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Abstract

This thesis relates to the usage of trust modelling in multi-agent systems – environments

in which there are interacting software agents representing various users (for example,

buyers and sellers exchanging products and services in an electronic marketplace). In

such applications, trust modelling may be crucial to allow one group of agents (in the

e-commerce scenario, buyers) to make effective decisions about which other agents (i.e.,

sellers) are the most appropriate partners. A number of existing multi-agent trust models

have been proposed in the literature to help buyers accurately select the most trustworthy

sellers.

Our contribution is to propose several modifications that can be applied to existing

probabilistic multi-agent trust models. First, we examine how the accuracy of the model

can be improved by limiting the network to a portion of the population consisting of the

most trustworthy agents, such that the less trustworthy contributions of the remaining

agents can be ignored. In particular, we explore how this can be accomplished by either

setting a maximum size for a buyer’s advisor network or setting a minimum trustworthiness

threshold for agents to be accepted into that advisor network, and develop methods for

appropriately selecting the values to limit the network size. We demonstrate that for

two models, both the Personalized Trust Model (PTM) developed by Zhang as well as

TRAVOS, these approaches will yield significant improvements to the accuracy of the

trust model, as opposed to using an unrestricted advisor network.

Our final proposed modification is to use an advisor referral system in combination

with one of the network-limiting approaches. This would ensure that if a particular agent

within the advisor network had not met a specified level of experience with the seller

under consideration, it could be replaced by another agent that had greater experience

with that seller, which should in turn allow for a more accurate modelling of the seller’s

trustworthiness. We present a particular approach for replacing advisors, and show that

this will yield additional improvements in trust-modelling accuracy with both PTM and

TRAVOS, especially if the limiting step were such that it would yield a very small advisor

network.
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We believe that these techniques will be very useful for trust researchers seeking to

improve the accuracy of their own trust models, and to that end we explain how other

researchers could apply these modifications themselves, in order to identify the optimal

parameters for their usage. We discuss as well the value of our proposals for identifying

an “optimal” size for a social network, and the use of referral systems, for researchers in

other areas of artificial intelligence.
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Chapter 1

Introduction

Within the broad field of artificial intelligence, much recent work has been devoted to

intelligent agents, or software-based entities that are capable of making their own decisions

autonomously, often with reference to changes in their environment and interactions with

other agents [36]. Environments in which several such agents exist and interact with one

another are called multi-agent systems [10].

In these systems, trust often plays an important role. Individual agents may act in

their own self-interest to maximize their benefits from the system, and in some cases they

attempt to do so through deception or by providing misinformation to other agents. It

is thus critical that agents are able to accurately determine the trustworthiness of other

agents. While “trust” may often have different meanings from one domain to the next [24],

for the purposes of our discussion, our work makes use of the definition of “trust” as an

agent’s belief that some other agent will carry out the tasks it says it will perform [42].

While we believe that the proposals and findings presented herein will be applicable

to a number of different scenarios, we will be grounding our discussion in one particularly

pertinent application, specifically electronic commerce, in which customers may shop for

and purchase goods or services from sellers over the Internet, even though the buyer and

the seller may be separated geographically by a long distance. Each buyer and each seller

would be represented by an intelligent agent, reasoning about which partners to select, to

conduct business.
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Regardless of the source from which a customer chooses to purchase items, there is

always a need for some element of trust that the seller will carry through on the promise

to deliver the purchased items. When purchasing directly from a large, well-known retailer

like Amazon.com (http://www.amazon.com/ ), this trust is usually more implicit because

that retailer has already derived a reputation from selling items to consumers over a num-

ber of years. In other cases, however, such as purchases through the electronic-auction

marketplace eBay (http://www.ebay.com/ ) – and for certain goods on Amazon that are

not stocked by the company itself, e.g. out-of-print books – the website is merely acting

as an intermediary for some other person or company. In such cases the customer will

typically need to pay much more attention to the seller’s reputation to ensure that he or

she is not being taken advantage of.

1.1 Trust Modelling

Trust modelling is a field of artificial intelligence focusing on determining the trustwor-

thiness of agents. This is typically conducted in contexts where a requesting agent is

considering interacting with a providing agent, and is based on the information about the

providing agent that is available to the requesting agent. It is especially pertinent with

regards to multi-agent systems such as electronic marketplaces, in which customers (or

buyers) often need to decide whether a seller is sufficiently trustworthy to purchase goods

or services, and several recent researchers in the field have focused on this application

[39][33][43].

Some of the initial work in the area defined this information solely in terms of the

direct past interactions between the requesting agent and the agents under consideration

[20][33]. However, more contemporary systems also consider the availability of information

from other agents that might be able to better inform the initial agent – we refer to these

agents as advisors, as they may provide advice to the initial agent about an item (or,

indeed, another agent) of interest. This additional information is particularly pertinent on

sites such as eBay, which computes reputation scores for each seller based on the ratings

assigned by different buyers for each interaction.

2



In regards to multi-agent trust models, our focus in this thesis will be on the subcategory

of probabilistic models. By “probabilistic” we mean that the models in question make use

of probability density functions (pdfs) in order to estimate the trustworthiness of providing

agents. Most commonly the pdf used is the beta probability distribution function, which is

used to represent probability distributions associated with binary events, indexed by two

parameters α and β. In essence, it is used to compute the relative likelihood of the values

for some probability parameter p given fixed parameters α and β. This function may be

expressed as follows [13]:

beta(p|α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−a (1.1)

where Γ is the gamma function, 0 ≤ p ≤ 1, and α, β > 0. The α and β parameters

define the shape of the density function when plotted, and are generally defined in terms

of the numbers of positive results and negative results, respectively [32][42], as will be

discussed in detail in Chapter 2.

Probabilistic models that have been previously documented include the Beta Repu-

tation System [13], the TRAVOS model [32], and the Personalized Trust Model (PTM)

offered by Zhang [43], the latter of which is geared primarily towards electronic market-

place, whereas the first two are more general. All three of these models make use of beta

pdfs. We will discuss two of these models, PTM and TRAVOS, in greater detail in Chapter

2.

This thesis documents our work, the aims of which are twofold. The first is to improve

the accuracy of such multi-agent trust modelling systems. While many of the existing

trust models seem to provide excellent results in accurately modelling the trustworthiness

of agents, there is some room for improvement, which we address with our proposals.

The other aim is to work towards finding the “ideal” size of a requesting agent’s social

network of advisors. In this context, an agent’s social network is a collection of the other

agents which directly interact with the first agent. This does not imply, however, that

the physical individuals whom those agents represent necessarily have any knowledge of

one another. Indeed, the techniques we outline in this thesis are not at all affected by any
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friendships or other direct relationships, or lack thereof, between individuals; it has little in

common with social networking websites like Facebook (http://www.facebook.com/ ). For

this reason, we also refer to this concept as the agent’s neighbourhood or advisor network.

It has been previously noted [9][42] that having a larger number of advisors will increase

the computation time required to calculate these advisors’ trustworthiness, and may indeed

result in poorer accuracy in predicting the trustworthiness of provider agents, due to the

inclusion of additional “outlier” data. At the same time, while using a smaller number

of advisors may improve the accuracy somewhat, those advisors may not have a sufficient

level of experience. We therefore need to determine an appropriate “sweet spot” – not too

large and not too small – that will provide us with the most reliable results.

We first examine two methods that limit the size of a requesting agent’s advisor network.

Specifically, we consider selecting a maximum number (or maximum proportion) of advisors

(or max nbors) out of the total advisor population, or only selecting advisors that have

achieved some trustworthiness threshold.

We show that by using these methods – with appropriately-chosen parameters – to

limit the size of the advisor network, we will obtain an overall more accurate measure of

the trustworthiness of individual agents that the requesting agent is considering. We thus

also look at how to best determine the parameters to use for a given scenario, in order

to ensure the more accurate trust-modelling results. We further show that these results

should not be specific to any single model or scenario.

We then discuss the augmentation of one of these two techniques with a referral system,

in which advisors which have had an insufficient amount of experience with a particular

agent will be replaced by other agents with a higher level of experience. We show that care-

ful application of our proposed advisor referral system will result in further improvements

in trust modelling accuracy, particularly when the advisor network is initially very small,

such as when a small maximum number of advisors or a high trustworthiness threshold is

used. As with the earlier methods, we also examine how to determine the most appropriate

parameters when using advisor referrals.

As we explain further in Chapter 2, some researchers have previously looked at tech-

niques, either in trust modelling or related fields such as collaborative filtering, that to some
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extent resemble those that we propose in this thesis [9][40]. We believe the value of our

work lies in not merely providing improvements to the use of these techniques within trust

modelling, but also in setting out a more comprehensive procedure for carefully applying

those techniques. This procedure will ultimately demonstrate how to best determine an

appropriate size for a social network of this type.

1.2 Thesis Organization

The remainder of this thesis is organized as follows.

In Chapter 2, we provide an overview of some of the earlier work that directly influences

our contributions in this thesis. Specifically, we outline the PTM as well as TRAVOS to

provide context to our proposals and to the examples and experiments which follow. We

then summarize the literature with regards to limiting network size, as well as referral

systems, in other domains.

Chapter 3 discusses our two proposals for limiting the size of advisor networks: setting

a maximum size to the advisor network (or max nbors), and trustworthiness thresholding.

We outline how these techniques would be applied to the PTM, and later provide a general

overview of how they could be applied to other trust models. We also provide demonstrative

examples of how these techniques function and how they affect the trust models that are

produced. Finally we provide experimental results demonstrating the effectiveness of these

techniques with both PTM and TRAVOS using moderately-sized advisor populations, as

well as with PTM when the advisor population is larger. Included here is an examination

of the use of random selection to overcome performance issues sometimes associated with

large populations.

Similarly, in Chapter 4 we outline our proposal for advisor referrals in combination with

max nbors or thresholding, and their application to the PTM and, potentially, to other

trust systems. We then continue with the examples and experimental results begun in the

previous chapter with specific reference to the effectiveness of advisors in both PTM and

TRAVOS. This includes an exploration using PTM for large population sizes as well.
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This is followed in Chapter 5 by some discussion of the value of our particular approach

and its implications for other researchers. Included is a suggested method of applying our

techniques to other trust models, an exploration of some of the outstanding questions

related to choosing appropriate parameters in our approach, and an investigation of alter-

native methods for weighting advisor referrals which may be used within our framework.

Finally, in Chapter 6, we outline some potential future work that could follow from our

current results, and provide some concluding comments.
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Chapter 2

Related Work

2.1 Trust Models

2.1.1 Personalized Trust Model (PTM)

We ground this work, initially, in the multi-stage “personalized” trust modelling approach

developed by Zhang for representing reputation in an e-commerce system [43]. This ap-

proach, which for brevity we will refer to as the Personalized Trust Model or PTM, is

summarized below.

Buyer agents regularly interact with seller agents to purchase desired goods or services.

Following each transaction with a seller, a buyer assigns a rating to that transaction,

specifying whether its experience was positive (1) or negative (0) – more fine-grained

ratings are not provided for at present in the PTM – and submits this rating to a centralized

database server of some kind.

A single buyer agent, denoted by b, may wish to model the trustworthiness of all the

sellers in the system, in order to determine which sellers to purchase from in the future.

To do so, it first constructs a measure of the private reputation of each of the other

buyer agents – that is, b’s advisors – based on the advisors’ ratings for sellers that b has

previously dealt with, as retrieved from this central server, and representing an estimation

of the probability that an advisor a will give fair ratings to b.
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For each seller s for which both b and a have submitted ratings, there will be a corre-

sponding pair of ratings, which may be classified as either positive if the ratings are the

same (i.e. both ‘0’ or both ‘1’), or negative if the two ratings differ. Each pair of ratings

considered is assigned a weight based on the amount of time that separates the submission

of the two ratings using a “forgetting factor”, λ (0 ≤ λ ≤ 1), such that a pair of ratings

will have a greater weight if they are made within close time proximity. The PTM uses the

concept of a “time window” to represent this temporal proximity: ratings are partitioned

into several elemental time windows, the length of which could either be fixed (e.g. two

days) or variable based on how frequently a seller is rated. If the ratings are submitted

during the same time window, the weight z for that rating pair will be 1; otherwise, it will

be calculated as follows:

z = λTa−Tb (2.1)

where Ta and Tb are integer values identifying two time windows, and Tb corresponds

to the more recent of these two time windows.1

The overall evaluation of the shared experiences of buyer b with advisor a is known

as a’s “private” reputation, and is estimated as the probability that a will provide fair

ratings to b. However, given that the buyer only has incomplete information about an

advisor, the best estimation of this probability is through calculating its expected value.

As noted in Section 1.1, the beta probability distribution function is frequently used to

represent probability distributions of binary events. Thus the private reputation of advisor

a is calculated as shown in Equation 2.2:

α = Np + 1, β = Nall −Np + 1, Rpri(a) = E(Pr(a)) =
α

α + β
(2.2)

In Equation 2.2, Np represents the sum of the weights (as calculated using Equation

2.1) of all positive rating pairs for all sellers commonly rated by b and a, and Nall is the

1Tb will be the smaller of the two values, such that 1 indicates the most recent time window, 2 the
second-most recent time window, and so on.
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total sum of weights of all rating pairs involving b and a. If λ = 0, then Np and Nall will

be simply the counts of the applicable types of rating pairs. Note also that Pr(a) is the

probability that advisor a will provide fair ratings to the buyer b; an advisor’s rating is

considered to be “fair” if it is the same as the buyer’s rating. Thus E(Pr(a)) represents

the probability expectation value of the beta distribution defined by α and β; that is, it is

the most likely probability value that a will be honest in the future [14].

Next, the public reputation of an advisor, which (in a similar fashion to the determi-

nation of private reputation) is estimated as the probability that an advisor will provide

“consistent” ratings, is calculated using Equation 2.3:

α′ = Nc + 1, β′ = N ′all −Nc + 1, Rpub(a) =
α′

α′ + β′
(2.3)

Here, Nc represents the number of ratings, provided by an advisor a, that are consistent

with the majority of ratings provided for that seller by all other buyers up to the moment

that this additional rating is submitted, while N ′all is the total number of ratings provided

by a.

At this point, given some maximum acceptable level of error ε ∈ (0, 1) and level of

confidence γ ∈ (0, 1), w, the reliability of the private reputation value, is derived – which

is then used in the calculation of the overall trustworthiness of a (as in Equations 2.4, 2.5,

and 2.6). As can be seen from Equation 2.6, a more reliable private reputation will have a

greater effect on the overall result.

Nmin = − 1

2ε2
ln

1− γ
2

(2.4)

w =


Nall

Nmin
if Nall < Nmin

1 otherwise
(2.5)

Tr(a) = wRpri(a) + (1− w)Rpub(a) (2.6)

Once the trustworthiness value has been calculated for each advisor, advisors may be

9



then classified as “trustworthy” or “untrustworthy”. If the advisor’s trustworthiness is 0.5

or above, it will be considered trustworthy; otherwise it will be considered untrustworthy.

A similar approach can next be taken for the trustworthiness of a given seller s, once

again making use of the beta family of probability density functions to estimate appropriate

probabilities. First the buyer b calculates her private reputation of s, an estimation of

the probability that s will provide good service, based on b’s past experiences with s.

This makes use of the number of positive ratings, N b
pos,i, and negative ratings, N b

neg,i, she

provided for s in each time window Ti, as well as the forgetting factor λ, as in Equation

2.7.

Rpri(s) =

n∑
i=1

N b
pos,iλ

i−1 + 1

n∑
i=1

(N b
pos,i +N b

neg,i)λ
i−1 + 2

(2.7)

Next the public reputation of the seller is derived, based on an estimation of the prob-

ability that the seller will provide good service given the trustworthy advisors’ past expe-

riences with s, taking into account b’s own model of trustworthiness of each advisor aj.

First, the ratings are discounted based on the trustworthiness of the applicable advisor.

Equations 2.8 and 2.9 may then be used to determine b’s trust of ratings provided by each

aj.

Daj
posi

=
2Tr(aj)N

aj
pos,i

(1− Tr(aj))(N
aj
pos,i +N

aj
neg,i) + 2

(2.8)

Daj
negi

=
2Tr(aj)N

aj
neg,i

(1− Tr(aj))(N
aj
pos,i +N

aj
neg,i) + 2

(2.9)
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The public reputation of s is itself calculated using Equation 2.10.

Rpub(s) =

[
k∑
j=1

n∑
i=1

D
aj
pos,iλ

i−1

]
+ 1[

k∑
j=1

n∑
i=1

(D
aj
pos,i +D

aj
neg,i)λ

i−1

]
+ 2

(2.10)

Finally the overall trustworthiness of the seller s may be calculated with Equation 2.11.

w′ =


Nb

all

Nmin
if N b

all < Nmin

1 otherwise
(2.11)

Tr(s) = w′Rpri(s) + (1− w′)Rpub(s) (2.12)

Note that Nmin, the minimum number of ratings needed for the buyer b to be confident

about the private reputation value it has of the seller s, is calculated according to Equation

2.4, but is not necessarily the same value used in Equation 2.5.

For greater clarity, we reproduce an edited version of the pseudo-code summary of the

PTM’s algorithm for modelling seller trustworthiness from [42] as Algorithm 1.

The model also includes an incentive mechanism, whereby honest advisors are rewarded

by better offers from sellers, and in turn these sellers receive better reputations and ul-

timately more customers. While interesting in its own right, this mechanism does not

directly affect our current work, and therefore we do not discuss this part of Zhang’s

model further.

We will provide an example scenario showing how the PTM is used in the context of

our proposals, and their effects on the trust modelling in that scenario, in Section 3.2.1.
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Algorithm 1 PTM Method for Buyer b’s Trustworthiness Model of a Seller s (From [42])

1: {Buyer estimates private reputation of seller based on buyer’s own ratings}
2: Set N b

pos = N b
neg = 0: amount of discounted positive/negative ratings of b;

3: {T1, T2, . . . , Tn}: time windows;
4: for all Ti in {T1, T2, . . . , Tn} do
5: Set N b

pos,i = N b
neg,i = 0: number of bs positive/negative ratings in Ti;

6: Rb,s: buyer bś ratings for seller s;
7: for all rb,s in Rb,s and occuring during Ti do
8: if rb,s = 1 then
9: N b

pos,i = N b
pos,i + 1;

10: else
11: N b

neg,i = N b
neg,i + 1;

12: end if
13: end for
14: N b

pos = N b
pos +N b

pos,iλ
i−1; N b

neg = N b
neg +N b

neg,iλ
i−1;

15: end for
16: Private reputation is then calculated using Equation 2.7;
17: Calculate weight w′ using Equations 2.4 and 2.11;
18: Set public reputation = 0;
19: if w′ < 1 then
20: {private knowledge is limited, buyer estimates public reputation of s} {based on

advisors’ ratings for the seller}
21: {a1, a2, . . . , ak}: trustworthy advisors that have provided ratings for seller s;
22: Set Na

pos = 0: amount of all discounted positive ratings of advisors;
23: Set Na

neg = 0: amount of all discounted negative ratings of advisors;
24: for all aj in {a1, a2, . . . , ak} do
25: Set N

aj
pos = 0: amount of discounted positive ratings of aj;

26: Set N
aj
neg = 0: amount of discounted negative ratings of aj;

27: for all Ti in {T1, T2, . . . , Tn} do
28: Count N

aj
pos,i, N

aj
neg,i: number of aj’s positive/negative ratings in Ti; {similar to

the procedure of counting N b
pos,i and N b

neg,i}
29: Set D

aj
pos,i based on N

aj
pos,i using Equation 2.8;

30: Set D
aj
neg,i based on N

aj
neg,i using Equation 2.9;

31: N
aj
pos = N

aj
pos +D

aj
pos,iλ

i−1; N
aj
neg = N

aj
neg +D

aj
neg,iλ

i−1;
32: end for
33: Na

pos = Na
pos +N

aj
pos; Na

neg = Na
neg +N

aj
neg;

34: end for
35: Public reputation is then calculated using Equation 2.10;
36: end if
37: Trustworthiness is then calculated using Equation 2.12
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2.1.2 Other Trust Models

We also examine how our modifications will improve other trust models, mainly focusing on

TRAVOS [32]. TRAVOS has some similarities to PTM, as in [44] – both take a probabilistic

approach to the modelling of trust, using beta probability density functions (pdfs) – making

it a good comparison to the results we will obtain for PTM.

The TRAVOS model was developed to (a) provide a trust metric, representing the

level of trust in an agent, to be used to conclude whether a given agent is more or less

trustworthy than another; (b) reflect an individual’s confidence in the level of trust it holds

in another agent, in order to gauge the degree of influence which the aforementioned metric

has on the decision to interact with another agent (or not); (c) ensure that an agent cannot

assume that the opinions of others are necessarily accurate or based on real experiences.

Similar to the PTM, under the TRAVOS approach, it is assumed that a truster agent,

atr, will not generally have complete information about a trustee agent, ate, in order to

definitively state the probability, Batr,ate , that ate will fulfill its obligations to atr. At

most, we can calculate an expected value of this probability based on the set of interaction

outcomes of the past interactions between the agents up to some time t, O1:t
atr,ate . In other

words, the level of trust τatr,ate is defined as:

τatr,ate = E[Batr,ate|O1:t
atr,ate ] (2.13)

Determining this expected value requires a beta pdf to determine the relative probability

that Batr,ate will take a certain value. The shape of the plotted pdf is normally given in

terms of two parameters α and β, which leads to the following formulae:

α = m1:t
atr,ate + 1 (2.14)

β = n1:t
atr,ate + 1 (2.15)

where t is the time of evaluation, m1:t
atr,ate is the number of successful interactions for atr
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with ate up to time t, and likewise n1:t
atr,ate is the number of unsuccessful interactions under

the same scenario. This leads to the determination of the level of trust τatr,ate as:

τatr,ate = E[Batr,ate|α, β] =
α

α + β
(2.16)

Suppose, for example, that a buyer agent b0 is attempting to determine how much it

should trust some target seller agent s0 given that, as of time t, b0 has had four satisfactory

purchases and three unsatisfactory purchases from s0. Under the TRAVOS model, this

trust value would be computed as follows:

α = m1:t
b0,s0

+ 1 = 4 + 1 = 5

β = n1:t
b0,s0

+ 1 = 3 + 1 = 4

τb0,s0 =
α

α + β
=

5

5 + 4
=

5

9
= 0.5

A separate metric is then determined such that atr may measure its confidence in this

trust value, τatr,ate , after choosing an acceptable margin of error ε. This metric, γatr,ate ,

represents the posterior probability that the true value of Batr,ate lies within the range

[τatr,ate − ε, τatr,ate + ε], and is calculated as a function of α, β, ε, and τatr,ate .

If the confidence is not sufficiently high, the advice of third parties may be considered

as well. This would be performed by asking other agents to report the number of success-

ful and unsuccessful interactions that each has had with ate, the aggregate of which are

computed as Matr,ate and Natr,ate respectively. This in turn leads to a separate probability

distribution, Dc, with α = Matr,ate + 1 and β = Natr,ate + 1, which can then be used in

Equation 2.16.

However, mindful of the possibility that some other agents may report untruthfully,

TRAVOS also incorporates a mechanism to filter out the reports by agents which have

low reputations. The first stage is to estimate the probability that an agent aop’s reported
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opinion about the trustee ate, denoted R̂aop,ate , is accurate. This is performed by (i)

constructing additional beta distributions, Dr derived from R̂aop,ate , and Do which is based

on the outcomes of the previous interactions for which aop provided to atr an opinion similar

to R̂aop,ate about ate or some other trustee, and (ii) finding their respective expected values,

Er and Eo. The range of possible values for both Er and Eo, i.e. [0, 1], is then divided into

several disjoint intervals (bins) of equal size2 to determine (in essence) whether Er and Eo

are located in the same bin, via the calculation of an accuracy value denoted as ρatr,aop .

Finally, TRAVOS attempts to reduce the effect of unreliable opinions on Dc through

an approach that discounts high values of parameters, unless the probability of a rater’s

opinion being accurate is very high. This is performed through the construction of another

beta distribution, D̄, based on (i) the accuracy value ρatr,aop , and (ii) the expected values

and standard deviations of the uniform distribution (α = β = 1) and of the distribution(s)

of the unreliable opinion(s) that are sought to be removed, Dr.

We can identify three important distinctions between PTM and TRAVOS:

• PTM uses both private and public knowledge regarding all sellers, whereas TRAVOS

uses only the private knowledge regarding some selected sellers.

• The method used by TRAVOS to aggregate ratings provided by certain advisors is

more complex, reducing the effect of ratings from less trustworthy advisors using a

method of filtering.

• TRAVOS reasons about the specific seller being considered when determining how

much to trust an advisor. By contrast, in PTM, advisor reputation is calculated

independently of any specific seller.

We will return to these distinctions in Section 3.3.2 in considering the differences in

results between the two models when applying our approach.

2Teacy et al. specified that five intervals should be used. However, in our simulations in Section 3.3.2
and thereafter, we followed the selection in [42] of two bins as providing the best results.
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2.2 Techniques for Limiting Network Size

In examining potential techniques for finding the most appropriate size of an advisor net-

work in the aforementioned trust models, we drew some inspiration from techniques in

other areas of artificial intelligence, more specifically from collaborative filtering. Before

outlining these specific techniques, we first briefly explain the relevant background in this

area.

A recommender system is a system which generates recommendations for its users based

on prior inputs from its user base, often in the form of subjective opinions, about the items

in question [27][26]. For example, a film recommender system might accept inputs from

users about whether a particular film was good or bad, and then uses that information to

recommend the best or most relevant selection to users who hadn’t previously seen that

film.

One of the earliest, if not the first, recommender system described in the literature was

the Tapestry system [5], which suggested a means of recommending the most interesting e-

mail messages to users, regardless of its source, based on (for example) whether the sender

or a replier of a message was indicated on a pre-specified list. That work also introduced

the term collaborative filtering (abbreviated CF), which refers to a subset of recommender

systems in which users collaborate – or their information is used in a collaborative fashion

– in order to generate recommendations. GroupLens [26] was a later CF mechanism that

used a more implicit filtering mechanism, recommending newsgroup articles to a user if

they were rated highly by other users similar to the first user, based on a comparison of

the users’ past ratings.

The research group that first proposed GroupLens discussed some of the design choices

for collaborative filtering algorithms in [9]. It is from this work that we find two possible

methods for limiting the number of advisors.

The first method, correlation thresholding [30], sets a minimum correlation weight that

an advisor must have in order to be considered part of the user’s “neighbourhood”. How-

ever, if the threshold is set too high, then the neighbourhood may be very small, limiting

the possibilities for predictions.
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The second method discussed, best-n-neighbors, which is cited as being used in the

GroupLens [26] system among others,3 picks a maximum number of neighbours to use,

max nbors. (The same process is also referred to in the literature as k-nearest neighbours,

or kNN [18].) The neighbours chosen would be those with the highest correlation to the

instant user.

In Chapter 3, we introduce these two methods into our proposed framework. In Section

5.2, we return to contrast our treatment of these techniques, in comparison with the efforts

described in [9].

2.3 Referral Systems

A potential supplement to finding a more appropriate size for the advisor network is derived

from Yu and Singh [39][40]. In [39] they discussed, as an idea for future work, reputation

management in a social network making use of a referral mechanism. In this mechanism,

a requesting agent (roughly equivalent to the buyer in our e-commerce scenario) would

consult its “neighbour” agents, each of which might either provide advice on the question

itself, provide references to other appropriate advisors, or both, depending on the question.

As a result, a requesting agent would be able to benefit from the information held by the

pool of agents without having a large number of neighbours [42].

A version of this mechanism is implemented in [40]: Each agent has a set of acquain-

tances, which were randomly determined at the outset, and did not change thereafter. For

each of those acquaintances, each agent maintains a model of the acquaintance’s expertise

(trustworthiness) and sociability (i.e., whether that acquaintance would itself be likely to

refer to other trustworthy agents). A subset of the acquaintances representing the most

trustworthy and sociable agents would be designated as neighbours, the composition of

which might change from time to time. Each agent would also be assigned a “branching

factor” specifying how many referrals from its set of neighbours it could provide at any

one time.
3Notwithstanding this citation in [9], we were unable to find any further details about the use of this

technique, or how it was applied, in our review of [26] and other papers from the GroupLens research
group.
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A requesting agent, Ar, might then desire to evaluate the trustworthiness of some target

agent Ag. If Ag was already among Ar’s acquaintances, it would use its existing local trust

model for Ag for its evaluation. Otherwise it would query its acquaintances for information

about some Ag. If an acquaintance were also acquainted with a target agent, it would

be accepted as a “witness”; else it would provide referrals to a subset of its neighbours

(limited to the value of the branching factor). The requesting agent would then query these

referred agents in turn, and so on until either a maximum depth of the trust network was

reached or the desired number of witness agents had been found. Each witness would then

provide some belief function computed using Dempster-Shafer theory, based on its local

ratings of prior interactions with the target agent, indicating its trustworthiness of that

agent. Additional steps would then be taken to determine whether each of those witnesses

were themselves trustworthy or untrustworthy, and ultimately the belief functions from the

remaining witnesses would be combined to compute the reputation of the target agent.

Yolum and Singh [37][38] expanded on the earlier work, in part by introducing the

concept of self-organizing referral networks – that is, a referral network acting without

external control, and adapting to take into account useful entities. Interestingly this work

also discusses a “capability” metric that might be used to measure whether an agent would

be likely to give a good answer for a given query, or alternatively whether an answer that

has been given is a good answer to the given query. This would be calculated as follows:

Q⊗ E =

∑n
t=1(qtet)√
n
∑n

t=1 q
2
t

(2.17)

where Q = 〈q1 . . . qn〉 is a query vector derived from the requesting agent’s interest

vector (representing the agent’s interest in receiving different services), E = 〈e1 . . . en〉 is

an expertise vector (which specifies the trustworthiness of the queried agent with respect

to each of these services); and n is the number of dimensions that these vectors have.

This work also examines different referral policies that an agent might use – either

referring all neighbours, referring all “matching” neighbours (those scoring above a given

capability threshold), or referring only the best neighbour (that is, the one with the highest

capability threshold).
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A quite exhaustive examination of various design choices in referral systems is also

contained in [38], some of the more interesting results being as follows:

• Requiring a high number of referrals will not guarantee a high-quality referral net-

work; in some cases fewer referrals may be desired, such as for low capability thresh-

olds.

• If agents value high sociability (as defined earlier in this section), then agents with

similar interests are more likely to become neighbours; in some (but not all cases) this

might improve the likelihood that suitable service providers (sellers) will be found.

• On the other hand, if agents place a higher priority on a high quality of service, then

more strong authorities – that is, agents that are highly reliable, as in [25] – will

emerge.

We finally note that the referral techniques discussed above have some similarity to

the Repage system presented in [28] – a system that is more directly related to trust

modelling. Similar to certain of the referral systems discussed above [40], Repage combines

the requesting agent’s own evaluation, or image, of the target agent with the reputation

of that agent, i.e. the requesting agent’s belief about the consensus evaluation regarding

the target. The latter component is derived in large part from third-party agents, known

as informers, which can transmit their own reported images of the target; units known

as detectors are then responsible for determining which information will be most useful in

evaluating the reputation of the target. Thus, the set of informers need not be static, much

as the referral mechanism we will introduce in Chapter 4 will seek to find the advisors that

are most experienced with a given target agent.

Based on this earlier work, it stands to reason that a similar advisor referral method

could be used in combination with the limiting techniques discussed in the previous section

in order to yield an overall smaller advisor network size. However, we will also explore

the effects of our more principled approach to applying network limiting techniques –

specifically, varying the size of the advisor network – alongside advisor referrals, whereas

the size of the network and other parameters were kept constant in some of the earlier

works, specifically [40][38].
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We will introduce our proposal for integrating advisor referrals in Chapter 4. We then

return to contrast our approach to those of other authors in Section 5.3.
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Chapter 3

Limiting Advisor Network Size

3.1 Proposed Techniques

In the previous chapter we noted some past work examining the usefulness of setting a max-

imum number of advisors or correlation thresholding in collaborative filtering recommender

systems [9]. We now wish to examine whether either method will lead to improvements

in the accuracy of trust modelling. We hypothesize that both of these methods should be

effective in that, although they will remove some information from the model, this infor-

mation will originate from advisors that are themselves modelled as being less trustworthy

than those that remain. As a result, we should be able to have greater confidence in the

results computed with these methods, since they will be generated using information from

the more trustworthy advisors, and not the others.

We note that the results from [9] (which we discuss in greater detail in Section 5.4)

indicate that setting a maximum size to the advisor network performs better than thresh-

olding in the collaborative filtering scenario, which in turn might suggest that it is likely

to be the most effective approach for trust modelling as well. However, we cannot over-

look the distinction between correlation for collaborative filtering and reputation. While

similarity with a buyer may indirectly impact on that buyer’s private reputation of an

advisor, the private reputation of a seller only relates to the buyer’s ratings for that seller,

ignoring similarity, while similarity is not a factor at all in public reputation. Hence we
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propose that both options, trustworthiness thresholding and maximum number of advisors,

should be thoroughly examined. (We will return to the challenge of balancing similarity

and reputation modelling in Section 5.4.)

That said, neither setting a maximum number of advisors nor using thresholding can

be directly applied to the PTM’s computation of advisor reputation. For example, the

public reputation component of an advisor’s reputation relies on the comparison of its

interactions with those of other advisors. If we had some a priori information about

these other advisors that could be used when computing the public reputation for a single

advisor, then max nbors or thresholding might be useful in this computation. However,

in PTM, this is not the case: the advisor trustworthiness values must be calculated for all

possible advisors, using all of the available information, before the buyer can proceed to

calculate seller reputation.

Our application of these techniques in the seller reputation model is formalized as

follows.

3.1.1 Trustworthiness Thresholding

We first choose some threshold L (0 ≤ L ≤ 1) which represents the minimum advisor

trustworthiness value Tr(a) required for an agent to be included in the advisor network.

We then define the set AL,b = {a1, a2, . . . , ak} consisting of all advisors for which Tr(a) ≥ L

for a particular buyer b. We then use the subset AL,b,s, consisting of the advisors in AL,b that

have provided ratings for the seller s, in place of the previously-defined set {a1, . . . , ak}, the

set of all advisors that have provided ratings for s, in the PTM seller reputation algorithm

(reproduced in Section 2.1.1 as Algorithm 1).

3.1.2 Maximum Number of Advisors

For a particular buyer b, after having calculated the personalized trustworthiness of each

advisor for b as per the first part of the PTM, we sort the list of all n advisors from great-

est trustworthiness value to least, in the set {a1, a2, . . . , an}. We choose some maximum
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number of advisors for each buyer, max nbors ≤ n, and then truncate this set to the set

Ab = {a1, a2, . . . , amax nbors}. We thus obtain the set of max nbors advisors that have been

calculated to be the most trustworthy for b. Again, the subset of Ab that has provided

ratings for the seller s is used in place of the larger set {a1, . . . , ak} in the PTM seller

reputation algorithm.

3.2 Examples

3.2.1 Using the PTM

As in [42], we consider the case where a buyer b wishes to assess the trustworthiness of a

particular seller s0 with whom the buyer has had little or no experience. For the purposes

of this simplified example, we assume that there are four available advisors from which b

may seek advice, namely aw, ax, ay, and az.

We assume initially that, among sellers that b has had past dealings with, each of these

advisors has provided ratings only for the five sellers (s1, s2, s3, s4, s5), and has rated each of

the sellers at most once in each time window in the sequence T , where T1 is the most recent

time window. The ratings may be either positive (1) or negative (0); a dash (-) indicates

that no rating was provided during the indicated time window. The ratings provided by

each advisor for these sellers are listed in Table 3.1. The buyer b has also provided some

ratings for the sellers, as indicated in the same table; note here that b does not provide

ratings for every seller each time window.

We derive the trustworthiness values for each advisor using Equations 2.2 through 2.6.

For simplicity, in these calculations, we follow the method used in the examples provided

in [42]. First, we will only consider pairs of ratings provided during the same time window.

We thus assume that the forgetting factor as defined previously is λ = 0. Hence Equation

2.1 will yield z = 1 for all pairs of ratings occurring within the same time window, and

z = 0 otherwise. For the determination of Nc, we assume for simplicity that any rating

of 1 provided by the advisor is a “consistent” rating, meaning a rating that matches the

majority opinion of other advisors for a particular seller that received a rating. Finally, in
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Table 3.1: Ratings of Sellers Provided by Advisors and Buyer b

aw ax ay

T T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

s1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0
s2 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1
s3 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1
s4 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0
s5 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1

az b

T T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

s1 0 0 0 0 0 1 1 1 1 1
s2 0 0 0 0 0 1 1 1 1 -
s3 0 0 0 0 0 1 1 1 - -
s4 0 0 0 0 0 1 1 - - -
s5 0 0 0 0 0 1 - - - -

Equation 2.4 we use γ = 0.8 and ε = 0.15, leading to Nmin = 51. The pertinent values are

shown in Table 3.2.

We proceed to the calculation of the trustworthiness of a seller s0. As a preliminary

matter, we remember that the buyer b has not provided any ratings in the past for s0, and

therefore Rpri(s) = 1
2
. Of our four advisors, only aw, ax and az have provided ratings for

the seller s0, as indicated in Table 3.3a. The subsequent Table 3.3b indicates how these

ratings translate into positive and negative amounts, while Table 3.3c shows how these

ratings are discounted based on the advisor trustworthiness values calculated earlier.

Using Equation 2.10, we may then find the public reputation of s0. In keeping with

the examples provided in [42], we remove our previously-stated simplification that only

compared ratings in the same time window, and thus set a forgetting factor of λ = 0.9:
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Table 3.2: Trustworthiness of Advisors aw, ax, ay, and az for Buyer b

aj Np Nall α β Rpri Nc N ′all α′ β′ Rpub w Tr(a)

aw 5 15 6 11 0.353 14 25 15 12 0.556 0.294 0.497
ax 15 15 16 1 0.941 25 25 26 1 0.963 0.294 0.957
ay 8 15 19 8 0.529 11 25 12 15 0.444 0.294 0.469
az 0 15 1 16 0.059 0 25 1 26 0.037 0.294 0.0434

Table 3.3: Ratings of s0 Provided by aw, ax, az

(a) Ratings

Ti T1 T2 T3 T4 T5

aw 1 0 1 0 1
ax 0 0 0 1 1
az 1 1 1 1 1

(b) Amounts of Ratings

Ti T1 T2 T3 T4 T5

Naw
pos,i 1 0 1 0 1

Naw
neg,i 0 1 0 1 0

Nax
pos,i 0 0 0 1 1

Nax
neg,i 1 1 1 0 0

Naz
pos,i 1 1 1 1 1

Naz
neg,i 0 0 0 0 0

(c) Discounted Amounts of Ratings

Ti T1 T2 T3 T4 T5

Daw
pos,i 0.397 0 0.397 0 0.397

Daw
neg,i 0 0.397 0 0.397 0

Dax
pos,i 0 0 0 0.937 0.937

Dax
neg,i 0.937 0.937 0.937 0 0

Daz
pos,i 0.0294 0.0294 0.0294 0.0294 0.0294

Daz
neg,i 0 0 0 0 0
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Table 3.4: Advisor Network Size with a Correlation Threshold

L 0 0.2 0.4 0.6 0.8 1

AL,b {aw, ax, ay, az} {aw, ax, ay} {aw, ax, ay} {ax} {ax} {}
|AL,b| 4 3 3 1 1 0

Rpub(s0) =

5∑
i=4

0.937 ∗ 0.9i−1 + 0.397 ∗ (0.90 + 0.92 + 0.94) +
5∑
i=1

0.0294 ∗ 0.9i−1 + 1

5∑
i=1

0.937 ∗ 0.9i−1 +
5∑
i=1

0.397 ∗ 0.9i−1
5∑
i=1

0.0294 ∗ 0.9i−1 + 2

= 0.4480

Finally, since the buyer has not dealt with s0 before, the weight for the private reputa-

tion w′ is zero, meaning we can immediately conclude that Tr(s0) = 0.4480.

3.2.2 Reputation Thresholding

We now turn to exploring the effects of the modifications proposed in Section 3.1. We first

examine how setting a minimum reputation threshold would affect the size of our network

and, in turn, the computation of the private reputation component of seller trustworthiness.

We choose several potential values for the threshold L and indicate, based on the results

in the previous section regarding advisor trustworthiness, how many advisors would be

included in the buyer b’s advisor network in this case. The results are shown in Table 3.4.

Trivially, when L = 0, all advisors will be included in the network, and Tr(s0) = 0.4480

– the same value as calculated at the end of the previous subsection. For L = 0.2 and

L = 0.4, the advisor network consists of aw, ax, and ay, of which only aw and ax contribute

ratings for s0. We refer to the resulting trustworthiness value as Trw,x(s0), which we

calculate using Equation 2.10 to be 0.439.

For L = 0.6 and L = 0.8, the advisor network consists solely of ax, and therefore the
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Table 3.5: Trustworthiness of s0 Using a Maximum Number of Advisors

max nbors 0 1 2 3 ≥ 4

Ab {} {ax} {aw, ax} {aw, ax, ay} {aw, ax, ay, az}
min(Tr(a)) undefined 0.957 0.497 0.469 0.0434
Tr(s0) 0.5 0.697 0.439 0.439 0.4480

seller trustworthiness Trx(s0) (again by Equation 2.10) would be 0.697. Finally, for L = 1,

the advisor network is the empty set and, trivially, Trempty(s0) = 1
2
.

3.2.3 Maximum Number of Advisors

We might elect to use a maximum number of advisors in place of the thresholding procedure

examined in the previous subsection, so we now look at how the determination of seller

trustworthiness would be affected in this case. Depending on the max nbors value chosen,

we would have the results shown in table 3.5, with the advisor network representing the

max nbors advisors most trusted by the buyer b. For comparison, we indicate the minimum

trustworthiness value of the advisors in the network, to show the maximum threshold L

that could be used to get the same result using thresholding.

3.3 Experimental Results

To verify that these modifications provide an improvement over the original PTM, we now

turn to evaluating the performance of each of these changes. Some of this evaluation is

inspired by the methods used in [43] to show the effectiveness of the original model.

We pause briefly to note some background details about the experimental setup for

the simulations in this thesis. The necessary software written to simulate the scenarios

documented in this thesis was written in Java using standard Java libraries. Much of the

code was reused from the similar experiments conducted by Zhang and documented in [42],

with appropriate changes in order to apply the techniques described earlier in this chapter,
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as well as the referral approach that will be described in Chapter 4. The simulations were

primarily run, in sequence, on a dual-core workstation computer.

However, for scenarios involving large populations (which required significantly more

memory and computation time), the corresponding simulations were run in parallel on

additional research servers using single-core processors. These large-population scenarios

also generally required a significant amount of memory in order to allow the buyer to model

the trust of every other advisor agent; this required adjustments to the standard size of the

Java Virtual Machine’s heap, using up to 1 GB of random access memory per simulation.

Overall we estimate that approximately 250–350 hours of processing time were required

to complete the experiments documented in this thesis.

3.3.1 Validating Effectiveness

We first verify that each of our modifications to PTM maintains the effectiveness of the

trust model – that is, the new models still accurately reflect the trustworthiness of agents

in the system. We first reiterate that these modifications do not in any way affect how indi-

vidual buyer agents model the trustworthiness of their potential advisors. As noted at the

beginning of this chapter, the max nbors and thresholding approaches are not appropriate

to use as part of the PTM’s method for modelling advisor trustworthiness, but only as a

means of selecting advisors once this model has been constructed. Thus any application of

either approach will only affect which advisors are used once the advisor reputations have

already been determined, and in turn the computations of the trustworthiness of sellers,

but will not retroactively affect advisor trustworthiness.

Hence, to show that the modified trust model remains effective in modelling seller

trustworthiness, we do not need to concern ourselves with the computation of advisor

trustworthiness, but instead confirm, as in [43], that in the modified models, a decrease in

the honesty of a seller corresponds to a decrease in the trustworthiness value calculated for

that seller – for example, we expect that a seller that is dishonest 20% of the time should

be modelled as being more trustworthy as one that is dishonest 40% of the time, and

both should be modelled as having higher reputations as a seller that lies 60% of the time.
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Note that at this stage we are not overly concerned with the accuracy of the calculated

reputation values, so long as the computed trustworthiness is at least roughly proportional

to the actual honesty of the seller.

This property was shown in [43] by simulating an environment consisting of one buyer,

80 advisors, and 100 sellers, where the sellers are evenly divided into ten groups, each

having a probability of dishonesty between zero and 0.9. The buyer and the advisors

each randomly select 80 of the sellers and rate each of those sellers. Finally, given these

ratings, the buyer calculates the trustworthiness values corresponding to each of the sellers

using Algorithm 1 (see Section 2.1.1). These tests are performed for two values of the

percentage of lying (dishonest) advisors, specifically 30% and 60%, and repeated a total

of ten times for each possible combination. The results indicated that PTM (combining

public and private reputation) does reflect, relatively accurately, the actual trust of each

seller in these scenarios.

We repeat these conditions for our simulation, using a derivative of the modelling

and simulation software originally written by Zhang for [42] and related work, and now

apply our techniques for limiting the size of the network. The results of these simulations

under various combinations of these modifications are shown in Figure 3.1 for simulations

where 30% of advisors are lying, and Figure 3.2 for scenarios where the percentage of

lying advisors is 60%. In each of these graphs, the x-axis represents the predetermined

probability of dishonesty for each category of sellers. The y-axis represents the average

(mean) of the trust values, calculated using Algorithm 1 (as modified as discussed in Section

3.1.1 or 3.1.2, as applicable), averaged over all repetitions and all of the ten sellers in each

category.

We stated in Chapter 1 that we consider trust to be an agent’s belief that some other

agent will carry out the tasks it says it will perform. We consider that an ideal trust model

under this definition would represent trust as the proportion of interactions in which an

agent does carry out the promised tasks. For example, a seller that is modelled as likely to

not deliver the sold goods for four out of every ten transactions would ideally be assigned

a trust value of 1− 0.4 = 0.6. In Figures 3.1 and 3.2, this model is represented graphically

by a slope of -1 starting at (0, 1). Ultimately, we seek one or more variants that produce
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trust values very close to these “ideal” values.

We see that, in general, using thresholding and max nbors does yield a trust model

that tracks well with the ideal trust values, for both the 30% and 60% lying advisors (LA)

cases. However, the error – the difference between the actual trust values and the ideal

figures – varies depending on the parameters used, particularly the specific value of the

threshold or max nbors.

Figure 3.1a compares the performance of an unrestricted advisor network against several

possible max nbors parameters, for the case where 30% of the advisors are dishonest. All of

the variants using max nbors provided better results compared to not using any network-

limiting method at all; that is, the plotted results all came closer to the “ideal” slope

than for the unrestricted network. However, as expected, the best results came not from

choosing extreme parameters (i.e. a very high or very low value for max nbors), but rather

from somewhere in the middle: the results that best matched the ideal trust model came

for max nbors = 40 (that is, the top 50% of the 80 advisors in the network). However,

performance did not suffer significantly for smaller values, up to max nbors = 15 (i.e. the

top 19%).

A similar comparison for different threshold values is shown in Figure 3.1b. Here

the results differed slightly: using a threshold between 0.5 and 0.7 improved the results

compared to a network that had not been thresholded, with a threshold of 0.55 showing the

greatest improvement. However, for thresholds of 0.8 and 0.9, the accuracy was reduced

dramatically, as shown by their near-horizontal and horizontal graphs, respectively, on

this figure. This is because very few (if any) advisors, apart from the buyer itself, would

have a trust value above such a high threshold. The 0.9 threshold graph demonstrates

the worst case where no suitable advisors could be found. In this case, in computing the

public trustworthiness of sellers using Equation 2.10, the sum components will be zero,

therefore the PTM would default to assigning each seller a trustworthiness of 0+1
0+2

= 0.5.

The implication is that a threshold of 0.9 is simply an unrealistically high value to use to

limit the advisor network in PTM.

Figures 3.2a and 3.2b cover a separate but very similar set of simulations covering the

60% lying advisors case. As can be seen by looking at the “No MaxNbors / No Threshold”
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(a) Comparison of max nbors approaches (30% LA)

(b) Comparison of thresholding approaches (30% LA)

Figure 3.1: Verification testing for the modifications using 30% lying advisors.
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(a) Comparison of max nbors approaches (60% LA)

(b) Comparison of thresholding approaches (60% LA)

Figure 3.2: Verification testing for the modifications using 60% lying advisors.
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graphs, which are very far from the ideal-case graph shown in both figures, not applying

max nbors or thresholding at all will result in poor accuracy for the trust model. However,

the accuracy can be significantly improved by applying either max nbors or thresholding,

with our experiments indicating 0.55 as the best threshold value, and max nbors = 30 as

the best among the tested max nbors options.

A summary of the simulation results for both 30% and 60% lying advisors is provided

in Figure 3.3. In these figures we also provide results for a similar set of simulations when

the fraction of lying advisors is increased to 90%. This perspective may indeed provide

a more intuitive comparison of the results compared to those in Figures 3.1 and 3.2. In

both cases, each graph represents one of the tested percentages of lying advisors (either

30%, 60%, or 90%). The x-axis indicates the parameter chosen, if any, for max nbors

(in Figure 3.3a) or the trustworthiness threshold (in Figure 3.3b). The y-axis shows the

mean absolute error (MAE) associated with that particular simulation – in other words,

the average absolute difference between the “ideal” trust model as discussed above (error

= 0), and the actual results for the variant measured. If the predicted trust values are very

close to the actual values, the MAE will be low; if these values are far apart, the MAE will

be high. The case where no max nbors value is used – that is, all 80 advisors are included

regardless – is represented by the far right of the graphs in Figure 3.3a. In Figure 3.3b,

the equivalent case where no thresholding is applied is represented by a threshold of zero,

at the far left of the graph.

We point out that an MAE of 0.25 – such as seen for a threshold of 0.9 in Figure 3.3b –

represents a special value in these graphs, representing the largest MAE that should be ex-

pected in our simulations if the model is accurately classifying sellers as either trustworthy

or untrustworthy. We noted above that in the “worst case” thresholding scenario where

no suitable advisors can be found, the trust model will assign each seller a default value of

0.5. Taking account of all 100 sellers, each having been assigned a percentage of dishonest

behaviour between 0 (which would correspond to 100% trustworthiness) and 90% (which

would indicate 10% trustworthiness), the MAE in this case would be computed as follows:
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(a) Error produced in max nbors approaches

(b) Error produced in thresholding approaches

Figure 3.3: Mean average error of various trust model variants
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10abs(1− 0.5) + 10abs(0.9− 0.5) + 10abs(0.8− 0.5) + · · ·+ 10abs(0.1− 0.5)

100
= 0.25

It is possible to have an MAE above 0.25, as seen in (for example) certain of the 90%

lying advisor cases; this would only occur if for some reason the system is modelling some

of the sellers as trustworthy when they are in fact untrustworthy, and vice versa.

From Figure 3.3a, we can also see the max nbors approach may be affected by the

percentage of lying advisors. Specifically, setting max nbors = 40 when 60% of the advisors

are dishonest yields significantly worse performance than when 30% of the advisors are

lying. On the other hand, using max nbors = 30 yields similar performance results when

either 30% or 60% of advisors are lying. If 90% of advisors are lying, however, max nbors =

30 yields poor accuracy, whereas the best performance is found by setting max nbors = 10.

This result suggests that when more advisors are lying, it is better to set a smaller value

for max nbors. However, from Figure 3.3b we see that the thresholding approach is not

heavily affected by the percentage of lying advisors. Even though there is a significant

reduction in accuracy when moving from 60% to 90% lying advisors, the general shape of

the graph (and therefore the best choices for the threshold) are largely unchanged. This is

somewhat expected since thresholding allows only the trustworthy advisors to be included

in buyers’ networks.

Note that to simplify the presentation of our remaining results, we will use “summary”

graphs similar to those in Figures 3.3a and 3.3b throughout the remainder of this chapter,

and again in parts of Chapter 4. We believe it should be clear from our initial results

(Figures 3.1 and 3.2) that the MAE is sufficient to determine how well the computed trust

values track with the expected values.

We noted in Section 3.2.1, that there is a relationship between max nbors and threshold

parameters, in that there will be values for both methods that will yield the same network

composition. We will investigate this relationship further in Appendix A.
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3.3.2 Applicability to Alternative Model

Having shown that our optimizations1 have proven useful to PTM, we now turn to demon-

strating that these changes are also effective for other trust models. Specifically we look

to show that the TRAVOS model [32] can be improved by applying our modifications.

We discussed TRAVOS in detail in Section 2.1.2 of this thesis. We will nevertheless

take this opportunity to reiterate the relationship between the two models. TRAVOS has

some similarities to PTM, as in [44] – both take a probabilistic approach to the modelling

of trust, using beta probability density functions (pdfs) – making it a good comparison to

the results above.

However, there are three important distinctions between the models: One, PTM uses

both private and public knowledge regarding all sellers, whereas TRAVOS uses only the

private knowledge about certain selected sellers. Two, the method used by TRAVOS to

aggregate ratings provided by certain advisors is more complex, which serves to reduce the

effect of ratings from less trustworthy advisors.

Third, the TRAVOS model of the trustworthiness of a particular advisor is specific to

the seller being considered. This means that the buyer (and each advisor) should construct

a separate advisor network for each seller in the system. As we will discuss in Section 6.2.4,

this may have certain negative impacts on the memory usage of such a system.

To demonstrate the effectiveness of our optimizations, we perform similar sets of ex-

periments to those performed in Section 3.3.1; again, we used a modified version of the

simulation and modelling software developed for the earlier work by Zhang. These simu-

lations for the max nbors and thresholding optimizations use an environment consisting

of one buyer, 80 advisors, and 100 sellers with varying probabilities of dishonesty. During

the simulation, the buyer and each advisor both randomly select and rate a total of 80

sellers. Finally, the buyer calculates the trustworthiness values corresponding to each of

the sellers. These tests are performed for two values of the percentage of lying advisors,

30% and 60%. The results of these experiments are shown in Figures 3.4a and 3.4b. Each

1In this thesis we occasionally refer to our proposed techniques as “optimizations”. This is meant to
indicate that we are using these techniques to improve the accuracy of trust modelling. We do not claim
that these results are “optimal” in the sense of no further improvements being possible.
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figure shows two graphs, indicating how each model performs for both of the tested levels

of lying advisors; as with the graphs shown previously, the data points map the applicable

max nbors or threshold parameter on the x-axis to the mean absolute error (MAE) of the

trust model under that scenario on the y-axis.

These figures indicate mixed results with regards to the effect of applying these mod-

ifications to TRAVOS. Consider that an unrestricted network (as represented by the far

right of Figure 3.4a, or the far left of Figure 3.4b) will yield a mean absolute error value

between 0.15 and 0.25. Recalling our discussion of the meaning of an MAE of 0.25 in the

previous section, it should be clear that these MAE values indicate relatively low accuracy.

In comparison, most of the models incorporating either max nbors or a threshold will have

a smaller error value, and thus improved accuracy over an unrestricted network.

However, the progression is not entirely consistent. For example, in examining both

Figures 3.4a and 3.4b, the graphs representing the TRAVOS model have a zig-zag shape,

with the MAE increasing and decreasing at various points in a somewhat haphazard fash-

ion. This is particularly true for the thresholding cases, where the changes in the MAE

seem to be fairly random.

For the max nbors cases (Figure 3.4a), there is less randomness in the MAE, but it

is still surprising that the error decreases between max nbors = 40 and max nbors = 60,

given that error had increased as max nbors was increased from 20 to 40.

The implication of both results is that under certain circumstances, decreasing the

threshold (or increasing the max nbors parameter) serves to add additional advisors into

the network which serve to reduce the trust modelling error – despite the fact that those

agents would have been modelled as “less trustworthy” than those included in the more

restricted network. In other words, some advisors seem to have been modelled as more

trustworthy (or less trustworthy) than they should have been. The most likely apparent

cause of this fault would be with the TRAVOS approach itself, but we cannot say conclu-

sively that this is the case based on these results, and further examination of this theory

is raised for future work in Section 6.2.3.

Nevertheless, the results reinforce the value of our proposed approach, to set an effec-

tive value for max nbors or thresholding, shown here through experimental methods. To
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this end, we are able to say that in general, TRAVOS works best in this scenario when

max nbors is set to 20, or when a threshold of 0.5 is set.

3.3.3 Effects for Larger Populations

Given that most existing e-commerce systems have very large populations of users – on the

order of thousands or even millions – we felt it would also be useful to demonstrate that

our techniques also work with larger populations of advisors. Assuming this to be true,

we would also observe the results and any distinctions from the earlier results involving

smaller advisor populations.

We perform these simulations using PTM for an advisor population size of 500, which we

feel is a useful starting point for considering systems with populations of this magnitude.2

These tests otherwise maintain the same test conditions used for our earlier tests in Section

3.3.1 in terms of the number of sellers and the duration of the simulation. Again, however,

we run the simulations with two values of the percentage of lying advisors (LA) – 30% and

60% – and with several values of max nbors and thresholds.

The results of these simulations, in terms of the mean absolute error of the trust model

under each simulation as plotted against the max nbors or threshold value used, are indi-

cated in Figures 3.5a and 3.5b respectively.

It seems clear in comparing the results from Figure 3.5b to those in Figure 3.3b that the

results of applying different threshold values is reasonably consistent despite the change in

advisor population. More precisely, we mean that for both populations, the MAE is quite

high for thresholds below 0.5 – approximately 0.1 for the 30% LA case, and approximately

0.2 for the 60% LA scenarios – but then decreases sharply, to below 0.03, as the threshold

is increased to 0.5, then remains at a similarly low value as the threshold increased further,

up to a threshold of 0.7. The MAE then climbs sharply again for both populations as

the threshold is increased to 0.8 and then to 0.9. This similarity notwithstanding, we

observe that, when all other parameters are the same, the MAE is still slightly lower for

2We reiterate that this only reflects the total number of users in the system, not the number that will
be used in the advisor network, which we will consider next.
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(a) Varying max nbors

(b) Varying threshold

Figure 3.4: Mean absolute error when applying optimizations to TRAVOS at 30% and
60% LA
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(a) Comparison when varying max nbors

(b) Comparison when varying threshold

Figure 3.5: Mean absolute error applying optimizations to PTM with advisor population
of 500
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Figure 3.6: Comparison of mean absolute error when varying max nbors (as proportion of
advisor population)

the larger population. We believe this is simply because the larger population means that

more highly-trusted advisors are available, and thus the system can make use of more

information about each of the sellers, regardless of the threshold applied.

On the other hand, comparing the corresponding max nbors tests, as shown in Fig-

ures 3.5a and 3.3a, is somewhat trickier. It is clear that for both of the tested advisor

populations, setting some max nbors value that is somewhat less that half of the advisor

population size will result in a reduction in trust modelling error. However, while a value

of max nbors of 30 is optimal for an advisor population of 80, the optimal value when the

total population is 500 is much larger, at about 200 (which suggests that the value should

not simply be set in absolute terms).

To find the solution to the max nbors issue, we remark that the two figures (3.5a and

3.3a) have some visual similarity. This suggests it may be more appropriate to compare the

two results in terms of max nbors as a proportion of the total advisor population. An effort

to do this is provided as Figure 3.6.3 This figure confirms that when setting max nbors as

a proportion of the total advisor population, the accuracy of the trust model is relatively

consistent from one population size to the next.

3Note that some of the data in this figure was interpolated from the simulations, since comparable
proportions were not used in both sets of experiments.
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(a) Comparison when varying max nbors

(b) Comparison when varying threshold

Figure 3.7: Mean absolute error applying optimizations to TRAVOS with advisor popula-
tion of 500, compared to results for population of 80
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A similar set of simulations were also run to explore the effect of the larger population

with the TRAVOS model. These are shown in Figure 3.7.4 Much like the results for the

smaller population discussed in Section 3.3.2, the changes in the mean absolute error as

the applicable parameter increases or decreases tend to be somewhat haphazard. However,

the graphs for the two populations do not seem to track each other very well, in that there

are no local maxima or minima that are consistent for both sizes of advisor populations.

As discussed above, we are proposing future research on this matter in Section 6.2.3,

which might lead to a more effective method consistent with that shown earlier for PTM.

At the moment however, we must conclude that, although thresholding and max nbors

will allow us to improve the accuracy of trust modelling using TRAVOS with the larger

population, the specific parameter choices will likely change as the population increases.

3.3.4 Using Random Selection for Very Large Populations

Despite having verified the usefulness of our techniques for larger population sizes, partic-

ularly for PTM, in the previous subsection, we also note practical limits on the advisor

population sizes for which these methods can be used.

In considering the effects of changing the overall advisor population size, we found that

using very large populations posed a more challenging situation in terms of memory con-

sumption and the time of execution required. In particular, the means by which we created

and sorted advisor networks for the primary buyer (as well as for each advisor, assuming

we wanted to allow referrals) adds the most computational complexity, as described as

follows:

• If there is a total of n buyer (advisor) agents in the system, sorting the advisor

network for one of those agents using an algorithm such as merge sort will take

O(n log n) (other sorting algorithms may of course take longer).

4Note that unlike Figure 3.6, in this case we did perform additional simulations for the proportional
max nbors cases using the smaller advisor population. We chose not to interpolate values from our earlier
results due to the wide variations in MAE noted previously for TRAVOS.
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• In PTM, there is one advisor network for each of the n buyer agents, yielding com-

plexity of O(n2 log n).

• In TRAVOS, as we reason about the seller being considered when computing the

trustworthiness value of an advisor, there are in effect k advisor networks to be

computed for each buyer (where k is the number of sellers), such that the complexity

will be O(kn2 log n).

We thus considered the possibility of using a variant in which the advisor population

considered for the purposes of our limiting mechanisms (both for thresholding and for

max nbors) would be restricted to a fraction of the total population size. This would be

different than max nbors in that in this case, the “new” population would be a randomly-

selected sample of the advisors, and not necessarily the most trustworthy among them.

Our hypothesis was that using a smaller, randomly-selected sample, with a size on the

order of that considered in the earlier work, would still allow us to avail of agents with

a range of experiences, not to mention a range of honesties. We felt that we should still

be able to avail of a sufficient supply of information to improve the accuracy of our trust

modelling.

To test this hypothesis, we performed the following modifications to our algorithm,

using PTM as the trust model: The buyer and the advisors would each interact as usual

with sellers to build each agent’s set of experiences. Following the procedure, the buyer

would then proceed to select a pre-determined number of advisors to act as its own advisor

“population”, and use the PTM to model the trust it should hold in each of these advisors.

This randomly-selected population would then optionally be limited using max nbors or

thresholding as applicable. For completeness, each of the advisors (being themselves buyer

agents) would likewise randomly select the same number of advisors – but, we emphasize,

not the same composition of advisors – for its own population; however, we believe this

was not consequential since we did not test referrals at this stage.

We then tested this scenario using a “reduced” population of 100 advisors out of a total

population of either 100 (our baseline), 500, or 1000. This was tested with both 30% and

60% lying advisors (LA), and for both the max nbors and thresholding techniques, using
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a small selection of parameters in each case. The simulations all used a seller population of

100, and were otherwise identical to the other max nbors- or thresholding-only experiments

documented in Section 3.3.1.

The results of these simulations are shown in Figures 3.8a and 3.8b – each graph

represents a selection for the total population size and the percentage of lying advisors,

with the x-axis representing a max nbors or threshold parameter, and the y-axis indicating

the mean absolute error (MAE) in the trust model for that simulation. For greater clarity,

the graphs representing the 30% LA simulations are drawn with dashed lines, while those

showing the 60% LA scenarios are drawn with solid lines.

While the results were not identical for each of these cases, on the whole it seems

that trust-modelling accuracy (as represented here by the MAE) was very similar for all

of the populations chosen – for each combination of LA percentage and limiting method

(max nbors or thresholding), the graphs for the differing populations are generally quite

consistent. Any incongruities in the data shown seem to be very small, and not necessarily

unexpected given the probabilistic nature of the PTM.

It may be worthwhile to try additional population sizes for advisors and sellers, as

well additional sizes for the random-selection population, to more convincingly prove this

point. Moreover, it would also be useful to include referrals into future simulations to

verify its usefulness under these scenarios – indeed, in these cases referrals may prove to be

even more useful, since an advisor’s advisor network might include additional experienced

agents that were not included in the buyer’s random selections, and thus not previously

considered as advisors. However, from our results to date, it seems very likely that random

selection of a subset of the advisor population will indeed be sufficient to achieve trust

accuracy roughly equivalent to that achieved by using the entire population.

3.3.5 Experimental Conclusions

These results suggest to us that our proposed optimizations – max nbors and thresholding

– can be expected to help model trust more accurately in other trust approaches, at least

those similar to the PTM and TRAVOS – for example, the Beta Reputation System [13].
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(a) Results when applying max nbors

(b) Results when applying thresholding

Figure 3.8: Verification testing for the modifications.
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Moreover, although the exact “optimal” parameters will likely differ from one system to

the next, our results suggest that, for PTM, once the applicable threshold or max nbors

value has been determined for one population, the same values (in the case of max nbors,

the same proportion) can be used for other populations. In turn this could simplify these

calculations greatly since it may only take a small population, perhaps 20 or smaller,

to accurately determine the optimal threshold or (proportionate) max nbors values. For

TRAVOS, however, our results suggest that separate computations must be performed for

different advisor population sizes.

In comparing the experimental results from max nbors and thresholding in this chapter

– particularly those in Figures 3.3a and 3.3b – we note that, for PTM, the best-performing

threshold parameters seem to yield slightly lower trust-modelling error compared to the

best-performing max nbors parameters, at least among the specific parameter choices

tested here. On the other hand, however, as seen in Section 3.3.2, the best max nbors

choice for TRAVOS is slightly better than the best thresholding choice in that case. As

a result, we do not feel that we have seen enough evidence to say that one approach or

the other is “better”; rather, we conclude that they both provide satisfactory results, and

that the best option may depend on the particular trust model and other aspects of the

scenario.

We will provide some more general suggestions to the research community about how

to apply these techniques in Section 5.1, and then how to determine the appropriate pa-

rameters to use in each such technique in Section 5.2.

47





Chapter 4

Advisor Referral Systems

4.1 Proposed Technique

We wish to consider the possibility of combining some population-limiting mechanism –

such as one or both of the methods discussed in the previous chapter – with an advisor-

referral technique inspired by the one in [39] and discussed in Section 2.3. We diverge

somewhat from the suggestions in [39] insofar as the PTM does not require us to query

each advisor for a recommendation. Rather, the buyer has access to each advisor’s ratings

for a given seller s via a central server, and uses this data, weighted by the buyer’s trust

in each advisor, to determine the public (or network) reputation for the seller.

We thus consider that advisors can “advise” by allowing buyers to make use of each ad-

visor’s own private reputation for a certain seller. In this case, an advisor “referral” system

could be implemented using a variant of the measure used to weight private reputation in

the original PTM (that is, Equation 2.5). This would work as follows: For each advisor aj

in the advisor network of b, that is, the set Ab = {a1, a2, . . . , ak}, b checks whether advisor

aj is an acceptable advisor for the seller s. This will be the case if N
aj
all ≥ NRE, where

N
aj
all is the number of ratings provided by an advisor aj for s, and NRE (or simply RE)

is some minimum number of ratings, representing the amount of experience (i.e., number

of interactions, being equivalent to the number of ratings) that an advisor must have had
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with the seller in order to be used. (We will explore shortly how to select an appropriate

value for NRE.)

If aj is not an acceptable advisor (that is, if N
aj
all < NRE), the algorithm will query

aj’s own advisor network, which we would expect should be different from that of b since

each buyer / advisor agent creates its own model of how much to trust each other agent.1

The advisors in this network are sorted from most trustworthy to least trustworthy from

the perspective of aj, and are examined in order to determine, in a similar fashion to the

examination of aj itself, which (if any) of the advisors in aj’s advisor network meet the

criteria to be a suitable advisor for s. The first such advisor encountered that is itself not

either (a) already in the set of acceptable advisors; or (b) in Ab — since this would imply

that the recommended advisor would be added in any event at a later stage — will be

accepted into the set of acceptable advisors, As.

This has the effect of “replacing” aj in the advisor network with respect to the calcula-

tions for s: the new advisor will be treated exactly the same way that aj would have been,

with the substitution of its data (and b’s trust in the replacement advisor) for that of aj.

However, this “replacement” only applies with respect to s; the algorithm will begin anew

with the original advisor network Ab for subsequent sellers.

If none of the advisors of aj meet the criteria stated above, the step would be repeated

at each subsequent level of the network — that is, the advisors of each member of the set

of advisors just considered — until an acceptable, unduplicated advisor was identified, and

then accepted into As, again serving as a “replacement” for aj.

However, this recursion is subject to limitations, since it is not guaranteed that there

are at least k buyers that have each had at least NRE interactions with s. To ensure broad

coverage of the network while preventing infinite recursion, we limit the number of network

“levels” calculated to at most maxnetlevel = dlogk(|B|)e, where B is the set of all buyers

(advisors) in the system.2 If, after searching maxnetlevel levels, no acceptable advisor has

been found to replace aj, no replacement advisor will be accepted into As, and the system

1We assume for the purposes of this discussion that these advisor networks can be retrieved from a
central server, as with the ratings themselves in the PTM.

2We note that practically, in a large scale system, the number of levels may need to be smaller in order
for this algorithm to be computationally efficient; we will leave such a decision for later work.
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will use a reduced set to determine the network reputation — that is, the size of As will

be less than k.

Once the set of acceptable advisors has been determined, the “network” reputation

would be calculated as in the original model, using the advisor trustworthiness values held

by the buyer b.

We summarize this mechanism in pseudo-code format as Algorithm 2.

Algorithm 2 Referring Advisors to Buyer b for Trustworthiness of Seller s
1: Ab = {a1, a2, . . . , ak}; {advisors in b’s advisor network}
2: As = {}; {set of advisors that are suitable for providing advice regarding seller s}
3: NRE = minimum number of ratings for a to be a suitable advisor regarding s;
4: maxnetlevel = dlogk(|B|)e {the maximum number of search iterations}
5: for j = 1 to k do
6: N

aj
all = total number of ratings provided by aj for s;

7: if N
aj
all ≥ NRE then

8: append aj to As;
9: else

10: netlevel = 2; {no. of connections between b and the advisors being searched}
11: ax = null; {the desired suitable advisor in place of aj}
12: Ac = the set of advisors for aj sorted from most to least trustworthy (as per aj);
13: while ax == null and netlevel ≤ maxnetlevel do
14: An = {}; {the set of advisors to be considered in the next round, if necessary}
15: for all ac in Ac do
16: Nac

all = total number of ratings provided by ac for s;
17: if Nac

all ≥ NRE and ac /∈ Ab and ac /∈ As then
18: ax = ac;
19: break;
20: else
21: add the set of advisors for ac to An;
22: end if
23: end for
24: netlevel + +;
25: Ac = An
26: end while
27: if ax 6= null then
28: append ax to As;
29: end if
30: end if
31: end for

51



4.2 Examples

We now provide examples demonstrating the effects of adding our advisor referral mech-

anism to the PTM where max nbors or thresholding is already applied. The examples

in this section continue on from those outlined in Section 3.2, in which we showed how

max nbors and thresholding would be applied to a system initially consisting of a buyer b;

four advisors, aw, ax, ay, and az; and six sellers, s0 through s5. The buyer and each advisor

each had a separate set of interactions (and thus ratings) with each seller, as indicated in

Tables 3.1 and 3.3.

We now introduce a new advisor into the system, av, as well as an additional seller, s6.

To this point av has only provided ratings for s6, while b has not provided any ratings for

that seller; therefore there are no commonly-rated sellers for av and b, and thus Tr(av) = 0.5

from the perspective of b.

We also assume, as in the max nbors = 3 or L = 0.4 cases described in Section 3.2,

that the advisor network for the buyer b consists of the set of advisors {aw, ax, ay} — av is

too new to have been considered as a potential advisor in that case, although for purposes

of demonstration we assume that av has somehow been included in the advisor networks

of some of the other advisors. Finally we set NRE, the minimum amount of experience (in

terms of number of ratings) for an advisor to be considered acceptable for a given seller, as

3. The ratings that have been given by each advisor, and the resulting discounted amounts,

are as shown in Table 4.1.

Given this information, the buyer b will examine its advisor network and find that

aw and ax are indeed acceptable advisors for s6, since both have achieved at least NRE

interactions with s6. However, ay has only had one interaction with s6, and would therefore

not be considered an acceptable advisor. The buyer will then look to ay’s advisor network

to identify an appropriate substitute.

Suppose then that ay also has a three-agent advisor network consisting of av, ax, and

az, with trustworthiness values 0.5, 0.6, and 0.7 respectively.3 This information will be

3For clarity, only ay’s own regular advisor network is considered, even if ay has itself used referrals in
modelling its own trust in s6.
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Table 4.1: Ratings of s6 Provided by Advisors

(a) Ratings

Ti T1 T2 T3 T4 T5

av 1 1 0 1 1
aw 0 1 1 0 -
ax 1 0 1 - -
ay 0 - - - -
az 1 1 - - -

(b) Amounts of Ratings

Ti T1 T2 T3 T4 T5

Nav
pos,i 1 1 0 1 1

Nav
neg,i 0 0 1 0 0

Naw
pos,i 0 1 1 0 -

Naw
neg,i 1 0 0 1 -

Nax
pos,i 1 0 1 - -

Nax
neg,i 0 1 0 - -

N
ay
pos,i 0 - - - -

N
ay
neg,i 1 - - - -

Naz
pos,i 1 1 - - -

Naz
neg,i 0 0 - - -

(c) Discounted Amounts of Ratings

Ti T1 T2 T3 T4 T5

Dav
pos,i 0.4 0.4 0 0.4 0.4

Dav
neg,i 0 0 0.4 0 0

Daw
pos,i 0 0.397 0.397 0 -

Daw
neg,i 0.397 0 0 0.397 -

Dax
pos,i 0.937 0 0.937 - -

Dax
neg,i 0 0.937 0 - -

D
ay
pos,i 0 - - - -

D
ay
neg,i 0.375 - - - -

Daz
pos,i 0.0294 0.0294 - - -

Daz
neg,i 0 0 - - -
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gathered by b as the ordered list {az, ax, av}. The buyer will then iterate through the set,

discarding az as an unacceptable advisor (having provided only two ratings for s6), and

also ax as it is already in b’s advisor network. Finally, b would then accept av as the third

advisor, as it has an acceptable level of experience with s6 but is not part of b’s own advisor

network.

As in the previous examples, b does not itself have enough experience with s6 to gen-

erate a private reputation. Therefore, using the above information for the set of advisors

{av, aw, ax}, the forgetting factor (as defined in Section 2.1.1) λ = 0.9, and Equation 2.10,

we find that Tr(s6) = 0.6655.

If b had not used advisor referrals but instead relied solely on its existing advisor

network, namely {aw, ax, ay}, it would have obtained a significantly different result —

Tr(s6) = 0.5549. However, the latter result makes much less use of the experience within

the network for s6 than did the one incorporating advisor referrals.

4.3 Experimental Results

We refer the reader to the beginning of Section 3.3 for a summary of pertinent information

regarding the experimental setup of the simulations for this thesis.

4.3.1 Verifying Effectiveness

In Section 3.3.1, we conducted several simulations of the PTM using one buyer, 80 advisors,

and 100 sellers, with each buyer and advisor interacting with 80 randomly-chosen sellers,

to test the effectiveness of max nbors and thresholding using several possible parameters.

We now repeat these simulations using a small subset of the best-performing cases using

advisor referrals. Specifically we chose max nbors = 40 and threshold = 0.55 based on

the results in Section 3.3.1, as well as max nbors = 15, which as noted in that section

did not perform significantly worse compared to setting a maximum size of 40, in order to

test whether the smaller size might (by itself) cause any differences in later simulations.

Referrals were applied with the required minimum number of experiences (NRE) set to
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1, the most that would have been available in this scenario since we had prohibited each

advisor from interacting with each seller more than once.

The results of these simulations, as compared to the equivalent versions without advisor

referrals, are shown in Figures 4.1a and 4.1b. These graphs show that using the referral

mechanism results in accuracy about as good as, if not better than, that of the correspond-

ing variant without referrals, in almost all cases, indicating that applying referrals should

not significantly reduce the accuracy of the trust model. This is not entirely surprising

for these scenarios, since in each case the size of the advisor network has already been

optimized to provide the best results, with a sufficient number of users having expertise

with most, if not all, sellers.

A summary view is provided as Figure 4.2, consisting of a scatterplot showing how

each of the variants tested performed, for both the 30% and 60% lying advisor cases, with

or without referrals (when possible).4 As in the summary figures used in Section 3.3, the

y-axis represents the mean absolute error (MAE) of each of the variants in calculating

the trustworthiness of sellers as compared to the “ideal” trust model discussed previously.

Note that in some cases, two or more data points (icons) overlap, indicating that the MAE

for those simulations were approximately equal (the order in which they overlap is not

meaningful). Again, as the data points corresponding to the referral-based variants are

almost always at about the same level as those of their non-referral equivalents, we can

conclude that adding referrals will generally yield about the same accuracy as if referrals

are not used. Further evaluation of the effect of referrals will be discussed in the next

subsection.

4.3.2 Using Referrals to Further Reduce Network Size

We have shown above that using max nbors or thresholding to limit the size of the advisor

network will significantly improve the accuracy of the trust values calculated for each

seller. We have further shown that, given certain “optimal” choices for the max nbors or

4Specifically, simulations were not conducted for referrals where neither max nbors or thresholding is
used, since referrals are of no effect unless the advisor network has already been limited.
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(a) 30% lying advisors

(b) 60% lying advisors

Figure 4.1: Comparison of approaches with and without referrals.
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Figure 4.2: Mean average error of compared trust models, both with and without referrals.

threshold values, using advisor referrals will achieve at least approximately the same level

of accuracy compared to when referrals are not used.

However, we believe that referrals could be useful when using a smaller advisor network,

i.e. a smaller value of max nbors or a higher trustworthiness threshold. Such a scenario

might arise due to a need for limiting memory and processing; this will be discussed in

greater detail in Chapter 6. In this scenario, it is less likely that the advisors within the

network will have a sufficient level of experience – if any experience – in dealing with each

and every seller in the system. Here, then, we would expect referred advisors to be more

useful in regards to filling in the gaps in experience.

With this in mind, we proceeded to a modified version of the above evaluation that

would allow for a greater role for referrals. The parameters and test conditions were

the same, except that we reduced the number of sellers to 40, and increased the number

of simulation days to 120. We also adopted pure random selection for the sellers, such

that buyers would rate each seller a variable number of times (on average three), whereas

previously they could rate each seller at most once.

Simulations were then performed in this environment using several variations incor-

porating max nbors or thresholding, as well as referrals. A subset of these simulations,

using max nbors = 2 where 30% of the advisors are dishonest, are shown in Figure 4.3.
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Figure 4.3: Comparison of trust models (max nbors = 2, 30% lying advisors (LA)

The independent variable in this case is the use of referrals and, if referrals are used, the

amount of experience required from the referred advisors (NRE), which is varied from one

to ten. As in the previous subsection, the graph displays each variation’s average trust

value for the sellers with the indicated probability of lying. Also shown for comparison is

the “ideal” trust model where the calculated average trust value exactly corresponds to the

sellers’ probability of dishonesty – the straight diagonal line; as well as the “worst-case”

scenario where all of the advisors are excluded, yielding an average trustworthiness of 0.5

regardless – the horizontal line.

It is clear, based on comparing the closeness of each of the variations’ graphs to the

“ideal” graph, that while setting a maximum size for the advisor network yields a more

accurate trust model, adding referrals in this case results in a further non-trivial improve-

ment. Furthermore, increasing the NRE value – the experience with the seller that each

referred advisor must have – serves to improve the model further; an experience level of four

– just above the expected average noted above – comes closest to matching the best-case

scenario.
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(a) Error comparison for various max nbors + referrals approaches with 30% LA

(b) Error comparison for various max nbors + referrals approaches with 60%
LA

Figure 4.4: Evaluation of effects of referrals on small max nbors advisor networks.
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However, demanding a much higher level of experience reduces the number of available

advisors significantly, approaching the worst-case scenario if anNRE value of ten is required.

As we noted above, the average number of experiences that an advisor should have with

each seller is three, making a much higher value like ten a very rare occurrence in this

simulation. If none of the advisors have met the minimum NRE value for any of the sellers,

no advisors will be included in the advisor network, and the level of seller trust will revert to

0.5, the default value if no ratings are available. This is not unlike what was encountered in

Section 3.3.1 with regards to thresholding; in both cases, an unrealistically high parameter

will result in no useful information being obtained. These results will, in turn, will serve to

increase the overall trust-modelling error associated with the scenario being tested – not

because the more highly experienced advisors are incorrect, but rather due to very few (if

any) sufficiently-experienced advisors being available.

Additional simulation results are shown in summary view as figures 4.4a and 4.4b,

which are for 30% and 60% lying advisors, respectively. Each graph represents a single

possible value for max nbors. The positions on the x-axis represent the NRE value used

for referrals, if any, except for the position at the far left which indicates the results if

neither max nbors nor thresholding is used. The y-axis indicates the mean absolute error

for each of the variants measured, which is the same as outlined for the summary views in

the previous subsection.

For max nbors = 15 – identified in Section 3.3.1 as one of the “optimal” network sizes

for an advisor population of 80 – using referrals seems to give an improvement, albeit

extremely slight. However, for a smaller network such as max nbors = 2, the improvement

is much more pronounced, as indicated by the reduced error for the max nbors = 2 graph if

the experience level is set to NRE = 3 or NRE = 4. For example, while using max nbors = 2

without referrals in the 60% lying advisors had an MAE of 0.081, allowing for referrals with

an NRE value of 4 led to a significantly smaller MAE of 0.054. Although this does not

overcome the benefits of using a largermax nbors value – for example, settingmax nbors =

5 without using referrals resulted in an MAE of 0.034 – these results are still much closer

in terms of accuracy.

Figure 4.5 shows a similar set of simulations for various possible threshold levels, again
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showing how different combinations of thresholds (graphs) and referral experience levels

(x-axis) affect the mean error of each trust model variant (y-axis). These figures show

that, as with max nbors, adding referrals with an appropriately-chosen experience level in

combination with thresholding can reduce the error in the trust model for higher thresholds

– but only up to a point. If the threshold is set so high that some buyers end up having

advisor networks of size 1 or 0 (as appears to be the case for using a threshold of 0.8), then

referrals could end up being quite ineffective.

We conclude that our evaluation indicates that referrals can serve to improve the ac-

curacy of the trust model if the size of the advisor network is very limited, such as if there

is a very low maximum number of advisors, or a very high trustworthiness threshold.

4.3.3 Applicability to Alternative Model

Continuing from the results in Section 3.3.2, we now look at examining the effect of ad-

visor referrals using TRAVOS. Again, as with our work in the previous subsection, this is

performed using a modified version of the scenario in Section 3.3.2, with the number of

sellers reduced to 40, and each buyer or advisor submitting 120 seller ratings, with no limit

on the number of times each seller could be chosen.

The results for these tests are shown in Figures 4.6 and 4.7. As with the earlier figures,

these are summary graphs which indicate the mean absolute error obtained for various

combinations of minimum referral experience (NRE) and max nbors / threshold param-

eters; each series represents a different max nbors or threshold value, while the x-axis

indicates the corresponding NRE value. Like the results for PTM (see Figures 4.4 and

4.5), these graphs show that for low values of max nbors, where the advisor network size

is very small, using referrals will provide a reduction in error (that is, a trust model with

improved accuracy). When using thresholding, similar reductions in error were observed

by adding advisor referrals to networks using high threshold values (and hence having a

small size). However, reductions in error were also occasionally seen for larger networks

(those produced by using smaller thresholds); such improvements were rarely seen when

applying referrals to large networks using PTM.
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(a) Error comparison for various thresholding + referrals approachs with 30%
LA

(b) Error comparison for various thresholding + referrals approachs with 60%
LA

Figure 4.5: Evaluation of effects of referrals on advisor networks.
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(a) Comparison for 30% LA

(b) Comparison for 60% LA

Figure 4.6: Comparison of mean absolute error in TRAVOS using advisor referrals when
varying max nbors and the minimum level of referral experience (NRE)
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(a) Comparison for 30% LA

(b) Comparison for 60% LA

Figure 4.7: Comparison of mean absolute error in TRAVOS using advisor referrals when
varying the trust threshold and the minimum NRE level
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In comparing the results for using thresholding with TRAVOS with those achieved using

thresholding with PTM, we do note one anomaly. As shown in Figures 4.5a and 4.5b, the

trust model error increases significantly for the PTM approach for all NRE values when

the threshold reaches 0.8. However, such increases did not occur for TRAVOS; as shown

in Figures 4.7a and 4.7b, the error in that trust model for high thresholds (0.8 and 0.9) did

not increase as significantly as they did for PTM; indeed, simulations using TRAVOS had

overall lower error than those using PTM when applying a threshold of 0.8 to both cases.

The high error that is seen in PTM when applying larger threshold values is generally

due to the buyer having modelled very few, if any, of the advisors with such a high threshold,

which leads in turn to insufficient information to model the trust of sellers (and assigning

the default trust value of 0.5). In comparison, during our simulations, TRAVOS would

assign high trust values, on the order of 0.8 or 0.9, to advisors more frequently, potentially

because that model uses a more fine-grained model of advisor trust based on the advisor,

the buyer, and the seller under consideration (whereas PTM calculates an overall value

based only on the buyer and advisor). Accordingly, setting a high threshold would not

affect the amount of information available to TRAVOS in the same way that it would

PTM, leading to the more accurate results in this case.

4.3.4 Effects for Larger Populations

We now turn to testing advisor referrals with PTM for the large advisor population case

previously examined in Section 3.3.3. Again, we use the modified scenario used for the

advisor referral simulations performed in the earlier sections of this chapter, except with an

advisor population of 500. However, we felt it was unnecessary to consider the same number

of different minimum referral experience (NRE) parameters as in the smaller-population

case in order to demonstrate how the trust prediction accuracy changes as the NRE value

increases. We therefore restricted our simulations in this regard to a handful of NRE values

which, we considered, would nevertheless show any significant trends in the results.

We first consider how the larger population performs when thresholding and referrals

are used in combination, as shown in Figures 4.8a and 4.8b. The results are not identical
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for the two population sizes – there is a generally smaller trust-modelling error for the

larger population when high NRE values are used – but for the cases of greatest interest,

specifically small advisor networks resulting from high thresholds, using modestly-chosen

NRE values, there are still improvements when adding referrals to these networks. Indeed,

for a threshold of 0.8, the positive effects of adding referrals are much more pronounced

in the larger population than in the 80-advisor scenario, particularly for NRE = 4. We

attribute this to the fact that more highly-trusted advisors will be available in the larger

population, which would make a significant difference considering that perhaps only one

or two advisors would survive the thresholding process using the smaller population.

Next we look at using max nbors and referrals in combination, using max nbors values

of similar proportions relative to the population size, as shown in Figures 4.9a and 4.9b.

In this case, applying both techniques to a large network results in very similar, and in

some cases (particularly for NRE = 8) much lower accuracy error compared to the smaller

network. It seems safe to conclude that using referrals with a large advisor population will

not only be effective in general, but that it will yield trust modelling accuracy at least as

good as that obtained with a smaller population.

We can thus expect that advisor referrals can help to model trust more accurately in

other trust approaches such as BRS [13]. Indeed, our findings indicate that as the size of

the advisor population increases, the benefits of using advisor referrals with regards to the

accuracy of the trust model will also increase.
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(a) Comparison when varying threshold (30% LA)

(b) Comparison when varying threshold (60% LA)

Figure 4.8: Comparison of mean absolute error in PTM using advisor referrals, varying
threshold and minimum NRE, when advisor population is 500
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(a) Comparison when varying max nbors (30% LA)

(b) Comparison when varying max nbors (60% LA)

Figure 4.9: Comparison of mean absolute error in PTM using advisor referrals, varying
(proportional) max nbors and minimum NRE, when advisor population is 500
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Chapter 5

Discussion

5.1 Applying Techniques to Other Trust Models

In Chapters 3 and 4, we showed that our proposed modifications –max nbors, thresholding,

and advisor referrals – can lead to improvements in trust modelling accuracy with both the

PTM [43] and TRAVOS [32]. We now move on to describe how other trust researchers can

apply our proposals to their own models in order to improve the accuracy of these models.

In order for these improvements to be effective, the model must be such that the

primary goal is for some individual agent (for example, in the case of PTM, a “buyer”)

to model the trust of each agent or item in some pre-defined group (in PTM, “sellers”),

and that in doing so, it makes use of information about some separate group of agents (in

PTM, “advisors”). For simplicity we will use the terminology from PTM for the balance

of this section, but we emphasize that we intend for these techniques to be applicable in

any domain where such a model could be used. We assume that some existing test code

implementing the trust model has already been written, verified, and optimized using any

existing parameters in the trust model.

The code should then be modified to allow for the following:

• If the thresholding technique is being applied, some data structure should be used

to hold information about the advisors that have trust values exceeding the pre-
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determined threshold, as well as the trust values themselves. As the trust values for

each of the potential advisors are determined, the code should compare each value

with the threshold and, if and only if this value meets or exceeds the threshold,

add the advisor (and its corresponding trust value) to the data structure. Subse-

quently, the trust value for each seller should be determined by only making use of

the information provided by the advisors included in this data structure.

• If max nbors is used instead, a similar data structure should be used to store in-

formation about advisors and their trustworthiness values, although in this case the

advisors will need to be sorted from most trustworthy to least trustworthy. In gen-

eral it will suffice to set a maximum of max nbors items for this structure, with

less trustworthy advisors being removed as more trustworthy advisors are found and

added. In any event, once the advisors have been sorted, only the first max nbors

items in the sorted data structure should be used to calculate the trustworthiness of

sellers.

• Turning to the advisor referral technique:

– Advisor referrals are used in conjunction with thresholding and max nbors,

and thus the same processes should be used as if either of these two techniques

were being used on its own – with one exception. The referral process we have

proposed assumes that even if trust thresholding is used, the advisors will be

sorted from most trustworthy to least, such that when a buyer is attempting to

get an referral from an advisor, the latter will consider its own advisors from

most trustworthy to least. As a result, sorting must be employed regardless of

whether max nbors or thresholding is used initially.

– To perform the referral mechanism itself, the code must include a mechanism

for checking whether an existing advisor in the advisor network has met or

surpassed a set referral experience (NRE) level, with regards to the number

of experiences that advisor has had with the seller under consideration. The

advisor itself will be used if the minimum NRE level has been achieved by that

advisor. Otherwise, the code must examine all of that advisor’s own advisors,
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from most trustworthy to least trustworthy, and if necessary the advisors of the

advisors just considered, and so on, until either an acceptable advisor (i.e. one

that has met the minimum NRE value) has been found, or the maximum number

of recursion levels has been exceeded. Further details about the algorithm is

found in Section 4.1.

• In certain trust models, such as TRAVOS, the model is such that a separate trust

value is calculated for each combination of buyer, advisor, and seller – that is, how

much the buyer trusts the advisor to provide accurate information specifically about a

single seller. In this case, regardless of the technique(s) used, the model will require an

enlarged data structure (or multiple structures) to contain all this information. The

threshold will then need to be applied separately for each seller under consideration.

• If there is any existing functionality in the original model that resembles these tech-

niques, such features should be disabled. For example, the original PTM only used

“trustworthy” advisors – advisors for which the buyer’s trust value was greater than

0.5 – equivalent to setting a threshold of 0.5.

5.1.1 Optimizing the Modifications

Each of the proposed modifications introduces at least one new parameter into the trust

model, specifically:

• max nbors, when setting a maximum size for the advisor network

• threshold, when using trustworthiness thresholding

• minimum NRE, when using advisor referrals

Our work in Chapters 3 and 4 has indicated that the parameters in each of these tech-

niques should not be applied blindly: there may be significant changes in the accuracy of

the trust model as the applicable parameters are changed upwards or downwards. Accord-

ingly, we suggest that trust researchers seeking to use these techniques should be careful

in selecting the optimal parameters for their particular trust model.
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It is not our present belief that such parameters could be found in a deterministic

fashion – the properties of, or distinctions between, different trust models cannot be easily

reduced to numerical values. We instead advise researchers to use the empirical route: test

several reasonable options, then use the combinations that provide the best performance.

Our recommended test procedure, based on the work in [44] and earlier in this thesis,

is as follows:

Run a simulation of the model with a single “buyer” agent, and a sufficient number of

both advisors and sellers such that the number of interactions between either the buyer or

a single advisor on the one hand, and a single seller on the other hand, will be insignificant

compared to the total number of interactions. In other words, the numbers must be

sufficiently large to ensure that any outliers that may exist in the data have an insignificant

effect on the overall results. That said, we suspect that the exact choices in terms of the

numbers of agents used will not be particularly meaningful, insofar as we saw no noticeable

difference in the results upon increasing or decreasing these numbers slightly. We will

suggest, arbitrarily, that using at least 40 sellers, and at least 80 advisors, seems to be

sufficient to obtain reliable results.

Run this simulation such that the buyer and each advisor has at least one experience

with a sufficient number of sellers that any outliers will have little effect – for example, fol-

lowing our procedure, if there are 80 sellers, each agent might have one or more interactions

with 60 of those sellers.1 This will suffice by itself if testing max nbors or thresholding

alone. However, when testing advisor referrals with NRE > 1, the buyer and each advisor

should normally have multiple interactions with each seller. In this case, the number of

experiences (and/or the number of sellers) should be adjusted to ensure that each advisor

has achieved the required number of experiences (i.e., the NRE value) for some, but not all

sellers, in order to adequately test the referral mechanism. For example, if testing an NRE

1The exact number or proportion to use will depend on the domain being considered. For example, on
an online auction marketplace with a large user population, such as eBay, it is highly unlikely that any
given buyer will come in contact with even a small fraction of the entire population of sellers. As such,
it might be more appropriate to choose 10 or 20 sellers, or use a larger seller population, in such cases.
At the same time, a buyer with a specific interest, e.g. stamp collecting, might come in contact with a
significant proportion of the sellers concerned with that particular interest. Likewise, when purchasing an
“information good”, having multiple experiences with a seller may not be unrealistic.
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value of 5 with a seller population of 80, the test might be such that each advisor makes

400 interactions, each time randomly selecting one of the 80 sellers. In such a case, while,

on average, an advisor will have had five interactions with each seller, the specific value

associated with each advisor-seller pair may be different.

Regardless of the number of sellers, they should be divided into multiple disjoint trust-

worthiness categories, each containing the same number of sellers. Each category is assigned

a different probability that the seller will act dishonestly (P (d)), which is then assigned

to the sellers. For example, the evaluation in Section 3.3.1 divided the sellers into ten

equal groups, one with P (d) = 0, another with P (d) = 0.1, and so on up to the tenth

group with P (d) = 0.9. Then, each time a seller interacts with a buyer or advisor, it will

choose whether to act honestly or dishonestly via random selection – for example, it could

randomly choose an integer between 0 and 9, and act dishonestly if the chosen integer is

less than 10P (d), and honestly otherwise. The expected values for each of those sellers in

an ideal trust model would then be 1−P (d), such that a seller for which P (d) = 0.3 would

be expected to be assigned a trust value of 0.7.

In regards to the honesty of advisors, the simulations should be run in two sets: one

where advisors are mostly reporting honestly when rating sellers, and one where advisors

are mostly lying about their experiences. For example, in the first set, advisors might lie

in their seller ratings 30% of the time; in the second set, this probability might increase to

60%.

At this point, depending on which techniques are desired to be used, several options

for the appropriate parameters – either max nbors or the trust threshold, and optionally

the minimum NRE – should be identified for the simulations. As a guideline, our earlier

results testing PTM and TRAVOS in e-commerce seem to suggest that the optimal value

for max nbors is likely to be in the range of 20% to 40% of the total size of the advisor

population, while if thresholding is used, the threshold value should be set between 0.5 and

0.6. If referrals are used, our results suggest that the optimum value for the minimum NRE

is likely to be between 1 and 5. These values might potentially vary for other models and

other domains, although we would suggest that for thresholding, 0.5 should be an intuitive

minimum threshold – if the trustworthiness of the advisor is below 50%, it should not be
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worth considering.

The simulation for each option being considered should be repeated several times (at

least five to ten) and then averaged, to help negate the effect of any outliers that appear.

Once the simulations are complete, find the mean absolute error – the average of the

absolute differences between the expected and experimental trust values for all of the

sellers – for each simulation. The option yielding the lowest mean absolute error will then

indicate the optimal parameter(s).

We now provide an overview of the application of our modifications in order to test

their effectiveness, in pseudo-code format, as Algorithms 3 and 4. This is one example of

how to apply the procedure; refer to the information provided above for more details as to

how to set the specific parameters outlined in these algorithms.

5.2 Selecting Appropriate Parameters

In our work, we have noted that either using trustworthiness thresholding or setting a

maximum number of advisors will provide a modest improvement to the accuracy of the

trust model. Moreover, in cases where the size of the advisor network is very small, using

referrals may help to further improve the accuracy of this model.

Our results indicate that the parameters to be used should be modestly sized – allowing

a reasonable number of advisors to be used, without including a large number of advisors

that contribute little to the calculations of the trust model. Additionally, our results

suggest how to set the actual value of the parameters. In particular, they indicate that

the range of 0.5 to 0.6 is optimal for threshold parameters, while a max nbors parameter

should be set as roughly 20% to 40% of the total size of the population.

5.2.1 Comparison with Collaborative Filtering

Interestingly these results seem to diverge from those found for collaborative filtering

(CF), as in [9]. We first describe their experimental setup: For both the thresholding
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Algorithm 3 Testing Modifications with a Trust Model: Determine Advisor Trusts
1: advisorLying = 0.3; {fraction of advisors that lie}
2: numAdvisors = 80; {number of advisors}
3: numSellers = 40; {number of sellers}
4: numDays = 120; {number of interactions by each buyer or advisor with a seller}
5: b = {b0, b1, b2, . . . , bnumAdvisors}; {b0 is the true “buyer”, others are advisors}
6: s = {s1, s2, . . . , snumSellers}; {sellers}
7: {Select dishonest advisors}
8: for i = 1 to numAdvisors do
9: {if advisor is among the fraction of advisors that should lie, set as lying}

10: if (i− 1) mod 10 < 10× advisorLying then
11: bi.setLying(True);
12: end if
13: end for
14: {Select categories for sellers – each category represents percentage of dishonest behaviour}
15: dishonesties = {0, 0.1, 0.2, 0.3, . . . , 0.9}; {for example}
16: for i = 1 to numSellers do
17: {get and set dishonesty based on seller’s category}
18: dishonesty = dishonesties[i mod dishonesties.length];
19: si.setDishonesty(dishonesty);
20: end for
21: for i = 1 to numDays do
22: {Run interaction simulations}
23: for j = 0 to numAdvisors do
24: {Repeat for buyer and all sellers}
25: sellerId = −1; {Select a seller}
26: while sellerId == −1 or (referralsUsed and bj .hasUsed(ssellerId) do
27: sellerId = random integer in range [1, numSellers];
28: end while
29: bj .addUsed(ssellerId);
30: {Is the seller lying this time?}
31: sellerLieState = random integer in range [0, 9];
32: sellerLying = (sellerLieState < 10ssellerId.getDishonesty());

{Determine rating buyer will assign to this interaction}
33: if bj .isLying() xor sellerLying then
34: rating = 0;
35: else
36: rating = 1;
37: end if
38: bj .addRating(ssellerId, rating);
39: end for
40: end for
41: {Determine how much the buyer trusts each advisor, then sort}
42: for i = 1 to numAdvisors do
43: determine advisorTrust for bi as applicable using the selected trust model;
44: b0.setAdvisorTrust(bi, advisorTrust);
45: end for
46: b0.sortAdvisorTrusts(); {in descending order}
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Algorithm 4 Testing Modifications with a Trust Model: Determine Seller Trusts
1: {Variables carried over from Algorithm 3}
2: b = {b0, b1, b2, . . . , bnumAdvisors}; {b0 is the true “buyer”, others are advisors}
3: s = {s1, s2, . . . , snumSellers}; {sellers}
4: numSellers = 40; numDays = 120;
5: {Get advisor network}
6: advisorNetwork = {};
7: advisorTrusts = b0.getAdvisorTrusts(); {for now, we will assume it’s an array}
8: if usingMaxNbors then
9: for i = 1 to maxNbors do

10: advisorNetwork.add(advisorTrusts[i].buyer());
11: end for
12: else if usingThreshold then
13: i = 1;
14: while advisorTrusts[i].trust() ≥ threshold do
15: advisorNetwork.add(advisorTrusts[i].buyer());
16: i + +;
17: end while
18: end if
{Model the trust for each seller}

19: for i = 1 to numSellers do
20: for j = 1 to numAdvisors do
21: advisor = bj ;
22: if usingReferrals and bj .getNumRatings(si) < minExperience then
23: set advisor to be a referred advisor using Algorithm 2
24: end if
25: if advisor 6= null then
26: determine contribution of advisor to b0’s trust model for si;
27: end if
28: end for
29: sellerTrusti = b0’s overall trust in si given contributions of advisors;
30: end for
{Determine average seller trust for each category}

31: totalAbsError = 0;
32: for i = 1 to dishonesties.length do
33: {category}
34: categoryTotal = 0;
35: numPerCategory = numSellers/dishonesties.length;
36: for j = 1 to numPerCategory do
37: {seller within category}
38: categoryTotal = categoryTotal + sellerTrustj ;
39: end for
40: categoryAvgi = categoryTotal/numPerCategory;
41: categoryAbsErri = abs(categoryAvgi − dishonesties[i]);
42: totalAbsError = totalAbsError + categoryAbsErri;
43: end for
44: meanAbsError = totalAbsError/dishonesties.length; {“overall” error for this simulation}
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and max nbors methods, different values were tested experimentally, in combination with

various other factors considered in that paper, in order to determine the best value, if any.

In essence, given an existing data set (specifically, a subset of the MovieLens film-rating

database), a small fraction of those ratings were first removed. Those ratings would then be

regenerated using a CF prediction algorithm using some combination of the factors being

tested, based on the remaining data. These generated ratings were then compared with the

original results. The main criterion observed was the mean absolute error (MAE) of the

predicted ratings – that is, the average of the absolute values of the differences between the

actual and expected ratings. No formulae were offered to suggest an analytical approach

to determining the appropriate threshold. We also note the authors’ caveat that although

they say they had reason to believe their results were generally applicable to other domains

besides film, they did not, at that point, have empirical evidence to prove this was the case.

The results in [9] suggested that thresholding would have little usefulness in a CF

system. In fact, for the MovieLens data set examined, correlation thresholding yielded

declines in both coverage and accuracy (that is, an increase in the MAE) compared to a

non-thresholded algorithm. Specifically, not using thresholding in this CF system would

yield an MAE of about 0.7528, while applying any threshold would result in an MAE that

was higher – sometimes only marginally, but going up to approximately 0.78 for a threshold

of 0.5. We note for completeness that [30] used a similar experimental method to [9] for

determining the best threshold for their music recommender system, and had no further

insight with regards to an analytical approach.

On the other hand, the results for max nbors indicated the benefits of a careful ap-

plication of this approach. Recall that using an unrestricted network in this CF system

would yield an MAE of about 0.7528. The results indicated that applying a max nbors

value between 20 and 80 (out of a population of 943 agents) would result in lower MAE,

with max nbors = 60 yielding the lowest average MAE of 0.7508 (although slightly smaller

max nbors values, between 20 and 40, would generally be about the same in terms of per-

formance). On the other hand, using a max nbors value of 5 or 10 would show increased

MAE (of 0.7836 and 0.7605 respectively), while max nbors = 100 (the highest value tested)

would show no improvement compared to the unrestricted network.
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It was concluded that a neighbourhood of 20 to 50 users would be a “reasonable”

size to provide an acceptable level of accuracy, providing an appropriate balance between

sufficient coverage and eliminating inaccuracies. Again, this result was specifically tested

with a population of 943, although the authors claim, based on experiments (not fully

documented in the paper) using all 80,000 users in the MovieLens database, that a similarly-

sized neighbourhood should be sufficient for most “real-world” scenarios, without regard

to population size.

This is an interesting contrast in our findings in Chapter 3, in that we encountered

very good results when applying trustworthiness thresholding, whereas for the max nbors

approach, setting the max nbors parameter as a proportion of the total advisor population

size (and not as a static value, or one within a small range) seemed to work best. Thus

it seems clear that there are strong distinctions between collaborative filtering and trust

modelling, at least in regards to how to select the best size for a social network in each

application.

5.2.2 Comparison with Advisor Referrals

Yu and Singh also explored, in a sense, the effects of varying of the number of agents used in

trust modelling. In [40], they discuss how to find “witness” agents that have interacted with

some goal agent Ag, and using information about the witnesses’ experiences to determine

the trustworthiness of that goal agent. To do so, they construct a trust network representing

the relationships between agents. Ultimately, agents in the trust network provide referrals

to other agents that are acquainted with Ag, which then comprise the set of witnesses.

(We discussed this scenario in greater detail in Section 2.3.)

For the experimental validation of this research, each agent was assigned a set of 16

acquaintances, out of a total of 100 agents in the system. Of these acquaintances, four

highly-trusted and highly-sociable would be designated as neighbours. Each agent was also

assigned a “branching factor”, between one and four, specifying how many referrals from

its set of neighbours it could provide at any one time.

Because only a low proportion of agents would be acquainted with any other agent,
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and due to limits on the depth of the trust network, the number of witnesses that would

be found would generally be quite low, typically within the range of 1 to 6 – much smaller

than the values considered in [9] (and that we examined in Chapter 3). However, the

number of witnesses found would increase as the branching factor increased, and (to a

lesser extent) as the depth of the trust network increased. When comparing the number of

witnesses generated to the average rating error, it was found that the prediction accuracy

would improve slightly, but not significantly, when more witnesses had been found.

However, due to the differences in their model in terms of finding witnesses, the fact that

the number of witnesses would be found after the fact (as opposed to being pre-determined),

and the use of a large number of simulation cycles using the scenario described above to

generate this trust – a luxury that does not apply to the trust models we have examined

– these results are not easily comparable to those presented in this thesis.

Nevertheless, the experimental results from this research seem to match our findings

in that, given a relatively small proportion of the advisor population that is regularly

consulted (i.e. the acquaintances in [40], or the advisor network in our approach), using

referrals is helpful in finding specific advisors that will be useful in evaluating a target

agent.

With regards to our referral mechanism, we noted in Section 4.1 that there is a limit

on the number of levels of advisors through which this algorithm will search when looking

for an acceptable replacement advisor. Presently this is set as dlogk(|B|)e, where B is the

set of all buyers (advisors) in the system, and k is the number of advisors in the buyer’s

own advisor network. This is intended to be a prediction of the approximate number of

advisor-network levels that one would need to examine in order to search all nodes. In

future work, we might examine whether using a different value might produce improved

results for referrals. A smaller value might help to reduce the amount of computation

required to perform a referrals search, particularly if some of the same advisors are being

redundantly examined multiple times. On the other hand, searching a larger number of

levels could ensure a more complete search for suitable advisors, thus ensuring the buyer

has more information in modelling the reputation of a seller.
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5.3 Alternative Referral Trust Computation Methods

In our discussion of referrals in Chapter 4, we made the simplifying assumption that buy-

ers would continue to use their own previously-calculated trust models to represent the

trustworthiness they should hold in each referred advisor.

This method was chosen as it seemed to be the most efficient means of setting the trust

of each referred advisor, given that these trust values had already been calculated, whereas

using another method might require additional time-consuming calculations. As noted

above, this method will provide some positive results. However, it has some weaknesses:

first, it will not take into account the referring agents’ opinions of the referred agents.

Moreover, in the event that multiple agents make referrals to a single agent, the existing

method will not take this into account, even though the multiple referrals may indeed

suggest that this single agent should command more trust.

However, trust propagation, or defining an agent’s trust in another agent as a function

of all of the connections between them, has been studied extensively of late [15][8], and

might provide an even more accurate trust model, especially in a larger network.

In this section we will discuss some of the most relevant past work on this topic. We will

then propose several possible alternative representations of the trustworthiness of referred

advisors, and then outline potential future work on the matter.

5.3.1 Related Work

At least two works have attempted to implement methods for similar trust systems which

take into account the two weaknesses identified above. In [41], the authors discussed the use

of weighted referral graphs to decide which referred agent to use. In such a graph, agents

are linked based on the agents that each agent refers to for a given query Q. The requesting

agent and the agent or agents to which it is ultimately referred will be linked, indirectly,

by one or more referral chains, each containing one or more intermediary referring agents.

Each referral (edge) and agent (vertex) is assigned a weight, with the requesting agent

initially being assigned a weight of 1, and referrals being assigned weights representing the

80



Figure 5.1: An example of the usage of weighted referral graphs used in [40].

relative trust the the corresponding referring agent has in a referred agent. However, as

we understand the model, there are no restrictions on the value of any of these weights.

The weight of every other agent along a referral chain is the product of the edge weights

between the requesting agent and the instant agent. The implicit assumption (i.e., not

explicitly stated in [41]) seems to be that if we assign a weight of x to an agent a1, and a1

likewise assigns a weight of y to a2, then the weight that we should apply to a2 should be

the product of these two values, or xy – and so on with additional agents if required. If

there are multiple referral chains leading to a single agent, the weight will then be the sum

of the individual weights of these referral chains, as the fact that multiple referral chains

exist should indicate that the referred agent is more likely to be trustworthy.

For example, assume that an agent ar receives two referrals to a particular agent a0,

one through agent a1, and another through agents a2 and a3. The weight of the ar to

a1 referral is 0.4, and that of the a1 to a0 referral is 0.5, leading to an overall weight of

0.5× 0.4 = 0.2 for that chain. If the weights for the chain going through ar, a2, a3, and a0

are 0.5, 0.6, and 0.5, the chain will likewise have an overall weight of 0.15. The weight of a0

will then be the sum of these two chains, or 0.35. (A diagram of this example is provided

in Figure 5.1.)

However, we note that a direct application of this approach to trust models such as

PTM or TRAVOS would be problematic. In this aggregation approach, if there are multiple

chains all referring to the same advisor, these weights will be summed together without

any normalization to yield the overall weight for that agent. Although this ensures that
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agents receiving multiple referrals will be weighed more heavily, it also means that the

agent weights w will not necessarily restricted be to the range 0 ≤ w ≤ 1. This makes

sense in the context of weights, which need not necessarily be bounded to such a range.

However, given that such a range is assumed for trust values such as those in PTM, direct

application is not appropriate.

Later work from the same research group [35], based in part on the work of Jøsang

[12], provided the basis of a more rigorous approach to combining trust values by defining

two operators, concatenation and aggregation. To do so, trust is first defined as a triple

〈b, d, u〉, with the three values respectively representing the belief (positive trust), disbelief

(negative trust), and uncertainty associated with a particular entity; this in turn is derived

using a transform Z(〈r, s〉), where the pair of numbers 〈r, s〉 represents the positive and

negative evidence for that entity.

We first look at their method for concatenating trust along a path. Suppose that

agent ar holds trust M1 = 〈b1, d1, u1〉 in another agent a1. Meanwhile a1 holds trust

M2 = 〈b2, d2, u2〉 in a2. Then, using the concatenation operator ⊗, ar’s trust in a2 may be

represented as M = M1 ⊗M2 = 〈b, d, u〉 where:

b = b1b2

d = b1d2

u = 1− b1b2 − b1d2

We explain each of these values in plainer terms as follows:

• As in [41], ar’s belief in a2 is equivalent to the intersection of ar’s belief in a1, and

a1’s belief in a2, and thus the value of that belief is the product of these two belief

values.

• Similarly, ar’s disbelief in a2 is equivalent to the intersection of ar’s belief that a1 is

trustworthy, and a1’s disbelief in a2’s trustworthiness.
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• The concatenated uncertainty is calculated as being anything other than the two

joint beliefs just noted. The key insight in this regard is that if ar does not believe

a1, then ar believes that a1 is uncertain regarding whether a2 is trustworthy; thus

this component (d1) is not included in the calculation of d. [12].

To combine trust models from multiple agents (or paths), an aggregation operator, ⊕,

is suggested. Essentially this is performed by finding 〈r, s〉 = Z−1(〈b, d, u〉) for each of the

trusts, summing the respective r and s values, and finding the overall triple 〈b, d, u〉 given

these sums.

Even more recent work from that group [8] suggested an apparently improved method

for concatenation. In essence it discounts the evidence in the later “link” by the belief held

in the earlier one – that is:

M = M1 ⊗M2

= 〈b, d, u〉

= Z(〈b1r2, b1s2〉)

where 〈r2, s2〉 = Z−1(M2). The aggregation operator from the earlier paper was carried

over as-is in the more recent work.

Certainly, the concatenation in [35] of the “positive” trust value b of a chain as the

product of the individual values of b seems to be consistent with the other works studied

in this section. At first glance, both the aggregation operator in that work and the revised

concatenation formula in [8] also appear potentially useful for our purposes.

However, we note that both PTM and TRAVOS already have their own methods of

translating the positive and negative evidence obtained through the interactions between

agents into a trust value. These methods are significantly more complex than the trans-

formations used in these papers, and are not easily invertible, meaning we cannot readily

insert them into the operators described therein. Although we could still use these methods

by applying the transformations referred to above, the resulting 〈r, s〉 pairs would likely
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bear no resemblance to the actual data obtained, and as a result we would be reluctant to

apply this method directly.

The same group has also suggested a means of trust-based recommendations based on

graph similarity [7]. In this method, a trust network is modelled as a directed weighted

graph of agents, and may be represented by an adjacency matrix with trust, in which

values are zero if no trust relationship exists, or the trust value if such a relationship

does exist (as opposed to the standard adjacency matrix which contains only zeroes and

ones). From this we can calculate a similarity matrix between this trust network and a

standard structure graph representing the desired relationship – that is, if a1 trusts a2 and

a2 trusts a3, then a1 also trusts a3. Essentially, higher similarity scores between agents

should indicate more useful advisors. That said, the paper gives no additional insight on

how much the recommended agent should be trusted, and so it is not directly comparable

to the other metrics examined in this section.

The EigenTrust algorithm [16] also uses aggregation of local trust values in a slightly

different manner to that explored in [41]. It first defines a local trust value, sij, held by a

peer i with respect to another peer j, as the number of satisfactory transactions that i has

had with j (or sat(i, j)), subtracted by the number of unsatisfactory transactions between

the two peers (unsat(i, j)):

sij = sat(i, j)− unsat(i, j) (5.1)

This value may then converted to a normalized value, cij, as follows:

cij =
max(sij, 0)∑
j max(sij, 0)

(5.2)

Note that the special case of
∑

j max(sij, 0) = 0 – that is, peer i has not previously

had any interactions – is handled in EigenTrust by setting cij = 1/|P |, where P is the set

of peers known to be pre-trusted by peer i, if j ∈ P and cij = 0 otherwise.

The overall trust that peer i holds in another peer k, based on i asking its friends, can

thus be represented as follows:
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tik =
∑
j

cijcjk (5.3)

This method can thus effectively aggregate trust values along multiple paths – although

as it uses a weighted average, unlike the proposal in [41], it will not provide any real “bonus”

for multiple referrals. On the other hand, it does not directly handle “referral” chains using

more than one intermediate agent – the intent is to get information about a single target

agent, ag, based on the reported direct experiences of all agents (other than the requesting

agent and ag itself) with ag.

To handle asking the friends of friends (and so on), EigenTrust uses a slightly more

complex form. We first rewrite Equation 5.3 in matrix notation, by defining a matrix

C = [cij], a vector ~ti containing the values tik, and ~ci as the normalized local trust vector

of peer i. Thus:

~ti = CT ~ci (5.4)

If we wish to consider friends of friends, we could compute ~ti = (CT )2~ci, and so on;

ultimately, if we wish to compute the trust values considering the entire network, we

would compute ~ti = (CT )n~ci for n = large. The eventual determination of this vector

in EigenTrust requires additional computations that are not within the scope of this cur-

rent discussion. Nevertheless, we will provide a simple example that demonstrates the

functionality of the simplified “asking friends” version discussed above.

Consider the network shown in Figure 5.2. Each edge points from one agent that has

made requests to another agent which received the particular set of requests. Adjacent

to the edge, the numbers of satisfactory (sat) and unsatisfactory (unsat) requests are

indicated. We assume, for purposes of simplification, that the interactions shown represent

the only relevant interactions that have occurred among this set of agents. As in the earlier

example, one agent ar wishes to determine how much it should trust a target agent a0.

Given that ar has not previously interacted with a0, using Equation 5.2 it would calculate

its normalized local trust value for a0 to be cr0 = 0.
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Figure 5.2: An example to illustrate a simplified EigenTrust “asking friends” mechanism.

If ar wishes to calculate its trust in a0 based on asking its friends, it will first calculate

the appropriate “raw” and normalized local trust values, using Equations 5.1 and 5.2. The

pertinent values are shown in Table 5.1.

Then ar’s model of the trustworthiness of a0 would be:

tr0 = cr1c10 + cr2c20 + cr3c30

= (0)(1) + (0.625)(0.429) + (0.375)(0.2)

= 0.343

5.3.2 Proposed Alternatives

Based on this research, we now suggest five alternative methods of modelling the trust-

worthiness of referred advisors, for future consideration and comparison. We reiterate that

these alternatives only affect the specific trustworthiness values assigned to each referred
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Table 5.1: Calculations of Normalized Local Trust Values for Simplified EigenTrust Ex-
ample

ai aj sat unsat sij max(sij, 0)
∑

j max(sij, 0) cij

ar

a1 4 6 -2 0
8

0
a2 7 2 5 5 0.625
a3 6 3 3 3 0.375

a1 a0 5 2 3 3 3 1

a2

a0 4 1 3 3
7

0.429
a1 3 1 2 2 0.286
a3 5 3 2 2 0.286

a3
a0 5 4 1 1

5
0.2

a2 4 0 4 4 0.8

advisor; alternative means of actually choosing these advisors, beyond the method noted

in Section 4.1, are beyond the scope of our current work.

The first method is using the buyer’s original trust value for the referred advisor in

question – the method we used throughout Chapter 4. This is true to the “personalized”

approach that motivates PTM but, as noted, does not take into account the trust that other

advisors have in the referred advisor, perhaps reducing the effectiveness of such referrals.

The second method is simply using the product of all of the trust values in the first

referral chain found leading to the referred advisor. For example, if b is referred to a0 via

a1 and a2, and we define tb1 to be the existing trust that b has in a1 (and similarly for the

remaining links), then t∗b0 = tb1t12t20.

The third method is a simple average of the two values generated from the first and

second methods, i.e.
tb0+t

∗
b0

2
.

For the fourth method, we return to our discussion of EigenTrust. While the trust

measure used in that mechanism differs somewhat from that used in PTM or TRAVOS

– in the latter methods, the trust values used are already normalized to a value between

zero and one – we feel that this nevertheless provides some inspiration as to how we could

normalize the trust values held when aggregating multiple trust values for the same advisor.

Specifically, we will seek to determine a weighted average of the trust values for the referred
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advisor, in which these trust values are weighted by how much the buyer trusts the chain

that referred this advisor.

To do so, we first define the concept of chain trust as the overall trust that the buyer

holds in the chain of advisors, not including the final “link” (referral) to the referred

advisor, ak. Thus it is equal to the product of the trust values in the chain except for that

of the ultimate referral to ak. For example, in the example above in which b is referred to

a0 via a1 and a2, then the value of the chain trust for that referral chain is equal to tb1t12.

Consider that an advisor ai has received one or more referrals to some other advisor

ak and is seeking to update the trust it should have in ak, given ai’s existing trust in ak,

which we will define as tik, as well as all of the chains of advisors referring to ak and the

trust values in each of those chains. We define each j as representing one such chain of

advisors, such that tij is the chain trust that ai holds in j. We could consider ai’s own

prior trust value tik to be the end of such a chain for which tij = 1, as we presume that ai

has complete confidence in itself.

We can then define one method of determining an updated trust value, t′ik, as follows:

t′ik =
tik +

∑
j tijtjk

1 +
∑

j tij
(5.5)

Such a mechanism would accept additional referral chains for a particular advisor that

had already been accepted as a referral, if the said advisor was referred multiple times.

This could be performed by keeping track of a numerator and denominator for each referred

advisor, and calculating the final value once the referral process is complete. At this point

we contemplate that this would only apply to referred advisors; that is, if an advisor am was

part of the buyer’s original advisor network, only the previously-calculated value tbm will

be used, regardless of how many times it is re-considered as part of the referral algorithm.

The final method we would offer is a simplified version of the fourth method, considering

only the first referral chain found. In other words, this would be a weighted average of tb0

and t∗b0:
tb0 + t∗b0
1 + t∗bj
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Table 5.2: Summary of Proposed Referral Trust Weighting Methods

Method Trust Metric(s) Used Averaging Method

1 Buyer’s direct trust None
2 First referral chain None

3
Buyer’s direct trust

Simple average
First referral chain

4
Buyer’s direct trust

Weighted using chain trust
Multiple referral chains

5
Buyer’s direct trust

Weighted using chain trust
First referral chain

We summarize the methods outlined above, and their respective features, in Table 5.2.

Since the proposals in this thesis have been discussed to this point in the context of

probabilistic trust models, we also make clear that in adopting any of these methods beyond

the first one, which simply uses the exact values previously calculated under the applicable

trust model, we do not assume that the values represent probabilities that an agent is

trustworthy. The second method does define trust in a referred agent as the product of

several other probabilities, but this would only be a probability itself if we could prove

the component probabilities to be independent of each other, which is beyond the scope

of the present work. The remaining methods use averages (simple or weighted) of trust

values derived using the first two methods, and therefore would not necessarily represent

probabilities.

Examples

We now turn to demonstrating the use of the five methods identified above using a demon-

strative example. A buyer agent b has an advisor network consisting of three advisor

agents, a1, a2, and a3. Four additional agents, a4 through a7, are included in successive

advisor networks. The pertinent relationships between the agents are shown in Figure 5.3.

Although some of the agents may appear to have small advisor networks, we assume that

any additional relationships may exist in addition to those indicated here, but that these

are not pertinent to our calculations (for example, a2 having b as an advisor).
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Figure 5.3: The pertinent relationships and trust values held in the examples discussed in
Section 5.3.2.

Arrows are used to indicate that the agent at the start of the arrow holds the indicated

trust value in the agent being pointed at. Solid-line arrows indicate that the agent being

pointed to is included in the advisor network of the agent at which the arrow originates;

dashed-line arrows used to indicate pertinent values that were previously calculated, where

the agent being pointed to is not included in the other agent’s advisor network. For

example, it is shown that b calculated a trustworthiness value of 0.5 for agent a7, but has

not included it in its advisor network, whereas it has selected a1, a2, and a3. Finally, for

the advisors, a solid-line border indicates that the agent has had sufficient experience with

the seller under consideration to be included in determining the trustworthiness for that

seller; a dashed-line border specifies that the experience is insufficient to be included in

these calculations.

Regardless of the referral weighting method used, the process of selecting the advisors is

the same – that is, the method outlined in Section 4.1. The buyer will examine each of the

agents in its advisor network, from most trustworthy to least, to determine whether each

is suitable to be included in calculating the trustworthiness of the specified seller. If not,
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the advisor’s own advisor network will be searched for an acceptable replacement advisor.

If this fails to yield a replacement – because all of those advisors were either unsuitable

themselves, or already counted as part of the advisor network – then the advisors of the

advisors just considered will be examined, and so on until either a suitable replacement

has been found, or some pre-determined (currently arbitrary) maximum number of levels

has been reached.2

In this case, advisor a1, with the highest trustworthiness (0.9), will be the first to

be examined, and will accepted due to having the required amount of experience with the

seller. It will be assigned 0.9 as its trustworthiness value regardless of the referral weighting

method chosen later in this example.

However, the next advisor to be considered, a2 (with trustworthiness 0.8), will be

rejected as having insufficient experience. In searching for a replacement advisor, the

agents in a2’s own advisor network, a4 and a5, will be similarly rejected. Thus the buyer

will continue with the next level, beginning with the advisor network of a4, which a2 had

determined to be most trustworthy (0.8) among the agents in its advisor network. The

first agent in a4’s network will be a6, which it trusts with value 0.8. Since a6 has had

sufficient experience with the seller, the buyer will accept a6 as the replacement agent for

a2 when dealing with this particular seller.

Finally we turn to a3, the last agent in b’s advisor network, which is trusted by b with

value 0.7. Here, once again, we recognize that a3 will not have sufficient experience to

be included in the current calculations. Looking at a3’s advisor network, we see that it

too includes a5, which (as discussed in the previous step) will have insufficient experience

to be used as a replacement advisor. This brings us to a5’s advisor network. The buyer

first looks at a5’s most trusted advisor, a6 – although the buyer cannot accept it again as

a replacement advisor, it may be able to obtain additional useful information (depending

on the weighting method used). Finally we see that a5 also has a7 in its advisor network.

As a7 also has had sufficient experience with the seller under consideration, it can now be

accepted as the replacement advisor for a3, completing the referral process.

2If and when an acceptable advisor is found during these searches, that advisor will be selected, and
the search will cease at this point – that is, only the first acceptable advisor found will be selected.
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Using Method 1, the buyer relies on the values it had previously calculated when it

considered – but rejected – using a6 and a7 in its own advisor network – which, as indicated

in Figure 5.3, are 0.55 and 0.5, respectively. It can therefore immediately use these values

in its calculations of seller trustworthiness.

With Method 2, the buyer disregards these previously-calculated values, and instead

relies on the chain of advisors used to find each of these new advisors – using the product

of the trust values of the individual links. (This could be accomplished, for example, by

calculating the value recursively on the chain once a suitable replacement is found.) For

the former, the chain is b→ a2 → a4 → a6, so the value used will be 0.8×0.8×0.8 = 0.512.

For the latter advisor, the corresponding chain is b→ a3 → a5 → a7, leading to the value

used being 0.8× 0.75× 0.7 = 0.42.

Method 3 will be a simple average of the values used in the previous two methods.

Thus a6 would be assigned a trustworthiness of (0.55 + 0.512)/2 = 0.531. Likewise, a7

would be assigned a value of (0.5 + 0.42)/2 = 0.46.

In Method 4, we use a weighted average of the agent’s direct trust in the advisor and

all advisor chains leading to that agent found during the referral process. The calculations

are therefore more complex: The implementation must keep track of the overall trust

corresponding to that chain (as in Method 2), which will be used in the numerator, as well

as the “chain trust” leading up to the final link, which will go into the denominator. (It

could thus, for example, keep a running total of both the numerator and denominator for

each referred agent as new referral chains are found.)

With respect to a6, there are, in addition to b’s direct trust value, two referral chains

found during this process: b→ a2 → a4 → a6, and b→ a3 → a5 → a6.

• For b’s direct trust value in a6, the numerator component is simply that value: 0.55.

The denominator component will trivially be 1 – since b will have no reason to doubt

itself, it will have complete confidence in its prior calculation of the direct trust value.

• For the referral chain passing through a2 and a4, the numerator component will be

0.512 (as calculated in Method 2). The denominator component is calculated based

on all of the links save the final one, and thus it will be 0.8× 0.8 = 0.64.
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• Finally for the referral chain that goes through a3 and a5, the numerator component

will be calculated following the procedure in Method 2: 0.7 × 0.65 × 0.8 = 0.364.

The denominator component will be calculated similarly as for the previous referral

chain: 0.7× 0.65 = 0.455.

The final calculation of the trustworthiness value for a6 would be as follows:

0.55 + 0.512 + 0.364

1 + 0.64 + 0.455
= 0.6807

In a similar fashion we can show that the corresponding value for a7 – combining the

direct trust held by b and the single referral chain found via a3 and a5 – will be 0.575.

A casual reader observing these results may justifiably wonder why the values calcu-

lated for a6 and a7 under this method are larger than any of the individual trust values

being combined. The reason for this is that Method 4 is intended to calculate a weighted

average of the trust values directly held in these agents – and not of the overall chained

trust values as calculated in Method 2. More specifically, a4 and a5 have each assigned

a trustworthiness value of 0.8 to a6 (which are then weighted by the “chain trust” values

leading up to each final link). It therefore stands to reason that under this method, the

updated trustworthiness of a6 will be between 0.55 (b’s direct trust) and 0.8 – which it is,

at 0.6807.

Finally we look at Method 5, which is essentially a simplified version of Method 4

making use of only a single referral chain. For a6, this means we ignore the components

corresponding to the referral chain through a3 and a5, leading to the following calculation:

0.55 + 0.512

1 + 0.64
= 0.6476

Since our referral mechanism only found one referral chain to begin with for a7, the

trustworthiness value for that advisor under Method 5 will be the same as for Method 4:

0.575. We reiterate at this point our comments from Method 4 regarding the calculated

values being above those of either of the individual trust values being averaged, which also

apply to Method 5.
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Discussion

It seems clear that the choice of weighting method may well have a significant impact on

how trust is modelled when using referrals – and hence upon the accuracy of trust modelling

when referrals are applied. At this time we opt to leave an experimental comparison among

these methods to future work. However, we believe that testing these five methods should

be fairly straightforward: Given one or more scenarios where the other parameters (i.e.

size of the advisor population, percentage of lying advisors, max nbors or thresholding

parameter, and NRE value if applicable) are held constant, test all five of these methods

using the testing procedure documented in Section 5.1.1, and determine which one yields

the lowest mean absolute error in modelling the trust of sellers. A small handful of these

scenarios – perhaps two values for each of the parameters just mentioned – should be

sufficient to indicate the best method(s).

We believe there may also be some merit in further examination of recommendations

based on graph similarity [7], in regards to selecting which agents to be referred. While

we reiterate that this discussion does not really focus on trust propagation so much as

using trust and similarity to select appropriate agents, this does seems to be a promising

alternative means of choosing referred advisors, and could likely be implemented quite

easily with the models discussed in this thesis, as an alternative means of obtaining referrals.

We could compare this to our existing referral-selection mechanism – and potentially others

– to determine whether modifying the mechanism has any effect on the accuracy of trust

modelling. That having been said, we will also leave this to future work.

Finally, particularly for referral chains, we may also wish to consider the appropriateness

of applying a decay factor to the trust value of a referred advisor based on the length of

the chain that provides that referral. Similar to the forgetting factor used in the PTM and

discussed in Section 2.1.1, the calculated trust value would be multiplied by λn, where λ

is the decay factor (0 ≤ λ ≤ 1) and n is the length of the referral chain. This would reflect

the belief that an agent that is referred by one of the requesting agent’s existing advisors

should be more trustworthy than one referred by one of the advisor’s advisors (and so on).

Although some decay does occur along a referral chain, it is possible, for instance, that

an advisor referred by a chain of two agents, each trusting each other with a value of 0.8
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(0.83 = 0.512), would end up being assigned greater weight than an existing advisor with

a trust value of 0.5. If such an occurrence is not desired, a decay factor will be required in

order to prevent it.

5.4 Balancing Similarity and Reputation Modelling

In light of the fact that techniques used in CF recommender systems helped inspire the

proposals documented in this thesis, we wish to touch briefly on some of the other research

incorporating both trust modelling and recommendations.

A common theme in recent research has been recommender systems where trust is the

primary criterion — although, in many cases, this has essentially taken the form of a CF-

style recommender with the correlation-based weightings replaced with trustworthiness-

derived values. In fact, some researchers have referred to this as “trust-based” or “trust-

aware” CF [18][21], although more commonly, CF is solely used in regards to correlation-

based recommenders.

Perhaps the best known version of these is the work by Massa et al. [1][21][22]. Their

goal was to use trust-based recommendations to help resolve the data sparsity issue; that

is, if a user (particularly a new user) has few items commonly-rated with other users, then

it may be difficult to determine similarities with these users and hence make recommen-

dations. Trust in this case was based primarily on explicit statements from agents, which

could then be propagated to a pre-defined depth using a selected trust metric.

In their study [22], the more classical similarity-based CF recommender was tested

against two trust metrics, the graph-based local trust metric MoleTrust [1] and the global

metric PageRank [25], using the epinions.com dataset. As well, MoleTrust was tested

using different levels of trust propagation. Their results indicated that even before trust

propagation was applied, the mean average user error (MAUE, as defined in [22]) using

trust as the criterion was significantly lower than with traditional CF (0.790 vs. 0.938).

Adding propagation using MoleTrust served to improve the coverage, although the error

increased slightly as well; meanwhile PageRank generally served only to increase the error.
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The authors then proceeded to examine a system combining trust and user similarity,

finding that although the coverage was better that for the two metrics used individually,

the error was between that of the two “pure” metrics, indicating little benefit of such a

combination.

A similar but more implicit approach to trust was taken in [18]. As with [22], trust is

used in place of similarity to weight the ratings of other agents. Here, however, an agent’s

measure of its trust in another agent is based primarily on the amount of information the

second agent provides, but is also varied based on the quality of that information (that is,

how closely their ratings matched). In choosing the best set of advisors for predictions,

this study takes note of the thresholding approach but instead dismisses it on the basis

that such a selection is a “difficult decision”. Instead they use k-nearest-recommenders

(kNR), a variant of max nbors (which is also known as k-nearest-neighbours, or kNN)

that dynamically selects the best k neighbours that are able to provide information about

a particular desired item.

The experimental results (run on the MovieLens dataset) indicate better coverage for

the trust-based model as opposed to (similarity-based) correlation filtering, as well as lower

prediction error for small values of k. However, as k increases, while accuracy improves

for both methods, eventually the trust-based approach falls behind traditional CF. The

authors hypothesize that since the neighbourhood in the trust-based method will grow to

include more agents that the current user has had little experience with, greater error will

result.3

We will consider future possibilities for linking collaborative filtering techniques and

trust modelling, in light of this past work, in Section 6.2.6.

3Work by other researchers incorporating very similar methods has also been documented elsewhere
[11][4].
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Chapter 6

Conclusion and Future Work

6.1 Contributions

In this thesis, we have outlined three potential improvements to trust modelling – trust-

worthiness thresholding, maximum number of advisors, and advisor referrals – all of which

aim to improve the accuracy of the recommendations for trustworthy agents derived from

a buyer’s advisors. These three improvements can be used with different trust modelling

methods, specifically the Personalized Trust Model and the TRAVOS model, as demon-

strated in our study. We have also demonstrated that our proposed approach is sufficiently

robust that it can be applied to offer improvements, even to large-sized populations of

agents.

We have seen that either using trustworthiness thresholding or setting a maximum

number of advisors will provide an improvement to the accuracy of the trust model. We

have also seen that, in cases where the size of the advisor network is very small, using

referrals may help to further improve the accuracy of this model.

In Sections 3.3.3 and 4.3.4, we evaluated our three optimization methods with a larger

population. Our experimental results for PTM show that trustworthiness thresholding is

not affected by the population size, while the proper parameter for the max nbors method

can be selected as a proportion of the population size. For TRAVOS, however, it appears
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that these parameters will need to be set separately for each population. Meanwhile, in

larger populations, allowing for advisor referrals will have a greater benefit when used with

more restricted advisor networks, as compared to the fairly modest improvements seen

with smaller populations.

We note that other trust researchers have also explored ideas related to thresholding

and max nbors. As we discussed in Section 5.4, some trust researchers have examined the

use of kNR, a variant of max nbors (or kNN), in connection with a trust-based collabora-

tive filtering recommender [18]. Meanwhile, the original version of PTM uses an implicit

threshold in its computation of seller trustworthiness: it only makes use of “trustworthy”

advisors, which are defined as those having trustworthiness values of 0.5 or above [42].

However, we should distinguish between the arbitrary (if intuitive) selection of parame-

ters in [42], and to a lesser extent in [18],1 and the more careful methodologies for selecting

parameters outlined in [9] (for collaborative filtering) and in this work (for trust mod-

elling). In both works, simulations were conducted using several different parameters for

all the methods examined – thresholding, max nbors, and (in our case) referrals – and the

authors attempted to draw conclusions based on those results. Indeed, in considering the

results in Section 3.3.1, it seems clear that the “intuitive” threshold used for the PTM in

[42] was not the best one.

This seems to point towards the overall benefits of using a more principled methodology

for selecting parameters in trust systems: while an arbitrary choice may work fine, there

may be something better, given other parameters such as agent population size. Such a

methodology may also help to demonstrate more robustly the benefits of the model and

the specific parameter choices used therewith.

We have also observed other work relating to finding the “best” size of a social network.

For example, Seth [29] examined the creation of clusters of users with close ties, such as

interests in similar topics, in participatory-media social networks such as Orkut. He argued

that the amount of contextualization that occurs in a community is proportional to the

size of the cluster, and observed that a larger cluster size will generally result in a greater

1The experimental verification for kNR included simulations using several values for k, but did not
test the full range of possible k values exhaustively. Many of the subsequent experiments simply assumed
k = 1, even though it was not the best performer in terms of minimizing error.
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amount of information being generated in that cluster. At the same time, the author

notes past observations suggesting that a group with more than 150 members might be

unsustainable [3], and suggests that adjustments might be necessary above this point.

Our results seem to concur with this work insofar as increases to the size of the advisor

network do not always result in improved results in terms of trust modelling accuracy:

a very small group is not advisable, but after a certain point, further increases will only

serve to reduce accuracy. However, that comparison should be taken with a grain of salt, in

that the clusters discussed in [29] are of users that have consciously decided to join a group

based on similar interests. By contrast, even though the agents in PTM or TRAVOS might

represent actual human actors, it is these models, in combination with our techniques, that

will determine the advisor network of each buyer agent, not the actors themselves.

The positive results outlined in this thesis do suggest that other researchers should

be able to adopt these optimizations when seeking to improve their own trust models.

Towards this end, we have also clarified, in Section 5.1, the experimental framework which

can be used to derive appropriate parameter values.

6.2 Future Work

We believe this thesis provides a solid foundation for the usage of network limiting and

advisor referral techniques for improving trust modelling in multi-agent systems. We iden-

tify below some of the open questions which remain with respect to the application of our

work.

6.2.1 Parameter Selection

In Chapters 3 and 4 we conducted simulations aimed at not only verifying the usefulness

of our techniques, but also at finding, in a methodological fashion, the best parameters

to use for our techniques for the given situation. We expounded on this methodology in

Section 5.1.
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There are of course many ways we could improve on this methodology. For example,

in our simulations, we normally chose to vary the max nbors parameter in increments of

10, and the threshold parameter in increments of 0.05 or 0.1. It could be worthwhile to

implement an iterative approach to finding the “best” value. For example, if we initially

use increments of 10 and determine that max nbors = 40 works best, we might repeat the

simulations for increments of 2 between 30 and 50, and so on until the best value is found.2

Identifying a precise “best” value is not particularly relevant to the main conclusions of

this thesis, but future researchers seeking to benefit from our results may wish to bear this

in mind.

For referrals, the main parameter examined in this thesis was NRE, the minimum

number of experiences that an advisor would need to have with a seller in order to be used

in determining the trustworthiness of that seller. However, there may be superior ways

of determining the amount of experience between a seller and an advisor. For example,

at present the referral procedure does not take into account the length of time that has

elapsed since a particular experience – it stands to reason that experiences that happened

in the distant past may not count for very much, especially if the seller’s behaviour has

changed over time. It may also be useful to consider how factors such as the dynamicity

of the community or the amount of knowledge held by the buyer and/or other advisors

might affect these selections.

Future research should also certainly consider the maximum number of levels searched

when a referral is needed. Presently, this value is set as maxnetlevel = dlogk(|B|)e, as

an estimation of the number of levels required in order to search the entire population of

advisors. Reducing this number may serve to improve the performance of referrals, albeit

potentially at the expense of some useful information from some referred advisors that

might no longer be identified. It might be useful therefore to examine how many referred

advisors are found at each level, and how much their presence affects the modelling of seller

trustworthiness.

2Alternatively we could use a binary search algorithm to identify the best parameter, assuming we
could show that the graph would have a global minimum and no local minima (based on our results in
Chapter 3, this seems to be the case for PTM, but not necessarily for TRAVOS).
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6.2.2 Improvements to Testing Methods

It would be useful to test our techniques on “real” data sets – that is, data originating from

real users – and not arbitrary data as performed in the simulations in Chapters 3 and 4.

For example, the work on collaborating filtering design choices [9], mentioned earlier as an

inspiration for some of our techniques, used the MovieLens database to help determine how

useful various methods would be. Potentially more useful for our purposes would be the

epinions.com dataset, in which users not only provided reviews of items, but also defined

a “Web of Trust” consisting of users whose reviews they found to be consistently useful,

and a “block list” of reviewers who were consistently not useful [21]. Testing against a

dataset of this type could help us to show the robustness of our techniques in a real-world

scenario.

An additional beneficial extension to our testing would be to make the advisor networks

dynamic, changing over time as agents become more or less trustworthy. Our verification

in this thesis simply created a “static” advisor network after a training period, and did

not consider the effects of potential subsequent interactions. However, in a real-world use

case, we would expect the advisor network, and trust values, to be regenerated or updated

from time to time, perhaps every few days, as agents engage in additional transactions,

and as new agents enter the environment. We might, for instance, regularly update the

trust values associated with existing advisors, and replace the least trustworthy existing

advisors with new, more trustworthy agents.

As noted previously, our work in this thesis has examined the effect of our techniques

on two trust models: the PTM and TRAVOS. We felt that although there are many simi-

larities between these models, such as the usage of beta distributions, they were sufficiently

distinct to show that our techniques, and the results of their use, should not be specific

to any specific model. However, it is by no means a comprehensive study, even among

probabilistic trust models. In particular we note the recent contribution by Vogiatzis et al.

[34] which is claimed to be, unlike the others, a “fully probabilistic” trust model, modelling

agent interactions using a Hidden Markov Model, and apparently making no use of beta

distributions. We leave consideration of such matters to future research.
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6.2.3 Further Verification of Effects on TRAVOS

In Sections 3.3.2, 3.3.3, and 4.3.3, we looked at the effects of the application of our tech-

niques on the TRAVOS trust model. However, our results did not seem to be as clear-cut

as those for the PTM. In particular, we noted that the figures showing the initial results for

TRAVOS for max nbors and thresholding, Figures 3.4a and 3.4b respectively, displayed

graphs with a zig-zag shape, whereas the graphs for PTM (Figures 3.3a and 3.3b) had a

relatively smooth shape.

Because of the way advisor trustworthiness is modelled with TRAVOS – taking into ac-

count the buyer, the advisor, and the seller under consideration, whereas the corresponding

computations for the PTM are independent of the seller – it would be valuable to control

additional criteria in our simulations that have not been held constant in our research to

date, and to then examine any effects on the simulations. These criteria might include the

total number of ratings received by each seller, and the overall percentage of unfair ratings

from the advisors that interact with each seller. Again, we leave this for future research.

In addition, we could determine more carefully the circumstances under which TRAVOS

is challenged in properly determining the trustworthiness of advisors. A useful starting

point for this investigation would be the comparison of probabilistic approaches performed

in [44].

Finally, we might examine if the proposal in the following subsection of a unified advisor

network for TRAVOS might affect our results going forward.

6.2.4 Additional Work with Large Populations

In Section 3.3.3 we examined the effect of increasing the advisor population size when

using the PTM with either max nbors or thresholding. We showed that these techniques

will have approximately the same effect on the larger population, if the threshold or the

proportionate max nbors value is kept constant. However, our results with TRAVOS in

that section diverged from this, appearing to show that a given threshold or proportionate

max nbors value will yield different results for different advisor populations. Of course,
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this may be less a matter of the large populations themselves than one of issues with the

TRAVOS model itself, as just discussed in Section 6.2.3, but this is not entirely clear at

this stage.

Although we intended to test as well the effects of referrals on the large population

scenario in TRAVOS, we found this to be impractical, since increasing the population

using TRAVOS seems to have a much more significant effect on the amount of required

memory compared to the PTM. This is in part because the modelling of advisor trust in

TRAVOS takes into account not only the buyer and advisor, but also the specific seller

being considered. This in turn means that, to allow each buyer / advisor to determine its

own advisor network, they must in fact create separate networks for each potential seller.

This means that in an environment having 100 sellers and making use of advisor networks,

TRAVOS may require up to 100 times as much memory as would an otherwise identical

scenario in PTM.

This was not a significant issue when thresholding and max nbors alone are tested,

since the advisor networks of the advisors themselves have no effect on the simulations

in these cases and thus could be ignored. However, since this component is crucial to the

functioning of our referral mechanism, we may need to examine ways to reduce the memory

usage in these cases, or alternatively determine a means to collapse the separate advisor

networks used for each seller into a single advisor network as used with PTM.

Returning to the results in Section 3.3.3, we noted that notwithstanding the similarity

in the general effects of our techniques for both of the advisor population sizes we tested,

the larger population tended to perform slightly better – that is, it almost always had

lower MAE than the comparable small-population results. We posited that this was simply

because more highly-trusted advisors were available in the larger population, yielding more

trustworthy information about each of the sellers.

As a suggestion for future work, we would verify this by re-running the simulations,

this time keeping track of the trustworthiness values of each advisor, and then sorting the

advisors into several trustworthiness bins (e.g. five bins of [0, 0.2), [0.2, 0.4), . . . [0.8, 1]).

We hypothesize that the higher-population simulations would yield more advisors in the

high-trustworthiness bins than those for the smaller advisor populations.

103



6.2.5 Performance and Time Sensitivity

One topic which would be promising to explore is improving the performance of the trust

models when using our proposed methods. Given that these methods will in many cases

substantially reduce the size of the advisor network used to produce the trust model of

sellers, some performance optimization of these methods could help to improve the overall

performance of the trust model.

Zhang also suggested [42] that it may be useful to apply the PTM (and presumably

other trust models) to time-sensitive tasks which may require a buyer to make a very

quick decision – for example, vehicular ad-hoc networks (VANETs), which might need to

consider information from various sources regarding weather, traffic, and road conditions,

all of which is changing constantly. Perhaps a more pertinent example in the e-commerce

scenario would be a time-limited online auction marketplace, in which bidders may place

or increase their bids at any point up until the specified end time. An agent might wish to

decide, for instance, how worthwhile placing or increasing a bid would be, given not only

the agent’s own worth of the item, but also the updated trustworthiness of the seller and

of other bidders (i.e. detecting collusion).

In such a scenario, Zhang argued, an agent might only have time to consult a limited

number of advisors. We note, however, with specific regard to the models and modifications

studied in this thesis, that the time required of querying advisors is quite small compared

to the amount of time required to model the trustworthiness of, and select, advisors.

Our instinct is that a “good enough” model of the trustworthiness of an agent might be

sufficient – perhaps one only considering a random subset of the advisor population, as in

Section 3.3.4. However, under these circumstances, we would want to have high confidence

in our selection, especially if that selection was a particularly risky one (such as, using the

VANET example, making recommendations about when to change lanes).

Our review of the literature has not revealed any significant past work on time-sensitive

decisions in the context of trust modelling. Although a number of researchers have dis-

cussed “time sensitivity” in the context of trust modelling in peer-to-peer networks, includ-

ing [19][6][2], the references to time sensitivity relate to the use of models incorporating
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time-slots to keep track of when events occur, and not time-sensitive decisions.

6.2.6 Combining Collaborative Filtering and Trust Modelling

In Section 5.4, we mentioned that several other researchers have proposed methods of in-

corporating CF techniques into trust modelling or vice versa. In many cases these involved

simply substituting trust as the primary metric in place of similarity [21]. We noted one

novel method in the literature used for “trust-based collaborative filtering”, known as k-

nearest recommenders (kNR), which dynamically selects the best k neighbours that are

able to provide information about a particular desired item [18].

It appears that kNR may be a useful alternative to the thresholding and max nbors

methods we outlined in Chapter 3, and in that regard, future research could include exam-

ination of kNR’s performance, in terms of both trust modelling accuracy and computation,

compared to the other two methods when applied to the same environment. This would

necessitate a more complex experimental environment, with different items (with different

corresponding trustworthiness values) sold by each seller.

There is perhaps, however, a larger question relating to potentially considering both

similarity and trust when it comes to deciding which agents to interact with. Conceivably

we could attempt to combine the measures in some fashion, but this might not be partic-

ularly helpful in all cases. Consider for instance an agent that has low trustworthiness but

very high similarity to the buyer, or vice versa – would this agent be used as an advisor in

this scenario, and if so, will it serve to help or harm the buyer?

A potentially more useful approach might be to use a dual-stage determination. For

instance, we could set two thresholds, one representing the minimum trustworthiness for

an advisor to have, and another stating the minimum similarity the advisor must have

with the buyer; an advisor would then have to pass both thresholds to be accepted into

the advisor network. This too would require an experimental environment considering not

only generic interactions between buyers and sellers, but also the specific types of items

being transferred (and the characteristics thereof). This we leave to future work as well.
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6.2.7 Information Gain

Work has also been done on the measure of information gain obtained as more agents are

introduced into a trust or reputation system, which may be an additional factor to consider

when determining how large the size of the advisor network should be.

For example, Sierra and Debenham [31] suggest the following formula to predict the

amount of information ItXi
(α, β, µ), with respect to some probability distribution Xi, ob-

tained when a message µ is obtained at time t:

ItXi
(α, β, µ) = Ht(Xi)−Ht(Xi(µ)) (6.1)

where H(•) is Shannon entropy, α is a (requesting) agent (i.e., a buyer), and β is one

of the negotiating agents that interacts with α (i.e., a potential seller).

Many of our results in this thesis indicated that, when varying the max nbors or thresh-

olding parameter slightly in close proximity to the “optimal” values, there was little change

to the computed trust modelling error – the error had “bottomed out”. This would pre-

sumably indicate that the information gain by adding or removing advisors around these

optimal points would be minimal. Thus work along these lines – specifically, determination

of parameters for which the instantaneous information gain is minimal – might allow us

to compute, in a more deterministic fashion, the appropriate parameters for max nbors or

thresholding.

6.2.8 Usefulness of Referrals

In Chapter 4, we outlined a proposed technique for incorporating an advisor referral system

into the trust models being studied; however, our experimental results thus far have had

mixed results. In Section 4.3.2, we noted that the use of our referral mechanism yields

improvements in trust-modelling accuracy when the advisor network had been limited to

a very small number of advisors – as would occur if a small max nbors value (e.g. 10 or

below) was set, or thresholding was applied using a very high threshold (e.g. 0.8 or above).
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On the other hand, if the best max nbors or threshold parameter – as found through

experimental determination – had been used instead, the improvements would be signifi-

cantly lessened. Indeed, using a more carefully-set max nbors or threshold parameter, even

without referrals, will still yield significantly better trust-modelling accuracy compared to

a very small advisor network with referrals.

That does not, however, mean that referrals are necessarily without merit, since there

may well be practical reasons to reduce the amount of memory that such a program re-

quires.

For example, if a system contains an extremely high agent population – i.e., in the

millions – and a limiting method such as random selection (see Section 3.3.4) proves inef-

fective (for example, if there is high data sparsity), it may well be impractical to maintain a

model of all of the agents unless the network is limited to a very small fraction of the overall

size, either by using a small max nbors value (or proportion) or a very high threshold. It

is also conceivable that some version of this procedure might eventually be incorporated

into embedded systems – i.e., certain types of mobile devices, or devices developed using

nanotechnology – in which it tends to be much more difficult to supply a large capacity for

either storage or random-access memory compared to larger-scale modern workstations.

It would therefore, we believe, be useful to conduct additional research, as future work,

into the potential benefits of using referrals when the available memory is much more

limited. This would depend on whether (a) the use of referrals does (or can be made

to) reduce memory usage – given that although we assume that a smaller advisor network

would be used, the referral process itself requires some memory allocation; and (b) whether

the amount of the resulting reductions is in fact significant compared to the overall memory

consumption of the trust model.

In a similar vein, we could also consider optimizations to the referral mechanism, as

described in pseudo-code in Algorithm 2, to maximize the efficiency of the referrals process

and reduce the information load. For example, if certain advisors are highly trusted by

several agents, one agent could end up being considered multiple times during the referrals

process and rejected each time, due to either the agent having insufficient experience, or the

restrictions on duplicate advisors in a referred network. It might be better, for instance,
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to (a) have each advisor pre-determine the most useful advisors it already has for each

seller, such that when referrals are sought, only the most useful referees for the particular

scenario are provided; and (b) ensure that once the advisor network of a particular advisor

has been examined, it is not re-examined on some deeper level of the network.

6.2.9 Domain Specificity

Finally, it would be useful to consider how the domain under consideration might affect

the choice of both the trust model and the specific methods or parameters used to optimize

it. While we have focused on electronic marketplaces in this paper, other models are used

in different domains – as in modelling the trust between agents collaborating on a health-

related challenge [17] – and the usefulness of our proposed methods may vary from one

domain to the next.

Although it would be impractical to model every possible trust-model domain, we can

still identify certain combinations of characteristics that could serve to represent many of

these domains. For example, motor vehicles tend to have, relative to over consumer goods,

high values, but also exist in relatively low quantities, since a typical consumer would

only need to buy one every few years. Houses and other real estate would have similar

characteristics. In contrast, most food items are only useful for a small number of servings,

and thus must be purchased more regularly – but also exist in higher quantities and have

lower prices. It therefore stands to reason that the trust model used for buying a car might

have very different characteristics from one used for buying household staples.

We expect by identifying the most pertinent characteristics of the relevant domains

and adjusting the simulations accordingly, one could make additional conclusions about

the role of domain specificity in applying our techniques.
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Appendix A

Relationship Between max nbors and

Thresholding

In providing an example scenario applying max nbors and thresholding in Section 3.2.1,

we acknowledged that there is a relationship between these two methods, in that applying

a particular max nbors value to a given scenario will be equivalent to applying some

threshold for the same scenario, and vice versa. We now examine whether or not we could

use such a relationship on a more general basis.

In conducting the simulations outlined in Section 3.3.1, we also kept track of (a) the

size of the generated advisor network, representing the max nbors value that would have

generated the same results; and (b) the minimum trust value of the advisors in the network,

representing the (maximum) threshold that would have generated the given results. We are

primarily concerned with the former with respect to cases where thresholding is applied,

and the latter for instances where max nbors was used.

In Figure A.1a, we indicate, on the y-axis, the average network size that is produced

(i.e. the equivalent max nbors parameter) when different threshold parameters are used

(x-axis), for three different percentages of lying advisors. As expected, we see that as

the applied threshold increases, the equivalent max nbors value decreases. However, the

slopes of the graphs (each representing a particular percentage of lying advisors) are not

consistent, and in each case the bulk of the decrease happens approximately between the
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threshold values of 0.25 and 0.8 (that is, the graphs are fairly flat outside of this range).

We also see, in comparing the three percentages of lying advisors, that the size of the

network will “shrink” more quickly for the 90% lying advisor scenario – that is, the network

will drop to a size of 10 for a threshold of 0.5, whereas a threshold of 0.7 is required to get

a similar size for the 30% and 60% lying advisor cases.

Finally, that when applying a threshold of 0.55 – which we indicated earlier was the best-

performing of the tested thresholds for the 30% and 60% cases – the equivalent max nbors

values are approximately 49 and 30 respectively. While the latter is consistent with the

max nbors value that performed best for those two cases (30), the former is significantly

different, indicating that we cannot blindly “convert” betweenmax nbors and thresholding,

and then expect the results to be equivalent.

In Figure A.1b, we use the y-axis to indicate the average minimum trustworthiness

value, i.e. the equivalent threshold, of the advisors accepted into a network determined

using max nbors (the max nbors parameter being indicated by the x-axis). Once again,

as expected, as the max nbors value is increased, the equivalent threshold of the resulting

network decrease. But we also see once again that the slope is not consistent for any single

graph (i.e. a single percentage of lying advisors), and that the slopes of these graphs differ

from each other as well.

Moreover, in observing the results for a max nbors value of 30, the “best case” for

the 30% and 60% lying advisors cases, we once again see that the resulting equivalent

thresholds are not consistent with the “best case” threshold found for those scenarios,

0.55.

These results suggest to us that max nbors and thresholding should not be considered

interchangeable, particularly if the percentage of dishonest advisors is subject to change.
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(a) Equivalent max nbors values for various thresholding scenarios

(b) Equivalent threshold values for various cases where max nbors was used

Figure A.1: Mean equivalent values for the two proposed network-limiting methods
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