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Abstract

The National Science Foundation (NSF) has estimated the total U.S. investment in civil
infrastructure systems at US $ 20 rrillion. The investments in underground infrastructure
systems represent a major component of this overall investment. Recent studies have
shown that the cost of replacing all water mains in the United States would run to US $
3438 bullion. The esumated cost to upgrade the water transmission and distribution system
is US § 77 billion. In Canada, the estimated cost to bring the water mains and sewer
pipelines to an acceptable level is CDN $ 11.5 billion and 47 billion, respectively. Many
of these pipeline systems are eroding due to ageing, excessive demand, misuse, poor
construction, mismanagement and neglect. Due to their lack of visibility, rehabilitation of
underground pipeline is frequently neglected until a catastrophic failure occurs, resulting

in difficult and costly rehabilitation.

The enormity of the problem of deteriorating municipal pipeline infrastructure is
apparent. Since neglecting or rebuilding the pipeline system is not financially realistic,
asset managers require the capacity to monitor the condition of underground pipes. Thus.
reliable cost effective pipeline assessment methods are necessary so that pipeline
managers can develop long-term cost effective maintenance and rehabilitation programs.
These programs are necessary to ensure that critical pipeline sections are repaired or

replaced before they fail.

Closed circuit television (CCTV) surveys are used widely in North America to assess the
structural integrity of underground pipes. The video images are examined visually and
classified into grades according to degrees of damage. The human eye is extremely
effective at recognition and classification, but it is not suitable for assessing pipe defects
in thousand of miles of pipeline images due to fatigue and cost. In addition, manual
inspection for surface defects in the pipeline has a number of drawbacks, including
subjectivity, varying standards, and inspection time. These concerns have motivated us to
conduct a research for the development of an automated pipe inspection system, based on

the scanned images of underground pipes.



This thesis presents a system for the application of computer vision techniques to the
automatic assessment of the structural condition of underground pipes. Automatic
recognition of various pipe defects is of considerable interest since it has the potential to
solve problems of fatigue, subjectivity, and ambiguity, leading to economic benefits. The
main efforts of the research are placed on investigating algorithms and techniques for
image pre-processing, segmentation of pipe objects (i.e., cracks, holes, joints, laterals,
and collapse surface), crack detection, feature extraction and classification of defects. In
this study, an attempt has also been made to develop a framework for an integrated
pipeline network management. The proposed integrated pipeline management system is
necessary to help municipal managers to make consistent and cost-effective decisions

related to the preservation of underground pipeline systems.
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Chapter 1

1. Introduction

Beneath North America’s roads lie thousands of miles of pipe that bring purified water to
homes and carry away wastewater (sewage and storm water). For the most parts. these
systems have been functioning longer than their intended design life (i.e.. fifty vears for

concrete pipe), with little or no repair. They are in a state of deterioration.

Maintenance and rehabilitation (M&R) of pipeline systems pose a major challenge for most
municipalities in North America given their budgetary constraints. the demand on providing
quality service and the need for preserving their pipeline infrastructure. Neglecting regular
M&R of these underground pipelines adds to life-cycle costs and liabilities, and in extreme

cases causes stoppage or reduction of vital services.

Accurate pipeline condition assessment is vital to developing a cost effective and efficient
pipeline M&R program. At present, the assessed condition of underground pipes is based on
the subjective visual inspection of closed circuit television (CCTV) surveys [84]. CCTV
surveys are conducted using a remotely controlled vehicle carrying a television camera
through an underground pipe. The data acquired from this process consist of videotape,
photographs of specific defects, and a record produced by the technician. Typical scanned

images of CCTV surveys and the data section of the standard coding form are shown in
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Figures 1-1 and 1-2, respectively. Diagnosis of defects depends on the experience, capability,
and concentration of the operator, making the detection of defect error prone. A large number
of new technologies such as Pipe Scanner and Evaluation Technology (PSET) [83], laser-
based systems [179], etc. have made it possible to obtain high quality images of pipes. PSET
is an innovative technology for obtaining unfolded images of the interior of pipes [83]. This is
accomplished by utilizing scanner and gyroscope technology. Typical scanned image of PSET
surveys are shown in Figure 1-3. Although underground imaging technology has made
substantial strides in recent years, the basic means of analysis are unchanged: a technician is
required to identify defects on a television monitor. The research of this thesis seeks to address
this latter limitation: thus, allowing the technician to do exactly what they have been trained to

do, which is to insure that the inspection equipment is being operated properly.

This thesis addresses the development of an automated underground pipe inspection
system. Main efforts have been placed on investigations of algorithms and techniques for
image processing, feature extraction and pattern classification. In particular, this research
has explored how various signals and image processing concepts, nonlinear filtering,
feature extraction. pattern classification and artificial intelligence techniques can be
judiciously synthesized for computationally efficient and robust identification of
underground pipe defects (i.e.. cracks. holes. collapse surface. and defective joints and
laterals). The proposed automated system could overcome many of the limitations of the
current manual inspection of pipes, and can provide a more accurate assessment of
underground pipe conditions. An attempt has also been made to develop a framework for
integrated underground pipeline management system. An integrated pipeline
management system is necessary to help municipal engineers to make consistent and

cost-effective decision related to the preservation of underground pipeline systems.

This introduction should serve only to introduce the notions of an automated pipe
inspection system: a more thorough description of the computer vision techniques and
related mathematical definitions, and a detailed explanation of the different approaches
may be found in Chapter 2. The next section will outline the thesis research motivation,

followed by the contribution of this thesis and a description of the thesis organization.

({8



CHAPTER 1. INTRODUCTION

Figure 1-1. Typical images of underground pipe scanned by closed circuit television
(CCTV) camera in the city of Toronto.
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CONSTRUCTION MATERIALS
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Figure 1-2. Data section of the standard coding form of CCTV surveys used by the North American
Association of Pipeline Inspectors (NAAPI).
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Figure 1-3. Typical images of underground pipe scanned by Pipe Scanner and Evaluation
Technology (PSET) Camera in the city of Toronto.
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1.1 Thesis Motivations

Visual inspection based on closed circuit television surveys is used widely in North
America to assess the condition of underground pipes [193]. The human eye is extremely
effective at recognition and classification, but it is not suitable for assessing pipe defects
in thousand of miles of pipeline due to fatigue, subjectivity, and cost. This drawback of
thc prosent visual inspection of underground pipes has been onc of the main motivations
behind our interest in developing an automated pipe inspection system. Automatic
recognition of various pipe defects is of considerable interest since it has the potential to

solve problems of fatigue, subjectivity, and ambiguity, leading to economic benefits.

Most of the literature concerning the detection/classification of defects in civil structures
deal with the analysis of pavement [32.33.66.183] and concrete/steel distresses [30,36].
analyses which are not directly applicable to underground pipe inspection. In analyzing
scanned underground pipe images. one needs to consider complications due to the
inherent noise in the scanning process. irregularly shaped cracks. as well as the wide
range of pipe background patterns. One of the major problems is detecting defects
(especially cracks) that are camouflaged in the background of corroded areas, debris.
patches of repair work, and areas of poorly illuminated conditions. The above aspects.
also motivated the development of computationally efficient and robust algorithms for

segmenting, detecting, and classifying various defects in underground pipe images.

1.2 Contributions

The primary objective of this research is to develop an automated underground pipe
inspection system, based on the scanned images obtained from PSET survey for major
cities in North America. An attempt has also been made to set out the framework for an
integrated pipeline management system based on automated inspection. In an
underground pipe inspection system, the main objective is to identify, extract and classify

defects to facilitate preventive maintenance.
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To put the work of this thesis into context, when this research began the following goals had
already been accomplished:

¢ Automatic segmentation of underground pipe images

¢ Detection of cracks in segmented pipe images

e Classification of pipe defects based on feature extraction

¢ Development of a framework for integrated pipe management

The further contributions of this thesis. listed below., build upon these accomplishments.

¢ Morphological Segmentation of Pipe Images

[mage segmentation is a crucial pre-processing step before object classification. A poor
segmentation will greatly affect the shape of the object in the resultant binary image and
hence the successful rate of subsequent image classification processes. Analyses of
images have shown that there are two important characteristics that complicate the
segmentation of underground pipe images: firstly, the presence of a complicated
background pattem due to earlier runoff, patches of repair work, corroded areas. debris.
non-uniformities in illumination, and flaws in the image acquisition process: secondly,
because the three main objects of interest - cracks, joints, and laterals - are all dark

features that cannot be distinguished by intensity criteria alone.

In this thesis, a simple, robust and efficient image segmentation algorithm for the automatic
analysis of underground pipe images has been developed. The algorithm consists of a gray-
scale conversion step followed by a sequence of morphological operations to accurately
classify pipe cracks, holes, joints, laterals and collapse surface, a crucial step in the detection
of surface cracks. The proposed approach can be completely automated and the experimental
results demonstrate that the segmentation algorithm can precisely classify various objects in

the underground pipe images.
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o Development of Crack Detection Filters

Usual edge detectors and thresholding techniques based on the difference between pixel
values are inefficient when applied to the underground pipe images. In analyzing underground
pipe scanned image, one needs to consider complications due to the inherent noise in the
scanning process, irregularly shaped cracks, as well as the wide range of pipe background
patterns. One of the major problems is detecting defects (especially cracks) that are
camouflaged in the background of corroded areas, debris. patches of repair work, and areas of

poorly illuminated conditions.

A significant contribution of this thesis is the development of statistical filters for detection of
cracks in the underground pipe images. Comparing the proposed crack detection filters and the
conventional detection techniques. the improved experimental results have been achieved by

the proposed statistical filters.

¢ Development of Neuro-Fuzzy Classifier

In underground pipe defect analysis. the main objective is to accurately classify cracks,
holes, laterals. joints, and pipe collapse by type, severity, and extent of distress. This
thesis makes a relevant contribution in developing a neuro-fuzzy classifier based on
suitable features extracted from segmented underground pipe images. The proposed
algorithm employs a fuzzy membership function and a projection neural network. The

former absorbs variation of feature values and the latter shows good learning efficiency.

¢ Development of Pipe Performance Prediction Model

Most municipal pipeline repair and rehabilitation have been performed using ‘management by
crisis’ techniques. Research in the pavement management area has shown that ‘worst first’ or
‘crisis management’ does not lead to the optimum use of resources. Municipal managers and
engineers are realizing that improvement in public health and safety as well as cost benefits

can be achieved with a proactive municipal pipeline management system.
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A significant contribution of this thesis is the development of a framework for an integrated
pipeline management. The proposed pipeline management system combines automated
condition assessment, and predictions of future conditions and will help asset managers and
engineers to make consistent and cost-effective decision related to the preservation of

municipal pipeline systems.

1.3 Thesis Organization

Chapter 2 presents the background relevant for the development of an automated pipe
inspection system. It begins with a broad overview of various pipeline assessment techniques.
It then briefly introduces the methodology for automated image-based inspection. The next
two sections discuss image segmentation and feature extraction methods. Next. we review the

pattern recognition tasks followed by the performance model and optimization methods.

Chapter 3 presents the work on the pre-processing and segmenting of underground pipe
images. The chapter begins by enhancing the contrast between pipe background and defects.
Next. the chapter discusses a sequence of morphological operations to accurately segment
pipe crucks. holes. joints. laterals, and collapse pipe. a crucial step in the classification of

defects in underground pipe images.

Chapter 4 presents simple, robust, and efficient statistical filters for the detection of cracks in
underground pipe images. The chapter begins by presenting the development of statistical
filters, followed by the performance evaluation of the proposed crack detection filters with that

of other conventional detection techniques.

Chapter 5 describes the feature extraction techniques and pattern recognition strategies for the
classification of underground pipe defects. A formulation of a neuro-fuzzy system is presented

in this chapter, together with the model input requirements and output format.
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Chapter 6 provides a conceptual framework of the proposed integrated system for predicting
pipe deterioration and multi-year priority programming of pipeline network maintenance.
Three major components underlying the integrated system are described, including model
development for pipe deterioration, standardized altemative pipe maintenance and

rehabilitation treatment strategies, and priority programming on the basis of cost-effectiveness.

Chapter 7 summarizes the result of this thesis, presents the major contributions and details a

number of avenues for further research.

10



Chapter 2

2. Background

The main objective of this chapter is to introduce and to motivate a foundation for
development of an automated underground pipeline inspection system. Section 2.1
presents an overview of underground pipeline inspection techniques while Section 2.2
discusses the methodology for the development of an automatic image-based inspection
system. Section 2.3 introduces the concept of image processing and segmentation.
Section 2.4 brietly mentions the feature extraction and analysis techniques. Section 2.5
discusses the basic philosophy behind the development of pattern recognition models to
classify various underground pipe defects. Finally Section 2.6 presents the performance
models and optimization methods for the development of an integrated pipeline

management system.

2.1 Overview of Pipeline Assessment Techniques

Pipelines are now an integral part of the world’s economic structure and literally billions
of dollars worth of products are now moved annually in pipelines [8]. Both economic and
environmental factors are influential in pipeline operation, and therefore integrity

monitoring is vitally important in the control and operation of complex system.

11
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Pipeline defect detection systems range from simple, visual inspection to complex
inspection systems. No one method is universally applicable and operating requirements
dictate which method is the most cost effective. The aim of this section is to review the
basic techniques of defect detection that are currently in use. The advantages and
disadvantages of each method are discussed and some indications of applicability are

outlined.

2.1.1 Destructive Testing Methods for Pipeline Defect Assessment

Destructive testing methods consist of testing a product beyond its design load until a
brittle failure develops. Often these tests are specified to ensure that the pipe material
meets or exceeds design specifications. Common destructive test methods are discussed

in the following.

Tension. Tension testing [9] consists of placing coupons of pipe material in a testing
apparatus and pulling the coupon apart until failure occurs. During a test, the couron load
and deflection are measured. This test ensures that the pipe material meets or exceeds
tensile strength design requirements and is useful for determining the load bearing

capabilities of the material and its ductility under load.

Hardness. Hardness is usually defined as resistance to penetration. Other tests are also
used, such as amount of rebound of a weight and scratch tests. Hardness tests include
Rockwell {42], Scleroscope [42], Brinell [42], and Vickers[42]. Good correlation exists
between hardness and strength. Thus, the hardness test can give a quick estimate of the

pipe strength and/or wear resistance.

Impact. The pendulum impact test, also known as the Charpy test [10], gives an
indication of the amount of energy that can be absorbed by the material. The test
procedure consists of cutting a notch in a sample then hitting the sample with a hammer.

The difference in energy that the hammer has after striking the material is the material
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impact strength.

Flexural. The three-edge-bearing flexural test is a severe pipe loading condition. This test allows

for no lateral pipe support (unconfined) and applies forces that are point loads [42].

The Parallel Plate. The parallel plate test [42] is an accepted method for measuring pipe stiffness.
This test consists of placing the pipe between two parallel plates located at the top and bottom of the
pipe. The pipe stiffness is determined from the load required to displace the top plate a specified

detlection.

2.12 Non-Destructive Testing Methods for Pipeline Defect Assessment

Non-destructive testing (NDT) [41] is the branch of engineering concerned with non-
contact methods of detecting and evaluating defects in materials. Defects can affect the
serviceability of the material or structure, so NDT is important in guaranteeing safe
operation as well as in quality control and assessing pipe life. The defect may be cracks
or inclusions in welds and castings, or variations in structural properties that can lead to
loss of strength or failure in service. Non-destructive testing is used for in-service
inspection and for condition monitoring [179]. It is also used for measurement of
components and for the measurement of physical properties such as hardness and internal
stress. The essential feature of NDT is that the test process itself produces no deleterious
effects on the material or structure under test. The subject of NDT has no clearly defined
boundaries: it ranges from simple techniques such as visual examination of surfaces,
through the well-established methods of radiography, ultrasonic testing, magnetic particle
crack detection, to new and very specialized methods. NDT methods can be adapted to
automate production processes as well as to the inspection of localized problem areas. All
NDT techniques have the ability to measure only specific types of defects, material
properties, and/or material response. Therefore, the best choice of an NDT method in a
specific pipeline application will depend on the pipeline physical properties and defects.

Thus, before the selection of an appropriate NDT method, a through knowledge of each

13
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NDT method application and its limitations is required along with a good understanding

of the piping system.

Non-Visual NDT Methods

Ultrasonic Inspection (Sonar). Ultrasonic inspection [20] is performed using a beam of
very high frequency coherent sound energy, with the frequency being many orders of
magnitude higher than a human being can hear. The sound wave travels into the object
being inspected and reflects whenever there is a change in the density of the material,
with some of the energy in the wave returning to the surface and some passing on through
the new material. The ultrasonic inspection process is shown in Figure 2-1. Ultrasonic
beams can be used to image the human body. inspect aircraft, or examine oil pipelines.
The technique is capable of detecting pits, voids, and cracks, although certain crack
orientations are much more difficult to detect than others. The ultrasonic wave reflects
most easily when it crosses an interface between two materials that are perpendicular to
the wave. As an example, cracks that lie perpendicular to the wave are easily detected.
but cracks that lie parallel to the beam are usually not identified by an ultrasonic

examination. Evaluation is often difficult [20].

Eddy current testing. Eddy current testing [89] is an electromagnetic technique that can
detect surface and subsurface discontinuities in tube walls up to about 3/8” (10mm) thick
on conductive materials. Applications range from crack detection, to the rapid sorting of
small components for defects, size variations, or material variation. When an energized
coil is brought near to the surface of a metal component, eddy currents are induced into
the specimen. These currents set up a magnetic field that tends to oppose the original
magnetic field. The impedance of the coil in close proximity to the specimen is
influenced by the presence of the induced eddy currents in the specimen. When the eddy
currents in the specimen are distorted by the presence of a defect or a material variation,
the impedance in the coil is altered. This change is measured and displayed in a manner
that indicates the type of defect or material condition. This method is commonly

performed on heat exchanger tubing by inserting a probe down the full length of each
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tube to be inspected as shown in Figure 2-2. The probe contains a coil arrangement,
energized by alternating currents operating at one or more frequencies. The electrical
impedance of the test coil arrangement is modified by the proximity of the tube, tube
dimensions, electrical conductivity, magnetic permeability of the tube material, and
metallurgical and mechanical discontinuities. Wear on the tube surface under a support is
also detectable. The electromagnetic response caused by passing these variables produces
electrical signals, which are processed electronically to produce a visual response
characteristic of the change encountered. Visual responses, often called "Signatures" are

displayed on the test instrument monitor for evaluation by the field technician (Analyst).

Acoustic emission monitoring. This method involves listening to the sounds (which are
usually inaudible to the human ear) made by a material. structure or machine in use or
under load [16]. Conclusions are made about its "state of health” from what is heard, just
like the Doctor who listens to your heart and lungs. The technique involves attaching one
or more ultrasonic microphones to the object and analyzing the sounds using computer-
based instruments. Acoustic emission inspection methodology is shown in Figure 2-3.
The noises may arise from friction (including bearing wear), crack growth, turbulence
(including leakage) and material changes such as corrosion. Applications include testing
pipelines and storage tanks (above and below the ground), fiberglass structures, rotating

machinery, weld monitoring, and biological and chemical changes.

Visual NDT Methods

Visual inspection is a NDT method used extensively to evaluate the condition or the quality of
a component [100]. It is easy to perform, inexpensive and usually does not require special
equipment. It is most effective for the inspection of welds where quick detection and the
correction of defects or process-related problems can result in significant cost savings. It is the
primary evaluation method of many quality control programs. The method requires good

vision, good lighting and operator knowledge.
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Figure 2-2. Eddy current inspection of pipes

Figure 2-3. Acoustic emission for inspection of pipes
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Most municipal pipeline systems are inspected visually by mobile Closed Circuit
Television (CCTV) systems or human inspectors [84]. CCTV examination using a mobile
camera system is the typical approach to this type of examination. However, there are
several CCTV variants that may reduce the cost of the inspection or provide improved
results. There are also alternative techniques that will work where CCTV will not or that
will give direct measurements of pipe condition as opposed to the estimates produced by

CCTV inspection. Each inspection technique is discussed separately below.

CCTYV Inspection. There are two basic types of CCTV system [193]. Each uses a
television camera in conjunction with a video monitor, videocassette recorders, and
possibly other recording devices. In one case the inspection is performed using a
stationary or zoom camera mounted at a manhole so that it looks into the pipe, whereas in
the other a mobile, robotic system is placed within the pipe itself. The camera provides
images to an operator who is trained to detect, classify and rate the severity of defects
against documented criteria [83]. The typical CCTV camera and scanning process of
underground pipes are shown in Figure 2-4. Either form of CCTV inspection may miss
certain types of defects. especially those that are hidden from the camera by obstructions
as it looks down the pipe. This method is also vulnerable to lapses in operator
concentration, inexperience, and the inability of the image to reveal important defects
[193]. Thus, the results are widely agreed to lack reliability and consistency and the
reliability to track deterioration so that preventive maintenance can be undertaken with

confidence. It does however; provide useful information on gross defects.

Pipe Scanner and Evaluation Technology. Pipe scanner and evaluation technology
(PSET) [83] is an innovative technology for obtaining images of the interior of pipe.
PSET was developed by TOA Grout, CORE Corp., California, and the Tokyo
Metropolitan Government’s Services (TGS) Company. PSET is a system that offers a
new inspection method minimizing some of the shortcomings of the traditional inspection
equipment that relies on a CCTV inspection. This is accomplished by utilizing scanning

and gyroscopic technology. The mechanics of inspecting the pipes by PSET camera are
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similar to the CCTV inspection. The PSET is designed to operate from a tractor platform
to propel the tool through the pipe. Since the PSET utilizes state-of-the-art scanner
technology, it can travel through the pipe at a uniform rate of speed. The PSET camera
and digitized images of underground pipe with various defects are shown in Figure 2-5.
The major benefit of the PSET system over the current CCTV technology is that the

engineer will have higher quality image data to make critical rehabilitation decisions.

Laser-Based Scanning Systems. In addition to the simple light line system described
above, lasers have been used in the past to evaluate both the shapes of pipelines and the
types of defects they contain [77]. These systems are restricted to the part of the pipe
above the waterline, but they can, in theory, make possible extremely accurate
inspections of pipe condition. An additional advantage to this approach is that the
information from the laser scans is readily recorded and analyzed by computer,
substantially reducing operator errors. Although the initial equipment may be more
expensive than a CCTV system, the reduced operator time necessary to use the technique
may also mean that its operation will be more economical. The technology is still in the

development stage.

2.2 Methodology for Automatic Image-Based Inspection

Industry is increasingly using machine vision systems to aid in the manufacturing and
quality-control processes [129]. The goal of a machine vision [36] is to create a model of
the real world from images. A machine vision system recovers useful information about a
scene from its two-dimensional projections. Since images are two-dimensional
projections of the three-dimensional world, the information is not directly available and
must be recovered. To recover ihe information, knowledge about the objects in the scene
is required. The emphasis in machine vision systems is on maximizing automatic

operation at each stage, and these systems should use knowledge to accomplish this.
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Figure 2-4. CCTV camera and underground inspection process (from trenchless
technology magazine, April 1999) [145].
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Figure 2-5. PSET inspection probe and digitized image of underground pipe (from
trenchless technology magazine, April 1999) [145].
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Machine vision emulates human vision in that it attempts to interpret images. Human
vision deals with the global information available in a scene, resolves ambiguities due to
perspective, lighting, and attribute, and can perform guidance through unfamiliar
territories. In fact, human vision has been shown to be incapable of performing reliable
inspection [6], since the human vision process is prone to subjective considerations,
fatigue. and boredom, which interfere with consistent evaluations. Also, the human vision
is limited to the visible spectrum while machine vision system can exploit a much larger
range of the electromagnetic spectrum, including infrared radiation, X-rays, and
ultrasounds, thereby making it suitable for a wide range of nondestructive testing and

inspection process-related tasks [14].

An automated image-based inspection aims to extract information from an image on the
conditions of objects represented in the image. Usually it is impossible to extract this
information concerning the dimensions of objects or their defect properties directly from
the image. Basically, all machine vision systems involve image acquisition. image pre-
processing, segmentation, and extracting relevant features for classification of the type.

severity. and extent of defects present in the image.

2.3 Image Processing and Segmentation

Vision allows humans to perceive and understand the world surrounding them. Computer
vision aims to duplicate the effect of human vision by electronically perceiving and
understanding an image. Giving computers the ability to see is not an easy task — we live
in a three-dimensional (3D) world, and when computers try to analyze objects in 3D
space, the visual sensors available (e.g., TV cameras) usually give two-dimensional (2D)
images, and this projection to a lower number of dimensions incurs an enormous loss of

information.

The term digital image processing generally refers to processing of a two-dimensional

picture by a digital computer. In a broader context, it implies digital processing of any



CHAPTER 2. BACKGROUND

two-dimensional data. The first step in the process is image acquisition — that is, to
acquire a digital image. After a digital image has been obtained, the next step deals with
processing that image. This sequence of operations-image capture, processing, region
extraction, high-level identification, qualitative/quantitative conclusion-is characteristic
of image understanding and computer vision problems. Many computer vision techniques
use the results and methods of mathematics, pattern recognition, artificial intelligence,
psychophysiology, computer science, electronics, and other scientific disciplines [18]. In
order to simplify the task of computer vision understanding, two levels are usually
distinguished: low-level image processing (68] and high-level image understanding [68].
Low-level methods usually use very little knowledge about the content of images. In the
case of the computer-knowing image content, it is usually provided by high-level
algorithms or directly by a human who knows the problem domain. Low-level methods
often include image pre-processing methods for noise filtering, contrast enhancement,

and edge extraction.

[mage pre-processing and segmentation is the initial stage for any recognition process.
whereby the acquired image is ‘broken up’ into meaningful regions or segments. The
segmentation process is not primarily concerned with what the regions represent, but only
with the process of partitioning the image. In the simplest case (binary images) there are
only two regions: a foreground (object) region and a background region. In gray level
images, there may be many types of region's or classes within the image: for example, in
a natural scene to be segmented, there may be regions of sky, clouds, ground, building
and trees. There are, broadly speaking, two approaches to image segmentation, namely

thresholding [143] and region or edge-based [143] methods.

2.3.1 Image Pre-processing

The principal objective of image pre-processing is to process an image so that the result
is more suitable than the original image for a specific application. The word ‘specific’ is

important, because it establishes at the outset that the techniques discussed in this section
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are very much problem-oriented. Thus, for example, a method that is quite useful for
enhancing x-ray images may not necessarily be the best approach for enhancing images

of underground pipes.

Gray Scale Transformation

Gray scale transformations [153] do not depend on the position of the pixel in the image.
A transformation A of the original brightness p from scale [p,.pi] into brightness ¢ from a
new scale [¢,.q:] is given by

q=A(p) (2.1)
The most common gray scale transformations are shown in Figure 2-6; the straight line a
denotes the negative transformation: the piecewise linear function b enhances the image
contrast between brightness values p; and p>. The function ¢ is called brightness

thresholding and results in a black-and-white image.

A gray scale transformation for contrast enhancement is usually found automatically
using the histogram equalization technique [153]. The aim is to create an image with
equally distributed brightness levels over the whole brightness scale (see Figure 2-7).
Histogram equalization enhances contrast for brightness values close to histogram

maxima, and decreases contrast near minima.

Image Smoothing

Image smoothing [28] is the set of local processing methods whose predominant use is
the suppression of image noise. Calculation of the new value is based on the averaging of
brightness values in some neighborhood. Smoothing poses the problem of blurring sharp
edges in the image, and so we shall concentrate on smoothing methods which are edge
preserving. They are based on the general idea that the average is computed only from

those points in the neighborhood that have similar properties to the point being processed.
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Figure 2-6. Some gray-scale transformations. The straight line a denotes the negative
transformation: the piecewise linear function b enhances the image contrast between
brightness values p, and p>. The function ¢ is called brightness thresholding and results in

a black-and-white image.
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Figure 2-7. Histogram equalization. The aim is to create an image with equally
distributed brightness levels over the whole brightness scale
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Assume that the noise value v at each pixel is an independent random variable with zero
mean and standard deviationo. We can obtain such an image by capturing the same
static scene several times. The results of smoothing is an average of the same n points in
these images gy, ..., g, With noise values ViV, :

n

Gt tg, Vit..+V,

n n
Median filtering is a non-linear smeothing method that reduces the blurmring of cdges
[L19], in which the idea is to replace the current point in the image by the median of the
brightness in its neighborhood. The median of the brightness in the neighborhood is not
affected by individual noise spikes and so median smoothing eliminates impulse noise
quite well. Further, as median filtering does not blur edges much, it can be applied

iteratively.

Color Image Processing

The use of color in image processing [171] is motivated by two principal factors. First. in
automated image analysis, color is a powerful descriptor that often simplifies object
identification and extraction from a scene. Second, in image analysis performed by
human beings. the motivation for color is that the human eve can discern thousands of
color shades and intensities, compared to about only two-dozen shades of gray [171].
Color is connected with the ability of objects to reflect electromagnetic waves of different
wavelengths: the chromatic spectrum spans the electromagnetic spectrum from
approximately 400nm to 700nm. Humans detect colors as combinations of the primary
colors red, green, and blue, which for the purpose of standardization have been defined as
700nm, 546.1nm, and 435.8nm respectively [171], although this standardization does not

imply that all colors can be synthesized as combinations of these three.

The purpose of a color model is to facilitate the specification of colors in some standard,
generally accepted way. In essence, a color model is a specification of a 3-D coordinate
system and a subspace within that system where each color is represented by a single

point. The color models most often used are the RGB, the YIQ, and the HIS models.
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RGB Color Model. The RGB (Red, Green, Blue) space is used most frequently in
computer graphics and image processing applications [143,171]. A color in this space is
represented by a triplet of values typically between 0 and 255. Each color can be broken
down into its relative intensity in the three primaries corresponding to the spectral
response of one of the three types of cones present in the human eye: red, green and blue.
The space is easily represented as a three dimensional cube where each axis represents

the strength of the color in one of the three primaries, as shown in Figure 2-8.

YIQ Color Model. The YIQ model (sometimes referred to as IYQ) [171] is useful in

color TV broadcasting, and is a simple linear transform of an RGB representation:

Y 0.299 0.587 O.ll4 YR
[=]059 -0.275 -0321|GC (2.3)
Q0 0.212 -0.523 0311 ) B

(with the inverse computed in the obvious manner). This model is useful since the Y
component provides all that is necessary for a monochrome display: further, it exploits
properties of the human visual system, in particular our sensitivity to luminance, the
perceived energy of a light source. Details of this model and its use may be found in

relevant texts [143.171].

HSI Color Model. The HSI (Hue. Saturation, and Intensity) [143] model can be said to
follow more closely the human perception of color qualities. Hue (H) is the color as
described by wavelength — for example, the distinction between red and blue. Hue
represents the fundamental or dominant color. Saturation (S) represents the amount of a
color present, where pastel shades (e.g. pink) have low saturation values while pure
spectral colors (e.g. red) are completely saturated. The intensity (I) represents the overall
brightness or the amount of light. It is independent of color and is a linear value. It is
measured as an angle on a color circle with the three primary colors spaced 120° apart.
The first two values specify the chromaticity of a color point. Figure 2-9 shows the

relationship between the HSI and RGB spaces.
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It is noted that the HSI color space is one of several spaces that can be derived from the
General Hue, Luminance and Saturation (GHLS) space [143]. There are other slightly
different interpretations of hue, luminance and saturation. By setting certain parameters
in this transformation, one can specify any of the transformations from the RGB space to

an HSI, HLS or HSV (Hue, Saturation and Value) representation.

(R+G)+(R-B)

(
<
s
D>
il

R 1
2.[(R-G)*+(R-B)G-B)}
{ 6 ifB<G}
H =

dr -0 othenvise (2.4)
3_1_3-min(R.G,B)
R+G+B
I =§(R +G+B)

2.3.2 Image Segmentation

Image segmentation [28,63,143] is one of the most important steps leading to the analysis
of processed image data-its main goal is to divide an image into parts that have a strong
correlation with objects or areas of the real world contained in the image. Image data
ambiguity is one of the main segmentation problems, often accompanied by information
noise. Segmentation methods can be divided into three groups according to the dominant
features they employ: First is global knowledge about an image or its part; the knowledge
is usually represented by a histogram of image features [188]. Edge-based segmentation
form the second group [102], and region-based segmentations the third-many different
characteristics may be used in edge detection or region growing [29], for example,
brightness, texture, velocity field, etc. The second and the third groups solve a dual
problem. Each region can be represented by its closed boundary, and each closed
boundary describes a region. Because of the different natures of the various edge- and
region-based algorithms, they may be expected to give somewhat different results and

consequently different information.
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Threshold-based Segmentation

Gray level thresholding [63] is the simplest segmentation process. Many objects or image
regions are characterized by constant reflectivity or light absorption of their surfaces; a
brightness constant or threshold can be determined to segment objects and background.
Thresholding is computationally inexpensive and fast-it is the oldest segmentation
method and is still widelv used in simple applications [63].

A complete segmentation of an image R is a finite set of regions R,....Rs.

R=YR RNR =@ i#j (2.3)
=1
Segmentation can result from thresholding in simple scenes. Thresholding is the

transformation of an input image fto an output (segmented) binary image g as follows:
gj)=1 if fi)2T (2.6)
0 if up<T

where T is the threshold, g(i,j)=! for image elements of objects, and g(i,j) = 0 for image
elements of the background (or vice versa). If objects do not touch each other, and if their
gray levels are clearly distinct from background gray levels, thresholding is a suitable

segmentation method.

Correct threshold selection is crucial for successful threshold segmentation: this selection
can be determined interactively or it can be the result of some threshold detection
method. Only under very unusual circumstances can thresholding be successful using a
single threshold for the whole image (global thresholding) since even in very simple
images there are likely to be gray level variations in objects and background; this
variation may be due to non-uniform lighting, non-uniform input device parameters or a
number of factors. Segmentation using variable thresholds [188] (also called adaptive
thresholding), in which the threshold value varies over the image as a function of local

image characteristics, can produce the solution in these cases.
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Methods based on approximation of the histogram of an image using a weighted sum of
two or more probability densities with normal distribution represent a different approach
called optimal thresholding [38]. The threshold is set as the closest gray level
corresponding to the minimum probability between the maxima of two or more normal
distributions. which results in minimum error segmentation [153]. The difficulty with
these methods is in estimating normal distribution parameters together with the
uncertainty that the distribution may be considered normal. These difficulties may be
overcome if an optimal threshold is sought that maximizes gray level variance between

objects and background [96].

Edge-based Segmentation

Edge-based segmentation represents a large group of methods (104,102,182,11] based on
information about edges in the image: it is one of the easiest segmentation approaches
and still remains very important. Edge-based segmentations rely on edges found in an
image by edge detecting operators-these edges mark image locations of discontinuities in
gray level, color, texture, etc. The image resulting from edge detection cannot be used as
a segmentation result, supplementary processing steps must follow to combine edges into
edge chains that correspond better with borders in the image. The most common
problems of edge-based segmentation, caused by image noise or unsuitable information
in an image, are an edge presence in locations where there is no border, and no edge
presence where a real border exists. Clearly both these cases have a negative influence on

segmentation results.

Edge detectors are a collection of very important local image segmentation methods used
to locate changes in the intensity function: edges are pixels where this function
(brightness) changes abruptly. Calculus describes changes of continuous functions using
derivatives; an image function depends on two variables-co-ordinates in the image plane-
and so operators describing edges are expressed using partial derivatives. A change of the
image function can be described by a gradient that points in the direction of the largest

growth of the image function. An edge is a property attached to an individual pixel and is
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calculated from the image function behavior in a neighborhood of that pixel. It is a vector
variable with two components, magnitude and direction. The edge magnitude is the
magnitude of the gradient, and the edge direction ¢ is rotated with respect to the gradient

direction { by -90°. The gradient direction gives the direction of maximum growth of

the function, e.g., from black [f{i,j) = 0] to white [f(i,j) = 255)].

The gradient magnitude |grad g(x.y)| and gradient direction y are continuous image

functions calculated as

Igrad g(x. )')I = [%{;‘_]_ +(%g_]
y Y 2.7)

o 98 38
W"‘“g{ax'ay]

where arg(v.y) is the angle (in radians) from the x-axis to the point (x.y).

Edge detection represents an extremely important step facilitating higher-level image
analysis and therefore remains an area of active research, with new approaches
continually being developed. Recent examples include edge detectors using fuzzy logic
[104], neural networks [182], or wavelets [11.38]. It may be difficuit to select the most
appropriate edge detection strategy; a comparison of edge detection approaches and an

assessment of their performance may be found in [44,146].

Region-based Segmentation

The aim of the segmentation methods described in the previous section was to find
borders between regions; the methods discussed in this section construct regions directly.
It is easy to construct regions from their borders, and it is easy to detect borders of
existing regions. However, segmentations resulting from edge-based methods and region-
growing methods are not usually exactly the same, and a combination of results may
often be a good idea. Region growing techniques are generally better in noisy images,
where borders are extremely difficult to detect. Homogeneity is an important property of

regions and is used as the main segmentation criterion in region growing, whose basic
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idea is to divide an image into zones of maximum homogeneity. The criteria for
homogeneity can be based on gray level, color, texture, shape, model (using semantic
information), etc. [29.64.69,134]. Properties chosen to describe regions influence the
form, complexity, and amount of prior information in the specific region-growing
segmentation method. Methods that specifically address region-growing segmentation of

color images are reported in [37,144,161].

2.3.3 Mathematical Morphology

A powerful set of binary image processing operations developed from a set-theoretical
approach  [118] comes wunder the heading of marhematical morphology
(35.68,71,75,118.,162.164). Although the basic operations are simple, they and their
variants can be concatenated to produce much more complex effects [165]. The basic
morphological operations are erosion and dilation. While commonly used on binary
images (Figure 2-10), this approach can be extended to gray-scale images as well (Figure
2-11) [60]. Mathematical morphology is very often used in applications where shapes of
objects are the main consideration for example, analysis of microscopic images (in
biology, material science, geology, and criminology), industrial inspection, optical

character recognition, and document analysis [70,180,181].

In the general case, morphological image processing operates by passing a strucruring
element over an image in an activity similar to convolution [116]. Like the convolution
kernel, the structuring element can be of any size, and it can contain any complement of
I's and 0’s. At each pixel position, a specified logical operation is performed between the
structuring element and the underlying binary image. The binary result of that logical
operation is stored in the output image at that pixel position. The effect created depends
upon the size and content of the structuring element and upon the nature of the logical

operation.
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Figure 2-10 (a). Morphological opening operation: first erode the dark areas and then
dilate.
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Figure 2-10 (b). Morphological closing operation: first dilate the dark area and then
erode.
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Figure 2-11. Illustration of gray-scale dilation and erosion by a semicircular structuring
element. In Figure 2-11(c) the dilation is obtained by sliding structuring element b past
function f. Figure 2-11(d) shows the erosion of the function in Figure 2-11(a) by the

structuring element shown in Figure 2-11(b).
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2.4 Feature Extraction

The previous section was devoted to image segmentation methods and showed how to
construct homogenous regions of images and/or their boundaries. Recognition of image
regions is an important step on the way to understanding image data, and requires an
exact region description in a form suitable for a classifier. This description should
generate a numeric feature vector, which characterizes properties (for example shape) of

the region.

I a system to distinguish objects of different types is desired, then it is important to first
decide which characteristics of the objects should be measured to produce descriptive
parameters. The particular characteristics that are measured are called the features of the
object, and the resulting parameter values comprise the feature vector for each object.
Proper selection of the features is important. since only these will be used to identify the
objects. There are few analytical means to guide the selection of features. Frequently,
intuition guides the listing of potentially useful features. Feature-ordering techniques [28]
compute the relative power of the various features. In practice. the feature selection
process usually involves testing a set of intuitively reasonable features and reducing the
set to an acceptable number of the best ones. Good features have four characteristics [28]:
o Discrimination: Features should take on significantly different values for objects
belonging to different classes.
* Reliability: Features should take on similar values for all objects of the same class.
¢ Independence: The various features used should be uncorrelated with each other.
¢ Small Number: The complexity of a pattern recognition system increases rapidly with
the dimensionality (number of features used) of the system. More importantly, the
number of objects required to train the classifier and to measure its performance
increases exponentially with the number of features [125]. In some cases, it may be
impractical to acquire the amount of data required to train the classifier adequately.
Finally, adding more features that are either noisy or highly correlated with existing
features can actually degrade the performance of the classifier, particularly in view of

the limited size of the training set [86,91].
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In practice, the feature selection process usually involves testing a set of intuitively
reasonable features and reducing the set to an acceptable number of the best ones. Many
features can be used to describe an object. The most basic of all image features is the
measure of image amplitude in terms of spectral value, luminance, tristimulus value, or
other units [28]. Image transforms provide the frequency domain information in the data.
Transform coefficient feature extraction has proved practical in several applications in
which the transform domain features are used as inputs to a pattern recognition
classification system [15,67,167]. The textural features of an object can often be used to
discriminate between the surface finish of a smooth or coarsely textured object [67]. The
gray level histogram of an image often contains sufficient information to allow analysis
of the image content and, in particular, to discriminate between objects [67]. The most

common object measurements made are those that describe shape.

2.4.1 Shape Representation and Description

Defining the shape of an object can prove to be very difficult. Shape is usually
represented verbally or in figures, and people use terms such as elongation, rounded, with
sharp edges. etc. The computer era has introduced the necessity to describe even very
complicated shapes precisely, and while many practical shape description methods exist,
there is no generally accepted methodology of shape description. Further, it is not known
what makes a shape important. In general, shape descriptors are sorted according to
whether they are based on object boundary information (contour-based, external
description) or whether the information from object regions is used (region-based,
internal description) [79]. This classification of shape description methods may be local

or global and differ in sensitivity to translation, rotation, scaling, etc.
Contour-based shape representation and description
Chain codes are used to represent a boundary by a connected sequence of straight-line

segments of specific length and direction [54,108,153]. Typically, this representation is

based on the 4- or 8-connectivity of the segments. A chain code is very sensitive to noise,
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and arbitrary changes in scale and rotation may cause problems if used for recognition.
The smoothed version of the chain code (averaged directions along a specified path
length) is less noise sensitive [108]. Boundary length is an elementary region property,

which is simply derived from the chain code representation. Vertical and horizontal steps

have unit length, and the length of diagonal steps in 8-connectivity is V2. It can be
shown that the boundary is longer in 4-connectivity, where a diagonal step consists of
two rectangular steps with a total length of 2. A closed boundary length (perimeter) can

also be easily evaluated from run length [153] or quad tree representations [153].

Representation of curves using piecewise polynomial interpolation to obtain smooth
curves is widely used in computer graphics. B-splines [14,153] are piecewise polynomial
curves whose shape is closely related to their control polygon-a chain of vertices giving a
polygonal representation of a curve. B-splines of the third order are most common
because this is the lowest order that includes the change of curvature. Splines have very
good representation properties and are easy to compute: they change their shape less then
their control polygon. and they do not oscillate between sampling points as many other
representations do. Many other methods and approaches can be used to describe two-
dimensional curves and contours. The Hough transform has excellent shape
representation abilities and is discussed in detail in [122]. Region-based shape description
using statistical moments is covered in [137], where a technique of contour-based
moments computation from region borders is also included. Further, it is necessary to
mention the fractal approach to shape [115] that is gaining growing attention in image
shape description [174]. Morphology [149,164] can also be used for shape description,
typically in connection with region skeleton construction. A different approach is
introduced in [112], where a geometrical correlation function represents two-dimensional
continuous or discrete curves. This function is translation, rotation, and scale invariant

and may be used to compute basic geometrical properties.
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Region-based shape representation and description

A large group of shape description techniques [22,137] is represented by heuristic
approaches that yield acceptable results in the description of object shapes. Region area,
rectangularity, elongatedness, direction, compactness, etc., are examples of these
methods. Region moment representations interpret a normalized gray scale image
function as a probability density of a 2D random variable. Properties of this random
variable can be described using statistical characteristics such as moments [137]. Other
procedures based on region decomposition into smaller and simpler sub-regions must be
applied to describe more complicated regions, then sub-regions can be described
separately using heuristic approaches. Objects are represented by a planar graph with
nodes representing sub-regions resulting from region decomposition, and region shape is

then described by the graph properties [22].

2.4.2 Feature Analysis and Interpretation

In a pattern recognition problem, one is usually faced with the task of selecting which of
the many available features should actually be measured and presented to the classifier.
As mentioned before, a small set of reliable, independent, and discriminating features are
required. In general, it is expected that the performance of the classifier degrades as
features are eliminated, at least if they are useful features. In fact, eliminating noisy or

highly correlated features can actually improve performance.

Feature selection is the process of reducing the number of features while maintaining or
improving the classification accuracy. In the following discussion, the simple case of
reducing a two-feature problem to a one-feature problem using a statistical approach is
considered. In this approach three objective functions are used to measure the feature
fitness. These functions are called intra-class variation (i.e. feature variance within the
same class), inter-class variation (i.e. class seperation), and feature correlation. Suppose a

training set is available that contains objects from M different classes. Let N ; be the
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number of objects from class j. The two features obtained when the i" object in class j is

measured are x, and y, , computing the mean value of each feature for each class:

;lv =sz‘l and (2.8)
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Ideally, the teatures should take on similar values for all objects within the same class.

The estimated variance of the feature x within class j is

A l y, A 5 i ) )
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A relevant measure of the ability of a feature to distinguish between two classes is the

variance-normalized distance between class means. For feature x, this is given by:

qu =| ‘u\/—'&“' !/ C;'.,+5'[k (212)

where the two classes are j and £. Clearly. the superior feature is the one producing the

widest class separation. The correlation of the feature x and v in class j can be estimated

1 v, A A
T

O =

(2.13)

This quality is bounded by -1 and +1. A value of zero indicates that the two features are
uncorrelated, while a value near +1 implies a high degree of correlation. A value of -1
implies that each variable is proportional to the negative of the other. If the magnitude of
the correlation is near 1, the two features might well be combined into one, or one of

them might be discarded.
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2.5 Pattern Recognition

Pattern recognition [47,55,132,160] is the scientific discipline whose goal is the
classification of objects into a number of categories or classes. Depending on the
application, these objects can be images, signal waveforms, or any type of measurements
that need to be classified. Pattern recognition has a long history, but before the 1960s, it
was mostly the output of theoretical research in the areas of statistics. As with everything
else, the advent of computers increased the demand for practical applications of pattern
recognition, which in turmn set new demands for further theoretical developments. The
theory of pattern recognition is thoroughly discussed in several references [47,55,132],

and here only a brief introduction will be given.

Machine vision is an area in which pattern recognition is of importance. For example. in
inspection, manufactured objects on a moving conveyor may pass the inspection station,
where the camera stands, and it has to be ascertained whether there is a defect. Thus.

images have to be analyzed. and a pattern recognition system has to classify the objects.

An object is a physical unit, usually represented in image analysis and computer vision
by a region in a segmented image. The set of objects can be divided into disjoint subsets.
which from the classification point of view, have some common features and are called
classes. The definition of how the objects are divided into classes is ambiguous and
depends on the classification goal. The classifier (similarly to a human) does not decide
about the class from the object itself, rather, sensed object properties serve this purpose.
For example, to distinguish steel from sandstone, their molecular structures need not have
to be determined, although this would describe these materials well. Properties such as
texture, specific weight, hardness, etc., are used instead. This sensed object is called the
pattern, and the classifier does not actually recognize objects, but recognizes their
patterns. The main pattern recognition steps are shown in Figure 2-12. As is apparent
from the feedback arrows, these steps are not independent. On the contrary, they are
interrelated and, depending on the results, one may go back to redesign earlier stages in

order to improve the overall performance. Furthermore, there are some methods that
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combine steps, that is, the feature selection and the classifier design stage, in a common
optimization task. In the following sub-sections, we will discuss some of the methods

commonly used for classification.

251 Statistical Classification

Statistical object description uses elementary descriptions called features. x,. x3. . . . . x,.
In image analysis, the features result from object description as discussed earlier. The
pattern (also referred to as pattern vector, or feature vector) x=(x;, X3, . . ., X,) that
describes an object is a vector of elementary descriptions, and the set of all possible
patterns forms the pattern space X (also called feature space). If the elementary
descriptions are appropriately chosen, similarity of objects in each class results in the
proximity of their patterns in pattern space. The classes form clusters in the feature space,
which can be separated by a discrimination curve (or hyper-surface in a multi-

dimensional feature space) as shown in Figure 2-13.

If a discrimination hyper-surface exists which separates the feature space such that only
objects from one class are in each separated region, the problem is called a recognition
task with separable classes. If the discrimination hyper-surfaces are hyper-planes, it is
called a linearly separable task. If the task has separable classes, each pattern will
represent only objects from one class. The majority of recognition problems do not have
separable classes, in which case the discrimination hyper-surfaces in the feature space

can never separate the classes correctly and some objects will always be misclassified.

Classification Principles

A statistical classifier is a device with n inputs and | output. Each input is used to enter
the information about one of n features x;, x5, . . . , x, that are measured from an object to
be classified. An R-class classifier will generate one of R symbols wy, wo, . . ., w, as an
output, and the user interprets this output as a decision about the class of the processed

object. The generated symbols v, are the class identifiers.
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Figure 2-12. The basic stages involved in the design of a classification system
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Figure 2-13. General discrimination functions
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The function d(x)=w, describes relations between the classifier inputs and the output; the
function d() is called the decision rule. The decision rule divides the feature space into R
disjoint subsets K, r=1....,R, each of which includes all the feature representation vectors
x of abjects for which d(x )=w,. The borders between subsets K,, r=I,....R form the
discrimination hyper-surfaces mentioned earlier. The discrimination of discrimination
hyper-surfaces (or definition of the decision rule) is the goal of classifier design. The
descrimination hyper-surfaces can be defined by R scalar functions g;(x), ga(x),..., gx)
called discrimination functions. The design of discrimination functions must satisfy the

following formula forall x€ K, and forall se {l....R},s# r:

g.(x)2 g, (x) (2.14)
Therefore, the discrimination hyper-surface between class regions K, and K, is defined by
8. (x)-g (x)=0 (2.15)

The decision rule results from this definition. The object pattern x will be classified into
the class whose discrimination function gives a maximum of all the discrimination
functions:

dx)=w, & g, (v)= T&(Rg‘(x) (2.1

Linear discrimination are the simplest and are widely used. Their general form is
g.(X)=q,, +q,x +..+q,X, (2.17)
forall r=1,....R. If all the discrimination functions of the classifier are linear, it is called a

linear classifier.

Another possibility is to construct classifiers based on the minimum distance principle.
The resulting classifier is just a special case of classifiers with discrimination functions,
but they have computational advantages and may easily be implemented on digital
computers. Assume that R points are defined in the feature space, v;,vs,...,vg that
represent exemplars (sample patterns) of classes w;,wa,.....wg. A minimum distance

classifier classifies a pattern x into the class to whose exemplar it is closest.

d(x)=w, & v, -4 = 5ﬁnﬂ|v, - (2.18)
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Classifier Types
It is useful to distinguish among different types of classifiers based upon what is known

about the underlying statistics and what must be estimated.

Parametric and Nonparametric Classifiers [47,160,176]. If the functional form of the
conditional probability density functions (PDFs) is known, but some parameters of the
density function (mean value, variances, etc.) are unknown, then the classifier is called
parametric. Since the a priori probabilities are also parameters, they may be unknown.
With parametric classifiers, the functional form of the conditional PDFs is assumed, on
the basis of some fundamental knowledge about the objects themselves. Frequently,
functional forms are assumed for mathematical expediency, as well as for more intrinsic

reasons.

If the functional form of some or all of the conditional PDFs is unknown, the classifier is
termed nonparametric. This means that all conditional PDFs must be estimated from
training set data. To do so requires considerably more data than merely estimating a few
parameters in a PDF of known functional form. Thus. nonparametric techniques are used
when suitable parametric models are unavailable and large amounts of training data are

within reach.

Supervised and Unsupervised Training [47,160,176]. The process of estimating the
conditional PDFs or their parameters using object measurements is referred to as training
the classifier. If the objects have been previously classified by some error-free process,
the process is refereed to as supervised training. With unsupervised training, the
conditional PDFs are estimated using samples whose class is unknown. The classes, and
even the number thereof, must be determined by locating clusters of points in
measurement space. This is called cluster analysis. Unsupervised training is normally
used only when it is inconvenient or impossible to obtain a pre-classified training set or

when the number and characteristics of the classes have not been otherwise determined.
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2.5.2 Artificial Neural Networks

The immense capabilities of the human brain in processing information and making
instantaneous decisions, even under very complex circumstances and under uncertain
environments, have inspired researchers in studying and possibly mimicking the
computational abilities of this wonder. What a human can achieve in very short time, for
instance, in terms of pattern recognition and cbstacle aveidance within an unkneown
environment, would have taken a computer very expensive resources (programmers,
training experts, expensive hardware) and much longer time to get comparable results
[13]. This is mainly due to the way humans process information. Researchers have shown
indeed for many years, that brains make computations in a radically different manner as
done by digital computers [7]. Unlike computers, which are programmed 1o solve
problems using sequential algorithms, the brain makes use of a massive network of
parallel and distributed computational elements called neurons [50]. The large number of
connections linking these elements provides humans with the very powerful capability of
learning. Motivated by this very efficient computational biological model, scientists have
for the last few decades attempted to build computational systems. which can process
information in a similar way as the brain does. Such systems are called artificial neural
networks (ANNs) [72,73.130.197] or connectionist models. They are composed of a large
number of highly interconnected processing elements analogous in functionality to
biological neurons and are tied together with weighted connections corresponding to the

brain synapses.

Learning and acquisition of knowledge

Leaming is accomplished in general by developing algorithms that allow the system to
learn for itself from a set of input/output training data. One major goal of learning
algorithms is to combine the main features of a computing machine with those of human
expertise to infer as many correct decisions as possible. An increasing number of systems
are being designed today to have the very distinctive feature of learning. This is done by

adjusting their parameters in response to unpredictable changes in their dynamics or their
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operating environment without the need for an explicit knowledge of a system model or
rules that guide its behavior. Once leamning capability has been implemented within a
given system, it continues acquiring knowledge and uses the stored information to draw
right decisions for similar future situations. Two well-known approaches [168] for
designing learning systems employ symbolic-learning and numerical-learning-based
techniques. Although the focus here is on numerical learning, it is nevertheless interesting

to preview as well the main features of symbolic learning.

Symbolic learning

Symbolic learning denotes the ability of a system to formulate and alter its knowledge
base. composed mainly of facts and rules, from a set of well-structured feedback data
related to the performance of the system. Systems with symbolic learning capabilities can
rearrange their operating set of rules in response to changes in the system dynamics or the
operating environment. This depends largely on the degree of supervision to which the
system may be subjected. Several categories of symbolic learning have been proposed in

the literature [5,151].

Numerical learning

In recent years, a large body of research on numerical learning has focused specifically
on ANNs [130,168,197]. This is an area of research that has seen a renewed interest
recently, after a marginally enthusiastic start in the 1960s and the early 1970s [155].
Numerical-learning-based algorithms represent a class of very useful learning tools used
most often for the design of neural networks. They provide a given network with the
capacity of adjusting its parameters in response to training signals. In some cases,
learning is acquired by practice through training (supervised learning). In others the
system is presented with a number of patterns and it is up the network, through well-
defined guidelines, to group these patterns into categories (unsupervised learning). For
instance, in the case of supervised learning, the system is exposed to a priori known set of

input/output data. The learning mechanism is carried out through an optimization
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process, during which, the system attempts to approximate the desired response vector
with the output of the learning algorithm. This is done by solving an optimization
problem involving m patterns of desired responses ', r°, ..., ", and their corresponding
inputs x, ¥, ..., X", and a set of a priori unknown optimization parameters cailed
connection weights W=[w,, ws, ..., w,]. The superscript m denotes the number of training
patterns presented to the network and the subscript p represents the number of
interconnection weights among all nodes of the network. Each element x of the training
input vector is composed of / components. while each training output vector ¢ is
composed of ¢ components. The optimization algorithm seeks the minimization of the
sum of the error between the desired output vector #* and the output vector of given by
h(w.x5), corresponding to the actual output of the network in response to the excitation x*.

The mapping /i represents here the input-output representation of the neural network. The

optimization problem is now expressed as
m " 5
min Yy e(o'.r*)* =min Y. e(h(w, x*).1*)? (2.19)
"W ‘:I "W L':l

The training algorithm keeps adjusting the weights according to well-defined learning
rules. As more data become available, the learning system continues updating the weights
to comply with the optimization criteria while adapting to new situations. Several
techniques to solve this optimization problem have been proposed in the literature
[90,93,103]. Some of the well-known approaches include genetic algorithms [62].
annealing algorithms [12], and gradient-descent [17] based algorithms. The two major
numerical learning algorithms most often used for the design of neural networks are the
supervised and the unsupervised algorithms. Details on these algorithms and others along

with an outline of their main features are provided in subsequent sections.

Features of artificial neural networks

As mentioned previously, an ANN is typically composed of a set of parallel and
distributed processing units, called nodes or neurons. These are usually ordered into
layers, appropriately interconnected by means of unidirectional (or bi-directional in some

cases) weighted signal channels, called connections or synaptic weights. The internal
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architecture of ANN provides powerful computational capabilities, allowing for the
simultaneous exploration of different competing hypotheses. Massive parallelism and
computationally intensive learning through examples in ANN make them suitable for
application in nonlinear functional mapping [90], speech [130] and pattern recognition
[130], categorization [13], data compression [7], and many other applications
characterized by complex dynamics and possibly uncertain behavior [176]. Neural
networks gather their knowledge through detection of patterns and relationships found in
the data provided to them. Three important features generally characterize an artificial
neural network: the network topology, the network transfer functions, and the network-

learning algorithm.

Neural Network Topologies

The topology corresponds to the ordering and organizing of the nodes from the input
layer to the output layer of the network. In fact, the way the nodes and the
interconnections are arranged within the layers of a given ANN determines its topology.
The choice for using a given topology is mainly dictated by the type of problem being
considered. Some neural networks designers classify ANN according to how the nodes
are organized and hence on how data is processed through the network. The two well-

known ANN topologies are the feedforward (72] and the recurrent [72] architectures.

A network with feedforward architecture has its nodes hierarchically arranged in layers
starting with the input layer and ending with the output layer. In between, a number of
internal layers, also called hidden layers, provide most of the network computational
power. The nodes in each layer are connected to the next layer through unidirectional
paths starting from one layer (source) and ending at the subsequent layer (sink). This
means that the outputs of a given layer feed the nodes of the following layer in a forward
path as shown in Figure 2-14. Because of their structure, such networks are called feed-
forward networks. They are also occasionally called open loop networks given the
absence of feedback flow of information in their structure. The feedforward topology has

been very popular due to its association with a quite powerful and relatively robust

47



CHAPTER 2. BACKGROUND

learning algorithm called the backpropagation-learning algorithm [155]. The multilayer
perceptron network and the radial basis function network [187] are among the well-

known networks using the feedforward topology.

Unlike feedforward networks, recurrent networks allow for feedback connections among
their nodes, as illustrated in Figure 2-15. They are structured in such a way as to permit
storage of information in their output nodes through dynamic states. hence providing the
network with some sort of ‘memory’. While feedforward networks map input into output
and are static in the sense that the output of a given pattern of inputs is independent of the
previous state of the network, recurrent networks map states into states and as such are
very useful for modeling and identification of dynamic systems. Several well known
neural networks have been designed based on the recurrent topology, including the
Kohonen network {98]. the Hopfield network [80] and the adaptive resonance theory

networks [27].

Neural network activation functions

The basic elements of the computational engine of a neural network are the neurons,
which take the weighted sum of their inputs from other nodes and apply to them a
mapping, called the activation function, before delivering the output to the next

neuron(s). The output O; of a typical neuron (k) having (/) inputs is given as:

0, =f(Q w,x, +8,) (2.20)
!

where f is the node’s activation function, x;, X, ...., X; are the node’s inputs, wy, w, ...,
wy are the connections weights, and & is the node’s threshold. The processing activity
within a given layer is done simultaneously hence providing the neural network with the
powerful capability of parallel computing. The bias effect (threshold value) is intended to
inhibit the activity of some nodes. As neural networks may vary in terms of their
structure as described previously they may, as well, vary in terms of their activation
function. Depending on the problem in hand and on the location of the node within a
given layer, the activation functions can take different forms [168]: sigmoid mapping,

signum function, or linear correspondence.
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Figure 2-14. Typical structure of feed-forward neural network
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Figure 2-15. Typical structure of recurrent neural network
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Network learning algorithms

Learning algorithms are used to update the weighting parameters at the interconnection
level of the neurons during the training process of the network. While some designers
have classified neural networks according to topologies or architectures, others have
classified them according to the learning algorithm used by the network. The three most
often used learning mechanisms (73] are the supervised [155], the unsupervised (or self
organized) (98]. and the reinforced [168]. A brief overview of each one of these weight-

updating mechanisms is provided in the following sub-sections.

Supervised learning. The main feature of the supervised (or active) learning mechanism
is the training by examples. This means that an external teacher provides the network
with a set of input stimuli for which the output is known a priori. During the training
process. the output results are continuously compared with the desired data. An
appropriate learning rule (such as the gradient descent rule) uses the error between the
actual output and the target data to adjust the connection weights so as to obtain after a
number of iterations the closest match between the target output and the actual output.
Supervised learning is particularly useful for feedforward networks. A number of
supervised leamning algorithms have been suggested in the literature [7,80,90,110]. The

backpropagation algorithm first developed by Webos in 1974 [187], which is also based
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on the gradient descent optimization technique and the least mean square algorithm [5]

are among the most commonly used supervised learning rules.

Unsupervised learning. Unlike supervised learning, unsupervised or self-organized
learning [124] doesn’t involve an external teacher and relies instead upon local
information and internal control. The training data and input patterns are presented to the
system, and through predefined guidelines, the system discovers emergent collective
properties and organizes the data into clusters or categories. Because of the way the
network adjusts its connection weights in response to the presented input data,
unsupervised learning systems have been known as open-loop adaptation learning
schemes [98]. In a simplified manner, an unsupervised learning scheme operates as
follows. A set of training data is presented to the system at the input layer level. The
network connection weights are then adjusted through some sort of competition among
the nodes of the output layer, in which the successful candidate will be the node with the
highest value. In the process, the algorithm strengthens the connection between the
incoming pattern at the input layer and the node output corresponding to the winning
candidate. In addition to the strengthening of the connections between the input layer and
the winning output node, the unsupervised learning scheme may be as well used for
adjusting the weights of the connections leading to the neighboring nodes at the output
layer. This is controlled by what is called the neighborliness parameter, and it has the
major property of making groups of output nodes behaving as single entities with

particular features.

Reinforcement learning. Reinforcement learning (RL) [124], also known as graded
learning, has been receiving an increased interest given its many attractive learning
features that, according to many, model in a fair way the adjusting behavior of humans
when interacting with a given physical environment. This is another type of learning
mechanism by means of which the network connections are modified according to
feedback information provided to the network by its environment. This information
simply instructs the system on whether or not a correct response has been obtained. In the

case of a correct response, the corresponding connections leading to that output are
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strengthened and weakened otherwise. This type of learning strategy based on the
reward/penalty process has several similarities with the biological learning system.
Unlike supervised learning, RL doesn’t get information on what the output should be
when the network is presented with a given input pattern. RL does also differ from
unsupervised learning (UL) in that UL doesn’t provide the network with information on
whether the output is right or otherwise, but rather operates on the premises of finding
pattern regularity among the exemplars presented to the system. Given the nature of this
learning scheme, random search strategies have to be used to attain the correct output
every time the system is presented with an excitation from its environment. This
explorational aspect of learning ultimately leads to an improved capability of the system
to deliver the expected output every time the system is presented with an input pattern.
Among the strategies used to implement a reinforced leaming algorithm are the
reinforcement comparison [124], the adaptive heuristic critic [124], Q learning [124], and

the policy only scheme [124].

Hybrid models. The term hybrid models have been used indiscriminately in the neural
network literature [152]. While some authors use it to describe models in which both
unsupervised and supervised neural network concepts are used in different parts of a
connectionist model, others use it to describe models where neural networks are

combined with rule-based, classic statistical, and other types of modeling approaches.

2.5.3 Neuro-fuzzy Systems

Fuzzy systems [196,135] and neural networks {72,124,194] have attracted the growing
interest of researchers in various scientific and engineering areas. The number and variety
of applications of fuzzy logic and neural networks have been increasing, ranging from
consumer products and industrial process control to information systems, and decision
analysis. Fuzzy logic is based on the way the brain deals with inexact information, while
neural networks are modeled after the physical architecture of the brain. Although the

fundamental inspirations for these two fields are quite different, there are a number of
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parallels that point out their similarities. Fuzzy systems and neural networks are both
numerical model-free estimators and dynamical systems [110]. They share the common
ability to improve the intelligence of systems working in an uncertain, imprecise, and
noisy environment. Both fuzzy systems and neural networks have been shown to have the

capability of modeling complex nonlinear processes to arbitrary degrees of accuracy.

Although fuzzy systems and neural networks are formally similar, there are also
significant differences between them. Fuzzy systems are structured numerical estimators.
They start from highly formalized insights about the structure of categories found in the
real world and then articulate fuzzy [F-THEN rules as a kind of expert knowledge. Fuzzy
systems combine fuzzy sets with fuzzy rules to produce overall complex nonlinear
behavior. Neural networks, on the other hand. are trainable dynamical systems whose
leaming, noise tolerance, and generalization abilities grow out of their connectionist
structures, their dynamics, and their distributed data representation. Neural networks have
a large number of highly interconnected processing elements (nodes) which demonstrate
the ability to learn and generalize from training patterns or data; these simple processing

elements also collectively produce complex nonlinear behavior.

In light of their similarities and differences. fuzzy systems and neural networks are
suitable for solving many of the same problems and achieving some degree of machine
intelligence. Their differences have prompted a recent surge of interest [194] in merging
or combining them into a functional system to overcome their individual weaknesses. A
neuro-fuzzy system is a combination of neural networks and fuzzy systems in such a way
that neural networks, or neural network learmning algorithms, are used to determine
parameters of fuzzy systems [194]. This means that the main intension of a neuro-fuzzy
approach is to create or improve a fuzzy system automatically by means of neural
network methods. An even more important aspect is that the system should always be
interpretable in terms of fuzzy if-then rules, because it is based on a fuzzy system
reflecting vague knowledge. On the other hand, a fuzzy neural network is a neural
network that uses fuzzy methods to leamn faster or to perform better [110]. In this case,

the improvement of a neural network is the main intention.
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2.6 Performance Models and Optimization Methods

In recent years, the emphasis has shifted in the field of infrastructure engineering from
the design and construction of new facilities to the maintenance and rehabilitation (M&R)
of existing infrastructure facilities [103]. Information on current and future conditions is
essential for M&R decision-making. Data on current conditions are obtained from facility
inspection. These data are also used to develop facility deterioration models, which arc
used to predict future facility conditions. Both current condition and predicted future
condition are used to select M&R activity. The success of an infrastructure management
system is dependent largely, on its ability to predict future conditions accurately. The
modeling of infrastructure deterioration and its relation to M&R treatment strategies have
been investigated by many previous researchers [88.131,156]. Determination of the
optimal investments in operating infrastructure network preservation programs is
concerned with M&R priority programming prioritization, which may be carried out
through infrastructure life-cycle analysis. There are many priority programming methods
available in infrastructure management, ranging from simple subjective ranking to

optimization [48,51.114].

In reality, it is difficult to obtain an optimization as many uncertain factors are involved
in the mathematical programming model. Moreover, the optimization formula developed
from one specific region is not likely to be fitted into another region. Consequently, a
number of near optimization approaches, which are close to the true optimal and
relatively easy to develop, have been widely utilized in infrastructure management
system. Having a reliable infrastructure performance model is essential for asset
managers to secure infrastructure life-cycle structural design, and to estimate the costs
and benefits of the projects associated with M&R treatments. Infrastructure treatment
actions should be planned based on current needs and projected future needs with
considerations of budget constraints. An infrastructure performance model is a critical
component of the entire management process and it is, therefore, the foundation of an
integrated management system. In general, an infrastructure management system aims to

provide the tools necessary to predict infrastructure future conditions so that the optimal
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repair strategies and actions can be determined. Over the last 30 years, a considerable
amount of effort has been made to the prediction of infrastructure deterioration in order to
meet the requirements of each specific infrastructure management system. In this section
the existing models for predicting infrastructure deterioration and optimization methods

are briefly reviewed.

2.6.1 Infrastructure Performance Prediction Models

The typical infrastructure maintenance decision-making environment involves multiple
objectives and uncertainty, and is dynamic. One of the most commonly used
infrastructure models is a Markov decision process (MDP) [78]. MDP models have been
applied to numerous sequential decision-making situation involving uncertainty and
multiple objectives, including applications related to infrastructure problems [113]. Such
probabilistic models also have the advantage of naturally lending themselves to
computationally tractable discrete dynamic programming optimization [39]. The core of
these probabilistic models consists of infrastructure transition probabilities. A review of
the literature revealed one common method for the estimation of Markov transition
probabilities using condition rating data of a set of facilities observed over time. The

method consists of the following three steps.

In the first step, the facilities are classified into groups where each group consists of
facilities having similar attributes. Each group of facilities generates a set of condition
rating, ¥, and age, r. The purpose of this grouping is to capture the fact that transition
probabilities are a function of explanatory variables. The approach, therefore, is based on
segmenting the population of facilities so that transition matrices are estimated for each

group.
In the second step, for each group a deterioration model with the condition rating, Y, as

the dependent variable and age, ¢, as the independent variable is estimated. The following

is the mathematical expression.
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Y =B +pB., +¢, (2.22)
where n = index for facility: ¥, = condition rating of infrastructure facility n; 8,8, =
parameters to be estimated; 1, = age of facility n; and £,= random error term. The

parameters 5, and A, in model (2.22) are estimated by linear regression.

In the third step, a transition probabilities matrix is estimated for each group by
minimizing a measure of distance between the expected value of the facility condition
rating as predicted by model (2.22) and the theoretical expected value derived from the
structure of the Markov chain. The theoretical expected value is a function of the
transition probabilities to be estimated. The objective function used in practice is the sum
of the absolute (or squared) differences between the two expected values [25]. The

transition matrix, P, has the following general structure.

’-pu- P, b s A e D ]
0 Piai-n Pacti-n ® N * pPu
. ° ° o A . L)
P= (2.23)
° ] . o A\ ° °
L 0 0 0 0A O Pu |

where k = highest condition state; and | = lowest condition state.

As is evident from the zero entries in the transition matrix, it is assumed that a facility can
either stay in its current state or deteriorate to some lower state. This implies the absence

of rehabilitation activities.

The mathematical representation of the minimization of the distance between the two

expected values is given in the following.

AT -1
min W = z Y, —E(I,P)‘
subjectto0< p, <1, i, j=12,..k (2.24)

k
Yp, =L i=12 k
J=t
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where 7= earliest age observed in the group under consideration; A T = number of years

fa)
in the group of facilities under consideration; Y, = average condition rating for facilities

in the group of age ¢, predicted by the deterioration model; k = number of states; P =
transition probability matrix whose elements are to be estimated; and E(r, P) = theoretical
expected value of condition rating at age r as a function of the Markov transition
probabilities. The first constraint ensures that the probabilities are bounded by 0 and 1,
and the second constraint ensures that the eiements of each row of the transition matnx

sum to one.

2.6.2 Priority Programming and Optimization Methodologies

Priority programming [51] is a systematic process through which maintenance and
rehabilitation actions needed by an infrastructure network are ranked in a certain order. It
is based on certain criteria and priority judgments, such as available funds, degree of
needs and urgency, costs and benefits. Therefore, a comprehensive analysis has to be
conducted by considering all of the criteria and factors in the selection of the best

alternative from a number of possible treatment strategies.

In recent years, a Markov process-based probabilistic model has been applied in many
processes or subsystems of infrastructure management, such as dynamic programming of
pavement maintenance incorporated with pavement deterioration modeling [107],
pavement network budget planning [48], and cost-effectiveness analysis in financial
planning of bridge management [166]. In the following sub-sections, several methods of
priority programming for infrastructure management are briefly reviewed, including

simple ranking, prioritization and optimization.
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Subjective and Parameters Based Ranking Methods

Among many prioritization methods, the ranking method [81] is the simplest way of
establishing priorities for infrastructure improvement needs. In this method, projects are
ranked based on subjective judgment or criteria that are determined by the infrastructure
agency's policy. The programming is based on either engineering judgment or on
measured parameters. such as infrastructure condition. life-cvcle cost. and benefit/cost
ratio. The infrastructure is repaired or treated in rank order until the amount of money

available for maintenance and rehabilitation is used up.

Priority Programming With Maximum Benefits or Minimum Costs

Costs and benefits are two major economic evaluation factors in network priority
programming and project level design. There are generally three forms in priority
programming [51]: benefit maximization, cost minimization. and benefits over costs ratio
maximization. Benefit maximization or cost minimization with linear programming
seems to have been the most popular approaches. With multi-year programming of
projects, the effects of a large number of strategic treatment options to be applied in each
year under the constraints of budgets and required performance standards are considered.
Lytton [114] has investigated the multi-year prioritization analysis and mathematical
optimization analyses such as dynamic programming. He concluded that the two
approaches could achieve similar solutions. This is because the algorithms go through a
similar sequence of operations to determine the projects that provide the greatest benefit

for the same amount of money spent.

Prioritization techniques require a comprehensive performance model for the prediction
of infrastructure deterioration and for the measurement of the benefit or effectiveness of
alternative projects or treatments. The prioritization methodology is based on maximizing
cost-effectiveness ratio from the selected M&R projects within a limited budget. The

higher the weighted optimal benefit/cost ratio of the section is, the higher the priority of
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that section will be for repair. A detailed description of this methodology is given by

Feighan et. al. [S1].

Optimization Methods

Optimization [45] is a branch of mathematics concerned with finding the most effective
(optimum) solutions to complex problems in accordance with established objectives and
constraints. The difference between optimization and the prioritization or ranking
techniques described in the previous sections is that, in an optimization analysis, the
functions of priority programming, program formulation and project scheduling are
integrated into one operation which gives the optimum schedule of projects. Two
important considerations that are not included in a prioritization analysis are a) the
evaluation of inter-project trade-off in selecting strategies, and b) the selection of
treatment  strategies that strictly adheres to budget constraints. Consequently,
mathematical optimization techniques have been recently employed by a number of
highway agencies for programming investment priorities for pavement improvements.
The use of mathematical optimization models is perhaps the most sophisticated for multi-
year prioritization analysis, which include linear, non-linear, integer and dynamic
programming methods (45,101]. It should be pointed that a reliable prioritization
programming method is dependent. to a large degree, on the accuracy of the predicted
infrastructure performance. The reason is that in the process of prioritization economic
analysis of each treatment strategy is conducted based on the predicted future

infrastructure deterioration versus time.
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3. Pipe Image Segmentation

In this chapter a simple, robust and efficient image segmentation algorithm for the
automated analysis of scanned underground pipe images is presented. The algorithm
consists of image pre-processing followed by a sequence of morphological operations to
accurately segment pipe cracks. holes. joints, laterals. and collapsed surfaces, a crucial

step in the classification of defects in underground pipes.

Section 3.1 presents an introduction and the necessary background of segmentation
problem. Section 3.2 discusses the image pre-processing step, followed by morphological
segmentation of underground pipe images in Section 3.3. Experimental results are

discussed in Section 3.4.

3.1 Introduction

We have acquired a data set consisting of thousands of images of underground pipes from
15 major cities in North America. This data set has been used to explore basic
characteristics of underground pipe images. Analyses of images have shown that there

are two important characteristics that complicate the segmentation of pipe images: firstly

60



CHAPTER 3. PIPE IMAGE SEGMENTATION

the presence of a complicated background pattern due to earlier runoff, patches of repair
work, corroded areas, debris, non-uniformities in illumination, and flaws in the image
acquisition process; secondly the three main objects of interest - cracks, joints, and

laterals - are all dark features that cannot be distinguished by intensity criteria alone.

The goal of our research is to develop an automated method which, given a pipe image,
classifies each pixel in the image into one of five classes: background. crack. hole. joint.
and lateral. In principle, after the image has been segmented into its classes, each class
could be separated further into extents of distress (e.g., minor crack, major crack.
multiple crack, etc.). In general, this image segmentation problem is difficult to automate
because the differences between classes such as joints and cracks, although obvious to a

human, can be very difficult to encode mathematically at the pixel level.

A large number of segmentation algorithms have been proposed in the literature
(26.31.63.158] and discussed in Chapter 2. However, the literature on segmentation of
defects in concrete structures is very limited. Maser's algorithm [117] recommends a
histogram thresholding approach, however it is not clear how the value of the threshold is
originally determined. More recently, Chen et al. [30] applied a segmentation method,
introduced by Kittler et al. [97]. to pavement images. although the effectiveness of the
method is unclear. An approach to the recognition of segmented pavement distress
images is studied by Mohajeri and Manning [127], using directional filters to classify the
objects. An entropy-based approach [3], which finds a bilevel threshold to maximize
entropy criteria, did not improve pavement-surface images. The cluster classification
process, which assigns a particular object to one of many groups by comparing typical

features from each group, reported a significant amount of error [4].

In general, segmentation techniques take one of two possible approaches [74]: edge
detection and thresholding. An edge is defined as the boundary between two regions with
relatively distinct gray-scale characteristics, thus edge-detection techniques attempt to
segment objects by outlining their boundaries. Thresholding, on the other hand, seeks to

distinguish objects on the basis of their absolute intensities, for example separating a
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darker object from a lighter background, in which case a good way of segmenting might
be to determine a threshold T, such all pixels with an intensity above T are classified as

being part of the background.

The literature on segmentation based on gray-level intensity is inapplicable in our context
since cracks, holes, joints, and laterals all appear as comparably dark objects on a lighter
background, as shown in Figure 3-1. Rather, it is the geomerrv, rather than the intensity,
which distinguishes these objects. Mathematical morphology [35,71,75,118,162]
provides an approach to the segmenting of digital images that is based on shape.
Appropriately used, morphological operations tend to simplify images. preserving their
essential shape characteristics and eliminating irrelevancies. Theoretical background of

morphology may be found in Chapter 2.

In this chapter, we propose a simple, robust and efficient morphological segmentation
algorithm to distinguish cracks, holes, collapse surface, pipe joints, and pipe laterals,
based on geometric criteria. The algorithm consists of gray-scale conversion followed by

a sequence of gray-scale morphological operations.

3.2 Image Pre-processing

There are several hindrances to identifying the features in underground pipe images. In
the case of cracks, the principal difficulty is that cracks are set against a highly patterned
background and thus discriminating edges are often not present. A different problem
arises when attempting to identify the crack boundary where there is low contrast
between the inside of the crack surface and the surrounding area. Pipe background
surface is primarily determined by the color of the pipe material. As such, it is usually
found in a restricted range of intensities. Typically the gray-scale histogram information
is used to enhance the contrast between the object and the background, as discussed in the
background chapter. Here it is shown that pattern classification techniques applied to
color images can also be used to enhance the contrast between the background surface

and the objects present in the pipe image.



CHAPTER 3. PIPE IMAGE SEGMENTATION

T
e TN

i Y ¢ ~ .

< el %
H SR :!f' T
i - »
s ev._’,..._rqf .
T [P v e m——
. T .
§ . o

Clean Surface Cracked Surface

Pipe Joint Pipe Lateral

Figure 3-1. Typical images of underground concrete pipe showing different objects
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3.2.1 Bayesian Classification

Identification of the boundary between the objects and their surround is formulated as a
pattern classification problem. Specifically, it is desired to classify pixels as to whether it
is more likely that they came from the objects or the neighboring background regions. In
a Bayesian framework, a color pixel x, = (r.¢.5)7 . can be classified as a crack if its a
pusteriori probabiiity P(Crackjx) is greater than the corresponding a posteriori
probability for the surrounding pipe background P(Backlx). If the class-conditional
probability densities p(x|Crack) and p(x|Back) are known, or can be learned from training
images, then Bayes’ Rule can be used to compute the corresponding a posteriori

probabilities.

Standard parametric or non-parametric techniques can be used to learn the underlying
class-conditional densities p(x|Crack) and p(x|Back). However, one must bear in mind
that the a posteriori probabilities P(Crack|x) and P(Back|x) are evaluated for each pixel,
along each search line, at each time step. Thus. in order for this approach to be usable in
practical (real-time) systems, a premium is placed on the on-line processing time required
to discriminate between the classes. Towards this end, Fisher's linear discriminant [47] is

used to enhance the contrast between the objects and the pipe background.

3.2.2 Fisher’s Linear Discriminant

Since we intend to apply morphological operators, we require a grey-scale image, in
. . . T . . . .
which each pixel x, is a scalar x, =y, x_, where wis some linear projection. In the case

of a two class discrimination problem, such as distinguishing between cracks and pipe
background, Fisher’s linear discriminant [47] can be used to determine the axis, w, onto
which vector color data can be projected which preserves as much of the discriminating
capability of the color information as possible. The resulting ‘Fisher linear discriminant’

maximizes the separability of the two classes. Crack images representative of those likely
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to be encountered during scanning of underground pipes can be used to learn the Fisher
discriminant axis using the following algorithm.
L. Calculate mean color in class k=1,2
l
m, =—Zx 3.1
nk €y
2. Determine the within class scatter matrices, k=1,2

S, = z(.\'—m,; Yx=-m) (3.2)

e

3. Find the Fisher discriminant vector

w=S"(m —m,) where S, =8, + S, (3.3)
Pipe images representative of those likely to be encountered during object recognition
and classification can be used to learn the Fisher discriminant axis. Figure 3-2 shows that
Fisher's discriminant analysis can be used to enhance the contrast between the pipe
background and cracks. In the gray-scale image (Figure 3-2(b)) there is little contrast
between the background and cracks. The HIS and YIQ color models can also be used to
provide additional contrast as shown in Figures 3-2(c) and 3-2(d), respectively; although
the pipe image shows high contrast, the crack boundary is blurred and the image is noisy.
The projection onto the Fisher axis (Figure 3-2(e)) enhances the contrast and enables

better extraction of the crack features.
3.3 Morphological Segmentation

Mathematical morphology [35,68.71,75,118,162] is a widely used methodology for
image analysis. Recently it has been used in image analysis as an approach for
smoothing, image segmentation, edge detection, thinning, shape analysis and image
coding. Based on a formal mathematical framework, mathematical morphology is a fast,
robust method that analyzes the geometry of an image directly in the spatial domain. In
this section, we present a morphological approach for segmenting underground pipe
images, which includes the process of characterizing the object sizes in a pipe image,

thresholding the image into a binary image, and finally classifying the segmented image.
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(d) YIQ Color Model Image (e) Fisher Discriminant Image

Figure 3-2. Fisher’s discriminant analysis can be used to enhance the contrast between
the pipe background and cracks. In gray-scale image (b) there is little contrast between
the background and cracks. The HIS and YIQ color models can also be used to provide
additional contrast (c) and (d), respectively; although the pipe image shows high contrast,
the crack boundary is blurred and the image is noisy. Projection onto a Fisher axis (e)
enhances the contrast and enables better extraction of the crack features.
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3.3.1 Mathematical Morphology

Morphology operates on image regions (e.g.. the light and dark portions of an image),
where the regions can be reshaped (i.e., morphed) in various ways under the control of a
structuring element. The structuring element can be thought of as a parameter to the
morphological operation. The most fundamental operations are morphological dilation
and erosion. Based on these, two compound operations, opening and closing, can be
defined. We first define these in the context of binary images, then for the more

complicated case of gray-scale images.

Consider a binary image / consisting of pixels p(x,v):

[={p(xy)}  pvy)e {0.1} (34)

We define sets A and B to represent the image and the selected structuring element,.
respectively:
A={(xy) | plxy) = 1} (3.5)

B={(x,y) | (x.¥) in structuring element (3.6)

Then the dilation of A@B of A by structuring element B is defined as

A®@B={a+b| forallae Aand b e B) (3.7)

That is, A® B is the union of all pixels in A surrounded by the shape of B. Similarly the

erosion AOB is defined as
A®B={p|b+pe A foreverybc B) (3.8)

That is, all pixels within a “distance” B from the edge of A are removed.

Next, two compound operations can be defined, opening AoB and closing Ae B:
AoB=(AOGB)®B (3.9)
AeB=(A®B)OB (3.10)
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Intitively, the opening operation, which we use in our classification. leaves unchanged
all parts of A, except for those features and regions smaller than the structuring element,

which are removed.

Any method which operates exclusively on binary images is somewhat limiting, since
most images are color or gray-scale. A gray-scale image

I={pxy)}  plry)e R (3.11)
can be interpreted as a three dimensional surface, with the pixel intensity or shade

interpreted as a height. If we define

A={(x.x.2) | 2 Spxy)} (3.12)
and have a structuring volume
B={(x.y.2)} (3.13)

then we can interpret two-dimensional gray-scale morphological operations on image / as

three-dimensional binary morphology on A, B.

Written directly in terms of a gray-scale image f{x,v) and structuring function b(x.y),

grey-scale erosion and dilation can be defined as

(f @b)(x.y) =max{f(x—i.y-j)+bl. ))} (3.14)
(f Ob)x.¥) =min{f(x+i.y+ j)=b(i.[)} (3.15)
)

Gray-scale opening and closing are defined as vefore, in equations (3.9) and (3.10).

3.3.2 Morphological Segmentation and Classification

In underground pipe image segmentation, the following classes are of general interest:
the pipe joints (horizontal dark straight lines), pipe laterals (circular dark objects), surface
cracks (irregularly shaped thin dark lines), and the pipe background (anywhere from a
smooth to a highly patterned surface). The goal of our research is to segment pipe joints,
laterals, and cracks based on the geometric differences between them, specifically based

on morphological techniques.
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In this section, we employ the morphological opening operation, using circular and
horizontal structuring elements of various sizes, for the classification of objects in
underground pipe images. A morphological opening with a circular structuring element
(Sc) of radius r{mm), as shown in Figure 3-3, is equivalent to removing a strip of width
r(mm) along the entire object boundary (erosion) and then, onto whatever portions
remain of the object, adding a strip of width A(mm) back onto the object (dilation). A
similar opening operation with a horizontal structuring element (Su) of varving length
/{(mm) and fixed width w=3(mm), as shown in Figure 3-4, can be performed. In general,
the effect of an opening is to remove small features, whereas large features shrink and
then expand back to their original size. The choice of these two elements (circular and
rectangular) is designed to approximately mimic the geometry of the laterals and joints to

be extracted.

The key idea, then, is that we can isolate objects of a given ‘size’ by performing a series
of opening operations, based on structuring elements of varying size. The ‘size’ of any
object can then be defined mathematically as the largest structuring element (measured
here in terms of radius r or length /) that can be inscribed in the object. Note that, aside
from the general shape of the structuring element, we do not make any specific
assumption regarding the shape of the object being measured, therefore this definition of
size is quite general and will prove effective in measuring sizes of cracks, irregular
laterals etc., which otherwise resist specific characterization. Our proposed segmentation

algorithm consists of a sequence of processing steps, illustrated in Figure 3-5.

Morphological opening and thresholding

We performed a morphological opening operation on the underground pipe image with
increasing sizes of the circular and horizontal structuring elements. Clearly as the size of
the structuring element is increased features of increasing size are removed by the
morphological opening. For example, a structuring element of intermediate size will

preserve laterals and a collapsed pipe, but will remove cracks and small holes.
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Figure 3-5. Overview of the proposed morphological segmentation approach
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Figure 3-6 (b) shows two examples of the results of gray-scale opening. Although some
of the original features in 3-6(a) are still clearly present, the output of the morphology is
confusing and not easily interpreted. What we really want is an additional processing
step, a thresholding function (), classifying each pixel as:

. . (3.16)
l Pixel is not consistent

1(p(x.y)) = {

0 Pixelis geometrically consistent with structuring element}

That is. the set of all "dark’ (zero valued) pixels will identify the object(s) in the image
which are compatible (i.e.. bigger than) the selected structuring element. Ideally, we
would like a single global threshold T such that

0 p(x, _\-)ST}

3.17
1 p(x.v)2T (.17)

r(p(x. _\'))={

Unfortunately. it is ditficult in general to find a single threshold that is best for an
arbitrary gray-scale image. Many approaches have been proposed to find an optimal
threshold level for certain image cases [23.109.133,138]. We propose to use Otsu’s
method [133] because it is non-parametric, unsupervised, and automatic. A discriminant
criterion is computed for each possible threshold T the optimal threshold is that gray-
level where this measure is maximized. The results of Otsu’s method are illustrated in

Figure 3-6(c): the segmented joint and lateral stand out very clearly.

With a methodology in place for understanding the results of a given morphology, we can
now study the choice of structuring elements that will be most effective in classifying
each pipe object. Figures 3-7 and 3-8 plot the average area of objects in each class (crack,
hole, joint, etc.) based on circular and horizontal structuring elements, respectively. That
is, if we let [1(])| represent the number of dark pixels in [ after binary thresholding, then
Figures 3-7 and 3-8 actually plot the normalized areas

|t oS ()]

) (3.18)
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T

(a) Original Image (b) Gray-Scale Opening (c) Thresholded Image

Figure 3-6. This figure illustrates joint/lateral discrimination using different structuring
element: a horizontal element (top) of length 285 mm, consistent with the geometry of a
perfect joint, as opposed to a circular element (bottom) of radius 57 mm, tuned to the
shape of a perfect lateral.
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_|ros, )
(1)

where I, [; are idealized, prototype images of the perfect lateral and joint. Note that all of

a, () (3.19)

the curves are monotonically decreasing,

[1oS (r)|2|f0Sc(r)

forallr,<r, (3.20)

since a larger structuring element cannot leave more pixels in place than a smaller

eiement.

Although the plots in Figures 3-7 and 3-8 are interesting and intuitive in order to
accurately isolate and classify different objects in an image we have to take into account
the variations in the area of each class. That is. holes, laterals, etc. all come in a range of
sizes, and this range must be taken into account in selecting the appropriate structuring

element to serve as a classifier.

We can compute or assess the ability of any structuring element to discriminate between
any two classes (e.g.. crack and hole) by examining the degree to which the two classes

are separated relative to their standard deviations:

,=PH”-#AHF

D 2
() (N0 () (3.21)
H#,(r)=(a, (r)), (3.22)
a}(r=(a,(n*) ~{a, ()} (3.23)

where( )' represents an average taken over images of class /. A parallel definition exists

for discriminant D; j(/) based on a horizontal structuring element. The value of r for which
D; f(r) is maximized represents the optimal feature by which to discriminate between
classes i/ and j on the basis of the area (i.e. number of pixels) remaining after a
morphological opening by element Sc(r). By plotting D;,(r) and D; (/) for different
classes i, j we can deduce the set of features to be extracted for classification. Figures 3-9

and 3-10 plot D ; (r) and Dy;(]) respectively, indicating peaks to identify these features.
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Figure 3-7. Morphological analysis based on a circular structuring element: the average
area of each class is plotted as a function of the structuring element diameter; area is
normalized to that of an ideal lateral. Clearly as the diameter is increased. classes with

thin, elongated geometries (e.g. cracks, joints) are quickly eliminated.
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Figure 3-8. Morphological analysis based on a horizontal structuring element: the average
area of each class is plotted as a function of the structuring element length; area is
normalized to that of an ideal joint. Clearly as the length is increased, classes with small

geometries (e.g., cracks, holes) are quickly eliminated.
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Figure 3-9. Lateral discrimination: we can distinguish between laterals and other classes
by opening with a circular structuring element, as in Figure 7. We can plot the ability to
discriminate *D" between an ideal lateral and any other class as the difference in response
(normalized to standard error) to the structuring element.
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Figure 3-10. Joint discrimination: we can distinguish between joints and other classes by
opening with a horizontal structuring element, as in Figure 8. We can plot the ability to
discriminate ‘D’ between an ideal joint and any other class as the difference in response
(normalized to standard error) to the structuring element.
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Feature extraction and classification

The sizes of structuring elements for the classification of objects in underground pipe
images can be determined from the discriminant method described in the previous
section. The optimal sizes of the structuring elements used for classification using

circular and horizontal shaped elements are tabulated in Tables 2-1 and 2-2, respectively.

For example, if an image is opened with Sc(2) — the circular structuring element of radius
2(mm) — then small objects (e.g., random background patterning) are removed. By
repeating this process for diftferent sizes of structuring elements Sc(7). Sc(23). Sc(57), we

can group objects by size, that is, into their respective classes.

Specifically, we propose to keep as our features
a, (r)=)t(l oS (r)) re{2.7.23,57} (3.24)
where the features are selected to discriminate between successive class pairs clean-pipe,

cracks, holes-joints, laterals, and pipe-collapse. A further set of four features is chosen

based on rectangular structuring elements:
a, (1) =[t( 0S8, () le {2,47,121,155} (3.25)
selected to discriminate between successive pairs of clean-pipe, cracks-holes, laterals,

joints, and pipe-collapse.

The classifier is then made up of pairwise discriminants, such as

@ ()= < 1,,(2) Clean- pipe (3.26)
©77 )< 1,,(2) Classof Crack or larger -
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Table 3-1. Optimal sizes of the circular structuring element selected for classification of
various objects in the underground pipe images

Radius of Circular »
Structuring Element Classified Class
2 (mm) Clean-Pipe
7 (mm) Crack
23 (mm) Hole/Joint
57 (mm) Laterals
71 (mm) Collapse-Pipe

Table 3-2. Optimal sizes of the horizontal structuring element selected for classification
of various objects in the underground pipe images

Length of Horizontal

Structuring Element Classified Class

2 (mm) Clean

47 (mm) Crack/Hole
121 (mm) Laterals
155 (mm) Pipe-Collapse

285 (mm) Joints
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Table 3-3. Optimal threshold selected for classification of various objects in the
underground pipe images by circular structuring element

Threshold Values for
Classification by Circular Classifed Class
Structuring Element
AL@2) £ 150 Clean-Pipe
Ap(2)> 150 Crack/Hole/Joint/Lateral/Collapse-Pipe
AL(2) £ 1000 Crack
ApL(2) > 1000 Hole/Joint/Lateral/Collapse-Pipe
AL(2) < 1700 Hole/Joint
Ap(2)> 1700 Lateral/Collapse-Pipe
Ar(2) £ 3150 Lateral
AL2) > 3150 Collapse-Pipe

Table 3-4. Optimal threshold selected for classification of various objects in the
underground pipe images by horizontal structuring element

Threshold Values for
Classification by Horizontal Classifed Class

Structuring Element

AL(2) £ 150 Clean-Pipe
AL(2)> 150 Crack/Hole/Joint/Lateral/Collapse-Pipe

AL@2)< 1700 Crack/Hole
ApL(2)> 1700 Joint/Lateral/Collapse-Pipe
AL(2) £ 1250 Lateral
ApL(2) > 1250 Joint/Collapse-Pipe
ArL@) £ 1150 Collapse-Pipe
AL(2)> 1150 Joint
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where the threshold 7,,(2) is based on our criterion in equation (3.21) at a radius of 2

(mm), discriminating between class 0 (Clean) and 1 (Crack). That is, given that we have
chosen to maximize D;(r) - the separation of the class means normalized to the standard
deviations - the optimum threshold in discriminating classes i and j is the weighted mean

,) = o (r)u (r)y+o (r)u(r)
o,iryrar

(3.27)

Thus

O’rrm‘k (r) :urleun (l’) + arlmn (I') :L‘vnu'k (r) -

T, (1) =
O-('rm‘k (r) + O-rlmn (r)

150 (3.28)

The remaining thresholds are listed as part of classifier summary in Tables 3-3 and 3-4.
4. Experimental Results

We have applied the proposed approach to more than 500 underground pipe images.
Based on the experimental results. we conclude that the proposed method can segment
and classify pipe images effectively and accurately. Figures 3-11 and 3-12 illustrate the
proposed approach applied on sample of images by circular and horizontal structuring

elements, receptively.

The proposed morphological segmentation and classification algorithm will work very
well for underground pipe images containing one class of object only in a given frame. In
the real world problem, underground pipe images may contain cluttered objects as shown
in Figures 3-13(a) and 3-14(a). For segmentation and classification of such images, we
suggest a slightly different approach. The new approach is based on taking the difference
of image after each morphological opening and thresholding operations. Figures 3-13(c)
and 3-14(c) illustrates the procedure of taking difference of image after successive
opening operations to segment various objects present in the image. Once the objects are

segmented, then feature extraction and classification can be done.
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T .

(b) After morphological opening by circular structuring element of radius 2(mm)

(c) After morphological opening by circular structuring element of radius 7(mm)

(d) After morphological opening by circular structuring element of radius 57(mm)

(e) After morphological opening by circular structuring element of radius 71(mm)
Figure 3-11. Classification results by using circular structuring element: the original

images are opened by structuring element of different sizes as outlined in Table 1, and
finally binary images are obtained by global thresholding technique.
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(b) After morphological opening by horizontal structuring element of length 2(mm)

(c) After morphological opening by horizontal structuring element of length 47(mm)

(d) After morphological opening by horizontal structuring element of length 155(mm)

(e) After morphological opening by horizontal structuring element of radius 285(mm)

Figure 3-12. Classification results by using horizontal structuring element: the original
images are opened by structuring element of different sizes as outlined in Table 2, and
finally binary images are obtained by global thresholding technique.
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14 (a) Gray-Scale Image  14(b) Thresholded Images After Opening Operations 14(c) Classified Images

Figure 3-13. Classification results by using circular structuring element: the original
images are opened by structuring element of different sizes as outlined in Table 1, and
finally binary images are obtained by global thresholding technique.
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Figure 3-14. Classification results by using horizontal structuring element: the original
images are opened by structuring element of different sizes as outlined in Table 2, and
finally binary images are obtained by global thresholding technique.
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We may evaluate the performance of proposed segmentation and classification methods
by a confusion matrix indicating whether the classification tendency is reasonable or not.
On the confusion matrix, if we have a normal distributed matrix with few outliers.
centered on the diagonal, the classification can be said to be reasonable. Tables 3-5 and
3-6 show the agreement and disagreement between the expert classification and the

proposed classifier in terms of confusion matrix by using circular and horizontal

5. Conclusions

We have demonstrated a morphological approach to segment and classify images of
underground concrete pipes. We assume that an image consists of five types of objects,
namely the crack, hole, joints, laterals and surface collapse, and we estimate their sizes
based on the concept of gray-scale morphological opening operations. With this size
information, we provide a precise removal and classification of various objects present in
an underground pipe image. Experimental results demonstrate that the proposed approach
is effective for dealing with the underground pipe images with varying background

pattern and non-uniform illumination.

Morphological segmentation and classification approach can be used to distinguish
between laterals and joints, but it is difficult to classify defective joints and laterals from
the perfect one. Therefore, the segmented joints and laterals have to be further processed
to classified according to the severity of defects by using other shape or textural features,
like roundness, compactness, etc. Again, the cracks in pipe images are extracted and
classified well by the morphological segmentation approach, but the crack pixels are not
detected precisely. Once the laterals, joints and holes are segmented and classified from
the image then the crack detection filters, as described in [52], can be used for precise

detection of crack features.
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Table 3-5. Confusion matrix using the circular structuring element as classifier (Row-
Morphological classifier results and Column-Expert labeling)

Class %9:: OrackHote | Lateral CO':;:; Joints | Total Pe"’em:
1 2 3 4 5
T 4 0 0 0 T T % | &
2 1 0 141 0 0 g | 150 | o
3 | 0 0 a3 0 > | 50 | %
a2 | o 0 0 24 1T | 5 | %
5 | 0 0 0 50 | 50 | 100
Total | 49 T 78 | 65| 35
Overall Percentage Correct Classification - 96

Table 3-6. Confusion matrix using the horizontal structuring element as classifier (Row-
Morphological classifier results and Column-Expert labeling)

Class (';',Ile:: Crack/Hole | Lateral CoTl':;se Joints | Total Zi:;.::::
1 2 3 4 5
1 49- 0 0 0 1 50 98
2 0 141 ... 0 0 9 150 94
3 0 0 48 0 2 50 96
4 0 0 0 24 - - 1 25 96
5 0 0 0 50 ] 50 100
Total | 49 141 48 24 63 325
Overall Percentage Correct Classification - 96
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Chapter 4

4. Pipe Crack Detection

Segmentation aims at the separation of distresses (if any) from the image background.
Pixels, as a result of the segmentation process, are classified into two categories: healthy
pixels (background) and distress pixels (cracks). A binary image is subsequently
obtained, where crack pixels have the value 0 and background pixels have the value 1.
After segmentation, various operations can be performed on the binary image to
determine the type and extent of distresses. The quality of the segmentation is thus very
important: it may be difficult to classify the crack correctly in a poorly segmented image.
Furthermore the distress — even if it has been correctly classified - may be measured with

significant errors.

Given that we now have a segmented crack image (and have eliminated holes, joints,
laterals, and pipe collapse) obtained by morphological approach as discussed in Chapter
3, in this Chapter we now present the development of a statistical filter for detection of
cracks. We begin with an introduction in Section 4.1, followed by a development of the
proposed crack detection filter in Section 4.2. In Section 4.3, we then present
conventional techniques for detection of cracks. Experimental results and evaluation is

given in Section 4.4.
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4.1 Introduction

Many researchers have paid a great deal of attention to automated pavement cracking
detection/classification. Based on the assumption that the histogram of the pavement
containing cracking is bimodal (although it may not always be true), Li et al. [106]
proposed an algorithm for pavement cracking detection. A standard model was proposed
i0 represent pavement surfuce images toward a unified and automated acquisition of key
characteristics for improving data quality [66]. However, this model did not discuss how
to employ such a mode in crack detection/classification system. An approach to the
recognition of segmented pavement distress images was studied in Mohajeri and
Manning [127]. It uses directional filters to classify the cracks. The crack is longitudinal
if there is a high concentration of object pixels in a narrow interval of x (transverse)
coordinates, and it is transverse if there is a high count of object pixels in a narrow
interval of v (longitudinal) coordinates. However. it is difficult to get a segmented crack
image, and it is also not clear how to identify other crack types by analyzing these counts.
Another statistical approach [99] recognized the imperfections of segmentation that cause
difficulty in distinguishing pavement-cracking types, particularly between multiple and
mushroom cracks. In this method. the original image is enhanced by subtracting an
average of a few plain (nondistress) images from the same series to compensate for the
lighting variations. A crack is detected by assigning one out of four values to each pixel.

based on its probability of being an object pixel.

Usual edge detectors and thresholding techniques based on the difference between pixel
values are inefficient when applied to underground pipe images. In analyzing an
underground pipe scanned image, one needs to consider complications due to the inherent
noise in the scanning process, irregularly shaped cracks, as well as the wide range of pipe
background patterns. One of the major problems is detecting defects (especially cracks)
that are camouflaged in the background of corroded areas, debris, patches of repair work,
and areas of poorly illuminated conditions. The approach proposed in this thesis is based
on the statistical properties of pixel values in the neighborhood. The decision threshold

can be experimentally determined for a given probability of false alarm, as a function of
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shape and size of the processing neighborhood. For a better and finer detection, the crack
detection filter operates along the four usual directions over windows of increasing sizes.
The experimental performance is in good agreement with the manual detection of cracks.

The crack detection filter is finally compared with other conventional crack detectors.

4.2 Proposed Statistical Filters for Detection of Cracks

In the past 20 years, many approaches have been developed to deal with the detection of
linear features on optic [58.126] or radar images {155.159]. Most of them combine two
criteria: a local criterion evaluating the radiometry on some small neighborhood
surrounding a target pixel to discriminate lines from background, and a global criterion

introducing some large-scale knowledge about the structures to be detected.

Concerning the local criterion, most of the techniques used for pavement distress
detection in scanned images are based either on conventional edge or line detectors
[58,135]. These methods evaluate differences of averages. implying noisy results and
variable false-alarm rates [127]. In addition, local criteria are in many cases insufficient
for edge or line detection, and global constraints must be introduced [183]. For instance.
dynamic programming is used to minimize some global cost functions, as in the original
algorithm of Fishler [177] and its improvement [99]. Hough-transform-based approaches
have also been tested for the detection of parametric curves, such as straight lines or
circles [178]. Tracking methods are another possibility. They find the minimum cost path
in a graph by using some heuristics, for instance, an entropy criterion [53]. Energy
minimization curves, such as snakes, have been applied [126]. The Bayesian framework,
which is well adapted for taking some contextual knowledge into account, has been
widely used [170]. Regazzoni [147] defines a cooperative process between three levels of
a Bayesian network, allowing the introduction of local contextual knowledge as well as
more global information concerning straight line. Hellwich [76] uses a priori information

concerning line continuity expressed as neighborhood relations between pixels.

89



CHAPTER 4. PIPE CRACK DETECTION

We propose a two-step algorithm for detection of crack features in the segmented
underground pipe images. The first step is local and is used to extract crack features from
the segmented image, which are treated as crack segment candidates. A new local crack
detection filter based on the statistical properties of pixel values is developed in this

study. In the second global step, cleaning and linking operations obtain cracks.

4.2.1 Crack Detection Filters

The algorithm begins by performing a local detection of cracks. This is based on the
fusion of the results from two crack detection filters, both taking the statistical properties
of image into account. The first crack detector D1 is based on a ratio edge detector: An
in-depth statistical study of its behavior is given in Lopes et al. [111]. The second crack
detector D2, which has emerged from this research, uses the operators of Yakimovsky
(195]. Responses from both the first and second detectors are merged to obtain a unique
response as well as an associated direction in each pixel. The detection results are post-
processed te provide candidate segments. Figure 4-1 shows the different steps of the

proposed crack detection algorithms.

Crack Detector D1

The ratio crack detector is defined as the ratio of the average of pixel values of two
nonoverlapping neighborhoods on opposite side of the points. Let index 1 denote the
central region (cracks) and indices 2 and 3 both lateral regions (background), as shown in

Figure 4-2. The amplitude of pixel x is noted A,, so that the empirical mean y, of a given
. . . : 1
region i having n, pixels isy, =| — Z‘E‘ A,. The response of the edge detector
n, <

between region i and j is defined as r, .
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Original Color Image

I

Gray-scale conversion

Crack Detection Filters Crack Detection Filters Crack Detection Filters
(Small Size Window) (Medium Size Window) (Large Size Window)
Check cracks in

different directions
(0°, 45°, 90°, 135%)

'

Fusion of responses

'

Detected crack segments

I

Cleaning and linking operations

I

Detected Cracks

Figure 4-1. Diagram showing the different steps of the proposed method for crack
detection in the underground pipe images.
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Region 2 Region 1 Region 3

Minor Crack Major Crack

Figure 4-2. Crack model used by the two crack detectors D1 and D2.

(u/ U ,
C,:l—mxn(/j./#‘) +.1)

and the response to D1 as

r=min(r,.r;), *2)

the minimum response of a ratio crack detector on both sides of the crack structure. With
detector D1, a pixel is considered as belonging to a crack when its response r is large
enough, i.e., higher than some a priori chosen threshold r,,;,,. The decision threshold
can be deduced from the statistical behavior of the detector. As usual, the detection
probability (Py) increases with a decreasing decision threshold (Figure 4-3(a)), but at the
same time, the false-alarm (Pg) rate increases (Figure 4-3(b)). Therefore, rux may be

deduced as a compromise between a Py, and a minimum Py rate.
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Figure 4-3(a). Probability of detection versus the minimum threshold value of crack
detection filter
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Figure 4-3(a). Probability of false-alarm versus the minimum threshold value of crack
detection filter
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Crack Detector D2

In practice, the ratio crack detector D1 is accurate, but only the mean comparison
component behaves well when the operator is not centered on an edge interface.
Therefore, we decided to use the variance comparison also as suggested by Yakimovsky
[195]. The operators of Yakimovsky assume that cracks are interfaces between sets of
points, each set being described by a normal distribution. The mathematics for

distribution parameter comparison is used to form a function of crack strength in an area.
F \nen
o;)
§= —(7,— (+.3)
(i)' (e3)
where,
o, = Variance for region 1, 2, and 3 taken together.

_ [mo‘,: +110';: + ’"(#0 —H ): +”(4“0 ) ):J
- (m +n)

M, =Mean for region 1. 2, and 3 taken together.

_ (mu, +nu,)
- m+n)

m.jt,,07 =Samples, mean, variance for region 1.
n,i,,0; =Samples, mean, variance for region 2 and 3.

A pixel is considered as belonging to a crack when its response s is large enough, i.e.,

higher than some a priori chosen threshold s_, .

4.2.2 Fusion of Responses

In the previous sub-sections we have addressed the problem of detection of cracks in the
segmented pipe images, using two detectors D1 and D2. Since there does not appear to
exist a single detector suitable for reliable detection of cracks, we decided not to choose
one of them, but to merge information from both D1 and D2 in each direction by using an

associative symmetrical sum o(x, ), as defined in [21].
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o(x, _V):*xy__‘ withx, v € [0.1] 4.4)
I-x=-v+2xv

This fusion operator has been chosen because of its indulgent disjunctive behavior for
high values (x > 0.5, y > 0.5), its severe conjunctive behavior for small values (x < 0.5, v
< 0.5). and its adaptive behavior. depending on x and v values in the other cases. Since
the behavior of this operator depends on the position of the responses compared to the
value 0.5, we first centered both D1 and D2 responses before applying the fusion, so that
the decision threshold corresponds to 0.5. In order to do so, and constraining both r and s
to lie in the interval [0, 1], we replace them by max[0. min(l, x+0.5-Xmia)], Where x equals

r and s, respectively. As a result, the decision threshold applied on o(r,s)is

automatically the central value 0.5 of interval [0,1].

To detect most of the cracks, the operators must be applied in all the possible directions.
If the operator is applied separately for each direction, the same threshold must be used
for all the considered directions. In this study, four directions (O°, 45°, 90°, l35°) are
considered for the detection of cracks. The response image is thresholded with a
threshold of 0.5, resulting in a binary image. The thresholded response from the crack
detector is shown in Figure 4-4. As seen in Figure 4-4 the image contained many
disjointed crack segments and noise. A necessary step for all detection methods using
local detectors is the closing stage: starting from local information, a more global one

must be deduced by a linking process.

4.2.3 Cleaning and Linking Operations

No detection methods are perfect, in the sense that it finds all the crack pixels and only
crack pixels. Usually, unwanted noise is present in the form of short, erratic edges, and
some crack pieces remain disconnected from other pieces by gaps. Both these problems

are addressed in the cleaning and linking process.
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Figure 4-4. Crack detection filters response before cleaning and linking operations

96



CHAPTER 4. PIPE CRACK DETECTION

As with the problem of crack detection, linking methods are either local or global. Local
methods deal with a neighborhood around the pixel to be linked, analyzing the
characteristics of these neighboring pixels to determine where the links should be. The
simplest of local schemes focus on a small neighborhood and use information from
earlier edge detection in order to find pixels with similar characteristics. As the size of the
neighborhoods gets larger, searches are introduced based on a variety of path metrics
[49]. Fuzzy reasoning has also been used to deduce which pixels in the search area should
be linked together [104]. Global methods look at the overall pattern of cracks and try to
describe the features using a few variables. Examples of global methods include
modeling the crack image as a potential function [198] and using Hough transform [136],

Markov random fields [59], and least-square-error curve fitting [141].

The linking procedure that follows in this study is a local method and specifically focuses
on linking pixels that represent cracks. Cracks are usually long and relatively thin. These
facts help determine which neighborhoods are searched for points to link together. The
basic idea revolves around finding the direction in which the crack is headed and using
this to outline a search area. A hierarchical clustering technique [47] is used for linking
small gaps and removing unwanted noise in the form of short pieces. Clustering is a
complex process that depends on several different kinds of information. Two important
Kinds are proximity and similarity [47]. A measure of similarity between clusters must be
defined in order to have a specific algorithm. Nearest-neighbor [47] similarity measure is
used because it has the characteristic of a chaining effect, which is well suited to extract
string-like clusters. The first step in the linking process is to establish which crack points
are end points and the direction in which the crack is heading. Once this is established,
the crack clusters are linked if the distances between their end points are less than 15
pixels. Because many different cracks are often connected together, steps are taken to
connect end points of each cluster only once. In this manner, links are made that fill small
gaps in crack-segments. This also allows some of the noise to be eliminated by deleting
isolated clusters with a total of 10 or fewer pixels. The filter response after cleaning and

linking operations is shown in Figure 4-5.
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Figure 4-5. Filters response after cleaning and linking operations
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The linking method can be further improved if special cases are accounted for. Linking
only takes place between end points, ignoring the fact that other crack points may provide
a better starting point for linking. The links are made with straight lines, neglecting the
possibility that the crack may be in the process of curving. Overall, some crack gaps may
be missed and some false links may be made. Nonetheless, provided that enough cracks
are kept in the crack detection stage, this linking process will fill most of the gaps that

should be filled and remove some of the unwanted noise.

4.2.4 Performance of the Crack Detectors

The evaluation of the crack detection filters is carried out by comparing the automatically
detected cracks with manually plotted cracks. A set of connected pixels belonging to the
cracks is manually extracted by developing software. The original crack image and the
manually plotted reference map by the software are shown in Figure 4-6. The evaluation
of proposed crack filters is processed by matching the extracted crack pixels to the
reference map. There are various ways to perform matching of two images. The so-called
‘buffer-method’ [120], is a simple matching procedure in which a buffer of constant
predefined width is constructed around the crack data in two steps. In the first step a
buffer of constant width is constructed around the reference crack data by using
morphological dilation operation by using structuring element of size 5x5, as shown in
Figure 4-7(a). The parts of the extracted data within the buffer are considered as matched
and is denoted as frue positive. The unmatched extracted data is denoted as false positive.
In the second step matching is performed the other way round. The buffer of same size is
now constructed around the extracted crack data, as shown in Figure 4-7(b), and the part
of the reference data lying in the buffer is considered as matched. The unmatched
reference data is denoted as false negative. Figure 4-8 illustrates the matching procedure
for obtaining true positive and false positive pixels. In order to quantitatively assess the

filter effects, we use notation designed as follows.
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Figure 4-6. Software for extraction of crack reference map for evaluation of the proposed
crack detection filters, original crack image is shown on the left side of the window and
the manually plotted crack reference map on the right window.

100



CHAPTER 4. PIPE CRACK DETECTION

Extracted Crack

True Positive False Positive

Buffer Width

Reference Crack

Figure 4-7(a). Matched Extracted

Extracted Crack

R
N L e e Buffer Width
- “ s ¢

Matched Reference False Negative

Reference Crack

Figure 4-7(b). Matched Reference

Figure 4-7. Matching principle for the evaluation of crack detector responses.
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Let Cr be the set of pixels detected as crack pixels in the image filtered by filter f. A set
of connected pixels belonging to the crack is extracted manually by the experts. Let C,
denote this set of true crack pixels. Let §; be the number of pixels belonging to C; N
d(Cy). Sy is the number of good crack pixels detected by the filter, and d() denotes the
morphological dilation by some structuring element. The matched extracted data is
denoted as true positive, emphasizing the fact that the extraction algorithm has indeed
found a set of cracks and is denoted as Ss belonging to C, N d(C). Let S, be the bad
points from the filter, which is called false positive and is defined as Cy N d(C,). Similarly
a set of true points Sy which were missed by the filter is defined as C, N d(C)) and is
called false negative. Now, the probability of detection (P,) and probability of false-alarm

(Pja) can be defined as follows.

Number of detected crack pixels -
= 4.5)
Number of true crack pixels

- Number of false —alarm pixels 4.6)

“ " Number of non-crack pixels

The performance of the crack detectors must be discussed as a function of the size of
neighborhoods, and the decision thresholds. In order to quantitatively assess the different
size and threshold of filter effects, we use operational curves designed as follows. To
evaluate the performance of detector for different window sizes and threshold values,
probability of detection (Py) is plotted against probability of false-alarm (Pg). To optimise
the widow size (Figure 4-2), we performed experiments by varying the shape and size of
the windows (L=3,5,79,11,13,15, m=3,5,7,9,11, and n=2,3,4,5,6,7). In each case the
threshold values are varied from 0 to 0.3 in the increments of 0.025. In practice, it is
found that with a large neighbourhood, the detection operator is less sensitive to the
noise. Unfortunately, the small cracks, which may be detected by small neighbourhoods,
may be missed. Therefore, in order to detect most cracks the detectors must operate over

neighbourhoods of different sizes. Three sizes of crack detection filters are selected based
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on empirical receiver operating characteristic (ROC) curves [104] for detecting minor,

major and multiple cracks.

The ROC curve [104] is plotted as a function of P4 and Py, (as shown in Figures 4-3(a)
and 4-3(b) for different neighbourhood sizes. ROC curves from ten images in each class
(i.e., minor, major, and multiple cracks) are aggregated into one by averaging the points
from individual ROC curves at a set of points on the (percent of false-alarm) axis. The
ROC curve for a given crack detector summarizes its range of tradeoffs between true
positive and false positive crack pixels, as determined by comparing the detected crack
pixels to the specified ground truth. Given a low Py, in this study Py, is selected as 1% as
suggested by the municipal engineers, the corresponding window size is selected which
gives the maximum Py value. The minimum false-alarm rate (0.01), corresponding to the
most probable crack detection, is assigned to the considered threshold values 7., and .
This process is repeated for three different classes of cracks, i.e., which correspond to
minor, major and multiple cracks. Therefore, three optimal sizes of windows and the
corresponding threshold values r,,, and s,..., as shown in Table 4-1, are used for detection

of cracks in underground pipe images.

Table 4-1. Optimal window size for central and adjacent regions with threshold values for
crack detection filters

Window | Window Window | Threshold | Threshold
size for size for size for valuesfor | valuesfor
adjacent central adjacent | first crack |second crack
regon[2] | region[1] | region[3] | detector D1 | detector D2

Filter sze

1 2 3 4 5
Small 5x3 52 8x3 0.05 0.15
Medium 7x5 7x3 75 0.1 025
Large 11xX7 11x5 11x7 0.175 0.35
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4.3 Conventional Techniques for Detection of Cracks

To study the performance of proposed crack detection filters and to compare it with the
performance of other conventional detection techniques, we have used Canny’s edge
detector [26] and Otsu’s thresholding [133] technique to extract crack features. The
Canny operator is used because it can perform very well when one is trying to detect
edges due to intensity change. It is known for emphasizing weak edges and vet
suppressing edge output due to noise. Otsu’s thresholding method is selected for
extraction of cracks because it is non-parametric, unsupervised, and automatic. The

following sub-sections will briefly discuss the Canny’s and Otsu’s techniques.

4.3.1 Extraction of Cracks by Canny’s Edge Detection

Edge-detection techniques segment objects by outlining their boundaries using
information on gray-scale discontinuity. This step, however, seldom produces connected
object edges due to noise and other factors. Thus, edge linking and other boundary
detection methods usually follow to transform the set of edge pixels obtained into a
meaningful set of object boundaries. The Canny edge detector [26] uses linear filtering
with a Gaussian kemel to smooth the noise in the image. Next, the edge strength and
direction are calculated for every pixel in the smoothed image. The Canny operator does
this by differentiating the image in the horizontal and vertical directions, and then
computes the gradient magnitude as the root sum of squares of the derivatives. The
arctangent of the ratio of the derivatives is used to compute the gradient direction. The
next step is called non-maximal suppression. In this process, the edge strength of each
candidate edge pixel is set to zero if its edge strength is not larger than the edge strength
of the two adjacent pixels in the gradient direction. The pixels that survive the non-
maximal suppression thinning process are labeled as candidate edge pixels. An adaptive
thresholding method is then applied on the thinned edge magnitude image to obtain the

final edge map.
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4.3.2 Extraction of Cracks by Otsu’s Thresholding Technique

The Otsu method [133] is an automated and unsupervised method of thresholding using
information on the gray-level histogram. A discriminant criterion between the two classes
of pixels is computed for each possible threshold T the optimal threshold is that gray-
level where this measure is maximized. It has the advantages that it is simple and easy to
implement and the threshold thus selected is not based on the differentiation (a local
property) but rather on the integration (a global property) of the histogram. Therefore, as

a result, the criterion measure is always unimodal and stable.

The brief summary of this threshold algorithm is given here. Let the pixels of the image
be represented by V gray levels {0, I, 2..... V-1}. The number of pixels in level v is
denoted by n, and thus the total number of pixels is N = ng+n;+na+...+n,.;. To simplify,

the gray level histogram is normalized and regarded as a probability distribution function:

v

V-t
p=lc p>g Y=l .7
N =

Suppose we divide the pixels into two classes Cy and C; (background and object) by a
threshold value at k; C, denotes pixels with levels [0, I..... k] and C, denotes pixels with
levels [k+1...., V-1]. The probabilities of class occurrences w and class mean levels y for

both classes are given by:

W, = Z P and Uy = Lals (4.8)
v=0 wk

w=l-w, and = Er — A, (4.9)

l-w,

where
k k v-i

M =D VR @=3 P py =Y VP,
v=0 v=0 v=0

To measure the “goodness” of the threshold, a criterion measure is introduced by Otsu:

X
-9

,
o7

n 4.10)
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where

05 =W, (U — 47 )* +@, (4, — u;)* is the between —class variance
i ‘/'-l hi
o; = Z (v—-u;) P, is thetotal variance
v=0

We search for the optimal threshold T°, which maximizes 7, or equivalently maximizes
03", since o7’ is independent of T. After finding 7", we perform the global thresholding to

obtain the final binary image.

4.4 Evaluations and Experimental Results

We illustrate the proposed method on real underground pipe images showing the
potential of the proposed method and the difficulties remaining to be solved. External
evaluation of the obtained results is of major importance for the relevance of any
automatic system for practical applications. External evaluation needs some kind of
reference data and compares them to the automatically obtained results. In this thesis we
deal with the external evaluation of automatic crack extraction algorithms by comparison

with manually plotted cracks used as reference data.

4.4.1 Quality Measures

The quality measures for crack extraction are intended to compare the results of different
crack detection techniques, rather than to evaluate the extraction and the matching results
in an absolute way as discussed in the sub-section 4.2.4. The definitions of the quality

measures are presented in the following.

*  Completeness
Completeness = length of matched reference / length of reference
S
S;+S,
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Completeness € [0,1]
The completeness is the percentage of the reference data that is explained by the
extracted data, i.e., the percentage of the reference network that lies within the buffer
around the extracted data. The optimum value for the completeness is 1.

s Correctness

Correctness = length of matched extraction / length of extraction
-_S
S, +S,
Correcmess € [0.1]

The correctness represents the percentage of correctly extracted crack data, i.e., the
percentage of the extracted data that lies within the buffer around the reference network.
The optimum value for he completeness is 1.
= Quality
Quality = length of matched extraction / (length of extraction + length of
unmatched extraction)
St
S  + S+ S,
Quality € [0,1]
The quality is a more general measure of the final result combining completeness and
correctness into a single measure. The optimum value for quality is 1.
Quality = completeness * correctness | {completeness — (completeness *
correctness + correctness)}
* Redundancy
Redundancy = (length of matched extraction - length of matched reference) /
length of matched extraction
5 -5
-_Sl
Redundancy € [-o0, +0]
The redundancy represents the percentage to which the correct (matched) extraction is

redundant, i.e., it overlaps itself. The optimum value for the redundancy is 0.
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4.4.2 Experimental Results

We have tested the proposed crack detection filter by applying it to a varety of
segmented underground pipe crack images and compared the results with those obtained
by using the Canny’s edge detection and the Otsu’s thresholding technique. Examples of
the application of the proposed approach, Canny’s edge detection method, and Otsu’s
thresholding technique are shown in Figure 4-9. 4-10. and 4-11. and the results of quality

measures are summarized in Tables 4-2, 4-3, and 4-4.

It can be observed that the proposed filters perform better than Canny’s method and
Otsu’s technique for detection of various kinds of cracks in underground pipe images.
The second and third image in Figure 4-10(a) are part of Toronto sewer pipeline system,
showing some minor cracks and major crack in the pipe surface, respectively. In this
case, the crack detection step performs quite well [Figure 4-10(c)] detecting most of the
minor and major crack structures in the images, while missing only the micro-cracks in
the second image that may be there at the time of manufacturing the pipe, and experts in
the pipe industry feel that this kind of micro-cracks do not cause any structural problem.
The fourth scanned image [Figure 4-10(a)] is from the city of Boston. This image has
dark background pipe surface with multiple cracks. In this case, the crack detection step
performed well, but results are little noisy with few false alarms. The cleaning and
linking operations shown to be a powerful method, which is able to fill gaps between the
detected segments providing a map of the crack pipe surface, while suppressing most of
the false-alarm detection [Figure 4-10(c)]. In fact, the results are close to those that could
be obtained by a trained human operator. The last image in Figure 4-10(a) is from the city
of Los Angeles. This image has a combination of many minor and major cracks
(mushroom cracks) with patches in the background. In this case, the crack detection step
did not perform very well, resulting in noise with many false alarm responses. The
cleaning and linking operations are not very successful in this case because of the nature
of the cracks. Performance evaluation of such kinds of cracks is not easy because it is

difficult even for human operators to track down such cracks.
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Original Images Truth Images Filter Response

Figure 4-9. Crack detection filters response after cleaning and linking operations
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Original Images Truth Images Filter Response

Figure 4-10. Otsu’s method response after cleaning and linking operations
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Table 4-2. Quality measures for four different types of crack in the underground pipe
images for the proposed crack detection filters.

Class Minor Major | Muitiple |Mushroom
Cracks | Cracks | Cracks | Cracks
Completeness 0.9 0.85 0.8 0.77
Correctness .55 0.98 0.94 0.83
Quality 0.89 0.8 | 076 0.73
Redundancy 0 -0.01 0 0.02

Table 4-3. Quality measures for four different types of crack in the underground pipe
images for Otsu’s thresholding technique.

Class Minor Major | Multiple |Mushroom
Cracks | Cracks | Cracks | Cracks
Completeness 0.35 0.99 0.96 0.27
Correctness 0.52 0.29 0.41 0.65
Quality 0.37 0.29 0.4 0.25
Redundancy 0.24 -1.45 0.54 0.091

Table 4-4. Quality measures for four different types of crack in the underground pipe
images for Canny’s thresholding technique.

Class Minor Major | Multiple |Mushroom
Cracks | Cracks | Cracks | Cracks

Completeness 0.57 0.64 0.99 0.96

Correctness 0.15 0.06 0.37 0.35

Quality 0.14 0.06 0.38 0.36

Redundancy 1.41 1.72 -0.25 -0.31
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4.5 Conclusions

The crack detection filters proposed in this Chapter can be simply divided into three
steps. In the first step, the crack detection filters D1 and D2 are used to extract cracks by
taking into account the statistical properties of pixels within a small neighborhood. In the
second step, the responses from both the detectors are merged to obtain a unique response
as well as an associated direction in each pixel. In the third step, the detection results are

post-processed by cleaning and linking operations to provide crack segments.

In this chapter a methodology for the evaluation of automatic crack detection filters based
on the comparison to manually plotted reference data is aiso presented. The proposed
evaluation scheme adequately captures the characteristics of the individual detection
results and can thus serve as a basis for their comparison. Depending on the application at
hand, some of the quality measures such as completeness in an automated environment

may be more relevant than others.

Comparing the proposed crack detection filters and the conventional detection techniques
(i.e.. Canny’s and Otsu's), the improved experimental results have been achieved by the
proposed statistical filters. The crack filters processing along four directions over
windows of increasing size and followed by cleaning and linking operations, can detect
minor cracks (with small windows) as well as major cracks (with larger windows). The
overall performance of proposed crack detection filters is found to perform well for

underground pipe images with minor, major, multiple, and mushroom cracks.
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Chapter 5

5. Feature Selection and Classification

This chapter proposes a neuro-fuzzy classifier that combines neural networks and
concepts of fuzzy logic for the classification of objects by extracting features in
previously segmented underground pipe images. A comparative evaluation of the K-NN,
fuzzy K-NN, conventional backpropagation network, and proposed neuro-fuzzy
classifiers is carried out. The theoretical background of all four classifiers is presented
and their relative advantages are discussed. All the classifiers are trained and tested by
extracting suitable features from the segmented pipe images. After the introduction,
Section 5.2 demonstrates the selection of various features for classification of pipe
objects. Section 5.3 deals with the development of statistical and neural classifier models.
Section 5.4 discusses the results obtained by various classifiers, and conclusions are

presented in Section §.5.

5.1 Introduction

Feature extraction and classification of objects is an important area of research and of

practical applications in a variety of fields, including pattern recognition and artificial
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intelligence, statistics, cognitive psychology, vision analysis, and medicine
[46,47,61,82,150,172,186,192]. Over the last twenty-five years, extensive research has
taken place in the development of efficient and reliable methods for the selection of
features in the design of pattern classifiers, where the features constitute the inputs to the
classifier. The quality of this design depends on the relevancy, discriminatory power and
ease of computation of various features. Another important issue in object classification
is the choice of an appropriate classifier. There are two tvpes of classifiers: traditional
classifiers (i.e. linear discriminant, maximum likelihood, k-nearest neighbour, etc.), and
the neural network classifiers (i.e. backpropagation, self-organizing map, adaptive

resonance theory, etc.).

Many researchers have paid a great deal of attention to automated pavement cracking
classification [33,34]. Chou et al. [37] employed a fuzzy filtering image enhancement,
fuzzy thresholding based on the maximum fuzzy entropies. and classification through a
neural network trained with feature vectors as inputs. Automated real-time pavement
distress detection using fuzzy logic and neural networks was studied [32] using fuzzy
homogeneity for image enhancement and feature extraction. A methodology for
automated pavement crack detection [94] demonstrated the potential of using neural
network for classification and quantification of cracking on pavement, and it requires
further improvement of the image segmentation process. However, in practice, most of
the above approaches have been only partially successful and have been shown to
produce high false-alarm rates, probably because of an inadequate segmentation

algorithm.

In underground pipe defect analysis, the main objective is to accurately classify cracks,
holes, laterals, joints, and pipe collapse by type, severity, and extent of distress. To
achieve this objective, we propose a neuro-fuzzy classifier based on suitable features
extracted from segmented underground pipe images. The proposed algorithm employs a
fuzzy membership function and a projection neural network. The former absorbs

variation of feature values and the latter shows good learning efficiency.
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5.2 Feature Extraction

Feature extraction is an important stage for any pattern recognition task especially for
pipe defect classification, since pipe defects are highly variable and it is difficult to find
reliable and robust features. According to the study in [167], trained operators mainly
rely on five criteria in visual interpretation of images. These are intensity, texture, size,
shape, and organization. The intensity corresponds to the spectral features, which can
generally be extracted easily. Textural features are those characteristics such as
smoothness, fineness, and coarseness or certain pattern associated with an image [15].
They reflect the local spatial distribution property in a certain region. The spectral and
textural features are most widely used in automatic object classification. Other features
such as size, shape and organization information attribute to the large scale or global

spatial distribution.

Generally, two broad categories of object features are most commonly used in the
material/pavement classification field [94]: shape and textural features. The first class of
features, which plays a more important role for object classification, extracts the
information based on the geometric shape of the object. Some of the most commonly
used methods in this category include area, length, roundness, etc. The second category,
i.e., textural features, distinguish objects by using statistical measures based on gray-scale
co-occurrence matrix [67] and its variant, such as gray-scale difference vector, moment
invariants, and gray-scale difference matrix. The salient features of the data can also be
extracted through a mapping, such as Fourier transform, discrete cosine transform,
Karhunen-Loeve transform, or principal component method [85], from a higher

dimensional input space to a lower dimensional representation space.

Depending on the analyzed parameters or features of each object, the most suitable set of
features that represents the characteristics of each object in the underground pipe images
is selected. We have used information based on the geometric shape and size of the
objects present in the underground pipe images for feature extraction. The advantages of

the proposed extraction of geometrical features from the image are its capability to

117



CHAPTER 5. FEATURE SELECTION AND CLASSIFICATION

quantify distress features in terms of understanding parameters (area, lengths, roundness,
etc.) and its ability to classify the segmented image based on such quantities. These
features constitute the input parameters for the classifier, and are discussed briefly in the

following sub-sections.

5.2.1 Selection of Crack and Hole Features

In the present case for classification of severity of cracks and holes, if the attributes are
selected to be the major/minor axis length, and area, then the classifier can be trained for
classifying different objects based on their geometry. For example, if an object has a
width (minor axis length) of a few millimeters and its length (major axis length) is much
greater than its width, then the object can be classified as a crack. On the other hand, if
the ratio of major and minor is close to one and its minor axis length is a few centimeters,
then the object can be classified as a hole rather than a crack. We can also use the
information of four direction projections to classify the cracks. An image projection in a
direction is done by adding the pixels values along four directions: horizontal (0%,
vertical (90%). and two diagonals (45° and 135"). The idea of using image projections to
classify crack types is based on: (1) if it is a longitudinal crack, there is a peak in the
vertical projection; (2) if it is a transverse crack, there should be a peak in the horizontal
projection; (3) if the crack is diagonal, there is a peak in the diagonal direction; and (4) if
it is a mushroom crack, there are peaks in all four direction projections. The five features

selected for classification of the type of the crack and hole in the underground pipe image

are:
l. Area
2. Number of Objects
3. Major Axis Length
4. Minor Axis Length
5. Projection of pixels and then taking mean and variance in each of the four

projecied directions (0°, 45°, 90°, and 135°%)
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Each segmented crack/hole image is to be classified into one of the following seven

classes based on the extracted 12 feature vectors, which describes the existence and

orientation of crack segments and severity of holes present in the image:

L.

w9

= o v

5'2 ’

Transverse Crack
Longitudinal Crack
Diagonal Crack
Multiple Crack
Mushroom Crack
Minor Hole

Major Hole

Selection of Joint Features

To distinguish between different types of joints (i.e., perfect joint, eroded joint, and

misaligned joint). we have selected five features based on the shape and size of the

underground pipe joints. These features are:

L.

19

Ll o

D

Area

Number of objects

Elongation (ratio of major and minor axis length)

Extent (ratio of net area and bounding rectangle area)

Projection of pixels and then taking mean and variance in each of the horizontal

and vertical projected directions (00, and 900)

An image of a segmented joint is to be classified into one of the following three classes

based on the extracted eight feature vectors, which describes the severity of joint defects

present in the image:

L.

2

3.

Perfect Joint
Eroded Joint

Misaligned Joint
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5.2.3 Selection of Lateral Features

A major category of measurement parameters describes the shape of features. Since
underground pipe laterals are more or less circular in shape, therefore shape features can
be a key factor in being able to recognize or select different types of laterals (i.e., pertect

lateral, eroded lateral, and collapsed lateral).

There are wide varieties of shape descriptors available. Probably the most widely used
shape parameter is the *form-factor’ calculated as 47 Area / Perimeter’. The form-factor
is 1.0 for a perfect circle. Any other shape will have more perimeters for the same area.
and the form-factor describes this increase. The other shape parameter is ‘roundness’
which looks very much like the form-factor at first glance. It is calculated as 4 * Area/ &
* Lengthz. which again is just the formula for the area of a circle and gives a value of 1.0
for a perfect circle. Instead of the perimeter. roundness uses the length (longest chord) of
the feature. This makes it more sensitive to how elongated the feature is, rather than how
irregular its outline may be. Another set of shape parameters deal with how convex the
feature is. For example, the ‘aspect ratio’ of an object, which we can calculate as the ratio
of the measured maximum diameter to either the width or the minimum diameter. This is
dimensionless, of course, and expresses a quality of feature shape that ignores local
smoothness of surfaces, but provides a measure of how elongated the feature is. Based on
the shape parameters, we have selected five feature based on the shape and size of the
underground pipe joints. These features are:

1. Area

19

Number of Objects
Roundness

Form-factor

wo ok W

Aspect Ratio

An image with segmented lateral is to be classified into one of the following three classes
based on the extracted five feature vectors, which describes the severity of lateral defects

present in the image:
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I. Perfect Lateral
Eroded Lateral

19

W

Collapsed Lateral

5.3 Classification of Objects

Pattern recognition can be generally defined as the allocation of objects to classes so that
individual objects in one class are as similar as possible to each other and as different as
possible from objects in other classes. Considered as a pattern recognition problem, there
have been numerous techniques investigated for classification. Clearly, the more a priori
information that is known about the problem domain, the more the classification
algonithm can be made to reflect the actual situation. For example, if the a priori
probabilities and the state conditional densities of all classes are known, then Bayes
decision theory produces optimal results in the sense that it minimizes the expected
misclassification rate [47]. However, in many pattern recognition problems, the
classification of an input pattern is based on data where the respective sample sizes of
each class are small and possibly not representative of the actual probability distributions,
even if they are known. In these cases, many techniques rely on some notion of similarity
or distance in feature space. for instance, clustering and discriminant analysis [40]. Under
many circumstances, the K-nearest neighbour algorithm (K-NN) [40] is used to perform
the classification. One of the problems encountered in using the K-NN classifier is that
normally each of the sample vectors is considered equally important in the assignment of
the class label to the input vector. This frequently causes difficulty in those places where

the sample sets overlap.

Fuzzy sets were introduced by Zadeh in 1965 [196]. Since that time, researchers have
found numerous ways to utilize this theory to generalize existing techniques and to
develop new algorithms in pattern recognition and decision analysis [19,65,85,92]. In
[196] Bezdek suggests that interesting and useful algorithms could result from the

allocation of fuzzy class membership to the input vector, thus affording fuzzy decisions
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based on fuzzy labels. This work is concerned with incorporating fuzzy set methods into
the classical K-NN decision rule. In particular, a ‘fuzzy K-NN' algorithm has been
developed utilizing fuzzy class memberships of the sample sets and thus producing a

fuzzy classification rule.

Recently, there has been a great resurgence of research in neural network classifiers
[27.98.142.148.155]. New and improved neural network models have been proposed.
models that can be successfully trained to classify complex data. Neural networks models
have an advantage over the statistical methods in that they are distribution-free and no
prior knowledge is needed about the statistical distributions of the classes in the data
sources in order to apply these methods for classification. On the other hand, neural
network models can be very complex computationally, need many training samples to be
applied successfully, and their iterative training procedures usually are slow to converge.
In addition, neural network models have more difficulty than model-based statistical
methods in classifying patterns that are not identical to one or more of the training
patterns. The performance of the neural network models in classification is therefore
more dependent on having representative training samples. whereas the statistical

approaches need to have an appropriate model of each class.

Given the potential advantages of neural networks over statistical methods for
classification, the purpose of research in this chapter is to determine empirically how well
these methods perform as classifiers for classification of underground pipe objects. The
statistical and neural classifiers are evaluated by comparing their performance on the
classification of extracted feature vectors by the severity of distress present in the pipe
images. The data set used for the evaluation of the classifiers is generated from
previously segmented underground pipe images. The actual classification of each image
is determined by human visual observation (Ontario Pipeline Inspectors). Two data sets
are generated; one is used as a training-data set, and the other is used as a test-data set.
The training-data set is used to train each of the classifiers and the test-data set is used to
evaluate the performance of each classifier in terms of how accurately it is to reproduce

the actual image classifications in the test-data set.
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5.3.1 Proposed Neuro-Fuzzy Classifier

The benefits of the neural network is the generalization ability about the untrained
samples due to the massively parallel interconnections and the ease of implementation
simply by training with samples for any complicated rule or mapping problem. The utility
of fuzzy sets lies in their ability to model the uncertain or ambiguous data so often
encountered in real life. Therefore. to enable a system to take care of real life situations in
a manner more like humans, the concept of fuzzy sets has been incorporated into the
neural network. It is also important for the neural networks to have fast learning ability in
order to adapt to the new environment. Based on this consideration, a combination of two
neural networks classifiers are examined in this thesis. The conventional backpropagation
algorithm is improved by combining it with a restricted Coulomb energy network [148]

to develop a new neural network model called the projection neural network.

The Projection Neural Network

The standard backpropagation training algorithm [155.187], while successful for
problems of moderate size, suffers from slow training times, the potential to get stuck at
local minima, and the need for a large number of hidden nodes when applied to
complicated problems. However, in problems for which it does converge to a solution, it
offers the advantage of ensuring error minimization. Therefore, when solving a
classification problem, the network outputs will approach the Bayes conditional
probabilities, given a statistically representative set of training data. On the other hand,
there exist classification algorithms that train quickly but do not guarantee minimization
of the classification error. Examples of these are the hypersphere classifiers, such as the
restricted Coulomb energy network (RCE) [148], the models of adaptive resonance
theory (ART) [27], and the Kohonen type networks [98]. In this study, we have used a
projection network that combines the utility of both RCE [148] and backpropagation

[187] approaches.
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The classification algorithms that provide fast training do so by placing prototypes with
closed decision boundaries around training data points and then adjusting their positions
and/or sizes. As an example, a hypersphere classifier such as RCE places hyperspherical
prototypes around training data points and adjusts their radii. Radial basis function
networks can provide fast training as well as error minimization [128,140,142]. While
several methods of determining the size, position and amplitude of the radial basis
functions have been proposed they do not have the simplicity or computational efficiency
of backpropagation training [139]. In contrast, the projection network [189] provides a
means of implementing radial basis functions with a uniform approach to learning these
parameters: backpropagation training of the weights and thresholds of a feedforward
network [155]. This effectively leads to optimization of the prototypes’ locations, size
and amplitudes. Furthermore, both closed decision regions (hyperspheres or
hyperellipses) and open ones (such as hyperplanes) are accommodated in the same
network. Training of the network parameters may convert closed decisions regions to

open ones and vice versa in the process of minimizing the error.

It is this ability to form closed prototypes with a single hidden node that allows the
projection network to be initialized rapidly to a good starting point that is already close to
a desirable error minimum. Any of a number of algorithms can be used for this
initialization: Kohonen learning [98], RCE [148], and ART [27] are examples. Once the
network has been initialized in this manner, modified backpropagation training is used to
adjust the network weights and thresholds to ensure error minimization. Because the
network begins near a good solution, one avoids the long training time which standard
backpropagation would take to reach this point as well as the possibility of being stuck in

local minima that might prevent one from reaching this point.

The projection network has the added attraction of modularity: One network can be
trained to recognize inputs of a set of classes and another can be trained to recognize
inputs of other classes or different members of the same classes. Then, the two networks
can be combined into a single network. In general, some additional training after the

combination will be required to optimize the network performance, but there is no need
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to completely retrain the combined network, as would be generally required by
conventional backpropagation network. This modularity is possible primarily because
there is little or no interference between prototypes on the intermediate layer, particularly
between prototypes of opposite classes, so that the addition of more prototypes does not

necessarily destroy the signal to the output nodes.

The extension of a standard neural network to produce the projection network is a very
simple one. The neural network inputs are projected onto a hypersphere in one higher
dimension and the input and weight vectors are confined to lie on this hypersphere. A
single hidden level node is now capable of forming either an open or a closed region in
the original input space. This basic concept is not new. The need to normalize the input
vector and the weight vector so that their dot product is a measure of their closeness has
been recognized for a long time [98]. Telfer and Casasent [175] have used a projection
onto a cylindrical hyperbola for initialization of a network with no hidden layers. Saffrey
and Thornton [157] have applied stereographic projection to the Upstart algorithm. By
projecting the input vector onto a hypersphere in one higher dimension, one can create
prototype nodes with closed or open classification surfaces all within the framework of a
backpropagation trained feedforward neural network. In this way, one achieves rapid
prototype formation through initialization and subsequent optimization through
backpropagation training. Figure 5-1 shows the typical structure of projection neural

networks.

Classical models usually try to avoid vague, imprecise or uncertain informaticn, because
it s considered as having a negative influence in an inference process. Fuzzy systems
[196] on the other hand deliberately make use of this kind of information. This usually
leads to simpler, more suitable models, which are easier to handle and are more familiar
to human thinking. A fuzzy neural network is a neural network that uses fuzzy methods
to learn faster or to perform better. Neural networks have a learning capability and the
fuzzy concepts can absorb variability in feature values. The fuzzy concept can be

combined with neural networks in various ways.
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Output Layer —»

Hidden Layer —» Backpropagation Nodes

4— Projected Layer

RCE Nodes

Figure 5-1. The projection neural network architecture showing combination of reduced
Coulomb energy (RCE) network and backpropagation network.
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The Neuro-Fuzzy Network

In general, there are two kinds of combinations between neural networks and fuzzy
systems [110]. In the first approach neural network and fuzzy system work independently
of each other. The combination lies in the determination of certain parameters of a fuzzy
system by a neural network, or a neural network-leaming algorithm. This can be done
offline. or online during the use of the fuzzy system. The second kind of combination
defines a homogenous architecture, usually similar to the structure of a neural network.
This can be done by interpreting a fuzzy system as a special kind of neural network, or by
implementing a fuzzy system using neural network. Besides these models, there are
approaches in which a neural network is used as a pre-processor or as a post-processor to
a fuzzy system. Such combinations do not optimize a fuzzy system, but only aim to
improve the performance of the combined system. Learning takes place in the neural
network only; the fuzzy remains unchanged [110]. In this case, the improvement of
neural network learning is the main intention. In this study, we apply the fuzzy concept
simply in converting feature values into fuzzified data. which are input and output to the

projection neural network algorithm.

Input Pattern Representation in Linguistic Form

In the proposed neuro-fuzzy algorithm, we use the fuzzy data as input to neural networks.
Sometimes, variation of feature values is large, and then it is difficult to classify objects
correctly based on these feature values. To solve this problem, we first convert each
object feature value into three fuzzy data [135], and then learning is performed with these
fuzzy data using the projection network. Finally, we classify objects using the proposed

neuro-fuzzy algorithm..

There are several types of membership functions in representing fuzzy phenomena {196].
The proposed object classification algorithms are simulated using triangular, trapezoidal,
and Gaussian membership functions. To convert normalized features into fuzzy data, we

determine the MAX and MIN values that are the maximum and minimum feature values
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for entire dataset, respectively. As shown in Figure 5-2 we generate three membership
functions denoted by ‘S’ (small), ‘M’ (medium), and ‘L’ (large). Note that these
membership functions are specified by MIN and MAX, as shown in Figure 5-2. Then we
compute three fuzzy data for each feature value and use these data as the input data to
neural networks. In Figure 5-2 4, (x,), #,,(x,), and u, (x,)are three fuzzy data of an
input feature value (x,), corresponding to linguistic variables of ‘S’, ‘M’, and ‘L’,
respectively. In the underground pipc object classification mcthod using threc
membership functions (i.e., triangular, trapezoidal, and Gaussian), the extracted features

are represented by means of linguistic variables specified by these membership functions.

The trapezoidal, triangular, and Gaussian membership function, as shown in Figures 5-2,
5-3, and 5-4, respectively, are located at the average value of features of the same image,
and have a maximum value of one over the limited range that is specified by the standard
deviation of the feature value. To generate a linguistic variable we first compute the
average and standard deviation of the feature values of the image. Then we uniformly
divide the interval between MIN and MAX into several subintervals, where MIN and MAX
represents the minimum and maximum of average values of the specific feature,
respectively. The membership function of each image is centered at the average value of
the features of the image. Variation of feature values for the same image is allowed by
employing the trapezoidal membership function, i.e. the width at the top of the

trapezoidal and Gaussian membership function is set to o,, where &, denotes the

standard deviation of the i feature value. Note that for input data greater (smaller) than
MAX (MIN) we clip the membership value to 1 (0). These membership function values
represent more than 500 images stored in a database for neural network training and
testing. The training scheme for the fuzzy input neural network with trapezoidal fuzzy

membership function is shown in Figure 5-5.



CHAPTER 5. FEATURE SELECTION AND CLASSIFICATION

Hemburship § unclion Value
o [+] o o -]
“ e v o

o
~

+ -»$

o

s ur 3 a T e v 20
Feature Vaius 1)

Figure 5-2. Linguistic representation of feature values by trapezoidal membership
function

NS
&4

34

MAsteishy tunclon Jaluss
“ . . « “

Feature Yeiue (83

Figure 5-3. Linguistic representation of feature values by triangular membership function

——

p——]

Mambership Funclion Valus

——-$

s [ a— w | s wes
Feature Vaiue (v}

Figure 5-4. Linguistic representation of feature values by Gaussian membership function



CHAPTER 5. FEATURE SELECTION AND CLASSIFICATION

Output

Min Feature Value x Lt[ax
P>

Figure 5-5. The neuro-fuzzy neural network architecture with fuzzy inputs
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Figure 5-6. The training for the neuro-fuzzy neural network with fuzzy outputs
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Output Class Representation in Linguistic Form

In this approach, the conventional neural network is manipulated only on the output layer
with the fuzzy desired output. In general, the neural network passes through two phases,
training and testing. During the training phase, supervised learning is used to assign the
output membership values ranging in [0,1] to the training input vectors. Each output from
the network may be assigned with a nonzero membership instead of choosing the single
node with the highest activation. It allows modeling of fuzzy data when the feature space
involves overlapping pattern classes, such that a pattern point may belong to more than
one class with a nonzero membership. During training, each error in membership
assignment is fed back and the connection weights of the network are appropriately
updated. The backpropagated error is computed with respect to each desired output,
which is 2 membership value denoting the degree of belongingness of the input vector to
a certain class. The testing phase in a fuzzy network is equivalent to the conventional

network.

In the case of an m-class problem with an n-dimensional feature space, let the n-

dimensional vectors O, and V, denote the mean and the standard deviation for j” input

feature respectively of the numerical training data for the k"class. The weighted

distance, Z,, of the training pattern vector ;’: from the k" class is defined as

Yy

F -0,
Z, = 2 2| fork=1I..m and j=1,...n, 3.1

1=l ky
where F, is the value of the j" input feature component of the i" pattern point. The

weight %, is used to take care of the variance of the classes so that a feature with
&

higher variance has less significance in characterizing a class. The membership of the

i" pattern to class C, is defined as follows:

Z, —min(Z,)

uk(g) = for k=1,...m. (5.2)

mlfu((Zl,E )— mkin(Z,.,‘ )

131



CHAPTER 5. FEATURE SELECTION AND CLASSIFICATION

Obviously uk(}-:: )lies in the interval [0,1]. Except for the fuzzy membership desired

values in the output layer, the training method and network structure is equivalent to the
conventional neural network classifier. The training scheme for fuzzy output neural

network is shown in Figure 5-6.
Fuzzy Input and Output Module and Neural Network Module

The concept of the proposed fuzzy input and output module and neural network module
is illustrated in Figure 5-7. The fuzzy ANN model has three modules: the fuzzy input
module, the neural network module, and the fuzzy output module. The neural network
module is a conventional feed-forward artificial neural network. A simple projection
network is used in this study. To increase the rate of convergence, a momentum term and
a modified backpropagation training rule are used. The input layer of this network
consists of 3/ nodes (because of the use of fuzzy sets to screen the / input feature
variables), and the output layer consists of C nodes (trained with fuzzy output C class
values). As shown in Figure 5-7, the input layer of this fuzzy ANN model is actually an
output of the input module. On the other hand, the output layer becomes an input to the
output module. The input and output modules. for pre-processing and post-processing
purposes, respectively, are designed to deal with the data of the ANN using fuzzy sets

theory.

5.3.2 Performance Comparison with Other Classifiers

To study the performance of the proposed neuro-fuzzy classifier and to compare its
performance with that of other statistical and neural classifiers, we have used K-NN (401,
fuzzy K-NN [95], and conventional backpropagation network classifiers. The theoretical

background of these classifiers is presented and their relative advantages are discussed.
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Figure 5-7. The proposed neuro-fuzzy neural network architecture with fuzzy inputs and
outputs to projection neural network
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The K-NN Algorithm

Many classification methods assume that the form of class-condition densities is known.
The popular maximum likelihood estimation [47] approach assumes multivariate
normality. The K-nearest neighbor (K-NN) [40] procedure is a nonparametric
classification procedure. This rule classifies a new feature vector y by assigning it the
label most frequently represented among the K-nearest of all training samples [40]. The
decision is made by determining the majority class represented in the set of K-nearest

neighbors of a pattern by examining the labels of each of the K neighbors. Randomization

is used for breaking ties. In practice, one chooses K=c+/n where ¢ is an appropriate

constant and n is the size of the training set. In the present study, c=1 is used.

The Fuzzy K-NN Algorithm

The fuzzy K-NN algorithm is considered one of the most accurate algorithms in pattern
recognition [95]. The classical (crisp) K-NN algorithm classification rule assigns an input
sample vector y, which is of unknown classification. to the class that is represented by a
majority amongst its K-nearest neighbors [47]. The K-nearest neighbors are chosen from
a labeled data sample (data of known classification). The fuzzy K-NN algorithm assigns
class membership to a sample observation based on the observation distance from its K-

nearest neighbors and their memberships [95].

If W={x, X3, ..., Xu} is the set of n labeled samples and u;; is the membership of the ;*
labeled data in the i class, then the fuzzy K-NN algorithm is simply described as follows
[95].

Begin

Input y, of unknown classification.

SetK, 1<K <n

Initialize i=1

Do Until (K-nearest neighbours found)
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Compute distance from y to x;

If ({<K)Then

Include x; in the set of K-nearest neighbors

Else if (x; is closer to ¥ than any previous nearest neighbour) Then
Delete farthest in the set of K-nearest neighbours
Include x; in the set of K-nearest neighbours

End If

Increment /

End Do Until

Initialize i =1

Do Until (y assigned membership in all classes)

s l

tm=1)

=

Compute 1, (yv)=
S 1

2
1=t v — (m=1)
=

Increment ¢
End Do Until
End

As shown in (5.3), the assigned memberships of observations are influenced by the class

memberships of the K-nearest neighbours. The memberships of the labeled sample can be

assigned in several ways such as using fuzzy cluster analysis or based on expert opinions.

The distance between observations can be represented by any distance measure such as

the Euclidean distance, defined as [19]

g
d.\i". = z(y\ —xn')z = (_V —.\").(y-x,)
v=l

(54)

where p = number of variables for observation i. With this distance, the variables are

given equal weights. The variable m in (5.3) defines how heavily the distance is weighted

when calculating each neighbour’s contribution to the membership value [19].
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The Conventional Backpropagation Network

Several neural network models can be used in pattern classification (both supervised and
unsupervised). For supervised pattern classification, the most commonly used ANN is the
feed-forward network trained using the back-propagation algorithm [155], which is
adopted in the present study. The backpropagation algorithm can be described in three

equations. First, weight connections are changed in each learning step (k) with

Awl?!

ik = 77(1)5[“-|.r[-"'l] + mAwb! (5.5)

[/ ij(k-1)

Second, for output nodes it holds that

O =(d,-o,)f,(I") (5.6)

and third, for the remaining nodes it holds that

Ol — g7l yOy=11, [s=1] <

OPJ =f,U, )Z‘)pk Wk 3.7
k

(51
J

[+]

where x y

= actual output of node j in layer s w,'' = weight of the connection between

node / at layer (s-/) and node j at laver (s): o’;}'zmeasure for the actual error of node j:
[5" = weighted sum of the inputs of node j in layer s: 7(r)= time-dependent learning rate:
fU) = ransfer function: /1 = momentum factor (between 0 and 1); and dj,oj: desired

and actual activity of node j (for output nodes only). The architecture of conventional

backpropagation network is shown in Figure 5-8.

Parameter values (i.e. the learning rate 7(f), momentum factor m, and the number of

hidden nodes /) are selected experimentally to be those that gave the best classification
accuracy. The input and output nodes are selected according to the feature vectors and
class of objects to be classified. Experimental results from all the above methods are

presented in the following section.
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5.4 Experimental Results and Evaluation

Five classifiers have been implemented to classify objects in the segmented underground
pipe images based on the extracted feature vectors. To allow for comparison between the
five classification methods, results are presented to show the difference in the magnitude
of classification accuracy compared to expert classification. The overall classification
accuracy percentage for each classifier is calculated by constructing a confusion matrix
between expert’s decision and classifier result. Table 5-1 shows the classification results
in terms of the confusion matrix for the proposed neuro-fuzzy algorithm with Gaussian

membership function and using crack/hole feature vectors.

In Table 5-2, we show the overall classification results of the fuzzy approach with
different membership functions. The overall classification accuracy for each classifier
and class is calculated in terms of the confusion matrix as discussed previously and
shown in Table 5-1. We can observe that the fuzzy input and output network with
Gaussian membership function has better classification rate. We have selected this

network as best performing neuro-fuzzy network for comparison with other classifiers.

Table 5-3 shows the results of comparison for five classification methods. In general.
both the ANN classifier and neuro-fuzzy classifier performed better and produced more
consistent results than the K-NN and fuzzy K-NN classifier. As shown from the
comparison of results, the overall performance of the proposed neuro-fuzzy model is
better than that of other classifiers. Although there is a slight improvement in
classification rate by using the projection network as compared to the conventional
backpropagation network. However, the projection network leamed much faster and
required fewer nodes in the hidden layer. Figure 5-9 shows the convergence

characteristics of the projection and backpropagation neural networks.
The results of both neural and neuro-fuzzy classifiers however are considered good. One
of the most important attributes of both classifiers is their ability to spot patterns in data

that classical pattern recognition systems may not be able to detect. Therefore,

137



CHAPTER 5. FEATURE SELECTION AND CLASSIFICATION
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Figure 5-8. The typical structure of backpropagation neural networks

Projection Network
---------- Backpropagation Network

Classification Error
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Figure 5-9. Comparison of convergence characteristics of the projection and
backpropagation neural networks
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Table 5-1. Confusion matrix for the proposed neuro-fuzzy classifier using a Gaussian
membership function for classification of crack/hole defects.

Class Trans.|Long. |Diag. [Mult. |[Mush.|Minor [Major

Crack j|Crack [Crack [Crack {Crack |Holes |Holes Total

1 2 3 4 5 6 7

Trans.
Crack 1 43 0 2 [¢] 0 0 0 35
Long.
Crack 2 0 33 1 1 0 o] Q 35
Diag.
Crack 3 1 1 18 0 0 0 0 20
M ulit.
Crack 4 [o] 0 0 58 2 0 0 60
Mush.
Crack S 0 [o] 0 2 13 [} 0 15
Minor
Holes 6 4] 0 [o] [o] 0 53 2 55
Major
Holes 7 4] 0 0 0 0 3 22 25
Total 255

Table 5-2. Classification accuracy by fuzzy neural network with different membership

functions.
Classifier | Fuzzy Input | Membership Function | Fuzzy Qutput [Classification Accuracy (%)
Crack/Hole | Joint | Lateral
1 Yes Triangular No 91 83.2 87.1
2 Yes 91.7 84.5 87.3
3 Trapezoidal No 92.3 86.2 88.2
4 Yes 93.2 87.5 88.7
] Gaussian No 92.9 87.7 89.9
6 Yes 94.1 88.2 91.8
7 No No Yes 90.3 82.8 86.8

Table 5-3. Comparison of the performance evaluation of the proposed neuro-fuzzy
classifier with that of four other classifiers

Classifier Classification Methods Classification Accuracy (%)
Crack/Hole Joint Lateral
1 K-NN 81 76.8 80.3
2 Fuzzy K-NN 84.6 79.3 82.9
3 Backpropagation Network 87.2 81.6 84.5
4 Projection Network 89.5 82.1 86
5 Neuro-Fuzzy Network 94.1 88.2 91.8
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both classifiers are recognized as ideal tools for dealing with environments that are highly
unstructured and that may involve incomplete or noisy data (such as underground pipe
images). For a large design data set, the performance of K-NN and fuzzy K-NN should
normally be good. However, there are two main drawbacks with these classifiers. It is
necessary to store and keep all the training data in computer memory. In addition, during
the classification process, each vector to be classified has to be compared to all the
vectors in the training data set for classification. This results in a verv computationally

intensive procedure, which is a significant disadvantage for real-time application.

5.5 Conclusions

In this Chapter, we proposed a neuro-fuzzy classifier that combines neural networks and
fuzzy concepts for the classification of objects in segmented underground pipe images.
Fuzzy sets are used in the input module as well as in the output module to “screen’ data
patterns before network training. With this technique. the proposed network can be
trained with greater efficiency. In the feature extraction step, we extract different features
of the object present in the segmented image based on the geometric shape and size.
These features values are then fuzzified and applied to the neuro-fuzzy network in the

classification step.

We show simulation results of the proposed neuro-fuzzy algorithm in comparison to the
K-NN method, Fuzzy K-NN method. conventional backpropagation algorithm, and
projection network. Simulation results show that the proposed neuro-fuzzy algorithm
using a combination of Gaussian membership functions and projection neural networks
gives better classification results than the other statistical and neural methods. The results
show the promise of the proposed fuzzy-neural network as a tool for classifying objects

in the segmented underground pipe images based on extracted feature vectors.
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Chapter 6

6. Integrated Pipeline Management

In Chapters 3, 4, and 5 we discussed the development of an automated pipeline inspection
system based on digital image processing and artificial intelligence methodologies. An
automated condition assessment capability motivates the synthesis of an automated
system with a robust predictive model for the management of underground pipelines.
This chapter lays the groundwork for development of an integrated pipeline management
system, and is organized as follows: Section 6.2 reviews pipeline network identification
and classification; Section 6.3 presents a development of pipeline condition rating

system; Section 6.4 details the construction of pipeline performance prediction and

rehabilitation models. Conclusions of this study are presented in Section 6.5.

6.1 Introduction

A systematic approach for the determination of deterioration of pipeline systems and an
integrated management system are necessary to fully understand the complete status of a
municipal underground pipeline system. A well-defined integrated pipeline management

system includes, but is not limited to, routine and systematic pipe structural and hydraulic
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condition assessments, the establishment of a standard condition rating system, the
development and updating of prediction models for pipeline performance, life-cycle cost
analysis, and the development of prioritization schemes for the selection of rehabilitation
options. An automated inspection system and a sound predictive model are key elements

in the management of underground pipelines.

This chapter discusses the major aspects of integrated management for pipeline systems,
namely, network identification, condition rating systems, condition prediction modeling,
and the use of optimization techniques for maximizing benefit/cost ratio over a planning
horizon. Figure 6-1 shows the major components of the proposed integrated pipeline

management system.

The proposed integrated pipeline management system provides guidelines in the
decision-making processes, because it uses optimization techniques to obtain minimum
cost of maintenance/rehabilitation strategies over the life cycle of pipe systems. The
current condition of pipes will be evaluated by the proposed automated system and the
Markovian model in this life-cycle approach will predict future conditions of the pipe
system. By taking into account future conditions as a consequence of present
rehabilitation action, the best alternative. as well as the priority and schedule of

rehabilitation, can be determined.

6.2 Pipeline Network Identification and Classification

The first step in setting up a pipeline management system is to ‘divide’ the pipeline
system into separate smaller networks so that each network can be stored in a single
database to provide efficient data entry and report generation. Some of the factors to
consider when identifying different networks are use (sanitary, storm, combined, water,
etc.), location/zone, and any other distinctive criteria (funding source, required condition,
etc.). An example of a smaller network for separate inspection and analysis in the city of
Waterloo’s sewer system is combined sewers of 91 ¢cm (36in.) diameter or smaller. The

characteristics of this network have been recorded in a database including its condition
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Pipeline Network Identification Pipeline Condition Rating
and Classification System

4 4

Automated Pipeline Condition Development of Prediction
Assessment System model for Pipeline System

l l

Present Condition of Pipeline Future Condition of Pipeline
System System

A Set of Practical Pipeline Maintenance and
Rehabilitation Alternatives

Development of Selection Procedures for
Maintenance and Rehabilitation Strategies based
on Cost/benefit Analysis

Development of Methodologies for Prioritization
Schemes to meet Budgetary Restraints

Figure 6-1. Framework for the Integrated Pipeline Management System
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assessment, which was based on the detection and classification of defects by a proposed
automated inspection system. Once the networks are identified, they are defined by “pipe
runs’ and ‘pipe segments.” The city of Waterloo refers to a “sewer run’ as a manageable
group of sewer segments sorted from an upstream manhole to the furthest downstream
manhole of the basin number. A ‘sewer segment’ is viewed as the smallest management
unit when considering the application and selection of rehabilitation strategies. Pipelines
are then classified into different categories to account for differences in material,
diameter. etc., and to account for changes in condition characteristics and deterioration

mechanisms.

6.3 Pipeline Condition Rating System

The goal of a condition rating system is to objectively rate, by means of a scoring system,
the current condition of the pipeline. In the field of pavement management, the Pavement
Condition Index (PCI) developed by the U. S. Army Corps of Engineers [121] has
received wide acceptance and has been formally adopted as standard procedure by many
highway agencies [88]. The PCI is a numerical index. ranging from O for a failed
pavement to 100 for a pavement in excellent condition. The degree of pavement
deterioration is a function of distress type. distress severity. and amount of density of
distress. Assigning one index that considers the three factors is difficult, so "deduct
values’ are introduced as a type of weighting factor to account for effects caused by each
combination of distress type, severity level, and distress density. Based on in-depth
knowledge of pavement behavior, input from many experienced pavement engineers,
field testing and evaluation of the procedure, and accurate descriptions of distress type,
severity levels and their corresponding deduct values were derived to develop a

composite distress index, namely, the PCI [88].

No such standard procedure has been developed for municipal pipeline systems. A key
reason could be a lack of linkages between the pipeline systems maintained and managed
by the different municipalities, unlike the manner of the management of highways by the

different states. While standard procedures for developing comprehensive municipal
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pipeline condition ratings (similar to PCI) do not exist, some rating systems have been
developed by certain municipalities in North America [2]. In the city of Toronto, the
sewer condition is rated based on general defect criteria including crack patterns
(hairline, transverse, longitudinal, or mushroom), joint conditions (eroded, or
misaligned), service lateral conditions (eroded, or collapsed), and structural defects
(sagging. collapsing, or crushed). For pipe surface defects the rating factors range from 0
to 9. Observance of a collapse pipe is rated 0. while intact pipe surface is rated 9, as
shown in Table 6-1. Similarly, for joints and laterals the rating factors range from 0 to 4.
as shown in Tables 6-2 and 6-3, respectively. No attempt has been made at this point to
combine the information from pipe inspection with any applicable internal factors of the
pipe (e.g., defective surface, joints. and lateral) and external factors (e.g., soil type. pipe

material, and impact factor) to adjust the pipe condition rating.

6.4 Performance Prediction and Rehabilitation Model

The collapse and distress of a pipe is the result of complex interactions of various
mechanisms that occur within and around a pipeline. Pipelines are prone to certain tvpes
of failures based on their type of material. physical design. age or functionality as well as
its external and internal environment. The impact of the deterioration of the pipeline
system depends upon its size, complexity, topography and service. A comprehensive
study performed by the Water Research Center (WRC) [2] concluded that the concept of
measuring the ‘rate of deterioration’ of municipal pipeline is unrealistic since
deterioration is more influenced by random events in a municipal pipe life span and
severe defects do not always lead immediately to collapse. However, while it may be
impossible to predict when a municipal pipe will collapse, it is feasible to estimate

whether a pipe has deteriorated sufficiently for collapse to be likely.

Assessment and deterioration models for pavements and bridges [1,25,87,191] have been
the primary focus for research in infrastructure systems. Prediction models currently used
for predicting the performance of infrastructure systems (in particular, pavement and

bridge systems) include straight-line extrapolation, regression techniques, and the

145



CHAPTER 6. INTEGRATED PIPELINE NETWORK MANAGEMENT

Table 6-1. Pipe surface condition index and structural condition matrix for underground
pipe surface deterioration

REINFORCED CONCRETE PIPE STRUCTURAL CONDITION MATRIX

Pipe
Surface
Condition
Index

Probability of pipe
surface condition going
from one state to
another after five years|
of inspection period

Final Condition

Intact Pipe Surface

Hairline Crack

Minor Crack

Multiple Crack

Mushroom Crack

Minor Fracture

Major Fracture

Minor Hole

Major Hole

Pipe Collapse
SUM OF PROBABILITY

Initial Condition

—

N

w

»

(3]

[« ]

Q = N W e 0 O N ® o

Intact Pipe Surface

—_

Hairline Crack

Minor Crack

Multiple Crack

Mushroom Crack

Minor Fracture

Major Fracture

Minor Hole

Major Hole
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Pipe Collapse
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o
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Table 6-2. Pipe joint condition index and structural condition matrix for development of
Markov prediction model for joint deterioration

REINFORCED CONCRETE PIPE STRUCTURAL CONDITION MATRIX

c - o
o -| 8| 8| % S
= £ S © o 2l B

. . S b m
Pipe |Probability of pipe joint| =5 S a a 3 gl <
Joint |[condition going from one g -] 15 % - 3| o
Condition|state to another after five ¢} a 3 . 3 et e
Index |years of inspection period = § § - é % ls
c| £| s| 3| & °| =
] = = 2 = S
L = @

Initial Condition 1 2 | 3| 4| s

4 Intact Pipe Joint 1
3 Minor Joint Defect 1
2 Multiple Joint Defect 1
1 Major Joint Defect 1
0 1

Joint Collapse

Table 6-3. Pipe lateral condition index and structural condition matrix for development of
Markov prediction model for lateral deterioration

= =| 8| = -
-— - 0 r—
Pipe |Probability of pipe joint| 5| 2| & Sl &) g 2
Lateral |condition going from one g T": [ 5 ® © 8
Condition|state to another after five| (3 2 3| s & % T
Index |years of inspection period -— s - ] < g| %
© 3 | =& & s/ ©
Sl E| S| E| & - =
L = 2| = 7
Initial Condition 1 2 | 3] 4|
4 Intact Pipe Lateral 1 1
3 Minor Lateral Defect 2 1
2 Multiple Lateral Defect 3 1
1 Major Lateral Defect 4 1
o Lateral Collapse 5 1
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probability based Markov model. Straight-line extrapolation tends to produce unrealistic
results, while regression techniques are valid only if the predictive variables can be found
that are related to condition deterioration [1]. This thesis has followed the philosophy of
previous researchers and discusses a management mode! similar to that used in the
management of pavements. A strategic maintenance and rehabilitation plan or program
that is based on projected need is required to ensure continuous and effective operation of
the entire pipeline system at the lowest cost. Life cycle management of the pipeline

network is necessary to obtain the maximum cost effective life span.

6.4.1 Probability based Markovian Prediction Model

Markovian models [154] provide a reliable mechanism for developing prediction models.
Markov chains can be employed to model stochastic processes. which have the distinct
property that probabilities involving how the process will evolve in the future depend
only on the present state of the process and so are independent of events in the past. The
model is restricted to Markov chains that have (1) a finite number of states: and (2)

stationary transition probabilities (i.e.. transition probabilities that do not change in time).

The Markov process imposes a rational structure on the deterioration model because it
explains the rate of deterioration as uncertain, and it also ensures that the projections
beyond the limits of data will continue to have a worsening condition pattern with time.
This model has been successfully used in other types of infrastructure deterioration
modeling. A Markov chain approach analogous to that which has been developed for
pavement deterioration modeling [2] can be applied to pipeline systems. To model the
manner in which a pipe deteriorates with time, it is necessary to establish a Markov
probability transition matrix. A pipe is modeled to begin its life in near perfect condition,
and to deteriorate as it is subjected to a sequence of duty cycles (time) r. A state vector
indicates the probability of a pipe section being in each pf pipe condition states in any
given year. Figure 6-2 shows the schematic of state, state vector, and duty cycle. The
transition matrix P is a square matrix, m x m, where m is the number of possible states.

Thus, if there are five categories in pipe conditions, then five possible states will be
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Figure 6-2. The schematic representation of state, state vector, and duty cycle

involved in the matrix of size 5x5. The components of P, namely p;;, are the probabilities
of being in state / at time O and transitioning to state j over a given period Ar. A time
increment, Ar, of 5 years is suitable because municipal pipe inspections should generally
be conducted every 5 years. If the assumption is accepted that the pipe condition will not
drop by more than one state in any 5-year period, then the condition will either stay in its
current state or move to the next lower state in 5-year period. Therefore, the one-step

transition matrix can be represented as follows:

—Pn p. O 0 0]
0 p» py 0 O
P=|0 0 py3 py O 6.1)
0 0 0 pu ps
i 0 0 0 0 1 ]

For each row of the transition matrix, 2/ p, =1. The value of 1 in the last row indicates

an ‘absorbing’ state corresponding to the fact that the pipe condition cannot move from
this state (the worst possible state) unless rehabilitation is performed. In this particular
transition matrix, the values of four unknown quantities (i.e., p11, p22, p33, and pyy) have to

be determined. The probability that the pipe is in state / at time ¢ and will be in state j
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after n periods is desired. The Chapman-Kolmogorov equations provide a method for
computing the n-step transition probabilities, and the n-step transition probability matrix
can be obtained by computing the ™ power of the one-step transition matrix [154]. Thus,
if the one-step transition matrix P corresponds to a 5 years time period, then the two-step
(10 year time period) transition matrix P’ is represented by

PO=p=pyp (6.2)

Besides the transition matrix P, the state matrix X representing the probability
distribution of being in m different states at time O (which is the fraction of pipe network

currently in each of the m possible states) is also required. X is a single row matrix (or

state vector) where Z X, =1 fori=1, ..., m The state vector for any time cycle ¢ is

obtained by multiplying the initial state vector by the transition matrix P raised to the
power . Thus, the prediction of pipe condition 10 vears from now is then represented by
,((2)

[X¥] = [X]x [P (6.3)

To estimate the transition matrix probabilities. for each age group the following nonlinear

programming objective function was formulated:
N

min Y. [$(1) - Et. P) (6.4)
r=1

subjectto 0< p(i) <1, i=12...5

where,

N =3, the number of years in one age group:

P =[p(1), p(2)...., p(5)], a vector of length 5;
S(r) = average of condition ratings at time : and

E(z, P) = estimated value of condition rating by Markov chain at time ¢.

The objective function was to minimize the absolute distance between the actual pipe
condition rating at a certain age and the predicted pipe condition for the corresponding
age generated by the Markov chain with the probabilities obtained by the nonlinear

programming. The solution to this function was obtained by the gradient projection
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method [87]. To find the trend of a performance curve, a polynomial regression
procedure was performed first. The results of the regression were taken as the average

condition ratings to solve the nonlinear programming,.

A survey was developed, and municipal management experts were asked for their
opinions on the degradation of sewer pipes. A detailed questionnaire was mailed to 65
municipalities in North America, and 40 responses were received. The condition of a pipe
was described through words and pictures to these experts, and they were asked the
probability that the condition of a sewer would change from the current (or initial)
condition to a more severe condition in a period of 5 years. The collective experience of
these participating experts was used to generate the structural condition matrix (SCM)
and eventually to develop a prediction model for sewer deterioration. The SCM survey
sheets for pipe surface, joint and lateral are shown in Tables 6-1, 6-2, and 6-3.

respectively.

An example set of computations for underground concrete sewer pipe surface condition
performance evaluation is given in the following. Pipe age was divided into groups, and
within each age group the Markov chain was assumed to be homogeneous. Groups
consisting of 5 years were used, and each group had its own transition matrix, which was
different from those of the remaining groups. Using equation (6.1), the transition matrix

for Group | was obtained:

089 0.11 O 0 0 0 0 0 0 0
0 093 007 O 0 0 0 0 0 0
0 0 091 009 O 0 0 0 0 0
0 0 0O 087 013 0 0 0 0 0

p= 0 0 0 0 061 039 0 0 0 0 6.5)

0 0 0 0 0 08 016 0 0 0
0 0 0 0 0 0 079 021 o0 0
0 0 0 0 0 0 0 071 029 O
0 0 0 0 0 0 0 0 0.69 0.3]
0 0 0 0 0 0 0 0 0 1
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The initial state vector of Group 1 was p = (1,0,0....,0). Therefore, the state vector of
Group 1 for year t can be obtained by equation (6.3). For example, the state vectors for

year O through 5 are given below:

p® =(1,0,0,0,0,0,0.0,0,0)

p" =p?*P=(0.89,0.11,0,0.0,0,0,0,0,0)

p'? = p® * P’ =(0.7921.0.2002.0.0077.0.0.0.0.0.0.0)

p = p'® * P! = (0.7050.0.2733,0.0210,0.0007,0,0,0,0.0.0)

P =p® * P’ = (0.6274.0.3317,0.0383,0.0025.0.0001,0,0,0,0,0)
p® = p'® * P’ = (0.5584,0.3775. 0.0580,0.0056,0.0004,0.0.0.0.0)

©) obtained above for Group | was taken as the initial state vecior of Group 2, and

Thenp
the corresponding transition matrix of Group 2 was used to continue the procedure. By
this procedure, the pipe condition at any time r can be predicted in terms of initial state
vector p‘o’ and transition matrix P. Figure 6-3 shows the pipe surface performance curve
of concrete sewer pipe in city of Waterioo obtained by this method. Performance curves

can be developed similarly for other pipe components (i.e.. joints and laterals).

g 9 = Markov Prediction Curve
= 8 «aee Actual Data Points
T 7
c
8¢
3.
£, ~
: 3 <Illlllll.-'l.-l.l..ll‘ll...ll..l.'l...-ll.lll l‘:l..l.l..l..ll.ll-l-l..l
» o-
8_ 1 - Minimum Accepted Level
a o -
0 10 20 30 40 50 60
Age (years)

Figure 6-3. Markov prediction curve for concrete sewer pipe surface deterioration
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6.4.2 Selection of Underground Pipeline Rehabilitation Options

The general decision process concerning the selection of the appropriate rehabilitation
method for underground pipelines follows the logical sequence of assessment, decision,
and execution. These three steps are essential if the appropriate method is to be selected
(Figure 6-4). The choice of rehabilitation selection methods is related to the technical

level of a municipality, available resources and environmental concerns.

In order to select appropriate treatments for pipeline long-term preservation. it is
necessary to evaluate each treatment effects in terms of functional and structural
improvement over the existing pipeline. It should be noted that a pipeline performance
prediction model should be modified after each maintenance or rehabilitation treatment is
applied to the pipeline except for the do-nothing treatment. Each rehabilitation treatment
should be designed by considering the pipeline deterioration characteristics, treatment
effects and the impacts of the treatment on the future deterioration or rehabilitation needs.
Therefore, it is imperative to prepare a set of rehabilitation alternatives for the

optimization model.

There is a need for a decision-making model that can help municipal engineers
understand the essential aspects of the rehabilitation treatment and help identify the
strategic elements of the performance of the treatment. The use of utility theory in
evaluation models is well established [190]; however, such models require the
establishment of the user’s utility functions. Often, utility functions are hard to formulate
and can change over time. The analytical hierarchy process [169] uses a three-leve!
hierarchy-based model that reflects the goals and concerns of the decision maker and uses
a series of criteria to evaluate rehabilitation alternatives. The comparison of the attributes
of competing methods is based on determining the eigenvector for each matrix describing
the attributes of each method. This method is excellent for the comparison of attributes
between two methods but can become unwieldy when a large number of methods need to
be evaluated, each with many specific attributes. A recent effort [8] uses a hierarchically

based model that breaks the elements of the methods under consideration into their
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essential physical components that describes their capabilities, and compares these

capabilities to the requirements of the problem.

The rehabilitation method selection process as described in [123], is the logical matching
of needs to method capabilities. This system breaks the needs and capabilities into a
three-level hierarchy of attribute, function, and capacity, which uniquely identifies the
characteristics of both the system needs and method capabilities (Figure 6-5). Using the
characteristics of the system, it is possible to codify the system needs in a logical manner
that will clearly identify the specific needs of that system. This process allows the needs
of the system to be uniquely codified using the hierarchy of attribute/function/capacity.
The codification of the system needs and method capabilities allows identification of

potential candidate rehabilitation methods.

While installation issues, impact on hydraulics. and material and durability issues are key
factors in the selection process. a hierarchy-based model does not explicitly include life
cycle cost issues associated with each alternative. The process does not attempt to predict
future pipe conditions, and accordingly life-cycle analysis is not performed. To select a
final or most appropriate method. a more detailed examination of the problems and

methods is required, including an economic analysis.

6.4.3 Optimizing Pipeline Rehabilitation Options

An approach that predicts the future condition of pipes is needed to perform life-cycle
analysis for different pipe rehabilitation options. Probabilistic Markovian model similar
to that shown in Figure 6-3 can be incorporated with dynamic programming for life cycle

cost analysis of pipeline systems.

Dynamic programming can be employed in conjunction with a Markov probability based
prediction model to obtain minimum cost maintenance and rehabilitation strategies over a
given life cycle analysis period. Dynamic programming is an ‘approach’ to optimization,

based on the principle of taking a single, complex problem and breaking it into a number
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Figure 6-4. General decision process of selection of maintenance and rehabilitation
methods for underground pipeline
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Figure 6-5. Characterization of system and rehabilitation methods for underground
pipeline
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of simpler and more easily solvable problems [51]. An extremely important advantage
that dynamic programming has over almost all classical optimization techniques is that it

will, if set up correctly, determine absolute optima rather than local optima [51].

For a given planning horizon, the proposed dynamic programming technique provides
suggestions to decision makers by optimizing total cost (or maximizing benefit/cost ratio)
of pipeline svstem. The prediction models are Markov processes, and the results from the
Markov models are fitted into the multi-year dynamic priority programming model and
the output from the priority programming is a list of optimal maintenance and
rehabilitation recommendation during the analysis period for each pipeline section in the
network. The prioritization uses cost-effectiveness based economic analysis to utilize the

limited budget with a set of maintenance and rehabilitation strategies.

6.5 Conclusions

This chapter discusses a conceptual framework for the development of an integrated
pipeline network management system. The probability-based model provides a reliable
method to characterize the uncertainty inherent in underground pipeline deterioration.
This model can be incorporated with dynamic programming as an optimization technique
to maximize the benefit/cost ratio. [f the aggregate cost over all pipeline segments within
a network is higher than the available budget, then a prioritization scheme needs to be

developed.

Numerous options are available for underground pipeline rehabilitation. Some techniques
are more cost effective than others for specific applications. The number and method of
rehabilitation options considered should be selected based on the pipeline deterioration
characteristics, treatment effects and the impacts of the treatment on the future

deterioration or rehabilitation needs.
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The prioritization technique is useful for municipal managers when they are face with the
need to optimize resources (in this case, limited budgets). However, the successful
application of an integrated pipeline management system depends significantly on the
predictive models. As both the computer vision technology and the predictive modeling
technology advance it is likely that a synthesis of these two systems will lead to an
integrated and automated pipeline management system whereby the input of present state

conditions to the predictive model will be generated by using computer vision techniques.
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Chapter 7

7. Contributions and Future Research

This final chapter reviews the contribution of this thesis and discusses possible avenues

for continued research.

7.1 Thesis Contributions

The main objectives of this thesis were to develop an automated underground pipe
inspection system and to establish the synthesis of an automated system with a predictive
model for management of underground pipelines. The main concentration of this thesis
has been on segmenting, detecting, and classifying different objects present in
underground pipe images based on their class and severity of distress. The system is
expected to overcome some of the limitations of the current manual inspection of

underground pipes, and can provide a more accurate assessment of pipe conditions.
Chapter 3 presented a simple, robust, and efficient image segmentation algorithms for the

automated analysis of scanned underground pipe images. The algorithm consists of a

gray-scale conversion step followed by a sequence of morphological operations to
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accurately segment pipe cracks, holes, joints, laterals, and collapse sections, a crucial step
in the precise detection of surface cracks. The proposed morphological segmentation
approach can be completely automated and has been tested on over five hundred scanned
images from major cities in North America. Experimental results demonstrate that the
proposed approach is effective for segmenting underground pipe images with varying

background pattern, non-uniform illumination. and objects of different shape and size.

Chapter 4 proposed a development of crack detection filters, taking the statistical
properties of underground pipe images. Conventional edge detectors and thresholding
techniques are insufficient for detecting cracks when applied to underground pipe images,
as demonstrated in this chapter. The approach proposed in this chapter falls within the
scope of the Bayesian framework. Since our aim is to detect the cracks present in an
image, contextual knowledge on the scale of pixels is insufficient and results in
numerous, small, disconnected segments. However, on the scale of segments, a priori
knowledge allows for the precise detection of cracks. Thus, detection of cracks is
proposed in two steps. In the first step, crack segment candidates are detected taking the
statistical properties of image into account. In the second, cracks are obtained by cleaning

and linking operations.

In this chapter a methodology for the evaluation of the proposed crack detection filters
based on the comparison to manually plotted reference data is also presented. In most of
the cases the crack detection results are close to those that could be obtained by a trained

human operator.

Chapter 5 contributed a development of neuro-fuzzy classifier for classification of objects
in the segmented underground pipe images based on the extracted feature vectors. Fuzzy
sets are used in the input module as well as in the output module to ‘screen’ data pattern
before training the proposed network. With this technique, the proposed network always
vielded higher performance compared to four other classifiers, namely, K-NN, fuzzy K-

NN, conventional backpropagation, and projection network.

160



CHAPTER 7. CONTRIBUTION AND FUTURE RESEARCH

This chapter also discussed the extraction of suitable features for training the classifiers
based on the geometric shape and size of the objects present in the segmented pipe
images. An extensive comparative study of the proposed neuro-fuzzy network with other
four classifiers, infer that neuro-fuzzy network can be an used as ideal tool for classifying

segmented underground pipe images based on suitable features.

Chapter 6 proposed a framework for an integrated pipeline network management. An
attempt has been made in this chapter to synthesize the automated inspection system,
discussed in Chapters 3, 4, and 5, with a robust prediction model for management of
underground pipelines. The prediction model developed in this chapter is based on the
Markovian models, and is incorporated with dynamic programming optimization
techniques. The proposed integrated management system will provide guidelines in the
decision-making processes, because it uses optimization techniques to obtain the

minimum cost of maintenance/rehabilitation strategies over the life cycle of pipelines.

7.2 Topics for Future Research

There are many interesting directions for continued research. A few of the more

promising directions, organized by topics, are listed in the following subsections.

7.2.5 Color Image Segmentation

The use of color in image processing is motivated by two principal factors. First, in
automated image analysis, color is a powerful descriptor that often simplifies object
identification and extraction from a scene. Second, in image analysis performed by
human beings, the motivation for color is that the human eye can discern thousands of

color shades and intensities, compared to about only two-dozen shades of gray.
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In this thesis, we have converted the colored pipe images into gray-scale before
performing any analysis for computational simplicity. We believe that the color
information in the image will probably help with classifying cracks, roots, water

infiltration, holes, joints, and laterals.

7.2.2 Segmentation of Cluttered Images

The morphological segmentation approach proposed in Chapter 3 is mainly based on the
images belonging to one class of object. In a real problem. images may not contain just
one type of defect, but a clutter of defects. To segment such images we have proposed a
new method based on gray-scale morphological operations and taking the difference of
images. The use of this new method for segmenting cluttered pipe images is a promising

approach that may need further practical validation.

7.2.3 Selection of Features for Classification

Over the last few years, extensive research has taken place on the development of
efficient and reliable methods for the selection of features in the design of pattern
classifiers, where the features constitute the inputs to the classifier. The quality of this
design depends on the relevancy, discriminating power and ease of computation of
various features. Selecting suitable features is an extremely difficult task, charged both

with theoretical and computational problems.

In this thesis, we have selected features for classification based on the geometric shape
and size of the objects present in the pipe images. One useful extension of our work
would be to perform a thorough feature optimization to select an optimal set of features.

This could significantly improve the classifier’s performance.
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7.2.4 Robust Dynamic Model for Prediction

The framework developed in this thesis for developing a prediction model and

determining the optimal rehabilitation program for pipeline network appears to be

satisfactory in its approach. However, there are still lots of problems to be solved for

actual applications of these models as described in the following.

L.

[RS)

Although the probabilistic prediction model has conceptually been formulated for all
types of underground pipelines, only concrete pipes have directly been considered in
this study. Other types of pipes have not been taken into account in the research, due

to time and resource limitations.

The relationship between observed pipe performance data and that predicted by the
Markovian probabilistic prediction model should be examined for different site

conditions for verification of the prediction accuracy.

Taking the expert’s opinion generates the input of present state conditions to the
probabilistic prediction model. It is recommended that the inputs should be generated

by correlation of images obtained by inspecting pipe condition over the years.

In the present study, the effects of pipe age on pipe internal condition are emphasized.
The effects of other external factors on pipe performance, such as soil types, pipe
material, traffic load, hydraulic conditions, and climate are ignored. It is
recommended that a dynamic model should consider both the internal and external
factors effecting the pipe performance: the more factors considered by a model, the

more realistic it can be.

The sensitivity analysis of the outputs of the dynamic programming models to
changes in input parameters including discount rate, inflation rate,
maintenance/rehabilitation costs, disruption costs, and expected service life is

recommended so that asset managers can make decision with greater confidence.
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7.2.5 Development of Software

It is fair to say that the algorithms used throughout the thesis have been written as a proof
of concept, and therefore striving for efficient data structure was not the main focus. An
immediate improvement would be to rewrite the code in a compiled language instead of
the interpreted MATLAB language being used. and also to design new data structures to

make it more efficient.

The development of a computer application software for this automated image analysis
based, integrated pipeline management system is the final goal of this study. The
engineering and model development for the software and its application has been
considered at present. A Windows operating system based computer interface design for
the application should be developed for the use in engineering departments of

municipalities in North America.
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