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Abstract

Many graphs arising in practice can be represented in a concise and intuitive way that conveys
their structure. For example: A planar graph can be represented in the plane with points for
vertices and non-crossing curves for edges. An interval graph can be represented on the real
line with intervals for vertices and intersection of intervals representing edges. The concept
of “simultaneity” applies for several types of graphs: the idea is to find representations for
two graphs that share some common vertices and edges, and ensure that the common vertices
and edges are represented the same way. Simultaneous representation problems arise in any
situation where two related graphs should be represented consistently. A main instance is for
temporal relationships, where an old graph and a new graph share some common parts. Pairs of
related graphs arise in many other situations. For example, two social networks that share some
members; two schedules that share some events, overlap graphs of DNA fragments of two similar
organisms, circuit graphs of two adjacent layers on a computer chip etc. In this thesis, we study
the simultaneous representation problem for several graph classes.

For planar graphs the problem is defined as follows. Let G1 and G2 be two graphs sharing
some vertices and edges. The simultaneous planar embedding problem asks whether there exist
planar embeddings (or drawings) for G1 and G2 such that every vertex shared by the two graphs is
mapped to the same point and every shared edge is mapped to the same curve in both embeddings.
Over the last few years there has been a lot of work on simultaneous planar embeddings, which
have been called ‘simultaneous embeddings with fixed edges’. A major open question is whether
simultaneous planarity for two graphs can be tested in polynomial time. We give a linear-time
algorithm for testing the simultaneous planarity of any two graphs that share a 2-connected
subgraph. Our algorithm also extends to the case of k planar graphs, where each vertex [edge] is
either common to all graphs or belongs to exactly one of them.

Next we introduce a new notion of simultaneity for intersection graph classes (interval graphs,
chordal graphs etc.) and for comparability graphs. For interval graphs, the problem is defined as
follows. Let G1 and G2 be two interval graphs sharing some vertices I and the edges induced by I.
G1 and G2 are said to be simultaneous interval graphs if there exist interval representations of G1

and G2 such that any vertex of I is assigned to the same interval in both the representations. The
simultaneous representation problem for interval graphs asks whether G1 and G2 are simultaneous
interval graphs. The problem is defined in a similar way for other intersection graph classes.

For comparability graphs and any intersection graph class, we show that the simultaneous
representation problem for the graph class is equivalent to a graph augmentation problem: given
graphs G1 and G2, sharing vertices I and the corresponding induced edges, do there exist edges
E′ between G1 − I and G2 − I such that the graph G1 ∪ G2 ∪ E′ belongs to the graph class.
This equivalence implies that the simultaneous representation problem is closely related to other
well-studied classes in the literature, namely, sandwich graphs and probe graphs.

We give efficient algorithms for solving the simultaneous representation problem for interval
graphs, chordal graphs, comparability graphs and permutation graphs. Further, our algorithms
for comparability and permutation graphs solve a more general version of the problem when there
are multiple graphs, any two of which share the same common graph. This version of the problem
also generalizes probe graphs.
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Chapter 1

Introduction

A graph is a combinatorial structure that models the pairwise relations between a set of objects.
The vertices or nodes of the graph denote the set of objects and the edges represent the pairwise
relations between the vertices. An edge consists of a pair of vertices that are said to be adjacent.
Graphs arise naturally in numerous settings: road networks, where vertices denote cities and
edges may represent how the cities are connected by highways; social networks, where vertices
denote people and edges may represent the friendship relation between them; scheduling, where
vertices denote events and edges represent the overlap information between events, etc.

Adjacency lists and adjacency matrices are the most common ways to represent graphs. An
adjacency list consists of a list of sets, one for each vertex v, consisting of vertices adjacent to v.
This representation is usually good for sparse graphs, i.e. graphs with a few edges. An adjacency
matrix is an n × n matrix, where n is the number of vertices, and where the (i, j) entry of the
matrix represents whether vertices i and j are adjacent. This representation is usually good for
dense graphs, i.e. graphs with many edges.

Although adjacency lists and adjacency matrices are appropriate for representing general
graphs they are not always the best at representing special graphs. Many graphs arising in
practice can be represented in a more concise and intuitive way that conveys their structure. For
example: A planar graph can be represented in the plane with points for vertices and non-crossing
curves representing edges. An interval graph can be represented in the real line with intervals for
vertices and intersection of intervals representing edges. Such representations are desirable for
several reasons including the following:

1. They make it easier for humans to understand the graphs. For example, in graph drawing
and graph visualization it is preferable to find a planar drawing or a near-planar drawing
of a graph [71].

2. They make it easier for computers to store the graphs. For example, although an interval
graph can be dense, it can be stored in O(n logn) bits (n is the number of vertices), by
computing an interval representation and storing the order of the interval end points [77].

3. They are a useful tool in designing and analyzing algorithms, for decision and optimization
problems on the graph. For example, finding a maximum independent set (maximum
number of vertices that are pairwise non-adjacent) is a hard problem for general graphs.
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However for planar graphs, Baker’s algorithm [3] can be used to obtain a polynomial-
time approximation scheme (an algorithm whose solution is guaranteed to be ‘close’ to the
optimum). Baker’s algorithm [3] and the analysis critically use the recursive structure of
a planar embedding. The algorithm can be used to obtain polynomial-time approximation
schemes for several other NP-hard problems on planar graphs including minimum vertex
cover, minimum dominating set and minimum edge dominating set.

Spinrad’s book [77] on “Efficient Graph Representations” presents elegant representations for
many types of graphs. It also contains algorithms that use representations for recognizing graph
classes or for solving certain optimization problems on them.

In this thesis, we study the concept of “simultaneous representation” for several types of
graphs. The idea is to find representations for two graphs that share some common vertices
and edges, and ensure that the common vertices and edges are represented in the same way.
Simultaneous representation problems arise in any situation where two related graphs should be
represented consistently. A main instance is for temporal relationships, where an old graph and
a new graph share some common parts. Pairs of related graphs arise in many other situations,
for example, two social networks that share some members, two conference schedules that share
some (plenary) talks, overlap graphs of DNA fragments of two similar organisms, floor plans of
two adjacent floors sharing some rooms, circuit graphs of two adjacent layers on a computer chip,
etc. In this thesis we study the simultaneous representation problem for several graph classes
including planar graphs, interval graphs, chordal graphs, comparability graphs and permutation
graphs. These classes of graphs are of enduring interest because of their many applications. The
famous books of Roberts [74] and Golumbic [44] give an excellent introduction and present many
applications of these graph classes. We now explain how the simultaneous representation problem
is defined on each of these classes starting with planar graphs.

Planar graphs are one of the most fundamental class of graphs and their study has generated
many deep results [70, 69, 71]. Many classical and contemporary problems and theorems in graph
theory involve planar graphs. For example Euler’s formula connecting the number of vertices,
faces and edges of a convex polyhedron is one of the earliest results on planar graphs (the graph
formed by the edges and vertices of three-dimensional convex polyhedron is planar). The famous
four-color theorem states that a planar graph can be colored with 4 colors, i.e. each vertex can
be assigned one of 4 colors in such a way that no two adjacent vertices have the same color.
Several geometric representations are known for planar graphs. Fáry’s theorem [54] states that
any planar graph can be drawn with non-crossing straight edges. The circle packing theorem [60]
says that a graph is planar if and only if each vertex can be represented with a disk on the plane
so that two vertices are adjacent in the graph if and only if their corresponding disks touch each
other. Planar graphs arise in many settings including road/rail networks, maps, VLSI circuits,
etc.

The simultaneous representation problem for planar graphs is defined as follows. Two planar
graphs G1 and G2 sharing some vertices and edges are said to have simultaneous planar em-
beddings or to be simultaneously planar if they have planar drawings, such that a shared vertex
[edge] is represented by the same point [curve] in both drawings. Note that edges belonging to a
graph are not allowed to cross in the drawing. Figure 1.1 shows two graphs that are simultane-
ously planar. Simultaneous planar representations are desirable for representing pairs of related
planar graphs and have applications in graph visualization and graph drawing, for example, in
representing two related VLSI circuits that share some components or in displaying two local
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portions of a large graph that share some vertices. The notion of simultaneous representation or
drawing is also desirable for representing two related non-planar graphs, though finding such a
representation is more difficult for them.

The problem of finding simultaneous planar embeddings has been introduced by Braß et
al. [13] in 2003 and since then the problem and its variants have been studied extensively in the
literature. A major open question in the literature is whether simultaneous planarity for two
graphs can be tested in polynomial time. One of our main results in this thesis is a linear-time
algorithm for testing the simultaneous planarity of any two graphs that share a 2-connected
subgraph. Our algorithm also extends to the case of k planar graphs, where each vertex [edge] is
either common to all graphs or belongs to exactly one of them.

Figure 1.1: Two graphs with a simultaneous planar embedding. Solid nodes and edges are
common to both graphs, dashed nodes and edges belong to the first graph, dotted nodes and
edges belong to the second graph. Note that edges of different graphs are allowed to cross.

Next we introduce the notion of simultaneity for intersection graph classes and comparability
graphs. An intersection graph is a graph where each vertex can be associated with a set in such
a way that two vertices are adjacent in the graph if and only if their associated sets overlap.
The intersection representation of such a graph is defined as the sets associated with all the
vertices and the graph is called as the intersection graph of these sets. Any graph can be viewed
as an intersection graph by associating each vertex with the set of edges incident to it. In this
case the intersection representation is the same as the adjacency list representation of the graph.
However when the sets associated with vertices are restricted to be special, e.g. intervals, disks,
line segments, subtrees etc., we get interesting special graphs.

Note that interval graphs are defined as the intersection graphs of intervals on the real line.
The earliest known application of interval graphs is in showing that genes are arranged in a linear
fashion in a chromosome [77]. Interval graphs arise naturally in many scheduling problems: the
schedule of courses at a university, the schedule of jobs to machines, the schedule of meetings
at a congress etc. For example, in a course schedule, each course corresponds to a vertex and
is assigned a time interval and two vertices are adjacent if and only if the corresponding time
intervals overlap. Interval graphs also have an application in physical mapping of DNA. One
of the techniques to find the structure of DNA involves cutting it into small fragments that are
easier to analyze. Pairs of fragments are then tested for overlap using chemical experiments. If
all pairs of fragments are tested for overlap then the problem is equivalent to finding an interval
representation from the graph generated by fragment overlaps. We give more details about the
application in chapter 3.2.

Let G1 = (V1, E1) and G2 = (V2, E2) be two interval graphs sharing some vertices I and the
edges induced by I (the set of edges whose endpoints are in I are the same in both the graphs).
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G1 and G2 are said to be simultaneous interval graphs if there exist interval representations R1

and R2 of G1 and G2 respectively, such that any vertex of I is represented by the same interval in
both R1 and R2. For example, Figures 1.2(a) and 1.2(b) show two simultaneous interval graphs
and their interval representations with the property that vertices common to both graphs are
assigned to the same interval. Figure 1.2(c) shows two interval graphs that are not simultaneous
interval graphs, since a consistent representation doesn’t exist. This is because in any interval
representation of G1, the right end point of interval b should appear between the right end points
of a and c, because of the path a, b, d, c. On the other hand, in any interval representation of G2,
the right end point of interval a should appear between the right end points of a and c, because
of the path b, a, f, c.

Simultaneous interval graphs arise in several settings, for example, DNA structures of two
organisms sharing some fragments, two conference schedules that share some plenary talks and
job schedules on two machines in which certain jobs are processed synchronously. Simultaneous
interval graphs may also have an application in physical mapping of DNA as a special case of
the interval graph sandwich problem (see chapter 3.2 for details). Our second main result is an
efficient algorithm for recognizing simultaneous interval graphs.

The simultaneous representation problem can be defined in a similar way for any other in-
tersection class. Let C be any intersection graph class and let G1 = (V1, E1) and G2 = (V2, E2)
be two graphs in C, sharing some vertices I and the edges induced by I. G1 and G2 are said
to be simultaneous C-representable graphs or simultaneous C graphs if there exist intersection
representations R1 and R2 of G1 and G2 such that any vertex of I is represented by the same
object in both R1 and R2. The simultaneous C representation problem asks whether G1 and G2

are simultaneous C graphs.

a

b

c

d
f

a

b

c

d
f

e e
a

b

c

de

f
G1 G2 G1 G2

(a) (b) (c)

Figure 1.2: The graphs in (a) are simultaneous interval graphs since they have a consistent
representation as shown in (b). Graphs in (c) are not simultaneous interval graphs.

Chordal graphs and permutation graphs are both intersection graphs and are well-studied in
the literature. Chordal graphs are graphs with no induced cycles of length greater than 3. They
are a generalization of interval graphs and can be characterized as the intersection graphs of
subtrees of a tree (interval graphs are the intersection graphs of subtrees of a path). Permutation
graphs are the intersection graphs of a family of line segments that connect two parallel lines.
We study the simultaneous representation problem for both of them and give efficient recognition
algorithms. Simultaneous chordal graphs, when defined for multiple graphs, have an application in
constructing perfect phylogenies. A phylogeny is a tree that represents the evolutionary branching
of a set of species (see section 3.2 for more details).

We now define comparability graphs and explain how the simultaneous representation problem

4



is defined on them. A directed graph or a digraph is a graph where each edge has a direction. A
digraph is said to be transitive if for any three vertices a, b, c, the existence of (directed) edges,
from a to b and from b to c implies the existence of an edge from a to c. A transitive orientation
of an undirected graph is an assignment of a direction (or orientation) to each edge such that the
resulting digraph is transitive. Not all graphs have a transitive orientation (e.g. a cycle of length
5 does not). Comparability graphs are defined as the graphs that have a transitive orientation.

Comparability graphs are not known to be intersection graphs, though their complements
are intersection graphs. However, we can define the simultaneous representation problem on
comparability graphs as follows. Two comparability graphs G1 and G2 sharing some common
vertices I and the edges induced by I are said to be simultaneous comparability graphs if there
exist transitive orientations T1 and T2 of G1 and G2 (respectively) such that any common edge
is oriented in the same way in both T1 and T2. For example, the graphs in figure 1.3.1 are
simultaneous comparability graphs as demonstrated by the orientation in figure 1.3.2. On the
other hand the graphs in figure 1.3.3 are not simultaneous comparability graphs, as orienting
edge say ab, say from a to b, forces the orientation of all other edges and in particular the edge
gd is forced to go from g to d in G1 and from d to g in G2, as shown in figure 1.3.4. Note that
orienting ab from b to a instead would have a similar problem. Our third main result is an efficient
algorithm for recognizing simultaneous comparability graphs.

a

c
b

d

e

f

G1 G2

a

c
b

d

e

f

G1 G2

(1) (2)

a

c
b

d

e

f

G1 G2

a

c
b

d

e

f

G1 G2

(3) (4)

g g

Figure 1.3: The graphs in (1) are simultaneous comparability graphs as shown by the orientation
in (2). The graphs in (3) are not simultaneous comparability graphs.

Our results on simultaneous intersection graphs and simultaneous comparability graphs rely
on a fundamental result that shows that the problem is equivalent to a certain graph augmentation
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problem. Let C be any intersection graph class or the class of comparability graphs. We show
that the simultaneous C representation problem for G1 and G2 is equivalent to the following graph
augmentation problem: Do there exist edges E′ ⊆ V1− I×V2− I such that the augmented graph
(V1 ∪ V2, E1 ∪E2 ∪E

′) belongs to C. Consider the graphs in figure 1.2(a) and their simultaneous
interval representation in figure 1.2(b). The interval representation contains all the intersections
corresponding to the edges of G1 ∪ G2 and some additional edges namely, ef and fd. The
additional edges must indeed come from V1−I×V2−I, and adding these edges to G1∪G2 makes
it an interval graph. Conversely, the existence of such augmenting edges that can make G1 ∪G2

an interval graph implies that G1 and G2 are simultaneous interval graphs. Theorem 2.1 shows
this formally for intersection classes and Theorem 6.1 proves the equivalence for comparability
graphs.

This equivalence implies that simultaneous representation problems are closely related to
graph sandwich problems and probe graphs. In the graph sandwich problem for C, given a graph
H = (V,E) and a set of ‘optional edges’ Eo incident on V , where E ∩ Eo = ∅, we have to
determine whether H can be converted into a class C graph by adding certain edges from Eo.
Thus the simultaneous representation problem for C, is a special case of graph sandwich problem
for C, in which the set of optional edges induce a complete bipartite graph. Probe graphs are
another special case, where the set of optional edges induce a clique. However the graph sandwich
problem is NP-hard for many interesting classes of graphs including interval graphs, chordal
graphs, comparability graphs and permutation graphs. More details about sandwich problems
and probe graphs are presented in chapter 3.

Simultaneous representation problem can be defined for multiple graphs, where any two graphs
share some common vertices and the edges induced by them. This is equivalent to a graph
sandwich problem where the optional edges join pairs of vertices from different graphs. In this
thesis, we consider a special case of the problem, where there are multiple graphs (say r of them),
any two graphs share the same the same common graph. In other words, every vertex or edge
is either common to all the graphs or belongs to exactly one of the graphs. This version of the
problem is equivalent to a graph sandwich problem where the set of optional edges induce a
complete r-partite graph, for some r. Thus this definition also generalizes probe graphs.

In this thesis, we give efficient algorithms for recognizing simultaneous interval graphs, si-
multaneous chordal graphs, simultaneous comparability graphs and simultaneous permutation
graphs. More specifically, given graphs G1 = (V1, E1) and G2 = (V2, E2) sharing a set I of
vertices and the edges induced by I, with n = |V1 ∪ V2| and m = |E1 ∪ E2|, we give:

1. An O(n3) algorithm to determine whether G1 and G2 are simultaneous chordal graphs.

2. An O(n2 logn) algorithm to determine whether G1 and G2 are simultaneous interval graphs.

3. An O(nm) algorithm to determine whether G1 and G2 are simultaneous comparability graphs.

4. An O(n3) algorithm to determine whether G1 and G2 are simultaneous permutation graphs.

Further, for comparability graphs and permutation graphs, our algorithm can solve the ver-
sion of problem for multiple graphs where the intersection of any two graphs is the same. The
techniques used to obtain the above results are independent of each other, except that our al-
gorithm for simultaneous permutation graphs uses the algorithm for simultaneous comparability
graphs as a black box.
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The rest of the thesis is organized as follows. Chapter 2 gives notation, definitions and
preliminaries. It also contains some crucial results that will be used in the rest of the thesis. In
chapter 3, we discuss the background on several related problems. The remaining chapters are
independent of each other and can be read in any order. In chapters 4, 5, 6 and 7, we study the
simultaneous representation problem for chordal, interval, comparability and permutation graphs
respectively. In chapter 8, we study the problem of testing simultaneous planarity, when the
common graph is 2-connected. Finally we present conclusions and open problems in chapter 9.
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Chapter 2

Preliminaries

In this chapter, we give notation and basic definitions and prove some preliminary theorems that
will be used in the remainder of the thesis. The chapter is organized as follows. In section 2.1,
we define the graph classes used or mentioned in this thesis. We also define the modular decom-
position of a graph in this section, as we use it in explaining related work. Section 2.2 defines
PQ-trees and their properties. PQ-trees play a major role in this thesis and are used in recogniz-
ing simultaneous interval graphs and in testing simultaneous planarity. In section 2.3, we define
the simultaneous representation problem for intersection graphs and comparability graphs, on a
set of graphs, where any two graphs may share some vertices. We also define a special arrange-
ment of graphs called ‘sunflower graphs’ which are the main focus of this thesis. Our results on
simultaneous interval, chordal, comparability and permutation representation problems assume
that the input graphs are sunflower graphs. We also show in section 2.3 that the simultaneous
representation problem for any intersection graph class is equivalent to a graph augmentation
problem.

Throughout the thesis we only consider simple graphs, with no self loops. The graphs will
be undirected unless otherwise specified. For a graph H, we use V (H) and E(H) to denote its
vertex set and edge set respectively. An edge between vertices u and v is denoted by (u, v) or uv.
A directed edge from u to v is denoted by −→uv. Given a set S ⊆ V (H) of vertices, we use H[S]
to denote the graph induced by S. We use E(S) as a shorthand for E(H[S]), when the graph
H is clear from the context. Given a vertex v and a set of edges A, we use NA(v) to denote the
neighbors of v w.r.t A i.e., the vertex set {u : (u, v) ∈ A}. Also N(v) denotes all the neighboring
vertices of v and N [v] = N(v) ∪ {v}. We use EH(v) to denote the edges incident to v i.e., the
edge set {(u, v) : u ∈ V (H), (u, v) ∈ E(H)}. We use H − v to denote the graph obtained by
removing v and its incident edges from H.

Given a graphG = (V,E), its complement is defined as the graph Ḡ = (V, Ē), where Ē consists
of all edges between vertices in V which are not present in E. Given two graphs G1 = (V1, E1)
and G2 = (V2, E2), their union is defined as the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). If E′ is a
set of edges incident on V1, then G1 ∪ E′ is the graph G1 ∪ (V1, E

′).

2.1 Definitions

In this section, we define the main graph classes used or mentioned in this thesis. We also define
modular decomposition, as we need it in explaining related work.
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Intersection graph. An intersection graph is one that has an intersection representation con-
sisting of an object for each vertex such that there is an edge between two vertices if and only if
the corresponding objects intersect. Every graph is an intersection graph because we can define
the object associated with each vertex to be the set of edges incident to it. However, when the
objects are restricted to be special sets (e.g., intervals, subtrees, disks, line segments, etc) we get
interesting classes.

Chordal graph. A chord in a cycle is an edge that connects two non-consecutive vertices in the
cycle. Chordal graphs are defined as the graphs in which every cycle of length greater than 3 has
a chord. Chordal graphs have several applications including in sparse matrix computations [7]
and in constructing perfect phylogeny [77]. A number of characterizations are known for chordal
graphs. We list a few of them here.

Chordal graphs can be characterized as the intersection graphs of subtrees of a host tree [44].
In other words, given a chordal graph, we can find a host tree and a family of subtrees of the
host tree, one for each vertex, in such a way that two vertices are adjacent in the graph if and
only if their corresponding subtrees share a vertex. There exists a host tree in which the nodes
correspond to the maximal cliques of the graph and for each vertex the maximal cliques containing
the vertex form a (connected) subtree [7]. Such a tree is called a clique tree of the graph.

A vertex v is said to be simplicial if N(v) induces a clique. A perfect elimination ordering
is an ordering v1, v2, . . . , vn of the vertices of the graph such that each vi is simplicial in the
subgraph induced by {vi, . . . , vn}. Chordal graphs are characterized by the existence of a perfect
elimination ordering [44].

A minimal separator of a graph G = (V,E) is a minimal set S of vertices whose removal
separates a pair of vertices u, v ∈ V − S. A vertex x is LB-simplicial if every minimal separator
contained in N(x) is a clique. Chordal graphs can be characterized as graphs whose vertices are
all LB-Simplicial [63].

Comparability graph. A graph is a comparability graph if its edges can be transitively oriented,
i.e. for any three vertices a, b, c in the graph whenever the directed edges from a to b and from b
to c exist in the orientation, the edge ac must be present in the graph and must be oriented from
a to c. Note that a transitive orientation is acyclic by definition, as we do not allow self-loops.
Comparability graphs are not known to have a characterization as intersection graphs. However
co-comparability graphs (i.e., complements of comparability graphs) can be characterized as the
intersection graphs of continuous real-valued functions over some interval [47].

Permutation graph. A graph G = (V,E) on vertices V = {1, . . . , n} is a permutation graph
if there exists a permutation π of the numbers 1, 2, . . . , n such that for all 1 ≤ i ≤ j ≤ n,
(i, j) ∈ E if and only if π(i) > π(j). Equivalently, G = (V,E) is a permutation graph if and
only if there are two parallel lines l and p and a set of line segments each connecting a distinct
point on l with a distinct point on p such that G is the intersection graph of the line segments [44].

Interval graph. A graph is an interval graph if it is the intersection graph of intervals on the
real line. Equivalently, a graph is an interval graph if it is chordal and if its complement is
a comparability graph [44]. Thus interval graphs are a subclass of chordal graphs and also a
subclass of co-comparability graphs.
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The clique matrix of a graph is a 0-1 matrix whose columns correspond to the maximal cliques
and whose rows correspond to the vertices. An entry at row i and column j is 1 if and only if the
clique at column j contains the vertex that corresponds to i. It is well known that a graph is an
interval graph if and only if its columns can be permuted so that in each row all the 1s appear
consecutively [44]. The latter property is called the consecutive 1s property.

An interval representation of a graph is a set of intervals whose intersection defines the graph.
We assume without loss of generality that no two interval end points are the same. A combinato-
rial interval representation or an interval realizer is the ordering of the end points of an interval
representation.

Planar graphs. A graph is a planar graph if it can be embedded (or drawn) in the plane with
points for vertices and curves for edges in such a way that no two edges cross each other. Planar
graphs cannot be characterized as intersection graphs, as any intersection class of graphs must
contain the class of complete graphs. However, Scheinerman’s conjecture [75], which was proved
recently by Chalopin and Goncalves [15], states that planar graphs are a subclass of the intersec-
tion graphs of sets of line segments in the plane.

Weakly chordal graphs. A graph is weakly chordal if neither the graph nor its complement
contain an induced cycle of length greater than 4 [53]. Thus the graphs are closed under taking
complement and properly contain the class of chordal graphs.

Strongly chordal graphs. A graph is strongly chordal if it is chordal and every even cycle of
size at least 6 has a chord that divides the cycle into two odd paths [36].

Proper interval graphs. An interval graph is said to be a proper interval graph if it has an
interval representation in which no interval is contained inside any other [44].

Unit interval graphs. An interval graph is said to be a unit interval graph if it has an interval
representation in which every interval has the same (unit) length [44].

Distance hereditary graphs. A graph is distance hereditary if it is connected and for every
pair of vertices in the graph, the distance between them is the same in every induced subgraph
of the graph [4].

Split graphs. A graph is a split graph if it can be partitioned into a clique and an independent
set. Split graphs are a subclass of chordal graphs [44].

Cographs. A graph is a cograph if it doesn’t contain an induced path of length 4. Connected
cographs are known to be distance hereditary graphs [44].

Chordal bipartite graphs. A graph is chordal bipartite if it is bipartite and doesn’t contain
induced cycles of length greater than 4 [45].
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Bipartite distance hereditary graphs. Bipartite distance hereditary graphs are distance
hereditary graphs that are also bipartite.

Perfect graphs. A graph G is perfect if for every induced subgraph H, the chromatic number
of H is the same as the size of the maximum clique in H [44]. The chromatic number of a graph
is defined as the minimum number of colors that can be assigned to the graph such that no two
adjacent vertices have the same color. Perfect graphs contain many other graph classes including
weakly chordal graphs, comparability and co-comparability graphs.

Trivially perfect graphs. A graph is trivially perfect if it is chordal and is a cograph. Thus
trivially perfect graphs do not have an induced cycle of length greater than 3 and also do not
have an induced path of length 4 [44].

Circular arc graphs. Circular arc graphs are defined as the intersection graphs of a family
of closed arcs of a circle [44]. They are a generalization of interval graphs. Proper circular arc
graphs and unit circular arc graphs are defined analogous to proper interval graphs and unit
interval graphs.

Circle graphs. A graph is said to be a circle graph if it is the intersection graph of chords of a
circle [77].

Ptolemaic graphs. Let d(u, v) denote the distance between vertices u and v in the graph. A
graph is said to be ptolemaic if it is connected and every four vertices u, v, w, x satisfy the in-
equality: d(u, v)d(w, x) ≤ d(u,w)d(v, x) + d(u, x)d(v, w) [59].

Threshold graphs. A graph is a threshold graph if there exists a real number t and a function
w that assigns a value w(v) to v, for all v, such that for any two vertices u, v in the graph, uv is
an edge if and only if w(u) +w(v) ≥ t. Threshold graphs are a special case of many other graph
classes including cographs, split graphs, trivially perfect graphs and interval graphs [44].

Modular decomposition. The modular decomposition of a graph is a tree that represents a
‘structure’ of the graph. It is introduced by Gallai [40, 77] and has several applications, for
example, in obtaining a linear-time algorithm for transitively orienting a comparability graph.
We don’t use modular decomposition in our thesis, except in explaining related work in chapter 3.

Let G = (V,E) be a graph. A set I ⊆ V is said to be a module of G, if for each vertex
y ∈ V − I, either y is adjacent to all the vertices of I, or to none of the vertices of I. A module
M is said to be a strong module, if for every other module M ′, either M ⊇ M ′ or M ⊆ M ′

or M ∩M ′ = ∅. The strong modules of G form a modular decomposition tree T by inclusion
order, with the root node representing V , and the leaf nodes representing the singleton modules
(vertices) of G. It turns out that T is a compact (linear-space) representation of all modules of
G.

Each node of T is of one of three types: series, parallel or prime. Let vM denote the node
of T that represents the module M . If the graph G[M ] is disconnected then vM is said to be a
series node and its children correspond to the connected components of G[M ]. If the complement
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of G[M ] is disconnected then vM is said to be a parallel node and its children correspond to the
connected components of Ḡ[M ]. If G[M ] and its complement are both connected then vM is said
to be a prime node and it children are the maximal proper modules of G[M ]. (The maximal
modules of a prime module are always unique).

2.2 PQ-Trees

PQ-trees play an important role in this thesis. We use them heavily in chapters 5 and 8. PQ-trees
were discovered by Booth and Lueker [10] in 1976 and have applications in recognizing interval
graphs, testing for planarity and testing whether a matrix has the consecutive-ones property. We
first review PQ-trees and then in subsection 2.2.1 we define a few operations on them.

A PQ-tree represents the permutations of a set of elements satisfying a family of constraints.
Each constraint specifies that a certain subset of elements must appear consecutively in any
permutation. The leaves of a PQ-tree correspond to the elements of the set, and internal nodes
are labeled ‘P’ or ‘Q’, and are drawn using a circle or a rectangle, respectively. PQ-trees are
equivalent under arbitrary reordering of the children of a P-node and reversals of the order of
children of a Q-node. We consider a node with two children to be a Q-node. A leaf-order of a
PQ-tree is the order in which its leaves are visited, in an in-order traversal of the tree. The set
of permutations represented by a PQ-tree is the set of leaf-orders of equivalent PQ-trees. Given
a PQ-tree T on a set U of elements, adding a consecutivity constraint for a set S ⊆ U reduces
T to a PQ-tree T ′, such that the leaf-orders of T ′ are precisely the leaf-orders of T in which the
elements of S appear consecutively. Booth and Lueker [10] gave an efficient implementation of
PQ-trees that supports this operation in amortized O(|S|) time.

PQ-trees can capture all possible combinatorial interval representations of an interval graph
and all possible combinatorial planar embeddings of a planar graph. In interval graph recognition,
a PQ-tree is used to capture the set of linear orderings of the maximal-cliques of the graph. The
leaves of the PQ-tree correspond to maximal-cliques of the graph. In planarity testing, a PQ-tree
is used to capture the set of circular orderings of unembedded edges around a partially-embedded
component (see chapter 8 for details). Although PQ-trees were invented to represent linear orders,
they can be reinterpreted to represent circular orders as well [51]. We explain this in chapter 8.

2.2.1 Intersection and Projection of PQ-Trees

In this subsection, we define a few basic operations on PQ-trees. These operations are used in
chapters 5 and 8.

The projection of a PQ-tree on a subset of its leaves S is a PQ-tree obtained by deleting all
elements not in S and simplifying the resulting tree. Simplifying a tree means that we (recursively)
delete any internal node that has no children, and delete any node that has a single child by making
the child’s grandparent become its parent. This can easily be implemented in linear time.

Given two PQ-trees on the same set of leaves (elements), we define their intersection to be the
PQ-tree T that represents exactly all orders that are leaf-orders in both trees. This intersection
can be computed as follows.

1. Initialize T to be the first PQ-tree.
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2. For each P-node in the second PQ-tree, reduce T by adding a consecutivity constraint on
all its descendant leaves.

3. For each Q-node in the second tree, and for each pair of adjacent children of it, reduce T
by adding a consecutivity constraint on all the descendant leaves of the two children.

Using the efficient PQ-tree implementation such an intersection can be computed in time
linear in the size of the two PQ-trees (see Booth’s thesis [9]).

2.3 Simultaneous Intersection Graphs and Sunflower Graphs

In this section, we formally introduce the simultaneous representation problem for intersection
graphs and comparability graphs. We define an arrangement of graphs called the “sunflower
graphs” and study the simultaneous representation problem on them. We also present some
basic results on these graphs.

We first define the general version of simultaneous representation problem for intersection
graph classes and comparability graphs. Let G1, G2, . . . , Gr be r graphs, where a vertex/edge
may be present in multiple graphs. We then say that the graphs share the vertex/edge.

Let C be an intersection graph class. Then G1, G2, . . . , Gr are said to be simultaneous C graphs
if for each i ∈ {1, . . . , r}, there exists an intersection representation Ri for Gi (in C), such that
any vertex v that appears in multiple graphs is assigned to the same object in all the represen-
tations of the graphs, i.e. v is assigned to the same object in all the representations that contain
v. The simultaneous C representation problem for G1, G2, . . . , Gr asks whether G1, G2, . . . , Gr are
simultaneous C graphs. Observe that, as C is an intersection class, if G1, G2, . . . , Gr are simul-
taneous C graphs, then each of the individual graphs must belong to C and further they must
satisfy the following necessary condition: If an edge uv is present in some graph, then any other
graph that contains vertices u and v must also contain the edge uv. Hence when considering the
simultaneous representation problem for interval graphs, chordal graphs and permutation graphs
we may assume that the input graphs satisfy this condition. We also make this assumption for
simultaneous comparability graphs (defined below), though they are not known to be intersection
graphs.

In the case where r = 2, which is our starting point, this necessary condition can be stated
very simply: the edges induced by the common vertices must be the same in both graphs.

G1, G2, . . . , Gr are said to be simultaneous comparability graphs if for each i ∈ {1, . . . , r}, there
exists a transitive orientation Wi of Gi such that every edge e is oriented the same way in all the
orientations that contain e.

The simultaneous representation problem is interesting in the general case, but in this thesis,
we mainly concentrate on the problem for 2 graphs. In some cases, our techniques extend to mul-
tiple graphs with a special kind of intersection structure. To capture this intersection structure,
we define a family of graphs called the ‘sunflower graphs’. Formally, we define the r-sunflower
graphs to be a family of r graphs G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er), sharing some
vertices I and the edges induced by I, i.e., for any two distinct i, j ∈ {1, . . . , r}, Vi ∩ Vj = I
and Gi[I] = Gj [I]. Additionally if G1, G2, . . . Gr all belong to a class C, then we use the term
r-sunflower C graphs to denote them. Figure 2.1 shows the structure of 5-sunflower graphs.
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An augmenting edge in r-sunflower graphs is an edge whose end points appear in distinct
graphs. In other words, an augmenting edge belongs to the set {

⋃
(Vi − I) × (Vj − I) | i, j ∈

{1, . . . , r} ∧ i 6= j}. Let C be any graph class. The sunflower C augmentation problem for
G1, G2, . . . , Gr asks whether there exists a set A of augmenting edges such that G1∪G2∪· · ·Gr∪A
is a class C graph. Gi, i ∈ {1, . . . , r} are said to be augmentable to a C graph if they satisfy the
sunflower C augmentation problem.

This problem can be defined for any graph class C (not just for intersection graph classes)
and is closely related to probe graphs and graph sandwich problems (see chapter 3).

G1 − I

G2 − I

G3 − I

G4 − IG5 − I

I

Figure 2.1: The structure of 5-sunflower graphs in which the graphs G1, . . . , G5 share the vertices
of I and its induced edges.

We now give an alternative characterization of simultaneous C representation problem for
sunflower graphs in terms of the sunflower C augmentation problem. The alternative formulation
will be useful in relating the simultaneous representation problem to other well-studied problems
in the literature. It will also be heavily used in our algorithmic approaches. For intuition,
consider the interval graphs G1, G2 in Figure 1.2(a). The intersection graph of the intervals in
Figure 1.2(b) is an interval graph that contains all the edges of G1 ∪G2 and certain augmenting
edges. Thus G1, G2 can be augmented to an interval graph. In fact (as we formalize below) the
existence of such an augmenting set of edges that can create an interval graph is equivalent to
the simultaneous interval representation problem for G1 and G2. The following theorem proves
this for any intersection graph class.

Theorem 2.1. Let C be an intersection graph class. Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr =
(Vr, Er) be r-sunflower C graphs (sharing some vertices I and the edges induced by I). Then
Gi, i ∈ {1, . . . , r} are simultaneous C graphs if and only if they are augmentable to a C graph.

Proof. Let I be the set of vertices common to G1, . . . , Gr and let G = G1 ∪G2 ∪ · · · ∪Gr.

Let G1, . . . , Gr be simultaneous C graphs. For i ∈ {1, . . . , r}, let Ri be the intersection
representation of Gi, such that all Ri are consistent on I (i.e. each vertex in I is assigned to the
same object in all Ri). In this representation, let vertex v ∈ V (G) be mapped to object Tv. Now
consider the intersection graph Ga of {Tv : v ∈ V (G)}. Clearly Ga belongs to class C. Further
V (Ga) = V (G) and E(Ga) = E(G) ∪ A, where A is a set of augmenting edges. Thus G1, . . . , Gr

are augmentable to a C graph.

For the other direction, suppose G1, . . . , Gr are augmentable to a C graph. Then there exists
a set A of augmenting edges such that the graph Ga = G ∪ A belongs to class C. Now consider
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the intersection representation R of Ga. Then R maps each vertex v ∈ V (G) to a set Tv. For
i ∈ {1, . . . , r}, obtain a representation Ri of Gi by restricting the domain of R to Vi. Note that
Ri is an intersection representation of Gi, since Gi is the subgraph of G induced by Vi. Now
any vertex v in I is mapped to the same set (Tv) in all Ri. Thus G1, . . . , Gr are simultaneous C
graphs.

Theorem 2.1 also holds for comparability graphs and we prove this in Theorem 6.1.

Let G1, G2, . . . , Gr be r-sunflower graphs, sharing some vertices I. Then observe that their
complements Ḡ1, Ḡ2, . . . , Ḡr are also r-sunflower graphs that share I. The following theorem
shows the relationship between sunflower graphs and their complements.

Theorem 2.2. Let C be any graph class and let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er)
be r-sunflower C graphs. Then G1, . . . , Gr are augmentable to a C graph if and only if Ḡ1, . . . , Ḡr

are augmentable to a co-C graph.

Proof. Let I be the set of vertices shared by the graphs G1, . . . , Gr. Let G1, . . . , Gr be aug-
mentable to a C graph. Then there exists a set A of augmenting edges such that the graph
Ga = G1∪G2∪· · ·∪Gr∪A belongs to C. Let A′ = {

⋃
(Vi−I)×Vj−I) | i, j ∈ {1, . . . , r}∧i 6= j}−A.

Observe that A′ is a set of augmenting edges and the graph G′
a = Ḡ1 ∪ Ḡ2 ∪ · · · ∪ Ḡr ∪ A′ = Ḡa

belongs to co-C. Hence Ḡ1, . . . , Ḡr are augmentable to a co-C graph.

The proof of the converse is symmetric and hence the theorem holds.

Theorems 2.1 and 2.2 imply that for any intersection graph class C, solving the simultaneous
C representation problem for r-sunflower graphs efficiently implies that both sunflower C augmen-
tation problem for r graphs and sunflower co-C augmentation problem for r graphs can be solved
efficiently. Similarly, Theorems 6.1 and 2.2 imply that solving the simultaneous comparability
representation problem for r-sunflower graphs efficiently implies that both sunflower comparabil-
ity augmentation problem and sunflower co-comparability augmentation problem can be solved
efficiently for r graphs.
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Chapter 3

Related Work

The concept of ‘simultaneity’ has a substantial history for planar graphs. This thesis extends this
concept to intersection graphs, where the problem is closely related to some well known problems
in the literature: the graph sandwich problem and the probe graph recognition problem. In this
chapter we discuss these related problems and the results known for them.

3.1 Simultaneous Planar Embeddings

Versions of simultaneous planarity have received much attention in recent years. Brass et al. [13]
introduced the concept of simultaneous geometric embeddings of a pair of graphs—these are planar
straight-line drawings such that any common vertex is represented by the same point. Note that
a common edge will necessarily be represented by the same line segment. Estrella-Balderrama et
al. [33] showed that it is NP-hard to test if two graphs have simultaneous geometric embeddings.
Several results are known for pairs of restricted graphs. Brass et al. [13] proved that simultaneous
geometric embeddings always exist for pairs of paths, pairs of cycles and pairs of caterpillars. (A
caterpillar is a tree such that deleting its leaves results in a path.) Erten and Koburov [32] showed
the existence of a planar graph and a path with no simultaneous geometric embedding. Brass et
al. [13] found a pair of outer planar graphs that do not have a simultaneous geometric embedding.
This was improved by Geyer et al. [42] who found a pair of trees that do not admit a simultaneous
geometric embedding. This in turn was improved recently by Angelini et al. [2] who found a tree
and a path that do not have a simultaneous geometric embedding. Additionally the tree and the
path do not share an edge.

The generalization to planar drawings where edges are not necessarily drawn as straight line
segments but any common edge must be represented by the same curve was introduced by Erten
and Kobourov [32] and was called simultaneous embedding with consistent edges. Most other
papers follow the conference version of Erten and Kobourov’s paper and use the term simulta-
neous embedding with fixed edges (SEFE). In our paper we use the more self-explanatory term
“simultaneous planar embeddings.” A further justification for this nomenclature is that there
are combinatorial conditions on a pair of planar embeddings that are equivalent to simultaneous
planarity. Specifically, Jünger and Schultz give a characterization in terms of “compatible em-
beddings” [Theorem 4 in [57]]. Specialized to the case where the common graph is connected,
their result says that two planar embeddings are simultaneously planar if and only if the cyclic
orderings of common edges around common vertices are the same in both embeddings.
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Finding simultaneous planar embeddings is an open problem for 2 graphs. For 3 graphs,
Gassner et al. [41] showed that the problem is NP-complete. Several papers [32, 43, 39] show
that pairs of graphs from certain restricted classes always have simultaneous planar embeddings,
the most general result being that any planar graph has a simultaneous planar embedding with
any tree [39]. On the other hand, there is an example of two outerplanar graphs that have no
simultaneous planar embedding [39].

The graphs that have simultaneous planar embeddings when paired with any other planar
graph have been characterized [38]. In addition, Jünger and Schultz [57] characterize the common
graphs that permit simultaneous planar embeddings no matter what pairs of planar graphs they
occur in. There are efficient algorithms to test simultaneous planarity for biconnected outerplanar
graphs [38] and for a pair consisting of a planar graph and a graph with at most one cycle [37].

At the same time and independent of our work Angelini et al. [1] showed how to test simulta-
neous planarity of two graphs when the common graph is 2-connected. Their algorithm is based
on SPQR-trees, takes O(n3) time and is restricted to the case where the two graphs have the
same vertex set. In comparison, our algorithm for testing simultaneous planarity of two graphs
sharing a 2-connected subgraph runs in linear time and doesn’t require the two graphs to have
the same vertex set. Further, our algorithm can also solve the problem for multiple graphs, where
the shared graph is the same for every pair of graphs.

There is another, even weaker form of simultaneous planarity, where common vertices must be
represented by common points, but the planar drawings are otherwise completely independent,
with edges drawn as Jordan curves. Any set of planar graphs can be represented this way by
virtue of the result that a planar graph can be drawn with any fixed vertex locations [52, 72].

3.2 Graph Sandwich Problems

Graph sandwich problems were introduced by Golumbic, Kaplan and Shamir [46] in a seminal
paper and are defined as follows: For any graph property π, given graphs H1 = (V,E1) and
H2 = (V,E2) defined on the same set of vertices with H1 ⊂ H2, the π-sandwich problem asks
whether there exists a graph H ′ with property π such that H1 ⊆ H ′ ⊆ H2. The edges in H2−H1

are said to be the optional edges. Thus the π-sandwich problem asks whether we can add some
optional edges to H1 so that the resulting graph satisfies π.

Thus the sunflower π augmentation problem for r graphs (see section 2.3) is a special case of
the π-sandwich problem in which the set of optional edges induce a complete r-partite graph.

If property π is closed under edge addition (e.g. connectivity), then the π-sandwich problem
is equivalent to testing whether H2 satisfies π. Similarly, if π is closed under edge deletion
(e.g. planarity), then the problem is equivalent to testing whether H1 satisfies π. Thus graph
sandwich problems are interesting only for properties π that are not closed under edge additions
or deletions. Note that the π-sandwich problem for H1 and H2 is equivalent to the co-π̄ sandwich
problem for H̄2 and H̄1.

Golumbic, Kaplan and Shamir [46] mention several applications of graph sandwich problems
including the following:

1. Physical Mapping of DNA: One of the techniques for DNA sequencing involves cutting
the DNA into small fragments that are easier to analyze and to experimentally test for
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the overlap between pairs of fragments. The problem then is to arrange the fragments as
intervals along a line, so that their pairwise intersections match the experimental data. If
the tests are run on all pairs of fragments, then the problem is equivalent to an interval graph
problem, where vertices correspond to fragments and two fragments overlap if and only if
the vertices are adjacent. However in practice, experiments are inconclusive, incomplete or
may be expensive to test for all pairs of fragments. This ambiguity introduces the optional
edges. Thus the problem is equivalent to the graph sandwich problem for interval graphs.

2. Temporal Reasoning: Given a set of events and a specification that some pairs of events
intersect and some do not, the problem is to determine whether this information is consis-
tent. In other words, can we assign an interval for each event that satisfies the specification?
Clearly, this problem is equivalent to the graph sandwich problem for interval graphs, where
the set of optional edges corresponds to the pairs of events for which no specification is given.

3. Phylogenetic Trees: In evolutionary biology, the genealogical relationships between species
can be represented in a rooted tree-structure called the phylogeny. The leaves of the tree
correspond to the species and internal nodes correspond to ancestral species. In particular,
the least common ancestor of two leaves represents the nearest common ancestor species
of the two leaf species. There are many ways to construct phylogeny trees and the perfect
phylogeny problem is to find the best possible tree given the characteristics of the species.
More specifically, suppose each species has a set of characteristics, where each characteris-
tic can take one of several values (e.g., a characteristic can be ‘skull size’, whose value can
be ‘small’, ‘medium’ and ‘large’). The perfect phylogeny problem asks whether there is a
rooted tree whose leaves are the species, whose internal nodes have some value assigned
to each characteristic, in such a way that nodes with the same characteristic value form a
connected subtree.

Thus the problem involves constructing subtrees of a host tree and is thus connected to
chordal graphs. Buneman [14] discovered this connection and showed that the phylogeny
problem is equivalent to the problem of triangulating colored graphs (TCG) (see [77] for
more details), which in turn is a restriction of the graph sandwich problem for chordal
graphs. In section 4.2, we show that TCG is also a restriction of the simultaneous chordal
representation problem for r-sunflower graphs.

Golumbic, Kaplan and Shamir [46] studied the graph sandwich problem for various properties
π (i.e. for various graph classes). They gave polynomial-time algorithms for threshold, split and
cographs and showed that for comparability, permutation, chordal, circle and circular-arc graphs
the problem is NP-complete. Golumbic and Shamir [48] showed that the interval graph sandwich
problem is NP-complete. Kaplan and Shamir [58] proved that interval sandwich problem can be
solved in polynomial time when either: (1) the degrees of the input graphs and the clique size of
the solution graph are bounded; or (2) the degree of the solution graph is bounded.

Subsequently, graph sandwich problems have been studied for several properties by many
authors. A graph is said to be P4-sparse if every induced subgraph on 5 vertices contains at most
one path of length 4. Dantas et.al. [27] showed that the P4-sparse graph sandwich problem can be
solved in polynomial time. A graph G is (k, l) if it can be partitioned into at most k independent
sets and l cliques. Dantas et al. [26] showed that the (k, l) sandwich problem is NP-complete
when k + l > 2 and is polynomial-time solvable otherwise. A homogeneous set is a non-trivial
module of a graph (see section 2.1). Figueiredo et al. [28] gave an efficient algorithm for the
homogeneous set sandwich problem.
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The graph sandwich problem is known to be NP-complete for several other graph proper-
ties: strongly chordal graphs [29], chordal bipartite graphs [29], skew-partitions [79], and 1-join
compositions [30].

Habib et al. [49] studied variations of the graph sandwich problem in which the input graphs
are directed graphs or posets. They gave polynomial time algorithms for the interval poset
sandwich problem and the series-parallel poset sandwich problem.

3.3 Probe Graphs

Another graph concept closely related to that of simultaneous graphs is the concept of probe
graphs defined as follows: For any graph class C, given a graph G = (P ∪ N,E), where N is
an independent set, G is said to be a probe C graph, if it can be transformed into a C graph by
only adding edges between the vertices of N . Thus the probe graph recognition problem is a
special case of the graph sandwich problem in which the set of optional edges induces a clique.
Further, since a clique on k vertices can be viewed as a complete k-partite graph, the problem
of recognizing probe C graphs is a special case of the sunflower C augmentation problem for r
graphs, for appropriate r.

The problem of recognizing probe graphs was first studied for interval graphs [81, 68], where
it has an application in molecular biology, as a tool for physical mapping of DNA. As explained
in the previous section, one of the techniques for DNA sequencing involves cutting the DNA into
smaller fragments and testing the overlap between pairs of fragments. One approach to reduce
the number of overlap tests is to select a set of fragments called the ‘probes’ and test the overlap
information between two fragments if and only if at least one of them is a probe. Thus probe
interval graphs were invented to model this scenario.

Johnson and Spinrad [57] gave an O(n2) algorithm for recognizing probe interval graphs. They
first represent the interval graph induced by probes (i.e. G[P ]) as a Modular Decomposition-PQ-
Tree (MD-PQ-Tree). This is a variant of PQ-tree in which the leaves correspond to endpoints of
intervals, instead of maximal cliques. The tree is constructed from the modular decomposition of
the graph. The leaf-orders of the MD-PQ-tree correspond to all possible interval representations
of the graph. Next, they add non-probes one at a time and modify the MD-PQ-Tree by adding
the constraints imposed by each non-probe. This requires an extensive case-analysis and unfor-
tunately only a few cases are provided in [57], because of the page-limit. If all non-probes can
be successfully added then the graph is a probe interval graph. If the graph is a probe interval
graph, their algorithm constructs one possible interval realizer. However they claim that they
can modify the algorithm to represent all possible interval realizers.

Later, McConnell and Spinrad [67] gave an O(n +m log n) algorithm. They first extend the
modular decomposition by adding extra constraints on the modules. The resulting tree is called
the ∆-tree and it represents all possible realizers of an interval graph. McConnell and Spinrad [67]
show how to extend the ∆-tree to represent the realizers of a probe interval graph. Although
their algorithm is faster, its description and the correctness proof seem to be complicated.

Recently, a linear time algorithm was discovered by McConnell and Nussbaum [66]. Their
algorithm is also surprisingly simpler than the previous methods. They begin with a clique-matrix
of the graph (see section 2.1) induced by the probes and extend it by adding more constraints
(rows) and cliques (columns). They partition the non-probes into the following categories: (1)
Non-probes x such that N(x) contains one or more maximal cliques of G[P ]; (2) Non-probes x
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such that N(x) contains zero maximal cliques of G[P ]; and (3) Non-probes that are simplicial
vertices. They show that each of the non-probes in categories 1 and 2 introduces constraints
into the clique matrix and each non-probe in category 3 introduces a new column (clique) in the
clique-matrix. Finally, they prove that the given graph is a probe interval graph if and only if
the new matrix satisfies the consecutive 1’s property.

Several problems have been studied on probe interval graphs. Brandstadt et al. [12] showed
that probe interval graphs always have a tree 7-spanner: there exists a subtree of the probe
interval graph such that the distance between every pair of vertices in the tree is at most 7 times
the distance in the graph. They also gave an O(m log n) algorithm to find a tree 7-spanner.
Uehara [80] gives an O(n2) algorithm to solve the graph isomorphism problem for probe interval
graphs, using a variation of PQ-trees. Przulj and Corneil [73] showed that there are at least 62
forbidden subgraphs for 2-tree probe interval graphs.

Probe chordal graphs have been studied by Berry et al. [6], who gave an O(nm) time recogni-
tion algorithm. Recall that chordal graphs can be characterized as graphs whose vertices are all
LB-Simplicial [63]. Berry et.al [6] extend this characterization to probe chordal graphs. Given
a probe graph G = (P + N,E), they define a vertex x to be quasi LB-simplicial if every mini-
mal separator contained in N(x) is a probe clique (a clique if all the non-probes were to induce a
clique). They show that G is a probe graph if and only if each of its vertices is quasi LB-simplicial.

Chandler et al. [19] studied the probe problem for comparability and permutation graphs and
gave O(nm) and O(n3) algorithms respectively. Their algorithm for probe comparability graphs is
a straightforward extension of Golumbic’s algorithm for recognizing comparability graphs, though
the correctness proof is slightly complex. Using this they obtain an algorithm for recognizing
probe permutation graphs.

The probe graph recognition problem is also studied for several other classes including strongly
chordal graphs [22], chordal bipartite graphs [22], distance-hereditary graphs [18], bipartite
distance-hereditary graphs [18], threshold graphs [5], trivially perfect graphs [5], ptolemaic graphs [16],
split graphs [62] and cographs [61]. For all of these graphs, the problem is polynomial-time solv-
able. It is easy to see that for any graph class C, an algorithm for recognizing probe C graphs can
be used to obtain an algorithm for recognizing co-C graphs. Le and Ridder [62] have an interest-
ing conjecture that for any graph class C, the probe C graph recognition problem is polynomial
time solvable if and only if the recognition problem for class C is polynomial time solvable. This
was initially conjectured for perfect graphs and has been subsequently extended for all graph
classes [65].

Probe graphs have also been studied when the partition of vertices into probes and non-
probes is not explicitly given. Several graph classes can also be recognized under this restricted
setting including: chordal graphs [6], interval graphs [23], distance-hereditary graphs [24] and
cographs [62]. Recently, Chandler, Chang, Kloks and Peng have written a book on probe graphs
that contains most of these results and many open problems [21].

Our algorithms for simultaneous representation problem for chordal, comparability and per-
mutation graphs are a simple extension of the recognition algorithms for these classes, though
the proofs are a bit more involved. Hence our algorithms are also similar to the recognition
algorithm for probe graphs for these classes. However for comparability and permutation graphs
we can solve the version of the problem with multiple graphs, i.e., we can solve the simultane-
ous comparability representation problem and simultaneous permutation representation problem
for r-sunflower graphs, for arbitrary r. Thus we generalize the recognition algorithms for probe
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comparability and probe permutation graphs. Moreover our algorithm for comparability graphs
has the same time complexity as the best known algorithm for recognizing probe comparability
graphs. Our algorithm for determining whether 2 graphs are simultaneous interval graphs is a
non-trivial extension of the interval graph recognition algorithm and is not similar to any of the
algorithms proposed for recognizing probe interval graphs. We explain why this problem seems
to be ‘harder’ than the probe interval recognition problem in the beginning of chapter 5.
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Chapter 4

Simultaneous Chordal Graphs

In this chapter1, we give an efficient algorithm for determining whether two chordal graphs shar-
ing some vertices are simultaneous chordal graphs. In other words, we solve the simultaneous
chordal representation problem for 2-sunflower graphs. This implies that the sunflower chordal
augmentation problem and the sunflower co-chordal augmentation problem can be solved effi-
ciently for 2-sunflower graphs. We also show that the problem is NP-complete for r-sunflower
graphs.

Recall from section 2.1 that chordal graphs are characterized by the existence of a perfect
elimination ordering, i.e. there exists an ordering v1, . . . , vn of the vertices such that each vi is
simplicial in the subgraph induced by {vi, . . . , vn}.

4.1 Algorithm for 2-Sunflower Graphs

Let G1 = (V1, E1) and G2 = (V2, E2) be 2-sunflower chordal graphs, sharing some vertices I (and
the edges induced by I). As mentioned in chapter 2, we define an augmenting edge to be an edge
between V1 − I and V2 − I. Given G1, G2, and a set A of augmenting edges between V1 − I and
V2−I, we use (G1, G2, A) to denote the graph whose vertex set is V (G1)∪V (G2) and whose edge
set is E(G1) ∪ E(G2) ∪ A. Note that by Theorem 2.1, the simultaneous chordal representation
problem for G1, G2 is equivalent to asking whether there exists a set A of augmenting edges such
that the graph (G1, G2, A) is chordal. We solve the following generalized problem: Given G1, G2

and I (as above), and a set F of forced augmenting edges, does there exist a set A of augmenting
edges such that the graph (G1, G2, F ∪A) is chordal?

For a vertex v in G = (G1, G2, F ), we use N1(v) and N2(v) to denote the sets NE(G)(v)∩V (G1)
and NE(G)(v)∩V (G2) respectively. In other words, N1(v) (resp. N2(v)) denotes the neighbors of
v in graph G that belong to G1 (resp. G2). Note that if v ∈ V1−I, then N2(v) may be non-empty
because of F . Finally, we use C(v) to denote the set of augmenting edges with both endpoints
adjacent to v, i.e., C(v) = {(x, y) : x ∈ N1(v)− I, y ∈ N2(v)− I}. A vertex v in G = (G1, G2, F )
is said to be S-simplicial (where S stands for ‘simultaneous’), if N1(v) and N2(v) induce cliques
in G1 and G2 respectively.

Lemma 4.1. If G = (G1, G2, F ) is augmentable to a chordal graph, then there exists an S-
simplicial vertex v of G.

1The results presented in this chapter are joint work with Anna Lubiw [55].
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Proof. Let A be a set of augmenting edges such that the graph G′ = (G1, G2, F ∪ A) is chordal.
Because G′ is chordal it has a simplicial vertex, i.e. a vertex v such that NE(G′)(v) induces a
clique in G′. This in turn implies that N1(v) and N2(v) induce cliques.

Theorem 4.1. Let G1 = (V1, E1) and G2 = (V2, E2) be 2-sunflower chordal graphs. Let G =
(G1, G2, F ) and let v be any S-simplicial vertex of G. Then G is augmentable to a chordal graph
if and only if the graph Gv = (G1, G2, F ∪ C(v))− v is augmentable to a chordal graph.

Proof. Let I be the set of vertices common to G1 and G2.

If Gv is augmentable to a chordal graph, then there exists a set A of augmenting edges such
that G′

v = (G1, G2, F ∪ C(v) ∪ A) − v is chordal. We claim that G′ = (G1, G2, F ∪ C(v) ∪ A) is
chordal. Note that NE(G′)(v) = N1(v) ∪N2(v), which forms a clique in G′. Thus v is simplicial
in G′. Furthermore, G′ − v = G′

v is chordal. This proves the claim. Thus G can be augmented
to a chordal graph by adding the edges C(v) ∪A.

To prove the other direction, assume without loss of generality that v ∈ V1. Let A be a set of
augmenting edges of G such that the graph G′ = (G1, G2, F ∪ A) is chordal. Consider a subtree
representation of G′. In this representation, each node x ∈ V1 ∪ V2 is associated with a subtree
Tx and two nodes are adjacent in G′ if and only if the corresponding subtrees intersect. We now
alter the subtrees as follows.

For each node x ∈ N1(v)− I we replace Tx with T ′
x = Tx ∪ Tv. Note that T ′

x is a (connected)
tree since Tx and Tv intersect. Consider the chordal graph G′′ defined by the (intersections of) the
resulting subtrees. Our goal is to show that the chordal graph G′′ − v is an augmentation of Gv,
which will complete our proof. First note that E(G′′) ⊇ C(v) because for every x ∈ N1(v) − I,
subtree T ′

x intersects every subtree Ty for y ∈ NE(G′)(v). The only remaining thing is to show
that the edges that are in G′′ but not in G′ are augmenting edges, i.e. edges from V1−I to V2−I.
By construction, any edge added to G′′ goes from some x ∈ N1(v) − I to some y ∈ NE(G′)(v).
Thus x ∈ V1− I, and we only need to show that y ∈ V2− I. Note that (y, v) is an edge of E(G′).
Now if y ∈ V1 then (y, v) ∈ E1 and thus x, y are both in the clique N1(v) and are already joined
by an edge in G (and hence G′). Therefore y ∈ V2 − I and we are done.

Theorem 4.1 leads to the following algorithm for recognizing where G1 and G2 are simulta-
neous chordal graphs.

Algorithm

1. Let G1 and G2 be the input graphs and let F = ∅.
2. While there exists an S-simplicial vertex v of G = (G1, G2, F ) Do

3. F ← F ∪ C(v)
4. Remove v and its incident edges from G1, G2, F .
5. End

6. If G is empty return YES else return NO

Note that if G1 and G2 are simultaneous chordal graphs then the above algorithm can also
generate an augmented chordal graph Ga. Ga can be represented as the intersection graph of
subtrees in a tree. This representation is also a simultaneous subtree representation for G1 and
G2. We now show that the above algorithm can be implemented to run in time O(n3).
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Determining whether a vertex v is S-simplicial is a key step of the algorithm. For this we
have to check whether N1(v) and N2(v) induce cliques in G1 and G2 respectively. Note that
although the sets N1(x) and N2(x) change as we add to the edge-set F , the graphs G1 and G2

are unchanged. The straightforward implementation takes O(n2) time for this step. However we
can improve this to O(n) as explained below.

In a chordal graph H on n nodes, given a set X ⊆ V (H) of vertices, we can test whether X
induces a clique in O(n) time as follows. Let v1, . . . , vn be a perfect elimination order of H and
let vi be the first vertex in this order that is present in X. Then X induces a clique if and only
if N(vi) ⊇ X. Note that computing a perfect elimination order takes linear-time [44] and hence
the test takes O(n) time using adjacency matrices.

Thus determining whether v is S-simplicial takes O(n) time. Since we may have to check
O(n) vertices before finding an S-simplicial vertex and since the number of iterations is O(n),
the algorithm runs is O(n3) time.

4.2 NP-Completeness for r-Sunflower Graphs

Since the simultaneous chordal representation problem for r-sunflower graphs is equivalent to
the sunflower chordal augmentation problem for r graphs, the problem is clearly in NP. Thus it
enough to show that the problem is NP-hard. We reduce the problem of triangulating colored
graphs (TCG) to our problem.

In the TCG problem, given a graph H and a proper coloring function c of H, we have to
determine whether there exists a supergraph H ′ ⊇ H such that H ′ is chordal and c is a proper
coloring of H ′. Bodlaender et al. [8] and Steel [78] have independently shown that TCG is
NP-hard.

Theorem 4.2. The simultaneous chordal representation problem for r-sunflower graphs is NP-
hard, even when the common vertices induce an independent set.

Proof. Let (H, c) be an instance of TCG, where H is a graph and c is a proper coloring of H.
Let the number of colors of c be r, and let C1, C2, . . . , Cr be the color classes defined by c. In
other words, for i ∈ {1, . . . , r} Ci denotes the set of vertices in H that are colored i. Note that
Ci induces an independent set.

We now create an instance of simultaneous chordal representation problem, by defining a
family of r-sunflower graphs G1, . . . , Gr, that share a set I of vertices (to be defined). For
i ∈ {1, . . . , r}, we define Gi − I to be Ci. For each edge uv in H, we create vertices xuv and yuv
in I and add the edges uxuv, uyuv, vxuv, vyuv. This completes the construction. See figure 4.1
for an example. We now show that the TCG problem for (H, c) has a solution if and only if the
sunflower chordal augmentation problem for G1, . . . , Gr has a solution.

Suppose the TCG problem on (H, c) has a solution. Then there exists a supergraph H ′ of H,
such that H ′ is chordal and c is a proper coloring of H ′. Note that every edge uv of H ′ is an
augmenting edge between vertices u and v of G1 ∪ · · · ∪Gr, as u and v are colored differently by
c. We now construct a graph G′ as follows. Initially, G′ = G1 ∪ · · · ∪Gr. For each edge uv in H ′,
we add the corresponding edge between vertices u and v in G′. Note that G′ − I is same as H ′

and is hence chordal. Further, every vertex of I in G′ is a simplicial vertex, because it has two
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Figure 4.1: The graph H to the left is an instance of TCG problem with vertices {a, b, c, d, e, f}
and a 5 coloring of the vertices. Note that vertices f and d are both colored 4. The graphs to
the right are 5-sunflower graphs constructed from H.

neighbors that are joined by an edge. Thus G′ is a chordal graph that is obtained by augmenting
G1, . . . , Gr. Thus the sunflower chordal augmentation problem for G1, . . . , Gr has a solution.

For the other direction, assume that G1, . . . , Gr are augmentable to a chordal graph G′

by adding a set A′ of augmenting edges. For every edge uv in H, G′ contains the 4-cycle
uxuv, xuvv, vyuv, yuvu and hence it must contain the chord edge uv (xuvyuv is not an augment-
ing edge and cannot be present in G′). Thus every edge of H is also present in G′ and hence
A′ ⊇ E(H). Let H ′ = G′− I. Note that E(H ′) = A′ and hence H ′ is a supergraph of H. Further
every edge of A′ joins vertices of distinct colors and hence c is a proper coloring of H ′. Thus H ′

is a solution to the TCG problem on (H, c). This completes the proof.

4.3 Open Problems

There are a few natural open problems related to this chapter: (1) Can we improve the running
time of the algorithm presented in this chapter for 2-sunflower graphs to O(n3−ǫ) for some ǫ > 0
? or develop a faster algorithm ? (2) Can we recognize simultaneous chordal graphs when there
are more than 2 graphs? In other words can we solve the simultaneous chordal representation
problem for r-sunflower graphs for some constant r ≥ 3? The techniques used in this chapter
for 2 graphs do not seem to work for 3 graphs. In particular, the proof of Theorem 4.1 doesn’t
extend to three graphs.
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Chapter 5

Simultaneous Interval Graphs

In this chapter1, we study the simultaneous representation problem for interval graphs. Given
two interval graphs sharing some vertices, we give an O(n2 log n) algorithm to determine whether
the graphs are simultaneous interval graphs. In other words, we give an efficient algorithm for
solving the simultaneous interval representation for 2-sunflower graphs. This implies that the
sunflower interval augmentation problem and the sunflower co-interval augmentation problem
can be solved efficiently for 2-sunflower graphs. Throughout this chapter, the term “simultaneous
interval graphs” refers to the version of the definition with 2 graphs.

Recall that an interval graph is defined to be the intersection graph of intervals on the real
line. They are also characterized as graphs whose maximal cliques can be ordered in such a way
that the cliques containing any vertex appear consecutively. The PQ-tree-based interval graph
recognition algorithm (see [10]) attempts to find such an ordering of maximal cliques, by making
the maximal cliques into leaves of a PQ-tree, and imposing PQ-tree constraints to ensure that
the cliques containing each vertex v appear consecutively. The resulting tree is called the PQ-tree
of the graph. Note that the children of a P-node may be reordered arbitrarily and the children
of a Q-node may only be reversed. We consider a node with 2 children to be a Q-node. In the
figures, we use a circle to denote a P-node and a rectangle to denote a Q-node. A leaf-order of
a PQ-tree is the order in which its leaves are visited in an in-order traversal of the tree, after
children of P and Q-nodes are re-ordered as just described.

Simultaneous interval graphs arise in several settings. Some potential scenarios include: DNA
structures of two organisms sharing some fragments, two conference schedules that share some
plenary talks and job schedules on two machines in which certain jobs are processed synchronously.
Simultaneous interval graphs may also have an application in physical mapping of DNA as a
special case of the interval graph sandwich problem (see section 3.2 for details). Also our algorithm
for solving the simultaneous interval representation problem for 2-sunflower graphs implies that
the interval sandwich problem can be solved efficiently when the set of optional edges induce a
complete bipartite graph.

We note that in the PQ-tree based solutions to probe interval graphs (see section 3.3), there
is a single PQ-tree (of the graph induced by the probes) and a set of constraints imposed by
the non-probes. However in our situation we have two PQ-trees, one for each graph, that we
want to re-order to “match” on the common vertex set I. We begin by “reducing” each PQ-tree
to contain only vertices from I. This results in PQ-trees that store non-maximal cliques, and

1The results presented in this chapter are joint work with Anna Lubiw [56].
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our task is to modify each PQ-tree by inserting non-maximal cliques from the other tree while
re-ordering the trees to make them the same.

The rest of the chapter is organized as follows. When the common graph induces an indepen-
dent set, our algorithm is simple to describe and runs in linear time. We explain this special case
in section 5.1. Section 5.2 gives an overview of our main algorithm. In sections 5.3, 5.4, and 5.5
we present our algorithm along with the justification of its correctness and running-time.

5.1 Special Case: Common Graph Induces an Independent Set

In this subsection, we present a solution for a simpler case of the simultaneous interval repre-
sentation problem for sunflower graphs when the common vertices induce an independent set.
We present the algorithm for 2-sunflower graphs, and later explain how it can be extended in a
straightforward way to r-sunflower graphs (whose common vertices induce an independent set).
Let G1 = (V1, E1) and G2 = (V2, E2) be 2-sunflower graphs sharing a set I of vertices (and the
edges induced by I). Let I induce an independent set.

The following is a high level overview of our approach. Let T1 and T2 be the PQ-trees of G1

and G2 respectively. Recall the definition of PQ-tree from section 2.2. We first “restrict” the
PQ-trees of T1 and T2 to I and simplify them to obtain PQ-trees T ′

1 and T ′
2 respectively. Each

leaf node of T ′
1 and T ′

2 corresponds to a (possibly non-maximal) clique in I. If I doesn’t induce an
independent set, the leaves of T ′

1 may be different from the leaves of T ′
2 and furthermore multiple

leaf nodes may correspond to the same clique. This makes the PQ-tree reductions complicated
(see the next section for more details). However when I induces an independent set, the cliques
of I are the vertices of I. Using this we show that T ′

1 and T ′
2 are both PQ-trees whose leaves are

in 1-1 correspondence with the vertices of I. Then we prove that G1 and G2 are simultaneous
interval graphs if and only if there exists a common leaf ordering in T ′

1 and T ′
2 .

We now present the above approach formally. For j = 1, 2, given a max-clique ordering
S = Q1, Q2, . . . , Ql of Gj we can generate a realizer of Gj as follows.

1. For each vertex v, let Qlv and Qrv be the first and last cliques in S (appearing in positions
lv and rv respectively) that contain v. Assign the left and right end points of v to lv and
rv respectively.

2. Now at each index i ∈ {1, . . . , l}, locally order the end points assigned to i (to make them
distinct) as follows. Arbitrarily permute the end points assigned to i subject to the condition
that all the left end points appear before the right end points.

Further, any realizer of Gj can be obtained in this way by starting with an appropriate max-
clique ordering. Let Tj be the PQ-tree of Gj . Note that the leaf orderings of Tj are the same
as the max-clique orderings of Gj . Now let S = Q1, Q2, . . . , Ql be a max-clique ordering of Gj .
Note that since I is an independent set, no two vertices of I are present in the same clique of S.
An ordering SI = v1, v2, . . . , vk of the vertices of I is said to be an I-induced ordering of S, if for
any two vertices va, vb ∈ I, va appears before vb in SI if and only if all the cliques containing va
appear before all the cliques containing vb in S.

An ordering X of the vertices of I is said to be a Gj-expandable I-ordering if there exists some
max-clique ordering S of Gj such that X is an I-induced ordering of S. The following lemma is
a consequence of the above definitions.
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Lemma 5.1. In the case when I is an independent set, G1 and G2 are simultaneous interval
graphs if and only if there exists an ordering X of the vertices of I such that X is a Gj-expandable
I-ordering for j = 1, 2.

Since all max-clique orderings of Gj can be obtained from Tj , all Gj-expandable I-orderings
can also be obtained from Tj . We now construct a PQ-tree T ′

j that precisely represents all
Gj-expandable I-orderings. The construction of T ′

j from Tj is similar to the projection (and
simplification) operation discussed in section 2.2.1. However it’s a bit more complicated because
in addition to deleting leaves of the PQ-tree, we also delete vertices from the cliques stored in
(the leaves of) the PQ-tree.

1. Initialize T ′
j to Tj .

2. For each leaf l of Tj , we replace the (maximal) clique Ql that it represents with Ql∩I. Note
that because I is an independent set, Ql ∩ I either contains a single vertex or is empty. If
Q ∩ I is empty, we delete vl. Otherwise, l now represents the single vertex contained in
Ql ∩ I.

3. We iteratively do the following. If there is a non-leaf node n1 in T
′
j such that all the children

of n1 are leaves and represent the same vertex, say v, then we replace n1 with a leaf node
representing v. Note that the parent of n1 remains the same. We go to the next step if we
cannot find such a non-leaf node.

4. We iteratively do the following. If there is a (non-leaf) Q-node n1 in T
′
j with two consecutive

child nodes na and nb (among others) such that na and nb are both leaves and represent
the same vertex, say v, then we replace na and nb with a single leaf node representing the
vertex v. Note that the parent of the new leaf node is n1. We go to the next step if we
cannot find such a non-leaf node.

5. We iteratively delete any internal node n1 whose children are all empty.

6. We iteratively replace any node n1 in T ′
j with a single child with the child.

It is easy to see that the resulting tree T ′
j is unique and can be constructed in linear time,

from a bottom-up traversal of Tj . We refer to T ′
j as the I-reduced PQ-tree of Gj . Figure 5.1 gives

an example of two interval graphs, their PQ-trees and I-reduced PQ-trees.

Note that for any leaf-ordering S of Tj , there exists a leaf-ordering X of T ′
j such that X is

an I-induced ordering of S. On the other hand, for any leaf-ordering X of T ′
j , there exists a

leaf-ordering S of Tj such that X is an I-induced ordering of S. Thus we have the following

Lemma 5.2. For j = 1, 2, T ′
j represents all the Gj-expandable I-orderings.

Further, we claim that each vertex of I is represented by a unique node in T ′
j . Suppose not.

Then let l1 and l2 be two leaves of T ′
j , representing a vertex v ∈ I. Let y be the least common

ancestor of l1 and l2, and let c1, c2 be the child nodes of y such that c1 is an ancestor of l1 and
c2 is an ancestor of l2 (c1 or c2 could be the same as l1 or l2). Note that in any leaf-order of T ′

j

all leaves representing v must appear consecutively. This implies that if y is a P-node, then all
the leaf-descendants of y must represent the vertex v. Otherwise, it is possible to permute the
children of y such that in the leaf-order of the resultant tree, the nodes representing v do not
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Figure 5.1: Two graphs whose common vertex set induces an independent set, their PQ-trees and
I-reduced PQ trees.

appear contiguously. Similarly, if y is a Q-node, then the leaf-descendants of c1, c2 and all the
nodes between them must represent the single vertex v. Neither of these cases can happen by
the construction of T ′

j . Thus each vertex of I is represented by a unique node of T ′
j .

Now Lemma 5.1 and Lemma 5.2 imply that G1 and G2 are simultaneous interval graphs if
and only if there exists a common leaf-ordering in T ′

1 and T ′
2 . Note that the intersection tree

T ′
12 of T ′

1 and T ′
2 (defined in section 2.2.1) satisfies the constraints of both the trees and hence

represents all possible common leaf-orderings of T ′
1 and T ′

2 . Thus testing whether G1 and G2 are
simultaneous interval graphs is equivalent to testing whether T ′

12 is non-empty. As mentioned in
section 2.2.1, the intersection tree can be computed in linear time. Hence we have the following
theorem.

Theorem 5.1. Let G1 and G2 be 2-sunflower interval graphs, whose common vertices induce an
independent set. The problem of testing whether G1 and G2 are simultaneous interval graphs can
be solved in linear time.

Further given a leaf-ordering X of T ′
12, for j = 1, 2 it is easy to generate a leaf-ordering Sj

of Tj , such that X is a Gj-expandable I-ordering, in linear time, as follows. Travel through the
nodes of Tj recursively in a depth-first manner and when visiting a node d, order the children of
d according to the way in which their descendants (restricted to I) appear in X . From S1 and
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S2, we can get interval realizers of G1 and G2 such that any vertex in I is assigned to the same
interval in both realizers.

5.1.1 Extension to Multiple Graphs

The algorithm described in section 5.1 can be extended in a straightforward way to solve the
simultaneous interval representation problem for r-sunflower graphs (when they share an inde-
pendent set), for arbitrary r. This is interesting, considering that the simultaneous chordal rep-
resentation problem is NP-hard for r-sunflower graphs, even when the common vertices induce
an independent set (see section 4.2).

Let Gi, i ∈ {1, . . . , r} be r-sunflower interval graphs, that share a vertex set I and let I induce
an independent set. As before, for i ∈ {1, . . . , r}, we construct the I-induced PQ-tree T ′

i of
Gi. Now the problem of testing whether Gi, i ∈ {1, . . . , r} are simultaneous interval graphs, is
equivalent to testing whether there is a common leaf-ordering in all T ′

i , i ∈ {1, . . . , r}. This in
turn is equivalent to testing whether the intersection tree of T ′

i , i ∈ {1, . . . , r} is empty. The
intersection PQ tree can be computed in time proportional to the sum of the sizes of the input
trees. Note that the size of T ′

i is at most the size of Gi. Thus we have the following theorem.

Theorem 5.2. Let G1, G2, . . . , Gr be r-sunflower interval graphs whose common vertices induce
an independent set. The problem of testing whether Gi, i ∈ {1, . . . , r} are simultaneous interval
graphs can be solved in time proportional to the sum of the sizes of Gi, i ∈ {1, . . . , r}.

5.2 Overview of the General Algorithm

Our strategy for recognizing simultaneous interval graphs is similar to that of section 5.1. However
the algorithm and analysis are more complicated. As before, we restrict the PQ-trees of each
graph to I, simplify them and show that G1 and G2 are simultaneous interval graphs if and only
if the restricted PQ-trees have “compatible” leaf orderings. But now the leaves of the PQ-trees
contain (not necessarily maximal) cliques of I and certain cliques can appear in multiple leaves
of the tree. Furthermore, cliques that appear in one tree may not be present in the other tree.
Thus we cannot use the intersection algorithm of section 2.2.1. In fact, a PQ-tree that represents
all possible compatible orderings of the two PQ-trees cannot be represented as a PQ-tree.

We address this by designing an algorithm that constructs a “quasi-intersection tree” TI of the
two restricted PQ-trees T ′

1 and T ′
2 , with the property that T ′

1 and T ′
2 have a common compatible

ordering if and only if T ′
I is non-empty. To do this, we first label the nodes of each PQ-tree based

on the properties of its descendants. Our algorithm does a bottom-up traversal of the trees based
on the labels and iteratively modifies each tree until they become identical. We call the resulting
tree a quasi-intersection tree of T ′

1 and T ′
2 . In each iteration we choose “unmatched” nodes n1

and n2 from the two trees and we either match n1 with n2, or reduce one of the trees. At the
end of the algorithm T ′

1 and T ′
2 would either be modified to a quasi-intersection tree or we infer

that T ′
1 is not compatible with T ′

2 .

The following three sections contain the details of the algorithm. Section 5.3 defines the nota-
tion of compatibility and reduces the simultaneous interval representation problem to a problem
on finding compatible leaf orderings. Section 5.4 labels the nodes of the PQ-tree and further
simplifies them. Our algorithm and analysis are presented in section 5.5.
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5.3 Reduction to PQ-trees

In this section we transform the simultaneous interval representation problem for 2-sunflower
interval graphs to a problem about “compatibility” of two PQ-trees arising from the two graphs.

Consider an interval representation of an interval graph. For any point on the line, the
intervals containing the point form a clique in the graph. This leads to the fundamental one-
to-one correspondence between the interval representations of an interval graph and its clique
orderings, defined as follows: A clique ordering of G is a sequence of (possibly empty) cliques
S = Q1, Q2, . . . , Ql that contains all the maximal cliques of G and has the property that for each
vertex v, the cliques in S that contain v appear consecutively. Note that a clique can appear
multiple times in a clique ordering.

Note that ignoring non-maximal cliques is fine for recognizing interval graphs; for our pur-
poses, however, we want to consider clique orders and PQ-trees that may include non-maximal
cliques. We say that a PQ-tree whose leaves correspond to cliques of a graph is valid if for each
of its leaf orderings and for each vertex v, the cliques containing v appear consecutively.

Let S = Q1, Q2, . . . , Ql be a clique ordering of interval graph G and let the maximal cliques
of G be Qi1 , Qi2 , . . . , Qim (appearing in positions i1 < i2 < · · · < im respectively). Note that all
the cliques in S between Qij and Qij+1

contain B = Qij ∩Qij+1
. We say that B is the boundary

clique or boundary between Qij and Qij+1
. Note that B may not necessarily be present in S. The

sequence of cliques between Qij and Qij+1
that are subsets of Qij is said to be the right tail of Qij .

The left tail of Qij+1
is defined analogously. Any clique between Qij and Qij+1

must belong to one
of the two tails. Observe that the left tail of a clique forms an increasing sequence and the right
tail forms a decreasing sequence (w.r.t. set inclusion). Also note that all the cliques that precede
Qi1 are subsets of Qi1 and this sequence is called the left tail of Qi1 and all the cliques that
succeed Qim are subsets of Qim and this sequence is called the right tail of Qim . Thus any clique
ordering of G consists of a sequence of maximal cliques, with each maximal clique containing a
(possibly empty) left and right tail of subcliques.

Let Q0 and Ql+1 be defined to be empty sets. An insertion of clique Q′ between Qi and
Qi+1 (for some i ∈ {0, . . . , l}) is said to be a subclique insertion if Q′ ⊇ Qi ∩ Qi+1 and either
Q′ ⊆ Qi or Q′ ⊆ Qi+1. It is clear that after a subclique insertion the resulting sequence is still
a clique ordering of G. A clique ordering S ′ is an extension of S if S ′ can be obtained from S
by subclique insertions. We also say that S extends to S ′. Furthermore, we say that a clique
ordering is generated by a PQ-tree, if it can be obtained from a leaf order of the PQ-tree with
subclique insertions. The above definitions yield the following lemma.

Lemma 5.3. A sequence of cliques S is a clique ordering of G if and only if S can be generated
from the PQ-tree of G.

Let G1 and G2 be 2-sunflower graphs, that share a set I of vertices (and the edges induced by
I). Note that G1[I] is isomorphic to G2[I]. A clique ordering of G1[I] is said to be an I-ordering.

The I-restricted PQ-tree of Gj is defined to be the tree obtained from the PQ-tree of Gj by
replacing each clique Q (a leaf of the PQ-tree) with the clique Q ∩ I. Thus there is a one-to-one
correspondence between the two PQ-trees, and the leaves of the I-restricted PQ-tree are cliques of
G1[I]. Note that a leaf node of an I-restricted PQ-tree may represent the empty clique (allowing
such leaves to exist simplifies some of our proofs).
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Let I = X1, X2, . . . , Xl be an I-ordering. Then I is said to be Gj-expandable if there exists a
clique orderingO = Q1, Q2, . . . , Ql ofGj such thatXi ⊆ Qi for i ∈ {1, . . . , l}. Further, we say that
I expands to O. By the definition of clique-ordering it follows that if I is Gj-expandable then it
remains Gj-expandable after a subclique insertion (i.e. any extension of I is also Gj-expandable).
We first observe the following.

Lemma 5.4. The set of Gj-expandable I-orderings is same as the set of orderings that can be
generated from the I-restricted PQ-tree of Gj.

Proof. Let T be the PQ-tree of Gj and T ′ be the I-restricted PQ-tree of Gj .

Let I be a Gj-expandable I-ordering of Gj . Then there exists a clique ordering O of Gj

such that I expands to O. But by Lemma 5.3, O can be generated from T (from a leaf order
with subclique insertions). This in turn implies that I can be generated from T ′ (from the
corresponding leaf order with the corresponding subclique insertions).

Now for the other direction, let I ′ = X1, . . . , Xl be any leaf order of T ′. Then there exists a
corresponding leaf order O′ = Q1, . . . , Ql of T such that Xi ⊆ Qi for i ∈ {1, . . . , l}. This implies
that I ′ is a Gj-expandable I-ordering. Finally, observe that if I

′′ is generated from I ′ by subclique
insertions than I ′′ is also a Gj-expandable I-ordering. Thus the lemma holds.

Two I-orderings I1 and I2 are said to be compatible if both I1 and I2 (separately) ex-
tend to a common I-ordering I. For example, the ordering {1}, {1, 2}, {1, 2, 3, 4} is compat-
ible with the ordering {1}, {1, 2, 3}, {1, 2, 3, 4}, as they both extend to the common ordering:
{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}. Note that the compatibility relation is not transitive. Two PQ-
trees T1 and T2 are said to be compatible if there exist orderings O1 and O2 generated from T1

and T2 (respectively) such that O1 is compatible with O2. The following lemma is our main tool.

Lemma 5.5. G1 and G2 are simultaneous interval graphs if and only if the I-restricted PQ-tree
of G1 is compatible with the I-restricted PQ-tree of G2.

Proof. By Lemma 5.4, it is enough to show that G1 and G2 are simultaneous interval graphs if
and only if there exists a G1-expandable I-ordering I1 and a G2-expandable I-ordering I2 such
that I1 is compatible with I2. We now show this claim.

Let I1 and I2 be as defined in the hypothesis. Since I1 and I2 are compatible, they can be
extended to a common I-ordering I. Let I expand to clique orderings O1 and O2 in G1 and G2

respectively. Since each vertex of I appears in the same positions in both O1 and O2, it is possible
to obtain interval representations R1 and R2 of G1 and G2 (from O1 and O2 respectively) such
that each vertex in I has the same end points in both R1 and R2. This implies that G1 and G2

are simultaneous interval graphs.

For the other direction, let G1 and G2 be simultaneous interval graphs. Then by Theorem 2.1,
there exists an augmenting set of edges A′ ⊆ V1 − I × V2 − I such that G = G1 ∪ G2 ∪ A′ is an
interval graph. Let O = Q1, Q2, . . . , Ql be a clique-ordering of G. For each i ∈ {1, . . . , l} and
j ∈ {1, 2}, by restricting Qi to Vj (i.e. replacing Qi with Qi ∩ Vj), we obtain a clique ordering Oj

of Gj . Now for j ∈ 1, 2, let Ij be the I-ordering obtained from Oj by restricting each clique in
Oj to I. It follows that I1 is a G1-expandable I-ordering and I2 is a G2-expandable I-ordering.
Further, I1 = I2 and hence I1 and I2 are compatible.
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Our algorithm will decide if the I-restricted PQ-tree of G1 is compatible with the I-restricted
PQ-tree of G2. We first show how the I-restricted PQ-trees can be simplified in several ways. Two
I-orderings I1 and I2 are said to be equivalent if, for any I-ordering I ′, I1 and I ′ are compatible
if and only if I2 and I ′ are compatible. Note that this is an equivalence relation. The lemma
below follows directly from the definitions of equivalent orderings and subclique insertions.

Lemma 5.6. Let I = X1, X2, . . . , Xl be an I-ordering in which Xi = Xi+1 for some i ∈
1, . . . , l − 1. Let I ′ be the I-ordering obtained from I by deleting Xi+1. Then I is equivalent
to I ′.

Further, because equivalence is transitive, Lemma 5.6 implies that an I-ordering I is equiv-
alent to the I-ordering I ′ in which all consecutive duplicates are eliminated. This allows us to
simplify the I-restricted PQ-tree of Gj . Let T be the I-restricted PQ-tree of Gj . We obtain a
PQ-tree T ′ from T as follows.

1. Initialize T ′ = T .

2. As long as there is a non-leaf node d in T ′ such that all the descendants of d are the same,
i.e. they are all duplicates of a single clique X, replace d and the subtree rooted at d by a
leaf node representing X.

3. As long as there is a (non-leaf) Q-node d in T ′ with two consecutive child nodes na and
nb (among others) such that all the descendants of na and nb are the same i.e. they are all
duplicates of a single clique X, replace na, nb and the subtrees rooted at these vertices by
a single leaf node representing the clique X.

Note that the resulting T ′ is unique. We call T ′ the I-reduced PQ-tree of Gj .

Lemma 5.7. G1 and G2 are simultaneous interval graphs if and only if the I-reduced PQ-tree of
G1 is compatible with the I-reduced PQ-tree of G2.

Proof. For j ∈ {1, 2}, let Tj and T ′
j be the I-restricted and I-reduced PQ-trees of Gj respectively.

Let I be any I-ordering. Observe that by Lemma 5.6, I is compatible with a leaf ordering of
Tj if and only if I is compatible with a leaf ordering of T ′

j . Thus the conclusion follows from
Lemma 5.5.

5.4 Labeling and Further Simplification

In section 2, we transformed the simultaneous interval recognition problem to a problem of testing
compatibility of two I-reduced PQ-trees where I is the common vertex set of the two graphs.
These PQ-trees may have nodes that correspond to non-maximal cliques in I. In this section we
prove some basic properties of such I-reduced PQ-trees, and use them to further simplify each
tree.

Let T be the I-reduced PQ-tree of Gj . Recall that each leaf l of T corresponds to a clique
X in Gj [I]. If X is maximal in I, then X is said to be a max-clique and l is said to be a max-
clique node, otherwise X is said to be a subclique and l is said to be a subclique node. When the
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association is clear from the context, we will sometimes refer to a leaf l and its corresponding
clique X interchangeably, or interchange the terms “max-clique” and “max-clique node” [resp.
subclique and subclique node]. A node of T is said to be an essential node if it is a non-leaf node
or if it is a leaf node representing a max-clique.

Given a node d of T , the descendant cliques of d are the set of cliques that correspond to the
leaf-descendants of d. Because our algorithm operates by inserting subcliques from one tree into
the other, we must take care to preserve the validity of a PQ-tree. For this we need to re-structure
the tree when we do subclique insertions. The required restructuring will be determined based
on the label U(d) that we assign to each node d as follows.

U(d) or the Universal set of d is defined as the set of vertices v such that v appears in all descen-
dant cliques of d.

Note that for a leaf node l representing a clique X, U(l) = X by definition. Also note that
along any path up the tree, the universal sets decrease. The following lemma gives some useful
properties of the I-reduced PQ-tree.

Lemma 5.8. Let T be the I-reduced PQ-tree of Gj. Let d be a non-leaf node of T (d is used in
properties 2–6). Then we have:
0. Let l1 and l2 be two distinct leaf nodes of T , containing a vertex t ∈ I. Let y be the least
common ancestor of l1 and l2. Then: (a) If y is a P-node then all of its descendant cliques
contain t. (b) If y is a Q-node then t is contained in all the descendant cliques of all children of y
between (and including) the child of y that is the ancestor of l1 and the child that is the ancestor
of l2.
1. Each max-clique is represented by a unique node of T .
2. A vertex u is in U(d) if and only if for every child n1 of d, u ∈ U(n1).
3. d contains a max-clique as a descendant.
4. If d is a P-node, then for any two child nodes n1 and n2 of d, we have U(n) = U(n1)∩U(n2).
5. If d is a P-node, then any child of d that is a subclique node represents the clique U(d).
6. If d is a Q-node and n1 and n2 are the first and last child nodes of d then U(n) = U(n1)∩U(n2).

Proof. (0) Observe that in any leaf ordering of T , all the nodes that appear between l1 and l2
must also contain the vertex t, otherwise T would be invalid. Now let l3 be a leaf descendant of
y that doesn’t contain t.

If y is a P-node, then we can reorder the children of y in such a way that in the leaf-ordering
of the resulting tree l3 appears between l1 and l2. But this contradicts the validity of T . This
proves (a). Similarly, if y is a Q-node, then l3 cannot be equal to l1 or l2 or any node between
them. Thus (b) also holds.

(1) Note that by definition of I-reduced PQ-tree of Gj , each max-clique must be present in T .
Now assume for the sake of contradiction that a max-clique X is represented by two leaf nodes,
say l1 and l2. Let y be the least common ancestor of l1 and l2. Let c1 and c2 be the child nodes
of y that contain n1 and n2 (respectively) as descendants. Now by (0), if y is a P-node then all of
its descendant cliques must contain all the vertices of X. But as X is maximal, all these cliques
must be precisely X. However this is not possible, as we would have replaced y with a leaf node
representing X in the construction of T . Similarly, if y is a Q-node then the descendant cliques
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of c1, c2 and all the nodes between them must represent the max-clique X. But then we would
have replaced these nodes with a leaf node representing X in the construction of T . This proves
(1).

(2) If u ∈ U(n), then all the descendant cliques of d contain u. This implies that for any
child n1 of d, all the descendant cliques of n1 contain u. Hence u ∈ U(n1). On the other hand, if
each child n1 of d contains a vertex u in its universal set, then u is present in all the descendant
cliques of d and thus u ∈ U(n).

(3) Note that if each descendant clique of d contains precisely U(d) (and no other vertex),
then we would have replaced the subtree rooted at d with a leaf node corresponding to the clique
U(d), when constructing T . Thus there exists a clique Q2 that is a descendant of d, such that
Q2 − U(n) is non-empty. If Q2 is a max-clique then we are done. Otherwise let t ∈ Q2 − U(n)
and let Q1 be a max-clique containing t. Suppose Q1 is a not a descendant of n1. Applying (0)
on Q1 and Q2, we infer that irrespective of whether d is a P-node or a Q-node, all the descendant
cliques of d must contain t. But then t ∈ U(n), a contradiction. Thus Q1 is a descendant of n1.

(4) By (2) we observe that U(n) ⊆ U(n1) ∩ U(n2). Thus it is enough to show that U(n1) ∩
U(n2) ⊆ U(n). Let u ∈ U(n1) ∩ U(n2), then u is present in all the descendant cliques of n1 and
n2. By (0), u must be present in all the descendant cliques of d and hence u ∈ U(n). Therefore
U(n1) ∩ U(n2) ⊆ U(n).

(5) Consider any child n1 of d. Suppose n1 is a leaf-node and is not a max-clique. It is enough
to show that n1 represents the clique U(d), i.e., U(n1) = U(n). Suppose not. Then there exists a
vertex t ∈ U(n1)− U(n). Let Q1 be a max-clique containing t. Note that the common ancestor
of Q1 and n1 is either d or an ancestor of d. Applying (0) on Q1 and n1, we infer that all the
descendant cliques of d must contain t. But then t ∈ U(n), a contradiction.

(6) This follows from (2) and (0).

Let T be the I-reduced PQ-tree of Gj . Recall that an essential node is a non-leaf node or
a leaf node representing a maximal clique. Equivalently (by Lemma 5.8.3), an essential node is
a node which contains a max-clique as a descendant. The following lemma shows that in some
situations we can obtain an equivalent tree by deleting subclique child nodes of a P-node d. Recall
that by Lemma 5.8.5, such subclique nodes represent the clique U(d).

Lemma 5.9. Let T be the I-reduced PQ-tree of Gj and d be a P-node in T . Then
1. If d has at least two essential child nodes, then T is equivalent to the tree T ′, obtained from
T by deleting all the subclique children of d.
2. If d has at least two subclique child nodes, then T is equivalent to the tree T ′, obtained from
T by deleting all except one of the subclique children of d.

Proof. We give the proof of (1) below. The proof of (2) is very similar and hence omitted.

Let O1 be any I-ordering. It is enough to show that there exists a leaf ordering O of T that
is compatible with O1 if and only if there exists a leaf ordering O′ of T ′ that is compatible with
O1.
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Let O be any leaf ordering of T , compatible with O1. Consider the ordering O
′ obtained from

O by deleting the cliques U(d) that correspond to the (subclique) child nodes of d in T . Clearly
O′ is a leaf ordering of T ′. Further O′ can be extended to O by adding copies of the cliques U(d)
at appropriate positions. Thus O′ is compatible with O1.

Now for the other direction, let O′ be a leaf order of T ′, compatible with O1 and let O′

and O1 extend to a common ordering OF . From the hypothesis, we can assume that there
exist two essential child nodes n1 and n2 of d in T ′ such that the clique descendants of n1

appear immediately before the clique descendants of n2 in O′. Also let S(n1) and S(n2) be
the two subsequences of O′ containing the clique descendants of n1 and n2 respectively. Since
n1 and n2 are essential nodes, S(n1) and S(n2) each contain at least one max-clique. Let Q1

be the last max-clique in S(n1) and Q2 be the first max-clique in S(n2). By Lemma 5.8.0,
Q1 ∩Q2 = U(n1) ∩ U(n2) = U(n). Since O′ is compatible with O1, in each of the two orderings
O′ and O1, Q2 occurs after Q1 and no other max-clique appears between them. Further the same
holds for OF (as it is an extension of O′). Let k be the number of subclique children of d (that
represent the clique U(d)). Then obtain a leaf ordering O of T , from O′, by inserting k copies of
U(d) between S(n1) and S(n2). Now extend OF to O′

F by inserting k copies of U(d) between Q1

and Q2 (there is a unique way of adding a subclique between two max-cliques). It is clear that
O′

F is an extension of both O and O1. Therefore O is compatible with O1. This proves (1).

We will simplify T as much as possible by applying Lemma 5.9 and by converting nodes with
two children into Q-nodes. We call the end result a simplified I-reduced PQ-tree, but continue
to use the term “I-reduced PQ-tree” to refer to it. Note that the simplification process does not
change the universal sets and preserves the validity of the PQ-tree, so Lemma 5.7 and all the
properties given in Lemma 5.8 still hold. Because we consider nodes with 2 children as Q-nodes
Lemma 5.9 implies:

Corollary 5.1. In a [simplified] I-reduced PQ-tree, any P-node has at least 3 children, and all
the children are essential nodes.

5.5 Algorithm

For k ∈ {1, 2}, let Tk be the [simplified] I-reduced PQ-tree of Gk. By Lemma 5.7, testing
whether G1 and G2 are simultaneous interval graphs is equivalent to testing whether T1 and T2
are compatible. We test this by modifying T1 and T2 (e.g. inserting the sub-clique nodes from
one tree into the other) so as to make them identical, without losing their compatibility. The
following is a high level overview of our approach for checking whether T1 and T2 are compatible.

Our algorithm is iterative and tries to match essential nodes of T1 with essential nodes of
T2 in a bottom-up fashion. An essential node n1 of T1 is matched with an essential node n2 of
T2 if and only if the subtrees rooted at n1 and n2 are the same, i.e., their essential children are
matched, their subclique children are the same and furthermore (in the case of Q-nodes) their
child nodes appear in the same order. If n1 is matched with n2 then we consider n1 and n2 to
be identical and use the same name (say n1) to refer to either of them. Initially, we match each
max-clique node of T1 with the corresponding max-clique node of T2. Note that every max-clique
node appears uniquely in each tree by Lemma 5.8.1. A sub-clique node may appear in only one
tree in which case we must first insert it into the other tree. This is done when we consider the
parent of the subclique node.
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In each iteration, we either match an unmatched node u of T1 to an unmatched node v of T2
(which may involve inserting subclique child nodes of v as child nodes of u and vice versa) or we
reduce either T1 or T2 without losing their compatibility relationship. Reducing a PQ-tree means
restricting it to reduce the number of leaf orderings. Finally, at the end of the algorithm either
we have modified T1 and T2 to a “common” tree TI that establishes their compatibility or we
conclude that T1 is not compatible with T2. The common tree TI is said to be a quasi-intersection
tree (of T1 and T2) and has the property that any ordering generated by TI can also be generated
by T1 and T2. If T1 and T2 are compatible, there may be several quasi-intersection trees of T1 and
T2, but our algorithm finds only one of them.

We need the following additional notation for the rest of this Chapter. A sequence of sub-
cliques S = X1, X2, . . . , Xl is said to satisfy the subset property if Xi ⊆ Xi+1 for i ∈ {1, . . . , l−1}.
S is said to satisfy the superset property if Xi ⊇ Xi+1 for each i. Note that S satisfies the subset
property if and only if S̄ = Xl, . . . , X2, X1 satisfies the superset property.

Let d be an essential child node of a Q-node in Tk. We will overload the term “tail” (previously
defined for a max clique in a clique ordering) and define the tails of d as follows. The left tail
(resp. right tail) of d is defined as the sequence of subcliques that appear as siblings of d, to the
immediate left (resp. right) of d, such that each subclique is a subset of U(d). Note that the
left tail of d should satisfy the subset property and the right tail of d should satisfy the superset
property (otherwise Tk will not be valid). Also note that since the children of a Q-node can be
reversed in order, “left” and “right” are relative to the child ordering of the Q-node. We will be
careful to use “left tail” and “right tail” in such a way that this ambiguity does not matter. Now
suppose d is a matched node. Then, in order to match the parent of d in T1 with the parent of d
in T2, our algorithm has to “merge” the tails of d.

Let L1 and L2 be two subclique sequences that satisfy the subset property. Then L1 is said to
be mergable with L2 if the union of subcliques in L1 and L2 can be arranged into an ordering L′

that satisfies the subset property. Analogously, if L1 and L2 satisfy the superset property, then
they are said to be mergable if the union of their subcliques can be arranged into an ordering L′

that satisfies the superset property. In both cases, L′ is said to be the merge of L1 and L2 and is
denoted by L1 + L2.

A maximal matched node is a node that is matched but whose parent is not matched. For an
unmatched essential node x, the MM-descendants of x, denoted by MMD(x) are its descendants
that are maximal matched nodes. If x is matched then we define MMD(x) to be the singleton
set containing x. Note that the set of MM-descendants of an essential node is non-empty (since
every essential node has a max-clique descendant).

Our algorithm matches nodes from the leaves up, and starts by matching the leaves that are
max-cliques. As the next node n1 that we try to match, we want an unmatched node whose
essential children are already matched. To help us choose between T1 and T2, and also to break
ties, we prefer a node with larger U set. Then, as a candidate to match n1 to, we want an
unmatched node in the other tree that has some matched children in common with n1. With this
intuition in mind, our specific rule is as follows.

Among all the unmatched essential nodes of T1 ∪ T2 choose n1 with maximal U(n1), minimal
MMD(n1), and maximal depth, in that preference order. Assume without loss of generality that
n1 ∈ T1. Select an unmatched node n2 from T2 with maximal U(n2), minimal MMD(n2) and
maximal depth (in that order) satisfying the property that MMD(n1) ∩ MMD(n2) 6= ∅. The
following lemma captures certain properties of n1 and n2, including why these rules match our
intuitive justification.
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Lemma 5.10. For n1 and n2 chosen as described above, let M1 = MMD(n1), M2 = MMD(n2)
and X = M1 ∩M2. Also let C1 and C2 be the essential child nodes of n1 and n2 respectively.
Then we have:
1. M1 = C1 and X ⊆ C2.
Further when T1 is compatible with T2, we have:
2. For every (matched) node l in M1−X of T1, its corresponding matched node l′ in T2 is present
outside the subtree rooted at n2. Analogously, for every (matched) node r′ in M2 −X of T2, its
corresponding matched node r in T1 is present outside the subtree rooted at n1.
3. If n1 [resp. n2] is a Q-node, then in its child ordering, no node of C1 −X [resp. C2 −X] can
be present between two nodes of X.
4. If n1 and n2 are Q-nodes, then in the child ordering of n1 and n2, nodes of X appear in the
same relative order i.e. for any three nodes x1, x2, x3 ∈ X, x1 appears between x2 and x3 in the
child ordering of n1 if and only if x1 also appears between x2 and x3 in the child ordering of n2.
5. If C1 −X [resp. C2 −X] is non-empty then U(n1) ⊆ U(n2) [resp. U(n2) ⊆ U(n1)]. Further,
if C1 −X is non-empty then so is C2 −X and hence U(n1) = U(n2).
6. Let C1 − X be non-empty. If n1 [resp. n2] is a Q-node, then in its child-ordering either all
nodes of C1 −X [resp. C2 −X] appear before the nodes of X or they all appear after the nodes
of X.

Proof. (1) If there exists an unmatched child c of n1, then as U(c) ⊇ U(n1), MMD(c) ⊆ MMD(n1)
and c has a greater depth than n1, we would have chosen c over n1. Thus every node in C1 is
matched and hence by the definition of MM-descendants C1 = M1.

For the second part, suppose there exists a node x ∈ X that is not a child of n2. Let c2 be
the child of n2 that contains x as a descendant. c2 must be an unmatched node. (Otherwise
MMD(n2) would have contained c2 and not x). But then we would have picked c2 over n2.

(2) Let l be a (matched) node in M1 −X (in T1) such that the corresponding matched node
l′ in T2 is a descendant of n2. Note that l′ cannot be a child of n2. Otherwise l′ ∈ M2 and thus
l = l′ is in X. Let p′ be the parent of l′. Now p′ cannot be a matched node. (Otherwise p′ would
have been matched to n1, a contradiction since n1 is unmatched). Also p′ is a descendant of n2

and hence U(p′) ⊇ U(n2), MMD(p′) ⊆ MMD(n2) and p′ has greater depth than n2. Further
l = l′ is a common MM-descendant of n1 and p′. This contradicts the choice of n2.

Now let r′ be a (matched) node in M2−X (in T2), such that the corresponding matched node
r is a descendant of n1. Note that r is not a child of n1, otherwise r = r′ is a common MM-
descendant of n1 and n2 and hence r′ = r ∈ X. Let p be the parent of r in T1. Since p is a proper
descendant of n1, p is a matched node. Let p be matched to a node p′ in T2. Now p′ is a par-
ent of r′ and a descendant of n2. But then the MM-descendants of n2 should not have contained r′.

(3) Suppose in the child ordering of n1, node y ∈ C1 − X is present between nodes xa ∈ X
and xb ∈ X. Let Y,Xa and Xb be any max-cliques that are descendants of y, xa and xb respec-
tively. Then in any ordering of T1, Y appears between Xa and Xb. But by (2), the corresponding
matched node y′ of y in T2 appears outside the subtree rooted at n2. Thus in any ordering of
T2, Y appears either before or after both Xa and Xb. Thus T1 and T2 are not compatible. This
shows the claim for n1. The proof for n2 is similar.
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(4) This follows from the fact that T1 and T2 are compatible and by observing that each
matched node (in particular any node in X) contains a max-clique as a descendant.

(5) Let xa ∈ X be a common child of n1 and n2. Let Xa be a max-clique descendant of
xa. Suppose C1 − X is non-empty. Then let Ya be any max-clique descendant of a node in
C1 −X. Note that by (2), Ya is present outside the subtree rooted at n2. Now by Lemma 5.8.0
and observing that the least common ancestor of Xa and Ya (in T2) is an ancestor of n2, we get
U(n2) ⊇ Xa ∩ Ya ⊇ U(n1). Thus U(n1) ⊆ U(n2). Using an analogous argument we can show
that if C2 −X is non-empty then U(n2) ⊆ U(n1). This proves the first part of the property.

For the second part we once again assume that C1−X is non-empty and hence U(n1) ⊆ U(n2).
Now if C2 −X is empty then MMD(n2) = X ⊂ MMD(n1). But this contradicts the choice of n1

(we would have selected n2 instead).

(6) By (5), C2−X is non-empty and U(n1) = U(n2). Let xa ∈ X and suppose ya, yb ∈ C1−X
are any two nodes on different sides of X. Let za ∈ C2−X. Note that by (2), the matched nodes
of ya, yb in T2 appear outside the subtree rooted at n2 and the matched node of za in T1 appears
outside the subtree rooted at n1. Now let Xa, Ya, Yb and Za be any descendant max-cliques of
xa, ya, yb and za respectively. In any leaf-ordering of T1, Xa appears between Ya and Yb, and Za

doesn’t appear between Ya and Yb. But in any leaf-ordering of T2, either Za and Xa both appear
between Ya and Yb or they both appear before or after Ya and Yb. This contradicts that T1 and
T2 are compatible. Therefore all nodes of X appear before or after all nodes of C1 − X in the
child ordering of n1. Similarly, the claim also holds for the child ordering of n2 in T2.

We now describe the main step of the algorithm. Let n1, n2,M1,M2, C1, C2 and X be as
defined in the above lemma. We have four cases depending on whether n1 and n2 are P or Q-nodes.
In each of these cases, we make progress by either matching two previously unmatched essential
nodes of T1 and T2 or by reducing T1 and/or T2 at n1 or n2 while preserving their compatibility.
We show that our algorithm requires at most O(nlogn) iterations and each iteration takes O(n)
time. Thus our algorithm runs in O(n2 log n) time.

During the course of the algorithm we may also insert subcliques into a Q-node when we
are trying to match it to another Q-node. This is potentially dangerous as it may destroy the
validity of the PQ-tree. When the Q-nodes have the same universal set, this trouble does not
arise. However, in case the two Q-nodes have different universal sets, we need to re-structure
the trees. Case 4, when n1 and n2 are both Q-nodes, has subcases to deal with these complications.

Case 1: n1 and n2 are both P-nodes.

By Corollary 5.1, the children of n1 and n2 are essential nodes, so C1 and C2 are precisely the
children of n1 and n2 respectively. Let X consist of nodes {x1, . . . , xk0}. If C2−X is empty, then
by Lemma 5.10.5, C1−X is also empty and hence n1 and n2 are the same. So we match n1 with n2

and go to the next iteration. Suppose now that C2−X is non empty. Let C2−X = {r1, . . . , rk2}.
If C1 −X is empty, then we use the reduction template of Figure 5.2(a) to modify T2, matching
the new parent of X in T2 to n1. It is easy to see that T1 is compatible with T2 if and only if T1
is compatible with the modified T2.
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Figure 5.2: Reduction templates for Case 1.

Now let C1 −X = {l1, . . . , lk1} be non-empty. In this case we use the reduction template of
Figure 5.2(b) to modify T1 and T2 to T ′

1 and T ′
2 respectively. Note that it is possible to have

ki = 1 for some i’s, in which case the template is slightly different because we do not make a node
with one child, however, the reduction always makes progress as each ni has at least 3 children.

We now claim that T1 is compatible with T2 if and only if T ′
1 is compatible with T ′

2 . The
reverse direction is trivial. For the forward direction, let O1 and O2 be two compatible leaf
orderings of T1 and T2 respectively. Recall that by Lemma 5.10.2, for every [matched] node of
C1 −X in T1, the corresponding matched node in T2 appears outside the subtree rooted at n2.
This implies that the descendant nodes of {x1, x2, . . . , xk0} all appear consecutively in O1. Hence
the descendant nodes of {x1, x2, . . . , xk0} also appear consecutively in O2. Thus we conclude that
T1 and T2 are compatible if and only if the reduced trees T ′

1 and T ′
2 are also compatible. Note

that both the template reductions take at most O(n) time.

Case 2: n1 is a P-node and n2 is a Q-node.

If C1 −X = ∅, we reduce T1 by ordering the children of n1 as they appear in the child ordering
of n2, and changing n1 into a Q-node (and leading to Case 4). This reduction preserves the
compatibility of the two trees.

Now suppose C1 −X 6= ∅. Lemma 5.10.5 implies that C2 −X 6= ∅ and U(n1) = U(n2). By
Lemma 5.10.6, we can assume that the nodes in X appear before the nodes in C2 − X in the
child ordering of n2. Now let X = x1, . . . , xk0 , C1−X = l1, . . . , lk1 and C2−X = r1, . . . , rk2 . For
i ∈ 2, . . . , k0, let Si be the sequence of subcliques that appear between xi−1 and xi in the child
ordering of n2. Note that Si consists of the right tail of xi−1 followed by the left tail of xi. We let
S1 and Sk0+1 denote the left and right tails of x1 and xk0 respectively. We now reduce the subtree
rooted at n1 as shown in Figure 5.3, changing it into a Q-node. Clearly U(n1) is preserved in
this operation. The correctness of this operation follows by Lemma 5.10.2. It is easy to see that
both the template reductions run in O(n) time.
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Figure 5.3: Reduction template for Case 2, when C1 −X 6= ∅.

Case 3: n1 is a Q-node and n2 is a P-node.

If C2 −X is empty, then we reduce T2 by ordering the child nodes of n2 (i.e. X) as they appear
in the child ordering of n1, and changing n2 into a Q-node.

Now let C2 −X be nonempty. By Lemma 5.10.5, U(n2) ⊆ U(n1). Let X = {x1, x2, . . . , xk0},
C2 −X = {r1, . . . , rk2} and S1, . . . , Sk0+1 be defined as in the previous case: S1 is the left tail of
x1 (in T1), Si is the concatenation of the right tail of xi−1 and the left tail of xi, for i ∈ {2, . . . , k0}
and Sk0+1 is the right tail of xk0 .

Now if C1 − X is empty, then we use the template of Figure 5.4 to reduce T2, grouping all
nodes of X into a new Q-node w, ordering them in the way they appear in T1 and inserting the
subclique children of n1 into w. Note that since U(n2) ⊆ U(n1), this operation doesn’t change
U(n2) and hence it preserves the validity of T2. Further n1 is identical to w and hence we match
these nodes. Thus we make progress (by either reducing one of the trees or matching a node)
even when |X| = 1.

If C1 − X is non-empty, we use the template similar to Figure 5.3 (to reduce T2) in which
the roles of n1 and n2 have been switched. Note that the template reductions of this case run in
O(n) time.

Case 4: n1 and n2 are both Q-nodes.

Let X = {x1, . . . , xk0} appear in that order in the child ordering of n1 and n2. (They appear in
the same order because of Lemma 5.10.4.) Let p1 and p2 be the parents of n1 and n2 respectively.

If n1 and n2 have no other children than X, we match n1 with n2 and proceed to the next
iteration. More typically, they have other children. These may be essential nodes to one side or
the other of X (by Lemma 5.10.6) or subclique nodes interspersed in X as tails of the nodes of
X. We give a high-level outline of Case 4, beginning with a discussion of subclique nodes.

For i ∈ {1, . . . , k0}, let Li and Ri be the left and right tails of xi in T1 and, L′i and R′
i

be the left and right tails of xi in T2. The only way to deal with the subclique nodes is to do
subclique insertions in both trees to merge the tails. This is because in any quasi-intersection
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Figure 5.4: Reduction template for Case 3, when n1 is a Q-node, n2 is a P-node and C1 −X is
empty.

tree TI obtained from T1 and T2, the tails of xi in TI must contain the merge of the tails of xi
in T1 and T2. So long as |X| ≥ 2, the ordering x1, . . . , xk0 completely determines which pairs of
tails must merge: Li must merge with L′i and Ri must merge with R′

i.

The case |X| = 1 is more complicated because the quasi-intersection tree may merge L1 with
L′1 and R1 with R′

1 or merge L1 with R̄1 and R1 with L̄1. This decision problem is referred to
as the alignment problem. We prove (at the beginning of Case 4.3) that in case both choices give
mergable pairs, then either choice yields an quasi-intersection tree, if a quasi-intersection tree
exists.

This completes our high-level discussion of subclique nodes. We continue with a high-level
description of the subcase structure for Case 4. We have subcases depending on whether U(n1) =
U(n2) and whether n1 and n2 have the same essential children. If both these conditions hold,
then we merge the tails of the nodes of X and match n1 with n2. (In other words we replace Li
and L′i with Li +L

′
i, and replace Ri and R

′
i with Ri +R

′
i). The cost of matching any two nodes

x and y is (mx +my)|I|, where mx and my are the number of children of x and y respectively.
Once a node is matched, its children will not change. Hence the total amortized cost of matching
all the nodes is O(n · |I|) = O(n2).

When U(n1) 6= U(n2) or when n1 and n2 do not have the same essential children then we have
three subcases. Case 4.1 handles the situation when U(n1) 6⊇ U(n2). In this case we either insert
subcliques of one tree into another and match n1 with n2 or we do some subclique insertions that
will take us to the case when U(n1) ⊇ U(n2). The remaining cases handle the situation when
U(n1) ⊇ U(n2), Case 4.2 when C1 − X is non-empty and Case 4.3 when it is empty. In both
cases, we reduce T1 but the details vary. However in both cases our reduction templates depend
on whether p1 is a P-node or a Q-node. If p1 is a P-node, we reduce T1 by grouping some of the
child nodes of p1 into a single node, deleting them and adding the node as a first or last child of
n1. If p1 is a Q-node then there are two ways of reducing: delete n1 and reassign its children as
children of p1 or reverse the children of n1, delete n1 and reassign its children as children of p1.
We refer to this operation as a collapse. We now give the details of each case.
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Case 4.1: U(n1) 6⊇ U(n2).
Since n1 was chosen so that U(n1) is maximal, we also have U(n2) 6⊇ U(n1). Now using
Lemma 5.10.5, we infer that C1 − X is empty and C2 − X is empty. Thus the difference be-
tween U(n1) and U(n2) arises due to the subcliques. Let L be a subclique that is either the
first or the last child of n1, with the property that L 6⊆ U(n2). Such a subclique exists since by
Lemma 5.8.6, the intersection of the universal sets of the first and last child nodes of n1 is U(n1).
Also let R be a subclique that is either the first or the last child of n2, with the property that
R 6⊆ U(n1).

Note that even if |X| = 1, the alignment is unique since L and R cannot appear in the same
tail of x1 in any quasi-intersection tree. Further, we can assume without loss of generality that
L is present in the left tail of x1 in T1 and R is present in the right tail of xk0 in T2.

Let X1 be any max-clique descendant of x1. If p1 is a P-node then we claim that U(p1) ⊆
U(n2). To see this, let Z be a max-clique descendant of p1 that is not a descendant of n1. In
T2, Z appears outside the subtree rooted at n2. Now by applying Lemma 5.8.0 on X1 and Z,
we conclude that every descendant of n2 must contain the vertex set Z ∩ X1. Thus we have
U(p1) ⊆ (Z ∩X1) ⊆ U(n2). Note that if T1 and T2 are compatible, then in any quasi-intersection
tree of T1 and T2, the nodes of L1 and L

′
1 appear in the left tail of x1 and the nodes of Rk0 and R

′
k0

appear in the right tail of xk0 . Now if L′1 is non-empty, then we insert the left most subclique of
L′1 into L1 (at the appropriate location so that the resulting sequence is still a subclique ordering),
as a child of n1. Also if R′

k0
is non-empty, then we insert the right most subclique of R′

k0
into

Rk0 , as a child of n1. These insertions change U(n1) to U(n1) ∩ U(n2) ⊇ U(p1) and we would
be in case 4.3 with the roles of n1 and n2 being reversed. (Note that since the universal set of
the modified n1 is a superset of the universal set of p1, the resulting reduced tree of T1 is valid.)
Although this doesn’t constitute a progress step since the number of leaf orderings of n1 doesn’t
change, we will make progress in the Case 4.3.

Similarly if p2 is a P-node then we insert the first subclique of L1 (if it exists) into L′1 and
the last subclique of Rk0 (if it exists) into R′

k0
. After this we would be in Case 4.3.

Now if the parents of n1 and n2 are both Q-nodes then we look at the tails of n1 and n2. If all
the subcliques in these tails are subsets of U(n1)∩U(n2), then we replace Li and L

′
i with Li+L

′
i

and Ri and R
′
i with Ri + R

′
i. This changes U(n1) and U(n2) to U(n1) ∩ U(n2) and makes n1

identical to n2. Thus we match n1 with n2 and iterate.

Otherwise without loss of generality let the subclique S 6⊆ U(n2) be present in the (say left)
tail of n1. Observe that in any quasi-intersection tree S and R cannot be present in the same
tail of xk0 (since neither is a subset of the other). This implies that we can reduce the tree T1 by
collapsing n1 i.e. by removing n1, inserting the sequence of child nodes of n1 after S (S and L are
now in the left tail of x1), and assigning p1 as their parent. This completes case 4.1. Note that
all the steps in this case take O(n) time, except the matching step (recall that all the matching
steps take O(n2) amortized time).

Case 4.2: U(n1) ⊇ U(n2) and C1 −X is non-empty.

By Lemma 5.10.5, C2−X is also non-empty and further U(n1) is equal to U(n2). In this case we
will reduce T1 depending on whether p1 is a P-node or a Q-node. Further when p1 is a Q-node,
our reduction template also depends on whether n1 has sibling essential nodes.

43



Let l1, l2, . . . , lk1 be the essential nodes in C1 − X appearing in that order and appearing
(without loss of generality) before the nodes of X in T1. Note that by Lemma 5.10.2, for each
node in C1−X, the corresponding matched node in T2 appears outside the subtree rooted at n2.
Thus if T1 and T2 are compatible, then all the nodes of C2 −X must appear after the nodes of
X in the child ordering of n2. Let these nodes be r1, r2, . . . , rk2 .

Case 4.2.1: p1 is a P-node.

Let Y = {y1, y2, . . . , yk3} be the child nodes of p1 other than n1. Also, let TI be any quasi-
intersection tree of T1 and T2. We first observe that for i ∈ {1, . . . , k0} and j ∈ {1, . . . , k2},
MMD(yi) ∩MMD(rj) 6= ∅, if and only if yi and rj have a max-clique descendant.

For any such pair yi and rj , let MMD(yi)∩MMD(rj) 6= ∅ and let Y be a common max-clique
descendant of yi and rj . Then note that because of the constraints imposed by the child ordering
of n2, in any leaf ordering of TI , the descendant cliques of l1 do not appear between the descendant
cliques of x1 and Y . Thus yi must appear after xk1 , and so we reduce T1, by grouping all nodes
yi satisfying MMD(yi) ∩MMD(rj) 6= ∅ for some rj into a P-node and adding it as a child node
of n1 to the (immediate) right of Rk0 as shown in Figure 5.5(top).

Now if MMD(yi) ∩MMD(rj) = ∅ for all yi and rj , then the above reduction doesn’t apply.
But in this case (because of the constraints on n2), for every yi and every leaf ordering of TI ,
no max-clique descendant of yi appears between the max-clique descendants of n2. Thus we
group all the nodes of Y into a P-node and add it as a child of n1 to the left of l1 as shown in
Figure 5.5(bottom).

Note that for any two distinct nodes ya, yb ∈ {y1, . . . , yk3} we have: MMD(ya)∩MMD(yb) = ∅.
Similarly, for any two distinct nodes ra, rb ∈ {r1, . . . , rk2} we have: MMD(ra) ∩MMD(rb) = ∅.
This implies that we can first compute the MM-descendants of all yi and rj in O(n) time and
further we can compute all nodes yi that satisfy MMD(yi) ∩MMD(rj) 6= ∅ for some rj , in O(n)
time. Thus the template reductions of Figure 5.5 run in O(n) time.

Case 4.2.2: p1 is a Q-node and n1 is its only essential child.

Since the only essential child of p1 is n1, all of its remaining children are subcliques that are
present as tails of n1. Thus each of these subcliques is a subset of U(n1). Now let Z and R be
any two max-clique descendants of xk0 and r1 respectively. By Lemma 5.10.2, R appears outside
the subtree rooted at n1 (in T1) and hence outside the subtree rooted at p1. By Lemma 5.8.0, we
conclude that each descendant clique of p1 must contain Z ∩R. Thus we have U(p1) ⊇ Z ∩R ⊇
U(n2) = U(n1) ⊇ U(p1). Hence all of these sets must be equal and hence we infer the following:
Z ∩ R = U(n1) and hence U(xk0) ∩ U(r1) = U(n1). Further, each subclique child of p1 must
precisely be the clique U(n1).

Since we have eliminated adjacent duplicates from all Q-nodes, there can be at most one such
subclique in each tail of n1. Now if the subclique (U(n1)) appears on both sides of n1, then
there is a unique way of collapsing n1 (see Figure 5.6(top)). Otherwise we collapse n1 in such
a way that U(n1) is present in the tail of xk0 as shown in Figure 5.6(bottom). This is justified
(i.e. it preserves compatibility between T1 and T2) because U(n1) can be inserted into the right
tail of xk0 in both T1 and T2. In other words, if T1 and T2 are compatible, then there exists a
quasi-intersection tree in which U(n1) is present in the right tail of xk0 . The template reductions
of this case clearly run in O(n) time.
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Figure 5.5: Reduction template of T1 for Case 4.2.1. A node ya has horizontal stripes ifMMD(ya)∩
MMD(rb) 6= ∅ for some rb and no stripes otherwise.
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Figure 5.6: Reduction templates of T1 for Case 4.2.2.

Case 4.2.3: p1 is a Q-node and has more than one essential child.

Let y be an essential child of p1, such that all the nodes between n1 and y are subcliques. Without
loss of generality, we assume that y appears to the right of n1. We collapse n1, depending on
whether MMD(y) ∩ MMD(r1) is empty or not, as shown in Figure 5.7. Thus the template
reduction runs in O(n) time.

If MMD(y)∩MMD(r1) is non-empty, there exists a max-clique Y that is a descendant of both
r1 and y. Now if T1 and T2 are compatible, then in the leaf ordering of any quasi-intersection
tree, the max-clique descendants of xk0 appear in between the max-clique descendants of l1 and
Y . Thus we collapse the node n1, by deleting n1, and reassigning p1 as the parent of all the
children of n1. (Thus no essential node appears between xk0 and y.)

On the other hand if MMD(y) ∩ MMD(r1) is empty, we observe the following: In the leaf
ordering of any quasi-intersection tree TI no max-clique appears in between the max-clique de-
scendants of xk0 and the max-clique descendants of r1. Therefore, in this case we collapse n1, by
reversing its children, deleting it, and reassigning p1 as the parent of all the children of n1. (Thus
no essential node appears between l1 and y.)

Case 4.3: U(n1) ⊇ U(n2) and C1 −X is empty.

As before we have three cases depending on whether p1 is a P-node or a Q-node and whether p1
has more than one essential child. In each of these cases, when |X| = 1, we need to first solve the
alignment problem (as a first step). Also when p1 is a Q-node, both ways of collapsing n1 may
lead to a valid quasi-intersection tree.

Alignment Problem

Recall that when |X| = 1 (and C1 −X = ∅), the alignment may not be unique i.e. one of the
following might happen in the quasi-intersection tree TI .
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Figure 5.7: Reduction template of T1 for Case 4.2.3.

1. Left and right tails of x1 (in TI) contain L1 + L
′
1 and R1 +R

′
1 respectively.

2. Left and right tails of x1 (in TI) contain R̄1 + L
′
1 and L̄1 +R

′
1 respectively.

If one of the merges in (1) or (2) is invalid, then there is only a single way of aligning the
tails, otherwise we show in the following lemma that if T1 and T2 are compatible, then choosing
either one of the two alignments will work.

Lemma 5.11. Let U(n1) ⊇ U(n2), |X| = 1 and C1 − X be empty. Let L1, R1 be the left and
right tails of x1 in T1 and L′1, R

′
1 be the left and right tails of x1 in T2. If both ways of alignment

are mergable i.e. (a) L1 + L
′
1, R1 +R

′
1 are valid and (b) R̄1 + L

′
1, L̄1 +R

′
1 are valid, then there

exists a quasi-intersection tree TI (of T1 and T2) with L1 + L
′
1 and R1 + R′

1 contained in the
left and right tails of x1 (respectively) if and only if there exists a quasi-intersection tree T ′

I with
R̄1 + L

′
1 and L̄1 +R

′
1 contained in the left and right tails of x1 (respectively).

Proof. Let L, R be the left and right tails of x1 in a quasi-intersection tree TI . Each subclique S
in L or R appears as a subclique in T1 or T2. In particular we observe the following:

Property 1: If S is a subclique in L or R then in T1 or T2, S is present in a tail of x1 or in a tail
of an ancestor of x1.

Note that since the parent of x1 in TI contains at least two children, L and R both cannot
be empty. If one of them, say L is empty then the last clique in R must be U(n1). If both L and
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R are non-empty then the intersection of the first subclique of L1 with the last subclique of R1

is U(n1). In either case we observe that, since L1 + L
′
1 and R̄1 + L

′
1 are both valid (subclique

orderings), each subclique in L′1 is either a superset of U(n1) or a subset of U(n1). Similarly,
since R1+R

′
1 and L̄1+R

′
1 are both valid (superclique orderings), each subclique in R′

1 is either a
superset of U(n1) or a subset of U(n1). Further for any ancestor na of n2, U(na) ⊆ U(n2) ⊆ U(n1)
and hence the tails of any such na would consist of subcliques that are subsets of U(n1). Note
that this condition also holds for any ancestor of n1 in T1.

By above conditions and (1) we infer that for any subclique S in L or R, S is either a superset
of U(n1) or a subset of U(n1). Furthermore, if S is a superset of U(n1) then it is present in one of
L1,R1,L

′
1 or R′

1. This implies that if there exists a quasi-intersection tree TI in which L contains
L1 + L

′
1 and R contains R1 +R

′
1, then replacing L with L − L1 + R̄1 and R with R−R1 + L̄1

also results in a valid quasi-intersection tree.

Note that the amortized cost of doing the mergability checks (a) and (b) of Lemma 5.11 (over
all iterations of the algorithm) is O(n · |I|) = O(n2). For the rest of the cases, we can assume
that L1 is aligned with L2 and R1 is aligned with R2. In other words if T1 and T2 are compati-
ble, then there exists a quasi-intersection tree that contains L1+L2 and R1+R2 as the tails of x1.

Case 4.3.1: p1 is a P-node.

If C2 −X = ∅, then using the same argument as before (Lemma 5.8.0), we get U(p1) ⊆ U(n2).
Hence we replace Li and L

′
i with Li+L

′
i in T1 and T2 changing U(n1) to U(n1)∩U(n2) ⊇ U(p1),

and we match n1 with n2.

Now we look at the case when C2 − X is non-empty. Let L = {l1, l2, . . . , lk1} be the set of
essential nodes appearing to the left of X and R = {r1, . . . , rk2} be the set of essential nodes
appearing to the right of X in T2. Let Y = {y1, . . . , yk3} be all the remaining child nodes of p1
other than n1. For all i ∈ {1, . . . , k3}, if MMD(yi) ∩MMD(lj) 6= ∅ for some j ∈ {1, . . . , k1}, then
yi and lj both have a common max-clique descendant say Y , and further in any leaf order of a
quasi-intersection tree L1 + L

′
1 must appear between Y and the descendants of x1.

Thus we group all yi such that MMD(yi)∩MMD(lj) 6= ∅ into a new P-node and add it to the
(immediate) left of L1 (see Figure 5.8). Similarly, we group all yi such thatMMD(yi)∩MMD(rj) 6=
∅, for some j ∈ {1, . . . , k2} into a new P-node and add it to the (immediate) right of Rk0 .

Note that if for some y ∈ Y , there exist li and rj such that both MMD(y) ∩MMD(li) 6= ∅
and MMD(y) ∩MMD(rj) 6= ∅, then we can conclude that T1 and T2 are incompatible.

Also if L and R are both non-empty and for all y ∈ Y , MMD(y) doesn’t intersect with any
MMD(li) for i ∈ {1, . . . , k1} and with any MMD(rj) for j ∈ {1, . . . , k2} then once again we
conclude that T1 and T2 are incompatible.

On the other hand if one of L or R is empty, say L, and MMD(yi) ∩MMD(rj) is empty for
all yi ∈ Y and rj ∈ R, then the above template would not reduce T1. But then note that in any
leaf-ordering of any quasi-intersection tree, L1 +L

′
1 should appear between the descendants of yi

and x1 for all yi ∈ Y (because of the constraints imposed by T1 and T2). Hence in this case we
group all the nodes of Y into a P-node and add it a child node of p1 to the (immediate) left of
L1 as shown in Figure 5.9.

Note that since the MM-descendents of any two sibling nodes are disjoint, both of the above
templates can be implemented in O(n) time.
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Figure 5.8: First reduction template of T1 for Case 4.3.1. A node ya has vertical stripes if
MMD(ya) ∩MMD(lb) 6= ∅ for some lb, horizontal stripes if MMD(ya) ∩MMD(rb) 6= ∅ for some
rb and no stripes otherwise.
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Figure 5.9: Second reduction template of T1 for Case 4.3.1. The stripes on the y nodes are defined
as before.
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Case 4.3.2: p1 is a Q-node and n1 is its only essential child.

Let Lp and Rp be the left and right tails of p1. Note that in this case all the siblings of n1 are
subcliques that are present in its tails. We have three subcases depending on how U(p1) intersects
U(n2).

Suppose U(p1) properly intersects U(n2). We have U(p1)−U(n2) 6= ∅ and U(n2)−U(p1) 6= ∅.
We first claim that C2 −X is empty. Suppose not. Let Z be a max-clique descendant of a node
in C2 −X and X1 be a max-clique descendant of x1. By Lemma 5.8.2, in T1, Z appears outside
the subtree rooted at n1, and hence outside the subtree rooted at p1. Thus using Lemma 5.8.0,
we conclude that each descendant of p1 must contain all the vertices in Z ∩ X1 ⊇ U(n2). A
contradiction. Hence C2 −X is empty.

Now by Lemma 5.8.6, there exists a subclique S1 6⊇ U(n2) such that S1 is the first clique of
Lp or the last clique of Rp. Similarly there exists a subclique S2 6⊇ U(p1) such that S1 is the first
clique of L′1 or the last clique of R′

k0
. Without loss of generality let S1 be the first clique of Lp

and S2 be the last clique of R′
k0
. Observe that S1 ⊇ U(p1) and S2 ⊇ U(n2). This implies that S1

and S2 cannot be in the same tail (of x1 or xk0) in any quasi-intersection tree of T1 and T2. Thus
we reduce T1 by collapsing n1 i.e. by deleting n1, changing the parent of child nodes of n1 to p1
and arranging the child nodes such that Lp appears to the left of L1 and Rp appears to the right
of Rk0 . Clearly, this reduction can be done in O(n) time.

Now we have to deal with the case when either U(n2) ⊆ U(p1) or U(p1) ⊆ U(n2). Note that
in any quasi-intersection tree TI (of T1 and T2), the cliques of L1+L

′
1 appear in the left tail of x1

and the cliques of Rk0 +R
′
k0

appear in the right tail of xk0 . Further either (a) the cliques of Lp
appear in the left tail of x1 and the cliques of Rp appear in the right tail of xk0 or (b) the cliques
of Lp appear in the right tail of xk0 and the cliques of Rp appear in the left tail of x1. In the
first case L1 + L

′
1 + Lp and Rk0 +R

′
k0

+Rp are both valid and in the second case L1 + L
′
1 + R̄p

and Rk0 + R′
k0

+ L̄p are both valid. If neither of these is valid then we conclude that T1 and
T2 are incompatible. If exactly one of the above merges is valid, then there is a unique way of
collapsing n1. When both of the above merge pairs are valid, we use the reduction template
shown in Figure 5.10. The justification (given below) depends on whether U(n2) ⊆ U(p1) or
U(p1) ⊆ U(n2).

Let U(n2) ⊆ U(p1). Note that by Lemma 5.8.6, the intersection of the universal nodes of the
first and last child nodes of p1 is U(p1). Hence if L1 + L

′
1 + Lp, Rk0 +R

′
k0

+Rp, L1 + L
′
1 + R̄p

and Rk0 +R
′
k0

+ L̄p are all valid then any subclique in L′1 or R′
k0

is either a superset or a subset
of U(p1). Thus in any quasi-intersection tree TI , any subclique S in the left tail of x1 or the right
tail of xk0 is either a superset or a subset of U(p1). Further if S ⊇ U(p1), then S must appear in
one of {L′1,R

′
k0
,Lp,Rp,L1,Rk0}. This implies that a quasi-intersection tree satisfying condition

(a) exists if and only if a quasi-intersection tree satisfying condition (b) exists. This justifies the
use of our template in Figure 5.10, for reducing T1.

Similarly, if U(p1) ⊆ U(n2), we infer that any clique in Lp or Rp is either a subset of U(n2)
or a superset of U(n2). This in turn implies that in TI , any subclique S in the left tail of x1
or the right tail of x1, is either a subset or a superset of U(n2). Further, if S ⊇ U(n2) then it
must appear in {L1,Rk0 ,L

′
1,R

′
k0
,Lp,Rp}. This implies that a quasi-intersection tree satisfying

condition (a) exists if and only if a quasi-intersection tree satisfying (b) exists. This justifies the
use of our template in Figure 5.10, for reducing T1.

We now show that the amortized cost of executing the reduction template in Figure 5.10, over
all instances of the algorithm takes O(n2) time. Note that we use the same template for Case
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4.3.3 when C2 −X is empty. It is enough to show that the amortized time of all the mergability
checks: (whether L′1 + Lp and R′

k0
+Rp are both valid) take O(n2) time.

Let c(L′1) and c(R′
k0
) be the (consecutive) subsequences of L′1 and R′

k0
(respectively) such

that each subclique in c(L′1) and c(R′
k0
) contains U(p1) but not U(n1). c(L

′
1) and c(R′

k0
) are said

to be the core tails of n2.

Similarly let c(Lp) and c(Rp) be the (consecutive) subsequences of Lp and Rp (respectively)
such that each subclique in c(Lp) and c(Rp) contains U(n2). Then c(Lp) and c(Rp) are said to
be the core tails of p1.

Note that the core tails are only defined for p1 and n2, for the current case and Case 4.3.3,
when C2 − X is empty. We define the core tails of all other nodes to be empty. Observe that
when n1 is collapsed, the (new) core tails of any node in T1 (resp. T2) are disjoint from the core
tails of p1 (resp. n2) before the collapse.

We observe that checking the validity of L′1 + Lp reduces to checking the validity of c(L′1) +
c(Lp). Similarly, checking the validity of R′

k0
+Rp reduces to checking the validity of c(R′

k0
) +

c(Rp).

Now computing the cores over all executions of this template takes O(n · |I|) = O(n2) amor-
tized time. Also, computing the mergability of the cores, over all executions of the template takes∑

i(mi + ti)|I|, where mi, ti are the number of subcliques in the cores of n2 and p1 (respectively),
in the ith execution of the template. Since

∑
imi = O(n) and

∑
i ti = O(n), the total running

time of the template in Figure 5.10 over all executions is O(n2).

Case 4.3.3: p1 is a Q-node with more than one essential child.

Now let y be an essential child of p1, such that all the nodes between n1 and y are subcliques.
Without loss of generality, we assume that y appears to the right of n1.

We first consider the subcase when C2 −X is empty. In this case observe that all the max-
clique descendants of y appear outside the subtree rooted at n1 in T1. Applying Lemma 5.8.0 on
a max-clique descendant of y and a max-clique descendant of x1, we infer that each descendant
clique of n2 must contain all the vertices in U(p1). In other words we get U(p1) ⊆ U(n2). Now
the template (and the argument) in this case is analogous to case 4.3.2, when U(p1) ⊆ U(n2)
(Figure 5.10).

Now suppose C2 − X is non empty. Let r1 be the first essential child to the right of xk0 in
T2. We use the templates in Figure 5.11, depending on whether MMD(y) ∩MMD(r1) is empty
or not. If MMD(y) ∩MMD(r1) is non-empty, then by Lemma 5.8.2, there exists a max-clique Y
that is a descendant of both r1 and y. Now if T1 and T2 are compatible, then in any leaf ordering
of a quasi-intersection tree TI , the subcliques of Rk0 +R

′
k0

appear in between the descendants of
xk and Y (because of T2). This justifies the reduction template of T1 in Figure 5.11.

On the other hand, if MMD(r1) ∩MMD(y) = ∅, then by the constraints of T2, in any leaf
ordering of TI , the subcliques of Rk0 + R

′
k0

appear between the descendants of xk0 and l1 and
further no max-clique appears between them. This justifies the reduction template of T1 in Fig-
ure 5.11. Moreover the template reduction takes O(n) time.

Run time of the Algorithm.

In this section, we show that the run time of our algorithm is O(n2log n), where n is the total
number of vertices in G1 ∪G2.

51



n1

x2
Rk0

xk0x1
L1

Lp Rp

n2

x2

R′
k0

xk0x1

L′
1

L′

1
+ Lp and R′

k0
+Rp are valid ?

YES
NO

p1

p1

x2 xk0x1

L1 Rk0 RpLp

p1

x2 xk0x1

L1 Rk0 L̄pR̄p

T1

T2

E2E1

Figure 5.10: Reduction template of T1 for Case 4.3.2. Note that E1 and E2 denote (possibly
empty) sequences of cliques.
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Figure 5.11: Reduction template of T1 for Case 4.3.3.
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Observe that reducing T1 [resp. T2] decreases the number of leaf orderings of T1 [resp. T2] by
at least half. Moreover the total number of nodes in T1 and T2 is at most n. Thus the number
of leaf orderings of T1 and T2 is at most n! and hence the algorithm requires at most nlogn
reductions.

We begin by showing that selecting the nodes n1 and n2 takes O(n) time in any iteration. We
first note that computing the number of MM-descendants for all the nodes takes O(n) time (they
can be computed in a bottom-up fashion). With each node x, we store U(x) and the cardinality
of MMD(x).

Recall that as we go down the tree the universal sets increase and the MM-descendants sets
decrease. Thus n1 must have maximal depth among all unmatched essential nodes. Hence we
can select n1 in O(n) time by looking at the unmatched essential nodes of maximal depth in T1
and T2, and selecting a node with the greatest universal set size and the least number of MM-
descendants in that order. Note that by property 1 of Lemma 5.10, the MM-descendants of n1

are same as the essential child nodes of n1. Now we can select n2 from the other tree T2 in O(n)
time as follows: Let S be the set of [matched] essential children of n1 and S′ be the corresponding
set of matched nodes in T2. Let p(S

′) be the set of parent nodes of nodes in S′. We select n2 to
be a node of maximum depth among p(S′).

Also recall that at the high level our algorithm has 4 cases depending on whether n1, n2 are
P-nodes or Q-nodes. We have shown that each step in cases 1,2 or 3 takes O(n) time. For case
4, we have also shown that each of reduction steps, excluding the mergability checks in Cases
4.3.2 and 4.3.3 take O(n) time. We have also shown that the mergability checks of Cases 4.3.2
and 4.3.3 take O(n2) amortized time over all steps of the algorithm. Further, in the beginning of
Case 4, we have shown that the matching steps, which involve inserting the subcliques of one tree
into the other take at most O(n2) amortized time. Thus the total time taken by our algorithm
is O(n2logn + n2 + n2) = O(n2logn). At each node y of T1 (resp. T2) we explicitly store the
set U(y) and the cardinality of MMD(y). Since the number of internal nodes is less than the
number of leaf nodes, this additional storage still takes O(n+m). Thus the space complexity of
our algorithm is O(n+m).

5.6 Conclusion and Open Problem

We gave an O(n2 log n) algorithm to recognize whether two graphs are simultaneous interval
graphs, where n is the total number of vertices in both the graphs. This is equivalent to solving
the sunflower interval augmentation problem for two graphs, and the interval sandwich problem
when the set of optional edges induce a complete bipartite graph.

A natural open question is whether we can solve the problem for r-sunflower graphs for r > 2.
We conjecture that this can be solved efficiently. Note that when the common vertices induce
an independent set, this problem can be solved efficiently for interval graphs, by Theorem 5.2.
In contrast, the simultaneous chordal representation problem for r-sunflower graphs is NP-hard,
even when the common vertices induce an independent set (see Theorem 4.2).
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Chapter 6

Simultaneous Comparability Graphs

In this chapter1, we study the simultaneous comparability representation problem for multiple
graphs and give an efficient algorithm for solving the problem.

A comparability graph, as defined in chapter 2, is a graph whose edges can be transitively
oriented. Golumbic [44] gave an O(nm) time algorithm (n and m are the number of vertices
and number of edges respectively) for recognizing comparability graphs and constructing a tran-
sitive orientation if it exists. In this section we extend Golumbic’s [44] results to simultaneous
comparability graphs and show that the simultaneous comparability representation problem for
r-sunflower graphs can also be solved in O(nm) time, where n and m are the total number of
vertices and the total number of edges.

We use the following notation in this chapter. If A and B are disjoint sets, we use A+ B to
denote the disjoint-union of A and B. A directed edge from u to v is denoted by −→uv. If A is a set
of directed edges, then we use A−1 to denote the set of edges obtained by reversing the direction
of each edge in A. We use Â to denote the union of A and A−1. A is said to be transitive if for any

three vertices a, b, c, we have
−→
ab ∈ A and

−→
bc ∈ A implies that −→ac ∈ A. Our edge sets never include

loops, so note that if A is transitive then it cannot contain a directed cycle and must satisfy

A ∩ A−1 = ∅ (because if it contained both
−→
ab and

−→
ba it would contain −→aa). An orientation of a

graph is an assignment of directions to all its edges. A transitive orientation assigns a direction
to each edge in such a way that the resulting set of directed edges is transitive. We use G−A to
denote the graph obtained by undirecting A and removing it from graph G.

For the rest of this chapter we let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r-
sunflower comparability graphs sharing some vertices I (and the edges induced by I). We
use E(I) to denote the set of edges induced by I in any graph, say G1. As mentioned in
section 2.3, the simultaneous comparability representation problem for Gi, i ∈ {1, . . . , r}, asks
whether G1, G2, . . . , Gr can be transitively oriented in such a way that any edge in E(I) (i.e. any
common edge) is oriented in the same way in all the graphs. Also note that an augmenting edge is
an edge whose end points appear in different graphs. In other words an augmenting edge belongs
to the set {

⋃
(Vi− I)× (Vj− I) | i, j ∈ {1, . . . , r}∧ i 6= j}. Let G = G1∪G2∪· · ·∪Gr, n = |V (G)|

and m = |E(G)|. If W ⊆ Ê(G), then W is said to be pseudo-transitive if W ∩ Êi is transitive for
all i ∈ {1, . . . , r}. W is said to be a pseudo-transitive orientation if it is an orientation of G and
is pseudo-transitive. Thus by the definition of simultaneous comparability, G1, G2, . . . , Gr are

1The results presented in this chapter are joint work with Anna Lubiw [55].
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simultaneous comparability graphs if and only if G = G1 ∪G2 ∪ · · · ∪Gr has a pseudo-transitive
orientation.

6.1 Equivalence with Sunflower Comparability Graphs

We now prove an alternative characterization of simultaneous comparability for sunflower graphs,
in terms of the sunflower comparability augmentation problem. This is analogous to Theorem 2.1,
which only applied for intersection classes. The main ingredient of the proof is to show that any
pseudo-transitive orientation of G can be augmented to a transitive orientation.

Theorem 6.1. Let G1 = (V1, E1), G2 = (V2, E2), Gr = (Vr, Er) be r-sunflower comparability
graphs sharing some vertices I (and the edges induced by I). Gi, i ∈ {1, . . . , r} are augmentable
to a comparability graph if and only if G1 ∪ G2 . . . Gr has a pseudo-transitive orientation (or
equivalently, Gi, i ∈ {1, . . . , r} are simultaneous comparability graphs).

Proof. Let G = G1 ∪G2 · · · ∪Gr.

Let Gi, i ∈ {1, . . . , r} be augmentable to a comparability graph. Then there exists a set
A ⊆ {

⋃
(Vi − I) × (Vj − I) | i, j ∈ {1, . . . , r} ∧ i 6= j} of augmenting edges such that the graph

GA = G∪A is a comparability graph. Let T be a transitive orientation of GA. For i ∈ {1, . . . , r},
let Ti be a (directed) subgraph of T induced by Vi. Clearly Ti is a transitive orientation of Gi.
Further any edge in E(I) gets the same orientation in Ti, for all i. Now it is easy to see that the
orientation T − Â = T1 ∪ T2 ∪ · · · ∪ Tr is a pseudo-transitive orientation of G.

For the other direction let T be a pseudo-transitive orientation of G. We now extend T to a
transitive orientation T ′ by adding a set A′ of (directed) augmenting edges. This is enough to
show that Gi, i ∈ {1, . . . , r} are augmentable to a comparability graph. We define A′ as follows:

For all distinct i, j ∈ {1, . . . , r} and all vertex triples a, b, c with a ∈ Vi − I, b ∈ I and

c ∈ Vj − I,
−→
ab ∈ T and

−→
bc ∈ T ⇒ −→ac ∈ A′.

Now it is sufficient to prove that T ′ = T ∪ A′ is transitive. We first show that for any two
vertices a, c ∈ V (G) exactly one of −→ac and −→ca can be in T ′. Suppose both −→ac ∈ T ′ and −→ca ∈ T ′

hold. Since T is pseudo-transitive, −→ac and −→ca cannot both belong to T . Suppose −→ac ∈ A′ with
a ∈ Vi − I and c ∈ Vj − I. Then −→ca must be in A′ as well (not in T ). Thus (by definition of

A′) there exist vertices b, d ∈ I such that
−→
ab ∈ T ,

−→
bc ∈ T ,

−→
cd ∈ T and

−→
da ∈ T . Now b, a, d ∈ Vi,

therefore
−→
da ∈ T and

−→
ab ∈ T implies that

−→
db ∈ T . Similarly b, c, d ∈ Vj , therefore

−→
bc ∈ T

and
−→
cd ∈ T implies that

−→
bd ∈ T . Thus T contains both

−→
bd and

−→
db which contradicts that T is

pseudo-transitive.

Now let
−→
ab and

−→
bc belong to T ′. It is enough to show that −→ac ∈ T ′.

Case 1:
−→
ab ∈ T and

−→
bc ∈ T

Assume without loss of generality that a, b ∈ V1. If c ∈ V1 then by transitivity of T1,
−→ac ∈ T1 ⊆ T ′.

Otherwise c ∈ Vj − I, for some j, which forces b ∈ I, so by definition of A′, −→ac ∈ A′ ⊆ T ′.

Case 2:
−→
ab ∈ T and

−→
bc ∈ A′

Since
−→
bc ∈ A′, we can assume without loss of generality that b ∈ V1 − I and c ∈ V2 − I. Also by

definition of A′, there exists a vertex d ∈ I such that
−→
bd ∈ T and

−→
dc ∈ T . Now

−→
ab ∈ T implies
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that a ∈ V1 (since b ∈ V1) and thus a, b, d all belong to V1. Since
−→
ab ∈ T and

−→
bd ∈ T we must have

−→
ad ∈ T . Now if a ∈ V1 − I then −→ac ∈ A′ ⊆ T ′ and if a ∈ I then ac ∈ T ⊆ T ′ (since {a, d, c} ⊆ V2)

Case 3:
−→
ab ∈ A′ and

−→
bc ∈ T

This case is identical to case 3.
Case 4:

−→
ab ∈ A′ and

−→
bc ∈ A′

We can assume without loss of generality that a ∈ V1 − I, b ∈ V2 − I and c ∈ Vj − I for some

j 6= 2. Now
−→
ab ∈ A′ implies that there exists a vertex d ∈ I such that

−→
ad ∈ T and

−→
db ∈ T

Similarly
−→
bc ∈ A′ implies that there exists a vertex e ∈ I such that

−→
be ∈ T and −→ec ∈ T

Since
−→
db,
−→
be ∈ T and {d, b, e} ∈ V2,

−→
de ∈ T . Now a, d, e all belong to V1, hence {

−→
ad,
−→
de} ⊆ T

implies −→ae ∈ T ⊆ T ′. Now if c ∈ V1 then −→ac ∈ T ⊆ T ′, else −→ac ∈ A′ ⊆ T ′.

Thus in all cases −→ac ∈ T ′. Hence we conclude that T ′ is transitive. This completes the
proof.

6.2 Overview

We now sketch a high level overview of Golumbic’s algorithm for recognizing comparability graphs
and compare it with our approach. Golumbic’s recognition algorithm is conceptually quite simple:
orient one edge (call it a “seed” edge), and follow implications to orient further edges. If this
process results in an edge being oriented both forwards and backwards, the input graph is rejected.
Otherwise, when there are no further implications, the set of oriented edges (called an “implication
class”) is removed and the process repeats with the remaining graph. The correctness proof is
not so simple, requiring an analysis of implication classes, and of how deleting one implication
class changes other implication classes. Golumbic proves the following theorem.

Theorem 6.2. (Golumbic [44]) Let H = (V,E) be an undirected graph and let Ê(H) = B̂1 +
B̂2 + · · · + B̂j be any decomposition of H, where for each k ∈ {1, . . . , j}, Bk is an “implication
class” of H − ∪1≤l<kB̂l. The following statements are equivalent:

1. H is a comparability graph.

2. A ∩A−1 = ∅ for all implication classes A of H.

3. Bk ∩B−1
k = ∅ for k = 1, . . . , j.

We follow a similar strategy except that the “seed” edges must be chosen carefully for our
proof to work. In the next section we will define the concept of a “composite class” which is
analogous to an implication class. We further classify a composite class as a “base class” or a
“super class” depending on whether it is disjoint from E(I) or not. Our algorithm works as
follows: As long as there is a base class, remove it and recursively orient the remaining graph.
Otherwise (when there are no base classes left) as long as there is a super class, remove it and
recursively orient the remaining graph.

We define an S-decomposition of G1∪G2∪· · ·∪Gr, in the next section, and prove the following
theorem.

Theorem 6.3. Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r-sunflower comparability
graphs, sharing some vertices I (and the edges induced by I). Let G = G1 ∪ G2 · · · ∪ Gr and let

Ê(G) = B̂1 + B̂2 + · · ·+ B̂i + Ŝi+1 + Ŝi+2 + · · ·+ Ŝj be an “S-decomposition” of G. The following
statements are equivalent.
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1. G1, G2, . . . , Gr are simultaneous comparability graphs.

2. Every composite class of G is pseudo-transitive, i.e. C ∩ C−1 = ∅ for all composite classes
C of G.

3. Every part of the S-decomposition is pseudo-transitive, i.e. Bk ∩ B−1
k = ∅ for k = 1, . . . , i

and Sk ∩ S−1
k = ∅ for k = i+ 1, . . . , j.

6.3 Algorithm for Simultaneous Comparability Graphs

We now formalize and justify the above defined notions. Given an undirected graph H, we can
replace each undirected edge (u, v) by two directed edges −→uv and −→vu and define a relation Γ on
the directed edges of H as explained below. Whenever there are edges ab and bc and no edge ac,

then any transitive orientation of H cannot use directions
−→
ab and

−→
bc nor can it use directions

−→
cb

and
−→
ba. This can be expressed as the constraint that we use

−→
ab iff

−→
cb and we use

−→
ba iff

−→
bc. We

define Γ on the directed edges of H to capture this:

−→
abΓ
−→
a′b′ if (a = a′ and bb′ 6∈ E(H)) or (b = b′ and aa′ 6∈ E(H)).

Γ can be viewed as a constraint that directs the ab edge from a to b if and only if the edge
a′b′ is directed from a′ to b′. It is easy to see that the transitive closure of Γ, denoted by Γt,
is an equivalence relation. We refer to the equivalence classes of Γt as implication classes. The
following lemmas capture some of the fundamental properties of implication classes.

Lemma 6.1. ([44]) Let A be an implication class of a graph H. If H has a transitive orientation
F , then either F ∩ Â = A or F ∩ Â = A−1 and in either case, A ∩A−1 = ∅.

Lemma 6.2. ([44]) Let the vertices a, b, c induce a triangle in H and let
−→
bc, −→ca and

−→
ba belong to

implication classes A,B and C respectively (see Figure 6.1). If A 6= C and A 6= B−1, then

1. If
−→
b′c′ ∈ A then

−→
b′a ∈ C and

−→
c′a ∈ B

2. No edge of A is incident with a.

b c

a

b′ c′

A

A

B

BC

C

Figure 6.1: An example to illustrate Lemma 6.2.
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Lemma 6.3. ([44]) Let A be an implication class of a graph H. If A ∩ A−1 = ∅, then A is
transitive.

Note that in Lemma 6.2, if the directions of one or more edges of triangle abc are reversed,
then the lemma can still be applied by inversing the corresponding implication classes. For e.g

when
−→
ab ∈ C, −→ac ∈ B and

−→
bc ∈ A, if A 6= C−1 and A 6= B, then condition (1) becomes: If

−→
b′c′ ∈ A

then
−→
ab′ ∈ C and

−→
ac′ ∈ B.

Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r-sunflower comparability graphs,
sharing some vertices I (and the edges induced by I). Let G = G1 ∪ G2 ∪ · · · ∪ Gr. We define

a relation Γ′ on the (directed) edges of G as follows: −→e Γ′
−→
f if −→e Γ

−→
f and e and f belong to Ei

for some i ∈ {1, . . . , r}. It is easy to see that the transitive closure of Γ′ denoted by Γ′
t is an

equivalence relation. We refer to the equivalence classes of Γ′
t as composite classes.

From the definition, it follows that each composite class is a union of zero or more implication
classes of Gi for all i ∈ {1, . . . , r}. If a composite class C of G has an edge that belongs to
E(I), then we use the term “super class” to refer to C. Otherwise C is said to be a “base class”.
Thus any base class is a single implication class of Gi for some i ∈ {1, . . . , r} and is contained in
Êi − Ê(I). Figure 6.2 shows a pair of comparability graphs and their composite classes.

S1

S1

S1

S1

S1S1

S1

S1

S1

S1
S1

S1

S1

B1

B1

B1B3

B2

a

b

c

d

e

f

g

h i

j k

l m

n

G1
G2

Figure 6.2: An instance of simultaneous comparability representation problem with two graphs
G1 and G2 sharing vertices {h, i, j, k, l,m, n}. S1 and its inverse are the super classes of G1 ∪G2

and B1, B2, B3 and their inverses are the base classes. Thus there are 8 composite classes in total.

Observation: Note that every implication class of a super class contains an edge −→e ∈ Ê(I).

The following lemmas for composite classes are analogous to Lemmas 6.1, 6.2 and 6.3.

Lemma 6.4. Let A be a composite class of G. If F is a pseudo-transitive orientation of G then
either F ∩ Â = A or F ∩ Â = A−1 and in either case, A ∩A−1 = ∅.
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Proof. Let Y be a set of directed augmenting edges of G = G1∪G2∪· · ·∪Gr such that F ′ = F ∪Y
is a transitive orientation. Let G′ be the graph obtained by undirecting F ′. Thus G′ is an
augmentation of G. Now any composite class of G is contained in some implication class of G′, as
any two edges that are related by Γ′ in G are related by Γ in G′. Let A′ be the implication class
of G′ that contains A. Note that A ⊆ A′ − Y . Now the lemma follows by applying Lemma 6.1
on A′ and G′.

Lemma 6.5. Let the vertices a ∈ I, b and c induce a triangle in G, such that
−→
bc, −→ca and

−→
ba

belong to composite classes A,B and C respectively. If A 6= C and A 6= B−1, then

1. If
−→
b′c′ ∈ A then

−→
b′a ∈ C and

−→
c′a ∈ B.

2. No edge of A is incident with a.

Proof. We cannot appeal immediately to Lemma 6.2 because although
−→
bc and

−→
b′c′ belong to the

same composite class A, they need not be in the same implication class.

Since
−→
bc,
−→
b′c′ ∈ A, there exist a sequence of edges

−−→
b1c1, · · · ,

−−→
bkck, fromA, such that

−→
bcΓ′
−−→
b1c1Γ

′ · · ·Γ′

−−→
bkckΓ

′
−→
b′c′. Assume inductively that (1) holds for

−−→
bkck, i.e.

−→
bka ∈ C and −→cka ∈ B. Now since

−−→
bkckΓ

′
−→
b′c′, both (bk, ck) and (b′, c′) belong to Ei for some i ∈ {1, . . . , r}. Further

−−→
bkckΓ

−→
b′c′.

Assume without loss of generality that (bk, ck), (b
′, c′) ∈ E1. Since a ∈ I ⊆ V1, we have

{bk, b
′, ck, c

′, a} ⊆ V1. Let A1, B1 and C1 be the implication classes of G1 such that
−−→
bkck ∈ A1,

−→cka ∈ B1, and
−→
bka ∈ C1. Note that A1 ⊆ A, B1 ⊆ B and C1 ⊆ C. Since

−−→
bkckΓ

−→
b′c′, we have

−→
b′c′ ∈ A1. Now applying Lemma 6.2 on triangle abkck and the edge

−→
b′c′, we conclude that

−→
c′a ∈ B1

and
−→
b′a ∈ C1. Therefore

−→
c′a ∈ B and

−→
b′a ∈ C.

For the second part, assume for the sake of contradiction that an edge of A is incident with

a. Then there exists a vertex d such that either
−→
ad ∈ A or

−→
da ∈ A. If

−→
ad ∈ A, then by the first

part of this theorem,
−→
da ∈ B, and thus A = B−1, a contradiction. Similarly, if

−→
da ∈ A, then by

the first part of this theorem,
−→
da ∈ C, and thus A = C, a contradiction. This shows the second

part.

Lemma 6.6. Let the vertices a, b, c form a triangle in G and let the edges
−→
bc,−→ca and

−→
ba belong

to composite classes A,B and C respectively with A 6= C, A 6= B−1 and B 6= C. If B and C are

both super classes then there exists a triangle a′, b′, c′ in I with
−→
b′c′ ∈ A,

−→
c′a′ ∈ B and

−→
b′a′ ∈ C

and hence A is a super class.

Proof. We can assume without loss of generality that a, b, c ∈ V1. Let the edges
−→ca and

−→
ba belong

to implication classes Ib and Ic (respectively) of G1 (thus Ib ⊆ B, Ic ⊆ C). Hence Ib ∩ ˆE(I) 6= ∅,

Ic ∩ ˆE(I) 6= ∅. Let
−−→
b′a′′ ∈ Ic ∩ ˆE(I) and

−→
c′a′ ∈ Ib ∩ ˆE(I). Applying Lemma 6.2 on triangle c, a, b

and the edge
−−→
b′a′′ (and noting that A 6= C, A 6= B−1), we infer that

−→
ca′′ ∈ Ib and

−→
b′c ∈ A. Now

applying Lemma 6.2 again on triangle b′, c, a′′ and the edge
−→
c′a′ (and noting that B 6= C and

B 6= A−1), we infer that
−→
b′a′ ∈ Ic and

−→
b′c′ ∈ A. This in turn implies that A is a super class (since

b′, c′ ∈ I).

Lemma 6.7. Let A be a composite class of G = G1 ∪G2 ∪ · · · ∪Gr. If A∩A−1 = ∅, then for all
i ∈ {1, . . . , r}, A ∩ Êi is transitive and hence A is pseudo-transitive.
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Figure 6.3: An example to illustrate Lemma 6.6.

Proof. If A is a base class then A is transitive by Lemma 6.3. Thus we can assume that A is a
super class. If A doesn’t satisfy the conclusion of the lemma then we can assume without loss of

generality that there exist vertices a, b, c ∈ V1 such that
−→
ba ∈ A, −→ac ∈ A and

−→
bc 6∈ A. If the edge

(b, c) is not present in E1, then
−→
baΓ′−→ca and thus −→ca ∈ A ∩ A−1. Therefore we can assume that

(b, c) ∈ E1. Let Ca be the composite class that contains
−→
bc. Now in triangle abc, we have

−→
ba ∈ A

and −→ca ∈ A−1. Also both A and A−1 are super classes with A 6= Ca. Therefore by Lemma 6.6,

Ca must be a super class. Further there exists a triangle a′b′c′ in I with
−→
b′a′ ∈ A,

−→
a′c′ ∈ A and

−→
b′c′ ∈ Ca. But by the second condition of Lemma 6.5 (on triangle b′c′a′), b′ cannot be incident
with an A edge, a contradiction. Thus Ca = A and we conclude that A is pseudo-transitive.

The following Corollary is a consequence of Lemma 6.7.

Corollary 6.1. Let A be a composite class of G. Then A is pseudo-transitive iff A ∩A−1 = ∅.

Recall that our approach involves deleting a composite class A from G. Any composite class
of G − A is a union of composite classes of G formed by successive “merging”. Two composite
classes B and C of G are said to be merged by the deletion of class A, if deleting A creates a
(Γ′) relation between a B-edge and a C-edge. Note that for this to happen there must exist a

triangle a, b, c in G with (b, c) ∈ Â and either
−→
ba ∈ C and −→ca ∈ B or

−→
ab ∈ C and −→ac ∈ B. We first

iteratively delete all the base classes followed by the (remaining) super classes. The following
lemmas examine what happens when a base or super class gets deleted by the algorithm.

Lemma 6.8. If the composite classes of G are all pseudo-transitive and A is a base class of G
then the composite classes of G−A are also pseudo-transitive.

Proof. Let C be any (composite) class of G − A. If C is also a composite class of G then it is
pseudo-transitive by assumption. So assume that C is formed by merging two or more composite
classes of G.
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Claim 1. Let B1 be a base class contained in C. If B1 merges with another composite class M
then B1 6= M−1 and B1 does not merge with any other class.

Proof. Since C contains a merge of B1 and M , there exists a triangle a, b, c in G such that one
of the following conditions hold:

1.
−→
ba ∈M , −→ca ∈ B1 and

−→
bc ∈ A.

2.
−→
ba ∈M , −→ca ∈ B1 and

−→
cb ∈ A.

3.
−→
ab ∈M , −→ac ∈ B1 and

−→
bc ∈ A.

4.
−→
ab ∈M , −→ac ∈ B1 and

−→
cb ∈ A.

All these cases are symmetric and hence we assume without loss of generality that condition (1)
holds. If B1 = M−1 then by Lemma 6.7, A = M , a contradiction. Let B2 ⊆M be the implication

class containing the edge
−→
ba. Now it is enough to show that deleting A wouldn’t merge B1 with

some other implication class D 6= B2 of G. To see this, suppose deleting A merges B1 with D.

Then there exists an edge
−→
b′c′ ∈ A which together with a B1 edge and a D edge forms a triangle

T in G. Let a′ be the other vertex of T .

b c

a

A

B1B2

b c

a

A

B1D
B2

B1

Figure 6.4: An example to illustrate Claim 1.

We claim that the B1 edge of T is
−→
c′a′. To see this we first note that by Lemma 6.2,

−→
b′a ∈ B2

and
−→
c′a ∈ B1. Applying the second part of Lemma 6.2 on b′c′a we infer that b′ cannot be adjacent

to a B1 edge. Also by the same lemma, applied on b′c′a and
−→
a′c′, if

−→
a′c′ ∈ B1 then

−→
b′c′ ∈ B2, a

contradiction. Thus
−→
c′a′ ∈ B1 and hence

−→
b′a′ ∈ D.

Now applying Lemma 6.2 again on b′c′a and edge
−→
c′a′, we infer that D = B2.

Claim 2. Two super classes don’t merge in C.

Proof. Assume (for the sake of contradiction) that two super classes Sy and Sz merge in C. Thus
we can assume without loss of generality that there exists a triangle a, y, z in G with −→yz ∈ A,
−→za ∈ Sy and −→ya ∈ Sz. (The other cases are symmetric as observed in Claim 1). Since A is
disjoint from Ŝy and Ŝz and Sy 6= Sz, the conditions of Lemma 6.6 are satisfied. Thus applying
Lemma 6.6 on triangle ayz, we conclude that A is a super class, a contradiction.

Claim 3. If C contains a super class, say S (of G), then C is of the form C = S∪B1∪B2∪· · ·∪Bk,
where B1, . . . , Bk are base classes of G and Bi 6= B−1

j for 1 ≤ i, j ≤ k. Otherwise C is the union

of two base classes B1 and B2 with B1 6= B−1
2 .
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Proof. This follows directly as a consequence of Claims 1 and 2.

Claim 3 implies that C ∩ C−1 = ∅ and hence C is pseudo-transitive (by Lemma 6.7).

Lemma 6.9. Let each of the composite classes of G = G1 ∪G2 ∪ · · · ∪Gr be super and pseudo-
transitive. If A is any super class of G then each of the composite classes of G − A is pseudo-
transitive.

Proof. Let L be a composite class of G−A. If L is also a composite class of G then L is pseudo-
transitive by assumption. So assume that L is not a composite class of G. We claim that L
consists of precisely a merge of two super classes. To see this let L contains the merge of super
classes B and C. We can assume (without loss of generality) that there exists a triangle abc in

G with
−→
bc ∈ A, −→ca ∈ B and

−→
ba ∈ C. Further by Lemma 6.6, we can assume that {a, b, c} ∈ I.

We now show that deleting A wouldn’t merge B with some other super class D 6= C. The
proof is parallel to that of Claim 1, though we can’t appeal to Lemma 6.2 as we do there, and
must use Lemma 6.5 instead. If L contains a merge of B with some other super class D, then

there exists a triangle T = a′b′c′ in G with
−→
b′c′ ∈ A and the other two edges in B and D. Further

by Lemma 6.6, we can assume that {a′, b′, c′} ⊆ I.

We claim that the B edge of T must be
−→
c′a′. To see this we first note that by Lemma 6.5,

−→
b′a ∈ C and

−→
c′a ∈ B. Applying the second part of Lemma 6.5 on b′c′a we infer that b′ cannot be

adjacent to a B edge. Also by the same lemma applied on b′c′a and
−→
a′c′, if

−→
a′c′ ∈ B then

−→
b′c′ ∈ C,

a contradiction. Thus
−→
c′a′ ∈ B and

−→
b′a′ ∈ D.

Now applying Lemma 6.5 again on b′c′a and the edge
−→
c′a′, we infer that D = C. Therefore

B doesn’t merge with any class other than C and similarly C doesn’t merge with any class other
than B. Hence L consists of precisely a merge of two super classes B and C and therefore L is
pseudo-transitive (since B 6= C−1).

A partition of the edge set ˆE(G) = B̂1 + B̂2 + · · ·+ B̂i + Ŝi+1 + Ŝi+2 + · · ·+ Ŝj is said to be
an S-decomposition of G = G1 ∪G2 ∪ · · · ∪Gr, if for each k ∈ {1, . . . , i}, Bk is a base class of G
− ∪1≤l<kB̂l and for each k ∈ {i+ 1, . . . , j}, Sk is a super class of G − ∪1≤l≤iB̂l − ∪i+1≤l<kŜl

We are now ready to prove the main theorem.

Theorem 6.3. Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r-sunflower comparability
graphs, sharing some vertices I (and the edges induced by I). Let G = G1 ∪ G2 · · · ∪ Gr and
ˆE(G) = B̂1 + B̂2 + · · ·+ B̂i + Ŝi+1 + Ŝi+2 + · · ·+ Ŝj be an S-decomposition of G. The following

statements are equivalent.

1. G1, G2, . . . , Gr are simultaneous comparability graphs.

2. Every composite class of G is pseudo-transitive, i.e. C ∩ C−1 = ∅ for all composite classes
C of G.

3. Every part of the S-decomposition is pseudo-transitive, i.e. Bk ∩ B−1
k = ∅ for k = 1, . . . , i

and Sk ∩ S−1
k = ∅ for k = i+ 1, . . . , j.
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Proof. (1) ⇒ (2) By Theorem 6.1 G has a pseudo-transitive orientation. Thus the claim follows
from Lemmas 6.4 and 6.7.

(2) ⇒ (3) is a direct consequence of Lemmas 6.8 and 6.9.
(3) ⇒ (1)

Let T = B1+B2+ · · ·+Bi+ · · ·Si+1+Si+2+ · · ·+Sj . We now claim that T is pseudo-transitive.
For k = 1, . . . , j, define Ck as Ck = Bk if k ≤ i and Ck = Sk otherwise. Thus T = C1 + · · ·+ Cj .

For k = 1 . . . j, let Tk = Ck + · · · + Cj . (Thus T1 = T ) and Hk = Ĉk + · · · Ĉj . Thus Ck is a
composite class of Hk. Now it is enough to show that Tk is pseudo-transitive for any k. Assume
inductively that Tk+1 = Tk − Ck is pseudo-transitive. Note that T̂k+1 ∩ Ĉk = ∅. Now we claim
that Tk = Tk+1 ∪ Ck is also pseudo-transitive.

Suppose not. We can assume without loss of generality that there exist vertices a, b, c all in

G1 such that
−→
ab ∈ Tk,

−→
bc ∈ Tk and −→ac 6∈ Tk. Since Tk+1 and Ck are pseudo-transitive we only

have to consider the case when
−→
ab ∈ Tk+1 and

−→
bc ∈ Ck (the other case

−→
ab ∈ Ck and

−→
bc ∈ Tk+1 is

symmetric).

Now if the edge (a, c) is not present in Hk then
−→
bcΓ′
−→
ba and thus

−→
ba ∈ Ck, contradicting that

T̂k+1 ∩ Ĉk = ∅. So either −→ca ∈ Tk+1 or −→ca ∈ Ck. This implies (by the pseudo-transitivity of Tk+1

and Ck) that
−→
cb ∈ Tk+1 or

−→
ba ∈ Ck. In both cases we get a contradiction to T̂k+1 ∩ Ĉk = ∅.

Hence we conclude that Tk is pseudo-transitive.

Theorem 6.3 gives rise to the following O(nm) algorithm for determining whether a family
of r-sunflower graphs are simultaneous comparability graphs: Given graphs G1, G2, . . . , Gr check
whether all composite classes of G = G1 ∪G2 ∪ · · · ∪Gr are pseudo-transitive. If so return YES
otherwise return NO. Further, if G1, G2, . . . , Gr are simultaneous comparability graphs then the
following algorithm computes an S-decomposition of G. As shown in the proof of Theorem 6.3,
this immediately gives a pseudo-transitive orientation. In fact it gives 2j pseudo-transitive orien-
tations.

To compute a pseudo-transitive orientation (because of Theorem 6.3), we have to first itera-
tively select and delete base classes from G1 ∪G2 ∪ · · · ∪Gr, before selecting and deleting super
classes. We compute a pseudo-transitive orientation as follows.

Algorithm 2

1. Initialize T = ∅ and G′ = G.
2. Compute all base-classes B1, B

−1
1 , . . . , Bb, B

−1
b .

3. For i = 1 to b, place all the edges of Bi (resp. B
−1
i ) in a separate set labelled i (resp. −i).

4. Place all the remaining edges in one set and assign a label 0.
5. Let S−→uv denote the set containing −→uv.
6. While there exists a set S with non-zero label Do:
7. Add all (directed) edges of S to T .
8. Assign label 0 to S and S−1.

9. For each edge
−→
bc in S and each vertex a in G such that abc forms a triangle Do:

10. If labels of S−→
ab

and S−→ac are not equal:
11. Let l be a label defined as: l = 0 if labels of S−→

ab
or S−→ac is 0, otherwise l = label of S−→

ab
.

12. Merge S−→
ab

and S−→ac and assign label l to the union.
13. Merge S−→

ba
and S−→ca and assign label −l to the union.

14. End
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15. End

16.Let G′ = G− T̂ . /* Now each composite class of G′ is a super class. */
17. While G′ is non-empty Do:
18. Let C be a super class of G′.
19. T = T ∪ C and G′ = G′ − Ĉ.
20. End

21. Return T .

Given simultaneous graphs G1, G2, . . . , Gr, Algorithm 2 computes the pseudo-transitive ori-
entation of G = G1 ∪G2 · · · ∪Gr as follows. We first compute all the base classes and distinguish
them from super classes using labels (lines 2,3 and 4). The algorithm iteratively orients all the
base classes before orienting the super classes. In each iteration of the first while loop (line 6), we
use the labels to find a base class, add it to the solution and delete it (lines 6–8). By Lemma 6.8
deletion of a base class may leave other composite classes unchanged, or merge two base classes
or merge a super class with a set of base classes. We handle these cases in lines 9 to 13 and
update the labels. Note that we label the super classes and the base classes that get deleted with
‘0’. After the while loop terminates, we are only left with super classes. These are handled in
lines 17 to 21.

Algorithm 2 can be implemented to run in O(nm) time using a disjoint-set data structure.
Using a linked-list representation and a weighted-union heuristic (see [25]), we obtain O(1) amor-
tized time for the find operation and O(log n) time for the union operation. Since the number of
find operations in the algorithm are greater than the number of union operations by a polynomial
factor, we may assume that each set operation takes O(1) amortized time. Now consider the run
time of each of the steps in the algorithm: Computing all the composite classes (base and super)
takes O(nm) time. Thus line 2 takes O(nm) time. Lines 3 and 4 take O(m) time. In line 6,
finding a set with non-zero label takes at most O(m) time. In each iteration of the while loop,
if the chosen set has m1 elements, then the For loop (lines 9–14) takes O(m1n) time. Hence the
total run time of the while loop is O((m1 +m2 + · · ·mi)n) where mi is the size of the set chosen
in the ith iteration of the algorithm. This in turn is at most O(nm). Lines 16–21 also run in
O(nm) time. Hence the run time of Algorithm 2 is O(nm).

Algorithm 2 can be improved to run faster for sparse graphs as follows. In the for loop of line
9, instead of visiting each vertex a to check whether it forms a triangle with the edge bc, we can
take the minimum degree vertex among b and c, and visit each of its neighbors to check whether
it forms a triangle with bc. Thus if each vertex has degree at most d, then the algorithm takes
O(md) time. Even if the vertex degrees are not bounded, this algorithm can be shown to have a
better running time for sparse graphs, as follows.

Let d > 0 be any constant. For each edge bc, if one of the end vertices has degree at most d,
then we spend O(d) time for the edge, otherwise we may spend at most O(n). The number of
vertices with degree greater than d is at most m/d. Thus the number of edges, for which we need
to do more than O(d) work is at most (m/d)2. Hence the total running time of the algorithm
is at most O(md) + O(n(m/d)2). By choosing d to be O((mn)1/3), we get a running time of
O(m4/3n1/3).

Remark: Note that if T is a pseudo-transitive orientation of G, then T can be augmented to a
transitive orientation by computing T ′ = T ∪T 2 (as shown in the proof of Theorem 6.1). This can

be easily done in O(nm) time as follows: Initialize T ′ to T . For each edge
−→
ab ∈ T and each vertex
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c ∈ G, if
−→
ab ∈ T and

−→
bc ∈ T then add −→ac to T ′. Hence computing an augmented comparability

graph takes O(nm) steps.

6.4 Summary

We have given an O(nm) algorithm for solving the simultaneous comparability representation
problem for r-sunflower graphs, for arbitrary r. This is the same as solving the sunflower com-
parability augmentation problem for r-sunflower graphs and is equivalent to solving the com-
parability graph sandwich problem when the set of optional edges induces a complete r-partite
graph. Hence our algorithm strictly generalizes the recognition algorithm for probe comparability
graphs. Furthermore the currently known algorithm for recognizing probe comparability graphs
also runs in O(nm) time [19]. Also our algorithm implies that the sunflower co-comparability
augmentation problem for r-sunflower graphs can be solved in O(n3) time, by taking the comple-
ments of the r-sunflower graphs and testing whether they are simultaneous comparability graphs.
Since co-comparability graphs are intersection graphs, we then have an O(n3) algorithm to solve
the simultaneous co-comparability representation problem for r-sunflower graphs.

In the next chapter, we use the algorithm for simultaneous comparability graphs presented in
this chapter to obtain an efficient algorithm for solving the simultaneous permutation represen-
tation problem for r-sunflower graphs.

Finally, we note that a more general version of simultaneity can be studied for comparability
graphs. Let G1 and G2 be two graphs that share some vertices I. If G1[I] is the same as G2[I]
then G1 and G2 are 2-sunflower graphs. However, if we allow G1[I] to be different from G2[I],
then the problem of testing whether G1 and G2 are simultaneous comparability graphs is an open
problem.

65



Chapter 7

Simultaneous Permutation Graphs

In this chapter1, we use the results on the simultaneous comparability representation problem
for r-sunflower graphs to obtain an efficient algorithm for solving the simultaneous permutation
representation problem for r-sunflower graphs. This implies that the sunflower permutation
augmentation problem and the sunflower co-permutation augmentation problem can be solved
efficiently for r-sunflower graphs.

Recall that a graph H = (V,E) on vertices V = {1, . . . , n} is said to be a permutation graph if
there exists a permutation π of the numbers 1, 2, . . . , n such that for all 1 ≤ i < j ≤ n, (i, j) ∈ E
if and only if π(i) > π(j). Equivalently, H = (V,E) is a permutation graph if and only if there
are two orderings L and P of V such that (u, v) ∈ E iff u and v appear in the opposite order in
L and in P . We call 〈L,P 〉 an order-pair for G. The intersection representation for permutation
graphs follows immediately: H = (V,E) is a permutation graph iff there are two parallel lines l
and p and a set of line segments each connecting a distinct point on l with a distinct point on
p such that H is the intersection graph of the line segments. Observe that L and P correspond
to the ordering of the endpoints of the line segments on l and p respectively. Figure 7.1 shows a
permutation graph and its intersection representation. Since permutation graphs are a class of
intersection graphs, the equivalence Theorem 2.1 is applicable for this class.

1

1

2

2

3

3

4

4

5
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6
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(b)(a)

1

2 3

4 6 5

Figure 7.1: A permutation graph and its intersection representation.

Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r-sunflower permutation graphs,
sharing some vertices I (and the edges induced by I). We begin with a “relaxed” characterization

1This results presented in this chapter are joint work with Anna Lubiw [55].
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of simultaneous permutation graphs in terms of order-pairs.

Lemma 7.1. G1, G2, . . . , Gr are simultaneous permutation graphs iff for every i ∈ {1, . . . , r}
there exists an order-pair 〈Li, Pi〉 of Gi, such that every pair of vertices u, v ∈ I appear in the
same order in all Li AND appear in the same order in all Pi.

Proof. Let G1, G2, . . . , Gr be simultaneous permutation graphs. By Theorem 2.1, there exists a
set A of augmenting edges such that the graph GA = G1∪G2 · · ·∪Gr∪A is a permutation graph.
Let 〈L,P 〉 be an order pair of GA and for i ∈ {1, . . . , r} let 〈Li, Pi〉 be an order-pair obtained
from 〈L,P 〉 by only considering the vertices of Gi. Clearly 〈Li, Pi〉 is an order-pair of Gi and
further every pair of vertices v, u ∈ I appear in the same order in all Li and appear in the same
order in all Pi.

For the reverse direction, we create a total order L on V1 ∪V2 ∪ · · · ∪Vr consistent with all Li,
where i ∈ {1, . . . , r}. This is possible because Li are consistent on I. Similarly we create a total
order P on V1 ∪V2 ∪ · · · ∪Vr consistent with all Pi. The orderings L and P provide the endpoints
of line segments for the simultaneous intersection representations of G1, G2, . . . , Gr.

It is known that a graph H is a permutation graph if and only if H and H̄ are both com-
parability graphs [34]. Using this we can prove the following analogous result for simultaneous
permutation graphs.

Theorem 7.1. Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r-sunflower permuta-
tion graphs, sharing some vertices I (and the edges induced by I). Gi for i = {1, . . . , r} are
simultaneous permutation graphs if and only if they are simultaneous comparability graphs and
simultaneous co-comparability graphs.

Proof. Let G = G1 ∪G2 ∪ · · · ∪Gr.

Let Gi, i = {1, . . . , r} be simultaneous permutation graphs. By Theorem 2.1 there exists an
augmenting set of edges A ⊆ {

⋃
(Vi−I)×(Vj−I) | i, j ∈ {1, . . . , r}∧i 6= j}, such that GA = G∪A

is a permutation graph. Thus GA and ḠA are comparability graphs and hence by Theorem 6.1,
Gi, i ∈ {1, . . . , r} are simultaneous comparability graphs and Ḡi, i ∈ {1, . . . , r} are simultaneous
comparability graphs.

For the other direction, let Gi, i ∈ {1, . . . , r} be simultaneous comparability graphs and Ḡi, i ∈
{1, . . . , r} also be simultaneous comparability graphs. For i ∈ {1, . . . , r}, let Fi be the transitive
orientations of Gi such that Fi are consistent on the edges induced by I. Also let Ri be the
transitive orientations of Ḡi, such that Ri are consistent on the edges induced by I. As shown
in [34], Fi+Ri and F−1

i +Ri are both acyclic transitive orientations of Gi. Following the original
idea of Pneuli et al. [34], we define an order-pair 〈Li, Pi〉 on Vi as follows: let Li be a total order
of Vi consistent with the partial order Fi + Ri; and let Pi be a total order of Vi consistent with
the partial order F−1

i +Ri.

We now show that any two vertices u, v ∈ I satisfy the conditions of Lemma 7.1.
Case 1. (u, v) ∈ E(G): Note that (u, v) ∈ Ei for all i ∈ {1, . . . , r}. Without loss of generality
assume that the edge is directed from u to v in all Fi. Now for any i ∈ {1, . . . , r}, Li(u) < Li(v)
(since Fi +Ri is a transitive orientation). Similarly Pi(u) > Pi(v) for all i.

Case 2. (u, v) ∈ E(Ḡ): Note that (u, v) ∈ Ēi for all i ∈ {1, . . . , r}. Without loss of generality
assume that the edge is directed from u to v in all Ri. We have Li(u) < Li(v), and Pi(u) < Pi(v)
for all i.
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From the above two cases, the conditions of Lemma 7.1 hold true for Gi, i ∈ {1, . . . , r} and
hence we conclude that G1, G2 . . . , Gr are simultaneous permutation graphs.

Since simultaneous comparability representation problem for r-sunflower graphs can be solved
O(nm) time, Theorem 7.1 implies that simultaneous permutation representation problem for r-
sunflower graphs can be solved in O(n3) time. We also note that a similar approach was used
in [19] to obtain an O(n3) algorithm for probe permutation graphs. Since our result is equivalent
to solving the sunflower permutation augmentation problem for r graphs, for arbitrary r, it is
more general than recognizing probe permutation graphs.

The best known algorithm for recognizing probe permutation graphs runs in O(n2) time
[17, 20] and it is an open problem to determine whether we can solve the simultaneous permutation
representation problem for r-sunflower graphs in O(n2) time.
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Chapter 8

Simultaneous Planar Graphs

In this chapter1 we study simultaneous planar graphs. As mentioned in section 3.1, the problem
of testing simultaneous planarity for two graphs seems to be right on the feasibility boundary.
The problem is NP-complete for three graphs [41] and the version where the planar drawings
are required to be straight-line is already NP-hard for two graphs and only known to lie in
PSPACE [33]. On the other hand several classes of (pairs of) graphs are known to always have
simultaneous planar embeddings [32, 43, 39, 38, 57] and there are efficient algorithms to test si-
multaneous planarity for some very restricted graph classes: biconnected outerplanar graphs [38],
and the case where one graph has at most one cycle [37].

This chapter shows how to efficiently test simultaneous planarity of any two graphs that share
a 2-connected subgraph and thus greatly extends the classes of graph pairs for which a testing
algorithm is known. Note that unlike in the previous chapters, the edges induced by the common
vertices need not be the same in both the graphs. Our algorithm builds on the planarity testing
algorithm of Haeupler and Tarjan [51], which in turn unifies the planarity testing algorithms of
Lempel-Even-Cederbaum [64], Shih-Hsu [76] and Boyer-Myrvold [11].

We note that, at the same time and independent of our work Angelini et al. [1] showed how
to test simultaneous planarity of two graphs when the common graph is 2-connected. Their
algorithm is based on SPQR-trees, takes O(n3) time and is restricted to the case where the two
graphs have the same vertex set. In comparison, our algorithm for testing simultaneous planarity
of two graphs sharing a 2-connected subgraph runs in linear time and doesn’t require the two
graphs to have the same vertex set. Further, our algorithm can also solve the problem for multiple
graphs, any two of which share the same 2-connected subgraph.

The rest of the chapter is organized as follows: We first review the methods used for testing
planarity in section 8.1 and extend them in section 8.2 to obtain an algorithm for simultaneous
planarity when the common graph is 2-connected. We then show that our algorithm can be
extended to handle multiple graphs.

8.1 Planarity Testing Using PQ-trees

In this section, we review the recent algorithm of Haeupler and Tarjan [51] for testing the planarity
of a graph. We begin with some basic definitions.

1The results in this chapter are joint work with Bernhard Haeupler and Anna Lubiw [50].
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Let G = (V,E) be a graph on vertex set V = {v1, . . . , vn} and let O be an ordering of the
vertices of V . An edge vivj is an in-edge of vi (in O) if vj appears before vi in O, and vivj is an
out-edge of vi if vj appears after vi in O.

An st-ordering of G is an ordering O of the vertices of G, such that the first vertex of O is
adjacent to the last vertex of O and every intermediate vertex has an in-edge and an out-edge.
It is well-known that G has an st-ordering if and only if it is 2-connected. Further, an st-ordering
can be computed in linear time [35].

A combinatorial planar embedding of G, denoted by C(G), is defined as a clockwise circular
ordering of the incident edges of vi, for each i ∈ {1, . . . , n}, consistent with a planar drawing
of G. Given a set of circular orderings, we can determine whether it is a combinatorial planar
embedding by Euler’s formula [31]. If C is a combinatorial planar embedding of G, we use C(vi)
to denote the clockwise circular ordering of edges incident with vi in C.

Recall the definition of PQ-trees from section 2.2. Although PQ-trees were invented to rep-
resent linear orders, they can be reinterpreted to represent circular orders as well [51]: Given a
PQ-tree we imagine that there is a new special leaf s attached as the “parent” of the root. A
circular leaf order of the augmented tree is a circular order that begins at the special leaf, fol-
lowed by a linear order of the remaining PQ-tree and ending at the special leaf. Again, a PQ-tree
represents all circular leaf-orders of equivalent PQ-trees. It is easy to see that a consecutivity
constraint on such a set of circular orders directly corresponds to a consecutivity constraint on
the original set of linear leaf-orders. Note that using PQ-trees for circular orders requires solely
this different view on PQ-trees but does not need any change in their implementation.

Let G = (V,E) be a connected graph. The planarity testing algorithm of Haeupler and Tarjan
embeds vertices (and their edges) one at a time and maintains all possible partial embeddings of
the embedded subgraph at each stage. For the correctness of the algorithm it is crucial that the
vertices are added in a leaf-to-root order of a spanning tree. This guarantees that the remaining
vertices induce a connected graph and hence lie in a single face of the partial embedding at any
time. Without loss of generality we assume that the remaining vertices lie in the outer face of the
partial embedding. We concentrate on two leaf-to-root orders: an st-order and a leaf-to-root order
of a spanning tree. Using any one of these orders leads to particularly simple implementations
that run in linear time. Indeed these two orders are essentially the only known orders in which
the algorithm runs in linear time using the standard PQ-tree implementation. Our algorithm
uses a mixture of the two orders: We first add the vertices that are contained in only one of the
graphs using a depth-first search order and then add the common vertices using an st-ordering.
We now give an overview of how the simple planarity test works for each of these orderings.

st-order:

Let v1, v2, . . . , vn be an st-order of G. At any stage i ∈ {1, . . . , n−1} the vertices {v1, . . . , vi} form
a connected component and the algorithm maintains all possible circular orderings of out-edges
around this component using a PQ-tree Ti. Since v1vn is an out-edge at every stage, it can stay
as the special leaf of Ti for all i. At stage 1, the tree T1 consists of the special leaf v1vn and a
P-node whose children are all other out-edges of v1.

Now suppose we are at a stage i ∈ {1, . . . , n−2}. We call the set of leaves of Ti that correspond
to edges incident to vi+1, the black leaves or the black edges. To go to the next stage, we first
reduce Ti so that all the black edges appear together. A non-leaf node in the reduced PQ-tree
is said to be black if all its descendants are black edges. We next create a new P-node pi+1 and
add all the out-edges of vi+1 as its children. Now Ti+1 is constructed from Ti as follows:
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Case 1: Ti contains a black node x that is an ancestor of all the black leaves. We obtain Ti+1

from Ti by replacing x and all its descendants with pi+1.

Case 2: Ti contains a (non-black) Q-node containing a (consecutive) sequence of black children.
We obtain Ti+1 from Ti by replacing these black children (and their descendants) with pi+1.

Note that if the reduction step fails at any stage then the graph must be non-planar. Other-
wise the algorithm concludes that the graph is planar.

Leaf-to-root order of a depth-first spanning tree:

Let v1, v2, . . . , vn be a leaf-to-root order of a depth-first spanning tree of G. Note that at stage
i, the vertices {v1, . . . , vi} may induce several components. We maintain a PQ-tree for each
component representing the set of circular orderings of its out-edges. Using a depth-first spanning
tree, in contrast to an arbitrary spanning tree, has the advantage that we can easily maintain
the invariant that the spanning tree edge incident to the smallest node greater than i will be the
special leaf. This allows us to construct the PQ-trees of the next stage, without having to rotate
the PQ-trees of the current stage. Adding vi+1 can lead to merging several components into one.

To go to the next stage, we first reduce each PQ-tree corresponding to such a component by
adding a consecutivity constraint that requires the set of out-edges that are incident to vi+1 to
be consecutive and then deleting these edges. By the invariant stated above the special leaf is
among these edges. Note that the resulting PQ-tree for a component now represents the set of
linear orders of the out-edges that are not incident to vi+1. Now we construct the PQ-tree for the
new merged component including vi+1 as follows: Let vl be the parent of vi+1 in the depth-first
spanning tree. The PQ-tree for the new component consists of the edge vi+1vl as the special leaf
and a new P-node as a root and whose children are all the remaining out-edges of vi+1 and the
roots of the PQ-trees of the reduced components (similar to the picture in Figure 8.1, in which
we replace the edge v1vn with vi+1vl). Note that by choosing the edge vi+1vl as the special leaf
we again maintain the above-mentioned invariant.

As before, if the reduction step fails for any component, then the graph is non-planar. Oth-
erwise the algorithm concludes that the graph is planar.

8.2 Simultaneous Planarity Testing When the Common Graph

is 2-Connected

Let G1 = (V1, E1) and G2 = (V2, E2) be two planar connected graphs with |V1| = n1 and
|V2| = n2. Note that G1[V1 ∩V2] need not be the same as G2[V1 ∩V2]. Let G = (V1 ∩V2, E1 ∩E2)
be 2-connected and n = |V1 ∩ V2|. Let v1, v2, . . . , vn be an st-ordering of V1 ∩ V2. We call the
edges and vertices of G common and all other vertices and edges private.

We say two linear or circular orderings of elements with some common elements are compatible
if the common elements appear in the same relative order in both orderings. Similarly we say two
combinatorial planar embeddings of G1 and G2 respectively are compatible if for each common
vertex the two circular orderings of edges incident to it are compatible.

If G1 and G2 have simultaneous planar embeddings, then clearly they have combinatorial
planar embeddings that are compatible with each other. The converse also turns out to be true,
if the common edges form a connected graph. This can be easily proved as follows. Let E1
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and E2 be the compatible combinatorial planar embeddings of G1 and G2 respectively. Let Ep
be the partial embedding of E1 [or E2] obtained by restricting G1 [resp. G2] to the common
subgraph. (Note that since E1 and E2 are compatible, the partial embedding of E1 restricted
to the common subgraph is the same as the partial embedding of E2 restricted to the common
subgraph.) Now we can find a planar embedding of Ep and iteratively extend it to an embedding
of E1 and an embedding of E2 (see Lemma 2 of Jünger and Schultz [57] for a proof). The two
planar embeddings thus obtained are simultaneous planar embeddings and thus it is enough to
compute a pair of compatible combinatorial planar embeddings.

We will find compatible combinatorial planar embeddings by adding vertices one by one,
iteratively constructing two sets of PQ-trees, representing the partial planar embeddings of G1

and of G2 respectively. Each PQ-tree represents one connected component of G1 or G2. In the
first phase we will add all private vertices of G1 and G2, and in the second phase we will add the
common vertices in an st-order. When a common vertex is added, it will appear in two PQ-trees,
one for G1 and one for G2 and we must take care to maintain compatibility.

Before describing the two phases, we give the main idea of maintaining compatibility between
two PQ-trees. Given two PQ-trees T1 and T2 sharing some common elements, we can obtain
compatible leaf-orderings of T1 and T2 as follows. We project T1 and T2 to the common elements
and compute their intersection tree T . Now any leaf-ordering S of T can easily be “lifted” back
to leaf-orderings of T1 and T2 that respect the chosen ordering of S and hence are compatible.
Furthermore any two compatible leaf-orderings of T1 and T2 can be obtained this way. However
we cannot represent the set of compatible orderings with a PQ-tree. This is because a PQ-
tree can only represent a set of consecutivity constraints among the elements of a ground set.
A consecutivity constraint that only applies to a proper subset of the ground set may not be
incorporated into the tree. For example, consider the ground set {1, 2, 3, 4} and the constraint
that says that {2, 3} must be consecutive among {1, 2, 3}. In other words we cannot add the
constraints of T to T1 (or T2), in order to reduce it to a new PQ-tree. This can be a problem,
since we need to compute compatible leaf-orderings for a sequence of pairs of PQ-trees.

To address this issue we introduce a boolean “orientation” variable attached to each Q-node
to encode whether it is ordered forward or backward. Compatibility is captured by equations
relating orientation variables. At the conclusion of the algorithm, it is a simple matter to see if
the resulting set of Boolean equations has a solution. If it does, we use the solution to create
compatible orderings of the Q-nodes of the two PQ-trees. Otherwise the graphs do not have
simultaneous planar embeddings.

In more detail, we create a Boolean orientation variable f(q) for each Q-node q, with the
interpretation that f(q) = true iff q has a “forward” ordering. We record the initial ordering
of each Q-node in order to distinguish “forward” from “backward”. During PQ-tree operations,
Q-nodes may merge, and during planarity testing, parts of PQ-trees may be deleted. We handle
these modifications to Q-nodes by the simple expedient of having an orientation variable for
each Q-node, and equating the variables as needed. When Q-nodes q1 and q2 merge, we add
the equation f(q1) = f(q2) if q1 and q2 are merged in the same order (both forward or both
backward), or f(q1) = ¬f(q2) otherwise.

We now describe the two phases of our simultaneous planarity testing algorithm. To process
the private vertices of G1 and G2 in the first phase we compute for each graph a reverse depth-
first ordering by contracting G into a single vertex and then running a depth-first search from
this vertex. With these orderings we can now run the algorithm of Haeupler and Tarjan for all
private vertices as described in section 8.1.
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Now the processed vertices induce a collection of components, such that each component has
an out-edge to a common vertex. Further, the planarity test provides us for each component with
an associated PQ-tree representing all possible cyclic orderings of out-edges for that component.
For each component we look at the out-edge that goes to the first common vertex in the st-order
and re-root the PQ-tree for this component to have this edge represented by the special leaf. This
completes the first phase.

For the second phase we insert the common vertices in an st-order. The algorithm is similar
to that described in section 8.1 for an st-order but in addition has to take care of merging in the
private components as well. We first examine the procedure for a single graph. Adding the first
common vertex v1 is a special set-up phase; we will describe the general addition below. Adding
v1 joins some of the private components into a new component C1 containing v1.

For each of these private components we reduce the corresponding PQ-tree so that all the
out-edges to v1 appear together, and then delete those edges. Note that due to the re-rooting
at the end of the first phase the special leaf is among those edges. Thus the resulting PQ-tree
represents the linear orderings of the remaining edges. We now build a PQ-tree representing the
circular orderings around the new component C1 as follows: we take v1vn as the special leaf,
create a new P-node as a root and add all the out-edges of v1 and the roots of the PQ-trees of
the merged private components as children of the root (see Figure 8.1).

v1vn 

T(C1) T(C2) T(Ck) 

… 

… 

T(C1) 

Figure 8.1: Setting up T (C1). The P-node’s children are the outgoing edges of v1 and the PQ-trees
for the components that are joined together by v1.

Now consider the situation when we are about to add the common vertex vi, i ≥ 2. The
graph so far may have many connected components but because of the choice of an st-ordering
all common vertices embedded so far are in one component Ci−1, which we call the main compo-
nent. When we add vi, all components with out-edges to vi join together to form the new main
component Ci. This includes Ci−1 and possibly some private components. The other private
components do not change, nor do their associated PQ-trees.

We now describe how to update the PQ-tree Ti−1 associated with Ci−1 to form the PQ-tree
Ti associated with Ci. This is similar to the approach described in section 8.1. We first reduce
Ti−1 so that all the black edges (the ones incident to vi) appear together. As before, we call a
non-leaf node in the reduced PQ-tree black if all its descendants are black leaves. For any private
component with an out-edge to vi, we reduce the corresponding PQ-tree so that all the out-going
edges to vi appear together, and then delete those edges. We make all the roots of the resulting
PQ-trees into children of a new P-node pi, and also add all the out-going edges of vi as children
of pi. It remains to add pi to Ti−1 which we do as described below. In the process we also create
a black tree Ji that represents the set of linear orderings of the black edges.
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Case 1: Ti−1 contains a black node x such that all black edges are descendants of x. Let Ji be
the subtree rooted at x. We obtain Ti from Ti−1 by replacing x and all its descendants with pi.

Case 2: Ti−1 contains a non-black Q-node x that has a sequence of adjacent black children. We
group all the black children of x and add them as children (in the same order) of a new Q-node
x′. Let Ji be defined as the subtree rooted at x′. We add an equation relating the orientation
variables of x and x′. We obtain Ti from Ti−1 by replacing the sequence of black children of x
(and their descendants) with pi (see Figure 8.2).

T(C1) T(Ck) 
… 

… 

T(Ci-1) T(Ci) 

C1 

vi 

Ci-1 

Ck 

… 

…
 

Figure 8.2: (left) Adding vertex vi which is connected to main component Ci−1 and to private
components C1, . . . , Ck. (right) Creating Ti from Ti−1 by replacing the black subtree by a P-
node whose children are the outgoing edges of vi and the PQ-trees for the newly joined private
components.

Note that we use orientation variables above for a purpose other than compatibility. (We
are only working with one graph so far.) Standard planarity tests would simply keep track of
the order of the deleted subtree Ji in relation to its parent. Since we have orientation variables
anyway, we use them for this purpose.

We perform a similar procedure on graph G2. We will distinguish the black trees of G1 and
G2 using superscripts. Thus after adding vi we have black trees J1

i and J2
i . It remains to deal

with compatibility. We claim that it suffices to enforce compatibility between each pair J1
i and

J2
i .

To do so, we perform a unification step in which we add equations between orientation vari-
ables for Q-nodes in the two trees.

Unification step for stage i

We first project J1
i and J2

i to the common edges, as described in section 2.2.1, carrying over
orientation variables from each original node to its copy in the projection (if it exists). Next
we create the PQ-tree Ri that is the intersection of these two projected trees as described in
section 2.2.1. Initially Ri is equal to the first tree. The step dealing with Q-nodes (Step 3) is
enhanced as follows:

3. For each Q-node q of the second tree, and for each pair a1, a2 of adjacent children of q do the
following: Reduce Ri by adding a consecutivity constraint on all the descendant leaves of a1
and a2. Find the Q-node that is the least common ancestor of the descendants of a1 and a2
in Ri. Add an equation relating the orientation variable of this ancestor with the orientation
variable of q (using a negation if needed to match the orderings of the descendants).

74



Observe that any equations added during the unification step are necessary. Thus if the
system of Boolean equations is inconsistent at the end of the algorithm, we conclude that G1 and
G2 do not have a compatible combinatorial planar embedding. Finally, if the system of Boolean
equations has a solution, then we obtain compatible leaf-orders for each pair J1

i and J2
i as follows:

Pick an arbitrary solution to the system of Boolean equations. This fixes the truth values of all
orientation variables and thus the orientations of all Q-nodes in all the trees. Subject to this,
choose a leaf ordering I of Ri (by choosing the ordering of any P-nodes). I can then be lifted
back to (compatible) leaf-orders of J1

i and J2
i that respect the ordering of I. The following lemma

shows that this is sufficient to obtain compatible combinatorial planar embeddings of G1 and G2

Lemma 8.1. If the system of Boolean equations has a solution then G1 and G2 have compatible
combinatorial planar embeddings.

Proof. The procedure described above produces compatible leaf orders for all pairs of black trees
J1
i and J2

i . Recall that the leaves of J
1
i (resp. J2

i ) are the out-edges of the component Ci−1 in G1

(resp. G2) and contain all the common in-edges of vi. Focussing on G1 individually, its planarity
test has succeeded, and we have a combinatorial planar embedding such that the ordering of
edges around vi contains the leaf order of J1

i . Also, we have a combinatorial planar embedding
of G2 such that the ordering of edges around vi contains the leaf order of J2

i .

The embedding of a graph imposes an ordering of the out-edges around every main component.
We can show inductively, starting from i = n, that the ordering of the out-edges around the main
component Ci−1 in G1 is compatible with the ordering of the out-edges in the corresponding
main component in G2. Moreover all the common edges incident to vi belong to either Ci−1 or
Ci. This implies that in both embeddings, the orderings of edges around any common vertex are
compatible. Therefore G1 and G2 have compatible combinatorial planar embeddings.

8.2.1 A Generalization of Simultaneous Planarity to r Graphs

In this subsection we consider a generalization of simultaneous planarity for r graphs, when
each vertex [edge] is either present in all the graphs or present in exactly one of them. Let
G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r planar graphs such that V = Vi ∩ Vj for
all distinct i, j and E = Ei ∩ Ej for all distinct i, j. As before, we call the edges and vertices
of G = (V,E) common and all other edges and vertices private. We show that the algorithm of
section 8.2 can be readily extended to solve this generalized version, when the common graph G
is 2-connected.

If G1, G2, . . . , Gr have simultaneous planar embeddings then they clearly have mutually com-
patible combinatorial planar embeddings. Conversely if G1, G2, . . . , Gr have combinatorial planar
embeddings that are mutually compatible, then, as before (see the beginning of section 8.2), we
can first find the planar embedding of the common subgraph and extend it to the planar em-
beddings of G1, G2, . . . , Gr. Thus once again, the problem is equivalent to finding combinatorial
planar embeddings for G1, G2, . . . Gr, that are mutually compatible.

Our algorithm for finding such an embedding works as before, inserting private vertices first
followed by common vertices. The only difference comes in the unification step, where we have to
take the intersection of r projected trees instead of 2. Doing this is straightforward: We initialize
the intersection tree to be the first projected tree, and then insert the constraints of all the other
trees into the intersection tree. Finally, Lemma 8.1 and its proof can be trivially extended to
multiple graphs.
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8.2.2 Running Time

We show that our algorithm can be implemented to run in linear time. (In the generalization to
r graphs, the run time is linear in the sum of the sizes of the graphs—in other words, a common
vertex counts r times.) Computing the reverse depth-first ordering and the st-ordering are known
to be feasible in linear time [35]. The first phase of our algorithm uses PQ-tree based planarity
testing with a reverse depth-first search order [51], which runs in linear time using the efficient
PQ-tree implementation of Booth and Lueker [9, 10]. The re-rooting between the two phases
needs to be done only once and can easily be done in linear time. The second phase of our
algorithm uses PQ-tree based planarity testing with an st-order, as discussed in section 8.1. This
avoids re-rooting of PQ-trees, and thus also runs in linear time [51, 10, 64]. The other part of
the second phase is the unification step, which is only performed on the black trees, i.e. the edges
connecting to the current vertex. Note that these edges will get deleted and will not appear in
subsequent stages. Thus we can explicitly store the black trees and the intersection tree at every
stage and allow the unification step to take time linear in the complete size of both black trees.
The intersection algorithm can be implemented in linear time, as mentioned in section 2.2.1. The
last thing that needs to be implemented efficiently is the handling of the orientation variables.
It is easy to see that once the equations are generated, they can be solved in linear time, by
repeatedly fixing the value of a free variable to be true or false, finding all the equations that
contain the variable and recursively (say in a depth-first way) fixing all the variables so as to
satisfy the equations. In the following sub-section we explain how to also generate the variable
equations in linear time. With this we conclude that the algorithm runs in linear time.

Generating variable equations in linear time

Note that in the implementation of PQ-trees (see Booth and Lueker [10]) the children of a Q-
node are stored in a doubly-linked list and only the left most and right most children have parent
pointers. Thus when two Q-nodes one a child of the other merge, we may not know the variable
and the orientation of the parent Q-node. To address this problem, we use labels on certain
links of the doubly-linked list as explained below and compute all the equations generated by the
reductions of a unification step at the end of the step.

For any two adjacent child nodes ci and ci+1 of a Q-node q, either the links ci → ci+1 and
ci+1 → ci are labelled with l and ¬l (respectively), for some literal l, or they are both unlabeled.
The underlying interpretation is that ci appears before ci+1 in the child ordering of q iff l is true.
Thus the literals that we encounter when travelling from one end to the other of the doubly-linked
list, are all (implicitly) equal. When a Q-node is first created with two child nodes, say x and y,
we create a variable associated with it and label the link from x to y with the variable and the
link from y to x with the negation of the variable.

During the algorithm, there are two types of equations: (1) Equations consisting of literals
appearing in Q-nodes of distinct trees. (These can be PQ-trees of the same graph, as happens
in Case 2 of section 8.2 or PQ-trees of different graphs, as happens in step 3 of Unification.)
(2) Equations consisting of literals appearing in Q-nodes of a single tree (created during PQ-tree
reductions).

Note that type 1 equations are essentially equations that constrain the ordering of child nodes
across the two Q-nodes, and we handle them as follows. Let c1, c2 be any two adjacent child
nodes of the first Q-node that are constrained to appear in the same order as child nodes c′1, c

′
2
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of the second Q-node. If the links between c1 and c2 are unlabeled, we create a new variable x
and label the links c1 → c2 and c2 → c1 with x and ¬x respectively. Similarly, we label the links
between c′1 and c′2, if they are unlabeled. Now we create the equation that equates the literal
associated with c1 → c2 with the literal associated with c′1 → c′2.

Type 2 equations happen when two Q-nodes merge. In this case the merged node contains
literals from both the Q-nodes. Finding an equation after each merge is costly, as we need to scan
through each Q-node until we find a literal. However we can compute the equations in a lazy
fashion at the end of each unification step as follows. For every Q-node of the two black trees
and the intersection tree obtained from their projections (i.e. the output tree of the unification
step on the black trees), we pass from the first child to the last child and equate all the literals
encountered in the labels of the links. This clearly takes linear time in the size of the black trees.

8.3 Summary and Open Problems

We have given a linear-time algorithm for testing simultaneous planarity of two graphs that share
a 2-connected subgraph. Our algorithm doesn’t require the two graphs to have the same vertex
set. Further our algorithm works for the more general case when there are r graphs, any two of
which share the same 2-connected subgraph. In our algorithm, 2-connectivity restricts each graph
to have at most one main component at any stage, thus making the unification step simpler.

A big open question is to determine whether simultaneous planarity of two graphs can be
tested in polynomial time. We conjecture that the problem can be solved in polynomial time
when the common graph is 1-connected. Note that in this case the problem is still equivalent to
finding compatible combinatorial planar embeddings for the two graphs.

We note that the NP-hardness result for testing simultaneous planarity of three graphs [41],
uses edges in the following categories: (1) private to one of the graphs; (2) common to all the
graphs; and (3) common to a pair of graphs but not the third, for every pair of graphs. In this
chapter, we solved the case when there are no edges in category (3) and when the common graph
is 2-connected. An open problem is whether simultaneous planarity for three graphs is NP-hard
when every edge [vertex] is either private or common to all the graphs and the common graph is
not necessarily 2-connected.

Another way to generalize simultaneous planarity (for 2 graphs) is to allow certain edges that
are common to be drawn in different ways in both the graphs. Such an edge belongs to both the
graphs, but is considered private. The complexity of this problem is open even when the common
graph is 2-connected. We note if all the common edges are allowed to be drawn in different ways
in both the graphs, then the two graphs can always be drawn simultaneously, by arbitrary fixing
the vertex locations and drawing each graph independently (see Pach and Wenger [72]).
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Chapter 9

Conclusions and Discussion

One of the main results of this thesis is a linear-time algorithm for testing simultaneous planarity
when the common graph is 2-connected. The algorithm can be extended to multiple graphs
that share a common 2-connected subgraph. Our algorithm is simple and is an extension of the
PQ-tree based planarity testing algorithm of Haeupler and Tarjan [51].

The other main contribution of the thesis is to initiate the study of simultaneous represen-
tation problem for intersection graphs and comparability graphs. For a positive integer r, we
have defined a family of r graphs called the r-sunflower graphs, and studied the simultaneous
representation problem on them. For 2-sunflower graphs, we have given efficient algorithms to
recognize simultaneous chordal graphs, simultaneous interval graphs, simultaneous comparability
graphs and simultaneous permutation graphs. Our algorithms for these classes run in O(n3),
O(n2 log n), O(nm) and O(n3) time respectively. Also, our algorithms for simultaneous com-
parability and simultaneous permutation graphs extend to r-sunflower graphs, for arbitrary r.
On the other hand, we have proved that recognizing whether a family of r-sunflower graphs are
simultaneous chordal graphs, is NP-hard, even when the common vertices induce an independent
set. Table 9.1 gives a summary of our results for comparability and intersection graph classes.

For a graph class C and integer r, we have defined the sunflower C augmentation problem for r-
sunflower graphs, which is equivalent to the simultaneous C representation problem for r-sunflower
graphs. The sunflower C augmentation problem for r-sunflower graphs is a generalization of the
probe C recognition problem and is equivalent to the C sandwich problem, where the set of
optional edges induce a complete r-partite graph.

Our results for simultaneous chordal graphs and simultaneous interval graphs imply that the
sunflower chordal augmentation problem, the sunflower co-chordal augmentation problem, the

Summary of our results for comparability and intersection graphs

Graph Class 2-sunflower graphs r-sunflower graphs

Simultaneous Chordal Graphs O(n3) NP-hard
Simultaneous Interval Graphs O(n2 logn) Open
Simultaneous Comparability Graphs O(nm) O(nm)
Simultaneous Permutation Graphs O(n3) O(n3)

Table 9.1: Summary of our algorithmic and complexity results for simultaneous comparability
graphs and simultaneous intersection graphs. Note that r is a variable.

78



sunflower interval augmentation problem and the sunflower co-interval augmentation problem
can all be solved efficiently for 2-sunflower graphs.

Similarly our results for simultaneous comparability and simultaneous permutation graphs
imply that the sunflower comparability augmentation problem, the sunflower co-comparability
augmentation problem, the sunflower permutation augmentation problem and the sunflower co-
permutation augmentation problem can all be solved efficiently for r-sunflower graphs, for arbi-
trary r.

Many open questions arise from this thesis. For simultaneous planarity, a natural open ques-
tion is, whether simultaneous planarity for 2 graphs can be tested in polynomial time, when the
common graph is 1-connected. Recall that when the common graph is 1-connected, the prob-
lem reduces to finding compatible combinatorial embeddings of the two graphs. The approach
taken in chapter 8 doesn’t seem to work for this general case, as adding common vertices one
after another will create different components in the two graphs that do not have a one-to-one
correspondence. Keeping track of the constraints generated by these components seem to be
complicated. However we conjecture that this problem can be solved in polynomial time.

For simultaneous intersection and simultaneous comparability representation problems, al-
though we focus on r-sunflower graphs, the problems are interesting for graphs that intersect in
more general way. One possibly tractable and interesting case is when there are a sequence of
graphs, one in each layer, such that each vertex is present in a contiguous set of layers.

Another major question arising from the thesis is to determine whether the simultaneous
interval representation problem for r-sunflower graphs can be solved efficiently. Solving this for
arbitrary r, implies that the interval graph sandwich problem can be efficiently solved when the
set of optional edges induce a complete r-partite graph and hence this would generalize probe
interval graphs. We conjecture that this problem has a poly-time algorithm. We believe that our
algorithm for simultaneous interval graphs may be extendable to more than 2 graphs. However
to keep the number of cases small, it has to be simplified.

For chordal graphs, the simultaneous chordal representation problem for r-sunflower graphs
is open, when r is a constant. (It is NP-hard when r is a variable.) Our techniques for solving
the problem for 2-sunflower graphs do not seem to be extendable to 3-sunflower graphs.

Another obvious open problem is to improve the running time of the existing algorithms.
Our algorithm for recognizing simultaneous comparability graphs matches the running time of
the best known algorithm for recognizing probe comparability graphs. However the best known
algorithms for recognizing probe chordal, probe interval and probe permutation graphs run in
O(nm), O(n + m) and O(n2) time respectively. It is an open problem to determine whether
simultaneous chordal, simultaneous interval and simultaneous permutation graphs can also be
recognized in these times respectively.

Finally, it would be interesting to study the complexity of the sunflower augmentation problem
for other classes of graphs including proper interval graphs, circular arc graphs, perfect graphs
and strongly chordal graphs.
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