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Abstract

Large-eddy simulation (LES) and unsteady Reynolds-averaged Navier-Stokes (URANS)

calculations have been performed to investigate the effects of different mathematical

models for scalar variance and its dissipation rate as applied to both a non-reacting

bluff-body turbulent flow and an extension to a reacting case. In the conserved scalar

formalism, the mean value of a thermo-chemical variable is obtained through the

PDF-weighted integration of the local description over the conserved scalar, the mix-

ture fraction. The scalar variance, one of the key parameters for the determination

of a presumed β-function PDF, is obtained by solving its own transport equation

with the unclosed scalar dissipation rate modelled using either an algebraic expres-

sion or a transport equation. The proposed approach is first applied to URANS and

then extended to LES. Velocity, length and time scales associated with the URANS

modelling are determined using the standard two-equation k− ε transport model. In

contrast, all three scales required by the LES modelling are based on the Smagorinsky

subgrid scale (SGS) algebraic model. The present study proposes a new algebraic and

a new transport LES model for the scalar dissipation rate required by the transport

equation for scalar variance, with a time scale consistent with the Smagorinsky SGS

model.
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Chapter 1

Introduction

1.1 Introduction

An understanding of turbulent reacting flows is essential in the design of many engi-

neering devices such as furnaces, gas turbines, and internal combustion engines, and

there is a clear need to predict their performance. The majority of current methods

for calculating the properties of turbulent reacting flows and practical combustion

systems are based on Reynolds averaging of the Navier-Stokes equations (RANS).

This traditional approach has met with variable success in reproducing many of the

important effects present in practical combustion systems. However, RANS calcula-

tions often show weakness in predicting flow separation and recirculation correctly

due to limitations of the model itself. Large eddy simulation (LES) represents a po-

tentially powerful and promising method of overcoming some of the deficiencies of

RANS calculations.

The range of scales in turbulent flow motions is a strong function of the Reynolds

number. In DNS, all the scales of motion, up to and including the dissipative scales

of order η, the Kolmogorov scales, must be resolved; the computational domain must

be significantly larger than the scale of the largest eddies, L, while the grid size must
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be of order η, and the number of grid points required is proportional to the ratio

L/η ≈ Re3/4 [76] (where Re is the Reynolds number based on the integral scale of

the flow). Thus, the number of grid points needed to perform a three-dimensional

DNS scales as the 9/4 power of the Reynolds number. The time-scale of the smallest

eddies also supplies a bound for the maximum time-step allowed: since the ratio of

the integral time-scale of the flow to the Kolmogorov time-scale is also proportional to

Re1/2, the number of time-steps required to advance the solution by a fixed time has

the same dependence on Re. Assuming that the CPU time required by a numerical

algorithm is proportional to the total number of points N , the cost of a calculation

will depend on the product of the number of points by the number of time-steps,

hence to Re11/4. Therefore, as shown in Table 1.1, it is not feasible to perform DNS

calculations for high-Reynolds number situations in near future.

The RANS approach corresponds to the opposite end of the computational complex-

ity spectrum. In this approach, only the time-averaged flow properties are resolved,

with all other scales of motion being modelled. The computational cost of RANS is in-

dependent of the Reynolds number, except for wall-bounded flows where the number

of grid points required in the near-wall region is proportional to lnRe [69]. Because of

its computational efficiency, RANS is the most commonly used CFD methodology for

the simulation of turbulent flows encountered in industrial and engineering applica-

tions. However, the RANS approach can perform poorly in the prediction of features

Reynolds number CPU- Time

94 20 Mins

375 9 Hours

1500 13 Days

6,000 20 Months

24,000 90 Years

96,000 5,000 Years

Table 1.1: Estimates for DNS of isotropic turbulence at various Reynolds num-

bers [69].
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in complex flows (e.g., bluff body flows), which tend to be dominated by coherent

large-eddy structures. Because most turbulence models used in RANS are empirically

tuned to optimize their performance in simple and thin shear flows where the mean

pressure gradient and mean streamline curvature are small, RANS is generally unable

to capture correctly the geometry-dependent large eddies in many complex flows.

LES stands in the middle of the range of turbulent flow prediction tools, between

direct numerical simulation (DNS), in which all scales of turbulence are numerically

resolved and which is hence expensive in computational cost, and RANS calculations,

in which all scales of turbulence are modelled and which is hence relatively cheap

in computational cost. In LES, the large, energy-containing scales of turbulence

are resolved by the discretized equations, whereas the small scales of turbulence are

modelled through the subgrid-scale (SGS) models to replace the information that has

been removed in the discretized equations by the filtering operation. The large scales,

which usually control the behavior and the statistical properties of turbulent flows,

tend to be geometry and flow dependent, whereas the small scales tend to be more

universal in their statistical description and consequently easier to model. In many

practical combustion devices such as furnaces, boilers, and gas turbines, the flames

are essentially controlled by the rate of mixing and hence an accurate description of

turbulent large scale mixing is of crucial importance in the simulation of such flames.

LES offers the possibility of improvement in this area by providing a description of

the dynamics of the large scales that is of greater accuracy than can be attained with

RANS calculations.

Even though LES only resolves the large scales and models the small or sub-grid

scales, LES is still expensive in the computational cost. The cost of LES also depends

on the Reynolds number if a solid surface is present, since in that case even the

largest scales of motion depend on the Reynolds number. Chapman [8] estimated

that the resolution required to resolve the outer layer of a growing boundary layer

is proportional to Re0.4, while for the viscous sublayer the number of points needed

increase at least Re1.8. Thus, although LES can give some improvement over RANS,

and be extended to flows at Reynolds numbers at least an order of magnitude higher
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than DNS at a reasonable cost, its application to engineering flows remains expensive.

The application of LES to turbulent reacting flows has been a subject of growing

interest with the rapid growth in computing power, but to date few simulations

of realistic combustion systems have been undertaken. The primary difficulty in

applying LES to turbulent reacting flows is that in general, chemical reactions take

place below the resolved (grid) scale. Hence, chemical reactions must be entirely

modelled and it is necessarily required to obtain an accurate physical description of

the reaction processes at the SGS level within each LES grid cell. This is also true for

RANS calculations. Therefore, most of studies on LES combustion are the extension

of the well-established approaches in RANS.

For non-premixed combustion, mixing at the molecular level between fuel and oxi-

dizer must occur prior to chemical reactions. Furthermore, during the combustion

process many intermediate and stable species are produced and consumed, and their

local concentrations are also strongly affected by the mixing process. As will be dis-

cussed in Sec. 2.2.1, a conserved scalar approach based on the mixture fraction, the

so-called conserved-scalar formalism, is introduced to simplify the subsequent analy-

sis and discussion of such a multi-component system involving chemical reactions. In

this conserved-scalar formalism, the local mixing state is determined by the mixture

fraction. Furthermore, the local thermo-chemical variables such as temperature and

species mass fractions are described solely by the conserved scalar, the mixture frac-

tion. Therefore, the main issues involved in implementing this formalism are firstly

how to obtain the accurate local mixing state and secondly how to model the local

chemical reaction processes.

The description of the mixture fraction distribution in a local cell is often modelled

using a probability density function (PDF). In the conserved-scalar formalism, the

mean values of any local thermo-chemical variable can be obtained through

φ̃ =

∫ 1

0

φ(Z)P̃ (Z)dZ, (1.1)

provided the functional dependence of the local variables on the scalar, φ(Z), and

the local distribution of the scalar, P̃ (Z), are known. Here, Z stands for the mixture
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fraction. Note that in this work, the mixture fraction is called the scalar for the

purpose of general use.

The shape of the PDF P̃ (Z) can either be presumed a priori, or else it can be obtained

by solving a PDF transport equation. Following many previous reports [14, 20, 35,

65, 67], the shape of PDF is presumed in the present study to save computational

cost. Even though there is argument about what kind of the presumed PDF shape

would be appropriate, a β-function PDF, which is parameterized by the mean and the

variance, has been widely adopted. Since the PDF is used to describe the local mixing

state, the mean and the variance of the mixture fraction are required to construct

the β−function PDF. The problem of how to accurately model the mixing now shifts

to how to correctly describe the evolution of mean and variance of the scalar (i.e.,

mixture fraction) as a consequence of turbulent mixing.

Consider an analogy between the flow and the scalar; the scalar variance corresponds

to the turbulent kinetic energy while the scalar mean to the mean velocity. Similar to

the two-equation k−ε turbulence model, the scalar dissipation rate, χ, is required and

needs to be coupled with the scalar variance. The scalar dissipation rate also plays

an important role in chemical reaction processes where it signifies the local mixing

rate. 1/χ is often interpreted as a characteristic turbulent diffusion or mixing time.

The scalar dissipation rate is also involved in a steady laminar flamelet model, which

can account for the non-equilibrium chemistry that is of particular importance for the

formation of pollutants such as nitric oxides in turbulent combustion. It describes the

influence of the turbulent flow field on the laminar flame structure and is an essential

non-equilibrium parameter since it measures the degree of departure from chemical

equilibrium.

As mentioned earlier, the present work is based on the conserved-scalar formalism

with the presumed β−function PDF. Having said that the accurate description of

local mixing depends on the accuracy of the β−function PDF, the scalar mean, the

variance and its dissipation rate are required to be calculated accurately.
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1.2 Literature review and motivation

LES has been developed and studied as a turbulent flow prediction tool for engineering

applications during the past three decades. Significant progress has taken place more

recently with advances in computer technology and the development of the dynamic

SGS modelling procedure by Germano et al. [23]. With the dynamic procedure, model

coefficients are automatically computed using information contained in the resolved

turbulence scales, thereby eliminating the uncertainties associated with tunable model

parameters. Reviews of LES are given by Lesieur and Métais [42] and Moin and

Kim [53].

Techniques for computational modelling of turbulent combustion have been the sub-

ject of numerous studies, with significant advances attributable to the development

of the laminar flamelet model by Peters [61, 62], the probability density function

(PDF) transport method by Pope [68], the conditional moment closure modelling

(CMC) by Klimenko and Bilger [38], and linear eddy modelling by Kerstein [36].

All of the aforementioned models can be regarded as advanced models capable of

handling finite-rate chemistry or non-equilibrium chemistry effects. The pdf trans-

port model is theoretically the most accurate and is capable of handling the reaction

rate term without requiring any modelling assumptions. However, the model is very

resource-intensive and its application to industrial calculations is still not widespread.

The CMC model is a newer model which is currently gaining in popularity, but the

model is again resource-intensive and its successful application to practical situations

has yet to be assessed. The laminar flamelet model based on the conserved scalar

formalism is the most popularly accepted due to its relative ease of implementation

and its relatively low computational cost. All these combustion models have been

successfully incorporated in RANS calculations for decades. Many of these estab-

lished combustion-modelling approaches used previously in RANS calculations have

recently been extended for use in LES.

The LES formalism introduces a filtering operation in space that is applied to the

governing equations and flow variables to remove the unresolved small scales, i.e.,
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subgrid-scales (SGS). Similarly, as in RANS-based combustion models, the direct

modelling of a filtered chemical source term is a very challenging problem. Due to

the strong non-linear dependence of the Favre-filtered mean chemical source term
˜̇ωk on the temperature (T ) and the species mass fractions (Yk) and on their strong

fluctuations in turbulent flows, this source term cannot be easily calculated by the

mean value of the species mass fraction and temperature. This means that

˜̇ωk(T, Y1, . . . , YN) 6= ω̇k(T̃ , Ỹ1, . . . , ỸN), (1.2)

where N is the number of the species.

For non-premixed combustion, however, the treatment of the chemical source term

can be avoided by employing the conserved scalar formalism. A transport equation for

a single, strictly conserved scalar, which is the mixture fraction (Z), can be derived

from the transport equations of element mass fractions. A detailed discussion of

this will be presented in Sec. 2.2.2. The conserved scalar formalism is a reasonable

approximation to conditions found in many practical combustion processes, where

flames are essentially controlled by the large scale mixing rate at which the fuel

and oxidant mix. LES resolves the large scale motions of turbulent flow and hence

LES has potential advantage over the RANS-based calculation. In the conserved-

scalar formalism, the description of the local thermo-chemical variables is uniquely

related to the mixture fraction and their mean values are calculated through the PDF

integration.

The extension of the conserved scalar formalism and the presumed PDF approach

into LES has been the subject of recent studies. Many studies have been successfully

performed especially in conjunction with laminar flamelet models. To the author’s

knowledge, Cook et al. [14] first proposed a presumed subgrid-scale PDF method of

the mixture fraction in analogy to RANS calculations and showed that the results

were in good agreement with DNS data obtained by a priori test in homogeneous tur-

bulence. In a similar fashion, De Bruyn Kops et al. [17] performed a LES calculation

and successfully reproduced the spatial average of the filtered species concentration

obtained from DNS. Branley and Jones [6] performed a LES calculation of a hydrogen-

air jet flame, in which various closure models for the the SGS stresses and fluxes were
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tested. Kempf et al. [27, 33, 35] successfully incorporated a multi-step chemical

mechanism in LES calculations. Pitsch and Steiner [66, 67] used the unsteady lam-

inar flamelet model in LES simulation of a piloted jet diffusion flame (Sandia flame

D). For a non-premixed bluff-body stabilized flame (Sandia flame HM1), Janicka

and Kempf [34] had successfully performed a LES calculation with the steady lami-

nar flamelet model, and Raman and Pitsch [71] achieved very impressive agreement

with experimental data [16] by taking additional steps to ensure grid independence.

Martinez and Kronenburg [52] reported good prediction of temperature and reactive

species mass fractions using LES together with the CMC model.

The recent studies on LES applied to reacting flows [12, 27, 28, 29, 34, 64, 71] suggest

that a description of the PDF of the mixture fraction at the SGS is important. It is

generally agreed that the SGS statistics of the conserved scalar can be described by a

β-function PDF that is parameterized by the scalar mean and the variance [29]. For

RANS and LES, the scalar mean is commonly obtained by solving its own transport

equation. However, approaches to obtaining the scalar variance and its dissipation

rate differ for RANS and LES calculations.

In RANS, the scalar variance (Z̃ ′′2) is commonly calculated by solving its own trans-

port equation. The unclosed scalar dissipation rate (χ̃ =
˜

2D
(

∂Z′′

∂xj

)2
) in the scalar

variance transport equation needs to be modelled [62], and the accuracy of the scalar

variance prediction is influenced significantly by how the scalar dissipation rate is

modelled. The scalar dissipation rate can be modelled by either using an algebraic

expression or by solving its own transport equation. The algebraic model assumes

that the mechanical time scale (τu) is linearly related to the scalar time scale (τs).

Furthermore, the ratio of the two time scales (Rτ = τu/τs) is often assumed to be

constant for a given flow. Physically, Rτ expresses the ratio of the local turn-over

time for the energy-containing velocity and scalar eddies. These energy-containing

eddies are influenced significantly by the production mechanisms of the respective

velocity and scalar fields. It is, therefore, reasonable to expect that Rτ depends on

these production mechanisms, which could vary drastically among different flows [57].

It is our belief that, in the most general setting, it is necessary to obtain the scalar
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dissipation rate by solving its own transport equation, which again involves several

unclosed terms that need to be modelled (see Sections 3.1.2 and 3.2.2 later).

Unlike RANS, the SGS scalar variance1 in LES has traditionally been obtained by

using algebraic models, such as the scale similarity model [13] and the gradient-based

model [64]. Cook and Riley [13] proposed a scale similarity model, by defining the

scalar variance as

Z̃ ′2 = Css

(
̂̃
ZZ̃ −

̂̃
Z
̂̃
Z

)
, (1.3)

where ·̂ is a test filter with the width ∆̂ = 2∆. Css is the model constant and must

be given prior to the calculation. The scale similarity model implicitly assumes that

the smallest resolved scales are statistically similar to the largest unresolved scales.

This simple assumption seems to be less feasible in the case of reacting flows because

all chemical reactions occur at the smallest unresolved scales [67]. Furthermore, the

model constant must be known prior to the calculation, and there is no reason to

expect a universal value for the model constant.

Pierce and Moin [63] proposed an algebraic scaling formula for the scalar variance

and computed its model constant (Cg) using the dynamic procedure [23, 47] following

Z̃ ′2 = Cg∆
2
|∇Z̃|2. (1.4)

The gradient-based model calculates the scalar variance based on the gradient of the

scalar mean. Intuition seems to suggest that the scalar variance can be high in a region

where the gradient of scalar mean is high. However, experimental data of the scalar

mean shows low gradient but high scalar variance very close to the centerline. In this

region, the predicted scalar variance is obviously erroneous when the gradient-based

model is employed.

Although existing scalar variance models used in LES have performed relatively well,

it should be pointed that all the existing models for the scalar variance are calculated

1The scalar variance at SGS is denoted hereafter ‘scalar variance’ in short throughout the study.

The scalar variance in URANS and LES has the same form but one in URANS comes from the

time-averaging and one in LES comes from the spatial filtering operation
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independently. Having said that there is an analogy between the turbulent kinetic

energy and the scalar variance and the turbulent kinetic energy dissipation rate and

the scalar dissipation rate, the scalar variance should be obtained as a coupled system

with the scalar dissipation rate. It is noted here that existing scalar variance and SGS

scalar dissipation rate2 modelling strategies are quite different. The scalar dissipation

rate has usually been determined based on the local equilibrium assumption [13, 17,

64, 63], under which the production of the scalar variance by the resolved scale is equal

in magnitude to its SGS dissipation rate. Thus, the local equilibrium assumption leads

to a simple model which equates the scalar dissipation rate to the local scalar variance

production rate. The scalar dissipation rate at the SGS level can be written as

χ̃sgs = 2Dsgs|∇Z̃|
2, (1.5)

where Dsgs is the SGS diffusivity. This model has the same form as the leading term

in a model proposed by Girimaji and Zhou [24], which is derived using the local

equilibrium assumption as well.

However, this local equilibrium assumption is only strictly correct in an equilibrium

flow. In general, it is not always true because the scalar variance and the scalar dis-

sipation rate are strongly coupled together, affecting turbulent mixing mechanisms.

Furthermore, the scalar transport equation has no sink or source terms under this

assumption. That, as Jiménez et al. [28] reported, would lead to unphysical simula-

tions in which the scalar variance would not decay and complete mixing of reacting

species would not be attainable.

Alternatively, Jiménez et al. [28] suggested solving a scalar variance transport equa-

tion in a similar way to a RANS-based method. The unclosed scalar dissipation rate

term is suggested to be closed using the algebraic model, which is also similar to the

RANS-based method that is explained above.

χ̃sgs

Z̃ ′2
∼ Cχ̃

ε̃sgs

k̃sgs
, (1.6)

2The SGS scalar dissipation rate is denoted hereafter ‘scalar dissipation rate’ in short throughout

this study. Similar to the scalar variance, it has the same form for URANS and LES but has different

definition.
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where k̃sgs is the SGS kinetic energy and ε̃sgs is the SGS kinetic energy dissipation

rate. An a priori test of this model in homogeneous isotropic turbulence [28] shows

better agreement with DNS data than the two previous models, and Sun and Su [83]

confirmed the superiority over the previous models through an a priori test with

experimental data of a turbulent cross-flow jet.

However, measurements and predictions of turbulent jets and diffusion flames in the

literature indicate that the mechanical and the scalar time scales are not always pro-

portional; i.e., Rτ is not constant in the entire flow region. The measured Prandtl

number in a heated round jet by Chevray and Tutu [11] was not constant and neither

was the time scale ratio measured in a helium-air jet by Panchapakesan and Lum-

ley [59]. If the time scale ratio is not constant, a transport equation for the scalar

dissipation rate is required.

As pointed out earlier, the scalar variance and its dissipation rate have been inde-

pendently calculated in LES primarily to reduce computational time. However, there

is a strong need to solve for these variables in a coupled system in order to achieve

both physical consistency of the scalar variance and its dissipation rate mechanism

and more importantly to obtain accurate predictions.

1.3 Objectives

This study develops a large eddy simulation based prediction methodology for turbu-

lent reacting flows with principal application to a non-premixed bluff-body stabilized

flame. A bluff-body flame is a very challenging test case since the flame itself is sta-

bilized by recirculation zones near the solid bluff body, with strong turbulent mixing

initiating and maintaining the reactions. RANS calculations show deficiencies, and

LES is expected to perform better.

There are two major objectives to this work: to compare the performance of different

turbulence models in describing turbulent mixing mechanisms, and to examine the
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predictability of scalar variance and scalar dissipation rate using Unsteady RANS

(URANS) and LES. For the former objective, URANS with the standard k−ε model

and LES with the standard Smagorinsky SGS model are used. For the latter objective,

the present study proposes a new algebraic and a new transport model for the scalar

dissipation rate in LES, using a time scale consistent with the Smagorinsky SGS

model. To this end, the transport equation for the scalar dissipation rate, which

was proposed for RANS calculations by Jones and Musonge [31], is adopted. These

models are used in conjunction with the scalar variance transport equation to study a

bluff-body non-reacting flow, for which a wealth of experimental data is available [16].

The scalar variance equation is solved first using URANS in conjunction with two

different scalar dissipation rate models, namely the algebraic model and the transport

equation model. The URANS scalar dissipation rate models are then modified to fit

into the present LES framework, in which no k̃− and ε̃−transport equations are

solved in order to reduce computational cost. While the new approach for the scalar

variance and its dissipation rate at SGS level is implemented in LES, all existing

scalar variance models are also simulated for comparison purpose. All calculations

are conducted to simulate the non-reacting bluff-body (NRBB) case first and the

reacting case (RBB) is pursued later.

As a milestone to achieve the objectives above, a LES code based on STREAM [44]

has been developed and furthermore the code has been parallelized using MPI [51] in

order to cope with the computational time required. The developed LES code is first

validated by simulating a turbulent channel flow for Reτ = 180 [37]. The turbulent

channel flow is a popular choice for code validation and is adequate in consideration

of the bluff-body flow in this study because it also has a wall-boundary.

More clearly, the present work is expected to deliver the following contributions:

1. The development of new algebraic and transport models for the scalar dissipa-

tion rate in LES based on consistency with the Smagorinsky SGS model.

2. A comparative study on the scalar variance and the scalar dissipation rate in

URANS and LES by performing tests at the same grid-resolution.
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3. URANS and LES calculations for non-reacting and reacting bluff-body flows

incorporating the scalar dissipation rate transport equation.

4. An in-depth study into the scalar variance and the scalar dissipation rate mod-

elling in LES, which has potentially contributed to a comprehensive understand-

ing of the local mixing state.

5. Successful extension of the well-established RANS-based method which is based

on the conserved-scalar formalism and the presumed-PDF approach to LES

combustion.

1.4 Outlines

The present work is organized into 8 chapters. Following the introduction, chapter 2

will present the mathematical foundations for URANS and LES respectively, includ-

ing the introduction of the conserved-scalar formalism, which is a key frame for the

subsequent discussion. Furthermore, the turbulence modelling techniques of URANS

and LES will be presented, and the combustion models will follow.

Chapter 3 will present the comprehensive study on the modelling of the scalar variance

and its dissipation rate at subgrid-scale, which is claimed as one of contributions in

this study. Numerical method and code validation will be presented in chapter 4 and

chapter 5. In chapter 4, the general and conventional finite volume discretization,

boundary condition for the bluff-body simulation, and the parallelization will be

presented. The turbulent channel flow as a code validation is discussed in chapter 5.

In chapter 6, the non-reacting bluff-body (NRBB) case is simulated by both URANS

and LES and the results are discussed. The same approach used in the NRBB case is

extended to simulate the reacting bluff-body (RBB) case in chapter 7. The URANS

results are first obtained and discussed, and LES is left for future work. Chapter 8

summarizes the present work and presents potential work to be done in future.
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Chapter 2

Mathematical Formulation

The starting point for the computational investigation is a statement of the governing

equations of mass, momentum and energy for the phenomena under study. This

chapter consists of two parts: the first is to present the governing equations for the flow

and turbulence motions, and the second introduces the conserved scalar formalism

and combustion models for the mixing state and reacting phenomena. URANS and

LES formulations for turbulent flows are firstly derived by respectively applying an

averaging operator and a filter to the governing equations. The arising Reynolds or

subgrid-scale stresses must be modelled and are discussed in detail. Following the

mathematical description of the flow motions and turbulence models, the conserved

scalar formalism is introduced. In the frame of the conserved scalar formalism, the

conserved scalar (the mixture fraction in this work) equation is solved and the local

thermo-chemical variables of combustion models are integrated through the PDF

approach [62]. The presumed β-function PDF approach, which requires the mean

and the variance, is introduced and discussed.
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2.1 Governing equations of Fluid Motion

2.1 Governing equations of Fluid Motion

2.1.1 Governing equations

The motion of a Newtonian fluid is governed by the Navier-Stokes equations. In

Cartesian coordinates with the absence of body forces, these can be written as

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (2.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= −

∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

−
2

3
δij
∂ul
∂xl

)]
, (2.2)

where µ is the fluid molecular viscosity.

In reacting flow simulation, the flow field is coupled to chemical reactions through

updating the density using the equation of state (Eq. (2.6)). The temperature used

to update the density is obtained by solving the energy equation. The energy equa-

tion in this study is written in terms of the total enthalpy [62]. With the gradient

assumption for the molecular enthalpy flux and neglecting radiative heat transfer, the

total enthalpy energy equation can be obtained as

∂(ρh)

∂t
+
∂(ρujh)

∂xj
=
Dp

Dt
+

∂

∂xj

(
λ

cp
∇h

)
+

N∑

k=1

hk
∂

∂xj

[(
λ

cp
− ρDk

)
∇Yk

]
, (2.3)

where the enthalpy h is defined as

h =
N∑

k=1

Ykhk =
N∑

k=1

Yk

∫ T

0

cp,k(T )dT. (2.4)

cp,k is the specific heat at constant pressure of each species, which itself is a function

of the temperature. The temperature dependence of the specific heat coefficients for

each species can be represented by a polynomial fit with coefficients which may be

obtained from the CHEMKIN database [32].
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2.1 Governing equations of Fluid Motion

If a low Mach number approximation is applied, the acoustic interactions and the

work of viscous forces in the energy equation are neglected so that variables such

as density, temperature and enthalpy are decoupled from variations in pressure, δp,

about a specified background pressure field, p0.

This leads to

ρ(p0 + δp, s) ≃ ρ(p0, s) −→

(
∂ρ

∂p

)

s

≃ 0, (2.5)

which implies that the speed of sound is nearly infinite. Under this assumption,

only p0 is coupled to the thermodynamic variables. Therefore the equation of state

becomes

p0 = ρ
N∑

k=1

Yk
Wk

RT. (2.6)

For open systems such as the bluff-body flame in this study, it is also assumed that

p0 is uniform and constant so that the material derivative of pressure in Eq. (2.3)

reduces to
Dp

Dt
≃
Dp0
Dt

= 0. (2.7)

For simplicity, it is common practice to adopt the unity Lewis number assumption

for large-scale transport problems. Since the Lewis number is defined by

Lek =
λ

ρcpDk
, (2.8)

where λ is the thermal diffusivity and Dk is the molecular diffusivity, this assumption

means that all mass diffusivities are proportional to the thermal diffusivity.

Applying all the assumptions above to Eq. (2.3), one obtains the energy equation as

∂(ρh)

∂t
+
∂(ρujh)

∂xj
=

∂

∂xj

(
ρD

∂h

∂xj

)
. (2.9)
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2.1 Governing equations of Fluid Motion

2.1.2 Unsteady Reynolds-Averaged Simulation

The idea of Reynolds-averaging is to decompose an instantaneous flow field into time-

averaged mean and fluctuating velocities. Accordingly, in RANS approaches only the

mean flow properties are computed, whereas all scales of fluctuation motions are

modelled.

The decomposition of an instantaneous variable φ(x, t) into its mean 〈φ(x, t)〉 and

the fluctuation

φfluc(x, t) = φ(x, t)− 〈φ(x, t)〉 (2.10)

is called the Reynolds decomposition. The mean value 〈φ(x, t)〉 is a time-averaged

value which is defined by

〈φ(x, t)〉 ≡ φ(x) = lim
T→∞

1

T

∫ t0+T

t0

φ(x, t)dt, (2.11)

where T is an averaging time interval. The interval must be larger than the largest

time scale of the fluctuations.

For unsteady flows, the URANS approach has been often employed and the mean

velocity u(x, t) is considered as an ensemble average defined by

u(x, t) = lim
N→∞

1

N

∫ N

n=1

un(x, t), (2.12)

where N is the number of flow realizations.

In density variation problems such as reacting flows, a density-weighted averaging

called Favre-averaging is applied. Using Favre-averaging, an instantaneous velocity

is decomposed into the density-weighted mean

ũ =
ρu

ρ
(2.13)

and the fluctuation

u′′ = u− ũ. (2.14)
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2.1 Governing equations of Fluid Motion

Note that (′′) is used in this study to denote the fluctuating part of a Favre-averaged

variable in URANS.

Applying Favre-averaging to the governing equations in the previous section, the

averaged governing equations are obtained as

∂ρ

∂t
+
∂(ρũj)

∂xj
= 0, (2.15)

∂(ρũi)

∂t
+
∂(ρũiũj)

∂xj
= −

∂p

∂xi
+

∂

∂xj

[
µ

(
∂ũi
∂xj

+
∂ũj
∂xi

−
2

3

∂ũl
∂xl

δij

)]
−
∂τRij
∂xj

, (2.16)

where τRij = ρũ′′i u
′′
j = ρ(ũiuj − ũiũj) are called the Reynolds stresses and must be

closed.

A fundamental problem of classical turbulence modeling is to relate the Reynolds

stresses to the mean flow quantities and their gradients in some physically plausible

manner. One popular approach to model these is to adopt the eddy viscosity con-

cept. It was originally proposed by Boussinesq [4], and assumes a linear constitutive

relationship between the Reynolds stresses and mean strain-rate tensors:

τRij = −2µtS̃ij +
2

3
ρk̃δij , (2.17)

where k is the turbulent kinetic energy. The strain-rate-tensor is

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (2.18)

Analogous to the effect of molecular viscosity in the molecular momentum equation

(Eq. (2.2)), the eddy viscosity characterizes the effect of turbulent eddies on the

transfer and mixing of momentum. Based on dimensional analysis [69], the kinematic

eddy viscosity can be estimated from the product of length and velocity scales of

turbulent eddies as

νt = ltvt. (2.19)
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2.1 Governing equations of Fluid Motion

Although there are many different types of eddy viscosity models, in general, the

two-equation k − ε model is widely chosen, where ε is the dissipation rate of k, i.e.,

the amount of k per mass and time which is converted into internal energy of the

fluid by viscous work. In this k − ε turbulence model, the length scale (lt) and the

velocity scale (vt) are determined as

lt ∼ k2/3/ε, vt ∼ k1/2. (2.20)

Using the proportional constant Cµ, the turbulent viscosity is now calculated by

µt = ρCµ
k̃2

ε̃
. (2.21)

The transport equations for k and ε read

∂ρk̃

∂t
+
∂ρũjk̃

∂xj
=

∂

∂xj

[(
µ+

µt

σk

)
∂k̃

∂xj

]
+ Pk − ρε̃, (2.22)

∂ρε̃

∂t
+
∂ρũj ε̃

∂xj
=

∂

∂xj

[(
µ+

µt

σε

)
∂ε̃

∂xj

]
+
ε

k
(Cε1Pk − Cε2ε) , (2.23)

where Pk = 2µtS̃ijS̃ij is the production rate of turbulent kinetic energy. All the model

constants for the standard k − ε model are listed in Table 2.1.

2.1.3 Large Eddy Simulation

In LES, all of the field variables are decomposed into resolved (grid) scale and subgrid-

scale (SGS) parts. As illustrated in Figure 2.1, the resolved, large-scale field is related

Cµ Cε1 Cε2 σk σε

0.09 1.44 1.92 1.0 1.3

Table 2.1: Standard k − ε model constants.
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2.1 Governing equations of Fluid Motion

to the instantaneous full-scale field through a grid-filtering operation denoted by

(·), which is not a time-averaging or an ensemble-averaging operation but a spatial

filtering that removes scales too small to be resolved by the simulation. The influence

of the filtered-out small-scale motions is fed back into the resolved motion through

the SGS model.

The governing equations in LES can be obtained by applying a spatial filter to the

continuity, momentum and scalar transport equations. The spatial filter of a function

f = f(x, t) is defined as its convolution with a filter function, G, according to

f(x, t) =

∫
f(x− y, t) G(y,∆)dy, (2.24)

where G(y,∆) is a three-dimensional spatial filter kernel with a filter width ∆. For

variable density flows, a Favre-filtered function is defined as

f̃(x, t) =
1

ρ

∫
ρf(x− y, t)G(y,∆)dy, (2.25)

where ρ is a filtered density field.

In the present work, a top-hat filter, based on a computational grid cell of volume

∆V , is employed. This filter corresponds to the Schumann filter [80], which is

implicitly applied in finite-volume methods (FVM) by approximating the values at

the cell center with the mean over the entire cell. The filter width ∆ = (∆x∆y∆z)1/3

is defined as a characteristic length of the cell. In the FVM framework, the governing

equations, which are either filtered implicitly in LES or Reynolds-averaged in URANS,

have the same forms but with different meanings, and hence need to be modelled

differently.

The continuity and momentum equations in LES can then be written as

∂ρ

∂t
+
∂ρũj
∂xj

= 0, (2.26)

∂ρũi
∂t

+
∂ρũiũj
∂xj

= −
∂p

∂xi
+

∂

∂xj

[
µ

(
∂ũi
∂xj

+
∂ũj
∂xi

−
2

3

∂ũl
∂xl

δij

)]
−
∂τ sgsij

∂xj
. (2.27)
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2.1 Governing equations of Fluid Motion

Resolved scales

Subgrid-scale scales

∆

Figure 2.1: Resolved and unresolved subgrid scales for a given filter length ∆ when

using the top-hat filter.

The unclosed SGS stresses in LES,

τ sgsij = ρũiuj − ρũiũj, (2.28)

must be modelled.

Following the energy cascade concept [69], in which energy is transferred from large

scales to smaller and smaller scales where viscous dissipation takes place, the unre-

solved subgrid scales are primarily affected by viscous forces, dissipating turbulent

kinetic energy from the resolved scales. The main role of a SGS-model is therefore to

drain energy and to be dissipative. In gas kinetics theory, molecular agitation draws

energy from the flow by way of molecular viscosity; the energy cascade mechanism

is modelled by a term having a mathematical structure similar to that of molecular

diffusion, but in which the molecular viscosity is replaced by a SGS viscosity µsgs. To

author’s knowledge, the most popular SGS model is the Smagorinsky model [82], a

zero-equation eddy viscosity model based on a simple mixing length concept.

21



2.2 Governing Equations of Chemical Reactions

In the Smagorinsky model, the SGS stresses are modelled as

τ sgsij = −2µsgsS̃ij +
1

3
τ sgskk δij , (2.29)

where S̃ij is the strain-rate-tensor similar to Eq. (2.18). The SGS viscosity following

the Smagorinsky model reads

µsgs = ρ(CS∆)2|S̃|, (2.30)

where |S̃| = (2S̃ijS̃ij)
1/2. While the model constant CS is commonly taken between

0.1 and 0.2 depending on the flow type [76], Deardorff [18] suggested CS = 0.1 for

plane channel flows and this value has been used for bluff-body flows in many recent

works [10, 75, 86].

As mentioned above, the Smagorinsky model depends on the rate of the strain for

the turbulent velocity scale and the filter width for the turbulent length scale. In

particular, the model constant CS is an ad-hoc adjustment of turbulent length scale

which cannot be universal for different types of turbulent flows. Germano et al. [23]

proposed a dynamic procedure to overcome this weakness of the Smagorinsky model,

in which CS is calculated dynamically at every grid point in space and at every time

step [23]. However, the dynamic procedure requires longer calculation time and may

result in large negative values for CS which lead to numerical instability [76]. In this

work, therefore, the Smagorinsky model with CS = 0.1 is used for the bluff-body

flows.

2.2 Governing Equations of Chemical Reactions

2.2.1 Conserved Scalar: Mixture Fraction Variable

Technical combustors may be very complex devices. In general the underlying physical

process may be simplified to the mixing of fuel with an oxidizer. Therefore, a two

22



2.2 Governing Equations of Chemical Reactions

feed system, as shown schematically in Figure 2.2, is representative for many technical

applications. This is even true for devices where an additional inlet recirculating fuel

gas or a hot pilot gas stream is fed into the reaction zone, because the recirculated

exhaust gases are simply the products of the given fuel and oxidizer.

For such a two feed system it is common to describe the mixing state by the mixture

fraction Z. Assuming that every atom of the two mass streams, where ṁ1 is the fuel

stream and ṁ2 is the oxidizer stream, could be marked with a conserved property

such that the local mass of the atoms of the two streams, ṁ1,l and ṁ2,l, is known at

any time and location, then the mixture fraction may be defined as

Z =
ṁ1,l

ṁ1,l + ṁ2,l

. (2.31)

This dimensionless variable states that the mixture fraction represents the local in-

stantaneous mass of the fuel stream atoms in the mixture. The mixture fraction is

then bounded by Z = 1 in the pure fuel stream and by Z = 0 in the pure oxidizer

stream. Following Bilger [3], the local value of any conserved scalar β in the mixture

is then given by

β = Zβ1 + (1− Z)β2, (2.32)

where β1 and β2 are the values of the conserved scalar in the fuel stream and in the

oxidizer stream respectively.

If we rearrange Eq. (2.32), one gets the following fundamental equation for the mixture

fraction

Z =
β − β2
β1 − β2

. (2.33)

It should be noted that any conserved scalar can be used for β to derive the mixture

fraction Z. For instance, in a non-reacting mixing system any measured chemical

species can be used. However, in a chemically reacting system it is not a trivial

task to relate the chemical species to the mixture fraction, because species are not

conserved during chemical reactions. Other scalars have to be used instead. One
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2.2 Governing Equations of Chemical Reactions

fuel 

air 

air 

Figure 2.2: Two feed system of fuel and oxidizer. 1: fuel stream, 2: oxidizer stream.

possibility is the mass fraction of the elements, which are conserved even during

combustion.

The mass fraction Z of an element α is related to the mass fraction Yk of species k

through

Zα =
mα

m
=

N∑

k=1

akαWα

Wk

Yk, (2.34)

where akα is the number of atoms of element α in the molecular of species k. Wα

and Wk are the molecular weights of the elements α and species k respectively. In

principle, any element may be used as a conserved scalar to compute the mixture

fraction. However, the value of the mixture fraction may be different depending on

the selected element because species in a reacting system may diffuse at different

rates. This problem is known as preferential or differential diffusion. Here, the

mixture fraction is defined on the basis of the sum of all fuel elements in the fuel

stream. Thus, for a pure hydrocarbon fuel, the fuel element mass fraction is defined

as the sum of the element mass fractions of carbon and hydrogen:

ZF =

M∑

α=1

Zα,F = ZC + ZH , (2.35)
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2.2 Governing Equations of Chemical Reactions

Inserting Eq. (2.35) into Eq. (2.33) gives the mixture fraction as a function of the fuel

element mass fraction

Z =
ZF − ZF,2

ZF,1 − ZF,2

. (2.36)

In general, there is no fuel in the oxidizer stream of a non-premixed combustion flame,

so ZF,2 = 0. Furthermore, in the pure fuel stream, the element mass fraction of the

fuel is equal to the mass fraction of the fuel species, i.e., ZF,1 = YF,1. Eq. (2.36)

reduces then to

Z =
ZF

ZF,1
=

ZF

YF,1
. (2.37)

Note that once the elements on which the mixture fraction is defined are chosen, the

mixture fraction defines uniquely the mixing state. In this work the mixture fraction

is always based on all elements of the fuel as given by Eq. (2.37).

An important quantity for the analysis of combustion is the value of the mixture

fraction at stoichiometric conditions. It may be easily derived if one represents the

chemistry by the following global one-step reaction, where fuel F and oxygen O2 react

to form a single product P ,

ν ′FF + ν ′O2
O2 → ν ′′PP, (2.38)

where ν ′F , ν
′
O2

and ν ′′P are the stoichiometric coefficients. The consumption of fuel is

strongly coupled to the consumption of oxygen, as given by the following equation:

dnF

ν ′F
=
dnO2

ν ′O2

, (2.39)

where nk is the number of moles of species k. With mk = nkWk, which relates the

number of moles of species k to its mass mk, and taking into account that the total

mass of the system is constant, the following equation is obtained:

dYF
ν ′FWF

=
dYO2

ν ′O2
WO2

. (2.40)
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2.2 Governing Equations of Chemical Reactions

If the equation above is integrated from the unburned state with index u to an inter-

mediate state during reaction, the result is

YF − YF,u
ν ′FWF

=
YO2

− YO2,u

ν ′O2
WO2

. (2.41)

Introducing the stoichiometric mass ratio

s =

(
YO2,u

YF,u

)
=
ν ′O2

WO2

ν ′FWF
, (2.42)

which defines the mass of oxidizer required to burn a unit mass of fuel, Eq. (2.41)

may be rewritten as

sYF − YO2
= sYF,u − YO2,u. (2.43)

As the intermediate burning state is arbitrary and the unburned state is a con-

served property, Eq. (2.43) defines a new conserved scalar, which is known as Shavb-

Zel’dovich coupling variable

β = YF − YO2
/s. (2.44)

Inserting Eq. (2.44) into Eq. (2.33) and again taking into account that there is no fuel

in the oxidizer stream and no oxygen in the fuel stream, i.e., YF,2 = 0 and YO2,1 = 0,

we obtain another relation to derive the mixture fraction:

Z =
YF − YO2

/s+ YO2,2/s

YF,1 + YO2,2/s
, (2.45)

where YF,1 is the initial fuel mass fraction in the fuel stream and YO2,2 is the initial

oxygen mass fraction in the oxidizer stream. Eq. (2.45) is a simple expression to derive

the mixture fraction. It is exact if the chemistry is complete and may be represented

by a single global reaction step as given by Eq. (2.38), which is the case when the

mass fractions of intermediate species are negligible as compared to the mass fractions

of the stable species. For a stoichiometric mixture fraction, sYF = YO2
holds and the

stoichiometric mixture fraction can be easily deduced from Eq. (2.45) and obtained

as

Zst =
1

1 + sYF,1/YO2,2
. (2.46)
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2.2 Governing Equations of Chemical Reactions

2.2.2 Conserved Scalar Equation

All of the chemical reaction models in this work are based on the concept of the

mixture fraction. A transport equation for the mixture fraction may be derived

from an appropriate linear combination of the transport equations of the species

mass fractions. Assuming that species obey Fick’s law of diffusion, the mass fraction

transport equation for species k can be written as

∂ρYk
∂t

+
∂ρujYk
∂xj

=
∂

∂xj

(
ρDk

∂Yk
∂xj

)
+ ω̇k. (2.47)

Using Eq. (2.34), the conserved scalar equation can be formally derived by summing

up the species mass fraction equations in such a way that the reaction source term

cancels:

∂ρZα

∂t
+
∂ρujZα

∂xj
=

∂

∂xj

(
ρD

∂Zα

∂xj

)
, (2.48)

where the unity Lewis number assumption is employed. Eq. (2.48) has no chemical

source terms since

N∑

k=1

akαω̇k = 0, (2.49)

which shows that the element mass fraction is conserved during the combustion. As

the mixture fraction itself is a conserved scalar as well, its transport equation can be

written as

∂ρZ

∂t
+
∂ρujZ

∂xj
=

∂

∂xj

(
ρD

∂Z

∂xj

)
. (2.50)

Therefore, in the local flow field, the mixture fraction can uniquely define the mixing

state.

In the FVM framework, as shown earlier, the governing equations, which are either

filtered implicitly in LES or Reynolds-averaged in URANS, have the same forms but
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2.2 Governing Equations of Chemical Reactions

different meanings. This also applies to Eq. (2.50), the conserved scalar equation,

and the Reynolds-averaged or filtered the conserved scalar equation is obtained as

∂(ρZ̃)

∂t
+
∂(ρũjZ̃)

∂xj
=

∂

∂xj

(
ρD

∂Z̃

∂xj

)
−
∂Mj

∂xj
, (2.51)

where the fluctuation of the diffusivity is ignored [62].

The unclosed term,

Mj = ρũjZ − ρũjZ̃, (2.52)

can be interpreted as the turbulent scalar fluxes in URANS or the SGS scalar fluxes

in LES; both must be modelled. The eddy diffusivity concept is employed for both

URANS and LES to model Mj . In URANS the turbulent scalar fluxes are modelled

as

Mj = −ρDt
∂Z̃

∂xj
= −

µt

Sct

∂Z̃

∂xj
, (2.53)

where Dt = νt/Sct is the turbulent diffusivity and the turbulent Schmidt number

is set to Sct = 0.4 in the present study. Using this model, one may obtain the

Reynolds-averaged conserved scalar equation in URANS as

∂(ρZ̃)

∂t
+
∂(ρũjZ̃)

∂xj
=

∂

∂xj

[
ρ (D +Dt)

∂Z̃

∂xj

]
. (2.54)

In a similar way, the SGS scalar fluxes in LES are modelled as

Mj = −ρDsgs
∂Z̃

∂xj
= −

µsgs

Scsgs

∂Z̃

∂xj
, (2.55)

where Dsgs = νsgs/Scsgs is the SGS diffusivity and the SGS Schmidt number is also

set to Scsgs = 0.4. Finally the filtered conserved scalar equation in LES is written as

∂(ρZ̃)

∂t
+
∂(ρũjZ̃)

∂xj
=

∂

∂xj

[
ρ (D +Dsgs)

∂Z̃

∂xj

]
. (2.56)
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2.2.3 Combustion models

Burke-Shumann Solution

The simplest and probably the oldest description of the reacting structure of a diffu-

sion flame is given by Burke and Shumann [7]. This model may be reformulated in

terms of the mixture fraction, and it is known as the Burke-Shumann solution. The

Burke-Shumann solution is a limiting description, which is based on the following

three assumptions:

1. the chemistry is described by a single-step reaction.

2. the chemistry is infinitely fast.

3. the chemistry is complete, i.e., no backward reaction is possible.

The second and the third assumption imply that reactants cannot coexist at the same

place and the same time, and that the reaction zone is infinitely thin, i.e., a reaction

sheet separates the two reactants. For a single-step reaction,

ν ′FF + ν ′O2
O2 → ν ′′PP. (2.57)

It is now possible to derive the species distribution in mixture fraction space. Fol-

lowing the assumptions above, it is obvious that in regions where the local mixture

fraction is less than the stoichiometric value Zst all the fuel is consumed YF,BS = 0

and one has an excess amount of oxygen. In what follows, the index BS stands for

the fully burned state. By analogy, in the fuel rich region, i.e., Z > Zst, all the oxygen

is consumed, YO2,BS = 0, and fuel excess exists.
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Figure 2.3: The Burke-Shumann solution (dashed) and the chemical equilibrium

model (solid).

The linear composition can be obtained as follows.

YF,BS =

{
YF,1

(
Z−Zst

1−Zst

)
Z ≥ Zst

0 Z ≤ Zst

(2.58)

YO2,BS =

{
0 Z ≥ Zst

YO2,2

(
1− Z

Zst

)
Z ≤ Zst

(2.59)

YF,1 is the fuel mass fraction at the fuel stream, and YO2,2 is the oxygen mass fraction

at the oxidizer stream, and Zst is the stoichiometric mixture fraction.

Chemical Equilibrium Model

At high temperatures, combustion does not proceed to completion, and some reactions

occur in the reverse direction. When the rate of reverse reaction equals the rate of
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2.2 Governing Equations of Chemical Reactions

forward reaction, chemical equilibrium is reached. The chemical equilibrium model

assumes that chemical equilibrium prevails at every point, which relaxes the constraint

of complete combustion in the Burke-Shumman solution. The chemical equilibrium

composition and temperature of the flame can be calculated as a function of the

mixture fraction based on the Gibbs free energy [85]. The detailed chemical reactions

follow the GRI-Mech 2.11 [5] and STANJAN software [72] is used to calculate the

thermo-chemical values. Chemical reactions and related coefficients are tablized in

Appendix B.

As shown in Figure 2.3, deviations exists between the Burke-Shumann solution and

the chemical equilibrium model due to incomplete combustion. The chemical equi-

librium model is able to include the intermediate species and the predicted peak

temperature is lower than that of the Burke-Shumann solution due to the inclusion of

chemical dissociation, incomplete combustion and the formation of radicals. It should

be noted, however, that for more complicated reacting mixtures, not all the species

may reach chemical equilibrium and then the model may lead to the large deviations

from measurements. Furthermore, in the chemical equilibrium model any interaction

between turbulence and chemical reaction is neglected.

Steady Laminar Flamelet Model

The steady laminar flamelet model has been successfully used during the last decades

since it has both the advantage of decoupling the flow field and chemical kinetics

calculations and the ability to handle detailed chemical reactions.

In the laminar flamelet theory, a flame can be viewed as an ensemble of thin locally

one-dimensional structures embedded within the flow field. Physically, the flame

structure is considered locally one-dimensional and only depends on time and the

coordinate normal to the flame front. It is now possible to introduce a coordinate

system attached to a surface element of constant mixture fraction and replace the co-

ordinate perpendicular to the surface of the sheet-like element by the mixture fraction.
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Figure 2.4: Coordinate system attached to a Z iso-surface.

Inherent in this formulation is the assumption that there is just one direction of large

mixture fraction gradient, which is correct if curvature effects may be neglected [15].

By definition, the coordinate Z is locally normal to the iso-surface of the mixture

fraction shown in Figure 2.4. With the unity Lewis number assumption and neglecting

radiation heat transfer, the transformed equations for the species mass fractions and

temperature at steady state are written as

χ

2

(
∂2Yk
∂Z2

)
+
ω̇k

ρ
= 0,

χ

2

(
∂2T

∂Z2

)
−

1

ρcp

N∑

k=1

hkω̇k, = 0, (2.60)

where χ is the instantaneous scalar dissipation rate. The scalar dissipation rate in

the flamelet equations is defined by

χ = 2D

(
∂Z

∂xj

)2

. (2.61)

The influence of the scalar dissipation rate χ on the structure of diffusion flames was

extensively discussed by Peters [62]. The scalar dissipation rate describes the influence
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Figure 2.5: Temperature profile changes according to the increase of the scalar dissi-

pation rate in the steady laminar flamelet solutions.

of the flow field on the laminar flame structure and is an essential non-equilibrium

parameter since it measures the degree of the departure from chemical equilibrium.

The scalar dissipation rate is commonly expressed as

χ = χstf(Z), (2.62)

where χst is the scalar dissipation rate at stoichiometric mixture. The functional

dependence on the mixture fraction is expressed by the log function [67]

f(Z) =
Z2 lnZ

Z2
st lnZst

, (2.63)

where Zst is the stoichiometric mixture fraction. It is common practice to ignore the

fluctuations of the scalar dissipation rate since they are very small in reactions [14].
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2.2 Governing Equations of Chemical Reactions

Flamelet profiles with scalar dissipation rate corresponding to the mean value χ̃,

which is found locally in the turbulent flows, are therefore used. The instantaneous

scalar dissipation rate can be expressed by

χ =
χ̃∫ 1

0
f(Z)P̃ (Z)dZ

f(Z) (2.64)

The solutions from the steady laminar flamelet equations depend on the mixture

fraction and the scalar dissipation rate, i.e., Yk = Yk(Z, χ). In principle, both variables

Z and χ are instantaneous quantities and their statistical distribution needs to be

considered in order to calculate the mean values of thermo-chemical compositions

such as temperature and the species mass fractions. Therefore, knowing the joint

Favre probability density function P̃ (Z, χ) of Z and χ is required to obtain the mean

value.

Ỹk =

∫ 1

0

∫ ∞

0

Yk(Z, χ)P̃ (Z, χ)dχdZ. (2.65)

To calculate this integral, statistical independence of Z and χ is assumed; i.e.,

P̃ (Z, χ) ≈ P̃ (Z)P̃ (χ). Though different approaches exist in the literature for both

PDFs, it is common practice, as mentioned earlier, to neglect the small fluctuation of

the scalar dissipation rate [14]. Therefore, the Favre-averaged species mass fraction

can be integrated by,

Ỹk =

∫ 1

0

Yk(Z, χ̃)P̃ (Z)dZ. (2.66)

Eq. (2.60) in the steady laminar flamelet model can be shown to be one-dimensional

ordinary differential equations (ODEs). In the solution procedure of these ODEs,

equations are discretized in mixture fraction space by finite differences and then solved

with boundary condition at Z = 0 and Z = 1. The two-point boundary value solver

(TWOPNT), which is based on a modified damped Newton algorithm [25], is used.

The detailed chemical reactions follow the GRI-Mech 2.11 [5], and the CHEMKIN-

II package [32] is utilized to deal with the chemical kinetics and thermodynamic
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2.2 Governing Equations of Chemical Reactions

relations. As reviewed in Peters [62], the temperature is lowered by increasing the

scalar dissipation rate. Figure 2.5 presents similar changes in the temperature profiles

obtained from the steady laminar flamelet solver developed in this study. When the

scalar dissipation approaches zero, which means that the influence of flow gets smaller,

the local composition comes closer to the chemical equilibrium profile.

2.2.4 Presumed PDF Approach

The probability density function (PDF) completely characterizes a random variable

and it serves to represent a probability distribution in terms of integrals. As men-

tioned earlier, the presumed β-function PDF, which is parameterized by the mean

and the variance, is used to integrate the mean temperature and the species mass

fractions. The presumed β-function PDF is written as

P (Z) =
Za−1(1− Z)b−1

∫ 1

0
Za−1(1− Z)b−1dZ

, (2.67)

and

a = Z̃γ, b = (1− Z̃)γ,

γ =
Z̃(1− Z̃)

σ
− 1,

where σ = Z̃ ′′2 is for URANS and σ = Z̃ ′2 is for LES. Some shapes of the β-function

PDF are presented in Figure 2.6.

The numerical integration of the β-function PDF encounters mainly two difficulties.

One is a singularity problem at either the oxidizer side (Z = 0) or the fuel side

(Z = 1), depending on the β-function PDF parameters, and the other is a overflow

problem taking place when the PDF parameters are sufficiently large [9, 41, 48].

These difficulties in the numerical integration are addressed by following treatments
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Figure 2.6: Shapes of the β-function PDF for different Z̃ and γ.

suggested by Chen et al. [9] and others [46, 48]. Firstly, both the extreme fuel and

oxidizer only cases are dealt with by applying a δ-function:

φ̃ ≈ φ(Z = 0) if a < 1 and a < b,

φ̃ ≈ φ(Z = 1) if a > b and b < 1,

φ̃ ≈
1

2
(φ(Z = 0) + φ(Z = 1)) if a < 1 and b < 1.

Secondly, the over-flow problem is avoided through clipping the large value between

a and b. Then, the parameters remain under a certain large value (here, 500) while

maintaining the ratio a/b.

Using the conserved-scalar formalism and the presumed PDF approach, the mean

values of the thermo-chemical variables are obtained by PDF-weighted integration of
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Figure 2.7: Code structure of the present study.

the local values;

Ỹk =

∫ 1

0

Yk(Z)P̃ (Z)dZ, (2.68)

where P̃ (Z) describes the local mixing state. As introduced above, the presumed

β−function PDF is adopted in this study.

The simulation flow chart is presented in Figure 2.7 in order to explain how the flow

field is coupled with the chemical reaction. It is clear that there is the benefit of

using the conserved scalar formalism because it separates the chemical reactions from

the flow solver. It should be noted that only the density needs to be updated using

the species mass fraction and mean temperature. In the chart, the PDF-weighted

integration for the mean species mass fraction must be performed for every iteration,

every grid cell, and for all chemical species. This could potentially require a pro-

hibitive amount of computational time. For efficiency, the integration in this study is

calculated prior to the main simulation using a separate code. In this separate code,
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Figure 2.8: A lookup-table of chemical equilibrium model.

the scalar mean and its variance are discretized over their ranges of possible values.

Using the trapezoidal rule [70], all integrations are performed and results are stored

in look-up table files. The procedure is summarized as follows.

1. Generate local thermo-chemical variable profiles by executing either the chemi-

cal equilibrium model or the steady laminar flamelet model.

2. Construct β−function PDF with possible scalar mean and variance values.

3. Integrate Eq. (2.68) using the combustion data and the PDF data.

The size of the look-up table is ( # scalar mean × # scalar variance)=(100 × 100).

This table size was determined to give reasonable accuracy in the interpolation. For

the steady laminar flamelet model which is a function of the scalar dissipation rate,

a total of thirteen look-up tables for the steady laminar flamelet model were made
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2.2 Governing Equations of Chemical Reactions

using scalar dissipation rates from 0 to 40. The functional dependency on the scalar

mean (mixture fraction) is considered, as mentioned above, a log-relation.

A snapshot of the look-up table, whose the temperature is already integrated using

the β−function PDF, is shown in Figure 2.8. Note that the mean temperature is

not obtained through interpolation in this study, though. Given the scalar mean and

the variance, the mean species mass fractions in this study are simply interpolated

bilinearly or trilinearly inside the flow solver. The equilibrium model look-up table

involves the scalar mean and the scalar variance only, so mean values are obtained by

bilinear interpolation. The laminar flamelet model look-up table contains the scalar

dissipation rate as well, so the values are calculated using the trilinear interpolation.

Once the mean species mass fraction is obtained from the procedure above, the mean

temperature is calculated through Eq. (2.4) in conjunction with the enthalpy obtained

by solving the energy equation (Eq. (2.9)).
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Chapter 3

Scalar variance and scalar

dissipation rate modelling

Using the conserved scalar formalism, the local mixing state is described by a pre-

sumed β−function PDF, the accuracy of which relies heavily on the accuracy of the

scalar mean and the scalar variance. Therefore, it is natural to seek a way to improve

the accuracy of the β−function PDF and so our interest moves to how to predict the

scalar mean and the variance accurately.

For the scalar mean, it has been common practice for both URANS and LES to solve

its own transport equation, whose turbulent or SGS scalar fluxes are closed by the

eddy-diffusivity concept. However, URANS and LES use quite different approaches to

obtain the scalar variance, mainly due to computational cost considerations. There-

fore, the present study focuses on the modelling of the scalar variance and the scalar

dissipation rate. In this matter, existing methodologies for URANS and LES are

reviewed first and a new approach will be proposed later.
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3.1 Scalar variance and scalar dissipation rate modelling in URANS

3.1 Scalar variance and scalar dissipation rate mod-

elling in URANS

3.1.1 Scalar variance modelling

The Favre-averaged mean of the scalar (mixture fraction) can be obtained using the

first moment:

Z̃ =

∫
ZP̃ (x)dx. (3.1)

The variance of the scalar can be obtained using the second moment:

Z̃ ′′2 =

∫
(Z − Z̃)2P̃ (x)dx

= Z̃2 − Z̃2, (3.2)

where Z ′′ = Z − Z̃ is the fluctuation part of the scalar in this study according to the

Reynolds decomposition (i.e., time-averaging).

Given the definition of the scalar variance in Eq. (3.2), the scalar variance equation

can be obtained by manipulating Eq. (2.54) as

∂ρZ̃ ′′2

∂t
+
∂ρũjZ̃ ′′2

∂xj
= −

∂

∂xj

(
ρũ′′jZ

′′2
)
− 2ρũ′′jZ

′′
∂Z̃

∂xj

+
∂

∂xj

(
ρD

∂Z̃ ′′2

∂xj

)
− 2ρD

˜∂Z ′′

∂xj

∂Z ′′

∂xj
. (3.3)

The unclosed terms are closed using the eddy diffusivity concept [62]:

ũ′′jZ
′′ = −ρDt

∂Z̃

∂xj
, (3.4)

ũ′′jZ
′′2 = −ρDt

∂Z̃ ′′2

∂xj
. (3.5)
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3.1 Scalar variance and scalar dissipation rate modelling in URANS

In the semi-closed form, the scalar variance equation can be written as

∂ρZ̃ ′′2

∂t
+
∂ρũjZ̃ ′′2

∂xj
=

∂

∂xj

[
ρ (D +Dt)

∂Z̃ ′′2

∂xj

]
+ 2ρDt

(
∂Z̃

∂xj

)2

− ρχ̃, (3.6)

where the scalar dissipation rate,

χ̃ = 2D
˜∂Z ′′

∂xj

∂Z ′′

∂xj
, (3.7)

needs to be closed. It should be noted that the scalar variance and its dissipation

rate must be solved via a coupled system.

3.1.2 Scalar dissipation rate modelling

The scalar dissipation rate in URANS has been commonly modelled through an al-

gebraic model assuming that the ratio, Rτ , of mechanical and scalar time scales is

constant. The mechanical time and length scales in URANS can be written as

τu ∼ k̃/ε̃, (3.8)

ℓu ∼ k̃3/2/ε̃. (3.9)

By dimensional analysis [69], the scalar time and length scales can be written as

τs ∼ Z̃ ′′2/χ̃, (3.10)

ℓs ∼ Z̃ ′′2
3/2
ε̃1/2/χ̃3/2. (3.11)

Setting τu ≃ τs or ℓu ≃ ℓs gives the algebraic model:

Rτ =
k̃/ε̃

Z̃ ′′2/χ̃
→ χ̃ = Rτ

ε̃

k̃
Z̃ ′′2, (3.12)
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3.1 Scalar variance and scalar dissipation rate modelling in URANS

which describes the scalar dissipation rate by relating the scalar variance linearly to

the large eddy turnover time. Rτ = 2.0 has been commonly used according to the

experiment of Beguier et al. [2]. As mentioned earlier, it has been reported that the

ratio Rτ is not always constant in many different turbulent flows but there is evidence

to believe that the time scale ratio varies for different flows [11, 59]. Therefore, a

transport equation for the scalar dissipation rate is required.

Several transport equations for the scalar dissipation rate have been published in

the literature and a summary of the existing models is provided in the study by

Sanders and Gokalp [78]. In the present study, the equation proposed by Jones and

Musonge [31] is introduced as

∂ρχ̃

∂t
+
∂ρũjχ̃

∂xj
=

∂

∂xj

[(
µ

Sc
+

µt

Sct

)
∂χ̃

∂xj

]
− C1ρ

χ̃2

Z̃ ′′2
− C2ρ

ε̃

k̃
χ̃

−C3ρ
ε̃

k̃
ũ′′jZ

′′
∂Z̃

∂xj︸ ︷︷ ︸
−Pf

−C4ρ
χ̃

k̃
ũ′′i u

′′
j

∂ũi
∂xj︸ ︷︷ ︸

−Pk

, (3.13)

where Pk is the production of turbulent kinetic energy, Pf is the production of scalar

fluctuations, and C1, C2, C3, C4 are model constants. It is well-established that in

an inhomogeneous flow, the transport equation for the scalar dissipation rate should

contain production terms, due to scalar and velocity gradients, and dissipation terms,

due to scalar as well as mechanical destruction of fluctuations [31]. Using the gradient-

diffusion hypothesis and the turbulent eddy viscosity concept, the unclosed terms in

Eq. (3.13) are modelled as

ũ′′jZ
′′ = −Dt

∂Z̃

∂xj
, (3.14)

ũ′′i u
′′
j

∂ũi
∂xj

= −νt|S̃|
2. (3.15)
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Finally, the transport equation for scalar dissipation rate is written as

∂ρχ̃

∂t
+
∂ρũjχ̃

∂xj
=

∂

∂xj

[(
µ

Sc
+

µt

Sct

)
∂χ̃

∂xj

]
− C1 ρ

χ̃2

Z̃ ′′2︸ ︷︷ ︸
(I)

−C2 ρ
2Cµk̃

µt
χ̃

︸ ︷︷ ︸
(II)

+C3
ρCµk̃

Sct

(
∂Z̃

∂xj

)2

︸ ︷︷ ︸
(III)

+C4 µt
χ̃

k̃
|S̃|2

︸ ︷︷ ︸
(IV )

. (3.16)

This equation contains production terms, due to scalar and velocity gradients [(III),

(IV )], and dissipation terms, due to scalar and mechanical destruction of fluctuations

[(I), (II)].

3.2 Scalar variance and scalar dissipation rate mod-

elling in LES

3.2.1 Scalar variance modelling

Following Jiménez et al. [28], the SGS scalar variance1 in LES is defined as

Z̃ ′2 = Z̃2 − Z̃2, (3.17)

where Z ′ = Z − Z̃ is the fluctuation part of the scalar at subgrid-scale in this study

for LES. It should be noted that the scalar mean and variance for URANS and LES

have same forms. See Appendix A for details.

While a transport equation is solved for the scalar variance in URANS, the scalar

variance in LES has commonly been obtained by algebraic models, such as the scale

1It is not a trivial to remind that the SGS scalar variance is denoted ‘scalar variance’ in short.
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similarity model and the gradient-based model, mainly in order to reduce computa-

tional time. Since one of objectives in the present work is to propose a new approach

to calculate the scalar variance in LES, it is worth reviewing the existing models.

The scale similarity model [13, 14] assumes that the behavior of SGS energy is self-

similar over the turbulent scales and it reads

Z̃ ′2 = Css

(
̂̃
ZZ̃ −

̂̃
Z
̂̃
Z

)
, (3.18)

where ·̂ is a test filter. In this study the test filter is taken as ∆̂ = 2∆. Css is a model

constant that must be given prior to the calculation.

However, two potential problems arise with this model. One is that the scale similarity

model is formulated for a well-developed scalar spectrum following turbulent inertial

behavior which might be not applicable to all turbulent flows. The other, and perhaps

the more important, is that the model constant has to be specified prior to the

calculation. It has been argued that the constant is a flow dependent variable [30].

Moreover, there is no reason to expect that a universal value for the model constant

exists.

The gradient-based model [64] reads

Z̃ ′2 = Cg∆
2
|∇Z̃|2, (3.19)

where the model constant Cg needs to be determined. In this model the scalar vari-

ance is calculated based on the gradient of the scalar mean, which is the production

mechanism of the scalar variance. The local filter width, ∆, serves as the length scale

of the SGS turbulence and is adjusted to estimate the length scale of the SGS fluxes

through Cg using a dynamic procedure [23].

Although existing scalar variance models for LES have been incorporated with com-

bustion models and have demonstrated successful results, it should be noted that

these existing models calculate the scalar variance independently, viz., there is no di-

rect interaction between the scalar variance and its dissipation rate. In contrast, the
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3.2 Scalar variance and scalar dissipation rate modelling in LES

present work proposes to add a transport equation for the scalar variance to the LES

system of the equations, so that only a single model is needed to represent dissipation

and effects of mixing in the evolution of the scalar variance.

Similar to Eq. (3.6) in URANS, the filtered scalar variance transport equation in LES

can be written as

∂ρZ̃ ′2

∂t
+
∂ρũjZ̃ ′2

∂xj
=

∂

∂xj

[
ρ(D +Dsgs)

∂Z̃ ′2

∂xj

]
+ 2ρDsgs

(
∂Z̃

∂xj

)2

− ρχ̃sgs, (3.20)

where the unclosed SGS scalar dissipation rate2,

χ̃sgs ≡ 2D
˜∂Z ′

∂xj

∂Z ′

∂xj
, (3.21)

needs to be modelled.

3.2.2 Scalar dissipation rate modelling

The scalar dissipation rate in LES has been modelled using the local equilibrium

assumption in previous studies [14, 34, 63]. By equating the production term to the

scalar dissipation rate in Eq. (3.20), one may obtain

χ̃sgs = 2Dsgs

(
∂Z̃

∂xj

)2

. (3.22)

Under this local equilibrium assumption, Eq. (3.20) becomes a simple convection-

diffusion equation which has no production or dissipation terms. As explained earlier,

this is problematic because the SGS scalar variance does not decay and thus complete

mixing of reacting species is not attainable [28].

2The SGS scalar dissipation rate is denoted ‘scalar dissipation rate’ in this study.
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Alternatively, Jiménez et al. [28] proposed to solve the scalar variance transport equa-

tion (Eq. (3.20)) in conjunction with an algebraic model for the scalar dissipation rate

based on the ratio of the mechanical and the scalar time scales, similar to that used

in URANS (Eq. (3.12)). The scalar dissipation rate by Jiménez et al. reads

χ̃sgs =
1

Sc

ε̃sgs

k̃sgs
Z̃ ′2 =

[
ν + (CS∆)2|S̃|

]

ScCI∆
2 Z̃ ′2, (3.23)

where the SGS kinetic energy (k̃sgs) and its dissipation rate (ε̃sgs), which are not

readily available in standard LES (viz., k̃sgs and ε̃sgs are not required to determine

SGS scales), are modelled as

ε̃sgs = 2
[
ν + (CS∆)2|S̃|

]
S̃ijS̃ij , k̃sgs = 2CI∆

2
S̃ijS̃ij , (3.24)

where CS is the Smagorinsky SGS model constant and CI is a model constant sug-

gested to 0.07 by Jiménez et al..

It should be noted that the inclusion of the molecular viscosity (ν = µ/ρ) in Eq. (3.24)

seems to be inadequate to model the fluctuating part. Furthermore, this model may

not be suitable for application to complex flows because the turbulent scalar time

scale is not necessarily linearly related to the mechanical time scale in such flows, as

discussed in Section 3.1.2. Therefore, solving a model transport equation to obtain

the scalar dissipation rate, χ̃sgs, is important for obtaining credible mixing results

using LES.

3.2.3 New scalar dissipation rate modelling

Similar to the URANS models described in Section 3.1.2, a new algebraic LES model

and a new transport LES model for the scalar dissipation rate are proposed in this

study. Both new models for the scalar dissipation rate require a formulation of the
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mechanical time scale, which is obtained using the SGS kinetic energy (k̃sgs) and its

dissipation rate (ε̃sgs). Since k̃sgs and ε̃sgs are not readily available in the standard

LES approach, both variables must be defined first.

At high Reynolds numbers, ε̃sgs can be scaled reasonably well by

ε̃sgs = Cε
k̃
3/2
sgs

∆
, (3.25)

where ∆ is the filter length and Cε = 0.7 is taken from Pope [69]. By assuming a

local equilibrium flow, one may obtain

ε̃sgs = −τij S̃ij = νsgs|S̃|
2, (3.26)

where νsgs = (CS∆)2|S̃|.

Using Eqs. (3.25) and (3.26), ε̃sgs/k̃sgs can be obtained as

ε̃sgs

k̃sgs
= CD|S̃|, (3.27)

where CD = (CεCS)
2/3 = 0.17 with CS = 0.1. ε̃sgs/k̃sgs can be interpreted as the

turbulence frequency.

As discussed in Eq. (3.12), the turbulence frequency (Eq. (3.27)) is commonly used to

estimate the turbulent scalar frequency (χ̃sgs/Z̃ ′2). Therefore, a new algebraic model

based on this ratio is proposed:

Rτ =
k̃sgs/ε̃sgs

Z̃ ′2/χ̃sgs

→ χ̃sgs = RτCD|S̃|Z̃ ′2. (3.28)

Alternatively, another new model for the dissipation rate in LES is proposed based

on the transport equation model of Jones and Musonge [31] (Eq. (3.13)). The new
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3.2 Scalar variance and scalar dissipation rate modelling in LES

model utilizes a time scale consistent with the Smagorinsky SGS model. A new

scalar dissipation rate equation can be derived combined with the SGS time scale

from Eq. (3.27). The semi-closed scalar dissipation rate equation can be written as

∂ρχ̃sgs

∂t
+
∂ρũjχ̃sgs

∂xj
=

∂

∂xj

[(
µ

Sc
+

µsgs

Scsgs

)
∂χ̃sgs

∂xj

]
− C1ρ

χ̃2
sgs

Z̃ ′2
− C2ρ

ε̃sgs

k̃sgs
χ̃sgs

−C3ρ
ε̃sgs

k̃sgs
ũ′jZ

′
∂Z̃

∂xj
− C4ρ

χ̃sgs

k̃sgs
ũ′iu

′
j

∂ũi
∂xj

. (3.29)

The unclosed terms can be modelled using the eddy diffusivity concept and the

Smagorinsky SGS model as

ũ′jZ
′ = −Dsgs

∂Z̃

∂xj
,

ũ′iu
′
j

∂ũi
∂xj

= −νsgs|S̃|
2. (3.30)

Finally, the new scalar dissipation rate equation can be written as

∂ρχ̃sgs

∂t
+
∂ρũjχ̃sgs

∂xj
=

∂

∂xj

[(
µ

Sc
+

µsgs

Scsgs

)
∂χ̃sgs

∂xj

]
− C1ρ

χ̃2
sgs

Z̃ ′2
− C2CDρ|S̃|χ̃sgs

+C3CD
µsgs

Scsgs
|S̃|

(
∂Z̃

∂xj

)2

+ C4CDρ|S̃|χ̃sgs, (3.31)

where C1, C2, C3, C4 are the model constants.
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Chapter 4

Numerical Methods I:

Discretization and Parallelization

The governing equations are discretized and implemented in the STREAM code [44]

using the finite-volume method. The STREAM code is based on general non-orthogonal

coordinates and employs a collocated storage arrangement for all transport variables.

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm [60] is

used to enforce mass conservation and to solve the pressure-velocity coupling. A well-

known checker-board oscillation problem, which can occur in the collocated storage

arrangement, is resolved by adopting Rhie and Chow interpolation [73] that interpo-

lates the cell face velocities from the adjacent nodal velocities at the cell centers. All

the spatially discretized equations are integrated in time using a second-order three-

level time-stepping method. It should be noted that the general aspects of numerical

methods used for URANS and LES are same but it is mentioned if necessary.

In order to deal with long computing times, especially those required for LES, the

STREAM code is parallelized using MPI [51]. The domain-decomposition method is

employed and the parallelized code is optimized to run on the distributed memory

systems by minimizing communication overhead.
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4.1 Finite Volume Discretization

In the first section of this chapter, the discretization schemes in the finite volume

method and the boundary conditions are presented, and the code parallelization and

its performance are discussed later.

4.1 Finite Volume Discretization

The coordinate transformation, which maps the physical domain into the computa-

tional domain such that the uniform rectangular grid in the computational domain

corresponds to a non-uniform curvilinear grid in the physical domain, is first sought.

The variables (x, y, z) are transformed from physical space into (ξ, η, ζ) in the com-

putational domain by the relationships:

ξ = ξ(x, y, z), (4.1)

η = η(x, y, z), (4.2)

ζ = ζ(x, y, z). (4.3)

Following the transformation above, a transport equation governing a flow property

φ can be written in terms of (ξ, η, ζ) as

∂ρφJ

∂t
+

∂

∂ξj

[
ρUjφ− ρΓφJqjj

∂φ

∂ξj

]
= ρJSφ, (4.4)

where U1 = U, U2 = V, U3 = W and ξ1 = ξ, ξ2 = η, ξ3 = ζ for the index j = 1, 2, 3.

The contravariant velocities (U, V,W ), which satisfy the mass continuity equation,

are defined as

U = J(uξx + vξy + wξz), (4.5)

V = J(uηx + vηy + wηz), (4.6)

W = J(uζx + vζy + wζz), (4.7)
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4.1 Finite Volume Discretization

where ξx = ∂ξ/∂x and so on.

The Jacobian matrix [J ] for the transformation is defined as

[J ] =
∂(x, y, z)

∂(ξ, η, ζ)
=



xξ xη xζ

yξ yη yζ

zξ zη zζ




and J is defined as the determinant of the transformation matrix. The coefficients

q11, q22, q33 are

q11 = ξxξx + ξyξy + ξzξz, (4.8)

q22 = ηxηx + ηyηy + ηzηz, (4.9)

q33 = ζxζx + ζyζy + ζzηz, (4.10)

and these require the inverse matrix of the Jacobian,

[J−1] =



ξx ξy ξz

ηx ηy ηz

ζx ζy ζz


 =

1

J



yηzζ − yζzη xζzη − xηzζ xηyζ − xζyη

yζzξ − yξzζ xξzζ − xζzξ xζyξ − xξyζ

yζzη − yηzξ xηzξ − xξzη xξyη − xηyξ


 .

On the assumption that ∆ξ = ∆η = ∆ζ = 1 in the computational domain, J is, in

fact, the volume of a cell over which the flow-governing equations are integrated. In

the finite volume method, the solution domain is divided into a finite number of small

control volumes. In a collocated grid system which is used in this study, all the flow

variables are calculated and stored at the center of each control volume.

All the transport equations are integrated over the volume shown in Figure 4.1 and

the application of the Gauss divergence theorem results in a balance of convective

and diffusive cell face fluxes and volume-integrated net sources:
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Figure 4.1: Finite volume and storage arrangement.

∫

cv

∂ρφJ

∂t
+

1

∆ξ

[(
ρUφ − ρΓφJq11

∂φ

∂ξ

)

e

−

(
ρUφ − ρΓφJq11

∂φ

∂ξ

)

w

]

+
1

∆η

[(
ρV φ− ρΓφJq22

∂φ

∂η

)

n

−

(
ρV φ− ρΓφJq22

∂φ

∂η

)

s

]

+
1

∆ζ

[(
ρWφ− ρΓφJq33

∂φ

∂ζ

)

t

−

(
ρWφ− ρΓφJq33

∂φ

∂ζ

)

b

]
= Sφ + JSCD,

(4.11)

where Sφ is the average value of the source term over the control volume and SCD

is the cross-diffusion term. Nodal variables are noted by the upper case subscripts

P, E, W, N, S, T, B while values at control volume faces are denoted with the lower

case subscripts, e, w, n, s, t, b. Note that in the current collocated grid arrangement

variables are only stored at the nodes, thus all face values are obtained by interpolating

nodal values [73] .

The time derivative term in Eq. (4.11) is integrated using a three-level time-stepping
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4.1 Finite Volume Discretization

scheme [21] ∫

CV

∂ρφJ

∂t
≈

(
3φn+1 − 4φn + φn−1

2∆t

)
ρnJVP , (4.12)

where VP is the volume of cell. The superscripts n+1, n, n−1 represent the current,

one-step previous and two-step previous times, respectively.

Sources are discretized via a single-point quadrature and are linearized as follows:

Sφ = SPφP + SC (4.13)

with SP being so chosen as to be unconditionally negative.

As shown in Eq. (4.11), the normal diffusion terms are treated implicitly. For example,

the normal diffusive flux at the east face is approximated using the second-order

Central Difference Scheme (CDS) [21]:
(
ρΓφJq11

∂φ

∂ξ

)

e

=

(
ρΓφJq11

∆ξ

)

e

(φE − φP ). (4.14)

While normal diffusion is discretized implicitly, the cross-diffusion terms, which are

evaluated by trilinear interpolation, are explicitly treated as source terms.

Application of the above approximations into the volume-integrated equation gives

APφP =
∑

m=E,W,N,S,T,B

Amφm + SC +

(
ρnJ

4φn − φn−1

2∆t

)

P

, (4.15)

where

AE = (ΓφJq11)e − 〈|(ρnU)e, 0|〉 ,

AW = (ΓφJq11)w − 〈|(ρnU)w, 0|〉 ,

AN = (ΓφJq22)n − 〈|(ρnU)n, 0|〉 ,

AS = (ΓφJq22)s − 〈|(ρnU)s, 0|〉 ,

AT = (ΓφJq33)t − 〈|(ρnU)t, 0|〉 ,

AB = (ΓφJq33)b − 〈|(ρnU)b, 0|〉 ,

AP = AE + AW + AN + AS + AT + AB − SP +

(
3ρnJ

2∆t

)

P

. (4.16)
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4.1 Finite Volume Discretization

The face value of φ is initially approximated in Eq. (4.16) using the first-order upwind

scheme [21].

Pursuing higher accuracy in handling the convective fluxes, the second-order Up-

stream Monotonic Interpolation for Scalar Transport (UMIST) scheme, which is a

total variation diminishing (TVD) scheme, is adopted for the URANS calculations.

Full details are described in Lien [43]. For a flow moving in the positive x−direction

where the convecting velocity ue > 0,

φe = φP +
1

2
ψ(r)(φE − φP ), (4.17)

where

r =
φP − φW

φE − φP
, (4.18)

and

ψ(r) = max[ 0, min(2r, 0.25 + 0.75r, 0.75 + 0.25r, 2) ]. (4.19)

It is known that CDS tends to produce spurious oscillations (or wiggles) when the

local cell Peclet number, a measure of the relative strength of advection to diffusion,

is large as reported in Versteeg et al. [84]. TVD schemes are formulated to provide

oscillation-free solutions, but they are more numerically dissipative than CDS. A TVD

scheme can be used in Monotonically Integrated LES (MILES) [76] as a combination

of CDS with an additional numerical dissipation term to damp out the potential

spurious oscillations.

In order to avoid excessive damping of the turbulent fluctuations in the flow simula-

tion, CDS, which is less numerically dissipative than a TVD scheme, is widely used

for LES. Therefore, CDS is adopted for LES calculations in the present study. The

cell face value of any variable using CDS is obtained by

φe =
1

2
(φP + φE) . (4.20)

In this study, the pressure, which is shown in the momentum equation (Eq. (2.2)),

is calculated by solving the pressure-correction equation following the SIMPLE algo-

rithm [60] and thus the pressure is governed indirectly through the continuity equa-

tion. The pressure-correction equation is derived by combining the discretized forms
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Figure 4.2: Boundary condition in the near-wall region.

of the momentum and continuity equations to give an equation linking the pressure

correction at a node to its neighbours. Because of the collocated grid arrangement

used in this study, a simple interpolation of nodal velocities to the control volume

faces can lead to a decoupling between the velocity and pressure fields [60], in which

the velocity field cannot sense a pressure difference on the order of the mesh spacing.

This so-called checker-board situation leads to grid-scale oscillations. Following Rhie

and Chow [73] this study uses a nonlinear interpolation scheme, in which an addi-

tional pressure smoothing term is included in the calculation of the face velocities.

See [43] for details.

4.2 Boundary conditions

4.2.1 Inflow and outflow

The inflow condition for URANS is specified by the Dirichlet condition, in which

a mean velocity profile normal to the inlet is prescribed and the lateral velocity is

assumed to be zero. Furthermore, the turbulent variables are prescribed following
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4.2 Boundary conditions

experimental data. The inflow condition is more problematic in LES calculations.

LES of a spatially inhomogeneous flow, such as the bluff-body flow in this study,

requires turbulent boundary conditions which must reflect the three-dimensional and

unsteady nature of turbulence. This feature makes the results strongly depend on the

velocity data prescribed at the inflow and constitutes a vicious circle: turbulence has

to be prescribed at the inflow in order to simulate turbulence. The most desirable

method for the inflow condition would be conducting a separate LES simulation

to generate inflow condition data with sufficient turbulent kinetic energy; however,

this simulation is also a full-scale and therefore requires additional time. Instead,

the present study uses a so-called white noise inflow condition in which random

fluctuations are added to a uniform velocity profile at the inflow plane. Furthermore,

the inlet plane location is moved back to give the flow room to develop.

At the outflow plane, a Neumann boundary condition is given in URANS:

∂φ

∂n
= 0, (4.21)

where n is the coordinate in the direction of the outward normal at boundary. For

LES, a convective boundary condition is specified:

∂φ

∂t
+ c

∂φ

∂n
= 0, (4.22)

where c is the convecting velocity.

The ambient pressure is set on the shell of the domain, and the pressure at the inflow

and outflow planes are specified by using the Neumann condition. The Reynolds-

averaged (Eq. (2.54)) or filtered scalar equation (Eq. (2.56)) is solved with the Dirich-

let condition at the inflow plane and the Neumann condition specified at the outflow

boundaries. The simulation details of URANS and LES are summarized in Table 4.1.
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Figure 4.3: Boundary condition in the near-wall region.

4.2.2 Wall

The wall is the most common boundary type of solid encountered in confined flow

problems. A no-slip Dirichlet condition is generally applied to all the velocity com-

ponents at solid walls. For turbulent boundary layers, modelling the viscous sublayer

adjacent to the wall is very difficult due to the small thickness of this layer. In order

to resolve all of the viscous sublayer, buffer layer and log-law region we require very

fine grid points in the near-wall region. At high Reynolds numbers, it is computa-

tionally expensive to resolve these viscous small-scale motions near the wall due to

the fine-grid resolution near the wall. In order to reduce the computational cost in

the near-wall regions, a wall function, based on the logarithmic law-of-the-wall, is

URANS LES

Turbulence model k − ε model Smagorinsky SGS model

Convection scheme UMIST [44] CDS

Inflow condition Uniform velocity Uniform velocity+10% random

Outflow condition Neumann Convecting BC

Table 4.1: Simulation details in URANS and LES.
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4.2 Boundary conditions

often used to mimic the effects of near-wall turbulence. The wall function allows the

viscous sublayer adjacent to the wall to be bridged through a mathematical model.

The log-law is given by

u+ =





1
κ
ln(y+) +B if y+ > 11.63

y+ if y+ ≤ 11.63

, (4.23)

where

u+ = u/uτ ,

uτ =
√
τw/ρ,

y+ = ρuτy/µ. (4.24)

uτ is the friction velocity and y+ is a viscous unit coordinate. The von Karman

constant κ is set to 0.41 and B = 5.5 for a smooth wall. Using Eq. (4.23) in k − ε

model, the log-law is modified as

k =
u2τ√
Cµ

, ε =
u3τ
κy
. (4.25)

Although the wall function is applied at the first grid node adjacent to the wall and

this node should lie in the logarithmic layer (y+ > 30) where the log-law is valid, it is

a common practice that the first node can be placed at y+ > 11.6 following Versteeg

et al. [84], where y+ = 11.6 represents the intersection of the linear sublayer law (i.e.,

u+ = y+) and the log-law.

For the first grid point adjacent to the wall, the wall shear stress τw is calculated in

URANS using:

τw =





ρC
1/4
µ k1/2

u+ utp if y+ > 11.63

µ
ut
p

yp
if y+ ≤ 11.63

, (4.26)
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Figure 4.4: Domain decomposition and communication cells.

where utp is the tangential velocity at node P .

For the bluff-body LES calculations, the wall boundary condition needs to be rede-

fined simply because the turbulent kinetic energy in LES is not available in this study.

The wall boundary condition in LES reads

τw =





ρu2τ
ut
p

|up|
if y+ > 11.63

µ
ut
p

yp
if y+ ≤ 11.63

(4.27)

4.3 Code Parallelization

There are two methods commonly used to parallelize a code; either the code is written

as a number of separate programs that communicate with each other via message
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4.3 Code Parallelization

passing, or the program is written as a conventional program with a single thread of

control, and a compiler converts the code into an program that operates on its data in

parallel [58]. In this study, the STREAM code is parallelized by the message passing

technique using the MPI library [51]. A single computational domain is divided into

several sub-domains, which are processed while the exchange of information between

sub-domains is achieved through message passing. In the present study, the SPMD

(Single Program Multiple Data) model is used for the parallelization. This means

that the parallelized code is same for all involved processors, but each processor

has different boundary conditions and thus gives different results. In developing the

parallel STREAM code, the following key ideas are considered:

1. The parallelized code should give the same result with the serial code no matter

how the computational domain is divided.

2. Each code on each processor is the same but has different boundary conditions.

3. Message passing is hardware independent and achieved by using a standard

message passing library such as MPI.

4. Sub-domains are best divided to place equal load on each processor.

5. Communication overhead including idle time, which occurs when the processor

waits for receiving data from another, needs to be minimized.

As shown in Figure 4.4, the computational domain for turbulent channel flow, which

will be discussed in Sec. 5.1, is divided into several sub-domains and each sub-domain

has communication cell (ghost cell) for sending and/or receiving boundary data from

the neighbouring sub-domain.

Figure 4.5 presents a closer look at the boundary communication between sub-domains.

Boundary values in a sub-domain are updated at every time step through the bound-

ary communication. To this end, as shown in the figure, the values at each sub-

domain boundary are passed into the ghost cell in the neighbouring sub-domain and
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Figure 4.5: Data exchange between sub-domains.

vice versa. The exchange of the boundary values is thus conducted at every compu-

tational boundary which has a neighbouring sub-domain.

The parallelized STREAM code is tested by measuring the speed-up and the parallel

efficiency, which are quite common practices in parallelization performance testing.

The speed-up ratio is defined by

SP =
T1
TP
, (4.28)

where T1 is the elapsed time of the simulation with one processor and TP is the

elapsed time with multiple processors. Figure 4.6(a) shows the speed-up ratio up

to 16 processors on AMD Opteron machines with a Myrinet interconnection; the

parallelized STREAM code runs about 14 times faster while using 16 processors.

This speed-up ratio, which gives an idea about the code scalability, increases linearly

with the number of processors for the problem of interest. Therefore, it can be said

that the parallelized STREAM code shows great scalability up to 16 processors.
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Figure 4.6: Parallel efficiency (dash line) and speed-up ratio (solid line) using 16

processors.

The parallel efficiency EP , which shows how well the processors are utilized while

running in parallel, is defined as

EP (%) =
SP

nP
× 100, (4.29)
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Figure 4.7: MPI deadlock case and resolution.

where nP is the number of processors. In general the parallel efficiency is less than 1,

and so doubling the number of processors decreases the runtime by less than half. The

parallelized STREAM code is run on up to 16 processors. As seen in Figure 4.6(b),

the STREAM code gives about 90% parallel efficiency and so the processors involved

are well-utilized. This also shows that the computational domain is appropriately

divided and distributed to each processor while minimizing communication overhead.

The overhead would be large if the allocated sub-domain on each processor took a

relatively short time to finish the calculation compared to the communication time.

Using blocking communication in MPI ensures the completion of communications.

Details of implementation are not presented here. Instead, one issue and resolution

of blocking communication that was encountered in the process of parallelization is

explained as follows. The periodic boundary condition is adopted in simulating a

turbulent channel flow in Section 5 in order to reduce the computational cost because

it simulates a small part of large domain assuming the small part is replicated. When

blocking communications such as MPI Send() and MPI Recv() in MPI library are
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4.3 Code Parallelization

applied to this boundary condition, a well-known MPI-deadlock problem occurs.

The function MPI Send() does not complete until the memory buffer is empty (i.e.,

the receiver has received all data). For example, the computational domain is divided

into two sub-domains such as block 0 and block 1 . In the periodic boundary condition,

block 0 has block 1 as the left-side neighbour and block 1 has block 0 as the right-side

neighbour. For right-side boundary value communication, block 0 does MPI Send()

to block 1. However, this communication would not complete because block 1 is

also sending its right-side boundary value to block 0 due to the periodic boundary

condition. Note that the STREAM code is parallelized using SPMD model so that

it has same code for each processor. This situation is called MPI-deadlock and the

code is not running anymore but just waiting.

Even though there are many different solutions to this problem, in author’s opinion,

it seems easiest to require that the order of communications be slightly modified to

avoid this simultaneous sending or receiving situation; in the modification, block 1

does MPI Recv() first and MPI Send() later as illustrated in Figure 4.7. This helps

MPI-deadlock to disappear so that the periodic boundary condition works without

difficulty.
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Chapter 5

Numerical methods II: Code

validation

Validation of the implementation of LES and its parallelization is a very important

step in establishing trust in the results of the present study. The implementation of

the Smagorinsky SGS model is validated and the capability of the model is analyzed

through the investigation of a turbulent channel flow, which has become a benchmark

test case in the field of LES. Since the present study aims to simulate bluff-body flow,

channel flow is an appropriate validation case because both of flows involve walls.

However, the detail turbulent structure of bluff-body wall is not an interest.

In this chapter a brief introduction to the physics of turbulent channel flow is first

presented and a short review of related work is provided. Aspects related to the

set-up of the simulations are described and the results are discussed by comparison

to DNS data [37].
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5.1 Turbulent channel flow

Figure 5.1: Geometry for fully developed plane channel flow.

5.1 Turbulent channel flow

Fully developed channel flow is a well-known test case and is chosen for several rea-

sons. Firstly, it is probably the simplest and the most idealized wall-bounded flow

imaginable which illustrates important effects of mean shear and wall influence. The

flow is statistically homogeneous in the streamwise and spanwise directions. Which

decreases the computational cost and allows for some important analytical relations

that aid in the interpretation of the results. Secondly, the channel flow is a very

sensitive test case for LES and accurate prediction of turbulent channel flow remains

a great challenge in spite of its geometrical simplicity.

The turbulence in the channel flow is characterized by the wall-friction Reynolds

number Reτ = δuτ/ν, where δ is half the channel width and uτ = (ν|du
dy
|w)

1/2 is the

wall friction velocity. Several authors have investigated turbulent channel flow; to

the author’s knowledge, the most well-known is probably the DNS study by Kim et

al. [37]. The computational domain employed by Kim et al. was 4πδ×2δ×2πδ in the

streamwise, wall-normal and spanwise directions, and was concluded to be sufficient

to yield results unaffected by the periodic boundaries. A standard pseudo-spectral

code was utilized with a resolution of 192 × 129 × 160 mesh points, which, for the
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5.1 Turbulent channel flow

Reynolds number Reτ = 180, was concluded to yield a well-resolved flow and accurate

results. Recently, a DNS simulation with Reτ = 590 has been presented by Moser et

al. [55] obtained with the same numerical method.

Through the years, several investigations of channel flow using LES have been pre-

sented. The first computation of turbulent channel flow was actually a LES at

Reτ = 180 performed by Deardoff [18]. Here, a log-layer assumption was applied

for the wall boundary condition and a total of 6720 uniform grid points were utilized.

Later, in the LES of Moin and Kim [54], the boundary layer was fully resolved to

yield information about the turbulent structures in the near-wall area. The near-wall

region of the channel contains flow structures called streaks that are responsible for

a major portion of the turbulence energy production [74], and these structures must

be resolved in order to obtain accurate results. The Reynolds number has in recent

LES simulations of Sarghini and Piomelli [79] been increased to Reτ = 1050.

Plane channel flow has become a benchmark test case in LES for presenting new

models by Germano et al. [23] or for evaluating the performance of existing models.

In the study of Härtel and Kleiser [26] a pseudo-spectral method was used for inves-

tigating the behaviour of the Smagorinsky SGS model at different Reynolds numbers

Reτ = 115, 210 and 300. For Reτ = 180, 32×32×64 mesh of points was employed. It

was concluded that errors compared to a DNS in the same study were mainly caused

by the deficiencies of the model in the buffer layer and that these errors were reduced

with increasing Reynolds number. The influence of applying a second-order numeri-

cal method was analyzed by Sagaut et al. [77]. Several SGS models were tested in

a finite difference code at Reτ = 180 and 400. The level of errors was found not to

differ from those reported using higher-order numerical methods and the main flaws

were attributed to the basic SGS model and not to the dynamic procedure applied.

Present simulations are performed for Reτ = 180 using the minimal channel flow. It

has a domain πδ×2δ×0.3πδ in the streamwise, wall-normal and spanwise directions.

It is much smaller than the one used by Kim et al. [37]. The term minimal channel

refers to the smallest flow unit that has been found able to sustain turbulence for

a given Reynolds number [30]. While it is not large enough to provide a realistic
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5.2 Shear stress balance

description of the dynamics of the region in the middle of the channel flow, Jiménez

et al. [30] has shown that it provides a valid representation of the near-wall region.

Hence it is often used in studies of near-wall turbulence. In the present study, the

focus is not on the physics of the flow itself but on the capability of the SGS model and

the parallel performance of the developed code. By simulating the minimal channel

flow, computational time can be saved due to the smaller domain and the SGS models

in LES can be tested for its main functionality; dissipating turbulence fluctuations.

Therefore, the minimal channel flow is adequate for the purpose of code validation in

the present study.

5.2 Shear stress balance

The fully developed plane channel flow has three homogeneous directions including

time; i.e., directions along which statistics do not change, and there are no issues

regarding inflow conditions, which can be problematic in LES. There are also some

analytical results for this flow, which are useful for interpretation. One of the most

useful is the shear stress balance that will be derived below.

The only assumption necessary is that of statistical homogeneity in x, z and t. This

implies that
∂·

∂x
=
∂·

∂z
=
∂·

∂t
= 0 (5.1)

for all quantities except the streamwise mean pressure gradient.

The mean pressure gradient is necessary to drive the flow as shown in Figure 5.2.

The pressure can be decomposed into two parts:

p(x, y, z, t) = P (x) + pperiodic(x, y, z, t), (5.2)

and the gradient can be obtained as

∂p

∂x
=

dP

dx
, (5.3)

∂pperiodic

∂x
= 0. (5.4)
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Figure 5.2: Balancing forces for plane channel flow.

By using Eq. (5.1), the continuity equation Eq. (2.1) for the mean flow becomes

∂u

∂x
=
∂v

∂y
= 0. (5.5)

Integrating this from the lower wall to the other wall with no-slip boundary conditions

yields v = 0 everywhere.

Averaging the streamwise momentum equation Eq. (2.2) using the conditions devel-

oped so far yields

0 = −
1

ρ

∂P

∂x
+ ν

∂2u

∂y2
−
∂u′v′

∂y
−
∂τ12
∂y

. (5.6)

In a similar way, integrating from the lower wall to y, and making the boundary

conditions u = v = 0 at walls, yields

0 = −
1

ρ

∂P

∂x
y + ν

∂u

∂y
|wall − u′v′ − τ12 + τ12 |wall . (5.7)

The average wall shear stress is

ν
∂u

∂y
|wall≡ u2τ , (5.8)
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5.2 Shear stress balance

which defines the friction velocity uτ .

The average residual stress tensor (τ12 |wall) is zero at the wall due to the boundary

conditions, and hence consistent models for τij should satisfy this as well. One then

gets

0 = −
1

ρ

∂P

∂x
y + ν

∂u

∂y
− u′v′ − τ12 − u2τ . (5.9)

With δ denoting the channel half width, setting y = 2δ and making use of the

boundary conditions yields

−
1

ρ

dP

dx
=
u2τ
δ
, (5.10)

which is simply a balance between the pressure gradient and the wall friction. Sub-

stituting this into Eq. (5.9) yields,

ν
∂u

∂y
− u′v′ − τ12 = u2τ

(
1−

y

δ

)
, (5.11)

which shows the necessary balance between the different shear stresses in fully devel-

oped channel flow. Note that this is an exact solution assuming statistically homo-

geneous flow, and it is valid for all turbulence models for τij that satisfy the proper

boundary condition for the stress tensor. With the eddy viscosity hypothesis, the

shear stress balance becomes

ν
∂u

∂y
− u′v′ + νt

(
∂u

∂y
+
∂v

∂x

)
= u2τ

(
1−

y

δ

)
. (5.12)

If the fluctuations of νt and the strain rate are assumed to be uncorrelated, the

equation above becomes

(ν + νt)
∂u

∂y
− u′v′ ≈ u2τ

(
1−

y

δ

)
. (5.13)

Assuming uτ = 1 the total shear stress should have a linear distribution along the

transverse coordinate.
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5.3 Simulation details

The flow geometry and the coordinate are shown in Figure 5.1. The channel size in

the present simulations is taken as a minimal flow unit [30], which is a very effective

domain size to obtain low moment statistics. Here Lx = πδ and Lz = 0.3πδ are

chosen to meet the minimal flow unit. Given this channel domain, two different

grid resolutions (Grid A and Grid B) are simulated; Grid B has a finer wall-normal

resolution than Grid A as shown in Table 5.1. The grid arrangement is uniformly

spaced in the streamwise (x) and spanwise (z) directions respectively. In this study

∆x+ ≈ 23 and ∆z+ ≈ 10 are used in wall unit.

A stretched non-uniform mesh is used in the wall-normal direction as shown in Fig-

ure 5.3. The grid coordinates in this direction are given by

yl = 1 +
tanhΓ(2l/Ny − 1)

tanh(Γ)
, l = 0, . . . , Ny, (5.14)

where yl is the y-coordinate of the lth grid line, and Γ is a stretching factor. A

stretching factor is chosen to fulfill the criteria by Zang [88] for achieving a reliable

LES; ∆x+ < 80 and having ∆z+ < 30 and at least 3 points in the sublayer 0 <

y+ < 10. Although the non-uniformity of the computational mesh can reduce the

accuracy of the differencing scheme, grid stretching is necessary to achieve an effective

resolution of the boundary layer.

Fully developed turbulent channel flow is homogeneous in the streamwise and span-

wise directions; the periodic boundary condition is employed in these directions. At

the wall a no-slip boundary condition is imposed for all velocity components and the

wall function, which is described in Section 4.2.2, is implemented without applying

Case (Nx, Ny, Nz) ∆x+ y+1 ∆y+min ∆y+max ∆z+

Grid A (24, 32, 16) 23 1.01 0.95 30.12 10

Grid B (24, 64, 16) 23 0.66 0.42 14.68 10

Table 5.1: Grid resolutions for the turbulent channel flow simulations.
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Figure 5.3: Computational domain decomposition with communication cells.

the log-law wall function. Instead, in order to achieve some kind of asymptotic be-

haviour in the near-wall area, the length scale is multiplied by a van Driest damping

factor to account for the reduced growth of small scales and to force the SGS viscosity

to vanish at the solid boundary. This explicit wall damping factor is seen to depend

on the non-dimensional wall distance y+. Its importance is reduced throughout the

boundary layer and effectively vanishes for y+ > 100;

Dwall = 1− exp

(
−
y+

A+

)
, (5.15)

where A+ is a constant of 25. Note that this wall damping is not used for the

Smagorinsky SGS model with the dynamic procedure.

The flow is statistically stationary, so the physics of the initial condition is relatively

unimportant and the simulation results should be independent of the initial condition.

However, in practice the initial condition is important because it takes a long time

to obtain enough fluctuations starting from a laminar flow; furthermore, the flow is

easily re-laminarized due to excessive dissipation. Therefore, a so-called coarse-grid

DNS calculation, which has no SGS model, is first performed to generate the initial
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Figure 5.4: Total shear stress balance. o: Smagorinsky SGS model (symbol skipped

by 4), solid line: analytical solution.

.

field and all LES simulations are restarted from this coarse-grid DNS data as the

initial condition. Simulations are run for t = 500Ub/δ before beginning to collect

statistics and a linear variation of the time-averaged total shear stress is examined.

The total shear stress obtained from the Smagorinsky SGS model with Grid B is

compared with the analytical solution (Eq. (5.13)) in Figure 5.4.

Statistics are collected over same period after running for t = 500Ub/δ, where Ub is

a bulk velocity. Statistics of the flow are then averaged over the horizontal plane

(x− z plane) parallel to the channel wall and in time. The time step ∆t∗ = 0.005 for

Grid A and ∆t∗ = 0.002 for Grid B, where t∗ = t/(δuτ), is carefully chosen to satisfy

CFL ≡ u∆t/∆x ≤ 1 throughout the computational domain for each grid resolution.

For most of the calculation time, the CFL number is below 0.5. In Figure 5.5, the

energy spectrum of the channel flow in time is shown. The turbulent channel flow is

fully developed after a certain amount of time integration and the energy spectrum of

the streamwise velocity exhibits a slope close to the Kolmogorov −5/3. This implies

that the LES simulation has adequately resolved most of the energy present in the
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Figure 5.5: Time energy spectra of the channel flow.

turbulent scales of the flow for the streamwise velocity. Because most of the energy

in the flow has been resolved, it is expected that the characteristics of the dominant

flow features predicted by the LES simulation should be nearly independent of the

details of the SGS closure.

Three different simulations varying the SGS model are performed first with Grid A; no

SGS model (NM), a dynamic Smagorinsky SGS model (DM) and a Smagorinsky SGS

model (SM). While the model constant CS is fixed in the SM, the model constant CS in

the DM varies throughout the flow and is determined by the dynamic procedure [23].

The effects of the Smagorinsky SGS models are compared to results obtained without

a SGS model, so-called coarse-grid DNS.

The SM employs the van Driest damping function of Eq. (5.15):

µt = ρ
[
CS(1− (e−y+/A+))∆

]2
|S̃|. (5.16)
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5.4 Results

All simulation results are compared with DNS data from Kim and Moin [37]. As

shown in Figure 5.6(a), the mean velocity profiles for all SGS models Grid A show

quite similar to each other and are in good agreement with the DNS data. A closer

look at these mean velocity profiles tells that the no SGS model (NM) gives the best

agreement with DNS data particularly in the region after y+ = 20. It is not surprising

that a numerical code can produce good results without a SGS model [50] and the SGS

model results are in fact not a large deviation from this state. The log-law line, which

is seen as a dashed line in Figure 5.6(a), follow Eq (4.23). All mean velocity profiles

follow the trend of the logarithmic law but all experience a bump in the vicinity of

the core flow. This bump seems to be attributed to the channel configuration; the

minimal channel. It is towards the center that the presence of the missing outer flow

is felt [37].

In Figure 5.6(a) it is also found for all SGS models that the slope of the logarithmic

law is well-predicted but that the logarithmic law is over-predicted after y+ = 20.

This means that the viscous sub-layer is too thick [81]. The skin friction coefficient,

cf =
τw

1
2
ρU2

b

, (5.17)

is also under-predicted and the results for each case are shown in Table 5.2. The

streamwise velocity fluctuations shown in Figure 5.6(b) are too high, while the vertical

and spanwise fluctuations are too low. The peak location and magnitude are better

predicted by the NM than others. In the Smagorinsky SGS model, the eddy viscosity

damps the flow and the wall stresses decrease; the eddy viscosity seems to be over-

predicted and thus excessively dissipates turbulent energy. These results are typical

at such low grid resolution [39]. If near-wall flow structures are not properly resolved,

the effective shear stress on the wall is reduced. The fluctuations normal to the wall

are under-predicted, which decreases the momentum transfer between the wall and

the core flow. The dominant streamwise fluctuations grow and so does the resolved

turbulent kinetic energy.
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The dynamic Smagorinsky SGS model (DM) shows similar but better results than

the Smagorinsky SGS model (SM). Since the DM does not adopt the wall function

but uses a dynamic procedure by applying a test-filtering operation, it would be

considered that the test-filtering implementation works well. The DM takes a much

longer time to give a converged solution compared to the SM due to the test-filtering

operation. Since the channel flow is simulated only for code validation, the DM is not

re-simulated with Grid B. However, it is worth noting that the dynamic procedure is

re-utilized to simulate the scale similarity model in predicting LES scalar variance in

Section 6.3.2.

The NM and the SM are simulated again on the higher resolution Grid B whose mesh

density is doubled in the wall-normal direction. The mean and rms of the velocities

are presented in Figure 5.7. The mean velocity profiles shown in Figure 5.7(a) are

improved over the results obtained using Grid A. The streamwise fluctuation and

the shear stresses for both models are better predicted than with Grid A. However,

the wall-normal and the spanwise fluctuations are still under-predicted and the peak

location is still not predicted correctly. As seen in the Grid A calculation, it is also

found that there is a bump near the center of the flow.

Having said that the NM shows better results than other Smagorsinky SGS models

in the Grid A calculation, all models with Grid B show very similar results to each

other and are in good agreement with DNS data. This seems reasonable and was

also observed by Majander et al. [50] because the eddy viscosity is quite dependent

Case Skin friction cf cf error

DNS [37] 8.18× 10−3 −

NM [Grid A] 6.667× 10−3 18.4%

DM [Grid A] 6.024× 10−3 26%

SM [Grid A] 6.515× 10−3 20%

NM [Grid B] 7.34× 10−3 10%

SM [Grid B] 6.86× 10−3 16%

Table 5.2: Skin friction coefficients for the turbulent channel flow.
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on the grid resolution. The finer grid simulation predicts all the monitored turbu-

lent quantities well. However, the over-prediction of the streamwise fluctuation and

under-prediction in the wall-normal and spanwise directions are still observed. The

skin friction coefficients for both models are compared in Table 5.2. Similar to the

Grid A simulation, the mean velocity profiles are over-predicted and the skin friction

coefficient is still under-predicted.

5.5 Summary and conclusion

Turbulent channel flow for Reτ = 180 is simulated for the purpose of code validation.

The STREAM code [44], which has been developed for LES calculation and paral-

lelized using MPI in this study, is used for the validation. The domain decomposition

method is successfully employed to decompose the computational domain into sub-

domains and all necessary information is exchanged among the sub-domains using

MPI communications. Simulations have been conducted with two different grid reso-

lutions (Grid A and Grid B) and three different SGS models (no-SGS-model, dynamic

Smagorinsky SGS, Smagorinsky SGS). The channel flow is initialized by turning off

the SGS model (no-SGS-model) and then SGS model simulations are restarted from

there in order to avoid re-laminarization. The Smagorinsky SGS model works well

with either the dynamic procedure or the wall function near the wall. By increasing

wall-normal resolution in Grid B, the mean velocity and the shear stress predictions

are improved but still the streamwise fluctuation is over-predicted and the fluctu-

ations in the wall-normal and the spanwise directions are under-predicted. These

results are typical at such low grid resolutions. However, these are satisfactory for

now since the purpose of this chapter is to check all the components necessary in LES

and parallelization.
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Figure 5.6: Turbulent statistics (Grid A). dash-dot: NM, dash: DM, solid line: SM,

o: DNS data [37].
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Figure 5.7: Turbulent statistics (Grid B). dash line: NM, solid line: SM, o: DNS

data [37].
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Chapter 6

Non-Reacting Bluff-Body flow

Large-eddy simulation (LES) and unsteady Reynolds-averaged Navier-Stokes (URANS)

calculations have been performed to investigate the effects of models for scalar vari-

ance and its dissipation rate (which were introduced in Chapter 3) as applied to a

non-reacting bluff-body turbulent flow. In our new approach, the scalar variance and

its dissipation rate are obtained via a coupled system in which the unclosed scalar

dissipation rate in the scalar variance equation is modelled either algebraically or by

a transport equation. All velocity, time and length scales required to model the scalar

dissipation rate are determined using the k−ε turbulence model for URANS and the

Smagorinsky SGS model for LES. The proposed method is first applied to URANS

and later to LES.

6.1 Sydney bluff-body non-reacting flow

In consideration of the extension to a reacting case, a non-reacting Sydney bluff-body

flow at Re = 33, 333, which is studied experimentally at the University of Sydney and

at Sandia National Laboratories [16], is chosen and simulated using both URANS and

LES. The Sydney burner has complex recirculating flows, similar to those found in
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practical combustors but with much simpler and well-defined boundary and initial

conditions. The Sydney burner has a cylindrical bluff-body with radius Rb = 25

mm (or Db = 50 mm) located in a coaxial flow. Along the centerline, a nozzle of

radius Rj = 1.8 mm ejects air into the recirculation zone. The geometry is shown

in Figure 6.1(a). The air speed in the nozzle is Ujet = 61 m/s and in the coflow

is Ucoflow = 20 m/s. As described in [16], the velocity profiles are measured using

two-color Laser Doppler Velocimetry (LDV). The experiment reported that the error

due to the presence of more than one particle in the measurement volume is believed

to be 4% for the mean and 7% for the rms velocity.

The Sydney bluff-body has a very complex flow pattern. A recirculation zone is

formed immediately behind the bluff-body wall and it is found that two vortices

co-exist in the recirculation zone: an outer vortex close to the air coflow and an

inner vortex located between the outer vortex and the jet. Since it is well-known

that the standard k − ε turbulence model fails to predict complex recirculating flows

satisfactorily, it will be worthwhile comparing the results of URANS and LES to

investigate the potential advantages of using LES in this case.

6.2 Simulation details

The experimental configuration [16] is discretized over a cylindrical computational

domain of diameter 10Rb and length 6Rb. To reduce the influence of the boundaries,

the computational domain is chosen to be significantly larger than the area of interest.

A computational mesh containing (nx, nr, nθ) = (75, 45, 34) grids in the streamwise,

radial and azimuthal directions is initially used for both URANS and LES. By adopt-

ing implicit filtering in LES, URANS codes based on the finite volume method can

LES-A LES-B LES-C

(nx × nr × nθ) 75× 45× 34 150× 45× 34 150× 60× 34

Table 6.1: Test cases with different grid resolutions for LES.
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Figure 6.1: Configuration of the cylindrical bluff-body burner and grid system.

be easily modified to become LES codes. Hence, the comparative study performed in

this work is done using the same grid resolution for both URANS and LES. Although

it would not be possible to simulate as many as 3.4 million cells following [71] using

the present computational resources in our research group, the effect of different grid

resolutions on LES predictions is examined later by varying the grid size along each

axis. Test grid resolutions are given in Table 6.1.
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A Dirichlet condition is specified at the inflow plane for URANS. For LES, random

fluctuations at 10% of the mean flow velocities are added to a uniform velocity profile

at the inflow plane, which is placed at x = −50 mm (cf. Figure 6.1a) in order to give

the flow enough distance to develop. At the outflow plane, a convecting boundary

condition for LES and a Neumann condition for URANS are specified. The ambient

pressure is set at the shell of the domain, and the pressures at the inflow and outflow

planes are specified using the Neumann condition. The Reynolds-averaged or filtered

scalar equation (2.54) is solved with the Dirichlet condition specified at the inflow

plane and the Neumann condition specified at the lateral and outflow boundaries.

The governing equations are discretized and implemented in the STREAM code [44]

using the finite-volume method and the code is parallelized using MPI [87]. While

Unsteady RANS (URANS) is performed to capture the unsteadiness at the edge of

the bluff-body using the UMIST convection scheme [44], the energy-preserving central

difference scheme (CDS) is employed to discretize the convection term in LES. The

standard k − ε turbulence model is used in URANS to close Reynolds stresses, and

the Smagorinsky SGS model with the model constant CS = 0.1 is used in LES to

model the SGS motions. Although many advanced turbulence models exist in the

RANS and LES categories, the standard models for both are used here in order

to minimize effects arising from the turbulence modelling which might obscure the

behaviour of the scalar variance and its dissipation rate models. Details regarding

the boundary/initial conditions and code parallelization can be found in Chapter 4.

6.3 Results

6.3.1 URANS calculation

Previous studies [34, 71] have shown that the burner geometry induces a very complex

flow field, and the non-reacting bluff-body (NRBB) case is thus simulated initially.
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The predicted radial profiles of the mean and rms velocities at different axial lo-

cations (x/Db ∈ 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.8, 2.4, .3.4, 4.4, 5.2) using the standard

k − ε turbulence model are shown in Figures 6.5 to 6.12 and are compared with

experimental data [16].

The axial mean velocities in Figures 6.5 and 6.6 show excellent agreement between

the predicted and the experimental data up to x/Db = 0.6. However, the mean

centerline velocities quickly diffuse, leading to under-prediction further downstream.

The reason for the underprediction of the centerline velocity is possibly due to the

overestimation of radial diffusion as a result of the k−εmodel being an eddy-viscosity-

based turbulence model. The mean radial velocity profiles are presented in Figures 6.7

and 6.8. Similar to the axial mean velocity profiles, the predictions up to x/Db = 0.6

seem fine but severe under-prediction result downstream. Figures 6.9 and 6.10 show

a comparison of rms velocity components plotted in the radial direction from the

centerline at the same axial locations shown in previous figures. The prediction of

the axial and radial rms velocities are arguably satisfactory. Careful inspection reveals

that the axial rms velocity is slightly under-predicted but the radial is over-predicted.

This is mainly due to the isotropic assumption employed in the linear k − ε model

(viz., u′′2 = v′′2 = 2
3
k), which is incorrect in complex recirculating flows. As seen in

Figures 6.9 and 6.11, there are basically two peaks in velocity; one is along the outer

shear layer between the co-flow and outer vortex and the other is along the shear layer

between the jet and the inner vortex in the recirculation zone. All figures related to

mean and rms velocity profiles collectively demonstrate that the essential features of

mean flow field are reasonably captured by the present method.

As seen in Figure 6.2(a), snapshots of the scalar field taken from URANS and LES

look quite different, which is expected because most of the turbulence scales in LES

are resolved while, in contrast, most of the scales in URANS are modelled. While

LES predicts the scalar mean field successfully as shown in Figure 6.2(b), URANS

under-predicts it, particularly along the centerline of the nozzle and it becomes worse

downstream as shown in Figure 6.13. This under-prediction in URANS is likely

caused by the over-estimation of the eddy viscosity in the standard k − ε model, a

85



6.3 Results

R/Db

x/
D

b

-2 -1 0 1 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 0.0206256 0.185895 0.351164 0.516433 0.681703 0.846972 1

(a) Scalar mean field

Normalized radial distance r/R b

S
ca

la
rm

ea
n

0 0.5 1

0

0.25

0.5

0.75

(b) x/Db = 0.6
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well-known deficiency associated with most eddy-viscosity-based RANS models.

The scalar variance equation (Eq. (3.6)) is solved in conjunction with two different

scalar dissipation rate models. One is the algebraic model, Eq. (3.12), and the other

is the transport equation model, Eq. (3.16), which involves four empirical constants.

The initial model constants referred to as Case 1 in Table 6.2 are taken from Jones and

Musonge [31]. As shown in Figure 6.14, Case 1 significantly over-predicts the scalar

variance. One possible explanation for this over-prediction is that the model constants

were originally calibrated for a homogeneous turbulent flow. Therefore, the model

constants need to be re-calibrated in the present study due to the non-homogeneity

of the target flow. Only C1 and C3, which are associated with scalar production and

destruction, are re-calibrated, as shown in Table 6.2. The rationale for this approach

is that gradients of mean velocity field and gradients of scalar mean field differ greatly

between homogeneous and inhomogeneous flows. Since, in Eq. (3.16), the production

term (III) is closely coupled to the gradients of scalar mean field and the destruction

term (I) is sensitive to the scalar variance field, the associated model constants C1

and C3 require re-calibration.

Figure 6.14 shows the scalar variance predictions at four different locations (x/Db =

0.4, 0.6, 0.8 and 1.0) with different sets of model constants. It is observed that Case

1 significantly over-predicts scalar variance and Case 2 conforms the best with the

experimental data. Case 3, which doubles the scalar production term compared to

Case 1, and Case 4, which halves the scalar destruction term compared to Case 1,

yield very similar results, which are approximately an average of the results for Cases

C1 C2 C3 C4

Case 1 2.0 1.8 1.7 1.4

Case 2 1.0 1.8 3.4 1.4

Case 3 2.0 1.8 3.4 1.4

Case 4 1.0 1.8 1.7 1.4

Table 6.2: Test cases with different model constants for the scalar dissipation rate

transport equation.
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1 and 2. In this manner, one may conclude that decreasing the destruction term

(I) or increasing the production term (III) in Eq. (3.16) has similar effects on the

generation of the scalar variance.

In order to see how each source/sink term contributes to Eq. (3.16), the magnitude

of each source/sink term in the equation is compared in Figure 6.3. Obviously Case

2 predicts a higher scalar dissipation rate than Case 1. This explains why Case 2

predicts lower scalar variance than Case 1, as shown in Figure 6.14. In Figure 6.3,

Case 2 predicts the peak value of the scalar dissipation rate to be about 22% higher

than Case 1. This difference in turn leads to approximately 40% difference in peak

values of the scalar variance. In this regard, it can be said that the scalar variance

prediction is quite sensitive to the value of the scalar dissipation rate, which requires

accurate modelling.

The algebraic model shows relatively good results in Figure 6.15, but it is obvious that

the prediction worsens downstream. This under-prediction seems to be attributed to

the flow prediction by the two-equation model. As shown in Figures 6.5 to Figure 6.9,

the mean and rms results under-predict experimental data. It is well known that the

two-equation model over-predicts the spreading rate of the round-jet so that the

solution of the two-equation model becomes more diffusive. This flow field prediction

actually affects the scalar mean field seen in Figure 6.13, where the scalar mean is

under-predicted particularly along the centerline.

The scalar variances predicted by the algebraic model and the transport equation

model (Case 2) are compared in Figure 6.15. Overall, prediction using both the alge-

braic and transport-model predictions agree reasonably well with experimental data.

Careful examination reveals that predictions using the algebraic model deviate more

from the experiment in the range 0 ≤ r/Rb . 0.5 close to the centerline, particularly

at downstream locations (at x/Db = 0.8 and 1.0). This under-prediction appears to

be attributed to the well-known weaknesses of the two-equation k − ε RANS model.

Basically, the algebraic model assumes that the scalar time scale is proportional to

the mechanical time scale. Therefore, under-prediction of the mechanical time scale
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URANS.

leads to over-prediction of the scalar dissipation rate and, hence, under-prediction of

the scalar variance.

As expected, the transport equation model shows its strength in better predicting the

scalar variance at downstream locations (at x/Db = 0.8 and 1.0). At the stations close

to the edge of a bluff-body burner (at x/Db = 0.4 and 0.6; cf. Figure 6.4), however,

both models over-predict the scalar variance, especially in the range 0.2 . r/Rb . 0.7.

As a result, the distribution of scalar variance is still not properly captured by either

of the scalar dissipation rate models used in URANS.
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Figure 6.5: Comparison of axial mean velocities at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 in

the NRBB case using URANS. o: experimental data [16], solid: URANS calculation.
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Figure. 2. Axial velocity U at various location

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
U

(m
/s

)

0 0.5 1 1.5
0

10

20

30
Numerical (STD k- e )
Exp. data

x/D b=1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
U

(m
/s

)

0 0.5 1 1.5
0

10

20

30
Numerical (STD k- e )
Exp. data

x/D b=2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
U

(m
/s

)

0 0.5 1 1.5
0

10

20

30
Numerical (STD k- e )
Exp. data

x/D b=3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
U

(m
/s

)

0 0.5 1 1.5
0

10

20

30
Numerical (STD k- e )
Exp. data

x/D b=4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
U

(m
/s

)

0 0.5 1 1.5
10

15

20

25
Numerical (STD k- e )
Exp. data

x/D b=5.2

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(a) x/D = 1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1 1.5
10

15

20

25
Numerical (STD k- e )
Exp. data

x/D b=5.2

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(b) x/Db = 1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1 1.5
10

15

20

25
Numerical (STD k- e )
Exp. data

x/D b=5.2

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(c) x/Db = 2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1 1.5
10

15

20

25
Numerical (STD k- e )
Exp. data

x/D b=5.2

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(d) x/Db = 3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
U

(m
/s

)

0 0.5 1 1.5
10

15

20

25
Numerical (STD k- e )
Exp. data

x/D b=5.2

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
U

(m
/s

)

0 0.5 1
0

10

20

30
x/D b=1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
U

(m
/s

)

0 0.5 1
0

10

20

30
x/D b=2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
U

(m
/s

)

0 0.5 1
0

10

20

30 x/D b=3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(e) x/Db = 4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(f) x/Db = 5.2

Figure 6.6: Comparison of axial mean velocities at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4, 5.2 in

the NRBB case using URANS. o: experimental data [16], solid: URANS calculation.
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Figure 6.7: Comparison of radial mean velocities at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 in

the NRBB case using URANS. o: experimental data [16], solid: URANS calculation.
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Figure 6.8: Comparison of radial mean velocities at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4, 5.2 in

the NRBB case using URANS. o: experimental data [16], solid: URANS calculation.
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Figure 6.9: Comparison of axial rms velocities at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 in

the NRBB case using URANS. o: experimental data [16], solid: URANS calculation.
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Figure 6.10: Comparison of axial rms velocities at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4, 5.2 in

the NRBB case using URANS. o: experimental data [16], solid: URANS calculation.
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Figure 6.11: Comparison of radial rms velocities at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 in

the NRBB case using URANS. o: experimental data [16], solid: URANS calculation.
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Figure 6.12: Comparison of radial rms velocities at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4, 5.2 in

the NRBB case using URANS. o: experimental data [16], solid: URANS calculation.
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Figure 6.13: Scalar mean prediction at x/Db = 0.4, 0.6, 0.8, 1.0 in the NRBB case

using URANS. o: experimental data [16], dash: URANS calculation.
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Figure 6.14: Scalar variance prediction at x/Db = 0.4, 0.6, 0.8, 1.0 by solving the

scalar dissipation rate transport equation with different model constants in URANS.

o: experimental data [16], dash-dot-dot: Case 1 [31], dash-dot: Case 2, dash: Case 3,

solid: Case 4.
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Figure 6.15: Scalar variance prediction at x/Db = 0.4, 0.6, 0.8, 1.0 by the algebraic

and the transport model in URANS. o: experimental data [16], long-dash: algebraic

model, dash-dot: transport equation model (Case 2).
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6.3.2 LES calculation

The axial and radial velocities at the same axial positions used in the LES calculations

are presented in Figures 6.18 to 6.25. Note that all results in the LES calculations

including the SGS scalar variance and SGS scalar dissipation rate are time-averaged

and compared with experiment data. As explained above, three different grid reso-

lutions listed in Table 6.1 are used to examine the grid dependency of the predicted

results. All simulations are done with the Smagorinsky SGS model with CS = 0.1.

Firstly, it is clear that the axial mean velocity profiles (LES-A) are improved compared

to URANS results which are shown in Figures 6.5 to 6.6. It should be recalled that

LES-A has same grid resolution as the URANS calculation. Although LES-A slightly

over-predicts the axial mean velocities at 0.2 ≤ r/Rb ≤ 0.6 at x/Db = 0.2 and 0.4,

the predicted centerline velocities are less diffusive downstream, where URANS under-

predicts the axial mean velocities severely. Among the three grid resolutions, LES-C

shows the best agreement with experimental data. This is somewhat expected, since

the Smagorinsky SGS model sets a length scale using the grid size. Nevertheless,

all three LES results are quite similar. Figures 6.20 to 6.21 present radial mean

velocity profiles. Compared with URANS, LES-A shows quite similar predictions

over the entire domain. Furthermore, the two other LES calculations show hardly any

improvement in predicting the radial mean velocities. Recent LES studies [34, 71] also

reported a difficulty in predicting the radial velocity profiles. Raman and Pitsch [71]

noted that there seems to be a significant experimental discrepancy [56] and Kempf

et al. [34] mentioned that there is great sensitivity in the flow immediately after the

re-circulation zone. Further investigation refining the azimuthal direction is certainly

required.

The axial and radial rms velocity profiles are shown in Figures 6.22 to 6.25. Overall

prediction of LES calculations seems to be better than URANS. In the axial rms

velocity predictions, LES-A gives a less diffusive prediction along the centerline than

URANS. The axial rms velocities are slightly over-predicted along the centerline and

under-predicted at 0.07 . r/Rb . 1.0 up to x/Db = 1.0. This issue is resolved
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by refining the grid resolution so that LES-B and LES-C show excellent agreement

with experimental data. The peak of the axial rms velocity is slightly over-predicted,

though. All LES calculations predict the axial rms velocity profiles quite well until

x/Db = 2.4 but over-predict them afterwards. The radial rms profiles are predicted

well by all three LES calculations. It is commonly noticed among all calculations that

the centerline rms profiles are slightly over-predicted. Consequently, it is apparent

that LES calculations give better prediction of the mean and rms velocity profiles than

URANS. Furthermore, the finest grid resolution (LES-C) shows the best prediction.

However, in author’s opinion, no great difference in predicting the low order statistics

of turbulence is found in this study.

The scalar mean fields that are obtained by solving its own transport equation are

presented in Figure. 6.26. All three different grid resolutions predict the scalar mean

field well until x/Db = 0.8 and over-predict it afterwards. The over-prediction down-

stream seems to be attributed to the over-prediction of the rms values in flow field.

All results are very close to each other and the marginal variations near the interface

of the inner- and outer-vortex are noticed.

For a comparative study of using URANS and LES, the scalar variance in LES is ob-

tained using a similar approach as that used in URANS. The scalar variance equation

(Eq. (3.20)) is solved using two different scalar dissipation rate models: the algebraic

model (Eq. (3.28)) and the transport equation model (Eq. (3.31)). Here CD = 0.17

in Eq. (3.28) and Rτ = 2.0 in Eq. (3.28) are used.

The calibration of the model constants C1, C2, C3 and C4 in Eq. (3.31) is first per-

formed using the same test matrix listed in Table 6.2. The scalar variance predictions

according to these test cases are shown in Figure 6.27. While Case 1 over-predicts

and Case 2 under-predicts the scalar variance, both Case 3 and Case 4 give fairly

good agreement with the experiment. It is also noticed that Case 3 and Case 4 yield

very similar results, as noticed in Figure 6.14 for URANS calculations, and are the

best results among the four cases examined here. Comparing these LES results with

those predicted by URANS (Figure 6.14), it is found that the scalar variance pre-

dicted by LES for each case is generally lower than those in the URANS solutions.
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Figure 6.16: Turbulence frequencies obtained with URANS and LES. dash: URANS,

solid: LES.

Recall that all equations used in URANS and LES have similar forms (cf. Eqs. (3.16)

and (3.31)). This difference in prediction of the scalar variance is likely due to the

different turbulence time scales employed by URANS and LES.

The turbulence time scales (or reciprocal of the turbulence frequencies) in URANS

and LES are presented in Figure 6.16 using the profiles of the corresponding tur-

bulence frequency (ε̃/k̃ for URANS and ε̃sgs/k̃sgs for LES) at x/Db = 0.4 and 0.6.

The turbulence frequency in LES shows higher maximum values than in URANS,

particularly along the nozzle centerline at r/Rb = 0. This means that the turbu-

lence eddy-turn-over time (which is inversely proportional to the frequency) in LES

is shorter than that in URANS. This higher turbulence frequency in LES appears to

lead to a higher scalar dissipation rate and, hence, to lower scalar variance.

Figure 6.28 compares the scalar variance predicted by the new algebraic model and

by the new transport equation model (Case 3) for the scalar dissipation rate with the

grid resolution of LES-A. The algebraic model under-predicts the scalar variance over

most of the domain and the results become fairly diffusive at downstream locations

(at x/Db = 0.8 and 1.0). The transport equation model for the scalar dissipation rate
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yields very good scalar variance predictions in comparison with experimental data as

shown in Figure 6.28, and it can reproduce the variation of the scalar variance along

the nozzle centerline where URANS fails to do so. Moreover, the over-prediction of

scalar variance by URANS close to the edge of the bluff-body burner at x/Db = 0.4

and 0.6 in the range 0.2 . r/Rb . 0.7 shown in Figure 6.15 is drastically improved

using the transport-equation LES model, particularly in conjunction with the Case 3

model constants (cf. Figure 6.28).

One of the major objectives of this study is to demonstrate the superiority of the new

LES approach, which solves the scalar variance equation with either the algebraic

or the transport equation model for the scalar dissipation rate, over the existing

algebraic scalar variance models employed in the LES community. To this end, the

scale similarity model and the gradient-based model for scalar variance are employed

in this study only for comparison purposes. Predictions using both models are shown

in Figure 6.29. The scale similarity model constant Css = 0.1 is taken from [13].

The dynamic procedure [23] is used to determine the constant Cg in the gradient-

based model. Both existing algebraic-type models severely under-predict the scalar

variance over the entire domain. It is obvious that the new transport model for

the scalar dissipation rate in conjunction with the scalar variance transport equation

gives the best conformance to the experiment. It should be noted that both the scale

similarity and gradient-based models calculate the scalar variance directly without

explicitly involving the scalar dissipation rate.

The performance of using different approaches for the prediction of scalar variance in

LES is compared by constructing the β-function probability density function (PDF)

at (x, r) =(25 mm, 2.5 mm). The corresponding PDF shapes are presented in Fig-

ure 6.17. It can be seen that the shape of the PDF is fairly sensitive to the value

of scalar variance. While the PDF from experimental data at this location shows

an unmixed condition between the scalar and the air (as indicated by two peaks at

Z = 1 and 0, respectively), the scale similarity model and the gradient-based model,

which under-predict the scalar variance, show a certain amount of mixing. In contrast

to these two algebraic models, the new approach of solving both the scalar variance
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Figure 6.17: β-function PDF shapes obtained with various LES approaches at

(x, r)=(25 mm,2.5 mm). o: experimental data, dash: gradient-based model, dash-

dot-dot: scale similarity model, dash-dot: scalar variance transport equation with

algebraic scalar dissipation rate model, solid: scalar variance transport equation with

scalar dissipation rate transport model.

and the scalar dissipation rate transport equations reproduces the unmixed condition

successfully, which is very encouraging. It is anticipated that our proposed approach

for solving scalar variance will improve predictions for reacting flows as well.

Since our new scalar dissipation rate models employ a turbulent time scale consistent

with the Smagorinsky SGS model, in which the filter width is related to the grid

spacing, it is important to study how different grid resolutions affect predictions of

scalar mean and variance. Three different grid sizes listed in Table 6.1 are adopted

for the grid sensitivity study.

Figures 6.30(a) and (c) show the predicted scalar mean field. The scalar mean field

seems to be fairly insensitive to the different grid sizes investigated, but a slight
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difference is noticed in the range 0.1 . r/Rb . 0.5 where the inner vortex (close to

the jet) and the outer vortex (adjacent to the air coflow) meet at r/Rb ≈ 0.3 (cf.

Figure 6.4). The scalar variances are shown in Figures 6.30 (b) and (d). The scalar

variance field is slightly more sensitive to the grid resolution. Comparing the LES-A

and LES-B cases, in which nx(LES-A)/nx(LES-B) = 1/2, the finer grid resolution

in the streamwise direction gives lower predictions of the scalar variance. This is

reasonable because the eddy turn-over time in the resolved scale becomes smaller

or, equivalently, the corresponding turbulence frequency becomes higher. As shown

in Figure 6.16, higher turbulence frequency leads to higher scalar dissipation rate,

resulting in a decrease in the scalar variance. This deficiency might be improved if

the Smagorinsky SGS model constant is determined by the dynamic procedure [23].

Comparison of predicted scalar variance obtained with two URANS and two LES

models (all of which solve the scalar variance from its own transport equation) is

shown in Figure 6.31. As can be seen, the major deficiency with the URANS algebraic

model is that scalar variance is under-predicted along the nozzle centerline, particu-

larly at downstream stations. For example, scalar variance is under-predicted by a

factor of about two compared to the experiment for 0 ≤ r/Rb . 0.3 at x/Db = 1.0.

This deficiency is likely linked to the well-known deficiency of the two-equation k− ε

turbulence model, which tends to overestimate the spreading rate of a round jet i.e.,

a flow in which the diffusion process plays a very important role. Furthermore, it is

also noticed that the algebraic URANS model fails to reproduce the shape of scalar

variance distribution in the range of 0.2 . r/Rb . 0.7. Although the algebraic LES

model under-predicts the scalar variance at all four stations examined likely due to

insufficient grid resolution, the shape of scalar variance distribution near the edge of

the bluff-body burner (at x/Db = 0.4 and 0.6) is much better depicted in comparison

with the algebraic URANS model.
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Figure 6.18: Comparison of axial mean velocities at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2

in the NRBB case using LES. o: experimental data [16], solid: LES-A, dash: LES-B,

dash-dot: LES-C.

108



6.3 Results

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
10

15

20

25
x/D b=5.2

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(a) x/Db = 1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
10

15

20

25
x/D b=5.2

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(b) x/Db = 1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
10

15

20

25
x/D b=5.2

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(c) x/Db = 2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
10

15

20

25
x/D b=5.2

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(d) x/Db = 3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
10

15

20

25
x/D b=5.2

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(e) x/Db = 4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=3.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=4.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30 x/D b=1.8

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30
x/D b=2.4

Normalized radial distance r/R b

A
xi

al
ve

lo
ci

ty
(m

/s
)

0 0.5 1
0

10

20

30

(f) x/Db = 5.2

Figure 6.19: Comparison of axial mean velocities at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4, 5.2

in the NRBB case using LES. o: experimental data [16], solid: LES-A, dash: LES-B,

dash-dot: LES-C.
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Figure 6.20: Comparison of radial mean velocities at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2

in the NRBB case using LES. o: experimental data [16], solid: LES-A, dash: LES-B,

dash-dot: LES-C.
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Figure 6.21: Comparison of radial mean velocities at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4, 5.2

in the NRBB case using LES. o: experimental data [16], solid: LES-A, dash: LES-B,

dash-dot: LES-C.
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Figure 6.22: Comparison of axial rms velocities at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 in

the NRBB case using LES. o: experimental data [16], solid: LES-A, dash: LES-B,

dash-dot: LES-C.
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Figure 6.23: Comparison of axial rms velocities at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4, 5.2 in

the NRBB case using LES. o: experimental data [16], solid: LES-A, dash: LES-B,

dash-dot: LES-C.
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Figure 6.24: Comparison of radial rms velocities at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2

in the NRBB case using LES. o: experimental data [16], solid: LES-A, dash: LES-B,

dash-dot: LES-C.
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Figure 6.25: Comparison of radial rms velocities at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4, 5.2

in the NRBB case using LES. o: experimental data [16], solid: LES-A, dash: LES-B,

dash-dot: LES-C.
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Figure 6.26: Scalar mean prediction at x/Db = 0.4, 0.6, 0.8, 1.0 in the NRBB case

using LES. o: experimental data [16], solid: LES-A, dash: LES-B, dash-dot: LES-C.
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Figure 6.27: Scalar variance prediction at x/Db = 0.4, 0.6, 0.8, 1.0 by solving the scalar

dissipation rate transport equation with different model constants in LES (LES-A).

o: experimental data [16], dash-dot-dot: Case 1, dash-dot: Case 2, dash: Case 3,

solid: Case 4.
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Figure 6.28: Scalar variance prediction at x/Db = 0.4, 0.6, 0.8, 1.0 by the algebraic

and the transport model in LES (LES-A). o: experimental data [16], dash: algebraic

model, solid: transport equation model (Case 3).
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Figure 6.29: Scalar variance predicted at x/Db = 0.4, 0.6, 0.8, 1.0 by different scalar

variance models in LES (LES-A). o: experimental data [16], dash: scale similar-

ity model, dash-dot-dot: gradient-based model, dash-dot: scalar variance transport

equation with algebraic scalar dissipation rate model, solid: scalar variance transport

equation with scalar dissipation rate transport model.

119



6.3 Results

Normalized radial distantce r/R b

M
ea

n
sc

al
ar

0.5 1

0

0.25

0.5

0.75

1 x/D b=0.8

Normalized radial distantce r/R b

M
ea

n
sc

al
ar

0.5 1

0

0.25

0.5

0.75

1 x/D b=1.01

Normalized radial distantce r/R b

S
ca

la
rm

ea
n

0.5 1

0

0.25

0.5

0.75

Normalized radial distance r/R b

S
ca

la
rm

ea
n

0.5 1

0

0.25

0.5

0.75

(a) Scalar mean

Normalized radial distantce r/R b

S
ca

la
rv

ar
ia

nc
e

0 0.5 1

0

0.05

0.1

0.15

0.2

Normalized radial distantce r/R b

S
ca

la
rv

ar
ia

nc
e

0 0.5 1

0

0.05

0.1

0.15

0.2

Normalized radial distantce r/R b

S
ca

la
rv

ar
ia

nc
e

0 0.5 1

0

0.05

0.1

0.15

0.2

Normalized radial distance r/R b

S
ca

la
rv

ar
ia

nc
e

0 0.5 1

0

0.05

0.1

0.15

0.2

(b) Scalar variance

Normalized radial distantce r/R b

M
ea

n
sc

al
ar

0.5 1

0

0.25

0.5

0.75

1 x/D b=0.8

Normalized radial distantce r/R b

M
ea

n
sc

al
ar

0.5 1

0

0.25

0.5

0.75

1 x/D b=1.01
Normalized radial distance r/R b

S
ca

la
rm

ea
n

0.5 1

0

0.25

0.5

0.75

Normalized radial distance r/R b

S
ca

la
rm

ea
n

0.5 1

0

0.25

0.5

0.75

(c) Scalar mean

Normalized radial distance r/R b

S
ca

la
rv

ar
ia

nc
e

0 0.5 1

0

0.05

0.1

0.15

0.2

Normalized radial distantce r/R b

S
ca

la
rv

ar
ia

nc
e

0 0.5 1

0

0.05

0.1

0.15

0.2

Normalized radial distantce r/R b

S
ca

la
rv

ar
ia

nc
e

0 0.5 1

0

0.05

0.1

0.15

0.2

Normalized radial distance r/R b

S
ca

la
rv

ar
ia

nc
e

0 0.5 1

0

0.05

0.1

0.15

0.2

(d) Scalar variance

Figure 6.30: Profiles of scalar mean and variance predicted using LES with different

grid resolutions at x/Db = 0.4 ((a) and (b)) and at x/Db = 0.6 ((c) and (d)). o:

experimental data [16], solid: LES-A, dash: LES-B, dash-dot: LES-C.
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Figure 6.31: Scalar variance predictions using URANS and LES with same grid res-

olution for different scalar dissipation rate models. o: experimental data, dash-dot:

algebraic model (URANS), dash-dot-dot: transport equation model (URANS), dash:

algebraic model (LES), solid: transport equation model (LES).
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6.4 Summary and conclusion

The scalar variance, which is required for the β-function PDF to describe the local

mixing rate in the conserved scalar approach, has been examined using both URANS

and LES in this study. A comparative study was done for both URANS and LES

under the same grid resolution in order to see the potential benefit of converting

RANS code to LES by changing the turbulence model. The results should be, in

the author’s opinion, interesting to those in the research community who mostly use

RANS-based models.

As an alternative approach to algebraic models for the determination of scalar vari-

ance, its transport equation is introduced and the unclosed scalar dissipation rate

term is parameterized by either an algebraic model or a transport equation model.

The present study proposes a new algebraic LES model and a new transport equa-

tion LES model for the scalar dissipation rate, similar to the URANS approach. The

major difference is that the SGS kinetic energy, k̃sgs, and its dissipation rate, ε̃sgs,

are prescribed using algebraic expressions derived under the assumption of local equi-

librium condition of the flow. So, two less transport equations are solved in LES

compared to the URANS approach. Although the URANS approach involves solv-

ing two additional equations over LES, it takes about four times longer for LES to

obtain converged results than URANS. For example, each time iteration in URANS

converges within two iterations of the SIMPLE algorithm but requires eight iterations

in LES.

Generally speaking, the scalar dissipation rate transport models for URANS and LES

show better performance than their corresponding algebraic models. However, the

shape of scalar variance distribution, which the algebraic URANS model fails to pre-

dict, still cannot be reproduced by using the transport equation URANS model for the

scalar dissipation rate. In contrast, the LES transport model for the scalar dissipation

rate gives the best conformance to experimental data, both in terms of the magnitude

and shape of scalar variance distribution. As mentioned earlier, the turbulent mixing

process depends strongly on the turbulence and mixing models. This is somewhat
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expected because firstly LES is, in principle, a more accurate turbulence model than

URANS. Secondly, it is physically more correct to represent the turbulent mixing

process using the transport equation model instead of the algebraic model, since the

local equilibrium assumption of the scalar is questionable for complex recirculating

flows.
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Chapter 7

Reacting Bluff-Body flow

The newly proposed approach for the scalar variance and scalar dissipation rate is

now extended to the reacting case. The geometric configuration is the same as for the

non-reacting case described in the previous section. The numerical experiments have

been conducted by implementing different scalar dissipation rate models. In the con-

served scalar formalism, the chemical equilibrium model shown in Figure 2.3, which

is introduced in Section 2.2.3, is adopted to deal with the local chemical reactions.

A δ−function PDF calculation is also performed for comparison purposes. Similar to

the previous chapter, URANS calculations are first conducted and LES calculations

will be left for future work.

7.1 Sydney bluff-body recirculating reacting flow

A turbulent non-premixed bluff-body stabilized CH4 : H2 flame, which is often called

the Sydney bluff-body flame, is simulated. This flame has been a popular choice as

a validation case since it shows high level of complexity in flow but yet it reveals

little local extinction. Additionally, as a combustor is closed system, the interaction
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7.1 Sydney bluff-body recirculating reacting flow

of the flame with the walls and the effect of the inflow geometry should be modelled

appropriately.

The Sydney bluff-body burner under consideration has the same geometry as the

non-reacting flow case shown in Figure 6.1(a), but has different flow conditions and

chemical reactions. Similar to the non-reacting case, this bluff-body flame involves

the complex flow physics encountered in the recirculation zone and the neck zone.

The recirculation zone is formed immediately behind the bluff-body wall as shown in

Figure 7.1(a). Two vortices in the recirculation zone stabilizes the flames, i.e., hot

products ciculate back to the nozzle exit and provide a continuous ignition source

for the flame. The jet penetrates a hot lower density medium, which results in a

shift of the stagnation point further downstream of the bluff body. According to

Raman and Pitch [71], this flame is highly transient and three-dimensional and cannot

be realistically captured by RANS-based models. This instability is also noticed in

URANS simulations and is shown in the snapshot of the flame in Figure 7.1(b). The

recent work of Kuan and Lindstedt [40] supports this by addressing the transient

effects of the bluff-body flame. At the downstream region where the recirculation

zone ends, there exists a neck zone that has strong interactions between turbulent

mixing and chemical reactions. Further downstream, a jet-like flame zone is created.

The fuel consists of a 1 : 1 methane:hydrogen volume fraction with an approximate

stoichiometric ratio of 0.05. Due to wind tunnel limitations, experimental data for the

flow field were obtained at slightly different inlet velocities than the scalar field [16].

Therefore, two different simulations are carried out corresponding to their respec-

tive flow field and scalar measurements. The first simulation (HM1E) used a fuel

jet velocity of Ujet = 108 m/s and a coflow velocity of Ucoflow = 35 m/s. Results

from this simulation are compared against velocity statistics from the experiment.

The second simulation (HM1) used a slightly higher jet velocity of Ujet = 118 m/s

and a coflow velocity of Ucoflow = 40 m/s. These results are compared with the

scalar field profiles of the experiment. While the velocity measurement was per-

formed as it was done in NRBB, scalar field measurements were made using the

Raman/Rayleigh/LIF technique to give instantaneous and simultaneous temperature
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and the concentration of many species at a single point in the flame. The species mea-

sured are: N2, O2, CH4, CO,CO2, H2, H2O,OH and NO. Experimental data HM1

and HM1E are both at 50% of the blow-off limit and are thus expected to show similar

characteristics. This is supported by Kuan and Lindstedt [40], who found that the

flow fields only differ marginally. Experiment details can be found in [16].

7.2 Simulation details

The same discretization used for the non-reacting case (NRBB) is used for this re-

acting simulation (RBB). While the lateral computational domain size remains the

same, the streamwise computational domain is extended to 12Rb following recent

work [34, 71] so that the inlet plane is placed at x = −100 mm and the outlet

is at x = 200 mm. Grid resolution is initially chosen to be same as the NRBB

case but the results of flow turbulence quantities show poor prediction in particular

near the interface between the two recirculating vortices. Based on trial and er-

ror and following Lien [45], all computations are performed on a non-uniform grid of

(nx, nr, nθ) = (150, 90, 34). Numerical grids are densely refined in the proximity of the

recirculation zone and neck zone in the axial direction, and are properly distributed

in the jet region and the shear layer around the outer edge of the bluff body.

Since this case is an extension of the NRBB case, most numerical aspects remain

the same. Four transport equations (energy, scalar mean, scalar variance and scalar

dissipation rate) are solved for the scalar field of the reacting case, and the appro-

priate boundary conditions for each equation are defined. The scalar mean (mixture

fraction) is set to Z = 1 at the jet flow and Z = 0 at the coflow, and the scalar

variance and its dissipation rate are set to zero at all inlet sides. The enthalpy value

based on the mixture in the co-flow and the nozzle jet is supplied at the appropriate

boundary. The parallelized STREAM code is also employed to simulate URANS and

the standard k − ε model is used to update the turbulent viscosity.

The focus of the present chapter is to compare the model performance of the scalar
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dissipation rate models in the reacting flow and to examine how the scalar dissipa-

tion rate models contributes in the reacting case. It is naturally expected that the

better accuracy of this modeling leads to improved prediction of the mean thermo-

chemical variables through accurate β−function PDF integration. To this end, the

algebraic and transport equation models with four different model constants, which

are introduced and tested in NRBB, are simulated in conjunction with the chemical

equilibrium model. A simulation with a δ-function PDF, which relies only on the

scalar mean, is also conducted and the results are compared with other β−function

PDF models. However, the results of the δ−function PDF show the worst prediction

among the test cases in the most of considered variables. Therefore, the δ−function

PDF results are presented but not discussed from now on unless necessary.

7.3 Results

7.3.1 Flow Field

A complex flow pattern forms downstream of the face of the bluff-body with two re-

circulation zones as shown in Figure 7.1(a). At sufficiently high fuel jet velocity, the

flow penetrates the recirculation zone and forms a jet-like flame further downstream.

Based on the flow pattern and the two mixture boundaries, distinctly different reac-

tion zones can be identified. It can clearly be seen that the counter rotating vortices

are present in the recirculation region. The main reaction zone, where the preheated

and partially reacted fuel and the coflowing oxidizer mix, is located at the edge of the

outer vortex. Two vortices transport the fuel and the air into the recirculation zone

to stabilize the flame. A narrow reaction zone with the near-stoichiometric or slightly

leaner mixture is created in the outer shear layer between the coflow and the outer

vortex. The flame field in the recirculation zone is characterized by a rich mixture

condition and the corresponding temperature and reaction rates are much lower than

those at the stoichiometric condition.
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Figure 7.1: Instantaneous temperature distribution in URANS simulation.

As discussed in the recent literature by Raman and Pitsch [71], the recirculation zone

exhibits large-scale recirculation with the volume of fluid entrapped in the vortices.

The large density gradient in the outer shear layer also generates an amount of vortex

shedding. The non-stationary turbulent flow structure is highly three dimensional,

with large variations in local compositions along the azimuthal direction. This signi-

fies the complexity of this flow and a time-resolving unsteady flow solver is obviously

necessary to simulate the non-stationary turbulent complex flame field realistically.

The predicted axial and radial profiles of the mean velocities for the HM1E flame

shown in Figures 7.2 to 7.5 are compared to measurements taken at different axial

locations (x/Db ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.8, 2.4, 3.4}) by six different simula-

tions in conjunction with the chemical equilibrium model. Despite of the shortcomings

of RANS-based models, the mean velocities and the recirculating lengths are predicted

well by all simulations. Similar to NRBB results in Section 6.3, good agreement be-

tween the calculated and experimental axial mean velocity profiles is achieved up to

x/Db = 1.0. At further downstream stations, however, the mean centerline velocities
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are under-predicted. This seems to be due to the over-estimation of the spreading

rate of the fuel jet and this under-estimation of mean profiles, which also occurs in the

NRBB simulations, is often noticed in RANS-based models. Radial velocity profiles

are much improved compared to the NRBB case and this seems to be due to the grid

resolution of the wall-normal direction. After the recirculation zone, the radial mean

velocity profiles in Figure 7.5 suddenly show very poor prediction, most likely due to

vortex shedding downstream. As many others have reported [34, 71], and as seen in

Figure 7.1(b), strong vortex shedding occurs at the edge of the outer bluff-body and

this unsteady feature shakes the flame downstream. Predictions are quite accurate in

the recirculation region, while the peaks in the velocity profiles are under-predicted

in downstream locations. It has been noted that there are significant experimental

discrepancies at downstream locations [56]. Taking this into account, the current

predictions are able to capture the flame structure and the essential characteristics

of the flow.

Figures 7.6 to 7.9 compare rms velocity profiles. Similar to the mean velocity profiles,

the axial rms velocity profiles show good agreement with experimental data up to

x/Db = 1.0 but the centerline rms velocities are under-predicted downstream. This

could also be explained by spreading rate over-estimation. Radial rms velocities are

slightly over-predicted throughout the entire domain. It should be noted that the

discrepancy between model predictions and experimental data in this reacting case

is smaller than in the non-reacting case. This may be attributed to a reduction in

the radial diffusion effect, causing a decrease in the spreading rate of the fuel jet.

As a result, the deficiency of the under-estimation of the centerline velocity in the

NRBB case is improved in the RBB case. The reason for less diffusion occurring in

the RBB case is likely due to a decrease in the turbulent viscosity. In a reacting flow,

the density of the mixture decreases when the temperature increases.

It is seen that both the axial and radial rms velocities show a small peak near the

outer edge of the bluff-body, corresponding to the interaction of the coflow with the

recirculating fluid. Further downstream, this secondary peak in the rms axial velocity

profiles moves toward the centerline, indicating that the width of the recirculation
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zone decreases with axial distance. All simulations give very similar results until the

recirculation zone ends, subsequently, they show slightly different prediction of veloc-

ity profiles downstream. It should be noted that the simulation with the δ−function

PDF gives quite poorer prediction than all other β−function PDF simulations. Over-

all, the simulations yield reasonable velocity profiles for the more challenging reactive

case, although excessive rms velocity fluctuations are predicted in both the inner and

outer shear layers.
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Figure 7.2: Comparison of axial mean velocities at at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2

in the RBB case using URANS. o: experimental data [16], dash-dot-dot: δ-PDF,

long-dash: algebraic model, dotted: Case 1, dash-dot: Case 2, dashed: Case 3, Solid:

Case 4.
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Figure 7.3: Comparison of axial mean velocities at at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4 in

the RBB case using URANS. o: experimental data [16], dash-dot-dot: δ-PDF, long-

dash: algebraic model, dotted: Case 1, dash-dot: Case 2, dashed: Case 3, Solid: Case

4.
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Figure 7.4: Comparison of radial mean velocities at at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2

in the RBB case using URANS. o: experimental data [16], dash-dot-dot: δ-PDF, long-

dash: algebraic model, dotted: Case 1, dash-dot: Case 2, dashed: Case 3, Solid: Case

4.
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Figure 7.5: Comparison of radial mean velocities at at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4

in the RBB case using URANS. o: experimental data [16], dash-dot-dot: δ-PDF,

long-dash: algebraic model, dotted: Case 1, dash-dot: Case 2, dashed: Case 3, Solid:

Case 4.
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Figure 7.6: Comparison of axial rms velocities at at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2

in the RBB case using URANS. o: experimental data [16], dash-dot-dot: δ-PDF,

long-dash: algebraic model, dotted: Case 1, dash-dot: Case 2, dashed: Case 3, Solid:

Case 4.
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Figure 7.7: Comparison of axial rms velocities at at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4 in the

RBB case using URANS. o: experimental data [16], dash-dot-dot: δ-PDF, long-dash:

algebraic model, dotted: Case 1, dash-dot: Case 2, dashed: Case 3, Solid: Case 4.
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Figure 7.8: Comparison of radial rms velocities at at x/Db = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2

in the RBB case using URANS. o: experimental data [16], dash-dot-dot: δ-PDF,

long-dash: algebraic model, dotted: Case 1, dash-dot: Case 2, dashed: Case 3, Solid:

Case 4.
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Figure 7.9: Comparison of radial rms velocities at at x/Db = 1.4, 1.8, 2.4, 3.4, 4.4 in

the RBB case using URANS. o: experimental data [16], dash-dot-dot: δ-PDF, long-

dash: algebraic model, dotted: Case 1, dash-dot: Case 2, dashed: Case 3, Solid: Case

4.
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7.3.2 Scalar Field

Figure 7.10 shows radial profiles of the scalar mean (i.e., mixture fraction, Z̃) at the

axial positions (x/Db ∈ {0.26, 0.6, 0.9, 1.3, 1.8, 2.4}) and the results are compared with

experimental data (HM1) [16]. Although different scalar dissipation rate models are

used, all results show very similar trends as follows. In all cases, the k− ε turbulence

model reproduces the scalar mean value reasonably well near the bluff-body, but

under-predicts those values downstream. Figure 7.10 demonstrates an overall good

agreement between the measured and calculated scalar mean profiles except for a

small over-prediction near the nozzle exit at x/Db = 0.26 and a large under-estimate

downstream, particularly after x/Db = 1.8. The under-prediction of the scalar mean

along the centerline at downstream stations is clearly related to the under-prediction

of the centerline velocity at corresponding stations.

The radial profiles of the scalar variance are presented in Figure 7.11 at the same

axial positions with the scalar mean profiles above. The transport equation model

(Eq. (3.6)) and the algebraic model (Eq. (3.12)) for the scalar dissipation rate are

employed with the same model constants. Note that there are no results obtained

using the δ−function PDF since it does not require the scalar variance. Firstly,

the model constants for the transport equation, which are listed in Table 6.2, are

calibrated and discussed. In the NRBB case, as shown in Figure 6.14, Case 3 and

Case 4 show very similar results in predicting the scalar variance, and show the

best agreement with experimental data among the four test cases while Case 1 over-

predicts and Case 2 under-predicts. The RBB results show a trend very similar to

the NRBB case. However, all scalar variance results are predicted to be slightly

higher than those in NRBB, but those could represent the trend of variation to a

certain extent. As a result, Case 2, which gives the lowest scalar variance among the

transport models, shows the best agreement with experimental data among the test

cases.

As identified in recent studies [49, 71], it is observed that the strong recirculation near

the bluff-body leads to large-scale mixing. In Figure 7.11, it is also noticed in this
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study. However, a secondary spike in vicinity of the edge of the bluff-body caused

by the shear layer between the coflow and the recirculation zone [71] is not captured

in the figure. The profiles for Case 2 basically over-predict experimental data over

the entire domain. Moreover, the variation of the outer-vortex layer after x/Db = 1.8

is not properly reproduced and it is also observed in the profiles obtained using the

algebraic model. There are two main reasons for this deficiency; one is the limit of

the k−ε turbulence model and the other is the large vortex shedding along the outer

layer.

It should be noted that the algebraic model gives quite impressive results compared

to the transport equation models. As seen in Figure 7.11, the algebraic model shows

good agreement with experimental data except at x/Db = 2.4. Case 2 and the

algebraic model show very similar trends and values of the scalar variance, but the

algebraic model results become more diffusive earlier than in Case 2. This is also

noticed in NRBB case as shown in Figure 6.15. However, as a result, this makes the

algebraic model results come closer to experimental data since both over-predict it.

The algebraic model gives the best results among the test cases.

Figure 7.12 shows a comparison of the radial distributions of mean temperatures at

various axial locations. As expected from the scalar variance results, Case 2 and

the algebraic model give good agreement with experimental data. The prediction

quality of each case in the transport model varies by model; Case 2 gives the best

results and Case 1 gives the worst. This is the reverse of the prediction quality of the

scalar variance and is applicable over the entire domain. The results of Case 2 and

the algebraic model predict the mean temperature reasonably well until x/Db = 0.6.

Downstream, however, the mean temperature profiles along the centerline show over-

prediction possibly caused by the severe under-prediction in the mixture fraction field.

Both the algebraic model and Case 2 also fail to reproduce the peak at the outer-vortex

region most likely due to the strong vortex shedding in the outer shear layer. While

Case 2 over-predicts the scalar variance in the inner-vortex layer slightly higher than

the algebraic model after x/Db = 0.9, both seem to predict the mean temperature

with almost the same accuracy. A slight difference is found instead toward the outer
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shear layer. This is actually observed in a comparison of the different transport

equation models as well. It is obvious because most chemical reaction occurs in the

recirculating zone.

The temperature profiles of Case 2 and the algebraic model show a peak at x/Db =

0.26 near the outer shear layer (r/Rb = 1.0). The two results are too close to each

other to be distinct in the figure, however. While this peak is not observed in mea-

surements, it is noticed in previous studies [34, 71]. Dally et al. [16] suggested that

non-existence of the peak distribution in measurements could be due to intermittent

local extinction caused by the high scalar dissipation rate. However, Kuan and Lind-

stedt [40] stated that the influence of boundary conditions is particularly strong in

this shear layer and also the measurement in this narrow region should be done cau-

tiously. Based on the remarkable prediction of the mean and rms profiles of velocity

and the scalar mean, Raman and Pitsch [71] suggested that the existence of the peak

temperature zone corresponds to enhanced reactions at the interface of the recircu-

lation and outer shear layer, and this could be attributed to the validity of flamelet

assumption or the influence of under-predicted scalar variance. In any case, the exact

source of this discrepancy is not yet clear.

The mean species mass fractions are compared with experimental data in Figure 7.13

to 7.16. YCO2
profiles in Figure 7.14 show reasonable agreement for all axial locations

considered and the peak at r/Rb = 1.0 is also present. While YCO2
is under-predicted

over the entire domain, the prediction worsens in the outer-vortex layer. As seen

distinctly at axial position x/Db = 0.6, the instability of the outer-vortex layer leads

to bump at r/Rb = 0.7 while the peak moves towards the centerline. This is found

slightly in the mean temperature profiles as well. YCO profiles in Figure 7.15 are a bit

over-predicted in vicinity of inner-vortex layer. It has been known that equilibrium

chemistry usually leads to the poor results for hydrocarbon combustion processes

because YCO consumption rates are slow, especially for the very fuel-rich mixtures

with low temperatures which are unlikely to reach the chemical equilibrium state.

Mass fraction of the hydroxyl radical are shown in Figure 7.16. Radical YOH is formed

through the rapid two-body reaction H + O2 = OH + O. YOH decays towards the
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chemical equilibrium via the slower three-body recombination reactionH+OH+M =

H2O+M [1, 19]. In turbulent reacting flows, the rate of mixing is much slower than

the chemical reaction of the two-body reaction, but much faster than the three-body

reaction [19]. This results in a superequilibrium amount of YOH upstream of the flame,

which gradually diminishes to the chemical equilibrium amount further downstream.

So, the prediction of YOH is a good indication of the predictive capability of the

models for non-equilibrium effects. At the axial location near the bluff-body, the

agreement is good but it becomes poor downstream of x/Db = 0.9. At x/Db = 0.26,

the computed YOH shows a peak at r/Rb = 1.0 that is in line with the peak in the

temperature profile in Figure 7.12. The peak is slightly over-predicted and shifted

toward centerline, though. Downstream of x/Db = 0.9, the simulation seems to fail to

capture the hydroxyl radical appropriately. Despite the reasonable agreement of the

scalar mean and the scalar variance profiles with experimental data up to x/Db = 1.3,

YOH is poorly reproduced. Raman and Pitsch [71] explain that the YOH profile is a

highly non-linear function of the scalar variance, implying that minor errors in model

predictions can lead to large deviations of YOH profiles.
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Figure 7.10: Scalar mean prediction at x/Db = 0.26, 0.6, 0.9, 1.3, 1.8, 2.4 by solving

the scalar dissipation rate transport equation with different model constants in the

RBB case using URANS. o: experimental data [16], dash-dot-dot: δ-PDF, long-dash:

algebraic model, dotted: Case 1, dash-dot: Case 2, dashed: Case 3, Solid: Case 4.
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Figure 7.11: Scalar variance prediction at x/Db = 0.26, 0.6, 0.9, 1.3, 1.8, 2.4 by the

algebraic and the transport model in the RBB case using URANS. o: experimental

data [16], long-dash: algebraic model, dotted: Case 1, dash-dot: Case 2, dashed:

Case 3, Solid: Case 4.
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Figure 7.12: Mean temperature prediction at x/Db = 0.26, 0.6, 0.9, 1.3, 1.8, 2.4 by the

algebraic and the transport model in the RBB case using URANS. o: experimental

data [16], dash-dot-dot: δ-PDF, long-dash: algebraic model, dotted: Case 1, dash-

dot: Case 2, dashed: Case 3, Solid: Case 4.
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Figure 7.13: YH2O prediction at x/Db = 0.26, 0.6, 0.9, 1.3, 1.8, 2.4 by the algebraic

and the transport model in the RBB case using URANS. o: experimental data [16],

dash-dot-dot: δ-PDF, long-dash: algebraic model, dotted: Case 1, dash-dot: Case 2,

dashed: Case 3, Solid: Case 4.
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Figure 7.14: YCO2
prediction at x/Db = 0.26, 0.6, 0.9, 1.3, 1.8, 2.4 by the algebraic

and the transport model in the RBB case using URANS. o: experimental data [16],

dash-dot-dot: δ-PDF, long-dash: algebraic model, dotted: Case 1, dash-dot: Case 2,

dashed: Case 3, Solid: Case 4.
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Figure 7.15: YCOprediction at x/Db = 0.26, 0.6, 0.9, 1.3, 1.8, 2.4 by the algebraic and

the transport model in the RBB case using URANS. o: experimental data [16], dash-

dot-dot: δ-PDF, long-dash: algebraic model, dotted: Case 1, dash-dot: Case 2,

dashed: Case 3, Solid: Case 4.
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Figure 7.16: YOH prediction at x/Db = 0.26, 0.6, 0.9, 1.3, 1.8, 2.4 by the algebraic

and the transport model in the RBB case using URANS. o: experimental data [16],

dash-dot-dot: δ-PDF, long-dash: algebraic model, dotted: Case 1, dash-dot: Case 2,

dashed: Case 3, Solid: Case 4.
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7.4 Summary and conclusion

The Sydney bluff-body reacting flow has been simulated by applying different scalar

dissipation rate models. The existing algebraic model and newly proposed scalar

dissipation rate transport equation are employed in pursuit of accurate scalar variance

prediction. The chemical equilibrium model is used to describe the thermo-chemistry.

Both velocity and species mass fraction statistics are compared with experimental

data. The mean velocity profiles show good agreement with experimental data for

both axial and radial velocity components. However, the mean velocity profiles along

the centerline are under-predicted mainly due to the over-estimation of the spreading

rate of the fuel-side jet. While the trend of axial rms velocity profiles follows the axial

mean velocity profiles, the radial rms velocity profiles over-predicts the experimental

data over the entire domain.

For all scalar dissipation rate model calculations, the scalar mean profiles show good

agreement with the experimental data until x/Db = 1.3, but severe under-prediction

occurs downstream along the centerline. The reason of this seems to be in line with

the velocity profiles. The scalar variance is obtained basically by two different mod-

els; the algebraic model and the transport equation model. Four different model

constants for the scalar dissipation transport equation are calibrated. Case 2 among

the model constant testing cases and the algebraic model give the best agreement

with experimental data, a result consistent with NRBB case. The discrepancy be-

tween Case 2 and the algebraic model gets larger toward downstream showing that

the centerline prediction of the algebraic model becomes diffusive quickly. This actu-

ally results in the algebraic model showing better agreement with experimental data

downstream. The scalar variance is slightly over-predicted over the entire domain by

Case 2 and therefore the model constants need to be adjusted. Based on the scalar

variance prediction at x/Db = 0.6 where the scalar mean shows great agreement with

experimental data, it is suggested that the model constant C3 be increased.

In general, the thermo-chemical variables such as temperature and the species mass

fraction predicted by Case 2 and the algebraic model are in good agreement with
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7.4 Summary and conclusion

experimental data. At axial location x/Db = 0.26, for most thermo-chemical vari-

ables, a peak near the edge at r/Rb = 1.0 of the bluff body is found. After the axial

location x/Db = 0.9, the peak temperature in the outer-vortex layer is not success-

fully captured, most likely due to the strong instability of the outer vortex. Species

mass fractions show good agreement until x/Db = 1.3 and the prediction worsens

downstream. As expected, the hydroxyl radical, which is found by non-equilibrium

chemistry, cannot be captured successfully due to the limitation of the chemical equi-

librium assumption.

The trend of prediction in thermo-chemical variables seems very similar to the scalar

mean profile. It could be said that the predictions of thermo-chemical variables are

affected mainly by the prediction of the scalar mean. However, it should be also

noted that there are big differences in predicting thermo-chemical variables according

to different scalar variance predictions which are strongly coupled with different scalar

dissipation rate models. As explained earlier, the local mixing state is modelled by

the presumed β−function PDF in this work and the accuracy of this PDF relies

heavily on the scalar mean and the variance. Considering that all different scalar

dissipation models in consideration show very similar scalar mean profiles, it could be

said that the better accuracy of the scalar dissipation rate modelling leads to improved

prediction of the mean thermo-chemical variables through the accurate β−function

PDF integration.
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Chapter 8

Conclusions and Future work

8.1 Outcomes of the study

This thesis presents progress towards the application of large eddy simulation (LES)

to turbulent reacting flows of engineering interest. The well-established turbulent

combustion modelling techniques in RANS-based calculations were extended to LES

in this study. The main effort of this study lies in the modelling of the scalar variance

and its dissipation rate, which are necessary in the presumed β−function PDF ap-

proach with the conserved-scalar formalism. While a new model of the scalar variance

and its dissipation rate in LES are pursued, URANS calculations were conducted to

examine the differences between URANS and LES in predicting those variables. The

comparative study was performed with same grid resolution for URANS and LES, as

explained early, in order to see the advantage and disadvantage of converting RANS-

based code to LES through the minimal change in turbulence modeling part of the

code.

In many previous studies [34, 64, 71] which performed LES in combusting flows, the

scalar variance and its dissipation rate were obtained through algebraic-type models.

Moreover, those two variables were calculated separately. The scalar variance and
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8.1 Outcomes of the study

its dissipation rate are supposed to be solved via a coupled system, however. In

this study, the transport equation for the scalar dissipation rate was proposed in

consistency with the Smagorinsky SGS model and solved together with the scalar

variance equation.

Two different scalar dissipation rate models were tested for simulating non-reacting

(NRBB) and reacting (RBB) bluff-body turbulent flows using URANS and LES; one

was the algebraic model and the other was the transport equation model. In the

NRBB case, LES demonstrated better performance than URANS in predicting both

the flow field and scalar field. The URANS calculation was able to predict the peak

value and general trend but failed to represent the variation of the scalar variance

in the outer-vortex layer region. The LES calculation showed great agreement with

experimental data in predicting the scalar variance and was able to represent its

variability. Among the scalar dissipation rate models, the transport equation model

in both URANS and LES gave better performance particularly towards downstream

where the algebraic model became more diffusive. The same approach was extended to

the RBB case using URANS in conjunction with the chemical equilibrium model. The

scalar mean field was well predicted until x/Db = 1.3 after which it was severely under-

predicted. Since the local distributions of the thermo-chemical variables are affected

heavily by the scalar mean, all thermo-chemical variables such as mean temperature

and species mass fractions showed similar trends. The scalar variance was found to be

slightly over-predicted over the entire domain regardless of the scalar dissipation rate

model and hence required adjustment of the model constant. Conclusively, the LES

calculation solving the scalar variance and its dissipation rate transport equations

shows the best performance among the possible combinations of simulations.

A LES code based on STREAM [44] was parallelized using the domain decomposition

method, and the developed code was validated by simulating the turbulent channel

flow before proceeding to the bluff-body simulations. Through this validation case,

the wall boundary condition and SGS model implementation were tested successfully.
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8.2 Future directions

8.2 Future directions

Firstly, it is strongly suggested that the laminar flamelet model be incorporated with

URANS. While the scalar dissipation rate contributes to the calculation of the scalar

variance, it is also required to invoke the laminar flamelet solution since it accounts for

the effect of turbulence on chemical reactions. It was author’s initial plan to include

the laminar flamelet calculations in this report. To this end, the steady laminar

flamelet solver in Section 2.2.3 has been developed using TWOPNT ODE solver and

the look-up table has been made.

Laminar flamelet calculations have been performed and some preliminary results were

obtained (not presented). All thermo-chemical variables are predicted similarly to the

chemical equilibrium model. The algebraic scalar dissipation rate model with the lam-

inar flamelet combustion model shows slight improvement over the scalar dissipation

rate model with the chemical equilibrium model. Since the laminar flamelet model

can account for non-equilibrium chemistry, it was expected that the prediction of YOH

could be improved when compared with the chemical equilibrium model. However,

all the laminar flamelet simulations failed to deliver improvement of the prediction of

YOH, and therefore the laminar flamelet simulations need to be investigated further.

This failure in predicting YOH might be attributed to the trilinear interpolation which

could generate errors when the value of YOH itself is very small. It is author’s intent to

apply a new integration method proposed by Lien et al [45] in which the β−function

PDF is calculated analytically. This will help the integration procedure to minimize

undesirable errors.

It should be noted here that the laminar flamelet calculation takes a very long time to

converge since the residual oscillates severely. This was reported by Cook et al [14].

One possible cause is the scalar dissipation rate calculation. In the calculation of the

scalar dissipation rate equation, Eq. (3.16), the scalar variance, which has quite a

small value and varies significantly, serves as a denominator in the scalar destruction

term. Since the scalar variance and its dissipation rate equations are solved as a cou-

pled system, this issue of convergence can be difficult to avoid. Further investigation
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8.2 Future directions

into the numerical aspects of this matter be done in the near future.

Since all of the aforementioned developments of the scalar variance and its dissipation

rate in LES are proposed to be used in simulating reacting flows, the LES calculation

for the RBB case will be the next intended study. The superiority of LES over URANS

in predicting the scalar mixing field was already confirmed for the NRBB case and

it is in the author’s interest to examine if LES demonstrates better performance

than URANS in the RBB case. Furthermore, the main focus in performing LES

calculations will be how the newly proposed approach in this study works for reacting

flows.

155



Appendix A - Scalar variance in

LES

For any local thermo-chemical variable φk(Z(x1, t)), the filtered mean in LES is de-

fined as

φk(x, t) =

∫
φk(Z(x1, t))G(x− x1,∆)dx1, (.1)

where the local thermo-chemical property is regarded as a function of the mixture

fraction (Z). Using a δ-function,

φk(x, t) =

∫ x1=∞

x1=−∞

(∫ Ψ=1

Ψ=0

φk(Ψ)δ [Ψ− Z(x1, t)] dΨ

)
G(x− x1,∆)dx1

=

∫ Ψ=1

Ψ=0

φk(Ψ)

(∫ x1=∞

x1=−∞

δ [Ψ− Z(x1, t)]G(x− x1,∆)dx1

)
dΨ

=

∫ Ψ=1

Ψ=0

φk(Ψ)P (Ψ; x, t)dΨ. (.2)

The filtered probability density function [22] is defined as

P (Ψ; x, t) =

∫ x1=∞

x1=−∞

δ [Ψ− Z(x1, t)]G(x− x1,∆)dx1. (.3)

The Favre-filtered variable is
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Appendix

φ̃k(x, t) =
ρφk

ρ
=

∫ Ψ=1

Ψ=0

φk(Ψ)P̃ (Ψ; x, t)dΨ, (.4)

where P̃ (Ψ; x, t) is a Favre-filtered PDF.

The first and second moment of Ψ is required for the β-function PDF. The first

moment of this PDF is calculated as

Z̃ =

∫
ΨP̃ (Ψ)dΨ

=

∫ ∫
Ψδ [Ψ− Z(x1, t)]G(x− x1,∆)dx1dΨ

=

∫
Z(x1, t)G(x− x1,∆)dx1. (.5)

The second moment is

Z̃ ′2 =

∫
(Ψ− Z̃)2P̃ (Ψ)dΨ

=

∫ ∫ (
Ψ2 − 2ΨZ̃ + Z̃2

)
δ [Ψ− Z]G(x− x1,∆)dx1dΨ

=

∫ (
Z2 − 2ZZ̃ + Z̃2

)
G(x− x1,∆)dx1

= Z̃2 − 2Z̃Z̃ + Z̃2

= Z̃2 − Z̃2, (.6)

where Z ′ = Z − Z̃ is the fluctuation part of the scalar in this study for LES.
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Appendix B - Chemical Mechanism

for CH4/H2 Combustion

Reaction Ak βk Ek

2O +M ↔ O2 +M 1.200E + 17 −1.000 .00

O +H +M ↔ OH +M 5.000E + 17 −1.000 .00

O +H2 ↔ H +OH 5.000E + 04 2.670 6290.00

O +HO2 ↔ OH +O2 2.000E + 13 .000 .00

O +H2O2 ↔ OH +HO2 9.630E + 06 2.000 4000.00

O + CH ↔ H + CO 5.700E + 13 .000 .00

O + CH2 ↔ H +HCO 8.000E + 13 .000 .00

O + CH2(S) ↔ H2 + CO 1.500E + 13 .000 .00

O + CH2(S) ↔ H +HCO 1.500E + 13 .000 .00

O + CH3 ↔ H + CH2O 8.430E + 13 .000 .00

O + CH4 ↔ OH + CH3 1.020E + 09 1.500 8600.00

O + CO +M ↔ CO2 +M 6.020E + 14 .000 3000.00

O +HCO ↔ OH + CO 3.000E + 13 .000 .00

O +HCO ↔ H + CO2 3.000E + 13 .000 .00

O + CH2O ↔ OH +HCO 3.900E + 13 .000 3540.00

O + CH2OH ↔ OH + CH2O 1.000E + 13 .000 .00

O + CH3O ↔ OH + CH2O 1.000E + 13 .000 .00

O + CH3OH ↔ OH + CH2OH 3.880E + 05 2.500 3100.00
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O + CH3OH ↔ OH + CH3O 1.300E + 05 2.500 5000.00

O + C2H ↔ CH + CO 5.000E + 13 .000 .00

O + C2H2 ↔ H +HCCO 1.020E + 07 2.000 1900.00

O + C2H2 ↔ OH + C2H 4.600E + 19 −1.410 28950.00

O + C2H2 ↔ CO + CH2 1.020E + 07 2.000 1900.00

O + C2H3 ↔ H + CH2CO 3.000E + 1 .000 .00

O + C2H4 ↔ CH3 +HCO 1.920E + 07 1.830 220.00

O + C2H5 ↔ CH3 + CH2O 1.320E + 14 .000 .00

O + C2H6 ↔ OH + C2H5 8.980E + 07 1.920 5690.00

O +HCCO ↔ H + 2CO 1.000E + 14 .000 .00

O + CH2CO ↔ OH +HCCO 1.000E + 13 .000 8000.00

O + CH2CO ↔ CH2 + CO2 1.750E + 12 .000 1350.00

O2 + CO ↔ O + CO2 2.500E + 12 .000 47800.00

O2 + CH2O ↔ HO2 +HCO 1.000E + 14 .000 40000.00

H +O2 +M ↔ HO2 +M 2.800E + 18 −.860 .00

H + 2O2 ↔ HO2 +O2 3.000E + 20 −1.720 .00

H +O2 +H2O ↔ HO2 +H2O 9.380E + 18 −.760 .00

H +O2 +N2 ↔ HO2 +N2 3.750E + 20 −1.720 .00

H +O2 + AR ↔ HO2 + AR 7.000E + 17 −.800 .00

H +O2 ↔ O +OH 8.300E + 13 .000 14413.00

2H +M ↔ H2 +M 1.000E + 18 −1.000 .00

2H +H2 ↔ 2H2 9.000E + 16 −.600 .00

2H +H2O ↔ H2 +H2O 6.000E + 19 −1.250 .00

2H + CO2 ↔ H2 + CO2 5.500E + 20 −2.000 .00

H +OH +M ↔ H2O +M 2.200E + 22 −2.000 .00

H +HO2 ↔ O +H2O 3.970E + 12 .000 671.00

H +HO2 ↔ O2 +H2 2.800E + 13 .000 1068.00

H +HO2 ↔ 2OH 1.340E + 14 .000 635.00

H +H2O2 ↔ HO2 +H2 1.210E + 07 2.000 5200.00

H +H2O2 ↔ OH +H2O 1.000E + 13 .000 3600.00
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H + CH ↔ C +H2 1.100E + 14 .000 .00

H + CH2(+M) ↔ CH3(+M) 2.500E + 16 −.800 .00

H + CH2(S) ↔ CH +H2 3.000E + 13 .000 .00

H + CH3(+M) ↔ CH4(+M) 1.270E + 16 −.630 383.00

H + CH4 ↔ CH3 +H2 6.600E + 08 1.620 10840.00

H +HCO(+M) ↔ CH2O(+M) 1.090E + 12 .480 −260.00

H +HCO ↔ H2 + CO 7.340E + 13 .000 .00

H + CH2O(+M) ↔ CH2OH(+M) 5.400E + 11 .454 3600.00

H + CH2O(+M) ↔ CH3O(+M) 5.400E + 11 .454 2600.00

H + CH2O ↔ HCO +H2 2.300E + 10 1.050 3275.00

H + CH2OH(+M) ↔ CH3OH(+M) 1.800E + 13 .000 .00

H + CH2OH ↔ H2 + CH2O 2.000E + 13 .000 .00

H + CH2OH ↔ OH + CH3 1.200E + 13 .000 .00

H + CH2OH ↔ CH2(S) +H2O 6.000E + 12 .000 .00

H + CH3O(+M) ↔ CH3OH(+M) 5.000E + 13 .000 .00

H + CH3O ↔ H + CH2OH 3.400E + 06 1.600 .00

H + CH3O ↔ H2 + CH2O 2.000E + 13 .000 .00

H + CH3O ↔ OH + CH3 3.200E + 13 .000 .00

H + CH3O ↔ CH2(S) +H2O 1.600E + 13 .000 .00

H + CH3OH ↔ CH2OH +H2 1.700E + 07 2.100 4870.00

H + CH3OH ↔ CH3O +H2 4.200E + 06 2.100 4870.00

H + C2H(+M) ↔ C2H2(+M) 1.000E + 17 −1.000 .00

H + C2H2(+M) ↔ C2H3(+M) 5.600E + 12 .000 2400.00

H + C2H3(+M) ↔ C2H4(+M) 6.080E + 12 .270 280.00

H + C2H3 ↔ H2 + C2H2 3.000E + 13 .000 .00

H + C2H4(+M) ↔ C2H5(+M) 1.080E + 12 .454 1820.00

H + C2H4 ↔ C2H3 +H2 1.325E + 06 2.530 12240.00

H + C2H5(+M) ↔ C2H6(+M) 5.210E + 17 −.990 1580.00

H + C2H5 ↔ H2 + C2H4 2.000E + 12 .000 .00

H + C2H6 ↔ C2H5 +H2 1.150E + 08 1.900 7530.00
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H +HCCO ↔ CH2(S) + CO 1.000E + 14 .000 .00

H + CH2CO ↔ HCCO +H2 5.000E + 13 .000 8000.00

H + CH2CO ↔ CH3 + CO 1.130E + 13 .000 3428.00

H +HCCOH ↔ H + CH2CO 1.000E + 13 .000 .00

H2 + CO(+M) ↔ CH2O(+M) 4.300E + 07 1.500 79600.00

OH +H2 ↔ H +H2O 2.160E + 08 1.510 3430.00

2OH(+M) ↔ H2O2(+M) 7.400E + 13 −.370 .00

2OH ↔ O +H2O 3.570E + 04 2.400 −2110.00

OH +HO2 ↔ O2 +H2O 2.900E + 13 .000 −500.00

OH +H2O2 ↔ HO2 +H2O 1.750E + 12 .000 320.00

OH +H2O2 ↔ HO2 +H2O 5.800E + 14 .000 9560.00

OH + C ↔ H + CO 5.000E + 13 .000 .00

OH + CH ↔ H +HCO 3.000E + 13 .000 .00

OH + CH2 ↔ H + CH2O 2.000E + 13 .000 .00

OH + CH2 ↔ CH +H2O 1.130E + 07 2.000 3000.00

OH + CH2(S) ↔ H + CH2O 3.000E + 13 .000 .00

OH + CH3(+M) ↔ CH3OH(+M) 6.300E + 13 .000 .00

OH + CH3 ↔ CH2 +H2O 5.600E + 07 1.600 5420.00

OH + CH3 ↔ CH2(S) +H2O 2.501E + 13 .000 .00

OH + CH4 ↔ CH3 +H2O 1.000E + 08 1.600 3120.00

OH + CO ↔ H + CO2 4.760E + 07 1.228 70.00

OH +HCO ↔ H2O + CO 5.000E + 13 .000 .00

OH + CH2O ↔ HCO +H2O 3.430E + 09 1.180 −447.00

OH + CH2OH ↔ H2O + CH2O 5.000E + 12 .000 .00

OH + CH3O ↔ H2O + CH2O 5.000E + 12 .000 .00

OH + CH3OH ↔ CH2OH +H2O 1.440E + 06 2.000 −840.00

OH + CH3OH ↔ CH3O +H2O 6.300E + 06 2.000 1500.00

OH + C2H ↔ H +HCCO 2.000E + 13 .000 .00

OH + C2H2 ↔ H + CH2CO 2.180E − 04 4.500 −1000.00

OH + C2H2 ↔ H +HCCOH 5.040E + 05 2.300 13500.00
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OH + C2H2 ↔ C2H +H2O 3.370E + 07 2.000 14000.00

OH + C2H2 ↔ CH3 + CO 4.830E − 04 4.000 −2000.00

OH + C2H3 ↔ H2O + C2H2 5.000E + 12 .000 .00

OH + C2H4 ↔ C2H3 +H2O 3.600E + 06 2.000 2500.00

OH + C2H6 ↔ C2H5 +H2O 3.540E + 06 2.120 870.00

OH + CH2CO ↔ HCCO +H2O 7.500E + 12 .000 2000.00

2HO2 ↔ O2 +H2O2 1.300E + 11 .000 −1630.00

2HO2 ↔ O2 +H2O2 4.200E + 14 .000 12000.00

HO2 + CH2 ↔ OH + CH2O 2.000E + 13 .000 .00

HO2 + CH3 ↔ O2 + CH4 1.000E + 12 .000 .00

HO2 + CH3 ↔ OH + CH3O 2.000E + 13 .000 .00

HO2 + CO ↔ OH + CO2 1.500E + 14 .000 23600.00

HO2 + CH2O ↔ HCO +H2O2 1.000E + 12 .000 8000.00

C +O2 ↔ O + CO 5.800E + 13 .000 576.00

C + CH2 ↔ H + C2H 5.000E + 13 .000 .00

C + CH3 ↔ H + C2H2 5.000E + 13 .000 .00

CH +O2 ↔ O +HCO 3.300E + 13 .000 .00

CH +H2 ↔ H + CH2 1.107E + 08 1.790 1670.00

CH +H2O ↔ H + CH2O 1.713E + 13 .000 −755.00

CH + CH2 ↔ H + C2H2 4.000E + 13 .000 .00

CH + CH3 ↔ H + C2H3 3.000E + 13 .000 .00

CH + CH4 ↔ H + C2H4 6.000E + 13 .000 .00

CH + CO(+M) ↔ HCCO(+M) 5.000E + 13 .000 .00

CH + CO2 ↔ HCO + CO 3.400E + 12 .000 690.00

CH + CH2O ↔ H + CH2CO 9.460E + 13 .000 −515.00

CH +HCCO ↔ CO + C2H2 5.000E + 13 .000 .00

CH2 +O2 ↔ OH +HCO 1.320E + 13 .000 1500.00

CH2 +H2 ↔ H + CH3 5.000E + 05 2.000 7230.00

2CH2 ↔ H2 + C2H2 3.200E + 13 .000 .00

CH2 + CH3 ↔ H + C2H4 4.000E + 13 .000 .00
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CH2 + CH4 ↔ 2CH3 2.460E + 06 2.000 8270.00

CH2 + CO(+M) ↔ CH2CO(+M) 8.100E + 11 .500 4510.00

CH2 +HCCO ↔ C2H3 + CO 3.000E + 13 .000 .00

CH2(S) +N2 ↔ CH2 +N2 1.500E + 13 .000 600.00

CH2(S) + AR ↔ CH2 + AR 9.000E + 12 .000 600.00

CH2(S) +O2 ↔ H +OH + CO 2.800E + 13 .000 .00

CH2(S) +O2 ↔ CO +H2O 1.200E + 13 .000 .00

CH2(S) +H2 ↔ CH3 +H 7.000E + 13 .000 .00

CH2(S) +H2O(+M) ↔ CH3OH(+M) 2.000E + 13 .000 .00

CH2(S) +H2O ↔ CH2 +H2O 3.000E + 13 .000 .00

CH2(S) + CH3 ↔ H + C2H4 1.200E + 13 .000 −570.00

CH2(S) + CH4 ↔ 2CH3 1.600E + 13 .000 −570.00

CH2(S) + CO ↔ CH2 + CO 9.000E + 12 .000 .00

CH2(S) + CO2 ↔ CH2 + CO2 7.000E + 12 .000 .00

CH2(S) + CO2 ↔ CO + CH2O 1.400E + 13 .000 .00

CH2(S) + C2H6 ↔ CH3 + C2H5 4.000E + 13 .000 −550.00

CH3 +O2 ↔ O + CH3O 2.675E + 13 .000 28800.00

CH3 +O2 ↔ OH + CH2O 3.600E + 10 .000 8940.00

CH3 +H2O2 ↔ HO2 + CH4 2.450E + 04 2.470 5180.00

2CH3(+M) ↔ C2H6(+M) 2.120E + 16 −.970 620.00

2CH3 ↔ H + C2H5 4.990E + 12 .100 10600.00

CH3 +HCO ↔ CH4 + CO 2.648E + 13 .000 .00

CH3 + CH2O ↔ HCO + CH4 3.320E + 03 2.810 5860.00

CH3 + CH3OH ↔ CH2OH + CH4 3.000E + 07 1.500 9940.00

CH3 + CH3OH ↔ CH3O + CH4 1.000E + 07 1.500 9940.00

CH3 + C2H4 ↔ C2H3 + CH4 2.270E + 05 2.000 9200.00

CH3 + C2H6 ↔ C2H5 + CH4 6.140E + 06 1.740 10450.00

HCO +H2O ↔ H + CO +H2O 2.244E + 18 −1.000 17000.00

HCO +M ↔ H + CO +M 1.870E + 17 −1.000 17000.00

HCO +O2 ↔ HO2 + CO 7.600E + 12 .000 400.00
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CH2OH +O2 ↔ HO2 + CH2O 1.800E + 13 .000 900.00

CH3O + O2 ↔ HO2 + CH2O 4.280E − 13 7.600 −3530.00

C2H +O2 ↔ HCO + CO 5.000E + 13 .000 1500.00

C2H +H2 ↔ H + C2H2 4.070E + 05 2.400 200.00

C2H3 +O2 ↔ HCO + CH2O 3.980E + 12 .000 −240.00

C2H4(+M) ↔ H2 + C2H2(+M) 8.000E + 12 .440 88770.00

C2H5 + O2 ↔ HO2 + C2H4 8.400E + 11 .000 3875.00

HCCO +O2 ↔ OH + 2CO 1.600E + 12 .000 854.00

2HCCO ↔ 2CO + C2H2 1.000E + 13 .000 .00

N +NO ↔ N2 +O 3.500E + 13 .000 330.00

N +O2 ↔ NO +O 2.650E + 12 .000 6400.00

N +OH ↔ NO +H 7.333E + 13 .000 1120.00

N2O +O ↔ N2 +O2 1.400E + 12 .000 10810.00

N2O +O ↔ 2NO 2.900E + 13 .000 23150.00

N2O +H ↔ N2 +OH 4.400E + 14 .000 18880.00

N2O +OH ↔ N2 +HO2 2.000E + 12 .000 21060.00

N2O(+M) ↔ N2 +O(+M) 1.300E + 11 .000 59620.00

HO2 +NO ↔ NO2 +OH 2.110E + 12 .000 −480.00

NO +O +M ↔ NO2 +M 1.060E + 20 −1.410 .00

NO2 +O ↔ NO +O2 3.900E + 12 .000 −240.00

NO2 +H ↔ NO +OH 1.320E + 14 .000 360.00

NH +O ↔ NO +H 5.000E + 13 .000 .00

NH +H ↔ N +H2 3.200E + 13 .000 330.00

NH +OH ↔ HNO +H 2.000E + 13 .000 .00

NH +OH ↔ N +H2O 2.000E + 09 1.200 .00

NH +O2 ↔ HNO +O 4.610E + 05 2.000 6500.00

NH +O2 ↔ NO +OH 1.280E + 06 1.500 100.00

NH +N ↔ N2 +H 1.500E + 13 .000 .00

NH +H2O ↔ HNO +H2 2.000E + 13 .000 13850.00

NH +NO ↔ N2 +OH 2.160E + 13 −.230 .00
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NH +NO ↔ N2O +H 4.160E + 14 −.450 .00

NH2 +O ↔ OH +NH 7.000E + 12 .000 .00

NH2 +O ↔ H +HNO 4.600E + 13 .000 .00

NH2 +H ↔ NH +H2 4.000E + 13 .000 3650.00

NH2 +OH ↔ NH +H2O 9.000E + 07 1.500 −460.00

NNH ↔ N2 +H 3.300E + 08 .000 .00

NNH +M ↔ N2 +H +M 1.300E + 14 −.110 4980.00

NNH +O2 ↔ HO2 +N2 5.000E + 12 .000 .00

NNH +O ↔ OH +N2 2.500E + 13 .000 .00

NNH +O ↔ NH +NO 7.000E + 13 .000 .00

NNH +H ↔ H2 +N2 5.000E + 13 .000 .00

NNH +OH ↔ H2O +N2 2.000E + 13 .000 .00

NNH + CH3 ↔ CH4 +N2 2.500E + 13 .000 .00

H +NO +M ↔ HNO +M 8.950E + 19 −1.320 740.00

HNO +O ↔ NO +OH 2.500E + 13 .000 .00

HNO +H ↔ H2 +NO 4.500E + 11 .720 660.00

HNO +OH ↔ NO +H2O 1.300E + 07 1.900 −950.00

HNO +O2 ↔ HO2 +NO 1.000E + 13 .000 13000.00

CN +O ↔ CO +N 7.700E + 13 .000 .00

CN +OH ↔ NCO +H 4.000E + 13 .000 .00

CN +H2O ↔ HCN +OH 8.000E + 12 .000 7460.00

CN +O2 ↔ NCO +O 6.140E + 12 .000 −440.00

CN +H2 ↔ HCN +H 2.100E + 13 .000 4710.00

NCO +O ↔ NO + CO 2.350E + 13 .000 .00

NCO +H ↔ NH + CO 5.400E + 13 .000 .00

NCO +OH ↔ NO +H + CO 2.500E + 12 .000 .00

NCO +N ↔ N2 + CO 2.000E + 13 .000 .00

NCO +O2 ↔ NO + CO2 2.000E + 12 .000 20000.00

NCO +M ↔ N + CO +M 8.800E + 16 −.500 48000.00

NCO +NO ↔ N2O + CO 2.850E + 17 −1.520 740.00
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NCO +NO ↔ N2 + CO2 5.700E + 18 −2.000 800.00

HCN +M ↔ H + CN +M 1.040E + 29 −3.300 126600.00

HCN +O ↔ NCO +H 1.107E + 04 2.640 4980.00

HCN +O ↔ NH + CO 2.767E + 03 2.640 4980.00

HCN +O ↔ CN +OH 2.134E + 09 1.580 26600.00

HCN +OH ↔ HOCN +H 1.100E + 06 2.030 13370.00

HCN +OH ↔ HNCO +H 4.400E + 03 2.260 6400.00

HCN +OH ↔ NH2 + CO 1.600E + 02 2.560 9000.00

H +HCN +M ↔ H2CN +M 1.400E + 26 −3.400 1900.00

H2CN +N ↔ N2 + CH2 6.000E + 13 .000 400.00

C +N2 ↔ CN +N 6.300E + 13 .000 46020.00

CH +N2 ↔ HCN +N 2.857E + 08 1.100 20400.00

CH +N2(+M) ↔ HCNN(+M) 3.100E + 12 .150 .00

CH2 +N2 ↔ HCN +NH 1.000E + 13 .000 74000.00

CH2(S) +N2 ↔ NH +HCN 1.000E + 11 .000 65000.00

C +NO ↔ CN +O 1.900E + 13 .000 .00

C +NO ↔ CO +N 2.900E + 13 .000 .00

CH +NO ↔ HCN +O 5.000E + 13 .000 .00

CH +NO ↔ H +NCO 2.000E + 13 .000 .00

CH +NO ↔ N +HCO 3.000E + 13 .000 .00

CH2 +NO ↔ H +HNCO 3.100E + 17 −1.380 1270.00

CH2 +NO ↔ OH +HCN 2.900E + 14 −.690 760.00

CH2 +NO ↔ H +HCNO 3.800E + 13 −.360 580.00

CH2(S) +NO ↔ H +HNCO 3.100E + 17 −1.380 1270.00

CH2(S) +NO ↔ OH +HCN 2.900E + 14 −.690 760.00

CH2(S) +NO ↔ H +HCNO 3.800E + 13 −.360 580.00

CH3 +NO ↔ HCN +H2O 9.600E + 13 .000 28800.00

CH3 +NO ↔ H2CN +OH 1.000E + 12 .000 21750.00

HCNN +O ↔ CO +H +N2 2.200E + 13 .000 .00

HCNN +O ↔ HCN +NO 2.000E + 12 .000 .00
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HCNN +O2 ↔ O +HCO +N2 1.200E + 13 .000 .00

HCNN +OH ↔ H +HCO +N2 1.200E + 13 .000 .00

HCNN +H ↔ CH2 +N2 1.000E + 14 .000 .00

HNCO +O ↔ NH + CO2 9.800E + 07 1.410 8500.00

HNCO +O ↔ HNO + CO 1.500E + 08 1.570 44000.00

HNCO +O ↔ NCO +OH 2.200E + 06 2.110 11400.00

HNCO +H ↔ NH2 + CO 2.250E + 07 1.700 3800.00

HNCO +H ↔ H2 +NCO 1.050E + 05 2.500 13300.00

HNCO +OH ↔ NCO +H2O 4.650E + 12 .000 6850.00

HNCO +OH ↔ NH2 + CO2 1.550E + 12 .000 6850.00

HNCO +M ↔ NH + CO +M 1.180E + 16 .000 84720.00

HCNO +H ↔ H +HNCO 2.100E + 15 −.690 2850.00

HCNO +H ↔ OH +HCN 2.700E + 11 .180 2120.00

HCNO +H ↔ NH2 + CO 1.700E + 14 −.750 2890.00

HOCN +H ↔ H +HNCO 2.000E + 07 2.000 2000.00

HCCO +NO ↔ HCNO + CO 2.350E + 13 .000 .00

CH3 +N ↔ H2CN +H 6.100E + 14 −.310 290.00

CH3 +N ↔ HCN +H2 3.700E + 12 .150 −90.00

NH3 +H ↔ NH2 +H2 5.400E + 05 2.400 9915.00

NH3 +OH ↔ NH2 +H2O 5.000E + 07 1.600 955.00

NH3 +O ↔ NH2 +OH 9.400E + 06 1.940 6460.00

Table 1: Chemical reactions in GRI-MECH 2.11.
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[14] Cook, A.W., Riley, J.J., and Kosály, G. A laminar flamelet approach to subgrid-

scale chemistry in turbulent flows. Combust. Flame, 109:332–341, 1997.

[15] Cuenot, B. and Poinsot, T. Effects of curvature and unsteadness in diffusion

flames.implications for turbulent diffusion combustion. Proceedings of the Com-

bustion Institute, 25:1383–1390, 1994.

[16] Dally, B.B., Masri, A.R., Barlow, R.S., and Fletchner, G.J. Instantaneous and

mean compositional structure of bluff-body stabilized nonpremixed flames. Com-

bust. Flame, 114:119–148, 1998.

[17] De Bruyn Kops, S.M., Riley, J.J., and Kosály, G. Investigation of modeling for
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and dissipation of a scalar field in large eddy simulations. Physics of Fluids,

13(6):1748–1754, 2001.

170



BIBLIOGRAPHY
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