that the block-based syntax in this example is chosen merely for convenience.
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Therefore, disable should not have higher priority than enable.

In conclusion, since disable should not be stronger than enable and enable should not be

stronger than disable, clearly, both have to be treated equally. So, without loss of generality, it

suffices to only examine conflicts in which an enable follows a disable, i.e., there are only the two

basic cases, routine and block conflict as defined in Section 2.5.5, p. 35, to consider.

2.5.6 Conflict Resolution

It has already been established that the simple block-based approach suffices in many cases, but

not all. Furthermore, due to the block structure and its resulting block awareness, this method is

easier and more intuitive to use correctly. As a result, logical mistakes are rare, and some can

even be detected at compile-time (e.g., wrong block nesting). Hence, supporting block-based

propagation-control in an EHM is desirable. In order to also support the remaining cases in

which block-based control cannot be used, routine-based functionality needs to be present as

well. However, having these two approaches coexist in one EHM requires a strategy to resolve

the resulting routine and block conflicts. The following sections present different options for

conflict resolution.

Block-based > Routine-Based (“BSR”)

In order to take advantage of block awareness, routine-based propagation-control cannot be as

strong as its block-based counterpart. The result of such a design decision is that for the block

conflict, E is disabled until it gets enabled for the entire block, and upon exiting the block, it is

disabled again. For the routine conflict example, the situation is more complex: As the routine-

based enabling of E cannot override the surrounding _Disable block, the routine-based directive

has to be either

1. ignored,

2. rejected,

3. or deferred.

The first option means that no state change occurs when encountering the routine-based directive.

The second option generates some form of error, e.g., aborting the program. Both of these cases

are difficult to use since a programmer may not always be aware of the surrounding block struc-

ture of a call to set_prop_control (e.g., inside a library routine, and assuming infinite scope). The
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first case is difficult to recognize and debug, while the second case makes it difficult to write a

program that correctly anticipates all possible occurrences of the error.

In the third case, the enabling of E is deferred until all conflicting surrounding blocks are

exited. Only then is propagation of E exceptions enabled in a routine-based fashion. Note, this

option still allows for all exceptions to be turned off initially in order to set up guarded regions.

However, when one propagation-control method has priority over the other (as in this case), the

initial disabling directive must be of the weaker kind, or otherwise it is impossible to enable

propagation with the weaker method. This initializing requirement can be achieved by using an

implicit routine-based disable in the BSR case. Note that this situation is somewhat analogous

to the introduction of a ‘weak’ initial disable when distinguishing priorities between disable and

enable.

Routine-Based > Block-Based (“RSB”)

In the opposite scenario, in which routine-based propagation-control has precedence over block-

based one, the block conflict is resolved by ignoring or rejecting the block-based _Enable di-

rective. Note that deferring is impossible in this case as the routine-based directives effectively

always determine the current state. For the routine conflict, assuming E is not enabled with the

routine-based method beforehand, the exception is disabled for the part of the block before the

call to set_prop_control, and enabled afterwards, which disturbs block awareness, e.g., in

void bar() {
. . .
set_prop_control(E, ENABLE);

}
void foo() {

_Disable < E > {
s1;
bar();
s2;

}
}

propagation of E is disabled up to the call to bar (actually, up to the call to set_prop_control

inside bar), but enabled after the call, e.g., in s2, despite s2’s being located inside of a _Disable

block.

Note that when making routine-based propagation-control stronger than block-based, in order

to be able to make use of the block-based approach at all, a third state (in addition to enabled and

disabled) has to be introduced to routine-based propagation-control, e.g., unset, with rules on how
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to restore this state (e.g., enable and disable cancel each other out), e.g.,

/* state of E is unset */
set_prop_control(E, ENABLE);
/* state of E is now enabled */
set_prop_control(E, DISABLE);
/* state of E is unset again */
_Enable < E > {

/* state of E is enabled because previous state is unset */
}

The semantics of unset need to be like a weak disable, i.e., a disable that can be overridden by

any other block- or routine-based directive. Otherwise, without an unset third state, as soon as

a routine-based directive is encountered, it overrides all future block-based directives because it

has infinite extent (and scope), e.g.,

set_prop_control(E, ENABLE);
/* state of E is now enabled */
set_prop_control(E, DISABLE);
/* state of E is now disabled */
_Enable < E > {

/* state of E is disabled because the routine-based disable overrides this */
}

In addition, analogously to BSR, the initial implicit disable directive must be of the weaker

kind, in this case block-based, or unset. Note that the addition of a third state for the stronger

(block-based) method is unnecessary in BSR since an unset state implicitly exists outside of an

_Enable /_Disable block. One could argue that such an unset, i.e., a weak disable, state exists

initially, before any propagation control is encountered.

Block-based == Routine-Based (“BER”)

A third alternative is to give both approaches equal priority and let run-time precedence resolve

conflicts, i.e., the later directive overrides the earlier. This approach means a routine conflict is re-

solved as in the previous RSB case and the block conflict like in BSR. Note that theoretically, it is

possible to introduce a third, unset, state for this case as well. However, this addition complicates

the design and makes programs harder to understand with no obvious advantage.

2.5.7 Discussion

Clearly, of all cases, RSB is the least desirable for an EHM with two propagation-control methods

since it barely takes advantage of the block-based approach. This imbalance can be mitigated

by the introduction of an unset state, complicating the overall design. Using the routine-based

approach exclusively is simpler and still effective as it allows for maximum flexibility by the
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programmer, but at the cost of the challenges in writing correct programs mentioned before.

BER has the advantage of being very simple with clear semantics. This simplicity, however,

comes at the cost of losing block awareness. After each routine call inside a _Enable /_Disable

block, the current propagation-control state could have changed with the unfortunate consequence

that what the programmer sees (the lexical block) is the opposite of the actual state. This disad-

vantage may be alleviated by introducing a routine to query the current propagation-control state,

e.g., state = query_prop_control( E ). However, it is clear that such a routine only gives dynamic

insight–it cannot yield the static clarity that block awareness achieves.

BSR is the only case which preserves block awareness. As previously mentioned, this aware-

ness makes the programmer’s task easier and less error-prone. On the other hand, routine-

based directives are somewhat disadvantaged as they only affect propagation control outside of a

_Enable /_Disable block dealing with the same exception type.

Effect of BSR on Libraries

A further issue with BSR arises from the fact that program behaviour as a result of a call to

set_prop_control depends on the context in which this call occurs. For example, if a library rou-

tine uses routine-based propagation control, and the code calling it has surrounding propagation-

control blocks with respect to the same exception, then its call of set_prop_control may not

produce the desired result due to BSR’s resolution strategy for routine conflicts. This problem

especially affects library routines as they usually have no way of knowing the context from which

they are called. The responsibility therefore falls upon the programmer of the library to document

its use of routine-based propagation-control, while the user of such library routines needs to make

sure to not use block-based propagation-control of the same exception higher up in the call stack.

Such documentation can be done verbosely, which requires the programmer to follow a strict

documentation convention describing what kind of routine-based propagation-control is used in

a routine. Alternatively, such a convention can be enforced syntactically, similarly to exception

specifications, e.g.,

void display_ok_cancel_box() controls( BoxResult ) {
. . .

}

In this way, the compiler can help the programmer (using the library routine) locate possible

routine conflicts.
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Coding Conventions

With BSR, it is still effective to use block-based propagation-control of the same exception lower

in the call chain than a routine-based directive. Thus, libraries that use block-based control ex-

clusively implicitly avoid conflicts, e.g.,

void library_routine() {
_Enable < E > { // guaranteed to work under BSR

. . .
}

}
void user_code() {

. . .
set_prop_state( E, DISABLE ) // safe to assume this disable works if

// all code that calls user_code is known
library_routine(); // call library routine whose implementation is unknown

/* after return, safe to assume that E is disabled (again)
here if libraries only use block-based propagation-control */

}

This asymmetry between routine and block conflict can be seen both as an advantage and a

disadvantage: While it allows for one way of safely mixing block-based and routine-based

propagation-control, it also creates an asymmetry since libraries cannot take advantage of routine-

based propagation-control.

It should be noted that block-based propagation-control is sufficient in most cases, and its

use is encouraged in all cases in which it is effective. Furthermore, if a library needs to use

routine-based control, it is unlikely that this approach affects exception types for which the caller

has provided blocks for specific exceptions. In this case, a routine conflict that results in an

‘unusual’ behaviour of set_prop_control (i.e., it is ignored, rejected, or deferred) should occur

rarely. However, in the case of unspecific blocks that control propagation of any exception, e.g.,

_Enable { . . . }, a routine conflict is more likely. This problem is exacerbated by the convenience

of such blanket propagation-control, which suggests it is used frequently. A solution for this

problem is to provide a way to exclude certain exceptions from the blanket propagation-control

blocks, e.g., if BoxResult is an exception type used in a routine-based fashion by a library, a user

of that library who is aware of the potential routine conflict can then write

_Disable < ! BoxResult > { . . . }

which is understood as disabling any exception but BoxResult. While such a feature can help

avoid routine conflicts, it also increases the overall design-complexity.

If deferring is chosen as a way of conflict resolution, BSR can create counter-intuitive results

since routine-based directives do not take effect immediately. A possible work-around is to wrap
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the routine-based directive inside a block-based directive, e.g.,

_Disable {
. . .
_Enable < E > { // enable E immediately

. . .
set_prop_control(E, ENABLE); // make sure E remains enabled

} // outside the _Disable block
. . .

}
/* E implicitly enabled here */

In the above example, the _Enable block ensures that propagation of E is enabled immediately,

while the routine-based directive aims to ensure that it remains enabled in the future. Note that

the routine-based propagation-control only takes effect outside the _Disable block.

Querying the Propagation-Control State

As previously mentioned, it may appear advantageous to determine the current propagation-

control state. There are two possible applications for such a query: to conditionally poll for

exceptions, and to avoid conflicts. With conditional polling, it may be desirable to poll under the

condition that an exception E cannot be propagated consequentially. Such a conditional poll can

be achieved by

if ( query_prop_control( E ) == DISABLE )
poll();

This situation can occur if a piece of code is incapable of handling the propagation of E excep-

tions. However, if E exceptions cannot be handled by a piece of code, their propagation can be

more easily prevented by explicit disabling while still allowing other exceptions, i.e.,

_Disable <E> {
poll();

}

It is conceivable that a (library) routine provides different implementations depending on whether

propagation of an exception is enabled, so the availability of query_prop_control is still useful

(also see Section 5.3.2, p. 141).

In the second possible application of avoiding conflicts, it is conceivable that a (library)

routine could query the propagation-control state and then decide what method, i.e., block- or

routine-based, to use in order to avoid conflicts with upper-level propagation-control, e.g.,
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bool routinepropc = false;
if ( query_method( E ) == ROUTINE ) {

set_prop_control(E, ENABLE);
routinepropc = true;

} else {
_Enable <E> {

. . .
}

}
. . .
if ( routinepropc == true )

set_prop_control(E, DISABLE);

It is clear that such an approach may require substantial code duplication or restructuring and

increases the overall complexity. Note also how when set_prop_control is used, an opposite call

to set_prop_control is (usually) required so that the program must remember what method of

propagation-control was chosen. Furthermore, this querying capability is only useful for RSB.

In the cases of BSR and BER, it suffices for the (library) routine to use block-based propagation-

control in order to avoid conflicts. If the use of routine-based propagation-control is required

for correct functionality, then there is no way to avoid a potential conflict and querying the

propagation-control state cannot help in this case. Considering the problems with RSB and

the increase in code size and complexity that is required in any case, the ability to query the

propagation-control method is hardly useful.

2.5.8 Resolution vs. Avoidance

Both BSR and RSB avoid conflicts rather than actually resolving them: Since one method of

propagation-control overpowers the other, conflicts are either avoided by transforming the pro-

gram into one without conflicts (deferring or ignoring) or the program generates an error when it

encounters a conflict.

In contrast, BER actually has to resolve conflicts since both methods have equal priority. As

a consequence, the semantics of block-based propagation-control have to be evaluated in more

detail. In particular, it is difficult to decide how to restore the previous state upon exiting a block.

There are two basic approaches: change removal and restoration. In order to distinguish the two,

the following definitions are necessary:

Let (E, i) be the propagation-control state with regard to exception E before a directive

concerning the propagation of E is issued (i.e., an _Enable /_Disable block is entered or

set_prop_control is called). Then, when the directive is issued, the state is replaced by (E, i+1).
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Change Removal

Change removal means that when an _Enable /_Disable block is exited, only those changes to

the propagation control it implemented on entry are restored. More precisely, it means that when

such a block is exited, the previously saved state (E, i) is restored only if the current state is

(E, i + 1). The actual propagation-control state (i.e., enable or disable) is irrelevant, only the

identity (expressed through i) of the state is important. In other words, with change removal, any

directives established at the beginning of the block, should they still be in effect, are taken out at

the end of the block. Consider the following example:

set_prop_control( E, ENABLE ) // state becomes (E, i)
_Enable <E> { // state becomes (E, i+1)

set_prop_control( E, DISABLE ) // state becomes (E, i+2)
} // exit from block

Here, when the second call to set_prop_control returns, the propagation of E is disabled. Since

the _Enable block is not responsible for creating this state (the current state is (E, i + 2)), the

propagation-control state remains unchanged when exiting the block, and E remains disabled.

This approach has the advantage that routine-based changes persist beyond block boundaries,

which is consistent with the idea behind routine-based propagation-control. The disadvantage is

that the routine-based approach is favoured slightly and counter-intuitive situations as above are

still possible, namely, in which the block directive is _Enable < E >, yet the propagation of the

exception is disabled because a call to set_prop_control( E, DISABLE ) occurs within the block.

Note, this is a situation in which BER violates block awareness.

Restoration

Restoration means that when exiting a propagation-control block, the previously saved state

(E, i) is restored unconditionally, i.e., after leaving the block which set the state to (E, i+1),

the propagation-control state with regard to E becomes (E, i). In the above example, upon exiting

the block, the old state for E is restored to (E, i), enabled. This change occurs regardless of the

routine-based disabling of E that occurs within the block.

The restoration approach has appeal because it is compatible with the RAII programming

idiom [Str97]. In fact, if the routine-based approach is used exclusively in an EHM and the

block-based approach emulated as in Section 2.5.3, p. 33 with RAII or finally blocks, the resulting

scheme has the semantics of BER with restoration.

However, it is problematic that restoration favours the block-based approach by allowing an
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exiting block to revoke changes for which it is not responsible (e.g., the routine-based disabling of

E). As a result, the routine-based disable does not persist beyond the exit from the block. Recall

that routine-based propagation-control is needed exactly in order to affect propagation control

beyond block scopes, which is impossible with restoration. This situation occurs whenever there

is a routine conflict, which is exactly when conflict resolution is needed. As can be seen from their

definition, change removal and restoration behave identically when there is no routine conflict.

Hence, whenever they behave differently, restoration invalidates the advantages of routine-based

propagation-control. Therefore, restoration is not a useful conflict resolution strategy.

2.5.9 Further Alternatives

By combining previously discussed approaches, additional solutions are possible.

Combining BSR and BER (“BSER”)

As a potential fourth alternative, a mixture of BSR and BER is conceivable in which the normal

_Enable /_Disable block has equal priority to routine-based propagation-control (like in BER).

If the programmer wishes to enforce block awareness, a stronger block-based directive (e.g.,

_ENABLE /_DISABLE) could be used for which the conflict resolution rules from BSR apply.

There should be no conflict with the normal BER-like blocks and with regard to each other, both

should have equal priority (although other designs are conceivable).

This alternative has the advantage that, most of the time, the simple semantics of BER can be

used, but when there is special need to ensure that no exceptions be propagated inside a block, a

mechanism exists to achieve this goal.

Of course, by introducing another form of block-based propagation-control, the overall com-

plexity of the system increases, which may outweigh potential advantages gained from the sim-

plicity of BER combined with the convenience of block awareness.

Two orthogonal mechanisms (“BOR”)

Lastly, in order to avoid conflicts entirely, each propagation-control mechanism could apply to a

different subset of exceptions. The default behaviour should be for the propagation of all excep-

tions to be controlled using the block-based approach since it works very well in most situations.

For those situations in which routine-based propagation-control is required, a different exception

type could be used whose propagation is only affected by routine-based propagation-control.
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Since the two mechanisms employed here are entirely orthogonal, there are no conflicts to be

resolved, and the semantics are very clear. As a result, block awareness is preserved wherever it

is expected, and routine-based propagation-control can be employed wherever required.

On the downside, this approach does not allow for the same exception to be controlled by both

the block-based and the routine-based approach. On the other hand, such a capability should not

be required frequently, and in the rare case where it is, there is always the possibility to emulate

block-based through routine-based propagation-control. Finally, introducing another exception

hierarchy increases the overall complexity of the design (along with the implementation). Once

there are two hierarchies with regard to propagation control, there is not much to prevent an even

finer granularity of propagation-control, e.g., there could be special exceptions that cannot be

disabled/enabled at all, or only under special circumstances.

2.5.10 Conclusion

The preceding discussion examines the properties of finite extent in comparison to infinite extent.

While the context of the discussion is asynchronous propagation control, the analysis can be

generalized to other operations where different options for extent exist (e.g., mutual exclusion

regions). The exception is the discussion on vulnerable handlers (Section 2.5.4, p. 34), which is

unique to asynchronous exceptions handling, as well as the discussion justifying that routine and

block conflict are the only conflicts deserving consideration7 (Section 2.5.5, p. 35).

Designing an EHM that supports two propagation-control mechanisms of different extent

concurrently is a difficult task. There is no optimal way to resolve conflicts, only different com-

promises favouring different aspects.

The block-based approach offers various advantages to the user, which constitutes a strong

argument against solutions like RSB. Out of BSR and BER, BSR appeals due to its preservation

of block awareness and the resulting ease of programming. On the other hand, if block awareness

is not essential, BER with change removal is a good alternative due to its simplicity and clear

semantics, at the expense of producing some counter-intuitive results. The combination of the

two previous methods in BSER is very flexible and powerful but greatly increases the complexity

of the design.

7If, for other operations, it can be shown that no prioritization or homogeneous conflict exist, then the following

analyses can be generalized as well.
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The cleanest solution may be to entirely preclude conflicts between block and routine-based

propagation-control. Most simply, this means just using one mechanism exclusively. However,

if both are needed, conflict avoidance schemes are necessary. The only solution that precludes

conflicts entirely is to have two orthogonal exception hierarchies like in BOR, with the resulting

increase of complexity. If such a high complexity is undesirable, a good alternative is to use a BSR

method that throws an exception or even aborts the program upon encountering a routine conflict.

However, such a scheme only works if the programmer knows where routine-based propagation-

control is used (e.g., in a library), which requires additional documentation or syntax.

The requirement for simplicity of design may require choosing just one propagation-control

extent. The choice here lies between power of expression, and safety from programmer errors.

Since µC++ is employed as a teaching language, many novice programmers need to be able to use

it correctly. The choice of the safer finite extent for its propagation control is therefore fitting.

The resulting restriction of functionality has rarely caused problems in practice.

2.6 Implications of Infinite Scope

Interestingly, the choice of asynchronous propagation control has strong implications for the

asynchrony model in which it can be used safely. In general, infinitely-scoped models can only

be used safely if restricted asynchrony is in effect.

2.6.1 Infinite Scope and Full Asynchrony

To understand this restriction, suppose a language with infinitely-scoped propagation-control,

e.g., µC++, employed a full-asynchrony model. Consequently, due to the infinite scope of its

asynchronous propagation control, any routine called within the scope of an _Enable statement

must be made robust with respect to interruption at any location within its body. Consider the

example in Figure 2.1, p. 23 and the call to doSomething. If doSomething is a pre-compiled

routine, a programmer using it may have no way to inspect the code and verify whether it can

safely be interrupted by the propagation of an asynchronous exception (i.e., whether it contains

vulnerable code). Furthermore, suppose doSomething is declared as not propagating exceptions

or propagating exceptions other than DeadlineAlarm and ServerFailure. What are the seman-

tics if the propagation of asynchronous exception DeadlineAlarm starts while control is inside

doSomething? In addition, imagine doSomething raises an exception and during its propaga-

tion an asynchronous exception is triggered. As a result, two exceptional propagations are active
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within the same execution, without an obvious way to determine which one should be propagated

first or at all8.

The re-appearance of the interruptibility problem is caused by the semi-dynamic nature of

the _Enable block. While the block has static extent, it dynamically affects code that is being

called from within it. In this way, there is an implicit change of environment down the call chain

(in callee direction) interacting with the non-determinism of full asynchrony, which causes the

interruptibility problem. In contrast, poll points, which are explicit in nature, avoid the potential

interruptibility problem of the implicit _Enable since propagation can begin only at well-defined

locations. Since propagation can begin only out of these routine calls, programmers can protect

vulnerable code just as in the synchronous case. Pre-compiled routines that unknowingly call a

poll point through an indirect method (routine pointer, virtual routine call, or dynamic replace-

ment of a routine) can be protected by consistently using exception specifications. In this way,

even if programmers do not know about the poll point, they still know (at compile time9) that the

called function can propagate an exception, which is sufficient to ensure the call does not happen

within vulnerable code. If exception specifications are not used consistently, then the (immedi-

ate or transitive) caller of such pre-compiled routines needs to disable asynchronous propagation

around the call or otherwise verify that they cannot invoke poll points.

Another case in point is that pthreads, which employs asynchronous propagation control of

the dynamic kind, cannot actually use its full-asynchrony model (asynchronous cancellation)

safely, in general. Butenhof [But97], for example, warns that caution is required when using

asynchronous cancellation: It is employable only in relatively simple code, and acquiring re-

sources is not recommended. It is important to realize that this restriction is in large part due to

the infinitely-scoped nature of pthread’s asynchronous propagation control.

2.6.2 Relationship with Exception Specifications

The problematic effect of the semi-dynamic _Enable block’s infinite scope is further illustrated

by its relationship with exception specifications. In the example from Figure 2.1, p. 23, foo could

8While there are concepts of concerted exceptions [Iss91] and methods for exception resolution [CR86, RXR98b,

MT02, Rin06], which try to deal with related issues and funnel multiple exceptions into one, their practicality is

questionable. C++ and µC++ terminate the program when such a situation occurs, e.g., an exception escapes a destructor

executed during exceptional cleanup.
9C++ compilers, unlike Java, do not support the programmer in such static exception analysis, but it can still be

performed.
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be declared

void foo() throw ( DeadlineAlarm, ServerFailure )

which could be verified at compile-time (assuming C++ had static exception specification check-

ing) to ensure there are handlers in place (up the call chain) to handle these asynchronous excep-

tions. This convenient interplay between exception specifications and asynchronous propagation

control is no coincidence since both are mechanisms to declare possible propagations of excep-

tions: The former is mainly descriptive while the latter actually affects program state. Unfortu-

nately, due to the dynamic effect of _Enable, this interplay only extends in caller-direction, not

in callee-direction. A routine’s exception specification describes propagations that can occur on

its call and, as part of the routine’s interface, is mainly for the benefit of the routine’s caller. Ex-

ception specifications make no statements about how safe it is to start asynchronous propagations

within a routine, which is dependent on the routine’s implementation. The following examples

elaborate on this issue.

Suppose doSomething is declared such that it does not propagate any exceptions, i.e., throw ().

From this interface declaration, there is no way of knowing whether doSomething can be safely

called from within an _Enable block. Under the hopeful (and naïve) assumption that exception

specifications can indeed help with asynchronous propagation control, the conservative approach

is to not place such a call inside an _Enable block since doSomething is declared as not throwing

exceptions. Otherwise, an asynchronous exception propagated due to the _Enable block could

violate doSomething’s no-throw property. Note again the difference between ‘not throwing ex-

ceptions’ and ‘being able to propagate exceptions safely’. The throw() declaration here seems

more helpful than it really is since it is quite possible that doSomething can be safely interrupted

at any point, and because it handles all exceptions internally10, it does not propagate any to its

caller.

Continuing with the same example, suppose the call to doSomething is replaced by one to

callDoSomething, where callDoSomething is declared throw ( DeadlineAlarm, ServerFailure ) and

calls doSomething (see Figure 2.3). Now, while callDoSomething’s interface claims to propagate

only DeadlineAlarm and ServerFailure exceptions, their asynchronous propagation at arbitrary

locations inside callDoSomething may leave the program in an inconsistent state. Just because

callDoSomething declares it can propagate DeadlineAlarm and ServerFailure exceptions to its

10Realistically, such internal catching can only be performed with a catch-any handler that does not reraise, which

is a very dangerous technique.
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void doSomething() throw ();

void callDoSomething throw (DeadlineAlarm, ServerFailure) {
. . .
doSomething();
. . .

}

void foo() {
_Enable < DeadlineAlarm > < ServerFailure > {

. . .
callDoSomething();
. . .

}
}

Figure 2.3: Exception specifications cannot help with asynchronous propagation

caller does not guarantee that it can safely be interrupted by one in the middle of its execution.

A different issue can occur when callDoSomething is interrupted (by a DeadlineAlarm or a

ServerFailure exception) while it is calling doSomething, and as a result, doSomething is inter-

rupted. This situation contradicts the previous assumption that doSomething, according to its

exception specification, cannot be interrupted safely. Note that foo cannot anticipate this issue as

it may not be aware of callDoSomething’s implementation or doSomething’s exception specifica-

tion.

It is therefore easy to see that exception specifications are a concept orthogonal to propaga-

tion control, and that fail to indicate whether asynchronous propagation is safe or unsafe. The

static nature of _Enable /_Disable blocks with respect to their callers is helpful in analyzing the

correctness of the program, whereas their dynamic nature with regard to the routines called within

them hinders such analysis.

It is conceivable to extend a routine declaration by describing whether the routine can be

safely interrupted (similar to the mechanism from Section 2.5.7, p. 41 to indicate the use of

propagation control), e.g.,

void foo() _Enable < DeadlineAlarm > < ServerFailure > ;

which would indicate that foo can be safely interrupted by DeadlineAlarm and ServerFailure ex-

ceptions. While such syntax would indeed help calling code in understanding whether foo can be

safely interrupted, it is questionable whether there are many routines that are safe to interrupt in

their entirety. While pure functions can be classified as safely interruptible, most routines with

side effects or that interact with their environment would more likely consist of parts that are

not safely interruptible. Furthermore, if the implementor of foo is certain that it can be safely
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interrupted by the exception types above, the logical consequence is to explicitly enable these

exceptions over the entire routine body as in Figure 2.3 and instead declare foo as propagating the

exceptions, i.e.,

void foo() throw ( DeadlineAlarm, ServerFailure )

Consequently, whether or not the caller of foo takes advantage of the fact that foo is safe to in-

terrupt and adjusts its propagation control accordingly becomes irrelevant since the only possible

way to take advantage of this fact would be to enable propagation over the call of foo. However,

foo already enables propagation over its entire body, so the enabling through the caller is redun-

dant. Hence, the use of additional interruptibility syntax as part of a routine declaration is of little

practical use.

2.6.3 Restricted Asynchrony and Infinite Scope

As a consequence of µC++’s infinitely-scoped propagation control and this model’s difficulty of

safely allowing full asynchrony, µC++’s exception handling mechanism currently follows a re-

stricted asynchrony approach, i.e., it implements asynchronous exception propagation by having

the propagating execution poll at certain locations (e.g., before entering a monitor) for asyn-

chronous exceptions. Polling has the advantage that control is not stolen away from the prop-

agating execution to initiate propagation, but instead, the propagating execution voluntarily re-

linquishes control by polling at well-defined locations. Thus, the ‘surprise factor’ is eliminated,

and programmers can ensure no poll point is called within vulnerable code. This implementation

detail also means that while an _Enable statement conceptually enables asynchronous exception

propagation within its entire (dynamic) scope, in reality, only those statements containing a (di-

rect or indirect) call to a poll point can actually be interrupted. By choosing proper poll points,

it can be ensured that propagation of asynchronous exceptions can begin only at well-defined

locations, eliminating the surprise factor.

In the example from Figure 2.1, p. 23, if doSomething unknowingly triggers a poll, it may

not be in a consistent state to propagate an exception when the caller of doSomething, not aware

of its implementation, enables asynchronous propagation. However, if the poll points are well-

documented, such a situation can only arise if doSomething calls such a poll point in an indirect

way (routine pointer, virtual function call, or dynamic replacement of a routine). In these cases,

since the propagation occurs through a routine call, exception specifications should be used to
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document possible propagations. Polling within virtual-function calls is safe as long as the fol-

lowing rule is observed: Either all implementations of a given virtual routine are a poll point or

none are. Still, it is clear that this reasoning is an informal method, and thus, susceptible to error.

A proper choice of poll points in the EHM design is essential, e.g., a wait operation on a condition

variable is a good choice, whereas the assignment operator is not.

Polling can be quite efficient if used sparingly. Unfortunately, this last condition conflicts with

the requirement of timely exception handling, e.g., for real-time applications. If an asynchronous

exception indicates an emergency, maybe a timing-related alarm, it is important that propagation

of this exception, if it is safe to perform, have a low latency bound. An increase in polling

frequency helps but causes additional overhead; in general, a compromise is required [Fee93].

2.7 Summary

Writing correct programs using asynchronous exceptions is difficult due to the effects of the in-

terruptibility problem. The asynchronous control-flow introduced by asynchronous exception

handling complicates program understanding and even informal verification of correctness. This

chapter demonstrates that asynchronous propagation control is essential for reducing the difficul-

ties in dealing with asynchronous exceptions. There are various models for asynchronous propa-

gation control, characterized by different scope and extent. It is difficult to combine propagation-

control approaches with both finite and infinite extent, and for the sake of simplicity, choosing

only one may be required. The inability to use full asynchrony safely with infinitely-scoped

propagation-control can have dramatic consequences, e.g., pthread’s asynchronous cancellation

feature being almost impossible to use in practice. In general, full asynchrony is especially dif-

ficult to employ without suitable propagation-control, which is why its advantages in terms of

intuition-of-use and performance are rarely exploited. The next chapter proposes an approach to

make use of full asynchrony in a safe and intuitive manner.
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Chapter 3

Combination Approach for Safe Full

Asynchrony

This chapter introduces a novel approach for safely incorporating full asynchrony into an EHM

using existing syntax and without abandoning restricted-asynchrony semantics. In this way, it

combines the advantages of both full and restricted asynchrony, which should lead toward more

intuitive and potentially better-performing code.

Restricted asynchrony/polling requires a programming style in which poll points need to be

present in order for asynchronous propagation to occur. This requirement, while ensuring safety,

can make it unintuitive to write correct programs that use asynchronous exceptions. While the

interruptibility problem is circumvented, programmers may erroneously expect propagation to

occur within a region, but, since no poll points are present, no propagation occurs. In addition,

the duration between the time an exception is delivered and the time it is detected/propagated at

a poll point constitutes a delay in propagation. If these restrictions are deemed unacceptable, full

asynchrony needs to be employed. The advantages of full asynchrony are that poll points are not

required for propagation, so the error described above cannot occur. As well, no delay introduced

through polling exists between delivery and propagation, and as a side-effect, the lack of spurious

polling can potentially speed up a program, at least in the non-exceptional case.

However, the disadvantage with full asynchrony is that asynchronous propagation control

is the only mechanism restricting propagation. Hence, programmers wishing to write correct

programs under full asynchrony, despite the restrictions listed in the previous chapter, need to

use propagation control defensively, leading to a programming style in which every vulnerable
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piece of code needs to have propagation disabled, e.g., by enclosing it in a _Disable block. As

mentioned previously, pre-compiled code whose robustness regarding asynchronous propagation

cannot be verified must be classified as vulnerable, so calls to such routines need to be protected,

too. As a result, source code can become cluttered with precautionary _Disable blocks whose

correctness is still difficult to verify. Alternatively, since it is so difficult to master, asynchronous

raise might be avoided entirely, especially by programmers whose mind-set does not embrace full

asynchrony (see Section 1.5, p. 13).

In order to allow for safe full-asynchrony, I propose an alternative asynchrony model that

changes between full and restricted asynchrony depending on the scope of propagation-control,

and a corresponding propagation-control model with characteristics of both finite and infinite

scope. Its integration with existing programs based on a traditional semi-dynamic propagation-

control approach is discussed, as well as empirical results achieved when implementing this ap-

proach in a prototype.

3.1 Static Asynchronous Propagation Control

Recall that static propagation-control (see Section 2.3, p. 23) is characterized by a finite scope and

finite extent, i.e., the dynamic scope of the _Enable statement is eliminated, meaning its effect

is limited to its immediate static block (local/static scope). In the original example from Fig-

ure 2.1, p. 23, this reduced scope implies that while statements s1 and s2 can be interrupted by

the propagation of an asynchronous exception, the body of doSomething cannot as it is not stat-

ically contained inside the _Enable block. Hence, the interruptibility problem with regard to a

specific _Enable block is trivially solved for all routine calls contained within it, and no routine

can be surprised by an interruption for which it is unprepared.

It remains then to show that the interruptibility problem is solved for the code statically con-

tained within the _Enable block. Logically, the purpose of _Enable is to designate the block as

safe for the propagation of asynchronous exceptions. Hence, it must be clear to the programmer

placing an _Enable block that its execution can be interrupted while in that static block. With

full asynchrony, the programmer placing an _Enable block should be aware that code executed

within it can be interrupted at any time (recall the concept of block awareness, Section 2.5.1,

p. 27). It is likely that the _Enable block is placed exactly around code that is considered robust

with regard to asynchronous exceptions. Since propagation is only enabled statically, routine
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calls are not affected by the _Enable block any more, and as a result, analyzing a piece of code

for vulnerability becomes simpler. Hence, with static-only _Enable, and assuming programmers

understand their own code, the interruptibility problem is manageable even under full asynchrony

without the need for excessive use of _Disable blocks.

In order for full asynchrony in asynchronous exception propagation to be safe and mini-

mize latency, the following semantics are required. Once an asynchronous exception is detected,

propagation starts the next time control reaches a static _Enable block enabling that exception.

Consequently, propagation can either start immediately if detection occurs while executing inside

the current _Enable block, or be deferred until control reaches a static _Enable block by regular

return from a routine call or by exceptional transfer into the block.

Note that by reducing the scope of _Enable to static-only semantics, it loses its full adherence

to the modularization principle, i.e., taking a piece of code out of an _Enable block and replacing

it with a call to a function executing the same code now has different results. However, while

the modularization principle is important, there are other examples preventing modularization,

e.g., references to local variables and labels, as well as the return statement. That the semi-

dynamic _Enable block does support the modularization principle is a direct consequence of its

(somewhat unusual) semantics, and the violation of the modularization principle by the static

_Enable follows directly from its intended semantics.

3.2 Rejection of Propagation on Call Boundary

The following alternative attempt to solve the interruptibility problem using infinitely-scoped

propagation-control and exception specifications is flawed but is analyzed here for completeness.

The approach is based on propagating asynchronous exceptions when interruption is expected,

such as when a routine call occurs. Propagation can thus start at two points in time, just before

a call commences or right after a call returns, which could be implemented using call-return

polling [Fee93]. From the callee’s perspective, both of these are safe choices to relinquish control

because either the callee has not executed yet, or it is in the process of handing over control to

its caller; in both cases, it can be assumed that the callee is in a consistent state. From the

caller’s perspective, the interruption is not arbitrary since propagation results out of a call. This

behaviour is consistent with synchronous exceptions, which propagate across routine calls. This

last statement, of course, is true only if the asynchronous exception is contained in the callee’s
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exception specification. Hence, with this approach, if an asynchronous exception is detected that

is (semi-)dynamically enabled, its propagation begins on the first return from a routine whose

exception specification permits propagation of that exception. The approach can therefore be

characterized as one of restricted asynchrony, where each routine that can propagate exceptions

according to its exception specifications is a poll point.

This approach is either redundant or fails because it potentially interferes with the protocol

between caller and callee. Suppose E is an exception whose asynchronous propagation is enabled

and which is contained within the callee’s exception specification (for otherwise, propagation on

call boundary does not apply), e.g.,

void h() throw (E);
void g() {

. . .
_Enable < E > {

. . . // trigger propagation either immediately before
h();
. . . // or after call to h; same as with static _Enable

}
}

If the caller and not another routine up the call chain contains the _Enable statement (as above),

either the exception is detected and propagated inside the _Enable block before the call com-

mences or (at the latest) after returning from the callee due to static _Enable block semantics

alone; hence, no additional functionality is gained by propagating on the call boundary compared

to the static _Enable. Suppose, now, that the _Enable block is contained further up the call chain,

e.g.,

void g() {
. . . h(); . . .

}
void f() {

_Enable < E > {
g();

}
}

If E can only be used in an asynchronous context, i.e., it is never raised in or propagated syn-

chronously by the callee, then the only reason for the callee (h) to have E in its exception specifi-

cation is if it is aware of an asynchronous E exception being raised at it. Consequently, the callee

could contain an _Enable block to (statically) enable E, e.g.,

void h() {
_Enable < E > {

. . .
}

}
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in which case static _Enable semantics cause propagation to start in that _Enable block and the

additional functionality of propagation on call boundary is not needed.

If, however, the exception is already used in synchronous contexts between callee and caller,

i.e., h is implemented as

void h() {
. . .
if ( . . . )

throw E; // under certain conditions raise synchronous exception
}

then having the asynchronous propagation of E start at the call boundary can conflict with the

meaning of the synchronous E. It is likely that E in the synchronous context only occurs in

certain well-defined situations, i.e., its synchronous propagation implies a post-condition with

regard to the protocol between h and its caller. This post-condition is likely not met when E is

propagated asynchronously since asynchronous propagation implies h did not run, or ran to com-

pletion, whereas synchronous propagation would likely occur after h ran, but not to completion.

Furthermore, recall that the caller, g, cannot be assumed to know about the asynchronous use of

E as it does not contain the _Enable statement (in f). Thus, due to its asynchronous propagation

at the call boundary, the occurrence of E may cause the caller to react inappropriately. If propaga-

tion starts before the call commences, the exception in its synchronous context may imply to the

caller that some of the callee’s work is completed when it is not (since the callee never executes).

Conversely, if propagation starts after the call completes, the exception may imply that some of

the callee’s work is incomplete when it is not (since the callee ran to completion), causing the

caller to redo them. In either case, an error could be introduced into the program, either through

omitting an action or performing it twice, e.g., signalling a condition variable.

One conclusion may be that the use of E in both synchronous and asynchronous contexts

causes the problem here, and clearly, this is not a generally recommended practice. However, with

a static _Enable inside the callee, the callee, well-aware of the way E is used in the synchronous

context, can make sure that asynchronous and synchronous propagations do not conflict, e.g.,

void h() {
. . .
if ( . . . )

throw E; // raise synchronous E => implies post-condition, e.g., signal occurred
. . .
_Enable < E > { // h’s programmer has full knowledge, and can ensure asynchronous

. . . // propagation of E implies same post-condition as the synchronous
} // raise above; hence, caller of h cannot misunderstand asynchronous E

}
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Hence, the same exception type can be propagated synchronously and asynchronously without

disturbing the protocol between caller and callee by using static _Enable blocks as above, which

is a capability the propagation-on-call-boundary approach does not support. Furthermore, this

approach does not add any useful capabilities compared to the alternative static-_Enable-block

approach; therefore, it is rejected.

3.3 Delayed Handling Induced by Static Propagation Control

Recall that one motivation for full asynchrony is to ensure speedy handling of asynchronous

exceptions, but in order to ensure safety, full asynchrony can only be enabled within a static

_Enable block. If propagation is deferred because control is not within a static _Enable block,

the delay can be significant and more than when using explicit polling and infinitely-scoped

_Enable blocks, e.g.,

void rec( int n ) {
if ( n == 0 ) return; // terminal case
osacquire( cout ) << n << endl; // acquiring cout’s mutex lock is a poll point
rec( n - 1 );

}
. . .
_Enable { // enable all asynchronous exceptions

rec( 1000 );
}

Note that osacquire implicitly acquires a mutex lock to serialize printing, and the execution polls

for exceptions before acquiring the lock (poll point). With semi-dynamic propagation-control,

once an asynchronous exception is detected, the poll method can initiate propagation once in

every recursive invocation of rec, whereas static propagation-control requires waiting until all

recursive invocations return. By limiting full asynchrony to just the static _Enable block, a

propagation delay is introduced while execution occurs outside that block. This delay contradicts

one important motivation for full asynchrony, i.e., to tighten the time bound for asynchronous

exception handling, and suggests that there are situations in which full asynchrony with static

propagation-control alone is not a viable solution.

3.4 Combination Approach

Recall that the infinite/dynamic-scope effects of _Enable do not cause the interruptibility prob-

lem under restricted asynchrony, i.e., when exceptions are propagated at poll points (and the pro-

grammer is aware of them). It is therefore safe to combine the semi-dynamic-_Enable/restricted-
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asynchrony approach with the static-only-_Enable/full-asynchrony approach to produce the fol-

lowing semantics for the propagation of a delivered asynchronous exception:

1. When control reaches a poll point, and if propagation of that exception is enabled dynamically,

the exception is propagated immediately (restricted asynchrony).

2. If control is outside of a poll point,

a. if the current instruction (i.e., the next to execute) lies statically within an _Enable block

enabling the propagation of that exception, and does not lie statically within a _Disable

block nested inside that _Enable block disabling the exception, the exception is propagated

immediately (full asynchrony).

b. otherwise, no immediate action is required; continue executing and propagate when Rule 1

or Rule 2a applies.

Such an approach combines the advantages of full and restricted asynchrony, solving the delayed-

propagation problem from Section 3.3.

3.4.1 Regular Return

Consider the example in Figure 3.1. For the purposes of this example, imagine three basic cases

in which a propagating execution detects an asynchronous ServerFailure exception, each at a

different time. The . symbols represent a selected number of points in the execution at which

detection of ServerFailure can occur for the purposes of this example. In case A, the exception is

detected while control is statically within the _Enable block (lines 13 and 20). Rule 2a applies,

and propagation begins immediately resulting in handling at catch clause 3 (line 22). In case B

(line 2), the exception is detected inside doSomething before the lock acquisition performed by

the call to osacquire( cout ) (line 4). Since detection does not occur inside an _Enable block

(or poll point), Rule 2b applies, and propagation is deferred until the call to osacquire( cout ) is

executed. As the resulting lock acquisition is a poll point, Rule 1 applies. The poll point is located

inside an _Enable block’s dynamic scope allowing asynchronous propagation of ServerFailure, so

propagation of the ServerFailure exception begins, resulting in handling at catch clause 1 (line 6).

In case C (line 5), the exception is detected inside doSomething after the call to osacquire( cout ).

Rule 2b applies again, and propagation is deferred. Immediately upon returning from the call to

doSomething (line 16), control reaches the static _Enable block, and propagation begins resulting

in handling at catch clause 2 (line 17).
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1 void doSomething() {
2 . // B (deferred until the poll)
3 try {
4 osacquire( cout ) << "This is a poll point" << endl;
5 . // C (deferred until return to _Enable block)
6 } catch ( ServerFailure ) { // catch clause 1
7 // executed in case B
8 }
9 }

10 . . .
11 try {
12 _Enable < ServerFailure > {
13 . // A (immediate propagation)
14 try {
15 doSomething();
16 . . .
17 } catch( ServerFailure ) { // catch clause 2
18 // executed in case C
19 }
20 . // A (immediate propagation)
21 }
22 } catch ( ServerFailure ) { // catch clause 3
23 // executed in case A
24 }

Figure 3.1: Example demonstrating combination semantics

3.4.2 Exceptional Return

An exceptional return from a routine call deserves additional analysis. Consider the example

in Figure 3.2. An asynchronous exception AsyncEx detected inside foo (line 2) cannot be propa-

gated immediately (Rule 2b), and is deferred. When foo raises a SyncEx exception synchronously

(line 3), it transfers control to catch clause 1 (line 10), which is statically contained within the

_Enable block for AsyncEx. Since control is in a static _Enable block (line 11), Rule 2a applies,

and the AsyncEx exception is propagated, transferring control to catch clause 2 (line 14). This

behaviour may seem unintuitive because it interrupts the handling of SyncEx and propagates

AsyncEx instead. However, note that the _Enable block is nested within the outer try-block.

Hence, an occurrence of AsyncEx anywhere inside the _Enable block is intended to be handled

in the outer catch clause. Therefore, if programmers find it confusing that the execution of the

SyncEx handler can be interrupted by asynchronous propagations, they should structure their

code in such a way that handlers are not contained within the static scope of _Enable blocks

(also see the related discussion about vulnerable handlers in Section 2.5.4, p. 34).

3.4.3 Multiple Asynchronous Exceptions

It may appear that these semantics allow for multiple (asynchronous) exception propagations to be

active concurrently in the same execution, i.e., while one asynchronous or synchronous exception
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1 void foo() {
2 . // detection occurs here
3 _Throw SyncEx();
4 }
5 . . .
6 try {
7 _Enable < AsyncEx > {
8 try {
9 foo();

10 } catch ( SyncEx ) { // catch clause 1
11 . . .
12 }
13 }
14 } catch ( AsyncEx ) { } // catch clause 2

Figure 3.2: Example of interaction between synchronous and asynchronous exceptions

is being propagated, another asynchronous exception is detected and propagated. However, this

scenario cannot occur to a greater extent as it already can with restricted-asynchrony/dynamic-

enables. Recall that while detection can occur inside handler code, the execution of a handler

implies the exception is not active any more (it is considered handled, see Section 1.1.2, p. 3).

Hence, the only user code that is executed during propagation are cleanups (object destructors

in C++1). In order for detection to occur in a cleanup, either a poll point or an _Enable (for

fully-asynchronous detection) must be reachable within it. Hence, the danger of asynchronous

propagation within a cleanup is analogous to the danger of synchronous exception propagation

within a cleanup. The solution, i.e., making sure that no asynchronous exceptions can go un-

caught inside cleanups, is analogous to the rule (in C++) that no synchronous exceptions should

go uncaught inside a cleanup2. While an additional concern exists (asynchronous in addition to

synchronous propagation), it is due to the possibility of asynchronous propagation itself, rather

than due to full asynchrony. This concern already exists with restricted asynchrony and poll

points, and verifying whether a cleanup calls poll points is much harder compared to verifying

whether it contains an _Enable block.

3.5 Analysis of New Semantics

This section analyzes the impact of going from a restricted-asynchrony model with semi-dynamic

propagation-control to the combination approach as discussed above. For this analysis, it is im-

1Note that finally clauses in Java are also cleanups. However, in Java, when an exception occurs within such

a clause, it replaces an existing exceptional propagation; hence, multiple concurrent propagations due to cleanups

cannot occur in Java.
2C++ semantics terminate the program otherwise.
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portant to identify two common issues (i.e., common mistakes) programmers experience when

using asynchronous exceptions under a restricted-asynchrony model: 1. failure to propagate an

exception when one is expected, and 2. propagation of an exception when none is expected.

Failure to propagate happens when a programmer expects an exception to propagate in a

certain place (e.g., inside an _Enable block specifically placed for that purpose), but no poll points

are encountered within that region. Experiences with µC++ users3 suggest that programmers find

it unintuitive to poll for exceptions explicitly (e.g., by calling uEHM::poll), yet this idiom is often

required to facilitate propagation. The addition of full asynchrony alleviates this problem since

it allows for exception propagation in regions without poll points, and in exactly the location

where the programmer most likely expects it: the static _Enable block. As well, by adding

additional _Enable blocks down the call chain, the programmer can further decrease the delay of

propagation4.

The issue with propagation when none is expected is the source of the interruptibility prob-

lem. It occurs when programmers are unaware of possible poll points in called routines (hidden

poll points). With combination semantics, it is reasonable to assume that the propagation of asyn-

chronous exceptions inside a static _Enable block must be expected by the programmer, since full

asynchrony effectively turns the entire _Enable block into a poll point. Hence, there is no hid-

den poll point in this case. When recompiling pre-existing code, the addition of full asynchrony

can cause program behaviour to change since _Enable blocks inside that code can now cause

propagation to begin at locations other than poll points. If such a case occurs and the program

behaviour indeed changes as a result of adding full asynchrony, it means the program relies on

specific poll-point locations for program correctness, and thus, needs to be rewritten with respect

to the new semantics. A similar change would be required when giving poll-point characteristics

to a construct that previously did not poll. Finally, programs that positively rely on the dynamic

scope of _Enable continue to work under the new semantics as the new and old semantics are

identical in this regard. In conclusion, the new semantics have a positive or no effect on new code

with respect to usability issues, but may require changes of pre-existing code in certain cases.

As an alternative to the combination approach, it is also conceivable to preserve the _Enable

semantics (semi-dynamic, restricted asynchrony) and use another construct, say _Enable_static,

3These include personal experiences of people involved in the µC++ project, as well as those of undergraduate

students using µC++’s asynchronous exceptions in their assignments.
4Note that this technique is similar to placing explicit polls, and could very well be just as unintuitive.
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to provide the additional semantics (static propagation-control, full asynchrony). This splitting

approach would simplify the semantics of the _Enable block compared to the combination ap-

proach, and allow the programmer more control over what asynchrony model to enable. It would

also ensure perfect compatibility with older code (ignoring the effects of a new key word). How-

ever, it is questionable whether programmers would actually benefit from this splitting approach

as the overall complexity of programming would be at least as high as with the combination ap-

proach, and possibly higher. While it is possible that mistakes of type 2 (propagation where none

is expected) could be reduced, it is equally conceivable that mistakes of type 1 (failure to prop-

agate) could occur more often with the splitting approach. Overall, the combination approach

represents an acceptable trade-off between the additional power of allowing full asynchrony in-

side the static _Enable block and the resulting programming complexity. With more power comes

more responsibility: In comparison to traditional semantics, programmers need to make sure that

the static _Enable block is robust with regard to fully-asynchronous propagation. This additional

complexity is dwarfed by the difficulties of writing correct programs with alternative approaches

such as dynamic propagation-control and full asynchrony (e.g., with pthread’s asynchronous can-

cellation). Lastly, with combined semantics, there is the possibility that programmers can in-

tuitively use asynchronous exceptions correctly while automatically benefiting from the timely

propagation of full asynchrony.

3.6 Implementation

This section describes the different options considered, efforts required, and issues encountered

during the prototype implementation of the combination approach, i.e., the addition of static-

propagation-control/full-asynchrony, for µC++. Note that µC++ works by translating µC++ code

into C++ code for the GNU Compiler Collection (GCC) [Sta] with calls into the µC++ run-time

library. This set-up allows µC++ to work on a variety of platforms without the complex require-

ment of embedding new ideas directly within the GNU C++ compiler, but restricts how certain

language features can be implemented.

3.6.1 Rules of Engagement

The initial goal for the prototype implementation was to support all platforms supported by µC++

5.6.0 5 except for irix-mips, as that support is dropped for version 5.7.0. Later, support of the

5Supported platforms were linux-x86, linux-x86_64, linux-ia64, solaris-sparc, and irix-mips.
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prototype implementation was reduced to just linux-x86 (see Section 3.7.2, p. 80). The latest

version of GNU C++ compiler supported is 4.3.3. No modification of the GNU compiler was

allowed, i.e., the desired semantics had to be implemented entirely within the µC++ run-time

library and through source-code transformations. The reasoning behind this restriction is that

any modification of GCC creates a fork that needs to be maintained in parallel to the GCC main

branch, which develops at a rapid pace. Maintaining such a fork would require more man-power

than the µC++-project has and endanger µC++’s multi-platform support, which is maintained by

leveraging GCC’s multi-platform capabilities.

3.6.2 Simple Approach

A naïve way to implement the combination approach is to analyze the code contained within

_Enable blocks and inject ‘static’ polls, i.e., calls to the propagation routine (see Section 3.6.4,

p. 72), ideally, between each instruction or at least between calls. Brosgol et al. propose such an

approach for implementing the real-time Java specification [BHR02, §6.2].

However, the number of poll points inserted thus would be enormous in order to provide the

proposed semantics and would reduce performance in the non-exceptional case significantly. Ide-

ally, an implementation should provide the desired semantics without incurring any performance

overhead when no exceptions are raised, so any such excessive-polling approaches are infeasible.

Without excessive polling, implementing these new semantics presents three major obstacles:

how to identify static regions at run-time, how to change control flow upon returning into a static

_Enable block, and how to facilitate asynchronous detection inside the propagating execution.

3.6.3 Identifying Static Regions

In order to find out whether an instruction is contained within an _Enable block, it is necessary

to know the block’s precise extent (i.e., its borders). This information is trivially available to a

compiler (were it aware of _Enable blocks), but since µC++ employs code transformation (rather

than modifying the compiler) in order to implement _Enable blocks, it needs to be encoded

explicitly through available language features. There are two basic approaches to accomplish this

encoding: static and dynamic.
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Static Region Identification

Encoding region extent statically has the advantage that no run-time cost is incurred when en-

countering a region, which is compatible with the common philosophy that exception handling

should not have a run-time cost unless an exception is being propagated. Thus, a static solution

is desirable. One way to achieve a static solution without modifying the compiler is to exploit

the existing facilities to designate try-block regions. _Enable blocks can be transformed into

try-blocks guarding the same region. For each exception E that an _Enable block enables, the

corresponding try-block then has to contain a catch clause for a mirror type E
′
. In order to find

out whether E is enabled, the underlying exception handling run-time is instructed to search for

handlers of E
′
; a matching handler designates a matching _Enable block. This approach requires

creating a copy of each exception type and maintaining it in a hierarchy mirroring the original

hierarchy.

Unfortunately, extracting the required information from the run-time’s personality function6

is difficult given the available interfaces. As well, catch-all handlers (e.g., catch( . . . )) interfere

with this approach since they cannot distinguish between the real exceptions and their mirrors.

Hence, this approach proved unsuitable for the implementation.

Dynamic Region Identification

It is also possible to store the required information at run-time, incurring a cost. Note, however,

that µC++ already incurs a run-time cost for object creation and poll every time an _Enable block

is encountered, so storing two additional addresses (start and end) fits within the current approach.

The address can be calculated using GCC’s computed-label (unary &&) operator and placing

labels at the beginning and end of an _Enable region. Note, it is important to protect these labels

from relocation by the compiler’s optimizer by using assembly memory-references. Finally, µC++

maintains a stack of all propagation-control regions currently in effect, so established regions can

be found efficiently (in linear time).

It may appear that only _Enable regions need to have their extents recorded as _Disable

blocks do not seem to require any new semantics. However, consider the following example:

6The role of the personality function is, given an exception and stack frame context, to decide whether there are

any actions associated with the context that need to be performed as part of its language’s EHM, e.g., install a handler,

run cleanups, or check exception specifications dynamically.
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_Enable {
_Disable {

doSomething();
s1;

}
s2;

}

Note that the return from doSomething lies statically within an _Enable block, yet propagation is

clearly prohibited by the _Disable block nested within it. When identifying whether a return from

a routine call should trigger propagation, it is insufficient to query whether this return is contained

within an _Enable block; nested _Disable blocks need to be considered as well. Hence, nested

_Disable blocks require their extents to be recorded as well (or at least one of their borders).

After returning from doSomething, exceptional propagation can occur once control leaves the

_Disable block, ideally, before s2. This propagation can be accomplished by checking, upon

leaving such a nested _Disable block, whether exceptions need to be propagated, and facilitating

this propagation (see Section 3.6.4). Note, through this approach, leaving a nested _Disable block

incurs an additional run-time cost, even when no exceptions are raised.

3.6.4 Change of Control

Since entering an _Enable block constitutes a poll point, all the necessary work is already per-

formed in this case. The only other ways for control to move into an _Enable block are exiting a

nested _Disable block (see above), catching an exception in an exception handler located within

an _Enable block (see Section 3.6.4, p. 71), and returning from a call located inside an Enable

block. In order to change control upon return into a static _Enable block, three steps are re-

quired. First, it is necessary to determine the current call-chain. Second, the call chain needs to

be examined starting from the point of the detection up in caller direction until a return into a

frame is found that is statically contained within an _Enable block enabling an already delivered

exception. Finally, upon returning from that call, control needs to change such that the exception

is propagated.

Call Chain

While it would be easy to use debugging information to gain knowledge about the call chain, such

information is not always available, and a language feature such as the one being implemented

needs to work just as well in its absence. Similarly, techniques relying on frame pointers to walk

the stack are unsuitable as frame pointers are often optimized away.
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The remaining option is to walk the stack using unwinding information necessary for ex-

ception handling. GCC (among other unwinding libraries) offers an interface to walk the stack

through _Unwind_Backtrace, which is controlled by a trace function. The trace function is a call-

back routine that is called after each stack frame walked, and receives the context of the current

frame, as well as a user-supplied argument, as parameters.

Locating the Return

In order to locate the return point of interest, the stack needs to be walked frame-by-frame. During

each step, the trace function checks whether the return address of that frame is contained within a

region supplied to the trace function; if a suitable return address is found, this walking of the stack

can be terminated since the return site located must be the one closest to the point of detection

(see Section 3.6.5, p. 73).

The remaining question is what region should be supplied to the trace function. At any given

detection point, an arbitrary number of delivered exceptions can be pending, and an arbitrary

number of _Enable regions can be in effect, enclosing a return point in the current call-chain.

However, for every given exception, only the closest matching _Enable region that does not

immediately contain a _Disable block for the same type (see Section 3.6.3) needs to be considered

since the exception should be propagated as soon as control passes through that region. Hence,

for every delivered exception not yet propagated by the propagating execution, there is one such

closest-matching region. Similarly, among all these closest-matching regions, there is one that

is closer to the detection point than all others (though it may match more than one delivered

exception). It suffices to supply that region to the trace function as the return point contained

within it is the one encountered earliest.

Overall, the cost of determining the return location is dominated by the cost of walking the

stack as this operation is the most complex. However, note that this stack walking is only nec-

essary upon an exceptional raise, which is rare, and its cost is comparable in complexity to the

cost of an ensuing terminating propagation. Furthermore, this stack-walking is only required

if the closest relevant region changes between asynchronous propagations, i.e., an exception is

delivered whose _Enable block is even closer to the detection point than the previously closest

one. It is possible that hundreds of exceptions are raised at an execution between asynchronous

propagations, but the stack is only walked once, e.g., when all exceptions are of the same type and

the propagation-control state does not change. While pathological cases could be constructed, in
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general and on aggregate, the run-time effects of such stack-walking should be negligible.

Determining the relevant exception/region is performed for each detection, and requires walk-

ing the stack of propagation-control regions for each newly-delivered exception until a suitable

region is found. See Section 3.7.3, p. 83 for the performance effect of this operation.

Example

Consider the following program:

void h() {
_Enable < H > {

. . . // F and G exceptions detected here
}

}
void g() {

_Enable < G > {
h();
. . . // Propagation occurs here

}
}
void f() {

. . .
_Enable < F > {

g();
. . .

}
}

Suppose two asynchronous exceptions of type F and G, respectively, are delivered, and detec-

tion occurs while control is inside the _Enable block in h. The stack of enabled exceptions is

therefore H→G→F. Starting with the delivered exception of type F, the detection routine scans

the propagation-control stack from left to right, identifying the final _Enable block as the one

responsible: H→G→F. When this process is repeated for the delivered exception of type G, the

responsible second _Enable block is marked: H→G→F. Assuming no other exceptions have

been delivered, the _Enable < G > block is therefore determined to be the closest to the detection

site. Then, the call chain is examined, which is detection-routine→h→g→f (where callees point

to their callers). The return from the detection routine into h does not lie within the _Enable block

for G, so the stack is walked further. The return from h to g is located inside the _Enable < G >

block. Hence, propagation needs to occur when the call to h returns into g.

Change Control in Order to Propagate

Finally, in order to facilitate the change of control that causes propagation, there are two options:

code modification, and return pointer modification.
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Code Modification Code modification means that once the return point of interest is located,

that instruction is changed, e.g., into a jump/call to a routine initiating propagation (propagation

routine). At the end of the propagation routine, the replaced instruction is executed before control

resumes after the return point (assuming exception propagation does not alter control flow addi-

tionally), similar to how a debugger sets break points. The disadvantage of this approach is that

code replacement can be complex7, especially if CISC architectures and multiple architectures

with different instruction sets are supported (as with µC++). More importantly, code modification

is not execution-specific: Any code change affects all executions running this code, as opposed

to just the propagating execution, which requires disambiguation inside the propagation routine,

and affects the performance of all executions. For these reasons, this approach is rejected.

Return Pointer Manipulation The alternative is to manipulate the return address directly, i.e.,

change it to the address of code invoking the propagation routine. This technique is commonly

referred to as installing a trampoline. For this approach to work, the return pointer needs to

be stored at a mutable location, i.e., the (register) stack. This means that on architectures with

register windows, these register windows need to be flushed first. The advantage of this approach

is that it is somewhat less complex than code modification since only one architecture-specific

detail (return-address location on the stack) needs to be considered, as opposed to instruction set

formats and encoding. As well, since the stack is modified directly, this approach naturally only

affects the propagating execution since every execution has its own stack.

One disadvantage of this approach is that after modifying the return pointer, the resulting

call-chain is invalid as the return pointer no longer points to its calling frame. This leaves the

execution in a fragile state: An exception propagation that unwinds the stack could ensue, but

with a broken call-chain, the exception handling mechanism cannot determine a handler. One

solution to this problem is to make the frame of the propagation routine have its return pointer

point to the original return location, similar to injecting an additional node into a linked list. This

requires modifying the return pointer of the propagation-routine frame (or the one calling it).

Note that simply restoring the modified return pointer storage (i.e., remembering what location is

changed and putting back the old value) may suffice on some architectures; in general, however,

the location where the affected return pointer is stored could conceivably change. A consequence

7There are tools like Dyninst [BH00] that abstract away this complexity, and allow for platform-transparent inser-

tion of code into a loaded binary.
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of return pointer modification is that a previously modified return pointer always needs to be

reverted back to its original value before the propagation of any terminating exception (including

synchronous exceptions) to ensure proper handler search and stack unwinding.

A further disadvantage of modifying the return pointer is that it naturally only affects regular

but not exceptional returns from a call. Recall the example from Figure 3.2, p. 63. If an AsyncEx

exception is detected while executing foo, the immediately enclosing _Enable block is the clos-

est region to the detection point, so the modified return pointer is the one for the return from foo.

However, when foo raises a SyncEx exception, then control bypasses the modified return pointer8

and instead continues inside the catch handler. A different method must therefore be employed

in order to ensure that the propagation of AsyncEx starts inside the catch handler, just before any

user code inside the handler is executed. Note that the same criticism does not apply to the code

modification approach, in general. While it is true that modifying the code pointed to by the

return pointer only affects regular returns, the same approach can be used to change the code of

an exceptional landing pad (the point to which control transfers after unwinding the stack), thus,

forcing a change of control on an exceptional return as well. When using the return pointer mod-

ification method, an analogous approach of dealing with this issue is to modify the landing pad

encoding directly–a difficult feat. Instead, my implementation exploits the fact that a catch han-

dler must call _ _cxa_begin_catch before executing any handler code. The _ _cxa_begin_catch

routine is dynamically replaced by a routine that redoes all of the detection steps described so far,

i.e., re-evaluate the call chain and surrounding regions and modify the appropriate return pointer,

as well as calls the original _ _cxa_begin_catch before it finishes.

Since any modified return pointer is reverted before a stack unwinding, no special provisions

are required for cleanups run through object destructors. A destructor is a routine, and hence,

while executing a destructor, control can only pass through a static _Enable block if that _Enable

block is contained within the destructor itself. But establishing an _Enable block is a poll point,

so propagation would need to start there in any case; care must be taken to handle a resulting

termination exception within the destructor, for otherwise the program needs to be terminated

as two propagations cannot be active concurrently within the same execution (see Section 2.6.1,

p. 49, Section 3.4.3, p. 62).

8In fact, there is no modified return pointer as such a modification is reverted before stack unwinding.
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Propagation Routine It remains to explain how the actual propagation is initiated through the

propagation routine. Simply storing a pointer to an exception to be raised is insufficient since

there could be multiple resumption exceptions that match the (current) _Enable region through

which control passes. Instead, all delivered exceptions that are enabled inside that region are

raised in the order they were delivered (FIFO semantics of exception propagation). If one of

these exceptions has terminating semantics, this process is terminated and detection is repeated as

described previously. While the propagation routine closely resembles a regular poll as employed

inside a poll point, only exceptions enabled by the innermost closest-matching _Enable region

are considered as opposed to all dynamically enabled exceptions.

State Restoration If detection occurs while control is statically inside an _Enable block, exe-

cution can theoretically interrupt any instruction, e.g., a test/comparison. The following execution

of the propagation routine can destroy the register state and leave the execution corrupted after the

exception handler completes. This issue especially affects resumption semantics since it causes

control to return to the exact point of interruption. Signal handlers take great care to save the

register state at the point of interruption and restore it upon return. By placing an appropriate

call to the propagation function inside the signal handler responsible for the interruption, its state

restoration can be leveraged for the asynchronous-propagation implementation. Alternatively,

the installed trampoline can save/restore the state explicitly if the architecture allows access to

the entire register state as it appears at interruption. If a trampoline is installed as a replacement

for a return from a function call, e.g., in

_Enable {
int val = foo();

}

the return from foo into a static _Enable block is hijacked, the trampoline code needs to

save/restore return values passed through registers in order for val to contain the correct value.

3.6.5 Asynchronous Detection

It remains to be shown how asynchronous detection is facilitated. Note, detection occurring

inside a poll point is synchronous detection and irrelevant to this discussion. Since the rules

for propagation determine exactly when propagation has to occur once an exception is detected

(see Section 3.4, p. 61), the only remaining variable affecting propagation delay is the frequency

of detection, as well as the delay between delivery and detection (assuming that the delay between
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raise and delivery is minimal, as is the case when both are combined; see Section 1.1.2, p. 3). The

steps outlined in Section 3.6.4, p. 68 are part of the detection phase and best performed by the

propagating execution because they depend on the propagating execution’s stack contents. These

stack contents could otherwise be changing while another execution tries to access them. Deliv-

ery, on the other hand, is initiated by another execution, the delivering execution, which is often

the raising execution. In order to achieve a low delay between exception delivery and detection,

ideally, detection should take place immediately after delivery. Since delivery is asynchronous,

detection itself therefore requires an asynchronous transfer of control.

Context Switching

A simple approach is to attempt detection only when a propagating execution is scheduled for ex-

ecution, i.e., on the back side of a context switch, including those that occur as a consequence of

time slicing. µC++ provides the uMachContext::restore routine as part of the mechanism to allow

user code to be executed on the front- or back-side of a context-switch; it is run automatically on

the back-side of every context switch. By exploiting the implementation of this mechanism, a de-

livering execution can indicate to the propagating execution that there are undetected exceptions.

In accordance with the common philosophy of implementing exception handling, the check for

newly-arrived (undetected) exceptions only incurs a run-time cost if new exceptions have actu-

ally been delivered, i.e., if no new exceptions have been delivered, there is no additional overhead

introduced by asynchronous detection.

Immediate Signal

It may be possible to detect exceptions more quickly if the propagating execution is running at the

moment of delivery. The delivering execution can (POSIX-)signal the processor/thread on which

the propagating execution is running, so the signal handler on the propagating execution’s side

can then initiate detection. The delay between delivery and detection would thus be dominated by

whatever granularity the operating system guarantees for signal handling, and should be minimal

for all practical purposes.

While the immediate-signal approach can potentially achieve the lowest practical delay, it is

important to understand that the actions outlined in the context-switching approach need to be

performed in any case since it can never be guaranteed that the propagating execution is running

at the moment of delivery. Note, there is a race between determining the processor (kernel thread)
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on which a task is executing and this task’s switching to another processor. However, the only

way a task can change processors is by context-switching, and detection is guaranteed to occur on

the back-side of the context-switch. So while the race exists, it is benign since its only ‘negative’

consequence is that a task other than the propagating task can handle the signal, and thus, perform

detection, which is benign.

Evaluation

One question is whether the context-switching approach alone suffices or whether an immediate-

signal implementation is also needed to reduce delays. [MJMR01] mentions a periodic check

for delivered exceptions in their implementation of full asynchrony, but also that a “message”

may have to be sent to the target. The asynchronous nature of the communication through asyn-

chronous exceptions argues that, since there is no synchronization between raising and propagat-

ing executions, there are few expectations the raising execution can have with regard to timely

detection. Should raising and propagating execution synchronize through any of the synchro-

nization mechanisms provided by µC++, the poll points implicit in all synchronization operations

would cause detection to occur. On the other hand, it is conceivable that raising and propagating

execution communicate through other means, e.g., a shared variable:

volatile bool sent, ack, received = false;
_Task fred {

void main() {
for( ;; ) {

try {
_Enable {

if ( sent ) ack = true; // acknowledge that an exception was raised
}

} catch ( Ex ) { ack = received = true; } // signal that the exception is handled
}

}
};
void uMain::main() {

fred f;
_Throw Ex() _At f;
sent = true; // inform fred of raised exception
while ( ! ack ); // wait until fred sees sent == true or the exception propagates
while ( ! received ) {

/* uMain knows that fred ran but has not yet handled the exception */
}

}

In this way, the raising execution uMain knows that its exception could have been detected but

was not. It is unclear whether this possibility is problematic, so in order to avoid it, immediate

signalling is employed.
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3.7 Evaluation of Implementation

In order to evaluate the implementation in terms of how well it provides the semantics from Sec-

tion 3.4, p. 61, particularly Rule 2a, under the restrictions outlined in Section 3.6.1, p. 65, this

section first examines the implementation’s limitations. It then provides sample programs that

demonstrate the new functionality while comparing performance/overhead to programs using the

old restricted-asynchrony semantics.

3.7.1 Limitations

The implementation as completed so far suffers from the following problems and limitations.

Inlining

Optimizing compilers like GCC can inline calls to functions, i.e., replace the call by the in-

structions contained in that function. In this way, code that is not statically contained within an

_Enable block can be relocated to be nested within code that is contained within an _Enable,

e.g.,

void smallFunction( DB &db ) {
db.open();
. . .
db.close();

}
void interruptible() {

_Enable {
smallFunction();

}
}

Suppose smallFunction is not suitable for full asynchrony (e.g., between open and close), and

since it is not contained within an _Enable block, it appears not to be interruptible. However, if

the call to smallFunction is inlined by the compiler, the current implementation erroneously de-

termines that the entire routine is contained within an _Enable block, and potentially propagates

between the calls to open and close.

There are various ways to tackle this problem. Ideally, the compiler should understand asyn-

chronous propagation-control regions and make sure not to inline calls inside an _Enable block.

This solution requires modification of the compiler, but when such modification is impossible

(see Section 3.6.1, p. 65), workarounds have to be employed. When there is no way to influence

inlining decisions of the compiler, one solution is to wrap all function bodies inside _Disable
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blocks. Apart from the additional overhead for establishing the _Disable block, this solution

also suffers from precluding propagations through poll points. If the compiler offers control over

inlining, various approaches are possible. First, inlining could be disabled for the entire pro-

gram. Obviously, this approach, while simple and effective, precludes this optimization and may

therefore degrade performance. Second, the compiler could be instructed not to inline calls to

smallFunction, i.e., by declaring it _ _attribute_ _(( noinline )) . This approach is more targeted

than the previous one, but requires understanding (either by the programmer or by the µC++ trans-

lator) that inlining is a problem in this case. It also precludes inlining smallFunction at call sites

that are not contained within an _Enable block. Finally, GCC 4.4 allows optimization options

to be set per function definition. Thus, interruptible can be compiled with inlining disabled. This

process can be automated for any routine containing _Enable blocks. Again, some optimization

is precluded, namely at those call sites inside interruptible that are not located within an _Enable

block. Still, the last approach currently seems to be the best compromise.

Address Migration

The implementation heavily relies on addresses obtained at run-time to determine region extent.

Optimizing compilers can move code around in such a way as to invalidate the stored region

addresses. While certain hints can be given to the compiler (e.g., by the use of assembly mem-

ory references), there is no guarantee that it does not try to outsmart such hints. This problem

applies primarily to new compiler versions, so whenever a new version appears, the prototype

implementation needs to be retested thoroughly. Again, modifying the compiler to recognize

propagation-control regions would ensure such issues cannot occur.

Unwind Regions

Exception handling mechanisms based on unwind tables store the extent of regions of code and

the actions to be taken in these regions in statically-generated tables (e.g., see [BR86, KS93,

DGL95]). If a compiler has access to the complete source code, it can determine statically that

a particular function call cannot result in an exceptional propagation, i.e., the function does not

propagate (synchronous) exceptions9. In such a case there is no need to create unwind regions

encompassing calls of that function, and no respective table entries are stored. However, with

9Note, exception specifications alone may not be sufficient as their check might occur at run-time (C++), or because

of unchecked exceptions (Java).
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asynchronous exceptions as implemented in this work, any routine can effectively propagate

an exception since propagation occurs by replacing a return (of an arbitrary function) into an

_Enable region by an invocation of the propagation routine, e.g., suppose in

void foo() {
int i = 42;

}
try { // try-block appears to be guarding call to foo

bar();
_Enable < E >{

foo();
}

} catch ( . . . ) {} // but compiler may move it to exclude call to foo

the execution of foo is interrupted by the detection of an asynchronous E exception. As a result,

the return from foo into the _Enable block is replaced by a trampoline to the propagation routine,

which propagates the E exception. However, since the compiler can determine that foo cannot

raise or propagate exceptions, it could conclude that the call to foo does not propagate an excep-

tion, and thus, omit this call site from the unwind region corresponding to the try-block. When

the propagation routine propagates the E exception, it appears to propagate through the call to

foo, but since this call is not covered by the unwind regions, the EHM cannot find a handler for it.

Hence, it is not guaranteed that an exception propagated asynchronously can be handled properly

even if the function call is properly contained inside a try/catch construct suitable for the ex-

ception type. The GCC compilation option -fasynchronous-unwind-tables, which is supposed to

allow for asynchronous unwinding, does not mitigate this issue in my experience10. A compiler’s

code generation therefore needs to be modified to take asynchronous exception-propagation into

account. When such modification is impossible, workarounds are necessary.

The workaround involves tricking the compiler into believing that all functions can raise

exceptions. This trick can be performed by injecting an unreachable throw into every function,

but in such a way that the compiler cannot statically determine it is unreachable. Alternatively, by

compiling with -fnon-call-exceptions, GCC considers all function containing memory references

as capable of raising exceptions, which may require the injection of an artificial memory reference

such as asm( "" : : : "memory" ) into functions11. Both of these methods are not guaranteed to

work for pre-compiled routines; however, the second option should have a higher probability of

success.

10It is described as producing more precise unwind regions whereas less precision is needed in this case, i.e., regions

that encompass a greater number of call sites.
11Note, this assembly instruction does not have a run-time effect other than potentially precluding optimization.
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A similar issue occurs when execution is interrupted while inside an _Enable block, i.e., a

non-call instruction is interrupted. Only routine calls can propagate exceptions12, so it is not

guaranteed that the interrupted instruction is covered by an unwind region, e.g., in

1 try {
2 _Enable < E > {
3 int res = 1; // assignment
4 for ( int i = 2; i <= n; i++ ) { // assignment, increment, conditional jump, etc.
5 res *= n; // arithmetic, assignment
6 }
7 cout << "Result :" << res; // routine calls
8 }
9 } catch ( . . . ) {}

The top part of the _Enable block (lines 3-6) contains non-call instructions, which cannot propa-

gate synchronous exceptions. Only the calls to << (line 7) can potentially propagate an exception.

The compiler could therefore conceivably optimize the generated unwind region corresponding

to the try-block to encompass only the calls. Asynchronous propagation, however, can potentially

occur anywhere, e.g., inside the loop, and while it looks like the try-block guards it, because of the

optimized unwind region, it does not, and the asynchronous propagation fails to find a handler.

Testing revealed that this problem, while rare, does indeed occur. Since unhandled asynchronous

exceptions terminate the program, the issue cannot be ignored or fixed easily. Therefore, the pro-

totype implementation refrains from causing asynchronous propagation by interrupted non-call

instructions, i.e., asynchronous propagation only occurs when control returns from a routine call

into an _Enable block. Without changing the compiler code generating the unwind regions, this

limitation seems unavoidable. If the compiler can be modified, it should generate unwind re-

gions and corresponding cleanup actions encompassing all possible propagation locations (using

propagation-control analysis). Note that if propagation is possible in many locations and lots of

cleanups need to be run (e.g., many non-trivial automatic objects), such a solution could produce

large program binaries.

Asynchronous Detection

A similar problem exists when trying to perform detection from within a signal handler. Since

asynchronous detection is inherently asynchronous (as opposed to synchronous detection, e.g.,

inside a poll point), a signal handler is part of the call chain of every asynchronous detection:

Detections that are a consequence of time-slicing are ultimately called from within a timer-alarm

12Even the C++ throw-statement is converted into a routine call by GCC.

79



signal handler causing the time slice, whereas detections resulting from immediate signalling

are ultimately called from within that signal’s handler. Depending on where exactly the signal

occurs that triggers the handler, proper unwinding information may not be available, and thus,

the detection process fails since it relies on unwinding information to determine the current call-

chain. In such a case, the only solution is to continue execution until a signal occurs in a more

useful location. Note that the current implementation does not propagate exceptions when a signal

handler is part of the call chain. Such a propagation is discouraged by the C++ standard [Int98,

§18.7] and could lead to undefined behaviour.

Another issue arises from the fact that walking the stack causes the unwinding mechanism to

acquire mutex locks. Such an acquisition can cause the executing thread to block, but blocking

while executing a signal handler or context-switch restoration (which is when asynchronous de-

tection happens) may not be safe in general. Although the µC++ reference manual [Buh09] does

not restrict the use of restoration in this way, it is a potential issue warranting further investigation.

3.7.2 Obstacles

Development of the prototype implementation was plagued by several bugs and incompatibilities

of the underlying GCC/library run-time support and/or operating systems. A major reason for

these problems is that exception propagation in signal handlers is discouraged (see Section 3.7.1),

and hence, this case is not tested properly or outright rejected by compiler/operating-system de-

velopers. The reason is that asynchronous unwinding is very complex since execution can be

interrupted while setting up stack frames for recording the very information that enables the un-

winding. The result is that walking the stack using the unwinder mechanism as the result of an

asynchronous signal often does not work or does not work correctly, either because no unwinding

information exists, or because it does not account for all possible interruption points. Many of

these problems only manifest themselves in certain situations, or after millions of test iterations,

making them especially difficult to detect, and often only after significant implementation work

has been performed.

Linux-x86_64

The x86-64 architecture suffers from the following problem: Under rare circumstances, when

the stack is walked from an asynchronous-signal handler using the unwinder interface, the pro-

gram crashes due to a bug in the unwinder [Kri09b]. The linux-x64 support for the prototype
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implementation was therefore dropped.

Linux-ia64

On the IA-64 platform under Linux, the libunwind library [Lib] is generally employed to provide

stack unwinding functionality (other platforms often use the GCC unwinder by default). Libun-

wind suffers from a bug in which programs that use swapcontext and stack unwinding can crash

unpredictably [Kri09a]. Since µC++ uses swapcontext for context switching on linux-ia64, and

context switching is essential for µC++’s functionality, the result is that exception handling in µC++

under linux-ia64 is effectively broken. The linux-ia64 support for the prototype implementation

was therefore dropped as well.

Solaris-sparc

On the solaris-sparc platform unwinding/stack-walking through a signal handler is generally

not supported. However, any asynchronous detection must start below a signal handler frame

(see Section 3.7.1, p. 79). Consequently, solaris-sparc support was dropped.

Linux-x86

The linux-x86 architecture is probably the most commonly deployed out of the ones supported,

and the one most thoroughly tested by millions of users world-wide. It is therefore not surpris-

ing that this architecture exhibited the least severe problems in testing. However, even on this

platform, unwinding/stack-walking through an asynchronous signal handler can fail on very rare

occasions. Since linux-x86 was the only platform left, it could not be dropped. Instead, I devised

a way to overcome this issue by skipping the problematic signal handler frames, as depicted

in Figure 3.3. Here, “µC++ kernel code” means code that is executed by the µC++ kernel in order

to facilitate time-slicing and/or (as in the example) asynchronous detection. The unwinder frame

is the stack frame at which the stack-walker/unwinder starts. There are two signal handlers to

be skipped: the one for SIGUSR2 facilitating immediate detection, and the one for SIGALRM

facilitating time-slicing. Since interesting _Enable blocks are contained in user code only, it is

safe to skip the kernel code. The implementation keeps track of the bottom-most user-code stack-

frame, the one interrupted by the signal. The detection mechanism then uses this information to

trick the unwinder interface into resuming the stack walk in that interrupted frame, as opposed to
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SKIP

main()

interrupted user frame

unwinder frame

time slicing:

signalling:

SIGUSR2 handler

SIGALRM handler

detection immediate−

user code

µC++ kernel code

Figure 3.3: Skipping the signal handler frame during stack walking

walking through the signal handlers. Note, this kind of solution could potentially be applied on

the solaris-sparc and x86_64 platforms, which was not explored due to time limitations.

On rare occasions, it can happen that the signal interrupts the program in such a state that

walking the stack using the unwinder interface is impossible. In such a case, nothing can be

done, and the program resumes until the next time detection is attempted (context-switch, or

new delivery-signal). This restriction is unfortunate, but note that immediate propagation of an

asynchronous exception is never guaranteed. First, it is possible that control spends an arbitrary

amount of time outside of a static _Enable block. Second, even immediate installation of the

trampoline is not guaranteed as the propagating execution may not be executing (e.g., waiting

on the ready-queue) when an exception is delivered. The penalty of having to wait for another

context-switch is therefore relatively small.
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Alternative Stack-Walking

Since many of the problems above stem from issues with the unwinder interface, I implemented

an alternative stack-walker for solaris-sparc and linux-x86 that does not depend on unwinding

information. However, since such solutions–while robust with regard to signal handlers–are gen-

erally fragile with respect to interruptions when stack frames are being set-up/torn-down, this

solution was not pursued further.

3.7.3 Detection Performance

The program in Figure 3.4 compares the time for exception delivery and asynchronous detection

between a µC++ release without and one with support for combination semantics. In order to im-

plement full-asynchrony semantics, every asynchronous exception detection requires searching

through the propagation-control stack (see 3.6.4, p. 70). The version without combination se-

mantics (i.e., only restricted asynchrony) does not perform asynchronous detection, eliminating

the search, so this test primarily measures the cost impact of asynchronous detection at different

propagation-control stack heights.

The only task uMain repeatedly calls a recursive routine work that establishes propagation-

control regions enabling Ex at each recursion level. At the bottom of the recursion, uMain raises

a Dummy exception at itself, which causes ‘asynchronous’ detection (uMain is synchronized with

itself, of course) in the release with combination semantics. The raised Dummy exception is never

enabled, and thus, there is delivery and detection, but no propagation. The time to execute the

entire loop is recorded. Six different recursion levels are tested, from 0 up to 16, to account

for propagation-control stacks of different lengths. Tests were performed on a linux-86 platform

with 2.8GHz dual-core CPU and compiled in multi-processor mode with -O2 optimization level

and no debug checks. Table 3.1 summarizes the results, where measurements are given as av-

erage (standard deviation) over 20 runs for 10,000 ROUNDS. It shows that in order to deliver

and detect the same number of exceptions, the version with combination semantics takes be-

tween 7% and 73% longer. Note, the difference at LEVEL 0 is not explained by the propagation-

control stack that needs to be searched as there is no propagation control at that recursion level.

Rather, there is additional overhead (setting flags, marking the delivered exception) that the ver-

sion with combination semantics performs for each exception delivery. Subtracting its contri-

bution (0.53 ms) from the time measured for the combination approach isolates the contribution

of the propagation-control search to the run-time cost, which is displayed in the “adjusted” row.
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_Event Ex {};
_Event Dummy {};

void work( int ) _ _attribute_ _((noinline));
void work (int i) {

if ( i > 0 ) _Enable < Ex > { // establish new _Enable block
work( i - 1); // each recursion adds 1 _Enable block onto stack

} else for ( int i = 0; i < ROUNDS; i++ ) { // repeat ROUNDS times
_Throw Dummy() _At uThisTask(); // at LEVEL+1 raise at this task, unravel recursion

}
}
void uMain :: main() {

long long start = Time(); // start time
work( LEVEL ); // adjust recursion level by LEVEL
std::cout << (Time()-start) << std::endl; // calculate end time

}

Figure 3.4: Impact of asynchronous detection on performance

LEVEL

0 1 2 4 8 16

restricted 7.52 (.060) 7.50 (.061) 7.49 (.089) 7.55 (.058) 7.54 (.100) 7.50 (.069)

combination 8.05 (.070) 8.32 (.067) 8.62 (.046) 9.18 (.065) 10.37 (.067) 12.94 (.093)

difference +7% +11% +15% +22% +37% +73%

adjusted 0 +4% +8% +14% +30% +65%

Table 3.1: Comparison of delivery/detection performance (ms) between two µC++ releases

As expected, it roughly grows proportionally to the recursion level. A 73% performance penalty

seems acceptable considering that exceptional raises are rare, the increased functionality gained

with the combination approach, and that a stack of 16 propagation-control regions is likely larger

than anything encountered in practice; a stack of four propagation-control regions (with a 22%

performance penalty) is probably a more realistic upper bound.

3.7.4 Performance of Non-Exceptional Code and Exceptional Propagation

In order to measure the total performance effect of the combination approach, the program in Fig-

ure 3.5 records two things: 1. the cost incurred when not handling any exceptions (to gauge the

performance effect of polling), and 2. the total cost of raising, delivering, detecting, propagating,

and handling of exceptions. Basically, the program simulates a routine work being called repeat-

edly from within an inner loop, where work can be interrupted by an Ex exception. There are

four preprocessor macros that control the program. As before, LEVEL defines the recursion level

before an exception is raised, and ROUNDS the number of exceptions raised. ASYNC is only

84



_Event Ex {};

void work( int, bool ) _ _attribute_ _((noinline));
void work ( int i, bool raise ) {

if ( i > 0 )
work( i - 1, raise);

else // at LEVEL+1 and if raise==true
if ( raise ) _Throw Ex() _At uThisTask(); // raise exception at this task

}

void uMain :: main() {
long long first, second, start = Time(); // start time

// first measure non-exceptional performance
#if defined( SKIP )

int k = 0;
#endif

for ( int i = 0; i < 100000000; i ++ ) {
// inner loop start

work( LEVEL, false ); // simulate real (non-exceptional) work
#if !defined( ASYNC )
# if defined( SKIP )

if ( ++k == SKIP && !(k = 0) ) // skip SKIP polls
# endif

uEHM::poll(); // only poll with restricted asynchrony
#endif
// inner loop end

}
first = Time();

// then measure exceptional performance
_Enable { // to avoid _Enable poll-point, enable first

for ( int i = 0; i < ROUNDS; i++ ) try {
#if defined( SKIP )

k = 0;
#endif

for ( ; ; ) {
// inner loop start
#if defined( SKIP )

work( LEVEL, k == 0 ); // if SKIP, then only raise on first iteration
#else

work( LEVEL, true ); // simulate real work, but now with raise
#endif
#if !defined( ASYNC )
# if defined( SKIP )

if ( ++k == SKIP && !(k = 0) ) // skip SKIP polls
# endif

uEHM::poll(); // only poll with restricted asynchrony
#endif
// inner loop end

} // for
} catch ( Ex ) {}

} // _Enable
second = Time();
std::cout << first-start << "\t" << second-first << std::endl; // print times

}

Figure 3.5: Comparison of total exception-handling performance

defined inside the program compiled with combination-semantics support, and controls whether

explicit polls are inserted into the program. If ASYNC is not defined, a poll point is inserted into
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the inner loop since poll points are required in the µC++ release with just restricted asynchrony,

for otherwise, exceptions are not propagated. Finally, SKIP controls at what iteration interval

of the inner loop poll is invoked. The test environment is the same as for Section 3.7.3, p. 83.

Measurements are given as average (standard deviation) over 20 runs with 1,000,000 ROUNDS.

As before, there is only one task, uMain, raising exceptions at itself. While it would be

desirable to have a concurrent example to test truly asynchronous behaviour, the asynchrony also

makes it difficult to measure meaningful data. In experiments with two unsynchronized tasks,

one raising and one propagating, measurements varied widely with standard deviations of 100%

and higher for the version without polling13, so these experiments were not pursued further.

The core of the program is an inner loop consisting of a call to work, as well as additional

code (in the case without ASYNC) to facilitate polling. In the first phase of the program, uMain

simulates 108 iterations of the inner loop, and records how much time they take in total. The

routine work does not raise exceptions in this phase. This first test measures the performance

effect of polling as every call to poll takes time. In the second phase of the program, the same

inner loop is executed again, but with work raising an exception, which is subsequently caught

inside an outer loop. In total, ROUNDS exceptions are raised and handled in this fashion, and

the total time for this process is recorded. Table 3.2 summarizes the results for LEVELs of 0

to 4 with SKIP undefined. For the first phase, it shows that at a LEVEL of 0, the performance

of the combination approach is more than twice as fast (it takes 56% less time) as the one with

restricted asynchrony. As the recursion level is increased, the impact of the poll compared to

recursion diminishes, but the combination approach is still 17% faster at a LEVEL of 4.

For the second phase, it shows that the release with combination semantics takes about twice

as long as the restricted-asynchrony release to raise and handle the asynchronous Ex exceptions.

At first, this result may seem surprising since the combination approach is designed to minimize

the delay between raise and handling of an exception. However, by polling immediately after

the call to work returns, the restricted-asynchrony version propagates the exception at the soonest

possible moment outside of work. No approach could possibly be faster. In practice, such an

optimal situation (in terms of propagation delay) is unlikely to occur with implicit poll-points,

but would require explicit polling (as in the example). The release with combination semantics

needs to walk the stack at least once for every trampoline installed (see Section 3.6.4, p. 70). In

13These variation can be attributed to the large disparity (several orders of magnitude) between the time for propa-

gating an exception and the lowest practical time-slice amount.
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LEVEL

0 1 2 4

Non-exceptional Performance (1st phase)

restricted 0.839 (.024) 1.298 (.022) 2.100 (.045) 3.045 (.012)

combination 0.365 (.001) 0.834 (.002) 1.433 (.003) 2.524 (.006)

difference -56% -36% -32% -17%

Handling Performance (2nd phase)

restricted 10.538 (.067) 10.536 (.038) 10.537 (.052) 10.558 (.054)

combination 20.290 (.063) 21.043 (.086) 21.729 (.088) 23.174 (.107)

difference +93% +100% +106% +119%

Table 3.2: Comparison of running time (s) with and without raises between two µC++ releases

order to walk the stack, it basically performs the same actions as are needed in order to propa-

gate the exception. In effect, it therefore performs the equivalent of twice as many exceptional

propagations as the version with restricted asynchrony, leading to a run-time that is about twice

as long.

Under the common assumption that exceptions are rare, a performance decrease in the ex-

ceptional case seems justified by a performance increase in the non-exceptional case. From a

performance perspective, the combination approach therefore delivers on its promise in this case,

i.e., to increase normal program performance by eliminating polling. However, while an example

program such as this can give some insight into performance aspects, it is not a realistic represen-

tation of real-world code, and the exact performance effect depends on the relationship between

the amount of polling and the amount of computational work performed in a real program. In par-

ticular, one could argue that in this example, the restricted-asynchrony version polls more than

it needs to. In order to explore this idea, the SKIP parameter can be used to reduce the polling

frequency inside the program. Table 3.3 shows the averages14 of the metrics from the first and

second phase for the combination-semantics version (“comb”), the restricted-asynchrony version

without SKIP (“noskip”), and for SKIP levels from 2 to 2000, all at a LEVEL of 1. The values

for comb and noskip are taken from Table 3.2, and are displayed for comparison. As polling

frequency decreases (SKIP increases), the following effects are exhibited: 1. The time for the

first test decreases as relatively less time is spent on polling, and 2. the time for the second test

14Standard deviations were omitted out of space considerations, but were at most around 2%.
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SKIP

comb noskip 2 5 10 20 50 100 500 1000 2000

1st 0.834 1.298 1.153 0.943 0.900 0.874 0.869 0.874 0.865 0.864 0.863

2nd 21.04 10.54 10.69 10.79 10.85 10.91 11.17 11.62 15.05 19.31 27.84

Table 3.3: Performance (s) when adjusting polling frequency by a factor of SKIP

increases as the delay between raise and poll grows. It appears that a SKIP value between 20

and 50 gives the best compromise between high performance in the non-exceptional case and low

propagation latency. Note, however, regardless of what SKIP value is chosen, the performance of

the combination-semantics version in the non-exceptional case cannot be reached since there is

additional overhead for polling, as well as to determine the polling interval. Furthermore, it is not

a good idea to simply decrease the polling frequency by an arbitrary factor in order to improve

non-exceptional performance because values of 2000 and beyond exhibit worse performance in

both metrics, compared to the combination approach.

In conclusion, it is difficult to determine an optimal polling frequency for every program;

programmers probably do not want to insert explicit polls into their code, nor, if they do use

explicit polls, conduct a study as in Table 3.3 for every polling loop they create. Hence, the com-

bination approach remains attractive since it can be used intuitively without considering polling

frequency, and offers maximum performance in the non-exceptional case with a reasonable per-

formance penalty in the rare exceptional case.

3.8 Summary and Future Work

By introducing the concept of tying static propagation-control with full asynchrony and combin-

ing it with semi-dynamic propagation-control under restricted synchrony, this work shows that

using a more intuitive and efficient way of employing asynchronous exceptions can be achieved

without sacrificing safety or correctness. The accompanying design and prototype implementa-

tion for µC++ further demonstrate the practical viability of this approach. The techniques in this

chapter might be applicable to other problems involving poll-like behaviour, e.g., the safe-point

checks performed in garbage-collected languages such as Java and Standard ML. At the same

time, the discussed limitations of the prototype implementation hint at the difficulties of trying to

implement such a feature without native compiler and run-time support.
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The next steps in the development of this prototype implementation require further and more

extensive testing with the help of users (e.g., undergraduate students) trying to accomplish actual

tasks. Such testing will reveal whether the suggested usability advantages actually materialize. It

is conceivable that such tests might also reveal further limitations of the prototype implementa-

tion. These and the limitations discussed in Section 3.7.1, p. 76 should then be tackled. Initially,

this means solving the inlining problem by one of the methods described.

Ultimately, a production-quality implementation requires support by the compiler front-end,

but most importantly, depends on correct and complete unwinding information being emitted.

This information must allow a correct unwinding no matter in what state the program is inter-

rupted, as well as unwinding tables that correctly cover an entire region of code, i.e., try-blocks.

Using the results from this chapter, along with more extensive usage information, it might be

possible to convince compiler developers to include such functionality in their products.
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Chapter 4

Asynchronous Exception Propagation

in Blocked Tasks

Asynchronous exception propagation is a useful alternative form of communication among

threads, especially if timely propagation is ensured. However, timely propagation is impossi-

ble for blocked threads. This chapter1 presents an approach to transparently unblock threads to

begin propagation of asynchronous termination and resumption exceptions. The approach does

not require additional syntax, simplifies certain programming situations, and can improve perfor-

mance.

Note, apart from the implementation (Section 4.5, p. 108) and examples (Section 4.6, p. 114)

using µC++, this chapter employs a hypothetical language in its discussion. This language is C++-

like in syntax and exception model, µC++-like in asynchronous-exception model, and supports

a large number of synchronization and mutual-exclusion constructs. In particular, it assumes a

restricted asynchrony model since this model is more common, and some of the subtle points

in the discussion are best explained with explicit polling2. The results are still transferable to a

full-asynchrony model, as the issue of how to propagate an exception inside a blocked task is

independent of the asynchrony model employed.

1A version of this chapter has been published as [KB08].
2This restricted-asynchrony model is also used in the implementation section since, historically, µC++ has employed

a restricted-asynchrony approach.
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4.1 Motivation

Exceptional situations may be urgent (emergencies), requiring immediate propagation and han-

dling. For the synchronous raise, this requirement is met by the immediate start of exception prop-

agation at the raise. For the asynchronous raise, this requirement may not be met for a number of

reasons, such as restricted asynchrony, propagation control, or when the propagating execution

is blocked. Prior work has examined delays due to polling/restricted asynchrony [Fee93] and

different forms of asynchronous propagation-control (see Chapter 2, p. 19); this chapter analyzes

the issues when the propagating execution is blocked.

Clearly, propagation cannot proceed in a blocked execution, and if propagation is delayed

until an execution unblocks, urgency is forfeit. This situation is especially problematic if the op-

eration upon which the thread is blocked becomes irrelevant because of the exceptional situation,

or if the exception itself implies that the operation is futile. For example, suppose the raising ex-

ecution has information that a resource cannot be released in time or is deleted; hence, any tasks

waiting for the resource need to be unblocked as further waiting is futile. Therefore, algorithms

assuming that asynchronous exceptions are propagated immediately or at all may face a potential

unbounded wait or failure.

Figure 4.1 shows three tasks synchronizing on a barrier. If task C fails, an appropriate action

is to raise exceptions at tasks A and B, which can be still executing or waiting for C at the

barrier (as depicted), in order to inform them of the failure so they can roll back any changes

as part of backward error-recovery. However, if tasks A and B are blocked on the barrier, they

cannot react to this exceptional situation. The only solution is to release A and B from their

wait and allow them to handle the exception. In order to accomplish their release, task C, as

part of its error handling, needs to join the barrier. However, this resolution of the problem has

disadvantages. First, it mixes error handling code inside C with normal algorithmic code to fulfil

the barrier protocol, which is undesirable. Second, it is complex and error-prone: While raising

exceptions at other tasks is relatively easy, determining what steps of the protocol the other tasks

are currently executing and figuring out how to complete the protocol is difficult. Finally, since

C does not know whether A and B are already waiting at the barrier, it is possible that C itself

may have to wait for A and B to arrive. Hence, C wastes time waiting instead of more profitably

undoing its actions (see Section 4.6.1, p. 114 for a concrete example with time measurements).

My approach proposes that the detection of an exception for a blocked task should unblock the
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Figure 4.1: Barrier synchronization

propagating task so propagation can begin with minimal delay. This semantics follows directly

from the notion of termination: Propagation aborts the current operation, so waiting for this

operation should be aborted, too. The unblocking should occur implicitly and transparently, i.e.,

neither raising nor propagating executions need to know whether the propagating execution is

blocked, nor whether any unblocking occurred. With such unblocking semantics in place, task C

from the example in Figure 4.1 can simply raise exceptions at tasks A and B and then continue

dealing with its own exceptional situation. If tasks A and B are not blocked, the asynchronous

exception forces them to react to the failure (due to task C); if tasks A and B are blocked, they

are unblocked and the asynchronous exception forces them to react to the failure. While this

solution appears obvious, there are significant semantic and technical issues in allowing the latter

unblocking to occur in a timely fashion.

4.2 Related Work

Only a few systems attempt to address unblocking tasks in exceptional situations, but usually

in a restricted or ad-hoc manner. When Modula-3 threads blocked on an AlertWait operation,

which is the interruptible equivalent of a Wait, are alerted, they are unblocked, and the Alerted

exception is propagated [Bir89]. Fleiner et al. consider the problem of exceptional unblocking,

but ultimately reject it as unsafe for their pSather system [FFS96]. Ada tasks blocked on entry

calls are unblocked through an asynchronous transfer of control (ATC) trigger or task abort (can-

cellation); tasks blocked on a protected call or entry (due to another protected action occurring

on the same object) are not unblocked since cancelling the call requires executing a protected

action on the respective protected object [Int95, §9.5.3 (20)]. While the Java language stan-
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dard [GJSB05] does not specify its unblocking semantics, the deprecated Thread.stop (at least in

Sun’s implementation) can unblock threads waiting on some operations, but it does not work for

all blocking operations, e.g., monitor entry. Java’s thread interruption through Thread.interrupt,

can interrupt a thread blocked on certain (interruptible) calls, e.g., wait, sleep, join, and I/O on

an InterruptibleChannel, similar to Modula-3’s interruption of AlertWait. This mechanism cannot

directly raise an arbitrary exception, is not transparent (the interrupted thread knows it was inter-

rupted), and threads cannot be asynchronously interrupted while executing synchronized routines.

Java’s java.util.concurrent package provides more comprehensive interruption support based on

the lock.LockSupport.park primitive. The extension to Concurrent Haskell [MJMR01] claims to

wake blocked propagating tasks in order to propagate an exception, but the reference omits the

details of this mechanism. Since Haskell tasks can only block on an MVar (a kind of binary

semaphore with additional information transfer), and accessing an MVar is an implicit poll point

even when exception propagation is disabled, it can be assumed that the implementation exploits

these poll-point semantics in order to implement unblocking. The question is how a Haskell task

protects itself from unwanted unblocking. The .NET framework’s asynchronous thread cancel-

lation using the System.Threading.Abort mechanism can unblock threads blocked on a variety

of operations upon cancellation. A cancelled POSIX thread blocked on a cancellation point is

unblocked and cancellation begins immediately. Although the standard does not prescribe it, im-

plementations exist in which a signal raised at a blocked pthread allow it to execute the signal

handler despite being blocked.

Recall that thread cancellation does not constitute exception handling because the cancel-

lation cannot be handled, and thus, only provides a very limited form of termination. Simi-

larly, signal handling is only a crude form of resumption, and a heavy-weight feature requiring

user/kernel mode switching. Furthermore, Modula-3, Java, Ada, and .NET3 do not support re-

sumption; Modula-3, Java and .NET do not support certain high-level concurrency-concepts, e.g.,

Ada-style rendezvous.

4.3 Designing Unblocking Semantics for Different Instruments

Since a blocking operation usually involves a routine call, intuitively, this call should be per-

ceived as responsible for raising the exception. Whether a potentially blocking call succeeds

3Visual Basic supports a form of synchronous resumption.
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immediately or after some blocking is usually transparent to the programmer. Analogously, the

perceived control flow should not differ between the case of an exception that propagates imme-

diately upon calling the blocking routine, and that of the exception propagating after the thread

has been blocked for some time. Neither should the raising propagation have to concern itself

with whether the propagating execution is blocked. In this way, the program behaves consistently

in both cases with predictable control flow, and no new syntax is required. Given the identi-

cal control flow of the blocked and non-blocked exceptional propagation, it would be useful if

the local state, i.e., the state of the propagating task and data it accesses in connection with the

blocking operation, could be identical. The point in time immediately preceding a blocking call

and in which an exception can potentially be detected (e.g., through polling) shall be denoted t−.

Similarly, t+ is the point in time immediately succeeding a blocking call when a task becomes

active (after being blocked) and an exception can be detected (e.g., through polling). Time t is

between t− and t+, when a task is blocked and a pending exception is detected. Rephrasing the

above design goal formally, the control flow resulting from an exception detected at t shall appear

to be identical to that resulting from an exception detected at t−. The following is an analysis

and description of detailed semantics for the different scenarios in which a task can block. While

the blocking instruments studied are based on those supported by µC++, the overall analysis can

apply equally to any language with similar blocking instruments. Terminating semantics (throw)

are analyzed first; resumption semantics are added to the design, subsequently.

4.3.1 Mutex Lock

The simplest blocking scenario is a mutex lock, which blocks the acquiring task if another task

already owns the lock, e.g.:

MutexLock lock;
. . .
lock.acquire(); // block if owned by another task

Basic Design

As discussed in Section 4.3, it is sensible to poll before (and without unblocking semantics, after)

a potentially blocking call. The following example accounts for this possible exceptional control-

flow before the call:
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MutexLock lock;
try {

poll(); // propagation at external t−
lock.acquire(); // propagation at t
/* critical section */
lock.release();

} catch(. . .) { } // no need to release lock

Routine poll checks for pending asynchronous exceptions delivered to the execution (task), and

its call4 here represents an explicit poll at t− before the potentially blocking call to acquire.

Note, an explicit poll is shown here for illustration purposes only; in practice, a poll at t− is

performed implicitly as part of acquire. Since t− is defined as the last point in time at which an

exceptional detection is possible, the call to poll is the last possibility for exceptional detection

before blocking in acquire. To simplify the example, assume that neither the critical section

nor the call to release can propagate an exception. Hence, with traditional blocking semantics,

it follows that an exceptional propagation can only originate in poll in the example above; if

no exceptions are propagated through poll, then acquire either blocks or proceeds, but does not

propagate an exception. Hence, the handler can assume the lock is not acquired.

To model unblocking semantics with the proposed semantics from Section 4.3, p. 94, the re-

sulting control flow upon detection of an exception when blocked on acquire (at t) should appear

identical to the previous case, in which propagation originates in poll at t−. After a delivered

exception is detected, a blocked propagating execution (task) is unblocked; the propagating exe-

cution can then propagate the exception, and control continues to the handler. This case differs

from the previous one in that an exception can now originate inside the call to acquire. The ques-

tion is whether the state of the lock is different in this case, i.e., whether the lock is acquired when

control reaches the handler. If the lock can be acquired, the handler may have to release it, which

requires the ability to explicitly check the lock owner (not always possible). Clearly, the handler

would not be the same as in the previous example because control flow in the handler depends on

whether the propagating execution is unblocked, violating the transparency requirement.

To deal with this anomaly, it is necessary to define the state of the lock after exceptional prop-

agation as follows. A call to acquire shall be defined as having failed if it returns exceptionally,

i.e., propagates a terminating exception. Failure implies the lock is not acquired. Hence, if a

call to acquire propagates an exception, the propagating task fails in acquiring the lock5. This

definition implies an invariant on the lock implementation: If an exception is propagated from

4Assume the call to poll cannot block.
5If the lock is an owner lock, i.e., one that preserves lock ownership across recursive acquisitions, then the propa-
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anywhere within acquire, the lock must be brought into a state consistent with acquisition failure

and may require undoing any transfer of ownership (as encoded by the lock data-structure) com-

pleted so far. Conversely, if the call to acquire returns normally, it is deemed to be successful,

implying lock acquisition for the calling task. In other words, acquire provides a strong guarantee

according to [Abr98]. The proposed semantics for exceptional unblocking force a propagation

from within acquire, which means acquisition failure. The result is that at t− and t, control flows

match, as well as their respective lock states. This match means transparency with regard to

blocking, which indicates a sound design.

Having designed unblocking semantics for the mutex lock, other mutex/synchronization in-

struments of a similar nature can be treated analogously. For example, if an asynchronous excep-

tion is detected for a task waiting in the P routine of a semaphore [Dij65], the task is unblocked,

P acts as the source of the exception, and the semaphore counter is adjusted to account for the

unblocking task.

Poll at t+

The discussion so far suffices to justify the design of unblocking semantics. However, for com-

pleteness, observe the effects of polling at t+. When designing a language without unblocking

semantics, it is a good idea to place a poll at t+, after a task resumes execution after blocking,

since exceptions delivered while the task is blocked need to be detected and potentially propa-

gated. Whether such a poll should be placed inside the potentially-blocking acquire or explicitly

by the programmer is an important consideration since the exact placement of this poll at t+ is a

subtle detail that can have complex control-flow consequences. Consider the following example:

try {
poll(); // propagation at external t−
lock.acquire(); // propagation t

→ poll(); // propagation at external t+
/* critical section */
lock.release();

} catch(. . .) { } // no need to release lock ???

Here, the poll at t− can be considered to be inside or outside acquire; propagation through this

poll leads to the same unacquired lock state in both cases. However, the exact location of a

poll at t+ requires a more complex analysis. If, unlike the example above suggests, the poll is

gating task may still own the lock despite this failed acquisition if it already owns the lock from a previous successful

acquisition.
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contained within the call to acquire, exceptional propagation always implies failure to acquire,

and therefore, no need for the handler to release the lock. Alternatively, if the poll occurs outside

acquire (as indicated above), e.g., it is placed there explicitly by the programmer, a propagation

through this poll implies successful acquisition, and hence, the need to release the lock inside the

handler. This quasi-state of the lock presents a dilemma in the handler, since the state of the lock

cannot be deduced implicitly inside the handler (and possibly cannot be queried directly). Hence,

the example as depicted above does not work in general and the try-block needs to be adjusted to

exclude the poll at t+.

Alternatively, the example above can be fixed by employing the resource allocation is ini-

tialization (RAII) technique6 [Str94, p. 389] (see Figure 4.2). Acquiring the lock thus becomes

exception-neutral, i.e., if the lock acquisition succeeds, RAIIacquire’s destructor automatically re-

leases the lock after exception propagation without hindering the propagation. Hence, even when

the poll at t+ is placed outside the acquisition routine, code inside the handler can assume the

lock to be unacquired. Thus, propagation in all three cases (t−, t, t+) leads to equivalent control

flow, which is matched by equivalent lock state, regardless of where exactly the polls are placed.

The complexities of ensuring equivalent control-flow in all cases for this example argues

in favour of placing the poll at t+ inside the blocking call, i.e., acquire in this case7. Note,

when full asynchrony is supported, propagation can potentially occur anywhere it is permitted

by propagation control, which implies an RAII-style acquisition is generally required to ensure

exception-neutral lock release.

4.3.2 Monitor

A monitor provides mutual exclusion to a shared resource, and synchronization by block-

ing/unblocking tasks within the monitor [Hoa74]. This discussion also applies to task types that

provide mutual exclusion and synchronization, e.g., Ada’s task type. There are multiple defini-

tions for monitor semantics [How76, BFC95], and there are multiple approaches for representing

the notion of a monitor in a programming language. This discussion represents a monitor as a

class, first proposed in [Hoa74], with multiple public (mutex) members of which only one may

6While it could also be fixed by a Java-style finally clause, this would potentially require a restructuring of existing

or insertion of additional try-blocks, e.g., for multiple lock acquisitions. RAII can be employed without altering the

block-structure of the program.
7Note, unblocking at t obsoletes the need for a poll at t+.
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struct RAIIacquire {
MutexLock &lock;
RAIIacquire( MutexLock &l ) : lock(l) {

lock.acquire(); // propagation at t
}
~RAIIacquire() { // only executes if

lock.release(); // constructor completes
}

};
MutexLock lock;
try {

poll(); // propagation at external t−
RAIIacquire x(lock); // propagation at t
poll(); // propagation at external t+
/* critical section */
/* lock released implicitly at end of block */

} catch(. . .) { } // no need to release lock

Figure 4.2: Safe Locking/Unlocking using RAII

execute at a time. Applying the mutual-exclusion property across the public members ensures

safe access to the shared data defined within the class.8 Mutual exclusion is implicitly acquired

and released as threads call into and return from mutex members. From within a mutex member, a

task performs synchronization by calling wait on an implicit or explicit waiting queue (condition)

to block, which releases the monitor mutual-exclusion so other tasks may enter, or by unblock-

ing other waiting tasks by calling signal on an implicit or explicit waiting queue. An alternative

mechanism for synchronization is to use the Ada-style accept to block until after one of a speci-

fied list of mutex members is called. Figure 4.3 shows the syntax for the two alternate styles of

synchronization.

Figure 4.4 shows four possible synchronization operations in a generic monitor. The dashed

lines represent blocking actions; the solid lines represent unblocking actions. The task executing

in the monitor is the owner (black circle), and the monitor is active (implying mutual exclusion

is acquired). Tasks calling an active monitor are blocked on the calling queue and marked with

the mutex member called (e.g., task b called mutex member m1). If the owner task waits in the

monitor, it blocks on an implicit or explicit condition (multiple explicit condition-queues may

exist) and the monitor gets a new owner or becomes inactive. If the owner signals the implicit

or an explicit condition queue, there are two options denoted by signalblock and signal. The

signalblock makes the signalled task the new monitor owner and the signaller task blocks on

the implicit ready list [Hoa74, p. 551]). The alternative signal retains the signaller task as the

8Modula-3, Java, and C# also provide a lock statement for acquiring the monitor lock, which allows finer-grain

locking than for an entire class member.
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signal/wait accept

monitor M {
/* shared, protected data */
condition cv; // queue of waiting tasks

public:
void m1() { // mutex member

cv.wait(); // wait for signal
}
void m2() { // mutex member

cv.signal(); // signal queue
}

}

monitor M {
/* shared, protected data */

public:
void m1() { // mutex member

accept m2; // wait for call to m2
}
void m2() { // mutex member

. . .
} // implicitly signal task waiting for call

}

Figure 4.3: Alternate Synchronization Styles
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Figure 4.4: Generic Monitor Semantics

monitor owner, and the signalled task is moved from its condition to the ready list. The accept is

analogous to the signalblock, but selects from the calling queue versus a condition queue using a

selection criteria that searches for the first task calling a specified mutex member. For example,

accept m2 unblocks task c because it is the first task waiting to call mutex-member m2, and it

becomes the new owner while the acceptor blocks on the implicit ready list. If no task is calling

the specified mutex-member, the monitor remains active (i.e., no new owner task) until such a

call is made, at which point the caller becomes the new owner. This type of synchronization is

often called rendezvous. It is possible to specify a list of mutex members in the accept statement

using multiple accept clauses, e.g.,

accept m1 { // 1st accept clause for calls to m1
. . . // code executed after call to m1

} or accept m2 { // 2nd accept clause for calls to m2
. . . // code executed after call to m2

}

which unblocks the first calling task (acceptee) that called one of the mutex members in the list.

100



After the acceptee waits in or exits from the monitor, the code after the accept clause is executed

by the acceptor task so it knows which of the calls occurred. Before a task waits in or exits from

a monitor, it attempts to keep the monitor active by implicitly unblocking a task from the ready

list, and if no task is there, from the calling queue, and if no task is there, the monitor becomes

inactive until a call to a mutex member occurs. This process of selecting a new monitor owner is

called monitor scheduling.

The purpose of the ready list is to give signalled/acceptor tasks priority over calling tasks to

prevent busy-waiting [Hoa74, p. 550]. Some monitor implementations violate this property by

merging the ready list with the calling queue, e.g., Java, C#, pthreads. The property is violated

because calling tasks can barge into the monitor ahead of signalled tasks, which requires busy-

waiting to retest the synchronization criteria.

For analyzing asynchronous unblocking, monitor execution is divided into the following cate-

gories: entry, wait/signal synchronization, accept synchronization, and scheduling after wait/exit.

Entry

A call into a monitor is similar to lock acquisition, so the same semantics can be used to achieve

the desired properties, i.e., unblock the task and let the propagation appear as if it originates from

the call into the monitor. Because of the similarity to lock acquisition, there is consistency of

control flow between t− and t. At t+, immediately after entering the monitor, an entering task

owns the monitor, but most monitor implementations ensure that exception propagation causes it

to automatically release ownership, so control flow continues just like in t− and t, which is the

same as the case for a mutex lock with RAII.

Wait/Signal Synchronization

When a task waits on a condition variable at t−, i.e., before it blocks, the task owns the moni-

tor. Hence, if an exception is detected at t−, it is propagated and handled by the monitor owner.

For an exception detected at t, i.e., after starting the wait, another task may have been sched-

uled in the monitor and possibly made state changes. If handling an exception by a blocked task

requires monitor state-changes, the propagating task must re-acquire the monitor, which delays

exception handling. It would be preferable if the exception could be propagated directly from

the routine call through which the propagating task entered the monitor, bypassing part of nor-

mal stack unwinding. In this way, there would be no need to compete for monitor ownership
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as propagation would start outside of it; however, such a solution is infeasible. First, bypass-

ing violates the requirement that control at t− and t be identical. Second, if the stack is not

unwound properly between the call to wait and the entering call, handlers performing cleanups

are not run, which may violate monitor invariants. Essentially, the same cleanup that occurs for

a synchronous/asynchronous exception must occur for an asynchronous exception unblocking a

task. Hence, the sensible design is to unblock the task, gain monitor ownership (which may re-

quire additional waiting on the monitor ready-list or some special queue), and have the exception

propagate from the call to wait. The advantage of this design is that control flows at t− and t are

identical. The disadvantages are that monitor ownership and state can change between t− and t,

which can invalidate the advantage of identical control-flow. Furthermore, with the need to regain

monitor ownership, there is no guarantee for timely handling of the exception. In fact, depending

on monitor scheduling performed after t, the propagating task can be delayed indefinitely. Finally,

by raising an exception at a task blocked on a condition variable, the raising execution implicitly

influences scheduling inside a monitor of which it possibly knows nothing (also see Section 4.3.2,

p. 104).

The conclusion is that a task blocked at t can at best be moved to another monitor queue by

the asynchronous exception to expedite propagation, but the exception handling process cannot

be accelerated further. The propagating execution must wait until the monitor becomes available

before propagation can start when it is scheduled next. This restriction means the earliest the

propagating execution can execute is the time when the monitor owner (at t) relinquishes its

ownership.

Accept Synchronization

With accept synchronization, the analysis for a call by an acceptee is the same as that for an entry

call. The analysis for the acceptor task is more complex, with separate cases when t is before or

after an acceptee enters the monitor.

In the first case, i.e., if the exception is detected while the acceptor is blocked waiting for the

rendezvous to begin, but before an acceptee enters, e.g.,

try { // try-block guarding accept statement
/* action before rendezvous */
accept m1; // rendezvous with calling task
/* action after rendezvous */

} catch( Ex ) {. . .} // possibly undo acceptor’s “before” action
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the general semantics remain the same, i.e., the exception detection causes the acceptor to un-

block, terminating the rendezvous similarly to a rendezvous time-out [BHLC00]. Then, exception

propagation begins as if originating from the accept statement and is caught by the handler, which

may have to undo the acceptor’s actions because the rendezvous did not occur. Furthermore, the

acceptor task had ownership of the monitor before it accept-blocked, and since no task can have

entered the monitor before the exception detection (since the rendezvous did not materialize), the

propagating task can re-acquire ownership immediately. Hence, no local state change between t−

and t is possible, so consistency between propagations at t− and t is maintained.

In the second case, i.e., the acceptor is blocked during the rendezvous while an acceptee is

executing a monitor call at t, the acceptor task cannot be unblocked from the ready list until it

can obtain ownership of the monitor. The same analysis as in the condition-variable case applies

since the acceptor task is blocked on the ready list; specifically, propagation starts as soon as the

propagating task is rescheduled inside the monitor, similar to the behaviour at t+. However, since

the exception propagation now begins as if originating from the accept statement, the acceptor

cannot distinguish this case from the previous one where no accept call occurred in an enclosing

try-block handler. Differentiating these cases is necessary if the acceptor needs to undo the ac-

ceptee’s actions or take some other specific action due to the asynchronous exception. Placing a

try-block around the code after the rendezvous is too late because the exception propagates from

the accept statement. To allow the acceptor to identify this case, a try-block specific to an accept

clause9 is given special semantics:

try {
/* action before rendezvous */
accept m1 try { // special try-block specific for this accept clause

/* action after rendezvous */
} catch( Ex ) {. . .} // possibly undo acceptee’s actions

} catch( Ex ) {. . .} // possibly undo acceptor’s “before” action

Propagation of the asynchronous exception starts inside the special try-block only if the acceptee’s

call occurs; no propagation can take place between the accept clause and its try-block. Apart

from this property, this try-block is the same as an enclosing one, and it guards against exceptions

detected while blocked (at t) as well as those detected while executing code inside it (after t+).

The control flow at t is now the same as the control flow at t+ as both see the exception arriving

within an accept’s try-block. It might be argued this behaviour now violates matching control

flow at t− and t. But unlike the previous cases, there is a fundamental difference here between

9This construct is similar to a C++ constructor try-block.
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t− and t.10 At t−, the rendezvous has not begun yet, whereas at t, the rendezvous is already

underway and the acceptor task is blocked due to monitor scheduling. If the programmer does

not take advantage of the special semantics of the specific try-block and instead guards the entire

accept statement, the control flows at t−, t, and t+ appear identical. However, since the acceptee

was allowed to execute within the monitor, a local state-change could have occurred after t−.

Scheduling Considerations

The desire to wake tasks blocked in a monitor in order to handle exceptions is based on the goal

of quick exception-handling. The minimum action is to move the propagating task from wherever

it is blocked to somewhere on the monitor ready-list. The exact placement on the monitor ready-

list depends on two different philosophies. One philosophy is that the exception is a phenomenon

localized to the propagating task and should not affect the rest of the tasks in the monitor. Another

philosophy is that the exception is the manifestation of a situation affecting the entire program,

and the propagating task is merely designated to deal with it. In this view, a propagating task

should probably have precedence over non-propagating tasks in monitor-scheduling decisions

as it is responsible for rectifying a potential threat to the entire system. These two alternative

philosophies also affect other design decisions, e.g., if an exception cannot be handled, should

just the propagating task be terminated or the entire program?

Regardless of the philosophy with respect to local/global effects of exception handling, any

preferred scheduling of propagating tasks has to coexist with other forms of preferential task

scheduling, such as task priorities. In general, the explicit prioritization of tasks is a more funda-

mental method of determining task precedence. Thus, a higher-priority task on the monitor ready-

list should never be disadvantaged by the preferred treatment of a propagating lower-priority task;

otherwise, analyses using task priorities cannot be applied any more (hard/soft real-time). How-

ever, an asynchronous exception is a communication between tasks, and it can be said that the

propagating task handles the exception on behalf of the raising task. Thus, an argument can be

made that the propagating task should temporarily inherit the effective priority of the raising task

at the time of the raise if that priority is higher than its own. The remaining discussion assumes

no or equal task priority.

If a task is both scheduled normally (e.g., by a signal) and also has a pending exception prop-

agation, then there are two possible orderings at which it can be scheduled: the one prescribed by
10This difference also exists for waiting/signalled tasks; however, there is no resulting difference in control flow.
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the normal schedule, and the one prescribed by exceptional unblocking (the exceptional schedul-

ing). A propagating task should never be disadvantaged in its scheduling order (with regard to

its normal scheduling order) because of an exception; hence, the correct design is to choose the

earlier between these two orderings.

The following paragraphs examine possible exceptional scheduling orders. There are three

basic strategies for incorporating propagating tasks into the monitor scheduling: promoting, de-

moting, and neutral. The promoting strategy gives propagating tasks precedence over normal

tasks, e.g., by placing them in a special list scheduled before any other. Conversely, the demoting

strategy schedules any other task before a propagating one, e.g., by placing a propagating task

at the end of the monitor ready-list. The neutral strategy treats propagating and normal tasks

alike, in principle. Still, there are various nuances to implement such a strategy, and thus, bias the

scheduling on a subtler level. The simplest neutral strategy is to treat the propagating task as if it

had been signalled at the moment of detection, i.e., it is moved to the front of the monitor ready-

list. This approach is equivalent to signalling the propagating task, which subsequently polls for

asynchronous exceptions after waking up. However, this exceptional signal is sent by the raising

task, which may not be the monitor owner. Note, while some implementations allow signalling

without ownership from outside a monitor, e.g., POSIX threads, many monitor implementations

do not.

In the demoting strategy, the time until a propagating task can execute is at least that of a

normal signal with a subsequent poll by the waking propagating task, but likely more due to

other tasks’ being scheduled ahead. With a neutral strategy, other tasks can be scheduled ahead

of the propagating task, which may result in no speedup of exceptional propagation compared

to a normal signal and poll. With a promoting strategy, propagating tasks are scheduled at the

earliest possible time, i.e., when the current monitor owner relinquishes ownership. However,

this scheduling makes it more difficult to reason about the order of execution after successful

synchronization since asynchronously arriving exceptions perturb the normal scheduling order.

Nevertheless, this effect cannot be avoided if the goal of the promoting strategy is to favour

propagating tasks over the normal ordering for timely execution. Note, scheduling perturbation is

only noticeable in monitors with well-defined scheduling order; monitors with no strict ordering,

e.g., when barging is allowed, have nothing to perturb.

Choosing the right strategy depends on which compromise is preferred between predictable

scheduling order and quick exception-handling. Using a demoting strategy, the normal schedul-
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ing order is preserved, but the handling of the exception can be delayed indefinitely. Conversely,

a promoting strategy sacrifices predictability in favour of quick exception-handling. Neutral

strategies are the least useful because neither scheduling order nor speedy exception-handling

are ensured. If the philosophy is to sacrifice scheduling order to expedite exception handling,

the following assumption is helpful. The propagating task, aware of its potential interference

with normal scheduling order, should not manipulate the monitor beyond necessary cleanups (in-

cluding maintaining monitor invariants) and leave quickly. Hence, the actual time in which a

propagating task interferes with synchronization and the extent of this interference, i.e., manip-

ulation of shared data, can be minimal. For these reasons, a promoting scheduling strategy is

employed in the subsequent implementation (see Section 4.5, p. 108).

It is possible for multiple asynchronous exceptions to be raised at the same or different prop-

agating tasks blocked inside a monitor. If there is only one propagating task, then the first excep-

tion detected causes it to be promoted/demoted, and the other exceptions are processed in regular

fashion after handling the first exception. Any additional exceptions cannot promote/demote the

propagating task further. If there are multiple propagating tasks blocked inside the same monitor,

what scheduling should be employed? In general, the relationship among these concurrent excep-

tions/propagating tasks is unclear. While exception hierarchies provide some notion of ordering,

concurrent exceptions are not always related through a hierarchy, nor does it define an ordering

for instances of the same exception class, and in any case, it is questionable whether hierarchical

relationships imply any sensible scheduling preferences. Another possible ordering is the deliv-

ery order of the asynchronous exceptions. Some may claim the first exception raised is the most

important one (and thus, its target the first to be scheduled) as subsequent exceptions may be

symptoms of the first exceptional situation. Even if this preference is accepted, the asynchronous

nature of the raise means the first exception delivered need not be the first one raised. Thus,

temporal ordering by delivery is of questionable use; as well, temporal-ordering by raise requires

time-stamping, and it is unclear whether this additional effort is justified or possible. My attitude

is to leave the scheduling order in such a situation undefined, as is often done in a concurrent

environment: A propagating task is guaranteed to be unblocked, but it is unknown in what order

it executes compared to other unblocked propagating tasks.
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4.4 Resumption Semantics

Resumption semantics allow control flow to return from the handler to the detection point.

The resumption model is basically a dynamic routine-call (i.e., the routine name is looked

up dynamically versus statically). Resumption is the lesser known model of exception han-

dling (termination being the well-known form) and its relevance has been debated [LS79,

p. 549];[Str94, p. 392]. Nevertheless, resumption can be a useful form of exception han-

dling [Goo75, Geh92, BM00, Don01]. This section completes the design for asynchronous un-

blocking in an environment including resumption.

For resumption, the main goal is to ensure consistency of control flow between t− and t.

Furthermore, resumption must be consistent with the semantics discussed in the previous sections

dealing with terminating exceptions, especially since a resumption handler can choose to (re-

)throw an exception. If an exception is detected at t−, the resumption handler is executed before

a blocking call:

try {
// resumption exception at t−
// blocking call

} _CatchResume( Ex e ) { . . . if (. . .) throw; . . . } // resumption handler, rethrow e
} catch( Ex e ) { . . . } // termination handler

Ultimately, the resumption handler must exit either by a (re-)throw or return. If the handler

(re-)throws, propagation unwinds all handler frames until it reaches the point of the resumption

detection (return point), from which point control flow is indistinguishable from a termination

exception detected at t−. If the handler returns, the task proceeds after the detection point and

issues the potentially blocking call. Similar behaviour is required at t. To fulfill this requirement,

the task must unblock and execute the resumption handler. However, unlike with termination se-

mantics, the task is still conceptually attached to the mutex/synchronization instrument and must

therefore remain pseudo-blocked on it. Hence, even though the task is scheduled for execution,

it has neither acquired mutual exclusion nor synchronized, so any lock accounting information,

such as a semaphore counter, is maintained as if the task is still blocked.

Formally, if the handler (re-)throws, the behaviour past the detection point shall be identical

to terminating semantics. If the handler returns, resumption semantics require the task to proceed

from the point of detection. At t− proceeding from the point of detection means blocking on the

mutex/synchronization instrument; analogously, at t, the propagating task must be returned to the

blocked state at the location where it blocked originally. The safety of this reblocking relies on
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the fact that the original blocking call did not proceed beyond t. However, this semantics requires

the reblocking task to retest the synchronization criteria of the blocking instrument, possibly

foregoing the reblocking, e.g., if the synchronization/mutual-exclusion protocol completed while

executing the resumption handler.

The following example of waiting on a condition variable shows why reblocking after exe-

cuting an asynchronous resumption without re-evaluation of the synchronization criteria is insuf-

ficient. It also demonstrates why a resumption should not unblock a task fully but instead keep

it pseudo-blocked. Since signals are not remembered in a condition variable, i.e., there is no

counter as for a semaphore, a common idiom is for the signalling task to set a flag in the monitor

so a waiting task can determine whether it should wait:

monitor Mo {
bool flag;
condition cv;

public:
Mo() : flag(false) {}
int maybeWait() { // task A

try { . . . if ( ! flag ) cv.wait(); . . .
} _CatchResume( Ex ) { . . . } // return to wait

}
void wakeup() { flag = true; cv.signal(); } // task B

};

Assume task A calls maybeWait and waits on condition cv because the flag is not set. Suppose

task B now calls wakeup, acquires ownership, and immediately thereafter, a delivered resumption

(raised from outside the monitor) for task A is detected. As a result, A is dequeued from cv and

put on the ready list due to promoting scheduling (see Section 4.3.2, p. 104). Task B continues

inside wakeup, sets the flag, signals cv, which is empty so the signal is lost, and leaves. Propa-

gating task A is now scheduled and executes its handler, and, upon return, rewaits on cv. If this

rewait just blocks, task A does not realize its signal has occurred but been lost. While there are

explicit programming approaches to solve this problem, it is easiest to have the condition variable

implicitly manage the propagating task while it is pseudo-blocked. Hence, when the propagating

task tries to rewait, the signal is associated with it, and the propagating task is dequeued instead.

4.5 Implementation

Several challenges need to be addressed in the implementation of asynchronous exception han-

dling by blocked tasks. µC++ is well suited for this demonstration because it supports both ter-

mination and resumption, as well as bound-object matching [BK06], along with a variety of
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blocking instruments of varying complexity. Basically, all the design issues presented for asyn-

chronous unblocking are present in µC++, so it provides a challenging environment to express and

solve these issues. The derived solutions are equally applicable to other languages with similar

exception-handling mechanisms and concurrency facilities.

4.5.1 General Steps

The first challenge is providing for propagation, which is achieved by inserting implicit poll-

points into the code before blocking and after unblocking. Inserting a poll point before a blocking

operation (at t−) makes sense since it is illogical for a task to block with exceptions in its queue

that would cause it to become unblocked (at t). Such a poll must be performed in an atomic

fashion, i.e., once the poll determines that no outstanding exceptions can be propagated, the task

must block before any new exception is allowed to be delivered to it. To facilitate detection at t,

another poll is inserted into the blocking routine and placed such that it is performed immediately

after a task unblocks to force propagation of the exception before further advance.

The second challenge is to determine whether the propagating task is blocked since addi-

tional action (beyond delivery) is only required in the blocked case. This check and any ensuing

actions, e.g., determining the suitability of the exception for propagation (by checking asyn-

chronous propagation control), and unblocking the propagating task, must be performed by some

active task. The delivering task (in µC++, the raising task) is an obvious choice for performing

these actions because it is active and already has to manipulate the propagating task as part of

exception delivery. Note, this is a case where another task detects exceptions on behalf of the

propagating task. The information about a propagating task’s running state is maintained in the

task itself and can be checked easily, but the difficulty is avoiding the race condition inherent in

this check, and performing a subsequent action based on the result of the check. The solution

is to have a delivery lock broadly guard the blocked-check and all subsequent operations by the

delivering task, as well as the poll and blocking by the propagating task. This method ensures

that once an asynchronous exception is being delivered, the propagating task cannot block (ex-

cept on the delivery lock). It also ensures that a task cannot block with an exception suitable

for propagation on its delivered-queue. When the owner of a blocking instrument completes its

synchronization/mutual-exclusion protocol with the propagating task, e.g., by releasing a lock, or

signalling the condition the propagating task is blocked on, the propagating task shall be desig-

nated released. Such a releasing operation also constitutes a race with the delivering task trying
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to unblock the propagating task. Therefore, the owner of the blocking instrument needs to acquire

the delivery lock before releasing the propagating task. All three tasks (raising task, propagating

task, mutex owner/releaser) must agree over whether the propagating task is running or blocked.

Thus, its transition from t− to a blocked state (potential t) and the transition from blocked to t+

constitute linearization points [HS08, §3.5.1].

The third challenge is how to activate a blocked task in order for it to process its exception

queue. If the task is spinning on a spin lock, it can check its own exception queue or some flag

that is set by the delivering task, and no further action is required by the delivering task. For

blocking instruments, the delivering task needs to actively perform some administrative action

in order to unblock the propagating task, e.g., moving the propagating task off some waiting

queue and onto a ready list. The propagating task should provide a method or at least additional

information that the delivering task can use to unblock it (since the propagating task knows on

what instrument it is blocked at that moment). Most likely, the delivering task has to acquire some

lock protecting the internal data structures of the blocking instrument, which may force it to block,

but these locks are usually designed to be acquired for a short time only. The resulting scenario

with three tasks (raising task, propagating task, mutex owner/releaser) manipulating two locks

(delivery lock, instrument-specific protecting lock) makes for a complex protocol as not all tasks

can acquire these locks in the same order. In general, the waking and unblocking of a task due

to an exception is similar to a time-out; hence, if time-out facilities exist, they might be exploited

for the exception case. The following is a description of the detailed µC++ implementations with

regard to the respective blocking instruments.

4.5.2 Mutex Lock / Monitor Entry

For any blocking lock, it suffices to acquire its (internal) protecting lock and make the blocked

task ready. As the propagating task polls implicitly after waking (at t), it must detect the delivered

exception and begin propagation, processing one termination or all resumption exceptions, before

entering the critical region. Simple monitor entry is implemented similarly.

4.5.3 Monitor Condition-Variable

For tasks waiting on a monitor condition-variable, the implementation is more complex since the

propagating task needs to compete for monitor ownership. As pointed out in Section 4.3.2, p. 98,

monitor semantics vary, resulting in different implementations, and these implementation details
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determine how the propagating task is awakened. For a µC++ monitor, only the monitor owner can

access the various internal conditions/ready-list, i.e., these data structures do not have separate

locks but are collectively protected by one lock called monitor lock. To facilitate the scheduling

of propagating tasks, the current monitor owner needs to be made aware of their presence. If no

monitor owner exists, the delivering task itself must enter the monitor and perform the necessary

actions. To avoid a race condition for detecting monitor ownership, the leaving/waiting owner

has to perform a protocol with a potential delivering task, which requires additional locking of

the monitor lock. The required action, e.g., transferring a propagating task to the head of the

monitor ready-list, needs to be encoded in an action queue the monitor owner processes when

relinquishing ownership. The delivering task executes the protocol in Figure 4.5. Subsequently,

the propagating task needs to poll for exceptions as soon as it wakes up.

Since the delivering task cannot manipulate the internal monitor queues directly (unless it

owns the monitor), and it would be inefficient for the delivering task to wait until it can own the

monitor, it needs to communicate the desired scheduling to the monitor owner. The action queue

is an efficient mechanism for this communication since it needs to be processed only once and

only upon relinquishing ownership of the monitor, which is the time at which the monitor owner

makes scheduling decisions in any case. The disadvantage is that it complicates the implementa-

tion of certain neutral scheduling strategies. For example, consider the neutral strategy in which

an asynchronous exception-detection is interpreted as an exceptional signal, moving the propa-

gating task to the start of the ready list. However, the raising task is not the owner, so this action

is deferred and recorded in the action queue. Then, the current monitor owner signals condition

variables, moving tasks onto the ready list. So when ownership is relinquished and the action

queue is processed, precise temporal information about when the exception was detected with re-

spect to the signalled tasks is unavailable (or needs to be recorded/recovered); hence, replicating

the scheduling order required by this neutral strategy is difficult. However, neutral strategies pro-

duce the least useful scheduling (see Section 4.3.2, p. 104). As well, this strategy tries to enforce

an ordering that is, due to the asynchronous nature of the exception, inherently non-deterministic.

Hence, no advantage can be gained by following this strategy, and thus, precluding its use due to

the action-queue implementation seems acceptable.
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• Acquire delivery lock, queue exception on propagating task P, check if P is blocked,

• if P is not blocked, release delivery lock, done.

– otherwise verify exception’s eligibility for propagation,

– if exception is disabled, release delivery lock, done.

∗ otherwise acquire monitor lock, check if P is released,

∗ if P is released, release all locks, done.

◦ otherwise check for a monitor owner,

◦ if there is an owner, add action to action queue, release locks, done.

· otherwise execute actions, release locks, done.

Figure 4.5: Algorithm for delivering task when unblocking a task blocked inside a monitor

4.5.4 Accepting

Rendezvous using accept ( _Accept in µC++) is implemented similarly to the monitor condition-

variable, with the following additional considerations. If the rendezvous has not occurred, the

acceptor can simply be unblocked, and it immediately regains monitor ownership. If a rendezvous

has occurred, the acceptor must be on the monitor ready-list, and either no further action is

required, or the acceptor must be moved to a preferred queue to provide a promoting-scheduling

strategy.

4.5.5 Resumption

Supporting resumption adds more implementation complexity. Unlike termination, which occurs

once and always aborts the blocking operation, multiple different resumptions can occur while a

task is blocked, resulting in multiple transitions between running pseudo-blocked and reblocking

(one for each resumption exception handled). Hence, polling and subsequent reblocking may

repeat when a propagating task is awakened via a resumption. Pseudo-blocking can cause fur-

ther complications, e.g., when an acceptee arrives while the acceptor is running pseudo-blocked.

Resumption can also allow a task to re-enter a monitor, and this task must only acquire mon-

itor ownership once along the entire pseudo-blocked re-entry chain. Furthermore, a task can

block again on a condition variable on which it is still pseudo-blocked, or accept a member while

pseudo-blocked on an _Accept statement (or any arbitrarily complex combination/repetition of

these situations). While such program logic does not seem advisable, it cannot be rejected, and
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thus, needs to be addressed by the implementation. Additional information indicating whether

tasks are blocked normally or pseudo-blocked is therefore required. Then, a propagating task’s

transitioning from blocked to pseudo-blocked merely requires it to be designated schedulable,

and, if required, added to the monitor ready-list according to the scheduling strategy. If a pseudo-

blocked task is released (e.g., its condition variable is signalled, or it obtains a lock or monitor),

this changed status needs to be recorded as well, implying a three-state flag encoding normal,

pseudo-blocked, and released status. Then, the propagating task is dequeued from its blocking

instrument. After returning from the handler, the propagating task checks the flag, sees that it

has been released in the meantime, and so does not reblock but simply proceeds. Otherwise, if

the task has not been released by the time its handler completes, it remains queued; it reblocks

and the pseudo-blocked flag is reverted to normal. Distinguishing between a new blocking opera-

tion (e.g., entry, wait, _Accept) and a reblocking can be achieved by associating a stack-allocated

object containing the pseudo-blocked flag for each unique blocking operation by a task.

4.5.6 Cost

Accounting for unblocking semantics incurs a run-time cost when potentially blocking operations

are invoked. Table 4.1 presents a few standard performance metrics for a µC++ release without

unblocking functionality, and Table 4.2 presents the µC++ release (forked off from the former)

implementing unblocking functionality. Measurements were performed with µC++-5.6.0 in multi-

processor mode with -O2 optimization level, no debug checks, and run on a 4x dual-core 2.6 MHz

linux-x86_64 machine. The numbers represent the average (over 10,000 iterations) run-time cost

of a single operation in nano-seconds. Each measurement was run 10 times, and the minimum

value chosen. Since measurement noise tends to slow things down rather than speeding them

up, this choice provides a good representation of the true value. The range between minimum

and maximum measurement clustered around 15%, so only performance differences (between

unblocking and no unblocking) greater than 30% are considered here. The operations measured

are automatic object-creation (auto), dynamic object-creation (dynamic), routine/entry call with

parameter passing (call), accept cycle with parameter passing (accept), suspend/resume cycle

(suspend), and wait/signal cycle (wait), as well as a context-switch (cxt sw). A cormonitor is a

coroutine with monitor properties.

Noticeable differences are in the entry call, where the unblocking release incurs a 30-40%

penalty, the accept, where it incurs a 40-50% penalty, and the signal/wait cycle, where it incurs
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PPPPPPPPPInstrument

Operation
auto dynamic call accept suspend wait cxt sw

coroutine 162 199 14 N/A 90 N/A
monitor 120 164 83 388 N/A 161
cormonitor 249 344 82 388 87 159
task 580 626 N/A 385 N/A 159

138

Table 4.1: Cost (ns) without unblocking functionality

PPPPPPPPPInstrument

Operation
auto dynamic call accept suspend wait cxt sw

coroutine 149 182 14 N/A 89 N/A
monitor 123 174 108 574 N/A 248
cormonitor 228 327 113 577 88 240
task 654 733 N/A 541 N/A 224

120

Table 4.2: Cost (ns) with unblocking functionality

a 40-55% penalty. It is unsurprising that these operations are affected since they need to be

augmented extensively in order to implement unblocking functionality.

Considering the additional functionality and ease of use gained through unblocking function-

ality, as well as the considerable complexities in its implementation, these performance penalties

seem fair. Furthermore, depending on the program, they may be more than outweighed by the

faster performance these new semantics allow in certain cases (see Section 4.6).

4.6 Applications of New Feature

Two aspects of the new language feature are important: what are the effects in terms of power of

expression and ease of use, and what are the effects on run-time performance? These aspects are

evaluated in this section by providing sample programs and scenarios in which the new semantics

are useful.

4.6.1 Worry-Free Synchronization

Figure 4.6 shows a server task asynchronously providing a computationally expensive ser-

vice to a number of clients. With unblocking semantics, the lines marked with the

“NoUnblocking semantics” comment can be removed. When there are no unblocking semantics,

these lines must remain for correctness. Client and server follow a simple protocol: a client starts
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#define ms * 1000000
_Event CompError {};

_Task Server {
Client *c;
int run, result, req;
int compute( int req ) throw( CompError ) {

_Timeout( uDuration( 0, 50 ms ) ); // pretend to work
if ( ++run % 3 == 0 ) _Throw CompError();
_Timeout( uDuration( 0, 50 ms ) ); // pretend to work

}
public:

Server() : run( 0 ) {}
void sendRequest( int n ) {

c = (Client *) &uThisTask(); // address of calling task
req = n;

}
int getResult() {

uEHM::poll(); // NoUnblocking semantics
return result;

}
void main() { // thread starts here

for ( ;; )
try {

_Accept( ~Server ) { break; } // terminate loop when destructor called
or _Accept( sendRequest ) { // rendezvous with client

result = compute( req ); // service client request (overlap with client)
_Accept( getResult ); // wait for client to retrieve result

}
} catch( CompError ) { // requested computation failed

_Throw _At *c; // asynchronous raise at client
_Accept( getResult ); // NoUnblocking semantics

}
}

} server; // create server task and start running

_Task Client {
public:

void main() { // thread starts here
for ( int i = 0 ; i < 20 ; i += 1 ) { // make N requests from server

server.sendRequest( i ); // rendezvous with server
try {

_Enable { // enable propagation after try-block in place
_Timeout( uDuration(0, 150 ms) ); // pretend to work (overlap with server)
int res = server.getResult(); // attempt to obtain result from server

}
} catch( CompError ) {} // server computation failed, ignore

} // for
}

};

void uMain::main() { // program starts here
uProcessor p[2]; // create kernel threads
Client c[4]; // create client tasks and start running

} // implicitly join with clients when finished

Figure 4.6: Client/Server
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a computation by calling Server::sendRequest, which retains the client’s id and request for asyn-

chronous processing while the client does other work; a client calls Server::getResult to obtain

the result. Note, while the processing is provided asynchronously, calls to Server::sendRequest

are synchronous, and hence, may block the client until the server can begin processing its re-

quest. Assume some client inputs are faulty, which the server detects in half the time it takes it

to perform a computation, aborting the computation. The server’s catch clause handles the faulty

case (CompError) by relaying the exception asynchronously to the responsible client, which may

be working or waiting for the result. Without the new unblocking semantics, the client cannot

respond to the exception if it is blocked waiting for the result. Hence, it is necessary for the server

to complete the synchronization protocol by accepting Server::getResult in the handler (marked

with the “NoUnblocking semantics” comment), even though there is no result, so the client can

unblock and propagate the exception. With the new semantics, this additional call is unnecessary

as the exception wakes the client. As well, without the new semantics, it is necessary for the client

to poll at the start of Server::getResult and subsequently receive the CompError exception in order

to ensure it does not return an arbitrary result and proceed to use it. This explicit poll is unnec-

essary with the new semantics. To summarize, as soon as asynchronous exceptions influence

control flow, synchronization becomes more complicated without the new semantics as special

precautions need to be taken when a propagating task may be blocked. With the new semantics,

the programmer need not worry about the intricacies of synchronization under exceptions, and no

extra code is required as the raise automatically does the right thing. As a side effect, the program

in Figure 4.6 also becomes more efficient because blocking due to additional synchronization is

avoided: without the new unblocking semantics, the runtime is between 12.01 s and 12.02 s; with

the new semantics, the runtime is between 9.40 s and 9.41 s (10 runs each).

4.6.2 Cheat and Run While Blocked

Figure 4.7 consists of a number of Worker tasks, each operating on a distinct portion of data.

To calculate a result, a worker does prework independently and then completes the work inside

a common monitor. However, some of the values supplied to the workers are erroneous. The

main task therefore sends out messages (as resumptions) to revoke the faulty values and trigger a

(re-)calculation. Note, this situation is a natural application for asynchronous resumption as the

correcting action is an independent interruption with subsequent continuation of the execution

path of a worker task.
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#define ms * 1000000
const int TASKS = 8, CHUNK = 10;

_Event Recall {
public:

int i, correction;
Recall( int i, int c ) : i(i), correction(c) {}

};

_Monitor M {
public:

void work( int &i ) {
_Timeout( uDuration( 0, 100 ms ) ); // final work done serially

}
} complete;

_Task Worker {
int *chunks; // chunks for computation
void prework( int &chunk ) {

_Timeout( uDuration( 0, 250 ms ) ); // prework done independently
}

public:
Worker( int chunks[ ] ) : chunks( chunks ) {}
void main() { // thread starts here

bool done[CHUNK] = { false }; // indicate chunks completed
for ( int i = 0; i < CHUNK ; i += 1 ) { // for every chunk in the row

try {
_Enable {

if ( done[i] ) continue; // chunk already completed ?
prework( chunks[i] ); // initial work
uEHM::poll(); // NoUnblocking semantics
complete.work( chunks[i] ); // final work

}
} _CatchResume( Recall &r ) {

chunks[r.i] = r.correction; // replace erroneous data
prework( chunks[r.i] ); // redo work
complete.work( chunks[r.i] );
done[i] = true; // mark work completed for this chunk
if ( i == r.i ) _Throw; // abort iteration

} catch( Recall ) {} // iteration aborted ?
}

}
};

void uMain::main() { // program starts here
uProcessor p[TASKS]; // create kernel thread per worker
int space[TASKS][CHUNK]; // space for each worker
Worker *w[TASKS]; // workers
for ( int i = 0; i < TASKS; i += 1 )

w[i] = new Worker( space[i] ); // create worker tasks and start running
for ( int i = 0; i < TASKS * CHUNK; i += 4 ) { // fix every 4th chunk across all tasks

_Timeout( uDuration( 0, 100 ms ) ); // delay before next recall
_Resume Recall( i % CHUNK, 3 ) _At *w[i / CHUNK];

}
for ( int i = 0; i < TASKS; i += 1 )

delete w[i]; // join with workers when finished
}

Figure 4.7: Correct Faulty Data with Resumptions
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As before, removing the line with the “NoUnblocking semantics” comment produces a ver-

sion of the program for use with the new unblocking semantics, whereas the line remains when

there are no unblocking semantics. The NoUnblocking version has an explicit poll to ensure that

if an exception is delivered during prework, it is detected before entering the monitor. Even with

this advantage, using the new semantics yields a run-time of between 10.85 s and 10.88 s com-

pared to between 14.41 and 14.43 s without it (ten runs each). This difference is explained by

pseudo-blocking. With the new semantics, tasks that are lined up to enter the monitor and receive

a resumption to fix their data can step out and redo the prework on the new data while still being

conceptually blocked on monitor entry (and without losing their position in the queue). Without

the new semantics, a task cannot react to the resumption until it gains ownership of the highly-

contested monitor. Indeed, the difference of around 3.55 s is approaching the theoretical maxi-

mum of 5 s (20×0.25 s of prework). Hence, the ability to run while conceptually blocked, which

could be called cheating, combined with the existence of a highly-contested resource results in

a substantial performance increase. In general, pseudo-blocking can be exploited in a fashion

similar to the one above in order to implement event-based programming or worker-thread pools.

4.6.3 Non-traditional Applications

Asynchronous exceptions with unblocking semantics allow for a very general form of asyn-

chronous transfer of control. This control-flow mechanism has uses beyond traditional exception-

handling as the following examples demonstrate. As always, it is up to the user to decide whether

the complexity and/or the overhead of using exceptional termination11 (stack unwinding, etc.) for

non-exceptional purposes is justified for the additional capabilities gained.

Exploiting Explicit Task-Specific Wake-Up

The Sleeping Barber problem [Dij65, §4.2] consists of a barber (task) providing haircuts to cus-

tomers (tasks) (see Figure 4.8). If the barber is busy with a customer, an arriving new customer

sits down (waits) in the waiting room if there are any seats left, or balks (leaves) otherwise. If

there are no customers, the barber goes to sleep (waits) until a customer arrives and wakes it.

In this particular variation of the sleeping-barber problem, the following additional properties

are required. The barber must service waiting customers in the order they arrive, i.e., in the order

11Resumption in µC++ is a light-weight mechanism compared to termination.
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Figure 4.8: Sleeping Barber

they check the number of occupants in the waiting room. If no task is located in or examining the

waiting room, then an arriving task must be able to examine the waiting room without blocking.

A customer must block at most O(1) times. The barber must block at most O(n) times, where n

is the number of customers. No busy-waiting is allowed in the algorithm itself.12

Employing different forms of synchronization, there are various solutions to this problem. It

can be an interesting challenge to restrict the use of certain synchronization instruments, either

for teaching purposes, or because many languages only support a small set of synchronization

instruments. If only simple _Accept synchronization is employed in the sleeping barber solution

(e.g., to simulate Ada without requeue), the use of unblocking semantics can allow for a more

efficient solution for the following reasons. After checking that there is enough space in the

waiting room, a customer may need to wait for the barber. With only _Accept synchronization, it

either has to block inside the monitor or outside on a monitor entry. The only way to block inside

is to accept something, such as arriving customers or the barber. If it accepts customers, it may

have to wake and block more than a constant number of times. If it does not accept them, arriving

customers cannot check if the waiting room is full and immediately balk. Therefore, a customer

that acquires the monitor and determines it must wait cannot wait inside the monitor, so it must

leave and attempt re-entry. However, it is impossible to atomically leave a monitor and (re-)block

on an entry queue without using additional synchronization facilities, like Ada’s requeue. As a

result, as soon as a customer leaves, another may enter the waiting room, decide to wait, leave,

and block ahead of the original one, perturbing the arrival order. Without conditional entry (e.g.,

in SR [AOC+88] or Concurrent C [GR89]), the barber is forced to accept customers in the order

they block on the entry, not the order in which they arrive at the waiting room. The way to solve

this problem is to ensure these two orderings are identical. Since there is no atomicity between

12Some spinning may be required in the implementation of higher-level mutual exclusion or synchronization instru-

ments.
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leaving a monitor and blocking on entry, the only alternative is to have at most one customer

block on an entry queue. This approach requires the use of at least Ω(k) _Accept/entry queues

(similar to the Ada entry-family mechanism), where k is the number of chairs in the waiting room,

and customers and barber choose an entry queue they block-on/accept by arrival order, similar to

ticket-based approaches. If the number of chairs is large or dynamic, this approach is impractical.

Exceptional unblocking can solve this problem using O(1) entry queues, which the example

in Figure 4.9 demonstrates. Note, the barber calls BarberShop::startCut to attempt to select the

next customer from the waiting room. When the call returns, it means there is a customer in

the barber’s chair, and the haircut can be performed (not shown). Once the haircut is done,

the barber calls BarberShop::endCut, which releases the customer just serviced. Customers call

BarberShop::hairCut. After the call returns, either the customer balks (if the waiting room is full),

or the customer received a haircut. Customers waiting for a haircut block on the synchronization

queue of WaitingChairs::dummy. They are woken by an exception raised at them by the barber in

BarberShop::getNext.

When an asynchronous exception is raised at a task blocked on any monitor queue, it is

unblocked regardless of its position in the queue. Hence, the lack of atomicity between leaving

and entry-blocking becomes irrelevant as the barber can unblock customer tasks from any queue

in an arbitrary order simply by raising asynchronous exceptions at them. Exceptional unblocking

thus serves as a replacement for conditional entry. All that the barber needs to know is the order

in which the customers arrive, which the customers record as they arrive.

In general, the raising task need not own the instrument on which the propagating tasks are

blocked, nor does it need to know where exactly they are blocked, which could be useful in a

variety of similar problems. While FIFO servicing of synchronization/mutual exclusion queues

is useful for ensuring fairness and predictability, at the same time, it can also impose an unwanted

ordering for a particular problem, which requires additional code complexity to overcome. The

ability to unblock tasks from a queue in an arbitrary order using asynchronous exceptions can

simplify such code; thus, asynchronous exceptions are useful as a powerful control-flow tool

even without an apparent exceptional situation.
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Customer *customers[20]; // customers indexed by id

class BarberShop {
_Event Wake {};
_Monitor WaitingRoom {

static const int maxchairs = 10;
int count, next, chairs[maxchairs];

public:
WaitingRoom() : count( 0 ), next( 0 ) {}
bool isSpace( int id ) {

if ( count == maxchairs ) return false; // all chairs in use
chairs[ (next + count) % maxchairs ] = id; // sit at end of the queue
count += 1; // number of chairs in use
return true;

}
int getNext() {

if ( count == 0 ) _Accept( isSpace ); // if waiting room empty, wait
int id = chairs[next]; // next customer for hair cut
count -= 1; // number of chairs in use
next = (next + 1) % maxchairs; // new front of the queue
_Throw Wake() _At *customers[id]; // unblock customer from ready/entry list
return id;

}
} waitingroom;

_Monitor WaitingChairs { // explicit waiting queue
public:

void dummy() {} // never called
void waitTurn() { _Accept( dummy ); } // customers wait on ready/entry list

} waitingChairs;

_Monitor BarberChair { // synchronizes two tasks in arbitrary order
bool ready; // through member routine sync,

public: // like a barrier with two participants
BarberChair() : ready( false ) {}
void sync() { ready = ! ready; if ( ready ) _Accept( sync ); }

} barberChair;

public:
void hairCut( int id ) { // called by customer

if ( ! waitingroom.isSpace( id ) ) return; // no space ? balk
try { _Enable { waitingChairs.waitTurn(); } // queue on waiting chairs and/or propagate
} catch( Wake ) {

barberChair.sync(); // block for barber to finish previous cut
// or unblock sleeping barber

barberChair.sync(); // synchronize with barber, complete my hair cut
}

}
int startCut() { // called by barber

int id = waitingroom.getNext(); // get id of next customer
barberChair.sync(); // block for customer or unblock customer
return id;

}
void endCut() { // called by barber

barberChair.sync(); // block for customer or unblock customer
}

};

Figure 4.9: Sleeping Barber with Accept
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Simulating Message Passing

The message-passing paradigm [Wal72] allows tasks to communicate and synchronize using mes-

sages rather than remote procedure-call. While µC++ does not support message passing directly,

it is possible to construct it in a number of ways, including using asynchronous exceptions with

unblocking semantics. The basic primitives of message passing are send and receive-any/receive-

specific. Figure 4.10 shows a receiving task obtaining messages (exceptions of type Message)

from a number of sending tasks (receive-any). _Enable < Message > allows the propagation of

exceptions of type Message, while blocking on condition cv ensures the receiver blocks if no such

message is available; unblocking semantics ensure the receiver is unblocked when a message is

delivered.

The mechanism to support receive-specific is depicted in Figure 4.11. Its implementation re-

lies on bound exception matching as it applies to asynchronously raised exceptions, i.e., using the

raising execution as a matching criteria for determining the most specific handler [BK06, §5.2],13

and requires incorporating this concept into asynchronous propagation control. Extending the

bound-execution matching to asynchronous propagation-control allows the latter to distinguish

between asynchronous exceptions raised by different raising executions. The bound-execution

matching of the _Enable ensures that only messages from the designated sender (senders[j] in

this case) are eligible for propagation; the remaining mechanism ensures the receiver blocks and

unblocks appropriately.

4.7 Summary

Allowing asynchronous exceptions to unblock a propagating task follows naturally from the de-

sire to ensure timely handling of an exception, as well as from the abort characteristics of excep-

tional termination semantics. As demonstrated, such a feature can be implemented without the

need for additional syntax or unusual programming techniques. As well, especially with elaborate

synchronization protocols, this language feature can allow a programmer to write simpler, more

intuitive code. In addition, when there is strong contention for a shared resource, pseudo-blocking

can be used to increase concurrency, and thus, program performance. Furthermore, exceptional

unblocking allows tasks to be pulled off blocking queues in an arbitrary order, which can sim-

plify and optimize concurrent algorithms. Finally, exceptional unblocking (in combination with

13The reference calls asynchronous exceptions non-local exceptions.
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_Event Message { // exception carrying message
public:

string s;
Message( string s ) : s( s ) {}

};
const int Senders = 10, Messages = 10;

_Task Receiver {
uCondition cv; // used to block Receiver until message arrives
void main() {

for ( int i = 0; i < Senders * Messages; i += 1 ) {
try {

_Enable < Message > { // propagate exceptions of type Message
cv.wait(); // wait for send

}
} catch( Message &msg ) {

// process message from sender
}

}
}

} receiver; // create and start receiver

_Task Sender {
void main() {

string msg;
for ( int i = 0; i < Messages; i += 1 ) {

// generate message in “msg”
_Throw Message( msg ) _At receiver; // send message

}
}

} senders[Senders]; // create and start senders

void uMain::main() {}

Figure 4.10: Send/Receive-any with Asynchronous Unblocking Exceptions

try {
_Enable < senders[j].Message > { // only allow propagation of Message-type exceptions

cv.wait(); // raised by specific sender “senders[j]”
}

} catch( Msg m ) {
// process message from sender

}

Figure 4.11: Send/Receive-specific using Propagation Control with Bound-Execution Matching

bound-execution propagation control) can be used to emulate other concurrency mechanisms such

as message passing in a simple and intuitive fashion. The variety of applications of this feature

suggests there may be many more practical uses.

Implementing exceptional unblocking is complex, and programmers must be aware that

some aspects of blocking instruments cannot be preserved when tasks are unblocked at non-

deterministic times. Nevertheless, with careful use, exceptional unblocking provides a powerful

mechanism for developing complex concurrent programs whose behaviour follows intuitively

from normal exception-handling.
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Chapter 5

Improving the Usability of

Asynchronous Exceptions

As useful as structured exception handling is, it is also complex. This complexity makes it dif-

ficult to intuitively employ correctly. Especially novice programmers seem to struggle with the

complexity of the exception-handling concept and its effect on control flow [SGH10]. Even ex-

perienced programmers misunderstand or misuse certain exception-handling features, e.g., out

of convenience [Eck07]. Asynchronous exception handling is even more complex than the tra-

ditional, synchronous kind. For this reason, the design of more advanced exception-handling

features is complicated when taking usability aspects into account: It is tempting to add more

advanced capabilities, and thus, complexity, to an already complex topic, making it too difficult

to use in practice by the ‘average’ programmer. The unblocking semantics introduced in Chap-

ter 4 are a good example of additional capabilities that can actually reduce conceptual complexity

by allowing for more intuitive program-behaviour. In contrast, the full-asynchrony semantics de-

scribed in Chapter 2 and implemented in Chapter 3 add capabilities to the already complex con-

cept of asynchronous exceptions. Recall that previous work attempted to reduce this complexity

by restricting asynchrony (see Section 1.5, p. 12). When full asynchrony is added, however safe

its design is, the resulting non-determinism inevitably increases the overall complexity.

This chapter attempts to contain the complexity of asynchronous exceptions by presenting

language features that assist the programmer in using them correctly. Many of the concepts also

apply to synchronous exception-handling, and thus, can aid in the understanding of exception

handling in general.
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5.1 Usability Challenges

Shah et al. make the observation that inexperienced programmers tend to ignore exception han-

dling beyond what is required of them by the language1, either because they do not understand

the mechanism entirely or do not want to deal with it until their program breaks due to an ex-

ception [SGH10]. They are mainly interested in the “happy path” of the program, i.e., not the

exceptional path, in which exceptions affect control flow. The following discussion identifies the

aspects of exception handling that lead to their misuse. These usability challenges are not prob-

lems of the underlying exception-handling concepts, but instead problems of understanding them

or using them properly. Once these challenges are understood, it is easier to construct solutions

to help overcome them.

5.1.1 Rarity

By definition, exceptions, or rather, exceptional raises/propagation, are rare, which can lead to

two problems. First, from a work-economy point of view, it may appear sensible to spend more

time on the main path of control (happy path), rather than dealing with exceptional control-flow

that rarely affects the program (also see Section 1.5, p. 13). Second, since exceptions occur rarely,

the exceptional path is not tested as thoroughly as the happy path. Cui and Gannon claim that

exception handling is the least tested part of a programming interface [CG92]. It is a reality

that most programmers do not anticipate all possible circumstances and boundary conditions in

which their program is expected to perform correctly. They test their programs, and when one

of these conditions occurs and causes the program to behave incorrectly, they fix the program

accordingly. Since exceptions are rare, such conditions in connection with exception handling

occur very rarely and are easily missed during testing, meaning these cases are easily overlooked,

and thus, the program fails when they are encountered.

5.1.2 Complexity

Exception handling involves complex control-flow. First, since handler association is dynamic,

given a raise or a propagation point, the corresponding handler site cannot be found stati-

cally in general. Second, since the transfer of control can be non-local, the handler site and

1The main language of study, Java, through its checked exception mechanism, forces a programmer to acknowledge

the possibility of exceptional propagation, though it is questionable whether this activity leads to a true understanding

of a program’s exception handling.
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raise/propagation point can be in separate routine scopes or even translation units. Third, with

termination semantics, the abortive semantics of exception propagation with its associated stack

unwinding is destructive and unintuitive. For example, a sequence of statements is not guaranteed

to be executed as depicted, but can be aborted at any point an exception can be propagated, which

is generally difficult to anticipate and comprehend.

5.1.3 Strictness

Exception handling is strict in the sense that it cannot be ignored passively; it is an active phe-

nomenon [BHM02]. If an exception is raised/propagated, it affects the control-flow of the pro-

gram, especially with terminating semantics. Failure to recognize a potential propagation point

often has catastrophic consequences for the program. Hence, it becomes tempting to over-handle

exceptions, i.e., employ blanket handlers covering as many exception types as possible that do

nothing useful, which weakens the usefulness of exception handling.

5.1.4 Asynchrony

Asynchrony exacerbates both control-flow complexity and rarity of exception handling. Obvi-

ously, asynchrony increases the difficulty of determining whether a sequence of code is abortable

or is executed to completion (see Section 1.4, p. 10). Additional factors like asynchronous

propagation-control and the asynchrony model add to the complexity, making asynchronous ex-

ception handling more difficult to understand. In a sense, exceptions also become rarer due to

asynchrony: The probability of a rare exceptional propagation is distributed over many possi-

ble statements (over which asynchronous propagation is enabled). As a result, more locations

can propagate an exception, each with a lower probability, which makes it even harder to test a

program with regard to propagation of an exception at a given location.

5.1.5 Analysis

The preceding challenges have two aspects: mind-set issues (as touched upon in Section 1.5,

p. 13), and fundamental challenges (stemming from the fundamental nature of exception han-

dling). This thesis does not try to address the mind-set issue. Attempting to force exceptions into

the programmer’s consciousness by requiring the explicit handling or propagation of checked

exceptions [GJSB00] has not been popular, and is considered a failure by some [Hei03, Eck07].
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Trying to address the fundamental aspects of these challenges is difficult since what makes

(asynchronous) exception handling challenging is also what makes it powerful and useful, e.g.,

recall Chapter 2, which examines tools to control and manage asynchrony and their inherent com-

promises between capabilities and safety. In particular, the strictness of exceptional propagation

cannot be weakened without weakening the entire concept. Its control-flow complexity is the

flip-side of the immensely powerful control-flow possibilities of exception handling. Weakening

it, e.g., by employing sequels [Knu87], means weakening its capabilities. Rarity and asynchrony-

induced rarity show their greatest effect in the sparse testing they allow. The way to overcome

this issue is to artificially increase the frequency of exceptional propagation during testing. Fi-

nally, a promising vector for attacking the associated usability-challenges is to provide additional

run-time information that documents what goes on in the exception-handling mechanism of a

program; instead of reducing the complexity of the control flow, additional information is pro-

vided in order to make it easier to comprehend. The remainder of this chapter presents features

to address some of these usability issues.

In particular, in order to address the rarity of exceptional propagation and the resulting lack

of testing, active exception assertions are introduced, which increase the frequency of propaga-

tion during testing. In order to address the complexity of exception handling, features providing

additional run-time information are introduced aimed at giving the programmer more insight

about the exception handling in a program: Passive exception assertions can be used to formu-

late assumptions about synchronous and asynchronous exception propagations. The ability to

generate stack traces is added to provide information about the call stack at the time of syn-

chronous or asynchronous propagation. In order to provide additional information particular to

asynchronous exception handling, features are provided to query and display the asynchronous

propagation-control stack. Finally, a mechanism is introduced to log and query all events that in-

fluence asynchronous exception handling, thus providing a comprehensive tool for its debugging

and testing.

5.2 Exception Assertions

The frequency of exception handling can be increased by artificial propagation of exceptions in

an area to be tested, meaning exceptions need to be generated specifically for testing purposes. It

remains to determine how and under what circumstances such exceptions are to be propagated.

Clearly, just injecting an exception into a block of code, regardless of the state of the program, is
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insufficient. An exception is a representation of an exceptional situation. Without an exceptional

situation and its associated state, an exception is meaningless. Conversely, a program cannot

be faulted for not handling an exception in situations in which it cannot occur. Note, handling

here means more than just having a handler in place to deal with the control-flow effect of the

exceptional propagation; it is relatively easy to make sure a handler is in place, but it is difficult

to ensure the handler deals with the exceptional situation correctly, e.g., by releasing resources.

Hence, solutions like in [CM08], which unconditionally inject exceptions into a program, are

too crude to be useful as the program state that can lead to an exceptional propagation is not

considered. Tracey et al. try to address this problem by generating input data to trigger built-in

constraint exceptions [TCMM00], but their approach, aimed at program verification, is limited to

the SPARK-Ada dialect and its built-in run-time exceptions. The conditions under which these

are raised are well-defined as part of the language specification, and are thus relatively easy to

analyze. This solution does not address user-defined or library-defined exceptions, which are

far more plentiful in most modern languages. The conditions under which such user exceptions

occur are difficult to determine, e.g., by programatically analyzing source code, especially when

not all source code is available. Programmers, on the other hand, can make assumptions about

when these conditions are met, and the correctness of these assumptions is a good way to test the

programmers’ understanding of the exception handling in their programs.

5.2.1 Inject under Condition

As a compromise, the following scheme is proposed: For testing purposes, exceptions are in-

jected into blocks of code when a user-specified condition is met. In order to test asynchronous

exceptions, the programmer supplies, as part of the _Enable statement, an exception assertion,

which contains the instantiation of the exception object, as well as the condition to be tested, e.g.,

_Enable < PacketLoss(TCP, id) ? ( tcp_window_size > 0.8*max_tcp_window_size ) > {
. . .

}

Here, asynchronous propagation of PacketLoss is expected to occur when the condition

tcp_window_size > 0.8*max_tcp_window_size is met. When the compiler is set to a special

testing mode, then, as soon as the condition is met, an exception is instantiated with the pa-

rameters (TCP, id) and propagated from within the _Enable block. Naturally, the identifiers

TCP, id, tcp_window_size, and max_tcp_window_size must be visible by the _Enable state-

ment, i.e., visibility inside its block is insufficient.
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Note, this mechanism is intended to allow for the increased testing of exceptional situations

given that the condition is met. The condition itself may or may not be met frequently during a

program’s life time, and may be difficult to force artificially. Ultimately, it is up to the program-

mer to specify a condition that allows for adequate testing while reflecting realistic exceptional

situations.

The condition mechanism provides the programmer with a very general way to trigger the

exception assertion, i.e., propagate the exception. Hence, the following two extensions to the

mechanism could be implemented by clever use of an appropriate condition, but are important

enough to warrant providing them as explicit features.

5.2.2 Inject with Probability

With terminating semantics, it may not be desirable to always trigger the exception assertion

once the condition is met, e.g., the programmer may want control flow to potentially proceed

into the _Enable block. A probabilistic measure can therefore be added to the mechanism that

causes propagation to occur with a specified probability, and thus, allows for the coverage of a

greater number of test cases over different runs of the program. This refined control is achieved

by supplying an individual probability as part of the exception assertion, e.g.,

_Enable < PacketLoss(TCP, id) ? ( tcp_window_size > 0.8*max_tcp_window_size ), 0.35 > {
. . .

}

augments the previous exception assertion such that it is triggered only 35% of the time when the

assertion condition is fulfilled.

5.2.3 Grouping

During testing, it may be useful to group certain exception assertions and assign probabilities to

entire groups. One reason is to test each group separately, e.g., by assigning a probability of 0

to all other groups. To achieve this capability, it is possible to associate an integer ID with an

exception assertion, e.g.,

_Enable < PacketLoss(TCP, id) ? ( tcp_window_size > 0.8*max_tcp_window_size ), 0.35, 7 > {
. . .

}

which assigns the ID 7 to the sample exception-assertion.

To allow for maximum flexibility with regard to determining group and individual probabil-

ities, and to enable dynamic changes of these parameters during testing, the following routine is
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available:

double getAssertProbability( double probability, int group )

The system queries it whenever a trigger point is reached by supplying the individual proba-

bility and group ID, and receiving the dynamically calculated probability for the trigger point

as a result. A default implementation is supplied that simply returns the individual probability

specified. Redefining this function in a program causes the linker to choose it over the default

implementation. Thus, a programmer can realize any desired probability scheme, e.g.,

double getAssertProbability( double probability, int group ) {
static uOwnerLock l;
static int counter = 0;

l.acquire(); // protect counter from concurrent access
int count = counter += 1; // store current counter
l.release();
switch ( group ) {

case 1:
case 2:

return probability*(1 - 10.0/count); // note: negative probabilities are
case 3: // converted to 0.0

return 0.0;
default:

return probability;
}

}

In the example above, the probability of assertions with IDs 1 and 2 is slowly ramped up to their

specified value, e.g., to let the program settle down before assertions start to trigger. Those with

ID 3 have their probability set to zero, i.e., triggering of these assertions is turned off. Any other

exception assertion is triggered according to its supplied individual probability.

5.2.4 Distribution

The location inside the _Enable block where the triggered exception is injected (propagated) is

important. The simplest implementation triggers it when the block is first entered. However,

while this solution is still a useful test of this likely propagation point (since _Enable-block entry

is a poll point), it is equally important to cover the entirety of the _Enable block due to the asyn-

chronous nature of possible propagations within it. A better scheme simulates the asynchronous

nature of the _Enable block by distributing different sub-trigger points (in effect, separate excep-

tion assertions of the same condition and ID) among statements throughout the _Enable block.

In this case, the probability needs to be divided among these different sub-trigger points, but an

even division may not be desirable: Statistically speaking, the earlier trigger points are likely to

be encountered more often than the later ones with terminating semantics because exceptional
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propagation precludes the testing of later sub-trigger points. Since exception injection is meant

to test for unhandled exceptions, and unhandled exceptions ultimately manifest themselves (and

cause the greatest damage) using terminating semantics, it makes sense to assume this form of

propagation. It is therefore better to skew the division of the individual (conditional) probabilities

pi in a fashion that favours later points such that if there are 0..n-1 sub-trigger points numbered

by lexical occurrence, they each have the same overall (unconditional) probability P/n if P is the

probability assigned by the programmer to the overall exception assertion. In other words, for a

sufficiently large number of program runs, all sub-trigger points should trigger the same number

of times. The conditional probability pi of the ith sub-trigger point, i.e., the probability that this

sub-trigger point triggers under the condition that it is reached (none of the earlier ones trigger),

is therefore determined as follows:

P
n

=
(

1−P
i
n

)
pi

⇔ pi =
P

n− iP

Of course, since control flow inside the _Enable block can be arbitrary, there is no guarantee that

execution actually progresses lexically from top to the bottom. Without extensive control-flow

analysis, however, this heuristic seems reasonable.

5.2.5 Extending to Other Statements

While the asynchronous nature of the _Enable block presents special challenges to understanding

and testing exception handling, exception assertions are not restricted to just the asynchronous

domain. It may be useful to test synchronous exception handling in this fashion as well. Hence,

the concept is extended by using a special try-statement, e.g.,

try < PacketLoss(TCP, id) ? ( tcp_window_size > 0.8*max_tcp_window_size ), 0.35, 23 > ;

Here, the exception is triggered inside the try-statement. A try-statement is used for ease of

parsing; it need not have any guarding handlers. Unlike with the _Enable block, in which the

exception assertion has the additional semantics of enabling propagation of the exception, the

exception assertion as part of the try-statement has no additional semantics beyond exception-

assertion testing. It may not be useful to use this mechanism to inject exceptions into existing

try-blocks that guard against synchronous propagations, i.e., by augmenting existing try-blocks

with the exception-assertion syntax above; the distribution of triggering points across the block
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makes little sense in this case. However, augmenting an existing try-block with an assertion

condition can be useful for the passive assertion check introduced in the following section.

5.2.6 Passive Exception Assertion

Assertions are useful in challenging and verifying a programmer’s assumptions about a program.

If an assertion fails, a significant run-time effect is produced, e.g., terminating the program. Ex-

ception assertions can be used in a similar fashion, from which they derive their name. The

injecting of exceptions discussed so far is called active assertion. Using the same exception as-

sertion syntax, an alternative mode2 is passive assertion, in which an exception assertion only

performs an action when a ‘real’ exception of the same or derived type is propagated out of the

block it guards: If the assertion condition is not met, the programmer is warned.

In the previous example, if a PacketLoss exception is propagated out of the try-block and

the assertion condition is not met, the run-time warns the programmer by printing the following

message to standard error:

Assertion (tcp_window_size > 0.8*max_tcp_window_size) failed for raised

exception of type PacketLoss.

In this way, the programmer is warned of a misleading assumption about the exception handling

inside the program, and can take measures to rectify the issue, as well as gain a better understand-

ing of the program.

When not debugging, i.e., in the release binary, all testing (passive or active) semantics of

exception assertions are removed, so program performance is unaffected by the testing code.

5.2.7 Example

The example in Figure 5.1 shows resumption being used in event-driven programming. A cen-

tral routine eventLoop collects events via GotInput resumptions raised at its execution from an

external task, and distributes them to an array of N processing servers. When a server is finished

with its calculation, it sends the result via a FinishedCalc resumption back to the execution exe-

cuting eventLoop, which outputs the result. The variable outstanding keeps track of how many

calculations are underway.

2Active assertions are used in compilation units compiled with the -assert flag. Passive assertions are implicitly

enabled using the -debug flag.
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const int N = 20;

_Event GotInput {
public:

int input;
GotInput( int i ) : input( i ) {}

};
_Event FinishedCalc {

public:
void *result;

};
_Event End {};

void eventLoop() {
int outstanding = 0;
try {

for (;;) {
_Enable < GotInput(rand() % N) ? (outstanding < N), .75 >

< FinishedCalc ? (outstanding > 0), .25 > {
std::cout << outstanding << " ";

}
}

} _CatchResume ( GotInput &gi ) ( outstanding ) {
if ( gi.input == 0 ) _Throw End(); // some termination condition
outstanding++; // events being processed
server[rand() % N].process( gi.input ); // pass event to server

} _CatchResume ( FinishedCalc &fc ) ( outstanding ) {
outstanding--; // event processed
outputResult( fc.result ); // output the result

} catch ( End ) { // catch reraised exception
std::cout << std::endl; // finish up

}
}

Figure 5.1: Exception assertion example

In this example, an active exception assertion implicitly injects exceptions that would oth-

erwise be raised by the external task. It can thus be used to test this part of the code when no

external task is present. The line

_Enable < GotInput( rand() % N ) ? (outstanding < N), .75 >
< FinishedCalc ? (outstanding > 0), .25 >

does two things: First, it enables propagation of GotInput and FinishedCalc exceptions. Second,

it makes the assertion that GotInput exceptions are only propagated when outstanding < N, while

FinishedCalc exceptions are only propagated when outstanding > 0. These conditions seem nat-

ural since there are only N servers to process requests and there can be no results received when

there are no outstanding calculations. If active assertions are turned on, GotInput exceptions3 are

to be injected with a probability of 75%, while FinishedCalc exceptions are injected with 25%

probability. The reason for this choice may be that inputs are expected to occur three times faster

than calculations. In order to observe what happens over the program’s run-time, the value of

3They are instantiated with rand() % N as an argument: Eventually, the argument is 0, and the loop terminates.
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outstanding is printed out periodically. Here is one of the outputs generated by the program:

0 1 3 4 6 6 7

It is clear that the value of outstanding tends to rise, which is explained by the number of GotInput

exceptions exceeding that for FinishedCalc, until the terminating condition is met. When equal

probabilities are used as in

_Enable < GotInput( rand() % N ) ? (outstanding < N), .75 >
< FinishedCalc ? (outstanding > 0), .75 >

it is not surprising that the resulting output hovers in the range of 0-1:

0 1 1 1 1 0 0 1

When active assertion checking is turned off, i.e., only passive checking remains, and the code is

tested by generating a lot of GotInput events, here is what the output potentially looks like:

0 2 2 2 3 5 6 8 ... 19
Warning: On _Enable block entry: Assertion ( outstanding < N )
false for raised resumption of type GotInput

The nice thing about this message is that it alerts the programmer to a misconception in the

program design. When there are more than 20 outstanding calculations, a server needs to perform

more than one at a time, which it may not be designed to do. At the very least, this message gives

the programmer an idea under what circumstances such boundary cases are reached.

5.2.8 Implementation

Exception assertions are implemented in µC++ largely by performing code transformations via the

µC++ translator.

Active Assertions

Implementing active assertions is relatively straight-forward. It requires injecting code sequences

into user code that evaluate the supplied condition and probability, and raise an exception de-

pending on the result, e.g.,

if ( ( b > a ) && triggerAssertion( 0.5 , 2 ) )
_Resume(. . .);

where triggerAssertion is a routine that, given an individual probability and assertion ID, returns

(by calling getAssertProbability) whether a propagation should be triggered. The triggered ex-

ception is raised using resumption semantics as the exception-assertion syntax does not specify

135



whether terminating or resumption semantics are required. Since the default resumption han-

dler reraises the exception using terminating semantics, both semantics are covered. Note, this

method does not permit testing terminating semantics where a resumption handler exists for the

same or derived exceptions as the resumption handler prevents the exception from being reraised

with terminating semantics, e.g.,

try {
_Enable < PacketLoss(TCP, id) ? (true) > {

. . .
}

} _CatchResume( PacketLoss ) { . . . } // handles all injected PacketLoss exceptions
} catch( PacketLoss ) { . . . } // never executed

Here, if there is a terminating raise (throw) within the _Enable block that is supposed to be caught

by the catch-handler, this exception path cannot be tested by this active assertion. Any injected

PacketLoss exceptions are handled by the resumption handler since they are raised with resump-

tion semantics. The default resumption handler, which would otherwise reraise the exception

with terminating semantics, is never executed as the supplied resumption handler takes prece-

dence, so the injected PacketLoss exceptions are never raised with terminating semantics. For

asynchronous exceptions, this restriction is no drawback since asynchronous exceptions cannot

be raised with terminating semantics anyway (only the absence of a resumption handler turns

a raised asynchronous exception into one with terminating semantics, see Section A.3, p. 161).

For synchronous exceptions, it can make sense to have both terminating and resumption handlers

for the same exception type and guarded block. However, such code makes most sense when a

resumption handler reraises the exception with terminating semantics, in which case the injected

exception is reraised as well, meaning the test case covers the intended functionality. Other cases

of a resumption and termination handler of the same type guarding the same block should be rare.

Distributing the triggering checks over an _Enable block requires inserting these checks be-

tween statements within the block, where care must be taken that the sub-triggers have the correct

individual (conditional) probabilities pi such that they combine to the total probability associated

with this assertion and ID (see Section 5.2.4, p. 131).

Note, when simply copying the distributed triggering checks as above, evaluating the condi-

tion can be problematic since the binding of the identifiers at the location of the trigger check

may not be the same as the one at the entry of the enable block, e.g., the code snippet
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int a = 10;
int b = 0;
_Enable < PacketLoss ? ( b > a ), . . . > { // what exactly is enabled

. . . // is irrelevant here
int b = 100; // new b variable hides old b
. . .

}

is transformed into

int a = 10; // user code
int b = 0; // user code
_Enable < PacketLoss > { // user code

if ( ( b > a ) && triggerAssertion( . . . ) ) // generated code:
_Resume(. . .); // first sub-trigger

. . .
int b = 100; // user code

if ( ( b > a ) && triggerAssertion( . . . ) ) // generated code:
_Resume(. . .); // second sub-trigger

. . . // user code
}

Now, the condition check of the first sub-trigger is false while that of the second sub-trigger is

true even though the condition is unchanged. What is changed is the binding of identifier b. This

problem also affects parameters supplied for exception instantiation. This issue arises from the

difficulty of capturing a closure in C++. The new C++0x standard solves this problem by providing

lambda functions [ISO10]. For this thesis, and until the C++0x standard is finalized, the simple

approach above suffices, but should be used with caution.

Passive Assertions

Since µC++ exceptions are dual [Mok97], they can be raised using terminating and resumption

semantics4. For a given passive exception assertion, the semantics through which the exception

is raised cannot be anticipated in general, so a passive exception assertion check needs to be

implemented for both resumption and terminating semantics.

Implementing passive assertion checks for termination semantics (throw) is straight-forward,

except for how and when the assertion condition is checked. One option is to evaluate the as-

sertion condition when or just after the exception is raised since the condition is related to the

exceptional situation, and thus, the raise. However, it is very likely the factors causing an excep-

tional raise are (in part) local to the raise site, and it is unlikely that an exception assertion located

far from the raise site has access to local state. Otherwise there is close coupling between lower-

level (raise site) and higher-level (exception assertion site) code, which is generally undesirable

4Asynchronous exceptions can only be raised with resumption semantics, but there is no reason to restrict exception

assertions to asynchronous exceptions alone.
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from a software-engineering perspective.

An alternative option, especially if the exception assertion is far from raise point, is for the

assertion condition to query the state when the exception is propagated into or out of the block to

which the assertion is attached.

From a technical point-of-view, both options are tricky. If the condition is to be evaluated at

the raise, there is the problem that raising code or additional code that is executed as a conse-

quence of the raise generally cannot see the scope in which the condition exists, and therefore,

cannot evaluate it. Again, a closure can allow the execution of code at the assertion scope, which

is a capability that the lambda function of the new C++0x standard provides. With this function-

ality, it is possible to capture the code that checks the assertion condition in a lambda, store this

lambda, and then evaluate it when the raise occurs.

In this work, the alternative option is chosen, i.e., the condition is evaluated when propagation

exits the block to which the assertion is attached (for termination semantics). The trickiness of its

implementation again lies in evaluating the condition in the correct scope. This approach is easy

to implement for termination semantics as an exception handler can naturally see the assertion

condition and evaluate it. The _Enable- or try-block is enclosed by another try-block that catches

the exception, evaluates the assertion, issues a warning if necessary, and finally reraises the caught

exception, e.g., the previous example becomes

try {
_Enable < PacketLoss > { // _Enable block from previous example

. . .
}

} catch ( PacketLoss ) {
if ( ! ( b > a ) ) // assertion failed

/* issue warning */
throw; // reraise exception

}

Since the scope of the catch clause includes that which exists just before entering the _Enable

block, the bindings of a and b are as expected. Note that cleanups (e.g., destructors) run between

raise and catch can potentially alter the assertion condition, i.e., its value can be different than at

the time of the raise.

Resumption semantics are more complicated to implement. µC++ currently implements re-

sumption handlers as routines with global scope, and these generally cannot see, and thus, cannot

evaluate the condition-part of the exception assertion. Again, using lambda functions according

to the new C++0x standard solves this problem as they provide a closure, and thus, allow a re-
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sumption handler to evaluate the condition in the correct scope. Until the new standard comes

into effect, the assertion condition for resumptions is evaluated when first entering the block to

which the assertion is attached, as opposed to when the exception is propagated through it. For

symmetry, this evaluation at block entry is also performed for terminating semantics (in addition

to the evaluation performed after the raise as discussed above). Conceptually, the resulting code

looks as follows:

{
bool firstEval = ( b > a );
try {

. . . // could be a synchronous raise
} _CatchResume ( SomeException ) {

if ( ! firstEval ) // assertion on block entry failed
/* issue first warning;

implicit return to detection/raise point due to resumption */
} catch ( SomeException ) {

if ( ! firstEval ) // assertion on block entry failed
/* issue first warning */

if ( ! ( b > a ) ) // assertion at propagation failed
/* issue second warning */

throw;
}

}

Under the assumption that the condition does not change between entering the block and the

propagation through it, this implementation detail is benign, but there is no guarantee that this

assumption is correct. While the implementation is not ideal, any unexpected behaviour results

from unusual coding style, and should therefore affect few programs. In comparison to having

no mechanism for testing exceptions, the presented approach is a significant improvement. Once

lambda functions make it into the language standard, the implementation can be altered to take

advantage of them, solving the issue discussed above.

Appendix C, p. 171 shows a complete example of all code transformations performed in order

to implement exception assertions.

5.3 Run-time Information

One of the most frustrating aspects of debugging exception-handling code is the fact that, at least

with termination semantics, useful information vanishes during exception propagation as part of

stack unwinding. Interestingly, in the case of exceptions that are not caught, information may re-

main available if there is no need to unwind the stack when the program is about to be terminated.

The C++ standard leaves it undefined whether the stack is to be unwound in such a case [Int98,

§15.3.9], and consequently, implementations such as Sun WorkShop 6 update 1 C++ 5.2 and
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GCC 4.3.3 do not unwind the stack. Hence, with such implementations, debuggers are able to

inspect program state at the point-in-time of the exceptional raise/asynchronous propagation. If

exceptions are caught, however, e.g., to print meaningful error messages or for aggregation, the

prior state of the program at the point of asynchronous propagation is lost. Since exceptions

are rare, it is important to preserve as much information as possible since the exceptional situ-

ation may not be easily recreated. This section examines what information is the most useful

and should be preserved and how this preservation is accomplished. Note, in general, such ad-

ditional information should only be collected while debugging so as not to negatively affect the

performance of the final release.

5.3.1 Stack Trace

The stack trace, i.e., the listing of call frames on the stack, is one of the most useful pieces of

information available about the state of a program. In general, it is helpful in determining the

control-flow that led to a particular program state. In the domain of exception handling, it is

especially useful as propagation and handler precedence follow the call stack. It is for this reason

that languages like Java or those working on top of .NET expose a stack trace and attach it to a

raised exception object [GJSB00, Micb]; for Java, printing the stack trace to the console is the

default behaviour if an exception goes uncaught. For fully-asynchronous exceptions, the top-most

stack frame is especially important as it contains the instruction address at which the exception

was propagated, which cannot be anticipated.

Usage

Hence, there is good reason to store a stack trace inside the exception object and provide an

interface to access it programatically, e.g.,

try {
. . .

} catch ( PacketLoss e ) {
e.printStackTrace( std::cout );

}

which produces a trace of the call-stack like

0x8066280: 0x80661fe work2()
0x80668b6: 0x80668ab foo::work(int)
0x80668c9: 0x80668b8 foo::work3(int, int, int)
0x806639b: 0x806635b fred(int)
0x8066375: 0x806635b fred(int)
0x8066375: 0x806635b fred(int)
0x8066437: 0x806639e uMain::main()
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in which the instruction address is displayed followed by the starting address and the name of

the called function. When an exception is propagated out of a task’s starting routine, the default

termination handler prints a stack trace before the program is aborted.

Implementation

There are two basic ways of implementing a stack trace. The first is to walk the stack di-

rectly, which is fast but architecture-dependent and usually requires a frame pointer. The sec-

ond method, and the one employed here, is to use the interface to the unwinder provided by

_Unwind_Backtrace (see Section 3.6.4, p. 68). While invoking the unwinder is generally slower,

it provides for a consistent interface over multiple architectures, and thus, future compatibility.

As exceptions are rare in nature and a stack trace is only generated when an exception is prop-

agated, the overall cost attributable to the process of generating stack traces should be relatively

small.

5.3.2 Propagation Control Snapshot

Another factor that affects asynchronous exception handling is asynchronous propagation con-

trol. Especially with restricted asynchrony and the corresponding infinite scope of _Enable

blocks, finding the responsible _Enable block is more complicated because the state of the

propagation control inside of an execution is constructed dynamically along the call stack.

This information is especially useful in cases where propagation is expected but does not oc-

cur (failure to propagate, see Section 3.5, p. 64). An interface for accessing the current

state of propagation control can therefore be useful for debugging purposes. The routine

uEHM::printFullEnableDisableState( std::ostream & ) prints out a representation of the complete

current asynchronous propagation-control stack, e.g., the program in Figure 5.2 produces the

following output:

-joe
+john::mary
-john
+mary, +fred, +john
+fred
-<All>
+<All>
-<All>
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_Event fred{};
_Event mary{};
_Event john{ public: _Event mary{}; };
_Event joe{};

void foo () {
_Enable < mary > < fred >< john > {

_Disable < john > {
_Enable < john::mary > {

_Disable < joe > {
uEHM::printFullEnableDisableState(std::cerr);

}
}

}
}

}
void uMain::main() {

_Enable {
_Disable {

_Enable < fred > {
foo();

}
}

}
}

Figure 5.2: Example of printing state of asynchronous propagation control

where types preceded by a “-” represent a _Disable of that type and those preceded by a “+”

represent an _Enable. To determine whether propagation of a particular type is enabled, it is

necessary to examine the propagation-control stack from the top down until a directive is found

that fits that type, e.g., john, despite having both _Enable and _Disable directives on the stack, is

disabled since the -john is higher up the stack.

To assist in evaluating the complete propagation-control stack, the following algorithm trans-

forms it into canonical form:

• For each directive top-to-bottom until end-of-stack or an <All>-directive is found:

∗ if type is disabled and not matched in enabled-set, insert it into disabled-set.

∗ if type is enabled and not matched in disabled-set, insert it into enabled-set.

• if +<All> found, output disabled-set followed by +<All>.

• otherwise output enabled-set followed by -<All>.

A type T is matched in a set, if that set contains a type S such that catch ( S ) handles propagations

of T, e.g., T inherits publicly from S, or they are identical.

The routine uEHM::printEnableDisableState( std::ostream & ) implements this algorithm, so

by calling

uEHM::printEnableDisableState( std::cerr );
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the propagation-control stack above is reduced to:

+john::mary
+fred
+mary
-<All>

This output indicates that there are three exception types whose propagation is enabled. Propa-

gation of any other exception type is disabled.

Alternatively, it may be useful in certain situations to check whether the propagation of an

exception is enabled and alter control flow dependently. The macro propagationEnabled( id ),

where id is a type-name or a variable-name, provides this functionality. This feature is especially

important for library routines as they have no control over the code that calls them. An example

use of this macro is:

void libraryRoutine() {
if ( propagationEnabled( PacketLoss ) ) {

exceptionSafeSubRoutine();
} else {

subRoutine();
}

}

In this example, subRoutine is fast but not exception-safe with regard to asynchronous PacketLoss

exceptions. Hence, it is used only if propagation of PacketLoss is disabled; otherwise, the slower

but exception-safe alternative exceptionSafeSubRoutine is called.

5.3.3 Total Event Log

Even for experienced programmers, the proper use of asynchronous exceptions is challenging.

The inherent non-determinism makes it difficult to reason about a program or recreate a specific

situation affecting exception handling. The ability to go back in time and review all events that

affect (asynchronous) propagation can therefore be a useful tool in a programmer’s debugging

arsenal. For this reason, the following important events related to (asynchronous) exception han-

dling are recorded and stored in a central log, with the following data:

1. Raise (unique exception ID, type, source, target)

2. Detection (unique exception ID, detecting execution, execution state)

3. Propagation (unique exception ID, instruction address at propagation)

4. Entering an _Enable /_Disable block (execution, block start/end, types controlled)

5. Exiting an _Enable /_Disable block (execution)
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Collecting and retrieving the log information does not affect the program beyond potential lock

contention, i.e., the process of collecting and retrieving the information is transparent, and does

not affect the behaviour of the rest of the program beyond slowing it down and influencing

scheduling decisions (which are unpredictable in any case). The log can be accessed an arbitrary

number of times and at any time during program execution, including from within a debugger if

the debugger supports the execution of arbitrary routines (see definitions in Appendix Section D,

p. 175).

In order to collect less information, the routine uDefaultEventLogMode() can be defined to

specify which events are logged, e.g.,

int uDefaultEventLogMode() {
return EHMdebug::prop | EHMdebug::detect;

}

only collects information about propagations and detections. The collection of information can

be turned off by returning 0, which is the default.

Examples

Figure 5.3 shows an example of how this log information might be used. It defines a data structure

and a routine to access the log and calculate statistics about the asynchronous exception queues

of all executions inside a program. When the routine is run, it iterates through the log analyzing

it. If a raise is encountered, it sets up a mapping between an exception ID and its target execution

(i.e., where it propagates). Then the data structure associated with this execution is incremented,

meaning the length of its exception queue has increased by one. If a propagation is encountered,

the data structure associated with the execution is retrieved and decremented, meaning the length

of its exception queue has decreased by one. Since the data structure records a running sum

of the queue length for each event (raise and propagation), an average can be calculated at the

end by dividing this sum by the number of recordings. In addition, the data structure also takes

sample recordings of the queue length on every step’th event. Using the print method, it can then

print out a graph of the queue length over time. Figure 5.4, p. 146 shows part of the output for

running averageQueue at the end of a modified version of EHM4.cc (a standard test program that

is part of the µC++ distribution). Here, the queue length of execution 0x9c0b378 fluctuates with

an average of around 300, whereas the queue of execution 0x9c13778 grows continuously with

an average almost three times as high. It appears that the distribution of exceptions to executions

is slightly unbalanced in this case, and should a balanced distribution be a requirement (it is not
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struct data {
const static int step = 150;
const static int scale = 25;
int length, sum, num;
vector<int> v;
void print() { // print nice bar chart

for ( vector<int> :: iterator it = v.begin(); it != v.end(); it++ ) {
cout << "|" ;
for ( int i=0; i < *it / scale; i++ )

cout << "*";
std::cout << std::endl;

}
}
void operator++( int ) {

length++;
sum += length;
num++;
if ( num % step == 0 ) v.push_back( length ); // record every step’th reading

}
void operator--( int ) {

length--;
sum += length;
num++;
if ( num % step == 0 ) v.push_back( length ); // record every step’th reading

}
};
void averageQueue() {

using namespace EHMdebug;
AsyncDebugIter it;
map< uBaseCoroutine *, data > bch;
map< unsigned int, uBaseCoroutine * > exh;
EHMlog_info info;
for ( ;; ) {

it >> info;
switch ( info.type ) {

case EHMdebug::raise: {
exh[ info.raise.eID ] = info.raise.exec; // record exception ID
data &d = bch[ info.raise.exec ]; // to execution mapping
d++; // and lengthen execution’s queue
break;

}
case EHMdebug::prop: {

data &d = bch[ exh[ info.prop.eID ] ]; // exception ID -> execution -> data
d--; // shorten execution’s queue
break;

}
case endOfBlock:

goto end;
}

}
end:

map< uBaseCoroutine *, data >::iterator finalit = bch.begin();
for ( ; finalit != bch.end(); finalit++ ) {

data &d = finalit->second;
std::cout << "Execution: " << finalit->first

<< ", average queue length: " << ( double ) d.sum / d.num << std::endl;
d.print();

}
}

Figure 5.3: Calculating exception queues from the asynchronous event log
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Execution: 0x9c15378, average queue length: 312.273
|******
|************
|******************
|******************
|***************
|*************
|***********
|*******
|****
|
|******
|************
|******************
|************************
Execution: 0x9c1d778, average queue length: 934.501
|*****
|***********
|*****************
|***********************
|*****************************
|***********************************
|*****************************************
|***********************************************
|*****************************************************
|***********************************************************
|*****************************************************************
|***********************************************************************

Figure 5.4: Output produced by averageQueue from Figure 5.3

for this particular program), then this result constitutes a first step in recognizing and fixing the

problem. A routine like averageQueue can be called from within a debugger like gdb at any point

during the execution of the program as many times as required. It can thus serve as a valuable

tool while examining the live program during a debugging session.

The routine printAsyncPropControl in Figure 5.5, p. 148 prints out the asynchronous prop-

agation control of all executions at a certain point in the event log specified by a supplied it-

erator position. First, it iterates over the log until the specified position is reached, and gen-

erates an asynchronous-propagation-control stack for each execution using propagation con-

trol. Once the final position is reached, it iterates over each such generated stack and calls

printAsyncPropHelper, which implements the algorithm from 5.3.2, p. 142 to evaluate the ef-

fective propagation-control state. When called at some time in the event log of EHM4.cc with 3

worker tasks5, printAsyncPropControl produces the following output:

5The output shows the propagation control of 5 executions/tasks: 3 worker tasks, plus uMain and uBootTask.
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Execution 0x80ef190:
-<All>

Execution 0x8b94be8:
-<All>

Execution 0x8b9cfe8:
-rev
+<All>

Execution 0x8ba53e8:
-<All>

Execution 0xbf82aae0:
-<All>

This output means that at this specific point in time, execution 0x8b9cfe8 has propagation enabled

for all types except rev, whereas all other executions have propagation turned off.

An alternative method to review the log is to dump it in its entirety in human-readable form

by using the supplied void EHMdebug::dumpExceptionLog( std::ostream &os, int filter ) routine,

e.g.,

EHMdebug::dumpExceptionLog( std::cerr );

which produces output similar to:

Exception 27 propagated @0x804c853
Execution 0x9feff78: _Disable @[ 0 : 0x804c91c ]
Execution 0x9feff78: _Disable @[ 0 : 0 ]
Execution 0x9feff78: Exception 39 of type rev raised by execution 0x9feff78
Execution 0x9feff78: *last block popped*
Execution 0x9feff78: Exception 39 detected while target task running
Execution 0x9feff78: *last block popped*
...
Execution 0x9ff8378: Exception 48 detected while target task running
Execution 0x9ff8378: *last block popped*
Execution 0x9ff8378: _Enable < uMutexFailure > @[ 0x8059e2d : 0x8059e2d ]

By using the optional filter parameter, only those types of events a programmer is interested in

are displayed, e.g.,

EHMdebug::dumpExceptionLog( std::cout, EHMdebug::prop | EHMdebug::raise );

only displays raises and propagations.

Implementation

The major hurdle in implementing the asynchronous event-log is the large amount of data that

needs to be stored. This need varies depending on the number of events occurring in a program,
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using namespace std;
using namespace EHMdebug;
void printAsyncPropHelper( std::ostream &os, vector<DEctor_info > &v ) {

set< const std::type_info * > array[2]; // array[0] = disabled, array[1] = enabled
while ( !v.empty() ) {

DEctor_info &info = v.back();
int en = info.enabled;
if ( info.num == 0 ) {

array[ en ].insert( 0 ); // once we find the any type, we’re done
break;

}
l2: for ( int i = 0; i < info.num; i += 1 ) {

set<const std::type_info * > :: iterator it = array[1 - en].begin();
for ( ; it != array[1 - en].end() ; it++ ) // only mark a type as en/disabled if nothing in

if ( uEHM::match_exception_type( info.pc[i].type, *it ) ) // the other set matches here
continue l2; // if there is a match, continue in outer loop

array[en].insert( info.pc[i].type ); // no match -> insert into the appropriate set
} // for

v.pop_back(); // move on to next entry
}
int branch = 1 - array[ 1 ].count( 0 ); // branch 0 -> disabled types first then all enabled
const char pm[ ] = { ’-’,’+’ }; // branch 1 -> enabled types first then all disabled
set<const std::type_info * > :: iterator it = array[ branch ].begin();
for ( ; it != array[ branch ].end(); it++ ) {

int status;
char *s2 = _ _cxxabiv1::_ _cxa_demangle( (*it)->name(), 0, 0, &status );
os << pm[ branch ] << s2 << endl;
free( s2 );

}
os << pm[ 1 - branch ] << "<All>" << endl;

}

void printAsyncPropControl( std::ostream &os, const AsyncDebugIter &it2 ) {
AsyncDebugIter it;
map< uBaseCoroutine *, vector< DEctor_info > > m;
EHMlog_info info;
for ( ;; ) {

if ( it == it2 ) // when point in time denoted by it2
break; // is reached, leave loop and

it >> info;
switch (info.type) {

case ENctor:
case DISctor:

m[ info.ctor.exec ].push_back( info.ctor ); // find execution and push onto stack
break;

case dtor:
m[ info.dtor ].pop_back(); // find execution, pop from stack
break;

case endOfBlock:
return;

}
}
map< uBaseCoroutine *, vector<DEctor_info> >::iterator m_it = m.begin();
for ( ; m_it != m.end(); m_it++ ) { // for each execution

os << "Execution " << m_it->first << ":" << endl;
printAsyncPropHelper( os, m_it->second );
os << endl;

}
}

Figure 5.5: Printing executions’ propagation control at a given time in the event log
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which depends on the frequency of such events during a program’s running time. Some test pro-

grams that have a large concentration of asynchronous exception-handling activity can produce

hundreds of megabyte of raw data per second. The first step to taming this large memory require-

ment is to recognize that the number of unique events in a program is relatively small compared

to the number of times they occur. Executions typically raise a limited number of exception types

at a limited number of other executions, and generally, the same code is executed repeatedly. It

is therefore useful to aggregate the information that comprises an event, record it in a hash-map,

and store the key of the hash-map instead of the raw information. For similar reasons that the

same events occur repeatedly, they also occur in certain recurring patterns. This property can be

exploited by running the resulting data through a compression algorithm such as zlib’s [DG96].

This compression also takes care of space-inefficiencies of data structures employed without hav-

ing to resort to using unwieldy tools such as bit-fields. In total, the memory requirement can thus

be reduced to less than 2% of the raw data in the optimal case (lots of redundancy).

Since the asynchronous event-log is a centralized store, access to it needs to be serialized.

This mutual exclusion restricts concurrency in a program and can lead to a performance bottle-

neck, especially with asynchronous-exception-heavy programs. For example, when collecting

full information with the EHM4.cc test program mentioned above, depending on the number of

tasks used and whether it is run single-threaded or multi-threaded, the log can cause a slow-down

of a factor of 2 up to a factor of 8. The performance can be improved if the type of information

collected is restricted using uDefaultEventLogMode(), e.g., with only propagation information,

the performance impact for the same test program is undetectable.

5.4 Related Work

A number of publications use static exception-flow analysis to gain static insight into the ex-

ceptional control-flow inside a program [SB93, YR97, SH00, RM03]. They analyze a program

and determine which exceptions can be raised, what handlers can catch these exceptions, which

exceptions can go uncaught, etc. These methods give the programmer helpful additional infor-

mation about the potential exceptional control-flow in their programs. Static approaches, how-

ever, usually suffer from a tendency to overestimate the number of exceptions that can actually

be raised dynamically. These static insights can be used to implement visualization tools that

allow the programmer to explore the exception flow in their program through a graphical in-

terface [SGH08]. Dooren and Steegmans [vDS05] try to address the issues of using exception
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specifications in practice by introducing the concept of anchored exception handling, which is a

way to transitively make a routine’s exception specification dependent upon another’s.

The concept of assertions can be traced back to [Hoa69], where they are used to describe

the pre-/post-conditions of a program execution. Pre-/post-conditions play a major role in Eif-

fel [Mey87] and its design-by-contract principle. While early versions of Eiffel did not support

exception handling, exceptions were added later; in particular, an unmet assertion raises an excep-

tion [Mey88]. The extensions of Eiffel to the SCOOP model expand its exception model to allow

for exceptions to cross execution boundaries [Ars06]; however, these kinds of exceptions, while

the result of asynchronous calls, are only propagated synchronously. Similarly to Eiffel, Berg

proposes an exception model where exception raises are the result of unmet assertions [Ber08].

He also proposes a method for dynamically testing exception handling paths in a testing phase

of the program, and then using this information to check for coverage of all handlers, as well as

to simplify the finding of handlers for given exceptions. Cabral and Marques use a method to

inject (synchronous) exceptions, but merely employ it to demonstrate the effectiveness of their

automatic exception-handling feature [CM08].

Stack traces are widely used in programming languages, including in Java, Eiffel, Er-

lang [CGN04], and Python [Lut06]. The C++ standard does not provide a method to generate

a stack trace.

POSIX offers no direct method of querying its propagation-control state, but an indirect

method can be constructed:

int get_pthread_cancelstate() {
int oldstate;
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate); // set to disable,

// and record current state
pthread_setcancelstate(oldstate, NULL); // restore previous state
return oldstate; // return recorded state

}

Note, while it should be benign to temporarily disable cancellation, having to potentially alter the

propagation state in order to query it is inelegant.

5.5 Conclusion

This chapter shows exception handling is subject to several usability challenges (see Section 5.1,

p. 126). Exception assertions ameliorate these issues in two ways. First, in active mode, exception

assertions allow for an increase in propagation frequency and thus better testing. In passive mode,
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exception assertions provide a way to codify assumptions about when exceptional propagations

occur, which should lead to a better understanding of exception-handling code. The stack-trace

feature implemented provides important information about the call stack at the point of propa-

gation, providing a missing element in the C++ language. With regard to the issues specific to

asynchronous exceptions, the provided propagation-control and logging features give the pro-

grammer additional tools to gain dynamic insight into a program’s execution, especially during

testing and debugging.

Having these additional capabilities and information is always better then not having them.

Programmers can choose to employ them to gain a better understanding of their code. However,

while these features’ advantages are clear, not all programs may be able to easily exploit them,

and not all programmers may actively use them or be able to exploit them to their full potential.

As a next step, it would be useful to conduct usability studies of these new features to verify

empirically the extent to which they help programmers understand exception handling.
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Chapter 6

Conclusion

The following sections provide a summary of insights gained as well as possible future work in

the area.

6.1 Summary

In a concurrent system, there is a need for executions to communicate. Communication can be

extended to mean asynchronous transfer of control, which is conveniently modeled using the

existing exception-handling facilities of a language, leading to the creation of asynchronous ex-

ception handling. This asynchronous transfer of control significantly complicates programming

as the interruptibility problem is destructive, as well as difficult to recognize and control. This

issue mainly affects the full-asynchrony model, but while restricted asynchrony can help in sub-

duing the interruptibility problem, the problem persists. In addition, restricted asynchrony forces

an unintuitive programming style using explicit or implicit polls, as well as a polling-related

degradation of performance that does not occur with full asynchrony.

Asynchronous propagation control is an essential tool in controlling asynchronous exception

handling. Several languages/systems deploy asynchronous propagation control in some form.

Without propagation control, safe asynchronous exception handling is virtually impossible, espe-

cially with full asynchrony, e.g., as with Java and Thread.stop. There are three basic approaches

to propagation control: dynamic, semi-dynamic, and static. The dynamic approach is extremely

flexible, whereas the semi-dynamic approach trades in flexibility for increased robustness with

regard to programmer error. Both approaches are characterized by an infinite scope; the dy-

namic approach has an infinite extent whereas the semi-dynamic approach has a finite extent.
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Mixing infinite- and finite-extent approaches in the same EHM seems promising at first, but

is fraught with difficulties stemming from the need to resolve block- and routine-conflicts. An

EHM supporting propagating-control approaches with both kinds of extent that interact with each

other seems too complex to use intuitively. Alternatives in which dynamic and semi-dynamic ap-

proaches act independently from one another on different exception hierarchies can help, but are

complex as well. Further study of this area may be warranted, but for now, using one approach

exclusively remains attractive for reasons of simplicity; for µC++, this means a finite-extent ap-

proach.

Full asynchrony is difficult to use safely with infinitely-scoped propagation control, which

is most commonly used. As a result, restricted asynchrony has to be employed, which is less

intuitive along with imposing a delay between the delivery of an asynchronous exception and its

propagation. The static approach to propagation control allows for the safe use of full asynchrony.

However, static propagation control alone may be too cautious as it does not take advantage of

the possibilities available through poll points. A combination approach, where full asynchrony

applies within the static scope of an enable block (with regard to the exception types it con-

trols), and restricted asynchrony otherwise, can exploit the advantages of both full asynchrony

and restricted asynchrony in a safe way. This combination approach allows for a more intuitive

programming style, and can improve performance. However, preexisting code compiled to use

the new combination semantics may have to be changed. The provided prototype implementa-

tion is a good starting point for implementing such a combination approach as it documents the

challenges and pitfalls. It also provides a (limited) vehicle for testing the proposed combina-

tion semantics through practical programs. However, it is clear that implementing this approach

without compiler-support is difficult and unsuitable for a production system.

A crucial source of delay between delivery and propagation of an asynchronous exception

comes from the possibility of a propagating task’s being blocked. This possibility can also com-

plicate synchronization protocols. The proposed strategy for transparently unblocking tasks upon

an exceptional detection follows directly from the abort characteristics of terminating seman-

tics, and allows the design of unblocking semantics for a multitude of blocking instruments.

Pseudo-blocking semantics for resumption unblocking are modelled analogously. The result is

a simpler and more intuitive way of writing code, especially with complex synchronization pro-

tocols, which can also increase performance. Pseudo-blocking can increase the concurrency in

a program, which also improves performance. Exceptional unblocking can prove useful in non-
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exceptional areas as well, e.g., to remove tasks from a waiting queue regardless of that queue’s

priority strategy, or in order to implement message passing. This unblocking functionality has

been implemented in µC++, and the theoretical advantages demonstrated in empirical tests. The

documentation of the implementation effort can serve as an outline for programmers wishing to

adapt unblocking semantics to other languages.

Finally, when adding all these advanced concepts to asynchronous exception handling, it is

important to keep usability in mind as well. As shown in the provided references (see Section 5,

p. 125), synchronous exception handling is often misunderstood and misused; asynchronous ex-

ception handling is even more complex. Attempts to improve usability by statically checked

exceptions have had mixed success. Dynamic approaches that allow for better testing may prove

more fruitful. The concept of passive exception assertions extends the notion of an assertion into

the exception-handling domain. Using these assertions, programmers can codify their assump-

tions about the exception-handling code of their programs, and are cautioned if these assumptions

are not met. In their active variant, exception assertions allow a programmer to test exception-

handling code by injecting exceptional propagations at a desired rate, which is especially useful

in overcoming the sparse opportunities to test asynchronous exception handling. Giving program-

mers additional information about what goes on inside a program with regard to (asynchronous)

exception handling should lead to better program understanding and better code. Tools like stack

traces can give additional information about the call chain during exceptional propagation; in-

sight into the current state of propagation control allows for more flexible adjustment of program

behaviour. Finally, the ability to go back and review all important steps affecting asynchronous

exception handling should give programmers insight into how their program works, and, most

importantly, what causes it to not behave as expected.

6.2 Contributions

A main contribution of this work is identifying the importance of asynchronous propagation con-

trol for asynchronous exception handling, as well as analyzing its basic properties and, partic-

ularly, its relationship with the asynchrony model employed. While several systems employ

propagation control, most do so in an ad-hoc fashion. I am unaware of any work that examines

the concept of propagation control at the level of depth and breadth in this thesis.

A further contribution is the novel approach combining full-asynchrony/static-propagation-

control with restricted-asynchrony/semi-dynamic-propagation-control. This contribution in-
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cludes the theoretical analysis, as well as the demonstration of a limited prototype implementation

as a proof-of-concept.

Furthermore, no other work examines the issue of propagating asynchronous exceptions in

blocked tasks at the depth and breadth presented herein (other than my previous paper on the same

subject). While some systems support limited unblocking semantics, the approach presented pro-

vides a theoretical foundation, applies it to a wide variety of blocking instruments, and presents

a comprehensive implementation of exceptional unblocking for these instruments, as well as for

both termination and resumption semantics.

As a final contribution, this thesis identifies challenges to the usability of (asynchronous)

exception handling, proposes solutions to mitigate these challenges, and provides an implemen-

tation for these solutions. The concept of exception assertions as presented in this work is unique.

6.3 Future Work

The possibility of combining propagation-control approaches of finite and infinite extent is ex-

plored in this work, but no obviously superior strategy is apparent. It might be useful to explore

this area further, and implement some of these strategies to gain insight into how they behave

with real-world programs.

The prototype implementation for the combination approach to safe full-asynchrony is too

limited to be used in a production system. An obvious next step is therefore to augment a compiler

with the required functionality in order to overcome these limitations. Improving operating-

system components like signal-handler implementations may also be required. An intermediate

step is to attack some of the limitations within the prototype implementation itself. New compiler

versions may provide new capabilities, e.g., with regard to inlining control.

The theory behind and µC++’s implementation of asynchronous unblocking semantics are at a

mature state. Additional testing, e.g., by students in computer science classes, seems a good idea.

Porting unblocking semantics to a programming language other than µC++ may yield good results

as well since it would underline the generality of the feature and aid in its more wide-spread

adoption.

Finally, the implementation of exception assertions is constrained by the current limits of C++.

As soon as C++0x is adopted, the described improvements to the implementation can be made. In

general, the area of asynchronous-exception usability should be explored further. Asynchronous
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exception handling is used so rarely that usability studies are virtually non-existent. Various

additional tools are conceivable to assist programmers with asynchronous exception handling.

While this thesis concentrates on run-time information, more work should be performed in the

compile-time realm. For example, C++’s exception specifications are only checked at run-time,

but could be checked at compile-time. This concept could be further extended by integrating the

information provided by asynchronous propagation control, and developing an annotation syntax

for the asynchronous exception activity of tasks.
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Appendix A

Introduction to µC++

µC++ builds on top of C++ to provide object-oriented language-level concurrency, as well as ad-

vanced exception-handling features, and other enhancements.

A.1 Control Flow

In µC++, statements can be labelled, and the loop control statements break and continue can be

extended by a label to allow for multi-level exit as in this example from [Buh09]:

L1: {
. . . declarations . . .
L2: switch ( . . . ) {

L3: for ( . . . ) {
. . . break L1; . . . // exit compound statement
. . . break L2; . . . // exit switch
. . . break L3; . . . // exit loop

}
. . .

}
. . .

}

With nested loops, the following example is possible:

outer:
for (int out = 0; out < 10; out++ ) {
inner:

for (int in = 0; in < 10; in++ ) {
cout << out << endl;
continue outer;

}
cout << "never printed";
}

All that is printed is the outer loop counter from 0 to 9.
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A.2 Concurrency

A monitor type is created with type constructor _Monitor, like a Java class where all public

members are synchronized, and has all the properties of a C++ class. An active-object type is

created with type constructor _Task, like an Ada task type or Java Thread inheritance, and is also

a monitor type. An instance of an active-object type must have a main member (analogous to the

run member for Java Thread type), where the thread starts execution implicitly after the instance

is created (no additional call is necessary to start the thread). A task finishes by exiting its main

member, and only then can it be destroyed. When a µC++ task, say b, is destroyed, the destroying

task, say a joins with it, i.e., a blocks until b finishes and can be destroyed safely. Finally, a µC++

program begins execution in uMain::main rather than main.

_Monitor M { . . . }; // monitor type, public members are mutex
_Task T { // task type

void main() { . . . } // define action for thread
};
uMain::main() {

{
T t; // instantiate task and start thread

} // task uMain waits until t is finished
. . .
}

Figure A.1 shows the implementation structure for the mutual exclusion and synchronization

of a µC++ monitor. A wait on a condition variable blocks the monitor owner on the specified

condition-variable waiting-queue. A signal on a condition variable moves the task at the head of

the condition queue (signallee) to the signalled stack and the monitor owner (signaller) continues.

µC++ also supports an _Accept statement to explicitly schedule tasks using rendezvous from

outside the monitor. An accept, e.g., _Accept M1, blocks the owner task on the acceptor stack

and the task at the head of the specified mutex (member routine) queue becomes the owner,

similar to Ada’s select/accept for tasks.1 In general, the scheduling order is: When the monitor

owner exits or waits, the head of the acceptor/signalled-stack (the most recent task signalled or

whose accepted member is called) is scheduled (LIFO order). If there is no such task, the head of

the entry queue gains ownership (FIFO order, subject to real-time priorities). See [Buh09, §2.9]

for more details.

1In µC++, the accept concept is generalized across any kind of mutex object, e.g., coroutine, monitor, or task.
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Figure A.1: µC++ monitor

A.3 Exception Handling

An exception type is created with type constructor _Event, which is the only kind of type that can

be raised by statements _Throw (termination) and _Resume (resumption). Resumption handlers

are defined using a _CatchResume clause2, which has a mandatory argument referring to the

exception object, analogous to the catch clause. Its optional second argument (see example be-

low) specifies the local variables that are referenced within the handler, thus, explicitly capturing

a closure. The routine uEHM::poll performs an explicit poll for asynchronous exceptions. Other

operations, e.g., entering a monitor, implicitly poll for exceptions (poll points). Asynchronous

raise is accomplished by using an _At clause on a raise. Note, asynchronous _Throw has been

obsoleted between µC++ versions 5.6.0 and 5.7.0. It is still used in example programs in this doc-

ument in order to emphasize termination semantics. However, certain parts, e.g., Section 5.2.8,

p. 135, do take account of this change. An exception raised with resumption semantics and not

handled by a resumption handler has its default resumption handler executed, which by default

rethrows the exception using terminating semantics. Hence, an asynchronous _Throw can be

achieved by an asynchronous _Resume when there are no user-defined resumption handlers for

that exception guarding the detection point.

Asynchronous propagation control is provided using _Enable and _Disable statements.

_Enable < T1 > < T2 > means allow propagation of exception types T1 and T2 (as well as their

derived types). An _Enable without arguments enables propagation of all exception types.

2The _CatchResume statement is new for µC++-5.7.0. Since the test programs in this thesis were compiled using

a special version of µC++-5.6.0, they do not actually use this syntax, but rather the older resumption syntax using

functors (see Appendix B).
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_Disable explicitly disables propagation of exception types with syntax/semantics analogous to

_Enable.

_Event E {}; // exception type
. . .
int a;
_Resume E() _At t; // asynchronous throw of exception instance

// of type E at task t
try { // establish handler

_Enable { // enable propagation of any asynchronous exception
. . .uEHM::poll();. . . // explicitly poll for asynchronous exceptions

}
} _CatchResume( E ) ( a ) {} // resumption handler referring to local variable a
} catch( E ) {} // catch termination exception (from _Throw)

Unless explicitly enabled, the asynchronous propagation of all exception types are disabled ini-

tially. The _Enable statement is a poll point.
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Appendix B

Actual Program Code

Several of the programs featured in this thesis use simplified µC++ code for ease of understanding.

In order for readers to be able to reproduce the results, the following sections contain the actual

programs as compiled and run.

B.1 Time

The Time routine as used in Figure 3.4, p. 84, and Section 3.5, p. 85 returns elapsed computation

time per thread in ns, and is defined as

#include<sys/time.h>

inline long long Time() {
timespec ts;

clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts);
return (long long) 1000000000 * ts.tv_sec + ts.tv_nsec;

}

B.2 Worry-Free Synchronization

The actual program for Figure 4.6, p. 115 is the following:

#include<uC++.h>

#define ms * 1000000
_Event CompError {};
_Task Server {

uBaseTask *c; int run, result, req;
int compute( int ) throw ( CompError ) {

_Timeout( uDuration( 0, 50 ms ) ); // work
if ( ++run % 3 == 0 ) _Throw CompError();
_Timeout( uDuration( 0, 50 ms ) ); // work

}
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public:
Server() : run( 0 ) {}
void sendRequest(int n) {c = &uThisTask(); req = n;}
int getResult() {

#ifdef OLD
uEHM::poll();

#endif
return result;

}
void main() {

for ( ;; )
try <uMutexFailure::RendezvousFailure> {

_Accept( ~Server ) { break; }
or _Accept( sendRequest ) {

result = compute(req);
_Accept(getResult);

}
} catch( CompError ) {

_Throw _At *c;
#ifdef OLD

try <uMutexFailure::RendezvousFailure> {
_Accept( getResult );

}
#endif

} // try
} // main

} server;
_Task Client {

public:
void main() {

for ( int i = 0 ; i < 20 ; i += 1 ) {
server.sendRequest( i );
try {

_Enable {
_Timeout( uDuration( 0, 150 ms) ); // work
int res = server.getResult();

}
} catch( CompError ) {}

} // for
} // main

};
void uMain::main() {

uProcessor p[2];
Client c[4];

}

B.3 Cheat and Run While Blocked

Figure 4.7, p. 117 is a simplified version of the following program:

#include<uC++.h>

#define ms * 1000000
const int TASKS=8, CHUNK=10, SPACE=TASKS*CHUNK;
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_Event Recall {
public:

int i; int correction;
Recall( int i, int c ) : i(i), correction(c) {}

};
_Monitor Mo {

public:
void work(int &i) {_Timeout(uDuration(0,100 ms));}

} complete;

void prework(int &d) {_Timeout(uDuration(0,250 ms));}

struct Handler {
int *data;
bool *done;
int &i;

Handler( int *dat, bool d[ ], int &i ) : data(dat), done(d), i(i) {}

void operator() ( Recall &r ) {
data[r.i] = r.correction;
prework( data[r.i] );
complete.work( data[r.i] );
done[i] = true;
if ( i == r.i )

_Throw;
}

};

_Task Worker {
int *data;

public:
Worker( int * data ) : data( data ) {};
void main() {

bool done[CHUNK] = { false };
int i = 0;
Handler handler(data, done, i);
for ( ; i < CHUNK ; i += 1 ) {

try <Recall, handler> {
_Enable {

if ( done[i] ) continue; // iteration fixed ?
prework( data[i] );
uEHM::poll();
complete.work( data[i] );

}

} catch ( Recall ) { }
} // for

} // main
};

void uMain::main() {
uProcessor p[TASKS]; // create kernel thread per worker
int space[TASKS][CHUNK]; // space for each worker
Worker *w[TASKS]; // workers
for ( int i = 0; i < TASKS; i += 1 )

w[i] = new Worker( space[i] ); // create worker tasks and start running
for ( int i = 0; i < TASKS * CHUNK; i += 4 ) { // fix every 4th chunk across all tasks

_Timeout( uDuration( 0, 100 ms ) ); // delay before next recall
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_Resume Recall( i % CHUNK, 3 ) _At *w[i / CHUNK];
}
for ( int i = 0; i < TASKS; i += 1 )

delete w[i]; // wait for worker tasks to finish
} // main

B.4 Sleeping Barber

Here is the complete sleeping barber program from Figure 4.9, p. 121:

#include <uC++.h>
#include <iostream>
using namespace std;

_Task Customer;
Customer *customers[20]; // customers indexed by id

class BarberShop {
_Event Wake {};

_Monitor WaitingRoom {
const int max;
int count, next;
int *chairs;

public:
WaitingRoom( int m ) : max(m), count(0), next(0) {

chairs = new int[max];
}
~WaitingRoom() { delete [ ] chairs; }
bool isSpace( int id ) {

cout << "isSpace " << id << " " << count << " " << max << endl;
if ( count == max ) return false;

chairs[ (next + count) % max ] = id;
count += 1;
return true;

}
int getNext();

} w;

_Monitor WaitingChairs {
public:

void dummy() {} // never called
void waitTurn() { _Accept( dummy ); }

} waitingChairs;

_Monitor BarberChair {
bool ready;

public:
BarberChair() : ready( false ) {}
void sync() {

ready = ! ready;
if ( ready ) _Accept( sync );

}
} barberChair;

public:
BarberShop( int max ) : w( max ) {}
bool hairCut( int id ) { // called by customer
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if ( ! w.isSpace( id ) ) return false; // balk ?
if ( id == -1 ) return true; // program shutting down
cout << "hairCut " << id << endl;
try {

_Enable <Wake> { waitingChairs.waitTurn(); }
} catch ( Wake ) { barberChair.sync(); barberChair.sync(); }
return true;

}
int startCut() { // called by barber

int id = w.getNext();
if ( id == -1 )

return id;
barberChair.sync( );
return id;

}
void endCut() { barberChair.sync( ); } // called by barber

} shop( 10 );

_Task Customer {
unsigned int id; // task identifier

void main() {
osacquire( cout ) << id << " " << shop.hairCut( id ) << endl; // get hair cut ?

} // Customer::main
public:

Customer( unsigned int id ) : id( id ) {}
}; // Customer

int BarberShop::WaitingRoom::getNext() {
if ( count == 0 ) _Accept( isSpace );
int id = chairs[next]; // id of next customer
count -= 1;
next = (next + 1) % max;
if ( id != - 1 ) _Throw Wake() _At *customers[id]; // unblock customer
return id;

}

_Task Barber {
void main() {

for ( ;; ) {
int custId = shop.startCut(); // get customer
yield ( rand() % 5 );
if ( custId == -1 ) break;

shop.endCut(); // release customer
} // for

} // Barber::main
}; // Barber

void uMain::main() {
Barber barber;

for ( unsigned int i = 0; i < 20; i += 1 ) {
customers[i] = new Customer( i );

} // for
for ( unsigned int i = 0; i < 20; i += 1 ) {

delete customers[i];
} // for
shop.hairCut( -1 ); // tell barber to ghome

}
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B.5 Exception Assertion Example

The following program is the complete version for that found in Figure 5.1, p. 134:

#include<uC++.h>
#include<iostream>

const int N = 20;

_Event GotInput {
public:

int input;
GotInput( int i ) : input( i ) {}

};

_Event FinishedCalc {
public:

void *result;
};
_Event End {};

void outputResult( void * ) {}

class Server {
public:

void process( int input ) {}
} server[ N ];

class GIh {
int &outstanding;

public:
GIh( int &i ) : outstanding(i) {}
void operator () ( GotInput &gi ) {

if ( gi.input == 0 )
_Throw End();

outstanding++;
server[rand() % N].process( gi.input );

}
};

class FCh {
int &outstanding;

public:
FCh( int &i ) : outstanding(i) {}
void operator () ( FinishedCalc &fc ) {

outstanding--;
outputResult( fc.result );

}
};

void eventLoop() {
int outstanding = 0;
GIh gih(outstanding);
FCh fch(outstanding);

try < GotInput, gih > < FinishedCalc, fch > {
for (; ;) {

_Enable < GotInput( rand() % (N) ) ? (outstanding < N), .75 >
< FinishedCalc ? (outstanding > 0), 0.25 > {
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std::cout << outstanding << " ";
}

}
} catch ( End) {
std::cout << std::endl;

}
}
void uMain::main() {

eventLoop();
}
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Appendix C

Exception Assertion Transformation

The following is an example for the transformation performed in order to facilitate passive and

active assertion checking.

C.1 Original Code

In the routine test in the following code, variable c basically counts how many exceptions are

injected in total:

_Event mary {
int i;

public:
mary ( int i ) : i ( i ) {}

};
double getAssertProbability( double probability, int group ) {

return probability / group;
}
void foo() {}

void test() {
int a = 0, b = 1, c = 0, i;

for ( i = 0; i < 1000; i++, b *= -1) {
try < mary( b ) ? ( b > a ), 0.6, 2 > {

a += 0; // no-effect statement
foo(); // no-effect statement
a -= 0; // no-effect statement

} catch( mary ) { c++; }
}

}

The correct final value for c should cluster around 150 as the probability for assertions of group

2 is halved (from 0.6 to 0.3 in this case) and the assertion condition only holds for half the loop

iterations.
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C.2 Transformation

When both active and passive exception assertion checking is enabled, routine test from the

code above is transformed into the following code (comments added for clarity). Note that

uEHM::triggerAssertion calls getAssertProbability to get the effective probability for an asser-

tion, calculates the individual probability for each sub-trigger, and performs a random draw to

determine whether the active assertion is triggered, i.e., an exception raised.

struct _fnc0xb707e8f4 { // the handler functor
const bool cond; // stores the value of the condition on block entry
void operator () ( mary &ex ) { // handler routine
if ( !cond )

std::osacquire( std::cerr ) << "Warning: On _Enable block entry: Assertion ( b > a ) false
\for raised "

<< ( &ex ? "resumption" : "exception" ) << " of type mary "
<< std::endl;

if (&ex) uEHM::ReResume(); // ex != NULL means its a resumption => reraise
}
_fnc0xb707e8f4 ( bool b ) : cond ( b ) {}

};

void test ( ) {

int a = 0 , b = 1 , c = 0 , i ;

for ( i = 0 ; i < 1000 ; i ++ , b *= - 1 ) {
{

try {
// instantiate handler functor, evaluate condition (for passive assertion)

_fnc0xb707e8f4 _inst0xb707e8f4 ( b > a ) ;
// set up exception -> handler mapping

uHandlerClause < mary , typeof ( _inst0xb707e8f4 ) > _uH_inst0xb707e8f4 ( ( void * ) 0,
_inst0xb707e8f4 ) ;

uEHM :: uHandlerBase * _uT_inst0xb707e8f4 [ ] = { & _uH_inst0xb707e8f4 ,} ;
uEHM :: uResumptionHandlers _uRN_inst0xb707e8f4 ( _uT_inst0xb707e8f4 , 1);

// remember total number of sub-triggers
const int _uTotalNoTriggers = 3 ;
try { {

a += 0 ;
// inserted sub-trigger (active assertion)

{
// remember number of this sub-trigger

const int _uTheAssertionSubTrigger = 0 ;
// if condition met and probabilistic triggerAssertion fires,
// resume the exception with the instantiation as specified

if ( ( b > a ) && uEHM::triggerAssertion( _uTotalNoTriggers,
_uTheAssertionSubTrigger , 0.6 , 2 ) )

mary ( b ) . setOriginalThrower( this ).Resume();
}
foo ( ) ;

// inserted sub-trigger (active assertion)
{

// remember number of this sub-trigger
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const int _uTheAssertionSubTrigger = 1 ;
// if condition met and probabilistic triggerAssertion fires,
// resume the exception with the instantiation as specified

if ( ( b > a ) && uEHM::triggerAssertion( _uTotalNoTriggers,
_uTheAssertionSubTrigger , 0.6 , 2 ) )

mary ( b ) . setOriginalThrower( this ).Resume();
}
a -= 0 ;

// inserted sub-trigger (active assertion)
{

// remember number of this sub-trigger
const int _uTheAssertionSubTrigger = 2 ;

// if condition met and probabilistic triggerAssertion fires,
// resume the exception with the instantiation as specified

if ( ( b > a ) && uEHM::triggerAssertion( _uTotalNoTriggers,
_uTheAssertionSubTrigger , 0.6 , 2 ) )

mary ( b ) . setOriginalThrower( this ).Resume();
}

} } catch ( mary ) { // termination handler (for passive assertion)
_inst0xb707e8f4 ( *( mary *) 0 ); // invoke handler inside functor
if (! ( b > a ) ) { // check condition (on propagation out of block)

std::osacquire( std::cerr ) << "Warning: Assertion ( b > a ) failed for \
exception raise of type mary " << std::endl;

}
throw; // reraise exception

}
} catch ( mary ) { // pre-existing handler

{ c ++ ; }
}

}
}

}
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Appendix D

Asynchronous Event Log Specifications

All classes and routines required to access the asynchronous event log from Section 5.3.3, p. 143

are declared within the EHMdebug.h header file and reside within the EHMdebug name-space1.

Class EHMdebug::AsyncDebugIter provides a forward iterator to traverse the log. When an

AsyncDebugIter object is instantiated (its constructor needs no arguments) it points before the

first entry of the log. Two AsyncDebugIter iterators can be compared using the == operator.

Retrieving log information follows a two-step process: First, identifying the type of log entry

stored at the next iterator location, and second, retrieving the information from the log entry into

a structure of suitable type.

D.1 Data Types and Operations

The enum EHMdebug::type_e defines the following types of information:

enum type_e { raise, detect, prop, ENctor, DISctor, dtor, endOfBlock };

which signify raise, detection, propagation, _Enable block establishment, _Disable block estab-

lishment, _Enable /_Disable block destruction, and the end of the log, respectively. The iterator

is advanced to the next log entry and its type queried using the >> (type_e &) operator, e.g.:

EHMdebug::AsyncDebugIter it;
EHMdebug::type_e t;
it >> t; // advance to next entry and store type of log entry in t

Note, that using the >> (type_e &) operator only advances the iterator and fills in the type and

does not transfer actual information from the log. The data structures that accept the appropriate

1Assume for the following examples that they are preceded by a using namespace EHMdebug.
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information from the log are declared as follows:

struct Raise_info { /* Event: Asynchronous raise */
const std::type_info *type; /* Type of raised exception */
uBaseCoroutine *source; /* Address of raising execution */
uBaseCoroutine *exec; /* Address of propagating execution */
unsigned int eID; /* Unique ID of exception */

};

struct Detect_info { /* Event: Detection, consider exception for propagation */
unsigned int eID; /* Unique ID of exception */
uBaseCoroutine *exec; /* Address of detecting execution */
uBaseTask::State targetState; /* State of thread of the propagating execution */

};

struct Prop_info { /* Event: Propagation */
unsigned int eID; /* Unique ID of exception */
void * address ; /* Instruction address at which propagation occurs */

};

struct DEctor_info { /* Event: Additional layer of propagation control pushed */
bool enabled; /* true => _Enable, false => _Disable */
uBaseCoroutine *exec; /* Execution to which propagation control applies */
void *start; /* Start of _Enable/_Disable block (if available) */
void* end; /* End of _Enable/_Disable block (if available) */
int num; /* Number of types controlled */
const uEHM::PropControl* pc; /* Pointer to a PropControl[num] array of types */

};
/* Event: Top layer of propagation control popped */

typedef uBaseCoroutine * DEdtor_info; /* Execution to which propagation control applies */

where the association between type and corresponding data structure is obvious. Note that

DEctor_info applies to both ENctor and DISctor types. DEctor_info makes use of the structure

PropControl, which is declared as (some parts omitted):

struct PropControl {
uBaseCoroutine *binding;
const std::type_info *type;

. . .
};

where binding takes the address of a bound-to object while type points to the type_info of the ex-

ception type controlled. For example, for a _Disable < client1.PacketLoss >< Shutdown > block,

the corresponding DEctor_info structure has (apart from enabled being false) a value of 2 for num

and pc pointing to a two-member array, where the following holds:

pc[0].binding == &client1 &&
pc[0].type == &typeof(PacketLoss) &&
pc[1].binding == NULL &&
pc[1].type == &typeof(Shutdown)

Note that std::type_info is declared in the standard C++ header file typeinfo.
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For convenience, the types above are organized as

struct EHMlog_info {
type_e type;
union {

Raise_info raise;
Detect_info detect;
Prop_info prop;
DEctor_info ctor;
DEdtor_info dtor;

};
};

and operator >> ( EHMlog_info & ) is provided to advance the iterator to the next position and fill

the appropriate data structure with the information from the log. Note that when traversing the

log without retrieving information (e.g., in order to skip uninteresting log entries), this operator

is less efficient than the >> (type_e &) operator, e.g.,

do {
it >> t; // t is still of type type_e

} while ( t != prop ); // advance through log until a propagation is found

but in most cases, performance of log traversal should be irrelevant.

D.2 Information Retrieval

Typically, the log information is processed in a loop where first the iterator is advanced to the next

entry as well as the appropriate data structure filled with the log information, and then a switch

statement chooses the right structure to extract the information, e.g.,

EHMdebug::AsyncDebugIter it;
EHMdebug::EHMlog_info info;
for (;;) {

it >> info; // advance iterator and fill in log information
switch ( info.type ) {

case ENctor:
case DISctor:

/* do something with the information stored in info.ctor */
break;

case detect:
/* do something with the information stored in info.detect */
break;

. . .
case endOfBlock:

return; // end of log information reached, done
}

}

For more elaborate examples of traversing the event log and processing its information, see Sec-

tion 5.3.3, p. 144.
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D.3 Information Collection

Collection of log information is controlled by uDefaultEventLogMode(), whose default implemen-

tation is

int uDefaultEventLogMode() {
return 0;

}

and collects no information. By redefining this routine and returning the desired combination of

type_e types, additional types of information can be collected, e.g.,

int uDefaultEventLogMode() {
return EHMdebug::prop | EHMdebug::detect;

}

only collects information about propagations and detections. Returning -1 is a simple way to

enable the collection of all information.
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