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Abstract

The bacterial toxin pyolysin (PLO) is a member of the family of Cholesterol-Dependent Cy-

tolysins, which form large, oligomeric pores in cholesterol-containing membranes. The general

CDC structure has an elongated shape and consists of four domains rich in β -sheet structure.

Upon binding to a membrane, molecules diffuse laterally on the surface and oligomerize to

form a pre-pore complex, then insert into the membrane yielding pores of unusually large size,

approximately 30 nm in diameter. In this work, the oligomerization properties of PLO were

investigated. In particular, the role of the C-terminal domain in the oligomerization process,

the effects of a disulphide-tethered mutant on the activity of the wild type toxin, and the pore-

forming ability of oligomers pre-formed in solution were characterized.

Chapter 2 characterizes the functional properties of a recombinant fragment that corre-

sponds to the C-terminal domain 4 of PLO. It is shown that this fragment can form hybrid

oligomers with intact PLO toxin molecules, and is also capable of self-oligomerization. The

fragment has no haemolytic activity of its own; nevertheless, it can to some degree increase

the haemolytic activity of the wild type toxin. In addition, in a mixture domain 4 and wild

type interact in such a way as to form unusual shapes on cholesterol crystals that have not been

previously observed.

Chapter 3 describes the effects of a disulphide bond linking domain 2 to a membrane-

inserting region of domain 3 on the oligomerization process. The disulphide mutant was not

able to oligomerize on its own, and when combined with active PLO toxin, the haemolytic

activity of wild type was significantly inhibited. Also, the combination of the disulphide-

tethered mutant with intact toxin resulted in the formation of hybrid oligomers. This, in turn,

caused an increase in incomplete ring formations on cholesterol surfaces which correlate to a

reduction in functional pore size, suggesting that insertion of subunits is partially cooperative.

The results of the investigation of the pore-forming ability of solution-derived oligomers

(SDO) are described in Chapter 4. Here, the fluorescence emission of an environmentally-

sensitive probe on the SDO after membrane insertion was a fraction of that observed with the

monomeric control, which was supported by hydrophobic quenching analyses. This suggests

that the formation of SDO may block necessary conformational changes in the intact toxin to

allow membrane insertion.
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Chapter 1

Introduction

Pyolysin is a pore-forming toxin secreted by the bacterial pathogen Arcanobacterium pyogenes.

With its discovery and characterization in 1996 [25, 31] it has been classified as a member of

the group of toxins known as Cholesterol Dependent Cytolysins or CDC [12]. Toxins of this

group are secreted from a variety of Gram-positive bacteria, are known for causing damage to

cell membranes, and are also considered to be important virulence factors for the producing

organisms [5]. Although a great deal of study has been conducted on these toxins to understand

activity, structure and mechanism of function, many questions still remain. In the present

study, the results of an investigation of the oligomerization properties and the pore forming

mechanism of the CDC pyolysin are presented.

1.1 PORE-FORMING TOXINS

Out of the over 300 different protein toxins produced by pathogenic bacteria that have been

characterized to date, almost one-third cause damage to cellular membranes [5]. These mem-

brane damaging toxins are commonly categorized by their mode of action. They either work

enzymatically, by solubilizing the membrane via detergent-like action, or by self-organizing

and oligomerizing on the surface to form discrete pores across the lipid bilayer [3]. In the

latter case, pore-formation creates an osmotic imbalance, which results in cell swelling, lysis
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and death [7, 38]. Bacterial pore-forming toxins are believed to be important virulence factors

[116]. Pore-forming proteins do not only occur as bacterial toxins, however. A wide variety of

organisms can produce such proteins, including plants, fungi, insects, and also mammals.

Bacterial pore-forming toxins are usually secreted as water-soluble monomers [18, 2] and

upon encountering a membrane, binding occurs via a surface receptor. The toxin can then

undergo oligomerization with other toxin monomers to form circular or partially formed rings

ranging in size from seven, as is the case for the α-haemolysin of Staphylococcus aureus, to

approximately 50 subunits (for the Cholesterol Dependent Cytolysins) [11, 73, 84].

Pore forming toxins are often classified according to the structural features that form the

trans-membrane portion of the pore [42]. An α-pore forming toxin forms pores using α-

helices, whereas a β -pore forming toxin forms a membrane-spanning β -barrel. While the

membrane-inserted forms of α-pore forming toxins have not been well characterized, much

more structural information is available on the membrane-inserted complexes of the β -PFTs

[5]. In β -barrel pores, the amino acid residues along the polypeptide chain are alternatingly

exposed to aqueous phase inside the lumen of the pore, and the non-polar lipid region of

the bilayer core. Figure 1.1 illustrates the crystal structure of the membrane-inserted hep-

tameric complex of the β -pore forming toxin Staphylococcus aureus α-haemolysin, with its

membrane-spanning β -sheet network. Other members of this group include the Anthrax Pro-

tective Antigen (PA) and all members of the large family of toxins known as the Cholesterol

Dependent Cytolysins or CDC. The crystal structure of the membrane-inserted Anthrax toxin

PA has also been determined which has been found to be similar to α-toxin [91], however the

oligomeric structure of the CDC is significantly different and due to their heterogeneity, it is

very difficult to determine the crystal structure of CDC oligomers.

1.2 CHOLESTEROL DEPENDENT CYTOLYSINS

The cholesterol-dependent cytolysins (CDCs) constitute a large family of pore-forming toxins

that are produced by more than 28 species from the Gram-positive bacterial genera Clostrid-

ium, Streptococcus, Listeria, Bacillus, Paenibacillus and Arcanobacterium [2, 39, 48]. Unusual

features of toxins from this group include the formation of very large pores with a diameter of

approximately 300 Å consisting of up to 50 monomers [11, 73, 84], and the absolute depen-

dence on cholesterol in the target membrane for cytolytic activity. Table 1.1 lists some of the

identified cholesterol dependent cytolysins and the originating bacterial pathogen.

2



Figure 1.1 The Membrane-Inserted Heptameric Complex of Staphylococcus α-Haemolysin.
The top and side views of the Staphylococcus α-Haemolysin (7AHL) heptameric pore [109].
Each of the seven subunits is shown in a different colour.

1.3 THE CDC MONOMER STRUCTURE

The first crystal structure of a CDC was resolved in 1997 [98]. The monomeric structure of

perfringolysin O (PFO) was shown to be elongated (approximately 115 Å in length), rich in

β -sheet, and to consist of four domains. Domain 1 is located at one end of the molecule and

contains both α-helix and β -sheet elements, while domain 2 is a long, curved single layer

of antiparallel β -sheet. Domain 3 consists of a core of five strands of anti-parallel β -sheet

surrounded by helical layers on both sides. Two sets of three short α-helices each are found in

this domain that convert to transmembrane β -hairpins upon pore formation. Finally, domain 4

has a predominantly β -sandwich structure, which is connected to the rest of the protein through

a single peptide link. Domain 4 is the only contiguous domain of the CDC molecule. Found in

this domain are three short loops (L1, L2 and L3) and a highly conserved undecapeptide region

that are implicated in membrane recognition and binding.

Since the determination of the PFO crystal structure, the monomeric structures of two other

CDCs have also been resolved, intermedilysin (ILY)[92] and anthrolysin O (ALO) [17], show-

ing that these toxins adopt a very similar three-dimensional configuration. Considering the

similarity of the primary sequence of the CDCs, it is very likely that all members of the CDC

family of toxins share similar three dimensional structures and similar modes of pore formation

[47, 113].
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Table 1.1 The Family of Cholesterol Dependent Cytolysins [97].

Bacterial Genus Species Toxin Acronym

Streptococcus S. pyogenes Streptolysin O SLO
S. equisimilus Streptolysin O SLO
S. canis Streptolysin O SLO
S. pneumoniae Pneumolysin PLY
S. suis Suilysin SLY
S. intermedius Intermedilysin ILY

Bacillus B. cerus Cereolysin O CLO
B. anthracis Anthrolysin O ALO
B. thuringiensis Thuringolysin O TLO
B. lacterosporus Lacterosporolysin LSL

Clostridium C. tetani Tetanolysin TLY
C. botulinum Botulinolysin BLY
C. perfringes Perfringolysin O PFO
C. septicum Septicolysin O SPL
C. histolyticum Histolyticolysin O HLO
C. novyi A Novyilysin NVL
C. chauvoei Chauveolysin CVL
C. bifermentans Bifermentolysin BFL
C. sordellii Sordellilysin SDL

Listeria L. monocytogenes Listeriolysin O LLO
L. ivanovii Ivanolysin ILO
L. seeligeri Seeligerolysin LSO

Arcanobacterium A. pyogenes Pyolysin PLO

The residues spanning each domain for the CDC pyolysin (PLO) are listed in Table 1.2,

and the structure of monomeric PLO (based on the PFO-PLO sequence alignment generated

by Swiss Model) is shown in Figure 1.2.
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Table 1.2 Assignment of Amino Acid Residues for the Domains of Pyolysin

Domains of PLO Residues Spanning the Domain

One 58-81, 118-207, 257-303, 373-406
Two 82-117, 407-423
Three 208-256, 304-372
Four 424-534

1.4 MECHANISM OF PORE FORMATION

Four main steps occur in the pore-formation process: 1. membrane binding of the toxin mono-

mer, 2. lateral diffusion on the membrane surface, 3. oligomerization to form the pre-pore, and

4. insertion of the latter into the membrane to form the pore.

The initial binding of the monomer is mediated by the C-terminal domain [81, 114], also

known as domain 4. This binding event causes discernible structural rearrangements in the

upper domains of the CDC that prepares the toxin for oligomerization [87]. At this time, the

bound monomers are able to diffuse laterally on the membrane surface and interact with other

bound monomers. In this way, oligomerization of the toxin molecules is initiated.

Within the oligomers, interactions between domains 1 and 3 have been documented [87,

86], and as seen in the current investigation, domain 4 of PLO also participates in the oligo-

merization process. The subsequent oligomerization of the monomers into pre-pore complexes

aligns the twinned domain 3 trans-membrane β -hairpins (TMH) segments of adjacent mono-

mers and triggers their insertion into the membrane to form a large trans-membrane β -barrel

[104, 105].

These oligomerized monomers form a pre-pore complex. These pre-pores consist of toxin

molecules that are in a similar conformation as the monomeric toxin before membrane binding

[23, 110]. The oligomerization of the monomers leads to the formation of ring- and arc-like

structures on the membrane surface [11, 70, 72, 86, 78, 102], followed by insertion of the

transmembrane β -hairpins, forming a membrane-spanning β -barrel pore. A more detailed

description of each step of the pore forming mechanism and the domains involved is given

below.
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Figure 1.2 Homology Model of Pyolysin. Ribbon representations illustrate the locations of
the four domains of the toxin. The positions of both transmembrane β -hairpins, and the binding
loops in domain 4 are labelled. The homologous PLO structure was based on the sequence
alignment of PFO and PLO using Swiss Model, and the crystal structure of PFO created from
pdb records 1PFO (perfringolysin) using PyMOL.

1.4.1 Membrane Binding

In early studies to determine which regions of the toxin were responsible for membrane bind-

ing, PFO was proteolytically cleaved to yield two fragments [81, 114]. While the N-terminal

fragment lacked any recognizable activity, the C-terminal fragment retained the ability to bind

to cell membranes. In 1997, after the determination of the crystal structure of PFO [98], it was

postulated that this domain was responsible for spanning the membrane and creating the pore.

This theory, however, was inconsistent with previous fluorescence studies conducted on SLO,

where it was discovered that residues found in domain 3 inserted into the membrane [86, 87].

Upon further investigation, it was found that the only areas of domain 4 to insert into the mem-

brane were three short loops (L1, L2 and L3) and the undecapeptide region found at the tip of

domain 4, and these regions inserted shallowly which could not allow for domain 4 to span the

bilayer [94].
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The binding event has been shown to be reversible, and it can occur at low temperatures

[88]. The reversibility of SLO binding to erythrocytes was observed when the toxin was in-

cubated with the cells at 4 °C and the excess toxin removed after centrifugation. After fresh

erythrocyte cells were added to the SLO-bound cells, photometric examination of subsequent

haemolysis showed that a greater number of cells lysed than were originally treated. This indi-

cated that the SLO toxin molecules must have migrated to new cells from those to which they

were originally bound [88].

In the same study, reversibility of binding was also tested using radio-labelled 125I-SLO.

After incubation in the cold and removal of excess toxin, 5,5’-dithiobis-(2-nitrobenzoic acid),

(DTNB, Ellmans Reagent) was added to the SLO-erythrocyte mixture. At specific intervals the

sample was centrifuged and aliquots of the supernatant were taken and tested for the presence

of radio-labelled SLO. With time, increasing amounts of SLO were found in the supernatant,

compared to none in the supernatant of the control sample (with no Ellmans Reagent). These

tests show that CDCs have the ability to bind to erythrocyte membranes in a reversible manner.

Interestingly, the binding event initiates conformational changes within the CDC molecule

seen in both domains 1 and 3, prior to oligomerization [89]. As the oligomerization process is

temperature dependent [29, 46, 79], studies were conducted to determine the extent of confor-

mational coupling between the different domains. For toxin incubated with ghost erythrocytes

at low temperatures, it was found that four mutants of SLO that were modified with the flu-

orophore 6-acryloyl-2-dimethyl-amino-naphthalene (acrylodan), whose spectral properties are

dependent on the polarity of the surrounding environment, exhibited a distinct shift in fluores-

cence emission upon binding. The mutants S218C and A266C showed a distinct red-shift in

wavelength maxima, or shift to higher wavelengths with membrane binding, signifying these

mutants become exposed to regions of greater polarity. The mutants A248C and T277C, on the

other hand, gave a blue shift in spectral maxima, or shift to lower wavelength upon binding,

denoting exposure to an environment of increasing hydrophobicity, yet the maxima remained

greater than those typical of membrane-inserted amino acid residues. These shifts represent a

change in polarity of the local environments, and this study concluded that membrane binding

conformationally affects a distant part of the molecule involved in later steps of pore formation

[89].
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1.4.2 Oligomerization and Membrane Insertion

After binding to the membrane, monomers diffuse laterally in order to initiate oligomerization.

The binding process confers distinct conformational changes in upper domains of the toxin

molecule. It was first discovered that domains 1 and 3 were involved in the oligomerization

and membrane insertion steps in 1996 [87]. Here, 19 amino acid residues of SLO, spanning the

positions 213 to 305 were replaced with cysteine and labelled with acrylodan. Three residues in

domain 3 showed distinct emission blue-shifts, signifying the movement to an area of increased

hydrophobicity upon interaction with the membrane. With the addition of dexoycholate solu-

tion to the samples to dissolve the membrane, the acrylodan emission exhibited a significant

red-shift, or shift to longer wavelengths, denoting that these residues came into direct contact

with the lipid bilayer of the membrane.

The residues A213C (found in domain 1) and T245C (at the domain 1-domain 3 interface)

also exhibited blue shifts upon membrane binding, illustrating that domain 1 experiences dis-

cernable conformational changes as well. When the membrane was solubilized, there was little

change in the emission maxima denoting no change in the polarity of the fluorophore environ-

ment. This indicates that these residues do not insert into the membrane, but rather move into

a proteinaceous apolar environment during oligomerization.

The core of domain 3 consists of five β -strands that are linked to two sets of three short

α-helices that later form the transmembrane β -hairpins (TMH) that insert into the bilayer.

In Figure 1.3, the loops are labelled β1 through β5, with β1 and β2 associating with trans-

membrane β -hairpin 1 (TMH1), β3 and β4 associated with TMH2, and β5 is a short loop

covering the outside edge of β4 [95]. Upon membrane binding, it was found that the outer β5

strand moves away from the β4 strand of the core during this process. This motion renders

β4 exposed where it can now interact with the β1 strand of the adjacent toxin monomer, thus

initiating or extending the oligomerization process.

Additional studies using PFO confirmed that the series of small helices on either side of

central β -sheet of domain 3 could unfurl into a β -sheet conformation, into the two transmem-

brane β -hairpins (TMHs) that insert into the membrane and form a β -barrel. This was deter-

mined as each residue in both TMH regions of PFO (residues 189-218 for TMH1 and residues

288-312 for TMH2) [104, 105] were replaced with cysteine and chemically modified with

the environmentally sensitive fluorophore N’-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-ethylenedi-

amine (NBD). The changes in the emission spectra after incubation with membranes indicated
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Figure 1.3 Core of Perfringolysin O Domain 3, α-Helices to β -Sheet Transition with Mem-
brane Insertion [95]. Ribbon representation of the domain three core of perfringolysin O
(1PFO) in water-soluble monomer form (left). The three short α-helices of TMH1 are in blue,
and the helices of TMH2 are in green, with the five β -sheets within the perfringolysin O core
labelled. The α-helices undergo structural changes to β -sheet upon membrane insertion.
Cartoon representation of the membrane-bound form of the toxin, left.

an alternating pattern of polar and non-polar environments for each stretch of residues tested,

signifying that the residues alternated between facing the aqueous phase (forming the lumen

of the pore) and the inner lipid bilayer of the membrane core. Figure 1.3 illustrates the confor-

mational changes involved in the core β -strands of domain 3 and the insertion of the TMHs.

This conversion from α-helix to β -barrel pore is unique to the CDC pore-forming process.

In addition, many other pore forming toxins only contribute one trans-membrane β -hairpin

per molecule to the β -barrel structure. Cholesterol dependent cytolysins are so far the only

pore-forming toxins that donate two trans-membrane β -hairpins per toxin molecule [104].

Atomic force microscopy (AFM) [23] and fluorescence resonance energy transfer studies

[96] have shown that a significant decrease in toxin height occurs after the conversion from

monomeric to membrane-inserted states, believed to be caused by the collapse of domain 2

that brings the transmembrane β -hairpins found in domain 3 close to the membrane surface for

insertion [96]. It is not yet certain, however, if the collapse occurs in order to bring domain 3

closer to the membrane surface to facilitate insertion, or if the event is a consequence of TMH

insertion. Figure 1.4 summarizes the steps of the pore formation process as described.
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Figure 1.4 The Pore-Forming Mechanism of Cholesterol-Dependent Cytolysins. The binding
of the monomers to the lipid bilayer is the first step in the pore forming mechanism of CDC
(as seen in panel A). Next, the monomers diffuse laterally across the membrane surface and
oligomerize to form a membrane-bound pre-pore (B). The final step involves a conformational
change, and the toxin oligomer inserts into the membrane to form a pore (C).[110]

1.5 THE CORRELATION OF OLIGOMERIZATION AND PORE-FORMATION

As mentioned earlier, both circular rings and incomplete rings or “arcs” of CDCs have been

observed on membranes using electron microscopy [9, 70, 72, 78, 86, 102]. In addition to

this, SLO exhibited irregular-shaped pores that resembled two arcs that have fused together.

These features have not been observed in other pore-forming toxins, and their presence has

been the topic of much debate over the mechanism of assembly of the oligomeric complexes

on the membrane surface. Different models have been proposed to account for this behaviour,

as illustrated in Figure fig:IntroductionPoreFormationModels.

One model is based on the observation that PFO can assemble into large oligomeric ring-

shaped complexes prior to the insertion of the β -hairpins into the membrane bilayer [106].

This model suggested that the formation of a complete, circular ‘pre-pore’ complex must be

formed before the insertion of the TMHs and formation of the membrane-spanning β -barrel

can occur [106].

This completed-ring oligomer model, however, does not take into account the presence of

the arcs on the membrane surface and that these arcs give rise to pores of decreased size [86],
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B

C

Figure 1.5 Comparison of the Different Proposed Models for Cholesterol Dependent Cy-
tolysin Pore Formation. Top: The Growing Arc Model of pore formation described by Palmer
[86] stipulates that toxin oligomerization and pore formation can occur simultaneously. Forma-
tion of twin-arcs is driven by the relaxation of line tension which exists at the free membrane
edge opposite a single arc. Center: The Completed-Ring Pre-Pore Model of pore formation
postulated by Tweten [115] states that oligomerization of CDC monomers must proceed until
complete rings are formed before insertion into the membrane can occur. Bottom: A con-
sensus model postulates that oligomerization precedes insertion but does not have to go to
completion before insertion occurs [38]. The purple colour indicates toxins that have inserted
into the membrane.

suggesting that oligomerization does not need to be complete for insertion to occur. To ac-

count for this, a second model proposes that oligomerization and membrane insertion of the

CDC molecule can occur in tandem. Here, it is argued that pore formation is commenced by

the formation of a dimer that immediately inserts into the membrane and serves as a nucleus

for further oligomerization. Further monomers are successively added to the dimer and con-

currently insert into the membrane, giving rise to a pore that is lined on one side by toxin and
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Figure 1.6 Chemical Structure of Cholesterol

on the opposing side by lipid membrane. This growing arc eventually becomes a complete

ring-shaped pore [86].

A third model of pore formation has been proposed, which is the only model that accounts

for all available experimental evidence. Here, two different oligomeric states can exist, the pre-

pore and the pore, and the moment of transition depends on factors other than completeness of

the ring. In this model, once membrane insertion has occurred, oligomerization ceases [38].

1.6 ROLE OF CHOLESTEROL IN THE ACTIVITY OF CDCS

The role of cholesterol in pore formation has been found to be primarily in the binding step.

This is supported by the observations that the lytic activity of tetanolysin (TLY) [6, 71], cere-

olysin [21, 103], streptolysin O [26, 93, 103, 119], and listeriolysin (LLO) [33] was inhibited

by incubation with free cholesterol, the toxins have no haemolytic activity on prokaryotic or

any cells lacking cholesterol, and that the CDCs could bind directly to pure cholesterol and

liposomes containing cholesterol [55, 83].

Inhibition of lytic activity has been observed with low (nano-molar) concentrations of not

only cholesterol, but with sterols of similar structure. It was found that variations in the sterol

structure affected CDC activity. It was found that the hydroxyl functional group in the β -

configuration on the C3 of ring A of the cyclopentanoperhydrophenanthracene, the isooctyl

chain on C17 of ring D, the methyl group on C20, and an intact B ring are all necessary for

interaction with the toxin [93, 118]. The chemical structure of cholesterol is illustrated in

Figure 1.6.
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With the OH group in the α-position on the C3 (as in epicholesterol), esterified, replaced

with a keto-group or replaced with a β -SH group (thiocholesterol), the inhibitory effects of the

incubated sterols on the toxin were not observed [4].

Studies with cholesterol-containing liposomes have shown that a relatively high concentra-

tion of cholesterol is required for binding, in the order of 40 mole percent of the total membrane

lipid concentration [80]. It has also been shown that the transition from no binding to full bind-

ing in liposomes occurs within a narrow range of cholesterol concentration [80]. In fact, this

high concentration of cholesterol led some researchers to speculate that the formation of lipid

rafts in the membranes may be necessary for binding to occur [117]. However, no conclusive

evidence has been shown to support this model. Studies have been conducted to determine if

the conditions that promote lipid raft formation would enhance binding of PFO, phospholipids

of various acyl chain lengths [30] and degree of saturation [77], as well as various sterols [77].

Here, little correlation was found between the liposome composition expected to promote raft

formation and PFO binding.

The role of cholesterol has been examined in three CDCs, PFO, SLO and ILY [34]. Here,

each of the toxins was incubated with membranes where the cholesterol content of the mem-

brane was decreased by approximately 90%. It was found that the haemolytic activity of all

toxins dramatically decreased, by 90% for both ILY and SLO, and by over four orders of

magnitude for PFO compared to wild type activity. It was also found that the decrease in

membrane-cholesterol effected an approximate 10-fold decrease in binding of PFO, yet the

binding of ILY and SLO was not affected. The latter two toxins were seen to oligomerize into

pre-pore complexes, but were not able to insert into the membrane; based on these findings

it was proposed that the main role of cholesterol was for membrane insertion of the TMHs.

However, this experiment did not completely remove all cholesterol from the membranes and

the findings may be a result of the toxins’ interaction with the residual sterol in the membrane.

Although the above finding is in agreement with previous studies on PFO that cholesterol is

necessary for PFO binding [69, 80, 82], the observation that SLO binds to cholesterol-depleted

membranes contrasts with other findings. Previous reports illustrate that SLO has significant

affinity to liposomes consisting of cholesterol, and to immobilized cholesterol substrates [43]

but not to liposomes without cholesterol [74].

Recently, it was proposed that two residues in one of the loops of domain 4 involved in

membrane-binding (L1) are essential for the cytolytic toxin recognition of cholesterol at the

membrane surface [28]. The two residues, T490 and L491, in PFO are strictly conserved in
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all known CDCs, and conservative changes (to either glycine, alanine or reverse threonine

for leucine) result in drastically decreased binding and activity to cholesterol-rich liposomes

and human erythrocytes. Although this study shows there is correlation between these two

conserved residues and cholesterol dependence, it is unlikely that only two amino acid residues

mediate the recognition of cholesterol in the entire toxin molecule.

1.7 PROPERTIES OF SPECIFIC CHOLESTEROL DEPENDENT CYTOLYSINS

The toxins belonging to this family are very similar with respect to structure and mode of

action, but many interesting differences exist between them as well. Listed below are some

specific cholesterol dependent cytolysins and unusual features not shared with other known

family members.

1.7.1 Streptolysin O

Streptolysin O (SLO) is secreted from Streptococcus pyogenes, a pathogen frequently asso-

ciated with dermatological infection [41]. The lytic activity of S. pyogenes lysates was first

discovered by Marmorek in 1902 [66], and upon further investigation in the 1930’s, this lytic

activity was attributed to two haemolysins [111, 112, 121]. The haemolysin that became less

haemolytically active with increased exposure to air was named streptolysin O (SLO) in order

to denote it is oxygen-labile, whereas the oxygen-stable haemolysin was named streptolysin

S (SLS) [111, 112, 121]. Since then, SLO has been one of the most intensively investigated

membrane-damaging toxins over the past 60 years and it has been shown to be important to the

pathogenesis of S. pyogenes [1].

SLO has the longest primary sequence of all the CDCs identified thus far, at 571 residues

in length, compared to PFO at 500, and the smallest alveolysin (ALV) at 470 residues [5].

When secreted, SLO contains approximately 60 extra amino acids at its N-terminus that are

not found on any other CDC [65]. This N-terminal extension is used in the translocation of

the bacterial protein NADH-glycohydrolase (an exoenzyme also produced by S. pyogenes)

into human keratinocytes [65]. It was found that when these extra residues were deleted from

the SLO sequence, the toxin retained the ability to form pores, but the ability to transport

NADH-glycohydrolase was lost. Additionally, when the peptide sequence was added to PFO,

translocation of the enzyme did not occur, suggesting that SLO must have additional features

to allow this [67].
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1.7.2 Pneumolysin

Pneumolysin (PLY) is produced by Streptococcus pneumoniae, a pathogen known for sev-

eral important diseases including pneumonia, bacteraemia, meningitis, and otitis media [85].

S. pneumoniae was first reported to produce haemolysin in 1905 [63], and since then PLY has

been considered an important virulence factor of pneumococci.

PLY is a 53 kDa toxin produced by almost all isolates of S. pneumoniae [59, 90]. Unlike the

other known CDCs, PLY lacks an N-terminal signal peptide and as such is not secreted by the

usual type II secretion pathway. Instead, PLY accumulates in the cytoplasm of a pneumococcus

cell and is released upon bacterial growth and autolysis in most strains [54].

Another distinct feature of PLY is that it contains a region that is capable of activating

complement in the absence of specific antitoxin antibodies [68]. This activation in the fluid

phase may act to divert complement away from intact bacteria and consume complement com-

ponents. At higher concentrations, PLY can form oligomeric structures in solution without

the presence of a membrane surface and it is postulated that the function of this form may be

more effective in activating complement than monomeric toxin [68]. PLY may have evolved in

such a way to be more easily triggered to oligomerize in solution so that a fraction of PLY can

activate complement but the remainder can still bind to membranes and form pores.

1.7.3 Listeriolysin O

Listeriolysin O (LLO) is secreted from Listeria monocytogenes, an important pathogen in hu-

mans, known to cause meningitis, encephalitis and intrauterine infections [41]. The production

of a haemolysin by this organism was first reported in 1941 [45], and in 1964 it was found that

the listerial haemolysin was functionally related to SLO [60]. However, it was not until 1987

that the toxin was purified to homogeneity and categorized as a member of the CDC family

[33].

Listeriolysin O is an unusual CDC because of its pH-dependent pore-forming activity. The

toxin has a pH optimum at 5.5, much more acidic than for other members of the CDC family,

and when the pH is elevated to become neutral, the cytolytic activity is decreased [33]. The

discovery of the low pH optimum led researchers to suspect that LLO may be involved in the

disruption of phagosomal membranes [60].

Once the bacterium enters a cell, it secretes LLO which becomes activated by the acidic

medium of the phagosome (pH 5.5-5.9) [33]. The LLO can then perforate the phagosomal

15



boundary where the bacterium can gain entry into the cytosol of the host cell. Here, the

L. monocytogenes can use the cytosol and contents as nutrients, allowing the bacterium to

grow and proliferate. As the pH of the intracellular medium of the host is closer to neutral,

the activity of LLO is significantly decreased and is not able to lyse the outer membrane of

the host cell [40, 8]. In addition to this, LLO contains an N-terminal PEST (proline-glutamic

acid-serine-theronine)-like sequence that targets LLO for degradation before excessive damage

to the host cell can occur [24]. Living inside the host cell is advantageous to L. monocytogenes

as here it is protected from extracellular immune system factors [8, 32].

1.7.4 Intermedilysin

Intermedilysin (ILY) is produced by Streptococcus intermedius, which was first discovered in

human liver abscess in 1996 [75]. The 54 kDa protein is considered to be an atypical cholesterol

dependent cytolysin as it is specific to human cells and does not use membrane cholesterol as

a receptor for binding [76].

As the toxin activity was only weakly inhibited with incubation with free cholesterol, spec-

ulation arose as to the necessity and function of membrane cholesterol [34]. Studies involving

ILY and cholesterol-depleted membranes have shown that the activity of the toxin decreased

significantly, yet no effect on binding was seen. This signified that the toxin’s sensitivity to

cholesterol must occur at later steps in the pore-formation process [34].

The binding of ILY on human erythrocytes was shown to decrease when the cells were

treated with trypsin, suggesting that ILY uses a surface protein receptor to bind [35]. It was

found that the human glycosylphosphatidylinositol (GPI)-anchored membrane protein CD59

acts as the receptor. The CD59 protein of other animal erythrocytes is not susceptible to ILY

binding; even primate erythrocytes show a 100-fold decrease in binding compared to human

cells. It is believed that this specificity is in part a result of the CD59 peptide sequence from

residues 42-59 that is known to bind complement proteins. This region exhibits the greatest

level of heterogeneity between human, non-human primate and animal CD59 molecules and

may be responsible from the species-selective activity of ILY [35].
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Table 1.3 The Conserved Undecapeptide Region of Cholesterol-Dependent Cytolysins [5].
Residues that deviate from the consensus sequence are highlighted.

Toxin First residue Sequence

PFO 458 ECTGLAWE-WWR
SLO 529 ECTGLAWE-WWR
PLY 427 ECTGLAWE-WWR
SLY 455 ECTGLAWE-WWR
LLO 483 ECTGLAWE-WWR
LSO 484 ECTGLFWE-WWR
ILO 458 ECTGLAWE-WWR
ALY 460 ECTGLAWE-WWR
CLY 465 ECTGLAWE-WWR
PLO 491 EATGLAWDPWWT
ILY 485 GATGLAWEPW-R

1.8 CHARACTERIZATION OF PYOLYSIN AS A CHOLESTEROL-DEPENDENT

CYTOLYSIN

Pyolysin is produced by the bacterial pathogen Arcanobacterium pyogenes, and it was first

identified as a haemolytic toxin in 1937 by Lovell [64]. The organism A. pyogenes is an arc-

shaped, non-motile and non-spore forming bacterium that grows under strictly anaerobic condi-

tions, with optimal growth occurring in a CO2-rich atmosphere [56]. All isolates of A. pyogenes

show β -haemolysis on agar media containing bovine and ovine blood, with isolates originating

from porcine sources exhibiting the greatest haemolytic activity [57, 58].

A. pyogenes is an opportunistic pathogen of economically important livestock, such as dairy

and beef cattle and swine. The organism is often found in the mucous membranes and routinely

isolated from the udders, urogenital and upper respiratory tracts of healthy animals [15]. As

one of the most common opportunistic pathogens of domestic ruminants and swine, it can

cause a variety of suppurative infections of the skin, joints and organs. These infections may

result in abortion, abscess, arthritis, mastitis, pneumonia and uterine infection which can lead

to infertility [12, 51, 53, 56]. As A. pyogenes is a very versatile pathogen, infection is not

confined to domesticated animals and can cause infection in many species such as antelope,
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bison, camel, cat, dog, poultry and horse, among others [15, 56]. While rare, human infection

has been reported and is often due to occupational exposure [13, 15, 52].

Pyolysin was classified as a CDC in 1997 by Billington and Jost [12] based on its primary

structure, and it was the first CDC to be non-oxygen labile. PLO is considered to be a major de-

terminant in A. pyogenes infection [15, 58] and it has been shown to lyse immune cells and ery-

throcytes, alter host cytokine expression of many different species, and can be dermonecrotic

and lethal to test animals when administered through intravenous and intraperitoneal routes

[12, 15, 51]. Although the importance of PLO in A. pyogenes virulence is well-established, the

precise role it plays in pathogenesis, like that of many other CDC, is not exactly clear [12].

The amino acid sequence alignment shows PLO as one of the most divergent members of

the CDC family, exhibiting only 31-41% similarity. In addition, PLO possesses an undecapep-

tide sequence that diverges significantly from the consensus for CDC, as seen in Table 1.3.

Here, the sequence for PLO has an alanine residue substituted for the common cysteine found

in other CDC sequences. As with the other CDC members, the undecapeptide sequence is

important in the activity of PLO, especially the three tryptophan residues [16]. When the un-

decapeptide sequence of PLO is replaced with the consensus sequence, the haemolytic activity

of PLO is significantly reduced. In addition to this, it appears that the D1 region of PLO is also

important for its function.

As PLO is a relatively new addition to the CDC family, little research has been conducted

to determine the functional assignments of its specific domains. Considering its divergent

primary sequence from the other CDCs, especially in its undecapeptide region, it is reasonable

to believe that the functionality of the domains of PLO may also differ from that of cholesterol-

dependent cytolysins more commonly studied.

1.9 RESEARCH OBJECTIVES

In this research work, various fluorescence analysis and electron imaging techniques have been

employed to investigate the oligomerization properties of PLO. The work encompasses three

main topics. In the first section, the C-terminal domain or domain 4, the domain originally

believed to be responsible for membrane recognition and binding, is shown to play a role in the

oligomerization process, and its ability to form hybrid oligomers with active wild type toxin is

discussed. The second topic focuses on the effects of an engineered disulfide bridge tethering

domain two and a portion of domain three that inserts into the membrane (transmembrane β -
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hairpin 1) on the oligomerization and resulting pore size. Finally, the last chapter focuses on

the membrane-inserting regions and pore-forming mechanism of PLO oligomers pre-formed

in solution, or solution-derived oligomers, in order to ascertain how these oligomers retain

partial activity. Together, the results of these studies provide further insight and increase our

understanding into the function of cholesterol dependent cytolysins as pore forming toxins.
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Chapter 2

Oligomerization Properties of the C-Terminal Domain of Pyolysin

2.1 INTRODUCTION

Many studies have been conducted on various cholesterol-dependent cytolysins in order to

determine functional assignments of the different domains of this class of toxin: domain 3 is

responsible for oligomerization and membrane insertion, while initial membrane recognition

and binding is mediated by domain 4 (D4) [56, 95, 104, 105]. Previous studies on the role

of domain 4 in the pore-forming process have used C-terminal fragments of two other CDCs,

namely a recombinant fragment encompassing domain 4 of streptolysin O (SLO-D4) [120] and

a C-terminal proteolytic fragment of perfringolysin O (PFO-T2) [114] that contains domain 4

and the adjoining parts of domain 2, the latter most likely in unstructured form. Both fragments

were found to inhibit the haemolytic activities of their corresponding wild type toxins. This

observation was attributed to the ability of the C-terminal region to form a complex with intact

toxin at a stage in the oligomerization step which terminated the process. Considering that

each oligomer subunit must have two separate oligomerization interfaces to interact with its

two neighbours, it was proposed that the fragments may retain only one of these, enabling them

to associate with a growing end of an oligomer but then interfering with continued oligomer

growth.

In this study, the functional role of domain 4 has been revisited, especially its involvement

in the oligomerization process, and its effect on the haemolytic activity. The findings show
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that not only can it form hybrid oligomers with wild type toxin, but it is also capable of self-

oligomerization. Moreover, the haemolytic activity of wild type toxin is not only retained but

even enhanced by the presence of domain 4 fragments. Hence, compared to other CDC toxins,

the isolated domain 4 of PLO retains a greater scope of function. The findings reported in

this chapter indicate a greater functional role of domain 4 in the overall activity of CDC than

previously reported.

2.2 MATERIALS AND METHODS

2.2.1 Protein Expression and Purification

The plasmid pJGS59 encoding the PLO gene containing a histidine purification sequence was

used to create a cysteine-containing intact-toxin mutant (N90C) [50] and the C-terminal frag-

ment that corresponds to domain 4, also containing a single cysteine residue to enable covalent

labelling.

The recombinantly expressed C-terminal fragment, PLO-D4, comprises residues 421 to

534 of the native sequence. The PCR primers were extended in order to N-terminally insert a

thrombin cleavage sequence for removal of the purification tag, and a cysteine residue to allow

for chemical modification. The primers used are listed in table 2.1.

PCR products were used to transform the E. coli XL1 Blue strain, cultured on LB ampi-

cillin plates and incubated at 37 °C for 12-18 hours. After sequence verification, recombinant

plasmids were transformed into E. coli BL21 and cultured in 2×YT broth supplemented with

0.5 mM IPTG (BioShop, Burlington ON) for protein expression. After harvesting, cells were

lysed using the Emulsiflex C5 Emulsifier (Avestin, Ottawa ON) and the protein was purified us-

ing a BioRad Biologic LP liquid chromatography system (Mississauga ON) with nickel agarose

column (Qiagen, Mississauga ON). To remove the hexa-histidine purification tag for the PLO-

D4 toxin fragment, the protein was equilibrated by gel filtration with thrombin cleavage buffer

consisting of 50 mM Tris (BioShop, Burlington ON), 150 mM NaCl (BioShop, Burlington ON)

and 2.5 mM CaCl2 (Fisher Chemicals, Fair Lawn NJ) pH 7.5. Human plasma thrombin (Sigma

Chemicals, St Louis MO) was added to 1 µg for every 100 µg protein, incubated 12-18 hours

at 4 °C with cleavage monitored using SDS-PAGE. Protein molecular masses were determined

on a MicroMass QToF quadropole time of flight mass spectrometer (Montreal QC).
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Table 2.1 Primers used for the construction of the PLO cysteine mutant N90C and the do-
main 4 fragment by PCR mutagenesis. Cysteine codons and anticodons are underlined.

Mutation Sequence

N90C-forward 5’-TCA ATT GAA TGT GTG CCG GTT ACC AAG GAT C-3’

N90C-reverse 5’-ACA TTC AAT TGA CTC ACC CTT GAC TGC AAG-3’

Domain 4-forward 5’-CTG GTA CCC AGG GGG TCC TGC TAC AAG TCT GGT GAA ATC

ACC-3’

Domain 4-reverse 5’-GCA GGA CCC CCT GGG TAC CAG ACC ACC ATG ATG ATG ATG

ATG ATG AGA ACC-3’

2.2.2 Chemical Modification of Cysteine Residues

Protein samples were transferred to labelling buffer consisting of 50 mM Tris, 150 mM NaCl,

1 mM EDTA (BioShop, Burlington ON) pH 7.5 using gel filtration. The samples were sup-

plemented to 1 mM of either Fluorescein-5-Maleimide (Biotium Inc, Hayward CA) or Rho-

damine Red Maleimide (Invitrogen, Burlington ON). The samples were incubated at 25 °C

for 60 minutes and the excess label was removed using gel filtration. To determine the la-

belling efficiency, the ratio of the concentration of fluorophore to protein was calculated using

UV-Vis absorbance with extinction coefficients of 83,000 l/mol·cm for fluorescein at 490 nm and

91,000 l/mol·cm for rhodamine at 540 nm. The extinction coefficient of PLO was determined to

be 68,480 l/mol·cm at 280 nm. As both fluorescein and rhodamine also absorb at 280 nm, the

absorbance value at 280 nm for the protein was corrected by subtracting the absorbance value

contributed by the dye (with fluorescein and rhodamine extinction coefficients of 35,115 l/mol·cm

and 17,697 l/mol·cm, respectively). Labelling efficiencies of 85-90% for fluorescein and 70-80%

for rhodamine, as determined by UV-Vis absorbance were found.

2.2.3 Preparing Red Blood Cells and Membrane Ghosts

To prepare red blood cells, aliquots of 400 µL sheep red blood cells were made up to 1 mL with

PBS buffer (16 mM K2HPO4 150 mM NaCl, 1 mM EDTA, pH 7.5), centrifuged at 380 xg for

4 minutes, and the supernatant was removed to yield approximately 100 µL RBC pellet. The

pellet was washed by resuspending with PBS and centrifugation until the supernatant remained

clear. The pellet was resuspended again to a final volume of 1 mL to a concentration of 10%.

From this, 1% RBC working solutions were made. To prepare membrane ghosts, 400 µL sheep
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RBC were mixed with 600 µL cell lysis buffer (5 mM NaCl, 5 mM Na2HPO4 pH 7.0) and

centrifuged at 16,060 xg for 10 minutes. The supernatant was removed and the pellet washed

until both the supernatant became clear and the pellet translucent. The pellet was made up to

1 mL with PBS buffer.

2.2.4 Haemolysis Assay

Wild type PLO (10 µL) was admixed with PLO-D4 to ratios of 1:1, 1:4 and 1:16. Two-fold

serial dilutions were made in a 96-well plate with PBS buffer. Sheep red blood cells were

added to each well to a final concentration of 0.5% and incubated at 37 °C for 30 minutes.

Haemolysis causes a decrease in cell turbidity, which was monitored at a wavelength outside

the absorbance of hemoglobin (650 nm) using a SpectroMax Plus 384 Microplate Spectropho-

tometer (Molecular Devices, Sunnyvale CA). Haemolytic activity of the wild type–PLO-D4

mixtures was compared to wild type alone and PLO-D4 alone. The same samples were tested

for lysis kinetically at 25 °C for 30 minutes.

2.2.5 Fluorescence Measurement and Data Analysis

All samples containing labelled protein were made to a final concentration of 1 µM with 1%

(v/v) of red cell membrane ghosts. For hybrid oligomer analyses, the samples containing

fluorescein-labelled PLO-N90C (PLO-N90C-F) and rhodamine-labelled PLO-N90C (PLO-

N90C-R) were mixed to a 1:2 ratio (where PLO-N90C-F concentration was 0.33 µM and PLO-

N90C-R concentration was 0.66 µM). The hybrid samples containing rhodamine-labelled PLO-

D4 (PLO-D4-R) and fluorescein-labelled (PLO-N90C-F) were also mixed to a 1:2 ratio (where

PLO-D4-R concentration was 0.33 µM and PLO-N90CF-F concentration was 0.66 µM). For

all other fluorescence assays, fluorescein- and rhodamine-labelled toxin was combined in a 1:1

ratio (0.5 µM each). After incubation at 37 °C for 30 minutes, the protein-membrane samples

were centrifuged at 16,060 xg for 10 minutes, the supernatant removed, and the pellet resus-

pended with PBS. Steady state fluorescence spectra were recorded for soluble toxin controls,

membrane-bound samples, and the centrifugation supernatant. The intensity of the membrane-

bound samples was corrected for incomplete binding toxin according to the following equation:

Fmembrane,corrected =
Fmembrane

Fsoluble −Fsupernatant
(2.1)
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Steady state fluorescence measurements were conducted on a PTI QuantaMaster spectroflu-

orimeter using an excitation wavelength of 465 nm with emission scans recorded from 485 to

630 nm, using 1 mm slit widths. Time-resolved fluorescence was measured using an FT-100

compact fluorescence lifetime spectrometer (PicoQuant, Berlin, Germany) using an LDH-P-

C-470 LED laser light source. Fluorescein emission was isolated using a 520±5 nm bandpass

filter (Andover Corporation, New Hampshire). Decays were fitted using Fluofit software (Pi-

coQuant) using three exponential lifetime components, from which the average lifetime <τ>

was calculated according to

<τ> =
∑αiτi

∑αi
(2.2)

where αi is the intensity contribution of the lifetime component τi at t = 0, with the three-

exponential fits producing χ2 values between 1.0 and 1.2.

2.2.6 Oligomer Size Characerization by Size Exclusion Chromatography

In order to determine relative sizes of hybrid oligomer complexes formed, samples of labelled

PLO-N90C-F or PLO-D4-F were made to 1 µM concentration, with varying concentrations of

unlabelled PLO-D4 added as indicated in the Results section. Membrane ghosts were added to

a final concentration of 20% (v/v). Samples were incubated at 37 °C for 30 minutes, centrifuged

at 16,060 xg for 10 minutes, after which the supernatant was removed. Membranes were dis-

solved using 5% sodium deoxycholate, and the samples were brought to a final volume of 1 mL.

Size exclusion chromatography was performed on a BioRad BioLogic chromatography system

using a Sephacryl S-400 column equilibrated with elution buffer consisting of 20 mM Tris,

150 mM NaCl, 1 mM EDTA and 0.25% (w/v) sodium deoxycholic acid (BioShop, Burlington

ON) pH 8.5. Eluted fractions were collected and analyzed for fluorescein fluorescence.

2.2.7 Transmission Electron Microscopy

Wild type PLO and the C-terminal fragment PLO-D4, alone or in mixtures as indicated in the

Results section, were incubated at a total protein concentration of 0.125 mg/mL with cholesterol

crystals 0.5 mg/mL, prepared according to Harris [43] for 30 minutes at room temperature. The

samples were subjected to negative staining with 2% uranyl acetate according to Harris [43].

Transmission electron microscopy study of the negatively stained specimens was performed by

a Phillips CM 100 transmission electron microscope at 100 kV. Digital images were recorded

using an Optronics 1824×1824 pixel CCD camera with an AMT40 version 5.42 capture engine
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Figure 2.1 Haemolytic activity of wild type PLO with increasing ratios of PLO-D4. The extent
of haemolysis of 0.5% sheep red blood cells after incubation at 37 °C for 30 minutes was deter-
mined by the decrease in turbidity (OD650). The concentration of PLO-WT was held constant
at 10 µg/mL; the concentration of PLO-D4 in the mixed samples is implied by the molar ratios in-
dicated on the graph (PLO-WT:PLO-D4). The sample containing PLO-D4 had a concentration
of 5 µg/mL.

supplied by Deben (Bury St. Edmunds, UK). All TEM analyses were performed by J. R. Harris

at the University of Newcastle upon Tyne, Newcastle upon Tyne, UK.

2.3 RESULTS

2.3.1 Haemolytic Activity of Wild Type Toxin with PLO-D4

In order to test the activity of PLO-D4, the protein was combined with sheep erythrocytes, and

the extent of cell lysis was determined by the decrease in turbidity as illustrated in Figure 2.1.

In this assay, wild type PLO (PLO-WT) achieves 50% haemolysis at approximately 400 ng/mL,

similar to previous measurements [51]. As expected from previous studies on perfringolysin

O and streptolysin O [114, 120], PLO-D4 alone shows no haemolytic activity. However, when

the fragment is combined with PLO-WT, the haemolytic activity of the mixture exceeds that of

PLO-WT alone.

Independent repetitions of the experiment showed considerable variation in the extent of

haemolysis which may be attributed to the age or difference between erythrocyte batches. De-

spite this however, the relative order of the individual samples within sets was reproducible

such that a higher excess of domain 4 over wild type PLO always produced a greater extent of

haemolysis.
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Figure 2.2 Time Course of haemolysis of wild type PLO with increasing ratios of PLO-D4.
In (A), wild type PLO at 0.625 µg/mL was incubated with 0.5% RBC’s at room temperature, and
the progress of hemolysis was monitored by the decrease in turbidity (OD650). The toxin was
present alone (1:0) or with PLO-D4 at various molar proportions (1:1 to 1:16). The sample
labelled 0:1 contains PLO-D4 only. In (B), wild type toxin alone was used at various multiples
of the initial concentration (1:0 again equals 0.625 µg/mL).

Although under the experimental conditions of Figure 2.1, the enhanced haemolytic activity

is visible only at one concentration of the wild type toxin (312 ng/mL), it is, however, also visible

at other concentrations in kinetic assays, as seen in Figure 2.2A. As in the endpoint assay, the

incremental effect of domain 4 is limited and levels off at a large excess of the fragments

over wild type PLO. For comparison, the time course of haemolysis observed with various

amounts of PLO-WT is shown in Figure 2.2B. The effect of a single additional equivalent of

PLO-WT on the rate of haemolysis appears similar to that of 16 equivalents of PLO-D4, and

higher concentrations of wild type toxin increase the speed of haemolysis even further. The

observation that the promotion of haemolysis by domain 4 can be saturated suggests that its

productive interaction with PLO-D4 is limited by the amount of the latter. Nevertheless, the

finding that PLO-D4 increases the haemolytic activity of wild type PLO is in stark contrast

with previous observations on the isolated domain 4 of streptolysin O, which inhibits rather

than augments the activity of the wild type toxin [120].

2.3.2 Oligomerization of PLO-D4: FRET Studies

To examine the ability of PLO-D4 to oligomerize with itself and the full length toxin, both

molecules were thiol-specifically labelled with fluorescein and rhodamine, respectively. The

two labels form a donor-acceptor pair for fluorescence energy transfer (FRET) studies with a
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Figure 2.3 Characterization of domain 4 fragment oligomers by FRET. A: PLO-D4 labelled
with fluorescein (D4-F) alone or in combination with rhodamine (D4-R) were incubated with
sheep erythrocyte ghosts. Addition of D4-R prior to incubation with membranes greatly re-
duces the fluorescence of D4-F due to FRET, indicating oligomerization. If PLO-D4-R is added
after incubation for 30 minutes with D4-F alone, the extent of FRET is reduced, indicating that
the two species remain partially segregated. B: A mixture of fluorescein- and rhodamine-
labelled PLO-D4 was incubated with membranes as before and the sample solubilized with
deoxycholate (DOC). FRET is reversed, indicating dissociation of the oligomer. The same
treatment does not change the fluorescence of a sample of N90C-F and N90C-R.

Förster distance (R0) in the range of 50 Å [122]. The fluorescein-labelled (PLO-D4-F) and the

rhodamine-labelled fragment (PLO-D4-R) were mixed and then incubated with sheep erthyro-

cyte membrane ghosts, and the fluorescence emission was measured. The pronounced decrease

in the donor (fluorescein) signal when combined with acceptor (rhodamine), as illustrated in

Figure 2.3A indicates that PLO-D4 fragments can associate with each other and thereby en-

gage in FRET. When the two species were applied to the membranes sequentially rather than

simultaneously, the donor signal was weaker than with PLO-D4-F alone but stronger than with

the pre-mixed sample. This suggests that at least some of the molecules in the initially applied

sample are sequestered in oligomers and are no longer available for the formation of hybrid

oligomers at the time of the second application. The results are consistent with the formation

of oligomers that are stable on the time scale of the experiment. The attenuation of donor

fluorescence in the combined samples is not the result of competition for binding sites by the

acceptor-labelled fragments, as application of two equivalents of donor also doubles the donor

intensity (data not shown).

Oligomers of SLO and PFO are stable after membrane disruption with detergents, and sol-

ubilization with deoxycholate has been used to isolate and characterize these oligomers [87].
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In order to test the stability of the domain 4 oligomers towards dissociation by detergents,

PLO-D4-R and PLO-D4-F were incubated with membrane ghosts and subsequently with de-

oxycholate to dissolve the membranes. Fluorescence spectra were obtained before and after

deoxycholate solubilization as illustrated in Figure 2.3B. The intensity of the fluorescein peak

increases greatly upon membrane solubilization, indicating disruption of the oligomers and

abolition of FRET. In contrast, the oligomers of full-length toxin readily withstand membrane

solubilization, as evident from the continued existence of FRET before and after solubilization.

This indicates that oligomers formed by domain 4 alone are linked by forces weaker than those

formed by wild type toxin.

2.3.3 Oligomerization of PLO-D4: Electron Microscopy

Cholesterol crystals have been established as a useful model system to study the oligomeriza-

tion of CDCs by EM [26, 43]. Looking at TEM images of PLO on a crystalline cholesterol

surface, the consistent ring- and arc-structures seen with the oligomerization of wild type PLO

illustrated in Figure 2.4A, yet PLO-D4 on the same surface results in a striped pattern of toxin

fragments arranged in a linear array across the surface, as seen in Figure 2.4B. Evidently, the

absence of the first three domains influences the size and shape of the resulting oligomers

formed by PLO-D4. At the same time, it is clear that the presence of these domains does not

abolish interaction between the toxin molecules.

2.3.4 Hybrid Oligomer Formation by PLO-D4 and Wild Type PLO

From the observation of oligomers of both PLO-D4 and of the full-length molecule, the ques-

tion arises if the two can also form hybrid oligomers. The enhancement of the haemolytic

activity of wild type PLO by PLO-D4 suggests that this is possible. In order to directly detect

such hybrids, PLO-D4-R was mixed with PLO-N90C-F, and the mixture incubated with mem-

branes. Formation of hybrid oligomers should result in FRET between the two species, and

this is indeed apparent from the reduction in PLO-N90C-F fluorescein emission as illustrated

in Figure 2.5. FRET occurs only when the two species are applied simultaneously, but not

sequentially, which corroborates the conclusion that this is due to the formation of hybrids, as

opposed to FRET between segregated donor- and acceptor-labelled oligomers that happen to

be located in close proximity to each other.
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A B

C D

Figure 2.4 Electron microscopy of wild type PLO and domain 4 oligomers on cholesterol
crystals. A: Wild type PLO alone. The rings and arcs resemble those previously described for
other CDCs. B: PLO-D4 alone. Instead of rings and arcs, straight rods in parallel arrangement
are seen. C and D: Mixtures of wild type with PLO-D4 in twofold or fivefold excess, respectively.
In addition to the arcs, the rings and rods are also observed in A and B, ‘walking canes’
and other hybrid shapes are seen, some of which are marked with arrows. Black scale bars
correspond to 100 nm. All TEM analyses were performed by J. R. Harris at the University of
Newcastle upon Tyne, Newcastle upon Tyne, UK.

In hybrid oligomers, the domain 4 fragment may be restricted to terminal positions, or

alternatively it might intercalate between two molecules of full-length toxin. In order to de-

termine whether such intercalation occurs, fluorescence measurements were performed on an

equimolar mixture of PLO-N90C-F and PLO-N90C-R, to which increasing amounts of unla-

belled PLO-D4 were added. The rationale here is that intercalation of PLO-D4 between the

donor- and acceptor-labelled full-length molecules should reduce FRET between the donor-

and acceptor-labelled intact molecules. Figure 2.5B shows that, with increasing PLO-D4 con-

centration, the donor signal also increases, and the acceptor signal decreases. This change is
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Figure 2.5 Formation of hybrid oligomers from wild-type PLO and the domain 4 fragment
(FRET). A: PLO-N90C labelled with fluorescein (PLO-N90C-F) and rhodamine (PLO-N90C-R)
were incubated with sheep erythrocyte ghosts. FRET (as detected by a decrease of fluores-
cein fluorescence) only occurs if the two proteins are applied simultaneously. The absence of
FRET observed with sequential application, with incubation for 30 minutes between the two
species, likely indicates the formation of segregated oligomers. B: FRET between N90C-F
and the rhodamine-labelled species (N90C-R) is effectively suppressed if the labelled toxin
is admixed with an equivalent amount of unlabelled wild type toxin before addition to mem-
branes. In contrast, only a very slight reduction of FRET is observed even with a 4-fold excess
of unlabelled D4 fragment. This indicates that the fragment does not efficiently intercalate
between N90C subunits in hybrid oligomers.

very small but reproducible, and is indicative of a slight increase in the average spacing be-

tween the labelled full-length toxin monomers. However, as also shown in Figure 2.5B, the

decrease in energy transfer was far more pronounced when unlabelled wild type PLO was

employed instead of the unlabelled D4 fragment.

These observations are corroborated by time-resolved fluorescence measurements (Table

2.2).1 Fluorescein-labelled N90C alone yields a fluorescein lifetime of 2.8 ns, whereas the

mixture of N90C-F and N90C-R alone yields a lifetime of 1.1 ns, corresponding to the maxi-

mum FRET effect. When the unlabelled D4 fragment is added, the fluorescein lifetime rises

slightly, while a much greater increase is seen with unlabelled wild type PLO. Independent

repetitions of this experiment showed slight variations in absolute lifetime values, however the

overall order was reproducible where a greater concentration of domain 4 gave consistently

higher lifetime values. The collective results indicate that the domain 4 fragments can interca-

1The parameters for the individual components obtained from the fit are listed in tables A.1 and A.2 on page
98.
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Table 2.2 N90C-fluorescein fluorescence lifetimes in hybrid oligomers. An equimolar mixture
of the fluorescein-labelled and rhodamine-labelled forms of mutant N90C was incubated with
membranes, either alone (leftmost column) or with the D4 fragment or wild type PLO added at
different molar excess over the labelled N90C. The fluorescein time-dependent fluorescence
decay was fit with a three-exponential model, and the average lifetimes <τ> calculated ac-
cording to equation 2.2 on page 25. The fluoresence lifetime of N90C-F alone after incubation
with membranes is shown for comparison. The χ2 values report the goodness of the three-
exponential fit.

N90C-F/R D4 WT N90C-F

unlabeled protein (mol/mol) – 1 2 4 1 2 4 –

<τ> (ns) 1.10 1.23 1.25 1.29 1.87 2.23 2.14 2.77
χ2 1.15 1.12 1.07 1.15 1.12 1.06 1.13 1.03

late between full length toxin molecules, but with a greatly reduced efficiency relative to the

intact toxin molecules themselves.

One possible explanation for the low efficiency of domain 4 incorporation into oligomers

of full-length toxin is related to the rates of oligomerization. If one species undergoes oligo-

merization much faster than the other, this would favour the formation of segregated oligomers.

To compare the rates of oligomerization, the time course of fluorescein fluorescence was mon-

itored in mixtures of PLO-N90C-F and PLO-N90C-R, and of PLO-D4-F and PLO-D4-R, re-

spectively, during incubation with membrane ghosts (Figure 2.6). Progress of oligomerization

is evident from the decrease in fluorescein fluorescence due to FRET. While the kinetic curves

of the different samples vary somewhat in shape and slope, overall the rates of oligomerization

appear to be of comparable magnitude. This suggests that effects other than differences in

the rate of oligomerization are responsible for the relatively low efficiency of intercalation of

domain 4 between full-length toxin molecules mixed in samples.

2.3.5 Morphology of Hybrid Oligomers

On crystalline cholesterol surfaces, mixtures of PLO-WT and PLO-D4 yield both rings and

arcs as expected for PLO-WT alone. However, in addition to these two elementary shapes,

the two shapes are seen to combine into walking-cane like formations, as seen in Figure 2.4

on page 30. It is likely that the arc portion of the walking stick oligomer is formed predomi-

nantly by wild type molecules, whereas the stick consists mostly of domain 4 fragment. Some
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Figure 2.6 Kinetics of oligomer formation on membrane ghosts by FRET. The progress of oli-
gomerization of full-length PLO, the domain 4 fragment and of hybrid oligomer formation was
monitored by FRET. Fluorescein- and rhodamine-labelled N90C or D4 fragment were mixed
as indicated. At t=0, RBC membrane ghosts were added to 1%, and the sample mixed by
pipetting. The spikes at t=0 are artifacts caused by opening and closing the sample compart-
ment.

additional variations occur, as illustrated in Figures 2.4C and D, in which multiple changes of

curvature give rise to horseshoe-like formations or other irregular shapes. In some sections of

those structures, the curvature appears to be smaller than in regular arcs, suggesting that these

sections may contain both PLO-WT and intercalated domain 4 molecules.

The observed structures are compatible with the notion of a limited but measurable ability

of domain 4 to form hybrid oligomers with PLO-WT, as inferred from fluorescence experi-

ments (see Figure 2.5B).

2.3.6 Reduced Size of Hybrid Oligomers and PLO-D4 Oligomers

In order to determine the relative size of the D4-WT PLO hybrid oligomers, fluorescein-

labelled intact toxin, PLO-N90C-F was incubated with membranes with a twofold molar excess

of domain 4, and after the membranes were dissolved using deoxycholate, size exclusion chro-

matography was performed. The elution profile of the hybrid oligomers of 1:2 PLO-WT to

PLO-D4 ratios is compared to PLO-WT oligomers and monomer, as seen in Figure 2.7. The

hybrid oligomer gives a peak maximum at a higher elution volume as compared with that ob-

tained with wild type oligomers alone, and the control sample of WT monomer eluting at a

high volume (indicating a very low relative molecular weight). After the main peak, the size

of the hybrid oligomers gradually trails off. This range of elution volumes may be a result of
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Figure 2.7 Characterization of PLO-D4 homogenous and hybrid oligomers by size exclusion
chromatography. N90C and D4, respectively, were labelled with fluorescein and incubated with
membrane ghosts for 30 minutes at 37 °C. The sample representing the hybrid oligomers were
prepared from fluorescein-labelled PLO-N90C with a twofold molar excess of unlabelled D4.
After incubation, the membranes were dissolved with 5% deoxycholate, and the samples were
run through a Sephacryl S-400 column in the presence of 6 mM of the detergent. Fluorescein
fluorescence was measured in the eluate fractions.

the relative instability of the oligomers formed by PLO-D4 after membrane solubilization by

deoxycholate, as previously seen (refer to Figure 2.3).

Looking at the homogenous PLO-D4 oligomers, there is a double maximum with the first

peak eluting at a higher elution volume than seen for the WT-D4 oligomers and the second peak

eluting at a volume corresponding to the peak maxima of PLO-WT monomers and the PLO-

D4 monomer control. Therefore, the second peak may be assigned to un-complexed PLO-D4

fragments. (As the molecular weight separation range of the resin Sephacryl S-400 does not

differentiate between PLO-WT (57000Da) and PLO-D4 (15000Da), both peaks are eluted at

the same volume.) This suggests that the PLO-D4 oligomers have an overall lower molecular

weight than the wild type-domain 4 hybrid oligomers, and that the oligomerization of PLO-D4

alone is not as efficient as oligomerization between wild type and PLO-D4, or with PLO-WT

alone.

2.4 DISCUSSION

The pore-forming mechanism of CDCs and the role each domain plays in the binding, oligo-

merization, and insertion steps have been the topic of numerous research studies and publica-

tions. As mentioned earlier, it was found that domain 3 is the main participant in the oligomer-
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ization and insertion steps, while the role of domain 4 is reserved for membrane-recognition

and binding. The function of domain 4 was initially discovered with the analysis of trypsin-

digested toxin fragments where the C-terminal fragment was able to retain the ability to bind

to the membrane surface [82, 114], and after the determination of the CDC crystal structure,

it was found that domain 4 was the only contiguous domain of the toxin [98]. In a study by

Weis and Palmer [120], it was found that domain 4 alone was responsible for membrane bind-

ing, whose function mimicked those of larger fragments. Later, it was discovered that only the

bottom tip of domain 4 inserts into the membrane, where three hydrophobic loops, L1, L2 and

L3, and the highly conserved undecapeptide sequence bind to the membrane surface [94].

Mutations in the highly conserved undecapeptide sequence, especially the three tryptophan

residues contained within, resulted in dramatically decreased haemolytic activity [14, 101],

showing the region’s importance in the pore-forming process. In order to determine the func-

tion of the undecapeptide sequence, studies conducted on the CDC intermedilysin (ILY), a

toxin that does not depend on membrane cholesterol to bind, illustrated that the role of the

undecapeptide region was not directly for membrane-cholesterol recognition, but instead to

initiate the conformational changes necessary to commence the oligomerization and TMH in-

sertion events [108]. Together, these results helped to define the primary role of domain 4 as

membrane-recognition and binding. Some studies, however, were conducted to examine the

role of domain 4 in the oligomerization process. The proteolytic fragment of perfringolysin O

(PFO-T2) containing domain 4 and the adjoining parts of domain 2 [114], and the recombinant

fragment encompassing domain 4 of streptolysin O (SLO-D4) [120] was investigated for oli-

gomerization ability by fluorescence analysis. Here, both PFO-T2 and SLO-D4 exhibited an

inhibition of lytic ability when combined with wild type toxin, and neither retained the ability

to self-associate.

However, in this study, fluorescence analysis and TEM imaging show strong evidence for

domain 4 self-association. When fluorescein- and rhodamine-labelled PLO-D4 were combined

on a membrane surface, a decrease in fluorescein signal is clearly seen, indicating the donor-

and acceptor-labelled toxin fragments are within the 50Å Förster distance. Also, TEM images

demonstrate the interaction of PLO-D4 fragments to associate into linear, rod-shaped com-

plexes. The forces binding these complexes, however, were found to be much weaker than

those supporting the intact toxin oligomer, as demonstrated by the disruption of the PLO-D4

oligomer using deoxycholate.
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The combination of intact toxin and domain 4 gave surprising results. As expect, D4 alone

shows little haemolytic activity, yet the combination of the two enhanced the lytic ability of

wild type toxin, a result not seen in other CDC studies. By comparison, the C-terminal frag-

ments of PFO [114] and SLO [120] showed an inhibitory effect when combined with their

respective wild type toxins. Although PLO-D4 causes an increased rate of wild type lysis, it is

not to the same extent as wild type alone at increased concentrations indicating that the inter-

action is not as efficient as with other wild type molecules. However, the results observed are

significant, and two possible explanations can be proposed to account for this behaviour. The

first possibility is that D4 on the membrane surface could act to initiate wild type oligomer-

ization, and the second mechanism is via the formation of wild type PLO and D4 functional

hybrid oligomers where the increase in overall toxin concentration would cause an increase in

the overall number of pores formed. The current study offers strong evidence that the intact

PLO and domain 4 can form functional hybrid oligomers.

Fluorescence resonance energy transfer analysis (FRET) show that wild type can associate

with domain 4 fragments as a decrease in fluorescein intensity was observed when fluorescein-

labelled intact toxin was combined with rhodamine-labelled D4 on a membrane surface, signi-

fying a close proximity between the two species. This result was also supported by an observed

decrease in FRET when fluorescein- and rhodamine-labelled intact toxin was combined with

increasing amounts of unlabelled domain 4, indicating an increase in spacing between the la-

belled intact toxin molecules. TEM images show rather unusual and unique structures are

formed by intact PLO and D4 hybrid oligomers; elongated arcs, canes, and horseshoe patterns

are observed here that have not been reported elsewhere.

Size exclusion data suggest that the molecular weight of the hybrid oligomers are reduced

in size compared to the oligomers formed by wild type toxin, although TEM images show

the hybrid structures to be of similar size or larger. The formation of hybrid oligomers which

caused an inhibition of activity as described with the C-terminal fragment of PFO [114] sug-

gested that the fragment must possess at least one complementary oligomerization site, while

lacking the corresponding sites for continued oligomer growth. In the current study, continued

oligomer growth is observed, suggesting that domain 4 does in fact possess required sites to

continue the oligomerization process, as illustrated in Figure 2.8.

The frequency of occurrence and the consistent shapes observed suggest that the interaction

of intact toxin and D4 is not random. In each image, the ‘arc’ of the cane and its ‘shaft’ always

align to form an angle close to 180°, random interactions of these two structures would most
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Figure 2.8 Possible modes of interactions between intact PLO and the domain 4 fragment.
Each subunit of the oligomer requires two faces for interaction with the neighbouring subunits.
In the isolated domain 4 fragment, either only one face (A) or both faces (B) may be preserved.
In the case that only one oligomerization site exists on the domain 4 fragment, its interaction
with wild type toxin would result in the termination of the oligomerization process, and the
domain 4 fragment being restricted to the terminal positions of the oligomer. In contrast, if the
domain 4 fragment possesses both faces necessary for oligomerization, then intercalation of
the fragment between intact toxin molecules is possible. (Intact PLO molecules are depicted
in blue, while domain 4 fragments are in green.)

certainly result in formations of arcs and rods interacting or touching at more acute angles, and

possibly having the rods spanning across the arcs to touch at both terminal ends.

In summary, these results show that the C-terminal domain of PLO retains the ability to not

only bind to target membranes, but also oligomerize with intact toxin moleculess to the point

of enhancing activity, and oligomerize with other C-terminal fragments. This evidence shows

that D4 is involved in the oligomerization process, and the intact toxin in hybrid oligomers

maintain the ability to undergo the appropriate conformational changes and rearrangement to

insert into membranes to form functional pores. This behaviour is quite different than that

seen of two other CDC’s studied, where little self-association was seen, and an inhibition of

activity was observed. These findings signify that the functional role of domain 4 in CDC pore

formation may be more profound than previously believed.
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Chapter 3

Partial Oligomerization of Pyolysin Induced by a
Disulfide-Tethered Mutant

3.1 INTRODUCTION

In the previous chapter, a novel role of domain 4 in the CDC pore formation mechanism not

previously observed in other studies was discussed. Here, it was discovered that domain 4 of

PLO participates in the oligomerization process. The process of oligomerization is complex,

and fluorescence experiments have been conducted to elucidate the progression and points of

contact between adjacent monomers during oligomerization. Briefly, once a toxin molecule

binds to a membrane, conformational changes occur throughout the molecule that allow core

β -strands of one monomer to interact and form hydrogen bonds with adjacent toxin monomers

[95]. In order for the two sets of short α-helices in domain 3 to undergo the transition to form

β -sheets, domains 2 and 3 must first uncouple, so that the transmembrane β -hairpins can insert

into the membrane and form a pore.

In a previous study on the homologous toxin perfringolysin O (PFO) , it had been reported

that the introduction of a disulfide bond between domains 2 and 3 prevented membrane inser-

tion, while still allowing the assembly of pre-pore oligomers [49]. This observation suggests

that conformational flexibility of domain 2 relative to domain 3 is not a requirement up to the

pre-pore stage. In this study, it was found that a homologous disulfide mutant derived from the

toxin pyolysin formed by substituting cysteine residues for glycine 85 of domain 2 and arginine
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Figure 3.1 Location of the Disulfide Bond in the Structure of Pyolysin. The disulfide bond
is formed between the residues G85 in domain 2 and R219C in the first transmembrane β -
hairpin region in domain 3. Rendered from 1PFO.pdb with PyMOL (DeLano Scientific LLC,
2005).

219 in domain 3, as illustrated in Figure 3.1 fails to oligomerize. The mutant also interferes

with the activity of wild type pyolysin in a dose-dependent manner. At large molar excess over

the latter, inhibition of haemolysis is virtually complete, whereas at equimolar ratio, haemoly-

sis is partially preserved, but both oligomer and pore size are reduced. These findings indicate

that conformational flexibility between domains 2 and 3 is required for proper oligomerization.

Furthermore, they show that membrane insertion of oligomers is co-operative, yet completion

of oligomerization to ring shape is not necessary.

3.2 MATERIALS AND METHODS

3.2.1 Plasmid Expression and Protein Purification

All mutants were created using the plasmid pJGS59 [12] encoding the PLO gene contain-

ing a histidine purification sequence. The first mutant is a cysteine-containing double mutant
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designed to have one cysteine residue located in domain 2 in close proximity to the second

cysteine residue at the start of the TMH1 sequence found in domain 3 so that a disulfide link-

age could form within one toxin molecule. To create this mutant, the wild type toxin was first

modified to replace the arginine residue at position 219 with cysteine using the forward primer

5’-ACG TCA AAG TGT CAA CTG GAG GCA AAG C-3’, and 5’-CAG TTG ACA CTT TGA

CGT CAC CAG AGT C-3’ as the reverse primer (PLO-R219C), followed by replacement of

the glycine residue at position 85 with cysteine using the forward primer 5’-GCA GTC AAG

TGC GAG TCA ATT GAA AAT GTG C-3’ and the reverse primer 5’-TTC AAT TGA CTC

GCA CTT GAC TGC AAG TAC ACC-3’. This disulfide mutant will be referred hereinafter

as PLO-DS. The third mutant is a triple mutant, that was generated using the above disulfide

PLO-DS gene, and replacing the lysine 328 residue with cysteine using the forward primer 5’-

AGC GGC CTG TTC TGC GCT AAG TTC GGC AAT CTT TCC ACA-3’, and the reverse

primer 5’- TCT GGA AAG ATT GCC GAA CTT AGC GCA CAA CAG GCC GCT-3’ (PLO-

DS-K328C or PLO-TS). The K231C mutant in the first transmembrane β -hairpin was formed

using the forward primer 5’-GGA TTT GAA TGC GTC TCA GCC AAG CTC AAC-3’ and

the reverse primer 5’-GCA TTC AAA TCC GAG GCC AAG CTT TGC CTC-3’. Finally,

the A329C mutant in the second transmembrane β -hairpin region replaces the alanine residue

in the 329 position with cysteine using 5’-TTT AGC GGC CTG TTC AAA TGC AAG TTC

GGC AAT CTT TCC-3’ and 5’-GGA AAG AAT GCC GAA CTT GCA TTT GAA CAG GCC

GCT AAA-3’ as the forward and reverse primers, respectively. The PLO-R219C and PLO-DS

mutants were created by C. Baik. The active mutant N90C was created as described in Chapter

2.

3.2.2 Chemical Modification of Cysteine Residues

Protein samples were transferred to labelling buffer consisting of 50 mM Tris, 150m M NaCl,

1 mM EDTA (BioShop, Burlington ON) pH 7.5 using gel filtration. The single cysteine mutants

were supplemented to 1 mM of either Fluorescein-5-Maleimide (Biotium Inc, Hayward CA),

Rhodamine Red Maleimide (Invitrogen, Burlington ON) or N,N’-dimethyl-N-(iodoacetyl)-N’-

(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD, Cedarlane, Hornby ON). The

samples were incubated at 25 °C for 60 minutes and excess label was removed using gel filtra-

tion chromatography. Labelling efficiencies were calculated as described in the Materials and

Methods section of Chapter 2. IANBD concentrations were calculated according to UV-Vis
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absorbance using 24,667 l/mol·cm at 490 nm and 1218 l/mol·cm at 280 nm. Labelling efficiencies

of 85-90% were obtained for fluorescein, and effciencies of 70-80% were obtained for both

rhodamine and IANBD.

3.2.3 Haemolysis Assay

Two-fold serial dilutions were made of PLO-DS (initial concentration 60 µg/mL) in a 96-well

plate with PBS buffer, in the presence and absence of 5% (v/v) β -mercaptoethanol (EM Sci-

ence, Gibbstown NJ). Incubation of PLO-DS was conducted by incubating the toxin at room

temperature for 30 minutes. Sheep red blood cells were added to each well to a final concen-

tration of 0.5% and incubated at 37 °C for 30 minutes. The decrease in cell turbidity corre-

sponding to haemolysis was monitored at a wavelength outside the absorbance of hemoglobin

(650 nm) using a SpectroMax Plus 384 Microplate Spectrophotometer (Molecular Devices,

Sunnyvale CA).

The effect of the PLO-DS on the haemolytic activity of active toxin was determined by

mixing fluorescein-labelled PLO-N90C-F with disulphide mutant at 1:1, 1:2, 1:3 and 1:4 ratios

with a constant PLO-N90C-F concentration of 1 µg/mL. Samples were incubated with sheep

erythrocytes at 0 °C for 30 minutes, were pelleted and the supernatant removed. The fluo-

rescein emission of the supernatant was recorded (excitation at 465 nm) along with unbound

PLO-N90C-F at 1 µg/mL, which was used to calculate the extent of active toxin binding. The

pellet was resuspended in PBS buffer and the haemolytic activity of the mixtures was mea-

sured at 25 °C. The time-dependent decrease in cell turbidity corresponding to haemolysis was

monitored at 650 nm, using a SpectroMax Plus 384 Microplate Spectrophotometer (Molecular

Devices, Sunnyvale, CA). Haemolysis assays of PLO-N90C-F alone was run at 0.25, 0.50,

0.75 and 1.0 µg/mL to compare activity with that of the active toxin-disulphide mutant mixtures.

3.2.4 Fluorescence Experiments

All samples containing labelled protein were made to a final concentration of 1 µM, with 1%

(v/v) of red cell ghost membranes. For all fluorescence resonance energy transfer (FRET) as-

says, fluorescein- and rhodamine- labelled toxins were combined at a 1:1 ratio (0.5 µM each).

For NBD-emission assays, labelled toxins were mixed at a 1:2 ratio with either unlabelled

wild type PLO (PLO-WT) or with unlabelled disulfide mutant (PLO-DS). Chemical modifica-
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tion, erythrocyte membrane ghost preparation steps, correction for incomplete binding, and the

steady state and time resolved fluorescence analyses procedures are as described in Chapter 2.

After incubation with membranes, any remaining unbound toxin was removed by centrifu-

gation. The fluorescence emission of the resuspended membranes was recorded with excitation

at 465 nm. Fluorescence spectra were obtained of the supernatants and were used to correct

those of the membrane samples for incomplete toxin binding.

3.2.5 Size Exclusion Chromatography

In order to determine relative sizes of hybrid oligomer complexes formed, samples of labelled

PLO-K219C-F were made to 1 µM concentration, with an equal amount of unlabelled PLO-DS.

Ghost membranes were added to a final concentration of 20% (v/v). Samples were incubated at

37 °C for 30 minutes, centrifuged at 16,060 xg for 10 minutes, after which the supernatant was

removed. Membranes were dissolved using 5% sodium deoxycholate, and the samples were

made to a final volume of 1 mL. Size exclusion chromatography was performed on a BioRad

BioLogic FPLC using a Sephacryl S-400 column equilibrated with elution buffer consisting of

20 mM Tris, 150 mM NaCl, 1 mM EDTA and 0.25% (w/v) sodium deoxycholic acid (BioShop,

Burlington ON) pH 8.5. Eluted fractions were collected and the fluorescein fluorescence was

measured.

3.2.6 Transmission Electron Microscopy

Sample preparation and instrumentation for electron microscopy are as described in Chapter 2.

3.2.7 Osmotic Protection Assay

A standard buffer of 10 mM K2HPO4, 25 mM NaCl at pH 7.5 was supplemented with either

Dextran 6 or Dextran 40 (both, Fluka Biochemika, Switzerland) to a final concentration of

13% or 17% (w/v), respectively, as these concentrations were found to give sufficient osmotic

protection to erythrocytes. Washed sheep erythrocytes were made in the above buffers to a

final concentration of 0.5% and 100 µL of each RBC-dextran mixture was added to wells of

a 96-well microtitre plate and supplemented with wild type PLO to a final concentration of

2.5 µg/mL, as well as mixtures of 1:1 and 1:2 wild type PLO and PLO-DS. Kinetic analyses were

conducted using the SpectroMax Plus 384 Microplate Spectrophotometer at an absorbance of

650nm at 25 °C for 30 minutes.
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Figure 3.2 Hemolytic Activity of Oxidized and Reduced PLO-DS. The extent of hemolysis of
a 0.5% sheep RBC solution was read as the decrease in OD650 after incubation at 37 °C for
30 minutes. Sheep RBC (0.5% in PBS) were incubated with the indicated amounts of PLO-WT
or PLO-DS and incubated at 37 °C for 30 minutes. The OD650 reflects the fraction of cells that
remain intact after the incubation; hemolysis is apparent as a drop in the OD650.

3.3 RESULTS

3.3.1 Haemolytic Activity of the Disulfide-Tethered Mutant

In keeping with previous results, wild type PLO (PLO-WT) exhibits 50% haemolysis at ap-

proximately 400 ng/mL. In contrast, the disulfide mutant, or PLO-DS, shows no haemolytic

activity up to a concentration of 5 µg/mL. However, when PLO-DS is reduced with β -mercapto-

ethanol, the haemolytic activity was restored to a level similar to that of wild type pyolysin, as

illustrated in Figure 3.2. This indicates that the functional impairment is due to the disulfide

bond and not to the substitutions of residues R219C or G85C individually. These findings are

entirely analogous to those reported previously for the homologous mutant of perfringolysin O

[49].

3.3.2 Oligomerization of PLO-DS

The disulfide mutant of perfringolysin O was reported to form pre-pores on membranes, with

the same circular shape and diameter that also characterizes the final, membrane-inserted per-

fringolysin pores [49]. In contrast to these findings, PLO-DS did not form any distinct, regular

ring-shaped oligomers on liposomes containing phosphatidylcholine and cholesterol (data not

shown). Similarly, on cholesterol microcrystals, which provide a minimal but viable model

substrate for CDCs [26, 43], the mutant failed to form typical oligomers as illustrated in Figure

3.3B. Therefore, the mutant is deficient not only in its ability to undergo membrane insertion,
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Figure 3.3 Electron microscopy of wild type PLO and of PLO-DS, alone and in mixtures, on
cholesterol crystals (negative staining with 2% uranyl acetate). The protein (0.125 mg/mL) and
cholesterol crystals (0.5 mg/mL) were incubated for 30 minutes at room temperature. A: Wild
type PLO, B: PLO-DS, C: Wild type PLO and PLO-DS 1:1, D: Wild type PLO and PLO-DS
1:10. All TEM analyses were performed by J. R. Harris at the University of Newcastle upon
Tyne, Newcastle upon Tyne, UK.

but is already unable to properly oligomerize. Oligomerization of the mutant was restored upon

reduction which is in agreement with the observed restoration of hemolytic activity.

The lack of oligomerization of PLO-DS is also apparent in fluorescence resonance energy

transfer (FRET) experiments. Here, PLO-DS was modelled with the triple mutant PLO-DS-

K328C (or PLO-TS), which in addition to the disulfide bond contains another cysteine residue

amenable to covalent labelling. In both labelled and unlabelled form, the triple mutant func-

tionally behaves like PLO-DS, exhibiting haemolytic activity only upon disulfide reduction.

The mutants were labelled with fluorescein and rhodamine, respectively. Fluorescein and

rhodamine form an efficient donor-acceptor pair for FRET, with an R0 distance of approxi-

mately 50 Å [122], which is well above the distance of two adjacent subunits in CDC oligo-

mers [44, 110]. Accordingly, when mixtures of fluorescein- and rhodamine-labelled N90C are

incubated with membranes, the formation of hybrid oligomers results in a strong reduction of

the fluorescein emission, as seen in Figure 3.4A. In contrast, no such reduction is apparent with

the triple mutant, indicating the decreased extent of oligomerization, shown in Figure 3.4B.

3.3.3 The Effect of PLO-DS on the Oligomerization of Wild Type PLO

When PLO-DS was added to wild type PLO at equal amounts or in slight excess, oligomers

were observed, but these were mostly incomplete and arc-shaped, indicating that oligomeriza-

tion was partially inhibited by the mutant, shown in Figure 3.3C. With PLO present in ten-fold

excess, oligomerization was virtually completely inhibited, seen in Figure 3.3D.
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Figure 3.4 FRET experiments on the oligomerization of PLO-DS on erythrocyte ghost mem-
branes. The active single cysteine mutant N90C and the triple mutant PLO-DS-K328C (PLO-
TS) were labelled with fluorescein (F) or rhodamine (R). The labelled species were then mixed
and incubated with membranes. Spectra were corrected for incomplete binding of labelled
protein. A: Oligomerization of the active mutant N90C is evident by the suppression of fluo-
rescein emission due to FRET to rhodamine. B: The triple mutant does not show significant
FRET, indicating inhibition of oligomerization.

The formation of oligomers of reduced size in mixtures of PLO-WT and PLO-DS was

confirmed with size exclusion chromatography. In these experiments, wild type PLO was

replaced with the haemolytically active fluorescein-labelled cysteine PLO mutant (R219C).

This mutant was incubated, with or without added PLO-DS, with sheep red cell membranes to

induce oligomerization. The membranes were then solubilized with deoxycholic acid before

application to a Sephacryl S-400 column. Oligomers formed from an equimolar mixture of

PLO-DS and the active toxin elute between the monomeric toxin and oligomers formed from

the active toxin mutant alone, illustrated in Figure 3.5. Since the fluorescence signal tracks the

labelled active mutant only, the slowed elution indicates that the disulfide mutant indeed causes

the active toxin to result in oligomers of reduced size.

FRET experiments combining fluorescein-labelled PLO-N90C (PLO-N90C-F) and the rho-

damine triple mutant PLO-TS show an efficiency of FRET that is intermediate between those

of the active mutant, seen in Figure 3.6A, and the inactive mutants alone. When unlabelled

disulfide mutant or wild type PLO is added to a mixture of PLO-N90C-F and PLO-N90C-R,

FRET is reduced between the two labelled species, indicating the intercalation of unlabelled

molecules between those labelled in hybrid oligomers, as illustrated in Figure 3.6B.
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Figure 3.5 Reduced size of wild type PLO/PLO-DS hybrid oligomers, detected by gel fil-
tration. The active mutant R219C was labelled with fluorescein (R219C-F). To induce oligo-
merization, the mutant was incubated with membranes at 37 °C for 30 minutes, alone or as a
mixture with an equal amount of unlabelled PLO-DS. The membranes were solubilized with
deoxycholate, and the oligomers were applied to a Sephacryl S400 column. The fluorescence
of the eluate fractions was measured to detect the labelled protein. For comparison, a sample
of labelled R219C not incubated with membranes is shown.
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Figure 3.6 FRET experiments on the formation of hybrid oligomers from active PLO and
PLO-DS. A: The fluorescein-labelled active toxin (PLO-N90C-F) was incubated with mem-
branes alone and after mixing with the rhodamine-labelled triple mutant (PLO-TS-R), respec-
tively. The decrease of fluorescein fluorescence due to FRET indicates the formation of hybrid
oligomers. B: FRET of fluorescein- and rhodamine-labelled PLO-N90C incubated with mem-
branes, alone and together with unlabelled PLO-DS or PLO-WT. Where present, the amount
of unlabelled toxin is equal to the total of the labelled species. The reduction of FRET between
N90C-F and N90C-R with both proteins indicates that both can intercalate with the labelled
active toxin. PLO-DS is therefore not restricted to terminal positions in hybrid oligomers with
wild type toxin.
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3.3.4 Membrane Insertion of Active Subunits in Hybrid Oligomers

With the disulfide mutant of PFO, it was shown that the loss of haemolytic activity correlated

with the loss of insertion activity of the two β -hairpins in domain 3 into the membrane [95].

From the observation of hybrid oligomers forming between active PLO and PLO-DS, the ques-

tion arises concerning to which extent the active protein subunits in such hybrids may insert

into membrane. The membrane insertion of the two β -hairpins in domain 3 can be detected

by labelling mutant cysteine residues with the environmentally-sensitive fluorophore nitroben-

zoxadiazole (NBD), whose fluorescence emission undergoes a pronounced increase in inten-

sity and excited state lifetime, and a blue shift upon transition from an aqueous to non-polar

environment [19, 22]. The insertion of hybrids was studied using the NBD-labelled mutants

K231C and A329C, whose cysteine residues are located within the first and second transmem-

brane β -hairpin, respectively. When either NBD-labelled mutant was mixed with a twofold

excess of the unlabelled PLO-DS, the NBD fluorescence emission was reduced significantly

compared to samples that were prepared in the same manner but with unlabelled PLO-WT in-

stead of PLO-DS. This is shown in Figure 3.7A for PLO-K231C-NBD, and in Figure 3.7B for

PLO-A329C-NBD. However, in both cases, the NBD fluorescence was still greater than that

observed with the equivalent amount of toxin in the absence of membranes. The steady-state

spectra are in line with time-resolved fluorescence measurements. For mutant K231C, the av-

erage excited state lifetime of NBD was 4.0 ns when mixed with wild type toxin, 3.2 ns when

mixed with disulfide mutant, and 1.7 ns in the absence of membranes. For A329C, the lifetimes

were 6.2 ns, 2.9 ns and 2.1 ns, respectively. These findings indicate that PLO-DS inhibits but

does not completely abrogate membrane insertion of wild type PLO in hybrid oligomers.1

3.3.5 Haemolytic Activity of Wild Type PLO and PLO-DS Mixtures

In order to determine the effect of PLO-DS on the haemolytic activity of active toxin, the degree

of binding to erythrocyte membranes was first determined by incubation at 0 °C of fluorescein-

labelled PLO-N90C and disulphide mutant with membrane, where the incubation of toxin at

low temperatures allows for binding but prohibits oligomerization and membrane insertion.

Using the supernatant of each sample, the fluorescein emission was recorded and compared to

that of a sample of soluble PLO-N90C-F. These values were then used to determine the amount

1The parameters for the individual components obtained from the fits for K231C and A329C are listed in
Tables A.3 and A.4, respectively.
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Figure 3.7 Membrane insertion of domain 3 in hybrid oligomers. The mutant residues K231C
in TMH1 and A329C in TMH2 were labelled with NBD, and the fluorescence emission was
measured in the absence of membranes, and after incubation with membranes after addition
of either wild type toxin or of unlabelled PLO-DS in twofold molar excess. The fluorescence
increase after incubation with membranes reflects the extent of membrane insertion of the
labelled residues.

of protein that remained bound on the surface. It was found that the 1:1 sample retained 94% of

the active toxin, corresponding to 0.94 µg/mL, while the 1:2 sample retained 92% of active toxin,

or 0.92 µg/mL. The samples with a three- and four-fold excess of disulphide mutant retained

concentrations of active toxin at 0.86 and 0.81 µg/mL, respectively.

Considering the haemolytic activity of the mixtures of active and PLO-DS, all mixed sam-

ples retained an active toxin amount greater than 0.75 µg/mL, yet show a lysis rate slower than

that observed for the active toxin at the same concentration. This suggests that the decrease in

haemolytic activity seen by a mixture of PLO-WT and PLO-DS is caused by the association

between the wild type and the mutant, and is not due to a simple displacement of active toxin

from the membrane surface. The time course for haemolysis of the fluorescein-labelled PLO-

N90C-F standard and the mixtures of active-toxin and disulphide mutant are seen in Figures3.8,

respectively.

3.3.6 Reduction of Average Pore Size by PLO-DS

When PLO-DS is combined with active PLO, it is likely that only a small fraction of all re-

sulting oligomers will not contain any PLO-DS at all. This suggests that the remaining extent

of membrane insertion and pore formation observed with such mixtures is at least in part as-
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Figure 3.8 Haemolytic activity of wild type PLO in the presence of PLO-DS. Sheep ery-
throcytes (0.5% v/v) were incubated at 0 °C with fluorescein-labelled PLO-N90C with various
amounts of PLO-DS. Unbound toxin was removed by centrifugation, and the time course of
hemolysis recorded by the decrease in cell turbidity (OD650). A: Control experiment with var-
ious amounts of PLO-N90C-F alone. B: PLO-N90C-F at 1 µg/mL in the presence of 1,2 or 3
equivalents of PLO-DS.

sociated with hybrid oligomers. Since these hybrid oligomers are reduced in size, the pores

associated with them should be smaller than those formed by full-size, ring-shaped oligomers

formed by wild type PLO alone.

Differences in functional pore size can be studied in haemolytic assays using osmotic pro-

tection [86]. In this method, the extracellular medium is supplemented with inert macromolec-

ular solutes such as dextran that counteract the osmotic activity of the intracellular hemoglobin.

When pore formation occurs, haemolysis will result only if the pores are large enough to per-

mit equilibration of the macromolecular solutes across the membrane, so that they no longer

maintain the balance with haemoglobin. On the other hand, if the effective diameter of the

protecting solutes exceeds that of the pores, the solutes will remain excluded from the cell and

continue to protect it from osmotic lysis. Differential protection by macromolecular solutes

varying in size can be used to characterize the pore size.

In the experiment shown in Figure 3.9A, wild type PLO was incubated with red cells with

dextran 6 or dextran 40. The dextrans cause only a very slight delay in the time course of

haemolysis. This is consistent with the fact that the hydrodynamic diameters of dextran 6

(Mr 6 000) and dextran 40 (Mr 40 000) at approximately 3 and 10 nm, respectively [100],

are smaller than the diameter of ring-shaped PLO oligomers [11] and therefore do not afford

osmotic protection against the latter.

50



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15

O
D

6
5
0
 (

n
o
rm

a
liz

e
d
)

A B C

WT only WT:DS 1:1 WT:DS 1:2

PBS

dextran 6

dextran 40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15

Time (min)

A B C

WT only WT:DS 1:1 WT:DS 1:2
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15

A B C

WT only WT:DS 1:1 WT:DS 1:2

Figure 3.9 Osmotic protection of red cells against mixtures of wild type PLO and PLO-DS by
dextran 6 and dextran 40. Wild type PLO (2.5 µg/ml) alone (A) or with the same amount (B) or
twice the amount (C) of PLO-DS was incubated in phosphate-buffered saline, with or without
dextran 6 or dextran 40. The OD650 was followed over time; a drop in the OD650 indicates
hemolysis.

The results change, however, with the addition of one and two equivalents of disulfide mu-

tants, as illustrated in Figures 3.9B and 3.9C, respectively. Here, the time course of haemolysis

is markedly slowed by dextran 6, and even more so by the larger dextran 40. This divergence

indicates that some of the pores are no longer permeable to the dextran molecules, or they are

sufficiently reduced in size to significantly decrease the rate of permeation of dextran. On the

other hand, with both dextran 6 and dextran 40, haemolysis ultimately occurs, which means

that some pores are still large enough to allow permeation of dextran. The pores formed by the

mixtures of PLO-WT and PLO-DS therefore are heterogenous in size yet smaller on average

than those formed by wild type PLO alone. This supports the conclusion that oligomers that

contain both wild type PLO and PLO-DS can insert into the membrane and form pores. It

also confirms the previous contention that incomplete, arc-shaped oligomers can indeed form

functional trans-membrane pores [86].

3.4 DISCUSSION

In this study, PLO was rendered inactive by the introduction of a disulphide bond between do-

main 2 and the membrane-inserting region of domain 3, the first transmembrane β -hairpin

(TMH1). Alone, the disulfide mutant does not retain the ability to oligomerize on mem-

branes or crystalline cholesterol surfaces as determined by electron microscopy, and as such no
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haemolytic activity is seen. However, upon reduction of the disulfide bond, activity is restored

indicating that the disulfide link is the cause of inactivity, and not the individual R219C and

G85C mutations. These results differ from the study on perfringolysin O (PFO) [49] where the

disulfide mutant was able to form distinct ring-shaped pre-pore oligomers. (The PFO disulfide

mutant was able to trap the monomers in the water-soluble conformation, but enough move-

ment was retained to allow the necessary interaction with adjacent toxin molecules and form

rings on the membrane surface, and prevented only the insertion into the membrane.)

The fact that the mutant toxin of PFO was able to assemble into complete, ring-shaped

pre-pores on membranes, while the PLO-DS mutant did not retain the ability to oligomerize on

its own was remarkable and surprising. The differences between the two toxins may be related

to subtle but long-ranging conformational changes that occur in domain 4 upon membrane

binding which are translated to the upper regions of the toxin. It is possible that the disulfide

bond alters the ability of PLO to oligomerize to an extent that is significantly different than that

observed in PFO.

Another interesting finding of this study is that the PLO-DS mutant can form hybrid oligo-

mers with wild type toxin, as evidenced by the occurrence of fluorescence energy transfer and

the reduction of haemolytic activity in hybrid oligomer analysis. A possible explanation for

this is that upon interaction with wild type toxin, ‘hemiplegic’ inactivation (which renders one

half of the toxin molecule much weaker than the other) may occur. Here, the PLO-DS mutant

would be able to attach to a growing oligomer of wild type molecules using its ‘active’ face

while leaving the inactive side exposed, thus terminating further growth of the oligomer. How-

ever, this does not appear to be the case as experiments show that PLO-DS retains the ability

to intercalate between active subunits; therefore both faces of PLO-DS must preserve some

degree of activity. An alternative explanation takes into account the different kinetic stages of

oligomerization of CDC toxins [88]. Briefly, the three-stage process involves the rate-limiting

initiation reaction (the spontaneous interaction of two or more monomers on the membrane

surface into a dimeric or small oligomeric complex), an extension stage (successive addition

of monomers onto the growing oligomer) and finally, the oligomer completion stage. When

the disulfide mutant is introduced to the membrane surface in the presence of wild type, this

initiation reaction would take a considerably greater amount of time to occur as the mutant

molecules interact with other toxin molecules to create the initial complex. In addition, the

PLO-DS mutant molecules would slow the subsequent extension phase of oligomer growth

since at least one participant contains the kinetic obstruction (although this phase is affected to
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a lesser extent than the initial reaction stage described above). As a result, the formation of hy-

brid oligomers is somewhat inhibited, yielding increasing numbers of incomplete, arc-shaped

oligomers. What is seen in the hybrid oligomers is that the wild type toxin promotes the oli-

gomerization of disulfide-tethered toxins, while the DS mutants inhibit the oligomerization of

wild type toxin. Both toxins play active roles in the other’s ability to oligomerize.

In addition to the decreased haemolytic activity observed with the hybrid oligomers is the

pattern of membrane insertion. The combination of wild type toxin and disulfide mutant may

produce a distribution of oligomers which vary in both shape and size, with some oligomers

containing a higher proportion of DS mutant than others. In other words, at similar wild type-

PLO-DS concentrations, some oligomers which consist of only wild type protein should form.

However at even a two-fold excess of PLO-DS over wild type, the number of wild-type only

oligomers would be small, yet this combination results in considerable haemolytic activity and

membrane insertion. At 50% activity, this significant level of function must be attributed to the

action of hybrid oligomers. This conclusion is supported by the fact that pores formed under

these conditions are smaller on average than those formed by wild type toxin only.

These results signify that, with respect to membrane insertion as with oligomerization,

neither the wild type toxin nor PLO-DS is clearly dominant over the other. Insertion of hybrids

formed at moderate proportions of PLO-DS indicates that not all subunits of an oligomer need

to participate in its membrane insertion. Conversely, its suppression by PLO-DS in greater

proportion indicates that membrane insertion requires a certain critical proportion of active

subunits. Overall, these findings suggest that membrane insertion requires the co-operation of

a number of adjacent subunits within the oligomer.

In conclusion, this study provides additional insights into the mechanism of oligomeriza-

tion and pore formation by CDCs. The initial conformational change that is associated with

membrane binding and sets the stage for oligomerization involves conformational flexibility

between domains 2 and 3. The complementation of PLO-DS oligomerization by wild type

PLO supports a two-step model of oligomerization that to date has been based primarily on

kinetic modelling [88]. The fact that membrane insertion and pore formation can occur in oli-

gomers that contain some insertion-deficient subunits suggests that the process of insertion is

only partially co-operative.
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Chapter 4

The Pore-Forming Activity of Solution-Derived Oligomers of
Pyolysin

4.1 INTRODUCTION

Thus far in this thesis, the oligomerization process of cholesterol dependent cytolysins has been

investigated in regards to the monomer-monomer interactions and the roles specific domains

play in oligomerization that lead to pore formation. In this section, a different aspect of CDC

oligomerization is investigated, namely the self-association of toxin molecules in solution that

form oligomeric complexes in the absence of membrane surfaces, and the mechanism by which

these complexes can form functional pores.

As CDCs are released from the originating organism as a water-soluble monomer, it was

believed that most CDCs possess a mechanism which protects against the premature oligomer-

ization of the monomers while in solution, before a host membrane is encountered [39, 95].

However, several CDCs have shown the ability to form oligomeric complexes in solution,

including pneumolysin (PLY) [37], cereolysin (CLO) [21], and streptolysin O (SLO) [78].

Recent studies on the CDC pyolysin (PLO) show that it too can spontaneously undergo oli-

gomerization in solution to consistently form complexes averaging six subunits [27], as com-

pared to the dimers formed by PFO [39] or trimers of SLO found in solution [78]. Also, it

has been found that the oligomeric complexes of PLO retain some haemolytic activity, around
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one-quarter to one-third of that observed with wild type toxin [27], in contrast to the inactive

oligomeric complexes formed by the previously mentioned CDCs.

In this study, the pore forming mechanism of the solution-derived oligomers or SDO, of

pyolysin was investigated. Here, specific residues within both trans-membrane β -hairpins of

domain 3 in the SDO sample were monitored for membrane insertion using cysteine-scanning

mutagenesis and covalent modification with the environmentally-sensitive fluorophore NBD,

with the results compared with monomeric PLO samples. It was found that although the

residues of SDO inserted into the membrane in a fashion similar to that seen with the mo-

nomeric toxin samples, fluorescence analysis suggests that only a fraction of the SDO subunits

insert into the membrane leaving the remainder idle or uninserted. This action may be the

direct cause of the decrease in haemolytic activity.

4.2 MATERIALS AND METHODS

Unless stated otherwise, the experimental methods used in this study are the same as those in

the preceding chapters. The following describes only changes and extensions to those previ-

ously described methods.

4.2.1 Plasmid Preparation and Protein Expression

Mutagenesis and protein preparation were performed as described in Chapter 2. After pu-

rification of the protein by metal-chelating chromatography and, where applicable, covalent

labelling with fluorescent dyes, the solution-derived oligomers, or SDO1 were isolated by gel

filtration chromatography (see below). The primers for the site-directed mutagenesis are listed

in Table 4.1.

4.2.2 Chemical Modification of Cysteine Residues with IANBD

The mutant proteins were thiol-specifically labelled with 0.5 mM N,N’-dimethyl-N-(iodoace-

tyl)-N’- 3-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD, Cedarlane, Hornby

1In order to distinguish between monomeric and SDO samples, the prefix “M” will be used for monomeric
toxins, while the prefix “SDO-” will be used for oligomeric toxins for the remaining text of this chapter. Also,
NBD-labelled toxins will have the suffix -NBD. For example, the monomeric toxin with the point mutation A329C
that has not been derivatized with IANBD will be referenced as PLO-A329C. The SDO sample of this toxin that
has been labelled with NBD is known as SDO-A329C-NBD.
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Table 4.1 Primers for site-directed mutagenesis. For each mutant, one forward primer and
one reverse primer span the site of the mutation. The cysteine codons and anticodons are
underlined.

Mutation Sequence

R219C Forward 5’-ACG TCA AAG TGT CAA CTG GAG GCA AAG C-3’

R219C Reverse 5’-CAG TTG ACA CTT TGA CGT CAC CAG AGT C-3’

K231C Forward 5’-GGA TTT GAA TGC GTC TCA GCC AAG CTC AAC-3’

K231C Reverse 5’-GCA TTC AAA TCC GAG GCC AAG CTT TGC CTC-3’

V232C Forward 5’-GGC CTC GGA TTT GAA AAG TGC TCA GCC AAG CTC AAC GTG-3’

V232C Reverse 5’-CAC GTT GAG CTT GGC TGA GCA CTT TTC AAA TCC GAG GCC-3’

F327C Forward 5’-GCG GCT TTT AGC GGC CTG TGC AAA GCT AAG TTC GGC AAT-3’

F327C Reverse 5’-ATT GCC GAA CTT AGC TTT GCA CAG GCC GCT AAA AGC CGC-3’

K328C Forward 5’-AGC GGC CTG TTC TGC GCT AAG TTC GGC AAT CTT TCC ACA-3’

K328C Reverse 5’-TCT GGA AAG ATT GCC GAA CTT AGC GCA CAA CAG GCC GCT-3’

A329C Forward 5’-TTT AGC GGC CTG TTC AAA TGC AAG TTC GGC AAT CTT TCC-3’

A329C Reverse 5’-GGA AAG AAT GCC GAA CTT GCA TTT GAA CAG GCC GCT AAA-3’

K330C Forward 5’-TTC AAG GCC TGC TTC GGC AAT CTT TCC-3’

K330C Reverse 5’-GCA GGC CTT GAA CAG GCC GCT AAA AGC CGC-3’

F331C Forward 5’-GGC CTG TTC AAA GCT AAG TGC GGC AAT CTT TCC ACA GAG

F331C Reverse 5’-CTC TGT GGA AGG ATT GCC GCA CTT AGC TTT GAA CAG GCC-3’

ON) as described in Chapter 2. In order to limit the extent of NBD labeling which might lead

to self-quenching within SDO, IANBD was admixed with a four-fold molar excess of iodoac-

etamide (Sigma Chemicals, St Louis MO). The protein sample which includes the monomeric

and SDO forms was labelled with NBD, and then was subject to size exclusion chromatography

to separate the monomers from the oligomeric complexes.

4.2.3 Size Exclusion Chromatography

Size exclusion chromatography was performed using a Superdex 200 column (400 x 8 mm)

which was pre-equilibrated with PBS, operated by an ÄKTApurifier Chromatography system

(GE Healthcare, Baie d’Urfe, QC). PBS flow rate was maintained at 0.5 mL/min, with the elution

profile monitored online by UV-Vis spectrophotometry at 280 nm. The eluate was collected in

fractions of 0.3 mL and analysed by SDS-PAGE.
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4.2.4 Gel Electrophoresis

SDS-PAGE was performed according to Laemmli [61], using polyacrylamide concentrations

of 4% for the stacking gel and 12% for the resolving gel. The gel was stained using a solution

of Coomassie Blue G-250 (Fisher Scientific, Fairlawn NJ).

4.2.5 Cholesterol Assay

The concentration of erythrocyte membrane ghosts was standardized between experiments

using the Amplex Red Cholesterol Assay Kit (Molecular Probes, Eugene, Oregon). The

membrane samples were mixed with the 1x Reaction Buffer provided (KH2PO4 0.5 M, NaCl

0.25 M, cholic acid 25 mM, Triton X-100 0.5%, pH 7.4), mixed with equal volumes of Amplex

Red Reagent (horseradish peroxidase, cholesterol oxidase, cholesterol esterase) in a microtitre

plate. The reaction was protected from light, incubated for 30 minutes at 37 °C and the fluores-

cence was measured with a fluorescence microplate reader (SpectraMax Gemini XS, Molecu-

lar Devices Corporation) with an excitation wavelength of 525 nm and emission wavelength of

590 nm.

4.2.6 Fluorescence Measurements on NBD-Labelled Mutants

All samples containing labelled protein were made to a final concentration of 1 µM. (For sam-

ples where the labelling efficiency of monomeric and oligomeric species differed, the protein

concentration was adjusted to create samples with equal NBD concentrations.) Monomeric

toxin and SDO samples were made up to volume with PBS, while protein-membrane samples

were made up to 1% (v/v) with membrane ghosts. After incubation at 37 °C for 30 minutes, the

protein-membrane samples were centrifuged at 13,000 RPM for 10 minutes, the supernatant

was decanted, and the pellet was resuspended with PBS. Steady state fluorescence and time

resolved measurements and data analysis were performed as described in section 2.2.5 on

page 24.

4.2.7 Fluorescence Quenching Analysis

Monomeric toxin and SDO samples were mixed with 1% membrane ghosts to a final con-

centration of 1 µM and incubated at 37 °C for 30 minutes. Unbound toxin was removed by

centrifugation at 16,060 xg for 10 minutes, after which the supernatant was decanted. The
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membrane-toxin pellet was resuspended in PBS and the fluorescence emission was measured.

The hydrophobic quencher, 5-doxyl stearic acid, was added to the sample in increments of

0.05 µmol/mg cholesterol up to a final concentration of 0.25 µmol/mg cholesterol. This procedure was

repeated for 16-doxyl stearic acid.

In Figure 4.7 in the Results section, the data were plotted according to the Stern-Volmer

equation [62]:

F0

F
−1 = ka[Q] (4.1)

where F is the fluorescence intensity in the presence of quencher at concentration [Q], F0 is F

for [Q] = 0, and ka is the quenching constant.

Most data series produced non-linear Stern-Volmer plots (see Results section). Therefore,

the data were fitted using a model in which only a fraction of the fluorophores can be quenched,

as expressed in the equation

F =
F0 fq

1+ ka[Q]
+ (1− fq)F0 (4.2)

where fq is the fraction quenchable fluorescence. Fitting was performed with Gnuplot.

4.3 RESULTS

4.3.1 Experimental Rationale

In order to determine if an amino acid side chain is located in a polar or non-polar environment,

the residue can be covalently modified with an environmentally sensitive fluorophore. These

dyes are sensitive to the presence of water, and their emission properties are altered when they

move from an aqueous region to an non-aqueous area. Examples of environmentally sensitive

dyes include N-iodoacetyl-N-(5-sulpho-1-naphthyl)ethylenediamine (IAEDANS), 6-acryloyl-

2-dimethylaminonaphthalene (acrylodan) and N,N’-dimethyl-N-(iodoacetyl)-N’-(7-nitrobenz-

2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD).

The fluorophore NBD was utilized in the study of PFO to establish the membrane-inserting

regions of this toxin [43, 104, 105]. In these studies, residues of both trans-membrane hairpins

were replaced by a cysteine residue, covalently modified by NBD, and bound to liposomes.
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The increase in the emission intensity and the lifetime decay values were examined to show

which residues inserted into the lipid core of the bilayer. When examining the change in

intensity and lifetime values of the NBD-labelled residues it was found that the residues of the

TMH sequences alternated between polar (facing the pore) and non-polar (facing the membrane

bilayer), yielding an insertion pattern typical of that seen for β -sheet.

PLO has a similar primary sequence in the TMH regions in domain 3 as PFO, and it is

assumed that all members of the CDC family share the same mechanism of pore formation.

Using sequence alignment with PFO, homologous residues of PLO were identified, and select

residues in each TMH were replaced with cysteine and chemically modified with NBD and

tested for membrane insertion. PLO-SDO was labelled with NBD, and was tested for NBD

fluorescence emission in its membrane-bound and water-soluble forms. These results were

compared with the same residues in the monomeric form of PLO to determine the insertion

pattern of PLO-SDO which may be used to account for the decrease in haemolytic activity of

the SDO compared to wild type toxin.

4.3.2 Size Exclusion Chromatography

As the oligomeric complexes form spontaneously in the E. coli cells and are extracted from the

lysates, no external preparation is needed for their formation, and as such the SDO only need

be separated from the original protein sample containing PLO in monomeric form. Figure 4.2

shows the elution profile of a sample of wild-type PLO resolved on a Superdex 200 size exclu-

sion column. The main peak corresponds to a molecular weight of 57 kDa, indicating elution of

the monomeric species, while the smaller peak ahead of this corresponds to a molecular weight

of approximately 350 kDa, indication that the SDO complex is formed by approximately six to

eight monomer subunits.

SDS-PAGE analysis of the SDO fractions confirms a molecular weight of the individual

subunits of the SDO of 57 kDa, and indicates that the interactions between SDO subunits in the

complex are not sufficiently strong to withstand the denaturing properties of SDS. Oligomer

size is consistent and reproducible, and does not change significantly between preparations of

the same or different mutants.
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R219C
V232CF327C

F331C

TMH2 TMH1

Figure 4.1 Cysteine Mutants in Trans-Membrane Hairpins TMH 1 and TMH 2. The residues
that were singly mutated to cysteines are shown in space-filling mode. (In TMH 2, residues
327 and 331 are indicated; all intervening residues were mutated as well.)

4.3.3 Labelling Efficiency of Monomers and SDO with IANBD

NBD has been reported to undergo concentration-dependent self-quenching [99]. To minimize

self-quenching between adjacent SDO subunits, the labelling reactions were performed with

a mixture of NBD and iodoacetamide at a molar ratio of 1:4. In this manner, approximately

one in four subunits should be covalently modified with IANBD, while the remainder will be

blocked from IANBD reaction with free iodoacetamide.

After the SDO were separated from the original protein mixture by size exclusion chro-

matography, the protein concentrations of both SDO and monomeric toxin fractions were de-

termined, and the efficiencies of labelling with IANBD were calculated. The labelling efficien-

cies for the monomeric mutants ranged from 11% in the case of M-K328C-NBD to a maximum

of 41% for M-V232C-NBD, confirming that only a fraction of the monomeric toxin was la-

belled with the fluorophore. Many of the SDO species exhibited the similar labelling efficiency
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as their corresponding monomeric toxin sample, except for SDO-F331C-NBD which showed

a 12% decrease in labelling as compared to the monomeric M-F331C-NBD. Monomers and

SDO of the mutant M-F327C-NBD showed a negligible NBD absorbance after chemical mod-

ification. The results are tabulated in Table 4.2.

The labeling efficiency results show that for most mutants, the cysteine mutant is as acces-

sible for labeling in the monomer as in the SDO form; in other words, the SDO formation does

not block or shield the cysteine residue from reaction with the iodoacetamide functional group

on the IANBD.

4.3.4 Haemolytic Activity of SDO

To test the activity of the solution-derived oligomers, a haemolysis assay was conducted on

sheep erythrocytes and compared to that of monomeric wild type PLO. The specific activity of

monomeric and SDO PLO here is defined as the concentration of toxin required to achieve 50%

erythrocyte lysis after 30 minutes. As previously reported [27], it was found that the SDO from

wild type PLO exhibit a haemolytic activity approximately one-fourth of that of monomeric

PLO (400 ng/mL of wild type PLO is needed to achieve 50% haemolysis [51]) (see Figure 4.3).

With NBD labelling, most monomers show a slight change in activity. M-R219C-NBD and M-
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Table 4.2 NBD labeling efficiencies of PLO cysteine mutants. PLO samples in monomeric
and SDO forms were labelled with a 1:4 ratio of NBD to iodoacetamide. The labeling yield is
determined by the ratio of NBD concentration of a sample and the overall protein concentra-
tion. Two independent series of samples were labelled, and the average value reported.

TMH 1 TMH 2
Mutant Monomer SDO Mutant Monomer SDO

R219C 24% 19% F327C <1% ND
K231C 39% 39% K328C 11% 12%
V232C 41% 44% A329C 35% 31%

K330C 23% 18%
F331C 23% 11%

V232C-NBD exhibit a two-fold increase in activity, requiring only 220 ng/mL for 50% lysis, and

a four-fold increase is seen with M-A329C requiring only 120 ng/mL. In contrast M-K328C-

NBD and M-K330C-NBD exhibited a decrease in activity upon labelling, at 910 ng/mL and

2600 ng/mL, respectively. Some SDO demonstrate an increase in activity compared to that of

wild type SDO, except for SDO-R219C-NBD giving one-quarter the activity of wild type,

and SDO- K330C-NBD with only one-fifth the activity of wild type SDO. Table 4.3 lists the

monomeric and SDO concentrations necessary to achieve 50% erythrocyte haemolysis.

4.3.5 Membrane Insertion Behaviour of Monomeric and SDO PLO

4.3.5.1 Fluorescence changes upon membrane binding. As described in section 4.3.1

above, selected residues located within both transmembrane β -hairpins were individually re-

placed with cysteine and labelled using NBD. Monomers were separated from the SDO, and

both samples were incubated with membranes, pelleted and the supernatant was removed. Af-

ter resuspension of the pellet, NBD fluorescence was examined on the membrane-bound sam-

ples and the supernatant, which was then compared to unbound toxin in order to determine the

binding efficiency of each sample. For almost all mutants tested, the SDO consistently showed

a 30% decrease in binding efficiency compared to the monomeric counterparts. M-V232C, M-

A329C and M-F331C bound to membranes with 90% efficiency, while only 60% of the SDO

mutants bound to membranes. M-R219C, M-K231C and M-K330C bound with approximately

70% efficiency while each of the SDO bound at 40%. The only exception was SDO-K328C

which showed a decrease of 50% binding compared to M-K328C.
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Figure 4.3 Haemolytic activities of wild type PLO monomers and SDO. The concentration
of monomeric PLO-WT needed for 50% haemolysis is 400 ng/mL, while the concentration of
PLO-SDO is 1250 ng/mL.

Transmembrane β -hairpin 1. The steady state fluorescence spectra of all tested residues com-

paring the soluble- and membrane bound samples of monomeric toxin and SDO complexes are

illustrated in Figure 4.4. Considering the transmembrane β -haripin 1 monomeric species, M-

R219C-NBD and M-K231C-NBD both showed a significant increase in fluorescence intensity

when combined with membrane ghosts, indicating a change in environment from an area of

high polarity to an increasingly non-polar one, which is most probably the result of insertion

into the membrane lipid bilayer.

The change in polarity in the NBD environment is also seen in the change in lifetimes. Here,

M-R219C-NBD displays an increase in lifetime from 1.0 ns in the soluble state to 2.6 ns in the

membrane-bound form, and M-K231C-NBD increases from 2.4 to 4.1 ns during the transition

from soluble to membrane-bound states. Conversely, the M-V232C-NBD monomeric toxin

showed a decrease in fluorescence intensity and excited state lifetime when incubated with

membrane ghosts, suggesting that this residue moves from a relatively apolar location within

the protein structure to a more solvent-exposed environment upon membrane interaction.

These observations are in accord with the homologous mutations of PFO [105]. The V202C

residue of PFO (homologous with the K231C residue of PLO) is shown to move into an en-

vironment of increased hydrophobicity after incubation with liposomes, and has a lifetime

decay value of approximately 5 ns. Also, the PFO-L203C residue (corresponding to the M-

V232C reside) experiences a change to a more polar environment with liposome interaction.

(The residue S190C of PFO, homologous to M-R219C was not tested for membrane-insertion.)

Comparing these results to those obtained for the oligomeric species, the SDO-V232C-NBD
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Table 4.3 Haemolytic Activities of Mutant Monomers and SDO. The concentrations needed
of monomer and SDO, recorded in ng/mL were determined at 50% haemolysis for each sam-
ple. The concentration to achieve 50% haemolysis for monomeric wild type PLO is 400 ng/mL,
and 1250 ng/mL for wild type PLO in SDO form. The values are reported as averages of two
independent experiments.

TMH 1 TMH 2
Mutant Monomer SDO Mutant Monomer SDO

R219C 220 6600 F327C ND ND
K231C 425 1300 K328C 910 1400
V232C 220 780 A329C 120 400

K330C 2600 6800
F331C 230 1500

sample also shows a decrease in fluorescence intensity and decrease in decay lifetime, yet the

extent of the changes are smaller than with the monomeric toxin.

For the samples that exhibit membrane-insertion behaviour, the membrane-bound SDO-

R219C-NBD and SDO-K231C-NBD both display an increase in NBD fluorescence intensity

over the unbound soluble forms, although to a considerably smaller extent than that seen with

the monomeric toxins. The monomeric M-R219C-NBD toxin exhibits an increase in fluores-

cence intensity of a factor 2.5 when in membrane-bound form over the soluble toxin, whereas

the membrane-bound SDO-R219C-NBD species yields a 1.5-fold increase compared to solu-

ble SDO. In a similar fashion, the monomeric M-K231C-NBD gives a three-fold increase in

fluorescence of membrane-bound toxin over soluble form, while the same SDO sample gives

only an increase of 2. In addition to this, the increases in lifetime values are not as high as

with the monomeric toxin. Table 4.4 summarizes the fluorescence decay values obtained for

the TMH1 monomeric and SDO toxins.2

The differences seen in the time resolved and steady state fluorescence data suggest that

only a fraction of the SDO complexes insert into the membrane or undergo the conformational

changes necessary to introduce the NBD label into the same environment as seen with mono-

meric toxin.

2Please refer to Tables A.5, A.6 and A.7 for the fit parameters for R219C, K231C and V232C, respectively.
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Figure 4.4 Fluorescence emission spectra of NBD-labelled PLO mutants in TMH 1, as mo-
nomers and as SDOs, in solution and after incubation with erythrocyte membrane ghosts.
With each mutant, the amounts of monomer and SDO were normalized to the same amount
of NBD label. The spectra of the membrane-bound samples were corrected for incomplete
binding as described in section 2.2.5 on page 24.

Table 4.4 Fluorescence lifetimes of membrane-bound and -unbound NBD-labelled TMH1
mutants in monomeric and SDO form. Average lifetimes were calculated from 3 fitted expo-
nential components, and are given in nanoseconds. The fluorescence lifetime decay anal-
ysis of transmembrane β -hairpin 1 residues show that the difference between soluble- and
membrane-bound toxin is much less for the SDO complexes than for monomeric toxins. The
average values of two sets of independent tests results are reported.

Mutant Monomer Monomer on Membranes SDO SDO on Membranes

R219C 1.2 2.6 1.2 1.7
K231C 2.3 4.0 2.4 2.9
V232C 3.4 1.6 3.3 1.7
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Table 4.5 Lifetime values for soluble and membrane-bound TMH2 mutants in monomeric
and SDO form. As with the TMH1 lifetimes, average lifetimes (in nanoseconds) were cal-
culated from 3 fitted exponential components. The fluorescence lifetime decay analysis of
transmembrane β -hairpin 2 residues also show a greater difference between soluble- and
membrane-bound in monomeric toxin than for SDO complexes. The average values of two
sets of independent tests results are reported.

Mutant Monomer Monomer on Membranes SDO SDO on Membranes

K328C 2.2 1.3 2.0 1.7
A329C 2.1 6.6 2.1 4.0
K330C 1.8 2.8 1.4 1.3
F331C 4.2 3.5 3.8 2.6

Transmembrane β -hairpin 2 Membrane Insertion Patterns. Turning attention to the residues

contained in the second transmembrane β -hairpin or TMH2, the NBD intensity of monomeric

M-K328C-NBD decreases significantly upon membrane binding, indicative of movement into

an environment of greater polarity. The intensity of the M-F331C-NBD sample also decreased

with membrane binding. However, the NBD intensity of M-A329C-NBD and M-K330C-NBD

increase with membrane interaction. In addition to this, these latter two proteins experienced a

considerable increase in fluorescence lifetime was observed, consistent with the observation of

movement into an area of greater non-polarity, such as into a lipid bilayer. Comparing these ob-

servations with the oligomeric counterparts, SDO-A329C-NBD and SDO-K330C-NBD gave

greater NBD intensity and fluorescence lifetime measurements when bound to membrane than

the soluble form, but to a lesser extent than that seen with the monomeric counterparts. SDO-

F331C-NBD gave a greater decrease in NBD intensity and lifetime than that seen for the mono-

meric M-F331C-NBD sample, which contrasts with the observation of the SDO-K328C-NBD

sample where the NBD intensity and lifetime values decreased to a lesser extent than the mo-

nomeric M-K328C-NBD sample. The steady state spectra for the THM2 mutants with and

without membranes for the monomeric and SDO species are illustrated in Figure 4.5, and Ta-

ble 4.5 summarizes the lifetimes obtained for the TMH2 residues.3

3Please refer to Tables A.8, A.9, A.10 and A.11 for the fit parameters for K328C, A329C, K330C and F331C,
respectively.
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Figure 4.5 Fluorescence emission spectra of NBD-labelled PLO mutants in TMH 2, as mo-
nomers and as SDOs, in solution and after incubation with erythrocyte membrane ghosts.
With each mutant, the amounts of monomer and SDO were normalized to the same amount
of NBD label. The spectra of the membrane-bound samples were corrected for incomplete
binding as described in section 2.2.5 on page 24.

4.3.6 Quenching of NBD Fluorescence of Membrane-Inserted Residues

The above fluorescence analyses provide valuable insight into the mechanism of membrane in-

sertion of the SDO as compared to the monomeric toxin, especially with respect to the change

in environment the NBD probe experiences upon membrane binding and insertion. In the

present study, fluorescence quenching experiments were conducted to further examine the re-

duced degree of membrane insertion of the SDO compared to monomeric toxin.

Fluorescence quenching tests were done using the spin-labelled hydrophobic quencher,

doxyl stearic acid (DSA), which binds to the lipid bilayers of cellular membranes. DSA is la-

belled with a nitroxide moiety, which is known to be an effective quencher of NBD fluorescence
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[20]. Here, both 5- and 16-DSA were used to determine the accessibility of the NBD-labelled

SDO to the quencher. The difference between the two reagents is only the positioning of the

NO group on the stearic acid acyl chain, where it is positioned on the C5 carbon in 5-DSA, and

on C16 in 16-DSA. Samples readily quenched by 5-DSA suggest that the NBD probe is located

close to the C5 of the acyl chain of the stearic acid, while fluorescence intensity that is well-

quenched by 16-DSA implies that the NBD probe is close to the C16 of the acyl chain. These

different reagents have been used in past studies to determine the depth of residue penetration

into the membrane bilayer, where 5-DSA quenching may indicate that the NBD fluorophore is

found close to the surface of the bilayer, while efficient quenching by 16-DSA would signify

a positioning found deeper within the membrane core. However, as it is difficult to determine

if the two forms of doxyl strearic acid have the same binding or ability to integrate into mem-

branes, the use of these two reagents cannot yield an exact position of the NBD probe and can

only be used for relative measurements.

The effect of increasing quencher concentration on NBD fluorescence can be seen in Figure

4.6. Here, decrease in monomer fluorescence is greater than that for SDO for both 5- and

16-DSA. The fluorescence data for the NBD-labelled monomeric and SDO PLO were also

plotted according to the Stern-Volmer equation for collisional quenching (see equation 4.1 on

page 59). The Stern-Volmer quenching constant is found from the slope of the plot. A linear

plot is expected if all fluorophore molecules are equally accessible to the quencher. However,

for almost all PLO mutants tested in both monomeric and SDO forms, a curved Stern Volmer

plot was obtained, indicative of two (or more) classes of fluorophores present in the sample

each with different accessibility to the quencher. The Stern Volmer quenching plots for M-

K231C-NBD and the SDO-K231C-NBD are illustrated in Figure 4.7.

In such cases, the quenching constants must be determined by alternative methods. Refer-

ring to equation 4.2, both the kinetic quenching constants ka and the quenchable fraction of

sample intensity, fq may be determined by fitting the parameters of the equation to experimen-

tal data.

For all samples quenching efficiency was considerably greater for both the monomeric and

SDO forms for 5-DSA than for the 16-DSA quencher, except for K328C which could not be

fitted. Looking at the fraction of quenchable sample, fq, 5-DSA consistently yields a higher

value for both monomer and SDO than does the 16-DSA (although A329C shows only slightly

greater accessibility in monomeric form than SDO complexes).
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Figure 4.6 The effect of increasing concentrations of doxyl stearic acid on NBD fluorescence
intensity. Both 5- and 16-doxyl stearic acid (DSA) were used to quench NBD fluorescence of
monomeric and SDO complexes.
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Figure 4.7 Stern-Volmer plot of mutant K231C NBD-labelled monomers (hollow squares)
and SDO (solid squares), bound to membranes and quenched by 5-doxylstearate. The straight
lines represent linear regression fits.

The values obtained for the quenching constant ka, however, are surprising and much dif-

ferent than that expected. For mutants R219C, K231C, A329C and K330C, the quenching

constants for the SDO were shown to be greater than that of the monomeric forms, although

with two samples, K231C monomer quenched with 16-DSA and K330C monomer quenched

with both 5- and 16-DSA, meaningful values of ka could only be determined when fixing the fq

values for the monomeric samples to 1. Table 4.6 lists the quenching constants and the fraction

of accessible fluorophores to both 5-DSA and 16-DSA for all monomeric and SDO samples.
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Table 4.6 Quenching constants (ka) and quenchable fractions ( fq) of NBD-labelled mutants
by 5-DSA and 16-DSA, bound to membranes. These parameters were obtained from the fits
illustrated in Figure 4.6. Where fq is given as 1∗, the actual fit produced a value of greater
than 1. In those cases, fq was fixed at 1, and the fit was repeated to obtain the given value of
ka.

Mutant 5-DSA 16-DSA
Monomer SDO Monomer SDO

R219C facc 0.94 0.84 0.65 0.56
ka 29.1 8.1 30.7 8.4

K231C facc 0.93 1* 0.50 0.43
ka 11.6 3.6 43.3 5.0

V232C facc 0.72 0.55 0.39 0.31
ka 107.1 12.2 20.9 15.8

K328C ND ND ND ND ND

A329C facc 0.95 0.91 0.94 0.85
ka 39.9 21.5 44.0 32.2

K330C facc 1* 1* 0.56 0.12
ka 3.5 1.5 7.1 17.2

F331C facc 0.93 0.50 1 * 0.42
ka 11.6 43.3 3.63 5.0
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4.4 DISCUSSION

The solution-derived oligomeric complexes of PLO were found to retain haemolytic activity

of approximately one-quarter to one-third that of the toxin in monomeric form. This was an

unexpected discovery as the oligomeric complexes of other CDC family members are believed

to lose haemolytic activity upon their formation [39].

This feature of PLO prompted the current study to determine the pore-forming mechanism

of SDO-PLO, and to ascertain if it is similar to the pore-forming mechanism of the monomeric

toxin. In the current study, the pore-forming activity of SDO-PLO was examined by analyzing

the membrane insertion of key residues in the trans-membrane hairpin regions of domain 3 of

PLO.

Using the environmentally sensitive fluorophore NBD, steady-state and time-resolved fluo-

rescence experiments were conducted for mutated residues in the monomeric form before and

after incubation with membranes, and the tests repeated for the SDO complexes. The steady

state fluorescence intensity of the NBD revealed that, in general, SDO bound to the membrane

approximately 30% less efficiently than the monomeric toxins. The change in NBD emission

intensity and excited state lifetimes show that the same residues insert into the membrane for

both the monomeric and SDO forms. However, the extent of change in intensity and lifetime

was much greater for the monomeric toxin than for the oligomer when membrane-insertion oc-

curred; this was especially pronounced in the K231C residue of TMH1 and the A329C residue

of TMH2. This finding suggests that only a fraction of the toxin molecules found within the

SDO unit are able to insert into the membrane. This is supported by hydrophobic quenching

analysis, where monomeric samples were quenched to a larger extent than SDO.

Comparing the two different fluorescence methods, the results of the steady state tests are

in good agreement with those obtained for the time resolved experiments, where the change or

ratio in the observed steady state intensity between soluble and membrane-bound toxin equaled

that seen for the decay values. For both methods, average values are obtained. For the steady

state spectra, the observed intensity is the average of the labelled toxins that have inserted into

the membrane and those that remain uninserted. Likewise, for the time-resolved analyses, a

three-component model is used where the individual lifetimes are averaged to obtain the final

fluorescence decay value. In past studies, researchers have attempted to determine physical

meaning to each lifetime in order to assign the percentage of the fluorophore found in different

environments [105]. However, this is not possible in the current study, as NBD alone in aqueous
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solution (with no toxin or membrane) gives a tri-exponential decay. As such, no physical

meaning can be assigned to each of the individual lifetimes, and therefore average lifetimes

must be used.

Qualitatively, the fluorescence analyses correspond well with the observed decrease in

haemolytic activity of the SDO. With the results of the fluorescence analysis, the weakening

of the SDO lytic ability may be attributed to two causes: poor binding efficiency of the SDO

compared to monomeric toxin, and incomplete insertion of the SDO toxin into the membrane.

This also coincides with the results of the quenching experiments, where it was found that the

quenchable fraction of monomeric toxin is greater than that of the SDO samples. It is, however,

difficult to quantitatively compare the results of the fluorescence and quenching experiments

to that of the haemolytic assays, as the values obtained depend on the NBD intensity emitted.

As the quantum yield of the fluorophore is greater when in an apolar environment (such as

within the lipid bilayer), the intensity of the NBD observed does not quantitatively match the

actual fraction of toxin inserted into the membrane. Therefore, no direct correlation between

the observed haemolytic activity and the results of the fluorescence and quenching experiments

can be obtained.

Previous studies on PLO-SDO have shown that the SDO subunits do not break apart upon

membrane binding and form pores with other individual PLO monomeric toxin molecules

[27]. FRET analysis showed that little change in donor fluorescence emission occurred with

the presence of SDO labelled with a suitable acceptor fluorophore, as compared to the intensity

of the donor fluorophore alone. In addition to this, circular dichroism was employed to show

that the conformation of the SDO-PLO was much more similar to that of unbound, monomeric

PLO than to that of the membrane-bound toxin [27]. These results, combined with the findings

of the NBD-fluorescence tests, suggest that a fraction of SDO units retain the ability to bind,

and undergo the necessary conformational changes to insert into the membrane bilayer, while

the remainder of the SDO complexes may stay trapped in the pre-pore conformation on the

surface and are unable to insert.

The self-association of CDC toxin has been known for many years. For monomeric tox-

ins, it has been historically believed that interaction with a cholesterol-containing membrane

was necessary in order for the required conformational changes that initiate oligomerization to

occur. In fact, in the case of three toxins, cereolysin, PFO and SLO, it was originally specu-

lated that such aggregation was due to sample contamination by cholesterol, or the aggregation

was an artifact as a result of the preparation procedures to ready the samples for electron mi-
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croscopy analysis [10]. PFO self-oligomerization has been analysed to some extent, and the

PFO aggregation may in fact be a result of cholesterol contamination. Other studies involving

PFO at very high protein concentrations (>10 mg/mL) have shown that PFO does not possess the

ability to form oligomeric species in solution of any considerable size [95]. Instead, only an

anti-parallel dimer form has been observed upon careful analyses [98]. It was postulated that

this positions the individual monomers in such a way that blocks key sites in the protein from

further intermolecular interaction that would result in aggregate growth of a significant size

[95, 39].

This, however does not seem to be the case for the CDC pneumolysin (PLY). In studies

using small angle neutron scattering and analytical centrifugation [37], it was found that PLY

forms complexes readily in solution at moderate (1 mg/mL) to low (0.4 mg/mL) concentra-

tions [39, 107], and the weak intermolecular interactions between the monomers initially form

dimeric species, and then rapidly add monomers to yield oligomers of many subunits [37]. At

higher concentrations, PLY can form helical structures in solution, having approximately 41

subunits per turn [36].

Also, analytical centrifugation tests conducted on PLY aggregates suggest that the oligo-

mers take on a side-by-side orientation, as opposed to an end-to-end configuration [37]. In

these experiments, an increase in the sedimentation coefficient (Rg) was observed with increas-

ing molecular weight of the aggregate species, meaning that a large increase in mass resulted

in a small increase in size. It was reasoned that if an end-to-end structure resulted from the ag-

gregate formation, a considerable increase in size would occur, and the corresponding increase

in frictional forces would result in a very small increase in Rg, if any, thereby slowing the rate

of sedimentation. Considering the activity of PLO, and the fact that the conformation of the

individual toxin subunits of unbound, soluble SDO complexes is similar to that of the soluble

monomeric toxin as determined by circular dichroism experiments, PLO-SDO quite possibly

adopts a similar side-to-side orientation as seen with PLY.

In summary, an unusual property of PLO has been investigated. The spontaneously-derived

oligomers of pyolysin have been analysed by several fluorescence techniques to supplement

previous investigations on CDC aggregates and SDO behaviour and properties. The novel

finding that the SDO of PLO retain some of the haemolytic activity of monomeric PLO may

be attributed by the discovery that only a fraction of the proteins that make up the SDO insert

into the membrane after binding, while the remaining portion of these proteins remain unable
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to insert into the lipid bilayer. These results may provide further insight into the many ways

CDCs are able to form functional pores.
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Chapter 5

Summary

The Cholesterol-Dependent Cytolysins (CDCs) are a large family of toxins expressed by ap-

proximately 30 species of Gram-positive bacteria. Important members of this group include

listeriolysin (LLO) from Listeria monocytogenes, streptolysin O (SLO) from Streptococcus

pyogenes, and perfringolysin O (PFO) from Clostridium perfringens. As these toxins play an

important role in the pathogenic mechanism of the organisms that produce them, there is much

interest in their characterization and mode of action. The three-dimensional crystal structure

has been determined for a number of CDCs, and based on the similarity of these structures and

the sequence homology and identity of the entire group of toxins, it can be confidently assumed

that all CDCs share a common architecture.

The common architecture of the CDCs translates into similarities in their function. As their

name suggests, CDC activity is dependent on the presence of cholesterol in the target mem-

brane, and is thought that for all CDCs the C-terminal domain, or domain 4, is responsible

for membrane recognition and binding. After binding, the molecules diffuse laterally on the

membrane surface, and upon encountering one another begin the oligomerization process. Oli-

gomerization allows adjacent molecules to align TMHs which allows for their insertion into the

membrane. How far along the oligomerization process goes before insertion occurs, however,

has been the topic of some debate. One theory postulates that a complete, ring-shaped oligomer

is formed before membrane insertion could occur, but this does not account for the presence
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of arc-shapes on membrane surfaces and the possibility of these incomplete oligomers to form

viable pores. To account for this, another theory suggests that oligomerization does not need

to be completed prior to membrane insertion.

Pyolysin (PLO) is a CDC secreted by the bacterial pathogen Arcanobacterium pyogenes.

First discovered in 1996, PLO is considered a relative new-comer to the CDC family, and

as such, little is known about its structure-function relationship. Among all CDCs, pyolysin

has the lowest degree of sequence homology relative to the group as a whole. The question

therefore arises how much similarity it retains in term of structure and function. Several aspects

of the molecular function of pyolysin were addressed in this study. In particular, the role of

domain 4 in the oligomerization process, the cooperativity of membrane insertion, and the

pore-forming ability of oligomers that have been pre-formed in solution were examined. With

this work, a better understanding of the different ways CDCs can work to damage membranes

can be achieved.

5.1 DOMAIN 4 OF PYOLYSIN AND OLIGOMERIZATION

Domain 4 (D4) has previously been considered to be responsible only for membrane recog-

nition and binding via a surface receptor, with little evidence to suggest a role in toxin oli-

gomerization [120]. In the present study, however, domain 4 of pyolysin is shown to have a

distinctly greater role in the oligomerization process. Pyolysin D4 acts to enhance, not in-

hibit the haemolytic activity of wild type PLO. Since D4 itself remains devoid of haemolytic

activity, it must be able to not only associate with wild type toxin but also trigger function-

ally relevant conformational changes within the latter. Interestingly, the amplification of wild

type haemolytic acitivity by D4 was found to be saturable and limited by the amount of wild

type toxin present. This suggests that one wild type toxin molecule can productively interact

with only a few, or even only one, D4 molecule. In a previous study, the haemolysis of SLO

was found to be kinetically limited by an initial step of second order, which was followed by

a much more rapid and facile serial polymerization [88]. A possible explanation for the sat-

urable activation by D4 is that it functions in the initial step, which likely involves only two or

three molecules, and that at least one of the other partners must remain a wild type molecule,

which would subsequently recruit other wild type molecules to form a functional pore. Such

a preference of wild type molecules for one another, even in the presence of D4 in excess, is

consistent with both EM and fluorescence data.
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In addition to this, D4 of PLO is able to self-associate, a feature not seen in other CDCs.

This is seen with the electron microscopy images of D4 alone, where distinct oligomers in the

form of linear rods were observed on crystalline cholesterol surfaces. EM images of mixtures

of D4 and WT also gave images of ‘horseshoe’ and ‘walking-cane’ formations, the likes of

which have not been observed with any other CDC.

In previous studies on PFO and SLO [114, 120], the C-terminal region was shown to in-

hibit the haemolytic activity of wild type toxin, where a complex was formed that ceased the

oligomerization from forming an active pore. In addition to this, little evidence showing the D4

fragments could form was seen. It was postulated that as each oligomer subunit must contain

two separate oligomerization interfaces to allow interaction with the two adjacent molecules,

it was proposed that the C-terminal fragments of PFO and SLO would retain only one site of

interaction. This would allow the fragment to associate with a growing oligomer, but further

growth would be prevented.

These results suggest that PLO-D4, unlike the domains 4 of PFO and SLO, may contain the

two sites necessary to promote the oligomerization process. The difference is surprising, con-

sidering the similarity of the domains 4 of the three CDCs, in length and primary structure. The

difference in the functionality of PLO-D4 may be explained by considering that slight differ-

ences in primary structure may translate to more significant differences in secondary structure,

or differ in the extent of conformational changes experienced by domain 4 that are conferred

to the upper regions of the CDC molecule. Alternatively, the secondary structure may be pre-

served, but a greater mutual affinity may exist between PLO D4 fragments due to a few more

favourably matched amino acid side chains. Fluorescence tests conducted on the domains 4

of the three CDCs may help determine differences in the nature of the conformational change

in D4 that occurs upon membrane binding. It would also be beneficial to determine the X-ray

crystal structure of PLO to be able to directly visualize differences in secondary structure that

would account for the ability for the domain 4 of PLO to play a more profound role in the

oligomerization process than originally believed. Absent such a structure, chimeric molecules

or site-directed mutagenesis should be able to provide further insight.
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5.2 PARTIAL OLIGOMERIZATION INDUCED BY A DISULPHIDE TETHERED MUTANT

OF PYOLYSIN

Little research has been conducted on CDCs to determine the extent of the cooperativity of

the membrane insertion step, which occurs after the oligomeric pre-pore has been assembled.

In this study, this problem has been addressed by designing a mutant that does not have the

ability to insert into the membrane, and monitoring its effects on the activity of wild type PLO.

As domains 2 and 3 are packed tightly together in the monomeric conformation, they must

first uncouple before membrane insertion can occur. It was postulated that a disulphide bridge

linking domain 2 to the beginning of the first transmembrane hairpin in domain 3 would prevent

membrane insertion. Mutations were made by replacing cysteine for the glycine residue at the

85 position of domain 2, and the arginine residue at the 219 position of domain 3.

This mutant showed no haemolytic activity, and it was also incapable of self-oligomeriza-

tion; however, it was found to form hybrid oligomers with wild type PLO quite effectively.

Formation of such hybrid oligomers inhibited the membrane insertion and pore-formation by

wild type toxin in a dose-dependent manner, such that activity was significantly reduced with

an equimolar mixture of the two toxin species, and fully suppressed by a tenfold excess. This

extent of inhibition fall in between those expected for the two theoretically possible extremes,

namely a fully cooperative membrane insertion, in which case even a small fraction of the defi-

cient mutant should prevent it, and a fully un-cooperative insertion, in which case insertion and

activity of wild type toxin should persist unchanged regardless of the presence of the disulfide

mutant. This conclusion was confirmed by fluorescence measurements on the extent of PLO-

DS on the membrane insertion of functional PLO molecules in hybrid oligomers. Residues

in both TMH1 and TMH2 showd some degree of membrane insertion with a two-fold mo-

lar excess of PLO-DS, but significantly less insertion was achieved compared to active toxin

alone. This suggests that membrane-insertion is partially cooperative, meaning that it requires

cooperation of several, but not all subunits within the oligomer.

PLO-DS, at high concentration, also significantly reduced the size of hybrid oligomers. Os-

motic protection experiments on these oligomers confirmed the previously reached conclusion

[86] that incomplete, arc-shaped CDC oligomers can indeed form functional pores.

A study on the homologous disulphide mutant of PFO gave surprisingly different results

[49]. The disulphide bridge formed between residues homologous to those used for PLO al-

lowed for self-association, and EM images showed ring- and arc-formations on membrane
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surfaces similar to that seen with wild type PFO. This disulphide bond worked to trap the toxin

in the pre-pore state, leaving it unable to insert into the membrane. In contrast, the similar bond

in PLO caused limitations at the oligomerization step. Why this difference occurs may be de-

termined by tests done on active pyolysin to determine the points of contact within domains

2 and 3 between adjacent monomers. In this way, the manner in which the disulphide mutant

prevents oligomerization in pyolysin may be deciphered.

5.3 PORE FORMATION PROPERTIES OF SOLUTION-DERIVED OLIGOMERS OF PY-

OLYSIN

The oligomerization step in the CDC pore-forming mechanism was historically believed to

only occur on a membrane surface. But as seen with several CDC members, toxin oligomer-

ization can occur spontaneously in solution at higher protein concentrations. Most of these

solution-derived oligomers (SDO) lose their haemolytic activity, yet the SDO from PLO retain

approximately one-quarter of the activity obtained from monomeric PLO.

Tests have shown that PLO-SDO binds to membranes less efficiently than monomeric toxin,

where SDO binding was shown to be approximately 30% less than that of monomeric PLO.

Considering that the SDO haemolytic activity is only 25% that of monomeric toxin, other fac-

tors must be involved to account for this difference; it was speculated that the SDO complex

may be limited in its ability to insert into the membrane. This hypothesis was tested by moni-

toring the change in fluorescence intensity of key NBD-labelled membrane-inserting residues

of the SDO complex in the presence and absence of membranes, and comparing this with the

results obtained from monomeric PLO.

For almost all residues tested, the change in NBD intensity for SDO going from the sol-

uble to membrane-bound state was less than that seen for monomeric PLO. This effect was

especially prominent for the TMH1 residue K231C and the TMH2 residue A329C where for

the monomeric toxin, the NBD intensity increased greatly with the presence of membranes,

while the NBD intensity of the SDO showed only a moderate increase. This suggests that only

a fraction of the SDO complexes retain the ability to insert into the membrane. Two scenar-

ios could result in this observation – either all SDO units insert partially into the membrane

to the same degree or some oligomers derived by SDO complexes retain the ability to insert

into the membrane while others remain inactive on the membrane surface. To test which case

is the more plausible, quenching tests using a lipophilic spin-labelled quenching reagent were
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conducted. Although the resulting Stern-Volmer curved for the membrane-inserted oligomers

derived from monomeric PLO were mostly linear, the plots for the SDO complexes curved to-

ward the x-axis, indicating that more than one class of fluorophore was present in the sample.

The quenching data fit reasonably well with a two-site model of fluorophore-quencher acces-

sibility for the SDO samples. Therefore, this evidence supports the view that the reduction in

SDO activity is due to the decrease in binding efficiency, and the limited ability of the SDO to

insert into the membrane.

This research illustrates that even though there is a great deal of similarity between all

CDCs, models of their pore formation and activity have been based on the studies of only a

select few. It seems that as more CDCs are discovered, the more changes that need to be made

to the model of CDC pore-forming mechanism. This information would be of great value in

expanding our breadth of knowledge about CDCs and would help expand on the models that

are currently used to describe their mode of action.
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Appendix A

Fitted Parameters for Time-Resolved Fluorescence Analyses

As stated in the previous chapters, time-resolved fluroescence decays were fitted with a three-

exponential model, from which the average lifetimes were obtained according to equation 2.2

on page 25. Here, the pre-exponential (αi) and lifetime (τI) values for the individual compo-

nents obtained from the fits are given.
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A.1 LIFETIME PARAMETERS FOR CHAPTER 2

Table A.1 Fitted lifetime components N90C-F oligomers and for hybrid oligomers formed
from an equimolar mixture of N90C-F and N90C-R, without domain 4 or with 1, 2 or 4 equiva-
lents of domain 4 fragment added (see section 2.3.4 on page 29).

Parameter N90C-F N90C-F+R, no D4 D4 1 eq. D4 2 eq. D4 4 eq.

α1 4579 11042 10620 10192 10284
τ1 0.571 0.372 0.384 0.380 0.41
α2 6205 7867 7596 7834 7721
τ2 2.512 1.65 1.605 1.54 1.66
α3 5066 2418 2577 2793 2486
τ3 5.071 3.64 3.59 3.62 3.76

< τ > 2.77 1.10 1.23 1.25 1.29
χ2 1.03 1.12 1.12 1.07 1.15

Table A.2 Fitted lifetime components N90C-F oligomers and for hybrid oligomers formed
from an equimolar mixture of N90C-F and N90C-R, without unlabelled wild type PLO or with
1, 2 or 4 equivalents of wild type PLO added (see section 2.3.4 on page 29).

Parameter N90C-F N90C-F+R, no wt wt 1 eq. wt 2 eq. wt 4 eq.

α1 4579 11042 8681 8927 8626
τ1 0.571 0.372 0.62 0.79 0.66
α2 6205 7867 5664 6909 5745
τ2 2.512 1.65 2.26 3.35 2.26
α3 5066 2418 3420 1155 3368
τ3 5.071 3.64 5.06 6.78 5.05

< τ > 2.77 1.10 1.87 2.23 2.14
χ2 1.03 1.12 1.11 1.06 1.13
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A.2 LIFETIME PARAMETERS FOR CHAPTER 3

Table A.3 K231C-NBD fluorescence membrane insertion of domain 3 in hybrid oligomers.
Fitted lifetime components of K231C-NBD without membranes, and for 1:2 mixtures of NBD-
K231C and unlabelled disulphide mutant or unlabelled wild type PLO.

Parameter +WT +DS no membranes

α1 6897 6505 11509
τ1 0.93 1.07 0.52
α2 5121 4485 7001
τ2 3.32 3.84 2.19
α3 4483 1957 1982
τ3 9.38 9.84 7.58

< τ > 4.04 3.2 1.7
χ2 1.20 1.08 1.19

Table A.4 A329C-NBD fluorescence membrane insertion of domain 3 in hybrid oligomers.
Fitted lifetime components of A329C-NBD without membranes, and for 1:2 mixtures of NBD-
K231C and unlabelled disulphide mutant or unlabelled wild type PLO.

Parameter +WT +DS no membranes

α1 2975 8050 7885
τ1 1.46 0.56 0.62
α2 4587 6245 4691
τ2 4.99 2.64 2.24
α3 4446 3573 1851
τ3 10.60 8.76 8.68

< τ > 6.2 2.9 2.1
χ2 1.09 1.17 1.18
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A.3 LIFETIME PARAMETERS FOR CHAPTER 4

Table A.5 R219C-NBD fluorescence lifetime parameters of membrane-bound and -unbound
monomers and SDO

Parameter Monomer Monomer on Membranes SDO SDO on Membranes

α1 13053 7915 11180 10545
τ1 0.65 0.78 0.47 0.39
α2 5301 6451 8272 7119
τ2 2.28 2.87 1.61 2.24
α3 907 1845 1255 1885
τ3 7.10 8.34 6.03 7.43
< τ > 1.4 2.5 1.3 1.9
χ2 1.07 1.08 1.17 1.19

Table A.6 K231C-NBD fluorescence lifetime parameters of membrane-bound and -unbound
monomers and SDO

Parameter Monomer Monomer on Membranes SDO SDO on Membranes

α1 9718 6458 12185 8423
τ1 0.59 0.74 0.78 0.86
α2 6153 5322 7791 5368
τ2 2.54 3.65 2.80 3.46
α3 2314 3930 2757 2380
τ3 7.92 9.33 8.01 9.27

< τ > 2.2 3.9 2.4 2.9
χ2 1.09 1.05 1.10 1.04
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Table A.7 V232C-NBD fluorescence lifetime parameters of membrane-bound and -unbound
monomers and SDO

Parameter Monomer Monomer on Membranes SDO SDO on Membranes

α1 7654 13611 7091 12899
τ1 0.55 0.64 0.84 0.69
α2 5523 4544 5217 4562
τ2 2.97 2.38 3.14 2.65
α3 3908 958 2842 1016
τ3 9.33 7.93 9.63 8.52

< τ > 3.4 1.4 3.3 1.6
χ2 1.14 1.06 1.14 1.03

Table A.8 K328C-NBD Fluorescence Lifetime Parameters of Membrane-bound and -
unbound monomers and SDO

Parameter Monomer Monomer on Membranes SDO SDO on Membranes

α1 9659 13481 9189 11003
τ1 0.69 0.49 0.51 0.59
α2 5478 6072 7005 6355
τ2 2.92 1.70 2.26 2.30
α3 1825 1280 2294 1325
τ3 8.45 5.67 7.75 6.63

< τ > 2.2 1.3 2.1 1.6
χ2 1.10 1.12 1.18 1.04
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Table A.9 A329C-NBD fluorescence lifetime parameters of membrane-bound and -unbound
monomers and SDO

Mutant Monomer Monomer on Membranes SDO SDO on Membranes

α1 12271 3284 11991 4182
τ1 0.65 1.87 0.66 0.15
α2 4288 4880 4480 6463
τ2 2.98 4.35 2.88 2.70
α3 1992 5165 1934 5872
τ3 9.67 9.22 9.44 8.56

< τ > 2.2 6.7 2.1 4.1
χ2 1.15 1.13 1.05 1.19

Table A.10 K330C-NBD fluorescence lifetime parameters of membrane-bound and -
unbound monomers and SDO

Parameter Monomer Monomer on Membranes SDO SDO on Membranes

α1 8007 8098 9062 12247
τ1 0.29 0.86 0.53 0.51
α2 10228 5014 8421 6656
τ2 1.56 2.96 1.57 2.08
α3 2136 2579 1431 579
τ3 6.68 8.35 4.75 6.15

< τ > 1.6 2.7 1.3 1.3
χ2 1.20 1.19 1.16 1.05
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Table A.11 F331C-NBD Fluorescence Lifetime Parameters of Membrane-bound and -
unbound monomers and SDO

Parameter Monomer Monomer on Membranes SDO SDO on Membranes

α1 5932 5876 5756 5956
τ1 0.96 0.83 0.778 0.81
α2 5097 6189 5609 5625
τ2 3.84 3.59 3.39 2.68
α3 3689 3118 3713 3324
τ3 9.83 8.96 9.59 7.71

< τ > 4.1 3.7 3.9 2.3
χ2 1.05 1.09 1.03 1.11
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