Soft Error Resistant Design of the AES
Cipher Using SRAM-based FPGA

by
Solmaz Ghaznavi

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

©Solmaz Ghaznavi 2011

AUTHOR'S DECLARATION

| hereby declare that | am the sole author ofttiesis. This is a true copy of the thesis, inclgdiny
required final revisions, as accepted by my exarsine

| understand that my thesis may be made electribniaailable to the public.

Abstract

This thesis presents a new architecture for thmblel implementation of the symmetric-key
algorithm Advanced Encryption Standard (AES) inldFfierogrammable Gate Arrays (FPGAS). Since
FPGAs are prone to soft errors caused by radiatiod, AES is highly sensitive to errors, reliable
architectures are of significant concern. Energptidicles hitting a device can flip bits in FPGA
SRAM cells controlling all aspects of the implensaditn. Unlike previous research, heterogeneous
error detection techniques based on propertiehiefcircuit and functionality are used to provide
adequate reliability at the lowest possible cosie Tise of dual ported block memory fBubBytes
duplication for the control circuitry, and a newhanced parity technique fdvlixColumnsis
proposed. Previous parity techniques cover singier®in datapath registers, however, soft errors
can occur in the control circuitry as well as in/R cells forming the combinational logic and
routing. In this research, propagation of singl®mris investigated in the routed netlist. Weakrss
of the previous parity techniques are identifiedctitectural redesign at the register-transferlleve

introduced to resolve undetected single errorsth the routing and the combinational logic.

Reliability of the AES implementation is not only aiitical issue in large scale FPGA-based
systems but also at both higher altitudes and acespplications where there are a larger number of
energetic particles. Thus, this research is imporfiar providing efficient soft error resistant dgs

in many current and future secure applications.

Acknowledgements

I would like to express my sincere gratitude to awlyisor, Professor Catherine Gebotys, for all her

support, guidance, and encouragement throughputebearch.

| am grateful to Professor Mark Aagaard for hicdgsions and guidance in this research. | would
like to thank Professor Andrew Kennings and Prafed3oug Stinson for agreeing to read and

comment on my thesis.

| would also like to thank Professor Howard Heyy, enternal examiner, for his time and energy
so thoughtfully devoted to this endeavor.

Susan Xu and Hugh Pollitt-Smith with the CMC Migysems were extremely helpful with their
support for the tools and equipment.

| would also like to thank my colleagues Reouvelnag|] Marcio Juliato, Patrick Longa, and Dave

Kenney for useful discussions we have had in asgarch group.

My special thanks to Amir Khatib Zadeh, my parears brother for their invaluable support.

Table of Contents

AUTHOR'S DECLARATIONeiiiiiiiiiie et eeeet e e ettt e e e et a e e e et e e e e s essaaaeessnneeassssseaeeeannneaeeennnes ii
Y 011 =T iii...
ACKNOWIEAGEMENLS ... iv
TaDIE OF CONLENES ...t e bbbt e e e e s et bbb et e e e e e e e e e s s snbb bt neeeeeeeeesaanns v
LISt Of FIQUIES .o viii
[0] =10 L= PP PPPP TP Xi
Chapter 1 INtrodUCHION..........cco o, 1
R I o T TS TSR @ T = T 4= L1 T o 5
Chapter 2 Radiation Effects 0N DEeVICES......ccooeeeiiiiiii e 7
2.1 Radiation Sources and Soft Error MeChaniSmMS...........ccoiiiiiiiiiiiie e 7
2.2 Comparison of Soft Errors to Other FaultS.............cooooiiiiiii e, 14
2.2.1 Manufacturing FauUItS.coooiii et 14
W e 10 | L1 = o T PSP 16
2.3 Estimating Soft Error RAteS Of @& DEVICE . cmeeeeetvviiiiieieeieiiiieeeeee e 20
2.4 Technology Trends and SOft ErTOrScooeiiiiiiiiiiiiieece e 23
2.5 SUIMIMATY .o et et e et e e et e e et e e et e e ettt ettt et e e e e e e e e e e e e e e e e e e eaaeaaaaetaaeeaeeeeees 25
Chapter 3 Previous Research on Tackling Soft EfrQrs...........cccvvveeeiiiiiiiiiiicceeeieeecee e 26
3.1 Fabrication Process Level Techniques to TaBRIEEITOrs............cooeeviiiiiiiiiiiiiiiccc e 27
3.2 Circuit and System Level Techniques to Tacklft Brrorscccooiiiiiiiviiiiie, 29
3.3 Tackling Soft Errors by Architectural Methods...............coovviiiiiiiiiiiii e 37
3.4 SOft Errors iN FPGA VS. ASICcoiiiii ettt e e s sessa e e e e e e e e e s e nanseees 40
3.5 SUIMIMAIY .ttt e e e et e ettt e s e e e et ee e aaaas et e e e e eeeetttnaaeeeeeeeesennnns 42
Chapter 4 Security Needs of Data SYStEMS ... 44
4.1 Security Needs and Cryptographic Algorithms..........ccoooiiiiiii e, 44
4.1.1 Advanced Encryption Standard...........cccccee i 47
A = Lo Tod S @ o] U= gl 1Y T To [51
4.2.1 Confidentiality MOAESuuuuuiiime e e 52
4.2.2 AULNENtICALION IMOOE ...ttt ettt s eer e e e e e e e eeee s 55
4.2.3 Authentication and Confidentiality MOOES.cccc....vvviuiiiiciicee e 56
4.3 Previous Research 0N AES DeSIgN.o 56
4.3.1SubBytesmplementations iN AES ...t 58

4.3.2MixColumnamplementations iN AESoovvviiiiiiiceeeeeeeeeeeeeeeeeveevvene e 62

4.4 SEU-TESISIANT AESoiiiiiiiiiiii i iemeeeee ettt e e e e e e e st e e e e s s bbb bt e e e e e e e e e s e nanbeeeees 63
SIS YU] 0] 0= Y PSSP 64
Chapter 5 Proposed AES with Error Detection.........ccoooevveeiiii e, 65
5.1 Error Detection in AES LOGIC BIOCKS.......ccceeiiiiiiiiiiiiiee e 66
5.1.1 SubBytes Logic Blocks and Error DEtECHON uu .. .vvvvieeeiiiiiiiiiieeeee e 68
5.1.2MixColumnsLogic Blocks and Error DeteCtioncoeeeeeaaeaaaeeeaae e 69
5.1.3AddRoundKey.ogic Blocks and Error DEteCHiONocceeeeeeeeeieeeiieiiiaieieeeeeeeeeeeee 74
5.2 Error Detection in ROULING Of AES ... e 74
5.2.1 Error in Routing and MOAElING o eeeeeeeeeeeaeeee e 75
5.2.2MixColumnsRouting and Error DeteCtioN..........ccccciiieeeae e 76
5.2.3 AddRoundKey Routing and Error DeteCON . cccaeeeeeae e 93
5.2.4 Control Circuit and Error DeECHION. ... aeeeeieeee e 94
5.3 Soft Error Resistant AES for Different Key Siznd Decryptionccccvvvvvvieneinnnnnnn. 94
LR ST U1] 1= Y 95
Chapter 6 Comparison with Previous RESEaAICH. . vvvvvveiiiiiiiiviii e 97
6.1 AES Hardware DESIONcocoiiiiiiiii ettt ettt e e e aa e e e e e e e e e e e e e e e e e e e 97
6.2 Experimental Results &fliXCOIUMNS............uvuiiiiiiiiiiiiiiiiiiiiiiieeeeeeareeeeeeesseesseserernnernrnne 101
6.3 Experimental Results of AES with Soft Error lglttionooee, 101
LR ST U 10] =Y/ P 110
Chapter 7 Discussion and CONCIUSION ... eeeiiiiiiiiiiieiiieceeeteeeeeeeee ettt eeeeee e e e aa e e e e e e e 111
T .1 FULUIE WOTK .tttk ettt e e e e e e e e e e e e e e et e e e e e e e e e e e e nnnnnee e 115
Appendix A GlOSSAry OFf ACTONYIMIScoiie i v eee s eeeeaee s e e e e ae e e e e e e ens 117
Appendix B AES in SysStem 0N ChiP......cooo oot e e e e e e e e e e e e e eeeeeee 119
B.1 Device Driver and Application SOftWAIEcccceiiiiiiiiiiieieee e 120
B.2 AES Module and IPS iN SYSTEMutmmmmmeeeeeeiieiiie et e e re e e e e e 124
B.3 SUMIMIAIY ...ttt e ee e n e e ettt et e e et ettt bt e e e e e e e e e eeeesebbe e e e aeeeeeabba e eeaaaas 129
Appendix C Control CirCUIIY IN AES oot e e e e e e 131
Appendix D Device Driver for FPGA Reconfiguration.............cccccoouviiimiiieiieieeeeieeeeee e 133
Appendix E Processor Local BuS IP INtEITaCE..........uuuuiiii e 136
APPENTIX F S-DOX OF AESttt e et e e e e e e e e e e e e e e e 138
Appendix G Pseudo Code for KeY EXPaNSION....ccceameceeeeiieeiiiei e eeeeeeees e 139

vi

Appendix H Routed Netlist Snapshots from FPGA HEdito
Bibliography.........cooiiii i,

Vii

List of Figures

Figure 1 DRAM error soft error rate caused by rBOMB[7]cccvimriiiieeeeniii e 9
Figure 2 Charge collection in a reverse-biasedtjanc(a) formation of electron-hole pairs, (b)
funnel shape field extending deep into substrajediffusion process [7]......ccccvvvvvvvrvvieeeenneenenn. 12
Figure 3 DRAM cell: (a) circuit, (b) [aYOUL [L1]wamrciiieiiieiiieieeeeeeeeeeeeeeee e, 13
Figure 4 Six transistor SRAM Cell [L3] ...uuuuuoeieeiiiieieeeee e, 13
Figure 5 Faults: (a) soft error causing bit flip fbanufacturing open wWirecovvvvvveeeennnnnnn. 15
Figure 6 AES fault injection [20].............commeeerirriiiiiiiireieiie e a——a——esessrrsrrrrrrrrrrrrrrra—. 19
Figure 7 SRAM system soft error rate increasingevhit soft error rate being about constant [32] 24
Figure 8 Structure of thin-film NMOS SOI[50] oo, 28
Figure 9 Capacitors and G added to SRAM cell mitigate SEUS [59].....coccccceveeiiiieiiiiinineennn. 30
Figure 10 Capacitanc€; added in SRAM cell [60]ccceeviiiiiiniiiiii e 30

Figure 11 Increased RC time constant by addfgnd R, in feedback loop of SRAM cell [62]... 31

Figure 12 Soft error robust SRAM cell using 10 §gtors [63]........cccovvvvieiiiiiiiiiiieeevieeeeeee e, 32
Figure 13 SET error detection using time redundadfiLy.............uuvviviiimiiiiiiiiii e e e eeeeeeeeenes 32
Figure 14 Error detection DY DMRoi et eaaanessaesssessesssessnnenrnnes 33
Figure 15 Error correction BY TIMRooiiiieeeeeeeeeeeeeeeeeeeeeie e eeeeneesaesseesseessensnnennnne 33
Figure 16 Register cell in LEON3-FT-RTAX using TM®4] ...t 34
Figure 17 Spatial and temporal redundancy [65]ccccc......covviiiiiiiiiiiiiieeiieeeeeeeeee e 35
Figure 18 Parity €rror AetECHIONiieeeiieiiiie e e e eme e e e e r e e e e e e 36
Figure 19 Memory hierarchy in a typical micropra8@ssystem [13]c.uvevvvvvvrrimeiinnninaeeeaeeenn. 37
Figure 20 Memory elements in Software-based SyStem...........cccccveeiiiiiiiiiiiiiiceeeeeeeen 38
Figure 21 Hardware components in LEON3 miCropromel&2]ccccvvvveveeeiiiiiiiiiiiiieee e 39
Figure 22 Combinational logic on FPGA vs. ASIC{{a)ction implemented in LUT on FPGA, (b)
function implemented using gates 0N ASIC ... i 41
Figure 23 AES algOITtNMciiiiiiiii et e e e e e e e e e e e e 48
Figure 24ShiftRowgransformation in AES [78]uuriiiiiiiiiiiiiiiee e 51
Figure 25 Electronic codebook (ECB) MOUE [78] cuuerrrrrrrrnmmmmmmmmmnninnninnninnnnnaaaareeennennnnnnnne 52
Figure 26 Cipher block chaining (CBC) MOde [78]........uuvirrruiiiiiiiiiiiiiiiiiiessnnavseensennnnnnnnes 53
Figure 27 Counter (CTR) MOAE [78]ccceeiieeeeeeeee e 54
Figure 28 Cipher-based message authentication(€@MAC) [88] ..., 55

viii

Figure 29SubBytesvith inversion in composite fields..........ccooeeiiiiiiiiiiiiii e, 59

Figure 30 Inversion dbubBytesn composite fieldS [L00]........uuuurrrrimmmmmmmmreeeeeeeeeeeeeveerreerereenrnnnnnn. 59
FIgure 31 VIrteX-l1 Pro SIICE [2].. ... uuuuiuieeeiieeiiieeiiesiitstisaseeeeateeseeeeeeseassssssesssssssssssessrssssnsnnnrnnnnes 66
Figure 32 AES including: (a) parity predictors ammmparator foSubBytesesult, (b) real and
predicted parity comparator fixColumnsandAddRoundKey..............cccciiiiiiiee, 67
Figure 33 Single error in LUJcausing 2 bit flipS iN OUPULcooviiimimeeiiieeee e 70

Figure 34 ProposedixColumnsLUTs mapped on FPGA: (a) bit positionl{0, 2,5, 6, 7}, (b) bit

[oTo LYo I T ST 71
Figure 35 Switch box and PIP controlled by SRAM.CEL.........oooviiiiiiiii e 75
Figure 36 XOR LUT propagating error whether a1 Y1 Z=0or (b) XOYO Z=1............ 76
Figure 37 Routing example (a) logic blocks withoahsidering routing, (b) actual routing detalil

] a0Vl I o 1o W o OO URRPPRPUPRRPRRIN 77
Figure 38 Routing of 2 fanout signallifixColumnstested on FPGA.............evvvvuviiiiiiniicmmmeee . 78
Figure 39 Detailed routing of 2 fanout signalMixColumnstested on FPGA................ccevvvvvveeneen, 78
Figure 40 SEU Simulation iN NEL...........ooiiiiiieiii s re s b enneeennesnnnnnne 80
Figure 41 Routing with no pins leading up to undetlle errors...........cccceeeeeei e, 81
Figure 42 LUT labelsa, (L) b, (L) ¢, (L) d, (L) and a, (R) related to inpu, in Table 5.3.............. 83

Figure 43 Inputa, connection to output bits, , &, a;, a,, &, b;, ¢,, dy, d,, d;, d,, and

O tIOUGN LUT S ottt eeeme ettt a st e s s 84
Figure 44 Proposed routing applied t0 BeL..............cooiiiiiiiiii e 85
Figure 45 Part of datapath (shown in Figure 32(&) is routed in Figure 44oevveeeeeen. 86
Figure 46 Inputa, connection to output bits,, &, by, ¢,, dy, andd, through LUTS................. 88
Figure 47 Proposed routing applied t0 Bgt..............cocviiiiiiiiiiii e 88
Figure 48 Proposed routing applied to Bt a,, 85, anNd 8ycocceeeiiiiiiiiiiniieec e, 89
Figure 49 Proposed routing applied to Bet C,, C5, @NACy ..vvveiviieiiiiiiiiiic e 90
Figure 50 Proposed routing applied to bgt b,, by, by, andb, ... 92
Figure 51 Proposed routing applied to dgt d,, ds, dg, andd, ..., 3.9

Figure 52 Higher level of parallelism provided bpp unrolling: (a) AES iterative looping structure,
(b) N-time [00p UNFOHING [L19]....iiiiiiiiiiiiieiiieieiiee ettt eeneneeseeeseesssesssesssnsnsennnrnes 98

Figure 53 Error coverage of single errors usingtyar previous researchcccccvvvvvnnns 102

Figure 54 Error coverage of errors using Hammindeda previous researchccccvvvueee 102
Figure 55 Debugging software running on PowerPCpRIBESSOrccvvvvvvvvviviiiiiiiieiieeeeenn. 120
Figure 56 Board leVel CONNECHIONS.icocce et 120
Figure 57 Software layers for processor in FPGA ... 121
Figure 58 IPS iN SYSTEM ON CRIP ...ttt e e e e e e e 125
FIgure 59 IP INEITACE (IPIF) et ettt eeeeeseeennseenneennennne 125
Figure 60 IP INterconn@Ct (IPIC)ooo ittt 126
Figure 61 Master and slave attaChments ... oo 127
Figure 62 Interrupt in AES MOUUIE.........oi i ceeeee e 128
Figure 63 State machine of transformations in AES.............ooooiiiiiii e 131
Figure 64 State machine of round iN AES ... 132
Figure 65 Connections of Processor Local Bus (AEBpterface (IPIF) [129].......cccccvveeeiiieenne 136
Figure 66 FPGA Editor snapshot of 2 fanout signdllixColumnstested on FPGA..................... 140
Figure 67 FPGA Editor snapshot of routing with frmsdeading up to undetectable errors.......... 114

List of Tables

Table 2.1 FPGAs under test in Rosetta experima@nt.[L.............ccuuveueiiiiiiiiiiiiiiceeee e 22
Table 2.2 Mean time to error of Virtex-Il (devic&gQR2V6000) in a geosynchronous orbit [9] 22
Table 3.1 Error detection and correction in re@ite [72] ..., 40
Table 4.1 Lifetime and security strength of symieednd public-key algorithm [81]................... 46
Table 4.2 AES PAramELEIS.....ccocviiiiiiiieeeeeeeee ettt ettt te 48
Table 4.3 Gate counts and critical pathSobBytesnversions inGF(24) OO [62

Table 5.1 Effects of single errors in net includipgn _ p on output bitscccccvveeeee i 80

Table 5.2 Effects of single errors in net withony @ins causing undetectable errors at the outfat ..

Table 5.3 Input nets to input pins of LUTs of 8&liégmenta......................... . 83
Table 5.4 Input nets to input pins of LUTS of 84IMENICccevvviiiiiiiiiiie e 90
Table 5.5 Input nets to input pins of LUTSs of 8liémentb ... 91
Table 5.6 Input nets to input pins of LUTS of 8-liémentdccccoiiiiiiiiiiiiicc e, 92
Table 6.1 AES previous implementationNSccccceeiiiiiiiiiiiieiieecceeeeeeeeeeeeeeeveeeeeee e e e e 99
Table 6.2 Experimental results dixColumnsimplementations on FPGA...............cc.cvceeeeeenn. 101
Table 6.3 Results of different designs of paritigesne iNn AES ...t 104
Table 6.4 Error coverage of Single SEUS 0N FPGA e ..coviiiiiiiiieeeeeeeee e 107
Table 6.5 Error coverage of Single SETS 0N FPGA o .vvieiiiiiiiieeeeeeee e 108
Table 6.6 Experimental results of DMR and propaseitanced parity approach 108
Table 7.1 Memory address SPace Of IPS ... 128
Table 7.2 IP Interconnect (IPIC) SIgNalS [129)]........uuuuuuuuiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeenees 137
Table 7.3 S-DOX Of AES ... 138

Xi

Chapter 1

Introduction

Modern electronic systems such as computers, nktwarters, cell phones, and smart cards
communicate, store, access, or modify informatidimost any system that deals with information
has security needs provided by cryptographic algms, in some way. In general, security
requirements are categorized into authenticatiatg donfidentiality, data integrity, non-repudiatio
and access control. It has been observed thatodteo€ insecurity in electronic systems can be very
high, and therefore security is an important is$ta. instance, a security survey by the Computer
Security Institute (CSI) and Federal Bureau of stigation (FBI) revealed that just 223 organization
sampled from various industry sectors had lost heohsl of millions of dollars due to computer

related security issues [13].

FPGAs have become popular platforms for implemenglectronic solutions including security
related applications that use cryptographic algorg. Compared to Application Specific Integrated
Circuits (ASICs), FPGAs provide a shorter time tarket, less expensive design process, higher
level of flexibility for debugging, and even suppar field upgrading. Additionally, state of thetar
FPGAs comprise building blocks such as micropramsssblock memories, and logic resources.
FPGAs attempt to fill the gap between hardware softlvare through achieving potentially higher
performance than software, while providing a higlesel of flexibility than hardware. For instance,

high-density SRAM-based FPGAs can be an attragtie¢form for implementing cryptographic

Chapter 1: Introduction

algorithms, since standards change often and s@plications, such as satellites, may have low

volume or benefit from in field upgrade.

Despite all the benefits of SRAM-based FPGAs meaetibabove, an important concern is their
vulnerability to faults caused by radiation. Thigdnerability of FPGAs is due to the high density of
SRAM cells that control all aspects of the impletadion. Energetic particles hitting an FPGA can
cause faults in the device; these faults can affealtiplexers, interconnections, buffers, LUTSs,
control bits, and flip-flops [12]. For examplesearchers in the Rosetta experiments [1] reponted t
measurements of approximately 295 and 290 failuteme per million bits of configuration cells in

0.15u4m and 0.13ymtechnologies, respectively. They also reported &b 530 failure in time per

million bits of block memory cells. Since these 3R A&ells control the FPGA functionality this study
of errors caused by radiation is very importanthie Rosetta experiments, the chips were placed in
radiation chamber in order to measure the faildire® exposure to real particles. This method of
measuring failures in time with a radiation chamisemnormally extremely expensive. The likelihood
of these errors increases at both higher altituaies in space applications where there is larger
number of energetic particles emanating from the aod other galaxies. Hence resistant design

against errors caused by radiation in satellitesgpate applications is an important area of study.

As technology advances, dimensions decrease, supliBges and capacitances lower, and clock
frequencies increase. Technology scaling incretsedikelihood of errors caused by radiation in
semiconductor devices. Density of components isggavith minimizing dimensions as technology
advances. In a system, denser circuitry resultigher number of sensitive nodes in the same area
compared to older technologies. Since the clocfueacies will continue to increase the likelihood
that a momentary glitch will be clocked as validadincreases and this error is then propagated
through the logic path. Consequently, these tedyyotrends conspire to increase semiconductor
devices susceptibility to radiation. Thus, desigrfior error resistance is important not only foasp

but for other applications as well.

Reliability becomes a critical issue especiallyyarge scale systems using multiple FPGAs, since
the failure in time of a system increases lineariyh each additional FPGA. For instance, in
applications such as banking or ehealth, numer®@As as high performance servers can be used to
provide security services such as confidentialityaathentication. Additionally, reliability is an

important issue due to error sensitivity of AESr Egample a single bit flip in the early rounds of

Chapter 1: Introduction

AES encryption is expected to in 50% erroneous ibitthe output. Therefore, designing a highly

reliable cipher in an FPGA is very important.

The main focus of this research is on the religbissues of the symmetric-key algorithm, AES,
implemented on an FPGA. Traditionally, there hagerbexpensive techniques in terms of hardware
resources (e.g., triple modular redundancy usee ithamn 3 times as many hardware resources as the
original design implementation) that provide ermetection and correction to increase the reliabilit
of a system. On the other hand, there have beesr ¢tdlss expensive techniques (e.g., a parity
technique providing error detection) but they hageprovided reliability for all elements in a dgsi
such as one implemented on an FPGA. Hence theaeneed to provide adequate reliability at the
lowest possible cost. One of the main goals inrdésgarch is to enhance the reliability of a lowtco
parity scheme in order to improve the error coverdjeaknesses of a general parity technique on the
FPGA are researched. Given that current FPGAs arg dense (e.g., Virtex-Il Pro FPGA has
34,292,768 SRAM cells [2]), and that the mappintaiie of the placed and routed FPGA design are
proprietary, analyzing the effect of faults on empiementation is very difficult. In order to tacktgs
obstacle, this research exploits the high regylamitthe FPGA (e.g., the same basic building block

containing combinational and sequential elementsgeated throughout FPGA).

The pin fault model (faults are modeled as occgrron input and output pins of FPGA
components e.g. look up tables, block memory, iste)sed for modeling and analysis of a wrong
value in an SRAM cell due to radiation. Then a $rpaltion of the AES is tested by simulating
single errors (through flipping 1 bit at a timetive configuration file) to verify this model. Sintiee
FPGA structure is regular, the result of this veaifion for this simple yet sufficiently accuratede!

is expanded for the whole device.

Parity techniques cover single errors in datapatiisters, however, errors due to radiation can
occur in the control circuitry as well as in SRARIIs forming the combinational logic and routing of
a design implemented on FPGAs. Unlike previous aiese propagation of single errors is
investigated in the AES netlist after placement emding. In combinational logic or routing, there
are 2 situations when an error can be undeteciest, F a single error potentially affects an even
number of data bits. Second, if both data andypéittare affected by a single error. In these sase
LUTs are designed manually in the netlist and eftipeflops are used at the register-transfer ldoel

resolve errors being undetected in combinatiorgitland routing of FPGA, respectively.

Chapter 1: Introduction

There are some parts in the AES algorithm thatbzarefit from elements available in state of the

art FPGAs to provide error detection. Therefore, fgarity scheme is not used for all transformations

in AES. For instance, unlike previous researchual gorted block memory is used $ubByteof

AES to provide error detection. Additionally, dugation is used for error detection within the dasig

of the control circuitry. By utilizing very few LUSthe overhead of the control circuitry is low.

An error in an FPGA can significantly modify thenfilionality of a design. Therefore, if these

errors are not removed by reconfiguration, the ddpbility of a correction technique is questionable

In order to correct errors, self reconfigurationdesmonstrated in this research. In case of an error

occurrence, the AES module interrupts the integrptecessor on the FPGA for a reconfiguration.

The contributions of this research include itemfHews.

Errors caused by radiation in SRAM-based FPGA aceleted by using the pin fault
model. Then this simple and accurate enough maglé&iverified by simulating errors in

the configuration file.

Radiation faults are simulated by flipping bitsinferest in the configuration file that is
downloaded on the FPGA. The desired net is remaveke placed and routed netlist to
generate the modified configuration file. Then thedified and original configuration files

are compared in software written in C++.

The weaknesses of the parity scheme in error deteate found through a small design
implemented on FPGA. The effects of a fault propiagato output, while simulating

errors by flipping bits in the configuration filare observed.

The error coverage of the parity scheme is exparfiaed the datapath flip-flops to the
control circuitry, logic blocks, and routing. Thimprovement is done by mitigating the

weaknesses in the parity scheme at the registesfarlevel.

The insufficiency of known error correction techumg such as the triple modular
redundancy and Hamming code in FPGAs is analyzddsalf reconfiguration is suggested

instead.

AES with the enhanced parity scheme is designedrapigmented on the FPGA as an IP
core. Interfacing of the master IP core capablmtefrupting the PowerPC 405 processor

is implemented.

Chapter 1: Introduction

1.1 Thesis Organization

The outline of this thesis is as follows. In Chagtebackground on radiation effects causing faults
in semiconductor devices is presented. The sowfcexliation effects and their mechanisms causing
errors in DRAM and SRAM cells are discussed. Dé&bni and comparisons of various faults
including soft errors in a device are provided.t®ofors are dynamic radiation-induced faults which
generally cause a storage bit to change its vée¢hods of estimating errors caused by radiatica in
device are described. The relationship betweemtdoby trends and errors caused by radiation is

also presented.

In Chapter 3, soft error mitigation techniques #tedent levels from hardware to software are
presented. Peculiar effects of soft errors in SRédded FPGAs are discussed and also compared to

effects in ASICs.

In Chapter 4, general security requirements ofstesy such as authentication, data confidentiality,
data integrity, and non-repudiation are brieflyatdsed. Then the primitives to provide these seguri
needs (i.e. symmetric-key algorithms, public-kegoaithms, and hash functions) are presented.
Emphasis is placed on the standard symmetric-kggrihm, AES, which is the focus in this
research. National Institute of Standards and Taolgy (NIST)-recommended block cipher modes
are also covered briefly. Error propagation witthie AES algorithm (due to confusion and diffusion
properties) and error propagation in various cipirerdes of operation are discussed. Different

architectures previously used to implement AESpaesented.

In Chapter 5, the proposed AES with soft error ctita is introduced. The proposed error
detection technique uses mathematical propertids&=® and available hardware resources on FPGA
to detect errors irbubBytesand the control circuitry implementations. Enhameets to the parity
scheme (used for error detectiorMixColumnsandAddRoundKeyto increase its error coverage are
also proposed in this research. In order to ineréhe error coverage of the parity technique, the

weaknesses of it on FPGA are found and mitigateddrcombinational logic and routing.

In Chapter 6, experimental results and comparisares discussed. Chapter 7 presents the
conclusion and future work. The thesis also inclu8l@ppendices. Appendix A provides a glossary of
acronyms. In Appendix B, different aspects of desagd implementation of the AES module as a
system on chip on FPGA are covered. This systenthigasapability to self reconfigure in case of an
error through the host PC. Communication and sythation of the proposed AES module, the

5

Chapter 1: Introduction

PowerPC 405 (integrated) processor on the FPGAttantiost PC are described. Device drivers that
provide interrupt handling of the PowerPC 405 pssoe and the host PC are presented. Appendix C
illustrates the state machines of the control dirgun the proposed AES. In Appendix D, the device
driver code for FPGA reconfiguration is presentégpendix E shows the processor local bus
interface. S-box of AES and pseudo code for keyaegjpn are provided in Appendices F and G,

respectively. In Appendix H, routed netlist snagstioom FPGA Editor are provided.

Chapter 2

Radiation Effects on Devices

This chapter provides an introduction to radiat&ffects in semiconductor devices. Radiation
sources and their effects are briefly presentedciBp mechanisms causing errors through radiation
effects in storage elements including DRAM and SRAM discussed. A comparison of radiation
faults, faults injected by an attacker in cryptquyia algorithms such as AES (the focus of the
research), and faults caused in manufacturingasgmted. Methods of estimating soft errors, which
are caused by radiation, in a device are described.relationship between technology trends and
soft errors is also presented at the end of thiapteh. Before proceeding to details, some

terminologies used in this thesis are describedlfoification.

2.1 Radiation Sources and Soft Error Mechanisms

Faults in a device do not necessarily cause eimaratput results. For instance, in an FPGA a fault
that happens in an unused resource does not cawegeoa at the output. Error mitigation techniques
do not have to necessarily provide error correction the other hand, tolerance to error includes

correction of error.

Energetic particles hitting an electronic devicasedisturbances which typically are referred to as
single event effects. Researchers have discovemgolg sources causing these effects either directl

or indirectly through nuclear reactions betweenghsicles and other materials in the struck device

7

Chapter 2: Radiation Effects on Devices

In addition to short-term radiation effects, otlefflects that are the result of cumulative long-term
ionizing damage in a device are known as totalziogi dose effects. These effects encompass those
that appear from long-term absorption of radiatbmer time. On the other hand, short-term effects
are caused by the passage of a single ionizindclgathrough a device. Total ionizing dose effects
can cause devices to suffer threshold shifts, as@é device leakage and power consumption, timing
changes, and etc [3]. Fabrication process-basdthitptes such as epitaxial CMOS process and
silicon-on-insulator can reduce total ionizing dedtects [4]. Most solutions to total ionizing dose
effects are fabrication process-based techniqueemacement of parts. The main focus of this
research is on the short-term upsets caused gtiadi These short-term effects are provided later

this chapter.

Radiation effects have become an issue due to eémdy scaling. One of the first manifestations
of radiation effects in literature were found iretprocess toward higher levels of integration in
memory circuits at Intel [5, 6]. Specifically, resehers at Intel observed significant error rate
increase in DRAM as integration density increagedgkb and 64kb in the late 1970s. As shown in
Figure 1 (SER refers to soft error rate), DRAM &t error rate due to radiation has decreased by
a factor of 4 to 5 per generation since then bygatiton techniques discussed in Chapter 3. However,
due to increased demands for memory density (mesipeyper system being a microprocessor with
embedded memories) the overall system error rabevishin Figure 1 caused by radiation has
remained approximately the same. For instancesitteeof the main memory of microprocessors has
increased from 1kb in the 1970s to beyond 1Gb. Timese is significantly larger number of memory

cells that can potentially cause a system failar@ modern microprocessor.

Chapter 2: Radiation Effects on Devices

.‘é
=5
el
S
§
=
o
]
»
=
<
o
< DRAM system SER
DRAM bit SER
107
1,000 100

Technology (nm)

Figure 1 DRAM error soft error rate caused by rtolie[7]

Compared to DRAM, early SRAM was more robust tagkrevent effects. In recent technology

(less than0.25um), SRAM bit error rate has not increased. Howewsponential growth in the

amount of SRAM for instance in microprocessors digital signal processors has resulted in the
system error rate to increase with each generalibis trend is of great concern to manufacturers

because SRAM constitutes a large part of all ade@mategrated Circuits (ICs) today.

A particle can pass through a semiconductor natdree electron-hole pairs along its path, and
deposit energy directly. In addition to that, atigée can lose energy through indirect mechanisyns b
interacting with the struck material. Since radiateffects were discovered in semiconductor deyices
3 main sources described below have been foundatteatresponsible for single event effects at

terrestrial levels [7].

= One source is alpha particles that can be emityeshiall traces of radioactive impurities,
such as uranium and thorium, in packaging materidie extent of radiation depends on
the quality and purification grade of the materiddsiother source of alpha particles is
solder bumps especially those that are near aeeas#ise to radiation, for instance, SRAM

and DRAM cells on a chip.

= Another source of single event effects is partigeserated when ever-present cosmic rays
enter earth’s atmosphere. For instance, high eneggjrons are one of these predominant

particles. It should be noted that disturbancesedily these particles are more significant

9

Chapter 2: Radiation Effects on Devices

in higher altitudes. High energy neutrons strikinglevice can cause displacement in the

silicon lattice.

» Interactions of cosmic rays with materials on ttrack device can also cause single event
effects indirectly; an example is interaction ofvl@nergy neutrons in cosmic rays and
boron. Boron is a dopant used in silicon devicegHe formation of p-type regions. Boron
is also in borophosphosilicate glass (BPSG) usedsulator layers of a device in older
technologies (e.g., 0.25 and 0481 SRAM cells fabricated with BPSG).

Single event effects can manifest themselves irowarways in an implementation. They might
change the logic state, cause a transient disruptiosome types might even lead up to permanent
destructive failures in a device. In general, & ttamage is unrecoverable in a device it is corside

as a hard error. Depending on their damage, ssglat effects are classified as follows [8][9].

= A single event latch-up occurs when current forde®ugh the substrate; this might

destroy the device.

= A single event gate rupture happens when there@ducting path in the gate oxide; this

destroys the gate control structure.

= A Single Event Functional Interrupt (SEFI) triggens operation of the support circuitry
and stops the normal operation of the device. Tippart circuitry in FPGAs provides the
configuration capability, power on, reset, JTAG dtionality and etc. For example, an
SEFI that affects the power-on-reset circuitry canse the current design on the FPGA to

be lost in an attempt by the power-on-reset cirgaitggering reconfiguration [10].

= A Single Event Transient (SET) occurs when the gha&ollected generates voltage/current

transitions which are commonly known as glitches.

= A Single Event Upset (SEU) flips the value of agiinstorage element or memory cell. For
example, this could be a Look Up Table (LUT) eleménflip flop, block memory cell, or
configuration memory cell affected by an SEU. Her®EUs are an important concern in
SRAM-based FPGAs.

= A Multiple Bit Upset (MBU) causes more than oneaadjnt bit to flip depending on its

strike angle.

10

Chapter 2: Radiation Effects on Devices

Soft errors are recoverable errors. It should beddhat the likelihood of SEFIs and MBUs is
extremely low. Therefore, the main concerns in eofors are SEUs and SETSs. It should be noted that

MBUs are important in differential fault attacksdiissed in Section 2.2.2.

The magnitude of the disturbance a particle cadeeends on its Linear Energy Transfer (LET)
that is defined as deposited energy per unit lerifik unit of LET is typicallyMeVcnf / mg, since
energy per unit distance lengttMeV / cmr) is normalized by the density of the material citru
(mg/ cm). For instance, in silicon, an LET of 9KeVcni/ mg corresponds to a charge

deposition of 1 pC/ gm[11]. Typically, more massive and energetic pagscin denser materials

have higher LET [7].

In general, charge collection happens within a amcor 2 of the junction (boundary interface
where the 2 regions of the semiconductor meet). rEverse-biased junction (p-type and n-type
regions are connected to negative and positiveagedi, respectively) is usually the most sensitive
part of a circuit in charge collection, in partiauif the junction is floating or weakly driven [7The
high electric field in the reverse-biased junctabepletion region (an insulating region with no free
charge carriers) assists collection of chargek&irnear a depletion region can also result iciefit

charge collection.

At the beginning of an ionizing radiation eventtrack of electron-hole pairs in the form of
cylinder is shaped Figure 2(a). This cylindricahck with a submicron radius has high carrier
concentration. Then the electric field rapidly ects the carriers causing a glitch Figure 2(b) and
forms the field funnel [7]. This funneling effesthown in Figure 2(b), increases charge collection a
the struck node by extending the high electriadfial the junction deep towards the substrate. This
part of charge collection phase completes withits tef picoseconds. The following phase in charge
collection is diffusion in which electrons diffugeto the depletion region. Diffusion takes longer i
the range of hundreds of nanoseconds. It ends walh@xcess carries are collected, recombined, or

diffused away from the junction.

11

Chapter 2: Radiation Effects on Devices

lon drift lon diffusion
g i
~ & \
+ -~ + +
+ o
p ool = L
+-'? = AR + s B
i
o= g
B + 4
N + -)
++-t L +'_ +
+ +
= + = + +
g
i A "

(b) (c)

Figure 2 Charge collection in a reverse-biasedtjanc(a) formation of electron-hole pairs, (b)

funnel shape field extending deep into substradediffusion process [7]

In order to further clarify errors by soft errotbe mechanisms causing errors in DRAM and
SRAM cells are briefly presented. The DRAM celligtrated in Figure 3 has an access transistor and

a storage capacitor. There are 2 main parametateddo DRAM errors when an ion strikes a cell.
The first parameter is the critical charge (dendigg, is defined as the minimum amount of charge

collected at a sensitive node that can cause an) é¢nat is closely connected to the concept of@oi
margin. The second parameter is the critical tinmedow when the disturbance can get stored in the
DRAM cell. Due to dynamics of the DRAM cell, timingf the strike is also an important factor;

meaning the strike has to happen in the criticaétvindow.

As shown in Figure 3, one of the most sensitivesparthe DRAM cell is the storage capacitor and
the source of the access transistor. lon strikabeste 2 nodes directly affect the stored charge an

consequently the information stored in the DRAM.cel

Errors can be caused by ion strikes at bit linesels This happens when bit lines are in a flogitin
voltage state, for instance, during a read oparafidherefore, an ion strike must happen in this
critical time window. The disturbance caused &atibés can reduce the sensing signal due to charge
imbalance either prior to or during the sensingrafien (when the sense amplifier amplifies the

small differential voltage between the bit lineghe full swing).

Another mechanism (named the combined cell-bit fizikeire mode [12]) that can cause an error in

the DRAM cell is the combination of the 2 mecharssirscussed above. In the combined cell-bit line
12

Chapter 2: Radiation Effects on Devices

failure mode, either of the mechanism above dodsintividually excee®,,;; . However, when

combined together, they can cause an error.

Word Line (WL) —
Bit Line (BL)
Cell lon Strike Bit-Line lon Strike
p substrate
storage !
capacitor Vbb

(a) (b)

Figure 3 DRAM cell: (a) circuit, (b) layout [11]

The error mechanism in the SRAM cell is quite diéfe from the DRAM cell due to the feedback
loop formed by the cross-coupled inverter pairhnSRAM cell circuit. A typical SRAM cell with 6
transistors is shown in Figure 4 where the positeziback loop is formed by cross-coupled inverters

Q,-Q; andQ,-Q, [13].

BLB BL
-
oy o
|D—Jg|—::— ID—,;\—II
o H e
X

Figure 4 Six transistor SRAM cell [13]
13

Chapter 2: Radiation Effects on Devices

Typically, the most sensitive part in the SRAM sigllthe reverse-biased drain junction of a
transistor when it is off [11]. Charge collectedthg junction lead to a transient current in thraci
transistor. This triggers a response in the SRANtat is similar to a write pulse and can cauddit a
flip in the SRAM cell.

For instance, in the 6 transistor SRAM cell showrFigure 4, the node storing a ‘1’ is the most

sensitive node to errors. The reason behind thikedow Q... for al - O transition. AO - 1

crit

transition need€),;; that is about 22 times larger than that df a O transition [13]. The state of

crit
the storage node storing a ‘1’ is supported by katively weak PMOS pull-up transistor.

ConsequentlyQ.; of an SRAM cell is defined b@),,;; of a node storing a ‘1.

2.2 Comparison of Soft Errors to Other Faults

In this section, we discuss the causes of othdtsfdound in implementations, including faults
during the manufacturing of a device and faultedtgd during a cryptographic attack. These are all
different in nature; therefore, they need relevaitigation techniques. The basic differences among

these different faults are briefly described akfes.

2.2.1 Manufacturing Faults

Manufacturing faults are usually due to deformat@nlC elements. There are global faults in
manufacturing processes that affect large aredaboicated silicon wafers in a uniform manner. On
the other hand, there are spot faults affectingrg gmall area of fabricated silicon area which are
much more difficult to detect. Spot faults are engral due to an extra or missing material in dne o
the layers (i.e. conductive, semiconductive, arslilsting layers). Spot faults include: shorts due t
extra conducting/semiconducting material or missingulating material, breaks due to missing
conducting/semiconducting material or extra insofptmaterials, new parasitic elements, and

elements with degraded performance [14].

Manufacturing faults can be intermittent due totabke or marginal hardware. As opposed to
permanent faults that always exist, intermittentittado not happen all the time. Their occurrences
(activation and deactivation) depend on environaermonditions. Intermittent faults happen
repeatedly at the same locations, while soft ereyes random in space. Additionally, when the

environmental conditions are encouraging, inteenittfaults tend to happen in bursts, while soft

14

Chapter 2: Radiation Effects on Devices

errors are random in time. Another key differensethat replacement or repair can resolve

intermittent faults, but this is not the case foit &rrors [15].

Fault models typically represent consequencesudfsfat the abstracted logic level. For instance,
the stuck-at model indicates a wire is a ‘0’ (carted to ground) or ‘1’ (connected to supply voltage

Bridging faults between outputs and can be modejeldgic gates.

One major group of manufacturing faults is opens simorts described by the stuck-at modeling.
For instance, this can happen in a pass transstg@art of the programmable interconnect point in
routing of FPGA. This pass transistor is controllgdan SRAM cell, shown in Figure 5. A short or
open causes the pass transistor to be permandafigdcor open, regardless of the value of the
SRAM cell controlling it [16]. However, when an SBt&ppens in the same scenario, it flips the
value of the SRAM cell controlling the pass tratwisThe case of an SEU is similar to loading the
FPGA with a different configuration file. The cogdiration file (also known as programming or
bitstream file) of the SRAM-based FPGA defines mplementation (basically, the values stored in
LUTs and block memory, the interconnection betwessources, and the modes of the resources e.g.,
I/O standards, I/O drive strengths and LUT mod2g).[

SRAM
cell

SRAM SRAM
cell bit flip cell open wire

S R 1
i I L

(a) (b)

Figure 5 Faults: (a) soft error causing bit flip (banufacturing open wire

Manufacturing fault detection techniques usuallglude loading test configuration files and
applying test vectors to detect faults. Test vectan be generated externally or internally asuiti-b
in self test. Since SEUs do not cause configuratidependent affects compared to shorts and opens
and can be fixed by reconfiguration, the abovear@finethod for detecting manufacturing fault does

not apply to SEUs.

15

Chapter 2: Radiation Effects on Devices

2.2.2 Fault Attacks

There are faults that are injected by an attackebtain some secret information. The goal in fault
attacks is to replace the valid results with invakesults (causing errors in results) to perfore th
cryptanalysis. There are various ways to causereor euring a cryptographic operation, e.g.,
variations in supply voltage so the processor rtesprets or skips instructions [18], variationghe

external clock, and lasers.

Fault injection can be with or without contact [1B8] a fault injection with contact, there is direc
physical contact with the chip (e.g., at a pinéuse voltage or current changes. For instance, in
spike attacks the supply voltage is set to vidllageoperating voltage range tolerated by the cHigs
voltage variation can be exploited to produce angreesult that might be useful for fault analysis t
get some secret information from the cryptosystém.attacker needs to find specific parameters for
a spike (in terms of timing and shape of a spikepttoduce wrong results that could be used to

perform the cryptanalysis successfully.

Another approach to inject errors within the cipierto manipulate the clock signal so that it
violates its operating characteristics [20]. Fatémce, the operating clock voltage or the ris&albr
time can be set so that it will not fit within tipeoper range. However, generating a clock sigretl th
is deviated in such a way that causes the desimaimag ciphertext might be a challenge, since

changing the clock signal can potentially causecttip to lose its functionality.

In contrast to fault injection with contact, teoimés such as heavy ion radiation and
electromagnetic interference can be used in a ifgelttion without contact. For instance, light dan
used to inject errors in non-volatile memory celisvas shown that camera flash light can be used t
target the memory of a microcontroller to set metean individual bit at a specified time [21].
Researchers in [22] showed that a non-volatile nmgnmoa microcontroller can be erased by a UV-C
light with the wavelength of 2%54¥n They demonstrated an attack on a software AE$imgntation.

It was shown that if a single byte of the S-boxlimnged and key expansion is not affected, 2500
pairs of correct and faulty encrypted inputs affigant to recover the key with a probability 0%

on an 8-bit microcontroller [22].

Electromagnetic emissions can also be used to éexdument and target sensitive spots of the chip
(e.g., memory) [23]. This approach is not invasiveéhe sense that one does not need to open the

chip.

16

Chapter 2: Radiation Effects on Devices

The accuracy of fault injections, in order to egtraecret information, is an important factor in a
successful cryptanalysis. For instance, the lefrebatrol over location and timing of fault injestis
is important for fault analysis. A technique sushasspike attack is random in terms of the location
faults while an optical attack provides accuratgating oflocation [20]. Another important aspect is
the number of faults injected. Depending on thétfattack, a single fault or multiple faults mag b

needed for cryptanalysis.

The first theoretical model for breaking cryptogyss by exploiting random hardware faults was
introduced in [24]. In this research, it was shawat fault attacks were effective in the RSA system
and Rabin signatures. The attacks were also appdig¢tie Fiat-Shamir and Schnorr identification
schemes. Fault attacks depend on how a cryptosystenplemented. For instance, the fault attack in
[24] on RSA is effective on the Chinese remaindesenl implementation. The attack in [24] is briefly
summarized as follows. Based on the Chinese remaiheg RSA signaturé& can be computed as

follows.

E=aE + bEmod N (1)

whereN is the RSA modulusN=p*q; p andq are prime)E, = Messag&"***mod | and

E, = Messag@"*®*mod .

Assuming E' is a faulty signature anft’, = E, (meaning no faults during computation ef) it
is observed that

E-E'= af + b —(aE,+ bE,)
=a(g - E))

(2)

If (E, —E') is not divisible by p, then N is factored as shown in Equation 3 and the

cryptosystem is compromised.

q=gcd(E- E',N) (3)

17

Chapter 2: Radiation Effects on Devices

There are also reported fault attacks on symmkéayc-algorithms. Differential Fault Analysis
(DFA) was proposed by researchers as an attackstdakS in [25]. The full DES key was extracted
by analysis of 50 to 200 ciphertexts which wereegated from unknown but related plaintexts [25].
Additionally, the same attack (with the same nundfegiven ciphertexts) applied on TDEA resulted
in a successful cryptanalysis.

Since AES does not have the Feistel structure 8&i®, it is not possible to apply the fault attack
introduced in [25] on AES. DFA against the AES wasbsequently proposed in [20, 26-28].
Intermediate states are changed by faults injaotéiese attacks. There are also DFA against the ke
expansion of AES reported in [29, 30]

As shown in Figure 6, an attack based on injecsimgle faults in the intermediate result of the
initial AddRoundKeyransformation was introduced in [20]. The plaintexset to O (every bit is a
‘0’) and it is assumed that the attacker knowsdimgect ciphertext and his goal is finding the kiey.

is observed that

initial AddRoundKey resukt 0+ initial Round K 4)
Or equivalently:

initial AddRoundKey result initial Round Ki (5)

Then the attacker injects a ‘0’ at every bit logatiof the initial AddRoundKey resu. If the

round key bit is a ‘0’ then the ciphertext is catréOn the other hand, if the round key bit is 'ahEn

the ciphertext is wrong. Since it is assumed thacker knows the correct ciphertext he is able to
distinguish a wrong ciphertext from the right cipgle&t. This process is repeated 128 times forhall t
key bits and the complete key is found in this tapglysis.

18

Chapter 2: Radiation Effects on Devices

plaintext=0

!
AddRoundKey |« Initial Round Key

Initial

Round

____________ Single fault is inject at this location.

SubBytes

AddRoundKey Round 1 Key

Round 1

Figure 6 AES fault injection [20]

The assumption of the attacker being able to atiasiecific single bit within the first round key i
strong in the sense that it might not be practiciasible. This is where probabilistic fault aysis

comes into play. In this case, the probability ofatack being successful or unsuccessful is also

considered.

Another technique proposed in [20] is based ongugie timing attack on AES (this was suggested
by Koeune and Quisquater [31]) in a fault basegtenyalysis. Approximately 16 faulty ciphertexts

were claimed to be sufficient to extract 1 byteéhef key.

Researchers in [30] described 2 different attacksA&S by injecting faults. The first attack
assumes a fault on only one bit of an intermediaselt at the beginning of the final round. The
location of a fault should be chosen. Fifty fauiphertexts were used to obtain the key completely.
The second attack [30], which is more realisticnsiders injecting faults in a whole byte.
Researchers then performed differential fault asalyhat resulted in obtaining the full 128-bit AES

key with less than 250 faulty ciphertexts [30].

Researchers in [26] supposed that a single bytheotate after th8hiftRowsof round 9 can be
changed and the index of the faulty element ofesimtknown. It is assumed the new value of the
element of the state is unknown. The injected fapiteads over 4 bytes of the output state. A set of

possible fault values for each faulty element & tutput state is found. Possible fault values are
19

Chapter 2: Radiation Effects on Devices

intersected for all the 4 faulty elements to reddice number of required ciphertext for the
cryptanalysis. Then possible values for 4 elemehtie last round key are deduced. Four bytes of

the 10" round key is obtained by more ciphertexts [26].

In fault attacks, faults are aimed at results @isters). However, in the case of soft errors the
perspective is broader in the sense that faultsaffect registers, combinational logic and routing
a FPGA. Therefore, it is important that faults efieg parts other than registers be considered
throughout the design as well. The occurrence dtiphel faults is important in fault injection [32]
since it is easier for an attacker to inject migtifaults (e.g. target a byte, than a single). the
other hand, in radiation faults the likelihood ofgle faults is exceedingly higher than multiplelta
[33]. As opposed to fault injection mitigation texdtues, the accumulation of faults is important in
the case of SEUs. For instance, a strong methadliétacts and corrects errors is not sufficiemiesi

the accumulation of faults over time will destraw tftunctionality of the method itself.

In this research, the main goal of error detecisoim terms of reliability. However, the proposed
technique can be applied against cryptanalysis B8 An the circumstances that follow. Multiple
errors are detected in tlBeibBytesransformation, as will be described in Sectioh.&. Therefore,
the proposed error detection technique may be agaihst faults attacks where multiple attacks are
injected duringSubBytesForMixColumnsandAddRoundKeyransformations, detection of a single
or an odd number of errors is provided, as desdrilme Section 5.1.2, 5.1.3, 5.2.2, and 5.2.3.
Therefore, in scenarios where the number of bippdid in these two AES transformations is not
always even, the proposed method may be used adains attacks. For example, attacks such
as [20] (a fault is injected after the initidtldRoundKeyor the first attack in [30] (a fault injected at

the beginning of the final round) may be thwartgdh® proposed thesis work.

2.3 Estimating Soft Error Rates of a Device

Estimating soft errors of a device is complex astihgtions of different studies also vary. There
are 3 known approaches for the soft error ratemasibn: accelerated testing using particle beams,

software simulation of circuit, and estimation lalrparticles.

In accelerated testing [1][34], a device is sulgddb particle beams generated by accelerators. For
instance, researchers in [1] at the Los AlamosdHdati Laboratory have used a linear accelerator that

produces an 80deV pulsed proton beam that strikes a water coolegsten target. This generates a

20

Chapter 2: Radiation Effects on Devices

spectrum of neutrons whose energy distribution iatehsity are precisely measured. The energy of
this spectrum, which is similar to atmosphericscpen, is in the range ofMeV to 60MeV. There

is also a neutron flight path (@0from the neutron production target) with an irediin building
where a device to be tested is placed in. The oelieam is controlled by opening and closing a
shutter. The angle of incidence is an importantupeter in the estimation results of the soft error
rate. The flux increase for higher than the seallaltitudes can be computed by assuming a 30%
increase for every 10@0rise in altitude (a commonly used rule to the mead flux versus altitude
below 4000&). It should be noted that predicting atmosphegatron flux in accelerated testing
using particle beams is not exact. This is showf3%} through investigation of different studies on
terrestrial neutron flux. If the particle beam enpents are intended to predict actual soft erates,

the results can be different by a factor of 10 eitieere is a wide variation in energy versus flax a

reported by the various studies [1].

Another approach to estimate soft error rate isasoE circuit simulation to determine the critical

charge a particular node or latch can handle batoohanges state, causing a bit flip. Different

models ofQ,; have been proposed in [36][37-40]. Furthermore,ithpact of process variation on
Q.it is investigated in [41]. Models that have beenortgnl generally agree on the qualitative
definition of Q,;, ; however, they are different in quantitative dgs@n [41] . Each modeling of

Q.ir has its own limitations, for instance, the impatta parameter might be underestimated or
overestimated according to certain assumptions.

Another method to estimate soft error rate is tojestt devices to real atmospheric radiation. In
order to provide sufficient data, a large numbed®ifices go under test. An extensive test on FPGAs

is conducted in the Rosetta experiment [1] at ciffié altitudes. The experimental setup in [1], show

in Table 2.1, is costly in terms of time and hartev@ get large amount of data.

21

Chapter 2: Radiation Effects on Devices

Table 2.1 FPGAs under test in Rosetta experimédnt [1

Node technology imm Die Locations Altitude in feet # of devices Device hours
San Jose 0 100 1060000
New Mexico 5100 100 1670000
150 2V6000
White Mountain 12470 100 856800
Mauna Kea 13200 100 353000
San Jose 0 200 1191000
130 2VP50 | New Mexico 5100 200 709000
White Mountain 12470 200 655000
90 S31500 San Jose 0 500 256000
90 V4LX25 San Jose 0 100 20000

The Failure In Time (FIT, where 1 FIT is 1 bit flim billion hours of a device) values of

configuration cells at the sea level in the Rosesxgeriments are obtained for different technolsgie
as follows: 295 FITVb for the 0.15/m node, 290 FITIb for the 0.13¥ymnode. Furthermore, there

are 265 FITMb and 530 FIT¥b for block memory cells in the Rosetta experiments.

Soft errors increase as the altitude increaseseftire, applications suffer more severely in space

than at terrestrial levels. Table 2.1 shows the rmgime to error for a Virtex-ll FPGA in a

geosynchronous orbit in the case of SEUs in cordijon memory, block memory, and power-on-

reset circuitry SEFI [9].

Table 2.2 Mean time to error of Virtex-1l (devic&)R2V6000) in a geosynchronous orbit [9]

Mean time to error
SEU in configuration cells 1.8 hours
SEU in block memory 11.8 hours
Power-on-reset circuitry SEFI 221 years

22

Chapter 2: Radiation Effects on Devices

The FPGA architecture uses memory cells to comtrety programmable function and feature.
Therefore, adding costly redundant circuitry tatacsoft errors can make the FPGA cost too high to

be commercially viable.

2.4 Technology Trends and Soft Errors

As technology improves, dimensions decrease, suppliages and capacitances lower, and
frequencies increase. Density of components inegeeasth minimizing dimensions as technology
advances. Consequently, denser circuitry resulltégher number of sensitive nodes in the same area

compared to older technologies. Furthermore, smédlgout dimensions reduce capacitance of a

node; this reduce§),; Wwhich is related to noise margin as well. Thusraller charge deposited

can upset a nod€),;, is further decreased by lowering supply in advdnteehnologies. Since the

clock frequencies continue to increase as techgaddgances the likelihood that a momentary glitch
(SET) is propagated through the logic path andkeldcas valid data increases. Consequently, all
these technology trends unfortunately conspirentweiase semiconductor devices susceptibility to
radiation. Thus, designing for soft error resistatis important not only for space but for other

applications as well.

DRAM cells were among the most vulnerable eleméntsarlier technologies in the late 1970s.
Early DRAM cells stored a bit value in 2-dimensibpan junctions. Those DRAM cells were highly
sensitive to radiation due to large planar revéiased junctions. The more compact 3-dimentional
design of DRAM cell with a much smaller charge eotion atp-n junction significantly decreased
the vulnerability of DRAM cells to radiation. Thi&dimenetional design even compensated other
adversely contributing factors (e.g., shrinking@yproltages) such that the soft error rate deaeas
for next generations, overall. However, the sysseffh error rate remains approximately the same due

to denser DRAMSs in a system in recent generations.

Compared to early DRAMSs, early SRAMs were more sblagainst radiation mainly due to the
feedback loop in their structure. However, in rédechnologies, the SRAM cell area and therefore
the junction area as well as the supply voltagedezseased. All these factors increase sensitioity
radiation. The SRAM bit soft error rate is satudafter technology nodes beyond 0,281 [33] due to

the saturation ofVpp scaling, reductions in junction collection efficey of highly dopedp-n

junctions, and the increased charge sharing bettieeneighboring nodes. However, the exponential

23

Chapter 2: Radiation Effects on Devices

growth of SRAM density in state of the art processoas led the SRAM system (referring to a

microprocessor with embedded memories) soft eaterto increase with each technology generation.

1000 7 -
1 & SRAM bit SER B

1 © SRAM system SER %"
100 4

Normalized Soft Error Rate

1000 100
Technology (nanometer)

Figure 7 SRAM system soft error rate increasingevbit soft error rate being about constant [33]

If an SET (radiation-induced glitch) actually prgp#es to the input of a latch or flip-flop and
meets the timing requirements (setup and hold dintlee erroneous input will be latched and stored.
In older technologies, an SET could not propagatabse it usually could not produce a full output
swing or was quickly attenuated because of largd apacitances and large propagation delays. In
advanced technologies, where the propagation delegduced and the clock frequency is high, an
SET can more easily traverse many logic gates tlagbrobability that it is latched increases. SET-
induced soft errors are not expected to becomssareiuntil the technology reaches or goes beyond
the 6%im node [7]. Once an SET can propagate easily, sgnolis and especially asynchronous
(without clock signal) circuits would be extremedgnsitive to such events. In technology beyond
90nm and at high operating clock frequencies, therméseased likelihood that a large fraction of
observed soft errors will be related to SETs bsiioged [7].

An important bottleneck in recent technologieshis increase in the sub-threshold leakage power
due to decrease in the threshold voltage (the hibtésvoltage is lowered to maintain enough gate
overdrive and improve performance). Lowering theeshold voltageauses the transistor sub-
threshold leakage current to increase exponentidlherefore, the supply voltage is lowered to

minimum level to reduce the sub-threshold leakageep. However, lowering the supply voltage

24

Chapter 2: Radiation Effects on Devices

decrease<),; and thus increases vulnerability to radiationislimportant to consider the power

reduction benefit vs. reliability concerns when a$iag the minimal supply voltage [13].

2.5 Summary

The main goal of this chapter was to provide sonaekground on radiation effects in
semiconductor devices, known as single event effddte sources of single event effects and their
mechanisms causing errors in a DRAM and SRAM eediee discussed. The focus of this research is

on soft errors including SEUs and SETSs that aigredt concern with respect to reliability.

A comparison of radiation faults, faults injecteg dn attacker in cryptographic algorithms, and
faults caused in manufacturing was presented. Mstlod estimating soft errors that are accelerated
testing using particle beams, software simulatibreicuit, and estimation by real particles, in a

device were described.

The relationship between technology trends andesoftrs was also presented. It was shown that
the technology scaling (decreasing dimensions, Igwagtages, and capacitances while increasing

clock frequencies) increase the likelihood of swfbrs in a system.

In the next chapter, previous research on tackdiofy errors at different levels is presented. In
SRAM-based FPGAs, peculiar effects of soft erraes discussed and also compared to effects in
ASICs.

25

Chapter 3

Previous Research on Tackling Soft Errors

Soft error mitigation techniques range from low dewardware all the way up to software
techniques. In this chapter, different techniquetha fabrication process level, circuit and system
level including error detection and correction cadend also software mitigation methods used in
microprocessors are presented. Peculiar effect®foferrors in SRAM-based FPGAs are discussed.

Furthermore, insufficiencies of ASIC methods whitgal with soft errors on FPGAs are pointed out.

The first mitigation step would be to remove theirses causing soft errors that exist inside a
device (refer to Section 2.1). These sources daterk to the purity of materials used in the
manufacturing process and packaging of a chip. iRstance, in order to reduce alpha particle
emissions, semiconductor manufacturers use extyelnngth purity materials to make sure they have
acceptably low alpha emissions [7]. Another exampleemoving BPSG, which could cause soft
errors indirectly, from virtually all advanced texhogies. Figure 7 shows the reduction of softrerro
rate by elimination of BPSG in SRAM cells. Soldamgld, and underfill compounds with reduced

emission rates also need to be chosen carefully.

When all the internal sources of soft errors ammiahted as much as feasible, there are still

external sources that cause considerable numbssfoérrors. For instance, a large portion of high

26

Chapter 3: Previous Research on Tackling Soft Error

energy cosmic neutrons will always reach devicesaause soft errors, and thus high energy cosmic

neutrons ultimately become the main concern iniogusoft errors [33].

Further mitigation techniques (other than removiudjation sources) can be roughly classified into
3 categories. At the lowest level, that is fabiaatprocess (or technology) level, mitigation
techniques require fundamental changes to the Iyinpfabrication technology used to manufacture

ICs. Circuit level technigues rely on changes i tircuit design and layout to reduce sensitivity t

soft errors. Eventually, any circuit or layout nfaxtion that increase€),;; while maintaining or

reducing Q,,, (collected charge) improves resistance againgt esobrs. At the highest level in

hardware, system level techniques tackle soft erograpplying changes to the architecture of the
system. Combining these techniques at differen¢léewnight provide the most efficient solution

overall for a high-reliability application [7].

3.1 Fabrication Process Level Techniques to Tackle Soft Errors

A fundamental mitigation method for soft errorédseduce charge collection at sensitive nodes in
devices [11]. Substrate structures or doping msfthat decrease the depth from which carriers can
be collected can reduce the charge collected.instance, this can be accomplished in DRAMs and
SRAMs by introducing extra doping layers to limitbstrate charge collection [42]. In SRAMs,
triple-well [43] and even quadruple-well structuféd] (these use multiple-well isolation) have been
suggested to decrease sensitivity to soft errarmultiple-well isolation, all strikes basically iyzen
inside the well. Layers can also be used to prositdénternal electric field that opposes collectidn
charge deposited in the substrate [45, 46] . Ev@nguan epitaxial substrate instead of a bulk
substrate reduces charge collection to some ektéht An epitaxial substrate consists of a heavily
doped, low-resistance bulk substrate topped bghdlyi doped, higher-resistance epitaxial layer [47]
The upper layer in is thin and extremely pure semdictor that is chemically deposited in wafer
using a process called epitaxial growth [48]. Fmtance, the radiation-tolerant Virtex-4QV FPGA

technology incorporates a thin epitaxial layer e tvafer manufacturing process for single event

latch-up immunity [49]. For each Virtex-4QV devigge, the latch-up immunity at maximu¥. .
and operating temperature, subjected to a heavyluence exceeding 1.10particles/ c, with

LET exceeding 128MeVcenf / myg, is verified [49].

27

Chapter 3: Previous Research on Tackling Soft Error

In silicon devices, another effective techniqueduf®m reducing charge collection is the use of
Silicon on Insulator (SOI) substrate shown in Fg8r[50]. In this technology, the active device is
fabricated in a thin silicon layer that is dielécaily isolated from the substrate. Therefore, the
collection volume is reduced. The source and dpaimetrate all the way to the buried isolation oxide
in a typical thin-film SOI. Since the reverse-bidgdrain junction area is limited to the depletion
region between the drain and the body of the tstmsithis significantly reduces the area sensitive
SEUs. Due to the dielectric isolation in the SObstvate, charge deposited in the silicon substrate
underneath the buried isolation oxide cannot béecid at the drain. As opposed to the SOI

substrate, the bulk silicon structure can colléetrge from deep within the silicon substrate.

S Body
s /D
N+ P g N+\
? Buried oxide]
Substrate B

Figure 8 Structure of thin-film NMOS SOl [51]

It should be noted that bipolar capacitive couplaggoss the buried isolation oxide can lead to
unexpected charge collection in SOI structures[f&)] Charge deposited in the body region can
trigger a bipolar mechanism (the parasitic latdbgdolar structure is inherent in all CMOS
technologies [50]). This limits the SEU resistant¢he SOI substrate [50, 51]. In order to reduce
floating-body effects causing parasitic bipolareefs, careful body ties are used to maintain
resistance against SEUs [50][54][55]. However, nfacturers have found even body-tied SOI
substrates are not sufficiently resistant agaiistisSfor applications where very high upset limits a
desired [52][56][57]. In some cases, fully deple®@I transistors exhibit reduced floating-body
effects.

Techniques at the fabrication process level progidlenited path to mitigate soft errors. Due to the
invasive nature of these mitigation methods, wheduire fundamental changes in the manufacturing

process, these low level methods usually comeeaexpense of additional process complexity and

28

Chapter 3: Previous Research on Tackling Soft Error

steps, increased vyield loss, or substrate cost §ohsequently, methods to increase soft error

resistance at higher levels have been an altempéth to the fabrication process level techniques.

3.2 Circuit and System Level Techniques to Tackle S oft Errors

As opposed to mitigation methods at the fabricafioocess level, circuit and system level soft
error mitigation techniques can provide portabitityross different fabrication processes. In addlitio
to that, these higher level techniques could redbheegap that exists between the state of the art

fabrication technology and soft error sensitivity.

Before discussing mitigation techniques for varigt@rage elements it is important to note that
there should be proper choice of circuit types ideaign to decrease its sensitivity to soft errors.
Thus, elements that are known to be vulnerableofo esrors should be eliminated. For instance,
compared with static CMOS circuitry, dynamic lo¢gatock signal is used to precharge the output in
the precharge phase while the pull-down networkdiacharge the output in the evaluate phase [58])
due to its passive and highly charge-sensitive nadageration is vulnerable to soft errors; therefo
it should not be used [59].

DRAM cells used to be sensitive to soft errors whemufacturers used planar capacitor cells that
stored the signal charge in 2D, large-area junstidrecause these cells were very efficient at

collecting radiation induced charge. This issue \eder addressed by developing 3D capacitor

designs that significantly increasg.; while greatly reducing junction collection efficiey by

eliminating the large storage junction in silicd@harge collection decreases by decreasing the
junction’s volume, whereas the cell capacitanceaiemrelatively constant with scaling because it is

dominated by the external 3D capacitor cell.

One mitigation technique for SEUs in an SRAM callto increase the gate capacitance or

interconnect capacitance of its storage nodese g, is proportional toC, 4. (node capacitance)

and V, 4 (node voltage) as shown in Equation 6. As illustlain Figure 9, parasitic capacitance

between the interconnect metal layera @0d G) are used in [60] to add extra capacitance to the

storage nodes to increase resistance against SEUSs.

chit O Cnodevnode (6)
29

Chapter 3: Previous Research on Tackling Soft Error

Figure 9 Capacitors Land G added to SRAM cell mitigate SEUs [60]

Researchers in [61] proposed an area efficiengdesiown in Figure 10 to add capacitanCe)

in the SRAM cell. In this design, cross couple cdpace is fabricated by 2 local interconnectssThi

design provides 20% reduction in area compareldgaonventional SRAM cell.
L[]
®

Figure 10 Capacitanc€. added in SRAM cell [61]

BLBE
BL

Vertical metal-insulator-metal capacitors are usg®&T Microelectronics to add extra capacitance
to storage nodes [62]. These capacitors are addedels where there is no SRAM interconnect (the

unused space above SRAM cells are used). Ther¢f@mgdo not change the SRAM cell and its area.
However, there is an area penalty to route over8RA

Another method to mitigate SEUs is to insert resssin the feedback loop of an SRAM cell. This

increases the RC time constant of the cell. Theeased RC time constant potentially allows the cell
to recover from an SEU. Researchers in [63] addt@eesistorsR, and R, , illustrated in Figure

30

Chapter 3: Previous Research on Tackling Soft Error

11, to increaseR, C; and R, C, time constants. As opposed to the mainstreanransistor CMOS
SRAM cell, shown in Figure 4, there are no diremreections between the input and output of the
inverters shown in Figure 11. High-ohmic resistétsand R, slow down the voltage transition on
the input of inverters of the SRAM cell in Figuré. For instance, if there is a current spike onenod
A, due to a high-energy particle hitting node, it takes time for the disturbance to reach irerert

Q, — Qs. If this time is longer than the recovery timenoide A the SRAM cell will not be flipped

by the high-energy particle strike. In conclusidrthe recovery time of the output of the inveriger

shorter than the RC time constant of the cell dlipidoes not happen.

ELE BL
WL

Figure 11 Increased RC time constant by addfignd R, in feedback loop of SRAM cell [63]

Increasing the resistors in a feedback loop inblytancreases the write time of an SRAM cell.
However, in some cases, the increased write tinghtmot be significantly important and can be
tolerated. For example, in FPGA SRAM cells are uswnly in the read mode and are usually
written once during the FPGA configuration. In amdh to the write time penalty, there is increased

process complexity incurred by adding feedbaclstess [11].

Another important method to mitigate SEUs is byiwgsiedundant transistors to build memory cells
or latches. These designs are different from miagast storage elements built without considering
resistance against SEUs. Unlike the typical SRAN wath 6 transistors, researchers in [64]
proposed an SRAM cell, depicted in Figure 12, with transistors. As opposed to the positive
feedback of the mainstream SRAM cell with 6 tratosis the negative feedback of the design
suggested in [64] prevents flipping of the SRAMI edhen there is a glitch at a node due to a high-

energy particle strike.
31

Chapter 3: Previous Research on Tackling Soft Error

P4 I:ll'—x/‘<——‘|ﬂpl
4 P3 P1 b ©
3 ® ®

Ns T —Cn:

|
o T

BLE

Figure 12 Soft error robust SRAM cell using 10 siators [64]

One technique used at the circuit or system leveimitigate soft errors is based on time
redundancy (also known as time multiplexing, terapoedundancy, and temporal parallelism) [4]. In
this technique, data is sampled at different cledges shifted relative to the global clock accaydin
to a clocking scheme to mitigate SETs. The effectéss of the temporal parallelism scheme is based
on the fact that the likelihood of 2 independembesr occurring in the same circuit path within aaim
period of time is extremely low. For instance, @8lustrated in Figure 13, time redundancy is used
detect errors due to glitches (SETSs) in combinatfidwgic or SEUs occurring in flip-flops [4].

Y

CLK,

error
comparator ——»

Y

combinational

logic

H

CLKg

Figure 13 SET error detection using time redundddty

Another method to tackle soft errors at the cirouisystem level is based on the hardware modular
redundancy (also known as spatial redundancy).his method, 2 or more identical hardware
modules are typically used to detect or furtherrexir errors. Error detection by using Double
Modular Redundancy (DMR) is shown in Figure 14. Asmmatch in the output data detected in a

DMR system will result in a restart of the system.

32

Chapter 3: Previous Research on Tackling Soft Error

input circuit
or
system
> error
comparator »
»
— or
system

Figure 14 Error detection iyMR

As depicted in Figure 15, Triple Modular Redunda(EMR) is used for single error correction at
the circuit or system level. In TMR, 3 identicalpoes computing the same input are connected to a
majority voter. A majority voter is used to idemtifvhich of the outputs provide the correct datae Th
error is ignored in favor of the majority that slipp the correct output. Therefore, the correcpout

appears as the final result of the computation.

input circuit
—>» oOr
system
input C'Eru't > majority output
—_— >
system » voler
—>| or
system

Figure 15 Error correction by TMR

In general, the downside to a circuit or systermgidiardware modular redundancy discussed

above is the extra area, power, latency, and defaigh is inherent to redundant schemes. For

33

Chapter 3: Previous Research on Tackling Soft Error

instance, the TMR scheme shown in Figure 15 consuapproximately triple the chip area in

addition to the majority voter logic

As illustrated in Figure 16, the TMR method is ugedegister cells in LEON3-FT-RTAX (a fault
tolerant FPGA-based microprocessor) to enhancetagsie against soft errors [65]. If one of the
latches is hit by a high-energy particle and stiwtghange state, the voter gate with the other 2
latches prevents the change from feeding back andgmently being latched. Layout of this circuit
is done in such a way to ensure a single ion stikdd not affect more than one latch, and thus

causing multiple errors.

Figure 16 Register cell in LEON3-FT-RTAX using TME5]

Figure 17 shows a simplified generic view of thehtsique that uses both the spatial and temporal
redundancy in flip-flops [66]. The spatial paraleh technique uses multiple memory cells to protect
against SEUs. The spatial and temporal parallefeshnique proposed in [66] mitigates SEUs and
SETs in combinatorial logic, global clock, and gibbontrol lines. This method comes at the cost of

both the clock frequency and area.

34

Chapter 3: Previous Research on Tackling Soft Error

1
input J| ol
=
1
|
CLK 1
.—A'\._,..>_ —p |
CLKp ,'
— I S
1
a [T > output
H » voler
CLKB 1 >
— P
1
1
1
- e
. L
i
1
CLK !
——D | b |
|
1

1
temporal sampling | synchronous voting
1

Figure 17 Spatial and temporal redundancy [66]

At the system level, one of the most effective mdthin dealing with soft errors in memory
components is to use error detection and correcioles. Error detection and correction codes add a
certain degree of redundancy to the system, andftre affect performance and occupy additional
area The choice of a detection or correction code isegalty based on the nature of faults and
required fault tolerance of the system. The choicerror detecting code in this project is discdsse

later in this section.

The parity code is the simplest error detectiort (mt an error correction) code. It adds an extra
bit, the parity bit, to the data word (the actudgbrmation part in a word) so that the number dfs
in the codeword (data word plus parity bit) becomesn in case of the even parity or odd in case of
the odd parity. The obvious advantage of the pardge is its simplicity; and thus potentially

minimal hardware overhead with just having 1 redumgarity bit in the whole codeword.

The parity code is effective in detecting an oddhbar of errors in a data word and the parity bit
(codeword). However, the generated error vectorsdoat locate which bit or bits have been
corrupted. When the number of corrupted bits iro@eavord is even, the parity bit is still valid and
the parity bit is not able to flag the error. THere, cases where an even number of bits get dedup
in a codeword are not detected by the parity code.

35

Chapter 3: Previous Research on Tackling Soft Error

As shown in Figure 18, the parity error detectiergénerally used to detect single errors in an
output register. The parity bit for the output stgr is predicted in parallel with the computatain
the output. Then the predicted parity is compar#h the real output parity to detect any singleerr

in the output register and set the error flag.

computation

output register
output D P g

ﬂ error flag

real and predicted
parity comparator

L ‘ parity bit T
parity prediction \——

|

Figure 18 Parity error detection

As opposed to the parity code, the error correctiodes (e.g., the Hamming code [67]) add
additional redundant bits (check bits) that enablegue error syndromes to be generated. These
unique error syndromes can locate the position asfupted bits. The overhead of encoding to
generate the check bits should be considered #gircceverhead can be high. The redundant hardware

should be less than TMR to make the error deteamhcorrection code a reasonable choice.

Error detection and correction codes provide agréttive to methods based on hardware modular
redundancy since they (e.g., TMR and DMR) are Wgudpensive in terms of hardware cost and

power consumption.

Depending on the nature of errors, the degreelmfstmess that these expensive hardware modular
redundancy schemes provide can be higher than iwhaglly needed. For instance, DMR provides
error detection for multiple bits. In case of saftors where an error is random in time and spthee,
likelihood of multiple errors in 1 clock cycle ixeeedingly low. Therefore, in this scenario, a less
expensive approach such as the parity error detectuld suffice. It is important to investigate th
capability of the parity scheme in detecting singlors on a specific platform to understand totwha

extent it is able to detect single errors.

36

Chapter 3: Previous Research on Tackling Soft Error

3.3 Tackling Soft Errors by Architectural Methods

When there are storage elements in a system, sofsecan become an issue in reliability. In a
microprocessor system, as shown in Figure 19, mgelements include registers known as register
file, caches at different levels, main memory, andn. Memories that are closer to a microprocessor
are typically SRAM-based memories which are fa@tave a shorter access time), smaller sized, and
more expensive. The main memory is typically a DRB&ed memory that is less expensive with a
longer access time.

L LO: ‘ CPU registers hold words retrieved
— : regl- from L1 cache
'-E sters
:,_,,3 L1: on-chip L1 L1 cache holdscache lines retrieved
8 - cache (SRAM) from the L2 cache memory
'8" L2: on-chip L2 L2 cache holdscache lines retrieved
2) cache (SRAM) from the the main memory
w
L3: main memory Main memory holds disk blocks
3: (DRAM) retrieved from local disks
Local disks hold files
2 L4: local secondary storage retrieved from disks on
8 . (HD, optical)
S remote network servers
©
o remote secondary storage high capacit
L5: (web servers, local networks, 9 stzragg
v distributed file systems)

Figure 19 Memory hierarchy in a typical micropramssystem [13]

The connection amongst different levels of memgstem in a microprocessor is shown in Figure
20. On a cache miss, data is typically provided thg next higher level (farther from the
microprocessor) memory with longer access timénénttierarchy. An error in one memory level can

propagate to other levels when a miss happensangpted data is copied to another level.

In order to mitigate SETs (glitches) propagatingedgisters, the time redundancy technique (refer
to Section 3.2) to monitor combinational resultsusing a sequential design is proposed in [68].
This approach is then implemented in [69] to prbteembinational logic of operations in the
Arithmetic and Logic Unit (ALU). Researchers in [a&e the TMR technique to protect the register
file against soft errors.

37

Chapter 3: Previous Research on Tackling Soft Error

microprocessor
instruction .
! »| register file
register
-~ -~
A i
L1 instruction L1 data
level 1 caches -
cache cache
F S F
Y Y
level 2 cache—> L2 cache

S

Y

main memory

Figure 20 Memory elements in Software-based system

Cache lines that have not been used for a long (itead cache lines) are used to hold replicas of
lines that are used frequently (hot cache lineqd)fdj. This approach can potentially increase the
cache miss rate and decrease performance. It &gends on how many cache lines are used

infrequently in a program so that they can be disedeplicas.

Another approach that is proposed in [71] is sofewaache flushing. In this technique, the
operating system flushes the entire cache perithgiimaremove errors. This affects performance due

to the overhead of write-back and cache misses.

It is shown in [72] that vulnerability of a levelchche to SEUs is reduced by using a write-through
policy rather than write-back policy. The reductiornvulnerability, in a write-through policy, is du
to immediate updating of the next level cache. Wriée-back, as opposed to a write-through polecy,
cache line is not updated in the next level or maemory until the line needs to be replaced.
Therefore, a cache line that resides longer inciehe is more likely to be affected by an SEU and
propagate the error to the next level cache or rme@mory. Researchers in [73] proposed a technique
that can be applied to a write-through cache tooxererrors in a cache refetching. This technique

38

Chapter 3: Previous Research on Tackling Soft Error

refetches cache lines from the next level cachmain memory to refresh cache lines. This basically

reduces the residency of cache lines to increaseathe reliability.

LEON3-FT-RTAX is a fault tolerant FPGA-based microgessor [74]. Figure 21 depicts the
hardware components of this microprocessor. Thebamational logic of LEON3-FT-RTAX is
implemented in an antifuse FPGA which is RTAX-20008like SRAM based FPGAs with SRAM
cells controlling routing, this type of non-volatiFPGA has metal-to-metal antifuse programmable
interconnect elements. Antifuses are normally ogiecuit and are programmed form a permanent,

passive, and low impedance connection.

3-Port Register File
IEEE-754 FPU Trace Buffer
LEON3
Co-Processor 7_Stage Debug port ¢=——— Debug support unit
Integer Pipeline
HW MUL/DIV Interrupt port (¢ » Interrupt controller
v A
Local IRAM I-Cache D-Cache Local DRAM
ITLB SRMMU DTLB
AHB I/'F

!

AMBA AHB Master (32-bit)

Figure 21 Hardware components in LEON3 micropromes&]

As opposed to SRAM cells, the downside of antifedements is that they are one-time
programmable. On the other hand, their advantatetshey are not vulnerable to SEUs. Flip-Flops
in this microprocessor are hardened (made moreatgi@gainst errors) by using TMR on the FPGA
(RTAX-2000S). Each TMR D flip-flop (shown in Figuts) consists of 3 master-slave latch pairs,

each with asynchronous self-correcting feedbadkspat

There are different options, shown in Table 3.1,dwor detection and correction of the register
file in LEON3-FT-RTAX to mitigate soft errors. Thiesired option can be selected during synthesis.

As discussed before in Section 3.2, these techsiqdd overhead to the system. For instance, the

39

Chapter 3: Previous Research on Tackling Soft Error

correction in the 3rd and 5th rows of Table 3.letak clock cycles. An uncorrectable error in the

register file causes a trap.

Table 3.1 Error detection and correction in regite [74]

Error detection and

correction technique Description

Hardened flip-flops or | Register file implemented with SEU hardened flipgi. No error
TMR checking.

4-bit checksum per 32-bit word. Detects and cosr&dbit per byte (4 bits

4-bit parity with restart per word) through restart.

8-bit parity without 8-bit checksum per 32-bit word. Detects and cosr&dbit per byte (4 bits
restart per word). Correction on-the-fly without pipelinestart.

7-bit BCH checksum per 32-bit word. Detects 2 hitd corrects 1 bit pe
word. Pipeline restart on correction.

=

7-bit BCH with restart

Each word in the cache tag or data memories h&eekdits. An error during a cache access will
cause a cache line flush, and a re-execution ofailing instruction. This will insure that the @t

cache line (tag plus data) is refilled from extémamory.

3.4 Soft Errors in FPGA vs. ASIC

This section presents the peculiar effects of awéirs in FPGAs and how these effects are different
in FPGA vs. ASIC.

The effect of SETs are similar in an ASIC or FPG¥a SET (equivalent to a glitch) might
propagate through the combinational logic up tdigfiop. Depending on the timing of the glitch
relative to the clock edge it might get stored espulace the valid data, or it might not have arigaf
at all. An error caused by an SET is not permairetite sense that the implementation itself is not
affected in terms of functionality and resetting thystem will bring it back to its expected initial

State.

An SEU occurring in sequential elements or flipgBoaffects both FPGA and ASIC in a similar
way. Due to an SEU the value of a flip-flop flighen at the next clock edge the new data is stored.

Therefore, the affect is not permanent and theemphtation is functionally correct after a reset.

40

Chapter 3: Previous Research on Tackling Soft Error

Unlike ASICs, an SEU has a peculiar effect in FP@%&&n it hits the combinational logic. Since
the combinational logic in an ASIC does not havg storage elements SEUs can only affect flip-
flops. On the other hand, combinational logic inRRPGA is thoroughly controlled by SRAM cells
(e.g., SRAM cells control LUTs in the combinationkagic). The memory cells of a LUT
(combinational logic) can be affected by an SElthmsame way that flip-flops (sequential logic) are
affected. For instance, in Figure 22(a), an SEU daange the function that is stored in SRAM
memory cells of the LUT. This error in an SRAM Icisl not transient, meaning that it will not
resolve at the next clock edge. It will only resolwhen the FPGA is reconfigured. Consequently,
this changes the functionality of the function iempkented in the LUT. As observed, the whole
combinational logic of an implementation on FPGAvignerable to SEUs that can cause non-

transient errors.

ASIC
LUT on FPGA =
—x— 0|01
—x,— 0017 _ =
—x— 1 [1]7]1] °]
—x—0]0[1]0 —’Q—D_

(a) (b}

Figure 22 Combinational logic on FPGA vs. ASICf{@)ction implemented in LUT on FPGA, (b)

function implemented using gates on ASIC

It is important to note that the routing in an FPGAlso controlled by SRAM cells. These SRAM
cells control pass transistors, multiplexers andstate buffers. Therefore, in addition to
combinational logic, routing is vulnerable to SEURhuS, it is crucial to investigate the effectigsa
of an error detecting scheme on FPGA with respethis peculiar effect of SEUs in combinational

logic and routing on FPGA.

In this research, the parity error detection on BR&thoroughly investigated and its weaknesses
are found. Other than fabrication process levelhous to tackle soft errors, some of the mitigation

techniques such as a parity or Hamming code am inSEPGAS just as in ASICs. These techniques

41

Chapter 3: Previous Research on Tackling Soft Error

do not cover errors in SRAM cells controlling lodgitocks and routing of FPGAs. Techniques to
eliminate these weaknesses are proposed (refehapt€r 5). Therefore, the error coverage of the

parity scheme is expanded to soft errors in contiainal logic as well as routing on FPGA.

It is important to note that concurrent error cotian techniques, e.g., the Hamming code in [75]
and TMR can potentially lose their correction caligbover time in an FPGA implementation. The
reason behind this is the potential change in thectionality of the correction technique
implemented. For example, SEUs can hit the SRAM téfining the voter functionality of a TMR
based design or the error correction circuitry lid Hamming code. In addition to that, there is
accumulation of errors due to SEUs. The only wayrdmove these errors in SRAM cells of
combinational logic and routing is to reconfigutee tFPGA. If these errors are not removed by
reconfiguration the dependability of a correctieatnique that a system has relied on is questienabl

The necessity of reconfiguration to remove SEUSRAM-based FPGAs was mentioned in [4].

3.5 Summary

The main goal of this chapter was to present pteviechniques to tackle soft errors at different
levels. At the lowest level, fabrication processdshtechniques have been used. These low level
techniques can affect the fabrication process cexiyl and steps, increase yield loss, or substrate
cost [7]. Additionally, they may not be portabler@ss different fabrication processes. Soft error
mitigation techniques at higher levels (circuit aysdtem levels) provide portability and can elinkna

the gap between the state of the art fabricationnelogy and soft error sensitivity. At the circaitd

fabrication process-based levels, the main go&b isicreaseQ,,; while maintaining or reducing

Q.. to improve resistance against soft errors.

At the system level, spatial or temporal redundesy@re used to tackle soft errors. Since the
likelihood of 2 independent errors in the sameuirpath within a small period of time is extremely
low, data is sampled at different clock edges ttecteSETs in temporal redundancy. Spatial
redundancy is used in error detection and cormectiodes or in hardware modular redundancy

techniques such as DMR and TMR to detect and doerears, respectively.

Peculiar effects of SEUs in FPGA in the combinatidiogic and routing were discussed in this
chapter. These effects do not happen in ASIC. Simeeombinational logic and routing on ASIC do
not have any storage elements, SEUs can only dfiiedtops. On the other hand, the combinational

42

Chapter 3: Previous Research on Tackling Soft Error

logic and routing on FPGA is thoroughly controllegd SRAM cells (e.g., SRAM cells control LUTs

in the combinational logic and pass transistom®ining).

In summary, previous research using the parity ¢@@#77][78] or Hamming code [75] for AES
have not analyzed the underlying routing or logicam SRAM-based FPGA implementation.
Selecting a system level mitigation technique adiogr to available resources and mathematical
properties of a specific operation is also not @ered in classic techniques such as TMR and DMR.
Radiation hardened FPGAs typically use fabricat@muit, or system level mitigation techniques
(for instance, Virtex-4QV uses a thin epitaxialdayn wafer manufacturing [49] and flip-flops are
designed using TMR in LEONS3-FT-RTAX [74]) that ar@dependent of the application

implementation and possibly introduce redundanayninsed resources.

In the next chapter, security requirements of desysare briefly described. Then the primitives to
provide these security needs are presented. Enspisgsut on symmetric-key algorithm AES that is
the focus in this research. NIST-recommended btpker modes are also covered briefly. Error

propagation in the AES algorithm and modes areudsed at the end of the chapter.

43

Chapter 4

Security Needs of Data Systems

This chapter briefly describes the general secueitpirements of a system such as authentication,
data confidentiality, data integrity, and non-rejation. Then it describes the primitives for prawigl
these security needs. Emphasis is placed on sthrelanmetric-key algorithms, such as AES
described in section 3.1.1. Block cipher modesdeated by NIST) which can be used with AES are
also covered briefly. The AES error propagatiomhiese modes is discussed. Previous approaches in

implementing AES are provided at the end of thisptér.

4.1 Security Needs and Cryptographic Algorithms

In general, the security services to be providedfeystem include authentication, access control,
data confidentiality, data integrity, and non-rejation [79]. The following presents a brief defiait

of each security service [80].

»= Authentication is the assurance that the identitiea communication are the ones they

claim to be.

» Data confidentiality is the protection of data fréming disclosed by unauthorized parties.

The protection could even include any informatibow the data traffic flow.

= Data integrity is the assurance that the receiad Has not been replayed or affected by

modification, insertion, or deletion.
44

Chapter 4: Security Needs of Data Systems

= Non-repudiation prevents against denial by an ai#bd party involved of having

participated in a communication.

The basic types of cryptographic algorithms (piivei$) that provide a means for the above
security services are symmetric-key algorithms, lipthey algorithms, and hash functions. These

primitives are introduced briefly as follows [812B

= In the classical model of cryptography, a symmekeg (also known as conventional or
single-key) cryptographic algorithm encrypts plakitinto ciphertext using a secret key.
The decryption algorithm uses the same secretdkénansform the ciphertext to plaintext.
Symmetric-key encryptions are typically used fonfadentiality. They are also used in

common keyed hash functions to provide data integnd authentication.

= As opposed to a symmetric-key algorithm, a pub&g-lalgorithm uses 2 different keys
(public and private keys) for encryption and detigjp For example, a public key is used
to encrypt plaintext to produce ciphertext. Theregponding private key is then used to
decrypt the ciphertext and recover the plaintexshbuld be computationally infeasible to
find the decryption rule from the encryption rutea public-key cryptosystem. Public-key
algorithms are typically used in security protocfuls authentication. They are also used
for generating and verifying digital signatures poovide non-repudiation and for

exchanging keys in a symmetric-key cryptosystem.

* A hash function is a transformation that takes hatée-sized input data (message) and
returns a fixed-size output (message digest alsmwkhnas hash value). It should be
relatively easy to compute the hash value for apggage. On the other hand, it should be
computationally infeasible to compute the messagm fthe hash value. The problem of
finding 2 messages having the same hash valuedhtad be difficult to solve. Unkeyed
hash functions provide data integrity, while keyxadh functions are used for data integrity
and authentication. Another common use of hashtiume is in signature schemes. In this
case, the hash value of a message is computedaficthen the hash value is signed using

a signature scheme.

In a symmetric-key cryptosystem, it is required tihe 2 parties have already established a shared
secret key between themselves in a secure manfaelany ciphertext is transmitted. In a public-

key cryptosystem the prior communication of a stiamecret key is not needed. However, it should

45

Chapter 4: Security Needs of Data Systems

be computationally infeasible to determine the gevkey given the public key. The idea behind
public-key cryptography was introduced by Diffiedardellman in 1976.

Most public-key algorithms have larger key sizesn@tedk) than symmetric algorithms; Table 4.1
shows a comparison of security strengths andikesi among RSA (a public-key algorithm), AES,
2TDEA (triple Data Encryption Standard (DES) symrigekey algorithm with 2 independent keys),
and 3TDEA (triple DES with 3 independent and deferkeys). Security strength, which is specified
in bits, is a number associated with the amountvarfk (that is the number of operations) that is
required to break a cryptographic algorithm or eys{83]. It should be noted that the number of bits
of security strength is not necessarily the saméhedkey sizes for the algorithms, due to attacks o
algorithms that provide an attacker with computaicadvantages. In general, symmetric algorithms
are faster and more efficient with respect to im@atation and performance. However, they need
secure establishment of a secret key; public-kggrahms can be used to provide a cryptosystem

with the secure key establishment.

Table 4.1 Lifetime and security strength of symmseand public-key algorithm [83]

Security Security strength RSA (public-key Symmetric-key

lifetime in bits algorithm) algorithm
Through 2010 80 k=1024 2TDEA
Through 2030 112 k=2048 3TDEA
Through 2030 128 k=3072 AES k=128
Through 2030 192 k=7680 AESk=192
Through 2030 256 k=15360 AESk=256

A symmetric-key block cipher is a very importaningitive in encryption/decryption, key transport
for establishing session keys and keyed hash fumtiThe NIST standardized symmetric-key block
cipher AES, which has been predicted to be secefebsyond 20-30 years, are discussed in the next
section. Block cipher modes as well as how theyigeconfidentiality and integrity services and the

error propagation issue related to the modes acediscussed in Section 4.2.

46

Chapter 4: Security Needs of Data Systems

4.1.1 Advanced Encryption Standard

With technology rapidly advancing, DES, which ua€st-bit key, was broken in 1999 in less than
22 hours [84] by brute force attack. Thereforeplaust new standard was needed to replace the aging
DES which had been developed in the 1970s. In &dme 1997, NIST launched a worldwide call
for submission of publicly disclosed encryptionaithms worldwide for the AES selection [85]; 15
candidate algorithms were submitted. After 3 puplireld conferences to discuss and analyze the
candidates, the competition field narrowed dowrive competitors. Finally, in 2000, Rijndael was
named as the AES algorithm, the winner of the 3-yeanpetition involving some of the world’s
leading cryptographers. In March 2008, due to tiregrehensive investigation on AES and focus on
its usage, Consultative Committee for Space DatieBys (CCSDS) proposed to adopt AES as the
standard encryption algorithm for space applicai.

AES is based on the ideas of Shannon and the cnoépliffusion and confusion. Whilst most
block ciphers follow these principles, few do soctsarly as AES that is said to be a substitution
permutation (SP)-network [81]. Diffusion is intemd® spread out the influence of all the bits of
inputs, namely plaintext and key, to all the bitsiphertext. Diffusion is provided in AES by thseu
of ShiftRowsand MixColumns[87]. The goal of confusion is to make the relasioip between
ciphertext and a key and plaintext as complex asipte. In AES, confusion is provided by a very
carefully chosen substitution transformation (nefdrto asSubBytes SubBytess the most complex
and the only nonlinear operation of AES due to theltiplicative inversion it contains [87];
nonlinearity ensures a low correlation between fnpits and output bits. TheSubBytes
transformation is designed in such a way that mékesistant against linear and differential atsc

as well as interpolation attacks [88]. TBebByte®utput is then spread by diffusion in each round.

AES supports 3 key sizes (i.e. 128, 192, and 2&% bnd has the fixed block size of 128 bits. The
algorithm consists of a number of rounds dependinghe key size as shown in Table 4.2. The
encryption and decryption algorithm for the keyestf 128 bits is depicted in Figure 23. Each round
consists of four transformations, which are desctibelow, except for the last round which includes
only 3 operations. The AES key expansion algoritakes the input key and generates 128-bit round
keys for each round. A 128-bit data block is haddiea 4x4 matrix in which each element of the

matrix is an 8-bit element; this matrix is refertecas the state.

47

Chapter 4: Security Needs of Data Systems

Table 4.2 AES parameters

Key size in bits Block size in bits| Number of rounds
128 128 10
192 128 12
256 128 14
plaintext plaintext
W:
-
Wer

SubBytes

ShiftRows
AddRoundKey

Round 8

ShiftRows

Round 10

AddRoundKey

InvSubBytes

InvShiftRows

InviMixColumns

AddRoundKey

ciphertext

(a) Encryption

: Representing the expanded key of each round

Figure 23 AES algorithm
48

InvSubBytes

InvShiftRows

ciphertext

(b) Decryption

Round 10

Round 9

Round 1

Chapter 4: Security Needs of Data Systems

A Galois Field GF) is a field that contains a finite number of eletseand the order of the field
is p™ where p is a prime number anth>1 is an integer [82]. This field is denot&slF (p™) . A

commonly used representation for the element§i(p™) is the polynomial based representation

which is shown as follows in Equation (7).

GF(p™) ={g, X"+ g,, X"?+...+ a» 3| al{0,1,.... p1}} @)

Addition and multiplication of polynomials is prefoed modulo m(X) where m(Xx) is an
irreducible polynomial of degreen. An 8-bit element,b, of a state in AES is an elements in

GF(2%); b can be represented as follows in the polynomiahfo

b=b X+ X+ QX+ QL+ bX+ bX+ px b where, B{O,1} (8)

» TheSubBytedransformation, as shown in Equation (9), compthesaffine transformation
on multiplicative inverseb™ of an 8-bit inputb in GF(2%) with the corresponding
irreducible polynomial beingm(x) = ¥ + ¥ + ¥+ x+1. Equation (10) shows
SubByteswhere the affine transformation is done on theit8rmwltiplicative inverse
elementb™ =[b;' ' ' B BT BT BT BT in the matrix formSubByts is the
only nonlinear transformation in AES due to the tiplicative inversion it contains. The 8-
bit elementsb and b™ have an inverse relationship in whitth™ =1 mod m(x).

The affine transformation is multiplication by anstant matrix,M , and an addition with

a constantC = (63),4 as shown in Equation (10). Note that a singleshittiplication is

an AND, and a single-bit addition is an XOR in talois field.

SubByteg p= affifeD); where b= invefsk 9)

49

Chapter 4: Security Needs of Data Systems

affing(b*) = Mb*+ C

-1
1111 1004q|%]| a

-1
01111104d|b% 1
00111114l 1
_00011111b;1+c (10)
1000111 1|p 0
1100011 1|y 0
11100011 1
1111000;b51;

= The mix columns transformation (referred tdigColumng is a function on each column

of the state that outputs a corresponding coluroar (8-bit elements). Given a column of

the state [a b ¢ d' in which elements are in GF(2®) where
m(X) =X+ ¥+ ¥+ x+1, the MixColumns transformations is multiplication by

polynomial {03} x> +{01} x* 01} x4€02} modulo x* +1, as it is shown in Equation

(11). Equivalently, this can be done by a matrixtiplication as shown in Equation 12.

d'x3+c X%+ b x+ d=(d+ ck bx X{03} %01 301 +402) mod(¥ (11

a' 02 03 01 01| a
b'f |01 02 03 01|b
c'| |01 01 02 03|c
d' 03 01 01 04|d
2a+3pb+c+d (12)
_|a+2b+3c+d
“|a+b+2c+3d
3a+b+c+2d

50

Chapter 4: Security Needs of Data Systems

S0 | o1 | Soz2 | S0z m 0,0 | S0 | So.2 | Fos
Sto| %11 | S12 | S5 — t I I] | T | S1a | 12| S1a | Sie
P e e
Szo|SzaSaz|Saa|—> | | | | |7 [522|523 520 S22
S,

S30 | $31 | 832 Sas — | I I I | — S33| 530 | S31 | Saz

e
Figure 24ShiftRowdransformation in AES [80]

» The shift rows transformation (referred to &kiftRow} is an 8-bit circular left shift
operation, as shown in Figure 24. The shift is domeach row of the state except for the

first row.

* In the add round key transformation (referred t&dddRoundKey a round key is added to
the state by a simple bitwise XOR operation. Eastind key produced by the key
expansion has the same structure as the statecho8edait element of the round key is

XORed with the corresponding element of the state.

4.2 Block Cipher Modes

A block cipher mode of operation, or mode for shmta technique for adapting a symmetric-key
block cipher algorithm for an application and a sa&® length to provide security services required.
For instance, a mode can feature the use of a symrkey block cipher algorithm to provide a

security service, such as confidentiality or autication.

NIST has approved 8 modes for block ciphers inreesef special publications [89]. Currently,
there are 5 confidentiality modes (electronic caabéd) cipher block chaining, output feedback, cipher
feedback, and counter modes), 1 authentication nfogdaer-nased message authentication code
mode), and 2 combined modes for confidentiality awthentication (counter with cipher block

chaining-message authentication code and Galoisteomodes).

This section describes some of the modes briefoyrder to point out how the structure of different

modes affects their sensitivity to errors. In tigaifes that follow, plaintext blocks, ciphertexbbks
51

Chapter 4: Security Needs of Data Systems

and a symmetric key are denoted {8, P, ..., R}, {C, C, ..., Cy} and K, respectively.

Plaintext must be a sequence of one or more coengégtr blocks. In other words, the total number of
bits in the plaintext must be a multiple of thediaize. If the data string to be encrypted dods no
initially satisfy this property, then the formatjirof the plaintext must entail an increase in the
number of bits. A common way to achieve the necggsarease in length is to append some extra
bits, called padding. One example of a padding oteth to append a single bit ‘1’ to the data string

and then append as few ‘0’ bits necessary, possiig, to complete the final block.

4.2.1 Confidentiality Modes

Three of the confidentiality modes are outlinedhis section. The error propagation issue with

respect to the structure of the modes is also s&sml

The electronic codebook (referred to as ECB) mede ¢onfidentiality mode that has the simplest
structure, as depicted in Figure 25. In the ECBngitmon, the cipher encryption is applied directly
and independently to each block of the plaintekte Tesulting sequence of output is the ciphertext
blocks. In the decryption, the decryption functisrapplied directly and independently to each block
of the ciphertext. The resulting sequence of outiearypted is the plaintext blocks.

Time =1 Time =2 Time =N
P, P, Py

Enerypt K Encrypt * K Encrypt

: ' :

G

G G Cy
K Decrypt I K Decrypt I K Decrypt I
s o o
P, P, Py

Figure 25 Electronic codebook (ECB) mode [80]

52

Chapter 4: Security Needs of Data Systems

In both ECB encryption and decryption, multiple hap encryptions and decryptions can be
computed in parallel. In this mode, under a givep, khe same plaintext block always gets encrypted
to the same ciphertext block. This property capattern identification might be undesirable in some
particular applications. For instance, when a ngsss highly structured it may be possible for an
attacker to exploit theses regularities. To overedhis issue, other modes propose the chaining of
encryption/decryption blocks in which there is anwmection from the output of one

encryption/decryption to the input of the subsedqescryption/decryption.

The encryption in cipher block chaining (referredats CBC) mode features the chaining of the
plaintext blocks with the previous ciphertext bloek illustrated in Figure 26. It requires an
Initialization Vector (V) to XOR with the first jput plaintext block. The IV, which is an additional
input block, does not have to be secret but it nbgstinpredictable. As opposed to ECB, the same
plaintext/ciphertext block if repeated generatekfferent ciphertext/plaintext block in CBC. This i
due to fact that in CBC the ciphertext/plaintextdd depends on not only the plaintext/ciphertext
block but also the results of the previous encortidecryptions. However, the drawback is that the

encryption/decryption cannot be performed in patall

Time =1 Time =2 Time=N
v Py P, Py
b 4 b 4 b 4
D »D Cv1 ——>P
v v v
K —Pp iEncrypt ! K —{ Encrypt ! ® ® [] K —3{ Encrypt !
e
T T -T
C C, Cy
(a) Encryption
G Cy Cy
! } |
K —p| Decrypt ! K —p| Decrypt ! ® * ® K —3p| Decrypt !
e
v
v —b »D Cy g ———r
v
Py P, Py
(b) Decryption

Figure 26 Cipher block chaining (CBC) mode [80]

53

Chapter 4: Security Needs of Data Systems

The Counter (referred to as CTR) mode providesc#pability of parallel performance. Figure 27
depicts the CTR mode. The counter value, whicthéssame size as the plaintext block, should be
different for each plaintext that is encrypted. figfiere, repetitive ciphertext blocks corresponding
the same plaintext block cannot be recognized. ChR mode requires only the implementation of
the encryption and not the decryption.

Counter Counter +1 Counter + N-1

! ! !

K —p| Encrypt K —p| Encrypt K —p| Encrypt
5 v 5 v i % @ P v
11— :—D —

v v v
& C, Cy
(a) Encryption
Counter Counter +1 Counter + N -1

K —p| Encrypt K —p| Encrypt K —p| Encrypt
5 v ; v i % @ g v
1—D —Q —> D

v v v
Py Py Py
(b) Decryption

Figure 27 Counter (CTR) mode [80]

In general, modes that have the chaining of anygtion/decryption to the preceding encryption
/decryption have the issue of propagating erraisutlih the ciphertext/plaintext blocks (this is kmow
as infinite error propagation). The modes that haiechaining structure are CBC, Output Feedback
(OFB [89]) and Cipher Feedback (CFB [89]). On thieeo hand, ECB and CTR, which do not have
this chaining structure, isolate errors within toeresponding block.

A single bit flip in the early rounds of AES enctigm is expected to result in 50% erroneous bits
in the output [76]. This shows a good diffusiontire AES algorithm. Diffusion is a desirable
property from a cryptographic point of view and msla strong symmetric-key algorithm; however it

becomes an issue in error propagation. This prolideaven worse in CBC, OFB and CFB modes

54

Chapter 4: Security Needs of Data Systems

since a single bit error leads up to erroneous esuiEnt ciphertext/plaintext blocks which is

dramatically different from the expected result.

4.2.2 Authentication Mode

NIST has recommended a cipher-based message acdtient code (referred to as CMAC)
algorithm that is based on a symmetric-key algorittuch as AES. CMAC is designed to detect
intentional, unauthorized modifications of the dagmwell as accidental modifications. Figure 28

depicts the MAC generation in CMAC. The messagaliisded into a sequence of bit strings

{M,, M,,...M}, in which they all have the block size of 128 A&fES except for the very last

string M; that might have a smaller size. The 2 kdys,, K,} are generated by the subkey
generation (provided in [90]) by using the symnwekaéy algorithm. CMAC has 2 parts illustrated in

Figure 28. The left side that usés is applied whenM,*1 has the size of a block. Otherwise, the

right side with K, is used, and a single ‘1’ bit followed by the aggmiate number of ‘0’ bits are

appended td\/I; to form a complete block. The same procedure e dd the destination to compute

the MAC (T) which then compares it with the receiW@AC. Since an encryption is connected to the
following encryption an error in any block propagmthrough the CMAC computation, finally it will
affect the MAC (T). This shows the importance ofedting errors in all the encryption modules.

M, M, || M M, M, | M| 0.0
v v i = ——
@ > @« Kl @ — @+ K2
¥ ¢ ; - ¢ ¥ ¢ 1 ‘ ¢
CIPH, CIPH, | / | CIPH, CIPH, CIPH |/ | CIPH,
e v | v
_________________ — e e
v v
T T

Figure 28 Cipher-based message authentication(€@MAC) [90]

55

Chapter 4: Security Needs of Data Systems

4.2.3 Authentication and Confidentiality Modes

The 2 NIST-specified modes which provide both antication and confidentiality are compared
below in terms of their error propagation properti€he Galois/counter mode (referred to as GCM)
provides authenticated encryption and authenticd¢edyption. It does not use the decryption module
of the block cipher (e.g., AES). It encrypts thenfadential data and computes an authentication tag
on both confidential and non-confidential data. Thafidentiality mechanism of GCM is a variation
of the CTR mode. A particular incrementing functisnspecified [91] for generating the counter
blocks in GCM. It also uses the block cipher (eAdES) for generating the authentication tag. Simila
to the CTR mode, there is no connection betweertifteers; therefore the error is contained in its
block in GCM. The authentication mechanism of GCMprovided by a hash function named
GHASH which is multiplication by a fixed hash supk1].

The counter with cipher block chaining-message enttbation code mode (referred to as CCM)
provides authenticity of the confidential and namitdential data and generates ciphertext for the
confidential data [92]. It uses only the encryptminthe symmetric-key algorithm (e.g., AES). The
authentication mechanism of CCM uses CBC whichthaschaining structure in the block ciphers.
As a result, an error spreads throughout the bld@ksthe other hand, the confidentiality mechanism

in CCM uses the CTR mode that isolates an errdrinvits block.

4.3 Previous Research on AES Design

AES is a complex and computationally intensive atgm. Therefore, it needs significant amount
of hardware resources in implementation. Block neé@soand combinational logic have been used
for the AES implementation. The amount of block mees vs. combinational logic varies
significantly in different approaches in previoesearch. One approach that uses the largest memory
space amongst previous research combineSuh®&ytesand MixColumnstransformation in a block

memory named-table [93][80] .

A T-table is constructed as follows. In Equation &3, b, ¢ , andd are 8-bit elements of the

state column in th&ixColumnsresult, whilea, b, ¢, andd are 8-bit input elements BubBytes

For simplicity, ShiftRowss not shown in Equation 13 since it does not reagdlogic resourced-

tablesT,(a), T,(b), T,(c), andT;(d) are defined in Equation 14 for each 8-bit element.

56

Chapter 4: Security Needs of Data Systems

a| [02 03 01 01 SubByteq
b | |01 02 03 01 SubBytey
¢ | |01 o1 02 03| SubByteqd
g | 03 01 01 03] SubByteg
(13)
02 03 0 01
= 18ubByte(s)51+ 02 SubBy(es 0 SubBytes o+ 01 SubBy(e3
1 01 02 03
03 01 0 02

EachT-table in Equation 14 is a block memory of size Z&bbit. In order to provide parallel
memory accesses, Ietables are needed. It should be noted that tterdaund of AES does not
include theMixColumnstransformation. Therefor&§ubBytesnust be obtained from different tables

in the last round.

[02x SubByte$ R [03x SubBytés9)k
01x SubByte§ & 02x SubByté9 |k
To(a) = : T(b=
01x SubByte§ & 01x SubByté9 [
| 03x SubByte$ a | 01x SubBytés)
(14)
[01x SubByte$ ¥ 01x SubByte$ 0
03x SubByte§ ¢ 01x SubByte§ d
T(0) = : T;(d) =
02x SubByte§ ¢ 03x SubBytes d
| 01x SubByte6 | 02x SubBytes)

In approaches other thdrtable, SubBytesindMixColumnsare designed separately. The following

2 sections present previous implementatiorSuiiBytesaindMixColumnsof AES.

57

Chapter 4: Security Needs of Data Systems

4.3.1 SubBytes implementations in AES

The memory base8ubBytesmplementations [94-97] basically use a block mgnto store the
results of this transformation. TI&ubBytesn the form of a block memory, known as an S-hex,
given in Appendix F. Each 8-bit element of theesta¢eds a 256x8-bit block memory for S-box. The
size of an S-box is 25% of tHetable size (al-table needs a block memory of size 256x32-bit). |
addition to providing simplicity, the fact that &aof the art FPGAs provide built-in block memories
makes the memory based implementatidrSubBytesan attractive option for this transformation.
However, it might not be suitable for a heavily gdiped AES aiming to achieve the highest clock
frequency and throughput.

On the other hand, tieubBytesmplemented thoroughly in combinational logic [984] can be

heavily pipelined. However, implementation ®ibBytesn the original Galois fieIdGF(Zs) with

polynomial P(x) = X2 + ¥* + ¥+ x +1, is complex and uses significant number of hardwar
resources. Composite fields, briefly describedotlews, have been suggested in previous research to
reduce the complexity of operations (EF(28). The complexity indicates the cost of hardware
resources used for implementation of operatiorss@alois field.

The complexity of various operations, such as milit&tion and inversion depend on the chosen
Galois field. Composite fields, first introduced[&05], were extensively studied in [106] to reduce

the complexity of operations such as inversion Baois field. A composite fiellGF((2")™) is

isomorphic to the field5F (2¢) wherek = mx n. These 2 fields are of ord@™". However, their

complexity may be different depending on the chatem , n and the irreducible polynomials
[106].

Different composite fields foGF (2%) have been suggested in [98-102][107] for implermton
of AES. The composite field is applied to the wh8lgbBytesn [99, 100], whereas researchers in
[98, 102, 107] use composite fields in only theeirsion ofSubBytess illustrated in Figure 29. The
constant multiplications iMixColumnsare shown to be more expensive in composite field$02].
Therefore, researchers in [102] concluded thabtllg operation that benefits from composite fields

is the inversion oSubByteswhile the rest of the transformations are mofeieht in the original
GF(28).

58

Chapter 4: Security Needs of Data Systems

8 multiplicative

input=b —t—p=| & |P| inversionin [P

composite fields

5

v

affine
function

8
—t—p= output = SubBytes{b)

Figure 29SubBytesvith inversion in composite fields

In Figure 29, symbolsd and d* are the linear functions for isomorphic mappingetéments

from one field to another. These mapping functians matrix multiplication. First, an inpla is

mapped fromGF(28) to the corresponding element in the composite figl 0 . Then the inversion

is done in the composite field. The inversion reg@ithen mapped from the composite field to the

corresponding element i@F(28) by ot Finally, theSubByteoutput is generated after applying

the affine function.

The overall picture of the inversion 8fibBytesn composite fieldGF ((2*)?) is shown in Figure

30. Aside fromd and &', which are matrix multiplications, the other opinas are inGF (2*).

These operations include square, XOR, multiplicgtraultiplication by a constant, and inversion. It

should be noted the(BF(24) can be further decomposed to compute any of thyesetions.

+ | multiplication
by const

4
@ multiplication

]

S

Y

-

—»-| multiplication

inversion

—»-| multiplication

-~

Figure 30 Inversion dBubBytesn composite fields [102]

59

> @ ® > 6‘1 >

Chapter 4: Security Needs of Data Systems

In GF((2*)?), it is assumed the irreducible polynomial of degrg@ is of the form
P(x) = ¥ + x+ Awhere A in GF(2*). The inverse of an elemebix + ¢ denoted px+ q is
computed in Equation 15. Therefore, computing tiverision inGF(28) is translated to computing

the inversion of (Ab® + bc+ &) in GF(2*) instead. Equation 15 is illustrated in Figure 30.

(bx+ 9(px+ g=1mod P(X
p = b(A + bet é)™* (15)
q=(c+b(AF + ber é)*

Different composite fields result in different t®sn terms of usage of hardware resources.

GF((2*)?), rather thanGF(2°), is used in [100] with the polynomials shown inugition 16 for
GF(2*) and GF((2*)?). Symbol w is a generator of GF(2*) with polynomial
Q(y)= y* + y+1.In P(x) = ¥ + x+ w**, & can be presented as binary vector (1001).

4 . — A
{GF(Z) 1Q(y)= Y + y+1 a5)

GF(2*)?) :P(X)= X+ x+ ™

As shown in Equation 1GF (2°) is decomposed intGF ((2*)?) in [99]. However, a different

constant value £ = (1000) in binary vector form) from [100] is used for tppe@lynomial of the

Galois field. Then the inversion iGF (2*) is stored in block memory [100].

4 . — A
{GF(Z) Q(y)= Y + v+l)

GF(2")?) :P(X= X+ x+p

60

Chapter 4: Security Needs of Data Systems

Unlike [99, 100], researchers in [107] use furtdecomposition ofGF (22) to GF(((2?)?)?).

The composite fields shown in Equation 18 are uisdd07] for the inversion oSubBytesSymbols
@ and A are (10) and (1100) in binary vector notationpegsively. This inversion is pipelined in

[98] to achieve a high throughput for the AES orGAP

GF(2%) Q=72+ z1

GF((2°)°) P(Y)= Y+ x+g (18)
GF(((2°)")") :R(Y= X+ x+A

GF(2°) is decomposed intd5F((2*)?) with polynomial P(x) = ¥ + x+ B and constant

£ =(1100) in [102]. The following equations were proposedctimpute the 4-bit inversion in

GF(2*). The 4-bit input and output of the inversion af&; X, X% %) and (X3 X, % %),

respectively.

X =X+ XX X+ XXt %

X = XX XF %X X+ KKt % % X

X =Xt XXX RN p Xt %% X

X TXGXF KKK KT KA KB ¥ X F X XE X

(19)

As shown in Table 4.3, researchers in [102] provadecomparison of different inversion
implementations in terms of number of gates on Ak square-multiply approach is based on the
Fermat's theorefn According to this comparison, the composite eled in [102] have the least

gate count and shortest critical path comparedhers.

" Suppose p is a prime. tficd@,p)= 1, thena®™ =1 modp.

61

Chapter 4: Security Needs of Data Systems

Table 4.3 Gate counts and critical path§obBytesnversions inGF (2*) [102]

Total # of gateg Gates in critical path
SubBytesnversions inGF (2*)
XOR AND XOR AND

Square-multiply approach 54 18 12 2
[98, 107] 17 9 7 2
[102] 14 9 3 2

4.3.2 MixColumns implementations in AES

Previous research on implementation MixColumnsis described in this section while the
proposedMixColumnsis described in Chapter 5 . Rearrangement oMh&€olumnsequation with
respect to the structure of FPGA potentially ressuita better optimized design in terms of utilggin
hardware resources. Significant research [107-1H been done on resource sharing between
MixColumnsand InvMixColumns however, there is limited work on optimizing thMixColumns
transformation on its own on FPGA. This can be iggdptlirectly in several modes (e.g., the NIST

approved modes mentioned in Section 4.2) that do@ed the decryption function.

Researchers in [98, 102] suggested MirColumnsshown in Equation 20 where a bit position

10{0,1,...,7}. In the left column of this equation, 2 bytes ®Red and the multiplication by
2,xtimeg() (refer to Equation 22), is then applied to the Yd@Result [98, 102].

3| [2@+h)] [b+e+q]
b |_|26G +h)| |a+e+d
G| (206 +d)| |[a+b+d 20
d| [2(a +d)] [a+h+c]

Researchers in [112] suggested the origMixdColumnsshown in Equation 12. In this approach,

xtimeg(2 and xtimeg(2 + z are computed for each 8-bit element of the stalignan. There is also

62

Chapter 4: Security Needs of Data Systems

Equation 21 used fdvlixColumnsarchitecture in [108, 109]. These designs wer@rglemented on
FPGA to fairly compare the experimental resultéefréo Section 6.2) dflixColumns

al [a+h+c+d]| [2(a+Dp)] |
b |_|a+h+e+d| |2(c+p)| | b
G| |la+th+e+d| |2c+d)| |c @D
di' qa+th+e+d | [2(pa+d)] | d

4.4 SEU-resistant AES

The main system level techniques that have beet taseackle SEUs in an AES implementation
are the parity [76][77][78] and Hamming code [7bhe parity bits for the S-box values are stored in
the block memory to cover errors in the memoryscald an extra block memory is used to cover
errors in the memory decoder [76][78] (refer to tier6.3). In the AES using composite fields, the
parity prediction is presented in [77]. The pamrediction for theMixColumnstransformation is
provided in [78]. TheéSubBytesn composite fields suggested in [102] and papitgdictions in [77]
are further discussed in Chapter 6 (see Table &I8).Hamming code for error correction of AES

was suggested in [75] for space applications.

The parity for S-box implemented using distributBdMs was proposed in [113] for error
detection. In [114]SubBytedn composite fields and its inverse were dividetbiblocks and the

parities of these blocks were predicted.

A 32-bit datapath for a compact ASIC implementatddrAES was proposed in [115]. In order to
provide error detection, S-boxes were duplicated garity bits were used for other AES

transformations.

Researchers in [116] proposed a two-dimensionatygaased concurrent error detection method
to detect errors in both horizontal and verticaédiion in the data matrix for AES against diffdrah
fault attack (refer to Section 2.2.2).

None of the above techniques consider the underi$iRAM cells in routing or logic in an FPGA
implementation of AES. Reconfiguration of the FPG®& ensure correct functionality of the

implementation after an SEU is also not considered.

63

Chapter 4: Security Needs of Data Systems

4.5 Summary

General security requirements of a system such udisemtication, data confidentiality, data
integrity, and non-repudiation were briefly desedbin this chapter. Then the primitives to provide
these security needs (i.e. symmetric-key algorithpaslic-key algorithms, and hash functions) were

presented. Emphasis is placed on standard symrketrialgorithm AES in this research.

Block cipher modes (recommended by NIST) which banused with AES were also covered
briefly. Error propagation of the AES algorithm dt® confusion and diffusion properties was
discussed. It has been shown that an error in dhlg eounds of AES encryption is expected to in
50% erroneous bits in the output [76]. It was désed how the chaining structure in modes can

further propagate errors throughout blocks.

Different approaches in implementing AES were pmesit This provides clarification for the

experimental results and comparisons presentetiaptér 6.

In summary, unlike previous AES implementationsngsthe parity code [76][77][78] and
Hamming code [75], the proposed design considersrsrin the FPGA routing and logic.
Considering the available resources on the FPGAdtial ported block memory is suggested in this

research for error detection 8ubBytesis opposed to the parity coding in [76][77][78].

In the next chapter, the proposed AES implementgti@viding error detection is introduced. In
the proposed error detection technique, some ofrththematical properties of AES and available
hardware resources on FPGA are used to detectsemoSubBytesand the control circuitry
implementations. Enhancements to the parity schi{esed for error detection in tihdixColumnsand
AddRoundKeyransformations) to increase its error coverageadso proposed in this research. In
order to increase the error coverage of the pteithinique, the weaknesses of it on FPGA are found.

The enhancements are then discussed in 2 categmiabinational logic and routing.

64

Chapter 5

Proposed AES with Error Detection

The proposed error detection technique in AES deteicors in both logic blocks and routing on
FPGA. An important category of errors is soft esroaused by radiation affecting SRAM cells that
build and control every aspect of FPGA implementatjrefer to Section 2.1). Soft errors cause a
single error in 1 clock cycle (the likelihood of Hiple errors is extremely low). The error detentio
in this research is considered early in desighpg®sed to being an after part to AES. The proposed
error detection technique based on the parity sehexploits some of the AES algorithm algebraic
characteristics. The weaknesses of the parity sehesed in previous research and mitigation

techniques to provide the lowest cost adequateadaththis research are described in this chapter.

Error detection is investigated in 2 different gaees: logic blocks and routing. First, the catggo
of logic blocks is discussed. The proposed mappiriggic blocks on FPGA is examined thoroughly
to ensure any single error is detected. Second;&tegory of routing is presented. A simple and yet
accurate model for soft errors is verified and gggpthrough experiments. This model is used to
examine the routing of AES implemented on FPGAemmis of propagating single errors, to find its

weaknesses and mitigate them in this research.

65

Chapter 5: Proposed AES with Error Detection

5.1 Error Detection in AES Logic Blocks

In this thesis, the term logic block is referredata slice of the FPGA shown in Figure 31. The
XOR operation and multiplexers, the only logic @iems used iMixColumnsand AddRoundKey
are implemented using logic blocks, Figure 31 shawsdJTs within a slice on a Virtex-ll Pro slice.
A result bit exits a LUT through multiplexers. Arr@ in a logic block configuration bit controllirgy
LUT cell or a multiplexer can eventually manifeseif as an erroneous result bit of a logic operati
Basically, an error in logic can be considered mem@oneous combinational bit (FX, Y, F5, X in
Figure 31) or sequential bits (YQ, XQ in Figure .31)

— FX
FXINA T MUXFX
FXINE

=Y

<1 0¥
LuT l— D QF——_=YQ
- FF/LAT
G| —] CE
inputs | [—»——rx
v — CLK
SR REV
BY
> Fb
MUXFS
-
LUT
o
= D <_1 DX
inputs | ———m
v — D o] -]
FRILAT
CE
CLK
SR BEY
BX—=
CEC=>
CLK =
SR> UGO02_C2_047_030702

Figure 31 Virtex-Il Pro slice [2]

The top level view of the proposed architecturevigliog error detection in the AES encryption

datapath is illustrated in Figure 32.

66

Chapter 5: Proposed AES with Error Detection

<
<

inverse affine
S S e E—
function

addr pote = data por 4 = inverse(b)

plaintext

______________ i
128
bit
P

¥

addr joia= b | dual ported 108
»— block ROM »— affine function bit
+ (inverses) L -

data pong=b

Y

,,,,,,,,,,,,,,

addr expanded
keys

MixColumns

—— bt parity
predictor
5 > AddRoundKey 16
i A bit
parity predictor
, 128 . ("8-bit equal e
i L" " comparators
SubBytes plaintext parity
1| emorflag
bit
e

output state

(b)

Figure 32 AES including: (a) parity predictors ammnparator foSubBytesesult, (b) real and
predicted parity comparator ffixColumnsandAddRoundKey

This section focuses on the logic blocks mappedFBGA and error detection corresponding to

logic blocks. In Figure 32(a), the grey elementsr@ésent AES (without showinghiftRowsthat is
67

Chapter 5: Proposed AES with Error Detection

just rewiring, for the sake of simplicity) whiledhrest belong to error detection. Multiplexers (MUX
A and B) select depending on the round numbethaéninitial round, the input plaintext is selected b
MUX B for the initial AddRoundKeytransformation while in the other rounds the outpé
MixColumnsis sent t)AddRoundKeylin the last round, thielixColumnstransformation is skipped by
MUX A. MUX C and MUX D select the corresponding pabits for each round .The select lines are
derived by the control circuitry (shown in Appendi} that mainly keeps track of the current round
number and transformation. A block memory is usegroduce the inverse in SubBytes. A dual
ported block memory and the involution propertytie inverse function motivate an attractive
technique for error detection BubBytesParity bits are used favlixColumnsand AddRoundKey
Error detection folShiftRowss not considered since it only cyclically shifte rows of the state by
different offsets (refer to Section 4.1.1).

5.1.1 SubBytes Logic Blocks and Error Detection

The SubBytedransformation shown in Equation (9) is the ineefignction followed by the affine
function (refer to Section 4.1.1 for more detailf)e inverse function is an involution. An involuti
is a type of function having the property thatsitits own inverses. This is formally describedha t
following definition [82].

Definition: Let S be a finite set and letf be a bijection fromS to S
(i.e.f :S = S). The function f is called aimvolutionif f = f ™. An equivalent way

of stating this isf (f (x)) = x for all x(O S.

The concept of error detection for involution ciphevas first introduced in [117]. The involution

property proposed in [117] is used to detect ermoithe implementation ddubBytesusing the dual

ported block memory in this research. In Figurea32e 8-bit input on the address line@brt, is
denoted b (addr,,s = b). The 8-bit output on data line oport, is the inverse ofb
(data,os = inversé b). Theninversd B is passed through the affine function, fed backubh
the inverse of the affine function, and it finallyeaches the address line oport;

(addr,,g = invers¢ B). If there have not been any errors in reading kiteek memory or in
68

Chapter 5: Proposed AES with Error Detection

computation of affine function then data line gbort; should showb, in other words
(data,,.g = inversg¢ inverge)b=). In other words, ifdata, s # addr,,, (or equivalently

inversd inverse Y) #) then some error, possibly multiple errors, haeeuored in the block

memory or affine function. The occurrence of errtiiggers theSubByteserror flag depicted in
Figure 32(a).

5.1.2 MixColumns Logic Blocks and Error Detection

An enhanced parity scheme is used for error deteaf MixColumns The goal is to detect any
single errors in logic blocks, as opposed to detgabtnly the single errors in the output registers
previous research. In the error detection scherpeyity bit is predicted for each 8-bit elementud
output state oMixColumns The MixColumnsoutput state and 16 corresponding parity bits are
computed in parallel. At the output registers, sashown in Figure 32(b), real parity bits computed
directly from the output state are compared to dbeesponding predicted parity bits to detect an
error in the 8-bit registers of th®lixColumns state. There are 2 important requirements in

implementing the enhanced parity scheme.

= First, a single error in the logic blocks should affect an even number of bits in an 8-bit

element of the state.

= Second, a single error in the logic blocks shoultaifect the parity prediction and output

producing circuit simultaneously such that the eisaot detected.

If these 2 important factors are not consideretthéndesign mapped on FPGAs there could be cases
that a single error can be missed without beingaled. Figure 33 illustrates a simple example to
clarify the points discussed above. Assume thabudubits outpuy andoutpug shown in Figure 33
belong to an 8-bit elemeputputthat has a parity bit for error detection. Thert@utput represents
the " bit of output whereoutputis 8-bit wide. Each LUT in Figure 33 implementd-intput XOR
gate. In general, if there is an error in LUJBoth output bitsputput and output, are affected.
Therefore a parity bit is not able to detect thagle error in LUT,. As can be seen from this
example, the reason for this undesired outcomieeisharing of logic blocks (in this example, LUT
in Figure 33) in the circuit that generates ant8@ment gutpu). Therefore, after mapping a design
onto a FPGA, shared logic blocks need to be thdrgugxamined to find if any of the above 2

requirements has been violated.
69

Chapter 5: Proposed AES with Error Detection

oultpul,
LUTs |

LUT,

output,

LUTc

LUT: representing 4-input XOR

Figure 33 Single error in LUJcausing 2 bit flips in output

The FPGA mapping oMixColumnson LUTSs is depicted in Figure 34. Four 8-bit elatseof a
column of input state are shown asbh, ¢, andd. The MixColumnsequation is expanded and
rearranged so that it uses the smallest numbebJdklon an FPGA that contains 4-input LUTs. The
proposedMixColumnsmapping uses the smallest number of LUTs comptreatevious research
discussed in Section 6.2. In order to achieve #sa optimization, the proposed architecture

distinguishes 2 different groups of output bit8thit elements as follows.

» The output bits at position§0,2,5,6,7} for which thextimg)operation shown in

Equation 22 requires only a bit shift.

* The output bits at positiodd, 3, 4} for which thextimg) operation shown in Equation 22
requires a bit shift and an XOR.

This grouping of bits in 8-bit elements of thixColumnsinput column, described above, is based

on the multiplication by 2 equation denoted functixtimg) in Equation 22. In this equatioz, and

Z are 8-bit input and output elements, respectiveltimg) can be implemented by 3 XOR

operations and 4 single-bit shifts.

70

Chapter 5: Proposed AES with Error Detection

a' — 4
b= ! p O JwrR—
q L |wiRb— 2
-l — d
a | J
1
b a,_ — b
b — j = 2a ®b &c¢ b
. Al T LUTR — a. | a ¢ -1 |
p—— b 7 S i b, LUTR
a | b — . ¢, |
b _| a®b®c®d Jo ’
¢ e
! d a.
P y o I e 1 a/@2c]@d]
— J-17 / 4 g "l
¢ TR & Wrlk b | e,
- — d d J LUTR —
C/ — Jo Hd
b —
1
d 9 |
a, i LUTR —— P d]
“d d ! LUTR f——
i ./-la,
g
(a) (b)

: Representing a 4-input LUT generating the 4-input XOR, L and R correspond to left and right LUT

Figure 34 ProposedixColumnsLUTs mapped on FPGA: (a) bit positionl{0, 2,5, 6, 7}, (b) bit
positionj [0{1, 3, 4}

input: z=(2 g 2 2 Z Z:27
output: z=2 z= xtime Y= (1Z¢Z:2,% 2 Z @

Zp= 4

Z,=%t%

z,=z (22)
Z3=%+1%

Z,=4+4%

Zs =1

Z'g = %

;=%

71

Chapter 5: Proposed AES with Error Detection

The expansion and rearrangementiikColumnsin Equation 23 is proposed for the first group

where a bit positiori [1{0, 2,5,6, 7}, i —1 is performed modulo 8, and the operator + is amflit

over GF®. The terma, + j + ¢ + d is shared amongst all 4 bif®,, iy, ¢, d) of the output

state column.

a| [02 03 01 01fa
b | |01 02 03 01|h
¢ | |01 01 02 03|c
dg| [03 01 01 03|d

‘a+th+c+d]| [2pb+2a+ a
a+th+¢+d 2p+2c+ b
a+h+c¢+d 2d +2¢c+ ¢ (23)
& th+e+d] |[2d+2a+(d
ath+c+d| [byta,ta
a+th+c¢+d by+c,+p
a+h+c¢+d o+ e+
ath+¢+d| | d+p,t+d

Equation 23 is then mapped to 2 levels of 4-inpuiT& of FPGA shown in Figure 34(a). The
resource sharing amongst 4 rows of the state colwherei [1{0, 2,5, 6, 7} is illustrated in this

figure where each LUT implements the 4-input XORdtion.

Next, theMixColumnstransformation is expanded and rearranged as shro®&quation 24 for the

second group of bits where a bit positigril{1, 3, 4} . Figure 34(b) shows Equation 24 mapped to 2

levels of 4-input LUTs for the second group of bithis mapping aIIowsZaj + bj +¢ and

a; +2c¢; + d to be shared between tifa;,d;) and (b;,c;) output bits of the state column,

i

respectively. There are totally forty three 4-ini@Rs in the proposedixColumnsimplementation.
The 4-input LUTs generating the 4-input XORs hadbto manually instantiated to produce the
desired LUT schematic in Figure 34 after synthesis.

72

Chapter 5: Proposed AES with Error Detection

a; | 02 03 01 0ifa]
b,| |01 02 03 01|b
c 01 01 02 03¢
d | [03 01 01 03d, |
(2a;+b +qg | [2h+ ¢ |
_ a; +2¢ +d .\ 2h +¢ o0
a; +2¢ +d h +2d

|2a;+b+qg | | g +2d |

a,ta,+h+qg]| [b_+b+d]
3, +Cj—1+C7+dj t?_l+ b7+(].:
aj+cj_1+c7+q l?+ql_1+d7
da*ty+h+qg | |3+ d,+ d

The first consideration, in the enhanced parityesoh, is that a single error in LUTs mapped on the
FPGA should not affect an even number of bits i8doit element of the output state. To investigate
this, logic blocks that are shared between outjigtrieed to be carefully examined. In Figure 34,
where each LUT is an XOR, there is no logic bldeargng among bits of an 8-bit result (for instance,
there is no LUT sharing among bifa,, &, a,, a; a, &, &, a} in the 8-bit element).
However, there is LUT sharing between differentit8dbements of a stateolumn. For instance,

although there is no LUT sharing betweanand a; , there is an LUT shared betweepand b in

Figure 34. Therefore, a single error in a shared lidJdetected by different bits of the 16-bit error
flag register. Consequently, there are not anylsiagors in logic blocks that affect an even numbe
of bits in an 8-bit element of the state. Thus lgingrrors are not missed and thus the first

consideration of the enhanced parity scheme is met.

The parity prediction that was given and proved7i] is expanded and rearranged as shown in
Equation 25 with respect to the 4-input LUT struetof FPGA to reduce the number of LUTs.
P

out,z2 @and By, , correspond to the output and input parity bitsroBebit elementz in Equation 25.

73

Chapter 5: Proposed AES with Error Detection

The error detection hardware overhead is five 4inpUTs per column of the state in the

MixColumnstransformation implemented on FPGA.

out,a’' _Pin,a+ I:)in,b-'- I:)in,c-'- I:?n,d_ I Pin,b+ 87+ t’}_
Pout,b' — Pin,a+ I:)in,b-'- I:)in,c-'- Pin,d + Pin, c+ t’}+ q (25)
Pin,a+ I:)in,b-'- I:)in,c-'- Pin,d Pin,d+ q+ d7

P a+ I:)in,b-i_ I:>in,c+ I:?n,d_ L I:i)n,a-i_ 87+ d]_

n,

out,c'

out,d" |

The second consideration is that a single erroulghoot affect the parity prediction and output
producing circuits simultaneously such that thereis not detected. Any single error that affeaithb
logic blocks of parity prediction and output prothge circuits is detected in thBubByteserror
detection where it goes to the inverse affine fimmstin Figure 32(a). Consequently, there are ngt a
single errors in logic blocks that affect both MixColumnsoutputs and predicted parity bits without
being detected. It should be noted that error@inimg are not considered yet and are discussed lat

in Section 5.2.

5.1.3 AddRoundKey Logic Blocks and Error Detection

In the logic blocks related t&\ddRoundKey 1 LUT combining multiplexer MUX B and
AddRoundKeydashed square in Figure 32(a)) is used for eagbubbit results. There is no sharing

between logic blocks of bits in an 8-bit elememtr (Example, there is no LUT sharing among bits

{a,, &, &, &, a, &, a, a} inthe 8-bit elemenrd), and thus the first consideration is met.

The parity prediction and output producing circudts not share any logic blocks, therefore the
second consideration is met as well. The block nmgrob round keys stores the parity bits for the
AddRoundKeyarity predictor in Figure 32. Consequently, amgke error in a logic block related to
AddRoundKeyloes not affect more than 1 output bit and isaleteby the parity scheme.

5.2 Error Detection in Routing of AES

Since the proposed error detection of $wédBytegrefer to Section 5.1.1) is capable of detecting

multiple errors, it does not have issues with a&aalsere there is more than a single error whether i

74

Chapter 5: Proposed AES with Error Detection

the logic blocks or routing. Thus, any faults thatise multiple errors at the outputfbBytesare

detected.

However, since the parity scheme (capable of degpcsingles errors only) is used in the
MixColumnsand AddRoundKeyransformations, the routing needs to be inves@aSince a single
error in the routing can affect multiple outputshithe error can be missed in error detection tgfuiu
bits using the parity scheme. First, the error anting is modeled in Section 5.2.1. Then this
modeling is verified by inserting errors into a dngart of the MixColumnsimplementation and

observing the effects on the output bits.

5.2.1 Error in Routing and Modeling

This section focuses on the routing within the FP®Auting provides interconnections between
logic blocks through nets [118][16]. A net contaisgtic (non-configurable) wires, which are
embedded in the FPGA fabric, as well as a conflgarpart. In a net, the configurable part which is
called Programmable Interconnect Points (PIPs)igesvconnections between these static wires; a

PIP is shown in Figure 35.

SRAM
call

Programmable
Interconnect point

Figure 35 Switch box and PIP controlled by SRAM cel

A PIP is basically a CMOS transistor switch that b& programmed to be turned on or off by an
SRAM cell. Switch boxes are a collection of switshecated between logic blocks. This allows some
of the wire segments incident to the switch bodéoconnected to others. The term pin refers to a
physical point in the FPGA. For instance, a pin banan input or output point attached to a LUT,
flip-flop, or a multiplexer. A snap shot of a switbox and a PIP is shown in Figure 35 (note that pi

connections through the switch box are provide®Bs).
75

Chapter 5: Proposed AES with Error Detection

Since routing of a design is complex a simple getisate model needs to be defined so that effects
of errors particularly soft errors can be underdtdaput pins connect to logic blocks that compute
each transformation and produce the values on 8thjut pins of output flip-flops. Errors manifest
themselves at pins. These pins either connect abit@tional logic blocks (that can propagate an
error) or sequential logic blocks (flip-flops than store invalid data). Therefore, a pin fault glad
used. Since the likelihood of multiple errors (i@ tcontext of soft errors) on input pins is extrgme

low the routing of each input pin is consideredssafely.

In MixColumnsandAddRoundKeywhere the parity scheme is used, the only loge&ration that is
needed is XOR. An XOR operation does not mask sor.gfor instance, as is shown in Figure 36, a
4-input XOR does not stop the propagation of dligiton its input pin (a bit flip is an error in ¢h
context of error detection). Therefore, combinatloogic blocks propagating bit flips (or

equivalently errors) can be ignored when the rauitsnbeing examined.

Wo—] J_ W — —I_
Y —— wr e

y — 1 XoR r — | XoR

(@ (b)

Figure 36 XOR LUT propagating error whether o)1 Y[l Z=0or (b) XY Z=1

In order to verify the pin fault model for soft ers in SRAM cells of routing, a small part of

MixColumnsis tested on the FPGA. This is discussed in metaildn the next section.

5.2.2 MixColumns Routing and Error Detection

The enhanced parity scheme is usedMinColumnsand AddRoundKeyto detect errors in the
routing other than logic blocks. The 2 factors tia considered in the logic blocks (refer to $ecti

5.1.2) should be investigated in the routing ad.wel

= First, a single error in routing should not affaateven number of bits in an 8-bit element

of the state.

76

Chapter 5: Proposed AES with Error Detection

= Second, a single error in routing should not affde parity prediction and output

producing circuit simultaneously such that the eisaot detected.

A design that provides any single error detectiologic blocks can have a routing circuit that does
not achieve an overall 100% single error detecfianclarify this problem in routing, an example is
given in Figure 37. This figure depicts a smalltpsra circuit that implements a parity scheme for

two 8-bit elements. These two 8-bit elements irufég37 areoutput_ a and output_ b (i" bit of
output_ a is output_ a). Each 8-bit element has its own parity bit. Igngrthe routing circuitry

in Figure 37(a), any single error in the logic eds detected, specifically by parity obitput_b

(thus the parity obutput_adoes not need to, nor will, detect the error).

@ output _a, @ output _a,

input 11D input 1L
p —>U~ @ @ output _a, p —»D—‘Tt»p w output _a,
@ output _b, output _b,

parity parity
b .
— e

(a) (b)

Figure 37 Routing example (a) logic blocks withoahsidering routing, (b) actual routing detalil
showing pin_ p
Consider the pin labelegpin_ p in Figure 37(b). If a single error affects theualat pin_ p
then bothoutput_ g and output_ g can be erroneous. In this case, since 2 bits @f8tit
elementoutput_ a are flipped the parity bit is not able to detdusterror. As can be seen, this
undesirable effect is due to a multiple fanout algf@t pin_ p in Figure 37) that is connected to

multiple bits of an 8-bit elemenbltput_ g andoutput_ g).

This simple example demonstrates the importancexamining the effectiveness of the parity
scheme implementation in detecting single errompirting other than logic blocks. In this research,
the goal is to find out all the pins leading uppimential undetectable single errors and provide a

mitigation technique.
77

Chapter 5: Proposed AES with Error Detection

As discussed in Section 5.1.2, weaknesses of tliiy gaheme in logic blocks are due to resource
sharing whereas weaknesses in routing are due Itipladanout signals according to the pin fault
model. In order to verify this on the FPGA, a snalt of MixColumns shown in Figure 38, is
implemented with a multiple fanout signal q@iin _ p. The output bits connected to LEDs are
observed to find if the multiple fanout signal casighis problem in routing. Figure 39 illustrates

more detailed information i.e. slices and SRAM selthe snapshot of the FPGA Editor is shown in

Figure 66 and Figure 67 of Appendix H.

4dinput| 7'
LUT d

pin_p

4 > >§ o
u 4-input d

= LUT

R 4

= 4-input ;
LT | Ys

h 4

Figure 38 Routing of 2 fanout signalMixColumnstested on FPGA

| slice :
I -
! - 4-input | f
| dwr T d,
SRAN SRAM SRAM — > I
‘ S_ilEe________-i cell call cell 1 :
! A e s e _
| N s T e e N
a, —‘—»D ; 1 1 >@ e | slice :
| | . 1 - i
| I pin_p [4-in '
\ o - put | 1 !
e Sl] | E 4wt [T ds
r
| S N S . -
T Mslice —— 1
T
1 < 4-input | | :
=
| = LUT 5
] — i
1
]

Figure 39 Detailed routing of 2 fanout signalixColumnstested on FPGA

78

Chapter 5: Proposed AES with Error Detection

In Figure 38, the input flip-flop is one bit resik, of 8-bit elementa) from SubBytesand the
LUTs implement 4-input XOR operations MixColumns The output bits 4, , ds, and a;) are 3
bits of theMixColumnsresult. Output bitsd, and d; are 2 bits of the 8-bit elemedt . According to

the pin fault model, if there is an error in theiting that affects both these bitdz'l(and d'5) it is not

detected by the parity bit of 8-bit elemesht

5.2.2.1 Experimental Validation of Proposed Routing Mitigation Technique

In order to investigate the effects of single esron FPGA, the configuration bits that control the
routing should be manually flipped one at a timsitoulate a soft error occurrence. Then the output
bits connected to LEDs need to be observed to ewamhie effect of an error on the result. Other
techniques used previously to estimate the softrerate for a device (not a specific design

implementation) are expensive accelerated testgigguparticle beams, software simulation of a

circuit (different quantitative models based &,), and estimation by real particles. In this

research, soft errors are simulated on a speatibn flipping the relevant configuration bits aite
effects are observed. Then the mitigation technigueposed is verified by the second soft error

simulation on the specific net.

The FPGA used in this research is Virtex-l1l Pro sef@onfiguration file size is 34,292,768 bits
[2]. It is important to note that the mapping oheilist after place and route onto the configuratio
bits (or FPGA SRAM cells) is proprietary informatioTherefore, there is no direct way of finding
configuration bits that are related to the net leetwthe flip-flops and LUTs in Figure 38 so theg ca

be flipped for the experiment to simulate SEUs.

To overcome this problem the net is manually readoivom the design netlist by the FPGA Editor
tool and the modified configuration file is genedtThen the original configuration file is comphre
with the modified configuration file by a programitten in C++. After running this comparison in
software there are totally 14 bits that are diffieri@ these 2 configuration files. These differbits
indicate the bits that are related to the net (betwthe flip-flops and LUTs in Figure 38) that is
removed in the modified netlist. Next, these 14 bilated to the routing are flipped one at a time.

Figure 40 illustrates the flow to simulate SEUsiinet.

79

Chapter 5: Proposed AES with Error Detection

routed netlist > Orgna :
configuration file . .
l single bit flipped
in the original
bits related configuration file configuration
net removed comparator to removed »| file simulating
net SEUs
Y
modified routed = modified
netlist "| configuration file

Figure 40 SEU simulation in net

After each bit flip, the configuration file is dovaaded on the FPGA and the output biﬂ;j (d;-),

and a.'5) connected to LEDs are observed. Cyclic Redund&iwcking (CRC) is turned off during
the configuration. The effects of single errorsidating soft errors in routing on the output bite a

categorized in Table 5.1.

Table 5.1 Effects of single errors in net includipgn _ p on output bits

output bits d, ds a

wrong | wrong| correct

wrong | correct] correct

effects of single errors in net on output hits
correct| wrong | correct

correct| correct| wrong

As seen in the first row of Table 5.1, a singleoein the routing can affect botth, andd;. In this

case, since 2 bits of the 8-bit elemehtire affected the parity scheme does not detecdrtioe. This
example shows that the pin fault model while igngrthe XORs can accurately demonstrate the

effects of single errors on the FPGA. In Figure@S8predicted in the pin fault model a single eomr
pin_ p affects bothd, andd;.

In general, if there are multiple output bits of &hbit element that are connected to a pin of a net
that pin can lead up to undetectable single erMitigating this problem requires modification imet
80

Chapter 5: Proposed AES with Error Detection

routing. However, there is not much modificatioattban be done on a netlist at such a fine-grained
level by the tool. Additionally, even if this moi&tion at the placed and routed netlist were fbessi

it would make the design process tedious.

A mitigation technique is introduced in this resdathat is done at the register-transfer level. The
goal is to avoid pins causing undetectable singlere (pins to which multiple bits of an 8-bit outp
are connected) to avoid an even number of errothenoutput (an even number of errors are not
detected by the parity scheme). The proposed tgelnises extra flip-flops in order to force the
FPGA tool at the register-transfer level to eliméenthese pins. For instance, Figure 41 illustréties

proposed technique to eliminai@n _ p shown in Figure 38. The snapshot of the FPGA Edso
shown in Figure 66 and Figure 67 of Appendix H.

= 4-input ;
10| 4,
»
el
o 4 > @ > U i
= 4-input !
= LUT dﬁ
= 4-input ;
ﬂ 4 wr | 9

’ u p;’n _q '

Figure 41 Routing with no pins leading up to undetkle errors

Unlike the routing in Figure 38, there are no sngtrors in the routing shown in Figure 41 that
affects d, and d; only. This is verified by flipping the routing kit(the workaround to find the
related configuration bits in routing was discusk®dhe experiment in Figure 38) and the effedts o
single errors in the net includingin_ q is categorized Table 5.2. As seen in this tabéeeths no
cases in whichd, and d are wrong only. In the case whellg and a; are affected, parties of 8-bit

elements] anda both detect the error in the net.

81

Chapter 5: Proposed AES with Error Detection

Table 5.2 Effects of single errors in net withony @ins causing undetectable errors at the output

output bits d, d, a,

correct| wrong | wrong

effects of single errors in net on output Qitsorrect| wrong | correct]

correct| correct| wrong

5.2.2.2 Detailed MixColumns SEU-resistant Routing

Next, the proposed technique using extra flip-flopsouting is going to be applied throughout the
MixColumnsimplementation. The first step is to find the pleading to undetectable errors in the

nets ofMixColumnsshown in Figure 34. The extra flip-flops are usedvoid these pins.

There are 2 levels of LUTSs, referred to as L forTislbn the left and R for LUTs on the right in
each circuit of Figure 34. The net between LUTsnd &UTs R in Figure 34(a) is connected to 4
input ports of LUTs which define bité,, by, ¢, d). Each of these bits belongs to a different 8-bit
element @ ,h,¢,d belong toa ,b,c,d, respectively). Therefore, there is no pin whias h

multiple fanout signals among bits of an 8-bit edn This holds true for the nets between LUTs L

and LUTs R in Figure 34(b) as well. As seen in FegB84(b), there are 2 multiple fanout signals
connected tog;, d;) and (b, ¢;). Therefore, there are no pins causing undetexbbrs in routing

between LUTs L and LUTs R in Figure 34(b) either.

Investigating signals that are not necessarily betwLUT L and LUT R is more complicated. The
available routing between an input pin and outpotgé LUTs is shown in Table 5.3 to Table 5.6.

Letters L and R are associated to the left and LighT connected in a signal path to and connected

directly to an output pin, respectively. For exaepph row of inputa, in Table 5.3,a, is connected
to the input pin of several LUT Ls which are corteecto LUT Rs to output signals, , a;, a,, a,,
b,, c,, d;, ds, d,, andd, anda, is also connected to the input pin of three LUE Rhose output

pins are a,, a,, and d,. Table 5.3 presents a notation for labeling of lthiT's (or equivalently

82

Chapter 5: Proposed AES with Error Detection

input pins to LUTS). In the last row of Table 5@ fnput a, , a, (L) b, (L) ¢, (L) d, (L) refers to LUT
L connected to output bita, ,b,,c,, and d, in Figure 42. Additionally in Figure 42, (R) (also

listed in last row of Table 5.3) refers to LUT Bnoected taa, .

Table 5.3 Input nets to input pins of LUTs of 8-iéementa

Input | g b c d

% | @R, aw bho | QO | do do

a | &e bo | qu | dr. d,E®

8, | 3 LR, a0 bo | co | dw do

a |ao bo | GO | d® dO

a, | am b | GO | dy® ds®)

a | &R &R o | gL | o dg®

3% | LR &M bsw | L | dgw. d;®)

& | R &L, AL, 3,0, & LR) bu | Gw | dy®. do dyw. dyw. d; 0

a's(R)
al
Jrutr U
a, |
bl
1 1 1 1 | 7
a';(LYb'5(L)c';(L)d'; (L) LUTR
a., | 7
7 i
Jrute
]
| | ¢
LUT R
dl
N 7
LUTR

Figure 42 LUT labelsa, (L) b, (L) ¢, (L) d, (L) and a; (R) related to inpug, in Table 5.3

83

Chapter 5: Proposed AES with Error Detection

The complete row of inpud; is illustrated in Figure 43. For examplag(R) refers to the LUT R
in the middle circuit in Figure 43 {4olumn of LUTs from the left), specifically LUT ®hose input

is a, and whose output |ao Similarly, ai (L) refers to the LUT L in the circuit on the right

Figure 43 whose output is routed to 2 LUT Rs onwluth outputsai.

a!
R 1
LUTR |—
a., —|
7 LUTL
d‘l
g a'7 LUTR |—
LUTR |— T
a, |
7 '
a
R 0
LUTR |—
bl a7 e 1
i 7] R as
LUTR |—]] LUTR ——
a, _| iy i a, —| 1
7 1 LUTL 7 LUTL
LUTL 1 1
'
| CV7 i d3
LUTR JLutr
| d'
] 0
LUTR |—
a, —|
'
4 d7 al
LUTR |— | 4
|] LUTR
a., —
7 LUTL
d!
R 4
LUTR |—

Figure 43 Inputa, connection to output bits, , &, a;, &, &, b;, ¢,, dy, d;, d;, d,, and

d; through LUTs

The proposed mitigation is discussed for inputthen the same concept is expanded for the whole
MixColumnsdesign. There is a potential of errors not beiagecked when there is a multiple fanout

signal connecting inpu&, to the following LUTSs:

= 3, (R), & (L), a; (L), a, (L), a (R)

= dy(R), d; (L), dy(L), d, (L)

84

Chapter 5: Proposed AES with Error Detection

The input pin of the far left LUT L in Figure 43 h{s LUT is referred to as
a, (L) b, (L) ¢, (L) d, (L)) is not included since any single error in tlisnet that affects the results at
a, (L) and d, (L) is detected by the parity bits &f andc (LUT L is shared between bits,, b,,
d,, and c,), even though this error might not be detectedpayity the bits ofa and d . For
instance, an error in tha, net that affects (L) and a, (R) is not detected by the parity bit af (2

errors are not detected by a parity bit); howewer parity bits ofb and ¢ detect this error. The

proposed technique, shown in Figure 44, uses @iirllops at the register-transfer level to preten

pins which cause undetected single errors in aRwtinstance, in the@, net discussed above, the

mapped design illustrated in Figure 44 does not lzany of these pins.

a
K a. _JLuTr 0
7
PO JLuTL —e L a'
) d '0 Jwrrl—Z
a4 JLTRI— a; —
- b'
JLuTr 7
617 A
- !
Da'7(L)b'7(L)c‘7(L)(J"7(L),ar'0 R),d'(R) r LUTL] ¢,
1 JLUTR |——
a'y(Lyd' (L) i
a' d',
1 Jwrr|— N LLTIF |
a; JrutL E A
a- result from SubBytes B '
R i d 1
LUTR |—
nds(Dd's5(L).a'5(R) A
U '
1 ' TLUTR i
a'(Lyd',(L) Mk]
7 T LUTL i
h '
JLuTtr i
a', 1
I JLuTtRr
7 —JLuTL L
dv
JLuTr 4

Figure 44 Proposed routing applied to aet
85

Chapter 5: Proposed AES with Error Detection

For further clarification, Figure 45 shows parttbé originalMixColumnsdatapath (see Figure
32(a) for the complete datapath) which was modifiadrigure 44. Thea, flip-flop (resulting from
SubBytes) irFigure 45 is copied 5 times in Figure 44 to prewamdetected single errors in routing.
Input @, generates output bits,, &, a;, a,, a;, b,, ¢;, dy, d;, ds, d,, and d;. The error

checker (of Figure 44) is basically the part ofaghath (in Figure 32(a)) that includes inverse affin
function (refer to Section 5.1.1).

inverse affine
2 -
function

' S ' 1o 1 1 1 1
a7 result from SubBytes ﬂ 0 a O,a l,a 3,61 4,61 7.,b 7,(/ 7,d O’d 1,(1 3,d 4,d 7
MixCol

oot
b -

MixColumns
parity
predictor

Figure 45 Part of datapath (shown in Figure 32¢@) is routed in Figure 44

The multiple fanout signah, in the proposed routing shown in Figure 44 is tsm which

separates bits that cause potentially undetectegleserrors in the multiple fanout signal by using
extra flip-flops. Each flip-flop in Figure 44 is soected to the input pins of the corresponding LUTs
(from Figure 43). The multiple fanout pina,(result fromSubBytesP1, and P2) before the flip-flops

in Figure 44 are not problematic pins. An erropin a, is detected through the error checker. An
error in pin P1 is detected by the parity bitseof b , ¢ ,andd , since there is an odd number of
them (specifically in nets, (L) b, (L) ¢, (L) d, (L), &, (R),d, (R) and &, (L), d, (L) located after pin
P1 in Figure 44 there are& nets, a, (L), a,(R), a,(L), and 3d’ nets, etc). An error in pin P2 is

detected by the parity bit af (due to an odd number af elements).

The parity predictor does not have any multipleofsénsignals in the net producing output pins

(e.g., PO is a multiple fanout signal connectedhi error checker and none of the output pins in

86

Chapter 5: Proposed AES with Error Detection

Figure 44). Therefore, a single error in routingeslanot affect the parity prediction and output

producing circuit simultaneously such that the eisaot detected.

The multiple fanout signals after the flip-flops kigure 44 do not have any pins leading up to
undetected single errors either. In the nets #fierflip-flops, any single error in routing thafesdts
multiple output bits is detected by at least onétyait in Figure 44. This is discussed in morgaile
as follows.

= In net & (L) b, (L) ¢, (L) d; (L), & (R),ds (R), any single error that affects inpat, of
LUT a, (L) b, (L) c, (L) d; (L) (this is the LUT L shown in Figure 43 for outpbits a.,
b,, c,, andd,)) is definitely detected by parity bits of 8-biementsb and ¢ . Other

single errors in this net that aﬁeq') (R) or d(')(R) are detected by parity bits of 8-bit

elementsa andd .

= Inneta (L) di(L) shown in Figure 44, any single error is detddbg parity bits of 8-bit

elementsa and d independently.

= Inneta,(L)d;(L), a, (R) shown in Figure 44, any single error is desddiy parity bits of

8-bit elementsa’ or d .

= In the a;l(L) d;l (L) shown in Figure 44, any single error is detddby parity bits of 8-bit
elementsa and d independently.

All the multiple fanout pins investigated above fon that all single errors are detected in the

proposed routing for input ned,. The proposed method is then used for the wMileColumns
routing for each row of Table 5.3 to Table 5.6sHbuld be noted that not every row in the tables ha
single errors not being detected. For instancéhemrow of neta, of Table 5.3 (shown in Figure 47)
there is no multiple fanout pin that can be prolddm If there is a single error in this net thHeets
the input pin at LUTa, (L) by (L) ¢, (L) dy (L) (this is the LUT L shown in Figure 46 for outpbits

a,, by, ¢y, andd,) it is definitely detected by parity bits of 8tllementsb andc . Other single

errors in the net are detected by parity biteofandd" independently.

87

Chapter 5: Proposed AES with Error Detection

1
§ a,
LUTR
a. |
0 1
4 a 1
LUTR
1 -
] b 0]
LUTR }—— a. |
a 4 0
N . oL
LUT L b
N
L . o
LUTR
J d'
4 4 1
LUTR
']
4 d 0
LUTR

Figure 46 Inputa, connection to output bits,, &, by, ¢,, d,, andd, through LUTs

error checker

v

ay

D . > a'(L)b'(L)e' (L)d 'y (L).a' (R).a'(L)d' (L)

Figure 47 Proposed routing applied to agt

The proposed method in routing is shown for thesothput bits &, , a,, a5, ag) with potential
problematic pins ofa mitigated in Figure 48. Similar to the routing af, routing ofa, anda; do

not have any multiple fanout signals that leadrigle undetected errors.

88

Chapter 5: Proposed AES with Error Detection

error checker

error checker

a >U P\ (Lye'(L)d'(R) a, >D b' (L)' (L),d" (R)

a’y(R),d',(R)

=

a's(R).d'(R)

error checker error checker

a's(L)b's(Lye's(L)d'(L),a's(R) 4 a's(L)b'g(L)c's(L)d (L), a'¢(R)

a' (R),d'(R) a's(R),d';(R)

1
A

Figure 48 Proposed routing applied to agf a,, a5, and ag

Input nets of 8-bit element connected to output pins of LUTs in Table 5.4 hsiveilar structure
to that of a ; therefore the routings are similar as well. Cahgnthat are similar in botl in Table

5.3 andc in Table 5.4 are as follows: columns (1 and 3)af@ 4), (3 and 1), and (4 and 2),
respectively. The routings ofare shown in Figure 49. Netg, C,, andc,; do not have any multiple

fanout signals that cause undetected single errors.

89

Chapter 5: Proposed AES with Error Detection

Table 5.4 Input nets to input pins of LUTs of 8-iémentc

nput | g b c d

G | L | o bo Co (LR), C L) do
¢ |lav |bhrbLE C,®R) dw
¢, |ao |bo by C, (LR), Gy d,
G | a0 | bhr.bo Cs (L d; 0
¢, | a0 | br.bEe (NG d,
¢ |ao | ko b® Cs(LR), C5(R) ds L
G | &L | o e Cs LR). C; (R) ds L
¢, | &0 | hr bw o bw bwo CR), G (L), G5, Cy (L), C; (LR) d, v

error checker error checker

error checker

o a' (Lyd'(L),b"(R) ¢ U a's(D)b's(L)e's(LYd'\(L),e'(R)

a'|(L)d'|(L),b(R) (e

(E—]

by (R),c'y(R) b's(R),¢'s(R) D blg(R),e'g(R)

parity predictor

/ /U a'y (Db (L)e' s (D)d' (L), by (R), ¢y (R)

Cy >
\U b'l(L)C'l(L)

D by (L)e'y(L),¢5(R)

| —

error checker

Cs

(E—

a's(L)b' (L)' (L)d " (L),e' (R)

| —

bl (R),cH(R) D by(L)e'y (1)

Figure 49 Proposed routing applied to ogtc,, ¢;, andc
90

Chapter 5: Proposed AES with Error Detection

The proposed routing based on Table 5.5 is usex¥es of b and is shown in Figure 50. Nelts,

by, and b, are not problematic. For instance, in ngtif there is any error that affects LUT
a (L) d; (L) it is always detected by the parity bit of 8-biementd . Any other error that affects
LUTs a,(R), b, (R), or ¢ (R) is detected by parity bits ot (if LUT a,(L) d, (L) is not affected),

b, orc, respectively.

Table 5.5 Input nets to input pins of LUTs of 8-®liémentb

nput | @ b c d

b | a0 a® by R, DO oo | do
b | a0 ar b, ®) QR | do
b, | &,w a® b, LR), ByR) coL | do
b, | aw. a,® b, R) G® | dv
b, | a0 a® by ®R) c,® | dyo
b | aw a&® by wR). by R) co | do
by | asm. 3 ®) by LR). b, ®) GO | dg
b, | 3®. &R, &R, R, &L | kR BO KL b bww | o | do

91

Chapter 5: Proposed AES with Error Detection

error checker

b, by D a'y; b5y c's, d's; b

a's(R), b (R)

r—

error checker

\.D“

-<U‘a LB (L)e' (L)d (L), @'y (R),b',(R)
D a'y(R),b'(R)

a' (D' (L)e's(L)d'(1),b'(R) D a's(R),0'(R)

| —

b, (R)
a';(R),b'(R) a'y(R).b",(R)

Figure 50 Proposed routing applied to bgt b, , b, , by, andb,

Input nets ofd to output pins of LUTs in Table 5.6 are similaithat of b therefore the routings are
similar. In Table 5.6 and Table 5.5, similar colwmwib andd are (1 and 3), (2 and 4), (3 and 1),
and (4 and 2), respectively. The routingsdofare shown in Figure 51. Netg, d,, andd, do not

have any multiple fanout signals that lead up tdetiected single errors.

Table 5.6 Input nets to input pins of LUTs of 8-liémentd

nput | g’ b c d

d |0 | ho | oo aq® do LR, 0y O
d | ar | bho | qu GE d,®)

d lao|bo| cu ar d, LR, 3 R)
d; | aa® | o | GO GE d,®

92

Chapter 5: Proposed AES with Error Detection

d, | a,® | byo | O &R dsR)

ds | asw | b | L. R ds (LR), dg(R)

ds | as0 | b | L. GR) ds(LR), d; (R)

d; | an | bo | QR GR. GR.CR.C O | dyr), d o do, dyo, dywRr)

error checker error checker error checker

parity predictor parity predictor parity predictor

d, D a' (LB (L)e' (L)d' (L), d"y(R) d,

r—

a'y(L)b'y(L)e',(L)d ', (L), d",(R) ds D a's(L)b',(L)e'(L)d'(L).d'y(R)

¢ (R).d"(R) " (R).d"(R) ¢'(R).d'4(R)

error checker

D ¢'(R).d',(R)
Du'é(L)l7'6(L)c'6(L)d "(L).d'(R)

d'-(R)
¢ (R).d",(R) D ¢, (R).d',(R)

Figure 51 Proposed routing applied to dgt d, , ds, dy, andd,

5.2.3 AddRoundKey Routing and Error Detection

As discussed in Section 5.1.3 logic blocks AddRoundKeyare separate. There is 1 LUT
associated with each output bit AfldRoundKeyTherefore, there are not multiple fanout signals
related to bits of an 8-bit output. Consequentliew an error propagates it is not able to affeaemo
than 1 output bit and the parity scheme detectsitiue.

Since the parity prediction and output producinguits do not share any logic blocks, there are

not any multiple fanout signals related to paritggsction and output bits either. Thus, an erraras
93

Chapter 5: Proposed AES with Error Detection

able to affect a parity bit and its 8-bit outputthe same time. Consequently, the parity scheme

detects all the single errors in tAddRoundKeymplementation.

5.2.4 Control Circuit and Error Detection

The control circuitry, consisting of 2 state ma@&srshown in Appendix C, generates the select
signals to the multiplexers (MUX A, MUX B, MUX Cnd MUX D) in the datapath shown in Figure
32(a). In the proposed state machines, shift regishstead of counters are used to keep track of
rounds and transformations. An interesting featirthe Virtex-1l Pro FPGA used is that a LUT can
be set to implement a shift register [119]. Thidtglegister LUT can be of length 1-16. Using this
feature keeping track of rounds uses just 1 LUimgglement. Without this featur®& number of flip-

flops (whereN is the number of rounds in AES) are needed toeémpht arN-bit shift register.

The control circuit affects the datapath througledesignals of the multiplexers (see Figure 32(a))
This could make the parity scheme used in the d#ttapeffective in detecting single errors since it
can violate the 2 requirements described in Se&ibr2. Therefore, the control circuit should abgo

considered in error detection.

In order to ensure a single error in logic blockesinot affect multiple bits in an 8-bit element of
the state, the control circuitry is duplicated &ach bit of an 8-bit output and shared between 16
elements of the state. Additionally, to make certaiat a single error in logic blocks does not étffe
the parity prediction and output producing circsiinultaneously, the control circuitry is duplicated
for the parity prediction. The duplications useatiekely small number of resources (1 LUT is
minimal resource used for a shift register as dised above) compared to that of AES. Usage of
hardware resources is discussed in Section 6.3ce3luplication is used for the control circuitty a

single errors are detected.

5.3 Soft Error Resistant AES for Different Key Size s and Decryption

In this research, the proposed error detection B8 Avith key size of 128 bits is expanded to the
other versions of AES with key sizes of 192 and BP&8. The part that is different in the AES
algorithm with key sizes 128, 192, and 256 bitghis control circuitry. The shift register LUT
supports length of 1-16. The maximum number of dsus 14 for key size of 256 bits (refer to

94

Chapter 5: Proposed AES with Error Detection

Table4.2). Since the maximum number of rounds does notezktige maximum length of the shift

register LUT, all key sizes use 1 LUT to keep tratkounds.

All versions of AES with different key sizes areplemented in this research. Compared to the
AES implementation including datapath and contigduit, the overhead of the control circuitry is
about 2.6% and 3% in terms of flip-flops and LUfespectively. Overall, the overhead of hardware
resources of the control circuitry is not signifitalthough duplication and comparison are used for

error detection.

The proposed method can also benefit the AES deorypThe inverseéSubBytescan directly
benefit from the approach proposed $abBytessince it has a very similar structure that inelsithe
inverse function implemented in a dual ported blavkemory (refer to 5.1.1). The inverse
MixColumnstransformation includes XOR operations (XOR pra@iagerrors as opposed to other
logical operations) similar télixColumns Therefore, the same 2 requirements in the intedu
enhanced parity scheme (refer to 5.1.2 and 5.2aP) lwe applied to the inverddixColumns
implementation. InversdddRoundKeyand the control circuit also benefit from the erdetection

proposed for the AES encryption.

5.4 Summary

The proposed error detection technique uses sonibeofnathematical properties of AES and
available hardware resources on FPGA to detectrserio SubBytesand the control circuitry
implemented. Enhancements to the parity schemed (e error detection irMixColumnsand

AddRoundKeyto increase its error coverage were also propwstds research.

The inverse function dbubBytess an involution meaning that it is its own inver#\ dual ported
block memory exploits this property for error deime. The inverse result is fed back to the second
address port of the dual ported block memory. & dlata on the second port is different from the
value on the first address line, then there hawn ls®me errors. This method using the dual ported

block memory plus the inverse of affine is useddioor detection irsubBytes

The control circuitry uses shift registers to cohthe select lines of multiplexers. Shift register
were implemented with an interesting feature onRR&A that implements a shift register of length
1-16 by a single LUT. Since 1 LUT is very smalltarms of hardware, duplication is used for the

control in this research.

95

Chapter 5: Proposed AES with Error Detection

The enhanced parity scheme was usedMotColumnsand AddRoundKeyransformations. In
order to increase the error coverage of the pgeitiinique, the weaknesses of it on FPGA were first
found in this research. The high density of SRANscand lack of available information (mapping of
configuration bits onto netlist after place andteois proprietary information) make analyzing the
effect of faults on an implementation challengilgorder to tackle this problem, the high reguiarit
in the FPGA structure is exploited. The pin faulbdal was suggested for modeling and analysis
when there is a wrong value in an SRAM cell dusedft errors. A small part of thdixColumnswas
tested by simulating single errors to verify thi®dal. Simulating soft errors was achieved by
basically flipping 1 bit at a time in the configtica file, then downloading it on FPGA and obsegvin
the output bits. This simple and yet accurate ehaugdel was verified. Since FPGA has a very

regular structure the result of the verificatiorsvexpanded for the whole device.

The parity technique covers the errors in datapagisters only. However, errors due to radiation
can occur in any SRAM cells forming the combinasiblogic and routing of a design implemented
on FPGA. Propagation of single errors was thoropgixmined in the AES netlist after place and
route by using the pin fault model. There are Ratibns when an error can go undetected in the
parity scheme. First, if a single error can potdhytiaffect an even number of output bits. Second,
errors can go undetected if both output bits amityphit are affected by a single error. LUTs were
designed manually in the netlist to resolve singlmrs being undetected in combinational logic.
Extra flip-flops were used at the register-transéeel to tackle errors being undetected in routing
FPGA in this research.

In the next chapter, experimental results of déferimplementations on FPGA and comparisons
with the proposed design are provided. The coveodgeft errors in all the techniques implemented

is also discussed.

96

Chapter 6

Comparison with Previous Research

In this chapter, the proposed error mitigation apph to AES is compared with previous research.
To support a fair quantitative comparison, previpuesearched architectures were implemented in
the same technology as the proposed AES archieeclie error coverage of the proposed technique
is compared with previous parity schemes and DM&di#onally, as the new proposed part of AES,
the new implementation dflixColumns is compared with the state of the art. Compassointhe
number of LUTs and flip-flops, block memory sizdpak frequency, throughput, and power

consumption are provided.

6.1 AES Hardware Design

There have been numerous hardware (FPGA and A8ifdeimentations proposed for AES since
it was accepted in 2000. Each design typically $esuon one or more constraints i.e. throughput,
area, or power and also must target a specifimtdolyy. The relevant architectural designs in this
research have been implemented in order to pravitlr and exact comparison utilizing the same
technology and are discussed in detail in the cestithat follow. Moreover, this section reviews

some of the previous research from a general hasddesign perspective.

There have been mainly 3 different datapath widli28 bits [98][120][121], 32 bits [115][122],
and 8 bits [123][124][125][126, 127]) for the AE&chitecture. Obviously, wider datapaths aim for

higher throughput while narrower datapaths typjcadirget reducing area and power. Hardware
97

Chapter 6: Comparison with Previous Research

resources are reused in narrow datapaths to redaae This lowers the level of parallelism and thus

reduces performance (throughput) [121].

Since the AES algorithm has an iterative loopimgcttre (Figure 52(a)), loop unrolling illustrated
in Figure 52(b) can be used to increase the le@aaallelism for high performance applications.
Therefore, throughput can improve by this techniddewever, this comes at a price as hardware

resources are increased by approximately the nurobdimes the loop is being unrolled [98]

[120][121].

transformations

Figure 52 Higher level of parallelism provided lbpp unrolling: (a) AES iterative looping structure,

(b) N-time loop unrolling [121]

Throughput is computed as shown in Equation 26 &Neis the number of times that the loop is
unrolled. As seen in Equation 26, loop unrolling significantly improve throughput. If a design is
fully unrolled, thenN is equal to the number of rounds and the maximuoughput is achieved at
the cost of approximateli times the area. Furthermore, round transformati@amsbe pipelined to

increase the clock frequency [98] [120][121].

98

Chapter 6: Comparison with Previous Research

throughput=
number of round.

(26)

Experimental results of some of the previous reteare presented in Table 6.1 and briefly

discussed without going into specific details aflearchitecture.

Table 6.1 AES previous implementations

Block Clock Throughput Power
Technology | Area .| frequency| . . .
memories| . in Ghit/s | consumption
in MHz
Good et al. [98 Spartan-Ill
jetal. [98] | Sp 207201 240.9 30.83 i
encryption/decryption) XC3S4000-5| slices
Virtex-lI
Good et al. [98] 31674
) _ | XC2v8000-5| - 222.8 28.52 -
encryption/decryptior slices
Hodjat et al. [120] _ 8285
i Virtex-Il Pro 84 168.3 21.54 -
encryption LUTs
Hodjat et al. [120],
SubBytesn _ 22358 168.3 21.54
composite fields | Virtex-ll Pro LUTs - -
encryption
Zambreno et al. [121 Xilinx 16938
- 184.1 23.57 -
encryption XC2V4000 | slices
Mozaffari et al.[113
AR iexs | 9808 i 482.998 | 61.8 .
encryption slices
Mozaffari et al.
114], parity for _
[S]uk?Byt(Zs Virtex-1l Pro sgli:c()fs - 60.8 - -
encryption
Yuetal. [115] 0.1&m 10.9k
i _ - - 0.112 -
encryption/decryptiop ~ CMOS gates

99

Chapter 6: Comparison with Previous Research

Good et al. [123] 0.13m 5.5k 6924W at
- cmos | NANDY - 100 - 0.75V
encryption gates .
Chang et al. [124
getal [124] | o rtanr | 200 2 385 0.031 i
encryption/decryptior slices
i 5.5k
Haghighizadeh [125
g g. ! _ | (():I%A&(Sg NAND - 128 0.102 48W
encryption/decryptior gates
Hamalainen et al. 01 3.1k
[127] (:'Macl)rg NAND - 152 0.121 31w
encryption gates
Dalmisli et al. [126] 294
) Spartan-lii . - 142.8 0.0147 43W
encryption slices
Dalmisli et al. [126] 299
_ Spartan-ll| : - 68.9 0.013 26W
encryption slices

Previous researchers in [98] [120][121] aimed aghlperformance. Design [120] (row 5 in Table

6.1) uses composite fiel&F((2*)?) for the SubBytegransformation whileSubBytesn row 4 is

memory based.

The parity for S-box was proposed in [113] for emdetection. Distributed RAMs were used for
implementingSubBytes Their results seem to be after XST synthesis rastdplace and route. In
[114], the composite fiel&ubBytesnd its inverse were divided into blocks and thedjzted parities
of these blocks were computed. Optimum solutiontier composite field in terms of overhead was

found through exhaustive search.

Researchers in [115] used a 32-bit datapath foorapact ASIC implementation of AES. To
provide error detection, S-boxes were duplicated @arity bits were used for other AES

transformations.

Research [123][124][125][126, 127] proposed diffgrarchitectures for the 8-bit datapath aiming
at reducing area and power. Results have beenteelpan various technologies including CMOS and
FPGAs.

100

Chapter 6: Comparison with Previous Research

6.2 Experimental Results of MixColumns

Previous equations oMixColumns presented in Section 4.3.2 are implemented in FPGA
technologies for a fair comparison with the progbdesign (refer to 5.1.2). As discussed in 4.2, t
MixColumnsin [98, 102], [112], and [108, 109] used Equati Equation 12, and Equation 21,

respectively.

The experimental results use the Xilinx Virtex-4G# (target device: xc4vix15-10ff668) as well
as Altera Cyclone (target device: EP1C3T144C6).sEhEPGAs use 4-input LUTs as function
generators. Manual instantiation was used to ptefemnher modification by the tool (due to

optimization) and the netlist was verified afteaq# and route.

The number of LUTs and the corresponding LUT sgwifor theMixColumnsimplementations
are shown in Table 6.2. The input and output sgyaaé 32-bit columns of the state. As observed in
Table 6.2, improvements are more significant inecad the Xilinx synthesizer than Altera
synthesizer, since they use different mapping élgos. The LUT savings on Virtex-4 and Cyclone

FPGAs are at least 20% and 10%, respectively.

Table 6.2 Experimental results MixColumnsimplementations on FPGA

) 0

MixColumns # of LUTs % of LUT.S of # of LUTs on /0 Qf LUT
. . . LUT savings savings on
implementations | on Virtex-4 . Cyclone

Virtex-4 Cyclone
Proposed
MixColumns 43 i 43 i
MixColumnsin [98,

102] 56 23.21 51 15.68
MixColumnsin [112] 54 20.37 48 10.41
MixColumnsin [108,

109] 55 21.28 51 15.68

6.3 Experimental Results of AES with Soft Error Mit igation

As illustrated in Figure 53, previous research liroredetection using the parity scheme in AES
[76-78] focuses mainly on covering errors occuriimglatapath registers. The Hamming code with 8

data bits and 4 check bits (12-bit codeword) fogk error correction in AES was suggested in [75].

101

Chapter 6: Comparison with Previous Research

As shown in Figure 54, the Hamming code in [75]Joat®nsiders errors happening only in the

datapath registers.

errors not covered in errors covered in
combinational logic datapath registers

8 output register -

L 4

combinational logic
generating 8-bit output and
parity

parity bit

A4

b |

Figure 53 Error coverage of single errors usingtyar previous research

errors not covered in errors covered in
combinational logic datapath registers

ﬂ 8 output register

1F ,

combinational logic
generating 8-bit output and
amming code check bits

H 4 check bits

Figure 54 Error coverage of errors using Hamminggedo previous research

These techniques do not provide error coveragetfoar logic and routing elements. They do not
cover any errors happening in the control circuigither. SEUs affect all the hardware resources
(logic elements such as LUTs and SRAM switchesrodiimtg routing) on an FPGA. SETs can also
generate glitches in the combinational logic angtingg of a design implemented. Therefore, these

methods covering errors in datapath registers atesufficient for an implementation on FPGA.
102

Chapter 6: Comparison with Previous Research

However, they provide sufficient error coverage seal by SEUs for the datapath of an ASIC
implementation, since SEUs cause errors only pHftips on ASIC (refer to Section 3.4). Other
hardware modular redundancy techniques such as BMRTMR (refer to Section 3.2) provide
coverage for multiple errors but they are expenaiwe the likelihood of having multiple soft errdss

extremely low.

It should also be noted that the concurrent ermorection capability of techniques such as the
Hamming code and TMR can be affected on FPGA whEWisSoccur. These error correcting
techniques can potentially lose their effectiver(essrect functionality), since an SEU can affdue t
functionality of the correction circuitry. Additiatly, SEUs keep accumulating on FPGA until it is
reconfigured. Due to unknown outcome of concurpemtecting techniques in previous research, re-
computation of the last input after reconfiguratioh FPGA is suggested in this research. A

reconfiguration is done when an error is deteatef(to Appendix B).

SEU and SET occurrences are random in time ancespae likelihood of multiple SEUs or SETs
happening in 1 clock cycle is extremely low. Amaiegfection techniques, the parity scheme is the
lowest cost (in terms of hardware resources) andnpially adequate choice that matches the nature

of SEU and SET occurrences.

In this section, the experimental results show esafghardware resources, timing information,
power consumption, and detection and correctioraluidifies in some of the relevant techniques in
previous research and the proposed design. Alettexhniques have been implemented on the same
FPGA (Virtex-Il Pro device: xc2vpl00-6ff1704) toguide a fair basis for comparing the results.
There have been different approaches forShkeBytesn composite fields [98-102][103, 104]. Since
the implementation cBubByteg102] in composite fields in this research is heavily pipelined to
achieve the highest frequency, it is not expectedhave significantly different results from

approaches other than [102].

103

Chapter 6: Comparison with Previous Research

Table 6.3 Results of different designs of paritiyesoe in AES

Designs using # of | Utilization of Clock Total power
; ? # of . Throughput o
parity scheme in LUTs flip- block frequency in Ghit/s consumption in
AES flops memories in MHz mw

Proposed AES
with enhanced | 1188 | 1126 4% 186.7 2.39 865.60
parity scheme

Composite fields
AES in [102] with

0]
barity GubBytes | 2363 | 662 1% 145.9 1.86 4136.22
parity in [77])
Memory based | oo | 516 8% 215.1 2.75 641.48

AES [76]

Researchers in [77] provide the parity predictionnfula, shown in Equation 27, for an 8-bit

elementb input toSubBytesin this equation, symbo:f_l_input is the input to functiord ™" for
isomorphic mapping (refer to Figure 29). The indeixelicate bit position in an 8-b&f_l_input in

Equation 27 (for instancerf'l_input0 is bit 0). This parity prediction formula can bsed in the

SubByteghat is implemented using composite fields. BubBytesn composite fields suggested in
[102] and parity predictions in [77] and Equation &e implemented on the FPGA in VHDL. The
results are shown in Table 6.3.

parity_ SuByte§ p=0 " _ inpyt-d ' _ inputdt_ input

27
o' _input, +&*_inpuf @)

It should be noted these results, except for theutthput and clock frequency, are overly
optimistic for the composite field implementatiohAES encryption since this design can be further
pipelined thus adding a large number of flip-flofis the 128-bit datapath. As expected, the
implementation in composite fields uses the largesnber of LUTs in order to achieve a high
throughput if it is heavily pipelined.

104

Chapter 6: Comparison with Previous Research

The parity coding for error detection is used i®][With a memory based implementation of
SubBytesin a memory basefubBytesan S-box alone is implemented by a 256x8-bit lbimemory
for each 8-bit element of the state. In order toegate the predicted parity bit, a parity bit isled
for each 8-bit element in [76]. The parity bit Is@added to the address line of the memory toctiete
single errors at the output sddRoundKeyinput toSubBytek If the output of thédddRoundKeys
wrong a deliberate wrong content (e.g., 000000@®Xktored in the memory. Overall, a 519x9-bit
block memory is used f@ubBytesvith parity coding in [76].

Another part of the block memory that is partiatiyvered against errors in [76] is the address
decoder. A single error in the decoder causes tloagvmemory location to be accessed. However,
the content of this address has a valid paritylibiorder to mitigate this, adding a separate 2586k1
block memory was suggested in [76]. This storesxdra set of parity bits for 8-b8ubBytewvalues.
Each parity bit from the 519x9-bit memory is congghto the parity bit from the 256x1-bit block
memory to find an error in the decoder. The debecitn this method provides error coverage of 50%
for single errors in the block memory decoder, sititere is still a probability of 0.5 that both ipar

bits match while the wrong address is accessed.

TheMixColumnsparity prediction used for all the designs is showEquation 25 [76]. The parity
prediction ofAddRoundKeys the XOR of the input parity and key parity.

The proposed design of AES with the enhanced pseitgme has about the same number of LUTs
and flip-flops. The balance between the number @& and flip-flops is still reasonable in terms
resource utilization since there is 1 flip-flop feaich LUT on the FPGA. The number of flip-flops is
larger than other implementations since data (dutplAddRoundKeyneed to be delayed for the
equality comparator shown in Figure 32(a) and theing is controlled by flip-flops as well. The
largest number of LUTs is in AES in composite feelfll02] with SubBytesparity [77] and
MixColumnsparity in Equation 25 (row 2 in Table 6.3); it relsout double the number of LUTs than
the proposed AES with the enhanced parity schemplementation of [76] has the highest block
memory utilization on the FPGA due to extra blockmories needed to store the paritysabBytes

In the proposed AES with the enhanced parity schenege is about 13% reduction in the clock
frequency and throughput compared to implementaifdi@6]. The post place and route static timing
analysis shows that the second port of the duaegdslock memory to the output of the 8-bit equal

comparator is the critical path.

105

Chapter 6: Comparison with Previous Research

In order to estimate power consumption, the sanmela input data generated by function
UNIFORM() in VHDL at the clock frequency of 100 MHgz used in all the implementations. Static
power consumption is constant 204.38mW for the FP@®Aplementation of [76] has the lowest
dynamic and total power consumption since it ubeddrgest number of block memories instead of

LUTSs for computations.

It should be noted that the overhead of the conticduitry compared to the overall AES
implementation is about 2.6% and 3% in terms gb-flops and LUTSs, respectively. Although
duplication and comparison are used for error dietecthe overhead of hardware resources of the

control circuitry is not significant.

The error coverage of SEUs for different parityiges are shown in Table 6.4. In the proposed
design using the enhanced parity scheme, the patipagof an error from logic and routing resources
to the output bits has been thoroughly investigaieder to Chapter 5). In this research, error
detection is incorporated in the design procedserahan being added as an after part. It is edsure
that a single error in logic or routing resourceesl not affect an even number of bits in an 8-bit
register of the state. It is also made certain #haingle error in logic or routing resources dones
affect the parity prediction and output producinguit simultaneously such that the error is not
detected. The control circuitry using minimal haad resource (1 LUT for one-hot encoding) is
duplicated for error detection. Thus, single errdte to SEUs in combinational and sequential

elements of datapath, control circuitry, and raytane detected.

Through analyzing and classifying the errors cause8EUs in research [17], it is concluded that
about 78% to 84.8% of the failures are due to SEU®uting while the remaining approximately
20% are due to upsets in logic excluding regisfersearchers in [17] focused on configuration bits

of the FPGA). This indicates the importance of gaiting SEUSs in routing.

106

Chapter 6: Comparison with Previous Research

Table 6.4 Error coverage of single SEUs on FPGA

Errors in Errors in Errors in Errors in
combinational routing | flip-flops of | combinational/sequential logi¢
logic of datapath| dueto | datapath due and routing of control circuitry
due to SEUs SEUs to SEUs due to SEUs

Proposed AES
with enhanced Detected Detected Detected Detected
parity scheme

Composite fields

AES in [102] Not
with parity Not detected detected Detected Not detected
(SubByteparity
in [77])
Memory based Not
AES [76] with Not detected detected Detected Not detected

parity

An SET, being equivalent to a glitch, can propagiateugh the combinational logic and get stored
in result flip-flops. As opposed to SEUs, SETs @b change the functionality of the combinational
logic on FPGA. They can potentially change the ouffip-flops for 1 clock cycle. Since glitches in
the combinational logic or routing are not consédein previous research, using the previous parity
schemes, an SET can potentially propagate throudliptflops of the output and parity bits. These

single errors due to SETs are not detected in pusviesearch.

Propagation of single errors in combinational loggcwell as routing is thoroughly investigated in
the proposed design (refer to Chapter 5). It isumtsthat an SET (glitch) does not affect an even
number of output flip-flops or the parity and outglip-flops simultaneously such that an error
caused by an SET can escape undetected. The rasitcamtrolled by using extra flip-flops at the
register-transfer level, since it is not possildehange the routing at a fine-grained level gitace
and route. Therefore, single errors caused by SE&gletected in sequential logic of datapath and

control circuitry in the proposed design as is shawTable 6.5.

107

Chapter 6: Comparison with Previous Research

Table 6.5 Error coverage of single SETs on FPGA

Errors in sequential logic af Errors in sequential logic of
datapath due to SETs | control circuitry due to SETs

Proposed AES with enhanced parity Detected Detected
scheme

Composite fields AES in [102] with

parity (SubByteparity in [77]) Not detected Not detected

50% only in the block

memory (S-box) decoder Not detected

Memory based AES [76] with parit

<

Overall, the proposed technique drastically expdhdssoft error coverage of parity coding to both

logic and routing resources of datapath and cootroliitry on an FPGA.

The DMR method is also implemented for further cangons with the proposed approach. Table
6.6 shows the experimental results. In order toigemthe redundancy in DMR, all the resources (i.e.
I/O pins, logic resources, and block memories) havee duplicated. It should be noted that the S-
box is used in DMRYubBytess memory based in DMR) since the inverse andaffunctions do

not need to be separated, as opposed to the prbpas with error detection.

Table 6.6 Experimental results of DMR and propasitanced parity approach

o | #of # of | Utilization Clock Throughput Total power
. flip- of block frequency . . consumption in
pins | LUTs : in Gbit/s
flops memory in MHz mw
Proposed
AESWIth | 339 | 1188| 1126 4% 186.7 2.39 865.60
enhanced
parity scheme
DMR 451 | 1233| 865 9% 177.3 2.26 846.78

Compared to the proposed technique, there is @8%tand 3.8% increase in I/0O pins and LUTS,
respectively, in DMR. Block memory utilization inMIR is more than twice compared to that of the

proposed AES with enhanced parity scheme. The dleckiency and throughput is about 5% higher

108

Chapter 6: Comparison with Previous Research

in the proposed technique than DMR. There is digihitsdecrease of about 2% in the total power
consumption of DMR than that of the proposed teginaj since manual instantiation of LUTs and

flip-flops slightly increase the power consumeddyic and routing.

The proposed design has a relatively large numbéipeflops since the output chddRoundKey
needs to be delayed and the routing is also comtroly flip-flops to expend the error coveragela t
parity scheme. One solution to enhancing routimgtie parity scheme without using flip-flops could
be defining new implementation constraints to tbel in the future work. The enhancement in
routing refers to removing the pins that lead uputoletected single errors (refer to Chapter 5).
Implementation constraints are instructions that giwven to software tools to direct different steps
such as placement and routing in the design floar. iRstance, locations constraints define the
absolute or relative location of a design elemenEBGA for the placement tool in Xilinx. In general
implementation constraints are placed in a congtfde or in the HDL code. Therefore, specifying
constraints at the high level does not make thégdgsrocess tedious. The subject of adding new
constraints in the tool to control the pins alongltiple fanout signals can be further investigated

future work.

DMR provides multiple error coverage in all parfdesign implemented but this is not necessary
for soft errors, since the likelihood of multipleras in 1 clock cycle in an implementation is
extremely low. Therefore, the expensive featurenaftiple error coverage is not needed to provide
reliability. However, it is important to provide mplete error coverage for single errors since the
likelihood of single errors is high. This is progiiin the proposed design using the enhanced parity

error detection.

In this research, round keys are stored in a blmeknory. The operations in key expansion
generating round keys ai®ubBytesand shifts and XORs (key expansion pseudo codgivisn
Appendix G). If round keys are to be computed tbhag use the similar error detection technique
used for theSubBytesIn the control circuitry of key expansion, thergatechnique implementing

shifts by LUTs and using duplication for the minirhardware can be applied (refer to Section 5.2.4).

NIST approved modes such as CFB, OFB, CTR (contigldg modes), CMAC (authentication
mode), and CCM (authenticated encryption modectyrdenefit from the proposed AES with error

detection. In the other authenticated encryptiomendsCM, multiplication in GHASH needs to be
investigated against soft errors. This multiplioatis in the Galois field 0P8 elements. The parity

109

Chapter 6: Comparison with Previous Research

technique and duplication should be compared imgeof costs for the right selection. There are

various techniques for Galois field multiplicatimvestigated in [106].

6.4 Summary

The proposed AES with enhanced parity scheme wampaed with other implementations of
AES using the parity scheme. Overall, in terms bffLand block memory utilization the proposed
technique does not exceed the composite fieldsnaghory based implementations, respectively.
Compared to composite fields [102][77] and memoasdd [76] implementations of AES, the
proposed design uses about half the number of ladifisblock memories, respectively. Compared to
the memory based AES, there is about 13% redudatidhe clock frequency and throughput. The
memory based AES had about 25% less power consamiptan the proposed design.

DMR was also implemented for further comparisorem@ared to the proposed design, the DMR
approach has about 33%, 3.8%, and 100% increadéOimpins, LUTs, and block memories,
respectively. The clock frequency is about 5% highethe proposed design than DMR. There is a

slight decrease of about 2% in power consumptiddMR than the proposed implementation.

The most noticeable drawback in the proposed desigerimental results was the relatively large
number of flip-flops overall. This is due to delagi of the output ofAddRoundKeyto be
synchronized with the dual ported block memory. #iddally, the routing has been controlled by
flip-flops at the register-transfer level. Howeveince the number of flip-flops is not greater thizat

of LUTSs this is still not an unbalanced design ficac

Compared to previous AES designs using the padheme for error detection, the proposed
technique significantly expands the soft error cage from datapath registers to both logic and
routing resources of datapath and control circuimf~PGA. DMR provides multiple error coverage
in all parts of design implemented. However, tBisidt necessary in the case of soft errors siree th
likelihood of multiple errors in 1 clock cycle ixaeedingly low. Therefore, the proposed AES with

enhanced parity scheme provides a low cost adeqetteod.

110

Chapter 7

Discussion and Conclusion

This research presented a new design for religbiit the symmetric-key algorithm AES in
FPGAs. The AES algorithm is highly sensitive taoesrby nature. For instance, a single-bit flipha t
early rounds of AES encryption is expected to if5€rroneous bits in the output [76]. This indicates
a good diffusion in the AES algorithm. Diffusion asdesirable property for a strong cryptographic
algorithm; however it becomes a critical issue riroiepropagation and especially reliability of AES
in the FPGA. Reliable implementations of the egensitive AES in the FPGA is important since
FPGAs are prone to soft errors caused by radiatmergetic particles hitting a device can flip
SRAM cells controlling all aspects of the implenaitn in a dense SRAM-based FPGA. For
instance, a Virtex-1l Pro FPGA contains 34,292, 78RBAM cells [2]. Different error detection
techniques based on properties of the circuit aB& fransformations were used to provide adequate
reliability at the lowest possible cost. Dual-pdriglock memory forSubBytesduplication for the
control circuitry, and the proposed enhanced pasghnique forMixColumnswere used. In this
research, propagation of single errors was invatgdjin the placed and routed netlist. Weaknedses o
the previous parity techniques were researcheg-fleps at the register-transfer level were
introduced to resolve undetected single errorsiénrbuting. LUTs were designed ftixColumns

with minimum number of LUTSs to prevent undetectedjie errors in the combinational logic.

111

Chapter 7: Discussion and Conclusion

The peculiar effects of soft errors in a design lemented on SRAM-based FPGA were
investigated. Furthermore, the errors caused ksetfaults in ASIC and FPGA were compared. Logic
blocks in the combinational logic as well as rogtof the FPGA are controlled thoroughly by SRAM
cells. Therefore, SEUs can affect the combinatidogic and routing on the FPGA and are not
eliminated until a reconfiguration is done. Thideef does not happen in an ASIC. Since the
combinational logic and routing on ASIC do not hare/ storage elements, SEUs can only affect
flip-flops. Previous research [75][76][77] on maigng soft errors in the AES implementations

(primarily focusing on datapath registers) did omtsider all aspects of soft errors in the FPGA.

A dual ported block memory and the inverse funcob®ubBytesvere used for error detection in
this transformation of AES. Unlike previous resé&aft6][77] using a parity scheme for every AES
transformation, mathematical properties SifbBytesand dual ported block memory were used to

expand soft error coverage from datapath regisbecembinational logic and routing in the FPGA.

The control circuitry uses shift registers (one-festcoding) to control the select lines of
multiplexers. Shift registers were implemented bysiagle LUT. Since 1 LUT is the minimal
hardware resource, duplication was used for thdrabuircuitry to provide error detection in this
research. Error detection for the control circuitjes not considered in previous research
[75][76][77].

Since soft errors threatening the reliability of G implementations occur randomly and the
likelihood of multiple errors in 1 clock cycle ixaeedingly low, the low cost parity scheme is a
suitable error detection technique. Previously, agity scheme was used for error detection in
registers of datapath and block memories in AESIlémpntation. However, the parity schemes in
previous research [76][77] did not cover errorsusdag in the logic blocks, routing, and control

circuitry.

In this research, novel enhancements to a parityerse were introduced and applied to the
MixColumnstransformation. Unlike previous research, the aobment proposed at the register-
transfer level increases the error coverage ofrdaypscheme from the datapath flip-flops to logic
blocks, and routing. This is important since nolydtip-flops can be target of soft errors but also

SRAM cells building logic blocks and routing candféected.

Soft errors on FPGA were modeled using the pint fangddel, verified by simulating errors in the

implementation. In order to simulate SEUs, bitsevipped in the configuration file one at a time.

112

Chapter 7: Discussion and Conclusion

Then the configuration file simulating SEUs was divaded on the FPGA. Since the mapping of the
netlist after place and route in the configuratiiba is proprietary information, the challenge was
find the configuration bits that were related tep&cific net. To overcome this challenge, the rest w
removed from the netlist manually after place aodte and the modified configuration file was
generated. The original and modified configurafites were compared to find the bits related to the
specific net that was removed. Then each bit ofribewas flipped one at a time to produce the
configuration file simulating SEUs. Finally, thetput bits of this implementation containing a soft

error were observed. The pin fault model was cordat by simulating SEUs.

The pin fault model was used to find the weaknes$es parity scheme. Weaknesses include 2
cases: 1) a single error affects an even numbbit®in an 8-bit element of the state and 2) alsing
error affects the parity prediction and output pradg circuit simultaneously such that the error is
not detected. These weaknesses were investigatzdaeparate phases: logic blocks and routing. In
logic blocks, to avoid the 2 cases, LUTs were exawchithoroughly. LUTs were designed manually if
found to contain any weaknesses that were thetreSUUT sharing between output bits having the
same parity bit. Therefore, sharing of LUTs was ified to eliminate the weaknesses (refer to
Section 5.1.2).

In the routing phase, the weaknesses caused byphlaulanout signals connected to output bits
having the same parity bit were investigated. Méypuananging of multiple fanout pins in a net at
the fine-grained level is not possible with theikakde FPGA tools after place and route. Therefore,
modification of the routing became a challenge. oMercome this obstacle, extra flip-flops were
inserted at the register-transfer level to manueliignge the way pins were formed along a multiple
fanout net. This modification was verified by siatihg SEUs (flipping 1 bit at a time in the
configuration file) for a small part dflixColumns Then this was expanded for all the output bits
protected by the parity bit. The proposed enhampegdy scheme in this research expands the error

coverage to combinational logic and routing.

The insufficiency of known error correction teaiumes such as TMR and Hamming code [75] on
FPGAs was pointed out and self reconfiguration waggested instead. This was designed and
implemented as a system on chip that communicaitbstiae host PC to trigger reconfiguration of
FPGA. The hardware part of this system was impleetkeasing the PowerPC 405 processor and the
UART IP core and implementing master, slave, artdrinpt attachments in the proposed AES

module with error detection. In case of an errbe AES module interrupts the PowerPC 405
113

Chapter 7: Discussion and Conclusion

processor that sends the error message to th@@afirough the serial communication. Then the host
PC interrupt handler performs JTAG boundary scarfigoration on the FPGA. The software part of

this system on chip was programming device drif@rshe PowerPC 405 processor and host PC.

To provide fair comparisons, different approacheeviging error detection for AES were
implemented on the same platform. Unlike previousSAdesigns using a parity scheme for error
detection, the proposed technique significantly aexis the soft error coverage from datapath
registers to both logic and routing resources dhmh and control circuitry on FPGA. When
compared with the AES in composite fields [102]hwilhe parity scheme [77], the proposed design
uses about half the number of LUTs. The other imgletation of AES [76] that is memory based
utilizes twice the block memories used in the pegebimplementation. The routing of the dual
ported block memory is the critical path in desdajrthis research. There is about 13% reduction in
the clock frequency and throughput compared to. [38]ce the memory based AES relies heavily on
block memories to provide various computationsag About 25% less power consumption than the

proposed design.

In addition to the parity schemes, DMR was impletednfor further comparisons. The DMR
implementation compared to the proposed designabast 33%, 3.8%, and 100% increase in 1/O
pins, LUTs, and block memories, respectively. Thelc frequency and throughput is approximately
5% higher in the proposed design than DMR. Sina BMMR approach relies more on block
memories $ubBytesas opposed to inverse is computed completely uslimck memories), there is a
slight decrease of about 2% in power consumption DR compared to the proposed
implementation. DMR detects multiple errors havingremely low likelihood in case of soft errors.
Unlike DMR, the proposed AES with enhanced parithiesne provides low cost adequate method

that covers single errors.

The number of flip-flops in the proposed impleméiotais the largest amongst all. The flip-flops
are used to delay the input of the dual portedkbloemory and also control routing at the register-
transfer level. Nevertheless, the number of flggp8 is not greater than that of LUTs, and thusithis

still a balanced design practice.

The main goal of error detection was reliabilitytins research. However, the proposed technique
may also be applied against cryptanalysis of AE® wertain assumptions. Multiple errors are

detected in th&ubBytesransformation. Therefore, the proposed error diiete technique may

114

Chapter 7: Discussion and Conclusion

thwart faults attacks where multiple attacks ajedted duringsubBytesDetection of a single or an
odd number of errors is provided MixColumnsandAddRoundKeyransformations. Hence in cases
where the number of errors in these two AES transtions is not always even, the proposed
method may be applied. Thus attacks such as [2fjulais injected after the initis®dddRoundKey

or the first attack in [30] (a fault injected attbeginning of the final round) may be thwartecoy

proposed technique.

Reliability of the AES implementation is a criticelsue especially in large scale systems using
multiple FPGAs and space applications. In thepegyof applications, soft error resistant design is
an important concern. For the first time this reskeaas proposed a heterogeneous error detection
approach utilizing properties of the circuit anddtionality in order to provide adequate relialgikit
the lowest possible cost. Unlike previous reseaaothitectural redesign at the register-transfeelle
was introduced to resolve undetected single eiirot®oth the routing and the combinational logic.
This research is important for providing soft ermresistant design for FPGAs in applications which

are crucial for many secure space and terrespialcations.

7.1 Future Work

Future work in this research will mainly proceed3rdifferent directions: (a) adding enhanced
features to software tools, (b) exploiting the megd technique on ASIC for SETs (glitches that
potentially cause errors), and (c) examining otleonfiguration techniques. Propagation of errors i
routing from an input net to output bits after @aand route was investigated manually in this
research. This can be incorporated and automatedfesture in the software tools. Therefore, the
process of finding the pins that lead up to undetésingle errors can be speeded up. An error at
these pins can potentially affect an even numbearutibut bits or both the parity bit and output bits
and thus go undetected in the parity scheme. Toeeps of simulating SEUs in the combinational
logic or routing of an implementation can also bevfled as another feature. Therefore, the designer

would be able to see the effects of soft errorsutputs.

The way pins are modified in multiple fanout netsby manually inserting extra flip-flops. The
modifications basically include grouping of outpbits connected to a pin in a multiple fanout net b
using the extra flip-flops. This results in an e&se in the number of flip-flops. In order to imyo
this, software tools should allow fine-grained cohtatnd modification over pins in multiple fanout

nets in the design flow. Therefore, the numberfipflops used could be reduced.

115

Chapter 7: Discussion and Conclusion

Implementations in ASICs do not suffer from SEUsthe combinational logic or routing.
However, there is still the issue of SETs propagatihrough logic paths and getting stored in
registers. Since clock frequencies continue toease, this problem remains important as technology
advances. The proposed technique can be further insAES implemented in ASICs to mitigate
SETs.

In this research, JTAG boundary scan configurativode was used in the FPGA. Partial
configuration that involves determining which frasnga frame is the smallest segment of
configuration memory space) to reconfigure can deoinvestigated to examine possible delay
reductions. Remote reconfiguration that includes Bthernet port, SDRAM, and external Flash is

also an interesting topic to be further studied.

116

Appendix A

Glossary of Acronyms

AddRoundKey add round key transformation

AES

ALU

ASIC

BPSG

CBC mode
CCM mode
CCsDs
CFB

CMAC mode

CRC

CTR mode

DES

DFA

DMR
DRAM
ECB mode

Advanced Encryption Standard
Arithmetic and Logic Unit
Application Specific Integrated Circuit
borophosphosilicate glass
cipher block chaining mode
counter with cipher block chaining-messaghentication code mode
Consultative Committee for Space Data Systems
cipher feedback

cipher-based message authentication modie

Cyclic Redundancy Checking

counter mode

Data Encryption Standard
Differential Fault Analysis
Double Modular Redundancy
Dynamic RAM

electronic codebook (ECB) mode

117

FIT

FPGA
GCM mode
GF

LET

LUT

OFB

MBU
MixColumns
NIST

PIP

Qerit

SEFI

SET

SEU
ShiftRows
SOl
SRAM
SubBytes
TMR
VHDL

Failure In Time

Field Programmable Gate Arrays
Galois/counter mode

Galois Field

Linear Energy Transfer

Look Up Table

output feedback

Multiple Bit Upset

mix columns transformation

National Institute of Standards and Technology

Programmable Interconnect Point
critical charge

Single Event Functional Interrupt
Single Event Transient

Single Event Upset

shift rows Transformation

Silicon on Insulator

Static RAM

substitution transformation

Triple Modular Redundancy

Very high speed integrated circuit (VHSIC) tdavare Description Language

118

Appendix B

AES in System on Chip

In this appendix, the system including the AES nleds presented. Software and hardware
elements that build the whole system on chip aseudised. Board level communication with the host
PC is described briefly. The hardware elementsuitelthe proposed design of AES with error
detection along with other IPs on the FPGA. Diffearbardware IPs and attachments (i.e. master,

slave, and interrupt attachments) to the AES modrdealso discussed.

The software elements are device drivers and afuit software. There is a device driver for the
AES module and another device driver for the h@std’perform self reconfiguration of the FPGA in

case of a soft error.

The baseline for the AMIRIX board provided by CMCused in this project. The Xilinx Platform
Studio (XPS) version 10.1.03 is the developmentirenment for designing the hardware and
software of the embedded processor system. XPShwhipart of the Embedded Development Kit
(EDK) provides an environment to build hardware $ifsl device drivers and libraries for embedded

software development.

Debug and verification of the software program ingron the PowerPC 405 processor is mainly
done by Xilinx Microprocessor Debugger (XMD). Akosvn Figure 55, XMD connects to the
PowerPC 405 processor through a JTAG connectioa JTAG chain inside the FPGA is through the

2 processors. The JTAG chain includes an interface that contains all the JTAG signals.
119

Communication to and control of the applicationtwafe as illustrated in Figure 55 is done by the

GNU Debugger remote TCP protocol.

GNU debugger

remote TCP —_
application y protocol L . ‘Xﬂ‘mi()
Lz M— = 5 Microprocessor
Debugger (XMD)
-
FPGA Y
] JTAG PowerPC 405 |- — — =5
1 1
| |
: ITAG signals :
PowerPC405) | PowerPC 405
processor processor

Figure 55 Debugging software running on PowerPCptogessor

B.1 Device Driver and Application Software

The high level view of the system interconnectioduding the board (AMIRIX AP1100) and the
host PC is illustrated in Figure 56. The VirtexPito FPGA, which is the central component on the
board, connects to the host PC processor by sema@sgages through the PowerPC 405 processor
(PowerPC 405 is the processor on the Virtex-11 FRGA).

AMIRIX AP1100 board

host PC
Virtex-11 Pro
Processor
p AES
PowerPC 405
processor
serial port | UART I
COM I on board
port

Figure 56 Board level connections

120

In case of an error occurrence, the PowerPC 408epsor sends an error message through the
Universal Asynchronous Receiver Transmitter (UARF)on the FPGA to the host PC processor.
Then this error message triggers an interrupteénhist PC to perform reconfiguration on the FPGA.
This mechanism includes interrupting both the P&@e405 processor on the FPGA and the host PC

processor. This is further described in more detslfollows.

The PowerPC 405 processor should be interrupted WieeAES Module sends an interrupt to it in
case of an error. The operating system of the FHe@e¥05 processor is standalone which provides
the board support package. The board support gacisaa set of software modules that provide
access to processor specific functions. These iimectire used when an application accesses board
or processor features directly. This package isglesthreaded library in which there is no opergti
system between the application and the hardwardopta Application software operates on the

hardware platform through direct driver calls. Bodtware layers are illustrated in Figure 57.

User Application

| _Xilkemnel _|
|_ XiMFS _| |_ XilSF__|
| _ XilFlash _|
| Standalone BSP | | Xilinx Drivers |

Figure 57 Software layers for processor in FPGA

The device driver for the AES module sends theremessage “Error!” onto the serial port through
UART. In order to set up the interrupt in the safter on the FPGA side, the following steps are
taken. The interrupt vector is setup through th@alization function XExc_Init(). This function

should be called before registering any interrupts.

121

The interrupt handler is registered through funci&Exc_RegisterHandler().

After registering the interrupt handler, the intgatr should be enabled. This is done by

function XExc_mEnableExceptions().

On the host PC side, there should be an interraptler that reacts upon receiving the error

message sent to the serial port through UART. Titerrupt handler basically reconfigures the

FPGA. The following steps show how this is achievédl the functions used are in header

“windows.h”, which is a header file for the Window®|.

The serial port (COM1) is opened by function Credég).

The UART parameters (baud rate, data bits, pasibp bits, and flow control) for the
receiver serial port on the host PC should be rexgtquly.

Time-out parameters should be set correctly, otiserweads and writes from the serial
port return unexpected values. In order to readhal values until the UART buffer is

empty, the time-out values are applied as follows.

timeouts.ReadIntervalTimeout = MAXDWORI
timeouts.ReadTotalTimeoutMultiplier = O;
timeouts.ReadTotalTimeoutConstant = O;

The following is a snippet from the software thatwritten to reconfigure the FPGA in
case of an error occurrence (the complete codedsgided in Appendix D). Function
WaitCommEvent() is used to wait on an event of ikéeg a byte on the UART of the
receiver serial port. After receiving an event, W&RT buffer is read. The advantage of
this approach is that the host computer does red te poll for synchronization, which is
inefficient for incoming data. As seen in this meaf code with clarifying comments, the
message read from the buffer is compared to eremsage “Error!”. The configuration
tool IMPACT is run in the batch mode and the comdsaare passed to it through the .cmd
file. To run IMPACT in the batch mode function CreRrocess() is used. All the
arguments of the CreateProcess() function are ibescby comments in the code snippet

below.

122

for i1
index=0;
if - (WaitCommEventcomport, &dwCommEvent, NULL)){
do{
if - (ReadFle(comport, INBUFFER 1, &bytes readNULL)) {
if (bytes_read=0){ I Abyte has beenread.
messagelindexXFINBUFFER[D];
index ++
}
if (boytes_read—0){ I/ Bufferisemply.
messagefindex}=NULL; I Terminating array
if (stremp(message, "BEmor\0" 0){
print("FPGA should be recoriguredn’)
I/ FPGA reconfiguration below
CreateProcess(NULL, /'module name
"impact-batch_impactemd' , /Commandiine
NULL, I Process handie notinheriable
NULL, I Thread handie natinheritable
FALSE, I Sethandee inheritance to FALSE
0, I/No creationflags
NULL, I Use parents environment block
NULL, I/ Use parents starting directory

&s, // Pointer to STARTUPINFO structure
&pi) // Pointer to PROCESS _INFORMATION struct ure
}
}
}ooelse {
1l Anerror occurred in the ReadFile call.
break ;

}
} whie (byesread; /Buferisnotemply.
} ese { /EmorinWaiCommEvert
}
}

The main steps in the .cmd file to perform confagion are briefly noted below (configuration
details can be found in [2, 128]).

= Switching to JTAG boundary scan configuration mbge&eommand setMode

= Specifying the cable parameters (such as speegat)jcby command setCable
= |dentifying the devices in the JTAG boundary schaie by command Identify

= Adding the device to the list of devices to be agunfed by command addDevice
= Deletes unnecessary devices from a device chaootmynand deleteDevice

* Programming the FPGA by command Program

123

The steps above are for configuring the FPGA wiigk& boundary scan is used. JTAG boundary
scan, formally known as IEEE Standard 1149.1,irmgily a testing standard created to alleviate the
growing cost of testing digital systems. The priynaenefit of the standard is the ability to tramsfo
extremely difficult printed circuit board testinggblems (that could only be attacked with ad-hoc
testing methods) into well-structured problems tbaftware can handle easily and efficiently.
Furthermore, vendor-specific extensions to boundargn JTAG have been developed to allow
execution of maintenance and diagnostic applicatias well as programming algorithms for

reconfigurable parts.

B.2 AES Module and IPs in System

In addition to the main functionality of AES, theoposed module implemented should provide
other interfaces to communicate with other IPst@n EPGA to build the complete system on chip.
Figure 58 depicts the main IPs that are used tll e system. The Processor Local Bus (PLB) is
the 64-bit local bus for the embedded PowerPC 408gssor. This PLB is compatible with IBM
CoreConnect PLB.

Along with the PowerPC 405 processor, the AES mediilconnected to the PLB. The ciphertext
outputs are stored in a block memory that is atsmected to the PLB through a controller as a slave
device. The main features required in the AES nmmdalinteract with other IPs on chip include the
PLB master and salve supports and interrupt (tfeeseires are discussed in more detail later on in

this section).

The UART IP on the 32-bit On-chip Peripheral BuPRg) is the standard input/output device.
Therefore, input/output functions such as xil_g(n{this function is similar to printf() but much
smaller in size (only 1 kB)) are sent to UART tolmndled. The PLB to OPB bridge allows access
from the PLB to the OPB. This bridge translates RiaBisactions into OPB transactions. It functions

as a slave on PLB side and a master on OPB side.

124

) BRAM for
PowerPC 405 ciphertext AES
processor outputs module
64-bit Processor
Local Bus (PLB
v3.4 bus)

OPB PLB to OPB

UART bridge
32-bit On-chip
Peripheral Bus

(OPB)

Figure 58 IPs in system on chip

The structure of the AES module is depicted in nmaetail in Figure 59. As shown in this figure,

the master and slave features and interrupt aredad as attachments in the PLB IP interface (IPIF)

AES module

AES plus use of
features provided
by IPIF

IP Interconnect (IPIC)

PLB IP Interface (IPIF)
= slave attachment

= master attachment
= interrupt attachment

Processor Local Bus
(PLB v3.4 bus)

Figure 59 IP Interface (IPIF)

The interconnection between the IPIF and AES us#agures provided by the IPIF is denoted IP
Interconnect (IPIC) in Figure 59. The signals ugedhe IPIC are shown in Figure 60. Detailed
information on IPIF and all the IPIC signals arepded in Appendix E.

125

r
IP interrupt events
< 1P status reply

Rd/Wr qualifiers

| CS bus
| CE bus AES plus
usc of
features
IP Interconnect (IPIC) < [Read CE bus provided
by IP
Interface
[Write CE bus (IPIF)

| Write data bus

< Read data bus

< IP master request

| Master reply >
.

Figure 60 IP Interconnect (IPIC)

NINININININS

The master attachment enables the AES modulettatentransfers on the PLB. The master device
requires access to the slave device to performatipas. This is illustrated as local transfer rexjue
and reply between the master and slave attachmeiigure 61. For instance, in a master read or
write transaction, the salve registers providedHhgyslave attachment are either read from or writte
into. The address of the slave registers is thecsoior a master write and the sink for the master
read. There are 128 control signals needed tetisthe IP master request in IPIC that is shawn
Figure 60 (refer to Appendix E listing the IPICrsads).

126

PLB IP Interface
(IPIF)

PLB request and qualifiers

slave attachment

slave reply

64-bit
Processor
Local Bus

(PLB)

local transfer reply

local transfer request

T

master PLB request & qualifiers

master attachment

PLB slave reply

Figure 61 Master and slave attachments

To receive inputs from the software applicationmiag on the PowerPC 405 processor, the slave
attachment registers (slave address space) are Uibedslave registers get the inputs from thei64-b

PLB from the application software.

On the other hand, when the ciphertext output &lyethe master attachment initiates a PLB
transfer to write into the block memory residingtbe same bus. The ciphertext output is first store
in the slave address space (or equivalently, irskinee registers). When writing the ciphertext otitp
the source address is a range from the slave addpexe that corresponds to the result registers.
These slave registers are the same size as thel&iBvidth that is 64 bits. The destination address

in the master write transfer on the PLB is a blowmory address.

As shown in Figure 62, the interrupt port of the S\Ehodule is the output port in the interrupt
attachment of the IPIF. The interrupt port of thESAmodule is connected to an interrupt port of the
PowerPC 405 processor (Figure 62). The interrupidgered by the AES module when there is an

error in computing the output. In thdixColumrs andAddRoundKeytransformations of the AES

127

module, the error detection is done through patétection technique that is enhanced to expand its
error coverage to combinational logic of datapatti eouting in the FPGA. Additionally, dual ported
block memory and duplication is used SbBytesand the control circuitry, respectively, to detect

errors (refer to Chapter 5).

PLB IP Interconnect
(IPIF)
interrupt port lmenjgnnecr AES plus
rerPC use of
OLI”F:JL:;:ST(I:"(: (IPIC) features
< interrupt attachment \J IP Interrupt Events provided
by IP
[nterface
(IPIF)

Figure 62 Interrupt in AES module

In case of an error occurrence, the PowerPC 40&psor sends the error message “Error!” to the
host PC through the UART IP and the serial pod &bnding of error message is done in the interrupt
handler of the Aes module). Setting up the devibead (interrupt initialization, registering intenpt
handler, and enabling the interrupt) in the AES nteds described briefly in Section 0. The error
message received on the host PC serial port estiBPGA reconfiguration (interrupt handling due to
error message on the host PC side is also preskrigdly in Section 0). The memory address space
of the PowerPC 405 processor is 4GB. The unusedomeaddress space of the baseline provided by
CMC is used to add new IPs to buses. Table 7.1 stiogvaddress space assignment to the IPs shown

in Figure 58.

Table 7.1 Memory address space of IPs

IP Base addregsHigh address Size | Buss connection

AES module | 0x40000000 0x400003ff 1kB PLB bus
block memory| O0xffff0000 Oxffffffff |64kB PLB bus
UART 0x4c000000[0Ox4cOoffff| 64kB OPB bus

128

The AES module can further implement block cipherdes using the proposed AES with error
detection discussed in Chapter 5. There are difteyptions for implementing these modes. They can
be implemented entirely in hardware or as a hareisaftware codesign (designing a block cipher
mode simultaneously using the microprocessor artelAFIBgic blocks). As discussed in Section 4.2,
these modes use the AES algorithm multiple tim#seeiin parallel (e.g., in ECB and CTR) or in
serial (e.g., in modes with the chaining structsmeh as CBC) in the algorithm. Depending on the
hardware, throughput, and latency requirements iapplication specification, design choices should
be made properly. In this research, the main got provide high error coverage for single bibesr

in the FPGA while having the minimum hardware reses.

Reusing hardware in a partially pipeline desigmat{ttannot accept data every clock cycle, and thus
has a throughput less than 1 per clock cycle) aléaw hardware savings at the cost of throughput.
On the other hand, a fully pipelined design wittygically higher hardware usage can achieve the

highest throughput and accept data every clockecycl

In an implementation that is a hardware/softwardes@n interfacing should also be considered
carefully. Since the hardware and software parthefdesign need to communicate with each other
through some sort of synchronization technique i(fstance, polling and interrupts). Synchronization
costs in terms of performance. For instance, whmen Hardware part of the design finishes its
computation it needs to communicate with the sawgart and vice versa. This communication
through the bus and synchronization has a delaly dha be significant compared to the overall

latency.

The latency (number of clock cycles from inputsotdputs) of block cipher modes that have the
chaining of plaintext blocks with the previous aptext blocks is constrained by this chaining
structure (e.g., in CBC shown in Figure 26). Theref the latency cannot be improved be adding
more AES ciphers (increasing hardware usage) tdmryparallel. On the other hand, the latency in
block cipher modes that do not have this chaintngcture, for instance in the CTR mode shown in

Figure 27, is reduced by running more AES ciphenrzarallel.

B.3 Summary

The main goal of this appendix was to cover diffiér@spects of design and implementation of the
AES module as a system on chip in the FPGA. Thssesy has the capability to self reconfigure in

case of an error in the FPGA through serial comgatiin with the host PC. Communication and

129

synchronization of the proposed AES module havirgredetection capability, the PowerPC 405
processor in the FPGA, and the host PC were destrib

In the AES module, different features that were langented as slave, master, and interrupt
attachments to communicate with other IPs andterrimpt the PowerPC 405 processor in the FPGA
were described. Device drivers that provide infgrhweandling on the PowerPC 405 processor and the
host PC were also covered in this appendix. Cordides in design and implementing different
modes were discussed at the end.

130

Appendix C

Control Circuitry in AES

reset=1

010
ARK+inv
001
affine

Figure 63 State machine of transformations in AES

reset=0

131

(reset=0,
affine=0)

{re;etzo, (reset=0,
(reset=0, ouipasognng Y-<20Ne=1}
affine=0)

round 1

affine=0)

10000000000
round 10

00010000000

round 2
\ (reset=0, (reset=0,
(reset=0, - \ affine=1) affirio=1)

affine=1) (reset=0,
affinés1) y ;
(reset=0 N\ [freset=0,
affm;.;:oj 00000000001 :

(reset=0,
round 9

affine=0)

aff{ne _O) 00001000000
£ round 3

(reset=0,
affine=1)

01000000000
o round 0

(reset=0,
affine=1)

00000000010

(reset=0, round

affine=0)

- 00000100000

vound 4 (reset=0,
affine=0)
(reset=0 (i re_set:O.
affine= Tj affine=1)
00000000100
round 7

00000010000
round 5

00000001000

(reset=0,
(reset=0, round : affine=0)
(reset=0, affine=1) affine=1)
affine=0)
(reset=0,
affine=0)

Dotted arrows have inputs (reset=1, affine= -) on them in case of a reset. This
has been removed for the figure simplicity.

Figure 64 State machine of round in AES

132

Appendix D

Device Driver for FPGA Reconfiguration

#include "windows.h"
#include "stdio.h"
#include "conio.h"

int main(int argc, char *argv){

STARTUPINFO si;

PROCESS_INFORMATION pi;

unsigned int index=0;

COMMTIMEOUTS timeouts, orig_timeouts;

DWORD dwCommEvert;

char INBUFFER[B00};

char message[s00];

char OUTBUFFER[20];

DWORD bytes read=0; //Number of bytes read from port
DWORD bytes written=0; /'Number of bytes written to the port
HANDLE comport=NULL; //Handle COM port

DCB comSettings, ofig_comSettings; /I Contains various port setiings

ZeroMemory(&si, sizeof (Si);
sicb= sizeof (g
ZeroMemory(&pi, sizeof (p);

1/ Open COM port
comport=CreateFie("COM1", /openioport:
133

GENERIC_READ | GENERIC WRITE,
0, Il exclusive access
NULL, II'mo security attributes
OPEN_EXISTING,

FILE ATTRIBUTE_NORMAL,

NULL);

Il for reading and writing

if ((compot=INVALID_ HANDLE VALUE)){ Il error processing code goes here

printf("error opening the port\n”);
exi(1);
}

GetCommTimeouts(comport, &orig_timeoutsy);
GetCommState(comport, &orig_comSetings);

comSettings=orig_comSettings;
comSettings.BaudRate=9600;
comSettings.StopBits=1;
comSettings.fBinary= fase ;

if (ISetCommState(comport, &comSettings)) {
printf{ "SetCommStatehn”);

}

pinf("BaudRate %\n" ,comSettings.BaudRate);
print("StopBits %6\n" , comSettings.StopBits);
pinf("fParity %o\n" , comSetiingsParity);

pint{ "Parity %6\’ , comSetings.Parity);

In order for ReadFie to retum O bytes read, the
COMMTIMEQUTS structure is setto MAXDWORD, and the
ReadTimeoutConstantare both set to zero.
timeouts ReadintervalTimeout=MAXDWORD;
timeouts.ReadTotalTimeoutMultipier=0;
timeouts ReadToalTimeoutConstant=0;
timeouts White ToalTimeoutMultiplier=0;
timeouts Wiite TotalTimeoutConstant=0;
if - (SetCommTimeouts(comport, &imeouts)) {
print("SetCommTimeoushi® —);
}

if - (SetCommMaskicomport, EV_RXCHAR)){
printf{ “errorin SetCommMaskin”)
}

for (::){
index=0;

ReadintervalTimeout member of the
ReadTimeoutMultiplier and

if - (WaitCommEveri(comport, &dwCommEvent, NULL)){

do{

if - (ReadFie(comport, INBUFFER 1, &bytes readNULL)) {

134

if (oytes read=0){ Il Abyte has beenread.
messagelindexXFINBUFFER[D];
index ++;
}
if (oytes read=0){ IBufierisempty.

messagefindex}=NULL; I Terminating array
f (sromp(message, 'Emod0" =0){
printf("FPGA should be reconfiguredin'*)
' FPGA reconfiguration below
CreateProcess(NULL, I'module name
"impact-batch _impactemd' , /Commandiine

NULL, I Process handle notinheritable
NULL, I Thread handle notinheritable
FALSE, I Sethande inhefitance to FALSE
0, //No creationflags

NULL, Il Use parents environment block
NULL, Il Use parents starting directory

&si, /' Pointerto STARTUPINFO structure
&pl) / Pointer to PROCESS_INFORMATION struct

}
}ooese {
I Aneor ocourred inthe ReadFie call.
break ;
}
} whie (bytes read); I/ Bufferis notempty.
} ese { /EmorinWatCommEvent
}
}

SetCommTimeouts(comport, &ong_timeouts);
SetCommSiate(comport, &orig_comSettings);
CloseHandie(comport)

char quit

whie - ((quitgetchar()= q)
prnti("%ec” , o)

reum O;
}

135

Appendix E

Processor

PLB Bus (64 bits)

Local Bus IP Interface

Usger IP

Device

PLE IPIF

Interrupt =
P71}

PLE_Clk (Pt

— PR
[}

| IFIC Design

IP_Imerrupt Evt_smn (PTE}
= W

< IP Statuz Reply (P78-P93)
| ;
Rc/Wr Gualifiers (P4, PBE-PAD)
| §

I
CS Bus (P8}

e

I B |
CE Bus (P92}

I .

Read CE Bus [P93)
1 1

Writs CE Bus [P24)

B

Write Data Bus (PB5)
| |

I i |
< R=ad Data Bus (PT7)
I L1

Read Data (P127)

| Read Status (F128-F431)

P Hager B (G35

Master A=ply [PA0TP443)

Write Status (P116-P122)
= !

Write Controls (F444, P418-P118)

Scatter Gather Support (P95 - PA8)

Aux DMA Support (F132, P133) 3

FiEget P2 j——
FLE Requect & Gualifiers
{P3-P25) |
Byte 3
Steering
Slave Repl
(P26-P33;
i r
i L]
1 SESR/ 1§ 1
I SEAR |}
' []
L
- EI
' (A}
Mastsr PLB Request & 1 : ey e
Qualifiers (P54 - P70} 1§ i -y
B et [}
H Master 1/
b aaster) o ¥ Hoir =
¥ Attachment] i i Aeasest i
PLEM Eiepl i B chain =
anter Reply
(P40 - P53) H Scatter :
1 Gather
L :
[
[}
e
=
i1 ! = UserOptionad Services

Figure 65 Connections of Processor Local Bus (APBhterface (IPIF) [129]

136

Table 7.2 IP Interconnect (IPIC) signals [129]

-- IP Interconnect (IPIC) signal declarations

-- Prefix 'i' stands for IPIF while prefix 'u' s@sfor user logic.

-- Typically user logic will be hooked up to IPIfrektly via i<sig> unless signal slicing and muxing

-- are needed via u<sig>

signal iBus2IP_CIk

: std_logic;

signal iBus2IP_Reset

: std_logic;

signal ilP2Bus_IntrEvent

. std_logic_vector(0 to IRTR_MODE_ARRAY'length - 1);

signal ilP2Bus_Data

. std_logic_vector(0 to C_PLBVIDTH-1);

signal ilP2Bus_WrAck :std_logic :='0"
signal ilP2Bus_RdAck :std_logic :='0";
signal ilP2Bus_Retry :std_logic :='0";
signal ilP2Bus_Error :std_logic :='0"
signal ilP2Bus_ToutSup . std_logic :='0"

signal iBus2IP_Addr

. std_logic_vector(0 to C_PLBNATH - 1);

signal iBus2IP_Data

: std_logic_vector(0 to C_PLBVIDTH - 1);

signal iBus2IP_RNW : std_logic;
signal iBus2IP_BE : std_logic_vector(0 to (C_PLB_IMVH/8) - 1);
signal iBus2IP_Burst . std_logic;
signal iBus2IP_WrReq . std_logic;
signal iBus2IP_RdReq : std_logic;

signal iBus2IP_RdCE

: std_logic_vector(0 to calannee(ARD_NUM_CE_ARRAY)-1);

signal iBus2IP_WrCE

. std_logic_vector(0 to calcrnee(ARD_NUM_CE_ARRAY)-1);

signal ilP2Bus_Addr

. std_logic_vector(0 to IPIF_ADVH - 1);

signal ilP2Bus_MstBE

: std_logic_vector(0 to (IPIRWIDTH/8) - 1);

signal ilP2IP_Addr

: std_logic_vector(0 to IPIF_ARMH - 1);

signal ilP2Bus_MstWrReq :std_logic :='0";
signal ilP2Bus_MstRdReq :std_logic :='0"
signal ilP2Bus_MstBurst - std_logic :='0"
signal ilP2Bus_MstBusLock :std_logic :='0"
signal ilP2Bus_MstNum : std_logic_vector(0 to IopZyV _MAX_BURST_SIZE/(C_PLB_DWIDTH/8)));
signal iBus2IP_MstWrAck : std_logic;
signal iBus2IP_MstRdAck : std_logic;
signal iBus2IP_MstRetry : std_logic;

signal iBus2IP_MstError : std_logic;
signal iBus2IP_MstTimeOut : std_logic;
signal iBus2IP_MstLastAck : std_logic;

signal ZERO_IP2RFIFO_Data

- std_logic_vector(Oinalfid_dwidth(ARD_ID_ARRAY, ARD_DWIDTH_ARRAY,
IPIF_RDFIFO_DATA, 32)-1);

signal iBus2IP_CS

. std_logic_vector(0 to ((ARD_ARDRANGE_ARRAY'LENGTH)/2)-1);

signal uBus2IP_Data

: std_logic_vector(0 to USER IDWH-1);

signal uBus2IP_BE

: std_logic_vector(0 to USER_DVVH}8-1);

signal uBus2IP_RdCE

: std_logic_vector(0 to USERMICE-1);

signal uBus2IP_WrCE

. std_logic_vector(0 to USER NNWCE-1);

signal ulP2Bus_Data

. std_logic_vector(0 to USER IDWH-1);

signal ulP2Bus_Data

: std_logic_vector(0 to USER IDWH-1);

signal uBus2IP_ArData

: std_logic_vector(0 to USERX_AR_DWIDTH-1);

signal uBus2IP_ArBE

. std_logic_vector(0 to USER_XIAMR_DWIDTH/8-1);

signal uBus2IP_ArCS

: std_logic_vector(0 to USER NNLADDR_RNG-1);

signal ulP2Bus_ArData

: std_logic_vector(0 to USERX_AR_DWIDTH-1);

137

Appendix F

S-box of AES

Table 7.3 S-box of AES

63

7c

77

7b

f2

6b

6f

ch5

30

01

67

2b

fe

d7

ab

76

ca

82

c9

7d

fa

59

47

fO

ad

d4

a2

af

9c

a4

72

cO

b7

fd

93

26

36

3f

f7

CcC

34

ab

e5

f1

71

ds

31

15

04

c7

23

c3

18

96

05

9a

07

12

80

e2

eb

27

b2

75

09

83

2c

la

1b

6e

5a

a0

52

3b

dé

b3

29

e3

2f

84

53

dl

00

ed

20

fc

bl

5b

6a

cbh

be

39

4a

4c

58

cf

do

ef

aa

fb

43

4d

33

85

45

f9

02

7f

50

3c

of

a8

51

a3

40

8f

92

9d

38

5

bc

b6

da

21

10

ff

f3

d2

cd

Oc

13

ec

5f

97

44

17

c4

a7

Te

3d

64

5d

19

73

60

81

4f

dc

22

2a

90

88

46

ee

b8

14

de

5e

Ob

db

e0

32

3a

Oa

49

06

24

5c

c2

d3

ac

62

91

95

e4d

79

e’

c8

37

6d

8d

d5

de

a9

6¢c

56

4

ea

65

7a

ae

08

ba

78

25

2e

1c

a6

b4

c6

e8

dd

74

1f

4b

bd

8b

8a

70

3e

b5

66

48

03

f6

Oe

61

35

57

b9

86

cl

1d

9e

el

f8

98

11

69

do

8e

94

9b

le

87

e9

ce

55

28

df

8c

al

89

0d

bf

e6

42

68

41

99

2d

Of

b0

54

bb

16

138

Appendix G

Pseudo Code for Key Expansion

In the following pseudo code for the key expansimrameters Nk and Nr represent number of
words forming a key and number of rounds, respelgtivSubword takes four 8-bit elements of a

word and applies the substitution transformatiorham.

KeyExpansion(byte key[4*NK], word w[4*(Nr+1)], Nk)

begin
word temp
i=0
while (i < Nk)
wli] = word(key[4*i], key[4*i+1], key[4*i+2], key[4 *+3])
i=i+l
end while
i = Nk
while (i < 4 * (Nr+1)]
temp = w[i-1]
if (i mod Nk = 0)
temp = SubWord(RotWord(temp)) xor Rcon[i/NK]
else if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)
end if
wli] = w[i-NKk] xor temp
izi+1
end while
end

139

Appendix H

Routed Netlist Snapshots from FPGA Editor

Figure 66 FPGA Editor snapshot of 2 fanout signdflixColumnstested on FPGA
140

ml

N
L

Figure 67 FPGA Editor snapshot of routing with mesdeading up to undetectable errors

141

Bibliography

[1] A. Lesea, S. Drimer, J. J. Fabula, C. Carmithad P. Alfke, "The rosetta experiment:
atmospheric soft error rate testing in differinghieology FPGAs,Device and Materials Reliability,
IEEE Transactions onjol. 5, pp. 317-328, 2005.

[2] "Virtex-1l Pro and Virtex-1l Pro X FPGA User Gde," November, 2007,.
[3] "Total lonizing Dose (TID) Effects," 2004.

[4] F. L. Kastensmidt, L. Carro and R. Rdtgult-Tolerance Techniques for SRAM-Based FPGAs.
Springer US, 2006.

[5] T. C. May and M. H. Woods, "A new physical maasm for soft errors in dynamic memories,"
in Reliability Physics Symposium, 1978. 16th Anni@r38, pp. 33-40.

[6] T. C. May and M. H. Woods, "Alpha-particle-inckd soft errors in dynamic memoriegJéctron
Devices, IEEE Transactions oml. 26, pp. 2-9, 1979.

[7] R. Baumann, "Soft Errors in Advanced Computgstems,"IEEE Des. Teswol. 22, pp. 258-266,
2005.

[8] P. Adell and G. Allen, "Assessing and MitigagiRadiation Effects in Xilinx FPGAs," 2008. Jet
Propulsion Laboratory.

[9] B. Bridgford, C. Carmichael and C. W. Tsenginte-Event Upset Mitigation Selection Guide,"
2008. Xilinx.

[10] J. George, R. Koga, G. Swift, G. Allen, C. @chael and C. W. Tseng, "Single event upsets in
xilinx virtex-4 FPGA devices," ilRRadiation Effects Data Workshop, 2006 IERBEQ6, pp. 109-114.

[11] P. E. Dodd and L. W. Massengill, "Basic medlars and modeling of single-event upset in
digital microelectronics,Nuclear Science, IEEE Transactions wal. 50, pp. 583-602, 2003.

[12] T. V. Rajeevakumar, N. C. C. Lu, W. H. Henkets Wei and R. Franch, "A new failure mode of
radiation-induced soft errors in dynamic memori&dgctron Device Letters, IEEKOQI. 9, pp. 644-
646, 1988.

[13] A. Pavlov and M. Sachde€MOS SRAM Circuit Design and Parametric Test indN&caled
Technologies: Process-Aware SRAM Design and $esinger Publishing Company, Incorporated,
2008.

[14] W. Maly, "Realistic fault modeling for VLSI &#ing," inDesign Automation, 1987. 24th
Conference ol 987, pp. 173-180.

142

[15] C. Constantinescu, "Intermittent faults anfiefs on reliability of integrated circuits," in
Reliability and Maintainability Symposium, 2008.N#& 2008. AnnuaR008, pp. 370-374.

[16] M. B. Tahoori, S. Mitra, S. Toutounchi andEMcCluskey, "Fault grading FPGA interconnect
test configurations," ifest Conference, 2002. Proceedings. Internatid2@0?2, pp. 608-617.

[17] P. Graham, M. Caffrey, J. Zimmerman and En3oim, "Consequences and categories of SRAM
FPGA configuration SEUs," in 2003, .

[18] H. Bar-El, H. Choukri, D. Naccache, M. Tunsthd C. Whelan, "The Sorcerer's Apprentice
Guide to Fault Attacks,Proceedings of the IEERpI. 94, pp. 370-382, 2006.

[19] M. Hsueh, T. K. Tsai and R. K. lyer, "Fauljdntion techniques and toolsZomputeryol. 30,
pp. 75-82, 1997.

[20] J. Blomer and J. P. Seifert, "Fault based ayalysis of the advanced encryption standard
(AES)," inWright, R.N.. (2003). Financial Cryptography. 7titdrnational Conference, FC 2003.
Revised Papers (Lecture Notes in Comput. Sci. Y42¥Pp.162-181). Berlin: Springer-Verlag.
Vviii+320pp.; Financial Cryptography. 7th Internati@l Conference, FC 2003. Revised Papers, 27-30
Jan. 2003, Guadelouppp. 162-181.

[21] S. P. Skorobogatov and R. J. Anderson, "Optadt induction attacks," ilCryptographic
Hardware and Embedded Systems - CHES 2002. 4tim&tienal Workshop Revised Papers, 13-15
Aug. 2002, Redwood Shores, CA, USA.2-12.

[22] J. M. Schmidt, M. Hutter and T. Plos, "Opti¢allt attacks on AES: A threat in violet," Kault
Diagnosis and Tolerance in Cryptography (FDTC), 20orkshop or2009, pp. 13-22.

[23] C. H. Kim and J. J. Quisquater, "Faults, Iti@e Methods, and Fault Attackd)esign & Test of
Computers, IEEEyol. 24, pp. 544-545, 2007.

[24] D. Boneh, R. A. DeMillo and R. J. Lipton, "Qime importance of checking cryptographic
protocols for faults," iFEEUROCRYPT '97. International Conference on the fjhaond Application of
Cryptographic Techniques. Proceedings, 11-15 m&y 1Bonstanz, Germany. Int. Assoc.
Cryptologic Respp. 37-51.

[25] E. Biham and A. Shamir, "Differential fault@agsis of secret key cryptosystems,'Kialiski,

B.S. Jr.. (1997). Advances in Cryptology - CRYPIO 17th Annual International Cryptology
Conference. Proceedings(Pp.513-525). Berlin: SpiAgerlag. xii+537pp.; Advances in Cryptology
- CRYPTOQO'97. 17th Annual International Cryptologyn@erence. Proceedings, 17-21 Aug. 1997,
Santa Barbara, CA, USAp. 513-525.

[26] P. Dusart, G. Letourneux and O. Vivolo, "Diéatial fault analysis on A.E.S," MCNS 2003,
pp. 293-306.

143

[27] G. Piret and J. Quisquater, "A DifferentialuRaAttack Technique against SPN Structures, with
Application to the AES and KHAZAD," vol. 2779, pp7-88, 2003.

[28] A. Moradi, M. T. M. Shalmani and M. Salmasie&g "A generalized method of differential fault
attack against AES cryptosystem,"8th International Workshop on Cryptographic Hardwand
Embedded Systems, CHES 2006, Startdate 200610 1&erzD0610132006, pp. 91-100.

[29] C. Chen and S. Yen, "Differential fault anatyen AES key schedule and some
countermeasures,” Bth Australasian Conference on Information Secuaitd Privacy, ACISP 2003,
Startdate 20030709-Enddate 2003072003, pp. 118-129.

[30] C. Giraud, "DFA on AES," idth International Conference on Advanced Encryp&tendard -
AES 2004, Startdate 20040510-Enddate 200408025, pp. 27-41.

[31] J. -. Q. F. Koeune, "A timing attack againgnRael," 1999.

[32] C. Moratelli, F. Ghellar, E. Cota and M. Lubkawsski, "A fault-tolerant, DFA-resistant AES
core," inISCAS 2008. 2008 IEEE International Symposium oou@s and Systems; ISCAS 2008.
2008 IEEE International Symposium on Circuits apdt&ms, 18-21 may 2008, Seattle, WA, WPA.
244-247.

[33] R. C. Baumann, "Radiation-induced soft eriaradvanced semiconductor technologi&sVice
and Materials Reliability, IEEE Transactions aml. 5, pp. 305-316, 2005.

[34] E. Johnson, M. Caffrey, P. Graham, N. Rolamel M. Wirthlin, "Accelerator validation of an
FPGA SEU simulator,Nuclear Science, IEEE Transactions w@al. 50, pp. 2147-2157, 2003.

[35] J. F. Ziegler, "Trends in Electronic Reliabyjli Effects of Terrestrial Cosmic Rays," .

[36] S. M. Jahinuzzaman, M. Sharifkhani and M. Skeeh "An Analytical Model for Soft Error
Critical Charge of Nanometric SRAMsyery Large Scale Integration (VLSI) Systems, IEEE
Transactions oryol. 17, pp. 1187-1195, 2009.

[37] P. Roche, J. M. Palau, G. Bruguier, C. TawamR. Ecoffet and J. Gasiot, "Determination of key
parameters for SEU occurrence using 3-D full cBIASI simulations,"Nuclear Science, IEEE
Transactions ornvyol. 46, pp. 1354-1362, 1999.

[38] J. M. Palau, G. Hubert, K. Coulie, B. SagndsC. Calvet and S. Fourtine, "Device simulation
study of the SEU sensitivity of SRAMSs to internahitracks generated by nuclear reactioNsitlear
Science, IEEE Transactions om)|. 48, pp. 225-231, 2001.

[39] Y. Z. Xu, H. Puchner, A. Chatila, O. Pohlamd,Bruggeman, B. Jin, D. Radaelli and S. Daniel,
"Process impact on SRAM alpha-particle SEU perforeed' inReliability Physics Symposium
Proceedings, 2004. 42nd Annual. 2004 IEEE Inteometi, 2004, pp. 294-299.

144

[40] Bin Zhang, A. Arapostathis, S. Nassif and Mskansky, "Analytical modeling of SRAM
dynamic stability," inComputer-Aided Design, 2006. ICCAD '06. IEEE/ACKinational
Conference or2006, pp. 315-322.

[41] S. M. Jahinuzzaman, M. Sharifkhani and M. $&ah "Investigation of process impact on soft
error susceptibility of nanometric SRAMs using anpact critical charge model," Quality
Electronic Design, 2008. ISQED 2008. 9th InternagibSymposium 012008, pp. 207-212.

[42] Sai-Wai Fu, A. M. Mohsen and T. C. May, "Alpparticle-induced charge collection
measurements and the effectiveness of a novel lpavagkction barrier on VLSI memorieElectron
Devices, IEEE Transactions oml. 32, pp. 49-54, 1985.

[43] D. Burnett, C. Lage and A. Bormann, "Soft-efrate improvement in advanced BiCMOS
SRAMs," inReliability Physics Symposium, 1993. 31st AnnuatPedings., International 993, pp.
156-160.

[44] J. D. Hayden, R. C. Taft, P. Kenkare, C. Ma&z@&. Gunderson, B. Y. Nguyen, M. Woo, C.
Lage, B. J. Roman, S. Radhakrishna, R. Subrahma@ydh Sitaram, P. Pelley, J. H. Lin, K. Kemp
and H. Kirsch, "A quadruple well, quadruple poligih BICMOS process for fast 1&lectron
Devices, IEEE Transactions oml. 41, pp. 2318-2325, 1994.

[45] T. Kishimoto, M. Takai, Y. Ohno, T. Nishimuead M. Inuishi, "Control of Carrier Collection
Efficiency in n$"+$p Diode with Retrograde Well aditaxial Layers, Japanese Journal of
Applied Physics}yol. 36, pp. 3460-3462, 1997.

[46] M. Takai, T. Kishimoto, Y. Ohno, H. Sayama, 8onoda, S. Satoh, T. Nishimura, H. Miyoshi,
A. Kinomura, Y. Horino and K. Fujii, "Soft error sceptibility and immune structures in dynamic
random access memaries (DRAMS) investigated byeauahicroprobes Nuclear Science, IEEE
Transactions oryol. 43, pp. 696-704, 1996.

[47] D. Belot and T. Blalack, "Modeling Substrat#fdets in RF Integration,” 1999. EETimes.
[48] M. N. HorensteinMicroelectronic Circuits and DeviceBrentice Hall, 1996.

[49] "Virtex-4QV Multi-Platform FPGAs," 2008. Xlinx

[50] S. E. Kerns, L. W. Massengill, D. V. Kerns, M. L. Alles, T. W. Houston, H. Lu and L. R.
Hite, "Model for CMOS/SOI single-event vulneralyillt Nuclear Science, IEEE Transactions on,

vol. 36, pp. 2305-2310, 1989.

[51] O. Musseau, "Single-event effects in SOI texdbgies and devicesNuclear Science, IEEE
Transactions orvol. 43, pp. 603-613, 1996.

[52] P. E. Dodd, A. R. Shaneyfelt, K. M. Horn, D.\8alsh, G. L. Hash, T. A. Hill, B. L. Draper, J.
R. Schwank, F. W. Sexton and P. S. Winokur, "SEkbs#®e volumes in bulk and SOl SRAMs from

145

first-principles calculations and experimentdyiclear Science, IEEE Transactions wal. 48, pp.
1893-1903, 2001.

[53] J. R. Schwank, P. E. Dodd, M. R. Shaneyfelty@kelethy, B. L. Draper, T. A. Hill, D. S.
Walsh, G. L. Hash, B. L. Doyle and F. D. McDani€harge collection in SOI capacitors and
circuits and its effect on SEU hardnedsuclear Science, IEEE Transactions wal. 49, pp. 2937-
2947, 2002.

[54] G. E. Davis, L. R. Hite, T. G. W. Blake, C. Ehen, H. W. Lam and R. DeMoyer, "Transient
Radiation Effects in SOl Memoried\uclear Science, IEEE Transactions wal. 32, pp. 4431-4437,
1985.

[55] M. L. Alles, S. E. Kerns, L. W. Massengill,B. Clark, K. L. Jones Jr. and R. E. Lowther, "Body
tie placement in CMOS/SOI digital circuits for ted@nt radiation environmentd\uclear Science,
IEEE Transactions onol. 38, pp. 1259-1264, 1991.

[56] L. R. Hite, H. Lu, T. W. Houston, D. S. Huraad W. E. Bailey, "An SEU resistant 256 K SOI
SRAM," Nuclear Science, IEEE Transactions wal. 39, pp. 2121-2125, 1992.

[57] N. van Vonno and B. R. Doyle, "A 256 K statamdom-access memory implemented in silicon-
on-insulator technology," iRadiation and its Effects on Components and Syste988.,RADECS
93., Second European Conference 1893, pp. 392-395.

[58] J. M. Rabaey, A. Chandrakasan and B. Nikdigjtal Integrated CircuitsPrentice Hall, 2003.

[59] R. W. Berger, D. Bayles, R. Brown, S. Doyle,lazemzadeh, K. Knowles, D. Moser, J.
Rodgers, B. Saari, D. Stanley and B. Grant, "Thé®R20™-a radiation hardened PowerPC
processor for high performance spaceborne apmitsti inAerospace Conference, 2001, IEEE
Proceedings2001, pp. 2263-2272 vol.5.

[60] J. Liaw, "SRAM cell for soft-error rate rediam and cell stability improvement,"” 7257017,
2007.

[61] F. Ootsuka, M. Nakamura, T. Miyake, S. lwalia¥h Ohira, T. Tamaru, K. Kikushima and K.
Yamaguchi, "A novel 0.20 μm full CMOS SRAM ceising stacked cross couple with enhanced
soft error immunity," irElectron Devices Meeting, 1998. IEDM '98 Technalest., International,
1998, pp. 205-208.

[62] R. Wilson, "ST tames soft errors in SRAM bydady capacitors,EE Times2004.
[63] J. McCollum, "RADIATION TOLERANT SRAM BIT,", D08.

[64] S. M. Jahinuzzaman, D. J. Rennie and M. SagHdeSoft Error Tolerant 10T SRAM Bit-Cell
With Differential Read CapabilityNuclear Science, IEEE Transactions @al. 56, pp. 3768-3773,
20009.

146

[65] "RTAX-S/SL RadTolerant FPGAs," 2009. Actel @oration.

[66] D. G. Mavis and P. H. Eaton, "Soft error ratgigation techniques for modern microcircuits," in
Reliability Physics Symposium Proceedings, 200th AGnual,2002, pp. 216-225.

[67] T. K. Moon,Error Correction Coding: Mathematical Methods antyérithms.Wiley-
Interscience, 2005.

[68] M. Nicolaidis, "Time redundancy based softeertolerance to rescue nanometer technologies,”
in VLSI Test Symposium, 1999. Proceedings. 17th |EEE), pp. 86-94.

[69] R. P. Bastos, F. L. Kastensmidt and R. Ré&)eslIgn of a soft-error robust microprocessor,"
Microelectron. J.yol. 40, pp. 1062-1068, 2009.

[70] W. Zhang, S. Gurumurthi, M. Kandemir and Av&ubramaniam, "ICR: In-cache replication for
enhancing data cache reliability,"rependable Systems and Networks, 2003. Proceeddgs.
International Conference 02003, pp. 291-300.

[71] P. A. Bernstein, "Sequoia: a fault-toleraghtly coupled multiprocessor for transaction
processing,’'Computeryol. 21, pp. 37-45, 1988.

[72] G. H. Asadi, V. Sridharan, M. B. Tahoori andKaeli, "Balancing performance and reliability
in the memory hierarchy," iRerformance Analysis of Systems and Software, 2860ASS 2005.
IEEE International Symposium 2005, pp. 269-279.

[73] V. Sridharan, H. Asadi, M. B. Tahoori and Da&i, "Reducing Data Cache Susceptibility to
Soft Errors,"Dependable and Secure Computing, IEEE Transactangol. 3, pp. 353-364, 2006.

[74] "SPARC V8 32-bit Processor LEON3 / LEON3-F2008. Aeroflex Gaisler AB.

[75] R. Banu and T. Vladimirova, "On-board encrgptin earth observation small satellites," in
Carnahan Conferences Security Technology, Procged006 40th Annual IEEE International,
2006, pp. 203-208.

[76] G. Bertoni, L. Breveglieri, I. Koren, P. Maisaind V. Piuri, "Error analysis and detection
procedures for a hardware implementation of thexaded encryption standar€Computers, IEEE

Transactions oryol. 52, pp. 492-505, 2003.

[77] M. M. Kermani and A. Reyhani-Masoleh, "Pangsediction of S-box for AES," iklectrical
and Computer Engineering, 2006. CCECE '06. Canadianference or2006, pp. 2357-2360.

[78] L. Breveglieri, I. Koren and P. Maistri, "Angeration-Centered Approach to Fault Detection in
Symmetric Cryptography Ciphers€Computers, IEEE Transactions oml. 56, pp. 635-649, 2007.

[79] "Recommendation X.800," 1991. InternationaleEEemmunication Union.

147

[80] W. Stallings, Prentice Hall, .
[81] D. R. StinsonCryptography: Theory and PracticEhapman & Hall, 2005.

[82] A. J. Menezes, P. C. V. Oorschot and S. A.38fane Handbook of Applied Cryptograph@RC
Press, 1996.

[83] E. Barker, W. Barker, W. Burr, W. Polk and Bmid, "Recommendation for Key Management
— Part 1," 2007. NIST Special Publication 800-57.

[84] "EFF's DES Cracker Puts Final Nail in Coffihlnsecure Government Data Encryption
Standard," 1999. Electronic Frontier FoundationKEF

[85] "Announcing Approval of Federal Informationd@essing Standard (FIPS) 197, Advanced
Encryption Standard (AES)," 2001. National Insttof Standards and Technology (NIST).

[86] "Encryption Algorithm Trade Survey," 2008. Guitative Committee for Space Data Systems
(CCSDS).

[87] C. Cid, S. Murphy and M. Robshaigebraic Aspects of the Advanced Encryption Stahda
(Advances in Information Securitfecaucus, NJ, USA: Springer-Verlag New York, Ir@0&

[88] J. Daemen and V. Rijmen, "Rijndael: The Adwesh&ncryption Standard," 2001. Dr. Dobb's
Journal.

[89] "Current Modes," 2008. National Institute daBdards and Technology (NIST).

[90] M. Dworkin, "Recommendation for Block Cipherddes of Operation: The CMAC Mode for
Authentication,” 2005. NIST Special Publication S88&B.

[91] M. Dworkin, "Recommendation for Block Cipherddes of Operation: Galois/Counter Mode
(GCM) and GMAC," 2007. NIST Special Publication 888D.

[92] M. Dworking, "Recommendation for block ciphaodes of operation: The ccm mode for
authentication and confidentiality
,"2004.

[93] J. Daemen and V. Rijmefhe Design of RijndaeSecaucus, NJ, USA: Springer-Verlag New
York, Inc, 2002.

[94] A. J. Elbirt, W. Yip, B. Chetwynd and C. Patdn FPGA-based performance evaluation of the
AES block cipher candidate algorithm finalist¥gry Large Scale Integration (VLSI) Systems, IEEE
Transactions oryol. 9, pp. 545-557, 2001.

[95] W. McLoone and J. V. McCanny, "Rijndael FPGAglementation utilizing look-up tables,"
Signal Processing Systems, 2001 IEEE Workshopmrg49-360, 2001.

148

[96] H. Kuo and I. Verbauwhede, "Architectural Qpittation for a 1.82Gbits/sec VLSI
Implementation of the AES Rijndael AlgorithnCryptographic Hardware and Embedded Systems
— CHES 2001pp. 51-64, 2001.

[97] V. Fischer and M. Drutarovsky, "Two MethodsRifndael Implementation in Reconfigurable
Hardware,"Cryptographic Hardware and Embedded Systems — CHBSE,pp. 77-92, 2001.

[98] T. Good and M. Benaissa, "Pipelined AES on BRG@Gth support for feedback modes (in a
multi-channel environment)Jihformation Security, IETvol. 1, pp. 1-10, 2007.

[99] K. U. Jarvinen, M. T. Tommiska and J. O. SayttA fully pipelined memoryless 17.8 gbps
AES-128 encryptor," ifFPGA '03: Proceedings of the 2003 ACM/SIGDA Elgvémternational
Symposium on Field Programmable Gate Arrdyenterey, California, USA, 2003, pp. 207-215.

[100] A. Rudra, P. Dubey, C. Jutla, V. Kumar, JoRad P. Rohatgi, "Efficient Rijndael Encryption
Implementation with Composite Field Arithmeti€typtographic Hardware and Embedded Systems
— CHES 2001pp. 171-184, 2001.

[101] G. Saggese, A. Mazzeo, N. Mazzocca and AllISir'An FPGA-Based Performance Analysis
of the Unrolling, Tiling, and Pipelining of the ABESgorithm," Field-Programmable Logic and
Applications pp. 292-302, 2003.

[102] Xinmiao Zhang and K. K. Parhi, "High-speed $Mlarchitectures for the AES algorithnvéry
Large Scale Integration (VLSI) Systems, IEEE Tratisas onyol. 12, pp. 957-967, 2004.

[103] J. Wolkerstorfer, E. Oswald and M. Lambergé&mn ASIC implementation of the AES

SBoxes," inPreneel, B.. (2002). Topics in Cryptology - CT-RBA2. Cryptographers' Track at the
RSA Conference 2002. Proceedings (Lecture Not€snmputer Science Vol.2271)(Pp.67-78).

Berlin: Springer-Verlag. x+309pp.; Topics in Cryfigy - CT-RSA 2002. . the Cryptographers'Track
at the RSA Conference 2002. Proceedings, 18-22Za€12, San Jose, CA, US#. 67-78.

[104] D. Canright, "A very compact S-box for AE®)"Cryptographic Hardware and Embedded
Systems - CHES 2005. 7th International Workshopcé&dings, 29 Aug.-1 Sept. 2005, Edinburgh,
UK. 3659, pp. 441-455.

[105] T. Itoh and S. Tsujii, "A fast algorithm feaomputing multiplicative inverses in GF(2m) using
normal bases[hf.Comput.yvol. 78, pp. 171-177, 1988.

[106] C. Paar, "Efficient {VLSI} Architectures fdBit-Parallel Computation in {Galois} Fields,"
1994. Institute for Experimental Mathematics, Unsiy of Essen.

[107] A. Satoh, S. Morioka, K. Takano and S. Muhet® Compact Rijndael Hardware Architecture
with S-Box Optimization,’Advances in Cryptology — ASIACRYPT 2@fi,239-254, 2001.

[108] P. Chodowiec and K. Gaj, "Very Compact FP@G#plementation of the AES Algorithm,”
Cryptographic Hardware and Embedded Systems - CHIBES,pp. 319-333, 2003.

149

[109] V. Fischer, M. Drutarovsky, P. Chodowiec dndsramain, "InvMixColumn decomposition
and multilevel resource sharing in AES implementsj"Very Large Scale Integration (VLSI)
Systems, IEEE Transactions @n). 13, pp. 989-992, 2005.

[110] Ning Chen and Zhiyuan Yan, "Compact designsiacolumns and subbytes using a novel
common subexpression elimination algorith@ifcuits and Systems, 2008. ISCAS 2008. IEEE
International Symposium opp. 1584-1587, 2008.

[111] A. Satoh and S. Morioka, "Unified HardwarechAitecture for 128-Bit Block Ciphers AES and
Camellia,"Cryptographic Hardware and Embedded Systems - CRIES,pp. 304-318, 2003.

[112] Hua Li and Z. Friggstad, "An efficient araditure for the AES mix columns operation,” in
Circuits and Systems, 2005. ISCAS 2005. |IEEE latemmal Symposium 02005, pp. 4637-4640
Vol. 5.

[113] M. Mozaffari-Kermani and A. Reyhani-Masolel structure-independent approach for fault
detection hardware implementations of the advaecedyption standard,” i(2007). 2007 Workshop
on Fault Diagnosis and Tolerance in Cryptography@p53). Piscataway, NJ: IEEE.; 2007
Workshop on Fault Diagnosis and Tolerance in Crgpaphy, 10 Sept. 2007, Vienna, Austpa.
47-53.

[114] M. Mozaffari-Kermani and A. Reyhani-Masolel Lightweight High-Performance Fault
Detection Scheme for the Advanced Encryption Stahdaing Composite FieldsYery Large Scale
Integration (VLSI) Systems, IEEE Transactionsvah, 19, pp. 85-91, 2011.

[115] N. Yu and H. M. Heys, "A compact ASIC implemation of the advanced encryption standard
with concurrent error detection," RProceedings of the Fifth IASTED International Caoafece on
Circuits, Signals and SystenBanff, Alberta, Canada, 2007, pp. 152-159.

[116] J. Zhao, J. Han, X. Zeng and L. Han, "A TwimdBnsional Parity-Based Concurrent Error
Detection Method for AES Against Differential FaAlitack and Its VLSI ImplementationJisuanji
Yanijiu Yu Fazhan (Computer Research and Developnweht46, pp. 593-601, Apr., 2009.

[117] N. Joshi, K. Wu and R. Karri, "Concurrent@rdetection schemes for involution ciphers,” in
Joye, M., Quisquater, J.-J.. (2004). CryptograpHardware and Embedded Systems - CHES 2004.
6th International Workshop. Proceedings (Lecturéddon Comput. Sci. Vol.3156)(Pp.400-412).
Berlin: Springer-Verlag. xiii+454pp.; Cryptographidardware and Embedded Systems - CHES
2004. 6th International Workshop. Proceedings, B1Alig. 2004, Cambridge, MA, US#. 400-

412.

[118] J. Note and \. Rannaud, "From the bitstreatié¢ netlist,” inrFPGA '08: Proceedings of the
16th International ACM/SIGDA Symposium on Fielddtesnmable Gate Array$lonterey,
California, USA, 2008, pp. 264-264.

[119] "Virtex-1l Pro Libraries Guide for HDL Desigqi' 2008. Xilinx.

150

[120] A. Hodjat and I. Verbauwhede, "A 21.54 GlutBilly pipelined AES processor on FPGA," in
Proceedings - 12th Annual IEEE Symposium on FiettfRammable Custom Computing Machines,
FCCM 2004, Startdate 20040420-Enddate 200402084, pp. 308-309.

[121] J. Zambreno, D. Nguyen and A. Choudhary, 'l&spg area/delay tradeoffs in an AES FPGA
implementation," irBecker, J., Platzner, M., Vernalde, S.. (2004)ld-Frogrammable Logic and
Applications. 14th International Conference, FPLO20Proceedings (Lecture Notes in Comput. Sci.
Vol.3203)(Pp.575-585). Berlin: Springer-Verlag.x1198pp.; Field-Programmable Logic and
Applications. 14th International Conference, FPLO20Proceedings, 30 Aug.-1 Sept. 2004, Antwerp,
Belgium.pp. 575-585.

[122] Bin Zhou, Yingning Peng, K. Gaj and ZhongBhbu, "Implementation and comparative
analysis of AES as a stream cipher,Ciomputer Science and Information Technology, 2008SIT
2009. 2nd IEEE International Conference @009, pp. 396-400.

[123] T. Good and M. Benaissa, "692-nW Advancedrigption Standard (AES) on a 0.13-mum
CMOS,"Very Large Scale Integration (VLSI) Systems, IEEdhJactions onyol. 18, pp. 1753-
1757, 2010.

[124] Chi-Jeng Chang, Chi-Wu Huang, Hung-Yun Tal &a0-Yuan Lin, "8-bit AES
implementation in FPGA by multiplexing 32-bit AEPeration," inData, Privacy, and E-Commerce,
2007. ISDPE 2007. the First International Symposam?007, pp. 505-507.

[125] F. Haghighizadeh, H. Attarzadeh and M. Skaahi, "A compact 8-bit AES crypto-processor,"
in Computer and Network Technology (ICCNT), 2010 Seetaternational Conference 08010, pp.
71-75.

[126] K. V. Dalmisli and B. Ors, "Design of new Yimircuits for aes encryption algorithm," 3nd
International Conference on Signals, Circuits aydt8ms, SCS 2009, 2009; 3rd International
Conference on Signals, Circuits and Systems, SG$% 3dartdate 20091106-Enddate 20091108,
2009, .

[127] P. Hamalainen, T. Alho, M. Hannikainen anddT Hamalainen, "Design and implementation
of low-area and low-power AES encryption hardwaree¢' inDigital System Design: Architectures,
Methods and Tools, 2006. DSD 2006. 9th EUROMICR@Of€€ence on2006, pp. 577-583.

[128] "Categorical Listing of Batch Mode Commanda()07,.

[129] "PLB IPIF," 2005. Xilinx.

151

