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Abstract 

This thesis presents a new architecture for the reliable implementation of the symmetric-key 

algorithm Advanced Encryption Standard (AES) in Field Programmable Gate Arrays (FPGAs). Since 

FPGAs are prone to soft errors caused by radiation, and AES is highly sensitive to errors, reliable 

architectures are of significant concern. Energetic particles hitting a device can flip bits in FPGA 

SRAM cells controlling all aspects of the implementation. Unlike previous research, heterogeneous 

error detection techniques based on properties of the circuit and functionality are used to provide 

adequate reliability at the lowest possible cost. The use of dual ported block memory for SubBytes, 

duplication for the control circuitry, and a new enhanced parity technique for MixColumns is 

proposed. Previous parity techniques cover single errors in datapath registers, however, soft errors 

can occur in the control circuitry as well as in SRAM cells forming the combinational logic and 

routing. In this research, propagation of single errors is investigated in the routed netlist. Weaknesses 

of the previous parity techniques are identified. Architectural redesign at the register-transfer level is 

introduced to resolve undetected single errors in both the routing and the combinational logic. 

Reliability of the AES implementation is not only a critical issue in large scale FPGA-based 

systems but also at both higher altitudes and in space applications where there are a larger number of 

energetic particles. Thus, this research is important for providing efficient soft error resistant design 

in many current and future secure applications. 
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  1 

Chapter 1 

Introduction 

Modern electronic systems such as computers, network routers, cell phones, and smart cards 

communicate, store, access, or modify information. Almost any system that deals with information 

has security needs provided by cryptographic algorithms, in some way. In general, security 

requirements are categorized into authentication, data confidentiality, data integrity, non-repudiation, 

and access control. It has been observed that the cost of insecurity in electronic systems can be very 

high, and therefore security is an important issue. For instance, a security survey by the Computer 

Security Institute (CSI) and Federal Bureau of Investigation (FBI) revealed that just 223 organizations 

sampled from various industry sectors had lost hundreds of millions of dollars due to computer 

related security issues [13]. 

FPGAs have become popular platforms for implementing electronic solutions including security 

related applications that use cryptographic algorithms. Compared to Application Specific Integrated 

Circuits (ASICs), FPGAs provide a shorter time to market, less expensive design process, higher 

level of flexibility for debugging, and even support in field upgrading. Additionally, state of the art 

FPGAs comprise building blocks such as microprocessors, block memories, and logic resources. 

FPGAs attempt to fill the gap between hardware and software through achieving potentially higher 

performance than software, while providing a higher level of flexibility than hardware. For instance, 

high-density SRAM-based FPGAs can be an attractive platform for implementing cryptographic 
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algorithms, since standards change often and some applications, such as satellites, may have low 

volume or benefit from in field upgrade. 

Despite all the benefits of SRAM-based FPGAs mentioned above, an important concern is their 

vulnerability to faults caused by radiation. This vulnerability of FPGAs is due to the high density of 

SRAM cells that control all aspects of the implementation. Energetic particles hitting an FPGA can 

cause faults in the device; these faults can affect multiplexers, interconnections, buffers, LUTs, 

control bits, and flip-flops [12].  For example, researchers in the Rosetta experiments [1] reported the 

measurements of approximately 295 and 290 failure in time per million bits of configuration cells in 

0.15 mµ  and 0.13 mµ technologies, respectively. They also reported 265 and 530 failure in time per 

million bits of block memory cells. Since these SRAM cells control the FPGA functionality this study 

of errors caused by radiation is very important. In the Rosetta experiments, the chips were placed in a 

radiation chamber in order to measure the failures from exposure to real particles. This method of 

measuring failures in time with a radiation chamber is normally extremely expensive. The likelihood 

of these errors increases at both higher altitudes and in space applications where there is larger 

number of energetic particles emanating from the sun and other galaxies. Hence resistant design 

against errors caused by radiation in satellite and space applications is an important area of study. 

As technology advances, dimensions decrease, supply voltages and capacitances lower, and clock 

frequencies increase. Technology scaling increases the likelihood of errors caused by radiation in 

semiconductor devices. Density of components increases with minimizing dimensions as technology 

advances. In a system, denser circuitry results in higher number of sensitive nodes in the same area 

compared to older technologies. Since the clock frequencies will continue to increase the likelihood 

that a momentary glitch will be clocked as valid data increases and this error is then propagated 

through the logic path. Consequently, these technology trends conspire to increase semiconductor 

devices susceptibility to radiation. Thus, designing for error resistance is important not only for space 

but for other applications as well. 

Reliability becomes a critical issue especially in large scale systems using multiple FPGAs, since 

the failure in time of a system increases linearly with each additional FPGA. For instance, in 

applications such as banking or ehealth, numerous FPGAs as high performance servers can be used to 

provide security services such as confidentiality or authentication. Additionally, reliability is an 

important issue due to error sensitivity of AES. For example a single bit flip in the early rounds of 
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AES encryption is expected to in 50% erroneous bits in the output. Therefore, designing a highly 

reliable cipher in an FPGA is very important. 

The main focus of this research is on the reliability issues of the symmetric-key algorithm, AES, 

implemented on an FPGA. Traditionally, there have been expensive techniques in terms of hardware 

resources (e.g., triple modular redundancy uses more than 3 times as many hardware resources as the 

original design implementation) that provide error detection and correction to increase the reliability 

of a system. On the other hand, there have been other less expensive techniques (e.g., a parity 

technique providing error detection) but they have not provided reliability for all elements in a design 

such as one implemented on an FPGA. Hence there is a need to provide adequate reliability at the 

lowest possible cost. One of the main goals in this research is to enhance the reliability of a low cost 

parity scheme in order to improve the error coverage. Weaknesses of a general parity technique on the 

FPGA are researched. Given that current FPGAs are very dense (e.g., Virtex-II Pro FPGA has 

34,292,768 SRAM cells [2]), and that the mapping details of the placed and routed FPGA design are 

proprietary, analyzing the effect of faults on an implementation is very difficult. In order to tackle this 

obstacle, this research exploits the high regularity in the FPGA (e.g., the same basic building block 

containing combinational and sequential elements is repeated throughout FPGA). 

The pin fault model (faults are modeled as occurring on input and output pins of FPGA 

components e.g. look up tables, block memory, etc) is used for modeling and analysis of a wrong 

value in an SRAM cell due to radiation. Then a small portion of the AES is tested by simulating 

single errors (through flipping 1 bit at a time in the configuration file) to verify this model. Since the 

FPGA structure is regular, the result of this verification for this simple yet sufficiently accurate model 

is expanded for the whole device.  

Parity techniques cover single errors in datapath registers, however, errors due to radiation can 

occur in the control circuitry as well as in SRAM cells forming the combinational logic and routing of 

a design implemented on FPGAs. Unlike previous research, propagation of single errors is 

investigated in the AES netlist after placement and routing. In combinational logic or routing, there 

are 2 situations when an error can be undetected. First, if a single error potentially affects an even 

number of data bits. Second, if both data and parity bit are affected by a single error. In these cases, 

LUTs are designed manually in the netlist and extra flip-flops are used at the register-transfer level to 

resolve errors being undetected in combinational logic and routing of FPGA, respectively. 
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There are some parts in the AES algorithm that can benefit from elements available in state of the 

art FPGAs to provide error detection. Therefore, the parity scheme is not used for all transformations 

in AES. For instance, unlike previous research, a dual ported block memory is used in SubBytes of 

AES to provide error detection. Additionally, duplication is used for error detection within the design 

of the control circuitry. By utilizing very few LUTs the overhead of the control circuitry is low. 

An error in an FPGA can significantly modify the functionality of a design. Therefore, if these 

errors are not removed by reconfiguration, the dependability of a correction technique is questionable. 

In order to correct errors, self reconfiguration is demonstrated in this research. In case of an error 

occurrence, the AES module interrupts the integrated processor on the FPGA for a reconfiguration. 

The contributions of this research include items as follows. 

� Errors caused by radiation in SRAM-based FPGA are modeled by using the pin fault 

model. Then this simple and accurate enough modeling is verified by simulating errors in 

the configuration file. 

� Radiation faults are simulated by flipping bits of interest in the configuration file that is 

downloaded on the FPGA. The desired net is removed in the placed and routed netlist to 

generate the modified configuration file. Then the modified and original configuration files 

are compared in software written in C++. 

� The weaknesses of the parity scheme in error detection are found through a small design 

implemented on FPGA. The effects of a fault propagating to output, while simulating 

errors by flipping bits in the configuration file, are observed.  

� The error coverage of the parity scheme is expanded from the datapath flip-flops to the 

control circuitry, logic blocks, and routing. This improvement is done by mitigating the 

weaknesses in the parity scheme at the register-transfer level. 

� The insufficiency of known error correction techniques such as the triple modular 

redundancy and Hamming code in FPGAs is analyzed and self reconfiguration is suggested 

instead. 

� AES with the enhanced parity scheme is designed and implemented on the FPGA as an IP 

core. Interfacing of the master IP core capable of interrupting the PowerPC 405 processor 

is implemented. 
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1.1 Thesis Organization 

The outline of this thesis is as follows. In Chapter 2, background on radiation effects causing faults 

in semiconductor devices is presented. The sources of radiation effects and their mechanisms causing 

errors in DRAM and SRAM cells are discussed. Definition and comparisons of various faults 

including soft errors in a device are provided. Soft errors are dynamic radiation-induced faults which 

generally cause a storage bit to change its value. Methods of estimating errors caused by radiation in a 

device are described. The relationship between technology trends and errors caused by radiation is 

also presented. 

In Chapter 3, soft error mitigation techniques at different levels from hardware to software are 

presented. Peculiar effects of soft errors in SRAM-based FPGAs are discussed and also compared to 

effects in ASICs. 

In Chapter 4, general security requirements of a system such as authentication, data confidentiality, 

data integrity, and non-repudiation are briefly described. Then the primitives to provide these security 

needs (i.e. symmetric-key algorithms, public-key algorithms, and hash functions) are presented. 

Emphasis is placed on the standard symmetric-key algorithm, AES, which is the focus in this 

research. National Institute of Standards and Technology (NIST)-recommended block cipher modes 

are also covered briefly. Error propagation within the AES algorithm (due to confusion and diffusion 

properties) and error propagation in various cipher modes of operation are discussed. Different 

architectures previously used to implement AES are presented. 

In Chapter 5, the proposed AES with soft error detection is introduced. The proposed error 

detection technique uses mathematical properties of AES and available hardware resources on FPGA 

to detect errors in SubBytes and the control circuitry implementations. Enhancements to the parity 

scheme (used for error detection in MixColumns and AddRoundKey) to increase its error coverage are 

also proposed in this research. In order to increase the error coverage of the parity technique, the 

weaknesses of it on FPGA are found and mitigated in the combinational logic and routing.  

In Chapter 6, experimental results and comparisons are discussed. Chapter 7 presents the 

conclusion and future work. The thesis also includes 8 appendices. Appendix A provides a glossary of 

acronyms. In Appendix B, different aspects of design and implementation of the AES module as a 

system on chip on FPGA are covered. This system has the capability to self reconfigure in case of an 

error through the host PC. Communication and synchronization of the proposed AES module, the 
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PowerPC 405 (integrated) processor on the FPGA, and the host PC are described. Device drivers that 

provide interrupt handling of the PowerPC 405 processor and the host PC are presented. Appendix C 

illustrates the state machines of the control circuitry in the proposed AES. In Appendix D, the device 

driver code for FPGA reconfiguration is presented. Appendix E shows the processor local bus 

interface. S-box of AES and pseudo code for key expansion are provided in Appendices F and G, 

respectively. In Appendix H, routed netlist snapshots from FPGA Editor are provided. 
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Chapter 2 

Radiation Effects on Devices 

This chapter provides an introduction to radiation effects in semiconductor devices. Radiation 

sources and their effects are briefly presented. Specific mechanisms causing errors through radiation 

effects in storage elements including DRAM and SRAM are discussed. A comparison of radiation 

faults, faults injected by an attacker in cryptographic algorithms such as AES (the focus of the 

research), and faults caused in manufacturing is presented. Methods of estimating soft errors, which 

are caused by radiation, in a device are described. The relationship between technology trends and 

soft errors is also presented at the end of this chapter. Before proceeding to details, some 

terminologies used in this thesis are described for clarification.  

2.1 Radiation Sources and Soft Error Mechanisms 

Faults in a device do not necessarily cause errors in output results. For instance, in an FPGA a fault 

that happens in an unused resource does not cause an error at the output. Error mitigation techniques 

do not have to necessarily provide error correction. On the other hand, tolerance to error includes 

correction of error. 

Energetic particles hitting an electronic device cause disturbances which typically are referred to as 

single event effects. Researchers have discovered various sources causing these effects either directly 

or indirectly through nuclear reactions between the particles and other materials in the struck device. 
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In addition to short-term radiation effects, other effects that are the result of cumulative long-term 

ionizing damage in a device are known as total ionizing dose effects. These effects encompass those 

that appear from long-term absorption of radiation over time. On the other hand, short-term effects 

are caused by the passage of a single ionizing particle through a device. Total ionizing dose effects 

can cause devices to suffer threshold shifts, increased device leakage and power consumption, timing 

changes, and etc [3]. Fabrication process-based techniques such as epitaxial CMOS process and 

silicon-on-insulator can reduce total ionizing dose effects [4]. Most solutions to total ionizing dose 

effects are fabrication process-based techniques or replacement of parts. The main focus of this 

research is on the short-term upsets caused by radiation. These short-term effects are provided later in 

this chapter. 

Radiation effects have become an issue due to technology scaling. One of the first manifestations 

of radiation effects in literature were found in the process toward higher levels of integration in 

memory circuits at Intel [5, 6]. Specifically, researchers at Intel observed significant error rate 

increase in DRAM as integration density increased to 16kb and 64kb in the late 1970s. As shown in 

Figure 1 (SER refers to soft error rate), DRAM single bit error rate due to radiation has decreased by 

a factor of 4 to 5 per generation since then by mitigation techniques discussed in Chapter 3. However, 

due to increased demands for memory density (memory size per system being a microprocessor with 

embedded memories) the overall system error rate shown in Figure 1 caused by radiation has 

remained approximately the same. For instance, the size of the main memory of microprocessors has 

increased from 1kb in the 1970s to beyond 1Gb. Thus, there is significantly larger number of memory 

cells that can potentially cause a system failure in a modern microprocessor. 
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Figure 1 DRAM error soft error rate caused by radiation [7] 

 

Compared to DRAM, early SRAM was more robust to single event effects. In recent technology 

(less than 0.25 mµ ), SRAM bit error rate has not increased. However, exponential growth in the 

amount of SRAM for instance in microprocessors and digital signal processors has resulted in the 

system error rate to increase with each generation. This trend is of great concern to manufacturers 

because SRAM constitutes a large part of all advanced Integrated Circuits (ICs) today. 

 A particle can pass through a semiconductor material, free electron-hole pairs along its path, and 

deposit energy directly. In addition to that, a particle can lose energy through indirect mechanisms by 

interacting with the struck material. Since radiation effects were discovered in semiconductor devices, 

3 main sources described below have been found that are responsible for single event effects at 

terrestrial levels [7]. 

� One source is alpha particles that can be emitted by small traces of radioactive impurities, 

such as uranium and thorium, in packaging materials. The extent of radiation depends on 

the quality and purification grade of the materials. Another source of alpha particles is 

solder bumps especially those that are near areas sensitive to radiation, for instance, SRAM 

and DRAM cells on a chip.  

� Another source of single event effects is particles generated when ever-present cosmic rays 

enter earth’s atmosphere. For instance, high energy neutrons are one of these predominant 

particles. It should be noted that disturbances caused by these particles are more significant 
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in higher altitudes. High energy neutrons striking a device can cause displacement in the 

silicon lattice. 

� Interactions of cosmic rays with materials on the struck device can also cause single event 

effects indirectly; an example is interaction of low energy neutrons in cosmic rays and 

boron. Boron is a dopant used in silicon devices for the formation of p-type regions. Boron 

is also in borophosphosilicate glass (BPSG) used in insulator layers of a device in older 

technologies (e.g., 0.25 and 0.18mµ SRAM cells fabricated with BPSG). 

Single event effects can manifest themselves in various ways in an implementation. They might 

change the logic state, cause a transient disruption, or some types might even lead up to permanent 

destructive failures in a device. In general, if the damage is unrecoverable in a device it is considered 

as a hard error. Depending on their damage, single event effects are classified as follows [8][9].  

� A single event latch-up occurs when current forces through the substrate; this might 

destroy the device. 

� A single event gate rupture happens when there is a conducting path in the gate oxide; this 

destroys the gate control structure. 

� A Single Event Functional Interrupt (SEFI) triggers an operation of the support circuitry 

and stops the normal operation of the device. The support circuitry in FPGAs provides the 

configuration capability, power on, reset, JTAG functionality and etc. For example, an 

SEFI that affects the power-on-reset circuitry can cause the current design on the FPGA to 

be lost in an attempt by the power-on-reset circuitry triggering reconfiguration [10]. 

� A Single Event Transient (SET) occurs when the charge collected generates voltage/current 

transitions which are commonly known as glitches. 

� A Single Event Upset (SEU) flips the value of a single storage element or memory cell. For 

example, this could be a Look Up Table (LUT) element, D flip flop, block memory cell, or 

configuration memory cell affected by an SEU. Hence, SEUs are an important concern in 

SRAM-based FPGAs. 

� A Multiple Bit Upset (MBU) causes more than one adjacent bit to flip depending on its 

strike angle. 
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Soft errors are recoverable errors. It should be noted that the likelihood of SEFIs and MBUs is 

extremely low. Therefore, the main concerns in soft errors are SEUs and SETs. It should be noted that 

MBUs are important in differential fault attacks discussed in Section 2.2.2. 

The magnitude of the disturbance a particle causes depends on its Linear Energy Transfer (LET) 

that is defined as deposited energy per unit length. The unit of LET is typically 2 /MeVcm mg, since 

energy per unit distance length ( /MeV cm) is normalized by the density of the material struck 

( 3/mg cm ). For instance, in silicon, an LET of 97 2 /MeVcm mg corresponds to a charge 

deposition of 1 /pC mµ [11]. Typically, more massive and energetic particles in denser materials 

have higher LET [7]. 

In general, charge collection happens within a micron or 2 of the junction (boundary interface 

where the 2 regions of the semiconductor meet). The reverse-biased junction (p-type and n-type 

regions are connected to negative and positive voltages, respectively) is usually the most sensitive 

part of a circuit in charge collection, in particular if the junction is floating or weakly driven [7]. The 

high electric field in the reverse-biased junction depletion region (an insulating region with no free 

charge carriers) assists collection of charge. Strikes near a depletion region can also result in efficient 

charge collection. 

At the beginning of an ionizing radiation event, a track of electron-hole pairs in the form of 

cylinder is shaped Figure 2(a). This cylindrical track with a submicron radius has high carrier 

concentration. Then the electric field rapidly collects the carriers causing a glitch Figure 2(b) and 

forms the field funnel [7]. This funneling effect, shown in Figure 2(b), increases charge collection at 

the struck node by extending the high electric field at the junction deep towards the substrate. This 

part of charge collection phase completes within tens of picoseconds. The following phase in charge 

collection is diffusion in which electrons diffuse into the depletion region. Diffusion takes longer in 

the range of hundreds of nanoseconds. It ends when all excess carries are collected, recombined, or 

diffused away from the junction. 
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Figure 2 Charge collection in a reverse-biased junction: (a) formation of electron-hole pairs, (b) 

funnel shape field extending deep into substrate, (c) diffusion process [7] 

 
In order to further clarify errors by soft errors, the mechanisms causing errors in DRAM and 

SRAM cells are briefly presented. The DRAM cell illustrated in Figure 3 has an access transistor and 

a storage capacitor. There are 2 main parameters related to DRAM errors when an ion strikes a cell. 

The first parameter is the critical charge (denoted critQ  is defined as the minimum amount of charge 

collected at a sensitive node that can cause an error) that is closely connected to the concept of noise 

margin. The second parameter is the critical time window when the disturbance can get stored in the 

DRAM cell. Due to dynamics of the DRAM cell, timing of the strike is also an important factor; 

meaning the strike has to happen in the critical time window. 

As shown in Figure 3, one of the most sensitive parts in the DRAM cell is the storage capacitor and 

the source of the access transistor. Ion strikes at these 2 nodes directly affect the stored charge and 

consequently the information stored in the DRAM cell.  

Errors can be caused by ion strikes at bit lines as well. This happens when bit lines are in a floating 

voltage state, for instance, during a read operation. Therefore, an ion strike must happen in this 

critical time window.  The disturbance caused at bit lines can reduce the sensing signal due to charge 

imbalance either prior to or during the sensing operation (when the sense amplifier amplifies the 

small differential voltage between the bit lines to the full swing). 

Another mechanism (named the combined cell-bit line failure mode [12]) that can cause an error in 

the DRAM cell is the combination of the 2 mechanisms discussed above. In the combined cell-bit line 
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failure mode, either of the mechanism above does not individually exceed critQ . However, when 

combined together, they can cause an error. 

 

 

Figure 3 DRAM cell: (a) circuit, (b) layout [11] 

 

The error mechanism in the SRAM cell is quite different from the DRAM cell due to the feedback 

loop formed by the cross-coupled inverter pairs in the SRAM cell circuit. A typical SRAM cell with 6 

transistors is shown in Figure 4 where the positive feedback loop is formed by cross-coupled inverters 

1Q - 3Q  and 2Q - 4Q  [13].  

 

 

Figure 4 Six transistor SRAM cell [13] 
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Typically, the most sensitive part in the SRAM sell is the reverse-biased drain junction of a 

transistor when it is off [11]. Charge collected by the junction lead to a transient current in the struck 

transistor. This triggers a response in the SRAM cell that is similar to a write pulse and can cause a bit 

flip in the SRAM cell. 

For instance, in the 6 transistor SRAM cell shown in Figure 4, the node storing a ‘1’ is the most 

sensitive node to errors. The reason behind this is the low critQ  for a 1 0→  transition. A 0 1→  

transition needs critQ  that is about 22 times larger than that of a 1 0→  transition [13]. The state of 

the storage node storing a ‘1’ is supported by a relatively weak PMOS pull-up transistor. 

Consequently, critQ  of an SRAM cell is defined by critQ  of a node storing a ‘1’. 

2.2 Comparison of Soft Errors to Other Faults 

In this section, we discuss the causes of other faults found in implementations, including faults 

during the manufacturing of a device and faults injected during a cryptographic attack. These are all 

different in nature; therefore, they need relevant mitigation techniques. The basic differences among 

these different faults are briefly described as follows.  

2.2.1 Manufacturing Faults 

Manufacturing faults are usually due to deformation of IC elements. There are global faults in 

manufacturing processes that affect large areas of fabricated silicon wafers in a uniform manner. On 

the other hand, there are spot faults affecting a very small area of fabricated silicon area which are 

much more difficult to detect. Spot faults are in general due to an extra or missing material in one of 

the layers (i.e. conductive, semiconductive, and insulating layers). Spot faults include: shorts due to 

extra conducting/semiconducting material or missing insulating material, breaks due to missing 

conducting/semiconducting material or extra insulating materials, new parasitic elements, and 

elements with degraded performance [14].  

Manufacturing faults can be intermittent due to unstable or marginal hardware. As opposed to 

permanent faults that always exist, intermittent faults do not happen all the time. Their occurrences 

(activation and deactivation) depend on environmental conditions. Intermittent faults happen 

repeatedly at the same locations, while soft errors are random in space. Additionally, when the 

environmental conditions are encouraging, intermittent faults tend to happen in bursts, while soft 
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errors are random in time. Another key difference is that replacement or repair can resolve 

intermittent faults, but this is not the case for soft errors [15]. 

Fault models typically represent consequences of faults at the abstracted logic level. For instance, 

the stuck-at model indicates a wire is a ‘0’ (connected to ground) or ‘1’ (connected to supply voltage). 

Bridging faults between outputs and can be modeled by logic gates. 

One major group of manufacturing faults is opens and shorts described by the stuck-at modeling. 

For instance, this can happen in a pass transistor as part of the programmable interconnect point in 

routing of FPGA. This pass transistor is controlled by an SRAM cell, shown in Figure 5. A short or 

open causes the pass transistor to be permanently closed or open, regardless of the value of the 

SRAM cell controlling it [16]. However, when an SEU happens in the same scenario, it flips the 

value of the SRAM cell controlling the pass transistor. The case of an SEU is similar to loading the 

FPGA with a different configuration file. The configuration file (also known as programming or 

bitstream file) of the SRAM-based FPGA defines an implementation (basically, the values stored in 

LUTs and block memory, the interconnection between resources, and the modes of the resources e.g., 

I/O standards, I/O drive strengths and LUT modes) [17]. 

 

 

Figure 5 Faults: (a) soft error causing bit flip (b) manufacturing open wire  

 
Manufacturing fault detection techniques usually include loading test configuration files and 

applying test vectors to detect faults. Test vectors can be generated externally or internally as in built-

in self test. Since SEUs do not cause configuration-independent affects compared to shorts and opens 

and can be fixed by reconfiguration, the above offline method for detecting manufacturing fault does 

not apply to SEUs. 
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2.2.2 Fault Attacks 

There are faults that are injected by an attacker to obtain some secret information. The goal in fault 

attacks is to replace the valid results with invalid results (causing errors in results) to perform the 

cryptanalysis. There are various ways to cause an error during a cryptographic operation, e.g., 

variations in supply voltage so the processor misinterprets or skips instructions [18], variations in the 

external clock, and lasers. 

Fault injection can be with or without contact [19]. In a fault injection with contact, there is direct 

physical contact with the chip (e.g., at a pin) to cause voltage or current changes.  For instance, in 

spike attacks the supply voltage is set to violate the operating voltage range tolerated by the chip. This 

voltage variation can be exploited to produce a wrong result that might be useful for fault analysis to 

get some secret information from the cryptosystem.  An attacker needs to find specific parameters for 

a spike (in terms of timing and shape of a spike) to produce wrong results that could be used to 

perform the cryptanalysis successfully. 

Another approach to inject errors within the cipher is to manipulate the clock signal so that it 

violates its operating characteristics [20]. For instance, the operating clock voltage or the rise or fall 

time can be set so that it will not fit within the proper range. However, generating a clock signal that 

is deviated in such a way that causes the desirable wrong ciphertext might be a challenge, since 

changing the clock signal can potentially cause the chip to lose its functionality. 

In contrast to fault injection with contact, techniques such as heavy ion radiation and 

electromagnetic interference can be used in a fault injection without contact. For instance, light can be 

used to inject errors in non-volatile memory cells. It was shown that camera flash light can be used to 

target the memory of a microcontroller to set or reset an individual bit at a specified time [21]. 

Researchers in [22] showed that a non-volatile memory in a microcontroller can be erased by a UV-C 

light with the wavelength of 254nm. They demonstrated an attack on a software AES implementation. 

It was shown that if a single byte of the S-box is changed and key expansion is not affected, 2500 

pairs of correct and faulty encrypted inputs are sufficient to recover the key with a probability of 90% 

on an 8-bit microcontroller [22]. 

Electromagnetic emissions can also be used to induce current and target sensitive spots of the chip 

(e.g., memory) [23]. This approach is not invasive in the sense that one does not need to open the 

chip. 
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The accuracy of fault injections, in order to extract secret information, is an important factor in a 

successful cryptanalysis. For instance, the level of control over location and timing of fault injections 

is important for fault analysis. A technique such as a spike attack is random in terms of the location of 

faults while an optical attack provides accurate targeting of location [20]. Another important aspect is 

the number of faults injected.  Depending on the fault attack, a single fault or multiple faults may be 

needed for cryptanalysis. 

The first theoretical model for breaking cryptosystems by exploiting random hardware faults was 

introduced in [24]. In this research, it was shown that fault attacks were effective in the RSA system 

and Rabin signatures. The attacks were also applied to the Fiat-Shamir and Schnorr identification 

schemes. Fault attacks depend on how a cryptosystem is implemented. For instance, the fault attack in 

[24] on RSA is effective on the Chinese remainder based implementation. The attack in [24] is briefly 

summarized as follows. Based on the Chinese remainder the RSA signature E  can be computed as 

follows. 

 

 1 2 modE aE bE N= +  (1) 

where N is the RSA modulus (N=p*q; p and q are prime), 1 modprivate keyE Message p=  and 

2 modprivate keyE Message q= . 

Assuming 'E  is a faulty signature and 2 2'E E=  (meaning no faults during computation of 2E ) it 

is observed that 

 

 
1 2 1 2

1 1

' ( ' ' )

( ' )

E E aE bE aE bE

a E E

− = + − +

= −
 (2) 

If 1 1( ' )E E−  is not divisible by p , then N  is factored as shown in Equation 3 and the 

cryptosystem is compromised. 

 

 gcd( ', )q E E N= −  (3) 
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There are also reported fault attacks on symmetric-key algorithms. Differential Fault Analysis 

(DFA) was proposed by researchers as an attack against DES in [25]. The full DES key was extracted 

by analysis of 50 to 200 ciphertexts which were generated from unknown but related plaintexts [25]. 

Additionally, the same attack (with the same number of given ciphertexts) applied on TDEA resulted 

in a successful cryptanalysis. 

Since AES does not have the Feistel structure as in DES, it is not possible to apply the fault attack 

introduced in [25] on AES. DFA against the AES was subsequently proposed in [20, 26-28]. 

Intermediate states are changed by faults injected in these attacks. There are also DFA against the key 

expansion of AES reported in [29, 30] 

As shown in Figure 6, an attack based on injecting single faults in the intermediate result of the 

initial AddRoundKey transformation was introduced in [20]. The plaintext is set to 0 (every bit is a 

‘0’) and it is assumed that the attacker knows the correct ciphertext and his goal is finding the key. It 

is observed that 

 

 0initial AddRoundKey result initial Round Key= +  (4) 

Or equivalently: 

 initial AddRoundKey result initial Round Key=  (5) 

 

Then the attacker injects a ‘0’ at every bit location of the initial AddRoundKey result. If the 

round key bit is a ‘0’ then the ciphertext is correct. On the other hand, if the round key bit is a ‘1’ then 

the ciphertext is wrong. Since it is assumed the attacker knows the correct ciphertext he is able to 

distinguish a wrong ciphertext from the right ciphertext. This process is repeated 128 times for all the 

key bits and the complete key is found in this cryptanalysis.  
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Figure 6 AES fault injection [20] 

 

The assumption of the attacker being able to attack a specific single bit within the first round key is 

strong in the sense that it might not be practically feasible.  This is where probabilistic fault analysis 

comes into play. In this case, the probability of an attack being successful or unsuccessful is also 

considered.  

Another technique proposed in [20] is based on using the timing attack on AES (this was suggested 

by Koeune and Quisquater [31]) in a fault based cryptanalysis. Approximately 16 faulty ciphertexts 

were claimed to be sufficient to extract 1 byte of the key. 

Researchers in [30] described 2 different attacks on AES by injecting faults. The first attack 

assumes a fault on only one bit of an intermediate result at the beginning of the final round. The 

location of a fault should be chosen. Fifty faulty ciphertexts were used to obtain the key completely. 

The second attack [30], which is more realistic, considers injecting faults in a whole byte. 

Researchers then performed differential fault analysis that resulted in obtaining the full 128-bit AES 

key with less than 250 faulty ciphertexts [30]. 

Researchers in [26] supposed that a single byte of the state after the ShiftRows of round 9 can be 

changed and the index of the faulty element of state is known. It is assumed the new value of the 

element of the state is unknown. The injected fault spreads over 4 bytes of the output state. A set of 

possible fault values for each faulty element of the output state is found. Possible fault values are 
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intersected for all the 4 faulty elements to reduce the number of required ciphertext for the 

cryptanalysis. Then possible values for 4 elements of the last round key are deduced. Four bytes of 

the 10th round key is obtained by more ciphertexts [26].  

In fault attacks, faults are aimed at results (or registers). However, in the case of soft errors the 

perspective is broader in the sense that faults can affect registers, combinational logic and routing on 

a FPGA. Therefore, it is important that faults affecting parts other than registers be considered 

throughout the design as well. The occurrence of multiple faults is important in fault injection [32] 

since it is easier for an attacker to inject multiple faults (e.g. target a byte, than a single bit). On the 

other hand, in radiation faults the likelihood of single faults is exceedingly higher than multiple faults 

[33]. As opposed to fault injection mitigation techniques, the accumulation of faults is important in 

the case of SEUs. For instance, a strong method that detects and corrects errors is not sufficient, since 

the accumulation of faults over time will destroy the functionality of the method itself. 

In this research, the main goal of error detection is in terms of reliability. However, the proposed 

technique can be applied against cryptanalysis of AES in the circumstances that follow. Multiple 

errors are detected in the SubBytes transformation, as will be described in Section 5.1.1. Therefore, 

the proposed error detection technique may be used against faults attacks where multiple attacks are 

injected during SubBytes. For MixColumns and AddRoundKey transformations, detection of a single 

or an odd number of errors is provided, as described in Section 5.1.2, 5.1.3, 5.2.2, and 5.2.3. 

Therefore, in scenarios where the number of bits flipped in these two AES transformations is not 

always even, the proposed method may be used against fault attacks. For example, attacks such 

as [20] (a fault is injected after the initial AddRoundKey) or the first attack in [30] (a fault injected at 

the beginning of the final round) may be thwarted by the proposed thesis work. 

2.3 Estimating Soft Error Rates of a Device 

Estimating soft errors of a device is complex and estimations of different studies also vary. There 

are 3 known approaches for the soft error rate estimation: accelerated testing using particle beams, 

software simulation of circuit, and estimation by real particles. 

In accelerated testing [1][34], a device is subjected to particle beams generated by accelerators. For 

instance, researchers in [1] at the Los Alamos National Laboratory have used a linear accelerator that 

produces an 800MeV pulsed proton beam that strikes a water cooled tungsten target. This generates a 
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spectrum of neutrons whose energy distribution and intensity are precisely measured. The energy of 

this spectrum, which is similar to atmospherics spectrum, is in the range of 1MeV to 600MeV. There 

is also a neutron flight path (20m from the neutron production target) with an irradiation building 

where a device to be tested is placed in. The neutron beam is controlled by opening and closing a 

shutter. The angle of incidence is an important parameter in the estimation results of the soft error 

rate. The flux increase for higher than the sea level altitudes can be computed by assuming a 30% 

increase for every 1000ft rise in altitude (a commonly used rule to the measured flux versus altitude 

below 40000ft). It should be noted that predicting atmospheric neutron flux in accelerated testing 

using particle beams is not exact. This is shown in [35] through investigation of different studies on 

terrestrial neutron flux. If the particle beam experiments are intended to predict actual soft error rates, 

the results can be different by a factor of 10 since there is a wide variation in energy versus flux as 

reported by the various studies [1]. 

Another approach to estimate soft error rate is software circuit simulation to determine the critical 

charge a particular node or latch can handle before it changes state, causing a bit flip. Different 

models of critQ  have been proposed in [36][37-40]. Furthermore, the impact of process variation on 

critQ  is investigated in [41]. Models that have been reported generally agree on the qualitative 

definition of critQ ; however, they are different in quantitative description [41] . Each modeling of 

critQ  has its own limitations, for instance, the impact of a parameter might be underestimated or 

overestimated according to certain assumptions. 

Another method to estimate soft error rate is to subject devices to real atmospheric radiation. In 

order to provide sufficient data, a large number of devices go under test. An extensive test on FPGAs 

is conducted in the Rosetta experiment [1] at different altitudes. The experimental setup in [1], shown 

in Table 2.1, is costly in terms of time and hardware to get large amount of data. 
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Table 2.1 FPGAs under test in Rosetta experiment [1] 

Node technology in nm Die Locations Altitude in feet # of devices Device hours 

San Jose 0 100 1060000 

New Mexico 5100 100 1670000 

White Mountain 12470 100 856800 
150 2V6000 

Mauna Kea 13200 100 353000 

San Jose 0 200 1191000 

New Mexico 5100 200 709000 130 2VP50 

White Mountain 12470 200 655000 

90 S31500 San Jose 0 500 256000 

90 V4LX25 San Jose 0 100 20000 

 

The Failure In Time (FIT, where 1 FIT is 1 bit flip in billion hours of a device) values of 

configuration cells at the sea level in the Rosetta experiments are obtained for different technologies 

as follows: 295 FIT/Mb for the 0.15 mµ  node, 290 FIT/Mb for the 0.13 mµ node. Furthermore, there 

are 265 FIT/Mb and 530 FIT/Mb for block memory cells in the Rosetta experiments.  

Soft errors increase as the altitude increases; therefore, applications suffer more severely in space 

than at terrestrial levels. Table 2.1 shows the mean time to error for a Virtex-II FPGA in a 

geosynchronous orbit in the case of SEUs in configuration memory, block memory, and power-on-

reset circuitry SEFI [9]. 

 

Table 2.2 Mean time to error of Virtex-II (device XQR2V6000) in a geosynchronous orbit [9] 

 Mean time to error 

SEU in configuration cells 1.8 hours 

SEU in block memory 11.8 hours 

Power-on-reset circuitry SEFI 221 years 



Chapter 2: Radiation Effects on Devices 
 

 23 

The FPGA architecture uses memory cells to control every programmable function and feature. 

Therefore, adding costly redundant circuitry to tackle soft errors can make the FPGA cost too high to 

be commercially viable. 

2.4 Technology Trends and Soft Errors 

As technology improves, dimensions decrease, supply voltages and capacitances lower, and 

frequencies increase. Density of components increases with minimizing dimensions as technology 

advances. Consequently, denser circuitry results in higher number of sensitive nodes in the same area 

compared to older technologies. Furthermore, smaller layout dimensions reduce capacitance of a 

node; this reduces critQ   which is related to noise margin as well. Thus, a smaller charge deposited 

can upset a node. critQ  is further decreased by lowering supply in advanced technologies. Since the 

clock frequencies continue to increase as technology advances the likelihood that a momentary glitch 

(SET) is propagated through the logic path and clocked as valid data increases. Consequently, all 

these technology trends unfortunately conspire to increase semiconductor devices susceptibility to 

radiation. Thus, designing for soft error resistance is important not only for space but for other 

applications as well. 

DRAM cells were among the most vulnerable elements in earlier technologies in the late 1970s. 

Early DRAM cells stored a bit value in 2-dimensional p-n junctions. Those DRAM cells were highly 

sensitive to radiation due to large planar reverse-biased junctions. The more compact 3-dimentional 

design of DRAM cell with a much smaller charge collection at p-n junction significantly decreased 

the vulnerability of DRAM cells to radiation. This 3-dimenetional design even compensated other 

adversely contributing factors (e.g., shrinking supply voltages) such that the soft error rate decreased 

for next generations, overall. However, the system soft error rate remains approximately the same due 

to denser DRAMs in a system in recent generations. 

Compared to early DRAMs, early SRAMs were more robust against radiation mainly due to the 

feedback loop in their structure. However, in recent technologies, the SRAM cell area and therefore 

the junction area as well as the supply voltage has decreased. All these factors increase sensitivity to 

radiation. The SRAM bit soft error rate is saturated for technology nodes beyond 0.25mµ  [33] due to 

the saturation of VDD scaling, reductions in junction collection efficiency of highly doped p-n 

junctions, and the increased charge sharing between the neighboring nodes. However, the exponential 
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growth of SRAM density in state of the art processors has led the SRAM system (referring to a 

microprocessor with embedded memories) soft error rate to increase with each technology generation. 

 

 

Figure 7 SRAM system soft error rate increasing while bit soft error rate being about constant [33] 

 

If an SET (radiation-induced glitch) actually propagates to the input of a latch or flip-flop and 

meets the timing requirements (setup and hold times), the erroneous input will be latched and stored. 

In older technologies, an SET could not propagate because it usually could not produce a full output 

swing or was quickly attenuated because of large load capacitances and large propagation delays. In 

advanced technologies, where the propagation delay is reduced and the clock frequency is high, an 

SET can more easily traverse many logic gates, and the probability that it is latched increases. SET-

induced soft errors are not expected to become an issue until the technology reaches or goes beyond 

the 65nm node [7]. Once an SET can propagate easily, synchronous and especially asynchronous 

(without clock signal) circuits would be extremely sensitive to such events. In technology beyond 

90nm and at high operating clock frequencies, there is increased likelihood that a large fraction of 

observed soft errors will be related to SETs being stored [7]. 

An important bottleneck in recent technologies is the increase in the sub-threshold leakage power 

due to decrease in the threshold voltage (the threshold voltage is lowered to maintain enough gate 

overdrive and improve performance).  Lowering the threshold voltage causes the transistor sub-

threshold leakage current to increase exponentially. Therefore, the supply voltage is lowered to 

minimum level to reduce the sub-threshold leakage power. However, lowering the supply voltage 
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decreases critQ  and thus increases vulnerability to radiation. It is important to consider the power 

reduction benefit vs. reliability concerns when choosing the minimal supply voltage [13]. 

2.5 Summary 

The main goal of this chapter was to provide some background on radiation effects in 

semiconductor devices, known as single event effects. The sources of single event effects and their 

mechanisms causing errors in a DRAM and SRAM cells were discussed. The focus of this research is 

on soft errors including SEUs and SETs that are of great concern with respect to reliability.   

A comparison of radiation faults, faults injected by an attacker in cryptographic algorithms, and 

faults caused in manufacturing was presented. Methods of estimating soft errors that are accelerated 

testing using particle beams, software simulation of circuit, and estimation by real particles, in a 

device were described.  

The relationship between technology trends and soft errors was also presented. It was shown that 

the technology scaling (decreasing dimensions, supply voltages, and capacitances while increasing 

clock frequencies) increase the likelihood of soft errors in a system. 

In the next chapter, previous research on tackling soft errors at different levels is presented. In 

SRAM-based FPGAs, peculiar effects of soft errors are discussed and also compared to effects in 

ASICs.  
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Chapter 3  

Previous Research on Tackling Soft Errors 

 

Soft error mitigation techniques range from low level hardware all the way up to software 

techniques. In this chapter, different techniques at the fabrication process level, circuit and system 

level including error detection and correction codes, and also software mitigation methods used in 

microprocessors are presented. Peculiar effects of soft errors in SRAM-based FPGAs are discussed. 

Furthermore, insufficiencies of ASIC methods which deal with soft errors on FPGAs are pointed out.  

The first mitigation step would be to remove the sources causing soft errors that exist inside a 

device (refer to Section 2.1). These sources are related to the purity of materials used in the 

manufacturing process and packaging of a chip. For instance, in order to reduce alpha particle 

emissions, semiconductor manufacturers use extremely high purity materials to make sure they have 

acceptably low alpha emissions [7]. Another example is removing BPSG, which could cause soft 

errors indirectly, from virtually all advanced technologies. Figure 7 shows the reduction of soft error 

rate by elimination of BPSG in SRAM cells. Solders, mold, and underfill compounds with reduced 

emission rates also need to be chosen carefully. 

When all the internal sources of soft errors are eliminated as much as feasible, there are still 

external sources that cause considerable number of soft errors. For instance, a large portion of high 
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energy cosmic neutrons will always reach devices and cause soft errors, and thus high energy cosmic 

neutrons ultimately become the main concern in causing soft errors [33].  

Further mitigation techniques (other than removing radiation sources) can be roughly classified into 

3 categories. At the lowest level, that is fabrication process (or technology) level, mitigation 

techniques require fundamental changes to the underlying fabrication technology used to manufacture 

ICs. Circuit level techniques rely on changes in the circuit design and layout to reduce sensitivity to 

soft errors.  Eventually, any circuit or layout modification that increases critQ  while maintaining or 

reducing collQ  (collected charge) improves resistance against soft errors. At the highest level in 

hardware, system level techniques tackle soft errors by applying changes to the architecture of the 

system. Combining these techniques at different levels might provide the most efficient solution 

overall for a high-reliability application [7]. 

3.1 Fabrication Process Level Techniques to Tackle Soft Errors 

A fundamental mitigation method for soft errors is to reduce charge collection at sensitive nodes in 

devices [11]. Substrate structures or doping profiles that decrease the depth from which carriers can 

be collected can reduce the charge collected.  For instance, this can be accomplished in DRAMs and 

SRAMs by introducing extra doping layers to limit substrate charge collection [42]. In SRAMs, 

triple-well [43] and even quadruple-well structures [44] (these use multiple-well isolation) have been 

suggested to decrease sensitivity to soft errors. In multiple-well isolation, all strikes basically happen 

inside the well. Layers can also be used to provide an internal electric field that opposes collection of 

charge deposited in the substrate [45, 46] . Even using an epitaxial substrate instead of a bulk 

substrate reduces charge collection to some extent [11]. An epitaxial substrate consists of a heavily 

doped, low-resistance bulk substrate topped by a lightly doped, higher-resistance epitaxial layer [47]. 

The upper layer in is thin and extremely pure semiconductor that is chemically deposited in wafer 

using a process called epitaxial growth [48]. For instance, the radiation-tolerant Virtex-4QV FPGA 

technology incorporates a thin epitaxial layer in the wafer manufacturing process for single event 

latch-up immunity [49]. For each Virtex-4QV device type, the latch-up immunity at maximum CCV  

and operating temperature, subjected to a heavy ion fluence exceeding 1.107 2/particles cm , with 

LET exceeding 125 2 /MeVcm mg, is verified [49]. 
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In silicon devices, another effective technique used for reducing charge collection is the use of 

Silicon on Insulator (SOI) substrate shown in Figure 8 [50]. In this technology, the active device is 

fabricated in a thin silicon layer that is dielectrically isolated from the substrate. Therefore, the 

collection volume is reduced. The source and drain penetrate all the way to the buried isolation oxide 

in a typical thin-film SOI. Since the reverse-biased drain junction area is limited to the depletion 

region between the drain and the body of the transistor, this significantly reduces the area sensitive to 

SEUs. Due to the dielectric isolation in the SOI substrate, charge deposited in the silicon substrate 

underneath the buried isolation oxide cannot be collected at the drain. As opposed to the SOI 

substrate, the bulk silicon structure can collect charge from deep within the silicon substrate. 

 

 

Figure 8 Structure of thin-film NMOS SOI [51]  

 
It should be noted that bipolar capacitive coupling across the buried isolation oxide can lead to 

unexpected charge collection in SOI structures [52][53]. Charge deposited in the body region can 

trigger a bipolar mechanism (the parasitic lateral bipolar structure is inherent in all CMOS 

technologies [50]). This limits the SEU resistance of the SOI substrate [50, 51].  In order to reduce 

floating-body effects causing parasitic bipolar effects, careful body ties are used to maintain 

resistance against SEUs [50][54][55]. However, manufacturers have found even body-tied SOI 

substrates are not sufficiently resistant against SEUs for applications where very high upset limits are 

desired [52][56][57]. In some cases, fully depleted SOI transistors exhibit reduced floating-body 

effects. 

Techniques at the fabrication process level provide a limited path to mitigate soft errors. Due to the 

invasive nature of these mitigation methods, which require fundamental changes in the manufacturing 

process, these low level methods usually come at the expense of additional process complexity and 
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steps, increased yield loss, or substrate cost [7]. Consequently, methods to increase soft error 

resistance at higher levels have been an alternative path to the fabrication process level techniques. 

3.2 Circuit and System Level Techniques to Tackle S oft Errors 

As opposed to mitigation methods at the fabrication process level, circuit and system level soft 

error mitigation techniques can provide portability across different fabrication processes. In addition 

to that, these higher level techniques could reduce the gap that exists between the state of the art 

fabrication technology and soft error sensitivity.  

Before discussing mitigation techniques for various storage elements it is important to note that 

there should be proper choice of circuit types in a design to decrease its sensitivity to soft errors. 

Thus, elements that are known to be vulnerable to soft errors should be eliminated. For instance, 

compared with static CMOS circuitry, dynamic logic (clock signal is used to precharge the output in 

the precharge phase while the pull-down network can discharge the output in the evaluate phase [58]) 

due to its passive and highly charge-sensitive mode of operation is vulnerable to soft errors; therefore 

it should not be used [59]. 

DRAM cells used to be sensitive to soft errors when manufacturers used planar capacitor cells that 

stored the signal charge in 2D, large-area junctions, because these cells were very efficient at 

collecting radiation induced charge. This issue was later addressed by developing 3D capacitor 

designs that significantly increase critQ  while greatly reducing junction collection efficiency by 

eliminating the large storage junction in silicon. Charge collection decreases by decreasing the 

junction’s volume, whereas the cell capacitance remains relatively constant with scaling because it is 

dominated by the external 3D capacitor cell. 

One mitigation technique for SEUs in an SRAM cell is to increase the gate capacitance or 

interconnect capacitance of its storage nodes, since critQ  is proportional to nodeC  (node capacitance) 

and nodeV  (node voltage) as shown in Equation 6. As illustrated in Figure 9, parasitic capacitance 

between the interconnect metal layers (CA and CB) are used in [60] to add extra capacitance to the 

storage nodes to increase resistance against SEUs. 

 

 crit node nodeQ C V∝  (6) 
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Figure 9 Capacitors CA and CB added to SRAM cell mitigate SEUs [60] 

Researchers in [61] proposed an area efficient design shown in Figure 10 to add capacitance (CC ) 

in the SRAM cell. In this design, cross couple capacitance is fabricated by 2 local interconnects. This 

design provides 20% reduction in area compared to the conventional SRAM cell. 

 

 

Figure 10 Capacitance CC  added in SRAM cell [61] 

 
Vertical metal-insulator-metal capacitors are used by ST Microelectronics to add extra capacitance 

to storage nodes [62]. These capacitors are added in levels where there is no SRAM interconnect (the 

unused space above SRAM cells are used). Therefore, they do not change the SRAM cell and its area. 

However, there is an area penalty to route over SRAM. 

Another method to mitigate SEUs is to insert resistors in the feedback loop of an SRAM cell. This 

increases the RC time constant of the cell. The increased RC time constant potentially allows the cell 

to recover from an SEU. Researchers in [63] add 2 extra resistors 1R  and 2R , illustrated in Figure 
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11, to increase 1 1R C  and 2 2R C  time constants. As opposed to the mainstream six-transistor CMOS 

SRAM cell, shown in Figure 4, there are no direct connections between the input and output of the 

inverters shown in Figure 11. High-ohmic resistors 1R  and 2R  slow down the voltage transition on 

the input of inverters of the SRAM cell in Figure 11. For instance, if there is a current spike on node 

A , due to a high-energy particle hitting node A , it takes time for the disturbance to reach inverter 

1 3Q Q− . If this time is longer than the recovery time of node A  the SRAM cell will not be flipped 

by the high-energy particle strike. In conclusion, if the recovery time of the output of the inverter is 

shorter than the RC time constant of the cell a bit flip does not happen. 

 

 

Figure 11 Increased RC time constant by adding 1R  and 2R  in feedback loop of SRAM cell [63] 

 
Increasing the resistors in a feedback loop inevitably increases the write time of an SRAM cell. 

However, in some cases, the increased write time might not be significantly important and can be 

tolerated. For example, in FPGA SRAM cells are used mainly in the read mode and are usually 

written once during the FPGA configuration. In addition to the write time penalty, there is increased 

process complexity incurred by adding feedback resistors [11]. 

Another important method to mitigate SEUs is by using redundant transistors to build memory cells 

or latches. These designs are different from mainstream storage elements built without considering 

resistance against SEUs. Unlike the typical SRAM cell with 6 transistors, researchers in [64] 

proposed an SRAM cell, depicted in Figure 12, with 10 transistors. As opposed to the positive 

feedback of the mainstream SRAM cell with 6 transistors, the negative feedback of the design 

suggested in [64] prevents flipping of the SRAM cell when there is a glitch at a node due to a high-

energy particle strike. 
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Figure 12 Soft error robust SRAM cell using 10 transistors [64] 

 

One technique used at the circuit or system level to mitigate soft errors is based on time 

redundancy (also known as time multiplexing, temporal redundancy, and temporal parallelism) [4]. In 

this technique, data is sampled at different clock edges shifted relative to the global clock according 

to a clocking scheme to mitigate SETs. The effectiveness of the temporal parallelism scheme is based 

on the fact that the likelihood of 2 independent errors occurring in the same circuit path within a small 

period of time is extremely low. For instance, as is illustrated in Figure 13, time redundancy is used to 

detect errors due to glitches (SETs) in combinational logic or SEUs occurring in flip-flops [4]. 

 

 

Figure 13 SET error detection using time redundancy [4] 

 
Another method to tackle soft errors at the circuit or system level is based on the hardware modular 

redundancy (also known as spatial redundancy). In this method, 2 or more identical hardware 

modules are typically used to detect or further correct errors. Error detection by using Double 

Modular Redundancy (DMR) is shown in Figure 14. A mismatch in the output data detected in a 

DMR system will result in a restart of the system. 
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Figure 14 Error detection by DMR 

 
As depicted in Figure 15, Triple Modular Redundancy (TMR) is used for single error correction at 

the circuit or system level. In TMR, 3 identical copies computing the same input are connected to a 

majority voter. A majority voter is used to identify which of the outputs provide the correct data. The 

error is ignored in favor of the majority that supplies the correct output. Therefore, the correct output 

appears as the final result of the computation. 

 

 

Figure 15 Error correction by TMR 

 
In general, the downside to a circuit or system using hardware modular redundancy discussed 

above is the extra area, power, latency, and delay which is inherent to redundant schemes. For 
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instance, the TMR scheme shown in Figure 15 consumes approximately triple the chip area in 

addition to the majority voter logic. 

As illustrated in Figure 16, the TMR method is used in register cells in LEON3-FT-RTAX (a fault 

tolerant FPGA-based microprocessor) to enhance resistance against soft errors [65]. If one of the 

latches is hit by a high-energy particle and starts to change state, the voter gate with the other 2 

latches prevents the change from feeding back and permanently being latched. Layout of this circuit 

is done in such a way to ensure a single ion strike could not affect more than one latch, and thus 

causing multiple errors. 

 

 

 

Figure 16 Register cell in LEON3-FT-RTAX using TMR [65] 

 
Figure 17 shows a simplified generic view of the technique that uses both the spatial and temporal 

redundancy in flip-flops [66]. The spatial parallelism technique uses multiple memory cells to protect 

against SEUs. The spatial and temporal parallelism technique proposed in [66] mitigates SEUs and 

SETs in combinatorial logic, global clock, and global control lines. This method comes at the cost of 

both the clock frequency and area. 
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Figure 17 Spatial and temporal redundancy [66] 

 

At the system level, one of the most effective methods in dealing with soft errors in memory 

components is to use error detection and correction codes. Error detection and correction codes add a 

certain degree of redundancy to the system, and therefore affect performance and occupy additional 

area. The choice of a detection or correction code is generally based on the nature of faults and 

required fault tolerance of the system. The choice of error detecting code in this project is discussed 

later in this section. 

The parity code is the simplest error detection (but not an error correction) code. It adds an extra 

bit, the parity bit, to the data word (the actual information part in a word) so that the number of  ‘1’s 

in the codeword (data word plus parity bit) becomes even in case of  the even parity or odd in case of 

the odd parity. The obvious advantage of the parity code is its simplicity; and thus potentially 

minimal hardware overhead with just having 1 redundant parity bit in the whole codeword. 

The parity code is effective in detecting an odd number of errors in a data word and the parity bit 

(codeword). However, the generated error vector does not locate which bit or bits have been 

corrupted. When the number of corrupted bits in a codeword is even, the parity bit is still valid and 

the parity bit is not able to flag the error. Therefore, cases where an even number of bits get corrupted 

in a codeword are not detected by the parity code.  
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As shown in Figure 18, the parity error detection is generally used to detect single errors in an 

output register. The parity bit for the output register is predicted in parallel with the computation of 

the output. Then the predicted parity is compared with the real output parity to detect any single error 

in the output register and set the error flag.  

 

 

Figure 18 Parity error detection 

 

As opposed to the parity code, the error correction codes (e.g., the Hamming code [67]) add 

additional redundant bits (check bits) that enable unique error syndromes to be generated. These 

unique error syndromes can locate the position of corrupted bits. The overhead of encoding to 

generate the check bits should be considered since this overhead can be high. The redundant hardware 

should be less than TMR to make the error detection and correction code a reasonable choice. 

Error detection and correction codes provide an alternative to methods based on hardware modular 

redundancy since they (e.g., TMR and DMR) are usually expensive in terms of hardware cost and 

power consumption.  

Depending on the nature of errors, the degree of robustness that these expensive hardware modular 

redundancy schemes provide can be higher than what is really needed. For instance, DMR provides 

error detection for multiple bits. In case of soft errors where an error is random in time and space, the 

likelihood of multiple errors in 1 clock cycle is exceedingly low. Therefore, in this scenario, a less 

expensive approach such as the parity error detection could suffice. It is important to investigate the 

capability of the parity scheme in detecting single errors on a specific platform to understand to what 

extent it is able to detect single errors. 
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3.3 Tackling Soft Errors by Architectural Methods  

When there are storage elements in a system, soft errors can become an issue in reliability. In a 

microprocessor system, as shown in Figure 19, memory elements include registers known as register 

file, caches at different levels, main memory, and so on. Memories that are closer to a microprocessor 

are typically SRAM-based memories which are faster (have a shorter access time), smaller sized, and 

more expensive. The main memory is typically a DRAM-based memory that is less expensive with a 

longer access time.  

 

 

Figure 19 Memory hierarchy in a typical microprocessor system [13] 

 

The connection amongst different levels of memory system in a microprocessor is shown in Figure 

20. On a cache miss, data is typically provided by the next higher level (farther from the 

microprocessor) memory with longer access time in the hierarchy. An error in one memory level can 

propagate to other levels when a miss happens and corrupted data is copied to another level. 

In order to mitigate SETs (glitches) propagating to registers, the time redundancy technique (refer 

to Section 3.2) to monitor combinational results by using a sequential design is proposed in [68].  

This approach is then implemented in [69] to protect combinational logic of operations in the 

Arithmetic and Logic Unit (ALU). Researchers in [69] use the TMR technique to protect the register 

file against soft errors. 
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Figure 20 Memory elements in Software-based system 

 

Cache lines that have not been used for a long time (dead cache lines) are used to hold replicas of 

lines that are used frequently (hot cache lines) in [70].  This approach can potentially increase the 

cache miss rate and decrease performance. It also depends on how many cache lines are used 

infrequently in a program so that they can be used for replicas. 

Another approach that is proposed in [71] is software cache flushing. In this technique, the 

operating system flushes the entire cache periodically to remove errors. This affects performance due 

to the overhead of write-back and cache misses. 

It is shown in [72] that vulnerability of a level 1 cache to SEUs is reduced by using a write-through 

policy rather than write-back policy. The reduction in vulnerability, in a write-through policy, is due 

to immediate updating of the next level cache. In a write-back, as opposed to a write-through policy, a 

cache line is not updated in the next level or main memory until the line needs to be replaced. 

Therefore, a cache line that resides longer in the cache is more likely to be affected by an SEU and 

propagate the error to the next level cache or main memory. Researchers in [73] proposed a technique 

that can be applied to a write-through cache to remove errors in a cache refetching. This technique 
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refetches cache lines from the next level cache or main memory to refresh cache lines. This basically 

reduces the residency of cache lines to increase the cache reliability.  

LEON3-FT-RTAX is a fault tolerant FPGA-based microprocessor [74]. Figure 21 depicts the 

hardware components of this microprocessor. The combinational logic of LEON3-FT-RTAX is 

implemented in an antifuse FPGA which is RTAX-2000S. Unlike SRAM based FPGAs with SRAM 

cells controlling routing, this type of non-volatile FPGA has metal-to-metal antifuse programmable 

interconnect elements. Antifuses are normally open circuit and are programmed form a permanent, 

passive, and low impedance connection. 

 

 

Figure 21 Hardware components in LEON3 microprocessor [74] 

 

 As opposed to SRAM cells, the downside of antifuse elements is that they are one-time 

programmable. On the other hand, their advantage is that they are not vulnerable to SEUs. Flip-Flops 

in this microprocessor are hardened (made more tolerant against errors) by using TMR on the FPGA 

(RTAX-2000S). Each TMR D flip-flop (shown in Figure 16) consists of 3 master-slave latch pairs, 

each with asynchronous self-correcting feedback paths. 

There are different options, shown in Table 3.1, for error detection and correction of the register 

file in LEON3-FT-RTAX to mitigate soft errors. The desired option can be selected during synthesis. 

As discussed before in Section 3.2, these techniques add overhead to the system. For instance, the 
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correction in the 3rd and 5th rows of Table 3.1 takes 6 clock cycles. An uncorrectable error in the 

register file causes a trap. 

 

Table 3.1 Error detection and correction in register file [74] 

Error detection and 
correction technique Description 

Hardened flip-flops or 
TMR 

Register file implemented with SEU hardened flip-flops. No error 
checking. 

4-bit parity with restart 
4-bit checksum per 32-bit word. Detects and corrects 1 bit per byte (4 bits 
per word) through restart. 

8-bit parity without 
restart 

8-bit checksum per 32-bit word. Detects and corrects 1 bit per byte (4 bits 
per word). Correction on-the-fly without pipeline restart. 

7-bit BCH with restart 
7-bit BCH checksum per 32-bit word. Detects 2 bits and corrects 1 bit per 
word. Pipeline restart on correction. 

 

Each word in the cache tag or data memories has 4 check bits. An error during a cache access will 

cause a cache line flush, and a re-execution of the failing instruction. This will insure that the entire 

cache line (tag plus data) is refilled from external memory. 

3.4 Soft Errors in FPGA vs. ASIC 

This section presents the peculiar effects of soft errors in FPGAs and how these effects are different 

in FPGA vs. ASIC.  

The effect of SETs are similar in an ASIC or FPGA. An SET (equivalent to a glitch) might 

propagate through the combinational logic up to a flip-flop. Depending on the timing of the glitch 

relative to the clock edge it might get stored and replace the valid data, or it might not have any effect 

at all. An error caused by an SET is not permanent in the sense that the implementation itself is not 

affected in terms of functionality and resetting the system will bring it back to its expected initial 

state. 

An SEU occurring in sequential elements or flip-flops affects both FPGA and ASIC in a similar 

way. Due to an SEU the value of a flip-flop flips. Then at the next clock edge the new data is stored. 

Therefore, the affect is not permanent and the implementation is functionally correct after a reset.  
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Unlike ASICs, an SEU has a peculiar effect in FPGAs when it hits the combinational logic. Since 

the combinational logic in an ASIC does not have any storage elements SEUs can only affect flip-

flops. On the other hand, combinational logic in an FPGA is thoroughly controlled by SRAM cells 

(e.g., SRAM cells control LUTs in the combinational logic). The memory cells of a LUT 

(combinational logic) can be affected by an SEU in the same way that flip-flops (sequential logic) are 

affected. For instance, in Figure 22(a), an SEU can change the function that is stored in SRAM 

memory cells of the LUT.  This error in an SRAM cell is not transient, meaning that it will not 

resolve at the next clock edge.  It will only resolve when the FPGA is reconfigured. Consequently, 

this changes the functionality of the function implemented in the LUT. As observed, the whole 

combinational logic of an implementation on FPGA is vulnerable to SEUs that can cause non-

transient errors.  

 

 

Figure 22 Combinational logic on FPGA vs. ASIC (a) function implemented in LUT on FPGA, (b) 

function implemented using gates on ASIC 

 

It is important to note that the routing in an FPGA is also controlled by SRAM cells.  These SRAM 

cells control pass transistors, multiplexers and tri-state buffers. Therefore, in addition to 

combinational logic, routing is vulnerable to SEUs.  Thus, it is crucial to investigate the effectiveness 

of an error detecting scheme on FPGA with respect to this peculiar effect of SEUs in combinational 

logic and routing on FPGA. 

In this research, the parity error detection on FPGA is thoroughly investigated and its weaknesses 

are found. Other than fabrication process level methods to tackle soft errors, some of the mitigation 

techniques such as a parity or Hamming code are used in FPGAs just as in ASICs. These techniques 
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do not cover errors in SRAM cells controlling logic blocks and routing of FPGAs.  Techniques to 

eliminate these weaknesses are proposed (refer to Chapter 5). Therefore, the error coverage of the 

parity scheme is expanded to soft errors in combinational logic as well as routing on FPGA. 

It is important to note that concurrent error correction techniques, e.g., the Hamming code in [75] 

and TMR can potentially lose their correction capability over time in an FPGA implementation. The 

reason behind this is the potential change in the functionality of the correction technique 

implemented. For example, SEUs can hit the SRAM bits defining the voter functionality of a TMR 

based design or the error correction circuitry of the Hamming code. In addition to that, there is 

accumulation of errors due to SEUs. The only way to remove these errors in SRAM cells of 

combinational logic and routing is to reconfigure the FPGA. If these errors are not removed by 

reconfiguration the dependability of a correction technique that a system has relied on is questionable. 

The necessity of reconfiguration to remove SEUs in SRAM-based FPGAs was mentioned in [4]. 

3.5 Summary 

The main goal of this chapter was to present previous techniques to tackle soft errors at different 

levels. At the lowest level, fabrication process-based techniques have been used. These low level 

techniques can affect the fabrication process complexity and steps, increase yield loss, or substrate 

cost [7]. Additionally, they may not be portable across different fabrication processes. Soft error 

mitigation techniques at higher levels (circuit and system levels) provide portability and can eliminate 

the gap between the state of the art fabrication technology and soft error sensitivity. At the circuit and 

fabrication process-based levels, the main goal is to increase critQ  while maintaining or reducing 

collQ  to improve resistance against soft errors. 

At the system level, spatial or temporal redundancies are used to tackle soft errors. Since the 

likelihood of 2 independent errors in the same circuit path within a small period of time is extremely 

low, data is sampled at different clock edges to detect SETs in temporal redundancy. Spatial 

redundancy is used in error detection and correction codes or in hardware modular redundancy 

techniques such as DMR and TMR to detect and correct errors, respectively.  

Peculiar effects of SEUs in FPGA in the combinational logic and routing were discussed in this 

chapter. These effects do not happen in ASIC. Since the combinational logic and routing on ASIC do 

not have any storage elements, SEUs can only affect flip-flops. On the other hand, the combinational 
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logic and routing on FPGA is thoroughly controlled by SRAM cells (e.g., SRAM cells control LUTs 

in the combinational logic and pass transistors in routing). 

In summary, previous research using the parity code [76][77][78] or Hamming code [75] for AES 

have not analyzed the underlying routing or logic of an SRAM-based FPGA implementation. 

Selecting a system level mitigation technique according to available resources and mathematical 

properties of a specific operation is also not considered in classic techniques such as TMR and DMR. 

Radiation hardened FPGAs typically use fabrication, circuit, or system level mitigation techniques 

(for instance, Virtex-4QV uses a thin epitaxial layer in wafer manufacturing [49] and flip-flops are 

designed using TMR in LEON3-FT-RTAX [74]) that are independent of the application 

implementation and possibly introduce redundancy in unused resources. 

In the next chapter, security requirements of a system are briefly described. Then the primitives to 

provide these security needs are presented. Emphasis is put on symmetric-key algorithm AES that is 

the focus in this research. NIST-recommended block cipher modes are also covered briefly. Error 

propagation in the AES algorithm and modes are discussed at the end of the chapter. 
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Chapter 4 

Security Needs of Data Systems 

This chapter briefly describes the general security requirements of a system such as authentication, 

data confidentiality, data integrity, and non-repudiation. Then it describes the primitives for providing 

these security needs. Emphasis is placed on standard symmetric-key algorithms, such as AES 

described in section 3.1.1. Block cipher modes (suggested by NIST) which can be used with AES are 

also covered briefly. The AES error propagation in these modes is discussed. Previous approaches in 

implementing AES are provided at the end of this chapter.  

4.1 Security Needs and Cryptographic Algorithms 

In general, the security services to be provided for a system include authentication, access control, 

data confidentiality, data integrity, and non-repudiation [79]. The following presents a brief definition 

of each security service [80]. 

� Authentication is the assurance that the identities in a communication are the ones they 

claim to be. 

� Data confidentiality is the protection of data from being disclosed by unauthorized parties. 

The protection could even include any information about the data traffic flow. 

� Data integrity is the assurance that the received data has not been replayed or affected by 

modification, insertion, or deletion. 
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� Non-repudiation prevents against denial by an authorized party involved of having 

participated in a communication. 

The basic types of cryptographic algorithms (primitives) that provide a means for the above 

security services are symmetric-key algorithms, public-key algorithms, and hash functions. These 

primitives are introduced briefly as follows [81][82]. 

� In the classical model of cryptography, a symmetric-key (also known as conventional or 

single-key) cryptographic algorithm encrypts plaintext into ciphertext using a secret key. 

The decryption algorithm uses the same secret key to transform the ciphertext to plaintext. 

Symmetric-key encryptions are typically used for confidentiality. They are also used in 

common keyed hash functions to provide data integrity and authentication. 

� As opposed to a symmetric-key algorithm, a public-key algorithm uses 2 different keys 

(public and private keys) for encryption and decryption. For example, a public key is used 

to encrypt plaintext to produce ciphertext. The corresponding private key is then used to 

decrypt the ciphertext and recover the plaintext. It should be computationally infeasible to 

find the decryption rule from the encryption rule in a public-key cryptosystem. Public-key 

algorithms are typically used in security protocols for authentication. They are also used 

for generating and verifying digital signatures to provide non-repudiation and for 

exchanging keys in a symmetric-key cryptosystem. 

� A hash function is a transformation that takes a variable-sized input data (message) and 

returns a fixed-size output (message digest also known as hash value). It should be 

relatively easy to compute the hash value for any message. On the other hand, it should be 

computationally infeasible to compute the message from the hash value. The problem of 

finding 2 messages having the same hash value should also be difficult to solve. Unkeyed 

hash functions provide data integrity, while keyed hash functions are used for data integrity 

and authentication. Another common use of hash functions is in signature schemes. In this 

case, the hash value of a message is computed first, and then the hash value is signed using 

a signature scheme. 

In a symmetric-key cryptosystem, it is required that the 2 parties have already established a shared 

secret key between themselves in a secure manner before any ciphertext is transmitted. In a public-

key cryptosystem the prior communication of a shared secret key is not needed. However, it should 
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be computationally infeasible to determine the private key given the public key. The idea behind 

public-key cryptography was introduced by Diffie and Hellman in 1976. 

Most public-key algorithms have larger key sizes (denoted k) than symmetric algorithms; Table 4.1 

shows a comparison of security strengths and lifetimes among RSA (a public-key algorithm), AES, 

2TDEA (triple Data Encryption Standard (DES) symmetric-key algorithm with 2 independent keys), 

and 3TDEA (triple DES with 3 independent and different keys). Security strength, which is specified 

in bits, is a number associated with the amount of work (that is the number of operations) that is 

required to break a cryptographic algorithm or system [83]. It should be noted that the number of bits 

of security strength is not necessarily the same as the key sizes for the algorithms, due to attacks on 

algorithms that provide an attacker with computational advantages. In general, symmetric algorithms 

are faster and more efficient with respect to implementation and performance. However, they need 

secure establishment of a secret key; public-key algorithms can be used to provide a cryptosystem 

with the secure key establishment. 

 

Table 4.1 Lifetime and security strength of symmetric and public-key algorithm [83] 

Security 
lifetime 

Security strength 
in bits 

RSA (public-key 
algorithm) 

Symmetric-key 
algorithm 

Through 2010 80 k=1024 2TDEA 

Through 2030 112 k=2048 3TDEA 

Through 2030 128 k=3072 AES, k=128 

Through 2030 192 k=7680 AES, k=192 

Through 2030 256 k=15360 AES, k=256 

 

A symmetric-key block cipher is a very important primitive in encryption/decryption, key transport 

for establishing session keys and keyed hash functions. The NIST standardized symmetric-key block 

cipher AES, which has been predicted to be secure well beyond 20-30 years, are discussed in the next 

section. Block cipher modes as well as how they provide confidentiality and integrity services and the 

error propagation issue related to the modes are also discussed in Section 4.2. 
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4.1.1  Advanced Encryption Standard 

With technology rapidly advancing, DES, which uses a 56-bit key, was broken in 1999 in less than 

22 hours [84] by brute force attack. Therefore, a robust new standard was needed to replace the aging 

DES which had been developed in the 1970s. In September 1997, NIST launched a worldwide call 

for submission of publicly disclosed encryption algorithms worldwide for the AES selection [85]; 15 

candidate algorithms were submitted. After 3 publicly held conferences to discuss and analyze the 

candidates, the competition field narrowed down to five competitors. Finally, in 2000, Rijndael was 

named as the AES algorithm, the winner of the 3-year competition involving some of the world’s 

leading cryptographers. In March 2008, due to the comprehensive investigation on AES and focus on 

its usage, Consultative Committee for Space Data Systems (CCSDS) proposed to adopt AES as the 

standard encryption algorithm for space application [86]. 

AES is based on the ideas of Shannon and the concepts of diffusion and confusion. Whilst most 

block ciphers follow these principles, few do so as clearly as AES that is said to be a substitution 

permutation (SP)-network [81]. Diffusion is intended to spread out the influence of all the bits of 

inputs, namely plaintext and key, to all the bits in ciphertext. Diffusion is provided in AES by the use 

of ShiftRows and MixColumns [87]. The goal of confusion is to make the relationship between 

ciphertext and a key and plaintext as complex as possible. In AES, confusion is provided by a very 

carefully chosen substitution transformation (referred to as SubBytes). SubBytes is the most complex 

and the only nonlinear operation of AES due to the multiplicative inversion it contains [87]; 

nonlinearity ensures a low correlation between input bits and output bits. The SubBytes 

transformation is designed in such a way that makes it resistant against linear and differential attacks, 

as well as interpolation attacks [88]. The SubBytes output is then spread by diffusion in each round. 

AES supports 3 key sizes (i.e. 128, 192, and 256 bits) and has the fixed block size of 128 bits. The 

algorithm consists of a number of rounds depending on the key size as shown in Table 4.2. The 

encryption and decryption algorithm for the key size of 128 bits is depicted in Figure 23. Each round 

consists of four transformations, which are described below, except for the last round which includes 

only 3 operations. The AES key expansion algorithm takes the input key and generates 128-bit round 

keys for each round. A 128-bit data block is handled in a 4x4 matrix in which each element of the 

matrix is an 8-bit element; this matrix is referred to as the state. 
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Table 4.2 AES parameters 

Key size in bits Block size in bits Number of rounds 

128 128 10 

192 128 12 

256 128 14 

 

 

Figure 23 AES algorithm 
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A Galois Field (GF ) is a field that contains a finite number of elements and the order of the field 

is mp  where p  is a prime number and 1m ≥  is an integer [82]. This field is denoted ( )mGF p . A 

commonly used representation for the elements in ( )mGF p  is the polynomial based representation 

which is shown as follows in Equation (7). 

 

 1 2
1 2 1 0( ) { | {0,1, . 1}}m m m

m m iGF p a x a x a x a a p− −
− −= + + + + ∈ −… …  (7) 

 

Addition and multiplication of polynomials is preformed modulo ( )m x  where ( )m x  is an 

irreducible polynomial of degree m . An 8-bit element, b , of a state in AES is an elements in 

8(2 )GF ; b  can be represented as follows in the polynomial form. 

 

 7 6 5 4 3 2
7 6 5 4 3 2 1 0; {0,1}ib b x b x b x b x b x b x b x b where b= + + + + + + + ∈  (8) 

 

� The SubBytes transformation, as shown in Equation (9), computes the affine transformation 

on multiplicative inverse 1b−  of an 8-bit input b  in 8(2 )GF  with the corresponding 

irreducible polynomial being 8 4 3( ) 1m x x x x x= + + + + . Equation (10) shows 

SubBytes where the affine transformation is done on the 8-bit multiplicative inverse 

element, 1 1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0[ ]Tb b b b b b b b b− − − − − − − − −=  in the matrix form. SubBytes is the 

only nonlinear transformation in AES due to the multiplicative inversion it contains. The 8-

bit elements b  and 1b−  have an inverse relationship in which 1 1 mod ( )bb m x− = . 

The affine transformation is multiplication by a constant matrix, M , and an addition with 

a constant 16(63)C =  as shown in Equation (10). Note that a single-bit multiplication is 

an AND, and a single-bit addition is an XOR in the Galois field. 

 

 1 1( ) ( ); ( )SubBytes b affine b where b inverse b− −= =  (9) 
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� The mix columns transformation (referred to as MixColumns) is a function on each column 

of the state that outputs a corresponding column (four 8-bit elements). Given a column of 

the state [ ]Ta b c d  in which elements are in 8(2 )GF  where 

8 4 3( ) 1m x x x x x= + + + + , the MixColumns transformations is multiplication by 

polynomial 3 2{03} {01} {01} {02}x x x+ + +  modulo 4 1x + , as  it is shown in Equation 

(11). Equivalently, this can be done by a matrix multiplication as shown in Equation 12. 

 

 3 2 3 2 3 2 4' ' ' ' ( )({03} {01} {01} {02}) mod ( 1)d x c x b x a dx cx bx a x x x x+ + + = + + + + + + +  (11) 

 

 

' 02 03 01 01

' 01 02 03 01

' 01 01 02 03
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 (12) 
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Figure 24 ShiftRows transformation in AES [80] 

 
� The shift rows transformation (referred to as ShiftRows) is an 8-bit circular left shift 

operation, as shown in Figure 24. The shift is done on each row of the state except for the 

first row. 

� In the add round key transformation (referred to as AddRoundKey), a round key is added to 

the state by a simple bitwise XOR operation. Each round key produced by the key 

expansion has the same structure as the state so each 8-bit element of the round key is 

XORed with the corresponding element of the state. 

4.2  Block Cipher Modes 

A block cipher mode of operation, or mode for short, is a technique for adapting a symmetric-key 

block cipher algorithm for an application and a message length to provide security services required. 

For instance, a mode can feature the use of a symmetric-key block cipher algorithm to provide a 

security service, such as confidentiality or authentication. 

NIST has approved 8 modes for block ciphers in a series of special publications [89]. Currently, 

there are 5 confidentiality modes (electronic codebook, cipher block chaining, output feedback, cipher 

feedback, and counter modes), 1 authentication mode (cipher-based message authentication code 

mode), and 2 combined modes for confidentiality and authentication (counter with cipher block 

chaining-message authentication code and Galois/counter modes).  

This section describes some of the modes briefly in order to point out how the structure of different 

modes affects their sensitivity to errors. In the figures that follow, plaintext blocks, ciphertext blocks 
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and a symmetric key are denoted as 1 2{ , , , }NP P P… , 1 2{ , , , }NC C C…  and K , respectively. 

Plaintext must be a sequence of one or more complete data blocks. In other words, the total number of 

bits in the plaintext must be a multiple of the block size. If the data string to be encrypted does not 

initially satisfy this property, then the formatting of the plaintext must entail an increase in the 

number of bits. A common way to achieve the necessary increase in length is to append some extra 

bits, called padding. One example of a padding method is to append a single bit ‘1’ to the data string 

and then append as few ‘0’ bits necessary, possibly none, to complete the final block. 

4.2.1 Confidentiality Modes 

Three of the confidentiality modes are outlined in this section. The error propagation issue with 

respect to the structure of the modes is also discussed. 

The electronic codebook (referred to as ECB) mode is a confidentiality mode that has the simplest 

structure, as depicted in Figure 25. In the ECB encryption, the cipher encryption is applied directly 

and independently to each block of the plaintext. The resulting sequence of output is the ciphertext 

blocks. In the decryption, the decryption function is applied directly and independently to each block 

of the ciphertext. The resulting sequence of output decrypted is the plaintext blocks. 

 

 

Figure 25 Electronic codebook (ECB) mode [80] 
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In both ECB encryption and decryption, multiple cipher encryptions and decryptions can be 

computed in parallel. In this mode, under a given key, the same plaintext block always gets encrypted 

to the same ciphertext block. This property called pattern identification might be undesirable in some 

particular applications. For instance, when a message is highly structured it may be possible for an 

attacker to exploit theses regularities. To overcome this issue, other modes propose the chaining of 

encryption/decryption blocks in which there is a connection from the output of one 

encryption/decryption to the input of the subsequent encryption/decryption. 

The encryption in cipher block chaining (referred to as CBC) mode features the chaining of the 

plaintext blocks with the previous ciphertext block as illustrated in Figure 26. It requires an 

Initialization Vector (IV) to XOR with the first input plaintext block. The IV, which is an additional 

input block, does not have to be secret but it must be unpredictable. As opposed to ECB, the same 

plaintext/ciphertext block if repeated generates a different ciphertext/plaintext block in CBC. This is 

due to fact that in CBC the ciphertext/plaintext block depends on not only the plaintext/ciphertext 

block but also the results of the previous encryptions/decryptions. However, the drawback is that the 

encryption/decryption cannot be performed in parallel. 

 

 

Figure 26 Cipher block chaining (CBC) mode [80] 
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The Counter (referred to as CTR) mode provides the capability of parallel performance. Figure 27 

depicts the CTR mode. The counter value, which is the same size as the plaintext block, should be 

different for each plaintext that is encrypted. Therefore, repetitive ciphertext blocks corresponding to 

the same plaintext block cannot be recognized. The CTR mode requires only the implementation of 

the encryption and not the decryption. 

 

 

Figure 27 Counter (CTR) mode [80] 

 
In general, modes that have the chaining of an encryption/decryption to the preceding encryption 

/decryption have the issue of propagating errors through the ciphertext/plaintext blocks (this is known 

as infinite error propagation). The modes that have this chaining structure are CBC, Output Feedback 

(OFB [89]) and Cipher Feedback (CFB [89]). On the other hand, ECB and CTR, which do not have 

this chaining structure, isolate errors within the corresponding block.  

A single bit flip in the early rounds of AES encryption is expected to result in 50% erroneous bits 

in the output [76]. This shows a good diffusion in the AES algorithm. Diffusion is a desirable 

property from a cryptographic point of view and makes a strong symmetric-key algorithm; however it 

becomes an issue in error propagation. This problem is even worse in CBC, OFB and CFB modes 
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since a single bit error leads up to erroneous subsequent ciphertext/plaintext blocks which is 

dramatically different from the expected result. 

4.2.2 Authentication Mode 

NIST has recommended a cipher-based message authentication code (referred to as CMAC) 

algorithm that is based on a symmetric-key algorithm such as AES. CMAC is designed to detect 

intentional, unauthorized modifications of the data as well as accidental modifications. Figure 28 

depicts the MAC generation in CMAC. The message is divided into a sequence of bit strings 

*
1 2{ , , }nM M M… , in which they all have the block size of 128 for AES except for the very last 

string *
nM  that might have a smaller size. The 2 keys 1 2{ , }K K  are generated by the subkey 

generation (provided in [90]) by using the symmetric-key algorithm. CMAC has 2 parts illustrated in 

Figure 28. The left side that uses 1K  is applied when *
nM  has the size of a block. Otherwise, the 

right side with 2K  is used, and a single ‘1’ bit followed by the appropriate number of ‘0’ bits are 

appended to *
nM  to form a complete block. The same procedure is done at the destination to compute 

the MAC (T) which then compares it with the received MAC. Since an encryption is connected to the 

following encryption an error in any block propagates through the CMAC computation, finally it will 

affect the MAC (T). This shows the importance of detecting errors in all the encryption modules. 

 

 

Figure 28 Cipher-based message authentication code (CMAC) [90] 
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4.2.3 Authentication and Confidentiality Modes 

The 2 NIST-specified modes which provide both authentication and confidentiality are compared 

below in terms of their error propagation properties. The Galois/counter mode (referred to as GCM) 

provides authenticated encryption and authenticated decryption. It does not use the decryption module 

of the block cipher (e.g., AES). It encrypts the confidential data and computes an authentication tag 

on both confidential and non-confidential data. The confidentiality mechanism of GCM is a variation 

of the CTR mode. A particular incrementing function is specified [91] for generating the counter 

blocks in GCM. It also uses the block cipher (e.g., AES) for generating the authentication tag. Similar 

to the CTR mode, there is no connection between the ciphers; therefore the error is contained in its 

block in GCM. The authentication mechanism of GCM is provided by a hash function named 

GHASH which is multiplication by a fixed hash subkey [91]. 

The counter with cipher block chaining-message authentication code mode (referred to as CCM) 

provides authenticity of the confidential and non-confidential data and generates ciphertext for the 

confidential data [92]. It uses only the encryption of the symmetric-key algorithm (e.g., AES). The 

authentication mechanism of CCM uses CBC which has the chaining structure in the block ciphers. 

As a result, an error spreads throughout the blocks. On the other hand, the confidentiality mechanism 

in CCM uses the CTR mode that isolates an error within its block. 

4.3 Previous Research on AES Design 

AES is a complex and computationally intensive algorithm. Therefore, it needs significant amount 

of hardware resources in implementation. Block memories and combinational logic have been used 

for the AES implementation. The amount of block memories vs. combinational logic varies 

significantly in different approaches in previous research. One approach that uses the largest memory 

space amongst previous research combines the SubBytes and MixColumns transformation in a block 

memory named T-table [93][80] . 

A T-table is constructed as follows. In Equation 13, 'a , 'b , 'c , and 'd  are 8-bit elements of the 

state column in the MixColumns result, while a , b , c , and d  are 8-bit input elements to SubBytes.  

For simplicity, ShiftRows is not shown in Equation 13 since it does not need any logic resources. T-

tables 0 ( )T a , 1( )T b , 2 ( )T c , and 3 ( )T d  are defined in Equation 14 for each 8-bit element. 
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Each T-table in Equation 14 is a block memory of size 256x32-bit. In order to provide parallel 

memory accesses, 16 T-tables are needed.  It should be noted that the last round of AES does not 

include the MixColumns transformation. Therefore, SubBytes must be obtained from different tables 

in the last round. 
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In approaches other than T-table, SubBytes and MixColumns are designed separately. The following 

2 sections present previous implementations of SubBytes and MixColumns of AES. 
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4.3.1  SubBytes implementations in AES  

The memory based SubBytes implementations [94-97] basically use a block memory to store the 

results of this transformation. The SubBytes in the form of a block memory, known as an S-box, is 

given in Appendix F. Each 8-bit element of the state needs a 256x8-bit block memory for S-box. The 

size of an S-box is 25% of the T-table size (a T-table needs a block memory of size 256x32-bit).  In 

addition to providing simplicity, the fact that state of the art FPGAs provide built-in block memories 

makes the memory based implementation of SubBytes an attractive option for this transformation. 

However, it might not be suitable for a heavily pipelined AES aiming to achieve the highest clock 

frequency and throughput.  

On the other hand, the SubBytes implemented thoroughly in combinational logic [98-104] can be 

heavily pipelined. However, implementation of SubBytes in the original Galois field, 8(2 )GF  with 

polynomial 8 4 3( ) 1P x x x x x= + + + + , is complex and uses significant number of hardware 

resources. Composite fields, briefly described as follows, have been suggested in previous research to 

reduce the complexity of operations in 8(2 )GF . The complexity indicates the cost of hardware 

resources used for implementation of operations in a Galois field. 

The complexity of various operations, such as multiplication and inversion depend on the chosen 

Galois field. Composite fields, first introduced in [105], were extensively studied in [106] to reduce 

the complexity of operations such as inversion in a Galois field. A composite field ((2 ) )n mGF  is 

isomorphic to the field (2 )kGF  where k m n= × . These 2 fields are of order 2m n× . However, their 

complexity may be different depending on the choice of m  , n  and the irreducible polynomials 

[106].  

Different composite fields for 8(2 )GF  have been suggested in [98-102][107] for implementation 

of AES. The composite field is applied to the whole SubBytes in [99, 100], whereas researchers in 

[98, 102, 107] use composite fields in only the inversion of SubBytes as illustrated in Figure 29. The 

constant multiplications in MixColumns are shown to be more expensive in composite fields in [102].  

Therefore, researchers in [102] concluded that the only operation that benefits from composite fields 

is the inversion of SubBytes, while the rest of the transformations are more efficient in the original 

8(2 )GF .  
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Figure 29 SubBytes with inversion in composite fields 

 

In Figure 29, symbols δ  and 1δ −  are the linear functions for isomorphic mapping of elements 

from one field to another. These mapping functions are matrix multiplication. First, an input b  is 

mapped from 8(2 )GF  to the corresponding element in the composite field by δ . Then the inversion 

is done in the composite field. The inversion result is then mapped from the composite field to the 

corresponding element in 8(2 )GF  by 1δ − . Finally, the SubBytes output is generated after applying 

the affine function. 

The overall picture of the inversion of SubBytes in composite field 4 2((2 ) )GF  is shown in Figure 

30. Aside from δ  and 1δ − , which are matrix multiplications, the other operations are in 4(2 )GF . 

These operations include square, XOR, multiplication, multiplication by a constant, and inversion. It 

should be noted that 4(2 )GF  can be further decomposed to compute any of these operations. 

 

 

Figure 30 Inversion of SubBytes in composite fields [102] 
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In 4 2((2 ) )GF , it is assumed the irreducible polynomial of degree 2 is of the form 

2( )P x x x A= + +  where A  in 4(2 )GF . The inverse of an element bx c+  denoted  px q+  is 

computed in Equation 15. Therefore, computing the inversion in 8(2 )GF  is translated to computing 

the inversion of  2 2( )Ab bc c+ +  in 4(2 )GF  instead. Equation 15 is illustrated in Figure 30. 
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 (15) 

 

 Different composite fields result in different costs in terms of usage of hardware resources. 

4 2((2 ) )GF , rather than 8(2 )GF , is used in [100] with the polynomials shown in Equation 16 for 

4(2 )GF  and 4 2((2 ) )GF . Symbol ω  is a generator of 4(2 )GF  with polynomial 

4( ) 1Q y y y= + + . In 2 14( )P x x x ω= + + , 14ω  can be presented as binary vector (1001). 
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As shown in Equation 17, 8(2 )GF  is decomposed into 4 2((2 ) )GF  in [99]. However, a different 

constant value ( (1000)β =  in binary vector form) from [100] is used for the polynomial of the 

Galois field. Then the inversion in 4(2 )GF  is stored in block memory [100]. 
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Unlike [99, 100], researchers in [107] use further decomposition of 8(2 )GF  to 2 2 2(((2 ) ) )GF . 

The composite fields shown in Equation 18 are used in [107] for the inversion of SubBytes. Symbols 

φ  and  λ  are (10) and (1100) in binary vector notation, respectively. This inversion is pipelined in 

[98] to achieve a high throughput for the AES on FPGA. 
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8(2 )GF  is decomposed into 4 2((2 ) )GF  with polynomial 2( )P x x x β= + +  and constant 

(1100)β =  in [102]. The following equations were proposed to compute the 4-bit inversion in 

4(2 )GF . The 4-bit input and output of the inversion are 3 2 1 0( )x x x x  and ' ' ' '
3 2 1 0( )x x x x , 

respectively. 
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As shown in Table 4.3, researchers in [102] provide a comparison of different inversion 

implementations in terms of number of gates on ASIC. The square-multiply approach is based on the 

Fermat’s theorem†. According to this comparison, the composite fields used in [102] have the least 

gate count and shortest critical path compared to others. 

 

                                                      
† Suppose p is a prime. If gcd( , ) 1a p = , then 1 1 modpa p− ≡ . 
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Table 4.3 Gate counts and critical paths of SubBytes inversions in 4(2 )GF  [102] 

Total  # of gates Gates in critical path 
SubBytes inversions in 4(2 )GF  

XOR AND XOR AND 

Square-multiply approach 54 18 12 2 

[98, 107] 17 9 7 2 

[102] 14 9 3 2 

 

4.3.2 MixColumns implementations in AES 

Previous research on implementation of MixColumns is described in this section while the 

proposed MixColumns is described in Chapter 5 . Rearrangement of the MixColumns equation with 

respect to the structure of FPGA potentially results in a better optimized design in terms of utilizing 

hardware resources. Significant research [107-111] has been done on resource sharing between 

MixColumns and InvMixColumns; however, there is limited work on optimizing the MixColumns 

transformation on its own on FPGA. This can be applied directly in several modes (e.g., the NIST 

approved modes mentioned in Section 4.2) that do not need the decryption function.  

Researchers in [98, 102] suggested the MixColumns shown in Equation 20 where a bit position 

{0,1,..., 7}i ∈ . In the left column of this equation, 2 bytes are XORed and the multiplication by 

2, ()xtime  (refer to Equation 22), is then applied to the XORed result [98, 102]. 
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 (20) 

 

Researchers in [112] suggested the original MixColumns shown in Equation 12. In this approach, 

( )xtime z  and ( )xtime z z+  are computed for each 8-bit element of the state column. There is also 
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Equation 21 used for MixColumns architecture in [108, 109]. These designs were all implemented on 

FPGA to fairly compare the experimental results (refer to Section 6.2) of MixColumns. 
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 (21) 

4.4 SEU-resistant AES 

The main system level techniques that have been used to tackle SEUs in an AES implementation 

are the parity [76][77][78] and Hamming code [75]. The parity bits for the S-box values are stored in 

the block memory to cover errors in the memory cells and an extra block memory is used to cover 

errors in the memory decoder [76][78] (refer to Section 6.3). In the AES using composite fields, the 

parity prediction is presented in [77]. The parity prediction for the MixColumns transformation is 

provided in [78]. The SubBytes in composite fields suggested in [102] and parity predictions in [77]   

are further discussed in Chapter 6 (see Table 6.3). The Hamming code for error correction of AES 

was suggested in [75] for space applications. 

The parity for S-box implemented using distributed RAMs was proposed in [113] for error 

detection. In [114], SubBytes in composite fields and its inverse were divided into blocks and the 

parities of these blocks were predicted.  

A 32-bit datapath for a compact ASIC implementation of AES was proposed in [115]. In order to 

provide error detection, S-boxes were duplicated and parity bits were used for other AES 

transformations. 

Researchers in [116] proposed a two-dimensional parity-based concurrent error detection method 

to detect errors in both horizontal and vertical direction in the data matrix for AES against differential 

fault attack (refer to Section 2.2.2). 

None of the above techniques consider the underlying SRAM cells in routing or logic in an FPGA 

implementation of AES. Reconfiguration of the FPGA to ensure correct functionality of the 

implementation after an SEU is also not considered. 
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4.5 Summary 

General security requirements of a system such as authentication, data confidentiality, data 

integrity, and non-repudiation were briefly described in this chapter. Then the primitives to provide 

these security needs (i.e. symmetric-key algorithms, public-key algorithms, and hash functions) were 

presented. Emphasis is placed on standard symmetric-key algorithm AES in this research. 

Block cipher modes (recommended by NIST) which can be used with AES were also covered 

briefly. Error propagation of the AES algorithm due to confusion and diffusion properties was 

discussed. It has been shown that an error in the early rounds of AES encryption is expected to in 

50% erroneous bits in the output [76]. It was discussed how the chaining structure in modes can 

further propagate errors throughout blocks. 

Different approaches in implementing AES were presented. This provides clarification for the 

experimental results and comparisons presented in Chapter 6. 

In summary, unlike previous AES implementations using the parity code [76][77][78] and 

Hamming code [75], the proposed design considers errors in the FPGA routing and logic. 

Considering the available resources on the FPGA, the dual ported block memory is suggested in this 

research for error detection in SubBytes as opposed to the parity coding in [76][77][78]. 

In the next chapter, the proposed AES implementation providing error detection is introduced. In 

the proposed error detection technique, some of the mathematical properties of AES and available 

hardware resources on FPGA are used to detect errors in SubBytes and the control circuitry 

implementations. Enhancements to the parity scheme (used for error detection in the MixColumns and 

AddRoundKey transformations) to increase its error coverage are also proposed in this research. In 

order to increase the error coverage of the parity technique, the weaknesses of it on FPGA are found. 

The enhancements are then discussed in 2 categories: combinational logic and routing. 
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Chapter 5 

Proposed AES with Error Detection 

The proposed error detection technique in AES detects errors in both logic blocks and routing on 

FPGA. An important category of errors is soft errors caused by radiation affecting SRAM cells that 

build and control every aspect of FPGA implementation (refer to Section 2.1). Soft errors cause a 

single error in 1 clock cycle (the likelihood of multiple errors is extremely low). The error detection 

in this research is considered early in design as opposed to being an after part to AES. The proposed 

error detection technique based on the parity scheme exploits some of the AES algorithm algebraic 

characteristics. The weaknesses of the parity scheme used in previous research and mitigation 

techniques to provide the lowest cost adequate method in this research are described in this chapter.  

Error detection is investigated in 2 different categories: logic blocks and routing. First, the category 

of logic blocks is discussed. The proposed mapping of logic blocks on FPGA is examined thoroughly 

to ensure any single error is detected. Second, the category of routing is presented. A simple and yet 

accurate model for soft errors is verified and applied through experiments. This model is used to 

examine the routing of AES implemented on FPGA in terms of propagating single errors, to find its 

weaknesses and mitigate them in this research. 
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5.1 Error Detection in AES Logic Blocks 

In this thesis, the term logic block is referred to as a slice of the FPGA shown in Figure 31. The 

XOR operation and multiplexers, the only logic operations used in MixColumns and AddRoundKey, 

are implemented using logic blocks, Figure 31 shows 2 LUTs within a slice on a Virtex-II Pro slice. 

A result bit exits a LUT through multiplexers. An error in a logic block configuration bit controlling a 

LUT cell or a multiplexer can eventually manifest itself as an erroneous result bit of a logic operation. 

Basically, an error in logic can be considered as an erroneous combinational bit (FX, Y, F5, X in 

Figure 31) or sequential bits (YQ, XQ in Figure 31). 

 

 

Figure 31 Virtex-II Pro slice [2] 

 
The top level view of the proposed architecture providing error detection in the AES encryption 

datapath is illustrated in Figure 32.  
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Figure 32 AES including: (a) parity predictors and comparator for SubBytes result, (b) real and 

predicted parity comparator for MixColumns and AddRoundKey 

 
This section focuses on the logic blocks mapped on FPGA and error detection corresponding to 

logic blocks. In Figure 32(a), the grey elements represent AES (without showing ShiftRows that is 
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just rewiring, for the sake of simplicity) while the rest belong to error detection. Multiplexers (MUX 

A and B) select depending on the round number. In the initial round, the input plaintext is selected by 

MUX B for the initial AddRoundKey transformation while in the other rounds the output of 

MixColumns is sent to AddRoundKey. In the last round, the MixColumns transformation is skipped by 

MUX A. MUX C and MUX D select the corresponding party bits for each round .The select lines are 

derived by the control circuitry (shown in Appendix C) that mainly keeps track of the current round 

number and transformation. A block memory is used to produce the inverse in SubBytes. A dual 

ported block memory and the involution property in the inverse function motivate an attractive 

technique for error detection in SubBytes. Parity bits are used for MixColumns and AddRoundKey. 

Error detection for ShiftRows is not considered since it only cyclically shifts the rows of the state by 

different offsets (refer to Section 4.1.1). 

5.1.1 SubBytes Logic Blocks and Error Detection 

The SubBytes transformation shown in Equation (9) is the inverse function followed by the affine 

function (refer to Section 4.1.1 for more details). The inverse function is an involution. An involution 

is a type of function having the property that it is its own inverses. This is formally described in the 

following definition [82].  

 

Definition: Let S  be a finite set and let f  be a bijection from S  to S  

(i.e. :f S S→ ). The function f is called an involution if 1f f −= . An equivalent way 

of stating this is ( ( ))f f x x=  for all x S∈ . 

 

The concept of error detection for involution ciphers was first introduced in [117]. The involution 

property proposed in [117] is used to detect errors in the implementation of SubBytes using the dual 

ported block memory in this research. In Figure 32(a), the 8-bit input on the address line of Aport  is 

denoted b  ( portAaddr b= ). The 8-bit output on data line of Aport  is the inverse of b  

( ( )portAdata inverse b= ). Then ( )inverse b  is passed through the affine function, fed back through 

the inverse of the affine function, and it finally reaches the address line of Bport  

( ( )portBaddr inverse b= ). If there have not been any errors in reading the block memory or in 
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computation of affine function then data line of Bport  should show b , in other words  

( ( ( ))portBdata inverse inverse b b= = ). In other words, if portB portAdata addr≠  (or equivalently 

( ( ))inverse inverse b b≠ ) then some error, possibly multiple errors, have occurred in the block 

memory or affine function. The occurrence of errors triggers the SubBytes error flag depicted in 

Figure 32(a). 

5.1.2 MixColumns Logic Blocks and Error Detection 

An enhanced parity scheme is used for error detection of MixColumns. The goal is to detect any 

single errors in logic blocks, as opposed to detecting only the single errors in the output registers in 

previous research. In the error detection scheme, a parity bit is predicted for each 8-bit element of the 

output state of MixColumns. The MixColumns output state and 16 corresponding parity bits are 

computed in parallel. At the output registers, as is shown in Figure 32(b), real parity bits computed 

directly from the output state are compared to the corresponding predicted parity bits to detect an 

error in the 8-bit registers of the MixColumns state. There are 2 important requirements in 

implementing the enhanced parity scheme.  

� First, a single error in the logic blocks should not affect an even number of bits in an 8-bit 

element of the state.  

� Second, a single error in the logic blocks should not affect the parity prediction and output 

producing circuit simultaneously such that the error is not detected.  

If these 2 important factors are not considered in the design mapped on FPGAs there could be cases 

that a single error can be missed without being detected. Figure 33 illustrates a simple example to 

clarify the points discussed above. Assume that output bits output0 and output1 shown in Figure 33 

belong to an 8-bit element output that has a parity bit for error detection. The term outputi represents 

the ith bit of output, where output is 8-bit wide. Each LUT in Figure 33 implements a 4-intput XOR 

gate. In general, if there is an error in LUTA both output bits, output0 and output1, are affected. 

Therefore a parity bit is not able to detect that single error in LUTA. As can be seen from this 

example, the reason for this undesired outcome is the sharing of logic blocks (in this example, LUTA 

in Figure 33) in the circuit that generates an 8-bit element (output). Therefore, after mapping a design 

onto a FPGA, shared logic blocks need to be thoroughly examined to find if any of the above 2 

requirements has been violated. 
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Figure 33 Single error in LUTA causing 2 bit flips in output 

 

The FPGA mapping of MixColumns on LUTs is depicted in Figure 34. Four 8-bit elements of a 

column of input state are shown as a, b, c, and d. The MixColumns equation is expanded and 

rearranged so that it uses the smallest number of LUTs on an FPGA that contains 4-input LUTs. The 

proposed MixColumns mapping uses the smallest number of LUTs compared to previous research 

discussed in Section 6.2. In order to achieve this area optimization, the proposed architecture 

distinguishes 2 different groups of output bits in 8-bit elements as follows. 

� The output bits at positions {0, 2,5, 6, 7}  for which the ()xtime operation shown in 

Equation 22 requires only a bit shift. 

� The output bits at positions {1,3, 4}  for which the ()xtime operation shown in Equation 22 

requires a bit shift and an XOR. 

This grouping of bits in 8-bit elements of the MixColumns input column, described above, is based 

on the multiplication by 2 equation denoted function ()xtime  in Equation 22. In this equation, z  and 

'z  are 8-bit input and output elements, respectively. ()xtime  can be implemented by 3 XOR 

operations and 4 single-bit shifts. 
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Figure 34 Proposed MixColumns LUTs mapped on FPGA: (a) bit position {0,2,5,6,7}i ∈ , (b) bit 

position {1,3,4}j ∈  
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The expansion and rearrangement of MixColumns in Equation 23 is proposed for the first group 

where a bit position {0, 2,5, 6, 7}i ∈ , 1i −  is performed modulo 8, and the operator + is addition 

over 8GF . The term i i i ia b c d+ + +  is shared amongst all 4 bits ' ' ' '( , , , )i i i ia b c d  of the output 

state column. 
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 (23) 

 

Equation 23 is then mapped to 2 levels of 4-input LUTs of FPGA shown in Figure 34(a). The 

resource sharing amongst 4 rows of the state column where {0, 2,5, 6, 7}i ∈  is illustrated in this 

figure where each LUT implements the 4-input XOR function.  

Next, the MixColumns transformation is expanded and rearranged as shown in Equation 24 for the 

second group of bits where a bit position {1,3, 4}j ∈ . Figure 34(b) shows Equation 24 mapped to 2 

levels of 4-input LUTs for the second group of bits. This mapping allows 2 j j ja b c+ +  and 

2j j ja c d+ +  to be shared between the ' '( , )j ja d  and ' '( , )j jb c  output bits of the state column, 

respectively. There are totally forty three 4-input XORs in the proposed MixColumns implementation. 

The 4-input LUTs generating the 4-input XORs had to be manually instantiated to produce the 

desired LUT schematic in Figure 34 after synthesis.  
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The first consideration, in the enhanced parity scheme, is that a single error in LUTs mapped on the 

FPGA should not affect an even number of bits in an 8-bit element of the output state. To investigate 

this, logic blocks that are shared between output bits need to be carefully examined. In Figure 34, 

where each LUT is an XOR, there is no logic block sharing among bits of an 8-bit result (for instance, 

there is no LUT sharing among bits 0 1 2 3 4 5 6 7{ , , , , , , , }a a a a a a a a  in the 8-bit element a). 

However, there is LUT sharing between different 8-bit elements of a state column. For instance, 

although there is no LUT sharing between ia  and ja , there is an LUT shared between ia  and ib  in 

Figure 34. Therefore, a single error in a shared LUT is detected by different bits of the 16-bit error 

flag register. Consequently, there are not any single errors in logic blocks that affect an even number 

of bits in an 8-bit element of the state. Thus single errors are not missed and thus the first 

consideration of the enhanced parity scheme is met. 

The parity prediction that was given and proved in [76] is expanded and rearranged as shown in 

Equation 25 with respect to the 4-input LUT structure of FPGA to reduce the number of LUTs. 

, 'out zP  and ,in zP  correspond to the output and input parity bits of an 8-bit element z  in Equation 25. 
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The error detection hardware overhead is five 4-input LUTs per column of the state in the 

MixColumns transformation implemented on FPGA. 
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The second consideration is that a single error should not affect the parity prediction and output 

producing circuits simultaneously such that the error is not detected. Any single error that affects both 

logic blocks of parity prediction and output producing circuits is detected in the SubBytes error 

detection where it goes to the inverse affine functions in Figure 32(a). Consequently, there are not any 

single errors in logic blocks that affect both the MixColumns outputs and predicted parity bits without 

being detected. It should be noted that errors in routing are not considered yet and are discussed later 

in Section 5.2. 

5.1.3 AddRoundKey Logic Blocks and Error Detection 

In the logic blocks related to AddRoundKey, 1 LUT combining multiplexer MUX B and 

AddRoundKey (dashed square in Figure 32(a)) is used for each output bit results.  There is no sharing 

between logic blocks of bits in an 8-bit element (for example, there is no LUT sharing among bits 

0 1 2 3 4 5 6 7{ , , , , , , , }a a a a a a a a  in the 8-bit element a), and thus the first consideration is met.  

The parity prediction and output producing circuits do not share any logic blocks, therefore the 

second consideration is met as well. The block memory of round keys stores the parity bits for the 

AddRoundKey parity predictor in Figure 32. Consequently, any single error in a logic block related to 

AddRoundKey does not affect more than 1 output bit and is detected by the parity scheme. 

5.2 Error Detection in Routing of AES 

Since the proposed error detection of the SubBytes (refer to Section 5.1.1) is capable of detecting 

multiple errors, it does not have issues with a case where there is more than a single error whether in 
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the logic blocks or routing. Thus, any faults that cause multiple errors at the output of SubBytes are 

detected. 

However, since the parity scheme (capable of detecting singles errors only) is used in the 

MixColumns and AddRoundKey transformations, the routing needs to be investigated. Since a single 

error in the routing can affect multiple output bits, the error can be missed in error detection of output 

bits using the parity scheme. First, the error in routing is modeled in Section 5.2.1. Then this 

modeling is verified by inserting errors into a small part of the MixColumns implementation and 

observing the effects on the output bits. 

5.2.1 Error in Routing and Modeling 

This section focuses on the routing within the FPGA. Routing provides interconnections between 

logic blocks through nets [118][16]. A net contains static (non-configurable) wires, which are 

embedded in the FPGA fabric, as well as a configurable part. In a net, the configurable part which is 

called Programmable Interconnect Points (PIPs) provides connections between these static wires; a 

PIP is shown in Figure 35. 

 

 

Figure 35 Switch box and PIP controlled by SRAM cell 

 

A PIP is basically a CMOS transistor switch that can be programmed to be turned on or off by an 

SRAM cell. Switch boxes are a collection of switches located between logic blocks. This allows some 

of the wire segments incident to the switch box to be connected to others. The term pin refers to a 

physical point in the FPGA. For instance, a pin can be an input or output point attached to a LUT, 

flip-flop, or a multiplexer. A snap shot of a switch box and a PIP is shown in Figure 35 (note that pin 

connections through the switch box are provided by PIPs).  
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Since routing of a design is complex a simple yet accurate model needs to be defined so that effects 

of errors particularly soft errors can be understood. Input pins connect to logic blocks that compute 

each transformation and produce the values on 8-bit output pins of output flip-flops. Errors manifest 

themselves at pins. These pins either connect to combinational logic blocks (that can propagate an 

error) or sequential logic blocks (flip-flops that can store invalid data). Therefore, a pin fault model is 

used. Since the likelihood of multiple errors (in the context of soft errors) on input pins is extremely 

low the routing of each input pin is considered separately. 

In MixColumns and AddRoundKey, where the parity scheme is used, the only logic operation that is 

needed is XOR. An XOR operation does not mask an error. For instance, as is shown in Figure 36, a 

4-input XOR does not stop the propagation of a bit flip on its input pin (a bit flip is an error in the 

context of error detection). Therefore, combinational logic blocks propagating bit flips (or 

equivalently errors) can be ignored when the routing is being examined. 

 

 

Figure 36 XOR LUT propagating error whether (a) 0X Y Z⊕ ⊕ =  or (b) 1X Y Z⊕ ⊕ =  

 
In order to verify the pin fault model for soft errors in SRAM cells of routing, a small part of 

MixColumns is tested on the FPGA. This is discussed in more detail in the next section. 

5.2.2 MixColumns Routing and Error Detection 

The enhanced parity scheme is used in MixColumns and AddRoundKey to detect errors in the 

routing other than logic blocks. The 2 factors that are considered in the logic blocks (refer to Section 

5.1.2) should be investigated in the routing as well.  

� First, a single error in routing should not affect an even number of bits in an 8-bit element 

of the state.  
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� Second, a single error in routing should not affect the parity prediction and output 

producing circuit simultaneously such that the error is not detected.  

A design that provides any single error detection in logic blocks can have a routing circuit that does 

not achieve an overall 100% single error detection. To clarify this problem in routing, an example is 

given in Figure 37. This figure depicts a small part of a circuit that implements a parity scheme for 

two 8-bit elements. These two 8-bit elements in Figure 37 are _output a and _output b (ith bit of 

_output a is _ ioutput a ). Each 8-bit element has its own parity bit. Ignoring the routing circuitry 

in Figure 37(a), any single error in the logic blocks is detected, specifically by parity of output_b 

(thus the parity of output_a does not need to, nor will, detect the error).  

 

 

Figure 37 Routing example (a) logic blocks without considering routing, (b) actual routing detail 

showing _pin p  

Consider the pin labeled _pin p  in Figure 37(b). If a single error affects the value at _pin p  

then both 0_output a  and 1_output a  can be erroneous. In this case, since 2 bits of the 8-bit 

element _output a are flipped the parity bit is not able to detect this error. As can be seen, this 

undesirable effect is due to a multiple fanout signal (at _pin p  in Figure 37) that is connected to 

multiple bits of an 8-bit element ( 0_output a  and 1_output a ). 

This simple example demonstrates the importance of examining the effectiveness of the parity 

scheme implementation in detecting single errors in routing other than logic blocks. In this research, 

the goal is to find out all the pins leading up to potential undetectable single errors and provide a 

mitigation technique. 
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As discussed in Section 5.1.2, weaknesses of the parity scheme in logic blocks are due to resource 

sharing whereas weaknesses in routing are due to multiple fanout signals according to the pin fault 

model. In order to verify this on the FPGA, a small part of MixColumns, shown in Figure 38, is 

implemented with a multiple fanout signal at _pin p . The output bits connected to LEDs are 

observed to find if the multiple fanout signal causes this problem in routing. Figure 39 illustrates 

more detailed information i.e. slices and SRAM cells. The snapshot of the FPGA Editor is shown in 

Figure 66 and Figure 67 of Appendix H. 

 

 

Figure 38 Routing of 2 fanout signal in MixColumns tested on FPGA  

 

 

Figure 39 Detailed routing of 2 fanout signals in MixColumns tested on FPGA 
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In Figure 38, the input flip-flop is one bit result ( 4a  of 8-bit element a ) from SubBytes and the 

LUTs implement 4-input XOR operations in MixColumns. The output bits ( '
4d , '

5d , and '
5a ) are 3 

bits of the MixColumns result. Output bits '
4d  and '

5d  are 2 bits of the 8-bit element 'd . According to 

the pin fault model, if there is an error in the routing that affects both these bits ('4d  and '
5d ) it is not 

detected by the parity bit of 8-bit element d . 

5.2.2.1 Experimental Validation of Proposed Routing  Mitigation Technique 

In order to investigate the effects of single errors on FPGA, the configuration bits that control the 

routing should be manually flipped one at a time to simulate a soft error occurrence. Then the output 

bits connected to LEDs need to be observed to examine the effect of an error on the result. Other 

techniques used previously to estimate the soft error rate for a device (not a specific design 

implementation) are expensive accelerated testing using particle beams, software simulation of a 

circuit (different quantitative models based on critQ ), and estimation by real particles. In this 

research, soft errors are simulated on a specific net by flipping the relevant configuration bits and the 

effects are observed. Then the mitigation technique proposed is verified by the second soft error 

simulation on the specific net. 

The FPGA used in this research is Virtex-II Pro whose configuration file size is 34,292,768 bits 

[2]. It is important to note that the mapping of a netlist after place and route onto the configuration 

bits (or FPGA SRAM cells) is proprietary information. Therefore, there is no direct way of finding 

configuration bits that are related to the net between the flip-flops and LUTs in Figure 38 so they can 

be flipped for the experiment to simulate SEUs. 

 To overcome this problem the net is manually removed from the design netlist by the FPGA Editor 

tool and the modified configuration file is generated. Then the original configuration file is compared 

with the modified configuration file by a program written in C++.  After running this comparison in 

software there are totally 14 bits that are different in these 2 configuration files. These different bits 

indicate the bits that are related to the net (between the flip-flops and LUTs in Figure 38) that is 

removed in the modified netlist. Next, these 14 bits related to the routing are flipped one at a time. 

Figure 40 illustrates the flow to simulate SEUs in a net. 
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Figure 40 SEU simulation in net 

After each bit flip, the configuration file is downloaded on the FPGA and the output bits ('
4d , '

5d , 

and '
5a ) connected to LEDs are observed. Cyclic Redundancy Checking (CRC) is turned off during 

the configuration. The effects of single errors simulating soft errors in routing on the output bits are 

categorized in Table 5.1. 

 

Table 5.1 Effects of single errors in net including _pin p  on output bits 

output bits '
4d  '

5d  '
5a  

wrong wrong correct 

wrong correct correct 

correct wrong correct 
effects of single errors in net on output bits 

correct correct wrong 

 

As seen in the first row of Table 5.1, a single error in the routing can affect both '4d  and '
5d . In this 

case, since 2 bits of the 8-bit element 'd are affected the parity scheme does not detect the error. This 

example shows that the pin fault model while ignoring the XORs can accurately demonstrate the 

effects of single errors on the FPGA. In Figure 38, as predicted in the pin fault model a single error on 

_pin p  affects both '
4d  and '

5d . 

In general, if there are multiple output bits of an 8-bit element that are connected to a pin of a net 

that pin can lead up to undetectable single errors. Mitigating this problem requires modification in the 
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routing. However, there is not much modification that can be done on a netlist at such a fine-grained 

level by the tool. Additionally, even if this modification at the placed and routed netlist were possible 

it would make the design process tedious. 

A mitigation technique is introduced in this research that is done at the register-transfer level. The 

goal is to avoid pins causing undetectable single errors (pins to which multiple bits of an 8-bit output 

are connected) to avoid an even number of errors in the output (an even number of errors are not 

detected by the parity scheme). The proposed technique uses extra flip-flops in order to force the 

FPGA tool at the register-transfer level to eliminate these pins. For instance, Figure 41 illustrates the 

proposed technique to eliminate _pin p  shown in Figure 38. The snapshot of the FPGA Editor is 

shown in Figure 66 and Figure 67 of Appendix H. 

 

 

Figure 41 Routing with no pins leading up to undetectable errors 

 
Unlike the routing in Figure 38, there are no single errors in the routing shown in Figure 41 that 

affects '
4d  and '

5d  only. This is verified by flipping the routing bits (the workaround to find the 

related configuration bits in routing was discussed for the experiment in Figure 38) and the effects of 

single errors in the net including _pin q  is categorized Table 5.2. As seen in this table there is no 

cases in which '
4d  and '

5d  are wrong only. In the case where '
5d  and '

5a  are affected, parties of 8-bit 

elements d and a both detect the error in the net. 
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Table 5.2 Effects of single errors in net without any pins causing undetectable errors at the output 

output bits 
'

4d  '

5d  '

5a  

correct wrong wrong 

correct wrong correct effects of single errors in net on output bits 

correct correct wrong 

 

5.2.2.2 Detailed MixColumns SEU-resistant Routing 

Next, the proposed technique using extra flip-flops in routing is going to be applied throughout the 

MixColumns implementation. The first step is to find the pins leading to undetectable errors in the 

nets of MixColumns shown in Figure 34. The extra flip-flops are used to avoid these pins. 

There are 2 levels of LUTs, referred to as L for LUTs on the left and R for LUTs on the right in 

each circuit of Figure 34. The net between LUTs L and LUTs R in Figure 34(a) is connected to 4 

input ports of LUTs which define bits ' ' ' '( , , , )i i i ia b c d . Each of these bits belongs to a different 8-bit 

element ( ' ' ' ', , ,i i i ia b c d  belong to ' ' ' ', , ,a b c d , respectively). Therefore, there is no pin which has 

multiple fanout signals among bits of an 8-bit element. This holds true for the nets between LUTs L 

and LUTs R in Figure 34(b) as well. As seen in Figure 34(b), there are 2 multiple fanout signals 

connected to ( ' ',j ja d ) and ( ' ',j jb c ). Therefore, there are no pins causing undetectable errors in routing 

between LUTs L and LUTs R in Figure 34(b) either.  

Investigating signals that are not necessarily between LUT L and LUT R is more complicated. The 

available routing between an input pin and output pin of LUTs is shown in Table 5.3 to Table 5.6. 

Letters L and R are associated to the left and right LUT connected in a signal path to and connected 

directly to an output pin, respectively. For example, in row of input 7a  in Table 5.3, 7a  is connected 

to the input pin of several LUT Ls which are connected to LUT Rs to output signals  '1a , '
3a , '

4a , '
7a , 

'
7b , '

7c , '
1d , '

3d , '
4d , and '

7d  and 7a  is also connected to the input pin of three LUT R’s whose output 

pins are  '
0a , '

7a , and '
0d . Table 5.3 presents a notation for labeling of the LUTs (or equivalently 
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input pins to LUTs). In the last row of Table 5.3 for input 7a  , '
7a (L) '

7b (L) '
7c (L) '

7d (L) refers to LUT 

L connected to output bits '7a , '
7b , '

7c , and '

7d  in Figure 42. Additionally in Figure 42 '7a (R) (also 

listed in last row of  Table 5.3) refers to LUT R connected to '
7a . 

 

Table 5.3 Input nets to input pins of LUTs of 8-bit element a 

Input 'a  
'b  

'c  
'd  

0a  
'
0a (L,R), 

'
1a (L) 

'
0b (L) 

'
0c (L) 

'
0d (L), 

'
1d (L) 

1a  
'
2a (R) 

'
1b (L) 

'
1c (L) 

'
1d (R), 

'
2d (R) 

2a  
'
2a (L,R), 

'
3a (L) 

'
2b (L) 

'
2c (L) 

'
2d (L), 

'
3d (L) 

3a  
'
4a (L) 

'
3b (L) 

'
3c (L) 

'
3d (R), 

'
4d (L) 

4a  
'
5a (R) 

'
4b (L) 

'
4c (L) 

'
4d (R), 

'
5d (R) 

5a  
'
5a (L,R), 

'
6a (R) 

'
5b (L) 

'
5c (L) 

'
5d (L), 

'
6d (R) 

6a  
'
6a (L,R), 

'
7a (R) 

'
6b (L) 

'
6c (L) 

'
6d (L), 

'
7d (R) 

7a  
'
0a (R), 

'
1a (L), 

'
3a (L),

'
4a (L), 

'
7a (L,R) 

'
7b (L) 

'
7c (L) 

'
0d (R), 

'
1d (L), 

'
3d (L), 

'
4d (L), 

'
7d (L) 

 

 

Figure 42 LUT labels '
7a (L) '

7b (L) '
7c (L) '

7d (L) and '
7a (R) related to input 7a  in Table 5.3 
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The complete row of input 7a  is illustrated in Figure 43. For example, '
0a (R) refers to the LUT R 

in the middle circuit in Figure 43 (4th column of LUTs from the left), specifically LUT R whose input 

is 7a  and whose output is '0a . Similarly, '
1a (L) refers to the LUT L in the circuit on the right in 

Figure 43 whose output is routed to 2 LUT Rs one of which outputs '
1a .  

 

 

Figure 43 Input 7a  connection to output bits '0a , '
1a , '

3a , '
4a , '

7a , '
7b , '

7c , '
0d , '

1d , '
3d , '

4d , and 

'
7d through LUTs 

 

The proposed mitigation is discussed for input 7a  then the same concept is expanded for the whole 

MixColumns design. There is a potential of errors not being detected when there is a multiple fanout 

signal connecting input 7a  to the following LUTs: 

� '
0a (R), '

1a (L), '
3a (L), '

4a (L), '
7a (R)  

� '
0d (R), '

1d (L), '
3d (L), '

4d (L) 
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The input pin of the far left LUT L in Figure 43 (this LUT is referred to as  

'
7a (L) '

7b (L) '
7c (L) '

7d (L)) is not included since any single error in this 7a  net that affects the results at 

'
7a (L) and '

7d (L) is detected by the parity bits of 'b  and 'c  (LUT L is shared between bits '7a , '
7b , 

'
7d , and '

7c ), even though this error might not be detected by parity the bits of 'a  and 'd . For 

instance, an error in the 7a  net that affects '

7a (L) and '

0a (R) is not detected by the parity bit of 'a  (2 

errors are not detected by a parity bit); however the parity bits of 'b  and 'c  detect this error. The 

proposed technique, shown in Figure 44, uses extra flip-flops at the register-transfer level to prevent 

pins which cause undetected single errors in a net. For instance, in the 7a  net discussed above, the 

mapped design illustrated in Figure 44 does not have any of these pins. 

 

 

Figure 44 Proposed routing applied to net 7a  
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For further clarification, Figure 45 shows  part of the original MixColumns datapath (see Figure 

32(a) for the complete datapath) which was modified  in Figure 44. The 7a  flip-flop (resulting from 

SubBytes) in Figure 45 is copied 5 times in Figure 44 to prevent undetected single errors in routing. 

Input 7a  generates output bits '0a , '
1a , '

3a , '
4a , '

7a , '
7b , '

7c , '
0d , '

1d , '
3d , '

4d , and '
7d . The error 

checker (of Figure 44) is basically the part of datapath (in Figure 32(a)) that includes inverse affine 

function (refer to Section 5.1.1). 

 

 

Figure 45 Part of datapath (shown in Figure 32(a)) that is routed in Figure 44 

 

The multiple fanout signal 7a  in the proposed routing shown in Figure 44 is a solution which 

separates bits that cause potentially undetected single errors in the multiple fanout signal by using 

extra flip-flops. Each flip-flop in Figure 44 is connected to the input pins of the corresponding LUTs 

(from Figure 43). The multiple fanout pins (7a  result from SubBytes, P1, and P2) before the flip-flops 

in Figure 44 are not problematic pins. An error in pin 7a  is detected through the error checker. An 

error in pin P1 is detected by the parity bits of 'a , 'b , 'c , and 'd , since there is an odd number of 

them (specifically in nets '
7a (L) '

7b (L) '
7c (L) '

7d (L), '
0a (R), '

0d (R) and '
1a (L), '

1d (L) located after pin 

P1 in Figure 44 there are 3 a’ nets, '
7a (L), '

0a (R), '
1a (L), and 3 d’ nets, etc). An error in pin P2 is 

detected by the parity bit of 'a  (due to an odd number of 'a elements). 

The parity predictor does not have any multiple fanout signals in the net producing output pins 

(e.g., P0 is a multiple fanout signal connected to the error checker and none of the output pins in 
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Figure 44). Therefore, a single error in routing does not affect the parity prediction and output 

producing circuit simultaneously such that the error is not detected.  

The multiple fanout signals after the flip-flops in Figure 44 do not have any pins leading up to 

undetected single errors either. In the nets after the flip-flops, any single error in routing that affects 

multiple output bits is detected by at least one parity bit in Figure 44. This is discussed in more detail 

as follows. 

� In net '
7a (L) '

7b (L) '
7c (L) '

7d (L), '
0a (R), '

0d (R), any single error that affects input 7a  of  

LUT '
7a (L) '

7b (L) '
7c (L) '

7d (L) (this is the LUT L shown in Figure 43 for output bits '
7a , 

'
7b , '

7c , and '
7d )) is definitely detected by parity bits of 8-bit elements 'b  and 'c . Other 

single errors in this net that affect '0a (R) or '
0d (R) are detected by parity bits of 8-bit 

elements 'a and 'd . 

� In net '
1a (L) '

1d (L) shown in Figure 44, any single error is detected by parity bits of 8-bit 

elements 'a  and  'd  independently. 

� In net '
3a (L) '

3d (L), '
7a  (R) shown in Figure 44, any single error is detected by parity bits of  

8-bit elements 'a  or 'd . 

� In the '
4a (L) '

4d (L) shown in Figure 44, any single error is detected by parity bits of 8-bit 

elements 'a  and  'd  independently. 

All the multiple fanout pins investigated above confirm that all single errors are detected in the 

proposed routing for input net 7a . The proposed method is then used for the whole MixColumns 

routing for each row of Table 5.3 to Table 5.6. It should be noted that not every row in the tables has 

single errors not being detected. For instance, in the row of net 0a  of Table 5.3 (shown in Figure 47) 

there is no multiple fanout pin that can be problematic. If there is a single error in this net that affects 

the input pin at LUT '
0a (L) '

0b (L) '
0c (L) '

0d (L) (this is the LUT L shown in Figure 46 for output bits 

'
0a , '

0b , '
0c , and '

0d ) it is definitely detected by parity bits of  8-bit elements 'b  and 'c . Other single 

errors in the net are detected by parity bits of 'a  and 'd  independently. 
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Figure 46 Input 0a  connection to output bits '0a , '
1a , '

0b , '
0c , '

0d , and '
1d  through LUTs 

 

 

Figure 47 Proposed routing applied to net 0a  

The proposed method in routing is shown for the other input bits ( 1a , 4a , 5a , 6a ) with potential 

problematic pins of a mitigated in Figure 48. Similar to the routing of 0a , routing of 2a  and 3a  do 

not have any multiple fanout signals that lead to single undetected  errors.  
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Figure 48 Proposed routing applied to net 1a , 4a , 5a , and 6a  

 

Input nets of 8-bit element c  connected to output pins of LUTs in Table 5.4 have similar structure 

to that of a ; therefore the routings are similar as well. Columns that are similar in both a  in Table 

5.3 and c  in Table 5.4 are as follows: columns (1 and 3), (2 and 4), (3 and 1), and (4 and 2), 

respectively. The routings of c are shown in Figure 49. Nets 0c , 2c , and 3c  do not have any multiple 

fanout signals that cause undetected single errors.  
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Table 5.4 Input nets to input pins of LUTs of 8-bit element c  

Input 'a  
'b  

'c  
'd  

0c  
'
0a (L) 

'
0b (L), 

'
1b (L) 

'
0c (L,R), 

'
1c (L) 

'
0d (L) 

1c  
'
1a (L) 

'
1b (R), 

'
2b (R) 

'
2c (R) 

'
1d (L) 

2c  
'
2a (L) 

'
2b (L), 

'
3b (L) 

'
2c (L,R), 

'
3c (L) 

'
2d (L) 

3c  
'
3a (L) 

'
3b (R), 

'
4b (L) 

'
4c (L) 

'
3d (L) 

4c  
'
4a (L) 

'
4b (R), 

'
5b (R) 

'
5c (R) 

'
4d (L) 

5c  
'
5a (L) 

'
5b (L), 

'
6b (R) 

'
5c (L,R), 

'
6c (R) 

'
5d (L) 

6c  
'
6a (L) 

'
6b (L), 

'
7b (R) 

'
6c (L,R), 

'
7c (R) 

'
6d (L) 

7c  
'
7a (L) 

'
0b (R), 

'
1b (L), 

'
3b (L), 

'
4b (L), 

'
7b (L) 

'
0c (R), 

'
1c (L), 

'
3c (L),

'
4c (L), 

'
7c (L,R) 

'
7d (L) 

 

 

Figure 49 Proposed routing applied to net 1c , 4c , 5c , and 6c  
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The proposed routing based on Table 5.5 is used for rows of b  and is shown in Figure 50. Nets 1b , 

3b , and 4b  are not problematic. For instance, in net 1b  if there is any error that affects LUT 

'
1a (L) '

1d (L) it is always detected by the parity bit of 8-bit element 'd .  Any other error that affects 

LUTs '
2a (R), '

2b (R), or '
1c (R) is detected by parity bits of  'a  (if LUT '

1a (L) '
1d (L) is not affected), 

'b ,  or 'c , respectively. 

 

Table 5.5 Input nets to input pins of LUTs of 8-bit element b  

Input 
'a  

'b  
'c  

'd  

0b  
'
0a (L), 

'
1a (R) 

'
0b (R,L), 

'
1b (L) 

'
0c (L) 

'
0d (L) 

1b  
'
1a (L), 

'
2a (R) 

'
2b (R) 

'
1c (R) 

'
1d (L) 

2b  
'
2a (L), 

'
3a (R) 

'
2b (L,R), 

'
3b (R) 

'
2c (L) 

'
2d (L) 

3b  
'
3a (L), 

'
4a (R) 

'
4b (R) 

'
3c (R) 

'
3d (L) 

4b  
'
4a (L), 

'
5a (R) 

'
5b (R) 

'
4c (R) 

'
4d (L) 

5b  
'
5a (L), 

'
6a (R) 

'
5b (L,R), 

'
6b (R) 

'
5c (L) 

'
5d (L) 

6b  
'
5a (L), 

'
6a (R) 

'
6b (L,R), 

'
7b (R) 

'
6c (L) 

'
6d (L) 

7b  
'
0a (R), 

'
1a (R), 

'
3a (R), 

'
4a (R), 

'
7a (L) 

'
0b (R), 

'
1b (L), 

'
3b (L), 

'
4b (L), 

'
7b (L,R) 

'
7c (L) 

'
7d (L) 
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Figure 50 Proposed routing applied to net 0b , 2b , 5b , 6b , and 7b  

 
Input nets of d to output pins of LUTs in Table 5.6 are similar to that of b  therefore the routings are 

similar. In Table 5.6 and Table 5.5, similar columns of b  and d are (1 and 3), (2 and 4), (3 and 1), 

and (4 and 2), respectively. The routings of d  are shown in Figure 51. Nets 1d , 3d , and 4d  do not 

have any multiple fanout signals that lead up to undetected single errors. 

 

Table 5.6 Input nets to input pins of LUTs of 8-bit element d  

Input 'a  
'b  

'c  
'd  

0d  '
0a (L) 

'
0b (L) 

'
0c (L), 

'
1c (R) 

'
0d (L,R), 

'
1d (L) 

1d  '
1a (R) 

'
1b (L) 

'
1c (L), 

'
2c (R) 

'
2d (R) 

2d  '
2a (L) 

'
2b (L) 

'
2c (L), 

'
3c (R) 

'
2d (L,R), 

'
3d (R) 

3d  '
3a (R) 

'
3b (L) 

'
3c (L), 

'
4c (R) 

'
4d (R) 
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4d  '
4a (R) 

'
4b (L) 

'
4c (L), 

'
5c (R) 

'
5d (R) 

5d  '
5a (L) 

'
5b (L) 

'
5c (L), 

'
6c (R) 

'
5d (L,R), 

'
6d (R) 

6d  '
6a (L) 

'
6b (L) 

'
5c (L), 

'
6c (R) 

'
6d (L,R), 

'
7d (R) 

7d  '
7a (L) 

'
7b (L) 

'
0c (R), 

'
1c (R), 

'
3c (R), 

'
4c (R), 

'
7c (L) 

'
0d (R), 

'
1d (L), 

'
3d (L), 

'
4d (L), 

'
7d (L,R) 

 

 

Figure 51 Proposed routing applied to net 0d , 2d , 5d , 6d , and 7d  

5.2.3 AddRoundKey Routing and Error Detection 

As discussed in Section 5.1.3 logic blocks of AddRoundKey are separate. There is 1 LUT 

associated with each output bit of AddRoundKey. Therefore, there are not multiple fanout signals 

related to bits of an 8-bit output. Consequently, when an error propagates it is not able to affect more 

than 1 output bit and the parity scheme detects the error. 

Since the parity prediction and output producing circuits do not share any logic blocks, there are 

not any multiple fanout signals related to parity prediction and output bits either. Thus, an error is not 
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able to affect a parity bit and its 8-bit output at the same time. Consequently, the parity scheme 

detects all the single errors in the AddRoundKey implementation. 

5.2.4 Control Circuit and Error Detection 

The control circuitry, consisting of 2 state machines shown in Appendix C, generates the select 

signals to the multiplexers (MUX A, MUX B, MUX C, and MUX D) in the datapath shown in Figure 

32(a). In the proposed state machines, shift registers instead of counters are used to keep track of 

rounds and transformations. An interesting feature of the Virtex-II Pro FPGA used is that a LUT can 

be set to implement a shift register [119]. This shift register LUT can be of length 1-16. Using this 

feature keeping track of rounds uses just 1 LUT to implement. Without this feature, N number of flip-

flops (where N is the number of rounds in AES) are needed to implement an N-bit shift register. 

The control circuit affects the datapath through select signals of the multiplexers (see Figure 32(a)). 

This could make the parity scheme used in the datapath ineffective in detecting single errors since it 

can violate the 2 requirements described in Section 5.1.2. Therefore, the control circuit should also be 

considered in error detection. 

In order to ensure a single error in logic blocks does not affect multiple bits in an 8-bit element of 

the state, the control circuitry is duplicated for each bit of an 8-bit output and shared between 16 

elements of the state. Additionally, to make certain that a single error in logic blocks does not affect 

the parity prediction and output producing circuit simultaneously, the control circuitry is duplicated 

for the parity prediction. The duplications use relatively small number of resources (1 LUT is 

minimal resource used for a shift register as discussed above) compared to that of AES. Usage of 

hardware resources is discussed in Section 6.3.  Since duplication is used for the control circuitry all 

single errors are detected. 

5.3 Soft Error Resistant AES for Different Key Size s and Decryption 

In this research, the proposed error detection of AES with key size of 128 bits is expanded to the 

other versions of AES with key sizes of 192 and 256 bits. The part that is different in the AES 

algorithm with key sizes 128, 192, and 256 bits is the control circuitry. The shift register LUT 

supports length of 1-16. The maximum number of rounds is 14 for key size of 256 bits (refer to  
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Table 4.2). Since the maximum number of rounds does not exceed the maximum length of the shift 

register LUT, all key sizes use 1 LUT to keep track of rounds. 

All versions of AES with different key sizes are implemented in this research. Compared to the 

AES implementation including datapath and control circuit, the overhead of the control circuitry is 

about 2.6% and 3% in terms of flip-flops and LUTs, respectively. Overall, the overhead of hardware 

resources of the control circuitry is not significant although duplication and comparison are used for 

error detection.  

The proposed method can also benefit the AES decryption. The inverse SubBytes can directly 

benefit from the approach proposed for SubBytes, since it has a very similar structure that includes the 

inverse function implemented in a dual ported block memory (refer to 5.1.1). The inverse 

MixColumns transformation includes XOR operations (XOR propagate errors as opposed to other 

logical operations) similar to MixColumns. Therefore, the same 2 requirements in the introduced 

enhanced parity scheme (refer to 5.1.2 and 5.2.2) can be applied to the inverse MixColumns 

implementation. Inverse AddRoundKey and the control circuit also benefit from the error detection 

proposed for the AES encryption. 

5.4 Summary 

The proposed error detection technique uses some of the mathematical properties of AES and 

available hardware resources on FPGA to detect errors in SubBytes and the control circuitry 

implemented. Enhancements to the parity scheme (used for error detection in MixColumns and 

AddRoundKey) to increase its error coverage were also proposed in this research. 

The inverse function of SubBytes is an involution meaning that it is its own inverse. A dual ported 

block memory exploits this property for error detection. The inverse result is fed back to the second 

address port of the dual ported block memory. If the data on the second port is different from the 

value on the first address line, then there have been some errors. This method using the dual ported 

block memory plus the inverse of affine is used for error detection in SubBytes. 

The control circuitry uses shift registers to control the select lines of multiplexers. Shift registers 

were implemented with an interesting feature on the FPGA that implements a shift register of length 

1-16 by a single LUT. Since 1 LUT is very small in terms of hardware, duplication is used for the 

control in this research. 
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The enhanced parity scheme was used for MixColumns and AddRoundKey transformations. In 

order to increase the error coverage of the parity technique, the weaknesses of it on FPGA were first 

found in this research. The high density of SRAM cells and lack of available information (mapping of 

configuration bits onto netlist after place and route is proprietary information) make analyzing the 

effect of faults on an implementation challenging. In order to tackle this problem, the high regularity 

in the FPGA structure is exploited. The pin fault model was suggested for modeling and analysis 

when there is a wrong value in an SRAM cell due to soft errors. A small part of the MixColumns was 

tested by simulating single errors to verify this model. Simulating soft errors was achieved by 

basically flipping 1 bit at a time in the configuration file, then downloading it on FPGA and observing 

the output bits. This simple and yet accurate enough model was verified. Since FPGA has a very 

regular structure the result of the verification was expanded for the whole device. 

The parity technique covers the errors in datapath registers only. However, errors due to radiation 

can occur in any SRAM cells forming the combinational logic and routing of a design implemented 

on FPGA. Propagation of single errors was thoroughly examined in the AES netlist after place and 

route by using the pin fault model. There are 2 situations when an error can go undetected in the 

parity scheme. First, if a single error can potentially affect an even number of output bits. Second, 

errors can go undetected if both output bits and parity bit are affected by a single error. LUTs were 

designed manually in the netlist to resolve single errors being undetected in combinational logic. 

Extra flip-flops were used at the register-transfer level to tackle errors being undetected in routing on 

FPGA in this research. 

In the next chapter, experimental results of different implementations on FPGA and comparisons 

with the proposed design are provided. The coverage of soft errors in all the techniques implemented 

is also discussed. 
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Chapter 6 

Comparison with Previous Research 

In this chapter, the proposed error mitigation approach to AES is compared with previous research. 

To support a fair quantitative comparison, previously researched architectures were implemented in 

the same technology as the proposed AES architecture. The error coverage of the proposed technique 

is compared with previous parity schemes and DMR. Additionally, as the new proposed part of AES, 

the new implementation of MixColumns, is compared with the state of the art. Comparisons of the 

number of LUTs and flip-flops, block memory size, clock frequency, throughput, and power 

consumption are provided. 

6.1 AES Hardware Design 

There have been numerous hardware (FPGA and ASIC) implementations proposed for AES since 

it was accepted in 2000. Each design typically focuses on one or more constraints i.e. throughput, 

area, or power and also must target a specific technology. The relevant architectural designs in this 

research have been implemented in order to provide a fair and exact comparison utilizing the same 

technology and are discussed in detail in the sections that follow. Moreover, this section reviews 

some of the previous research from a general hardware design perspective. 

There have been mainly 3 different datapath widths (128 bits [98][120][121], 32 bits [115][122], 

and 8 bits [123][124][125][126, 127]) for the AES architecture. Obviously, wider datapaths aim for 

higher throughput while narrower datapaths typically target reducing area and power. Hardware 
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resources are reused in narrow datapaths to reduce area. This lowers the level of parallelism and thus 

reduces performance (throughput) [121].  

Since the AES algorithm has an iterative looping structure (Figure 52(a)), loop unrolling illustrated 

in Figure 52(b) can be used to increase the level of parallelism for high performance applications. 

Therefore, throughput can improve by this technique. However, this comes at a price as hardware 

resources are increased by approximately the number of times the loop is being unrolled [98] 

[120][121].  

 

 

Figure 52 Higher level of parallelism provided by loop unrolling: (a) AES iterative looping structure, 

(b) N-time loop unrolling [121] 

 

Throughput is computed as shown in Equation 26 where N is the number of times that the loop is 

unrolled. As seen in Equation 26, loop unrolling can significantly improve throughput. If a design is 

fully unrolled, then N is equal to the number of rounds and the maximum throughput is achieved at 

the cost of approximately N times the area. Furthermore, round transformations can be pipelined to 

increase the clock frequency [98] [120][121]. 
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128. .clkf N

throughput
number of rounds

=  (26) 

 

Experimental results of some of the previous research are presented in Table 6.1 and briefly 

discussed without going into specific details of each architecture.  

 

Table 6.1 AES previous implementations 

 Technology Area 
Block 

memories 

Clock 
frequency 
in MHz 

Throughput 
in Gbit/s 

Power 
consumption 

Good et al. [98] 

encryption/decryption 

Spartan-III 

XC3S4000-5 
20720 
slices 

- 240.9 30.83 - 

Good et al. [98] 

encryption/decryption 

Virtex-II 

XC2V8000-5 

 

31674 

slices 
- 222.8 28.52 - 

Hodjat et al. [120] 

encryption 
Virtex-II Pro 

8285 

LUTs 
84 168.3 21.54 - 

Hodjat et al. [120], 
SubBytes in 

composite fields 

encryption 

Virtex-II Pro 
22358 

LUTs 
- 

168.3 

 

21.54 

 
- 

Zambreno et al. [121] 

encryption 
Xilinx 

XC2V4000 
16938 

slices 
- 184.1 23.57 - 

Mozaffari et al.[113] 

encryption 
Virtex-5 

9806 
slices 

- 482.998 61.8 - 

Mozaffari et al. 
[114], parity for 

SubBytes 

encryption 

Virtex-II Pro 
9405 
slices 

- 60.8 - - 

Yu et al. [115] 

encryption/decryption 
0.18µm 
CMOS 

10.9k 
gates 

- - 0.112 - 
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Good et al. [123] 

encryption 
0.13µm 
CMOS 

5.5k 
NAND 
gates 

- 100 - 
692µW at 

0.75V 

Chang et al. [124] 

encryption/decryption 
Spartan-II 

200 
slices 

2 38.5 0.031 - 

Haghighizadeh [125] 

encryption/decryption 
0.18µm 
CMOS 

5.5k 
NAND 
gates 

- 128 0.102 49µW  

Hamalainen et al. 
[127] 

encryption 

0.13µm 
CMOS 

3.1k 
NAND 
gates 

- 152 0.121 37µW 

Dalmisli et al. [126] 

encryption 
Spartan-III 

294 
slices 

- 142.8 0.0147 43mW 

Dalmisli et al. [126] 

encryption 
Spartan-III 

299 
slices 

- 68.9 0.013 26mW 

  

Previous researchers in [98] [120][121] aimed at high performance. Design [120] (row 5 in Table 

6.1) uses composite field 4 2((2 ) )GF  for the SubBytes transformation while SubBytes in row 4 is 

memory based. 

The parity for S-box was proposed in [113] for error detection. Distributed RAMs were used for 

implementing SubBytes. Their results seem to be after XST synthesis and not place and route. In 

[114], the composite field SubBytes and its inverse were divided into blocks and the predicted parities 

of these blocks were computed. Optimum solution for the composite field in terms of overhead was 

found through exhaustive search. 

Researchers in [115] used a 32-bit datapath for a compact ASIC implementation of AES. To 

provide error detection, S-boxes were duplicated and parity bits were used for other AES 

transformations. 

Research [123][124][125][126, 127] proposed different architectures for the 8-bit datapath aiming 

at reducing area and power. Results have been reported on various technologies including CMOS and 

FPGAs. 
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6.2 Experimental Results of MixColumns 

Previous equations of MixColumns presented in Section 4.3.2 are implemented in FPGA 

technologies for a fair comparison with the proposed design (refer to 5.1.2). As discussed in 4.3.2, the 

MixColumns in [98, 102],  [112], and [108, 109] used Equation 20, Equation 12, and Equation 21, 

respectively. 

The experimental results use the Xilinx Virtex-4 FPGA (target device: xc4vlx15-10ff668) as well 

as Altera Cyclone (target device: EP1C3T144C6). These FPGAs use 4-input LUTs as function 

generators. Manual instantiation was used to prevent further modification by the tool (due to 

optimization) and the netlist was verified after place and route.  

 The number of LUTs and the corresponding LUT savings for the MixColumns implementations 

are shown in Table 6.2. The input and output signals are 32-bit columns of the state. As observed in 

Table 6.2, improvements are more significant in case of the Xilinx synthesizer than Altera 

synthesizer, since they use different mapping algorithms. The LUT savings on Virtex-4 and Cyclone 

FPGAs are at least 20% and 10%, respectively. 

 

Table 6.2 Experimental results of MixColumns implementations on FPGA 

MixColumns 
implementations 

# of LUTs 
on Virtex-4 

% of LUTs of 
LUT savings 

Virtex-4 

# of LUTs on 
Cyclone 

% of LUT 
savings on 
Cyclone 

Proposed 
MixColumns 

43 - 43 - 

MixColumns in [98, 
102] 

56 23.21 51 15.68 

MixColumns in [112] 54 20.37 48 10.41 

MixColumns in [108, 
109] 

55 21.28 51 15.68 

 

6.3 Experimental Results of AES with Soft Error Mit igation 

As illustrated in Figure 53, previous research in error detection using the parity scheme in AES 

[76-78] focuses mainly on covering errors occurring in datapath registers. The Hamming code with 8 

data bits and 4 check bits (12-bit codeword) for single error correction in AES was suggested in [75]. 
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As shown in Figure 54, the Hamming code in [75] also considers errors happening only in the 

datapath registers. 

 

 

Figure 53 Error coverage of single errors using parity in previous research 

 

 

Figure 54 Error coverage of errors using Hamming code in previous research 

 

These techniques do not provide error coverage for other logic and routing elements. They do not 

cover any errors happening in the control circuitry either. SEUs affect all the hardware resources 

(logic elements such as LUTs and SRAM switches controlling routing) on an FPGA. SETs can also 

generate glitches in the combinational logic and routing of a design implemented. Therefore, these 

methods covering errors in datapath registers are not sufficient for an implementation on FPGA. 
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However, they provide sufficient error coverage caused by SEUs for the datapath of an ASIC 

implementation, since SEUs cause errors only in flip-flops on ASIC (refer to Section 3.4). Other 

hardware modular redundancy techniques such as DMR and TMR (refer to Section 3.2) provide 

coverage for multiple errors but they are expensive and the likelihood of having multiple soft errors is 

extremely low. 

It should also be noted that the concurrent error correction capability of techniques such as the 

Hamming code and TMR can be affected on FPGA when SEUs occur. These error correcting 

techniques can potentially lose their effectiveness (correct functionality), since an SEU can affect the 

functionality of the correction circuitry. Additionally, SEUs keep accumulating on FPGA until it is 

reconfigured. Due to unknown outcome of concurrent correcting techniques in previous research, re-

computation of the last input after reconfiguration of FPGA is suggested in this research. A 

reconfiguration is done when an error is detected (refer to Appendix B). 

SEU and SET occurrences are random in time and space. The likelihood of multiple SEUs or SETs 

happening in 1 clock cycle is extremely low. Among detection techniques, the parity scheme is the 

lowest cost (in terms of hardware resources) and potentially adequate choice that matches the nature 

of SEU and SET occurrences. 

In this section, the experimental results show usage of hardware resources, timing information, 

power consumption, and detection and correction capabilities in some of the relevant techniques in 

previous research and the proposed design. All these techniques have been implemented on the same 

FPGA (Virtex-II Pro device: xc2vp100-6ff1704) to provide a fair basis for comparing the results. 

There have been different approaches for the SubBytes in composite fields [98-102][103, 104]. Since 

the implementation of SubBytes [102] in composite fields in this research is not heavily pipelined to 

achieve the highest frequency, it is not expected to have significantly different results from 

approaches other than [102]. 
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Table 6.3 Results of different designs of parity scheme in AES 

Designs using 
parity scheme in 

AES 

# of 
LUTs 

# of 
flip-
flops 

Utilization of 
block 

memories 

Clock 
frequency 
in MHz 

Throughput 
in Gbit/s 

Total power 
consumption in 

mW 

Proposed AES 
with enhanced 
parity scheme 

1188 1126 4% 186.7 2.39 865.60 

Composite fields 
AES in [102] with 
parity (SubBytes 
parity in [77]) 

2363 662 1% 145.9 1.86 4136.22 

Memory based 
AES [76]  

665 516 8% 215.1 2.75 641.48 

 

Researchers in [77] provide the parity prediction formula, shown in Equation 27, for an 8-bit 

element b  input to SubBytes. In this equation, symbol 1 _ inputδ −  is the input to function 1δ −  for 

isomorphic mapping (refer to Figure 29). The indexes indicate bit position in an 8-bit 1 _ inputδ −  in 

Equation 27 (for instance, 1
0_ inputδ −  is bit 0). This parity prediction formula can be used in the 

SubBytes that is implemented using composite fields. The SubBytes in composite fields suggested in 

[102] and parity predictions in [77] and Equation 27 are implemented on the FPGA in VHDL. The 

results are shown in Table 6.3.  

 

 

1 1 1
0 1 2

1 1
4 6

_ ( ) _ _ _

_ _

parity SuBytes b input input input

input input

δ δ δ
δ δ

− − −

− −

= + + +

+
 (27) 

 

It should be noted these results, except for the throughput and clock frequency, are overly 

optimistic for the composite field implementation of AES encryption since this design can be further 

pipelined thus adding a large number of flip-flops to the 128-bit datapath. As expected, the 

implementation in composite fields uses the largest number of LUTs in order to achieve a high 

throughput if it is heavily pipelined. 
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The parity coding for error detection is used in [76] with a memory based implementation of 

SubBytes. In a memory based SubBytes, an S-box alone is implemented by a 256x8-bit block memory 

for each 8-bit element of the state. In order to generate the predicted parity bit, a parity bit is added 

for each 8-bit element in [76]. The parity bit is also added to the address line of the memory to detect 

single errors at the output of AddRoundKey (input to SubBytes). If the output of the AddRoundKey is 

wrong a deliberate wrong content (e.g., 000000001) is stored in the memory. Overall, a 519x9-bit 

block memory is used for SubBytes with parity coding in [76]. 

Another part of the block memory that is partially covered against errors in [76] is the address 

decoder. A single error in the decoder causes the wrong memory location to be accessed. However, 

the content of this address has a valid parity bit. In order to mitigate this, adding a separate 256x1-bit 

block memory was suggested in [76]. This stores an extra set of parity bits for 8-bit SubBytes values. 

Each parity bit from the 519x9-bit memory is compared to the parity bit from the 256x1-bit block 

memory to find an error in the decoder. The detection in this method provides error coverage of 50% 

for single errors in the block memory decoder, since there is still a probability of 0.5 that both parity 

bits match while the wrong address is accessed. 

The MixColumns parity prediction used for all the designs is shown in Equation 25 [76]. The parity 

prediction of AddRoundKey is the XOR of the input parity and key parity.  

The proposed design of AES with the enhanced parity scheme has about the same number of LUTs 

and flip-flops. The balance between the number of LUTs and flip-flops is still reasonable in terms 

resource utilization since there is 1 flip-flop for each LUT on the FPGA. The number of flip-flops is 

larger than other implementations since data (output of AddRoundKey) need to be delayed for the 

equality comparator shown in Figure 32(a) and the routing is controlled by flip-flops as well. The 

largest number of LUTs is in AES in composite fields [102] with SubBytes parity [77] and 

MixColumns parity in Equation 25 (row 2 in Table 6.3); it has about double the number of LUTs than 

the proposed AES with the enhanced parity scheme. Implementation of [76] has the highest block 

memory utilization on the FPGA due to extra block memories needed to store the parity of SubBytes.  

In the proposed AES with the enhanced parity scheme, there is about 13% reduction in the clock 

frequency and throughput compared to implementation of [76]. The post place and route static timing 

analysis shows that the second port of the dual ported block memory to the output of the 8-bit equal 

comparator is the critical path.  
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In order to estimate power consumption, the same random input data generated by function 

UNIFORM() in VHDL at the clock frequency of 100 MHz is used in all the implementations. Static 

power consumption is constant 204.38mW for the FPGA. Implementation of [76] has the lowest 

dynamic and total power consumption since it uses the largest number of block memories instead of 

LUTs for computations. 

It should be noted that the overhead of the control circuitry compared to the overall AES 

implementation is about 2.6% and 3% in terms of flip-flops and LUTs, respectively. Although 

duplication and comparison are used for error detection, the overhead of hardware resources of the 

control circuitry is not significant. 

The error coverage of SEUs for different parity designs are shown in Table 6.4. In the proposed 

design using the enhanced parity scheme, the propagation of an error from logic and routing resources 

to the output bits has been thoroughly investigated (refer to Chapter 5). In this research, error 

detection is incorporated in the design process rather than being added as an after part. It is ensured 

that a single error in logic or routing resources does not affect an even number of bits in an 8-bit 

register of the state. It is also made certain that a single error in logic or routing resources does not 

affect the parity prediction and output producing circuit simultaneously such that the error is not 

detected. The control circuitry using minimal hardware resource (1 LUT for one-hot encoding) is 

duplicated for error detection. Thus, single errors due to SEUs in combinational and sequential 

elements of datapath, control circuitry, and routing are detected. 

Through analyzing and classifying the errors caused by SEUs in research [17], it is concluded that 

about 78% to 84.8% of the failures are due to SEUs in routing while the remaining approximately 

20% are due to upsets in logic excluding registers (researchers in [17] focused on configuration bits 

of the FPGA). This indicates the importance of mitigating SEUs in routing. 
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Table 6.4 Error coverage of single SEUs on FPGA 

 

Errors in 
combinational 

logic of datapath 
due to SEUs 

Errors in 
routing 
due to 
SEUs 

Errors in 
flip-flops of 
datapath due 

to SEUs 

Errors in 
combinational/sequential logic 
and routing of control circuitry 

due to SEUs 

Proposed AES 
with enhanced 
parity scheme 

Detected Detected Detected Detected 

Composite fields 
AES in [102] 
with parity 

(SubBytes parity 
in [77]) 

Not detected 
Not 

detected 
Detected Not detected 

Memory based 
AES [76] with 

parity 
Not detected 

Not 
detected 

Detected Not detected 

 

An SET, being equivalent to a glitch, can propagate through the combinational logic and get stored 

in result flip-flops. As opposed to SEUs, SETs do not change the functionality of the combinational 

logic on FPGA. They can potentially change the output flip-flops for 1 clock cycle. Since glitches in 

the combinational logic or routing are not considered in previous research, using the previous parity 

schemes, an SET can potentially propagate through to flip-flops of the output and parity bits. These 

single errors due to SETs are not detected in previous research. 

Propagation of single errors in combinational logic as well as routing is thoroughly investigated in 

the proposed design (refer to Chapter 5). It is ensured that an SET (glitch) does not affect an even 

number of output flip-flops or the parity and output flip-flops simultaneously such that an error 

caused by an SET can escape undetected. The routing is controlled by using extra flip-flops at the 

register-transfer level, since it is not possible to change the routing at a fine-grained level after place 

and route. Therefore, single errors caused by SETs are detected in sequential logic of datapath and 

control circuitry in the proposed design as is shown in Table 6.5. 
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Table 6.5 Error coverage of single SETs on FPGA 

 
Errors in sequential logic of 

datapath due to SETs 
Errors in sequential logic of 
control circuitry due to SETs 

Proposed AES with enhanced parity 
scheme 

Detected Detected 

Composite fields AES in [102] with 
parity (SubBytes parity in [77]) 

Not detected Not detected 

Memory based AES [76] with parity 
50% only in the block 

memory (S-box) decoder 
Not detected 

 

Overall, the proposed technique drastically expands the soft error coverage of parity coding to both 

logic and routing resources of datapath and control circuitry on an FPGA. 

The DMR method is also implemented for further comparisons with the proposed approach. Table 

6.6 shows the experimental results. In order to provide the redundancy in DMR, all the resources (i.e. 

I/O pins, logic resources, and block memories) have to be duplicated. It should be noted that the S-

box is used in DMR (SubBytes is memory based in DMR) since the inverse and affine functions do 

not need to be separated, as opposed to the proposed AES with error detection. 

 

Table 6.6 Experimental results of DMR and proposed enhanced parity approach 

 
I/O 
pins 

# of 
LUTs 

# of 
flip-
flops 

Utilization 
of block 
memory 

Clock 
frequency 
in MHz 

Throughput 
in Gbit/s 

Total power 
consumption in 

mW 

Proposed 
AES with 
enhanced 

parity scheme 

339 1188 1126 4% 186.7 2.39 865.60 

DMR 451 1233 865 9% 177.3 2.26 846.78 

 

Compared to the proposed technique, there is about 33% and 3.8% increase in I/O pins and LUTs, 

respectively, in DMR. Block memory utilization in DMR is more than twice compared to that of the 

proposed AES with enhanced parity scheme. The clock frequency and throughput is about 5% higher 
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in the proposed technique than DMR. There is also slight decrease of about 2% in the total power 

consumption of DMR than that of the proposed technique, since manual instantiation of LUTs and 

flip-flops slightly increase the power consumed by logic and routing.  

The proposed design has a relatively large number of flip-flops since the output of AddRoundKey 

needs to be delayed and the routing is also controlled by flip-flops to expend the error coverage of the 

parity scheme. One solution to enhancing routing for the parity scheme without using flip-flops could 

be defining new implementation constraints to the tool in the future work. The enhancement in 

routing refers to removing the pins that lead up to undetected single errors (refer to Chapter 5). 

Implementation constraints are instructions that are given to software tools to direct different steps 

such as placement and routing in the design flow. For instance, locations constraints define the 

absolute or relative location of a design element on FPGA for the placement tool in Xilinx. In general, 

implementation constraints are placed in a constraint file or in the HDL code. Therefore, specifying 

constraints at the high level does not make the design process tedious. The subject of adding new 

constraints in the tool to control the pins along multiple fanout signals can be further investigated in 

future work. 

DMR provides multiple error coverage in all parts of design implemented but this is not necessary 

for soft errors, since the likelihood of multiple errors in 1 clock cycle in an implementation is 

extremely low. Therefore, the expensive feature of multiple error coverage is not needed to provide 

reliability. However, it is important to provide complete error coverage for single errors since the 

likelihood of single errors is high. This is provided in the proposed design using the enhanced parity 

error detection. 

In this research, round keys are stored in a block memory. The operations in key expansion 

generating round keys are SubBytes and shifts and XORs (key expansion pseudo code is given 

Appendix G). If round keys are to be computed they can use the similar error detection technique 

used for the SubBytes. In the control circuitry of key expansion, the same technique implementing 

shifts by LUTs and using duplication for the minimal hardware can be applied (refer to Section 5.2.4). 

NIST approved modes such as CFB, OFB, CTR (confidentiality modes), CMAC (authentication 

mode), and CCM (authenticated encryption mode) directly benefit from the proposed AES with error 

detection. In the other authenticated encryption mode, GCM, multiplication in GHASH needs to be 

investigated against soft errors. This multiplication is in the Galois field of 1282  elements. The parity 
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technique and duplication should be compared in terms of costs for the right selection. There are 

various techniques for Galois field multiplication investigated in [106]. 

6.4 Summary 

The proposed AES with enhanced parity scheme was compared with other implementations of 

AES using the parity scheme. Overall, in terms of LUT and block memory utilization the proposed 

technique does not exceed the composite fields and memory based implementations, respectively. 

Compared to composite fields [102][77] and memory based [76] implementations of AES, the 

proposed design uses about half the number of LUTs and block memories, respectively. Compared to 

the memory based AES, there is about 13% reduction in the clock frequency and throughput. The 

memory based AES had about 25% less power consumption than the proposed design.  

DMR was also implemented for further comparisons. Compared to the proposed design, the DMR 

approach has about 33%, 3.8%, and 100% increase in I/O pins, LUTs, and block memories, 

respectively. The clock frequency is about 5% higher in the proposed design than DMR. There is a 

slight decrease of about 2% in power consumption of DMR than the proposed implementation. 

The most noticeable drawback in the proposed design experimental results was the relatively large 

number of flip-flops overall. This is due to delaying of the output of AddRoundKey to be 

synchronized with the dual ported block memory. Additionally, the routing has been controlled by 

flip-flops at the register-transfer level. However, since the number of flip-flops is not greater than that 

of LUTs this is still not an unbalanced design practice. 

Compared to previous AES designs using the parity scheme for error detection, the proposed 

technique significantly expands the soft error coverage from datapath registers to both logic and 

routing resources of datapath and control circuitry on FPGA. DMR provides multiple error coverage 

in all parts of design implemented. However, this is not necessary in the case of soft errors since the 

likelihood of multiple errors in 1 clock cycle is exceedingly low. Therefore, the proposed AES with 

enhanced parity scheme provides a low cost adequate method. 
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Chapter 7 

Discussion and Conclusion 

This research presented a new design for reliability of the symmetric-key algorithm AES in 

FPGAs. The AES algorithm is highly sensitive to errors by nature. For instance, a single-bit flip in the 

early rounds of AES encryption is expected to in 50% erroneous bits in the output [76]. This indicates 

a good diffusion in the AES algorithm. Diffusion is a desirable property for a strong cryptographic 

algorithm; however it becomes a critical issue in error propagation and especially reliability of AES 

in the FPGA. Reliable implementations of the error sensitive AES in the FPGA is important since 

FPGAs are prone to soft errors caused by radiation. Energetic particles hitting a device can flip 

SRAM cells controlling all aspects of the implementation in a dense SRAM-based FPGA. For 

instance, a Virtex-II Pro FPGA contains 34,292,768 SRAM cells [2]. Different error detection 

techniques based on properties of the circuit and AES transformations were used to provide adequate 

reliability at the lowest possible cost. Dual-ported block memory for SubBytes, duplication for the 

control circuitry, and the proposed enhanced parity technique for MixColumns were used. In this 

research, propagation of single errors was investigated in the placed and routed netlist. Weaknesses of 

the previous parity techniques were researched. Flip-flops at the register-transfer level were 

introduced to resolve undetected single errors in the routing. LUTs were designed for MixColumns 

with minimum number of LUTs to prevent undetected single errors in the combinational logic. 



Chapter 7: Discussion and Conclusion 
 

 112 

The peculiar effects of soft errors in a design implemented on SRAM-based FPGA were 

investigated. Furthermore, the errors caused by these faults in ASIC and FPGA were compared. Logic 

blocks in the combinational logic as well as routing of the FPGA are controlled thoroughly by SRAM 

cells. Therefore, SEUs can affect the combinational logic and routing on the FPGA and are not 

eliminated until a reconfiguration is done. This effect does not happen in an ASIC. Since the 

combinational logic and routing on ASIC do not have any storage elements, SEUs can only affect 

flip-flops. Previous research [75][76][77] on mitigating soft errors in the AES implementations 

(primarily focusing on datapath registers) did not consider all aspects of soft errors in the FPGA. 

A dual ported block memory and the inverse function of SubBytes were used for error detection in 

this transformation of AES. Unlike previous research [76][77] using a parity scheme for every AES 

transformation, mathematical properties of SubBytes and dual ported block memory were used to 

expand soft error coverage from datapath registers to combinational logic and routing in the FPGA. 

The control circuitry uses shift registers (one-hot encoding) to control the select lines of 

multiplexers. Shift registers were implemented by a single LUT. Since 1 LUT is the minimal 

hardware resource, duplication was used for the control circuitry to provide error detection in this 

research. Error detection for the control circuitry was not considered in previous research 

[75][76][77]. 

Since soft errors threatening the reliability of FPGA implementations occur randomly and the 

likelihood of multiple errors in 1 clock cycle is exceedingly low, the low cost parity scheme is a 

suitable error detection technique. Previously, a parity scheme was used for error detection in 

registers of datapath and block memories in AES implementation. However, the parity schemes in 

previous research [76][77] did not cover errors occurring in the logic blocks, routing, and control 

circuitry. 

In this research, novel enhancements to a parity scheme were introduced and applied to the 

MixColumns transformation. Unlike previous research, the enhancement proposed at the register-

transfer level increases the error coverage of a parity scheme from the datapath flip-flops to logic 

blocks, and routing. This is important since not only flip-flops can be target of soft errors but also 

SRAM cells building logic blocks and routing can be affected.  

Soft errors on FPGA were modeled using the pin fault model, verified by simulating errors in the 

implementation. In order to simulate SEUs, bits were flipped in the configuration file one at a time. 
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Then the configuration file simulating SEUs was downloaded on the FPGA. Since the mapping of the 

netlist after place and route in the configuration file is proprietary information, the challenge was to 

find the configuration bits that were related to a specific net. To overcome this challenge, the net was 

removed from the netlist manually after place and route and the modified configuration file was 

generated. The original and modified configuration files were compared to find the bits related to the 

specific net that was removed. Then each bit of the net was flipped one at a time to produce the 

configuration file simulating SEUs. Finally, the output bits of this implementation containing a soft 

error were observed. The pin fault model was confirmed by simulating SEUs. 

The pin fault model was used to find the weaknesses of a parity scheme. Weaknesses include 2 

cases: 1) a single error affects an even number of bits in an 8-bit element of the state and 2) a single 

error affects the parity prediction and output producing circuit simultaneously such that the error is 

not detected. These weaknesses were investigated in 2 separate phases: logic blocks and routing. In 

logic blocks, to avoid the 2 cases, LUTs were examined thoroughly. LUTs were designed manually if 

found to contain any weaknesses that were the result of LUT sharing between output bits having the 

same parity bit. Therefore, sharing of LUTs was modified to eliminate the weaknesses (refer to 

Section 5.1.2). 

In the routing phase, the weaknesses caused by multiple fanout signals connected to output bits 

having the same parity bit were investigated. Manually changing of multiple fanout pins in a net at 

the fine-grained level is not possible with the available FPGA tools after place and route. Therefore, 

modification of the routing became a challenge. To overcome this obstacle, extra flip-flops were 

inserted at the register-transfer level to manually change the way pins were formed along a multiple 

fanout net. This modification was verified by simulating SEUs (flipping 1 bit at a time in the 

configuration file) for a small part of MixColumns. Then this was expanded for all the output bits 

protected by the parity bit. The proposed enhanced parity scheme in this research expands the error 

coverage to combinational logic and routing. 

 The insufficiency of known error correction techniques such as TMR and Hamming code [75] on 

FPGAs was pointed out and self reconfiguration was suggested instead. This was designed and 

implemented as a system on chip that communicates with the host PC to trigger reconfiguration of 

FPGA. The hardware part of this system was implemented using the PowerPC 405 processor and the 

UART IP core and implementing master, slave, and interrupt attachments in the proposed AES 

module with error detection. In case of an error, the AES module interrupts the PowerPC 405 
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processor that sends the error message to the host PC through the serial communication. Then the host 

PC interrupt handler performs JTAG boundary scan configuration on the FPGA. The software part of 

this system on chip was programming device drivers for the PowerPC 405 processor and host PC.  

To provide fair comparisons, different approaches providing error detection for AES were 

implemented on the same platform. Unlike previous AES designs using a parity scheme for error 

detection, the proposed technique significantly expands the soft error coverage from datapath 

registers to both logic and routing resources of datapath and control circuitry on FPGA. When 

compared with the AES in composite fields [102] with the parity scheme [77], the proposed design 

uses about half the number of LUTs. The other implementation of AES [76] that is memory based 

utilizes twice the block memories used in the proposed implementation. The routing of the dual 

ported block memory is the critical path in design of this research. There is about 13% reduction in 

the clock frequency and throughput compared to [76]. Since the memory based AES relies heavily on 

block memories to provide various computations it has about 25% less power consumption than the 

proposed design. 

In addition to the parity schemes, DMR was implemented for further comparisons. The DMR 

implementation compared to the proposed design has about 33%, 3.8%, and 100% increase in I/O 

pins, LUTs, and block memories, respectively. The clock frequency and throughput is approximately 

5% higher in the proposed design than DMR. Since the DMR approach relies more on block 

memories (SubBytes as opposed to inverse is computed completely using block memories), there is a 

slight decrease of about 2% in power consumption of DMR compared to the proposed 

implementation. DMR detects multiple errors having extremely low likelihood in case of soft errors. 

Unlike DMR, the proposed AES with enhanced parity scheme provides low cost adequate method 

that covers single errors.  

The number of flip-flops in the proposed implementation is the largest amongst all. The flip-flops 

are used to delay the input of the dual ported block memory and also control routing at the register-

transfer level. Nevertheless, the number of flip-flops is not greater than that of LUTs, and thus this is 

still a balanced design practice. 

The main goal of error detection was reliability in this research. However, the proposed technique 

may also be applied against cryptanalysis of AES with certain assumptions. Multiple errors are 

detected in the SubBytes transformation. Therefore, the proposed error detection technique may 
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thwart faults attacks where multiple attacks are injected during SubBytes. Detection of a single or an 

odd number of errors is provided in MixColumns and AddRoundKey transformations. Hence in cases 

where the number of errors in these two AES transformations is not always even, the proposed 

method may be applied. Thus attacks such as [20] (a fault is injected after the initial AddRoundKey) 

or the first attack in [30] (a fault injected at the beginning of the final round) may be thwarted by the 

proposed technique. 

Reliability of the AES implementation is a critical issue especially in large scale systems using 

multiple FPGAs and space applications.  In these types of applications, soft error resistant design is 

an important concern. For the first time this research has proposed a heterogeneous error detection 

approach utilizing properties of the circuit and functionality in order to provide adequate reliability at 

the lowest possible cost. Unlike previous research, architectural redesign at the register-transfer level 

was introduced to resolve undetected single errors in both the routing and the combinational logic. 

This research is important for providing soft error resistant design for FPGAs in applications which 

are crucial for many secure space and terrestrial applications. 

7.1 Future Work 

Future work in this research will mainly proceed in 3 different directions: (a) adding enhanced 

features to software tools, (b) exploiting the proposed technique on ASIC for SETs (glitches that 

potentially cause errors), and (c) examining other reconfiguration techniques. Propagation of errors in 

routing from an input net to output bits after place and route was investigated manually in this 

research. This can be incorporated and automated as a feature in the software tools. Therefore, the 

process of finding the pins that lead up to undetected single errors can be speeded up. An error at 

these pins can potentially affect an even number of output bits or both the parity bit and output bits, 

and thus go undetected in the parity scheme. The process of simulating SEUs in the combinational 

logic or routing of an implementation can also be provided as another feature. Therefore, the designer 

would be able to see the effects of soft errors on outputs. 

The way pins are modified in multiple fanout nets is by manually inserting extra flip-flops. The 

modifications basically include grouping of outputs bits connected to a pin in a multiple fanout net by 

using the extra flip-flops. This results in an increase in the number of flip-flops. In order to improve 

this, software tools should allow fine-grained control and modification over pins in multiple fanout 

nets in the design flow. Therefore, the numbers of flip-flops used could be reduced. 
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Implementations in ASICs do not suffer from SEUs in the combinational logic or routing. 

However, there is still the issue of SETs propagating through logic paths and getting stored in 

registers. Since clock frequencies continue to increase, this problem remains important as technology 

advances. The proposed technique can be further used in AES implemented in ASICs to mitigate 

SETs. 

In this research, JTAG boundary scan configuration mode was used in the FPGA. Partial 

configuration that involves determining which frames (a frame is the smallest segment of 

configuration memory space) to reconfigure can also be investigated to examine possible delay 

reductions. Remote reconfiguration that includes the Ethernet port, SDRAM, and external Flash is 

also an interesting topic to be further studied. 
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Appendix A 

Glossary of Acronyms 

AddRoundKey add round key transformation 

AES Advanced Encryption Standard 

ALU Arithmetic and Logic Unit 

ASIC Application Specific Integrated Circuit 

BPSG borophosphosilicate glass 

CBC mode cipher block chaining mode 

CCM mode counter with cipher block chaining-message authentication code mode 

CCSDS Consultative Committee for Space Data Systems 

CFB cipher feedback 

CMAC mode cipher-based message authentication code mode 

CRC Cyclic Redundancy Checking 

CTR mode counter mode 

DES Data Encryption Standard 

DFA Differential Fault Analysis 

DMR Double Modular Redundancy 

DRAM Dynamic RAM 

ECB mode electronic codebook (ECB) mode 
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FIT Failure In Time 

FPGA Field Programmable Gate Arrays 

GCM mode Galois/counter mode 

GF  Galois Field 

LET Linear Energy Transfer 

LUT Look Up Table 

OFB output feedback 

MBU Multiple Bit Upset 

MixColumns mix columns transformation 

NIST National Institute of Standards and Technology 

PIP Programmable Interconnect Point 

critQ  critical charge 

SEFI Single Event Functional Interrupt 

SET Single Event Transient 

SEU Single Event Upset 

ShiftRows shift rows Transformation 

SOI Silicon on Insulator 

SRAM Static RAM 

SubBytes substitution transformation 

TMR Triple Modular Redundancy 

VHDL  Very high speed integrated circuit (VHSIC) Hardware Description Language 
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Appendix B 

AES in System on Chip 

In this appendix, the system including the AES module is presented. Software and hardware 

elements that build the whole system on chip are discussed. Board level communication with the host 

PC is described briefly. The hardware elements include the proposed design of AES with error 

detection along with other IPs on the FPGA. Different hardware IPs and attachments (i.e. master, 

slave, and interrupt attachments) to the AES module are also discussed. 

The software elements are device drivers and application software. There is a device driver for the 

AES module and another device driver for the host PC to perform self reconfiguration of the FPGA in 

case of a soft error. 

The baseline for the AMIRIX board provided by CMC is used in this project. The Xilinx Platform 

Studio (XPS) version 10.1.03 is the development environment for designing the hardware and 

software of the embedded processor system. XPS which is part of the Embedded Development Kit 

(EDK) provides an environment to build hardware IPs and device drivers and libraries for embedded 

software development.  

Debug and verification of the software program running on the PowerPC 405 processor is mainly 

done by Xilinx Microprocessor Debugger (XMD).  As shown Figure 55, XMD connects to the 

PowerPC 405 processor through a JTAG connection. The JTAG chain inside the FPGA is through the 

2 processors. The JTAG chain includes an interface bus that contains all the JTAG signals. 
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Communication to and control of the application software as illustrated in Figure 55 is done by the 

GNU Debugger remote TCP protocol. 

 

 

Figure 55 Debugging software running on PowerPC 405 processor 

 

B.1 Device Driver and Application Software 

The high level view of the system interconnection including the board (AMIRIX AP1100) and the 

host PC is illustrated in Figure 56. The Virtex-II Pro FPGA, which is the central component on the 

board, connects to the host PC processor by sending messages through the PowerPC 405 processor 

(PowerPC 405 is the processor on the Virtex-II Pro FPGA). 

 

 

Figure 56 Board level connections 
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In case of an error occurrence, the PowerPC 405 processor sends an error message through the 

Universal Asynchronous Receiver Transmitter (UART) IP on the FPGA to the host PC processor. 

Then this error message triggers an interrupt in the host PC to perform reconfiguration on the FPGA. 

This mechanism includes interrupting both the PowerPC 405 processor on the FPGA and the host PC 

processor. This is further described in more details as follows. 

The PowerPC 405 processor should be interrupted when the AES Module sends an interrupt to it in 

case of an error. The operating system of the PowerPC 405 processor is standalone which provides 

the board support package.  The board support package is a set of software modules that provide 

access to processor specific functions. These functions are used when an application accesses board 

or processor features directly. This package is a single threaded library in which there is no operating 

system between the application and the hardware platform. Application software operates on the 

hardware platform through direct driver calls.  The software layers are illustrated in Figure 57. 

 

 

Figure 57 Software layers for processor in FPGA 

 
The device driver for the AES module sends the error message “Error!” onto the serial port through 

UART. In order to set up the interrupt in the software on the FPGA side, the following steps are 

taken. The interrupt vector is setup through the initialization function XExc_Init(). This function 

should be called before registering any interrupts. 
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� The interrupt handler is registered through function XExc_RegisterHandler(). 

� After registering the interrupt handler, the interrupt should be enabled. This is done by 

function XExc_mEnableExceptions(). 

On the host PC side, there should be an interrupt handler that reacts upon receiving the error 

message sent to the serial port through UART. The interrupt handler basically reconfigures the 

FPGA. The following steps show how this is achieved. All the functions used are in header 

“windows.h”, which is a header file for the Windows API. 

� The serial port (COM1) is opened by function CreateFile(). 

� The UART parameters (baud rate, data bits, parity, stop bits, and flow control) for the 

receiver serial port on the host PC should be set properly. 

� Time-out parameters should be set correctly, otherwise reads and writes from the serial 

port return unexpected values. In order to read all the values until the UART buffer is 

empty, the time-out values are applied as follows. 

 

 

timeouts.ReadIntervalTimeout = MAXDWORD; 
timeouts.ReadTotalTimeoutMultiplier = 0;
timeouts.ReadTotalTimeoutConstant = 0;

 

 

� The following is a snippet from the software that is written to reconfigure the FPGA in 

case of an error occurrence (the complete code is provided in Appendix D). Function 

WaitCommEvent() is used to wait on an event of receiving a byte on the UART of the 

receiver serial port. After receiving an event, the UART buffer is read. The advantage of 

this approach is that the host computer does not need to poll for synchronization, which is 

inefficient for incoming data. As seen in this piece of code with clarifying comments, the 

message read from the buffer is compared to error message “Error!”.  The configuration 

tool iMPACT is run in the batch mode and the commands are passed to it through the .cmd 

file. To run iMPACT in the batch mode function CreateProcess() is used. All the 

arguments of the CreateProcess() function are described by comments in the code snippet 

below. 
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for  ( ; ; ) { 
 index=0; 
 if  (WaitCommEvent(comport, &dwCommEvent, NULL)) { 
  do { 
   if  (ReadFile(comport, &INBUFFER,1, &bytes_read,NULL))  { 
    if  (bytes_read!=0) { // A byte has been read. 
     message[index]=INBUFFER[0]; 
     index ++; 
    } 
    if  (bytes_read==0) { // Buffer is empty. 
     message[index]=NULL; // Terminating array 
     if  (strcmp(message, "Error!\0" )==0) { 
      printf( "FPGA should be reconfigured!\n" ); 
      // FPGA reconfiguration below 
      CreateProcess(NULL, // module name 
      "impact -batch _impact.cmd" , // Command line 
      NULL, // Process handle not inheritable 
      NULL, // Thread handle not inheritable 
      FALSE, // Set handle inheritance to FALSE 
      0, // No creation flags 
      NULL, // Use parent's environment block 
      NULL, // Use parent's starting directory 
      &si, // Pointer to STARTUPINFO structure 
      &pi) // Pointer to PROCESS_INFORMATION struct ure 
     } 
    } 
   } else { 
    // An error occurred in the ReadFile call. 
    break ; 
   } 
  } while (bytes_read); // Buffer is not empty. 
 } else { // Error in WaitCommEvent. 
 } 
} 

The main steps in the .cmd file to perform configuration are briefly noted below (configuration 

details can be found in [2, 128]). 

� Switching to JTAG boundary scan configuration mode by command setMode 

� Specifying the cable parameters (such as speed and port) by command setCable 

� Identifying the devices in the JTAG boundary scan chain by command Identify 

� Adding the device to the list of devices to be configured by command addDevice 

� Deletes unnecessary devices from a device chain by command deleteDevice 

� Programming the FPGA by command Program 
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The steps above are for configuring the FPGA when JTAG boundary scan is used. JTAG boundary 

scan, formally known as IEEE Standard 1149.1, is primarily a testing standard created to alleviate the 

growing cost of testing digital systems. The primary benefit of the standard is the ability to transform 

extremely difficult printed circuit board testing problems (that could only be attacked with ad-hoc 

testing methods) into well-structured problems that software can handle easily and efficiently. 

Furthermore, vendor-specific extensions to boundary scan JTAG have been developed to allow 

execution of maintenance and diagnostic applications as well as programming algorithms for 

reconfigurable parts. 

B.2 AES Module and IPs in System 

In addition to the main functionality of AES, the proposed module implemented should provide 

other interfaces to communicate with other IPs on the FPGA to build the complete system on chip. 

Figure 58 depicts the main IPs that are used to build the system. The Processor Local Bus (PLB) is 

the 64-bit local bus for the embedded PowerPC 405 processor. This PLB is compatible with IBM 

CoreConnect PLB.  

Along with the PowerPC 405 processor, the AES module is connected to the PLB. The ciphertext 

outputs are stored in a block memory that is also connected to the PLB through a controller as a slave 

device. The main features required in the AES module to interact with other IPs on chip include the 

PLB master and salve supports and interrupt (these features are discussed in more detail later on in 

this section). 

The UART IP on the 32-bit On-chip Peripheral Bus (OPB) is the standard input/output device. 

Therefore, input/output functions such as xil_printf() (this function is similar to printf() but much 

smaller in size (only 1 kB)) are sent to UART to be handled. The PLB to OPB bridge allows access 

from the PLB to the OPB. This bridge translates PLB transactions into OPB transactions. It functions 

as a slave on PLB side and a master on OPB side. 
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Figure 58 IPs in system on chip 

 
The structure of the AES module is depicted in more detail in Figure 59. As shown in this figure, 

the master and slave features and interrupt are provided as attachments in the PLB IP interface (IPIF).  

 

 

Figure 59 IP Interface (IPIF) 

The interconnection between the IPIF and AES using features provided by the IPIF is denoted IP 

Interconnect (IPIC) in Figure 59. The signals used in the IPIC are shown in Figure 60. Detailed 

information on IPIF and all the IPIC signals are provided in Appendix E. 
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Figure 60 IP Interconnect (IPIC) 

 

The master attachment enables the AES module to initiate transfers on the PLB.  The master device 

requires access to the slave device to perform operations. This is illustrated as local transfer request 

and reply between the master and slave attachments in Figure 61. For instance, in a master read or 

write transaction, the salve registers provided by the slave attachment are either read from or written 

into. The address of the slave registers is the source for a master write and the sink for the master 

read.  There are 128 control signals needed to be set for the IP master request in IPIC that is shown in 

Figure 60 (refer to Appendix E listing the IPIC signals). 
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Figure 61 Master and slave attachments 

 
To receive inputs from the software application running on the PowerPC 405 processor, the slave 

attachment registers (slave address space) are used.  The slave registers get the inputs from the 64-bit 

PLB from the application software. 

On the other hand, when the ciphertext output is ready the master attachment initiates a PLB 

transfer to write into the block memory residing on the same bus. The ciphertext output is first stored 

in the slave address space (or equivalently, in the slave registers). When writing the ciphertext output, 

the source address is a range from the slave address space that corresponds to the result registers. 

These slave registers are the same size as the PLB data width that is 64 bits. The destination address 

in the master write transfer on the PLB is a block memory address.  

As shown in Figure 62, the interrupt port of the AES module is the output port in the interrupt 

attachment of the IPIF. The interrupt port of the AES module is connected to an interrupt port of the 

PowerPC 405 processor (Figure 62). The interrupt is triggered by the AES module when there is an 

error in computing the output. In the MixColumns and AddRoundKey transformations of the AES 
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module, the error detection is done through parity detection technique that is enhanced to expand its 

error coverage to combinational logic of datapath and routing in the FPGA. Additionally, dual ported 

block memory and duplication is used in SubBytes and the control circuitry, respectively, to detect 

errors (refer to Chapter 5).  

 

 

Figure 62 Interrupt in AES module 

 
In case of an error occurrence, the PowerPC 405 processor sends the error message “Error!” to the 

host PC through the UART IP and the serial port (the sending of error message is done in the interrupt 

handler of the Aes module). Setting up the device driver (interrupt initialization, registering interrupt 

handler, and enabling the interrupt) in the AES module is described briefly in Section 0. The error 

message received on the host PC serial port initiates FPGA reconfiguration (interrupt handling due to 

error message on the host PC side is also presented briefly in Section 0). The memory address space 

of the PowerPC 405 processor is 4GB. The unused memory address space of the baseline provided by 

CMC is used to add new IPs to buses. Table 7.1 shows the address space assignment to the IPs shown 

in Figure 58. 

 

Table 7.1 Memory address space of IPs 

IP Base address High address Size Buss connection 

AES module 0x40000000 0x400003ff 1kB PLB bus 

block memory 0xffff0000 0xffffffff 64kB  PLB bus  

UART 0x4c000000 0x4c00ffff 64kB OPB bus 
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The AES module can further implement block cipher modes using the proposed AES with error 

detection discussed in Chapter 5. There are different options for implementing these modes. They can 

be implemented entirely in hardware or as a hardware/software codesign (designing a block cipher 

mode simultaneously using the microprocessor and FPGA logic blocks). As discussed in Section 4.2, 

these modes use the AES algorithm multiple times either in parallel (e.g., in ECB and CTR) or in 

serial (e.g., in modes with the chaining structure such as CBC) in the algorithm. Depending on the 

hardware, throughput, and latency requirements in an application specification, design choices should 

be made properly. In this research, the main goal is to provide high error coverage for single bit errors 

in the FPGA while having the minimum hardware resources. 

Reusing hardware in a partially pipeline design (that cannot accept data every clock cycle, and thus 

has a throughput less than 1 per clock cycle) allows for hardware savings at the cost of throughput. 

On the other hand, a fully pipelined design with a typically higher hardware usage can achieve the 

highest throughput and accept data every clock cycle.  

In an implementation that is a hardware/software codesign interfacing should also be considered 

carefully. Since the hardware and software parts of the design need to communicate with each other 

through some sort of synchronization technique (for instance, polling and interrupts). Synchronization 

costs in terms of performance. For instance, when the hardware part of the design finishes its 

computation it needs to communicate with the software part and vice versa. This communication 

through the bus and synchronization has a delay that can be significant compared to the overall 

latency. 

The latency (number of clock cycles from inputs to outputs) of block cipher modes that have the 

chaining of plaintext blocks with the previous ciphertext blocks is constrained by this chaining 

structure (e.g., in CBC shown in Figure 26). Therefore, the latency cannot be improved be adding 

more AES ciphers (increasing hardware usage) to run in parallel. On the other hand, the latency in 

block cipher modes that do not have this chaining structure, for instance in the CTR mode shown in 

Figure 27, is reduced by running more AES ciphers in parallel. 

B.3 Summary 

The main goal of this appendix was to cover different aspects of design and implementation of the 

AES module as a system on chip in the FPGA. This system has the capability to self reconfigure in 

case of an error in the FPGA through serial communication with the host PC. Communication and 
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synchronization of the proposed AES module having error detection capability, the PowerPC 405 

processor in the FPGA, and the host PC were described. 

In the AES module, different features that were implemented as slave, master, and interrupt 

attachments to communicate with other IPs and to interrupt the PowerPC 405 processor in the FPGA 

were described. Device drivers that provide interrupt handling on the PowerPC 405 processor and the 

host PC were also covered in this appendix. Considerations in design and implementing different 

modes were discussed at the end. 
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Appendix C 

Control Circuitry in AES 

 

 

Figure 63 State machine of transformations in AES 
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Figure 64 State machine of round in AES 
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Appendix D 

Device Driver for FPGA Reconfiguration 

 

#include  "windows.h" 
#include  "stdio.h" 
#include  "conio.h" 
 
int  main( int  argc, char * argv[]) { 
 
STARTUPINFO si; 
PROCESS_INFORMATION pi; 
unsigned  int  index=0; 
COMMTIMEOUTS timeouts, orig_timeouts; 
DWORD dwCommEvent; 
char  INBUFFER[500]; 
char  message[500]; 
char  OUTBUFFER[20]; 
DWORD bytes_read=0; // Number of bytes read from port 
DWORD bytes_written=0; // Number of bytes written to the port 
HANDLE comport=NULL; // Handle COM port 
DCB comSettings, orig_comSettings; // Contains various port settings 
 
ZeroMemory(&si, sizeof (si)); 
si.cb = sizeof (si); 
ZeroMemory(&pi, sizeof (pi));  
 
// Open COM port 
comport=CreateFile( "COM1", // open io port: 
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            GENERIC_READ | GENERIC_WRITE, // for reading and writing 
            0, // exclusive access 
            NULL, // no security attributes 
            OPEN_EXISTING,               
            FILE_ATTRIBUTE_NORMAL, 
            NULL); 

 
if  ((comport==INVALID_HANDLE_VALUE)) { // error processing code goes here 
    printf( "error opening the port!\n" ); 
 exit(1); 
} 
 
GetCommTimeouts(comport, &orig_timeouts); 
GetCommState(comport, &orig_comSettings); 
 
comSettings=orig_comSettings; 
comSettings.BaudRate=9600; 
comSettings.StopBits=1; 
comSettings.fBinary= false ;  
if  (!SetCommState(comport, &comSettings)) { 
   printf( "SetCommState!\n" ); 
} 
 
printf( "BaudRate %i\n" , comSettings.BaudRate);  
printf( "StopBits %i\n" , comSettings.StopBits); 
printf( "fParity %i\n" , comSettings.fParity);  
printf( "Parity %i\n" , comSettings.Parity); 
 
//In order for ReadFile to return 0 bytes read, the  ReadIntervalTimeout member of the 
COMMTIMEOUTS structure is set to MAXDWORD, and the ReadTimeoutMultiplier and 
ReadTimeoutConstant are both set to zero. 
timeouts.ReadIntervalTimeout=MAXDWORD;  
timeouts.ReadTotalTimeoutMultiplier=0; 
timeouts.ReadTotalTimeoutConstant=0; 
timeouts.WriteTotalTimeoutMultiplier=0; 
timeouts.WriteTotalTimeoutConstant=0; 
if  (!SetCommTimeouts(comport, &timeouts)) { 
   printf( "SetCommTimeouts!\n" ); 
} 
 
if  (!SetCommMask(comport, EV_RXCHAR)) { 
 printf( "error in SetCommMask!\n" ); 
} 
 
for  ( ; ; ) { 
 index=0; 
 if  (WaitCommEvent(comport, &dwCommEvent, NULL)) { 
  do { 
   if  (ReadFile(comport, &INBUFFER,1, &bytes_read,NULL))  { 
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    if  (bytes_read!=0) { // A byte has been read. 
     message[index]=INBUFFER[0]; 
     index ++; 
    } 
    if  (bytes_read==0) { // Buffer is empty. 
     message[index]=NULL; // Terminating array 
     if  (strcmp(message, "Error!\0" )==0) { 
      printf( "FPGA should be reconfigured!\n" ); 
      // FPGA reconfiguration below 
      CreateProcess(NULL, // module name 
      "impact -batch _impact.cmd" , // Command line 
      NULL, // Process handle not inheritable 
      NULL, // Thread handle not inheritable 
      FALSE, // Set handle inheritance to FALSE 
      0, // No creation flags 
      NULL, // Use parent's environment block 
      NULL, // Use parent's starting directory 
      &si, // Pointer to STARTUPINFO structure 
      &pi) // Pointer to PROCESS_INFORMATION struct ure 
     } 
    } 
   } else { 
    // An error occurred in the ReadFile call. 
    break ; 
   } 
  } while (bytes_read); // Buffer is not empty. 
 } else { // Error in WaitCommEvent. 
 } 
} 
 
SetCommTimeouts(comport, &orig_timeouts); 
SetCommState(comport, &orig_comSettings); 
CloseHandle(comport); 
  
char  quit; 
while  ((quit=getchar())!= 'q' ); 
printf( "%c" , quit); 
 
return  0; 
} 
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Appendix E 

Processor Local Bus IP Interface 

 

Figure 65 Connections of Processor Local Bus (PLB) IP Interface (IPIF) [129] 
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Table 7.2 IP Interconnect (IPIC) signals [129] 

-- IP Interconnect (IPIC) signal declarations 
-- Prefix 'i' stands for IPIF while prefix 'u' stands for user logic. 
-- Typically user logic will be hooked up to IPIF directly via i<sig> unless signal slicing and muxing              
-- are needed via u<sig> 
signal iBus2IP_Clk : std_logic; 
signal iBus2IP_Reset : std_logic; 
signal iIP2Bus_IntrEvent : std_logic_vector(0 to IP_INTR_MODE_ARRAY'length - 1); 
signal iIP2Bus_Data : std_logic_vector(0 to C_PLB_DWIDTH-1); 
signal iIP2Bus_WrAck : std_logic   := '0'; 
signal iIP2Bus_RdAck : std_logic   := '0'; 
signal iIP2Bus_Retry : std_logic   := '0'; 
signal iIP2Bus_Error : std_logic   := '0'; 
signal iIP2Bus_ToutSup : std_logic   := '0'; 
signal iBus2IP_Addr : std_logic_vector(0 to C_PLB_AWIDTH - 1); 
signal iBus2IP_Data : std_logic_vector(0 to C_PLB_DWIDTH - 1); 
signal iBus2IP_RNW : std_logic; 
signal iBus2IP_BE : std_logic_vector(0 to (C_PLB_DWIDTH/8) - 1); 
signal iBus2IP_Burst : std_logic; 
signal iBus2IP_WrReq : std_logic; 
signal iBus2IP_RdReq : std_logic; 
signal iBus2IP_RdCE : std_logic_vector(0 to calc_num_ce(ARD_NUM_CE_ARRAY)-1); 
signal iBus2IP_WrCE : std_logic_vector(0 to calc_num_ce(ARD_NUM_CE_ARRAY)-1); 
signal iIP2Bus_Addr : std_logic_vector(0 to IPIF_AWIDTH - 1); 
signal iIP2Bus_MstBE : std_logic_vector(0 to (IPIF_DWIDTH/8) - 1); 
signal iIP2IP_Addr : std_logic_vector(0 to IPIF_AWIDTH - 1); 
signal iIP2Bus_MstWrReq : std_logic   := '0'; 
signal iIP2Bus_MstRdReq : std_logic   := '0'; 
signal iIP2Bus_MstBurst : std_logic   := '0'; 
signal iIP2Bus_MstBusLock : std_logic   := '0'; 
signal iIP2Bus_MstNum : std_logic_vector(0 to log2(DEV_MAX_BURST_SIZE/(C_PLB_DWIDTH/8))); 
signal iBus2IP_MstWrAck : std_logic; 
signal iBus2IP_MstRdAck : std_logic; 
signal iBus2IP_MstRetry : std_logic; 
  signal iBus2IP_MstError : std_logic; 
signal iBus2IP_MstTimeOut : std_logic; 
signal iBus2IP_MstLastAck : std_logic; 
signal ZERO_IP2RFIFO_Data : std_logic_vector(0 to find_id_dwidth(ARD_ID_ARRAY, ARD_DWIDTH_ARRAY, 

IPIF_RDFIFO_DATA, 32)-1); 
signal iBus2IP_CS : std_logic_vector(0 to ((ARD_ADDR_RANGE_ARRAY'LENGTH)/2)-1); 
signal uBus2IP_Data : std_logic_vector(0 to USER_DWIDTH-1); 
signal uBus2IP_BE : std_logic_vector(0 to USER_DWIDTH/8-1); 
signal uBus2IP_RdCE : std_logic_vector(0 to USER_NUM_CE-1); 
signal uBus2IP_WrCE : std_logic_vector(0 to USER_NUM_CE-1); 
signal uIP2Bus_Data : std_logic_vector(0 to USER_DWIDTH-1); 
signal uIP2Bus_Data : std_logic_vector(0 to USER_DWIDTH-1); 
signal uBus2IP_ArData : std_logic_vector(0 to USER_MAX_AR_DWIDTH-1); 
signal uBus2IP_ArBE : std_logic_vector(0 to USER_MAX_AR_DWIDTH/8-1); 
signal uBus2IP_ArCS : std_logic_vector(0 to USER_NUM_ADDR_RNG-1); 
signal uIP2Bus_ArData : std_logic_vector(0 to USER_MAX_AR_DWIDTH-1); 

                     

    

   



 

  138 

Appendix F 

S-box of AES 

Table 7.3 S-box of AES 

63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 

ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 

b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 

04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 

09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 

53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 

d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 

51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 

cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 

60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db 

e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 

e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 

ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 

70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e 

e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 

8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 
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Appendix G 

Pseudo Code for Key Expansion 

In the following pseudo code for the key expansion, parameters Nk and Nr represent number of 

words forming a key and number of rounds, respectively. Subword takes four 8-bit elements of a 

word and applies the substitution transformation on them.  

KeyExpansion(byte key[4*Nk], word w[4*(Nr+1)], Nk) 
begin 

word temp 
i = 0 
while (i < Nk) 

w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4 *i+3]) 
i = i+1 

end while 
i = Nk 
while (i < 4 * (Nr+1)] 

temp = w[i-1] 
if (i mod Nk = 0) 
temp = SubWord(RotWord(temp)) xor Rcon[i/Nk] 
else if (Nk > 6 and i mod Nk = 4) 
temp = SubWord(temp) 
end if 
w[i] = w[i-Nk] xor temp 
i = i + 1 

end while 
end 
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Appendix H 

Routed Netlist Snapshots from FPGA Editor 

 

Figure 66 FPGA Editor snapshot of 2 fanout signal in MixColumns tested on FPGA 
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Figure 67 FPGA Editor snapshot of routing with no pins leading up to undetectable errors 
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