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Abstract

Hierarchical models are applicable to modeling data from complex surveys or longitudinal data

when a clustered or multistage sample design is employed. The focus of this thesis is to inves-

tigate inference for discrete hierarchical models in the presence of missing data. This thesis is

divided into two parts: in the first part, methods are developed to analyze the discrete and or-

dinal response data from hierarchical longitudinal studies. Several approximation methods have

been developed to estimate the parameters for the fixed and random effects in the context of gen-

eralized linear models. The thesis focuses on two likelihood-based estimation procedures, the

pseudo likelihood (PL) method and the adaptive Gaussian quadrature (AGQ) method.

The simulation results suggest that AGQ is preferable to PL when the goal is to estimate the

variance of the random intercept in a complex hierarchical model. AGQ provides smaller biases

for the estimate of the variance of the random intercept. Furthermore, it permits greater flexibility

in accommodating user-defined likelihood functions.

In the second part, simulated data are used to develop a method for modeling longitudinal binary

data when non-response depends on unobserved responses. This simulation study modeled three-

level discrete hierarchical data with 30% and 40% missing data using a missing not at random

(MNAR) missing-data mechanism. It focused on a monotone missing data-pattern. The impu-

tation methods used in this thesis are: complete case analysis (CCA), last observation carried

forward (LOCF), available case missing value (ACMVPM) restriction, complete case missing

value (CCMVPM) restriction, neighboring case missing value (NCMVPM) restriction, selection

model with predictive mean matching method (SMPM), and Bayesian pattern mixture model.

All three restriction methods and the selection model used the predictive mean matching method
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to impute missing data. Multiple imputation is used to impute the missing values. These m

imputed values for each missing data produce m complete datasets. Each dataset is analyzed

and the parameters are estimated. The results from the m analyses are then combined using the

method of Rubin (1987), and inferences are made from these results. Our results suggest that re-

striction methods provide results that are superior to those of other methods. The selection model

provides smaller biases than the LOCF methods but as the proportion of missing data increases

the selection model is not better than LOCF. Among the three restriction methods the ACMVPM

method performs best. The proposed method provides an alternative to standard selection and

pattern-mixture modeling frameworks when data are not missing at random. This method is ap-

plied to data from the third Waterloo Smoking Project, a seven-year smoking prevention study

having substantial non-response due to loss-to-follow-up.
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Chapter 1

Introduction

1.1 Overview

In many studies looking at the effectiveness of public health interventions, data are collected in a

hierarchical manner (e.g., students are in classes that are in schools that are in communities) and

information can also be collected over time on the same individual. In educational research, stu-

dents within schools or students within classes share some common characteristics which need

to be accounted for when performing statistical analysis. Traditional linear or generalized linear

models account for only a single source of variation between observational units and ignore cor-

relation structures where individuals belong to the same class or school. Similarly, in a repeated

observation scenario the correlation within the same individual is ignored.

Any analysis which does not recognize the hierarchical structure of the data (i.e., a student-level

analysis that does not take into account class- or school-level correlation) will encounter seri-
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ous technical problems. For example, ignoring the hierarchical structure will generally cause

the standard error of regression coefficients to be underestimated (Goldstein, 1986). Tradition-

ally, clustering has been handled using design-based procedures which are ad hoc corrections

to account for the sampling design (Skinner et al., 1989). In this technique, the survey design

variables are regarded as nuisance variables which need to be taken into consideration to obtain

robust standard errors.

Hierarchical modeling has a variety of names in the statistical literature including multilevel

modeling (Goldstein, 1995; Mason et al., 1984), random effects modeling (Laird & Ware, 1982),

general mixed linear modeling (Goldstein, 1986), variance component modeling (Longford,

1986), random coefficient modeling (de Leeuw & Kreft, 1986; Longford, 1993), and hierarchical

linear modeling (Bryk & Raudenbush, 1992; Raudenbush & Bryk, 1986, 2002).

A model which does not have a clear hierarchical structure (known as a cross-classified model)

can also be handled using the hierarchical model or multilevel structure. Examples include data

for (i) a large number of students from one community attending many schools and (ii) students

from the same classes attending different courses. For example, in a study looking at students

over time, a survey may be administered first in Grade 5 and then in each subsequent grade,

through Grade 12. In such a study, students will typically move from one elementary school to

different high schools over time. To model this change, the cross-classified structure of student

movement needs to be incorporated into the model estimation since the correlation structure of

the students has changed from elementary school to high school (over time). In other words,

variation in different communities, schools, and students can be cross-classified and must be

accounted for.
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A similar type of model is the multiple membership model. In this model lower-level units

are influenced by more than one higher-level unit from the same classification. The difference

between the multiple membership model and the cross-classified model is that in the latter the

data are not nested and in the former the observation does not belong to just one member of a

classification. For example, a group of students from the same class (lower-level unit) can attend

many courses offered in school (higher-level unit) and the student can be classified as a member

of multiple courses. In addition, the marks and content of each course will affect the overall

individual grade in each class to which they belong (Hill & Goldstein, 1998). Furthermore, in

this hierarchical structure, students cross-classified by school and community are all regarded

as important sources of variation which must be taken into account (Hill & Goldstein, 1998;

Rasbash & Goldstein, 1994).

Hierarchical modeling not only accurately estimates the parameters by focusing on the hierarchi-

cal structure of the design, but also provides detailed information about the variance contribution

at different stages of the design. For example, in a school smoking survey, the school board is

first selected, followed by the school, and finally the students in eligible classes. In this setting

level 1 relates to the student information, level 2 relates to the class, level 3 relates to the school,

and level 4 relates to the school board. Furthermore, it is easy to account for covariates mea-

sured at any level, for example, school-level or class -level covariates which indicate whether the

school or the class is in the treatment condition.

A transitional model can also be used in a hierarchical modeling structure. A transitional model

is used to estimate the conditional mean of the current outcome given its past outcome. A tran-

sitional model combines the dependence of Y (outcome variable) on covariate X and allows for

correlation within individuals over time. Furthermore, when the transitional Markov model is
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correctly specified then the transitional events become conditionally independent ; hence transi-

tional models can be used to make inferences in longitudinal data (Diggle et al., 1994; Zeger &

Qaqish, 1988).

Another important aspect of hierarchical modeling is the structure of the outcome variables. If

the outcome variable is continuous, the linear mixed model technique (Laird & Ware, 1982) can

be used to handle these correlated data by extending the general linear model. Software such

as the SAS procedure MIXED (Little & Wang, 1996; Molenberghs et al., 1997) can be used to

analyze this kind of model. When the outcome variable is discrete (e.g., counts) or categorical

(nominal or ordinal data), software such as the SAS procedure GLIMMIX based on the Wolfinger

& O’Connell (1993) method can be used to fit the model.

For discrete hierarchical models a Bayesian approach can also be used through iterative sim-

ulations such as Gibbs sampling (Zeger & Karim, 1991). As a result of recent developments

in computing power the Bayesian approach is increasingly being used for discrete hierarchical

models. Software such as WinBUGS has been shown to solve a wide range of complicated

problems (Gelman et al., 1995).

Missing data are common in longitudinal data; an individual may drop out for many reasons.

Little & Rubin (1987) describe these dropouts using three missing-data mechanisms. The first

mechanism is missing completely at random (MCAR); the missing data processes are indepen-

dent of the observed and unobserved data. The second is missing at random (MAR); the miss-

ing data processes do not depend on the unobserved data. The third is missing not at random

(MNAR); the missing data processes depend on the unobserved data.

There can be monotone patterns of missing data (responses are available for an individual until a

4



certain time and then missing for all subsequent times) and intermittent non-monotone patterns

(responses are missing for a few time points).

If individuals are missing for self-selection reasons (MAR or MNAR) then there are at least two

consequences: (i) the loss of power due to missing information and (ii) the possibility of a biased

estimate. Some methods discard the incomplete data by default, resulting in decreased statistical

power for detecting treatment effects. In addition to the lost power, the sample may no longer

be representative of the population being studied, and analytic procedures under these conditions

may lead to biased estimates and misleading conclusions.

Our focus in this thesis is on the likelihood-based methods (methods using the adaptive Gaussian

quadrature (AGQ)) that are readily available in existing software such as SAS and STATA. Hi-

erarchical models are increasingly used in educational and health policy research and users need

information on which estimation procedure to use. This thesis provides the user with the pros

and cons of using the approximate method and AGQ.

Most currently available software deals with missing data in hierarchical models based on the

ignorable missing-data assumption. That is, it is assumed that the probability of dropout does

not depend on the unobserved response (Little & Rubin, 1987; Rubin, 1976). In this thesis we

develop methods for handling dropout in hierarchical models where the dropout depends on

the unobserved response, i.e., the missing data are non-ignorable (Little & Rubin, 1987; Rubin,

1976).

Fitzmaurice & Laird (2000) used the pattern mixture model for handling non-ignorable dropout

for a variety of discrete and continuous longitudinal outcomes. This thesis extends their methods

by imputing the missing data under pattern mixture and selection models using the predictive
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mean matching method. The other important feature of the proposed method is that it can be

implemented in a variety of situations with only minor modifications, using existing statistical

software for analyzing discrete hierarchical models, such as SAS and STATA.

1.2 Statement of the Problem

As stated earlier, missing data in a hierarchical structure or a multilevel setting are particularly

troublesome because they result in a loss of information and reduce the power of statistical tests,

especially when dealing with discrete longitudinal outcomes. This creates serious problems for

researchers who use hierarchical models with existing software such as SAS, STATA, MLWIN,

and HLM. The objectives of this study are:

• To develop methods for analyzing discrete and ordinal response data from hierarchical

longitudinal studies with missing outcome values.

• To use the above estimation methods in complete case analysis and in missing data cases

where data are missing based on the past, current, and future outcomes.

• To develop an imputation method for hierarchical models to impute missing values using

the predictive mean matching method under two models for non-ignorable missing data: a

pattern mixture model and a selection model; and to compare the results with two standard

methods: complete case analysis and last observation carried forward (LOCF).

• To apply the above techniques to an existing dataset, the Waterloo Smoking Prevention

Project 3 (WSPP3), and to compare the results with those from the simulated dataset.
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• To analyze the WSPP3 datasets using a Bayesian pattern mixture model and to compare

the results with those from the pattern mixture model and the selection model.

SAS macros and programs written in SAS have been developed to analyze the WSPP3 data.

These programs can be generalized to perform similar analyses for different datasets.

1.3 Description of Dataset

This section describes a longitudinal dataset that includes missing observations. This dataset

will be used throughout the thesis as a key example to illustrate the techniques developed and to

compare them with other frequently used methods.

1.3.1 Waterloo Smoking Project (WSPP3)

The Waterloo Smoking Prevention Project 3 (WSPP3) was conducted by the Population Health

Research Group (previously known as the Health Behavior Research Group) at the University

of Waterloo (Brown & Cameron, 1997; Cameron et al., 1999). The purpose of WSPP3 was to

evaluate a social-influence smoking prevention program at the elementary level (grades 6 through

8) followed by an activity-based program at the secondary level (grades 9 and 10). In addition,

students were followed at grades 11 and 12 to assess the long-term impact of the intervention.

Seven school boards in Southwestern Ontario, Canada participated in this study, which included

100 eligible elementary schools (fifteen from each of six boards and ten from the seventh board).

One hundred participating schools were randomly assigned in a four-to-one ratio to receive either
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an intensive anti-smoking public health education program (treatment) or their standard school

curriculum (control). A detailed description is given by Driezen (2001).

In the first phase of the study, elementary school data (grades 6 to 8) were collected over a period

of three years from 1989 to 1992. The schools were randomly assigned to an experimental

condition based on their school risk score (i.e., the smoking rate among the senior students in the

school prior to intervention).

The second phase of the study started when the cohort was in grade 9. Six of the seven school

boards participating in the elementary school study agreed to participate in the second phase.

Secondary schools which were projected to receive at least 30 students from the elementary

school cohort were eligible to participate. Of the 35 eligible schools, 30 agreed to participate.

Students who attended other schools (e.g., with fewer than 30 cohort members) were also fol-

lowed. The secondary schools were pair-matched within school board by size, number of cohort

students planning to attend the school, and proportion of cohort students from the elementary

schools. The pairs of schools were then randomly assigned to either an intervention or a control

condition.

During the final phase of the study, cohort members were followed through Grades 11 and 12 and

surveyed to assess the long-term impact of the treatment. Table 1 shows the number of students

recruited and their distribution between the experimental and control conditions.

Students were classified into one of five smoking categories: never smoked, tried once, quitter,

experimental smoker (smoked less than once a week), and regular smoker (smoked weekly). In

this study, the analysis will be restricted to three categories: smoker (experimental smoker or

regular smoker), nonsmoker (never smoked, tried once), and quitter.
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Table 1.1: Number of students providing data for WSPP3*

Study Grade # providing # participating in # in same treatment
data intervention study condition for entire study

Elementary 6 (1990) 4466 4466 3821
School Trial 7 (1991) 5455 5333

8 (1992) 5593 5305

Secondary 9 (1993) 4703 2670 2439
School Trial 10 (1994) 4999 2643

Follow-up 11 (1995) 4420 Not Applicable Not Applicable
12 (1996) 4204

1.4 Organization of Thesis

The remainder of the thesis is organized as follows. Chapter 2 provides a description of the

hierarchical model for analyzing longitudinal or clustered data and discusses various approaches

to parameter estimation. The chapter begins with a formalization of the two-level hierarchical

model and its assumptions for both continuous and discrete outcomes. Two prominent estimation

approaches are discussed: adaptive Gaussian quadrature (AGQ) and pseudo likelihood (PL).

Chapter 3 begins with the specification of the simulation model and the parameter values. A

series of simulations were conducted on a three-level hierarchical model to examine the perfor-

mance of the parameter estimates and their standard errors obtained from the different estimation

procedures. Based on the simulation results, the chapter discusses the pros and cons of two esti-

mation procedures: PL and AGQ.

Chapter 4 describes missing-data mechanisms with an emphasis on non-ignorable missing data.

Two models for non-ignorable missing data—selection and pattern mixture models—are de-
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scribed, together with their advantages and limitations in the context of hierarchical models. For

comparison purposes, a Bayesian pattern mixture model is also described.

Chapter 5 discusses simulation studies and the specification of the simulation model and parame-

ter values. A series of simulation studies were conducted using the three-level discrete hierarchi-

cal model and three missing-data mechanisms were established (missing completely at random,

missing at random, and missing not at random). Furthermore, the predictive mean matching

method was used to impute the missing data under the pattern mixture and selection models.

Three restriction methods were employed under the pattern mixture model: the complete case

missing value (CCMV), available case missing value (ACMV), and neighboring case missing

value (NCMV). Lastly, aggregate parameter estimates were obtained under the three restriction

methods and the selection model using the multiple imputation method (Rubin, 1987).

In Chapter 6 an analysis of the Waterloo Smoking Prevention Project 3 is conducted using the

proposed methodology for handling the informative missing data.

Lastly, Chapter 7 briefly summarizes the overall findings and outlines future work.
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Chapter 2

Hierarchical Models

2.1 Basic Hierarchical Model

The i.i.d. (independently identical distribution) assumption of yi given xi is key for inferences

in a simple regression model. When the sampling design is based on a hierarchical or multilevel

structure, many assumptions of the simple regression model do not hold including the i.i.d. as-

sumption. For example, it is expected that individual schools from the WSPP3 datasets would

have distinct features in terms of school smoking policy, administration, and community. If a

simple regression model is fitted to these datasets without taking into account the correlation

between students within schools, it may result in inflated effect size estimates and spuriously

small standard errors for the parameter estimates (Snijders & Bosker, 1999). Hierarchical mod-

els allow the appropriate modeling of the correlation and correct the estimates for the violation

of i.i.d..
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Let Yij be the outcome variable and Xij be a covariate for subject i (student in jth school) in

cluster j. A suitable model is:

Yij = β0 + β1Xij + u0j + eij (2.1)

The difference between this model and the simple regression model is the added u0j term (ran-

dom shift in intercept for different schools), which accounts for mean differences among schools.

If we assume that the schools are randomly sampled, which in this case they are, then the school

effect can be treated as a random variable and the above equation can be represented as a two-

level model. The complete specification of the model is as follows:

Yij = ηij + eij (2.2)

where

ηij = β0j + β1Xij; β0j = β0 + u0j

u0j ∼ N(0, σ2
u); eij ∼ N(0, σ2

e)

Cov(u0j, eij) = 0

The parameter β0 is defined as an average intercept for all students and u0j is the random shift in

intercept for different schools. So we can write a simplified model as

Yij = β0 + β1Xij + u0j + eij (2.3)

with
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u0j ∼ N(0, σ2
u); eij ∼ N(0, σ2

e); Cov(u0j, eij) = 0

Model 2.3 is known as a random intercept model (Goldstein, 1995) and can be extended further

by treating the slope of the line relating Yij and Xij as a random coefficient (Goldstein, 1995).

This allows us to estimate the variability in the regression coefficients (both intercepts and slopes)

across the second level. That is, suppose

β0j = β0 + u0j β1j = β1 + u1j

where

u0j ∼ N(0, σ2
u) u1j ∼ N(0, σ2

u1)

eij ∼ N(0, σ2
e) Cov(u0j, u1j) = σ2

01

E(u0j, eij) = 0

Substituting the above model into Eq. (2.1)

Yij = (β0 + β1Xij) + (u0j + u1jXij + eij) (2.4)

The first part of Eq. (2.4) is considered fixed and the second part is considered random. Equation

(2.3) can easily be extended by adding any second-level or school-level predictor such as the

treatment conditions of the schools Cj as a N ×1 matrix the entries of which have a value of one

for treatment schools and a value of zero for control schools:

β0j = β0 + β2Cj + u0j

β1j = β1 + β3Cj + u1j
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Substituting into Eq. (2.2), we obtain

Yij = (β0 + β1Xij + β2Cj + β3CjXij) + (u0j + u1jXij + eij) (2.5)

As usual the first part is considered fixed and the second part random. Equation (2.5) can be

extended to level three or higher. As the levels increase the expression gets more complicated.

This thesis only focuses on the random intercept model. In matrix notation, the random intercept

model can be written as:

Y = Xβ + Zu+ e (2.6)

where

u ∼ N(0, D)

e ∼ N(0,Σ)

where u and e are independent. Model 2.6 is generally referred to in the literature as the Laird-

Ware model or the linear mixed model (Laird & Ware, 1982). In model 2.6, Y is the N × 1

response vector for subjects i in the jth school where 1 ≤ i ≤ nj , nj is the total number of

students in the jth school, and N =
∑
j

nj . X is the N × p design matrix for the fixed effects,

including second-level fixed effects, β is the vector of fixed-effect coefficients, Z is the N × J

design matrix for the random effects, u is the J × 1 vector of random-effect coefficients, e is the

N × 1 vector of random errors for the subjects, D is the J × J covariance matrix for the random

effects, and Σ is the N ×N covariance matrix.

14



The first two moments in the Laird-Ware model are

E(Y ) = Xβ (2.7)

Cov(Y ) = ZDZT + Σ

= V (α)

where α denotes the vector of all variance and covariance parameters.

2.2 Inference for Hierarchical Models

Inference for linear mixed models can be based on procedures such as maximum likelihood

(ML) methods or empirical Bayes methodology which yields restricted maximum likelihood

(REML) estimates (Harville, 1977; Jennrich & Schluchter, 1986; Laird & Ware, 1982). The

difference between ML and REML approaches lies primarily in the treatment of the likelihood

function. In the ML method the variance components are estimated by values that maximize

the likelihood function over the parameter space. In contrast, REML partitions the likelihood

into pieces and maximizes the portion which does not include the fixed effects. Browne &

Draper (2000) concluded that REML is at least as good as ML and sometimes better, especially

in estimating the variance components. ML methods lead to biased estimates of the variances

in small samples, while REML estimates of the variances are less biased since they take into

account the loss of degrees of freedom due to the estimation of the regression parameters.
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2.2.1 Maximum Likelihood (ML) Methods

Let θ = (α, β) be the vector of all the parameters in the Laird-Ware model. Estimates of the

parameters in the Laird-Ware model can be obtained by maximizing the joint likelihood function

with respect to θ=(α,β):

L(α, β) = (2π)−N/2|V (α)|−1/2exp

(
−1

2
(Y −Xβ)TV −1(α)(Y −Xβ)

)
(2.8)

Assuming that the variance parameters α are known, the maximum likelihood estimate (MLE)

of β can be obtained by maximizing Eq. (2.8) conditional on the variance parameters, α (Laird

& Ware, 1982):

β̂(α) = (XTV −1(α)X)−1(XTV −1(α)Y ) (2.9)

Harville (1977) shows that β̂ is unbiased under the assumption that the mean structure is cor-

rectly specified and since β̂ is linear in Y then the variance of the estimator is easily determined:

V (β̂) = [(XTV −1(α)X)−1XV −1(α)]V (Y )[(XTV −1(α)X)−1XV −1(α)]T

V (β̂) = (XTV −1(α)X)−1 (2.10)

β̂ ∼ N(β, (XTV −1(α)X)−1) (2.11)

Liang & Zeger (1986) propose using a “sandwich estimator" for V (β̂). It provides consistent

estimates of the covariance for parameter estimates even when a parametric model fails to hold

or the variance structure of the parameter estimate is mis-specified. In practice the components

V (α) are not known and must be estimated from the datasets. Most often a nonlinear opti-
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mization program is used to obtain a maximum likelihood estimate of the variance parameters.

The program searches over the values of these parameters until it finds the values that minimize

−2ln(θ). The MLE of α is obtained by maximizing (2.8) after β is replaced by β̂(α):

lML(α, β̂) = −2ln(α, β̂) = Nln(2π) + ln|V (α)|+ (Y −Xβ̂)TV −1(α)(Y −Xβ̂)

lML(α, β̂) = Nln(2π) + ln|V (α)|+ Y TV −1(α)Y − Y TV −1(α)Xβ̂ − β̂XTV −1(α)(Y −Xβ̂)

(2.12)

The ML estimators are asymptotically unbiased and require a large sample size to have accurate

variance estimates. Van der Leeden & Busing (1994) showed that when the sample size is

small the ML procedure provided downward biased estimates of variance components and in

some cases spurious results because there is no adjustment for the degrees of freedom lost by

estimating the regression coefficients. Furthermore, they observed that the variance components

at level two were often underestimated. This can lead to false significance of the covariates in

the model due to the underestimation of the variance of β.

2.2.2 Restricted Maximum Likelihood (REML) Method

Restricted maximum likelihood (REML) estimation corrects the underestimation of the variance

component by explicitly taking into account the loss of the degrees of freedom by maximizing

the likelihood of a set of residual contrasts (Diggle et al., 1994). The SAS procedure MIXED

uses REML as the default. The REML estimator α̂ is obtained by minimizing the following
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−2ln likelihood function:

lREML(β̂(α), α) = Nln(2π)+ln|XTV −1(α)X|+ln|V (α)|+(Y−Xβ̂)TV −1(α)(Y−Xβ̂)+N−p

(2.13)

where p is the number of regression coefficients.

Equation (2.13) represents the likelihood function of the error contrasts. When a REML estimate

of α is available, the REML estimate of β is the same as Eq. (2.10) for maximum likelihood

estimation.

There are no closed-form solutions for α, therefore iterative methods are needed to calculate

the ML or REML estimates of β and V (α). Harville (1977) suggested using a Newton-Raphson

scoring algorithm to estimate the parameters. The EM (expectation and maximization) algorithm

also provides a convenient approach to computation for the random effects model in which the

unobservable random subject effects and within-subject errors are treated as missing observa-

tions (Dempster et al., 1977; Laird et al., 1987; Laird & Ware, 1982). However, the Newton-

Raphson algorithm is preferred over the EM algorithm because of its faster convergence (Dennis

& Schnabel, 1983; Lindstrom & Bates, 1988), although there are example when the EM algo-

rithm is more accurate. In this thesis, the Newton-Raphson algorithm is used.

2.3 Generalized Linear Mixed Models

Generalized linear models can be used for independent discrete and continuous outcomes. Non-

Gaussian but exponential family response variables can be modeled using a linear model through

a link function, and this methodology is referred to as the generalized linear model (GLM) for in-
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dependent observations. Members of the exponential family have this general probability density

or mass function (McCullagh & Nelder, 1989; Nelder & Wedderburn, 1972):

f(Y |θ, %) = exp

([
Y θ − b(θ)
a(%)

]
+ c(Y, %)

)
(2.14)

where θ represents the canonical parameter for an exponential family when the dispersion pa-

rameter % is known. Functions a(.), b(.) and c(.) are specified according to different distributions

(McCullagh & Nelder, 1989).

The generalized linear model has a link function that relates the linear combination of the covari-

ates (η) to the expectation of Y :

g(µ) = η = Xβ

where

µ = E(Y ) = b′(θ)

V ar(Y ) = b′′(θ)a(%)

In the generalized linear model Y is the response vector, X is the design matrix for the fixed

effects, and β is the vector of fixed-effect parameters. The canonical link functions are log and

logit for Poisson and binary data, respectively. For the log function g(µ) = log(µ) and for the

logit function g(µ) = log

[
µ

1− µ

]
.

The log-likelihood function for the generalized linear model is

l(Y, µ, %) =
∑
i

log(f(Yi, µi(β), %))
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Maximum likelihood estimates for β can be obtained by weighted least squares by iteration

solving: at the kth step

XTVk−1Xβk = XTVk−1Y
∗
k−1

where

µ = E(Y ); Σ = V ar(Y );D =
∂µ

∂η
;Vk−1 = Dk−1Σ−1

k−1Dk−1;

and

Y ∗k−1 = ηk−1 + (Y − µk−1)D−1
k−1

GLM has been extended to non-exponential family distributions by the use of quasi-likelihood.

The concept of quasi-likelihood was introduced by Wedderburn (1974) and discussed in detail

by McCullagh & Nelder (1989). The use of maximum likelihood in parameter estimation re-

quires exact specification of the distribution in order to construct the likelihood function. Quasi-

likelihood provides an alternative for problems where the distribution of the response variable

may not be known, but its variance function can be expressed as a function of the mean. The

quasi-likelihood function for the ith individual Q(µi, Yi) is defined by the equation

Ui =
∂Q(µi;Yi)

∂µi
=

Yi − µi
σ2V (µi)

where Ui has the following properties in common with a log likelihood derivative:

E(Ui) = 0

V ar(Ui) = 1
σ2V (µi)
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and

−E
[
∂Ui
∂µi

]
= 1
σ2V (µi)

Since the likelihood function is based on these three properties, we can assume that quasi-

likelihood behaves like a log-likelihood function for estimating β. So Q(µi;Yi) can be defined

as:

Q(µi;Yi) =

∫ µi

Yi

Yi − t
σ2V (t)

dt

The quasi-likelihood estimates of β can be obtained by the Newton-Raphson algorithm with a

quasi-score function and a quasi-Fisher information matrix (McCullagh & Nelder, 1989).

The joint quasi-likelihood of the independent observations is the sum of the individual contribu-

tions to the quasi-likelihood function:

Q(µ;Y ) =
∑
i

Q(µi;Yi)

2.3.1 Marginal Methods

Generalized estimating equations (GEE) were first proposed by Liang & Zeger (1986) as an

estimation technique to estimate the marginal model for the analysis of longitudinal data. GEE

is based on a multivariate version of quasi-likelihood (McCullagh & Nelder, 1989; Wedderburn,

1974). This method requires the specification of only the first two moments of a distribution. The

procedure involves fitting a generalized linear model to the marginal distribution of the repeated

measures and adjusting for correlation between observations on the same subject. It estimates the
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population average parameter through a known link function. In a marginal model we define only

the specifications of the marginal mean, the variance of the response, and the correlation structure

of the response. Liang & Zeger (1986) show that if the model for the mean is correctly specified

then the regression estimates are consistent and efficient even if the working correlation structure

is mis-specified. In this approach the emphasis is on estimating the regression parameters while

treating the response correlation parameters as nuisance parameters.

Let Yit denote the response for the ith individual, measured at time t. The response variables

for the ith subject are Yi = (Yi1, ......, YiT ) be the mean of Yi for the ith individual. Let Xit =

(Xit1, Xit2, ..., Xitp) be a p × 1 vector of covariates associated with Yit, which may be time

dependent or fixed covariates. Then

µit = E(Yit|Xit)

g(µit) = Xitβ

V ar(Yit|Xit) = V (µit)$

where β is the vector of unknown coefficients, $ is a scale parameter and t = 1, 2, ..., T . Let θ

be the vector of all the parameters in this model. The estimate of β is obtained as the solution to

the quasi-score equations:

ψβ(θ) =
∑

i
XT
i (∂µi(β)

∂µi
)TAiV

−1
i [Yi − µi(β)] = 0
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In the marginal model Vi = Cov(Yi) = A
1/2
i RiA

1/2
i /$, whereAi = diag(V (µi1), ........., V (µiT ))

and Ri is an T × T working correlation matrix. The solution of the above equation is obtained

using iteratively re-weighted least squares. Liang & Zeger (1986) showed that the estimates

obtained by GEE are consistent and asymptotically normal given only the correct specification

of the mean and certain regularity conditions.

The estimating functions ψβ(θ) are unbiased if the data are complete or missing completely at

random (MCAR) and in this case the GEE approach produces consistent estimates for the mean

parameters (Laird, 1988). Liang & Zeger (1986) showed that if the working covariance assump-

tions are correct and the GEE estimator and the model-based covariance matrix are consistent

under MAR, then GEE becomes ML estimates. However, when the data are MAR or MNAR and

the covariance assumption is wrong then the estimating equations are not unbiased and hence fail

to produce consistent estimates (Fitzmaurice et al., 1995) for the variance. Robins et al. (1995)

proposed an inverse-probability weighted GEE approach that yields unbiased equations and con-

sistent estimates for the mean parameters. Estimation of these weights is possible when the data

are MAR (Cook et al., 2002; Robins et al., 1995), but sensitivity analyses must be conducted

when the data are MNAR (Rotnitzky et al., 1998). The price to be paid for incorporating weights

is that a model must be specified for the missing-data mechanism. Weighted GEE can handle the

MAR and MNAR mechanisms.

Let Wi be a T × T matrix whose tth diagonal element is an estimate of the reciprocal of the

probability that the tth element of Yi is observed. The weighted version of the estimating equation

is

ψβ(θ) =
∑

i
XT
i Wi[Yi − µi(β)] = 0
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In practice, the probability that the tth element of the ith subject is missing is unknown and can, at

best, be estimated by a logistic regression. The weighted estimating equation has been criticized

by Little & Rubin (2002), who argue that the greater efficiency of fitting a fully parametric model

may outweigh the associated potential for bias. In this thesis we focused on the parametric model

and decided not to use the weighted estimating equation. However, the GEE estimate was used

to estimate the initial values for model fitting using the SAS procedure GENMOD.

2.3.2 Binary Outcomes

Statistical methodology for the hierarchical data analysis of non-Gaussian data is less well de-

veloped than that for Gaussian data. This is especially true for binary-outcome data that lead

to generalized linear mixed models (GLMM) with a nonlinear link function such as the logistic

link. Hierarchical models not only take into account the correlation structure but also provide

estimates for the cluster-specific covariates. The most common choice is the logistic normal

model, also known as the hierarchical logistic model.

From this point, the focus will be on the hierarchical logistic model. For simplicity consider the

case where there are two levels and a single predictor variable. Let Yij be the response random

variable for the ith subject within the jth group (cluster), Yj = (Yj1, Yj2, ......, Yjnj)
T , Xij a p

vector of covariates associated with the ith subject within the jth group, πij = Pr(Yij = 1) the

probability of observing a successful event, and β a p vector of the regression coefficients. Let

consider the logistic model
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logit(πij) = log

(
πij

1− πij

)
(2.15)

= Xijβ + u0j (2.16)

Then

πij =
exp(Xijβ + u0j)

1 + exp(Xijβ + u0j)
(2.17)

where Yij ∼ B(1, πij) with var(Yij) = πij/(1 − πij). The usual assumption of normal random

effects u0j ∼ N(0, σ2
u) is for convenience. It does not create difficulties in the estimation of the

fixed and random effects.

The hierarchical logistic model in Eq. (2.15) presents more challenges than the standard logistic

model. ML estimates are often used to estimate the parameters in the standard logistic model.

However, in hierarchical logistic models this is more difficult. Let f(Yj|u0j, β, α) denote the

conditional probability density function for the response variable Yj given u0j , and let h(u0j)

denote the probability density function for the random effect u0j , which is assumed to be normal,

then

f(Yj|Xj1, Xj2, ....., Xjp, β, α, u0j) =

nj∏
i=1

π
Yij
ij (1− πij)1−Yij (2.18)

=

nj∏
i=1

[exp(Xijβ + u0j)]
Yij

1 + exp(Xijβ + u0j)
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and

f(Yj|Xj1, Xj2, ....., Xjp, β, α) =

∫
f(Yj|u0j, β, α)h(u0j)du0j (2.19)

In general, integral (2.19) does not have a closed-form expression when the model is nonlinear.

Several approximate methods have been proposed to estimate the fixed and random effects in

the context of generalized linear models. Some of these methods consist of taking a first-order

Taylor expansion (Sheiner & Beal, 1980; Vonesh & Carter, 1992; Wolfinger & O’Connell, 1993).

Others use a Gaussian quadrature method (Davidian & Gallant, 1992; Pinheiro & Bates, 1995).

Wolfinger & O’Connell (1993) used a procedure called pseudo-likelihood (PL) in which a Taylor

series approximation method was used to approximate the link function and integrated likelihood

for the marginal distribution. However, Breslow & Clayton (1993) showed that such an approx-

imation could be quite inaccurate under certain conditions. Furthermore, Gibbons et al. (1993)

and Pinheiro & Bates (1995) developed accurate approximations to the ML using Gauss-Hermite

quadrature, and these are now implemented in the SAS procedure NLMIXED and STATA and

the package MIXOR. It should also be mentioned that the SAS procedure NLMIXED uses Adap-

tive Gaussian Quadrature (AGQ) to compute the integral over the random-effect distribution in

order to obtain the approximate likelihood. An alternative approximation uses a higher-order

Laplace transformation (Raudenbush & Bryk, 2002) and is implemented in the HLM program.

In this thesis the focus is on PL (Wolfinger & O’Connell, 1993) and AGQ (Pinheiro & Bates,

1995). Both methods use an iterative approach to estimate the parameters.
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2.3.3 Pseudo-Likelihood Method

The Pseudo-Likelihood (PL) approach for nonlinear models uses an approximation based on

a linear mixed model with current values of the covariance parameter estimate. The resulting

linear mixed model is then fitted again which is itself an iterative process. On convergence the

new parameter estimates are used to update the linearization which results in a new linear mixed

model. The process stops when the change in the parameter estimates between the successive

linear fittings is within a specified tolerance. Wolfinger & O’Connell (1993) present the above

approximate method by fitting model (2.19) using same notation as in equation 2.6 in matrix

form. The procedure begins with

η = g(π) = logit(π) = log

(
π

1− π

)
= Xβ + Zu (2.20)

where η = g(π) is referred to as the link function. It is assumed that u has a normal distribution

with zero mean and covariance matrix D. Then

E(Y |u) = g−1(Xβ + Zu) = g−1(η) = µ

where u ∼ N(0, D) and V (Y |u) = Σ. Following Wolfinger & O’Connell (1993) a first-order

Taylor series of µ about β̃ and ũ yields

g−1(η) ∼= g−1(η̃) + 4̃X(β − β̃) + 4̃Z(u− ũ)

4̃ =

[
∂g−1(η)

∂η

]
β̃,ũ
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where 4̃ is a diagonal matrix of derivatives of the conditional mean evaluated at the expansion

locus. Then

4̃−1(µ− g−1(η̃)) +Xβ̃ + Zũ ∼= Xβ + Zu ∼= P

and V [P |u] = 4̃−1Σ4̃−1 which is a linear mixed model with pseudo-response P , fixed effect

β, and random effect u. Define the marginal variance in the linear mixed pseudo-model to be

V [α] = ZDZT + 4̃−1Σ4̃−1. The log pseudo-likelihood (MPL) and restricted log pseudo-

likelihood (RPL) for P are then

l(α, p) = −1

2
log|V (α)| − 1

2
γTV −1(α)γ − N

2
log(2π);

and

lR(α, p) = −1

2
log|V (α)| − 1

2
γTV −1(α)γ − 1

2
log|XTV −1(α)X| − N − q

2
log(2π)

with γ = P −X(XTV −1(α)X)−1XTV −1(α)P and where q denotes the rank of X .

The fixed-effect parameters β and the random effects u can be estimated from these expressions:

β̂ =
(
XTV −1(α̂)X

)−1
XTV −1(α̂)P

û = D̂ZTV −1(α̂)γ̂

where α is estimated by the dual quasi-Newton optimizing technique and the objective func-

tion for minimization is −2l(α, p) or −2lR(α, p). Once the convergence is achieved using the
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optimization techniques, the regression parameters are estimated using

β̂ = (XTV −1(α̂)X)−1XTV −1(α̂)P

and the random effects are predicted as

û = D̂ZTV −1(α̂)γ̂

This process continues until the relative change between the parameter estimates at two succes-

sive iterations is sufficiently small. The GLIMMIX procedure in SAS version 9.1.3 allows for

the estimation of binary hierarchical models by expanding upon the properties of MIXED (which

considers the linear model as the response variable).

The advantage of the linearization-based method is the relatively simple form of the linearized

model that typically fits the model based on only the mean and the variance in the linearized

form. Furthermore, it is computationally efficient. Therefore, most often this method is used to

provide starting values for other procedures. The potential disadvantage of this approach is the

absence of a true objective function for the overall optimization process which could potentially

bias the estimates of the covariance parameters, especially in the binary response model, because

of the double iterative process. Furthermore, this method deteriorates as the distribution of the

response variable departs further from normality or if large variance components are present. The

parameter estimates are then negatively biased (Breslow & Lin, 1995). Another disadvantage is

that PL does not directly involve the likelihood. Thus, this method cannot use likelihood-based

inference such as likelihood ratio tests and likelihood-based confidence intervals.
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2.3.4 Adaptive Gaussian Approach

The Gaussian quadrature method approximates the integral in Eq. (2.19) by a weighted sum

over predefined abscissas for the random effects. A good approximation can usually be obtained

with an adequate number of quadrature points as well as appropriate centering and scaling of the

abscissas. The weights and abscissas used in Gaussian quadrature rules for the most common

distributions can be obtained from the tables of Abramowitz & Stegun (1964) or by using the

algorithm proposed by Bjorck & Golub (1973). A problem related to multiple integrations can

be transformed to successive applications of simple one-dimensional Gaussian quadrature rules.

Lindstrom & Bates (1990) show how adaptive Gaussian quadrature works in discrete hierarchi-

cal models. Let Yij be the response random variable for ith subject with the jth group (cluster).

The probability of observing a successful event is defined as πij = Pr(Yij = 1). In this case the

cluster-specific parameter vector is modeled as a random intercept model

ηij = logit(πij) = Xijβ + u0j, u0j ∼ N(0, σ2
u)

where β is a p-dimensional vector of fixed population parameters, u0j is a random effect asso-

ciated with the jth cluster, and Xij is the design vector for all the fixed effects covariates for

individual i. For the above nonlinear mixed effect model AGQ centers the quadrature points

around the empirical Bayes estimates û0j of the random effects, where the empirical Bayes esti-

mates are calculated from the function

−log

{
J∏
j

[
nj∏
i=1

f(Yij|u0j, β, α)h(u0j)

]}
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and scaled using the final negative Hessian valueD from the optimization of this function. Let kq

and wq denote the standard Gauss-Hermite abscissas and weights (Golub & Welsch, 1969). The

quadrature points kq are then adjusted to be aq = û0j +
√

2Dkq for q = 1,2,......,Q. The standard

weights wq are scaled to be w∗q = wqe
k2
q . Then

L(β, α) =

∫
u

J∏
j=1

[
nj∏
i=1

f(Yij|u0j, β, α)h(u0j)

]
du

≈
√

(2)D

Q∑
q=1

J∏
j=1

[
nj∏
i=1

f(Yij|u0j, β, α)

] [
h(Φ(û0j +

√
2Dkq))

]
φ(û0j +

√
2Dkq)wqe

k2
q

Here φ(.) is the standard normal probability density function and Φ(.) is the standard normal

cumulative density function. AGQ can be generalized to approximate any nonlinear mixed effect

model.

The SAS procedure NLMIXED is recommended for the analysis of binary data that require ac-

curate covariance parameter estimates (Murray et al., 2004). Murray et al. (2004) further suggest

that the numerical integration maximum likelihood estimation method employed by NLMIXED

is superior for multilevel analysis involving small groups, such as family studies.

The SAS procedure NLMIXED uses AGQ to compute the integral over the random effects in or-

der to obtain the approximate likelihood. The number of quadrature points is adaptively selected

by evaluating the log likelihood function at the starting values of the parameters until a relatively

small change arises between two successive evaluations. This method permits more flexibility in

accommodating user-defined likelihood functions than the PL methods. Furthermore, for a small

cluster size, AGQ methods perform better than PL methods, but they become more complicated

if the number of random effects is greater than two. For three-level hierarchical models, such as
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WSPP3, the AGQ methods can be used under the Markov transition model.

2.4 Transitional Model

When the transition pattern in repeated binary data is of interest, a more appropriate approach is

to model the transition probabilities over time. Various authors have considered modeling hetero-

geneous transitional data without missing data (Albert & Waclawiw, 1998; Cook, 1999). If the

Markov transitional model is correctly specified then the transitional events become conditionally

independent and transitional models can be used to make inferences about parameters (Diggle

et al., 1994; Zeger & Qaqish, 1988). In such models individual movement to a given state at time

t+ 1 is dependent upon the state at time t. Markov transition models combine the dependence of

Y on covariates X and correlation within individuals over time, by regressing the current value

of Y on X and previous values.

McCullagh & Nelder (1989) suggested two models that can be used to model transition prob-

abilities: generalized logit models and proportional odds models. Throughout this thesis, the

generalized logit model is used. The correlation across time within subjects is accounted for us-

ing Markov transition models and the correlation between subjects within clusters is incorporated

using random effects.

Let Qij,t = k, t = 1, 2, ..., T denote the status of the ith subject in cluster j at time t with k

possible states where k = 1, 2, ...K. We assume that the evolution of the status satisfies a first-

order Markov chain with transitional probability from state k to state l at time t defined as (t ≥
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2),

pijt(l|k) = Pr(Qij,t = l|Qij,t−1 = k,X1ij,t−1, Cj, θkl)

where θkl denotes the collection of all parameters.

For the ith subject with previous stage k, we use the generalized logit model

log

{
pijt(l|k)

pijt(k|k)

}
= β0j|kl + β1|klX1ij,t−1 + β2|klt

where

β0j|kl = β0|kl + β3|klCj + u0j|kl.

Yosef (1997) conducted a simulation study of a two-level mixed-effects logit model with a single

random effect comparing the AGQ and PL methods. For AGQ, he used the MIXOR program of

Hedeker and Gibbons and found that AGQ generally gives less biased estimates than PL. How-

ever, as the number of random effects increases, AGQ becomes more computationally complex

and inefficient. Yosef (1997) concluded that AGQ performs well if the number of random effects

is small. Breslow & Lin (1995) also show large differences in the estimate of the variance of the

random effects using PL and AGQ with a two-level hierarchical structure. Their results suggest

that PL produces higher biases for the variance estimate of the random intercept. Furthermore,

their simulation studies show that PL deteriorates as the data depart from normal (e.g., binary)

and as the variance component increases. Breslow & Lin (1995) conclude that it is better to use

exact methods such as AGQ rather than approximation methods such as PL if the purpose is to

estimate the variance of the random effect. A more recent study has shown similar results with

small cluster sizes. AGQ tends to provide better results than PL for the variance estimate of the
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random intercept (Browne & Draper, 2006).

However, AGQ is computationally intensive and leads to a corresponding difficulty in successful

estimation for higher levels of random effect. Recently, the GLLAMM procedure in STATA has

used AGQ and can be extended to more than two levels of random effect. However, PL has an

advantage over AGQ because of its computational efficiency. The procedure is fast compared to

AGQ. For the simulation analysis in Chapter 5, along with the GEE approach (used to find initial

values for the fixed-effect parameters), PL was used to find the starting values for the variance

estimate of the random intercept to use in AGQ. PL has an advantage over AGQ if complex

models (e.g., with a large number of random effects and/or multiple hierarchies) are required.

In this thesis, we consider hierarchical model with correlation within subjects across time, and

between subjects within schools. A Markov transitional model assumption was used to account

for the correlation within individuals over time, and correlation between subjects is incorporated

using the normal random effects. Under this assumption, the analysis of a three-level hierarchical

model requires specification of only a single level of random effect. Chapter 3 will use a sim-

ulation study to assess the relative merits of AGQ and PL for this clustered Markov transitional

model. Later in the thesis, we develop an imputation method for hierarchical models to impute

the missing values using the predictive mean matching method when the missing data are clas-

sified as MNAR. Based on the simulation study reported in Chapter 3, we will determine which

estimation method (AGQ or PL) should be used to estimate model parameters when dealing with

missing data.
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2.5 Summary

This chapter described hierarchical models for analyzing longitudinal and/or clustered data and

discussed two approaches to parameter estimation. This thesis focuses on likelihood-based and

approximate likelihood methods that are easily available in standard software such as SAS and

STATA. The first estimation method used the PL procedure in which a Taylor series approxima-

tion method is used to approximate the link function and integrated likelihood for the marginal

distribution. This method has been implemented in the SAS procedure GLIMMIX that is used

in the subsequent chapters. The second estimation method is the AGQ in which a quadrature

rule is used to approximate the likelihood function. The SAS procedure NLMIXED uses AGQ

to estimate the model parameters. Comparisons between likelihood and Bayesian methods are

performed in Chapter 6 with WSPP3 datasets. In Chapter 3 simulation studies are performed to

examine the performance of the parameter estimates and standard errors obtained from likelihood

and approximate likelihood methods.
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Chapter 3

Evaluating the Estimation Procedures

Using Simulation

This chapter describes the design of the simulation study to examine the performance of the pa-

rameter estimates and estimated standard deviations obtained from two estimation procedures:

AGQ and PL. A series of simulations were conducted on a discrete hierarchical model with

explanatory variables. SAS programs are used to generate the data, implement the estimation

techniques, fit the specified models, and compute the estimation accuracy indices for both ap-

proaches. These simulations focus only on binary response variables with a logit link function

with a normal random-effect distribution.
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3.1 Simulation Model and Parameter Values

Data were simulated under a hypothetical experimental situation. The purpose of this simulation

was to estimate the growth rate difference between two groups and the variability in intercept.

As a starting point for the simulation, a hypothetical longitudinal study based on the WSPP3

study described earlier was created to examine smoking behavior among school-aged youth with

smoking transitions as the primary outcomes. In this hypothetical study, schools were randomly

assigned to either a control or treatment condition and students within those schools were fol-

lowed across time.

This simulation uses a three-level hierarchical model with a baseline and six time points. At

the baseline along with all the cluster information, the smoking status was used to construct

individual transitions over time. The individual smoking status was assigned to one of three

categories for any given individual. Individuals who never smoked a cigarette or smoked only

once are considered nonsmokers; those who have smoked more than one cigarette and have

smoked a cigarette in the last thirty days are considered smokers; and those who have smoked

more than one cigarette but who did not smoke a cigarette in the last thirty days or those who

quit smoking are considered quitters. The individual movement to a given state at time t + 1 is

dependent upon the state at time t. We model the probability of individuals moving from one

state to another between two given time points. For example, a nonsmoker at time t can become

a smoker at time t+ 1. In this simulation, time is considered discrete and the individual’s state is

determined based on the subject’s assessment at a given time. Because of the discrete time-point

assessment, it is possible that a nonsmoker at time t can move to the quitter state at time t+ 1 by

moving through two transitions (nonsmoker to smoker and smoker to quitter). For simplicity, we
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assumed that the subject’s transition occurred only at the discrete time points and that transition

took place between the two assessment periods. Since we assumed that the individual can not

have two or more transitions between time points, transition from nonsmoker to quitter and

quitter to nonsmoker are considered invalid. Figure 3.1 shows the three smoking states and the

allowable movements from one state to another.

Figure 3.1: Graph for possible transition states

If Qij,t = k denotes the status of the ith subject in cluster j at time t with k possible states;

i = 1, 2, ....., nj , j = 1, 2, ...., J , t = 1, 2, ...., T , and k = 1, 2, ...K, we define an indicator

variable Yijt|kl such that, for t≥ 2,

Yijt|kl =


1 if Qij,t = l|Qij,t−1 = k

0 if Qij,t = k|Qij,t−1 = k

(3.1)
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We assume that the evolution of the status satisfies a first-order Markov chain with transitional

probability from state k to l defined as

pijt(l|k) = Pr(Qij,t = l|Qij,t−1 = k,Xijt, θkl)

= Pr(Yijt|kl = 1|Xijt, θkl),

where θkl denotes the collection of all the parameters and l, k = 1, 2, 3.

For the ith subject with previous state k, we use the generalized logit model

log

{
pijt(l|k)

pijt(k|k)

}
= β0j|kl + β1|klX1ij,t−1 + β2|klt

where β0j|kl = β0|kl + β3|klCj + u0j|kl

So in matrix notation,

logit(Pr(Yijt|kl = 1)) = Xijt|klβkl + u0j|kl (3.2)

We model (k,l) pairs (1,2), (2,3), and (3,2),

where

Yijt|kl ∼ B(1, πijt|kl);

Yijt|kl = 0 if there is no transition from state k to l;

Yijt|kl = 1 if there is a transition from state k to l;
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t is a time measurement variable;

X1ij,t−1 is a time-dependent covariate for the ith subject in the jth school at time t − 1,

where X1ij,t−1 ∼ N(5, 1);

β0j|kl is the baseline score for the jth cluster where β0j|kl = β0|kl + β3|klCj + u0j|kl;

β1|kl is the slope for time-dependent covariate ;

β2|kl is the effect of time;

Cj is a binary variable for school j coded as 0 for the control and 1 for the intervention

group;

β3|kl is a log odds of the transition for the intervention group compared to the control group

given the covariates and time ;

β0|kl is a log odds of the transition for the control group at t=0 and X1ij,t−1 = 0;

u0j|kl is a random effect for the intercept and assumed to be independent of the level-two

predictors;

πijt|kl = Pr(Yijt|kl = 1|Xijt, θkl)

.

Each individual in the sample could pass through several states during the period of observation.

Each model for Y is state specific, that is, observations and parameters in the model depend on

the state the subject is in at times (t− 1) and t.
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The data are generated using the interactive matrix language in SAS. Model (3.2) can be written

with a fixed and a random part. If

ηijt|kl = logit(πijt|kl, )

then

ηijt|kl = β0|kl + β1|klX1ij,t−1 + β2|klt+ β3|klCj + (u0j|kl), (3.3)

and

πijt|kl =
exp(ηijt|kl)

1 + exp(ηijt|kl)
(3.4)

For the simulation study, data are generated to replicate the WSPP3 study, described previously,

under ideal conditions. We performed 500 simulations. We generated 50 schools per simulation

and in each school we generated 100 students and assigned a smoking status to each individual

based on the baseline (grade 6) smoking-prevalence rates and the covariates from the WSPP3

study as shown in Table 6.1 and described in model (3.2). Each school was assigned to either

the treatment or control group using a binomial random variable with b ∼ (n, 1, p = 0.55). The

time variable (t) is an indicator from 1 to 7 as a proxy for time. Time dependent variable is

created as a proxy for the number of smoking friend. Figure 3.2 shows how the simulated data

were created. In each of the 50 schools, smoking transitions for 100 students were simulated

over the seven discrete time points. Each point represents a school grade so that students were

followed from grade 6 to grade 12. In each grade, students were classified into one of three

possible states: nonsmoker, smoker, or quitter. Figure 3.2 also shows the possible transitions
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students could make over the seven-year period in one school. For example, an individual who

was a nonsmoker in grade 6 could remain a nonsmoker in grade 7 or could have started smoking

by then. Similarly, a student who was a smoker in grade 6 could quit by grade 7 or remain a

smoker.

Each time point represents a school year, starting from grade 6. At the baseline, within a cluster

we assigned the smoking status by generating a trinomial distribution with probabilities 0.06,

0.08, and 0.86 respectively for being a quitter, smoker, or nonsmoker. These probabilities were

based on the WSPP3 study and retained the hierarchy while creating the datasets. At each time

point, we created data based on an individual’s previous smoking status. At the baseline, we

model the transition from nonsmoker to smoker using model (3.2) with the fixed-effects param-

eters set to β0 = −2.3, β1 = 0.2, β2 = 0.61, and β3 = −4.1 and the distribution of the random

effect are assumed asN(0, σ2
u), where σ2

u = 0.68. We model the transition from smoker to quitter

using model (3.2) with the fixed parameters set to β0 = 0.8, β1 = −0.1, β2 = −0.3, and β3 = 0.2

and the variance of the random effect set to σ2
u = 0.68. We model the transition from quitter to

smoker using model (3.2) with the fixed parameters set to β0 = −1.7, β1 = 0.3, β2 = 0.1, and

β3 = −5.5 and the variance of the random effect set to σ2
u = 0.68. Parameter values were de-

rived using some of the information from the actual WSPP3 complete data analysis for grade

9-12 students. The transition probabilities for each state were determined using Eqs. (3.3) and

(3.4). Finally, the outcome variable for each state was created using these transition probabilities

(p) which were then converted to binary random variables. As an example, students who were

nonsmokers at the baseline would be assigned 1 if they moved from nonsmoker to smoker, or 0

if they stayed in the nonsmoking state.

Figure 3.3 shows the individual transitions over time in the three states. Figure 3.3a shows the
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Figure 3.2: Representation of the simulated data
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proportion of students who move from their baseline state to another state from time 1 (grade

6) to time 2 (grade 7). Figure 3.3b-f shows the other time points. Figure 3.3 clearly shows that

initially most of the students make the nonsmoker to smoker transition and later they move from

the smoker to the quitter state.

Figure 3.4 indicates how the school smoking rates change over the 7 time points for 10 randomly

selected schools for 16 randomly selected simulations. Each graph shows a different simulation.

The main purpose for these graphs is to show the variation in smoking rates between the schools.

Once the datasets were generated, PL and AGQ were used to estimate the parameters. If PL and

AGQ did not converge, the datasets were replaced with new datasets to achieve 500 estimates for

each parameter. PL is implemented in the SAS procedure GLIMMIX and AGQ is implemented

in SAS procedure NlMIXED (SAS version 9.1.3). The two estimation methods were compared

using the following criteria:

1. Numerical convergence

2. Average empirical bias of parameter estimate

3. Average standardized empirical bias of mean estimate

4. Root mean square error

5. Coverage Rates
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3.2 Numerical Convergence

The numerical convergence is measured by the convergence rate. This rate was based on an

indicator variable produced by PL and AGQ to show whether convergence was achieved. How-

ever, for counting purposes, the number of non-converging simulations was recorded and these

simulations were replaced with the new simulated datasets to achieve 500 parameter estimates.

In our SAS program, an indicator function was created to identify the convergence of the esti-

mation procedures. If the procedure converges then it assigns the value 1, otherwise it assigns

0. Our results based on indicator variables show that PL did not converge 61 times and AGQ

did not converge 19 times in the process of achieving 500 converging simulations which is a

much smaller non-convergence rate than reported in other studies (e.g., Callens M (2005)). Non-

convergence problems included: no estimated values; estimation only of fixed-effect parameters;

and unreasonable estimated values. Upon closer inspection of the non-converging simulations,

it was found that if only a few individuals move from one state to another, then the estimation

procedures are not robust in calculating the variance estimate. Non-convergence was also more

likely when the estimate for the variance of the random intercept was close to zero.

In AGQ the user is required to provide the initial values for the regression parameters as well

as for the variance of the random intercept. Some of the non-convergence in AGQ was due to

the initial values. If the provided initial values were far from the actual values, AGQ some-

times did not converge. To solve this problem the generalized estimating equation method (GEE,

SAS procedure GENMOD) was used to provide the initial values for the fixed-effect parame-

ters (Van Ness et al., 2007). The GEE approach is popular because the estimates of the mean

parameters remain consistent even if the correlation or the covariance structure is mis-specified.
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In contrast, PL uses a double iterative scheme in which the parameter starting values are gener-

ated from an iteratively derived approximating linear mixed model. These initial values are used

to update the linearization, and are then applied to iteratively fit a final model.

3.3 Average Empirical Bias of Parameter Estimates

The average empirical bias of a parameter estimate is defined as the average difference between

the parameter estimate, θ̂mk, and the true parameter value, θk:

Average Empirical Biask =

∑500
m=1

(θ̂mk − θk)
500

For reporting purposes, the average biases and the empirical standard deviation for each param-

eter and each transition in all m = 500 simulations were recorded and are summarized. The

results for the simulation study are reported in Table 3.1 in terms of biases.

The true values, average parameter estimates, and the corresponding empirical standard deviation

for AGQ and PL are reported in Table 3.1 along with the average biases. The table includes all

three transitions: nonsmoker to smoker, smoker to quitter, and quitter to smoker.

Table 3.1 shows that the fixed parameter estimates obtained using either method are close to the

true values but the estimated empirical biases for the AGQ method are comparatively small.

Both methods show that the bias of the estimate of the model intercept (β0) varies from one

transition to another. For the two transitions (nonsmoker to smoker and smoker to quitter),

the model intercept estimates are close to the true value. This is true for both AGQ and PL.

However, for the second transition (smoker to quitter) the estimates based on the PL method are
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much higher than those from the AGQ. Similar results are shown for the estimated empirical

biases. With few exceptions, the empirical biases for AGQ are smaller than the PL in all three

transitions.

The results show that AGQ provides better estimates for the treatment condition parameter (β3)

in all three transitions (nonsmoker to smoker, smoker to quitter, and quitter to smoker) and PL

overestimates the treatment condition parameter in the smoker-to-quitter transition. Estimates

obtained from the PL method provide higher biases in the quitter to smoker transition than in the

other two transitions. Our results are consistent with other studies which show that both AGQ

and PL have similar results in terms of the fixed parameter estimates and their estimated biases.

The estimates for the time-dependent covariate parameter (β1) and the variable time parameter

(β2)(a proxy for grade) are similar in both methods. Except in quitter to smoker transition, all

the estimates are close to the true values in all transitions.

Lastly, both methods underestimate the variance of the random intercept in all three transitions;

however, the AGQ estimates are close to the true values for all three transitions.

In conclusion, Table 3.1 shows that both AGQ and PL provide similar results with respect to

the biases for the fixed-effect parameter estimates. For the variance estimate of the random

intercept, AGQ provides parameter estimates close to the true values. In contrast PL methods

provide estimates of the variance of parameter estimates that are much lower than the true values.

50



3.4 Average Standardized Empirical Bias

The average standardized empirical bias (ASEB) of the parameter estimate was also calculated.

This is defined as follows:

ASEBk =

∑500
m=1

(
θ̂mk−θk
SE(θ̂mk)

)
500

where SE(θ̂mk) is the model-based standard error of the estimated parameter. The average stan-

dardized bias is useful for understanding the impact of the bias on interval estimates and statisti-

cal tests. The results from the simulation are reported in Table 3.2.

The results show that generally the PL method consistently has higher average standardized

empirical biases as compared to the AGQ method, with average standardized empirical biases

being higher for the variance of the random intercept. Furthermore, for the variance estimate of

the random intercept, AGQ provides a lower standardized bias for all three transitions.

In conclusion, Table 3.2 shows that in general, AGQ method provides smaller standardized biases

for all the parameters compared to the PL method.

3.5 Root Mean Square Error

The mean squared error (MSE) of an estimate is defined as the squared empirical bias plus its

corresponding variance. The MSE is also called the squared error of the estimate and increases
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in value as the variance of an estimate increases. This can be a useful diagnostic component for

selecting an estimator, since small MSE values indicate a small variance and bias. The square

root of the mean squared error (RMSE) is defined as the positive square root of the mean squared

error:

RMSEk =

√∑500
m=1

(θ̂mk − θk)2

500

The RMSE provides a more easily interpretable measure of the MSE by transforming the MSE

to the same scale as the parameter. The RMSE results are shown in Table 3.3.
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The results show that generally AGQ method produces lower RMSE estimates for the treatment

condition parameter (β3) in all three transitions. Both methods (PL and AGQ) provide similar

and higher estimates of the RMSE for all the parameters in the quitter-to-smoker transition. For

AGQ the estimated RMSEs are smaller for all three transitions.

The RMSE estimate for the time-dependent covariates parameter (β1) and variable time param-

eter (β2) (a proxy for grade) are almost identical in both methods for non-smoker to smoker

transition. The major difference can be seen in the variance estimate of the random intercept,

where PL consistently has higher RMSE estimates as shown in Fig. 3.5. Figure 3.5 shows the

RMSE estimates for the variance of the random intercept for all three transitions.

For both methods, the RMSE estimates for the variance of the random intercept are much higher

in the quitter-to-smoker transition than in the other two transitions. As expected, AGQ provides

a much smaller RMSE estimate.

In conclusion, Table 3.3 suggests that both methods provide similar RMSE results for the esti-

mates of the regression parameters but for the variance of the random intercept, AGQ provides a

much smaller RMSE.

3.6 Coverage Rates

Using the estimated parameters and their model based standard errors, 95% confidence intervals

for 500 iterations were calculated for each parameter in each iteration. The coverage rate for

a given method is defined as the ratio of the number of iterations in which the calculated con-

fidence interval contains the true value of the parameter to the total number of iterations. For
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500 observations from a binomial distribution with probability of success equal to 0.95, a 95%

probability interval would be (0.93,0.97). Any coverage rates that do not fall in this range should

be considered as not agreeing with the nominal 95% rates. The nominal 95% coverage rates are

reported in Table 3.4.

Based on these results, the coverage rates obtained from the AGQ method are much higher than

the PL method. Except for the variance of the random effect in the quitter to smoker transition,

all parameter estimates obtained from AGQ method have coverage rates more than 90%. In

contrast the coverage rates for the variance of the random intercept obtained from PL method are

close to 60% in all three cases.
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3.7 Conclusion

In summary, this chapter compared two estimation methods for multilevel binary regression mod-

els in a longitudinal setting: PL and AGQ methods. These estimation methods are frequently

used in the applied multilevel-modeling literature to estimate parameters in the multilevel logis-

tic regression model. This simulation study shows that the AGQ method generally provides more

accurate estimates than the PL method. It provides a smaller bias especially with the estimate

of the variance of the random intercept. Our results indicate that with a three-level hierarchical

model, the AGQ method can be used in the context of a transitional model, and the parameter

estimates for the variance of the random intercept obtained are close to the true values. Coverage

rates clearly show that parameter estimates obtained from the AGQ method are much superior

than to the PL method for both fixed and random effect parameters.

In conclusion, while the AGQ method is slower than the PL (Breslow & Clayton, 1993) method,

the parameter estimates from the PL method tend to be biased for binary dependent variables

(e.g., Rodriguez & Goldman (1995, 2001)). Moreover, the PL method does not involve a like-

lihood which prohibits the use of likelihood-based inference such as likelihood ratio tests and

likelihood-based confidence intervals. A further advantage of the AGQ method is that the preci-

sion can be increased by simply using more quadrature points (Raudenbush et al., 2000).

Finally, these simulation results confirmed that the AGQ method is preferred to the PL method

when the goal is to estimate the variance of the random intercept in a complex hierarchical model.

It can easily be used in standard software such as SAS and STATA. Based on this conclusion,

Chapter 5 uses the AGQ method to estimate the parameters when dealing with missing data.
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Chapter 4

Missing Values

In longitudinal studies individuals drop out for many reasons, creating added complications in

a hierarchical model. These dropouts can have important consequences for the validity of the

findings from any method of analysis. Standard statistical methods have been developed based on

the assumption of complete datasets. When data are missing, the assumptions of these methods

may be violated. For example, conclusions based on the assumption that the data are a random

sample from a population may not be valid if the dropouts have certain characteristics. There is

an added complication in a hierarchical setting because of the possibility of missing data at more

than one level. For instance, at level one student information may be missing for several reasons:

(i) a subject refuses to answer a question; (ii) a subject drops out of the study for whatever reason;

(iii) the contact information was recorded incorrectly; or (iv) a subject misses the study visit. At

level two, a school may drop out because of parental concerns, school work load, and sometimes

time conflicts due to other surveys taking place in a given school. Missing data at level two

are more problematic then missing data at level one. If a level-two unit has missing data, the
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information from all individuals at that school is lost. Snijders & Bosker (1993) have discussed

this in much more detail; the focus of this thesis is level-one missing data.

4.1 Terminology and Notation

Assume that in a longitudinal study there are N observations and the ith subject is to be observed

in the jth cluster at times indexed by t = 1, 2, ..., T . Let the random variable Y be the N × 1

response vector for all subjects. If njt is the the number of subjects in the jth school at time t,

then N =
∑T

t=1

∑
j njt is the total number of observations. Let X be a N × p design matrix

for the fixed effects with parameter β, Z the N × J design matrix for the random effect, u the

J × 1 vector of random parameters, e the N × 1 vector of errors for the subjects, D the J × J

covariance matrix for the random effects, and Σ the N ×N error covariance matrix. The model

for a continuous random variable, Y, is

Y = Xβ + Zu+ e (4.1)

where

u ∼ N(0, D)

e ∼ N(0,Σ)

Furthermore, assume that Yi = (Y o
i , Y

m
i ) is a T -dimensional vector of all the scheduled measure-

ments for subject i, where Y o
i represents the observed part of Yi and Y m

i represents the missing

part. Let Ri = (ri1, ri2, ..., riT )T be the same length as Yi and denote a vector of missing-data in-

dicators for Yi, where Rit = 1 if Yit is missing and 0 otherwise. The full dataset (Yi, Ri, Xi, Zi)
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consisting of the complete data together with the missing-data indicators has density function

f(Yi, Ri|Xi, Zi, θ, ψ). Where θ = (βT , αT ) and ψ are vectors that describe the measurement and

dropout processes. As usual β is the fixed-effect parameter vector and α is a variance components

vector.

According to the Rubin (1976) taxonomy, the missing data or non-responses can be placed

in three broad categories: (i) missing completely at random (MCAR); (ii) missing at random

(MAR); or (iii) missing non-ignorable (MNAR). Each category is described below.

4.1.1 Missing Completely at Random (MCAR)

Under the MCAR mechanism, the probability of non-response does not depend on either ob-

served or unobserved data. This implies that the missing-data indicator R is independent of both

Y o and Y m. Mathematically, in the MCAR case

f(R|Y,X,Z) = f(R)

In an example related to the smoking survey, a subject may drop out of the study for reasons

not related to his/her smoking behavior or other characteristics. Analyzing data from individuals

with complete data may result in loss of power for our design, but the estimated parameters are

not biased by the absence of data. The results obtained from this mechanism are always valid but

in practice this assumption is too restrictive.
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4.1.2 Missing at Random (MAR)

In the MAR case, the probability of non-response depends only on the observed part of the

outcome or covariate vector, not on the unobserved components. Mathematically, in the MAR

case

f(R|Y,X,Z) = f(R|Y o, X, Z)

For example, perhaps males are more likely to drop out than females in a smoking study be-

cause they do not want to participate in a smoking cessation program. Under this mechanism a

likelihood analysis using the correct model can provide valid inference because the joint likeli-

hood can be factorized into two distinct parts: one for the complete data and one for the missing

process (Laird, 1988).

4.1.3 Missing Not at Random (MNAR)

In the MNAR case, the probability of non-response depends on the unobserved observations.

In practice, this is the most difficult process to handle. Mathematically, this process can be

described as

f(R|Y,X,Z) = f(R|Y o, Y m, X, Z)

As an example, consider the following scenarios: 1. A non-smoker at t − 1 may be more likely

to have dropped out if he/she became a smoker between t − 1 and t. 2. A smoker at t − 1 who

remains a smoker may be more likely to drop out than someone who quits between t−1 and t. In
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these scenarios, individuals drop out from the study because of their future changes in behavior.

In this missing data mechanism a valid inference can be made only if the non-response process

can be modeled explicitly. The analysis of such a process requires a joint model for the full data

which contains responses for both observed and unobserved variables indicating the dropout

process. To deal with the MNAR process Little & Rubin (1987) suggest using selection models

or a pattern mixture model. These methods will be described later.

4.2 Dealing with Missing Data

Two common approaches to treating missing data in applied research are (i) to exclude the in-

dividual with missing observations from the statistical analysis or (ii) to estimate the missing

values and use the estimated values in the analysis. Various methods to calculate an estimate of

the missing values have been suggested and are described below.

4.2.1 Complete Case Analysis

Complete case analysis assumes that the data are MCAR and so those for whom data are missing

are a random sample from the study population. In this procedure subjects who have missing data

are excluded and only those subjects who have complete data over the course of the study are

included. The procedure is simple to implement and may not cause problems in the statistical

analysis if the data truly are MCAR. Under MCAR, complete case analysis yields unbiased

parameter estimates and reasonably efficient results (Anderson et al., 1983; Roth & Switzer,

1995). However, Buck (1960) observed that ignoring the missing units and using only complete
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cases for analysis results in a loss of potentially useful data. In addition, the reduced sample size

can lead to a loss of error degrees of freedom which in turn yields a loss of statistical power and

inefficient parameter estimation (Cohen & Cohen, 1983). Little & Rubin (1987) suggest that the

bias in the estimates can be severe if the data are not MCAR.

4.2.2 Weighting Method

The weighting method adopts the idea of survey design weights, which are inversely proportional

to the probability of selection of an individual. This method is commonly used in complex survey

data with non-response (Yi & Cook, 2002). Once the weights are computed this method is

simple to adopt and almost all standard software can incorporate these weights to estimate the

model parameters. If the computed weight does not depend on the response variable then an

unbiased estimate of the model parameter can be obtained. The computation of weights requires

full information about the survey design and also the information related to the missing-value

process. This method works well when the data are MAR, but is not needed with likelihood-

based analysis. Most often the logistic model is used to obtain the weights by predicting the

probability of non-response on response variables (Yij) given covariates (Xij).

4.2.3 Mean Substitution

This method uses the sample mean of a variable to replace the missing value (Collins et al., 2001).

It involves a single imputation not based on a predictive model. It treats the imputed values as

observed values and does not consider the variation in the imputed values which results in an

underestimate of variance. It yields an inconsistent estimate of some parameters even under
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the MCAR assumption. In a binary case analysis, mean estimates can not replace the binary

outcome. To estimate a valid response in the binary case, mean estimates are used to estimate the

probability p and then a cutoff value p0 is selected based either on the data or on experience with

prior studies. If the probability p is greater than the cutoff point p0 then the missing response

variable takes the value 1, otherwise it is set to 0.

4.2.4 Last Observation Carried Forward (LOCF)

This method is commonly used in clinical trials (Molenberghs & Verbeke, 2005). Clinicians

use this method based on the assumption that the subject profile is unchanged from the previous

assessment. It also requires the strong assumption that the individual outcome profile remains at

the level of the last observed measurement throughout the remainder of the follow-up. However,

it is possible that the individual outcome changes as soon as the individual stops the treatment.

This method can produce substantial biases in the estimator of treatment effects, inflated type

I error rates of the associated tests, and coverage probabilities that are far from the nominal

level (Molenberghs & Verbeke, 2005). In general this method requires serious sensitivity analysis

and has a differential effect on the results, depending on the missing-data scenario and the method

of analysis used (Little & Yau, 1996).

4.2.5 Maximum-Likelihood-Model-Based Procedures

The procedures outlined above are relatively simple to implement and may yield satisfactory re-

sults when the data are MCAR. However, their performance is unreliable and whether or not they

have performed satisfactorily may not be easily determined (Little & Rubin, 1987). Maximum
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likelihood procedures require the less restrictive MAR assumption. They provide unbiased pa-

rameter estimates under both MCAR and MAR. In addition, they provide more efficient estimates

than the listwise and pairwise deletion under MCAR. However, these procedures are computa-

tionally intensive and until recently have been little used. As a result of vastly improved com-

puting speed these procedures are gaining popularity among applied researchers. Rubin (1976)

showed that if the separability condition (the model no longer depends on the unobserved data, at

least in terms of the probability model, or inference can be based on only the marginal observed

data density) is satisfied within the likelihood framework, ignorability is equivalent to the union

of MAR and MCAR. Molenberghs et al. (2004) showed that linear mixed model estimates based

on the likelihood approach are alternatives for complete case analysis and LOCF in MAR.

4.2.6 Multiple Imputation

Multiple imputation (MI), first proposed by Rubin in the early 1970s (Rubin, 1976) as a way to

address survey non-response, addresses the issues associated with single imputation. It involves

replacing missing values by M (M ≥ 2) imputed values to create M complete datasets. Fur-

thermore, these multiple imputed datasets are analyzed using standard procedures assuming no

missing data. The parameter estimates obtained from each dataset are aggregated using Rubin

multiple imputation techniques (Rubin, 1976). The process of combining these results generated

from multiple imputed datasets is independent of the analytic procedure used to estimate the pa-

rameters. The major advantages of multiple imputation, as indicated by Rubin (1987), are that

complete data methods are used to analyze each complete dataset; moreover, the ability to use

the data analyst’s knowledge when handling the missing values is not only retained but actually
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enhanced. In addition, multiple imputations allow users to reflect their uncertainty as to which

values to impute. The disadvantages include: the time intensiveness of imputing five to ten data

sets, the need to test models for each data set separately, and the need to recombine the model

results into one summary. The procedures for MI are as follows:

• Missing data are filled in M times to generate M complete datasets;

• The M complete datasets are then analyzed by standard procedures;

• Finally, the results from the M complete data sets are combined for inference.

For example, if regression coefficients and their standard errors are estimated then an MI re-

gression coefficient is computed by averaging across the M imputed datasets using the usual

formula:

γ̂ =
1

M

M∑
m=1

γ̂′m

where γ̂′m is the regression estimate from the mth imputed dataset. The estimated standard er-

ror for each parameter is comprised of the within-imputation variability, the between-imputation

variability, and a correction factor to account for simulation error. The within-imputation vari-

ance is estimated as the mean of the estimated variances across the M imputation datasets:

Ū =
M∑
m=1

σ̂2
m

M

The between-imputation variance is the sample variance of the estimates calculated by:

B =
1

M − 1

M∑
m=1

(
γ̂′m − γ̂

)2
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This value is multiplied by the correction factor 1 + 1
M

and added to the within-imputation

variance. The overall estimated standard error associated with the regression coefficient is the

positive square root of the total variance:

SE =

[
Ū + (1 +

1

M
)B

]1/2

Several techniques involved in MI are discussed by Rubin (1987), Little & Rubin (1987), and Schafer

(1999).

4.2.7 Propensity Score Method

A propensity score is generally defined as the conditional probability of an individual having a

missing-response measurement given a vector of observed covariates (W ) (Rosenbaum & Rubin,

1983). In this procedure a propensity score is generated for each individual with missing values

to indicate the probability of that observation being missing. The observations are then grouped

based on these propensity scores, and Approximate Bayesian Bootstrap (ABB) imputation (Ru-

bin, 1987) is applied to each group. This procedure does not have any distributional constraint

on the missing variables. The steps are as follows:

• For each variable Yijt, t = 2, ..., T , create a corresponding indicator variable Rijt

Rijt =


1 if Yijt is missing

0 if Yijt is observed
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• Fit a hierarchical model with a logit link function

logit(πijt) = Wijtψ + u0j

where πijt = Pr(Rijt = 1|Wijt, u0j) and logit(πijt) = log

(
πijt

1− πijt

)
.

• Use the conditional probability to create a propensity score for each observation to indicate

the probability of it being missing.

• Sort the observations by propensity score and divide them into a fixed number of groups

based on the propensity scores.

• Apply ABB to impute the missing response values in each group. In group k, let Y o denote

the n1 observations with non-missing Y values and Y m denote the n0 observations with

missing Y values. ABB first draws n0 observations randomly with replacement from Y o

and uses these values as the no imputed values for the missing response vector, Y m, which

is combined with the non-missing data to create a new dataset Y ∗.

• Repeat the process M times to create M new datasets.

• Analyze these M imputed datasets separately as complete datasets. Use a hierarchical

logistic model to estimate the parameters. Combine the results from each analysis using

techniques from Rubin (1987) as explained in Section 4.2.6. Finally, compare the param-

eter estimate with the complete dataset estimates and those from other imputed methods.
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4.2.8 Predictive Mean Matching Methods

The predictive mean matching methods are similar to propensity score (PS) methods and are

a combination of the hot-deck method (Little & Rubin, 2002) and the regression imputation

method. The hot-deck method matches the cases based on the similarity between specific covari-

ates X (Little & Rubin, 2002). The difference between the PS method and the predicted mean

matching method is the relationship between the probability of a missing response variable. In

the PS method, missingness as a function of the relevant covariates is modeled and the cases

are divided into different groups based on the predicted probability of being missing. In the

predicted mean matching method the relationship between the response variable per se and the

relevant covariates is modeled for complete data, and the cases are divided into different groups

based on the predicted value for the response variable.

Compared with the hot-deck method which matches the cases based on similarity between spe-

cific covariates X , the predicted mean matching method matches cases based on a linear combi-

nation of covariates. It also makes it possible to replace each missing value with several observed

values, which in turn can account for the variation in the imputed values. The ABB is used in the

predicted mean matching method to impute each missing value. The steps are as follows:

• Establish a predictive model for response variable Y based on X and Z for the complete

cases:

logit(Pr(Yijt = 1|X,Z, u)) = Xβ + Zu.
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• The predicted probability of Y being 1 is

logit(P̂ r(Yijt = 1|X,Z, u)) = Xβ̂ + Zû

where û is the empirical Bayes estimate of u described in Chapter 2.

• Divide the cases into different groups based on the predicted probabilities (in this thesis,

the predicted probabilities were divided based on quintiles).

• Apply ABB to impute the missing response values in each group. In group k, let Y o denote

the n1 observations with non-missing Y values and Y m denote the n0 observations with

missing Y values. ABB first draws n0 observations randomly with replacement from Y o

and uses these values as the n0 imputed values for the missing response vector, Y m, which

is combined with the non-missing data to create a new dataset Y ∗. Repeat this process M

times and create M imputed datasets.

• Analyze these M complete imputed datasets separately; combine the results using the

Rubin procedure (Rubin, 1987) as explained in Section 4.2.6.

4.3 Methods for Nonignorable Missing Data

In practice the hypothesis of random dropout is essentially untestable; it cannot be verified or

contradicted by examination of the observed data (Little & Rubin, 1987). If this assumption is

doubtful alternative procedures should be developed, especially when the degree of departure
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from MAR is thought to be severe. That is, one needs to model the joint distribution of longitu-

dinal response and the dropout. From the likelihood point of view, two models based on different

factorizations of the joint distribution are pattern mixture and selection models.

4.3.1 Pattern Mixture Models

Pattern mixture models were first defined by Little (1993), and first model the marginal dis-

tribution of the missing-data indicators, and then the conditional distribution of the observed

data given the dropout pattern. The population of the observed data then becomes a mixture

of distributions, weighted by the probabilities of the dropout patterns. Little (1995) defined two

pattern mixture models for non-ignorable dropout: outcome-dependent dropout and random-

effect-dependent dropout. In outcome-dependent models, subjects are grouped according to their

dropout times and identifying restrictions are placed on the missing-value distributions for those

groups (Little & Wang, 1996; Little, 1993; Molenberghs et al., 1998). In random-effect dropout

models a random coefficient model is formulated with summaries of the dropout time included

as a subject-level covariate (Fitzmaurice et al., 2001; Hedeker & Gibbons, 1997; Wu & Bailey,

1989). Little (1995) suggested that outcome-dependent models are appropriate when the reasons

for dropout seem closely related to the response variable itself, whereas random-effect-dependent

models ascribe dropout to an underlying process (such as the progression of a disease) which the

outcome variable measures imperfectly.

Assume that in a longitudinal study there are N subjects, indexed by i = 1, 2, ..., N , and the ith

subject is to be observed T times, t = 1, 2, ..., T . Assume the conditional distribution of Yit is

Bernoulli given the covariate vectors X including both fixed and random effect. Then the model
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can generally be expressed for Yit as a conditional mixed model

f(Yit|Xit, Zit, ui) = exp[Yitηit − log(1 + exp(ηit))];

where

ηit = Xitβ + Zitui

It is assumed that Yi = (Y o
i , Y

m
i ) is a T -dimensional vector of all the scheduled measurements

for subject i, where Y o
i represents the observed part of Yi and Y m

i represents the missing part. Let

Ri = (ri1, ri2, ..., riT )T be the same length as Yi and denote a vector of missing-data indicators

for Yi, where Rit = 1 if Yit is missing and 0 otherwise. We assume that the number of missing-

data patterns will be equal to T , the number of time points, because of the monotone missing-data

assumptions (as shown in Table 4.2). The full data (Yi, Ri) consist of the complete data together

with the missing data indicators, so f(Yi, Ri|Xi,Wi, θ, ψ), the distribution of (Yi, Ri) conditional

on Xi and Wi can be written:

f(Yi, Ri|Xi,Wi, θ, ψ) = f(Yi|Ri, Xi, θ)× f(Ri|Wi, ψ)

where f(Yi|Ri, Xi, θ) models the conditional distribution of the data given the pattern of missing

data and f(Ri|Wi, ψ) models the distribution of the dropout pattern; Wi is a design matrix for the

missing-data process; θ = (βT , αT )T is the vector of all the parameters described in Section 2.1

and ψ is a parameter vector that describes the dropout processes. As defined earlier in Section

(2.1), β is a fixed-effect parameter vector and α denotes the vector of all variance and covariance

parameters in Eq.(2.7). The missing pattern for a subject is defined through the vector Mi =
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(mi1, ...,miP )T , where

mip =


1 if individual i belongs to pattern p, p = 1, ..., P

0 otherwise
(4.2)

The subjects are divided into groups based on having a similar pattern Mip. In pattern mixture

models, the complete data set consists of P different missing-data patterns.

To explain further, consider a four-year study. If all subjects are included provided they have

baseline measures, there are eight possible missing-data patterns. A typical data structure is

illustrated in Table 4.1.

Table 4.1: Missing-data patterns

Pattern Baseline Year 1 Year 2 Year 3

1 O O O O
2 O O O ∗
3 O O ∗ O
4 O ∗ O O
5 O O ∗ ∗
6 O ∗ O ∗
7 O ∗ ∗ O
8 O ∗ ∗ ∗

∗ missing observation: O non-missing observation

The fully specified PMM is always underidentified (Daniels & Hogan, 2000) because of the

need to estimate many pattern-specific parameters, and constraints are needed to make the model

identifiable. Either restriction methods must be set for some patterns, additional assumptions

must be made, or information must be borrowed from the observed data. Little (1994) solves
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this problem using identifying restrictions. This is done by setting inestimable parameters of the

incomplete patterns to functions of the parameters describing the distribution of the individuals,

known as completers, which have complete data at all the time points studied. In this aspect,

the assumptions made in pattern mixture models are no less stringent than those made in se-

lection models. However, pattern mixture models with identifying restrictions are much easier

to work with than selection models (Section 4.3.2) and have the advantage that non-identifiable

parameters are clearly specified.

Several restriction methods are used for pattern mixture models. These will be illustrated using

the WSPP3 study and assuming that every individual falls in one of the seven missing-data pat-

terns, conforming exactly to a monotone dropout pattern. The monotone missing-data patterns

for the WSPP3 dataset are shown in Table 4.2. In all cases, predictive mean matching was used

to impute the missing values. From this point on, the word impute in this thesis will refer to

imputation under the predictive mean matching method.

Table 4.2: A tabulation of possible Monotone missing-data patterns over seven years of assess-
ments

Pattern Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7

P1 O O O O O O O
P2 O O O O O O ∗
P3 O O O O O ∗ ∗
P4 O O O O ∗ ∗ ∗
P5 O O O ∗ ∗ ∗ ∗
P6 O O ∗ ∗ ∗ ∗ ∗
P7 O ∗ ∗ ∗ ∗ ∗ ∗

∗ missing observation; O non-missing observation
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Complete Case Missing Value (CCMV) Restriction: Little (1993) proposed the complete

case missing value restriction (CCMV) for the pattern mixture model. CCMV uses data from

the subjects who are in pattern 1 to impute the missing observations for the remaining patterns.

In this method, we discard cases with any missing values and unavailable information is always

borrowed only from completers (Little, 1993). The advantage of this method is that it is simple

to implement and a valid inference is obtained when dropout depends on the regressors (Little,

1993). A disadvantage is that it is an unnecessary waste of information to discard all the incom-

plete cases. This is especially true if the number of covariates is large, so eliminating individuals

based on missing data can result in a considerable number of incomplete cases (Little, 1992).

CCMV is considered to be a useful baseline method for comparison with other methods (Little,

1992) and leads to valid inference when the majority of subjects have complete data.

Steps for CCMV:

• P2: Impute the missing values at year 7 using all the observed cases in P1.

• P3: Impute the missing values at years 6 & 7 using all the observed cases in P1.

• P4: Impute the missing values at years 5, 6, & 7 using all the observed cases in P1.

• P5: Impute the missing values at years 4, 5, 6, & 7 using all the observed cases in P1.

• P6: Impute the missing values at years 3, 4, 5, 6, & 7 using all the observed cases in P1.

• P7: Impute the missing values at years 2, 3, 4, 5, 6, & 7 using all the observed cases in P1.
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Available Case Missing Value (ACMV) Restrictions: ACMV methods use the largest sets

of available cases for estimating individual parameters. An advantage of the ACMV methods is

that they make use of the incomplete cases in a plausible way. A disadvantage is that the esti-

mated covariance matrix of the covariates is not necessarily positive definite (Little, 1992). Little

(1992) found ACMV estimates to be more accurate than CCMV estimates, with the exception

that ACMV estimates are less successful for datasets that contain high multicollinearity among

the independent variables.

Steps for ACMV:

• P2: Impute the missing values at year 7 using all the observed cases in P1.

• P3: Impute the missing values at year 6 using all the observed cases in P1 and P2. Impute

the missing values at year 7 using the observed cases in P1 and the imputed values for year

6 in P3.

• P4: Impute the missing values at year 5 using all the observed cases in P1, P2, and P3.

Impute the missing values at year 6 using all the observed cases in P1 and P2, and the

imputed values for year 5 in P4. Impute the missing values at year 7 using all the observed

cases in P1 and the imputed values for year 6 in P4.

• P5: Impute the missing values at year 4 using all the observed cases in P1, P2, P3, and P4.

Impute the missing values at year 5 using all the observed cases in P1, P2, and P3, and the

imputed values for year 4 in P5. Impute the missing values at year 6 using all the observed

cases in P1 and P2, and the imputed values for year 5 in P5. Impute the missing values at

year 7 using all the observed cases in P1 and the imputed values for year 6 in P5.
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• P6: Impute the missing values at year 3 using all the observed cases in P1, P2, P3, P4, and

P5. Impute the missing values at year 4 using all the observed cases in P1, P2, P3, and

P4, and the imputed values for year 3 in P6. Impute the missing values at year 5 using all

the observed cases in P1, P2, and P3, and the imputed values for year 4 in P6. Impute the

missing values at year 6 using all the observed cases in P1 and P2 and the imputed values

for year 5 in P6. Impute the missing values at year 7 using all the observed cases in P1 and

the imputed values for year 6 in P6.

• P7: Impute the missing values at year 2 using all the observed cases in P1, P2, P3, P4, P5,

and P6. Impute the missing values at year 3 using all the observed cases in P1, P2, P3,

P4, and P5, and the imputed values for year 2 in P7. Impute the missing values at year 4

using all the observed cases in P1, P2, P3, and P4, and the imputed values for year 3 in P7.

Impute the missing values at year 5 using all the observed cases in P1, P2, and P3, and the

imputed values for year 4 in P7. Impute the missing values at year 6 using all the observed

cases in P1 and P2, and the imputed values at year 5 in P7. Impute the missing values at

year 7 using all the observed cases in P1 and the imputed values for year 6 in P7.

Neighboring Case Missing Value (NCMV) Restrictions This restriction makes use of the

available data from subjects in the neighboring patterns. This restriction assumes that the subjects

who drop out in a given pattern are similar to those in neighboring patterns. The NCMV methods

borrow information from the closest available pattern (Kenward et al., 2003).

Steps for NCMV:

• P2: Impute the missing values at year 7 using all the observed cases in P1.
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• P3: Impute the missing values at year 6 using all the observed cases in P2. Impute the

missing values at year 7 using the observed cases in P1 and the imputed values in P2.

• P4: Impute the missing values at year 5 using all the observed cases in P3. Impute the

missing values at year 6 using all the observed cases in P2, and the imputed values for year

5 in P4. Impute the missing values at year 7 using all the observed cases in P1 and the

imputed values for year 6 in P4.

• P5: Impute the missing values at year 4 using all the observed cases in P4. Impute the

missing values at year 5 using all the observed cases in P3 and the imputed values for year

4 in P5. Impute the missing values at year 6 using all the observed cases in P2 and the

imputed values for year 5 in P5. Impute the missing values at year 7 using all the observed

cases in P1 and the imputed values for year 6 in P6.

• P6: Impute the missing values at year 3 using all the observed cases in P5. Impute the

missing values at year 4 using all the observed cases in P4 and the imputed values for year

3 in P6. Impute the missing values at year 5 using all the observed cases in P3 and the

imputed values for year 4 in P6. Impute the missing values at year 6 using all the observed

cases in P2 and the imputed values for year 5 in P6. Impute the missing values at year 7

using all the observed cases in P1 and the imputed values for year 6 in P6.

• P7: Impute the missing values at year 2 using all the observed cases in P6. Impute the

missing values at year 3 using all the observed cases in P5 and the imputed values for year

2 in P7. Impute the missing values at year 4 using all the observed cases in P4 and the

imputed values for year 3 in P7. Impute the missing values at year 5 using all the observed
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cases in P3 and the imputed values for year 4 in P7. Impute the missing values at year

6 using all the observed cases in P2 and the imputed values for year 5 in P7. Impute the

missing values at year 7 using all the observed cases in P1 and the imputed values for year

6 in P7.

The steps for pattern mixture models are:

• Select an identification method of choice (CCMV, ACMV, NCMV).

• Based on the identification method and the transition being considered, estimate the con-

ditional distribution of the unobserved outcomes, given the observed outcomes.

• Draw multiple imputations for the unobserved components, based on the predictive mean

matching method.

• Analyze the multiple imputed datasets using the method of choice.

4.3.2 Two-Stage Heckman Selection Model

Selection models have been used most often in the econometrics literature. Heckman (1979) de-

scribed the selection model in an application to the estimation of the labor supply function, and

used the model to correct the sample selection bias which can arise for many reasons. The selec-

tion model specifies a model for the missing-data mechanism by factoring the joint distribution

as follows:

f(Yi, Ri|Xi, Zi, θ, ψ) = f(Yi|Xi, Zi, θ)× f(Ri|Yi, Xi, Zi, ψ) (4.3)
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where f(Yi, Ri|Xi, Zi, θ, ψ) is the joint distribution of Y and R, f(Yi|Xi, Zi, θ) models the com-

plete data, and f(Ri|Yi, Xi, Zi, ψ) models the missing-data mechanism. The joint distribution of

(Y o, R) is obtained by integrating out Y m from the right-hand side of the equation:

f(Y o, R) =

∫
f(Y o, Y m)× f(R|Y o, Y m)dY m

=

∫
f(Y m|Y o)× f(Y o)× f(R|Y o, Y m)dY m

= f(Y o)

∫
f(Y m|Y o)× f(R|Y 0, Y m)dY m

= f(Y o)E(Ym|Y o)

[
f(R|Y o, Y m)

]

The above equation shows that the selection model explicitly specifies the dependency of the

missing-data mechanism on its corresponding missing value which in fact is a limitation in the

selection model. The primary advantage of using the selection model is that it directly models

the marginal distribution of the response Y and the dropout process conditional on Y . The

Heckman model was originally designed for normally distributed variables but it can easily be

extended to non-normal data as well. Later we will describe how to use the Heckman procedure

for hierarchical binary data.

Consider first the situation where we have a random sample of N observations, with response

variables Y = (Y1, Y2, ....., YN)T and assume there exists a second variable V = (V1, V2, ...., VN)T

that contains information about the missingness in Y . Our objective is to create a predictive

model for Y using information on V . To develop a valid predictive model for Y , we first need to

construct a predictive model for V .
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Assume that Y obeys the regression model

Y = Xβ + ε1 (4.4)

and V obeys the regression model

V = Wψ + ε2, (4.5)

where Y = (yi), V = (vi), X = (xip), W = (wiq), i = 1, 2, 3, ....N , p = 1, 2, ....P , and

q = 1, 2, ....Q; β and ψ are P × 1 and Q× 1 vector of parameters respectively; and ε1 and ε2 are

random error terms, with

E(ε1i) = 0 E(ε2i) = 0

var(ε1i) = σ11 var(ε2i) = σ22

cov(ε1i, ε2i) =


σ12 i = i′

0 i 6= i′ i, i′ = 1, 2, ..., N

For the regression function of Y the expected value is E(Y |X) = Xβ. However, because of

selection bias caused by missing data in Y the regression function for the response variable Y

can be written as

E(Y |X,S) = Xβ + E(ε1|S) (4.6)

where S represents the selection criteria. If there are no missing values or if the missing data are

MCAR then the conditional expectation E(ε1|S) = 0 which means there is no selection bias.
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Since it was assumed that (ε1, ε2) has a normal distribution, using well-known results (John-

son & Wichern, 2001) for the conditional distribution for the bivariate normal distribution (see

Appendix A), we have

E(ε1i|ε2i ≥ −W T
i ψ) =

σ12√
σ22

λi (4.7)

E(ε2i|ε2i ≥ −W T
i ψ) =

σ22√
σ22

λi (4.8)

where λi =
φ(Ci)

1− Φ(Ci)
, φ is the standard normal probability density function, Φ is the standard

normal cumulative density function, and C =
−W T

i ψ√
σ22

. Economists call the parameter λ the

inverse Mill’s ratio or the hazard rate. The final model, then, is

E(Y |X,S) = Xβ +
σ12√
σ22

λ (4.9)

The general steps estimating the parameters in the selection model are:

• Estimate the parameter ψ in the selection model using Equation (4.5)

• Use the estimated ψ̂ from Equation (4.5) to estimate λi

• Include λ̂i in Equation (4.9) and estimate parameters β and the coefficient for λ̂.

4.3.3 The Selection Model with Correlated Binary Response Data

Assume that (Yijt|kl, Rijt|kl) is a pair of binary indicators. Yijt|kl is an indicator of a transition

from state k to state l for subject i in cluster j at time t and Rijt|kl is an indicator of whether that

observation is missing. Thus, define an indicator variable Yijt|kl such that, for t ≥ 2
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Yijt|kl =


1 if Qij,t = l|Qij,t−1 = k,Xijt, θkl

0 if Qij,t = k|Qij,t−1 = k,Xijt, θkl

(4.10)

where Qij,t = k denotes the status of the ith subject in cluster j at time t with k possible states;

i = 1, 2, ....., nj , j = 1, 2, ...., J , t = 1, 2, ...., T , and k = 1, 2, ...K. We assume that the

evolution of the status satisfies a first-order Markov chain with transitional probability from state

k to l defined as

pijt(l|k) = Pr(Qij,t = l|Qij,t−1 = k,Xijt, θkl)

= Pr(Yijt|kl = 1|Xijt, θkl),

where θkl denotes the collection of all the parameters and l, k = 1, 2, 3.

For the ith subject with previous state k, we use the generalized logit model to model the transi-

tion from state k to l.

logit(Pr(Yijt|kl = 1)) = Xijtβkl + u0j|kl (4.11)

where u0j|kl ∼ N(0, σ2
u|kl)

Each individual in the sample could pass through several states during the period of observation.

Each model for Y and R is state specific, that is, observations and parameters in the model depend

on the state the subject is in at times (t− 1) and t.

In what follows, we drop the subscripts relating to state for simplicity. The response variable of

interest is observed only if Rijt = 0. Because of the selection procedure, the sample information

allows us to model Pr{Yijt = 1|Xijt, Rijt = 0} and Pr{Rijt = 1|Xijt} but not Pr{Yijt =
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1|Xijt}. It is assumed that the binary indicator Yijt is related to a continuous latent variable

through the observation rule Yijt = I(Y ∗ijt > 0) and that the latent random variables Y ∗ijt obey the

regression model

Y ∗ijt = Xijtβ
∗ + u∗0j + ε1ijt, (4.12)

where ε1ijt are i.i.d. errors distributed independently of the Xijt and conditional on a random

effect which is assumed to have zero mean and finite variance. Similarly, Rijt is related to a

continuous latent variable through the observation rule Rijt = I(R∗ijt > 0) and it is assumed that

the latent random variable R∗ijt obeys the regression model

R∗ijt = Wijtψ
∗ + u∗0j + ε2ijt, (4.13)

where ε2ijt are i.i.d. errors distributed independently of the Xijt, conditional on random effect

which is assumed to have mean and finite variance. The errors, ε1ijt and ε2ijt are assumed to be

correlated with correlation coefficient ρ, where

E(ε1ijt) = 0 E(ε2ijt) = 0

var(ε1ijt) = σ11 var(ε2ijt) = σ22

cov(ε1ijt, ε2ijt) =


σ12 i = i′

0 i 6= i′ i, i′ = 1, 2, ..., nj

where
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ε1ijt

ε2ijt

 = N


0

0

 ,

 σ11 ρ
√
σ11σ22

ρ
√
σ11σ22 σ22




For the regression function of Y ∗ijt the expected value isE(Y ∗ijt|Xijt, u
∗
0j) = Xijtβ

∗+u∗0j . Because

of selection bias the regression function for the latent response variable Y ∗ijt can be written as

E(Y ∗ijt|Xijt, u
∗
0j, S) = Xijtβ

∗ + u∗0j + E(ε1ijt|S) (4.14)

where S represents the selection criteria. If there are no missing values or if the missing data are

MCAR then the conditional expectation E(ε1ijt|S) = 0 which means there is no selection bias.

Since it was assumed that (ε1ijt, ε2ijt) has a normal distribution, we have (see Appendix A)

E[ε1ijt|ε2ijt ≥ −(Xijtβ
∗ + u∗0j)] =

σ12√
σ22

λijt (4.15)

E[ε2ijt|ε2ijt ≥ −(Wijtψ
∗ + u∗0j)] =

σ22√
σ22

λijt (4.16)

where λijt =
φ(Cijt)

1− Φ(Cijt)
, φ is the standard normal probability density function, Φ is the stan-

dard cumulative density function and C =
−(Wijtψ

∗ + u∗0j)

σ22

. The final model would include

E(Y ∗ijt|Xijt, S) = Xijtβ + u∗0j +
σ12√
σ22

λ̂ijt (4.17)

Equation (4.17) is not identified because of σ22. Equation (4.13) can be multiplied by any positive

number without affecting any of the observed cases. The sign of
R∗ijt
σ22

is the same as that of R∗ijt.

So the implied value of Rijt is unaffected. Therefore, the variance, σ22, is unidentified and can
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be set to any arbitrary value. A convenient normalization, σ22 =1 (Dubin & Rivers, 1990), is

used to estimate Equation (4.13) and is used in Equation (4.17).

In the two-stage Heckman model, we first estimate all the parameters related to R∗ijt using Eq.

(4.13) and then estimate λijt, the effect of the selection bias from the non-random selection rule.

A probit model can be used here because of the normality assumption for the continuous latent

random variable. In the second stage we use the extra predictor λ̂ijt in the model and estimate

parameters using Equation (4.17). In the second stage, a logit model is used to compare our

results with the other methods used in this thesis. The probit model and logit model tend to

produce extremely similar results (Dubin & Rivers, 1990), except when there is a lot of data in

the tails.

The general steps for the selection model are:

• First fit the probit model for R using AGQ to estimate the parameters in Equation (4.13).

• Estimate the selection bias λ =
φ(C)

1− Φ(C)
, where C =

−(Wijtψ
∗ + u∗0j)

σ22

.

• Include λ̂ in model (4.17) to estimate all the parameters included in the model by fitting a

hierarchical logistic model.

• Using the parameter estimates from previous steps, use the predictive mean matching

method to impute the non-response.

• After obtaining the m imputed datasets, analyze each dataset and then combine the result-

ing estimates using Rubin’s formula described in Section 4.2.
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4.3.4 Bayesian Hierarchical Model

In this section we introduce the Bayesian approach. The fundamental difference between Bayesian

analysis and classical analysis is that in the latter the parameters are assumed to be fixed whereas

in the former the parameters are assumed to be random variables. This allows us to define the dis-

tribution of parameters in the Bayesian setting. Bayesian inferences on parameters are based on

the posterior distribution of the parameters. The posterior distribution is the conditional density

of the parameters given the observed data. To derive a posterior distribution, prior distributions

must initially be assumed for the parameters. The prior distribution is the parameters’ marginal

distribution, which is defined in terms of other parameters, known as hyper-parameters. Assume

that the prior distribution for parameter θ is Π(θ) and f(Y |θ) is the distribution of the data, Y ,

given θ. If θ ∈Θ, where Θ is the complete parameter space, then using Bayes’ rule, the posterior

distribution is defined as (e.g. (Ghosh et al., 2006)):

Π(θ|Y ) =
Π(θ)f(Y |θ)∫

Θ
Π(θ)f(Y |θ)dθ

(4.18)

Using a Bayesian approach, missing data can be considered random variables and can there-

fore have posterior distributions. The unknown values of the missing data Y m can be predicted

using the observed data Y o and inferences about θ can be made using the posterior predictive

distribution (Gelman et al., 1995):

Π(θ|Y o) ∝ Π(θ)f(Y o|θ) (4.19)

The observed-data posterior density can be obtained by
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Π(θ|Y o) =

∫
Π(θ|Y o, Y m)Π(Y m|Y o)dY m (4.20)

∝
∫
f(Y |θ)Π(θ)Π(Y m|Y o)dY m (4.21)

where f(Y |θ) is the complete-data likelihood and Π(θ|Y o, Y m) ∝ f(Y |θ)Π(θ) is the complete-

data posterior density for θ. Since

Π(Y m|Y o) =

∫
Θ

Π(Y m|Y o, θ)× Π(θ|Y o)dθ (4.22)

after substituting Eq. (4.22) into Eq. (4.21) the observed-data posterior density becomes

Π(θ|Y o) ∝
∫
f(Y |θ)Π(θ)[

∫
Θ

Π(Y m|Y o, θ)Π(θ|Y o)dθ]dY m (4.23)

A major limitation of a Bayesian approach is that obtaining the posterior distribution requires the

integration of high-dimensional functions (Evans & Swartz, 1995) and can be computationally

difficult. To solve this problem, Markov Chain Monte Carlo (MCMC) techniques are used to

approximate the posterior distribution. This method is based on iteratively drawing samples

from a Markov chain. Under certain conditions, the distribution of the samples becomes closer

to the posterior distribution Π(θ|Y ) (Gelman et al., 1995). After a finite number of iterations

the MCMC will produce random samples from a stationary distribution which approximates

the posterior distribution. In some situations, a large number of iterations of the MCMC is

required before convergence occurs. The Metropolis-Hastings algorithm and the Gibbs’ sampler
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are the two most common methods used in MCMC algorithms. A detailed description of these

algorithms can be found in Gelman et al. (1995).

Advances in computing have made it possible to analyze complex Bayesian hierarchical models

using numerical approximation and simulation techniques. This has increased the range of prob-

lems and the complexity of analysis that now can be performed using Bayesian techniques. The

WinBUGS (windows-based Bayesian inference using Gibbs sampling) software package imple-

ments a computational technique that uses MCMC simulation for Bayesian hierarchical model-

ing (Lunn et al., 2000). WinBUGS was produced by the BUGS (Bayesian inference using Gibbs

sampling) project, which is a joint program of the Medical Research Council’s Biostatistics Unit

in Cambridge and the Department of Epidemiology and Public Health of Imperial College at St.

Mary’s Hospital in London. The developers of the software warn users to exercise caution when

using the software because it is not perfect and MCMC is inherently less robust than analytical

statistical methods.

4.3.5 Bayesian Pattern Mixture Models

In Bayesian approaches, pattern mixture models factor the joint distribution of indicators for

missing data patterns and the conditional distribution of the data given these patterns (Gatso-

nis et al., 2002). The parameters of the conditional data model are typically under-identified;

assumptions regarding the missing data mechanism can lead to models that allow for the estima-

tion of these parameters.

In this section, we define pattern mixture models under the Bayesian framework. Rubin (1976)

introduced this idea by classifying subjects as respondents or nonrespondents and specified a
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prior distribution for the nonrespondents’ mean centered around the respondents’ mean. In this

way he was able to calculate a probability interval for the mean of the entire population, including

both respondents and nonrespondents.

The Bayesian pattern mixture model requires prior information for each missing-data pattern.

As the number of patterns increases, more assumptions are needed for both the identified and

unidentified parameters. This can be problematic for researchers because they need to correctly

specify prior information otherwise their results will be biased. Typically, researchers will use

only two missing-data patterns, distinguishing subjects with complete data versus those with at

least one missing data point (e.g. Kaciroti et al. (2006)).

In the analysis of WSPP3 data (Chapter 6), this thesis uses a similar approach by specifying

two missing-data patterns. The first pattern includes all subjects with complete data for all time

points. The second pattern includes those subjects with at least one missing data point. This

method is similar to the CCMV method described in Section 4.3.1.

For comparison purposes, the seven patterns defined in Table 4.2 are also used along with the

two-pattern model, for the simulated datasets only. For model fitting, the same hierarchical

model was used for all patterns but the model parameters were allowed to differ. Results from

the Bayesian analyses are compared with the methods that used all seven patterns.

For the two-pattern model, assume that θ(1) is the identified parameter vector corresponding to

pattern 1 that includes all subjects with complete data for all time points and θ(2) is the uniden-

tified parameter vector corresponding to pattern 2 that includes those subjects with at least one

missing data point. In the two-pattern model, a hierarchical logit model is used (again dropping

the subscript representing the states for simplicity)
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logit(π
(p)
ijt ) = logit(Pr(Y

(p)
ijt = 1|Xijt, θ

(p))) = β
(p)
0 + β

(p)
1 X1ij,t−1 + β

(p)
2 t+ β

(p)
3 Cj + (u0j),

(4.24)

with u0j ∼ N(0, σ2
u), and

where p represents the patterns such that p = 1, 2 correspond to pattern 1 and pattern 2, and all

other symbols are as defined in previous chapters.

As mentioned earlier, because of the missing data, the pattern mixture model is underidentified.

Thus some restriction, or prior information on the parameters, is needed in the model to identify

the parameters. Little & Rubin (2002) defined the prior distribution Π(θ(2)|θ(1)), on the param-

eters of the missing pattern (p = 2) conditioned on the parameters of the complete observed

pattern (p = 1). Our approach is somewhat different but similar to that of Kaciroti et al. (2006).

Kaciroti et al. (2006) constructed the prior distribution Π(θ(2)|θ(1)) by relating the distribution of

the missing data to the distribution of the observed data. Kaciroti et al. (2006) used this method

for ordinal outcome data, where they related the cumulative odds of the missing data with the

cumulative odds of the observed data using a Bayesian approach. In his model,

π
(p)
ijt,l = Pr(Y

(p)
ijt ≤ l|Xijt, θ

(p)) (4.25)

such that for p = 1, 2,
π

(2)
ijt

1− π(2)
ijt

= ~̂ijt,(2)
π

(1)
ijt

1− π(1)
ijt

, (4.26)
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where ~̂ijt,(2) is the cumulative odds ratio statistic between the missing data pattern and complete-

data pattern and can be considered as a measure of the departure from random dropout. In our

case such as for the binary data, ~̂ijt,(2) is the odds ratio statistic between the missing data pattern

and the complete data pattern which measures the intensity of departure from missing at random

(MAR).

In our approach, for the two-pattern model, a hierarchical logit model is used for pattern 1 that

includes all subjects having complete data for all time points.

logit(Pr(Y
(1)
ijt = 1|Xijt, θ

(1))) = β
(1)
0 + β

(1)
1 X1ij,t−1 + β

(1)
2 t+ β

(1)
3 Cj + (u0j) (4.27)

u0j ∼ N(0, σ2
u),

where θ(1) denotes the collection of all the regression parameters related to pattern 1. Flat priors

are assumed for all the parameters, θ(1), for pattern 1 and a gamma prior is assumed for the

variance of the random effect. For the prior information for pattern 2, a model for the missing

data indicator(R) is developed first, such that,

logit(Pr(Rijt = 1|Xijt, Rij,t−1 = 0, ψ)) = βm0 + βm1 X1ij,t−1 + βm2 t+ βm3 Cj + (u0j), (4.28)

where ψ denotes the collection of all the regression parameters related to the missing data indi-

cator. Flat priors are also assumed for all the parameters ψ related to the missing data indicator

(R) and a gamma prior is assumed for the variance of the random effect.
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Similar to the approach of Kaciroti et al. (2006), parameter estimates from the missing data

indicator model (Equation 4.28) are used to provide prior information for the pattern 2 model,

such that π(θ(2)|℘) = N(℘̂, 1). Several variance estimates were tried but the convergence of the

model is relatively fast assuming a unit variance. For pattern 2, a hierarchical logit model is used,

logit(Pr(Y
(2)
ijt = 1|Xijt, θ

(2))) = β
(2)
0 + β

(2)
1 X1ij,t−1 + β

(2)
2 t+ β

(2)
3 Cj + (u0j) (4.29)

u0j ∼ N(0, σ2
u)

where θ(2) denotes the collection of all the regression parameters related to pattern 2. The poste-

rior estimates obtained from both patterns are combined using Rubin’s formula described earlier.

Finally, for comparison purposes, all seven patterns were also used under the Bayesian pattern

mixture model. The same methods are used with seven-pattern models. For example, for pattern

2 where data are missing for the last time point, parameter estimates from the missing data

model are used to provide the prior information for the parameters in the model for pattern 2

data. For pattern 3 where data are missing for the last two time points, parameter estimates

from the missing data model are used to provide the prior information for the parameters in

the pattern 3 model. Similarly, estimates for all the other patterns are obtained. In all models,

hierarchical designs are incorporated by introducing a normal random-effects distribution with

the same gamma prior assumed for the variance of the random effect.

The posterior estimates obtained from all patterns are combined using Rubin’s formula described

earlier. Results from the Bayesian analysis for both two and seven patterns are compared with

the ACMVPM method that uses all seven patterns in Section 5.9.
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In Chapter 5, we compare the results from a Bayesian analysis with those from the pattern mix-

ture model described in Section 4.3.1, using simulated data. In Chapter 6, we use WinBUGS to

perform a Bayesian hierarchical analysis of the WSPP3 dataset under the non-ignorable missing-

data mechanism.

4.4 Summary

This chapter described the handling of missing data for analyzing longitudinal clustered data

as well as various imputation approaches such as predictive mean matching methods under the

pattern mixture, selection, and Bayesian pattern mixture models. In Chapter 5 simulation studies

are performed to examine the performance of the parameter estimates and their standard errors

obtained from these imputation methods.
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Chapter 5

Simulation

5.1 Simulation Model and Parameter Values

The purpose of the simulation was to extend the method for handling missing data in hierarchical

models by exploring the performance of different techniques under various missing-data condi-

tions. The focus was on the monotone missing-data pattern. Monotone missing data occur when

responses are available for an individual until a certain time and then missing for all subsequent

times. Data with missing observations were generated and various simulation settings were ma-

nipulated, including the missing-data rate and missing-data mechanism. This section compares

the performance of standard methods (i.e., complete case analysis and last observation carried

forward) under MCAR, MAR, and MNAR missing-data mechanisms against the pattern mixture

model (PM) and the selection model (SM). The PM model is used under the three restriction

methods (CCMV, ACMV, NCMV) together with the predictive mean matching method to im-
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pute the missing response values. The SM model is also used with the predictive mean matching

method to impute the missing response values. Note that the PM and SM models are used only

with the MNAR missing-data mechanism.

In this chapter, we used longitudinal binary datasets and simulated the percentage of missing

data, the pattern of missing data, and the degree of systematic non-response. Datasets, with 30%

or 40% missing data, were created using the same design and parameters as described in Chapter

3. For each dataset, missing data indicators were created according to the models described

below. As a starting point, we considered a hypothetical longitudinal study examining smoking

behavior among school-aged youth with smoking behavior as the primary outcome. Schools

were randomly assigned to either a control or treatment condition. The data were generated

under the generalized logit model (5.1) below.

log

(
pijt(l|k)

pijt(k|k)

)
= β0|kl + β1|klX1ij,t−1 + β2|klt+ β3|klCj + (u0j|kl) (5.1)

where

u0j|kl ∼ N(0, σ2
u|kl)

To generate the data for the simulation, a person-period dataset was first created so that unique

subjects appeared in the dataset multiple times, once for each measurement point. Since there

were seven measurement points, each subject had seven records (or seven rows of data) as well as

an indicator for the measurement time point (t=1 to 7). Simulated data were then generated under

the following assumptions. First, all subjects had to possess valid data for the first measurement

time (t=1). Then, a missing data indicator was generated for all subsequent time points (t=2 to

7). Previous studies have used 10% to 40% missing data for simulation purposes (e.g., Gibson
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& Olejnik (2003)). Based on published results and our own trials indicating that the effects of

missing data were most pronounced when proportion of missing data are 20%, a decision was

made to generate 30% and 40% missing data under a monotone missing-data pattern.

To generate the monotone missing-data pattern for the MCAR mechanism, a binomial random

variable was created for time points 2 through 7 for each subject. This indicator variable was

assigned a value of 1 (missing) using the probabilities of 0.097 and 0.135 for 30% and 40%

missing data respectively, and 0 otherwise. In other words for the 30% missing data simulations,

Pr(Rit = 1) = 0.097. When a missing data point first occurred, the data for all subsequent time

points were set to missing, thereby creating the monotone missing-data pattern. For example, if

Ri3 = 1, then the values for time points 3 through 7 were also set to missing. Furthermore, if

more than one time point was assigned a missing value, then the earliest time point was used to

create the monotone missing-data pattern. That is, if Ri2 = 1 and Ri4 = 1, then the values for

time points 2 through 7 were set to 1. In total, 500 iterations of the simulation were conducted;

the creation of the simulated dataset was independent at each iteration.

For MAR and MNAR, the missing data were created using a state specific logit model as shown

in Eq. 5.2.

logit
(
P (Rijt|kl = 1|Xij,t−1, Yij,t−1|kl, Yijt|kl)

)
= m0|kl +m1|kl ×Xij,t−1 +m2|kl × Yij,t−1|kl

+m3|kl × Yijt|kl + u0j|kl; t ≥ 2 (5.2)

In Eq. 5.2., Yij,1 represents the initial state for an individual. The parameters were chosen
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to ensure that 30% and 40% of the data were assigned as missing (as described below). The

parameters used for different missing-data rates under the MNAR model for the three different

transition models are as follows:

A. For 30% missing data (MNAR simulations)

a. Nonsmoker to Smoker (k=1)

m0,12 = −2.6, m1,12 = −0.1, m2,12 = 0.2, m3,12 = 0.3

b. Smoker to Quitter (k=2)

m0,23 = −2.74, m1,23 = −0.1, m2,23 = 0.2, m3,23 = 0.3

c. Quitter to Smoker (k=3)

m0,32 = −3.24, m1,32 = −0.1, m2,32 = 0.2, m3,32 = 0.3

B. For 40% missing data (MNAR simulations)

a. Nonsmoker to Smoker

m0,12 = −2.15, m1,12 = −0.1, m2,12 = 0.2, m3,12 = 0.3

b. Smoker to Quitter

m0,23 = −2.4, m1,23 = −0.1, m2,23 = 0.2, m3,23 = 0.3

c. Quitter to Smoker

m0,32 = −2.85, m1,32 = −0.1, m2,32 = 0.2, m3,32 = 0.3

The coefficients m31, m32, and m33 differentiate the missing-data mechanisms between MNAR,

MAR, and MCAR. To create missing data under MAR, where the missing data do not depend

on Yijt, we assume that m3,12 = 0, m3,23 = 0, and m3,32 = 0. To achieve the desired proportion
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of missing data (30% or 40%), other parameters need to be changed, and for simplicity we vary

the intercept coefficients (m0,12, m0,23, and m0,32). Note that this creates the same missing data

rates for all three transitions. In practice, some transition may have a higher proportion missing,

and others a lower proportion leading to an overall rate of 30% ∼ 40%.

To illustrate the results of the modeling, Tables 5.1 and 5.2 show the number and proportion

of individuals having missing data at each time point for a particular simulated dataset for the

MNAR missing data mechanism. For the 30%-missing-data simulation (Table 5.1), 48.98% of

individuals (2449/5000) had at least one missing data point. For the 5000 individuals over 6

time points there are a total of 30,000 observations of which 9,186 were assigned as missing,

leading to a 30.62% missing data rate (9,186/30,000 = 30.62). Similarly, for the 40%-missing-

data simulation (Table 5.2), 63.04% of individuals (3152/5000) have at least one missing data

point, leading to 40.65% missing data overall. Table 5.3 shows the percentage of missing data

for all three missing data mechanisms.

Table 5.1: Sample simulation showing the number and percentage of missing data at each time
point with 30% missing data under MNAR

Individual missing data Overall missing observations
n(%) n(%)

Time n=5000 n=30,000
Time 2 560* (11.2) 560** (1.87)
Time 3 380 (7.60) 940 (3.13)
Time 4 416 (8.32) 1356 (4.52)
Time 5 377 (7.54) 1733 (5.78)
Time 6 415 (8.30) 2148 (7.16)
Time 7 301 (6.02) 2449 (8.16)
Overall 2449 (48.98) 9186 (30.62)
∗ number of new individuals missing at a given time point; ∗∗ total number
of missing observations at a given time point
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Table 5.2: Sample data set showing the number and percentage of missing data at each time point
with 40% missing data under MNAR

Individual missing data Overall missing observations
n(%) n(%)

Time n=5000 n=35,000
Time 2 788* (15.76) 788** (2.63)
Time 3 506 (10.12) 1294 (4.31)
Time 4 540 (10.80) 1834 (6.11)
Time 5 480 (9.60) 2314 (7.71)
Time 6 498 (9.96) 2812 (9.37)
Time 7 340 (6.80) 3152 (10.51)
Overall 3152 (63.04) 12194 (40.65)
∗ number of new individuals missing at a given time point; ∗∗ total number
of missing observations at a given time point

Table 5.3: Sample simulation showing the percentage of missing data for all three missing data
mechanisms

Missing Data Proportion Non-smoker Smoker Quitter Overall
for all three cases to to to missing

Smoker Quitter Smoker observation
30% missing data MCAR 30.45 31.93 30.35 30.91

MAR 31.37 31.17 29.33 30.62
MNAR (m3j=0.3) 31.81 30.17 29.89 30.62

30% missing data MCAR 28.75 30.07 32.41 30.41
MAR 30.04 29.74 29.66 29.81

MNAR (m3j=0.9) 31.32 30.15 30.45 30.64
40% missing data MCAR 39.22 40.70 41.18 40.36

MAR 40.54 40.07 40.54 40.38
MNAR (m3j=0.3) 40.94 41.21 40.63 40.92

Table 5.4 lists the proportion of students in the three smoking categories for each time point, for

the same simulated dataset. When the cohort was at time 1 (grade 6), the majority of students

had no smoking experience, furthermore, smoking prevalence increased over the time. At time 1
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Table 5.4: Sample simulation showing the percentage of subjects in each state over time

Time
Smoking Status 1 2 3 4 5 6 7

Missing Prevalence (%) – 11.2 18.8 27.1 34.7 43.0 49.0
(Frequency) – (560) (940) (1356) (1733) (2148) (2449)

Nonsmoker Prevalence (%) 86.4 61.8 47.8 37.2 29.2 21.9 15.4
(Frequency) (4319) (3089) (2388) (1858) (1458) (1093) (770)

Smoker Prevalence (%) 7.6 19.8 20.2 21.7 22.1 22.8 24.0
(Frequency) (378) (988) (1009) (1083) (1103) (1139) (1199)

Quitter Prevalence (%) 6.1 7.3 13.3 14.1 14.1 12.4 11.6
(Frequency) (303) (363) (663) (703) (706) (620) (582)

only 7.6% of 5000 students were classified as smokers; at time 7, 24% of students were classified

as smokers.

For the same simulated dataset, Table 5.5 summarizes the transition of individuals from one

smoking category to another. It shows that the among non-smokers in grade 6, 21.9% remained

non-smokers over time. Most transitions involve the non-smoker to smoker transition and rela-

tively few individuals experienced the quitter to smoker transition.
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Table 5.5: Sample simulation showing the transitions between states over time for students start-
ing in time 1 (grade 6) to time 7 (grade 12)

Status at t
Missing Nonsmoker Smoker Quitter Overall at t-1

Time Status at t-1 % (n) % (n) % (n) % (n) % (n)

2 Nonsmoker 10.7 (464) 71.5 (3089) 17.7 (766) – – 86.4 (4319)
Smoker 15.3 (58) – – 44.2 (167) 40.5 (153) 7.6 (378)
Quitter 12.5 (38) – – 18.2 (55) 69.3 (210) 6.1 (303)

3 Missing 100.0 (560) – – – – – – 11.2 (560)
Nonsmoker 7.5 (232) 77.3 (2388) 15.2 (469) – – 61.8 (3089)
Smoker 11.1 (110) – – 49.7 (491) 39.2 (387) 19.8 (988)
Quitter 10.5 (38) – – 13.5 (49) 76.0 (276) 7.3 (363)

4 Missing 100.0 (940) – – – – – – 18.8 (940)
Nonsmoker 9.4 (225) 77.8 (1858) 12.8 (305) – – 47.8 (2388)
Smoker 11.6 (117) – – 56.2 (567) 32.2 (325) 20.2 (1009)
Quitter 11.2 (74) – – 31.8 (211) 57.0 (378) 13.3 (663)

5 Missing 100.0 (1356) – – – – – – 27.1 (1356)
Nonsmoker 9.3 (173) 78.5 (1458) 12.2 (227) – – 37.2 (1858)
Smoker 11.2 (121) – – 61.7 (668) 27.1 (294) 21.7 (1083)
Quitter 11.8 (83) – – 29.6 (208) 58.6 (412) 14.1 (703)

6 Missing 100.0 (1733) – – – – – – 34.7 (1733)
Nonsmoker 9.9 (144) 75.0 (1093) 15.2 (221) – – 29.2 (1458)
Smoker 12.0 (132) – – 66.1 (729) 21.9 (242) 22.1 (1103)
Quitter 19.7 (139) – – 26.8 (189) 53.5 (378) 14.1 (706)

7 Missing 100.0 (2148) – – – – – – 43.0 (2148)
Nonsmoker 8.6 (94) 70.4 (770) 21.0 (229) – – 21.9 (1093)
Smoker 11.5 (131) – – 71.3 (812) 17.2 (196) 22.8 (1139)
Quitter 12.3 (76) – – 25.5 (158) 62.3 (386) 12.4 (620)
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Furthermore, for each simulation a second set of datasets was created by setting the m31, m32,

and m33 parameters to more extreme values. We increase the values on average from about

0.30 to 0.90 to produce situations where the missing data are more dependent on the future

observations. To achieve the desired proportion of missing data (30%), other parameters need

to be changed, and for simplicity we vary the intercept coefficients (m01, m02, and m03). These

latest simulated data were only created for 30% missing datasets and allow us to show that our

methods can handle this extreme situation without further assumptions. After generating the

data with missing observations, we used four analytic techniques. The first was a complete case

analysis and the remaining techniques employed the following imputation methods:

• LOCF

• Pattern mixture models

• Selection model

5.2 Complete Case Analysis (CCA)

In this procedure, subjects with missing data were excluded and the analysis was based only on

those subjects with complete data for the entire study. The procedure is simple to implement and

it is used in most standard statistical software packages. If the MCAR assumption is wrong then

the CCA method may provide biased estimates.
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5.3 Last Observation Carried Forward (LOCF)

This method is commonly used in clinical trials. It assumes that the subject profile is unchanged

from the previous assessment. It requires the strong assumption that the individual outcome

profile remains at the level of the last observed measurement throughout the remainder of the

follow-up. However, it is possible that the outcome profile changes as soon as the individual

stops the treatment. In this study, missing values for the time-dependent covariates are replaced

by their last reported observation.

5.4 Predictive Mean Matching

In the predictive mean matching process, the relationship between the response variable and the

relevant covariates is modeled for the complete data cases, and the incomplete data cases are

divided into different groups based on the predicted values of the response variable. This method

matches the cases based on a linear combination of covariates Xβ +Zu. It is not constrained by

the continuous and normality assumptions and replaces each missing value with several observed

values based on the matching, which in turn accounts for the variation in imputed values. The

Approximate Bayesian Bootstrap (ABB) is used in the predictive mean matching method to

impute each missing value multiple times. Because of the variation in the imputed values this

method provides a more valid inference than would a single imputation. The SAS procedure

NLMIXED uses maximum likelihood estimation to fit the model and provides empirical Bayes

estimates of the random effects u. The steps are:

• Establish a predictive model for response variable Y based on X and C for the complete
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cases:

logit(Pr(Y o = 1|X)) = Xβ + u (5.3)

• The predicted probability of Y being 1 is

Pr(Ŷ o = 1|X) =
Exp

(
Xβ̂ + û

)
1 + Exp

(
Xβ̂ + û

) (5.4)

• Divide the cases into different groups based on the predicted probabilities.

• Apply ABB to impute the missing response values in each group. In group k, let Y o denote

the n1 observations with non-missing Y values and Y m denote the n0 observations with

missing Y values. ABB first draws n0 observations randomly with replacement from Y o

and uses these values as the no imputed values for the missing response vector, Y m, which

is combined with the non-missing data to create a new dataset Y ∗. Repeat this process M

times and create M imputed datasets.

• Analyze these M complete imputed datasets separately; combine the results using the

Rubin procedure incorporated in the SAS procedure MIANALYZE (Rubin, 1987).

5.5 Pattern Mixture Model

For imputation and modeling, the pattern mixture model with the predictive mean matching

method was restricted to a monotone missing-data pattern because the WSPP3 dataset which we
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replicated has relatively few individuals in the intermittent missing-data categories. Table 5.6

shows that there are only seven possible monotone missing-data patterns. Individuals with com-

plete data at all time points follow pattern 1. Similarly, individuals with data only at time 1

follow pattern 7. The goal of this study was to improve the existing restriction-case pattern

mixture model using a predictive mean matching method within each pattern. To do this, three

existing restriction techniques were used in the pattern mixture model: complete case missing

value (CCMVPM), available case missing value (ACMVPM), and neighboring case missing

value (NCMVPM).

Table 5.6: Monotone missing-data pattern

Pattern t1 t2 t3 t4 t5 t6 t7

P1 O O O O O O O
P2 O O O O O O ∗
P3 O O O O O ∗ ∗
P4 O O O O ∗ ∗ ∗
P5 O O O ∗ ∗ ∗ ∗
P6 O O ∗ ∗ ∗ ∗ ∗
P7 O ∗ ∗ ∗ ∗ ∗ ∗

∗ missing observation: O non-missing observation

5.5.1 Steps for Complete Case Missing Value with Predictive Mean Match-

ing Approach (CCMVPM)

This restriction method was used on the complete data for pattern 1 to impute the means for the

missing observations in the remaining patterns. It assumes that the missing value distributions

are the same as the complete case distribution.
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• For the missing data in pattern P2, we used the predictive mean matching method to impute

the missing values at t7 using all the observed cases from pattern P1.

• For the missing data in pattern P3, we used the predictive mean matching method to impute

the missing values at t6 and t7 using all the observed cases from pattern P1.

• For the missing data in pattern P4, we used the predictive mean matching method to impute

the missing values at t5, t6, and t7 using all the observed cases from pattern P1.

• For the missing data in pattern P5, we used the predictive mean matching method to impute

the missing values at t4, t5, t6, and t7 using all the observed cases in P1.

• For the missing data in pattern P6, we used the predictive mean matching method to impute

the missing values at t3, t4, t5, t6, and t7 using all the observed cases in P1.

• For the missing data in pattern P7, we used the predictive mean matching method to impute

the missing values at t2, t3, t4, t5, t6, and t7 using all the observed cases in P1.

• After creating m imputed datasets for each pattern, we combined the resultant estimates

using the techniques from Rubin (1987) incorporated in the SAS procedure MIANALYZE.

• All parameter estimates were then compared with those from the full datasets.

5.5.2 Steps for Available Case Missing Value with Predictive Mean Match-

ing Approach (ACMVPM)

This restriction method uses the information contained in all the missing-data patterns for all

available subjects to impute the means for the missing observations in the remaining patterns.
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• For the missing data in pattern P2, we used the predictive mean matching method to impute

the missing values at t7 using all the observed cases in pattern P1.

• For the missing data in pattern P3, we used the predictive mean matching method to impute

the missing values at t6 using all the observed cases in patterns P1 and P2. To impute the

missing values at t7, we used the cases in P1 and the imputed values for t6 in P3.

• For the missing data in pattern P4, we used the predictive mean matching method to impute

the missing values at t5 using all the observed cases in P1, P2, and P3. To impute the

missing values at t6 we used the cases in P1 and P2 and the imputed values for t5 in P4.

To impute the missing values at t7 we used the cases in P1 and the imputed values for t6 in

P4.

• For the missing data in pattern P5, we used the predictive mean matching method to impute

the missing values at t4 using all the observed cases in P1, P2, P3, and P4. To impute the

missing values at t5 we used the cases in P1, P2, and P3 and the imputed values for t4 in

P5. To impute the missing values at t6 we used the cases in P1 and P2 and the imputed

values for t5 in P5. To impute the missing values at t7 we used the cases in P1 and the

imputed values for t6 in P5.

• For the missing data in pattern P6, we used the predictive mean matching method to impute

the missing values at t3 using all the observed cases in P1, P2, P3, P4, and P5. To impute

the missing values at t4 we used the cases in P1, P2, P3, and P4 and the imputed values

for t3 in P6. To impute the missing values at t5 we used the cases in P1, P2, and P3 and

the imputed values for t4 in P6. To impute the missing values at t6 we used the cases in P1
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and P2 and the imputed values for t5 in P6. To impute the missing values at t7 we used the

cases in P1 and the imputed values for t6 in P6.

• For the missing data in pattern P7, we used the predictive mean matching method to impute

the missing values at t2 using all the observed cases in P1, P2, P3, P4, P5, and P6. To

impute the missing values at t3 we used the observed cases in P1, P2, P3, P4, P5, and the

imputed values for t2 in P7. To impute the missing values at t4 we used the cases in P1,

P2, P3, and P4 and the imputed values for t3 in P7. To impute the missing values at t5 we

used the cases in P1, P2, and P3 and the imputed values for t4 in P7. To impute the missing

values at t6 we used the cases in P1 and P2 and the imputed values for t5 in P7. To impute

the missing values at t7 we used the cases in P1 and the imputed values for t6 in P7.

• For each pattern the data were combined using Rubin’s formulae described earlier.

• The parameter estimates were then compared with those from the full datasets.

5.5.3 Steps for Neighboring Case Missing Value (NCMVPM)

This restriction method uses the information from subjects in a neighboring pattern to impute the

means for the missing observation in the remaining patterns. The algorithm follows:

• For the missing data in pattern P2, we used the predictive mean matching method to impute

the missing values at t7 using all the observed cases in P1.

• For the missing data in pattern P3, we used the predictive mean matching method to impute

the missing values at t6 using all the observed cases in P2. To impute the missing values at

t7, we used the cases in P1 and the imputed values for t6 in P3.
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• For the missing data in pattern P4, we used the predictive mean matching method to impute

the missing values at t5 using all the observed cases in P3. To impute the missing values

at t6 we used the cases in P2 and the imputed values for t5 in P4. To impute the missing

values at t7 we used the cases in P1 and the imputed values for t6 in P4.

• For the missing data in pattern P5, we used the predictive mean matching method to impute

the missing values at t4 using all the observed cases in P4. To impute the missing values

at t5 we used the cases in P3 and the imputed values for t4 in P5. To impute the missing

values at t6 we used the cases in P2 and the imputed values for t5 in P5. To impute the

missing values at t7 we used the cases in P1 and the imputed values for t6 in P5.

• For the missing data in pattern P6, we used the predictive mean matching method to impute

the missing values at t3 using all the observed cases in P5. To impute the missing values

at t4 we used the cases in P4 and the imputed values for t3 in P6. To impute the missing

values at t5 we used the cases in P3 and the imputed values for t4 in P6. To impute the

missing values at t6 we used the cases in P2 and the imputed values for t5 in P6. To impute

the missing values at t7 we used the cases in P1 and the imputed values for t6 in P6.

• For the missing data in pattern P7, we used the predictive mean matching method to impute

the missing values at t2 using all the observed cases in P6. To impute the missing values

at t3 we used the cases in P5 and the imputed values for t2 in P7. To impute the missing

values at t4 we used the cases P4 and the imputed values for t3 in P7. To impute the missing

values at t5 we used the cases in P3 and the imputed values for t4 in P7. To impute the

missing values at t6 we used the cases in P2 and the imputed values for t5 in P7. To impute

the missing values at t7 we used the cases in P1 and the imputed values for t6 in P7.
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• For each pattern the data were combined using Rubin’s formulae described earlier.

• The parameter estimates were then compared with those from the full datasets.

5.5.4 Example: Use of Pattern Mixture Model for Transition Data

In order to demonstrate a practical implementation of the pattern mixture model, consider four

examples based on the WSPP3 data. A number of transitions might be possible for any one

individual. However, due to the monotone missing data assumption, at most one transition will

have a missing response. Thus, any individual could have more than one complete transition

sequence, but could have at most one sequence that is incomplete. It is this incomplete sequence

that is imputed. For simplicity all the examples considered here are for individuals who have

missing data at time 4.

Examples of sample sequences include:

• non-smoker→ non-smoker→ smoker→ smoker→ quitter→ quitter→ smoker:

(NNSSQQS)

• non-smoker→ non-smoker→ non-smoker→ missing→ missing→ missing→ missing

(NNN.)

• non-smoker → non-smoker → smoker → missing → missing → missing → missing

(NNS.)

• non-smoker→ smoker→ quitter→ missing→ missing→ missing→ missing (NSQ.)

In order to implement the pattern mixture model, the steps involved include:
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• Determine the pattern for the individual based on Table 4.2, using the rule that the pattern

for the whole data record is determined by the first missing response value.

• Break out the sequences for each individual based on when a transition to another state

occurs where missing data first occurs.

• Determine the complete sequences for each individual based on the state to which they

belong and identify them so they are not imputed.

• Determine the incomplete sequence for an individual(if any) and identify it for imputation.

• Apply all three restriction methods to impute the missing responses.

Case 1: (NNSSQQS)

In this case, the individual has complete data. Based on Table 4.2, this individual falls under

pattern P1. Since all three transitions are represented in the sequence, all three transition models

will be fit for this sequence. If a value of 96 represents a valid missing response for a particular

sequence at time t, either because it is the first element of the transition sequence, because the

sequence terminated at t− 1 or earlier, or because the sequence had not begun at time t, then

• Non-smoker to smoker transition: SequenceNNS is represented by: (96, 0, 1, 96, 96, 96, 96)

• Smoker to quitter transition: Sequence SSQ is represeneted by: (96, 96, 96, 0, 1, 96, 96)

• Quitter to smoker transition: Sequence QQS is represented by: (96, 96, 96, 96, 96, 0, 1)

For the non-smoker to smoker transition, the model is fit for two time points (96, 0, 1) and no

imputation is performed because this individual has complete data for this transition.
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For the smoker to quitter transition, the model is only fit for time points 4 and 5 (96, 96, 96, 0, 1).

Time points 1,2,3, 6, and 7 are considered valid skips and no values are imputed. For the quitter

to smoker transition, the model is only fit for time points 6 and 7 (96, 96, 96, 96, 96, 0, 1) and all

other time points are considered valid skips.

Case 2: (N N N .) In this case, the individual has missing data at time 4; based on Table 4.2, this

individual falls under pattern P5. As a result, we only fit the non-smoker to smoker transition

model to impute the missing data. The procedure for all three restriction methods can be easily

applied to impute the missing data. Once the individual is assigned to be a smoker at any time

point, no further imputation is performed for that individual.

Case 3: (N N S .) In this case, the individual has missing data at time 4; based on Table 4.2, this

individual falls under pattern P5. We fit two models: (1) one for the non-smoker to smoker transi-

tion and (2) One for the smoker to quitter transition. For the non-smoker to smoker transition no

imputation is performed because the individual has moved to the next state before the occurrence

of missing data. For the smoker to quitter transition, this individual has missing data. Here, the

model is fit for the smoker to quitter transition with only one time point (0,.) and then imputation

is performed using pattern P5 from Table 4.2. Other sequences that involve the smoker to quit-

ter transition that are included in pattern P5 are (QSS....), (QQS....), (SSS....), (NSS....), and

(SQS....). Based on the imputation, once the individual is assigned as quitter at any time point,

no further imputation is performed for that individual. In this case, the procedure for all three

restriction methods will be applied assuming the individual falls in pattern P5.

Case 4: (NSQ.) In this case, the individual has missing data at time 4; based on Table 4.2, this

individual falls under pattern P5. In this case all three transition models are fit. First, we fit
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the non-smoker to smoker transition model. No imputation is performed because the individual

has moved to the smoker state. Next, we fit the smoker to quitter transition and no imputation

is performed because the individual has moved to the quitter state. Finally, we fit the quitter to

smoker transition model and imputation is performed for the quitter to smoker transition.

5.6 Selection Model

The steps used in the selection model are:

• The dropout model was fitted as in Eq. (4.5) with all the covariates. Hierarchical logistic

regression models were used to estimate the predicted values and parameters using AGQ

as described in Chapter 3.

• The inverse Mills ratio was computed as described in Chapter 4.

• The inverse Mills ratio was used as one of the predictors in the outcome model.

• Using parameter estimates from the outcome model, we used the predictive mean matching

method to impute the missing response values.

• After obtaining M imputed datasets, we combined the resulting estimates using Rubin’s

formulae (see section 4.2.6).
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5.7 Simulation Results

In this section, the results for each imputation method are compared and their implications are

discussed. Comparisons are made for 30% and 40% missing-value rates and three transitions

(nonsmoker to smoker, smoker to quitter, quitter to smoker). Starting with the complete datasets

from Chapter 3, five hundred simulations were performed separately for both the 30% and 40%

missing-value rates. For each simulation AGQ was used to estimate the model parameters. The

details of the simulation are discussed in Chapter 3 and section 5.1.

5.7.1 Parameter Estimates

Tables 5.7–5.9 report the average parameter estimates over 500 simulations under MCAR, MAR,

and MNAR, estimates from LOCF under MCAR, MAR, and MNAR, estimates from the three

restriction methods for the pattern mixture model (ACMVPM, CCMVPM, NCMVPM) with the

predictive mean matching method under MNAR, and estimates from the selection model with

the predictive mean matching method under MNAR. The parameter estimates from each method

were compared with the true values under the 30% and 40% missing-data rates. The first col-

umn in Tables 5.7–5.9 gives the true values used to generate the simulated data. The estimates

from the full data analysis (FDA) (missing data not removed) are reported in the second col-

umn. The third, fourth, and fifth columns report the parameter estimates using CCA under the

assumption that the missing data mechanism is MCAR, MAR, and MNAR respectively. The

sixth, seventh, and eighth columns report the parameter estimates from LOCF under MCAR,

MAR, and MNAR, respectively. The ninth, tenth, and eleventh columns report the parameter

estimates from ACMVPM, CCMVPM, and NCMVPM under MNAR respectively. The last col-
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umn reports the parameter estimates from the selection model with the predictive mean matching

method (SMPM) under MNAR. All the tables report the parameter estimates for 500 convergent

simulations with the empirical standard deviation in parentheses. The results are discussed be-

low.
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Model intercept: Estimates under MCAR and MAR are similar to those of the full data analysis

(FDA). Estimates under MNAR show the biggest difference when compared to those of the full

data analysis. Differences in the model intercept estimates are seen for LOCF under all three

missing-data mechanisms. The most noticeable differences are observed in the results for the

MNAR missing data mechanism. All three restriction methods with the predictive mean match-

ing approach provide similar estimates for the model intercept; generally, the restriction methods

are less biased than the other methods. Among the restriction methods, ACMVPM estimates are

less biased than the other two methods. The selection model with the predictive mean match-

ing method is less biased than LOCF for MNAR. This is true for all three transitions and both

missing-data proportions. Comparison shows little differences between restriction models and

SMPM.

Treatment condition: All three restriction methods provide similar estimates for the treatment

condition parameter (β3); their estimates are much closer to the FDA estimates than are those of

the other methods. The largest differences were observed when the parameters were estimated

under MNAR for both complete case analysis and LOCF. Increasing the missing-data proportion

from 30% to 40% widened the differences in the parameter estimates for all methods. Minor

changes were observed among the restrictions methods but major changes were observed for

the methods under the LOCF and complete case analysis. Compared to the LOCF and SMPM

method, the restriction methods performed better in all three transitions.

Time (a proxy for grade): The estimates from the restriction methods are close to the FDA

estimates. Among the restriction methods, the estimates from NCMVPM are much closer to the

estimates from complete case analysis. This is true for all three transitions.
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The parameter estimates for the time-dependent covariates (β1) are similar for all three restriction

methods and the selection model in all three transitions and the estimates are close to the FDA

estimate.

Variance of random intercept: Both LOCF and complete case analysis under the MNAR missing

mechanism underestimate the variance of the random intercept in the non-smoker to smoker

transition. The estimates obtained from the restriction methods show much closer values to the

FDA estimate for all three transitions. The estimates from the selection model are similar to the

restriction methods. For the two transitions, the trend remains the same. Noticeable differences

were observed when the missing-data proportion was increased from 30% to 40%. Estimates

are more biased for both the LOCF and complete case analysis. Estimates from the restriction

methods show little variation and remain close to the FDA analysis.

In conclusion, the results suggest that restriction methods with the predictive mean matching

method perform better in general than the other methods studied with regards to parameter es-

timation. Furthermore, among the pattern mixture models, ACMVPM performs better than the

other two. Comparison between restriction methods and selection models show few differences

but generally restriction methods perform better than the SMPM.

5.7.2 Average Empirical Bias Estimates

The average empirical bias of a parameter estimate is defined as the average difference between

the parameter estimate θ̂mk and the true parameter value θk for simulation m:
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Average Empirical Biask =

∑500
m=1

(θ̂mk − θk)
500

Tables 5.10–5.12 report the average empirical bias estimates for each missing-data mechanism

(MCAR, MAR, and MNAR) along with the imputation methods. The results were also compared

for the 30% and 40% missing-data rates.

Model intercept: The average empirical bias estimates under MCAR and MAR are similar for all

three transitions but, generally, smaller than the MNAR biases. The biases are also much higher

under all the LOCF methods especially under the MNAR missing data mechanism. All three

restriction methods using the predictive mean matching method provide similar estimates which

are better than those of other methods under MNAR. The selection model with the predictive

mean matching method performed better when the missing data proportion was increased to

40%, but only for the nonsmoker-to-smoker transition. Biases are to be higher for the smoker to

quitter transition. The main reason could be that fewer individuals are moving into and out of

this transition as shown in Table 5.5. Among the three restriction methods, ACMVPM provides

less average empirical bias than the CCMVPM and NCMVPM methods.

Treatment condition: All three restriction methods and the selection model with the predictive

mean matching methods provide similar estimates for the treatment condition parameter (β3)

and their biases are small compared to the LOCF methods. When the missing-data proportion

is 40%, the selection model leads to less bias in the nonsmoker-to-smoker and quitter-to-smoker

transitions. LOCF as usual provides much higher biases than the other methods. This is true for

all three transitions and both missing-data proportions.
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Time (a proxy for grade): Empirical bias estimates from the restriction methods are smaller than

those from other methods. For the three restriction methods, the estimates from CCMVPM are

much smaller than those from the other two methods, but only for the nonsmoker-to-smoker

transition. ACMVPM performs better in quitter-to-smoker and smoker-to-quitter transition. The

parameter estimates for the time-dependent covariates (β1) are similar for all methods and all

transitions.

Variance of random intercept: LOCF consistently has higher biases than the other methods for

the variance estimate of the random intercept especially under the MNAR missing data mecha-

nism. Similarly under the MNAR missing data mechanism, all three restriction methods produce

smaller biases than the standard methods. Comparing the three restriction methods, the results

are mixed; for example, in the non-smoker to smoker transition NCMVPM provides smaller

biases than the ACMVPM method but these differences are very small. The biases from the

selection model are similar to or greater than the biases from the pattern mixture methods.

In conclusion, these results suggest that the biases are low if we use restriction methods with

predictive mean matching method. Furthermore, among the pattern mixture models, ACMVPM

performed slightly better than the other two methods. The selection model produced slightly

greater empirical bias than the pattern mixture methods.

5.7.3 Average Standardized Empirical Bias Estimates

In addition to measuring the raw bias, we calculated the average standardized empirical bias

(ASEB) of the parameter estimate. The standardized empirical bias includes the model-based

estimate of the standard error of the parameters, and is useful for understanding the impact of

128



bias on the interval estimates and statistical tests.

ASEBk =

∑500
m=1

(
θ̂mk−θk
SE(θ̂mk)

)
500

The simulation results with 30% and 40% missing data are reported in Tables 5.13–5.15. The

results are similar to those for the raw empirical bias estimates. In conclusion, The results suggest

that the restriction methods consistently provide lower standardized empirical biases than the

other methods. Of the restriction methods, ACMVPM performed the best. LOCF produced

larger standardized biases than all other methods. Similar trends were observed for all transitions

and both missing-data proportions.
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5.7.4 Root Mean Square Error

The mean squared error (MSE) of an estimate is defined as the squared empirical bias plus the

corresponding variance. This is a useful diagnostic component for selecting an estimator, since

small MSE values indicate small variance as well as bias. The square root of the mean squared

error (RMSE) is defined as the positive square root of the mean squared error.

Tables 5.16–5.18 show the RMSE for the simulated parameter estimates with 30% and 40% miss-

ing data. The results are similar to those for the empirical bias estimates. As usual, higher RMSE

are observed for the treatment conditions in all methods. The RMSE for the restriction methods

are lower than those for either the complete case or LOCF methods and the selection method. In

conclusion, the results suggest that the restriction methods and the selection method consistently

provide lower RMSEs than the other methods. Of the restriction methods, ACMVPM performed

the best. LOCF produced larger RMSEs than any other method. Similar trends were observed

for all transitions and both missing-data proportions.
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5.7.5 Coverage Rates

Using the estimated parameters and their model based standard errors, 95% confidence intervals

were calculated for each parameter in each iteration. The coverage rate for a given method

is defined as the ratio of the number of iterations in which the calculated confidence interval

contains the true value of the parameter to the total number of iterations. The nominal 95%

coverage rates are reported in Tables 5.24–5.26 in the next section.

As expected, LOCF under the MNAR missing data mechanism consistently provides the lowest

coverage rates for almost all the parameters in all three transitions. The results from all three

restriction methods show that the estimated coverage rates are much higher than the standard

methods. The results from selection models are similar to those from the restriction methods. As

the missing data proportion increase from 30% to 40%, the coverage rates for restriction methods

and selection models continue to be better than those for the standard methods. In some cases

the standard methods provide coverage rates less than 0.5.

5.8 Sensitivity Analysis

The purpose of this section is to investigate the situation where the probability of the missing

data depends more on the unobserved data (i.e., to make the data more MNAR). In this section

missing data were created with the values m31 = 0.9, m32 = 0.9, and m33 = 0.9 as defined

earlier. To retain the 30% missing-data proportion, the intercepts were varied while keeping all

other parameter values constant. Similarly to Section 5.1, this section compares the performance

of standard methods (i.e., complete case analysis and LOCF) under MCAR, MAR, and MNAR
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against the pattern mixture model and the selection model with the predictive mean matching

method. The results are shown in Tables 5.19–5.22. Bayesian analysis was also performed on

five simulated datasets using the WinBUGS software. Table 5.28 compares the Bayesian analysis

with the pattern mixture and selection models.

Table 5.19 reports the average parameter estimates over 500 simulations under MCAR, MAR,

and MNAR, estimates from LOCF under MCAR, MAR, and MNAR, estimates from the three

restriction methods for the pattern mixture model (ACMVPM, CCMVPM, NCMVPM) with the

predictive mean matching method under MNAR, and estimates from the selection model with

the predictive mean matching method under MNAR.
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The results from a sensitivity analysis suggest the same trends as in the previous simulations

where the missing data were less dependent on the future values. For the nonsmoker-to-smoker

transition, comparing the mild and extreme values of the missing-data mechanism, in general

the average empirical bias estimates (Table 5.20) for all parameters show an increase in bias.

The pattern mixture model with the restriction methods shows a smaller bias increase than the

other methods, especially in the estimate of variance of the random intercept. Similar trends are

observed for the other two transitions.

Table 5.23 shows the comparative results for the average standardized empirical bias (ASEB) of

an estimate. The results from Table 5.23 suggest the same trend as in previous simulations where

the missing data were less dependent on the future values (M3j = 0.3). Overall, in most cases,

the ACMVPM methods show a smaller ASEB than the other methods, especially in the estimate

of the variance of the random intercept.

The coverage-rate results (Tables 5.24–5.26) show that for the ACMVPM, all the estimated cov-

erage rates are within the (0.93,0.97) interval mentioned earlier. The results from the selection

model are similar to the restriction methods and have a much higher coverage rate than those of

the other methods. These results demonstrate that the restriction methods produced better overall

results relative to standard methods and that with data more dependent on the missing response,

the restriction methods perform well.
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At last, Table 5.27 shows the comparative results for the nominal 95% coverage rates for param-

eters, for all three cases, and for all three transitions. The three cases include the comparison

between the 30% and 40% missing data rates and within the 30% missing data rates, two com-

parison were made for different values of m3j (where the missing data is dependent on the future

values). Overall, the ACMVPM methods shows a larger nominal coverage rates than the other

methods, especially in the estimate of the variance of the random intercept.

5.9 Bayesian Analysis

In this section, pattern mixture models are used under the Bayesian framework and estimates are

derived via the MCMC algorithm. The outcome variables and other model assumptions are as

described in Section 5.1. The analysis was performed on five simulated datasets derived from

the MNAR mechanism, created in Section 5.8.

As described in Section 4.3.4, two-pattern and seven-pattern models were fitted to data with 30%

missing values. However, this thesis focuses on the two-pattern model because of the complexity

of defining prior distributions for all the unidentified parameters in the seven-pattern model. In

the two-pattern model, first an analysis was carried out for those individuals having complete data

at all time points (pattern 1) and later an analysis was carried out on those individuals having at

least one missing data point (pattern 2). Flat priors were assumed for all identified parameters

except for the variance of the random effect. A dropout model (selection model) provided the

prior information for unidentified parameters as described in Section 4.3.2. The analysis was

conducted using WinBUGS 1.4.3.
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For the seven-pattern model, the same hierarchical model was used for all seven patterns but the

θ(p) parameters were allowed to differ for each pattern p. As above, the parameter estimates from

the selection model were used to provide the parameters for the prior distribution of unidentified

parameters θ(p) (p > 1), while flat priors were assumed for the identified parameters θ(1). Hier-

archical designs were incorporated by introducing the normal random-effects distribution with a

gamma prior assumed for the variance of the random effect.

For comparison purposes, five simulated data sets were used to estimate the parameters from

the pattern mixture model and the Bayesian pattern mixture model. Within the pattern mixture

model, the ACMVPM restriction with the predictive mean matching method was used to compare

the results with the Bayesian pattern mixture model. The parameter estimates from each pattern

were aggregated using Rubin’s technique. Our results show that the proposed pattern mixture

model produce estimates that, on average, were closer to the true values, than the Bayesian

pattern mixture model.

Table 5.28 shows the parameter estimates from the pattern mixture model and the Bayesian pat-

tern mixture model. The second column shows the true parameter values. The third and fourth

columns show the parameter estimates based on the pattern mixture model with the ACMVPM

restriction and the Bayesian pattern mixture model. The fifth column shows the parameter esti-

mates from the Bayesian pattern mixture model using all seven patterns.

In the nonsmoker-to-smoker transition, the estimates from the pattern mixture model suggest

that it performed better (i.e. less biased) than the Bayesian model, with the exception of the

parameter estimate for time. The pattern mixture model with the ACMVPM restriction pro-

vides a better estimate for the variance of the random effect than the Bayesian pattern mixture
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model. In conclusion, for the nonsmoker-to-smoker transition, the pattern mixture model with

the ACMVPM restriction seems to perform better than the Bayesian pattern mixture model for

this limited comparison.

For the smoker-to-quitter transition, the parameter estimate for the treatment condition has smaller

bias for the pattern mixture model than for the two-pattern Bayesian pattern mixture model. Pa-

rameter estimates for the time dependent covariate and the variable time show similar results for

both two-pattern Bayesian and pattern mixture models. As usual, when comparing the estimate

of the variance for the random effect, the pattern mixture model provides a less biased estimate

than the Bayesian pattern mixture model.

For the quitter-to-smoker transition, the parameter estimates for the time-dependent covariate

and variable time (a proxy for grade) have smaller biases for the pattern mixture model than

for the two-pattern Bayesian pattern mixture model. Similarly, when comparing the estimate of

the variance for the random effect, the two-pattern Bayesian pattern mixture model provides a

less biased estimate than the pattern mixture model and seven-pattern Bayesian pattern mixture

models.

The results from all three transitions show that the overall parameter estimates for the intercept

and the variance of the random effect have greater biases than the other parameters. These biases

are greater in the quitter-to-smoker transition because only a few individuals return from the

quitter to the smoker state. The other parameter estimates show similar results in terms of biases.

In general, the parameter estimates from the Bayesian pattern mixture models with the two-

pattern model perform better than the seven-pattern model. The noticeable difference can be

seen for the variance of the random effect estimates. The results from the seven-pattern model
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shows more variability for variance of the random effect estimates than the two-pattern model.

Estimates obtained from the Bayesian analysis depend on a joint property of the data and the as-

sumption of the prior distribution. Better and efficient inferences can be derived when the model

incorporates more realistic prior assumptions (Kass & Raftery, 1995). For example, Kass &

Raftery (1995) point out that choosing "non-informative" priors can force the hypothesis to favor

the null hypothesis. Choosing an appropriate prior has always been an issue for researchers. As

a result, in practice it is important to implement a sensitivity analysis to determine the influence

of chosen priors. This becomes more complicated when there is an underlying assumption that

missing data are missing not at random (MNAR), where inferences are sensitive to the proportion

of missing data and the degree of dependence on the future outcome. In this thesis, other distri-

butions were also assumed for the prior distributions for the regression parameters, including the

log-normal distribution, similar to Kaciroti et al. (2006). During this process, we noticed that

parameter estimates were sensitive to the choice of priors. Often convergence was not achieved,

opposite signs of parameter estimates were obtained, and large biases were noticed for the pa-

rameter estimates. After several trials, a final solution was achieved using normal priors for the

unidentified parameters and flat priors for the identified parameters. Convergence was always

obtained when assuming a gamma prior for the variance of the random effect, so we did not

check any other distributional form for the prior for this parameter.

Another limitation with the Bayesian analysis relates to the computational problems associated

with estimating the posterior distributions. At present, there are only a few statistical software

packages that offer Bayesian inference (e.g. WinBUGS and some of the SAS procedures) and

these require the user to program complicated models. The method studied in this thesis does

not require any advanced programming skills and does not incorporate any subjective assump-
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tions related to prior distributions. It is straightforward to implement using a standard statistical

software package (e.g. SAS).

Table 5.28: Average parameter estimates from the ACMVPM pattern mixture model and
Bayesian pattern mixture models for five simulated datasets

Actual Pattern Mixture Bayesian Analysis
Parameter Model* (two pattern) (seven pattern)

Non-smoker to smoker transition
Intercept -2.30 -2.460 (0.187) -2.341 (0.391) -2.714 (0.335)
X1 0.20 0.206 (0.029) 0.182 (0.071) 0.276 (0.299)
Time 0.61 0.612 (0.025) 0.625 (0.340) 0.538 (0.298)
Condition -4.10 -4.145 (0.159) -4.171 (0.274) -4.683 (0.325)
σ2
u 0.68 0.679 (0.114) 0.721 (0.082) 0.615 (0.032)

Smoker to quitter transition
Intercept 0.80 0.609 (0.237) 1.088 (0.145) 1.164 (0.141)
X1 -0.10 -0.096 (0.034) -0.129 (0.024) -0.092 (0.023)
Time -0.30 -0.296 (0.023) -0.311 (0.015) -0.247 (0.015)
Condition 0.20 0.163 (0.116) 0.200 (0.068) 0.213 (0.068)
σ2
u 0.68 0.685 (0.137) 0.738 (0.055) 0.811 (0.062)

Quitter to smoker transition
Intercept -1.7 -1.970 (0.331) -1.493 (0.274) -1.157 (0.250)
X1 0.3 0.303 (0.056) 0.294 (0.044) 0.233 (0.039)
Time 0.1 0.104 (0.041) 0.117 (0.032) 0.176 (0.028)
Condition -5.5 -5.555 (0.300) -5.628 (0.284) -5.752 (0.292)
σ2
u 0.68 0.685 (0.157) 0.809 (0.185) 0.878 (0.174)

* Empirical standard deviation shown in parentheses.
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5.10 Simulation Conclusions

The purpose of this chapter was to extend the methods for handling missing data in binary hierar-

chical models by exploring the performance of different techniques under various missing-data

conditions. The focus was on the monotone missing-data pattern. The methods investigated

were:

1. Complete case analysis when data were generated under MCAR, MAR, or MNAR;

2. LOCF analysis when data were created for all three missing-data mechanisms;

3. Restriction methods when data were generated under MNAR, including:

(a) CCMV with predictive mean (PM) method,

(b) ACMV with PM method,

(c) NCMV restriction with PM method;

4. Selection model with PM method when data were generated under MNAR;

5. Bayesian pattern mixture model when data were generated under MNAR (for five simu-

lated datasets).

The results suggest that parameter estimates obtained by the different methods are dependent on

the missing-data mechanism. In many cases, the standard method shows an increasing trend in

bias occurring as the proportion of missing data increases from 30% to 40%. In some cases,

LOCF method under the MNAR provides smaller biases as we increased the missing data pro-

portion. This could be explained by fewer numbers of transitions in that state. Overall, the results
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suggest that the restriction methods provide better results than the other methods studied. The

selection model provides much smaller biases than LOCF and CCA. As the proportion of miss-

ing data increases, estimates from the selection model show more variation in their parameter

estimates.

The biases vary with the individual transition. ACMVPM and NCMVPM are closer to each other

when the transition is from nonsmoker to smoker. Of the restriction methods ACMVPM with

the predictive mean matching approach produced the lowest average bias estimate because of its

inherent ability to incorporate all the available data.

The results for the selection model were expected; that is, we expected that the selection model

would perform better than standard methods such as CCA and LOCF. This is because the se-

lection model is designed to adjust for the selection bias when non-ignorable missing data exist.

Standard methods assume that the missing data are MAR or MCAR. In general, the results from

the selection model were not as good as those from the pattern mixture model. The reason could

be that the selection model was originally designed for non-ignorable missing data in a normally

distributed situation. Heckman (1979) showed that this method can be used for non-normal dis-

tributions such as the logit and probit models studied in this thesis. For the discrete outcome

variables, normal approximation methods (Lee, 1983) are used to calculate the inverse Mill’s

ratio from the first stage of the Heckman model. This approximation may be one reason that the

Heckman two-stage selection model did not perform as well as the pattern mixture model in our

simulation study for non-ignorable missing data.

Bayesian methods were applied to a few simulated datasets. The WinBUGS program was used

to estimate the parameters and summarize the results. The parameter estimates are shown in
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Table 5.28. All the parameter estimates computed by restriction methods are closer to the true

values. In the seven pattern model, the parameter estimates from the Bayesian analysis are not as

close to the restriction methods, when comparing with the true values. In non-smoker to smoker

transition, Bayesian analysis provides lower estimated value for the variance of the random effect

as compared to the restrictions methods. In the other two transitions, Bayesian analysis provides

higher estimated values for the variance of the random effect.

A sensitivity analysis was performed by changing the missing-data parameter so the probability

that the data were missing depending more on the unobserved response variable. This led to

slightly more variation in the parameter estimates. Sensitivity analysis shows that the restric-

tion method with predictive mean matching performs better than the other methods. Restriction

methods are straightforward to use and our simulation shows some promising results with re-

gard to reduced bias and RMSE. One advantage of restriction methods is that standard statistical

methods can easily be applied, once the data are imputed and considered to be complete. Further

research could be done to generalize these restriction methods for non-monotone missing data in

the context of a hierarchical linear model.

It has been argued in the literature that fitting both a selection model and pattern mixture model

can be a valuable sensitivity analysis tool (Michiels et al., 1999). Our results show some dif-

ferences in parameter estimates between the selection model and the pattern mixture model.

However, the conclusions from both models seem to be the same, increasing our confidence in

our techniques and results.

The method proposed in this thesis seems to be superior to the standard methods and the Bayesian

approach when dealing with non-ignorable missing data. The advantage of the proposed restric-
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tion methods is that they allow an easy implementation of the discrete hierarchical model using a

standard statistical software package (e.g. SAS). Furthermore, the proposed method can easily be

extended to more complicated models such as cross-classified models and multiple membership

models.

The implementation of the Bayesian approach has several drawbacks.

1. It is computationally expensive to run such a complex model.

2. The Bayesian analysis requires advanced programming skills to code both the model and

the estimation procedures.

3. Convergence of the Bayesian analysis is an issue (for a more detailed review see: Cowles

and Carlin, 1996)
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Chapter 6

Application to WSPP3 Data

In this chapter, we consider the application of the proposed methodology to the third Waterloo

Smoking Prevention Project (WSPP3). WSPP3 was conducted by the Population Health Re-

search Group (previously known as the Health Behavior Research Group) at the University of

Waterloo (Brown & Cameron, 1997; Cameron et al., 1999). The purpose of WSPP3 was to eval-

uate a social-influence smoking prevention program at the elementary level (grades 6 through 8)

and an activity-based tobacco control program at the secondary level (grades 9 and 10). In addi-

tion, a longitudinal cohort of students was followed at grades 11 and 12 to assess the long-term

impact of the intervention.

One hundred elementary schools from seven school boards in Southwestern Ontario, Canada

participated in this study (fifteen schools from each of six boards and ten from the seventh

board). These schools were randomly assigned in a four-to-one ratio to receive either an in-

tensive anti-smoking public health education program or their standard school curriculum. A
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detailed description is given by Driezen (2001).

Upon completion of the baseline data collection, students were classified into one of five smoking

categories: never smoked, tried once, quitter, experimental smoker (smoked less than once a

week), and regular smoker (smoked weekly). For the current analysis, only three categories

were used: smoker (experimental smoker or regular smoker), nonsmoker (never smoked, tried

once), and quitter. The data for this study are restricted to those students who participated in the

WSPP3 study in grade 6. Individuals who were enrolled in later grades are excluded from this

analysis.

The data for WSPP3 were collected based on a hierarchical design where the school was the unit

of randomization, and variability in the smoking rates between schools existed. Any analysis of

this dataset should take into account the variation between schools. In this analysis we capture

such variation by introducing the random-effect distribution at the school level to capture the

between-school variation.

Table 6.1 lists the proportion of students in the three smoking categories for each year of WSPP3.

When the cohort was in grade 6, the majority of students had no smoking experience. Table 6.1

shows that smoking prevalence increased by grade. In grade 6, only 5.2% of 4456 students were

classified as a smokers; in grade 12, 34% of students were classified as smokers.

Table 6.2 summarizes the transition of individuals from one smoking category to another. Among

nonsmokers in grade 6, 24.5% remained nonsmokers over time. Students who reported regular

smoking at grade 6 rarely moved out of this category. By the time the cohort reached high school,

the probability that a regular smoker remained a regular smoker from one time point to the next

was greater than 0.75.
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Table 6.1: Smoking prevalence by grade

Grade
Smoking Status 6 7 8 9 10 11 12
% Missing – 7.7 11.2 24.3 20.2 29 31.9
(n) – (342) (500) (1084) (900) (1292) (1421)
% Nonsmoker 88.7 71.8 57.6 39.8 32.7 24.5 20.5
(n) (3952) (3200 (2567) (1773) (1458) (1092) (915)
% Quitter 6.1 11.1 13.5 13.2 13.1 13.4 14.0
(n) (274) (493) (602) (589) (584) (597) (622)
% Smoker 5.2 9.4 17.7 22.7 34.0 33.1 33.6
(n) (230) (421) (787) (1010) (1514) (1475) (1498)

Table 6.2 raises doubts about MAR by illustrating that a significantly greater percentage of smok-

ers dropped out of the study compared to nonsmokers at each time point. Lichtenstein (1992)

cited empirical evidence that in smoking cessation studies participants who were followed up

after dropout were more likely to have experienced relapse. This suggest that MAR is not likely

to occur. This is consistent with Hedeker & Gibbons (2006), who made a similar observation in

their research, where they assumed that if a subject is missing at a particular time point it is be-

cause they are smoking, hence the missing data mechanism can be assumed to be MNAR rather

than MAR. Use of MNAR models is typically done in situations where there is strong suspicion

that the data violate MAR.

There are a variety of reasons why MNAR may exist among the non-smokers in this analyses.

However, based on the existing literature (Lichtenstein, 1992) the most likely explanation for

this finding is that non-smokers at t− 1 who have become smokers at t may not respond at time

t because, in general, missing data is more likely to be missing in smokers than the non-smokers

(Table 6.2, (Hedeker & Gibbons, 2006)). In both cases, this implies that an individual dropout

decision may be related to the future outcome and the assumption regarding to the MAR is in
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doubt.

Table 6.3 shows the proportion of missing data for all seven time points. The first column shows

the number of individuals with missing data at the given time point. The second column shows

the total missing data at that time point. Overall, 23% of the observations are missing and about

44% of the subjects have at least one missing data point.

Table 6.2: Smoking transitions over time for students starting in grade 6 (time=1, n=4456)

Status at t Overall at Time
Missing Nonsmoker Quitter Smoker t-1

Time Status at t-1 % (n) % (n) % (n) % (n) % (n)
2 Nonsmoker 6.5 (256) 81.0 (3200) 6.1 (242) 6.4 (254) 88.7 (3952)

Quitter 14.2 (39) – – 59.5 (163) 26.3 (72) 6.1 (274)
Smoker 20.4 (47) – – 38.3 (88) 41.3 (95) 5.2 (230)

3 Missing 65.8 (225) 16.7 (57) 4.7 (16) 12.9 (44) 7.7 (342)
Nonsmoker 5.7 (181) 78.3 (2505) 6.5 (209) 9.5 (305) 71.8 (3200)
Quitter 8.9 (44) 0.4 (2) 54.6 (269) 36.1 (178) 11.1 (493)
Smoker 11.9 (50) 0.7 (3) 25.7 (108) 61.8 (260) 9.4 (421)

4 Missing 76.6 (383) 9.8 (49) 4.8 (24) 8.8 (44) 11.2 (500)
Nonsmoker 15.2 (390) 67.2 (1724) 5.9 (151) 11.8 (302) 57.6 (2567)
Quitter 19.9 (120) – – 43.4 (261) 36.7 (221) 13.5 (602)
Smoker 24.3 (191) – – 19.4 (153) 56.3 (443) 17.7 (787)

5 Missing 68.2 (739) 10.5 (114) 5.2 (56) 16.1 (175) 24.3 (1084)
Nonsmoker 3.3 (58) 75.8 (1344) 5.1 (90) 15.8 (281) 39.8 (1773)
Quitter 4.4 (26) – – 50.4 (297) 45.2 (266) 13.2 (589)
Smoker 7.6 (77) – – 14.0 (141) 78.4 (792) 22.7 (1010)

6 Missing 86.9 (782) 3.7 (33) 2.2 (20) 7.2 (65) 20.2 (900)
Nonsmoker 12.3 (180) 72.6 (1059) 4.3 (63) 10.7 (156) 32.7 (1458)
Quitter 16.4 (96) – – 53.3 (311) 30.3 (177) 13.1 (584)
Smoker 15.5 (234) – – 13.4 (203) 71.1 (1077) 34.0 (1514)

7 Missing 92.1 (1190) 1.2 (15) 1.1 (14) 5.7 (73) 29.0 (1292)
Nonsmoker 4.5 (49) 82.4 (900) 4.2 (46) 8.9 (97) 24.5 (1092)
Quitter 6.4 (38) – – 61.1 (365) 32.5 (194) 13.4 (597)
Smoker 9.8 (144) – – 13.4 (197) 76.9 (1134) 33.1 (1475)
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Table 6.3: Number and proportion of missing data at each time point

Individual missing data Overall missing observations
n(%) n(%)

Time n=4456 n=31192
Time 2 342* (7.67) 342** (1.10)
Time 3 275 (13.84) 617 (1.20)
Time 4 660 (28.65) 1277 (4.10)
Time 5 134 (31.66) 1411 (4.52)
Time 6 392 (40.46) 1803 (5.78)
Time 7 159 (44.03) 1962 (6.29)
Overall 1962 (44.03) 7412 (23.76)
∗ number of new individuals missing at a given time point; ∗∗ total number
of missing observations at a given time point

The present analyses are limited to a small subset of variables including treatment condition

(level 2), sex, and smoking among five closest friends (time-dependent level 1). The treatment or

intervention condition was defined as a binary variable where 0 represents the control group and

1 represents the intervention group. Sex was defined as a binary variable where 0 represents male

and 1 represents female. The number of close friends who smoke cigarettes (X1) was treated as

continuous and ranged from 0 to 5, where 0 indicates that none of the participant’s five closest

friends smokes and 5 indicates that all of the participant’s five closest friends smoke.

The purpose of this study was to evaluate the effect of intervention on individual transitions

from one state to another. Because of the large amount of missing data within the cohort the

objectives were: (1) to deal with the missing data and (2) to fit an appropriate model to assess

the effectiveness of treatment on individual transitions from one state to another.

The analysis used a three-level model with grade 6 as the baseline. Six additional time points

were used, one for each year of the study. The change in smoking state from one time point to the
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next was used to model the probability of individual transitions over time. Individual movement

to a given state at time t + 1 is dependent upon the state at time t. Because of the discrete time-

point assessment, it is possible that a nonsmoker at time t can move to the quitter state at time

t+ 1 by moving through two transitions (nonsmoker to smoker and smoker to quitter, or smoker

to quitter and quitter to smoker). For simplicity, we assumed that the transition occurred at the

discrete time points and no transitions took place between the assessment periods. Furthermore,

we assumed that the transition from nonsmoker to quitter and quitter to nonsmoker are invalid.

Figure 6.1: Graph for possible transition states

Let Qij,t = k denote the status of the ith subject in cluster j at time t with K possible states;

i = 1, 2, ....., nj , j = 1, 2, ...., J , t = 1, 2, ...., T , and k = 1, 2, ...K. We assume that the

evolution of the status satisfies a first-order Markov chain with transitional probability from state

k to l defined as

pijt(l|k) = Pr(Qij,t = l|Qij,t−1 = k,Xijt, θ); t ≥ 2,
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where θ denotes the collection of all the parameters.

For the ith subject with previous state k, we used the generalized logit model to model the

transition from state k to l.

log

{
pijt(l|k)

pijt(k|k)

}
= β0j|kl + β1|klt+ β2|klX1ij,t−1 + β4|klGij,

with β0j|kl = β0|kl + β3|klCj + u0j|kl where β′s are different for different transitions.

For transition from state k to l, we define an indicator variable Yijt|kl such that for t ≥ 2 ,

Yijt|kl =


1 if Qij,t = l|Qij,t−1 = k,Xijt, θ

0 if Qij,t = k|Qij,t−1 = k,Xijt, θ

(6.1)

then the above logit model for state k to l transitions becomes:

logit(Pr(Yijt|kl = 1)) = β0j|kl + β1|klt+ β2|klX1ij,t−1 + β4|klGij (6.2)

where

β0j|kl = β0|kl + β3|klCj + u0j|kl, with u0j|kl ∼ N(0, σ2
u|kl)

and where

Yijt|kl ∼ B(1, πijt|kl);

Yijt|kl = 0 if there is no transition from state k to l;
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Yijt|kl = 1 if there is a transition from state k to l;

t: an indicator for time (ranges from 1 to 7);

X1ij,t−1: Time-varying covariate (smoking among five closest friends: range 0 to 5);

Gij: Sex 1= Male and 0 = Female

β4|kl is the effect of sex;

β1|kl is the effect of time;

β2|kl is the slope for time-dependent covariate ;

Cj is a binary variable for school j coded as 0 for the control and 1 for the intervention

group;

β3|kl is a log odds of the transition for the intervention group compared to the control group

given the covariates and time ;

β0|kl is a log odds of the transition for the control group at t=0 and X1ij,t−1 = 0;

u0j|kl is a random effect for the intercept and assumed to be independent of the level-two

predictors.

To achieve our objective, a pattern mixture model, a selection model, and a Bayesian pattern mix-

ture model were used under the MNAR assumption and compared to the complete case (CCA)

and last observation carried forward (LOCF) analysis. Of interest was estimating the treatment

effect and the variation between the schools. Three restriction methods were used to fit the pattern
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mixture model with the predictive mean matching method. The selection model was also used

with the predictive mean matching method. These methods were compared with standard tech-

niques such as CCA and LOCF. To maintain the monotone missing data pattern, any individual

who has a non-monotone missing data pattern was removed from the analysis. As an example,

any individual who follows this pattern [O,O,O,M,M,O,O] where O means observed and M

means missing data point, was removed from the analysis. The number of subjects with each

missing-data pattern is shown in Table 6.4.

Table 6.4: Pattern of missing data

Pattern Grade 6 Grade 7 Grade 8 Grade 9 Grade 10 Grade 11 Grade 12 n

1 O O O O O O O 2635
2 O O O O O O M 175
3 O O O O O M M 439
4 O O O O M M M 458
5 O O O M M M M 145
6 O O M M M M M 268
7 O M M M M M M 336

M missing observation; O non-missing observation

6.1 Nonsmoker to Smoker

Table 6.5 reports the parameter estimates from CCA, LOCF, the three restriction methods for the

pattern mixture model (CCMVPM, ACMVPM, NCMVPM) with the predictive mean matching

method, the selection model with the predictive mean matching method, and the Bayesian pattern

mixture method. The parameter estimates for all three transitions are reported with their standard
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errors in parentheses.

Table 6.5 shows that the estimates for the model intercept are similar for all the methods. The

initial treatment condition has no significant effect on the transition from nonsmoker to smoker.

The results for the variable time (a proxy for grade) and the time-dependent covariate (smoking

among friends (X1)), and sex are similar across the methods and are significant except for sex in

SMPM and Bayesian analysis. The analysis shows that, after adjustment for other variables in

the model, the probability of moving from non-smoker to a smoker increases with time and that

males are more likely to make this transition. The estimate from the time-dependent covariate

(X1) shows a highly positive significant effect and shows that an individual with a higher number

of smoking friends is more likely to move from the nonsmoker to the smoker state. The results

are consistent for all methods except the Bayesian method. In general, the estimates from the

Bayesian analysis do not agree with those of the other methods, perhaps due to the smaller

number of transitions. The most noticeable differences were seen in the variance estimate for the

random intercept. All methods show that the variance of the random effect is highly significant.

All three restriction methods and the selection method have larger variance estimates than those

of LOCF and CCA. The estimates from the restriction methods and the selection model are

similar, supporting the robustness and the sensitivity of the parameter estimates (Michiels et al.,

1999; Molenberghs & Verbeke, 2005).

6.2 Smoker to Quitter

For the smoker-to-quitter transition, the estimates for the model intercept are similar for all meth-

ods (Table 6.5) except in the Bayesian analysis method. The estimates for initial treatment condi-
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tion parameters are similar across all the methods and have no significant effect on the individual

transition from smoker to quitter. However, the estimates show that individuals in the treatment

condition are less likely to move from smoker to quitter. Our results show that the Bayesian

estimates do not perform as well as those of the restriction and selection models. Some of the

reasons could be explained from the simulation studies in Chapter 5, where we simulated data

under MNAR and compared the parameter estimates of the restriction methods and the Bayesian

analysis. Our simulation results indicate that the restriction methods with predictive mean match-

ing perform better than the Bayesian analysis.

The results for the variable time (a proxy for grade) are similar across the methods and are

highly significant except in Bayesian analysis indicating an increasing probability of moving

from smoking to quitting state with time, adjusting for the other variables. Sex differences were

not found across the methods. However, the estimates for the time-dependent covariate (smoking

among friends (X1)) while different across the method are significant in all methods. This sug-

gest that after the adjustment, the more smoking friends student has, the less likely the student is

to make the transition from smoking to quitter state. Differences were also noted in the variance

estimate of the random intercept. For all methods, the variance estimate of the random intercept

was significant except in LOCF and CCA. Variance estimate of the random intercepts are higher

among selection model and restriction methods than the other methods. The estimates from the

restriction methods and the selection model are similar. The findings support our hypothesis that

if the missing data are MNAR, then the estimates from the standard methods are not reliable.
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6.3 Quitter to Smoker

Table 6.5 shows similar results for the model intercept for all estimation methods. Again, the

results from the Bayesian analysis do not agree with those of other methods. The Bayesian

analysis shows that the initial treatment condition has no significant effect on the probability of

transition from the quitter to smoker state. The estimates from all methods other than in LOCF,

ACMVPM, and Bayesian analysis show that individuals in the treatment condition are more

likely to move from the quitter to smoker state. From the simulation studies in Chapter 5 the

restriction methods perform better than the standard methods in terms of biases. Based on the

simulation study, we conclude that the best estimate for the effect of the treatment condition is

given by the ACMVPM method.

The estimates for the variable time (a proxy for grade) are similar in the restriction methods and

Bayesian analysis and generally reflect a greater probability of moving from quitting to smoking

with time. The estimates for the time-dependent covariate (smoking among friends (X1)) are

similar across methods and are significant indicating that students with more smoking friends

are more likely to move from the quitting to the smoking state. Sex differences are similar

in all methods and are not significant. The variance estimate of the random intercept was not

significant for any other method except the NCMVPM method.

6.4 Conclusion

The WSPP3 data were analyzed using standard methods (CCA and LOCF), pattern mixture

models including identifying restrictions, the selection model, and the Bayesian pattern mixture
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model. The missing-data mechanism was assumed to be MNAR. The focus was on the monotone

missing-data pattern. Imputation techniques such as the predictive mean matching method were

used with the three restriction methods for the pattern mixture model and the selection model.

Tables 6.1 and 6.2 show that the proportion of students who never smoked dropped dramatically

over time. The sharpest increase in the transition from nonsmoker to smoker occurred between

grades 7 and 8. Our results indicate that treatment does not affect the individual transition from

nonsmoker to smoker. The time-dependent covariate, smoking friends, positively affected the

transition from nonsmoker to smoker (i.e., having more friends who smoke increases the prob-

ability of this transition). This variable negatively affected the transition from smoker to quitter

(i.e., having more friends who smoke decreases the probability of this transition). The simula-

tion results from Chapter 5 under the predictive mean matching method suggest that under the

pattern mixture model ACMVPM performs better than any other method. The WSPP3 study was

designed to test the hypothesis that students from the treatment schools are more likely to remain

nonsmokers and less likely to become smokers. The results based on the restriction methods and

the WSPP3 analysis in Chapter 6 are not consistent with this hypothesis and insignificant but

show that the students from treatment schools are more likely to move from the nonsmoker to

the smoker state.

Based on our simulation results and the WSPP3 application, we suggest that restriction meth-

ods with the predictive mean matching method should be used when the assumption is that the

missing data are MNAR. The Bayesian analysis and the selection model have better results than

CCA and LOCF but do not perform as well as the pattern mixture model. However the difference

between the selection model and the restriction model seems to be small. Little (1995) argued

that restriction methods for pattern mixture models do not require any explicit model assumption
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for the dropout process; in contrast, the selection model uses all available information about the

dropout process. In this study, the question of interest was to explore differences among the

treatment and control conditions under a multilevel model with the MNAR assumption. Our

results are similar to those of Molenberghs & Verbeke (2005): the pattern mixture model with

identifiable restrictions (CCMVPM, ACMVPM, NCMPMV) is more appropriate than the selec-

tion model, CCF, or LOCF when the goal is to calculate the variance estimate for the random

effect. Finally, the limited simulation in Chapter 5 and the WSPP3 application suggest that the

Bayesian analysis also performs well in discrete hierarchical models but not as well as the re-

striction methods with predictive mean matching.

As indicated in earlier chapters, the study design of WSPP3 was based on repeated observations

on individual students. These observations were correlated cross-sectionally, with clusters de-

fined by schools; 100 schools were randomly assigned to either a control or treatment condition.

The students within each school were followed across time which also complicated the dataset

as students were able to move through the different smoking state categories over time (e.g.,

non-smoker to smoker state, smoker to quitter state, and quitter to smoker state). A third compli-

cation arose due to missing data at the student-level, a common occurrence among longitudinal

data sets such as WSPP3. Researchers need simple yet comprehensive approaches for guiding

their statistical modeling when working with such complex data. The results presented in this

thesis may suggest that restriction methods appear more appropriate than standard methods and

Bayesian approaches. Furthermore, the proposed methods are straightforward to implement us-

ing a standard statistical package (e.g. SAS) and can easily be extended to different settings such

as cross-classified and multiple membership models.
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Chapter 7

Conclusion and Future Research

This thesis set out to investigate inference for discrete hierarchical models in the presence of

missing data. It is suggested that statistical methodology for hierarchical data analysis of non-

Gaussian data is less well developed than that for Gaussian data, especially with binary outcome

data which lead to generalized linear models with a nonlinear link function such as the logistic

link. Furthermore, in a discrete hierarchical setting, the goal is to obtain good estimates of the

marginal distribution of the data, which takes the form of an intractable integral and requires

approximation techniques. As discussed, several approximation methods have been proposed

to estimate the fixed and random effects in the context of generalized linear models. This the-

sis focused on two likelihood-based estimation procedures, the pseudo likelihood (Wolfinger

& O’Connell, 1993) method and the adaptive Gaussian quadrature (Pinheiro & Bates, 1995)

method, which are frequently used in applied hierarchical modeling. Furthermore, this thesis

modeled the probability of individuals moving from one state to another at any given time point.

173



The simulation results suggest that AGQ is superior to PL for the estimation of random-effect

parameters in that AGQ provides smaller biases for the estimation of random-effect parameters.

Furthermore, AGQ permits greater flexibility in accommodating user-defined likelihood func-

tions. In contrast, PL produces higher biases for the variance estimate of the random intercept;

this result is consistent with other studies (Breslow & Lin, 1995). However, the computational

efficiency (the time to complete one analysis) of PL is better.

Missing data is common in any longitudinal study regardless of the effort and pre-planning. In

smoking-related studies, missing-data mechanisms are often either MAR or MNAR. Further-

more, data under the MNAR assumption are the most difficult to analyze for two reasons: a large

number of potential models exists for these data and the hypothesis of random dropout can be

neither confirmed nor repudiated.

In the second part of this study, simulations using the data from Chapter 3 were used to ex-

tend the method for handling missing data in binary hierarchical models by exploring the per-

formance of different imputation techniques under various missing-data conditions. The simu-

lation study used three-level discrete hierarchical data with 30% and 40% missing data under

MNAR, and focused on the monotone missing-data pattern. The methods investigated were:

Complete Case Analysis (CCA), Last Observation Carried Forward (LOCF), Complete Case

Missing Value (CCMVPM) restriction, Available Case Missing Value (ACMVPM) restriction,

Neighboring Case Missing Value (NCMVPM) restriction, and the selection model (SMPM). All

three restriction methods and the selection model used the predictive mean matching method to

impute the missing data. Once the data were imputed multiple imputation (Rubin, 1987) tech-

niques were used to estimate the aggregated parameter estimates.
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The results suggest that the parameter estimates obtained by CCA, LOCF, the restriction meth-

ods, and the selection model are highly dependent on the missing-data mechanism. Furthermore,

it was shown that there is a consistent increasing trend in biases across all the methods as the pro-

portion of missing data increases from 30% to 40%. The results further suggest that for MNAR,

all three restriction methods (CCMVPM, ACMVPM, and CCMVPM) generally provide superior

results compared to other methods including the Bayesian analysis. Furthermore, the selection

model with the predictive mean matching approach provided similar results to the three restric-

tion methods and was found to be superior to LOCF and CCA. However, if the proportion of

missing data increases then the selection model is no longer a method of choice. In addition,

among the three restriction methods, the parameter estimates from ACMVPM are closer to the

true values.

One advantage of restriction methods is that standard statistical methods can easily be applied

using available statistical software once the data have been imputed and are considered com-

plete. However, further research could be done to generalize these restriction methods for non-

monotone missing data in a context of a discrete hierarchical model.

The proposed methodology is not appropriate for instances where the sample size is too small

in any given state and in those instances where an individual may move between more than one

state in a given time point.

Unique challenges arise when using the above two estimation techniques (PL and AGQ) in a

model which does not have a clear hierarchical structure (i.e., a cross-classified model). Exam-

ples include data on (i) a large number of students where individual students attend more than

one school over time and (ii) students from the same classes who attend different courses. For
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example, in a study of students over time, a survey may first be administered in Grade 5 and

then in each subsequent grade through Grade 12. In such a study, students will typically move

from one elementary school to different high schools over time. To model this change, the cross-

classified structure of student movement needs to be incorporated in the model estimation since

the correlation structure of the students has changed. The procedure becomes more complicated

when there are missing data.

In the future, it would be useful to compare PL and AGQ for cross-classified data and multiple

membership data. The imputation methods developed in this thesis could be used when there

is a suspicion of MNAR. It would also be of interest to use AGQ for higher levels of random

effects. However, the computational burden of AGQ increases rapidly with higher-dimensional

models. STATA has incorporated AGQ for higher levels of random effects but issues related to

the convergence and computational time remain. We managed to use a three-level model with a

single random effect by incorporating the transitional model, but AGQ can be extended to higher-

dimensional models (more than two levels of random effect). Bayesian estimation is another

technique that could be used to deal with a higher number of random effects. Recent advances

in Bayesian estimation avoid the need for numerical integration by repeatedly sampling from

the posterior distribution of the parameters of interest and studies show that Bayesian models

are increasingly being used for hierarchical models. More research is needed to implement the

Bayesian analysis when dealing with missing data especially when the missing data are MNAR

and there are issues related to the prior information.
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Appendix A

Derivation of λ

Assume a random sample of N observations, with response variables Y = (Y1, .......Yn)T and

V = (V1, V2, ...., VN)T . It is assumed that V contains information about the missingness in Y .

Assume that Y obeys the regression model Y = Xβ + ε1 and V obeys the regression model

V = Wψ + ε2, where Y = (yi); V = vi; X = (xip); W = wiq, i = 1, 2, . . . ,N; p = 1, 2, . . . ,P

and q = 1, 2, . . . , Q.

Y = Xβ + ε1 (A.1)

V = Wψ + ε2 (A.2)

where β and ψ are P×1 and Q×1 vectors of parameters, respectively, and ε1 and ε2 are the

random error terms.

Furthermore, assume that ε1i and ε2i follow a bivariate normal distribution, that is
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f(ε1i, ε2i) ∼ N(0,Σ)

and

f(Yi,Vi) ∼ N(µi,Σ)

where

µi =

XT
i β

WT
i ψ

 ,Σ =

σ11 σ12

σ21 σ22


For the regression function of Y the expected value is E(Y |X) = Xβ. Because of selection bias

the regression function for the response variable Y can be written as

E(Y |X,S) = Xβ + E(ε1|S),

where

E(ε1i|S) = E(ε1i|ε2i ≥ −W T
i ψ),

where S represents the selection criteria. If there are no missing values or if the missing data

is MCAR then the conditional expectation E(ε1|S) = 0 which means there is no selection bias.

Based on the joint bivariate normal density,

f(ε1i, ε2i) =
1

2π
√
σ11σ22 − σ2

12

× exp

{
− σ11σ22

2(σ11σ22 − σ2
12)

[
ε21i
σ11

− 2
σ12ε1iε2i
σ11σ22

+
ε22i
σ22

]}
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E(ε1i|ε2i ≥ −W T
i ψ) =

∞∫
−∞

ε1if(ε1i|ε2i ≥ −W T
i ψ)dε1i

=

∞∫
−∞

ε1i
f(ε1i, ε2i ≥ −W T

i ψ)

f(ε2i ≥ −W T
i ψ)

dε1i

E(ε1i|ε2i ≥ −W T
i ψ) =

∞∫
−∞

ε1i
∞∫

−WT
i ψ

f(ε1i, ε2i)dε1idε2i

∞∫
−WT

i ψ

f(ε2i)dε2i

, (A.3)

where ∞∫
−WT

i ψ

f(ε2i)dε2i = 1− Φ

(
−WT

i ψ√
σ22

)
, (A.4)

where Φ is the standard normal cumulative distribution function.

∞∫
−WT

i ψ

∞∫
−∞

ε1if(ε1i, ε2i)dε1iε2i =

∞∫
−WT

i ψ

∞∫
−∞

ε1if(ε1i|ε2i)× f(ε2i)dε1idε2i

=

∞∫
−WT

i ψ

E(ε1i|ε2i)f(ε2i)dε2i
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Based on the Bivariate normal distribution (e.g. Wichern & Johnson (2001)), if

(ε1i, ε2i) ∼ N

[η1

η2

 ,

σ11 σ12

σ21 σ22

]

then

(ε1i|ε2i = a) ∼ N

(
η1 +

σ12

σ22

a, σ11 −
σ2

12

σ12

)
In our case, η1 = η2 = 0 and the conditional expectation is

E(ε1i|ε2i) =
σ12

σ22

ε2i

Therefore,

∞∫
−WT

i Ψ

E(ε1i|ε2i)f(ε2i)dε2i =

∞∫
−WT

i Ψ

σ12

σ22

ε2if(ε2i)dε2i

=
σ12

σ22

∞∫
−WT

i ψ

ε2i√
2πσ22

× exp− ε221

2σ2
22

dε2i

Let

V =
ε2i√
σ22

then

V ∼ N(0, 1)
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and

∞∫
−WT

i Ψ

E(ε1i|ε2i)f(ε2i)dε2i =
σ12

σ22

∞∫
−WT

i
Ψ

√
σ22

√
σ22

V√
2π

exp−V2

2
dV

After integrating and substituting the limits, we end up with a normal pdf.

∞∫
−WT

i Ψ

E(ε1i|ε2i)f(ε2i)dε2i =
σ12√
σ22

φ

(
−WT

i Ψ
√
σ22

)
, (A.5)

where φ is the standard normal probability density function. Substituting Eq. (4) and Eq. (5) in

Eq. (3), therefore,

E(ε1i|ε2i ≥ −WT
i Ψ) =

σ12√
σ22
φ

(
−WT

i Ψ√
σ22

)
1− Φ

(
−WT

i Ψ√
σ22

)
=

σ12√
σ22

λi

where

λi =
φ(Bi)

1− Φ(Bi)
=

φ(Bi)

Φ(−Bi)

Bi = −WT
i ψ√
σ22
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λi is called the selection bias, or inverse of Mill’s ratio, or the hazard rate. Similarly,

E(ε2i|ε1i ≥ −WT
i ψ) =

σ22√
σ22

λi
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Appendix B

SAS Program Code

Listing B.1: WSPP3_pattern_ACMVPM_NS_SK_Analysis.sas
/******** WSPP3 : Data A n a l y s i s : P a t t e r n Mix tu re Model : ACMVPM: NS t o SMK *** /

l i bname r a s "C : \ Use r s \ r4ahmed \ Desktop \ f i n a l _ t h e s i s \ d a t a " ;
d a t a d a t a ;

s e t r a s . l ong ; / *** S p e c i f y your own d a t a s e t h e r e *** /
i d = p i d ; / *** I n d i v i d u a l ID *** /
s i d = i n i t s c h o o l ; / *** Schoo l i d e n t i f i e r *** /
t i m e c l s s = t ime ; /*** Proxy f o r t ime : t ime =1 ,2 , 3 , 4 , 5 , 6 , 7 *** /
c o n s t =1 ; / *** To model t h e i n t e r c e p t **** /

run ;

/**** Arrange t h e d a t a by i n d i v i d u a l t ime p o i n t s *** /
p roc t r a n s p o s e d a t a = d a t a ( keep= p i d my1 my2 my3 t ime ) o u t =_a ;

by p i d ;
i d t ime ;
v a r my1 my2 my3 ;

run ;

/ *** C r e a t e t h e seven m i s s i n g d a t a p a t t e r n s ; * * * /

d a t a _b ;
s e t _a ;
a r r a y a [ * ] _1−−_7 ;
p a t t e r n = . ;
do i =1 t o dim ( a ) ;

i f p a t t e r n = . t h e n do ;
i f a [ i ] = . t h e n p a t t e r n =9− i ;

end ;
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end ;
i f i >7 & p a t t e r n = . t h e n p a t t e r n =1;

run ;

/ *** We c r e a t e d t h r e e p a t t e r n s b e c u a s e we a r e i n t e r e s t e d i n t h r e e t r a n s i t i o n s :
( 1 ) NS t o SM, ( 2 ) SK t o QT, and ( 3 ) QT t o SM. The number o f p a t t e r n s can
e a s i l y be e x t e n d e d **** /

d a t a t r a n s i ;
merge d a t a ( i n =a )

_b ( i n =b keep= p i d _name_ p a t t e r n rename =( p a t t e r n =p2 ) where =( _name_ ="MY1" ) )
_b ( i n =c keep= p i d _name_ p a t t e r n rename =( p a t t e r n =p3 ) where =( _name_ ="MY2" ) )
_b ( i n =d keep= p i d _name_ p a t t e r n rename =( p a t t e r n =p4 ) where =( _name_ ="MY3 " ) ) ;

by p i d ;
drop _name_ ;
/*** Never Smoker t o Smoker *** /
my1=96;
i f t ime =2 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 4 , 5 ) t h e n my1=1; i f t ime =2 and

prevsmoke i n ( 1 , 2 ) and smoke i n ( . ) t h e n my1 = . ;
i f t ime =3 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 4 , 5 ) t h e n my1=1; i f t ime =3 and

prevsmoke i n ( 1 , 2 ) and smoke i n ( . ) t h e n my1 = . ;
i f t ime =4 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 4 , 5 ) t h e n my1=1; i f t ime =4 and

prevsmoke i n ( 1 , 2 ) and smoke i n ( . ) t h e n my1 = . ;
i f t ime =5 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 4 , 5 ) t h e n my1=1; i f t ime =5 and

prevsmoke i n ( 1 , 2 ) and smoke i n ( . ) t h e n my1 = . ;
i f t ime =6 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 4 , 5 ) t h e n my1=1; i f t ime =6 and prevsmoke

i n ( 1 , 2 ) and smoke i n ( . ) t h e n my1 = . ;
i f t ime =7 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 4 , 5 ) t h e n my1=1; i f t ime =7 and prevsmoke

i n ( 1 , 2 ) and smoke i n ( . ) t h e n my1 = . ;

i f t ime =2 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 1 , 2 ) t h e n my1=0; i f t ime =2 and l a g ( my1 ) = .
t h e n my1 = . ;

i f t ime =3 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 1 , 2 ) t h e n my1=0; i f t ime =3 and l a g ( my1 ) = .
t h e n my1 = . ;

i f t ime =4 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 1 , 2 ) t h e n my1=0; i f t ime =4 and l a g ( my1 ) = .
t h e n my1 = . ;

i f t ime =5 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 1 , 2 ) t h e n my1=0; i f t ime =5 and l a g ( my1 ) = .
t h e n my1 = . ;

i f t ime =6 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 1 , 2 ) t h e n my1=0; i f t ime =6 and l a g ( my1 ) = .
t h e n my1 = . ;

i f t ime =7 and prevsmoke i n ( 1 , 2 ) and smoke i n ( 1 , 2 ) t h e n my1=0; i f t ime =7 and l a g ( my1 ) = .
t h e n my1 = . ;

/ *** Smoker t o Q u i t t e r *** /
my2=96;
i f t ime =2 and prevsmoke i n ( 4 , 5 ) and smoke=3 t h e n my2=1; i f t ime =2 and prevsmoke i n ( 4 , 5 )

and smoke = . t h e n my2 = . ;
i f t ime =3 and prevsmoke i n ( 4 , 5 ) and smoke=3 t h e n my2=1; i f t ime =3 and prevsmoke i n ( 4 , 5 )

and smoke = . t h e n my2 = . ;
i f t ime =4 and prevsmoke i n ( 4 , 5 ) and smoke=3 t h e n my2=1; i f t ime =4 and prevsmoke i n ( 4 , 5 )

and smoke = . t h e n my2 = . ;
i f t ime =5 and prevsmoke i n ( 4 , 5 ) and smoke=3 t h e n my2=1; i f t ime =5 and prevsmoke i n ( 4 , 5 )

and smoke = . t h e n my2 = . ;
i f t ime =6 and prevsmoke i n ( 4 , 5 ) and smoke=3 t h e n my2=1; i f t ime =6 and prevsmoke i n ( 4 , 5 )

and smoke = . t h e n my2 = . ;
i f t ime =7 and prevsmoke i n ( 4 , 5 ) and smoke=3 t h e n my2=1; i f t ime =7 and prevsmoke i n ( 4 , 5 )

and smoke = . t h e n my2 = . ;
i f t ime =2 and prevsmoke i n ( 4 , 5 ) and smoke i n ( 4 , 5 ) t h e n my2=0; i f t ime =2 and l a g ( my2 ) = .
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t h e n my2 = . ;
i f t ime =3 and prevsmoke i n ( 4 , 5 ) and smoke i n ( 4 , 5 ) t h e n my2=0; i f t ime =3 and l a g ( my2 ) = .

t h e n my2 = . ;
i f t ime =4 and prevsmoke i n ( 4 , 5 ) and smoke i n ( 4 , 5 ) t h e n my2=0; i f t ime =4 and l a g ( my2 ) = .

t h e n my2 = . ;
i f t ime =5 and prevsmoke i n ( 4 , 5 ) and smoke i n ( 4 , 5 ) t h e n my2=0; i f t ime =5 and l a g ( my2 ) = .

t h e n my2 = . ;
i f t ime =6 and prevsmoke i n ( 4 , 5 ) and smoke i n ( 4 , 5 ) t h e n my2=0; i f t ime =6 and l a g ( my2 ) = .

t h e n my2 = . ;
i f t ime =7 and prevsmoke i n ( 4 , 5 ) and smoke i n ( 4 , 5 ) t h e n my2=0; i f t ime =7 and l a g ( my2 ) = .

t h e n my2 = . ;
/ *** Q u i t t e r t o Smoker *** /
my3=96;
i f t ime =2 and prevsmoke i n ( 3 ) and smoke i n ( 4 , 5 ) t h e n my3=1; i f t ime =2 and prevsmoke i n ( 3 )

and smoke i n ( . ) t h e n my3 = . ;
i f t ime =3 and prevsmoke i n ( 3 ) and smoke i n ( 4 , 5 ) t h e n my3=1; i f t ime =3 and prevsmoke i n ( 3 )

and smoke i n ( . ) t h e n my3 = . ;
i f t ime =4 and prevsmoke i n ( 3 ) and smoke i n ( 4 , 5 ) t h e n my3=1; i f t ime =4 and prevsmoke i n ( 3 )

and smoke i n ( . ) t h e n my3 = . ;
i f t ime =5 and prevsmoke i n ( 3 ) and smoke i n ( 4 , 5 ) t h e n my3=1; i f t ime =5 and prevsmoke i n ( 3 )

and smoke i n ( . ) t h e n my3 = . ;
i f t ime =6 and prevsmoke i n ( 3 ) and smoke i n ( 4 , 5 ) t h e n my3=1; i f t ime =6 and prevsmoke i n ( 3 )

and smoke i n ( . ) t h e n my3 = . ;
i f t ime =7 and prevsmoke i n ( 3 ) and smoke i n ( 4 , 5 ) t h e n my3=1; i f t ime =7 and prevsmoke i n ( 3 )

and smoke i n ( . ) t h e n my3 = . ;

i f t ime =2 and prevsmoke i n ( 3 ) and smoke i n ( 3 ) t h e n my3=0; i f t ime =2 and l a g ( my3 ) = . t h e n my3 = . ;
i f t ime =3 and prevsmoke i n ( 3 ) and smoke i n ( 3 ) t h e n my3=0; i f t ime =3 and l a g ( my3 ) = . t h e n my3 = . ;
i f t ime =4 and prevsmoke i n ( 3 ) and smoke i n ( 3 ) t h e n my3=0; i f t ime =4 and l a g ( my3 ) = . t h e n my3 = . ;
i f t ime =5 and prevsmoke i n ( 3 ) and smoke i n ( 3 ) t h e n my3=0; i f t ime =5 and l a g ( my3 ) = . t h e n my3 = . ;
i f t ime =6 and prevsmoke i n ( 3 ) and smoke i n ( 3 ) t h e n my3=0; i f t ime =6 and l a g ( my3 ) = . t h e n my3 = . ;
i f t ime =7 and prevsmoke i n ( 3 ) and smoke i n ( 3 ) t h e n my3=0; i f t ime =7 and l a g ( my3 ) = . t h e n my3 = . ;
ny2=my1 ; /*** Bi na ry i n d i c a t o r showing i n d i v i d u a l t r a n s i t i o n from non−smoker t o smoker *** /
ny3=my2 ; /*** Bi na ry i n d i c a t o r showing i n d i v i d u a l t r a n s i t i o n from smoker t o q u i t t e r *** /
ny4=my3 ; /*** Bi na ry i n d i c a t o r showing i n d i v i d u a l t r a n s i t i o n from q u i t t e r t o smoker *** /
x1= l o c f x 1 ; / *** Time d e p e n d e n t c o v a r i a t e : I f i n d i v i d u a l i s m i s s i n g t h e n t a k e t h e LOCF *** /
i f ny2 n o t i n ( 9 6 ) ; / * * * Only f o r non−smoker t o smokers t r a n s i t i o n **** /

run ;

/ *
p roc p r i n t d a t a = t r a n s i ;

where p i d i n ( 2 4 2 3 4 , 2 0 0 3 3 , 2 0 0 2 7 , 2 2 2 4 1 ) ;
* where p i d i n (2 0001 ,20003 ,20004 ,20 007 ,20222 ,21673 ,2180 2 ,20230 ,2 2022 ,32120 ) ;
v a r i d s i d t i m e c l s s prevsmoke smoke my1 ny2 my2 ny3 my3 ny4 p2 ;

run ;
* /

/**** Example f o r d a t a s t r u c t u r e * * * * * / / *
Obs i d s i d t i m e c l s s prevsmoke smoke MY1 ny2 MY2 ny3 MY3 ny4 p2

134 20027 1 1 . 2 96 96 96 96 96 96 5
135 20027 1 2 2 2 0 0 96 96 96 96 5
136 20027 1 3 2 4 1 1 96 96 96 96 5
137 20027 1 4 4 . 96 96 . . 96 96 5
138 20027 1 5 . . 96 96 . . 96 96 5
139 20027 1 6 . . 96 96 . . 96 96 5
140 20027 1 7 . . 96 96 . . 96 96 5
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162 20033 1 1 . 1 96 96 96 96 96 96 5
163 20033 1 2 1 1 0 0 96 96 96 96 5
164 20033 1 3 1 1 0 0 96 96 96 96 5
165 20033 1 4 1 . . . 96 96 96 96 5
166 20033 1 5 . . . . 96 96 96 96 5
167 20033 1 6 . . . . 96 96 96 96 5
168 20033 1 7 . . . . 96 96 96 96 5
5006 22241 12 1 . 1 96 96 96 96 96 96 5
5007 22241 12 2 1 4 1 1 96 96 96 96 5
5008 22241 12 3 4 3 96 96 1 1 96 96 5
5009 22241 12 4 3 . 96 96 96 96 . . 5
5010 22241 12 5 . . 96 96 96 96 . . 5
5011 22241 12 6 . . 96 96 96 96 . . 5
5012 22241 12 7 . . 96 96 96 96 . . 5
8373 24234 28 1 . 1 96 96 96 96 96 96 1
8374 24234 28 2 1 2 0 0 96 96 96 96 1
8375 24234 28 3 2 4 1 1 96 96 96 96 1
8376 24234 28 4 4 5 96 96 0 0 96 96 1
8377 24234 28 5 5 3 96 96 1 1 96 96 1
8378 24234 28 6 3 3 96 96 96 96 0 0 1
8379 24234 28 7 3 4 96 96 96 96 1 1 1

* /

/*** F i t t i n g on ly Non−Smnokers t o Smoker T r a n s i t i o n **** /

/ *

Prob of moving t o NS t o SM

Obs i d s i d t i m e c l s s prevsmoke smoke MY1 ny2 MY2 ny3 MY3 ny4 p2

66 20027 1 2 2 2 0 0 96 96 96 96 5
67 20027 1 3 2 4 1 1 96 96 96 96 5
78 20033 1 2 1 1 0 0 96 96 96 96 5
79 20033 1 3 1 1 0 0 96 96 96 96 5
80 20033 1 4 1 . . . 96 96 96 96 5
81 20033 1 5 . . . . 96 96 96 96 5
82 20033 1 6 . . . . 96 96 96 96 5
83 20033 1 7 . . . . 96 96 96 96 5

2595 22241 12 2 1 4 1 1 96 96 96 96 5
4529 24234 28 2 1 2 0 0 96 96 96 96 1
4530 24234 28 3 2 4 1 1 96 96 96 96 1

* [ −−− 2 Macro d e f i n i t i o n s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ] ;

/ *** %geeGlimmix : P r o v i d e i n i t i a l v a l u e s f o r NLMIXED *** /

/*−−− %geeGlimmix −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
| |
| |
| Arguments : |
| outcome = s p e c i f i e s t h e outcome v a r i b l e f o r a n a l y s i s |
| p a t t e r n = s p e c i f i e s t h e p a t t e r n b e i n g modeled . P a t t e r n g e t s |
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| u sed i n a where s t a t e m e n t , so e n c l o s e i t i n a |
| %s t r ( ) t o make s u r e i t i s i n t e r p r e t e d c o r r e c t l y |
| d a t a = s p e c i f i e s t h e d a t a s e t t o use |

\−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
%macro geeGlimmix ( outcome = , p a t t e r n = , d a t a = ) ;

%p u t NOTE: %n r s t r (%geeGlimmix i s r u n n i n g −− e s t i m a t i n g i n i t i a l v a l u e s f o r NLMIXED . ) ;
/ * These macro v a r i a b l e s g e t used i n t h e o t h e r macros , so need t o

d e c l a r e t h e i r scope as g l o b a l . . . * /
%g l o b a l c0 c1 c2 c3 c4 sd ;

/ * Need s t a r t i n g v a l u e s f o r p roc nlmixed , run a GEE model t o e s t i m a t e
i n i t i a l v a l u e s f o r p a r a m e t e r s o f i n t e r e s t . I n t h i s c a s e cond , t ime ,
x1 ( t ime d e p e n d e n t c o v a r i a t e ) and sex * /

p roc genmod d a t a=&d a t a d e s c e n d i n g ;
where &p a t t e r n ;
c l a s s s i d i d t i m e c l s s ;
model &outcome = cond t ime x1 sex / d i s t = b i n l i n k = l o g i t ;
r e p e a t e d s u b j e c t = s i d ( i d ) / w i t h i n s u b j e c t = t i m e c l s s ;
ods o u t p u t GEEEmpPEst = parm ;

run ;

/ * S t o r e t h e p a r a m e t e r e s t i m a t e s i n t h e g l o b a l macro v a r i a b l e s d e f i n e d above * /
d a t a _ n u l l _ ;

s e t parm ;
e s t i m a t e = round ( e s t i m a t e , 0 . 0 0 1 ) ;
parm= lowcase ( parm ) ;
i f Parm =" i n t e r c e p t " t h e n c a l l symput ( " c0 " , E s t i m a t e ) ;
e l s e i f Parm =" cond " t h e n c a l l symput ( " c1 " , E s t i m a t e ) ;
e l s e i f Parm =" t ime " t h e n c a l l symput ( " c2 " , E s t i m a t e ) ;
e l s e i f Parm =" x1 " t h e n c a l l symput ( " c3 " , E s t i m a t e ) ;
e l s e i f Parm =" sex " t h e n c a l l symput ( " c4 " , E s t i m a t e ) ;

run ;

/ * Also need a s t a r t i n g v a l u e f o r t h e v a r i a n c e e s t i m a t e o f t h e random e f f e c t .
F i t u s i n g p roc glimmix , u s i n g same outcome and c o v a r i a t e s * /

p roc gl immix d a t a=&d a t a ;
where &p a t t e r n ;
c l a s s s i d ;
model &outcome = cond t ime x1 sex / s o l u t i o n l i n k = l o g i t d i s t = b i n ;
random i n t e r c e p t / s u b j e c t = s i d ;
ods o u t p u t covparms= v a r e s t ;

run ;

/ * s t o r e * /
d a t a _ n u l l _ ;

s e t v a r e s t ;
/ * i f glimmmix f a i l s and you do n o t g e t an e s t i a m t e , p r o v i d e a d e f a u l t v a l u e

f o r e s t i m a t e * /
i f s t d e r r = . t h e n e s t i m a t e = 0 . 5 ;
c a l l symput ( " sd " , E s t i m a t e ) ;

run ;

/ * p r i n t t h e i n i t i a l v a l u e s t o t h e l o g f i l e , a s a check t o make s u r e e v e r y t h i n g
i s working c o r r e c t l y * /

%p u t NOTE: %n r s t r (%geeGlimmix −−− ) s t a r t i n g v a l u e f o r c0 i s &c0 . . ;
%p u t NOTE: %n r s t r (%geeGlimmix −−− ) s t a r t i n g v a l u e f o r c1 i s &c1 . . ;
%p u t NOTE: %n r s t r (%geeGlimmix −−− ) s t a r t i n g v a l u e f o r c2 i s &c2 . . ;
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%p u t NOTE: %n r s t r (%geeGlimmix −−− ) s t a r t i n g v a l u e f o r c3 i s &c3 . . ;
%p u t NOTE: %n r s t r (%geeGlimmix −−− ) s t a r t i n g v a l u e f o r c4 i s &c4 . . ;
%p u t NOTE: %n r s t r (%geeGlimmix −−− ) s t a r t i n g v a l u e f o r V a r i a n c e i s &sd . . ;

%mend geeGlimmix ;

/*** %n l m i x e d P r e d i c t : F i t t i n g a t r a n s i t i o n a l model and comput ing t h e p r e d i c t e d p r o b a b i l i t i e s *** /

/*−−− %n l m i x e d P r e d i c t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
| |
| |
| Arguments : |
| outcome = s p e c i f i e s t h e outcome v a r i b l e f o r a n a l y s i s |
| p a t t e r n = s p e c i f i e s t h e p a t t e r n b e i n g modeled . P a t t e r n g e t s |
| used i n a where s t a t e m e n t , so e n c l o s e i t i n a |
| %s t r ( ) t o make s u r e i t i s i n t e r p r e t e d c o r r e c t l y |
| d a t a = s p e c i f i e s t h e d a t a s e t t o use |
| o u t p r e d = s p e c i f i e s an o u t p u t d a t a s e t t o s t o r e p r e d i c t e d |
| v a l u e s . Th i s d a t a s e t i s used by t h e macro |
| %p r e d i c t i v e M e a n |
| t i t l e = an o p t i o n a l t i t l e s t a t e m e n t , so you know what |
| t r a n s i t i o n i s b e i n g modeled |

\−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
%macro n l m i x e d P r e d i c t ( outcome = , p a t t e r n = , d a t a = , o u t p r e d = , t i t l e = ) ;

%p u t NOTE: %n r s t r (% n l m i x e d P r e d i c t i s r u n n i n g . ) \
F i t t i n g a model f o r t h e &outcome . t r a n s i t i o n . ;

%p u t NOTE: Using t h e f o l l o w i n g s t a r t i n g v a l u e s : c0 = &c0 , c1 = &c1 , c2 = &c2 . ;
%p u t NOTE: c3 = &c3 , c4 = &c4 , sd = &sd ;

/ * F i t t h e t r a n s i t i o n model v i a NLMIXED * /
%i f %l e n g t h (& t i t l e ) > 0 %t h e n t i t l e "& t i t l e " ; ;
p roc n lmixed d a t a=&d a t a ( where=(& p a t t e r n ) ) ;

parms c0=%s y s e v a l f (&c0 ) c1=%s y s e v a l f (&c1 ) c2=%s y s e v a l f (&c2 ) c3=%s y s e v a l f (&c3 )
c4=%s y s e v a l f (&c4 ) SD=%s y s e v a l f (& sd ) ;

Z = c0 + c1 * cond + c2 * t ime + c3 *x1 + c4 * sex + U;
bounds SD >= 0 ;
p = exp ( z ) / ( 1 + exp ( z ) ) ;
model &outcome ~ b i n a r y ( p ) ;
random U ~ normal ( 0 , sd * sd ) s u b j e c t = s i d ;
ods o u t p u t P a r a m e t e r E s t i m a t e s = nlparm ( keep= P a r a m e t e r E s t i m a t e ) ;
p r e d i c t p o u t = predP ;
p r e d i c t u o u t =predU ;

run ;
t i t l e ;

/ * Compute t h e p r e d i c t e d p r o b a b i l i t i e s * /
d a t a predU1 ;

s e t predU ;
u_head = pred ;
keep s i d u_head ;

run ;

p roc s o r t d a t a =predU1 ; by s i d ; run ;
p roc s o r t d a t a=&d a t a ; by s i d ; run ;

d a t a _ n u l l _ ;
s e t n lparm ;
p a r a m e t e r = lowcase ( p a r a m e t e r ) ;
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i f p a r a m e t e r =" c0 " t h e n c a l l symput ( " cc0 " , e s t i m a t e ) ;
e l s e i f p a r a m e t e r =" c1 " t h e n c a l l symput ( " cc1 " , e s t i m a t e ) ;
e l s e i f p a r a m e t e r =" c2 " t h e n c a l l symput ( " cc2 " , e s t i m a t e ) ;
e l s e i f p a r a m e t e r =" c3 " t h e n c a l l symput ( " cc3 " , e s t i m a t e ) ;
e l s e i f p a r a m e t e r =" c4 " t h e n c a l l symput ( " cc4 " , e s t i m a t e ) ;

run ;

d a t a &o u t p r e d ;
merge &d a t a predU1 ;
by s i d ;
k=%s y s e v a l f (& cc0 ) + %s y s e v a l f (& cc1 )* cond + %s y s e v a l f (& cc2 )* t ime + %s y s e v a l f (& cc3 )* x1

+ %s y s e v a l f (& cc4 )* sex + u_head ;
p = exp ( k ) / ( 1 + exp ( k ) ) ;
keep s i d i d t ime p ;

run ;
%mend n l m i x e d P r e d i c t ;

/ *** %p r e d i c t i v e M e a n : S t e p s a r e c l e a r l y w r i t t e n i n T h e s i s *** /

/*−−− %p r e d i c t i v e M e a n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
| |
| |
| Arguments : |
| outcome = s p e c i f i e s t h e outcome v a r i b l e f o r a n a l y s i s |
| newOutcome = s p e c i f i e s t h e name of a new outcome v a r i a b l e t o |
| be used i n s u b s e q u e n t c a l l s t o %geeGlimmix , |
| %n l m i x e d P r e d i c t and %p r e d i c t i v e M e a n |
| i m p u t e P a t t e r n = s p e c i f i e s t h e new p a t t e r n t o be modeled . |
| As b e f o r e , e n c l o s e i t i n a %s t r ( ) |
| d a t a = s p e c i f i e s t h e d a t a s e t t o use |
| p r e d I n = s p e c i f i e s an i n p u t d a t a s e t s t o r i n g p r e d i c t e d |
| mean v a l u e s needed f o r i m p u t a t i o n |
| o u t = name of an o u t p u t d a t a s e t t o be used as i n p u t i n |
| s u b s e q u e n t c a l l s t o %geeGlimmix , %n l m i x e d P r e d i c t |
| and %p r e d i c t i v e M e a n |

\−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
%macro p r e d i c t i v e M e a n ( or igOutcome = , outcome = , newOutcome = , i m p u t e P a t t e r n = , d a t a = , p r e d I n = , o u t = ) ;

p roc means d a t a=&p r e d I n n o p r i n t ;
c l a s s s i d ;
v a r p ;
o u t p u t o u t = q u a n t ( where =( _ ty pe _ = 1 ) ) p25=q1 p50=q2 p75=q3 ;

run ;

p roc s o r t d a t a=&p r e d I n ; by s i d i d t ime ; run ;
p roc s o r t d a t a=&d a t a ; by s i d i d t ime ; run ;
p roc s o r t d a t a = q u a n t ; by s i d ; run ;

d a t a _tmp ;
merge &d a t a q u a n t ;
by s i d ;

run ;

d a t a g r p s ;
merge _tmp &p r e d I n ;
by s i d i d t ime ;

i f p <= q1 t h e n pc =1;
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e l s e i f q1 < p <= q2 t h e n pc =2;
e l s e i f q2 < p <= q3 t h e n pc =3;
e l s e i f p > q3 t h e n pc =4;

run ;

/ * f i n d number o f m i s s i n g d a t a p o i n t s i n each group * /
p roc means d a t a = g r p s n o p r i n t ;

c l a s s s i d pc ;
v a r &or igOutcome ;
o u t p u t o u t =MissN ( where =( _ ty pe _ = 3 ) ) nmiss = _ n s i z e _ ;

run ;
/ * make s u r e t h e r e a r e no z e r o s i n _ n s i z e _ * /
d a t a MissN ;

s e t MissN ;
i f _ n s i z e _ =0 t h e n _ n s i z e _ =1;

run ;

p roc s o r t d a t a = g r p s ; by s i d pc ; run ;

/ * u s i n g t h e p r e d i c t i v e mean , s e l e c t a sample from each group * /
p roc s u r v e y s e l e c t d a t a = g r p s ( where=(& or igOutcome ^ = . ) ) n o p r i n t o u t = s e l g r p s method= u r s n=MissN ;

s t r a t a s i d pc ;
run ;

d a t a s e l g r p s ;
s e t s e l g r p s ;
tmpOutcome = &origOutcome ;
keep s i d pc tmpOutcome ;

run ;

p roc s o r t d a t a = s e l g r p s ; by s i d pc ; run ;
p roc s o r t d a t a = g r p s ; by s i d pc ; run ;

/ * impute m i s s i n g v a l u e s u s i n g p r e d i c t i v e mean match ing methods * /
d a t a &o u t ;

merge g r p s s e l g r p s ;
by s i d pc ;
&newOutcome = &outcome ;
i f &i m p u t e P a t t e r n t h e n do ;

i f &or igOutcome = . t h e n &newOutcome=tmpOutcome ;
end ;
run ;

%mend p r e d i c t i v e M e a n ;

/*** %ppmMethod : P r e d i c t i v e mean match ing method *** /

/*−−− %ppmMethod −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
| |
| |
| Arguments : |
| o r igOutcome = t h e outcome v a r i a b l e t h a t o r i g i n a l l y had m i s s i n g |
| v a l u e s |
| outcome = t h e outcome wi th imputed v a l u e s ( ? ) |
| newOutcome = outcome wi th imputed v a l u e s f o l l o w i n g p r e d i c t i v e |
| mean match ing |
| t i t l e = an o p t i o n a l t i t l e s t a t e m e n t , so you know what |
| t r a n s i t i o n i s b e i n g modeled |
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| d a t a = i n i t i a l i n p u t d a t a s e t t o a n a l y z e |
| o u t = o u t p u t d a t a s e t from p r e d i c t i v e mean match ing |
| ou tparm = p a r a m e t e r e s t i m a t e s from NLMIXED u s i n t &o u t |
| d a t a s e t f o r u s i n g i n m u l t i p l e i m p u t a t i o n ana l− |
| y s i s |
| impEstOut = o u t p u t d a t a s e t c o n t a i n i n g e s t i m a t e s from proc |
| MIANALYZE |
| o u t f i l e = name and l o c a t i o n ( f i l e n a m e wi th c o m p l e t e f i l e |
| p a t h ) c o n t a i n i n g t h e r e s u l t s from |
| p roc MIANALYZE |

\−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
%macro pmmMethod ( or igOutcome = , outcome = , newOutcome = , t i t l e = , d a t a = , o u t = , outparm = , impEstOut = , o u t f i l e = ) ;

/ * i n i t i a l v a l u e s f o r p a r a m e t e r e s t i m a t e s * /
p roc genmod d a t a=&d a t a d e s c e n d i n g ;

c l a s s s i d i d t i m e c l s s ;
model &outcome = cond t ime x1 sex / d i s t = b i n l i n k = l o g i t ;
r e p e a t e d s u b j e c t = s i d ( i d ) / w i t h i n s u b j e c t = t i m e c l s s ;
ods o u t p u t GEEEmpPEst = parm ;

run ;

d a t a _ n u l l _ ;
s e t parm ;
e s t i m a t e = round ( e s t i m a t e , 0 . 0 0 1 ) ;
parm= lowcase ( parm ) ;
i f parm =" i n t e r c e p t " t h e n c a l l symput ( " pmmc0 " , e s t i m a t e ) ;
e l s e i f parm =" cond " t h e n c a l l symput ( " pmmc1 " , e s t i m a t e ) ;
e l s e i f parm =" t ime " t h e n c a l l symput ( " pmmc2 " , e s t i m a t e ) ;
e l s e i f parm =" x1 " t h e n c a l l symput ( " pmmc3 " , e s t i m a t e ) ;
e l s e i f parm =" sex " t h e n c a l l symput ( " pmmc4 " , e s t i m a t e ) ;

run ;

/ * i n i t i a l v a l u e f o r v a r i a n c e o f t h e random e f f e c t * /
p roc gl immix d a t a=&d a t a ;

c l a s s s i d ;
model &outcome = cond t ime x1 sex / s o l u t i o n l i n k = l o g i t d i s t = b i n ;
random i n t e r c e p t / s u b j e c t = s i d ;
ods o u t p u t covparms = v a r e s t ;

run ;

d a t a _ n u l l _ ;
s e t v a r e s t ;
i f s t d e r r = . t h e n e s t i m a t e = 0 . 5 ;
e l s e i f 0< s t d e r r <0 .05 t h e n e s t i m a t e = 0 . 0 5 ;
e l s e i f s t d e r r >10 t h e n e s t i m a t e =1;
c a l l symput ( " pmmsd " , e s t i m a t e ) ;

run ;

%i f %l e n g t h (& t i t l e ) >0 %t h e n t i t l e "& t i t l e " ; ;
p roc n lmixed d a t a=&d a t a ;

parms c0=%s y s e v a l f (&pmmc0 ) c1=%s y s e v a l f (&pmmc1 ) c2=%s y s e v a l f (&pmmc2 ) c3=%s y s e v a l f (&pmmc3 )
c4=%s y s e v a l f (&pmmc4 ) sd=%s y s e v a l f (&pmmsd ) ;

Z = c0 + c1 * cond + c2 * t ime + c3 *x1 + c4 * sex + U;
bounds sd > 0 ;
p=exp ( z ) / ( 1 + exp ( z ) ) ;
model &outcome ~ b i n a r y ( p ) ;
random U ~ normal ( 0 , sd * sd ) s u b j e c t = s i d ;
ods o u t p u t P a r a m e t e r E s t i m a t e s = nlparm ( keep= P a r a m e t e r E s t i m a t e ) ;
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p r e d i c t p o u t = predP ;
p r e d i c t u o u t =predU ;

run ;
t i t l e ;

d a t a predU1 ;
s e t predU ;
u_head= pred ;
keep s i d u_head ;

run ;

p roc s o r t d a t a =predU1 ; by s i d ; run ;
p roc s o r t d a t a=&d a t a ; by s i d ; run ;

d a t a _ n u l l _ ;
s e t n lparm ;
i f p a r a m e t e r =" c0 " t h e n c a l l symput ( " cc0 " , e s t i m a t e ) ;
e l s e i f p a r a m e t e r =" c1 " t h e n c a l l symput ( " cc1 " , e s t i m a t e ) ;
e l s e i f p a r a m e t e r =" c2 " t h e n c a l l symput ( " cc2 " , e s t i m a t e ) ;
e l s e i f p a r a m e t e r =" c3 " t h e n c a l l symput ( " cc3 " , e s t i m a t e ) ;
e l s e i f p a r a m e t e r =" c4 " t h e n c a l l symput ( " cc4 " , e s t i m a t e ) ;

run ;

d a t a pmm;
merge &d a t a predU1 ;
by s i d ;
k=%s y s e v a l f (& cc0 ) + %s y s e v a l f (& cc1 )* cond + %s y s e v a l f (& cc2 )* t ime + %s y s e v a l f (& cc3 )* x1

+ %s y s e v a l f (&c4 )* sex + u_head ;
p=exp ( k ) / ( 1 + exp ( k ) ) ;
keep s i d i d t ime p ;

run ;

/ * p r e d i c t i v e mean match ing method * /
p roc means d a t a =pmm n o p r i n t ;

c l a s s s i d ;
v a r p ;
o u t p u t o u t = q u a n t ( where =( _ ty pe _ = 1 ) ) p25=q1 p50=q2 p75=q3 ;

run ;

p roc s o r t d a t a =pmm; by s i d i d t ime ; run ;
p roc s o r t d a t a=&d a t a ; by s i d i d t ime ; run ;
p roc s o r t d a t a = q u a n t ; by s i d ; run ;

d a t a tmp ;
merge &d a t a q u a n t ;
by s i d ;

run ;

d a t a g r p s ;
merge tmp pmm;
by s i d i d t ime ;
i f p <= q1 t h e n pc =1;
e l s e i f q1 < p <= q2 t h e n pc =2;
e l s e i f q2 < p <= q3 t h e n pc =3;
e l s e i f p > q3 t h e n pc =4;

run ;
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p roc means d a t a = g r p s n o p r i n t ;
c l a s s s i d pc ;
v a r &or igOutcome ;
o u t p u t o u t =MissN ( where =( _ ty pe _ = 3 ) ) nmiss = _ n s i z e _ ;

run ;

d a t a MissN ;
s e t MissN ;
i f _ n s i z e _ =0 t h e n _ n s i z e =_1 ;

run ;

p roc s o r t d a t a = g r p s ; by s i d pc ; run ;

/ * F i r s t P r e d i c t i v e Mean * /
p roc s u r v e y s e l e c t d a t a = g r p s ( where=(& or igOutcome ^ = . ) ) n o p r i n t o u t = s e l g r p s 1 method= u r s n=MissN ;

s t r a t a s i d pc ;
run ;

d a t a s e l g r p s 1 ;
s e t s e l g r p s 1 ;

&outcome = &origOutcome ;
keep s i d pc &outcome ;

run ;

p roc s o r t d a t a = s e l g r p s 1 ; by s i d pc ; run ;
p roc s o r t d a t a = g r p s ; by s i d pc ; run ;

d a t a &d a t a . 1 ;
merge g r p s s e l g r p s 1 ;
by s i d pc ;
&newOutcome = &origOutcome ;
i f &or igOutcome = . t h e n &newOutcome=&outcome ;
p r e d i c t e d M e a n = 1 ;

run ;

/ * Second p r e d i c t i v e mean * /
p roc s u r v e y s e l e c t d a t a = g r p s ( where=(& or igOutcome ^ = . ) ) n o p r i n t o u t = s e l g r p s 2 method= u r s n=MissN ;

s t r a t a s i d pc ;
run ;

d a t a s e l g r p s 2 ;
s e t s e l g r p s 2 ;

&outcome = &origOutcome ;
keep s i d pc &outcome ;

run ;
p roc s o r t d a t a = s e l g r p s 2 ; by s i d pc ; run ;
p roc s o r t d a t a = g r p s ; by s i d pc ; run ;

d a t a &d a t a . 2 ;
merge g r p s s e l g r p s 2 ;
by s i d pc ;
&newOutcome = &origOutcome ;
i f &or igOutcome = . t h e n &newOutcome = &outcome ;
p r e d i c t e d M e a n = 2 ;

run ;

/ * T h i r d p r e d i c t i v e mean * /
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p roc s u r v e y s e l e c t d a t a = g r p s ( where=(& or igOutcome ^ = . ) ) n o p r i n t o u t = s e l g r p s 3 method= u r s n=MissN ;
s t r a t a s i d pc ;

run ;

d a t a s e l g r p s 3 ;
s e t s e l g r p s 3 ;

&outcome = &origOutcome ;
keep s i d pc &outcome ;

run ;
p roc s o r t d a t a = s e l g r p s 3 ; by s i d pc ; run ;
p roc s o r t d a t a = g r p s ; by s i d pc ; run ;

d a t a &d a t a . 3 ;
merge g r p s s e l g r p s 3 ;
by s i d pc ;
&newOutcome = &origOutcome ;
i f &or igOutcome = . t h e n &newOutcome = &outcome ;
p r e d i c t e d M e a n = 3 ;

run ;

/ * F o u r t h p r e d i c t i v e mean * /
p roc s u r v e y s e l e c t d a t a = g r p s ( where=(& or igOutcome ^ = . ) ) n o p r i n t o u t = s e l g r p s 4 method= u r s n=MissN ;

s t r a t a s i d pc ;
run ;

d a t a s e l g r p s 4 ;
s e t s e l g r p s 4 ;

&outcome = &origOutcome ;
keep s i d pc &outcome ;

run ;
p roc s o r t d a t a = s e l g r p s 4 ; by s i d pc ; run ;
p roc s o r t d a t a = g r p s ; by s i d pc ; run ;

d a t a &d a t a . 4 ;
merge g r p s s e l g r p s 4 ;
by s i d pc ;
&newOutcome = &origOutcome ;
i f &or igOutcome = . t h e n &newOutcome = &outcome ;
p r e d i c t e d M e a n = 4 ;

run ;

/ * F i f t h p r e d i c t i v e mean * /
p roc s u r v e y s e l e c t d a t a = g r p s ( where=(& or igOutcome ^ = . ) ) n o p r i n t o u t = s e l g r p s 5 method= u r s n=MissN ;

s t r a t a s i d pc ;
run ;

d a t a s e l g r p s 5 ;
s e t s e l g r p s 5 ;

&outcome = &origOutcome ;
keep s i d pc &outcome ;

run ;
p roc s o r t d a t a = s e l g r p s 5 ; by s i d pc ; run ;
p roc s o r t d a t a = g r p s ; by s i d pc ; run ;

d a t a &d a t a . 5 ;
merge g r p s s e l g r p s 5 ;
by s i d pc ;
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&newOutcome = &origOutcome ;
i f &or igOutcome = . t h e n &newOutcome = &outcome ;
p r e d i c t e d M e a n = 5 ;

run ;

d a t a &o u t ;
s e t &d a t a . 1 &d a t a . 2 &d a t a . 3 &d a t a . 4 &d a t a . 5 ;
keep s i d i d t ime t i m e c l s s x1 x2 cond &newOutcome &or igOutcome y2 sex p r e d i c t e d M e a n ;

run ;

/ *** Data a f t e r i m p u t a t i o n look l i k e t h i s :
Obs i d s i d t i m e c l s s ny2 nnny2
33 20033 1 2 0 0
34 20033 1 3 0 0
35 20033 1 4 . 0
36 20033 1 5 . 0
37 20033 1 7 . 0
143 20033 1 6 . 0
14177 20033 1 2 0 0
14178 20033 1 3 0 0
14179 20033 1 4 . 0
14180 20033 1 5 . 0
14181 20033 1 7 . 0
14287 20033 1 6 . 0
28321 20033 1 2 0 0
28322 20033 1 3 0 0
28323 20033 1 4 . 0
28324 20033 1 5 . 0
28325 20033 1 7 . 0
28431 20033 1 6 . 0
42465 20033 1 2 0 0
42466 20033 1 3 0 0
42467 20033 1 4 . 0
42468 20033 1 5 . 0
42469 20033 1 7 . 0
42575 20033 1 6 . 0
56609 20033 1 2 0 0
56610 20033 1 3 0 0
56611 20033 1 4 . 0
56612 20033 1 5 . 0
56613 20033 1 7 . 0
56719 20033 1 6 . 0

/ * g e t s t a r t i n g v a l u e s f o r NLMIXED based on t h e f i r s t p r e d i c t i v e mean on ly : * /
p roc genmod d a t a=&o u t d e s c e n d i n g ;

where p r e d i c t e d M e a n =1;
c l a s s s i d i d t i m e c l s s ;
model &newOutcome = cond t ime x1 sex / d i s t = b i n l i n k = l o g i t ;
r e p e a t e d s u b j e c t = s i d ( i d ) / w i t h i n s u b j e c t = t i m e c l s s ;
ods o u t p u t GEEEmpPEst = parm ;

run ;

d a t a _ n u l l _ ;
s e t parm ;
parm= lowcase ( parm ) ;
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e s t i m a t e = round ( e s t i m a t e , 0 . 0 0 1 ) ;
i f parm =" i n t e r c e p t " t h e n c a l l symput ( " f c 0 " , e s t i m a t e ) ;
e l s e i f parm =" cond " t h e n c a l l symput ( " f c 1 " , e s t i m a t e ) ;
e l s e i f parm =" t ime " t h e n c a l l symput ( " f c 2 " , e s t i m a t e ) ;
e l s e i f parm =" x1 " t h e n c a l l symput ( " f c 3 " , e s t i m a t e ) ;
e l s e i f parm =" sex " t h e n c a l l symput ( " f c 4 " , e s t i m a t e ) ;

run ;

p roc gl immix d a t a=&o u t ;
where p r e d i c t e d M e a n =1;
c l a s s s i d ;
model &newOutcome = cond t ime x1 sex / s o l u t i o n l i n k = l o g i t d i s t = b i n ;
random i n t e r c e p t / s u b j e c t = s i d ;
ods o u t p u t covparms = v a r e s t ;

run ;

d a t a _ n u l l _ ;
s e t v a r e s t ;
i f s t d e r r = . t h e n e s t i m a t e = 0 . 5 ;
i f 0< s t d e r r <0 .05 t h e n e s t i m a t e = 0 . 0 5 ;
i f s t d e r r >10 t h e n e s t i m a t e =1;
c a l l symput ( " f s d " , E s t i m a t e ) ;

run ;

/ * used a l l 5 d a t a s e t s t o e s t i m a t e t h e p a r a m e t e r s * /
p roc s o r t d a t a=&o u t ; by p r e d i c t e d M e a n ; run ;
p roc n lmixed d a t a=&o u t ;

parms c0=%s y s e v a l f (& f c 0 ) c1=%s y s e v a l f (& f c 1 ) c2=%s y s e v a l f (& f c 2 ) c3=%s y s e v a l f (& f c 3 )
c4=%s y s e v a l f (& f c 4 ) sd=%s y s e v a l f (& f s d ) ;

Z = c0 + c1 * cond + c2 * t ime +c3 *x1 +c4 * sex +U;
bounds sd >= 0 ;
p=exp ( z ) / ( 1 + exp ( z ) ) ;
MODEL &newOutcome ~ b i n a r y ( p ) ;
RANDOM U ~ NORMAL( 0 , sd * sd ) SUBJECT=sID ;
by p r e d i c t e d M e a n ;
ods o u t p u t P a r a m e t e r E s t i m a t e s = nlparm ;

run ;

d a t a &outparm ;
s e t n lparm ;
_ I m p u t a t i o n _ = p r e d i c t e d M e a n ;
s t d e r r = S t a n d a r d E r r o r ;

run ;

ods r t f f i l e =& o u t f i l e s t y l e =sasweb ;
p roc m i a n a l y z e parms=&outparm ;

m o d e l e f f e c t s c0 c1 c2 c3 c4 sd ;
ods o u t p u t P a r a m e t e r E s t i m a t e s=&impEstOut ;

run ;
ods r t f c l o s e ;

%mend pmmMethod ;

* [ −−− 3 Model ing −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ] ;
%geeGlimmix ( outcome=ny2 , p a t t e r n=% s t r ( p2 = 1) , d a t a = t r a n s i ) ;
%n l m i x e d P r e d i c t ( outcome=ny2 , p a t t e r n=% s t r ( p2 = 1) , d a t a = t r a n s i , o u t p r e d = t r P r e d ,
t i t l e =Prob of moving from NS t o SM) ;

%p r e d i c t i v e M e a n ( or igOutcome =ny2 , outcome=ny2 , newOutcome=ny2b , i m p u t e P a t t e r n=% s t r ( p2 i n ( 1 , 2 ) ) ,
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d a t a = t r a n s i , p r e d I n = t r P r e d , o u t = t r a n s i 2 ) ;

%geeGlimmix ( outcome=ny2b , p a t t e r n=% s t r ( p2 i n ( 1 , 2 ) ) , d a t a = t r a n s i 2 ) ;
%n l m i x e d P r e d i c t ( outcome=ny2b , p a t t e r n=% s t r ( p2 i n ( 1 , 2 ) ) , d a t a = t r a n s i 2 , o u t p r e d = t r P r e d 2 ,
t i t l e =Prob of moving from NS t o SM) ;

%p r e d i c t i v e M e a n ( or igOutcome =ny2 , outcome=ny2b , newOutcome=ny2c , i m p u t e P a t t e r n=% s t r ( p2 =3 ) ,
d a t a = t r a n s i 2 , p r e d I n = t r P r e d 2 , o u t = t r a n s i 3 ) ;

%geeGlimmix ( outcome=ny2c , p a t t e r n=% s t r ( p2 i n ( 1 , 2 , 3 ) ) , d a t a = t r a n s i 3 ) ;
%n l m i x e d P r e d i c t ( outcome=ny2c , p a t t e r n=% s t r ( p2 i n ( 1 , 2 , 3 ) ) , d a t a = t r a n s i 3 , o u t p r e d = t r P r e d 3 ,
t i t l e =Prob of moving from NS t o SM) ;

%p r e d i c t i v e M e a n ( or igOutcome =ny2 , outcome=ny2c , newOutcome=ny2d , i m p u t e P a t t e r n=% s t r ( p2 =4 ) ,
d a t a = t r a n s i 3 , p r e d I n = t r P r e d 3 , o u t = t r a n s i 4 ) ;

%geeGlimmix ( outcome=ny2d , p a t t e r n=% s t r ( p2 i n ( 1 , 2 , 3 , 4 ) ) , d a t a = t r a n s i 4 ) ;
%n l m i x e d P r e d i c t ( outcome=ny2d , p a t t e r n=% s t r ( p2 i n ( 1 , 2 , 3 , 4 ) ) , d a t a = t r a n s i 4 , o u t p r e d = t r P r e d 4 ,
t i t l e =Prob of moving from NS t o SM) ;

%p r e d i c t i v e M e a n ( or igOutcome =ny2 , outcome=ny2d , newOutcome=ny2e , i m p u t e P a t t e r n=% s t r ( p2 =5 ) ,
d a t a = t r a n s i 4 , p r e d I n = t r P r e d 4 , o u t = t r a n s i 5 ) ;

%geeGlimmix ( outcome=ny2e , p a t t e r n=% s t r ( p2 i n ( 1 , 2 , 3 , 4 , 5 ) ) , d a t a = t r a n s i 5 ) ;
%n l m i x e d P r e d i c t ( outcome=ny2e , p a t t e r n=% s t r ( p2 i n ( 1 , 2 , 3 , 4 , 5 ) ) , d a t a = t r a n s i 5 , o u t p r e d = t r P r e d 5 ,
t i t l e =Prob of moving from NS t o SM) ;

%p r e d i c t i v e M e a n ( or igOutcome =ny2 , outcome=ny2e , newOutcome=ny2f , i m p u t e P a t t e r n=% s t r ( p2 =6 ) ,
d a t a = t r a n s i 5 , p r e d I n = t r P r e d 5 , o u t = t r a n s i 6 ) ;

%geeGlimmix ( outcome=ny2f , p a t t e r n=% s t r ( p2 i n ( 1 , 2 , 3 , 4 , 5 , 6 ) ) , d a t a = t r a n s i 6 ) ;
%n l m i x e d P r e d i c t ( outcome=ny2f , p a t t e r n=% s t r ( p2 i n ( 1 , 2 , 3 , 4 , 5 , 6 ) ) , d a t a = t r a n s i 6 , o u t p r e d = t r P r e d 6 ,
t i t l e =Prob of moving from NS t o SM) ;

%p r e d i c t i v e M e a n ( or igOutcome =ny2 , outcome=ny2f , newOutcome=ny2g , i m p u t e P a t t e r n=% s t r ( p2 =7 ) ,
d a t a = t r a n s i 6 , p r e d I n = t r P r e d 6 , o u t = t r a n s i 7 ) ;

/ * At t h i s p o i n t , a l l t h e m i s s i n g v a l u e s have been imputed u s i n g t h e ACMV r e s t r i c t i o n methods .
The model ing below u s e s t h e p r e d i c t i v e mean match ing method * /

d a t a ny2_acmv ;
s e t t r a n s i 7 ( keep= s i d i d t ime t i m e c l s s x1 x2 cond ny2g ny2 / * y * / sex ) ;
s e t t r a n s i 7 ;
nny2=ny2g ;
drop ny2g ;

run ;
%pmmMethod ( or igOutcome =ny2 , outcome=nny2 , newOutcome=nnny2 , d a t a =ny2_acmv , o u t =ny2_acmv_imp ,
outparm =impParm , impEstOut= impEst ) ;

Listing B.2: data_creation.sas
/***************************************************************************\

*** d a t a _ c r e a t i o n . s a s : G e n e r a t e s t h e d a t a s e t s f o r t h e s i m u l a t i o n ***
\***************************************************************************/
o p t i o n s n o c e n t e r ps =5000;* n o n o t e s formdl im =" " ;
p roc d a t a s e t s l i b r a r y =work memtype= d a t a k i l l ;
q u i t ;
d a t a _a ;

r e t a i n seed %s y s e v a l f (& s imseed ) ;
/ * c r e a t e 50 s c h o o l s * /
do s i d =1 t o 5 0 ;

c a l l r a n b i n ( seed , 1 , 0 . 5 5 , cond ) ; * Ass ign s c h o o l s t o t r e a t m e n t o r c o n t r o l c o n d i t i o n s ;
c a l l r a n n o r ( seed , U0 ) ;
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do i d =1 t o 100 ; * need 100 s t u d e n t s p e r s c h o o l ;
* c a l l r a n n o r ( seed , U1 ) ; * l e v e l 2 d a t a ;

/ * l e v e l 2 d a t a = 1000 s t u d e n t s randomly a s s i g n e d t o t r e a t m e n t ( cond =1) o r
c o n t r o l ( cond = 0 ) . T r e a t m e n t c o n d i t i o n : g e n e r a t e s t a n d a r d normal v a r i a t e s
wi th c o r r e l a t i o n o f rho f o r b i v a r i a t e normal d i s t r i b u t i o n

* /

/ * g e n e r a t e l e v e l 1 d a t a : 7 t ime p o i n t s f o r each i n d i v i d u a l * /
do t ime =1 t o 7 ;

/ * f i r s t l e v e l normal v a r i a t e * /
c a l l r a n n o r ( seed , z1 ) ;
c a l l r a n n o r ( seed , z2 ) ;

/ * Model p a r a m e t e r s * /

b01 =−2.3; b11= −4.1; b21= 0 . 6 1 ; b31= 0 . 2 0 ; u12 = 0 . 6 8 ;
b02= 0 . 8 ; b12= 0 . 2 ; b22= −0.3; b32= −0.1; u23 = 0 . 6 8 ;
b03 =−1.7; b13= −5.5; b23= 0 . 1 ; b33= 0 . 3 ; u32 = 0 . 6 8 ;

/ * Miss ing v a l u e p a r a m e t e r * /
/ * 30% m i s s i n g *

m01= −2.6; m11= −0.1; m21 = 0 . 2 ; m31 = 0 . 3 ;
m02= −2.74; m12= −0.1; m22 = 0 . 2 ; m32 = 0 . 3 ;
m03= −3.24; m13= −0.1; m23 = 0 . 2 ; m33 = 0 . 3 ;
m01_1=−2.35 ; m02_1=−2.12; m03_1 =−2.2 ; /*** I n t e r c e p t a r e on ly f o r MAR m i s s i g n d a t a ***
k1 = 0 . 0 9 7 ; k2 = 0 . 1 1 6 ; k3 = 0 . 1 2 7 ;

/ * 30% m i s s i n g *
m01= −3.1; m11= −0.1; m21 = 0 . 2 ; m31 = 0 . 9 ;
m02= −3.94; m12= −0.1; m22 = 0 . 2 ; m32 = 0 . 9 ;
m03= −5.58; m13= −0.1; m23 = 0 . 2 ; m33 = 0 . 9 ;
m01_1=−2.35 ; m02_1=−2.13; m03_1 =−2.19; /*** I n t e r c e p t a r e on ly f o r MAR m i s s i g n d a t a ***
k1 = 0 . 0 9 7 ; k2 = 0 . 1 1 5 ; k3 = 0 . 1 3 ;

/ *** Only f o r MAR t o keep 30% m i s s i n g d a t a *** /
/ * 40% m i s s i n g * /

m01= −2.15; m11=−0.1; m21 = 0 . 2 ; m31 = 0 . 3 ;
m02= −2.4; m12=−0.1; m22 = 0 . 2 ; m32 = 0 . 3 ;
m03= −2.85; m13=−0.1; m23 = 0 . 2 ; m33 = 0 . 3 ;

/ *** Only f o r MAR t o keep 40% m i s s i n g d a t a **** /
m01_1=−1.92 ; m02_1=−1.75; m03_1=−1.8 ;

k1 = 0 . 1 3 5 ; k2 = 0 . 1 6 5 ; k3 = 0 . 1 8 1 ;

/ * Random I n t e r c e p t Model : * /
i f t ime =1 t h e n do ;

x1 =( z1 + 5 ) ; x2= abs ( z2 ) ;
/ * m u l t i n o m i a l p r o b a b i l i t i e s o f smoking a t b a s e l i n e :

1 = nonsmoker = 86%
2 = q u i t t e r = 6%
3 = smoker = 8% * /

mu_1 =0; mu_2 =0; mu_3 =0;
y = r a n t b l ( seed , 0 . 8 6 , 0 . 0 8 , 0 . 0 6 ) ;

x l a g = . ; y l a g = . ; x 2 l a g = . ;
c a l l symput ( " y l a g " , t r i m ( l e f t ( p u t ( y , 8 . ) ) ) ) ;
c a l l symput ( " x l a g " , ( p u t ( x1 , 8 . 2 ) ) ) ;
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c a l l symput ( " x 2 l a g " , ( p u t ( x2 , 8 . 2 ) ) ) ;
r11 =0; r21 =0; r31 =0; r41 =0; r12 =0; r22 =0; r32 =0;
r42 =0; r13 =0; r23 =0; r33 =0; r43 =0;
o u t p u t ;

end ;
i f t ime =2 t h e n do ;

mu_1 = . ; mu_2 = . ; mu_3 = . ; y2 = . ; y3 = . ; y4 = . ;
y l a g = i n p u t ( symget ( " y l a g " ) , b e s t . ) ; * c r e a t e s l a g v a r i a b l e f o r Y;
x1 =( z1 + 5 ) ;
x2= t ime * abs ( z2 )+ y l a g ;
x l a g = i n p u t ( symget ( " x l a g " ) , b e s t . ) ; * c r e a t e s l a g v a r i a b l e f o r X;
x 2 l a g = i n p u t ( symget ( " x 2 l a g " ) , b e s t . ) ;

/ * P r o b a b i l i t y o f moving from non−smokers t o smokers
U12*u0 j u s t m u l t i p l y i n g t h e s t a n d a r d normal t o t h e g i v e n
v a r i a n c e : a c c o u n t f o r s c h o o l l e v e l e f f e c t

U1 : a c c o u n t f o r i n d i v i d u a l c o r r e l a t i o n ove r t ime * /
i f y l a g =1 t h e n do ;

e t a 1 2 = b01 + ( b11 * cond ) + ( b21* t ime ) + ( b31* x l a g ) + U12*u0 ;
/ * t o c o n v e r t t o b i n a r y outcomes * /
mu_1 = ( exp ( e t a 1 2 ) ) / ( 1 + exp ( e t a 1 2 ) ) ; c a l l r a n b i n ( seed , 1 , mu_1 , y2 ) ;

/ * c r e a t e s m i s s i n g v a l u e s * /
c a l l r a n b i n ( seed , 1 , k1 , r11 ) ; * MCAR;
r31 =( exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) / ( 1 + exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r31 , r31 ) ; * MAR;
r41 =( exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) / ( 1 + exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) ;
c a l l r a n b i n ( seed , 1 , r41 , r41 ) ; * MNAR;

end ;

/ * P r o b a b i l i t y o f moving from smokers t o q u i t t e r s * /
i f y l a g =2 t h e n do ;

e t a 2 3 = b02 + ( b12 * cond ) + ( b22* t ime ) + ( b32* x l a g ) + U23*u0 ;
mu_2 = ( exp ( e t a 2 3 ) ) / ( 1 + exp ( e t a 2 3 ) ) ;
c a l l r a n b i n ( seed , 1 , mu_2 , y3 ) ;
/ * c r e a t e m i s s i n g v a l u e * /

c a l l r a n b i n ( seed , 1 , k2 , r12 ) ; * MCAR;
r32 =( exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) / ( 1 + exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r32 , r32 ) ; * MAR;
r42 =( exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) / ( 1 + exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) ;
c a l l r a n b i n ( seed , 1 , r42 , r42 ) ; * MNAR;

end ;

/ * P r o b a b i l i t y o f moving from Q u i t t e r t o smokers * /
i f y l a g =3 t h e n do ;

e t a 3 2 = b03 + ( b13 * cond ) + ( b23* t ime ) + ( b33* x l a g ) + U32*u0 ;
mu_3 = ( exp ( e t a 3 2 ) ) / ( 1 + exp ( e t a 3 2 ) ) ;
c a l l r a n b i n ( seed , 1 , mu_3 , y4 ) ;
/ * c r e a t e m i s s i n g v a l u e * /

c a l l r a n b i n ( seed , 1 , k3 , r13 ) ; * MCAR;
r33 =( exp ( m03_1+m13* x 2 l a g +m23* y l a g ) ) / ( 1 + exp ( m03_1+m13* x 2 l a g +m23* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r33 , r33 ) ; * MAR;
r43 =( exp ( m03+m13* x 2 l a g +m23* y l a g +m33*y ) ) / ( 1 + exp ( m03+m13* x 2 l a g +m23* y l a g +m33*y ) ) ;
c a l l r a n b i n ( seed , 1 , r43 , r43 ) ; * MNAR;

end ;

/ * s t o r e a l l t h r e e t r a n s i t i o n s i n a s i n g l e v a r i a b l e * /
i f y2=1 t h e n y = 2 ; / * * * s t a r t e d smoking **** /
i f y2=0 t h e n y = 1 ; / * * * remained a non−smoker * * /
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i f y3=1 t h e n y = 3 ; / * * * q u i t smoking *** /
i f y3=0 t h e n y = 2 ; / * * * remained a smoker *** /
i f y4=1 t h e n y = 2 ; / * * * r e l a p s e : r e t u r n e d t o smoking *** /
i f y4=0 t h e n y = 3 ; / * * * remained a q u i t t e r *** /

t 1 1 =0; t 2 1 =0; t 3 1 =0; t 4 1 =0; t 1 2 =0; t 2 2 =0; t 3 2 =0;
t 4 2 =0; t 1 3 =0; t 2 3 =0; t 3 3 =0; t 4 3 =0;
c a l l symput ( " y l a g " , t r i m ( l e f t ( p u t ( y , 8 . ) ) ) ) ;
c a l l symput ( " x l a g " , ( p u t ( x1 , 8 . 2 ) ) ) ;
c a l l symput ( " x 2 l a g " , ( p u t ( x2 , 8 . 2 ) ) ) ;
o u t p u t ;

end ;
i f t ime =3 t h e n do ;

mu_1 = . ; mu_2 = . ; mu_3 = . ; y2 = . ; y3 = . ; y4 = . ;
y l a g = i n p u t ( symget ( " y l a g " ) , b e s t . ) ;
x1 =( z1 + 5 ) ;
x2= abs ( z2 )+ y l a g ;

x l a g = i n p u t ( symget ( " x l a g " ) , b e s t . ) ;
x 2 l a g = i n p u t ( symget ( " x 2 l a g " ) , b e s t . ) ;
i f y l a g =3 t h e n y2_d1 =1;
i f y l a g =1 t h e n y2_d2 =1;

/ * non−smoker t o smoker t r a n s i t i o n * /
i f y l a g =1 t h e n do ;

e t a 1 2 = b01 + ( b11 * cond ) + ( b21* t ime ) + ( b31* x l a g ) + U12*u0 ;
mu_1 = ( exp ( e t a 1 2 ) ) / ( 1 + exp ( e t a 1 2 ) ) ;
c a l l r a n b i n ( seed , 1 , mu_1 , y2 ) ;
/ * c r e a t e m i s s i n g v a l u e s * /
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k1 , r11 ) ;
/ * MAR * /
r31 =( exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) / ( 1 + exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r31 , r31 ) ;

/ * MNAR * /
r41 =( exp ( m01+m11* x 2 l a g +m21* y l a g ) ) / ( 1 + exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) ;
c a l l r a n b i n ( seed , 1 , r41 , r41 ) ;

end ;
/ * smoker t o q u i t t e r t r a n s i t i o n * /
i f y l a g =2 t h e n do ;

e t a 2 3 = b02 + ( b12 * cond ) + ( b22* t ime ) + ( b32* x l a g ) + U23*u0 ;
mu_2 = ( exp ( e t a 2 3 ) ) / ( 1 + exp ( e t a 2 3 ) ) ;
c a l l r a n b i n ( seed , 1 , mu_2 , y3 ) ;

/ * c r e a t e m i s s i n g v a l u e s * /
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k2 , r12 ) ;

/ * MAR * /
r32 =( exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) / ( 1 + exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) ;

c a l l r a n b i n ( seed , 1 , r32 , r32 ) ;
/ * MNAR * /
r42 =( exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) / ( 1 + exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) ;

c a l l r a n b i n ( seed , 1 , r42 , r42 ) ;
end ;
/ * q u i t t e r t o smoker t r a n s i t i o n * /

i f y l a g =3 t h e n do ;
e t a 3 2 = b03 + ( b13 * cond ) + ( b23* t ime ) + ( b33* x l a g ) + U32*u0 ;
mu_3 = ( exp ( e t a 3 2 ) ) / ( 1 + exp ( e t a 3 2 ) ) ;
c a l l r a n b i n ( seed , 1 , mu_3 , y4 ) ;
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/ * c r e a t e m i s s i n g v a l u e s * /
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k3 , r13 ) ;
/ * MAR * /

r33 =( exp ( m03_1+m13* x 2 l a g +m23* y l a g ) ) / ( 1 + exp ( m03_1+m13* x 2 l a g +m23* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r33 , r33 ) ;

/ * MNAR * /
r43 =( exp ( m03+m13* x 2 l a g +m23* y l a g +m33*y ) ) / ( 1 + exp ( m03+m13* x 2 l a g +m23* y l a g +m33*y ) ) ;
c a l l r a n b i n ( seed , 1 , r43 , r43 ) ;

end ;

i f y2=1 t h e n y =2; i f y2=0 t h e n y =1;
i f y3=1 t h e n y =3; i f y3=0 t h e n y =2;
i f y4=1 t h e n y =2; i f y4=0 t h e n y =3;

c a l l symput ( " y l a g " , t r i m ( l e f t ( p u t ( y , 8 . ) ) ) ) ;
c a l l symput ( " x l a g " , ( p u t ( x1 , 8 . 2 ) ) ) ;
c a l l symput ( " x 2 l a g " , ( p u t ( x2 , 8 . 2 ) ) ) ;
o u t p u t ;

end ;
i f t ime =4 t h e n do ;

mu_1 = . ; mu_2 = . ; mu_3 = . ; y2 = . ; y3 = . ; y4 = . ;
y l a g = i n p u t ( symget ( " y l a g " ) , b e s t . ) ;
x1 =( z1 + 5 ) ;
x2= abs ( z2 )+ y l a g ;
x l a g = i n p u t ( symget ( " x l a g " ) , b e s t . ) ;
x 2 l a g = i n p u t ( symget ( " x 2 l a g " ) , b e s t . ) ;
/ * non−smoker t o smoker * /
i f y l a g =1 t h e n do ;

e t a 1 2 = b01 + ( b11 * cond ) + ( b21* t ime ) + ( b31* x l a g ) + U12*u0 ;
mu_1 = ( exp ( e t a 1 2 ) ) / ( 1 + exp ( e t a 1 2 ) ) ;
c a l l r a n b i n ( seed , 1 , mu_1 , y2 ) ;
/ * m i s s i n g v a l u e s * /
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k1 , r11 ) ;
/ * MAR * /
r31 =( exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) / ( 1 + exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r31 , r31 ) ;
/ * MNAR * /
r41 =( exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) / ( 1 + exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) ;
c a l l r a n b i n ( seed , 1 , r41 , r41 ) ;

end ;
/ * smoker t o q u i t t e r * /
i f y l a g =2 t h e n do ;

e t a 2 3 = b02 + ( b12 * cond ) + ( b22* t ime ) + ( b32* x l a g ) + U23*u0 ;
mu_2 = ( exp ( e t a 2 3 ) ) / ( 1 + exp ( e t a 2 3 ) ) ;
c a l l r a n b i n ( seed , 1 , mu_2 , y3 ) ;
/ * m i s s i n g v a l u e s * /
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k2 , r12 ) ;
/ * MAR * /
r32 =( exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) / ( 1 + exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r32 , r32 ) ;
/ * MNAR * /
r42 =( exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) / ( 1 + exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) ;
c a l l r a n b i n ( seed , 1 , r42 , r42 ) ;

end ;
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/ * q u i t t e r t o smoker * /
i f y l a g =3 t h e n do ;

e t a 3 2 = b03 + ( b13 * cond ) + ( b23* t ime ) + ( b33* x l a g ) + U32*u0 ;
mu_3 = ( exp ( e t a 3 2 ) ) / ( 1 + exp ( e t a 3 2 ) ) ;
/ * m i s s i n g v a l u e s * /

c a l l r a n b i n ( seed , 1 , mu_3 , y4 ) ;
/ * MCAR * /

c a l l r a n b i n ( seed , 1 , k3 , r13 ) ;
/ * MAR * /

r33 =( exp ( m03_1+m13* x 2 l a g +m23* y l a g ) ) / ( 1 + exp ( m03_1+m13* x 2 l a g +m23* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r33 , r33 ) ;
/ * MNAR * /
r43 =( exp ( m03+m13* x 2 l a g +m23* y l a g +m33*y ) ) / ( 1 + exp ( m03+m13* x 2 l a g +m23* y l a g +m33*y ) ) ;
c a l l r a n b i n ( seed , 1 , r43 , r43 ) ;

end ;
i f y2=1 t h e n y =2; i f y2=0 t h e n y =1;
i f y3=1 t h e n y =3; i f y3=0 t h e n y =2;
i f y4=1 t h e n y =2; i f y4=0 t h e n y =3;
c a l l symput ( " y l a g " , t r i m ( l e f t ( p u t ( y , 8 . ) ) ) ) ;
c a l l symput ( " x l a g " , ( p u t ( x1 , 8 . 2 ) ) ) ;
c a l l symput ( " x 2 l a g " , ( p u t ( x2 , 8 . 2 ) ) ) ;
o u t p u t ;

end ;
i f t ime =5 t h e n do ;

mu_1 = . ; mu_2 = . ; mu_3 = . ; y2 = . ; y3 = . ; y4 = . ;
y l a g = i n p u t ( symget ( " y l a g " ) , b e s t . ) ;
x1 =( z1 + 5 ) ;
x2= abs ( z2 )+ y l a g ;
x l a g = i n p u t ( symget ( " x l a g " ) , b e s t . ) ;
x 2 l a g = i n p u t ( symget ( " x 2 l a g " ) , b e s t . ) ;
/ * non−smoker t o smoker * /
i f y l a g =1 t h e n do ;

e t a 1 2 = b01 + ( b11 * cond ) + ( b21* t ime ) + ( b31* x l a g ) + U12*u0 ;
mu_1 = ( exp ( e t a 1 2 ) ) / ( 1 + exp ( e t a 1 2 ) ) ; c a l l r a n b i n ( seed , 1 , mu_1 , y2 ) ;
/ * m i s s i n g v a l u e s * /
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k1 , r11 ) ;
/ * MAR * /
r31 =( exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) / ( 1 + exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r31 , r31 ) ;
/ * MNAR * /
r41 =( exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) / ( 1 + exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) ;
c a l l r a n b i n ( seed , 1 , r41 , r41 ) ;

end ;
/ * smoker t o q u i t t e r * /
i f y l a g =2 t h e n do ;

e t a 2 3 = b02 + ( b12 * cond ) + ( b22* t ime ) + ( b32* x l a g ) + U23*u0 ;
mu_2 = ( exp ( e t a 2 3 ) ) / ( 1 + exp ( e t a 2 3 ) ) ;
c a l l r a n b i n ( seed , 1 , mu_2 , y3 ) ;
/ * m i s s i n g v a l u e s * /
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k2 , r12 ) ;
/ * MAR * /
r32 =( exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) / ( 1 + exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r32 , r32 ) ;
/ * MNAR * /
r42 =( exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) / ( 1 + exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) ;
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c a l l r a n b i n ( seed , 1 , r42 , r42 ) ;
end ;
/ * q u i t t e r t o smoker * /
i f y l a g =3 t h e n do ;

e t a 3 2 = b03 + ( b13 * cond ) + ( b23* t ime ) + ( b33* x l a g ) + U32*u0 ;
mu_3 = ( exp ( e t a 3 2 ) ) / ( 1 + exp ( e t a 3 2 ) ) ;
/ * m i s s i n g v a l u e s * /
c a l l r a n b i n ( seed , 1 , mu_3 , y4 ) ;
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k3 , r13 ) ;
/ * MAR * /
r33 =( exp ( m03_1+m13* x 2 l a g +m23* y l a g ) ) / ( 1 + exp ( m03_1+m13* x 2 l a g +m23* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r33 , r33 ) ;
/ * MNAR * /
r43 =( exp ( m03+m13* x 2 l a g +m23* y l a g +m33*y ) ) / ( 1 + exp ( m03+m13* x 2 l a g +m23* y l a g +m33*y ) ) ;
c a l l r a n b i n ( seed , 1 , r43 , r43 ) ;

end ;
i f y2=1 t h e n y =2; i f y2=0 t h e n y =1;
i f y3=1 t h e n y =3; i f y3=0 t h e n y =2;
i f y4=1 t h e n y =2; i f y4=0 t h e n y =3;
c a l l symput ( " y l a g " , t r i m ( l e f t ( p u t ( y , 8 . ) ) ) ) ;
c a l l symput ( " x l a g " , ( p u t ( x1 , 8 . 2 ) ) ) ;
c a l l symput ( " x 2 l a g " , ( p u t ( x2 , 8 . 2 ) ) ) ;
o u t p u t ;

end ;
i f t ime =6 t h e n do ;

mu_1 = . ; mu_2 = . ; mu_3 = . ; y2 = . ; y3 = . ; y4 = . ;
y l a g = i n p u t ( symget ( " y l a g " ) , b e s t . ) ;
x1 =( z1 + 5 ) ;
x2= abs ( z2 )+ y l a g ;
x l a g = i n p u t ( symget ( " x l a g " ) , b e s t . ) ;
x 2 l a g = i n p u t ( symget ( " x 2 l a g " ) , b e s t . ) ;
/ * non−smoker t o smoker * /
i f y l a g =1 t h e n do ;
e t a 1 2 = b01 + ( b11 * cond ) + ( b21* t ime ) + ( b31* x l a g ) + U12*u0 ;

mu_1 = ( exp ( e t a 1 2 ) ) / ( 1 + exp ( e t a 1 2 ) ) ;
c a l l r a n b i n ( seed , 1 , mu_1 , y2 ) ;
/ * m i s s i n g v a l u e s * /
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k1 , r11 ) ;
/ * MAR: CDD * /
r21 =( exp ( m01_1+m11* x 2 l a g ) ) / ( 1 + exp ( m01_1+m11* x 2 l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r21 , r21 ) ;
/ * MAR * /
r31 =( exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) / ( 1 + exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r31 , r31 ) ;
/ * MNAR * /
r41 =( exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) / ( 1 + exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) ;
c a l l r a n b i n ( seed , 1 , r41 , r41 ) ;

end ;
/ * smoker t o q u i t t e r * /
i f y l a g =2 t h e n do ;

e t a 2 3 = b02 + ( b12 * cond ) + ( b22* t ime ) + ( b32* x l a g ) + U23*u0 ;
mu_2 = ( exp ( e t a 2 3 ) ) / ( 1 + exp ( e t a 2 3 ) ) ; c a l l r a n b i n ( seed , 1 , mu_2 , y3 ) ;
/ * m i s s i n g v a l u e s * /
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k2 , r12 ) ;

203



/ * MAR * /
r32 =( exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) / ( 1 + exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r32 , r32 ) ;
/ * MNAR * /
r42 =( exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) / ( 1 + exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) ;
c a l l r a n b i n ( seed , 1 , r42 , r42 ) ;

end ;
/ * q u i t t e r t o smoker * /
i f y l a g =3 t h e n do ;

e t a 3 2 = b03 + ( b13 * cond ) + ( b23* t ime ) + ( b33* x l a g ) + U32*u0 ;
mu_3 = ( exp ( e t a 3 2 ) ) / ( 1 + exp ( e t a 3 2 ) ) ;
/ * m i s s i n g v a l u e s * /

c a l l r a n b i n ( seed , 1 , mu_3 , y4 ) ;
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k3 , r13 ) ;
/ * MAR * /
r33 =( exp ( m01_1+m13* x 2 l a g +m23* y l a g ) ) / ( 1 + exp ( m01_1+m13* x 2 l a g +m23* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r33 , r33 ) ;
/ * MNAR * /
r43 =( exp ( m01+m13* x 2 l a g +m23* y l a g +m33*y ) ) / ( 1 + exp ( m01+m13* x 2 l a g +m23* y l a g +m33*y ) ) ;
c a l l r a n b i n ( seed , 1 , r43 , r43 ) ;

end ;
i f y2=1 t h e n y =2; i f y2=0 t h e n y =1;
i f y3=1 t h e n y =3; i f y3=0 t h e n y =2;
i f y4=1 t h e n y =2; i f y4=0 t h e n y =3;
c a l l symput ( " y l a g " , t r i m ( l e f t ( p u t ( y , 8 . ) ) ) ) ;
c a l l symput ( " x l a g " , ( p u t ( x1 , 8 . 2 ) ) ) ;
c a l l symput ( " x 2 l a g " , ( p u t ( x2 , 8 . 2 ) ) ) ;
o u t p u t ;

end ;
i f t ime =7 t h e n do ;

mu_1 = . ; mu_2 = . ; mu_3 = . ; y2 = . ; y3 = . ; y4 = . ;
y l a g = i n p u t ( symget ( " y l a g " ) , b e s t . ) ;
x1 =( z1 + 5 ) ;
x2= abs ( z2 )+ y l a g ;
x l a g = i n p u t ( symget ( " x l a g " ) , b e s t . ) ;
x 2 l a g = i n p u t ( symget ( " x 2 l a g " ) , b e s t . ) ;
/ * non−smoker t o smoker * /
i f y l a g =1 t h e n do ;

e t a 1 2 = b01 + ( b11 * cond ) + ( b21* t ime ) + ( b31* x l a g ) + U12*u0 ;
mu_1 = ( exp ( e t a 1 2 ) ) / ( 1 + exp ( e t a 1 2 ) ) ;
/ * m i s s i n g v a l u e s * /
c a l l r a n b i n ( seed , 1 , mu_1 , y2 ) ;
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k1 , r11 ) ;
/ * MAR * /
r31 =( exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) / ( 1 + exp ( m01_1+m11* x 2 l a g +m21* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r31 , r31 ) ;
/ * MNAR * /
r41 =( exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) / ( 1 + exp ( m01+m11* x 2 l a g +m21* y l a g +m31*y ) ) ;
c a l l r a n b i n ( seed , 1 , r41 , r41 ) ;

end ;
/ * smoker t o q u i t t e r * /
i f y l a g =2 t h e n do ;

e t a 2 3 = b02 + ( b12 * cond ) + ( b22* t ime ) + ( b32* x l a g ) + U23*u0 ;
mu_2 = ( exp ( e t a 2 3 ) ) / ( 1 + exp ( e t a 2 3 ) ) ;
/ * m i s s i n g v a l u e s * /
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c a l l r a n b i n ( seed , 1 , mu_2 , y3 ) ;
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k2 , r12 ) ;
/ * MAR * /
r32 =( exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) / ( 1 + exp ( m02_1+m12* x 2 l a g +m22* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r32 , r32 ) ;
/ * MNAR * /
r42 =( exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) / ( 1 + exp ( m02+m12* x 2 l a g +m22* y l a g +m32*y ) ) ;
c a l l r a n b i n ( seed , 1 , r42 , r42 ) ;

end ;
/ * q u i t t e r t o smoker * /
i f y l a g =3 t h e n do ;

e t a 3 2 = b03 + ( b13 * cond ) + ( b23* t ime ) + ( b33* x l a g ) + U32*u0 ;
mu_3 = ( exp ( e t a 3 2 ) ) / ( 1 + exp ( e t a 3 2 ) ) ;
/ * m i s s i n g v a l u e s * /

c a l l r a n b i n ( seed , 1 , mu_3 , y4 ) ;
/ * MCAR * /
c a l l r a n b i n ( seed , 1 , k3 , r13 ) ;

/ * MAR * /
r33 =( exp ( m03_1+m13* x 2 l a g +m23* y l a g ) ) / ( 1 + exp ( m03_1+m13* x 2 l a g +m23* y l a g ) ) ;
c a l l r a n b i n ( seed , 1 , r33 , r33 ) ;
/ * MNAR * /
r43 =( exp ( m03+m13* x 2 l a g +m23* y l a g +m33*y ) ) / ( 1 + exp ( m03+m13* x 2 l a g +m23* y l a g +m33*y ) ) ;
c a l l r a n b i n ( seed , 1 , r43 , r43 ) ;

end ;
i f y2=1 t h e n y =2; i f y2=0 t h e n y =1;
i f y3=1 t h e n y =3; i f y3=0 t h e n y =2;
i f y4=1 t h e n y =2; i f y4=0 t h e n y =3;
c a l l symput ( " y l a g " , t r i m ( l e f t ( p u t ( y , 8 . ) ) ) ) ;
c a l l symput ( " x l a g " , ( p u t ( x1 , 8 . 2 ) ) ) ;
c a l l symput ( " x 2 l a g " , ( p u t ( x2 , 8 . 2 ) ) ) ;
o u t p u t ;

end ;
end ;

end ;
end ;

run ;
d a t a _b ;

s e t _a ;

/ * need t o r e t a i n a v a r h e r e
r e t a i n cmis s ; * /

y2 =96; y3 =96; y4 =96;

i f t ime =1 t h e n do ;
i f y=1 t h e n y2 =0; * NS ;
i f y=2 t h e n y3 =0; * SMK ;
i f y=3 t h e n y4 =0; * QT;

end ;
i f t ime =2 t h e n do ;

i f y=1 and y l a g =1 t h e n y2 =0; /*** remained non−smokers *** /
i f y=2 and y l a g =1 t h e n y2 = 1 ; / * * * became smokers *** /

i f y=2 and y l a g =1 t h e n y3 =0; /*** smoker s t a t e *** /
i f y=2 and y l a g =2 t h e n y3 =0; /*** remained smokers *** /
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i f y=3 and y l a g =2 t h e n y3 =1; /*** q u i t smoking *** /

i f y=3 and y l a g =2 t h e n y4 =0; /*** q u i t t e r s t a t e *** /
i f y=3 and y l a g =3 t h e n y4 =0; /*** remained q u i t **** /
i f y=2 and y l a g =3 t h e n y4 = 1 ; / * * * r e l a p s e : s t a r t e d smoking a g a i n *** /

end ;
i f t ime =3 t h e n do ;

i f y=1 and y l a g =1 t h e n y2 =0; /*** remained non−smokers *** /
i f y=2 and y l a g =1 t h e n y2 = 1 ; / * * * became smokers *** /

i f y=2 and y l a g =1 t h e n y3 =0; /*** smoker s t a t e *** /
i f y=2 and y l a g =2 t h e n y3 =0; /*** remained smokers *** /
i f y=3 and y l a g =2 t h e n y3 =1; /*** q u i t smoking *** /

i f y=3 and y l a g =2 t h e n y4 =0; /*** q u i t t e r s t a t e *** /
i f y=3 and y l a g =3 t h e n y4 =0; /*** remained a q u i t t e r **** /
i f y=2 and y l a g =3 t h e n y4 = 1 ; / * * * r e l a p s e : s t a r t e d smoking a g a i n *** /

end ;
i f t ime =4 t h e n do ;

i f y=1 and y l a g =1 t h e n y2 = 0 ; / * * * remained non−smokers *** /
i f y=2 and y l a g =1 t h e n y2 = 1 ; / * * * became smokers *** /

i f y=2 and y l a g =1 t h e n y3 = 0 ; / * * * smoker s t a t e *** /
i f y=2 and y l a g =2 t h e n y3 = 0 ; / * * * remained smokers *** /
i f y=3 and y l a g =2 t h e n y3 = 1 ; / * * * q u i t smoking *** /

i f y=3 and y l a g =2 t h e n y4 = 0 ; / * * * q u i t t e r s t a t e *** /
i f y=3 and y l a g =3 t h e n y4 = 0 ; / * * * remained q u i t **** /
i f y=2 and y l a g =3 t h e n y4 = 1 ; / * * * r e l a p s e : s t a r t e d smoking a g a i n *** /

end ;
i f t ime =5 t h e n do ;

i f y=1 and y l a g =1 t h e n y2 = 0 ; / * * * remained non−smokers *** /
i f y=2 and y l a g =1 t h e n y2 = 1 ; / * * * became smokers *** /

i f y=2 and y l a g =1 t h e n y3 = 0 ; / * * * smoker s t a t e *** /
i f y=2 and y l a g =2 t h e n y3 = 0 ; / * * * remained smokers *** /
i f y=3 and y l a g =2 t h e n y3 = 1 ; / * * * q u i t smoking *** /

i f y=3 and y l a g =2 t h e n y4 = 0 ; / * * * q u i t t e r s t a t e *** /
i f y=3 and y l a g =3 t h e n y4 = 0 ; / * * * remained q u i t **** /
i f y=2 and y l a g =3 t h e n y4 = 1 ; / * * * r e l a p s e : s t a r t e d smoking a g a i n *** /

end ;
i f t ime =6 t h e n do ;

i f y=1 and y l a g =1 t h e n y2 = 0 ; / * * * remained non−smokers *** /
i f y=2 and y l a g =1 t h e n y2 = 1 ; / * * * became smokers *** /

i f y=2 and y l a g =1 t h e n y3 = 0 ; / * * * smoker s t a t e *** /
i f y=2 and y l a g =2 t h e n y3 = 0 ; / * * * remained smokers *** /
i f y=3 and y l a g =2 t h e n y3 = 1 ; / * * * q u i t smoking *** /

i f y=3 and y l a g =2 t h e n y4 = 0 ; / * * * q u i t t e r s t a t e *** /
i f y=3 and y l a g =3 t h e n y4 = 0 ; / * * * remained q u i t **** /
i f y=2 and y l a g =3 t h e n y4 = 1 ; / * * * r e l a p s e : s t a r t e d smoking a g a i n *** /

end ;
i f t ime =7 t h e n do ;

i f y=1 and y l a g =1 t h e n y2 = 0 ; / * * * remained non−smokers *** /
i f y=2 and y l a g =1 t h e n y2 = 1 ; / * * * became smokers *** /
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i f y=2 and y l a g =1 t h e n y3 = 0 ; / * * * smoker s t a t e *** /
i f y=2 and y l a g =2 t h e n y3 = 0 ; / * * * remained smokers *** /
i f y=3 and y l a g =2 t h e n y3 = 1 ; / * * * q u i t smoking *** /

i f y=3 and y l a g =2 t h e n y4 = 0 ; / * * * q u i t t e r s t a t e *** /
i f y=3 and y l a g =3 t h e n y4 = 0 ; / * * * remained q u i t **** /
i f y=2 and y l a g =3 t h e n y4 = 1 ; / * * * r e l a p s e : s t a r t e d smoking a g a i n *** /

end ;

Labe l y2 = " Moving from NS t o SM" ;
Labe l y3 = " Moving from SM t o QT " ;
Labe l y4 = " Moving from QT t o SM" ;

t i m e c l s s = t ime ;
c o n s t =1 ;

i d =( s i d *1000)+ i d ;

/ * a s s i g n m i s s i n g v a l u e s t o t h e d a t a * /
i f r11 =1 t h e n r11 = . ; i f r11 =0 t h e n r11 =1;
i f r12 =1 t h e n r12 = . ; i f r12 =0 t h e n r12 =1;
i f r13 =1 t h e n r13 = . ; i f r13 =0 t h e n r13 =1;

i f r31 =1 t h e n r31 = . ; i f r31 =0 t h e n r31 =1;
i f r32 =1 t h e n r32 = . ; i f r32 =0 t h e n r32 =1;
i f r33 =1 t h e n r33 = . ; i f r33 =0 t h e n r33 =1;

i f r41 =1 t h e n r41 = . ; i f r41 =0 t h e n r41 =1;
i f r42 =1 t h e n r42 = . ; i f r42 =0 t h e n r42 =1;
i f r43 =1 t h e n r43 = . ; i f r43 =0 t h e n r43 =1;

/ * a s s i g n m i s s i n g d a t a t o r e s p o n s e v a r i a b l e * /
cy2=y2* r11 ; cy3=y3* r12 ; cy4=y4* r13 ; * NS −> SM;
ay2=y2* r31 ; ay3=y3* r32 ; ay4=y4* r33 ; * SM −> QT;
ny2=y2* r41 ; ny3=y3* r42 ; ny4=y4* r43 ; * QT −> SM;

/ * s e t a l l m i s s i n g d a t a t o b i n a r y ( 0 , 1 ) v a l u e s * /
i f r11 =1 t h e n r11 =0; i f r11 = . t h e n r11 =1;
i f r12 =1 t h e n r12 =0; i f r12 = . t h e n r12 =1;
i f r13 =1 t h e n r13 =0; i f r13 = . t h e n r13 =1;

i f r31 =1 t h e n r31 =0; i f r31 = . t h e n r31 =1;
i f r32 =1 t h e n r32 =0; i f r32 = . t h e n r32 =1;
i f r33 =1 t h e n r33 =0; i f r33 = . t h e n r33 =1;

i f r41 =1 t h e n r41 =0; i f r41 = . t h e n r41 =1;
i f r42 =1 t h e n r42 =0; i f r42 = . t h e n r42 =1;
i f r43 =1 t h e n r43 =0; i f r43 = . t h e n r43 =1;

l a b e l
cy2 = " Y2 : MCAR" cy3= "Y3 : MCAR" cy4 = " Y4 : MCAR"
ay2 = " Y2 : MAR" ay3= "Y3 : MAR" ay4 = " Y4 : MAR"
ny2 = " Y2 : MNAR" ny3= "Y3 : MNAR" ny4 = " Y4 : MNAR"
y2 = " Moving from NS−SM"
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y3 = " Moving from SM t o QT"
y4 = " Moving from QT t o SM"
;

run ;

/ * c r e a t e m i s s i n g d a t a p a t t e r n s : MNAR * /
p roc t r a n s p o s e d a t a =_b ( keep= i d t ime ny2 ny3 ny4 ) o u t =_nc ;

by i d ;
i d t ime ;
v a r ny2 ny3 ny4 ;

run ;

d a t a _nc ;
s e t _nc ;
a r r a y a [ * ] _1−−_7 ;
p a t t e r n = . ;
do i =1 t o dim ( a ) ;

i f p a t t e r n = . t h e n do ;
i f a [ i ] = . t h e n p a t t e r n = i ;

end ;
end ;
i f i > 7 & p a t t e r n = . t h e n p a t t e r n =0;

run ;

/ * MCAR * /
p roc t r a n s p o s e d a t a =_b ( keep= i d t ime cy2 cy3 cy4 ) o u t =_cc ;

by i d ;
i d t ime ;
v a r cy2 cy3 cy4 ;

run ;

d a t a _cc ;
s e t _cc ;
a r r a y a [ * ] _1−−_7 ;
p a t t e r n = . ;
do i =1 t o dim ( a ) ;

i f p a t t e r n = . t h e n do ;
i f a [ i ] = . t h e n p a t t e r n = i ;

end ;
end ;
i f i > 7 & p a t t e r n = . t h e n p a t t e r n =0;

run ;

/ * MAR * /
p roc t r a n s p o s e d a t a =_b ( keep= i d t ime ay2 ay3 ay4 ) o u t =_ac ;

by i d ;
i d t ime ;
v a r ay2 ay3 ay4 ;

run ;

d a t a _ac ;
s e t _ac ;
a r r a y a [ * ] _1−−_7 ;
p a t t e r n = . ;
do i =1 t o dim ( a ) ;
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i f p a t t e r n = . t h e n do ;
i f a [ i ] = . t h e n p a t t e r n = i ;

end ;
end ;
i f i > 7 & p a t t e r n = . t h e n p a t t e r n =0;

run ;

/ * combine a l l m i s s i n g d a t a * /
d a t a sim ;

merge _b ( i n =a )
_cc ( i n =bb keep= i d _name_ p a t t e r n rename =( p a t t e r n =cp2 ) where =( _name_ =" cy2 " ) )
_cc ( i n =cc keep= i d _name_ p a t t e r n rename =( p a t t e r n =cp3 ) where =( _name_ =" cy3 " ) )
_cc ( i n =dd keep= i d _name_ p a t t e r n rename =( p a t t e r n =cp4 ) where =( _name_ =" cy4 " ) )
_ac ( i n =ab keep= i d _name_ p a t t e r n rename =( p a t t e r n =ap2 ) where =( _name_ =" ay2 " ) )
_ac ( i n =ac keep= i d _name_ p a t t e r n rename =( p a t t e r n =ap3 ) where =( _name_ =" ay3 " ) )
_ac ( i n =ad keep= i d _name_ p a t t e r n rename =( p a t t e r n =ap4 ) where =( _name_ =" ay4 " ) )
_nc ( i n =b keep= i d _name_ p a t t e r n rename =( p a t t e r n =p2 ) where =( _name_ =" ny2 " ) )
_nc ( i n =c keep= i d _name_ p a t t e r n rename =( p a t t e r n =p3 ) where =( _name_ =" ny3 " ) )
_nc ( i n =d keep= i d _name_ p a t t e r n rename =( p a t t e r n =p4 ) where =( _name_ =" ny4 " ) ) ;

by i d ;
drop _name_ ;

a r r a y m[ 9 , 3 ]
cp2 r11 cy2 cp3 r12 cy3 cp4 r13 cy4
ap2 r31 ay2 ap3 r32 ay3 ap4 r33 ay4
p2 r41 ny2 p3 r42 ny3 p4 r43 ny4 ;

do i =1 t o dim1 (m) ;
i f m[ i , 1 ] ^ = 0 t h e n do ;

i f t ime > m[ i , 1 ] t h e n do ;
m[ i , 2 ] = 1 ;
m[ i , 3 ] = . ;

end ;
end ;

end ;

i f cy2 = . t h e n cy3 =96; i f cy2 = . t h e n cy4 =96;
i f cy3 = . t h e n cy4 =96; i f cy4 = . t h e n cy3 = 9 6 . ;

i f ay2 = . t h e n ay3 =96; i f ay2 = . t h e n ay4 =96;
i f ay3 = . t h e n ay4 =96; i f ay4 = . t h e n ay3 = 9 6 . ;

i f ny2 = . t h e n ny3 =96; i f ny2 = . t h e n ny4 =96;
i f ny3 = . t h e n ny4 =96; i f ny4 = . t h e n ny3 = 9 6 . ;

* i f ny2 =96 t h e n p2 =96;
* i f ny3 =96 t h e n p3 =96;
* i f ny4 =96 t h e n p2 =96;

* i f ny2 = . t h e n r41 =1;

o ld_x1 =x1 ; /*** t o keep t h e o r i g i n a l x1 *** /
x1= x l a g ; / * * * t o use l a g x or X_{ t−1} i n s u b s e q u e n t a n a l y s i s *** /
o ld_x2 =x2 ;
x2= x 2 l a g ;

i f x2 = . t h e n x2= old_x2 ;
i f x1 = . t h e n x1= old_x1 ;
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run ;

d a t a sim ;
s e t sim ;

* i f ny2 =96 t h e n p2 =96;
* i f ny3 =96 t h e n p3 =96;
* i f ny4 =96 t h e n p4 =96;

i f t ime >=2 and ( ny2 = . and ny3 = . and ny4 = . ) t h e n do ;
i f y l a g =1 and y=1 t h e n ny3 =96; i f y l a g =1 and y=1 t h e n ny4 =96;
i f y l a g =1 and y=2 t h e n ny4 =96;

i f y l a g =2 and y=2 t h e n ny2 =96; i f y l a g =2 and y=2 t h e n ny4 =96;
i f y l a g =2 and y=3 t h e n ny2 =96;

i f y l a g =3 and y=3 t h e n ny2 =96; i f y l a g =3 and y=3 t h e n ny3 =96;
i f y l a g =3 and y=2 t h e n ny2 =96;
end ;

i f t ime >=2 and ( ay2 = . and ay3 = . and ay4 = . ) t h e n do ;
i f y l a g =1 and y=1 t h e n ay3 =96; i f y l a g =1 and y=1 t h e n ay4 =96;
i f y l a g =1 and y=2 t h e n ay4 =96;

i f y l a g =2 and y=2 t h e n ay2 =96; i f y l a g =2 and y=2 t h e n ay4 =96;
i f y l a g =2 and y=3 t h e n ay2 =96;

i f y l a g =3 and y=3 t h e n ay2 =96; i f y l a g =3 and y=3 t h e n ay3 =96;
i f y l a g =3 and y=2 t h e n ay2 =96;
end ;

i f t ime >=2 and ( cy2 = . and cy3 = . and cy4 = . ) t h e n do ;
i f y l a g =1 and y=1 t h e n cy3 =96; i f y l a g =1 and y=1 t h e n cy4 =96;
i f y l a g =1 and y=2 t h e n cy4 =96;

i f y l a g =2 and y=2 t h e n cy2 =96; i f y l a g =2 and y=2 t h e n cy4 =96;
i f y l a g =2 and y=3 t h e n cy2 =96;

i f y l a g =3 and y=3 t h e n cy2 =96; i f y l a g =3 and y=3 t h e n cy3 =96;
i f y l a g =3 and y=2 t h e n cy2 =96;
end ;
run ;

p roc d a t a s e t s l i b r a r y =work n o d e t a i l s n o l i s t ;
d e l e t e _ : ;

q u i t ;

/ *** Data s t r u c t u r e f o r LOCF method **** /
d a t a l o c f ;
s e t sim ;
r e t a i n l c y 2 l c y 3 l c y 4 l a y 2 l a y 3 l a y 4 lny2 lny3 lny4 ;
a r r a y v a l s [ 9 , 2 ]

cy2 l c y 2
cy3 l c y 3
cy4 l c y 4
ay2 l a y 2
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ay3 l a y 3
ay4 l a y 4
ny2 lny2
ny3 lny3
ny4 lny4 ;

do i =1 t o dim1 ( v a l s ) ;
i f v a l s [ i , 1 ] ^ = . t h e n v a l s [ i , 2 ] = v a l s [ i , 1 ] ;
e l s e v a l s [ i , 1 ] = v a l s [ i , 1 ] ;

end ; drop i ;

run ;
d a t a l o c f ;
s e t l o c f ;

i f ny2=1 and ny3=0 t h e n lny3 =96;
i f ny3=1 and ny4=0 t h e n lny4 =96;
i f ny4=1 and ny3=0 t h e n lny3 =96;

i f cy2 =1 and cy3 =0 t h e n l c y 3 =96;
i f cy3 =1 and cy4 =0 t h e n l c y 4 =96;
i f cy4 =1 and cy3 =0 t h e n l c y 3 =96;

i f ay2 =1 and ay3 =0 t h e n l a y 3 =96;
i f ay3 =1 and ay4 =0 t h e n l a y 4 =96;
i f ay4 =1 and ay3 =0 t h e n l a y 3 =96;

i f y2 =96 t h e n l c y 2 =96; i f y2 =96 t h e n l a y 2 =96; i f y2 =96 t h e n lny2 =96;
i f y3 =96 t h e n l c y 3 =96; i f y3 =96 t h e n l a y 3 =96; i f y3 =96 t h e n lny3 =96;
i f y4 =96 t h e n l c y 4 =96; i f y4 =96 t h e n l a y 4 =96; i f y4 =96 t h e n lny4 =96;

i f t ime =1 t h e n do ;
y2 =96; y3 =96; y4 =96;
lny2 =96; lny3 =96; lny4 =96;
l c y 2 =96; l c y 3 =96; l c y 4 =96;
l a y 2 =96; l a y 3 =96; l a y 4 =96;
end ;

i f y2=1 and y3=0 t h e n y3 =96;
i f y3=1 and y4=0 t h e n y4 =96;
i f y4=1 and y3=0 t h e n y3 =96;

run ;
d a t a sim ;
s e t sim ;
i f t ime =1 t h e n do ;
y2 =96; y3 =96; y4 =96;
ny2 =96; ny3 =96; ny4 =96;
cy2 =96; cy3 =96; cy4 =96;
ay2 =96; ay3 =96; ay4 =96;
end ;

i f y2=1 and y3=0 t h e n y3 =96;
i f y3=1 and y4=0 t h e n y4 =96;
i f y4=1 and y3=0 t h e n y3 =96;
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i f ny2=1 and ny3=0 t h e n ny3 =96;
i f ny3=1 and ny4=0 t h e n ny4 =96;
i f ny4=1 and ny3=0 t h e n ny3 =96;

i f cy2 =1 and cy3 =0 t h e n cy3 =96;
i f cy3 =1 and cy4 =0 t h e n cy4 =96;
i f cy4 =1 and cy3 =0 t h e n cy3 =96;

i f ay2 =1 and ay3 =0 t h e n ay3 =96;
i f ay3 =1 and ay4 =0 t h e n ay4 =96;
i f ay4 =1 and ay3 =0 t h e n ay3 =96;
run ;
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