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Abstract

Municipalities and contractors in Canada and other parts of the world rely on road
surface condition information during and after a snow storm to optimize maintenance op-
erations and planning. With an ever increasing demand for safer and more sustainable road
network there is an ever increasing demand for more reliable, accurate and up-to-date road
surface condition information while working with the limited available resources. Such high
dependence on road condition information is driving more and more attention towards an-
alyzing the reliability of current technology as well as developing new and more innovative
methods for monitoring road surface condition. This research provides an overview of the
various road condition monitoring technologies in use today. A new machine vision based
mobile road surface condition monitoring system is proposed which has the potential to
produce high spatial and temporal coverage. The proposed approach uses multiple mod-
els calibrated according to local pavement color and environmental conditions potentially
providing better accuracy compared to a single model for all conditions. Once fully devel-
oped, this system could potentially provide intermediate data between the more reliable
fixed monitoring stations, enabling the authorities with a wider coverage without a heavy
extra cost. The up to date information could be used to better plan maintenance strategies
and thus minimizing salt use and maintenance costs.
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Chapter 1

Introduction

With increasing economic growth and hence traffic loads, authorities are under more and
more pressure to maintain the safety and mobility of highways which play a key role in eco-
nomic development. It is estimated that the U.S alone spends an approximate $2.3 billion
on road snow and ice control [1] where as Canada spends more than $1 billion in winter
maintenance of roads [2]. To ensure safer driving conditions on highways during winter,
municipalities and government agencies in North America and Europe are constantly ex-
ploring new technologies in road condition sensing and monitoring that can provide reliable
and up-to-date information about road condition status [3].

Up-to-date and reliable information about road surface conditions can help highway
agencies in better utilizing the available resources as efficiently as possible. Having up
to date information can result in more streamlined maintenance operations that focus on
specific highway sections instead of broader patrol routes where the entire route may not
need the same level of maintenance. As a result, labor, material and equipment usage can
be optimized while maintaining a standard level of safety along the entire road network.
With awareness about environmental concerns regarding salt usage, precise road surface
condition information can lead to more efficient usage of salt, which otherwise would not
be possible.

Reliable and up to date road surface condition can also be used to warn drivers about
potential hazardous locations where the presence of ice may pose a threat to passenger
safety. Delivering this information to authorities and users in a timely manner can signifi-
cantly reduce the loss and damage caused due to dangerous road surface condition during
winter. MTO (Ministry of Transportation Ontario) and other agencies use bare pavement
reporting as one of their primary sources of road surface condition information. Bare
pavement reporting usually involves dedicated patrolmen who patrol the highways several
times a day to manually observe road surface condition. Based on these observations, the
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authorities plan maintenance operations and also gauge the performance of maintenance
contractors in removing snow off the roads during and after a particular snow event.

As a first step towards a more technologically advanced road condition reporting sys-
tem, several states in North America and many countries in Europe have invested heavily
in RWIS (Road Weather Information System). With advancements in sensing, data pro-
cessing and telecommunication, the RWIS has evolved to become a complex yet costly
solution for remote sensing and transmission of real time road surface condition monitor-
ing. Today, the province of Ontario alone has deployed more than 200 RWIS stations.
With RWIS being an important tool in winter maintenance planning and deployment, the
number of RWIS deployments is expected to increase in coming years. Coming sections will
discuss the advantages and limitations of RWIS and many other monitoring technologies
in detail.

1.1 Spatial and Temporal Variation in Road Condi-

tion

Road surface condition changes in time as well as space during winter snow events. To
elaborate, it is important to know how the condition of a particular point changes as time
passes and similarly it is important to know how the road condition changes in space
(over a stretch of road or within a defined area) at a particular instant in time. Both
these requirements can be met using two fundamentally different measuring techniques.
These techniques include fixed sensors, which are primarily used to monitor conditions
over a point as time passes, and mobile sensors that measure conditions over a large road
network in a given time.

Most road condition monitoring technologies today rely on fixed sensors such as the
RWIS that are installed at a point on the road; this point is assumed to be representative
of the surrounding area (e.g. radius of 100 Kilometers or more ). An inappropriately
placed sensor can thus largely limit the use of gathered data due to its lack of similarity
with the surroundings. Hence considerable work has been done in optimizing the location
of RWIS stations to get the data that is best representative of the surroundings and also
capable of detecting hazardous conditions effectively [4]. However, due to the nature of the
measurand, point data can often be misleading and unrepresentative of the surroundings
and thus limiting the usefulness of data obtained by fixed type sensors. The following
figure depicts road temperature and friction data for a 2km stretch of pavement recorded
around the location of a fixed type sensor. The high variation in collected data clearly
shows misrepresentation of surrounding data by a fixed point measurement due to high
spatial variation in road surface conditions.
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Figure 1.1: Spacial Variation of Road Surface Condition

With precipitation, traffic and maintenance activities directly affecting pavement sur-
face conditions, it is often important to have up-to-date road condition data over full spacial
extension. As a stationary point is often not a good representative of the surroundings.
Mobile sensing stations are usually deployed to cover a large area over a defined time inter-
val. However, rapid changes in road conditions over a particular point cannot be monitored
by mobile systems.

This point is elaborated by the Figure 1.1, depicting road condition information as
seen by a stationary sensor over a twelve hour period. From Figure 1.1, it is clear that
information from a mobile sensor can be deceptive in rapidly changing environments where
previously recorded values may no longer hold as the sensor moves along in space.

1.2 Problem Definition

Road surface contaminants can adversely affect the safety and mobility of travelers during
and immediately after the occurrence of a snow event. This not only causes loss of life,
property and time for those directly affected but also adversely affects the economy of the
region in general. While under-maintained roads pose an economic threat to the region,
over-maintenance is extremely costly and excess salt usage can harm the environment incur-
ring further indirect costs. In order to efficiently plan road maintenance operations, gauge
performance of maintenance contractors and inform general public about hazardous road
conditions, authorities have deployed a variety of road condition sensing and monitoring
systems. These range from stationary RWIS stations and webcams installed at predeter-
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mined locations to dedicated personnel periodically patrolling the roads to observe road
surface status and potential hazardous conditions that need immediate attention.

Despite the efforts to improve the collection and coverage of pavement condition data,
there is a large void between information that is available and what is needed to optimize
the road maintenance process for better safety and mobility while reducing salt usage and
overall costs. The void between available and needed data can be covered by creating
hybrid systems that combine existing technologies to obtain data that is rich in temporal
and spatial dimensions. Moreover, there is need to deploy new sensing technologies that
are being used for other applications but still have not been used in the domain of winter
road maintenance.

1.3 Research Goals and Objectives

The objective of this research is to analyze the different existing road condition monitoring
technologies in use, followed by an overview of other technologies that could potentially
be used to monitor road surface conditions. The goal is to understand the winter mainte-
nance process, its data requirements and evaluate the various road monitoring technologies
available. The final objective of this research is to implement a prototype of an automated
winter road condition monitoring system to explore the possibilities of road surface classi-
fication through machine vision and the possibility of publicly deploying such systems for
use by authorities and general public. The specific objectives are as follows:

• Conduct a literature review of the different road condition monitoring technologies to
better understand their principle of operation along with their strengths and weak-
nesses.

• Conduct a literature review of vehicular sensor networks and newly evolving mobile
monitoring solutions and how they can be used with respect to Intelligent Trans-
portation Systems and road condition monitoring.

• Conduct machine vision based analysis of pavement images with the development of
a Support Vector Machine based model for Road classification.

• Develop and test a prototype that can be used for automatic road condition infor-
mation collection.
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Chapter 2

Literature Review

There are a variety of technologies and methods that have been in use for monitoring road
surface conditions to help aid in winter operations. This chapter reviews the available and
upcoming technologies that are/can be used to aid winter maintenance operations.

2.1 Road surface condition indicators

Before analyzing the various road monitoring technologies that exist, it is important to first
define the various measurands that are being used to represent the road surface condition.
Table 2.1 shows the different measurands that have a direct or indirect correlation with the
road surface condition and are usually monitored in order to infer road surface condition.

2.2 Road Condition Monitoring Technologies

In this section we summarize the major winter road condition monitoring technologies
in use today. While summarizing, the technologies have been divided into mobile and
stationary sensing as both modes serve a different purpose in terms of spatial and temporal
coverage with each having its own advantages and disadvantages.

2.2.1 Stationary Monitoring Technologies

Stationary monitoring technologies refer to monitoring systems that remain fixed at a
particular location during their period of operation. The constraint of being fixed is usually
due to the physical nature of the sensors that have to be embedded in the pavement and thus
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Table 2.1: Road Surface Condition Indicators

Measurand Method Usage
Pavement Friction Friction wheels Acceler-

ation/deceleration based
devices Estimation using non
intrusive spectral sensors
(RWIS)

Road friction provides a good estimate
of the road’s level of safety at a point
in time.

Temperature IR Thermometers & thermal
imaging Embedded Puck Sen-
sors (RWIS)

Pavement temperature can be used to
infer the status of contaminants and
can be helpful in predicting ice forma-
tion

Contaminant Puck type salanity sensors
(RWIS) Hand held salanity
meters Vehicle based salanity
sensing systems.

Contaminant concentration levels help
determining the amount of salt present
on the road and hence optimize future
salting operations.

Contaminant type Visual observation, Video
Cameras, Spectral Sensors

Road coverage information is used to
plan ploughing operations and eval-
uate the effectiveness of maintenance
contractors as well as maintenance
strategies

cannot be moved or due to technology limitation that does not allow proper functioning
while the system is mobile.

RWIS (Road Weather Information Systems)

RWIS are the most commonly used systems deployed by transportation departments for
road surface condition information and monitoring. The RWIS can be summarized as a set
of sensors connected to a data collection and transmission system installed along the road-
side, typically used for environmental and pavement data collection. Starting in the 1960s
several European countries developed sensing systems to assist maintenance personnel in
decision making for snow and ice control operations. RWIS began to gain popularity in
North America during the 1990s and have evolved to be one of the most reliable sources of
road and weather information for winter road maintenance. Due to its large numbers and
extensive use, there have been numerous studies done on the effectiveness of using RWIS
information[5][6] [7] Discuss the benefits and cost savings incurred due to RWIS usage and
the need for more RWIS sites to achieve complete coverage of the geographical region of
interest. Most RWIS are an aggregation of a set of permanently fixed sensors connected to
an on-site communication and processing unit (CPU). The CPU allows for simultaneous
data collection from multiple sensors installed on site. The collected data can then be
stored, validated and communicated to a central location via telephone lines or cellular
links where available. In terms of sensor connectivity, the RWIS offer a wide variety of
communication protocols and standards enabling a large variety of sensors from different
manufacturers to be connected. Following is a description of the various types of sensors
that are commonly used with RWIS:
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Air and pavement temperature sensors are an important part of an RWIS station.
Available in different types from different manufacturers, these sensors can either be em-
bedded in the pavement (for road temperature) or more sophisticated IR based sensors can
also be installed on a pole alongside the roadway for contact free pavement temperature.
Due to their cost, not all RWIS stations were equipped with these sensors, however they
are becoming a standard feature on many new stations being deployed nowadays [8].

Puck or Contact type Pavement sensors are a breed of purpose designed pavement
sensors and are often used with RWIS stations offering a wide range of sensing capabilities.
Most common sensors offer pavement temperature as measured at the point where the puck
is installed. Puck sensors have the inherent advantage of being present at the site along
with the measurand and can hence detect changes in with less sophisticated equipment
when compared to spectral sensors.

Puck sensors can be divided into two major types, namely passive and active sensors.
While passive type sensors sense the change in conditions without interfering with the envi-
ronment, active type sensors have the capability of heating and cooling parts of the sensor
surface to detect presence of snow or ice (converts to water when heated) or possibility
of frost formation (water converts to thin layer of ice upon cooling). Special conductivity
sensors can also measure the type of contaminant which is often used to detect the amount
of salt or de-icing agents present on the road surface. However, none of these sensors have
achieved a level of reliability at which they can be used for planning and deployment of
maintenance operations [9].

Previous studies indicate that pavement sensors offer a high installation and operating
cost whereas the benefits gained from these sensors to aid winter road maintenance are not
yet fully quantifiable [3]. The puck sensors require lane closures during installation and
have to be removed before heavy maintenance of the road surface. Moreover, incorrect
readings can result in incorrect maintenance deployment decisions leading to high financial
losses [9].

Contact free Pavement Sensors are another branch of pavement sensors that have
been developed to overcome the practicality and reliability issues posed by puck type
pavement sensors. Common examples are spectral and IR based pavement sensors. At
glance, a spectral sensor resembles a video camera installed on a pole along the road side
instead of being installed on the pavement. Relying on infra-red and microwave radiations
emitting from the road surface, spectral sensors can provide surface condition classification
in dry, wet, snowy, icy and slushy categories.

A detailed study on the performance of different spectral sensors in is presented in
[3][10]. Experimental results show high accuracy while detecting presence of snow/ice and
water while poor accuracy for detecting presence of slush. Promising experimental results
along with ease of installation and easy portability give these sensors a sharp edge over
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the usual puck type sensors. Spectral pavement sensors can be easily connected to the
RWIS for data logging or transmission and can also operate in stand-alone mode with the
capability of relaying live road data to a server via telephone or cellular links. Due to these
benefits, actual field test for these devices are being encouraged [3]; however long term
reliability and accuracy in the field is yet to be proven.

As the RWIS consists of a generic CPU capable of communicating to a variety of
different devices, a large number of non RWIS specific sensors such as visibility, traffic etc
can be connected for data logging, validation and communication purposes.

Video Surveillance

With increasing Internet availability and affordable high resolution video cameras, road
condition on highways is now being monitored via CCTV feeds from cameras installed at
priority locations. Despite their simplicity, CCTV video feeds can provide an overview
of snow and slush coverage on highways. This information can be used by maintenance
staff as well as the general public high level road coverage information in real time. Once
such camera network is the COMPASS system that provides live image feeds from various
locations on highways around the GTA. While initially installed for traffic monitoring,
COMPASS[11] images are now being used for high level road coverage information used
for research.

2.2.2 Stationary Monitoring: Advantages and Challenges

RWIS have evolved to be a reliable source of road and weather information for planning
maintenance operations. RWIS can be used to improve the Level Of Service, material
and labor cost savings, improve maintenance quality and improvement in environmental
impacts [12]. However a RWIS is a fixed type of sensing system and can only measure
variation of condition at a given location making the location of RWIS and the position of
sensors highly critical. RWIS and other stationary type sensors are intended to be installed
at locations such that the data from the sensor best represents conditions prevalent in that
area. This may not include extreme conditions like ice formation that may only occur
in small patches and patches and thus do not represent the general road conditions in
that area. However while this target is being met, it is in contradiction with one of the
main purposes of road condition monitoring which is to detect icy roads and other extreme
conditions that can pose a high threat to safety and mobility of a road. The stationary
nature of even the most well placed sensors also make it impossible to cover for lateral
variation in the road surface conditions like center covered and track bare roads making
the information misleading in many ways. A detailed analysis on sensor installation and
positioning in discussed in [6]
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2.2.3 Mobile Road Condition Monitoring

Mobile road condition monitoring technologies refer to systems that sense road conditions
while moving along the highway. They differ from stationary systems in coverage, cost,
reliability and the kind of variable monitored. This section summarizes the different mobile
monitoring technologies and methods in use today.

Manual Bare Pavement Reporting

The practice of patrolling highways by trained patrolmen for observing changes in road
surface conditions is referred to as bare pavement reporting. Even today, bare pavement
reports are used as a major aid in planning winter maintenance operations and evaluating
the performance of maintenance contractors.

The bare pavement reporting procedure involves patrolmen performing frequent runs
around a defined highway to observe improving/deteriorating road conditions. The ob-
servations are then logged onto a bare pavement reporting form. At the end of the trip,
the logged information is entered into a computer system for archiving and easy access to
decision makers. A complete guide to the bare pavement reporting process can be found
in [13].

Bare pavement reports are generally subjective and not repeatable; this is due to various
human factors that can bias the decision of the observer. Moreover, it offers only limited
coverage as it can be difficult for patrolmen to move during storm and high traffic situations.
In terms of cost, manual bare pavement reporting is considered to be a cost intensive as it
involves dedicated patrol personnel, vehicle and fuel costs.

Road Friction

Friction can be defined as the resistance encountered by an object while moving over
another object and the magnitude of the resistive force is known as the frictional force.
The friction coefficient is the ratio of the normal and resistive forces acting at a point
[14]. Road Friction is an intuitive road condition indicator that can be used to aid winter
maintenance decision making and performance evaluation and over the years a number of
different techniques have been developed to measure friction. Unlike the RWIS sensors,
friction is an actual measurement of the forces between the road surface and the wheel and
can be determined by the following methods:

• Friction Trailer
The friction trailer is one of the most commonly used friction measurement devices
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today. Initially developed to measure friction for airport runways during winter
condition, the friction trailers are now used in Europe and North America for road
grip level estimation for benchmarking and research purposes.

Most friction trailers consist of a tire (or multiple tires in some models) connected
to special force measuring sensors and an interface box inside the vehicle for control
and display. Unlike the RWIS, friction trailers measure friction while moving along a
road as they are towed by another vehicle. Some of the different friction measurement
techniques used are: locked wheel, fixed slip, variable slip and side force devices. An
in depth analysis of different friction trailers can be found in [15].

Studies show that friction trailers show good repeatability and reliability almost
independent of vehicle speed and the technology is mature enough to be used for
road friction measurement during winters[16]. The newer friction trailers promise
to work well on bends and sharp turns where previous models failed. Most friction
trailers can provide accurate friction values at a continuous rate with a frequency of
up to multiple readings per second. Manufacturers offer multiple options for data
logging and transmission. Friction readings can be monitored using the in-vehicle
display or directly stored on a laptop computer using an RS 232 connection. Friction
trailers can also be interfaces with AVL systems for automatic GPS tagged data
logging.

While the method of measurement may be different, all friction trailers require a
dedicated vehicle and driver for operation. For this reason friction measurement
using friction trailers not only require a high initial investment but also a high running
cost in terms of labor, vehicle and fuel costs. Thus it is difficult to deploy a large
number of friction trailers for everyday road monitoring, making friction trailers less
popular amongst maintenance contractors. Moreover, as the friction readings are
measured along the wheel-track in a particular lane or wheel-track, they offer very
limited lateral coverage and the collected data does not represent road conditions
along the lateral surface of the different lanes. This factor could be significant in case
of different traffic levels on different lanes or in situations where the there is high
lateral variation in road conditions due to maintenance operations or other factors.

• Acceleration Based Friction Estimation
The road grip can also be estimated using the deceleration patterns of a vehicle
to which sudden breaks are applied while driving. A new range of accelerometer
equipped in-vehicle devices are now available. Once calibrated using a reference road
grip value (from a friction trailer), these devices can estimate the road grip level based
on the deceleration patterns of a vehicle. Unlike the friction trailers, these devices
do not require costly modifications to the vehicle, however, these devices require the
driver to apply sudden breaks so that the deceleration patterns can be analyzed.
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Even though the deceleration based devices offer a low cost alternative to the friction
trailer, their repeatability and reliability are yet to be proven. Moreover these devices
provide average friction readings sampled at short intervals instead of continuous
values.The requirement for sudden breaking and acceleration can make them difficult
to operate in many cases with high levels of traffic.

Mobile Surface Temperature Measurement and Thermal Mapping

Maintenance personnel regard pavement temperature as essential information to better
determine the correct chemical application rates for winter maintenance. Non-contact in-
frared sensors have been widely used in the vehicle-mounted pavement temperature mea-
suring devices to quantify the radiation emitted by the surface of the road and thus measure
of surface temperature. IR-based surface temperature thermometers are usually made of
an IR-sensor, a processor and a display. The sensor assembly can be mounted on the exte-
rior of the vehicle according to the manufacturer’s specifications. The control unit can be
mounted on the inside and supports small a display screen for direct temperature readings
or can also be used to connect to a laptop, AVL or data logging device. The study in [17]
indicates that the IR based mobile temperature sensor has reached a high enough level of
repeatability and reliability to be used in commercial applications.

Road surface temperature measured by mobile devices is often used for thermal map-
ping. Thermal mapping is a process of quantifying the variation in road surface tempera-
tures along a route or network. It has been used on roads and runways in Europe, USA,
Canada and Japan to ensure that roads remain free of ice and snow. The process involves
repeated collection of road surface temperature over long stretches of road under different
weather conditions. The data is collected using vehicles equipped with IR surface tem-
perature sensors and special data logging equipment. The work in [18] validates the data
collected by a thermal mapping system in Nevada USA against RWIS sensor data and it
is shown that thermal mapping is an easy and economic way to display changes in road
temperature variations.

In practical scenarios, thermal mapping is achieved using a fleet of IR pavement sensor
mounted vehicles that follow an assigned route to collect data. This process requires
dedicated equipment and labor and as road conditions change frequently, keeping the
thermal maps up to date for a large highway network may not be possible.

2.2.4 Mobile Monitoring: Advantages and Challenges

Vehicle based road condition monitoring technologies have evolved to become one of the
key tools used by winter maintenance agencies to optimize winter maintenance operation
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in order to deliver the right amount of material and resources to the right location and the
right time.

Unlike the RWIS and other stationary technologies, vehicle based systems have the
advantage of covering a large area with a single set of equipment. Another key advantage
for vehicle based monitoring is the possibility of measuring friction which directly related
to the road surface condition and thus safety of a given road.

However, due to their mobile nature, vehicle based systems have an inherent disad-
vantage of low temporal resolution. As vehicles move along a route, the road condition
of sections left behind keeps changing. Hence data collected from moving vehicles under
rapidly changing conditions could lead to incorrect maintenance decisions, financial losses,
low safety and poor level of service.

2.3 Vehicular Sensors and Environmental Monitoring

In order to acquire data with high spatial and temporal density, vehicular sensor networks
are being proposed as platforms for automated non-specialized vehicle based data collection
systems that sense, log and transmit acquired data. This section discusses some of the
relevant vehicular sensor networks that have been proposed for road and environmental
data collection.

2.3.1 Automated Pothole Detection

The work in [19] discusses an automated pothole detection system that has been success-
fully deployed and tested on the streets of Boston MA. The high level architecture consists
of an onboard mobile computing platform that is used for all data collection, processing
and transmission. Potholes are detected based on readings from a three axis accelerometer
attached to the body of the vehicle, a GPS to determine the speed of the vehicle and
location of the pothole and a wifi/GPRS modem to transmit collected data to a central
server upon network availability.

The system uses handpicked loosely labeled data for model training. This involves a
complex feature extraction algorithm which is beyond the scope of our work. Once trained,
the prototype is deployed onto multiple taxis around the greater Boston area and proved
to detect potholes with an accuracy of greater than 95%. This high accuracy was achieved
by fusing data from multiple sensors to reduce the number of false positives.

This attempt is one of the first fully deployed and tested mobile end-to-end system to
detect road anomalies. While pothole detection and determining winter road condition have
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little in common, the attempt shows the potential of using mobile sensor nodes as a cost
effective and reliable method to automatically collect environmental data. Technological
barriers in the form of network availability, processing power and precision sensing are
no longer a hurdle in exploring new avenues for vehicular sensor networks as probes for
environmental data collection.

2.3.2 Automated Urban Monitoring

With growing research interest in urban monitoring, there have been several attempts to
develop generic sensor platforms capable of interfacing with a variety of sensors, storing
and transmitting information over available networks. The work in [20] develops a two tier
mobile sensing platform for the purpose of post-facto crime scene investigation. In rapid
overview, the system consists of a generic sensor interface layer for easy communication with
a variety of sensors. Irrespective of the communication mode and type of data collected,
the sensor interface layer communicates with the connected sensors to ensure robust data
collection. The collected data is transferred to the data harvesting layer that ensures
storage and transmission of stored data to patrol vehicles over an ad-hoc network. The
system proves the feasibility of vehicular sensor networks for the purpose of decentralized
data collection and storage. When equipped with the right type of sensors, such systems
could be used to monitor chemical attacks and other pollution indicators along with real-
time traffic information in the form of images and vehicle speed data.

2.4 Application of Machine Vision in Pavement Anal-

ysis

2.4.1 Automated Crack Detection and Repair

Many studies have applied machine vision to detection and sealing of cracks on pavements.
The need to precisely detect and fill pavement cracks has lead to the development of a
new research field focusing on machine vision based analysis of road images. This section
describes some of the relevant work in the field of machine vision assisted crack detection.
The work in [21] exploits the difference in intensity of cracks and smooth pavement to
detect the presence of cracks. A set of empirically obtained threshold values are used to
pre process the image in order to remove the noise that could otherwise be falsely detected
as cracks.

The work in [22] develops an algorithm to precisely detect pavement cracks for auto-
mated repair. The algorithm relies on an initial set of points that marking the crack on an
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image. Unlike [21] the entire crack is then actively tracked by detecting the difference in
intensity levels between the crack and the pavement (pavement is assumed to be of a lighter
color than the crack). Even though crack detection is a fundamentally different problem
than detection of snow, it highlights the use of different gray levels as an important source
of information to discriminate between different physical features in an image.

The work in [23] develops a localized thresholding technique to enhance the appearance
of cracks on pavements. The Hough transform is then used to detect the presence of
cracks that have already been enhanced due to thresholding. While the above mentioned
works rely on a pre determined process for crack detection, the wok in [24] develops a
machine learning approach to determine the thresholding parameters needed to enhance
the presence of cracks for any given image. An artificial neural network is trained using
the mean, standard deviation and desired threshold value or a set of training images. Once
trained, the neural network model is then used to predict best possible threshold values
for a given set of test images. As the predicted threshold values will e specific to very test
image, better edge will be achieved in comparison to a pre-determined set of threshold
values discussed in [21].

2.4.2 Detection of Lane and Pavement Boundaries

Automated analysis of the road often requires the detection of pavement boundaries in
order to restrict the bulk of processing only to the area of interest and to reduce noise
that may be induced by the surroundings. Lane detection is also an important part in
the design of driver assistance systems and other intelligent vehicle applications. The
work in [25] develops a circular shape model to detect road boundaries in images obtained
from a high resolution millimeter-wave radar. Most highways in the Unites States follow
a design scheme where pavement boundaries are laid ad concentric circles when sheen in
short segments. The highway design and image properties of millimeter-wave radar make
it possible to achieve high detection rates under most driving conditions. The work in [26]
proposes fusion of vision and radar images for detection of lane and pavement boundaries.
Similar to work in [25], [26] also uses a gradient based global template model for detection
of lane boundaries.

2.4.3 Detection of shadows

Shadows are a common problem in implementing many vision based solutions in outdoor
environments. For road and pavement image analysis, shadows from trees, other vehicles
and road signs are a common source of noise which may cause many algorithms to perform
poorly. The work in [27] proposes novel shadow detection algorithm. Shadows are detected
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by enhancing the contrast difference between shadow and asphalt road by using a set of
fuzzy decision rules. Edge detection methods are applied to detect edges between asphalt
and pavement. Detection of vehicles The work in [28] uses an R G B color comparison
approach to detect shadows cast by other vehicles on the roadway. Empirical constants are
used to distinguish if a pixel belongs to a shadow or to the actual pavement. The width
of the shadow is then used to determine if it is from a vehicle or another source.

2.5 Application of Machine Vision Winter Road Sur-

face Classification

We find many examples of automated road surface condition monitoring where new and
innovative methods of monitoring have been applied. While many of these attempts infer
road surface condition using vehicle dynamics and acceleration/deceleration patterns, we
also find attempts where a computer vision based approach has been applied to classify
road surface conditions. This section describes work that is most related to our research
of developing a computer vision and machine learning based road condition monitoring
system.

2.5.1 Stationary Camera Based System

The work in [29] developed a road surface condition classifier prototype that classifies road
images into one of the set classes. The following provide detail about the data collection,
feature extraction, training, testing and results of the prototype. Data collection. Road
images were extracted three times a day (08:00, 12:00 and 16:00) from a fixed location
with the final data set consisting of 2000 unique images. The images were taken from the
identical camera which happened to be a high end movie camera from which frames were
extracted using an image grabber card. Then each image was manually classified as being
one of the following categories.

1. Dry

2. Wet

3. Snow

4. Tracks

5. Ice
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Feature Extraction

A total of three distinct features were extracted from the available images. Even though
the detail of the feature extraction algorithm is not provided, the report mentions the
features being based on pixel intensity, gradients and location of the brightest 10% pixels
in the image.

Training, Results and Comments

A subset of the collected images with close to equal images from all classes was used to train
an Artificial Neural Network. The detail of model training and testing is not provided.
The results show a maximum of 90 % accuracy for detection of ice, where as detection for
other road conditions was relatively low.

2.5.2 Color Based Road Segmentation

The study in [30] presents a comparison of two methods for color based road segmentation.
The first was implemented using a neural network, while the second approach is based on
SVM.

Data Collection

A large number of training images were collected using a camera mounted on an all terrain
mobility device. The images were manually classified into the following road conditions:

1. Snow

2. Dirt or gravel surfaces

3. Asphalt or paved

The duration of data collection, variability in illumination conditions and the quality
of images are all important factors in image based road surface classification, but these
factors have not been discussed in the study.
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Feature Extraction and Model Training

The images were divided into blocks of 31 x 31 pixels and RGB histograms were created.
Experimentation was done with grouping the training images by road condition and gener-
ating a separate model for each group. In another set of experiments, the image coordinates
of each point we added as an additional feature in the models. For the first model, an Arti-
ficial Neural Network based classification was done. Out of the acquired images 75% were
used to train the network with 20 hidden units in one layer and weights were updated
using conjugate gradient back-propagation, with the ’tansig’ activation function. With the
training portion of each set, we used a cross-validation method to help improve accuracy.
Four nets were trained, each using a different 75% of the training set, and estimated the
network’s accuracy over the remaining 25%. The network with the best accuracy was kept.
For the second model, the use of Support vector Machines (SVMs) was made. To train
the SVMs a radial basis function with gamma term 10 was used.
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Chapter 3

Background

This chapter provides a basic overview of some of the concepts that may be required to
understand the work presented in the following chapters. Topics covered in this section
are mainly focused on Machine Vision and Support Vector Machines as a classification
algorithm.

3.1 Machine Vision

This section provides a basic introduction to some of the machine vision methods and
terminology that has been used in following chapters.

3.1.1 Digital Image

A grayscale image is a method of image representation where each pixel (dot) is represented
as a shade of gray. The degree of brightness depends upon the number representing that
pixel. Figure 3.1 elaborates this concept.

The RGB color model is an additive color model in which red, green, and blue light
are added together in various ways to reproduce a broad array of colors. The name of the
model comes from the initials of the three additive primary colors, red, green, and blue.
Each layer is represented as a two dimensional matrix with n rows and n columns and the
final image consists of three layers or matrices called R, G and B layers, each of size (m x
n).
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Figure 3.1: Digital Representation of an Image

3.1.2 Convolution

Convolution is a mathematical operation that is commonly used in image processing for
smoothing, differentiating and other tasks. In simple terms, convolution can be seen as
sweeping a kernel matrix and performing convolution calculations after every step. This
process can be seen in figure 3.2 where an image I and kernel H are convolved.

Figure 3.2: Basic Convolution

3.1.3 Image Gradient

An image gradient is a directional change in the intensity or color in an image. Image
gradients may be used to extract information from images. Each pixel of a gradient image
measures the change in intensity of that same point in the original image, in a given
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direction. To get the full range of direction, gradient images in the x and y directions are
computed. Figure 3.3 shows an image and its gradient.

Figure 3.3: Visualization of Gradient

3.1.4 Edge detection

Special kernels (also known as masks) can be convolved to enhance the presence of edges in
an image. Edges refer to points of high change in image intensity; they may occur in any
direction, however in our work, we mostly focus on vertical edges. Figure 3.4 illustrates
how convolution of vertical edge enhancement mask can highlight edges in an image. We
see that as the mask passes over an edge, the convolution sum is much higher than sections
with minimal or no intensity change.

Figure 3.4: Edge Enhancement
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3.1.5 Image Smoothing

Another application of convolution is smoothing. Just like edge enhancement masks, there
are a variety of masks that can have the effect of smoothing an image. These masks are
known as averaging or smoothing masks. Smoothing masks work by replacing the value at
a pixel by the average value of pixels in its close vicinity. The weight given to neighboring
pixels depends on the type of average filters used.

3.1.6 Image Histograms

An image histogram is a type of histogram that acts as a graphical representation of the
tonal distribution in a digital image. It plots the number of pixels for each tonal value.
By looking at the histogram for a specific image a viewer will be able to judge the entire
tonal distribution at a glance.

The horizontal axis of the graph represents the tonal variations, while the vertical axis
represents the number of pixels in that particular tone. The left side of the horizontal axis
represents the black and dark areas, the middle represents medium grey and the right hand
side represents light and pure white areas. The vertical axis represents the size of the area
that is captured in each one of these zones.

Thus, the histogram for a very bright image with few dark areas and/or shadows will
have most of its data points on the right side and center of the graph. Conversely, the
histogram for a very dark image will have the majority of its data points on the left side
and center of the graph. In the field of Computer Vision, image histograms can be useful
tools for summarizing the content of an image based on occurrence of shades. For non
discrete data, the horizontal axis of the histogram is usually dscretized into bins. All data
points belonging to a certain range are collected into the bin representing that range.

3.1.7 Histogram Concatenation

Concatenation can be defined as combining two or more arrays of same or difference sized
into a single array. Consider two arrays A and B. If A =1,2,3 and B=4,5,6, the concate-
nation of A and B will result in the array 1,2,3,4,5,6. In our work, multiple histograms
are concatenated to form single arrays which are then used to describe a particular feature
of a particular image. Figure 3.5 shows two separate image histograms and Figure 3.6
shows the result of concatination.
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Figure 3.5: Two Separate Histograms

Figure 3.6: Concatinated Histograms

3.2 Support Vector Machines

Support vector machines (SVMs) are a set of related supervised learning methods that
analyze data and recognize patterns and are used for classification and regression analysis.
A Support Vector Machine (SVM) performs classification by constructing an N-dimensional
hyperplane that optimally separates the data into two categories.

The task of choosing the most suitable representation is known as feature selection.
A set of features that describes one class is called a feature vector. So the goal of SVM
modeling is to find the optimal hyperplane that separates clusters of feature vectors in
such a way that cases with one category of the target variable are on one side of the plane
and cases with the other category are on the other size of the plane.

22



Assume that a set of data contains variables from two different classes. If we plot the
data points for the variables from the two classes using the value of one predictor on the
X axis and the other on the Y axis we might end up with an image such as shown in
Figure 3.7[31] One category of the target variable is represented by rectangles while the
other category is represented by ovals [31].

Figure 3.7: SVM Classification

However Figure 3.7 is an idealized example, the cases with one category are in the lower
left corner and the cases with the other category are in the upper right corner; the cases
are completely separated. The SVM analysis attempts to find a 1-dimensional hyperplane
(i.e. a line) that separates the cases based on their target categories. There are an infinite
number of possible lines; two candidate lines are shown above. The question is which line
is better, and how do we define the optimal line. The dashed lines drawn parallel to the
separating line mark the distance between the dividing line and the closest vectors to the
line. The distance between the dashed lines is called the margin. The vectors (points) that
constrain the width of the margin are the support vectors as shown in Figure 3.8[31]. An
SVM analysis finds the line (or, in general, hyperplane) that is oriented so that the margin
between the support vectors is maximized. In figure 3.8, the line in the right panel is
superior to the line in the left panel[31].

Figure 3.8: SVM Classification: Margins and Support Vectors

While the data illustrated in Figure 3.8 is good for conceptual understanding, in many
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cases the data is not separable by a linear dividing line. As shown in 3.9[31] the dividing
line required in this case is non linear. Hence a kernel function is needed to transform the
data so that the dividing line can be linear, as shown in Figure 3.9[31]

Figure 3.9: SVM Classification: Use of Kernel Functions
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Chapter 4

Road Condition Classification Using
Machine Vision

The previous chapters evaluated the various road condition monitoring solutions in use
today. It was concluded that in order to effectively keep track of changing road surface
conditions over a wide network of roads, there is a need for an inexpensive monitoring
solution that can be deployed in large numbers.

As discussed in Chapter 2, vehicular sensor networks (VSNs) have proven to be a reliable
and cost effective method for automatic environmental data collection. Some examples of
systems that have successfully proven to use vehicles as non-dedicated probes for automated
data collection have also been discussed.

Chapter 2 also discusses some related work with respect to the use of machine vision
for road surface classification. All the relevant work was presented and many of their
weaknesses were identified. The objective of this thesis is to explore the possibility of
using dedicated hardware that can be installed on no-dedicated vehicles with the purpose
of road condition monitoring and its effectiveness in replacing many of the existing solutions
including manual bare pavement reporting.

Before going out to build a dedicated data collection prototype that collects road images
for classification, we first develop a set of classification algorithms on already available data.
This is done to better evaluate the potential of machine vision in solving our problem and
to also find out the various data requirements from the dedicated data collection hardware
to be built.

Due to a large number of applications, image recognition has been a subject of intensive
research over the past decades [32]. While there is limited work on monitoring of winter
road surface condition using machine vision, there has been a tremendous increase in
applications where machine vision is used for a variety of sensing and recognition purposes.
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Everyday examples include face detection which is present in most point-and-shoot digital
cameras and more complex application can be seen as machine vision based system is
the ASIMO robot [33] that uses machine vision to learn and recognize previously unseen
objects.

The extensive use of machine vision in everyday devices is further propelled by the
availability of affordable high quality imaging hardware that has made it possible to cap-
ture images and video to a quality that was previously un-thought of. Motivated by the
tremendous growth and the inherent advantage of contact free sensing, we decided to
explore machine vision as a possible solution to winter road condition monitoring.

In This chapter we first describe the challenges related to machine vision based classi-
fication that need to be addressed in order to infer road surface condition, this is followed
by a detailed description of our methodology for achieving image classification.

4.1 Winter Road Surface Condition Classification

Most computer vision tasks often seem deceptively simple to solve, this is primarily because
the human vision system is by far the most developed system in the human body. Backed
by tremendous processing power, large memory, precise sensing ability and training of a
life time, the human vision system does an outstanding job of seamlessly steering us in
our everyday lives. This section describes the various challenges that in our understanding
need to be addressed to be able to automatically infer winter road surface condition.

4.1.1 Classification of Road Surface Condition

As discussed in Chapter 1, road surface condition has a large variation and is hence difficult
to classify using a simple measure of scheme. Many of these classes are often indistinguish-
able even by the trained human eye.

In order to tackle this problem with a machine vision based approach, we start with a
simplified classification method in the following main categories:

• Bare Road (dry or wet)

• Snow Covered

• Center Covered Tracks Bare

While conditions like ice, freezing rain, packed snow and lose snow also exist, they have
been merged into the above classes for two reasons. Firstly, we are mostly interested in
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knowing the overall cover instead of the exact contaminant type. Secondly, many of the
categories are often indistinguishable by the naked eye and require other means in order
to be detected.

Feature Extraction

In order to infer the condition of the road using machine vision, our second challenge is to
identify critical discriminating features that can be used to discriminate one road condition
from the other. Literature provides a large set of features that have previously been used
to discriminate between different scenes and objects. Our methodology and uniqueness of
approach is discussed in later sections of this chapter.

Illumination

Variation in light levels is one of the major concerns in machine vision based recognition
of outdoor scenes, which is the third challenge. Different light angle and intensities from
uncontrolled sources like the sun can dramatically change the image features. While this
may not be of concern in cases where images are obtained from radar (e.g. work discussed
in [25]) but may be a primary concern when in case of optical images. As a result, the
recognition and classification algorithm must have a mechanism to compensate for different
light levels. There is large amount of literature covering a variety of methods that can be
used to compensate for different levels of light for outdoor machine vision applications.
For instance, the work in [34] proposes a model for variation in color due to changes in
ambient light. As all images for this research come from an outdoor scene with a large
variance in ambient light and a number of uncontrolled light sources as the sun, making
the classification algorithm light invariant will be a major challenge.

Ambient Noise Compensation

Outdoor images are particularly noisy signals. In our case, road images will be poised with
noise in the form of other vehicles, cracks and road markings, image blur due to speed
are a source of noise which may cause classification problems. For better reliability, these
sources of noise will have to be identified and effective solutions will have to be proposed.

Model Training

In most cases, identifying good features is not enough to achieve a high classification
rate. The features need to be used to train a model that can then be used to classify
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unseen images based on the images that the model has previously seen. It is important
to understand the distribution of data and make possible transformations before the data
can be used to train a model. Moreover, training data needs to be carefully picked so that
it represents a large set of all possible images that the model will be used to classify. For
different features, different models will have to be trained and then a combination of a
selected set of models will have to be used for final classification.

4.2 Methodology

This section describes the step by step process that has been followed to achieve image
classification for winter road surface condition monitoring. The overall methodology is
illustrated in Figure 4.1 and each step is explained in the following sections.

4.2.1 Data Preparation

Data preparation is the first step towards feature extraction and image classification. All
data used for this project is assumed to be standard jpg color images. In the data prepara-
tion step, we manually divide each set of data (a set is defined as images from a particular
highway on a particular day) into snow covered, bare and center-covered categories and
placed into respective folders. As we use a binary classifier for our work, training and
testing data sets are created based on the type of model being used. For instance, when a
bare pavement detection model is being trained, the positive set will contain images where
the pavement is bare, and the negative set will contain images that are not bare (including
snow covered and center covered track bare). All images are assumed to be color images in
jpg format and manually labeled (put into respective folder) before the start of the feature
extraction process.

4.2.2 Image Reading

This is the first step in image classification. All images are read and processed by the
system one after the other. The images are read into a [n x n x 3](Chapter 3) matrix and
stored in the memory.

4.2.3 Image Cropping

Image cropping refers to the extraction of defined parts of the image that will be used for
the feature extraction and classification process. As seen in Figure 4.2, a large part of
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Figure 4.1: Data Preperation for Model Training
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Figure 4.2: Image Cropping

the image contains little or no information about the road surface. This information may
induce noise hence negatively affect the classification results. In order to constrain our
algorithm to an image that is most representative of the road, the road section from each
image is automatically cropped for further analysis. As discussed earlier, the sky color
of an image is of particular importance to us, this is also cropped and stored for further
processing.

4.2.4 Image Segmentation

Each image is divided into smaller squares for further processing by the feature extraction
algorithms. Dividing the image into smaller sections plays a crucial role in the classification
rate of the model. This can be explained by considering each of the smaller boxes as a
representative of a bare or snow covered road. When an unknown image is tested for
classification, the training features (small squares in our case) are matches with testing
Figure 4.3. If an entire test image was to be matched to a set of training images as a
whole, the probability of finding a match will be low. This is because each image can be
different from the other in terms of vehicle position, shade of pavement color and other
anomalies.

On the other hand, if small squares from the test image are matched to a large set of
small squares obtained from within the training set the classification algorithm will be able
to mix and match a number of squares from the entire set of training images to see if each
square in the test image matches to a square in the training set.
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Figure 4.3: Image Segmentation

Figure 4.4: RGB Histograms for Bare and Covered Roads

4.2.5 RGB Histogram Generation

To discriminate snow covered pavement from bare and partially covered, we use color
information as our primary cue. As the presence of snow largely brightens the image, the
scene is dominated by bright pixels as compared to a large number of dark pixels over a
dark pavement section. This difference can be seen in Figure 4.4 .

As the color information of an image lies in the RGB layers, we divide the image into
smaller squares and generate RGB histograms for each of the squares. These histograms
represent key information about the color distribution in an image and will be used as
key features in classifying bare and snow covered roads. Figure 4.6 demonstrates the
histogram generation procedure.
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Figure 4.5: Red Layer Histograms for Bare Pavements Before Normalization (B and G
layers show similar results)

4.2.6 Histogram Normalization

Histogram normalization plays an important role in the classification efficiency of the
model. As discussed in earlier sections, color based classification relies on dominance of
dark or white pavement colors to infer snow covered surfaces from bare pavements. While
the models are being trained to identify the region in the color spectrum (bright or dark)
that dominates in an image, image histograms also carry extra information about the
number of pixels that belong to the region. As seen in Figure 4.5 the two histograms
from different bare pavement show peaks at nearly the same brightness of color but have
different peaks on the y axis. This difference can cause the model to misclassify the images.

Once histograms are normalized (see ??for code), height differences similar to those
shown will reduce misclassification.

4.2.7 Histogram Storage

Once histograms for all small squares have been normalized, the need to be combined and
stored as a single feature. This single feature vector is then used to train SVM based model
for classification of bare and snow covered pavements. The final form of the histograms
can be seen in Figure 4.7.
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4.2.8 Extraction of Sky Intensity

While preparing data for training the snow and bare pavement classification model, we
also collect luminance data for the entire training set. This is to keep track of the average
brightness of scenes that have been used to train the model. In order to extract brightness
information from the given images, a pre defined sky section for each image is cropped. We
use a thin sky section for brightness estimation as the sky has the minimum probability of
finding unpredictable anomalies like vehicles, cracks, trees and vegetation. Luminance is
extracted by converting each RGB image into its HSV (Hue Saturation Value) equivalent.
In HSV model of color representation, the V (Value) component is said to represent the
luminance of an image. For each sky image in the training set, the luminance value is
extracted and stored in a luminance vector. Once all training images have been read,
the average luminance value is calculated by taking the arithmetic mean of the luminance
vector (see Figure 4.8). Following sections illustrate how the luminance is used to adjust
the luminance of the test images.

4.2.9 RGB to Gray-Scale Conversion

Color information is not necessary to see tracks (center covered bare road) on an image;
we convert the color images into a grayscale format before proceeding to the next step of
feature extraction for detection of tracks. This is done using in-built functions from the
MATLAB image processing toolbox.

4.2.10 Image Smoothing and Gradients

Image smoothing is the process of dampening sharp color and brightness changes in an
image. This is normally done by replacing the color value at a pixel by the average of a
group of neighboring pixels in its close vicinity. Doing so dampens any sudden changes in
the color of the image. As track detection relies on gradient, image smoothing can help
remove any anomalies in an image that may cause false gradients. The effect of image
smoothing can be seen in figure 4.9

Gradients are a measure of change; to detect the presence of tracks, we detect sudden
changes in image contrast as queues for the presence of tracks. Figure 4.10 illustrates
the use of gradients as features for detection of tracks. It can be seen that there is high
gradient at points where there is larger color change as compared to sections with smaller
color change. We see that presence of road tracks can easily be detected in the gradient
image, however noise from other sources also causes intensity changes similar to tracks and
thus needs to be filtered.
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In order to detect tracks on pavement, a problem specific algorithm has been developed
that highlights image intensity changes that only occur with the presence of tracks while
suppressing intensity changes due to other anomalies.

4.2.11 Noise Suppression and Track Enhancing Algorithm

In this section, we describe the noise suppression and track enhancing algorithms for the
purpose of detecting center covered track bare situations in a scene. We first smooth image
noise to suppress false gradient alarms that may be caused due to rough road texture,
pixel blur and presence of other contaminants. Hence we required a mask that was biased
towards enhancing intensity changes due to the edge between pavement and snow but at
the same time successfully suppressing noise that could be a cause of potential false alarms
after image derivatives have been applied.

Finding an appropriate smoothing filter for road noise suppression was found to be an
iterative process and a variety of different smoothing algorithms had to be tried before
developing the one that yielded the required results. A Gaussian filter mask based on
the Gaussian function was developed. The graphical form of the mask can be seen in
Figure 4.12 . The mask is based on a 9x9 filter with pixel values displaced as shown. The
mask serves the purpose of being rotation invariant and hence unbiased towards noise in
any particular direction. Moreover, the pixel weight distribution works well to suppress
small changes in intensity caused by noise and less affect large changes due to tracks.
Image smoothing was implemented using simple 2D convolution of the developed smoothing
function with the image. The result of smoothing from the tuned Gaussian smoothing filter
can be seen in Figure 4.11

H[m,n] = f ⊗ I =
∑
k,l

f [k, l]I[m− k, n− l] (4.1)

To highlight tracks on a smooth image, an intensity gradient approach was used. A
partial derivative of image intensity was calculated (intensity derivative).

∇I =
dI

dx
x̂ +

dI

dy
ŷ +

dI

dz
ẑ = Ixx̂ + Iyŷ + Iz ẑ (4.2)

To highlight the change in intensity the magnitude of intensity gradient (grad mag) is
calculated.

‖∇I‖ = (I2
x + I2

y + I2
z )

1
2 = ∇I · n̂ (4.3)
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To enhance vertical edges, a gradient mask shown in equation (4.4) was used. The
scaling parameter k has been introduced to scale the mask to best detect vertical edges,
the tuning process of this mask is explain in the following Section r̃eftuning . The mask is
designed to only highlight vertical edges and maximum weight is given to adjacent pixels
parallel to the direction of convolution and thus enhancing vertical edges.

The effect of the mask can be seen in Figure 4.14. It can be see seen that the tracks are
highlighted and the test of the noise in the image is suppressed. The effectiveness of this
method can be compared to standard image gradients in figure 4.10. Comparing figure
4.14 it can be seen that the algorithm works effectively in suppressing edges due to noise
where as highlighting edges due to tracks.

We extract a feature vector from tracks based on gradient histograms. The discriminat-
ing strength of this approach can be seen in 4.15 there is an order of magnitude difference
between the gradient values obtained from the two images. The final form of gradient
histograms as feature vectors can be seen in Figure 4.16.

4.3 Summary

In this section, we developed a set of feature extraction algorithms specific for winter road
condition classification. While highlighting the feature of interest and suppressing ambient
noise required a variety of machine vision based techniques, the end feature vectors have
been condensed into concatenated histograms representing a feature of interest in the image
(Figure 4.7 and 4.6). This has been done to reduce the size of the feature and improve
computation time. Moreover, histograms are a common preference for representing image
features and work well with Support Vector Machines.
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For Each Image In Dataset

Read Image

RGB Feature=Vector of size 1xN

Split Image into 40 x 40 pxel squares

For Each Square

R-hist= Histogram for Red Layer

Normalize R-hist

G-hist= Histogram for Green Layer

Normalize G-hist

B-hist= Histogram for Blue Layer

Normalize B-hist

Concatinate R-hist, G-hist and B-hist to RGB Feature

(after every iteration, RGB Feature three more

histograms concatinated to it)

End

End

At the end of the loop, RGB Feature will be a 1xN array of

concatinated RGB historgams

Figure 4.6: Histogram Generation

Figure 4.7: Histogram Storage

Value=0

For Each Image In Dataset

Convert image to HSV form

value=value+ V (value) component of Image

End

At the end of the loop, Value will be a sum of all V comopnents of image

average Value = Value/total number of images

Figure 4.8: Average Brightness of Image Data
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Figure 4.9: Image Smoothing

Figure 4.10: Gradients

Figure 4.11: Image Smoothing
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Figure 4.12: Gaussian Mask

x = k

 −0.5 0 0.5
−1 0 1
−0.5 0 0.5

 (4.4)

Figure 4.13: Modified Sobel Mask for Vertical Edge Detection

(a) Gradient of Road with Tracks

(b) Gradient of Bare Road

Figure 4.14: Gradients of Tracks and Bare Roads
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Figure 4.15: Gradient Histograms for Bare and Center Covered Track Bare Roads

Figure 4.16: Gradient Histograms as Feature Vectors
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Chapter 5

Model Calibration and Results

This chapter outlines the model calibration process and summarizes model classification
results for different training and testing sets. During the discussion, we also show the
effectiveness of some novel image feature extraction and model training techniques specific
to the problem of winter road condition classification.

5.1 SVM Based Binary Classification

In order to classify images based on extracted features, an SVM (Support Vector Machine)
based classification system is used. An introduction to SVM is provided in Section 3.2.
As discussed in [13], road surface conditions cannot be easily classified into distinct classes.
There are often situations where even the trained eye can also misclassify road conditions
due to its complex nature. Moreover, the idea of multiple classes existing together further
complicates the boundaries which separate one class from the other. Hence decomposing
a K-class classification problem into a number of binary classification problems allows a
scheme to model binary class boundaries with much greater flexibility at a lower com-
putational time [35]. This approach suits particularly well to our application as a large
number of intermediate classes exist and defining boundaries between each class is not
always possible. Moreover, in our application, the presence or absence of a particular class
is of more importance than an exact prediction of the intermidiate class to which an image
may belong. For instance, if bare pavement is to be detected, all images representing bare
pavement could be combined into one set of data while images from all other classes that
are not bare could be combined into another set. The binary classifier will then be able to
differentiate bare pavement from all other types. Similarly, when detecting the presence of
tracks, the binary classifier can be trained with a positive set of images that contain tracks
only and a negative set that contains images from all other road conditions that do not
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contain tracks. The negative set in this case would automatically combine all classes that
do dot show tracks into a single class and thus make classification more robust.

5.1.1 SVM Training and Testing

For this work, we use LIBSVM, an SVM implementation for MATLAB [36]. Training of
an SVM requires an equal number of labeled training data from both classes. It is also
required that the data should be normalized and all training data should be of identical
dimensions (see Figure 5.2). For training purposes, extracted features from images are
combined into a two dimensional matrix where each row of the matrix consists of features
from a single image. Figure 4.7 and 4.16 show the format of gradient and RGB feature
vectors. The output of the training process is a model that defines the hyperplane dividing
the two sets of data in a multi-dimensional plane.

Figure 5.1: SVM Training

Similarly, to test the model, a matrix of feature vectors is generated from a set of testing
data. The SVM model is then used to classify the testing data. The result of this process
is a set of labels labeling each of the data in the testing set.

5.2 Training and Testing Data

For our experiment, we required images of road surface taken from a camera mounted
on a vehicle. As the final system is intended to automatically acquire road images for
classification, it was preferred to work with images that had been acquired automatically,
without any human intervention.

Amongst the available data sources were traffic surveillance cameras deployed by MTO
(Ministry of Transportation Ontario). The available video was low quality and taken from
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Figure 5.2: SVM Testing

locations far from the actual road surface. As a result, the images did not well mimic data
that would be collected by an automatic camera mounted within a vehicle. Moreover, the
stationary camera would not be a good representative of spatial changes in road surface
condition

Another source of data that could be used for this research was in the form of surveil-
lance videos recorded by patrol vehicles monitoring road surface condition during and after
an event. The detailed procedure of bare pavement reporting has been discussed in [13].
The videos covered a variety of different road conditions under variable lighting and other
environmental factors. Moreover, as the video was recorded from within a moving vehicle
with minimal human intervention it well mimicked the images that would be expected from
the developed prototype. A total of more than a thousand frames were manually extracted
from the available videos (see Section 5.2).

5.3 Classification of Bare Pavement

As discussed in Section 4.2.5, RGB histograms are key features for discriminating bare
pavement from snow covered pavement. This section describes the feature vector cre-
ation process and how each of the parameters have been adjusted to improve accuracy of
classification.

5.3.1 Segment Size Optimization

Segment size is one of the first variables that needed consideration before RGB features
could be extracted. As shown in figure 3.4 the image is broken down into smaller segments
before histograms are generated. A number of different segment sizes were tried to evaluate
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the effect of segment size on classification. A total of four experiments were conducted with
the following segment sizes (in pixels): 5x5, 10x10, 20x20, 40x40, and 80x80. In each of
the experiments, an SVM model was trained with data extracted using one of the above
segment sizes. The model was then tested with a predefined testing set.

It was found that segment sizes had little effect on classification results, however, smaller
segments resulted in much larger feature vectors and hence computation time was signifi-
cantly longer. On the other hand very large segments were computationally fast but had
less accuracy. The reason for this difference is unknown and it is suspected that the dif-
ference may only be due to the nature of testing and training data set. For this reason, a
40x40 segment size has been used.

Figure 5.3: Division Into Smaller Segments

5.3.2 Histogram Bin size

Histogram bin size plays an important role in determining the effectiveness of histograms
as classifiers. It can be seen in Figure 5.4, there is a maximum of 20% difference in the
histograms for bare and snow covered pavement. If the bin divisions were to be too small,
there is a risk of the difference being combined into a single bin. If this were to happen,
histograms from covered and bare pavement would contain bulk of the data in the same
bin and hence classification would become impossible. After analyzing a number of bin
combinations for different snow covered and bare images, it was seen that 32 bin histograms
best discriminated bare pavement and covered roads. The discrimination strength of 16 bin
histograms fell under conditions where a light colored bare pavement was compared to a
dull snow covered road. Hence, 32 bin RGB histograms have been used in this experiment.

5.3.3 Histogram Normalization

There are a variety of approaches that can be used to normalize RGB histograms before
training the SVM model. To test the best normalization approach for our problem, each
of the following approached were tried:
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Figure 5.4: Color Difference Between Bare and Covered Pavement

1. Individually normalize histograms for each segment before concatenating them into
a single feature.

2. Normalize the complete feature vector after all histograms for a single image have
been concatenated.

3. Normalize all histograms together once the entire set of feature vectors is ready for
SVM training or testing.

Our analysis shows that the best approach is to normalize each histogram before concate-
nation (defined in Section 3.1.7) into a feature vector. This can be explained by comparing
the RGB histograms of a typical covered and bare image (see figure 5.4). It is seen that
bare pavement and snow covered scenes are not discriminated based on the number of val-
ues per histogram bin but rather based on the relative position of actual bins to which the
bulk of the values belong. It is also seen that the largest number of values in any bin may
differ from image to image. Hence if data from different images is normalized together,
there is a risk of significantly shrinking the height of some of the histograms. Even though
the relative position of the bins with the bulk of the values is preserved, the relative height
differences may cause misclassification. Therefore the best normalization method would
be to normalize each image on its own. This would preserve the relative position of bins
containing bulk of the values without significantly shrinking some of the histograms.
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5.3.4 Luminance Adjustment

Average luminance for training Images is calculated using the Equation 5.1 where T is
the total number of Images each of size (M, N) pixels.

L =

∑T
k=1

∑N
k=1

∑M
k=1(V k)

T
(5.1)

For each testing image, luminance V is found using the equation (5.2)

V =
N∑
k=1

M∑
k=1

(V k) (5.2)

The value at each pixel in testing image is then multiplied by the adjustment factor K
to scale the luminance of the testing image according to the training set (equation 5.3)

k =
V

L
(5.3)

The brightness scaled image is then used as a test image to test the prediction accuracy
of the model.

5.3.5 Results for Bare Pavement Classification

After finalizing the parameters mentioned in Sections 5.3.1, 5.3.2, 5.3.3, the final RGB
feature vector is created. The size and construction of the vector can be seen in Figure 5.5.
Various tests were performed to test the bare pavement classification model. The following
section presents the purpose of model, test data and results of the SVM model. All feature
vectors are generated using RGB histograms described in Section 5.3. The term Classifier
refers to the SVM model that is trained and tested using the datasets described in the
experiment.

Size of cropped image (pixels) = 160x400x3

Number of segments = 4x10x3=120

Size of histogram= 32 bins

Total length of feature vector = 32x120= 3840

Size of feature vector = [3840 x 1]

Figure 5.5: Final RGB Feature Description
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Test 1:

Test Purpose: Test and train model with data from similar light conditions.

Positive Training Set: 92 images of bare or almost bare road taken from highway 417
under medium ambient light.

Negative Training Set: 92 images of snow covered or almost snow covered roads taken
from highway 417 under medium ambient light.

Positive Testing Set: 45 images of bare or almost bare road taken from highway 417
under medium ambient light (brighter than training set)

Negative Testing Set: 45 images of covered or almost covered road taken from highway
417 under medium ambient light (brighter than training set)

Results without illumination adjustment: the classifier performed poorly, 65 out of
the 90 images were classified correctly.

Results with illumination adjustment: The classifier performed well, 84 out of the 90
images were classified correctly.

Comments: Results show that even slight differences in ambient light can adversely affect
classification rate.The illumination adjustment works well for small changes in ambient
light between testing and training images.

Test 2:

Test Purpose: Test and train model with data with different pavement color.

Positive Training Set:92 images of bare or almost bare road taken from highway 416
(light pavement color) under medium ambient light.

Negative Training Set:92 images of snow covered or almost snow covered roads taken
from highway 417(dark pavement color) under medium ambient light.

Positive Testing Set: : 45 images of bare or almost bare road taken from highway 417
and 416 under medium ambient light.

Negative Testing Set: 45 images of covered or almost covered road taken from highway
417 and 416 under medium ambient light.

Results without illumination adjustment: the classifier performed poorly 57 out of
the 90 images were classified correctly.

Results with illumination adjustment: performed poorly 65 out of the 90 images were
classified correctly.
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Comments: Results show that changes in pavement color can adversely affect classifi-
cation results. While illumination adjustment works well in scaling test images according
to training set, their effect is limited when testing and training data comes from different
pavement color areas.

Test 3:

Test Purpose: Test and train model with mixed images from bright and low ambient
light.

Positive Training Set:100 images of bare or almost bare road taken from highway 417
under medium and bright ambient light.

Negative Training Set:100 images of snow covered or almost snow covered roads taken
from highway 417 under medium and bright ambient light.

Positive Testing Set: : 50 images of bare or almost bare road taken from highway 417
under medium and bright ambient light.

Negative Testing Set: 45 images of covered or almost covered road taken from highway
417 under medium and bright ambient light.

Results without illumination adjustment: the classifier performed poorly, 55 out of
the 95 images were classified correctly.

Results with illumination adjustment: The classifier performed poorly, 61 out of the
95 images were classified correctly. .

Comments: Results show that a model under different ambient light conditions performs
poorly. From this we infer that different models trained for different light conditions may
work better than generic models trained for a broad range of light conditions.

5.4 Classification of Center Covered Track Bare Roads

As discussed earlier, gradient lines are key features for discriminating center covered track
bare pavement from snow covered from snow covered or bare. This section describes
the feature vector creation process and the various techniques that were used to enhance
classification results.

5.4.1 Image Smoothing

Each gray scale image was first smoothed to remove noise and edges due to road anomalies.
As explained earlier, finding right filter parameters was an iterative process and it took
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x = k

 −0.5 0 0.5
−1 0 1
−0.5 0 0.5

 (5.4)

Figure 5.6: Modified Sobel Mask for Vertical Edge Enhancement

several attempts to tune a mask that servers the purpose. A variety of linear, Laplacian
and Gaussian mask configurations were tried. It was found that linear and Laplacian
masks had better smoothing capability, but convolving these masks with the image often
smoothed out edges due to tracks and hence a [9x9] Gaussian mask with a sigma value of
0.9 was used.

5.4.2 Edge Detection

As discussed in Section 4.2.11 a modified Sobel mask of the form 5.6 is used for edge
enhancement. In order to tune the mask to best highlight edges as those produces by
tracks of bare road and snow, a large range of values for the constant k were tried on a
large set of images under different light conditions. Through an iterative process, it was
found that a k value of 1/40 highlighted track edges best. A value too small resulted in
suppression of actual snow tracks and a value much greater resulted in detection of edges
due to pixel blur and other sources of noise.

5.4.3 Feature Vector Generation

Due to perspective depth in the image, the vertical edges do not remain vertical over the
entire scene and instead moved closer to each other as the distance from camera increased.
For this reason, the image was divided into two sections and two separate feature vectors
were extracted 5.8. The algorithm for extracting gradient feature vector from an image is
explained in 5.7.

Results from single and double SVM methods were compared. In the two SVM ap-
proach, the pavement was considered to have tracks if one or both models predicted tracks.
It was seen that two models at different depths would result in better feature matching and
hence higher classification results. Moreover, images with tracks present in depth but not
close to the camera were often misclassified by the single SVM based classifier. However,
many of these images could be correctly classified by the double SVM classifier.

48



Feature vector=[]

Convert image to gray scale

Apply Gaussian smoothing

Apply Sobel Mask

For each segment in image

Generate 16 bin gradient histogram

Concatinate gradient histogram to Feature vector.

End

At the end of the loop, Feature vector will consist of

concatinated histograms from all segments of the image.

The final size of the vector will be number of segments x size of each histogram

16 x 10 x 4 = 640 x1.

Figure 5.7: Gradient Feature Extraction

Figure 5.8: Seperate Models for Different Depth Levels

5.4.4 Histogram Normalization

Unlike RGB histograms, relative height of gradient histograms contains key information
that is necessary for classification (Figure 4.15). The height of a gradient histogram
indicates the number of points on the image with significant change in contrast (gradient).
This means the while bare or fully covered roads will have a small number of gradient
hits; a center covered track bare road will have will have a greater number of hits due
to the edges between the wheel track and snow. Hence, the normalization criterion for
gradient histograms is opposite to that of RGB histograms. In order to preserve relative
height differences between different images, the entire set for feature vectors was normalized
together before being used for SVM training figure 5.9
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Figure 5.9: Histogram Normalization After All Histograms Have Been Generated

5.5 Results for Center Covered Track Bare Classifi-

cation

After finalizing the parameters mentioned in Sections 5.4.2, 5.4.1, the final gradient
feature vector is created. The size and construction of the vector can be seen in Figure 5.7.
Various tests were performed to test classification model. The following section presents the
purpose of test, test data and results of the SVM model. All feature vectors are generated
using gradient histograms. The term Classifier refers to the SVM model that is trained
and tested using the datasets described in the experiment.

Test 1:

Test Purpose: Test and train model with data from similar light conditions.

Positive Training Set: images of center covered track bare roads with varying track
widths.

Negative Training Set: 100 images of bare or almost bare, fully snow covered or almost
snow covered roads.

Positive Testing Set: 40 images of center covered track bare roads with varying track
widths.

Negative Testing Set: 40 images of bare or almost bare, fully snow covered or almost
snow covered roads.

Results: performed well, 73 out of the 80 images were correctly classified.

Comments: Results show that a gradient based features work well in highlighting edges
arising from snow and bare roads. Some test images that were classified incorrectly had
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slight tracks due to thin layers of snow. On the other hand, the training set was carefully
chosen and did not have any similar training data.

Test 2:

Test Purpose: Test and train model with data with slushy roads.

Positive Training Set:100 images of center covered track bare roads with varying track
widths.

Negative Training Set:100 images of bare or almost bare, fully snow covered or almost
snow covered or slushy roads.

Positive Testing Set: 45 images of center covered track bare roads with varying track
widths.

Negative Testing Set: 45 images of bare or almost bare, fully snow covered or almost
snow covered or slushy roads.

Results:classifier performed well, 75 out of the 90 images were correctly classified.

Comments: Results show that the gradient values from slushy roads are similar to gra-
dient values from center covered track bare conditions.Missclassified images were mostly
slushy roads with wheel tracks that mimicked a track bare and center covered scene.

5.6 Conclusion

We conducted a preliminary analysis to explore the possibility of machine vision based
winter road condition monitoring. In our work, we developed feature extraction and mod-
eling algorithms specially designed to work with winter road images. While the system
is still not capable of discriminating between different types of road cover, the track and
snow detection models can together be used to complement the existing manual bare pave-
ment reporting system [13]. If done so, the system (combined with RWIS info) can be
of particular use to monitor the performance of maintenance contractors in terms of bare
pavement recovery time. This system can also be used to monitor local phenomena like
drifting snow as they are hard to predict and can be a major cause of accidents. Section
5.7 suggests future work that should be done to improve the performance and reliability of
the proposed system. The following is a summary of the progress made in modeling and
feature extraction processes.
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5.6.1 Illumination Invariance

We developed an illumination scaling method to adjust brightness of test images to match
the brightness of the training set. Unlike previous work ([29]) we perform illumination
scaling on every test image before being fed into the classifier. Results show that our
illumination scaling technique has significant impact on the final classification results.

5.6.2 Localized Models

Unlike other related work, we have introduced a localized model training approach. Re-
sults show that models trained for specific light conditions and pavement color outperform
generic models that are trained for a variety of conditions.

5.7 Future work

Our work is only an initial step towards an automated bare pavement reporting system
that can be used to aid monitoring of road surface condition during winter. This section
suggests some work that can be done to improve the reliability and accuracy of the model
and classification system.

5.7.1 Automated Road Detection

This work currently assumes a fixed camera position and crops a predefined section from
the original image. Depending on the type of road, the cropped images often contain
sections with sidewalks and other vegetation. This information adds noise the system and
decreases the classification accuracy of the system. Automated cropping of surroundings
and horizon from the road image can help eliminate this noise and improve reliability.
There has been a significant amount of work done in the field of roadway and pavement,
one such example is the work done in [37]. While the intent of most of the work is to guide
robots and other automated machinery, the concepts can be fruitfully used in cropping
horizon and surroundings from the main road image.

5.7.2 Automated Vehicle Detection

This work currently assumes that the cropped image used for training and testing purposes
is free of anomalies like other vehicles traveling on the road. Even though the section of the
image that is used for detection lies in close vicinity to the data collection vehicle, there
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is still a chance of finding a vehicle in the image frame that may cause noise in color and
gradient features and thus affect the reliability of the system. The work in [28] proposes an
automated vehicle detection system to aid collision avoidance for machine driven vehicles.
With vehicle detection in place, images with vehicles can automatically be dropped and
not considered for analysis.

5.7.3 Automated Shadow Detection

The color and gradient based analysis in our work can be adversely affected by shadows
from trees and other sources. From our analysis of the available video and image data, we
learn that multi-lane higher class highways are less prone to shadows but rural highways
have significant vegetation along the roadside and can cast large shadows onto the road.
The work in [27] proposes a shadow detection technique for road scenes.
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Chapter 6

Prototype Development

After a basic assessment of machine vision as a possible solution to automatic road surface
classification, we move on to develop a data collection prototype to collect primary data
for this task. This section describes the development of a data collection system to collect
road surface data for image analysis.

6.1 System Requirements

6.1.1 Physical Requirements

• The developed system should be physically robust able to withstand slight shocks
and jerks while in operation on a data collection vehicle.

• The system should be physically small enough to reside within the available space.

• The hardware components should be physically accessible for easy upgrades and
repairs.

6.1.2 Data Collection and Communication Requirements

The data collection system should meet the following requirements:

• The system should be capable of communication to a variety of sensors at a given time
to collect, validate and store sensed data in an organized fashion. Sensors include
but are not limited to friction meters, GPS, road temperature sensors and Imaging
devices.
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• Upon available internet connection, the stored data should be automatically trans-
ferred to a central server.

• Data collection frequency and scheduling should adjustable by the user.

• The user should be able to upload human observation the form of text of short survey
forms.

6.1.3 Image Quality Requirements

• Minimum image resolution should be 1024 x 768 pixels.

• Motion blur of more than one pixel

6.2 System Design

To simplify our task, we divided the system into five core modules with specific functions.
The overall system design can be seen in the Figure 6.1. All modules of the prototype
have been developed using Microsoft C# .net technologies. Code snippets for the system
can be found in appendix A1.

Figure 6.1: System Diagram for Prototype
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6.2.1 Sensor Interface Layer

To ensure robust reliable sensor communication, we have developed the Sensor Interface
Layer (SIN) which manages communication between the system and the sensors. The SIN
is capable of communicating with a variety of different hardware including RS 232, USB
and other hardware interfaces. The sensor interface layer can be upgraded with new drivers
or APIs to ensure reliable access to data recorded by a variety of sensors. Due to the SIN,
the rest of the system can communicate to the sensors in a seamless fashion.

6.2.2 Scheduler and User Interface Layer

In order to precisely control the frequency and nature of data collection an independent
scheduling and user communication layer have been developed. The Scheduler and UI layer
is responsible for invoking data requests for the DPL to execute. As the Scheduler and UI
layer runs an isolated process, changes in data collection frequency can be easily made with
a simple scheduler upgrade without having to change any other part of the system. Data
Processing Layer (DPL) The DPL is responsible for all the data handling in the system.
Upon being invoked by the scheduler, the DPL requests the SIN for appropriate data.
Upon receiving the data, the DPL validates the data based on existing data validation
rules. The data is then GPS tagged and organized into a record form. Once the data has
been validated, it is encoded into a base 64 packet for storage into the database. Base 64
encoding ensures efficient storage and reliable transfer over HTTP.

6.2.3 Database

Implemented using MYSQL, the database is used to temporarily store the acquired data
on the systems permanent memory till an internet connection is available.

6.2.4 Communication Layer

Isolated from the rest of the system, the communication layer is responsible for transmitting
acquired data to a central server for processing. If explained briefly, the communication
layer constantly polls the communication hardware for network connectivity regardless of
the mode of communication. This enables the system to send acquired data to the central
server from a variety of different connections. Once a connection to the server is made,
the system fetches data from the local database and sends it to the main server. With
the communication layer and the database combined, we have built a delay tolerant data
storage and transmission system that enables the prototype to collect data for long periods
of time before internet connectivity is available.
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6.3 System Implementation

The system was implemented on an Acer Aspire-One netbook with the following specs

• 1.5 GHz Processor

• 1 GB of system memory

• 8GB solid state hard drive.

• ZTE GSM modem with Rogers data plan

• Microsoft Windows Xp operating system.

• Microsoft .Net Framework Runtime Environment.

A relatively low spec machine was chosen to assess the software load on low power machines.
This was to evaluate the processing capability required from the hardware of the final
product.

A total for four sensors were connected to the system and are described as follows.

1. Haliday RT3 Friction tester.

2. Point Grey Chameleon 1 Mega Pixel camera.

3. RoadWatch ss Pavement and Air Temperature Sensor

4. Garmin GPS.

Each of the above mentioned devices were connected to the system using USB and Serial
links. Once connected, the hardware was configured in the sensor interface layer for seam-
less communication with the rest of the system. The final deployed system can be seen in
figure 6.2

6.4 System Testing and Results

The implemented system is currently being tested at a Burlington and Oakville test site.
The test site is currently running a project to evaluate the performance of different bio
based winter road treatment liquids. While deployed on patrol vehicle, the developed
system is currently being used to collect the following data.
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Figure 6.2: Prototype Installed on a Patrol Vehicle

• High resolution road images

• Road friction,

• Temperature

• Location

Since first installed in December 2010, the prototype has collected more than 200 hours
of road condition data and will continue to operate until the end of the winter season.
All modules have been thoroughly tested, the data collection system is highly reliable and
works with minimum human intervention. Once all data is collected, another database of
primary road image data will be compiled to fully test the developed algorithms.
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Chapter 7

Conclusion

The purpose behind this research was to explore the possibility of developing a machine vi-
sion based automated winter road condition monitoring system. In this work, we conducted
a preliminary analysis of machine vision and its application to monitoring of winter surface
conditions. This was followed by the development of a prototype than can automatically
collect road condition information for machine vision based classification.

From this research we conclude that there is immense potential in using machine vision
for automated road condition monitoring. Results show that the feature extraction and
model training algorithms suggested in this work can largely improve classification accuracy
of a machine vision based system in comparison to previous efforts that take a more generic
approach.

We developed an automated road condition data collection system (discussed in chapter
6) to explore the practical constraints in developing a low cost automated data collection
system. The prototype has been subject to rigorous field testing and has proven to be a
reliable data collection system capable of collecting storing and automatically transmitting
road condition data.

Overall, the results of this work have been highly motivating and encouraging. Results
from algorithm and prototype testing indicate that development of an automated road
condition monitoring system is highly practical and warrants further effort to convert the
suggested algorithms and hardware design into an actual product.
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Appendix A

A.1 Sample Images

Following are some sample images chosen from the dataset:
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Figure A.1: Bare Road

Figure A.2: Bare Road With Tracks-Still classified as bare
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Figure A.3: Rough Snow

Figure A.4: Smooth Snow
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Figure A.5: Center Covered

Figure A.6: Center Covered With Slush
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