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Abstract 

 

With the rapid growth of the digital imaging, image processing techniques are widely 

involved in many industrial and medical applications.  Image thresholding plays an 

essential role in image processing and computer vision applications.  It has a vast domain 

of usage.  Areas such document image analysis, scene or map processing, satellite imaging 

and material inspection in quality control tasks are examples of applications that employ 

image thresholding or segmentation to extract useful information from images.  

Medical image processing is another area that has extensively used image 

thresholding to help the experts to better interpret digital images for a more accurate 

diagnosis or to plan treatment procedures. 

Opposition-based computing, on the other hand, is a recently introduced model that 

can be employed to improve the performance of existing techniques.  In this thesis, the 

idea of oppositional thresholding is explored to introduce new and better thresholding 

techniques.  

A recent method, called Opposite Fuzzy Thresholding (OFT), has involved fuzzy 

sets with opposition idea, and based on some preliminary experiments seems to be 

reasonably successful in thresholding some medical images. 

 In this thesis, a Weighted Opposite Fuzzy Thresholding method (WOFT) will be 

presented that produces more accurate and reliable results compared to the parent 

algorithm.  This claim has been verified with some experimental trials using both synthetic 

and real world images. 
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Experimental evaluations were conducted on two sets of synthetic and medical 

images to validate the robustness of the proposed method in improving the accuracy of the 

thresholding process when fuzzy and oppositional ideas are combined. 
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CHAPTER 1 

Introduction 

1.1 Objective 

The development of digital imaging started back in 1960s.  The main idea at that time was 

to improve information capturing techniques especially for scientific and military purposes.  

In subsequent decades, as digital technology became faster and cheaper, it replaced the old 

image capturing methods for many purposes.  Across the world, significant efforts were 

directed towards providing computer algorithms to perform image processing tasks on 

digital images; this created a rapidly growing area of computer science and engineering 

called Digital Image Processing.  With the introduction of fast computers and signal 

processors, digital image processing has become the most common form of image 

processing because it is not only the most resourceful and flexible method, but also the 

cheapest.  It introduced the use of much more complex algorithms; in various fields such as 

feature extraction, classification, and pattern recognition, that led to reach an advanced 

level of accuracy and performance that was impossible by analog imaging. [Wikipedia] 

The main concern of digital image processing is to extract useful information from 

images, with as little as possible or no human intervention.  Algorithms for image 
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processing can be categorized in three levels [34]: 1) techniques that directly deal with raw 

and noisy pixels, such as de-noising and edge detection algorithms, construct the lowest 

level, 2) methods that extend the use of low level results for more convoluted tasks such as 

segmentation, and 3) high-level methods that use the extracted information from previous 

levels to obtain semantic meanings from the images.  Handwriting recognition is an 

example of methods in this level. 

 Image thresholding and segmentation is one of the well known and widely used 

image processing methods.  Its focus is on the task of classification of image pixels into 

distinct and generally disjoint classes based on their characteristics.  Many thresholding 

algorithms take advantage of various optimality measures to define the best threshold [7].  

Amongst these methods image histogram is used, globally or locally, as a basis to perform 

the task of thresholding [7], [8].  The primary objective of this thesis is to increase the 

accuracy of one of the recently introduced thresholding methods based on information 

derived from local histograms of the image. 

1.2 Contribution 

The major concern with thresholding methods is to not only consider the gray-level 

intensities, but also the relationship between the pixels.  A large number of studies have 

been conducted to address this concern within different scales and point of views.  In 

research performed by Tizhoosh et al. [32], the authors introduced opposition-based fuzzy 

thresholding, called OFT henceforward, and combine the concepts of fuzzy memberships 

and opposition-based computing to extract some local information of the image that leads 

to selecting a threshold value.  However, the limited works already reported in literature 

leave many questions open.  There is still room for investigations and introduction of new 

technologies as no single technique can threshold all kinds of images.  Also, the fusion of 

fuzziness and opposition is an intriguing field that has not been explored so far. 
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Since the idea of opposition in image processing is new.  The results presented in 

[32] show some improvement in the outcome of the image thresholding task, and in view of 

the fact that looking at two segments as opposites seems to contain some potential for a 

non-conventional formulation of the pixel classification, we have decided to focus on OFT 

algorithm and aim for increased accuracy.  The accuracy in this work is quantified as the 

agreement between the generated segment and the "gold standard image".  The latter is a 

binary image prepared by the expert.  Hence, accuracy in this thesis is directed toward 

expert-based evaluation. 

The purpose of this thesis is to increase the accuracy of the OFT algorithm.  We 

introduce a weighting factor that defines the value of the information in each local region of 

the image and guides the algorithm toward a superior threshold value which results in more 

accurate outcomes.  This weight factor is calculated based on simple characteristics of the 

region, namely mean and standard deviation, which makes it easy to calculate.  It also adds 

no complexity to the implementation and computational time. 

1.3 Outline 

The reminder of this thesis is organized as follows.  In Chapter 2, we provide a background 

on image thresholding, the concept, different approaches and their advantages and 

challenges.  Two traditional and widely used thresholding methods, Otsu and K-Means, are 

explicated, and then we review the oppositional fuzzy thresholding method (OFT) that is 

the foundation algorithm of this thesis.  Chapter 3 is devoted to opposition based computing 

idea, its definitions and a summary of related research in this field.  Our proposed method, 

weighted opposition fuzzy thresholding (WOFT), is discussed in Chapter 4.  Experimental 

results demonstrating the performance of our approach are presented on synthetic and real 

world ultrasound images.  Accuracy measurements are compared and discussed with the 

results driven from Otsu, K-Means, and OFT methods.  As a final point, in Chapter 5, we 



 

4 

 

draw conclusions from our proposed method and discuss potential future directions for our 

work. 
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CHAPTER 2 

Image Thresholding 

Image segmentation plays a crucial rule in many computer vision applications.  It refers to 

the technique of separating image pixels and forming different regions by identifying a 

similarity factor among their features.  In most cases due to various factors, the object in the 

image is difficult to segment.  The simplest, yet often most effective method of 

segmentation is “Thresholding” which is the classification of image pixels to black and 

white regions based on their intensity. 

2.1 Background Review 

Thresholding is extensively used as a preliminary step to separate the image background 

and foreground (object).  The principal idea is to find an optimal threshold value that can 

separate the object and background pixels.  In an image with L number of gray levels, using 

a threshold value of T, the thresholding task can be applied by the following rule: 

  ( )   {
                         

                                   
 (2.1) 
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   and    represent object and background gray levels, respectively.  This idea will extend 

to Multilevel Image Thresholding [52] techniques in which more than one threshold value 

is set to segment the image into several classes. 

Figure 2.1 illustrates an example of thresholding an ultrasound image with two 

different threshold values.  In (c) all the pixels with gray level intensity smaller than 60 

represent the “Object” while in (d)  gray level 100 has been used as a threshold.  

 

 

 

(a) 

    

 (b) (c) (d) 

Figure 2.1: Image Thresholding - (a) represents the histogram of image 

(b). The thresholded images using two values of T=60 and T=100 are 

presented in (c) and (d), respectively. 

 

Finding the optimal thresholding value is the main focus of different thresholding 

techniques.  In every thresholding application, the shape of histogram, the image content, 

and the requirements of the application have a definite impact on this task [53, 10]. 
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Since the emphasis of this thesis is not on thresholding techniques in general but 

enhancing of an oppositional fuzzy thresholding technique, only a brief review of studies 

conducted in the field of thresholding is presented followed by a more detailed explanation 

of two well known thresholding methods that are used as benchmark functions to compare 

the experimental results of our proposed method with.  The “Quasi-global Oppositional 

Fuzzy Thresholding” method is then explained, as one of the thresholding techniques, 

which is the basis for this work. 

Based on overviews conducted in [35] and [39], thresholding methods can be 

categorized into following groups: 

 Histogram shape-based methods: 

This group of methods is based on the shape properties of the image histogram.  For 

example, Resenfeld‟s method [30] calculates the convex hull of the histogram to get 

the deepest concavity points as the threshold.  Other methods dealt with histogram 

valley-seeking problem [31].  Peak-and-Valley thresholding is another branch of 

this group that focuses on twisting the histogram function using a smoothing and 

differencing kernel and searching for optimum threshold point in zero crossing of 

the histogram.  

 Clustering and Classification-based methods: 

The initiative of this group of algorithms is built on the clustering analysis of the 

gray level data.  They are considered to be unsupervised techniques since prior 

knowledge is not part of the analysis.  The main task of this type of algorithms is to 

create different image regions that any pixel of the image belongs to only one of 

them.  Otsu‟s method [21] is a popular technique in this group that finds the optimal 

threshold by minimizing the weighted sum of within-class variances for background 

and foreground pixels. Iterative thresholding is another case in this group.  

Riddler‟s scheme [29] is the first identified model of two-class Gaussian mixture 

that establishes the threshold anchored in average of the foreground and background 
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class means.  More recent practices have been used Fuzzy clustering ideas for 

thresholding.  The works presented in [12], [28], and [32] used fuzzy memberships 

based on pixels‟ distance from each class‟s mean to define which class a pixel 

belongs to and subsequently define the threshold as the cross over point of 

membership functions.  Furthermore, Classification thresholding methods [33], [41] 

try to classify image pixels based on their characteristics in such a way that pixels in 

one class have highest degree of similarity to each other while pixels that belong to 

different classes are very unlikely similar. 

 Entropy-based methods: 

This group of algorithms takes advantage of entropy of the distribution of image‟s 

gray levels.  Several studies have been conducted on Entropic thresholding [13] that 

their main focus is to maximize the sum of entropy values of foreground and 

background regions of an image that lead them to the optimal threshold value.  

Others [15], [16] exploit cross-entropic thresholding techniques as the minimization 

of an information theoretic distance.  Fuzzy entropic thresholding is another branch 

of this group.  In different research activities, [36], [6] for example, fuzzy 

memberships are used to signify the strength of the relationship of a gray level to 

the foreground or background regions.  The optimal threshold, then, is defined as 

the value that minimizes the sum of the fuzzy entropies of two regions.  

 Object attribute-based methods: 

Threshold values in these techniques are defined based on some attribute or 

similarity measures between the original image and its binarized version.  Edges, 

shape compactness, connectivity, or texture are examples of attributes that are used 

in these types of methods [48], [22], and [20].  The fact that fuzzy methods have the 

ability to present subjective information has motivated some studies to benefit from 

fuzzy membership values establishing various fuzzy measures in fuzzy similarity 

thresholding procedures.  
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 Local, global and hybrid methods: 

This group of methods is based on only locally [33] or globally selected operations 

or information in an image.  Combination of local and global characteristics of the 

image is used in the hybrid methods.  

 Spatial and feature-based methods: 

 In the group of spatial-based methods, any point in the image is characterized with 

its dependency within a neighborhood.  These techniques assume that pixels in an 

object are spatially close.  In most cases this assumption leads to better results in 

image segmentation / thresholding.  The focus for feature-based algorithms is on 

employing an image feature to extract a homogeneous region in the feature space.  

[14] is considered as one of the pioneers in this group. 

 Intelligent methods: 

This group of algorithms has used different machine learning techniques for image 

segmentation / thresholding tasks.  Artificial Neural Networks [9] and 

Reinforcement Learning [33] are used in different ways in image segmentation 

problems.  Based on their nature, neural networks need some sample data for 

training purpose while reinforcement learning has no need for training samples [40]. 

2.2 Otsu Thresholding 

One of the common image processing tasks is to transfer a grayscale image to its 

monochrome version.  Otsu's method, named after its inventor Nobuyuki Otsu [21], is one 

of the most popular automatic binarization algorithms, which is used in many computer 

vision and medical imaging applications.  Otsu‟s method is based on the shape of the 

histogram and is considered as a non-parameterized algorithm since it obtains the optimal 

threshold by maximizing the between-class variance with a comprehensive search.  It also 

can be extended to multi level thresholding that will result in segmentation. 
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This thresholding method iterates trough all the possible threshold values.  In each 

iteration, the weighted within-class variance of two classes (foreground and background on 

either sides of the threshold point) gets calculated.  The optimal threshold is the one that 

minimizes the within-class variance, hence, maximizing the between class variance.  

Consider an image with N pixels with gray levels in ,     - interval.  To divide 

this image into two classes,     with gray levels ,     - and    with ,       - , we 

need to calculate the gray level distribution for both classes as: 

           ( )    ⁄      ( ) ⁄  

                 ( )    ⁄      ( ) ⁄  

(2.2) 

where 

  ( )   ∑  

 

   

 

  ( )   ∑   

 

     

 

 

(2.3) 

Here,    represents the probability of gray level   with      pixels and is calculated as: 

        ⁄  (2.4) 

Now    and    , the mean values of two classes, can be estimated as:  

    ∑      ( ) ⁄

 

   

 

    ∑       ( ) ⁄

 

     

 

Let    be the mean intensity of the whole image.  It is easy to show that: 

(2.5) 
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               (2.6) 

and 

          (2.7) 

Otsu defines the intra-class variance of the thresholded image as: 

  
     (     )

     (     )
  (2.8) 

Otsu verified that for bi-level thresholding, the optimal threshold        is chosen so that 

  
  is maximized; that is, 

                  *  
 ( )+                          (2.9) 

This method is easy to implement and since it operates on histograms, which are 

arrays of length 256, it considered being quiet fast.  However, assumption of uniform 

illumination and bimodal histogram are the two drawbacks counted for this technique.  

Table 2.1 describes Otsu‟s algorithm. 

 

Read image   with gray levels of ,     - 

Compute histogram and probabilities of each intensity level 

Initialize   ( )    

For each           

         Calculate    and    

         Update   
 ( ) 

     is the   that corresponds to the maximum   
 ( ) 

 

Table 2.1: Pseudo-code of Otsu‟s algorithm 
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2.3 K-means Thresholding 

K-means [17] is known as one of the most frequently used unsupervised learning 

algorithms to solve the clustering problems.  It is a simple algorithm that classifies a dataset 

of observations to   clusters fixed a priori.  In the case of      , the algorithm can be 

used as a thresholding technique. 

The process uses an iterative refinement technique.  It starts with defining centroids 

for each cluster as much as possible far away from each other.  These centroids may be 

specified randomly or by some heuristic.  Then each observation point     gets associated to 

the nearest centroid until no point is pending.  New centroids can then be calculated for the 

resulted clusters which can be counted as new cluster means to associate the observation 

points to.  Through these iterations the centroids change their location until no movement is 

done anymore.  

As a final step, the process tries to minimize an objective function, in this case 

within-cluster sum of squares: 

           ∑ ∑ ‖      ‖
 

     

 

   

 (2.10) 

where    represents the mean of points in cluster    . 

The algorithm of this method is illustrated in Table 2.2.  This algorithm is 

extensively sensitive to the initially selected cluster centers that may results to finding 

suboptimal clusters.  Multiple runs will reduce this effect but will lead to longer 

computational time.  The main disadvantage of K-means algorithm is that the results 

depend on the value of    and in most problems there is no way of knowing the number of 

clusters.  This, however, is not a concern when using this process as a thresholding 

technique.  
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Read    *       +  as a set to be divided into   clusters 

Set    *       + (cluster centroids) to random selections of    

For           

         For           

                                      (      ) 

         Repeat until   is not changed 

                  For           

                           Re-compute     as the centroid of  *   |   ( )   + 

                  For           

                           For           

                                                      (      ) 

Return   

 

Table 2.2: Pseudo-code of K-means algorithm [2] 

 

 

Some examples of images that are thresholded using Otsu and K-means methods are 

presented in second and third rows of Figure 2.2. 
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Figure 2.2: Image samples resulted from Otsu and K-means thresholding. 

 

2.4 Oppositional Fuzzy Thresholding 

Tizhoosh et al. introduced this method as a “proof of concept for usefulness of oppositeness 

in context of fuzzy set theory” [32].  The idea of opposite fuzzy sets was always engaged to 

fuzzy systems; however, the concept of oppositeness for a fuzzy set is not as apparent as 

expected and it may be mistaken by the perception of “negation”.  For example, in a gray 

scaled image, one may consider “very bright” and “not very bright” as opposites while the 

true opposite of “very bright” is “very dark”.  This algorithm exploits the relationship 

between fuzzy and its corresponding opposite fuzzy set of “dark” and “bright” to threshold 

a digital image.  To better understand the logic of the algorithm, let‟s first clarify what an 

opposite fuzzy set is. 
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Definition (Fuzzy Set) – A fuzzy set     is defined as:  

   *(    ( )) |         ( )  ,   -+ (2.11) 

The    ( ) represents the membership function and is given as:  

  ( )   (      ) (2.12) 

where    ( )                and   is the parameter that changes the shape of the 

membership function. Basically, this is a function of three parameters with one of them, 

namely  , being the actual variable. 

Definition (Opposite Fuzzy Set) – Opposite fuzzy set   ̆    for a given fuzzy set 

    is defined as: 

 ̆   *(    ̆( )) |          ̆( )  ,   -+ (2.13) 

where    ̆( )   (    ̆  ̆). 

The vector   ,       - and its opposite vector  ̆  , ̆   ̆   - represent the points in 

the universe of discourse with  (  )    ( ̆ )   . 

Definition (Type I Opposite Fuzzy Set) – The set  ̆  with the membership 

function    ̆ ( )   (    ̆  ̆) is considered to be the type I opposite of the set   if   ̆ and  ̆ 

are type I opposites of   and  , respectively. 

Definition (Type II Opposite Fuzzy Set) – The set  ̆    with the membership 

function    ̆  ( )   (    ̆  ̆) is considered to be the type II opposite of the set   if   ̆ and 

 ̆ are type II opposites of   and  , respectively. 

Knowing the definitions of opposite fuzzy sets, now we can discuss the OFT 

method.  To threshold an image, the process starts with capturing a sample point of user‟s 

choice, ideally within the object of interest.  The algorithm starts to create co-centered 

windows around this pixel. A predefined parameter,  , is the gap between the neighboring 

windows that are constructed around the central point.  In this experiment the value of 10 
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pixels has been empirically chosen for this parameter (    ).  For each window, a fuzzy 

set and an opposite fuzzy set are calculated to characterize the dark and bright areas hence 

object and opposite object (background).  Then the entropy difference between each fuzzy 

set and its opposite is calculated.  When all the measurements for all the sub-images are 

performed, the window that delivers the maximum (or minimum) entropy difference is 

located and based on the membership functions of this window two representative numbers 

are produced which the optimum threshold value will be quantified as the average of them.  

The image then gets thresholded using calculated threshold value.  A cleaning process is 

applied to thresholded image that labels 8-connected objects and sets the value of 1 to the 

components that are part of the region which central pixel was selected from.  Then all the 

dark areas surrounded by light pixels (holes) are filled to create an object of homogeneous 

pixels. 

The basic principle of OFT is illustrated in Figure 2.3.  The pseudo-code of this 

method is presented in Table 2.3.  Also, The pseudo-code of the cleaning step that is used 

in both OFT and WOFT algorithms is present in Table 2.4. 
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Figure 2.3: Basic principle of OFT: Starting from a point (the white circle), 

co-centeric windows are constructed around the object (black shape) in 

increasing order. For each window membership functions for object (dark) 

and anti-object (bright) are formed (only three last membership function pairs 

are shown here). The entropy (fuzziness) difference between object and anti-

object are kept to find the minimum and maximum entropy differences. The 

corresponding membership values are then used to calculated thresholds. 

(Adopted from [32]) 
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Read image   of size     

Pre-process    if necessary 

Initialize parameters 

Acquire the coordinate of object‟s center (      ) 

For                 

                    and            

                    and            

         Copy   (             ) into      

         Calculate               (    ) and normalize it 

                   (    )  and             (    )   

         Construct object    with a Z-MF and calculate its fuzziness 

                 ( )   
 

  
∑ (  )     (     ) 

         Construct anti-object   ̆ with a S-MF and calculate its fuzziness 

                 ̆( )   
 

  
∑ (  )     ( ̆    ̆) 

         Calculate the entropy difference   ( )   |  ( )     ̆( )|  

         Update                ̆     ̆         

Calculate the maximum threshold       

    
    

∑     ( )     ( )

∑     ( )
 

    
 ̆    

∑     ( )  ̆   ( )

∑     ( )
 

           
    
       

 ̆

 
 

   = Thresholded image using       

Call Cleaning step for     with respect to (      ) to extract the object 

 

Table 2.3: Pseudo-code of OFT algorithm 
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Initialize    and          as zero matrices of the same size as     

Set     to labels for the 8-connected objects in      

 (      ) defines the label number of the desired object 

Find the elements of    that have the same label as   (      ) 

Mark those elements in        with the value of 1 

Fill the holes of the        

 

Table 2.4: Pseudo-code of Cleaning step used in both OFT and WOFT methods 

 

It is noticeable that the cleaning step forces the algorithm and its outcome to be very 

dependent on the user defined central point.  If this central point is selected from outside of 

the region of the interest (object), the resulted thresholded image would not represent the 

object even though it‟s before cleaning version has the object as part of the thresholded 

region.  
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CHAPTER 3 

Opposition-Based Computing 

The concept of Opposition-Based Learning (OBL), an approach to improve the 

performance of machine learning algorithms, has been introduced by Tizhoosh [42-44].  

The idea behind this technique is to increase the coverage of solution space by considering 

“opposites” to achieve a higher accuracy or a faster convergence. 

3.1 Theory 

According to The American Heritage Dictionary, opposition is “The relation existing 

between two propositions having an identical subject and predicate but differing in 

quantity, quality, or both”. 

Understanding and formalizing the logic of the opposition has a strong root in 

human history.  Many examples of opposition exist in the world around us.  This includes 

the simple concepts such left/right, in/out, cold/warm and extends to complex actions as 

social revolutions. 

In the system of Aristotelian logic, the logical relation of the propositions of a 

system has been represented as the Square of Opposition (Figure 3.1).  This diagram is a 
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simple visualization of the different ways that each of the propositions of a system is 

logically related, or opposed, to others. 

 

 

Figure 3.1: Square of Opposition 

 

Even though opposition has been conversed vastly in the study of philosophy, this is 

not the only area of human studies that is touched with this concept.  Natural Language [4], 

psychology [23], physics [3], and mathematics [19] are examples of different disciplines 

that have benefited from the concept of opposition in one way or another. 

Approximation is a natural element of human life.  In Science, usually  ̂ is an 

approximate solution to a particular estimation problem.  This approximation could be 
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driven from knowledge or a random guess in case of some complex problems.  In most 

cases we are aimed for higher precision, thus the estimated value must be modified to move 

closer to optimal value which forces us to deal with computational complexity.  In any 

estimation algorithm, in the absence of a priori knowledge, all directions of the solution 

space should be covered.  If the algorithm is searching for the solution of  , and one agrees 

that searching in the opposite direction could be beneficial, then we need to know how to 

calculate an opposite number  ̆. 

Definition (Opposite Number) – Let     be a real number defined on a certain 

interval   ,   -.  The opposite number  ̆ is defined as follows: 

 ̆        (3.1) 

Analogously, the opposite number in a multidimensional case can be defined. 

Definition (Type-I Opposite Points) – Let    (            ) be a point in an  -

dimensional coordinate system where    [    
        

 ]     and    ,   -.  The Type-I 

opposite point  ̆ is completely defined by its coordinates ( ̆   ̆     ̆ ) where: 

 ̆       
        

     (3.2) 

Following special cases exist when    : 

 ̆                                  

 ̆                                            

 ̆                   
         

 
   

(3.3) 

Type-I opposition is a simple and basic understanding of this concept that can be 

beneficial to linear or symmetric systems.  Dealing with complex and nonlinear 

relationships leads us to a higher level of opposition. 
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Definition (Type-II Opposite Points) – Let    (            )     be an 

arbitrary function where      ,         -. The type-II opposite point  

 ̆   ( ̆    ̆      ̆ ) associated to every point    (            ) is defined as: 

 ̆   *    |    ̆                + (3.4) 

It is assumed that for the unknown function   (            ),       and       are given or 

can be estimated.  On the other hand, according to  

 ̆ ( )   {    |    ̆( )     
         

 ( )       
         

 ( )    ( )} (3.5) 

and if only the evaluation function  ( ) is available, then a temporal degree of opposition 

 ̆ for any two variables    and     can be defined as: 

 ̆(        )   
| (  )    (  )|

   
         

 (  )      
         

 (  )
 ,   - (3.6) 

The type-II opposite  ̆  of any variable    can be given as: 

 ̆      |  ̆(        )     
 
 ̆(        )

  (3.7) 

Definition (Degree of Oppositeness for Type-I Opposition) – The degree of 

oppositeness for two real numbers        bounded in ,          - can be calculated as: 

 ̆ (   )   (
|   |

           
)

 

 (3.8) 

where opposition intensity gets controlled by   (   -. 

Definition (Degree of Oppositeness for Type-II Opposition) – Given evaluation 

function  ( ), the degree oppositeness for two real numbers       can be formulized as: 

 ̆  (   )   (
| ( )   ( )|

           
)

 

 (3.9) 

where opposition intensity gets controlled by   (   -. 
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If the bounds of the function  ( ) are unknown, a temporal type-II opposition can be 

calculated: 

 ̆  
( )(   )   (

| ( )   ( )|

    
( )

      
( )

)

 

 (3.10) 

Having introduced the fundamental definitions, now we can define the opposition-based 

computing. 

Definition (Opposition-Based Computing) – Let  (            )  be the 

unknown function in focus and  ( ) a proper fitness evaluation function with higher values 

being desirable.  If vector    (            )  is an initial guess and  ̆   ( ̆    ̆      ̆ )  

its opposite value, we calculate  ( ) and  ( ̆) in every iteration.  The search continues 

with   if   ( ( ))    ( ( ̆)) , otherwise we proceed with   ̆. 

Figure (3.2) demonstrates a visualization of applying OBC on a simple one-

dimensional case.  Here,  ̆ , the opposite value of our initial guess  , leads us to more 

accurate result in the solution area.  Of course, in this specific case, the simple definition of 

the opposite happens to be the right choice.  However, for any unknown and nonlinear 

function, the proper definition of the opposite, or its iterative refinement, would be crucial.  

 

Figure 3.2: One dimensional illustration of OBC 
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The difference between type-I and type-II opposition is illustrated in Figure (3.3).  In 

this case the goal is to find the extremes of a non-linear function        ,         -.  In 

this example for the initial guess  , comparing driven results from  ̆  and  ̆   , the type-II 

opposite   ̆   corresponds to a closer result to the ultimate goal. 

 

Figure 3.3:  Type II OBC 

 

3.2 Existing Opposition-Based Applications 

The opposition idea has been successfully applied to optimization, learning, and image 

processing algorithms [47].  

In the field of optimization, opposition is used to increase accuracy and speed in 

Ant Colony Optimization (ACO) [18].  In this technique, Opposite Pheromone per Node 

(OPN) and Opposite Pheromone Update (OPU) concepts have been introduced to increase 

accuracy in construction phase and speed in update phase respectively.  

Differential Evolution (DE), which is a type of genetic algorithm, is another area 

that has been benefited from opposition [24], [25], [26], and [27].  In this approach by 
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embedding opposition-based population initialization and opposition-based generation 

jumping to the algorithm, the convergence speed of the algorithm has been accelerated. 

In Reinforcement Learning (RL), which is a goal-directed method for solving 

problems in uncertain and dynamic environments, opposition has been used to accelerate 

the learning process [42], [37], and [38].  In this practice, the concept of Opposite Action 

[45] has been used that expedites the learning process for Q-Learning and Q(λ) methods. 

In Neural Networks, Opposite Transfer Functions yield to establishing the Opposite 

Networks [49], [50], and [51].  The results of conducted works show significant 

improvement over standard backpropagation learning.  

Image processing is another area that has been touched by opposition concepts.  

Works conducted in [46] and [32] perform using notion of Opposite Fuzzy Sets in Image 

Thresholding.  The results from these works show satisfactory level of accuracy. 
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CHAPTER 4 

Weighted Opposition-Based Fuzzy 

Thresholding 

4.1 Proposed Method 

As previously mentioned, the purpose of this work is to improve the oppositional 

thresholding via the increase in segmentation accuracy whereas the accuracy is equivalent 

to the similarity (or the degree of agreement) between the result image and its associated 

gold standard image.  The oppositional fuzzy thresholding method (OFT) introduced by 

Tizhoosh et al. [32] was selected as the parent algorithm.  This method tied up the concept 

of opposition-based computing to fuzzy sets to introduce the idea of “opposite fuzzy sets”.  

Then it used the entropy difference between applied fuzzy sets to an image and their 

opposites to discover the optimal threshold value. 

 This method was considered as a starting point; however a higher level of accuracy 

was desired.  For this purpose we introduced a local weight factor that is calculated for each 

sub-image in the process and quantifies the significance/validity of the calculated threshold 

value for each sub-image. 
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If the image is divided into   sub-images, the weight factor for each sub image 

        is calculated as follows: 

     
  (   )

 (   )  ⁄
   

    (       )

     (       )
  4.1 

 

In every iteration of the process, this weight factor is calculated and multiplied with 

the fuzzy entropy of the object (e.g. foreground) and anti-object (e.g. background) to define 

the ultimate threshold value of the image.  Based on this idea, the fuzzy entropy of the 

object and anti-object can be defined, respectively, as: 

  ( )   
 

  
 ∑ (  )    (       )     4.2 

and 

  ̆( )   
 

  
 ∑ (  )    ( ̆     ̆ )     4.3 

 

The rationale behind the weight factor can be discussed based on the closeness of 

the sub-image to the user defined central pixel along with contrast of the pixels in the 

neighborhood of the sub-image.  

As can be seen from equation 4.1, the calculated weight is based on two factors.  

The first factor expresses the closeness of the sub image to the centroid point.  We assume 

that since the centroid point is selected by user within the object, the constructed sub-

images around it have more characteristics of the object when they are closer to the central 

point.  By incrementing the sub-image area through iterations, the-sub image would 

represent more characteristics of the whole image rather than of the object of interest.  Thus 

the closer the sub-image to the central point the stronger its contribution should be to define 

the optimal threshold value. 
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On the other hand, the second element of the formulated weight relies on the fact 

that the local mean and standard deviation adopt the value of the threshold according to the 

contrast in the local neighborhood of the pixel. 

The points of departure for introducing our weight factor are the following thoughts 

and assumptions: we know that the object of interest is a dark (or bright) area and logically 

the central point is selected from the pixels that are inside this area, ideally in the center of 

the object.  As mentioned above, by creating co-centered windows around the central point, 

the process tries to define a threshold value that minimizes (or maximizes) the absolute 

value of the entropies of the object and opposite object.  In this procedure, the windows at 

the beginning of the process are inside the object which illustrate a low contrast dark (or 

bright) region.  When the window is over such a region, the mean will be quiet low (or 

high) and the standard deviation will be rather low.  With these windows, despite the fact 

that closeness to the central point forces a high weight, the low/high mean and low standard 

deviation would reduce the weight factor to prevent the algorithm from defining the 

ultimate threshold based on the primary windows‟ characteristics.  When the process starts 

to examine the windows that consist of both object and background regions, even though 

these windows are farther from the central point, but the higher mean of the sub-image 

would drive the weight to be considered strong enough to be able to contribute to the 

selection of the threshold.  Furthermore, when calculating the weight for final windows in 

the image, the distance from central point has a negative effect on the weight minimizing it 

to force the process not to rely on the derived threshold based on their characteristics.  

Fundamentally, this formula tries to create a balance between closeness to central point and 

consideration of uneven sub-images to assist the algorithm with the estimation of the 

threshold value. 

Figures 4.1 and 4.2 illustrate the difference between selections of the sub-image that 

lead to different threshold values from OFT and WOFT methods. 

In Figure 4.1 (a) the central point with the coordinates of (359, 12) and two co-

centered windows with coordinates of ((339, 92), (379, 132)) and ((279, 32), (439, 192)) 
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are presented that the first window (in purple) is the target sub-image from OFT and the 

second (in red) from WOFT method.  In this trial, the threshold value of 14 is calculated 

using OFT while WOFT resulted in thresholding the image with a value of 38.  In WOFT, 

our presented weight factor pushed the process to ignore the value from the smaller 

window.  The fact that this window has a small mean and standard deviation forced the 

method to continue until reaching a reasonable balance between closeness and being 

uneven in gray level histogram.   

As it can be seen, the sub-image selected by our method has part of the object and 

some areas of the background which led to a more accurate thresholding. 

The images resulted by the trial presented in Figure 4.1 are illustrated in Figure 4.2.  

In this figure the difference between two thresholding processes with respect to their 

resulted image, before and after cleaning step, is represented.  Again, beside the accuracy 

measurements presented in the experimental results, the visual inspection also confirms that 

WOFT was more accurate in thresholding the object by relying on the introduced weight 

factor. 
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 (a) (b)  

 

 (c) (d)  

Figure 4.1: Comparison of OFT and WOFT methods with respect to selecting the 

sub-image that define the threshold value. (a) represents the original image and 

selected sub images by OFT and WOFT methods in purple and red respectively, The 

histograms of original image, OFT sub image, WOFT sub image are shown in (b), 

(c), and (d). 
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 (a) (b)  

                       

 (c) (d)  

Figure 4.2: Comparison of OFT and WOFT methods with respect to selecting the 

sub image that defines the threshold value. (a) and (c)  represent before and after 

cleaning resulted images form OFT, (b) and (d) show the same for WOFT. 

 

Beside the weight factor, we also applied some image filtering techniques to prepare 

the image for thresholding task.  Noisy images are a common dilemma in image processing 

applications.  Since image thresholding or segmentation tasks are influenced by image 

noise, we decided to preprocess our test images with filtering and noise reduction 

techniques.  Our test images are filtered with median filter and their contrast level has been 

increased by transforming the values using contrast-limited adaptive histogram equalization 

(CLAHE) [54]. 
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4.2  Experimental Trials 

After a discussion on the configuration and process of the proposed technique, we now 

dedicate this section to evaluate its performance.  For this purpose, we have considered a 

variety of measurements on 20 synthetic images as well as 15 sample breast ultrasound 

images [1].  Synthetic images were used to compensate for lack of large number of real 

images.  The breast ultrasound sample set consists of several ultrasound scans that contain 

anechoic (dark) breast cyst in conjunction with scans that contain non-cystic breast masses 

that should be examined for malignancy.  The task of segmentation is relatively easy for the 

first group comparing to the second group that are identified as challenging to segment.  

As mentioned before, the purpose of this thesis is not to propose a complete 

segmentation solution for breast ultrasound images.  This category of images is chosen to 

be used as test cases since they are known to be difficult to segment and can perform an 

assessment to show the reliability of the proposed method in the real world applications.  

Synthetic images, on the other hand, are not as complicated as the other group yet 

problematical enough to be used as a challenge against the proposed method.  

A manually segmented ground-truth, or gold standard image, have been provided by 

an image-processing expert for the sample images that has been used as the ultimate result 

of thresholding task in the conducted comparisons. 

4.3 Experimental Setup 

To challenge the robustness of the proposed algorithm, we threshold each sample image 

with 5 different central points.  These sample points correspond to 5 pixels inside the area 

of interest.  Test case 1 represents the experiment that the sample points are selected from 

the center of the object in all the test images.  Test cases 2, 3, 4, and 5, respectively, 

correspond to trials with test points sampled from left, right, top and bottom regions of the 
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object.  This will direct us to examine each image in 5 different ways which leads to 75 

trials with ultrasound and 100 experiments with synthetic images. 

Since this algorithm is not dependant on any parameters
1
, no predefined setup is 

required, which can be considered as an advantage for this method. 

Every performed trial results in two segmented images based on threshold values 

driven from maximum and minimum entropy differences for each image.  The resulted 

images from the proposed method are compared to the results of the original algorithm to 

illustrate the effectiveness of the proposed modification to the original algorithm.  Also, to 

demonstrate the robustness of the results, a comparison with two popular 

thresholding/segmentation techniques, namely Otsu and K-Means methods, is conducted. 

In order to evaluate the performance, two measurements of similarity and diversity 

between the result image and its associated gold standard image are considered.  The 

Jaccard Index [11], also known as Jaccard Similarity Coefficient, is the first measure.  It is 

known as one of the most useful and widely used similarity indices for binary data.  This 

method calculates the area of overlap,    , between the thresholded binary image,    , and 

its ground-truth image,    , as follow: 

     
|       |

|       |
        4.4 

This measure is zero if the two images are disjoint; here it means they have no common 

pixels in segmented object, and is 1 if they are identical.  Higher numbers means better 

conformity in the images. 

The second method, Dice Coefficient [5], is another similarity measurement related 

to Jaccard Index.  This method is named after Lee Raymond Dice and is calculated using 

the following equation:  

                                                 
1
 The original algorithm may vary by selecting different membership functions and entropy measures. 

However, the extension proposed in this work does not rely on any parameter. 
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 |       |

|  |   |  |
        4.5 

 

Again with this measure, a value of zero indicates no overlap while 1 shows a perfect 

match between the resulted image and its gold standard.  As it is apparent, this evaluation is 

similar to Jaccard but gives twice the weight to agreements.  Furthermore, by applying both 

of these measures to resulted images, the goal is to get as close to 1 as possible. 

To illustrate the results, each row on the tables presented in the following sections 

corresponds to the average and standard deviation of each test case for both methods.  

These factors stand for the resulting set of aforementioned measures for either 15 

ultrasound or 20 synthetic images for each test case.  Moreover, using t-test, for each test 

case the confidence interval and significance level is calculated.  These estimates are 

advantageous since estimate of the mean varies from sample to sample; hence, instead of a 

single estimate of the mean the upper and lower limit for the mean is generated.  This piece 

of information for each test case gives us an indication as how much uncertainty is involved 

with the estimate of accuracy with each method.  Of course, a narrow and high interval 

demonstrates a more precise estimate. For this practice the confidence coefficient of 95% is 

used. 

4.4 Results 

In this section, a mixture of graphs and tables has been used to demonstrate the comparison 

of original and weighted oppositional fuzzy thresholding algorithms, OFT and WOFT.  In 

order to be able to validate the efficiency of our algorithm and compare it with the original 

version of it, we performed a comparative experiment on our image set with regards to the 

different 5 cases of sample points for each image.  To observe the effect of considering 

maximum or minimum entropy as the factors of thresholding process, each test case has 

been processed with both factors and the results are captured respectively. 
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4.4.1 Synthetic Images 

In this section the result of applying OFT and WOFT algorithms on synthetic images are 

illustrated.  These images have been created based on pre-defined binary images which 

have been corrupted by noise and filtered successively.  Since synthetic images have lower 

level of complexity with respect to image thresholding or segmentation compare to 

ultrasound images, they show higher accuracy and similarity results.  Tables 4-1 to 4-4 

represent calculated average accuracy base on minimum and maximum entropy and 

average similarity, respectively.  For each test case the confidence interval and significance 

level is calculated to better illustrate accuracy changes. 

 

Table 4-1 - Area of Overlap based on Min Entropy Difference 

Test 

Case 

OFT EOFT 

Average STD 
Confidence 

Interval 

Significance 

Level 
Average STD 

Confidence 

Interval 

Significance 

Level 

1 79.41 6.81 [75.56    81.50] 1.83E-22 90.31 5.07 [87.95    94.12] 8.94E-23 

2 75.64 7.11 [69.32    79.12] 1.91E-22 84.09 6.35 [80.15    86.72] 1.65E-22 

3 78.69 6.51 [74.41    80.67] 1.79E-22 89.37 6.18 [86.41    91.83] 1.62E-22 

4 82.19 6.92 [78.23    84.76] 1.89E-22 92.01 6.84 [88.59    95.02] 1.71E-22 

5 79.81 7.64 [74.81    82.19] 1.97E-22 91.89 7.60 [88.07    93.68] 1.93E-22 

 

 

Table 4-2 - Area of Overlap based on Max Entropy Difference 

Test 

Case 

OFT EOFT 

Average STD 
Confidence 

Interval 

Significance 

Level 
Average STD 

Confidence 

Interval 

Significance 

Level 

1 75.65 7.23 [69.41    81.18] 1.92E-22 85.32 6.84 [81.08    88.56] 1.82E-22 

2 74.13 7.89 [67.15    80.57] 2.17E-22 80.94 7.5 [77.34    84.61] 2.13E-22 

3 77.38 6.69 [74.28    81.40] 1.79E-22 88.67 6.13 [85.23    90.81] 1.73E-22 

4 79.52 5.98 [75.76    83.11] 1.72E-22 90.11 5.93 [88.37    93.47] 1.70E-22 

5 72.61 7.12 [68.17    76.53] 1.85E-22 85.47 6.73 [82.13    88.05] 1.77E-22 
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Table 4-3 - Similarity based on Min Entropy 

Test 

Case 

OFT EOFT 

Average STD 
Confidence 

Interval 

Significance 

Level 
Average STD 

Confidence 

Interval 

Significance 

Level 

1 81.33 7.19 [76.52    84.16] 1.83E-22 92.02 6.59 [87.69   95.28] 1.70E-22 

2 77.43 8.49 [70.46    79.38] 2.37E-22 85.94 7.98 [81.39    87.41] 1.95E-22 

3 80.12 8.29 [73.81    85.63] 2.19E-22 90.53 7.91 [86.18    93.08] 1.90E-22 

4 83.44 7.86 [79.35    86.49] 2.05E-22 94.76 7.14 [89.37    96.45 1.88E-22 

5 82.67 7.64 [78.64    84.19] 1.93E-22 92.82 6.89 [87.91    95.62] 1.76E-22 

 

 

Table 4-4 - Similarity based on Max Entropy 

Test 

Case 

OFT EOFT 

Average STD 
Confidence 

Interval 

Significance 

Level 
Average STD 

Confidence 

Interval 

Significance 

Level 

1 78.30 7.49 [75.29    84.52] 1.83E-22 89.11 6.67 [86.56    94.15] 1.73E-22 

2 75.94 7.81 [72.11    80.67] 1.91E-22 87.16 7.13 [84.63    91.08] 1.85E-22 

3 80.12 8.03 [75.09    84.39] 1.97E-22 91.53 7.92 [88.19    95.36] 1.93E-22 

4 83.44 7.64 [79.52    88.16] 1.89E-22 93.76 7.10 [89.82    97.27] 1.81E-22 

5 82.67 7.37 [76.43    86.71] 1.97E-22 90.82 6.91 [87.34    93.38] 1.78E-22 

 

 

The information presented in these tables confirms that the proposed method has 

higher rate of accuracy and similarity while even improving the confidence interval by 

making them narrower.  The images presented in Figure 4.3 help us to visualize the 

increase in accuracy.  The thresholded images, resulted from WOFT method, are shown in 

column c of the figure. Comparing these images to the resulted images from OFT in 

column b shows that they are closer to the gold standard images in column d. 
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(a) (b) (c) (d) 

Figure 4.3: Thresholded synthetic images  from test cases and their associated gold 

image are presented in columns (a) and (d). The resulted thresholded images from OFT 

and WOFT methods are presented in (b) and (c) respectively. 
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4.4.2 Breast Ultrasound Images 

We used 15 breast ultrasound images to demonstrate the results of the proposed method.  

These images, as one of the most challenging cases in medical image analysis, are only 

used as a case study for this work.  This thesis, hence, does not claim to provide a complete 

segmentation solution for breast ultrasound segmentation. 

Tables 4-5 and 4-6 illustrate the average and standard deviation of Area of Overlap 

based on minimum/maximum entropy for each ultrasound image test case.  These tables 

summarize the measurements that are captured after cleaning stage has been applied to the 

test images. 

 

Table 4-5 - Area of Overlap based on Min Entropy Difference 

Test 

Case 

OFT EOFT 

Average STD 
Confidence 

Interval 

Significance 

Level 
Average STD 

Confidence 

Interval 

Significance 

Level 

1 65.96 31.7 [44.66    87.25] 4.19E-05 77.56 19.47 [64.48    90.65] 1.18E-07 

2 67.35 29.13 [47.78    86.92] 1.70E-05 79.88 13.83 [70.60    89.17] 3.26E-09 

3 65.26 32.79 [43.23    87.30] 6.07E-05 78.08 19.29 [65.12    91.04] 1.01E-07 

4 64.29 31.98 [42.81    85.78] 5.59E-05 77.31 19.35 [64.31    90.31] 1.14E-07 

5 69.93 27.05 [51.76    88.10] 6.38E-06 77.05 24.74 [60.42    93.67] 1.18E-06 

 

 

Table 4-6 - Area of Overlap based on Max Entropy Difference 

Test 

Case 

OFT EOFT 

Average STD 
Confidence 

Interval 

Significance 

Level 
Average STD 

Confidence 

Interval 

Significance 

Level 

1 73.41 22.42 [58.35    88.48] 7.43E-07 77.56 18.23 [65.32    89.81] 6.27E-08 

2 70.51 17.34 [58.86    82.16] 9.68E-08 78.56 18.67 [66.02    91.10] 6.98E-08 

3 67.82 20.62 [53.97    81.68] 7.11E-07 76.93 19.78 [63.64    90.22] 1.48E-07 

4 67.71 29.13 [48.14    87.28] 1.63E-05 72.06 26.38 [54.34    89.78] 3.90E-06 

5 73.18 23.76 [57.21    89.14] 1.31E-06 76.02 16.85 [64.71    87.34] 3.57E-08 
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As can be seen, our WOFT method has increased the accuracy for the majority of 

the cases.   Also, it is apparent that using minimum entropy as the base of calculation the 

threshold in the process leads us to higher accuracy rates.   

Tables 4-7 to 4-8 follow the same arrangement but they represent the measurement 

of similarity (Dice Coefficient) between the resulted images and their gold standard image 

based on several sample points in each test case.  The overall values support the judgment 

of the results illustrated in earlier tables. 

 

Table 4-7 - Similarity based on Min Entropy 

Test 

Case 

OFT EOFT 

Average STD 
Confidence 

Interval 

Significance 

Level 
Average STD 

Confidence 

Interval 

Significance 

Level 

1 71.57 32.91 [49.46   93.68] 2.88E-05 85.84 15.43 [75.47   96.21] 4.72E-09 

2 76.14 27.82 [57.45   94.83] 3.83E-06 85.62 15.26 [75.37   95.87] 4.33E-09 

3 73.42 25.02 [56.61   90.23] 2.04E-06 83.54 15.6 [73.06   94.02] 6.82E-09 

4 71.54 32.34 [49.82   93.27] 2.49E-05 85.78 15.4 [75.44   96.13] 4.65E-09 

5 78.67 25.53 [61.52   95.82] 1.30E-06 83.38 21.94 [68.64   98.12] 1.84E-07 

 

 

Table 4-8 - Similarity based on Max Entropy 

Test 

Case 

OFT EOFT 

Average STD 
Confidence 

Interval 

Significance 

Level 
Average STD 

Confidence 

Interval 

Significance 

Level 

1 81.61 14.91 [71.59   91.62] 5.52E-09 84.75 13.48 [75.69   93.80] 1.43E-09 

2 79.66 18.7 [67.10   92.23] 6.20E-08 84.99 13.57 [75.87   94.11] 1.49E-09 

3 78.21 20.17 [64.66   91.76] 1.52E-07 84.76 14.84 [74.80   94.73] 3.64E-09 

4 79.22 20.02 [65.77   92.67] 1.26E-07 83.36 12.91 [74.69   92.04] 1.10E-09 

5 77.01 25.27 [60.03   93.99] 1.44E-06 80.92 22.68 [65.68   96.16] 3.34E-07 

 

Figure 4.4 presents some examples of thresholded images using OFT and WOFT 

algorithms for visual comparison. Additional examples are presented in Appendix A. 
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(a) (b) (c) (d) 

Figure 4.4: Thresholded ultrasound images. (a) and (d) are the original and Gold images. 

(b) and (c) demonstrate results of thresholding based on Minimum Entropy Difference with 

OFT and WOFT respectively. 
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Figure 4.5 provides a more detailed view of the comparison between accuracy of 

OFT and WOFT methods.  This graph represents the Area of Overlap measures for the 

images in test case 1 trial which is calculated based on minimum entropy difference with 

cleaning process applied.  As it is noticeable, in 13 cases out of 15, EOFT resulted in 

accuracy higher than or equal to OFT (12 of which have higher accuracy).  As well, WOFT 

result set has smaller standard deviation and more desirable confidence intervals (Table 

4.5), in comparison with OFT, which clearly demonstrates that the proposed method is 

more reliable than its parent algorithm. 

The differences of the resulted images before and after cleaning stage for both OFT 

and WOFT methods have been illustrated in Figure 4.6.  This figure is an easy visualization 

of how the cleaning phase, based on the area around the central pixel, increases the 

accuracy of the final result of the algorithm. 

Figure 4.5: Area of Overlap measures of test case 1 in Table 4-1 
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(a) (b) (c) (d) 

Figure 4.6: Images resulted from before and after cleaning stage. (a) and (b) show the 

before and after results of OFT, (c) and (d)demonstrate those of WOFT algorithm. 
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4.5 Comparison with well-known methods 

 Since Otsu and K-Means are two simple yet effective algorithms of image 

thresholding, we made a comparison between the results of these methods with OFT and 

WOFT algorithms.  Otsu and K-Means methods are applied to both our synthetic and 

ultrasound image test cases and both accuracy and similarity measurements are calculated.  

Since selecting a center point has no effect on the result of these methods, the trial was 

conducted only once and the results are compared to the results of our test case 1 for both 

types of images.  Tables 4-9 (area of overlap) and 4-10 (similarity) demonstrate the result 

and comparison for synthetic images and the same information but for ultrasound images 

trial are presented in Table 4-11 and Table 4-12. 

 

 

Table 4-9 – Synthetic Images 

- Area of Overlap 

 Average STD 

Otsu 56.31 5.10 

K-Means 31.42 24.80 

OFT 79.41 6.81 

WOFT 90.31 5.07 

Table 4-10 – Synthetic 

Images -Similarity 

 Average STD 

Otsu 71.92 4.21 

K-Means 42.33 30.65 

OFT 73.95 8.01 

WOFT 90.02 6.59 

 

 

 

Table 4-11 – Ultrasound 

Images - Area of Overlap 

 Average STD 

Otsu 13.12 8.02 

K-Means 19.56 21.81 

OFT 65.96 31.70 

WOFT 77.56 19.47 

Table 4-12 – Ultrasound 

Images - Similarity 

 Average STD 

Otsu 22.35 12.48 

K-Means 28.73 23.41 

OFT 71.57 32.91 

WOFT 85.84 15.43 
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Analyzing the data provided in these tables, it is apparent that the proposed method 

surpasses both Otsu and K-Means methods in accuracy and similarity measures. 

Some result images are provided for visual comparison in Figure 4.7.  This figure 

illustrates the result of applying OFT and WOFT methods based on minimum entropy 

difference thresholding in comparison with resulted images from K-Means and Otsu 

methods.  

Analyzing the results of before and after cleaning process values, we observed that a 

large percentage of low accuracy results occurred in cases that the image is cleaned.  This 

fact confirms that the outcome of the image filtering concept is relative to the location of 

the sample point.  Of course, this method would not be efficient if the sample point is not 

located inside the area of interest. 

A more detailed analysis of the possible improvements of the current work and the 

future directions will be provided in the next chapter. 
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 (a) (b) (c) (d) 

Figure 4.7: Comparison of results with K-Means and Otsu methods. (a) and (b) are presenting 

the result of OFT and WOFT methods. (c) and (d) are resulted from K-Means and Otsu 

methods. 
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CHAPTER 5 

Conclusion and Future Work 

In this research, the initial motivation was to increase the accuracy of an existing image 

thresholding algorithm based upon introducing a weighted version of the parent algorithm.  

The weights are calculated based on some elementary characteristics of sub-images 

generating some encouraging outcomes. 

The performance of the proposed method was verified by processing synthetic 

images along with breast ultrasound images as a real-world and challenging case.  

As shown by the experimental results, it has been successfully demonstrated that the 

proposed WOFT algorithm can achieve more accurate results compared with the parent 

algorithm OFT, and with the benchmark algorithms Otsu and K-Means thresholding. 

The future work should focus on further enhancements to the algorithm through 

different extensions such as learning the weights via an iterative procedure. Further, an 

optimal and comprehensive computer-aided image thresholding system must be able to 

classify the image without user interaction, an aspect that was not under consideration in 

this work.  This requirement is generally desirable for industrial applications while many 

other applications, such as medical image analysis, may already benefit from the proposed 

semi-automated approach by providing some input from an experienced user.  
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On the other hand, due to the logic applied to the filtering section of the algorithm, 

the object of the interest is not accurately thresholded if the central point is selected from 

outside of the object area.  Modification to this part of the method can be considered as one 

of the other future directions. 

Better results can be achieved by enhancing image pre-processing stage.  The 

possibilities can be further extended by the use of different noise removal and/or contrast 

enhancement techniques. 

Even though we experimentally validated the robustness of the proposed 

thresholding technique using Type I Opposite Fuzzy Set, but should be considered just a 

preliminary investigation into applications of opposition in image 

thresholding/segmentation techniques.  To continue the exploration, the applicability of 

Type II Opposite Fuzzy Sets should be studied and examined in future works as well. 
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Appendix A 

More examples of applying OFT and WOFT methods (second and third column 

respectively) on ultrasound images are provided for visual comparison.  Original and gold 

images are presented on the first and forth columns for each row. 
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