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Abstract 
Background and Purpose: The endothelium is a single-cell layer positioned at the blood-

vascular wall interface, where in response to blood-borne signals and hemodynamic forces, 

endothelial cells act as central regulators of vascular homeostatic processes including vascular 

tone, growth and remodeling, inflammation and adhesion, and blood fluidity and coagulation. 

Agonist- or flow-stimulated endothelium-dependent vasorelaxation becomes impaired in states of 

cardiovascular disease (CVD) risk and has been identified as a possible biomarker of overall 

endothelial dysfunction leading to vascular dysregulation and disease pathogenesis. Accordingly, 

it is important to elucidate the mechanisms accounting for this endothelial vasomotor dysfunction. 

Upon stimulation, endothelial cells can synthesize and release a variety of endothelium-derived 

relaxing factors (EDRFs), the most prominent of which is nitric oxide (NO) derived from NO 

synthase (NOS). In addition, under certain CVD risk conditions including hypertension and 

aging, stimulated endothelial cells can become a prominent source of endothelium-derived 

contracting factors (EDCFs) produced in a cyclooxygenase (COX)-dependent manner. 

Consequently, endothelial dysfunction may be caused by under-active EDRF signaling and/or 

competitive over-active EDCF signaling. Much attention has been given to elucidating the 

mechanisms of under-active EDRF signaling and its role in causing endothelial dysfunction, 

wherein excess reactive oxygen species (ROS) accumulation and oxidative stress under CVD risk 

conditions have been recognized as major factors in reducing NO bioavailability thus causing 

under-active EDRF signaling and endothelial dysfunction. Less attention however, has been given 

to elucidating the mechanisms of over-active COX-mediated EDCF signaling and its role in 

causing endothelial dysfunction. Moreover, while COX-mediated EDCF signaling activity has 

been investigated in some segments of the vasculature, most notably the aorta, it has not been 

well-investigated in the common carotid artery (CCA), a highly accessible cerebral blood flow 

conduit particularly advantageous in exploring the roles of the endothelium in vascular 

pathogenesis. It was the global purpose of this thesis to gain a better understanding of the cellular-

molecular mechanisms accounting for endothelial dysfunction in the CCA of animal models 

known to exhibit COX-mediated EDCF signaling activity, in particular essential (spontaneous) 

hypertension and aging.  

Experimental Objective and Approach: This thesis comprises three studies. Study I and Study 

II investigated the CCA of young-adult (16-24wk old) normotensive Wistar Kyoto (WKY) and 

Spontaneously Hypertensive (SHR) rats. Study III investigated the CCA of Adult (25-36wks old) 

and Aging (60-75wks old) Sprague Dawley (SD) rats treated in vivo (or not; CON) with L-
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buthionine sulfoximine (BSO) to chronically deplete the cellular anti-oxidant glutathione (GSH) 

and increase ROS accumulation and oxidative stress. The global objective and approach across 

these studies was to systematically examine the relative contributions of NOS and COX signaling 

pathways in mediating the acetylcholine (ACh)-stimulated endothelium-dependent relaxation 

(EDRF) and contractile (EDCF) activities of isometrically-mounted CCA in tissue baths in vitro, 

with a particular focus on elucidating the mechanisms of COX-mediated EDCF signaling activity. 

An added objective was to examine the in vivo hemodynamic characteristics of the CCA in each 

animal model investigated, serving both to identify the pressure-flow environment that the CCA 

is exposed to in vivo and to provide assessment of potential hypertension, aging, and oxidative 

stress effects on large artery hemodynamics.  

Key Findings: Study I hemodynamic analysis confirmed a hypertensive state in young adult 

SHR while also exposing a reduction in mean CCA blood flow in SHR compared to WKY 

accompanied by a multi-faceted pressure-flow interaction across the cardiac cycle relating to flow 

and pressure augmentation. Study III hemodynamic analysis found that neither aging nor chronic 

BSO-induced GSH depletion affected CCA blood pressure or blood flow parameters in SD rats.  

Study I and II demonstrated that a COX-mediated EDCF response impaired ACh-

stimulated endothelium-dependent vasorelaxation in pre-contracted CCA from young adult SHR, 

while EDRF signaling activity, predominantly mediated by NO, remained well-preserved 

compared to WKY. Examining ACh-stimulated contractile function specifically from a quiescent 

(non pre-contracted) state revealed that EDCF activity did exist in WKY CCA but could be 

completely suppressed by NO-mediated EDRF signaling activity, whereas the similarly robust 

NO-meditated EDRF signaling activity in SHR CCA could not fully suppress its >2-fold 

augmented EDCF activity vs. WKY CCA. Further pharmaco-dissection of ACh-stimulated 

contractile function in the SHR-WKY CCA model revealed that the EDCF signaling activity was 

completely dependent on the COX-1 (but not COX-2) isoform of COX and was almost 

exclusively mediated by the thromboxane-prostanoid (TP) sub-type of the prostaglandin (PG) G-

protein coupled receptor family and by Rho-associated kinase (ROCK), a down-stream effector of 

the molecular switch RhoA. Furthermore, it was found that while exogenous ROS-stimulated 

CCA contractile function was similarly >2-fold augmented in SHR vs. WKY and dependent on 

COX-1 and TP receptor and ROCK effectors, ACh-stimulated CCA EDCF signaling activity was 

only minimally affected by in-bath ROS manipulating compounds. Additional biochemical and 

molecular analysis revealed that ACh stimulation was associated with PG over-production from 

an over-expressed COX-1 in SHR CCA, and with CCA plasma membrane localization and 

activation of RhoA.  
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Study III demonstrated that a COX-mediated EDCF response impaired ACh-stimulated 

endothelium-dependent vasorelaxation in pre-contracted CCA from Aging SD rats, while EDRF 

signaling activity, predominantly mediated by NO, remained well-preserved compared to Adult 

SD rats. Specific examination of ACh-stimulated contractile function revealed that EDCF activity 

did exist in Adult CCA but could be completely suppressed by NO-mediated EDRF signaling 

activity, whereas the similarly robust NO-meditated EDRF signaling activity in Aging CCA could 

not fully suppress its >3-fold augmented EDCF activity vs. Adult CCA. Further pharmaco-

dissection of ACh-stimulated contractile function in the Adult-Aging SD rat CCA model revealed 

that EDCF signaling activity was completely dependent on COX-1, but while exogenous ROS 

was able to elicit a COX-dependent CCA contractile response, in-bath ROS manipulating 

compounds were found to be without effect on ACh-stimulated CCA EDCF signaling activity. 

Furthermore, biochemical analysis revealed that aging was not associated with a change in tissue 

(liver and vascular) GSH content or ROS accumulation. Chronic in vivo BSO treatment was 

effective in depleting tissue GSH content and increasing ROS accumulation, to a similar extent, 

in both Adult and Aging SD rats. However, regardless of age, neither ACh-stimulated NO-

mediated EDRF signaling activity nor COX-mediated EDCF signaling activity were affected by 

these BSO-induced perturbations.  

Conclusions and Perspective: In the CCA of animals at the early pathological stages of either 

essential hypertension (young adult SHR) or normotensive aging (Aging SD rats), endothelial 

vasomotor dysfunction can be caused solely by over-active EDCF signaling, apparently 

disconnected from changes in NO bioavailability or oxidative stress. While NO and ROS may 

act, respectively, as negative and positive modulators of the established COX-PG-TP receptor-

RhoA-ROCK cell-signaling axis mediating endothelium-dependent contractile activity, these 

factors do not appear to be essential to the mechanism(s) underlying the development of over-

active EDCF signaling. Further elucidation of the cellular-molecular causes of over-active EDCF 

signaling, and its patho-biological consequences, in the SHR-WKY and Adult-Aging SD rat CCA 

models of EDCF activity established and hemodynamically characterized in this thesis, may help 

to identify new or more effective targets to be used in prevention or treatment strategies to 

combat the pathogenesis of CVD.  
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Chapter 1 

General Background and Introduction 

1.1 Thesis Briefing 

1.1.1. Global Rationale 

Endothelial cells line the lumen of all blood vessels where they play a pivotal role in regulating 

local vascular homeostasis, from vascular tone and stiffness, to growth and remodeling, to 

oxidative stress and inflammation, to blood fluidity and coagulation. Endothelial dysfunction, 

characterized by impaired endothelium-dependent vascular smooth muscle (VSM) relaxation, is 

now known to be a hallmark of cardiovascular disease (CVD), and an independent predictor of 

future cardiovascular events. In response to a variety of chemical or hemodynamic stimuli, the 

endothelium can produce both endothelium-derived relaxing (EDRF) and contracting (EDCF) 

factors. While much attention has been given to elucidating the cell-signaling mechanisms of 

EDRF activity and its role in endothelial dysfunction, less attention has been given to EDCF 

signaling. However, in both animal models and humans, EDCF signaling activity is gaining 

recognition as an important contributor to endothelial dysfunction under various conditions of 

CVD and CVD risk.  

1.1.2. Global Purpose 

The global purpose of this thesis is to gain a better understanding of the cellular-molecular 

mechanisms accounting for endothelial dysfunction in animal models known to be characteristic 

of EDCF signaling activity, in particular essential (spontaneous) hypertension and aging, both of 

which impart substantial CVD risk. The focus of all experiments in this thesis was on the 

common carotid artery (CCA), a blood flow conduit to the cerebral circulation that is of 

importance both physiologically and clinically, and highly accessible and advantageous to 

investigate experimentally, but under-studied in regard to EDCF activity and vascular 

(dys)function. In addition to characterizing its vasomotor properties, a further aim of this thesis 

was to characterize the hemodynamic properties of this CCA model in the different animals 

studied.  

1.1.3. Description of Experimental Studies 

There are three experimental chapters in this thesis (Chapters 2-4), each comprising a separate 

Study. The first two studies (Thesis Study I and II) investigated the CCA of young adult 

normotensive Wistar Kyoto (WKY) and Spontaneously Hypertensive (SHR) rats, a model of 

human essential hypertension. The third study (Thesis Study III) investigated the CCA of adult 



  2

and aging Sprague Dawley (SD) rats, an animal model commonly used to study candidate aspects 

of vascular pathogenesis via experimental manipulation.  

Thesis Study I is described in Chapter 2, presented with permission as the published 

article Impaired Hemodynamics and Endothelial Vasomotor Function via Endoperoxide-

Mediated Vasoconstriction in the Carotid Artery of Spontaneously Hypertensive Rats, found in 

the April 2009 issue of American Journal of Physiology – Heart and Circulatory Physiology. 

This study explored the in vivo pressure-flow environment of the CCA in WKY and SHR and the 

endothelium-dependent relaxation (EDRF) and contractile (EDCF) responses of WKY and SHR 

CCA in vitro, the latter of which established the SHR CCA as an appropriate experimental model 

to explore the mechanisms of EDCF signaling activity in endothelial dysfunction.  

Thesis Study II is described in Chapter 3, presented with permission as the published 

article RhoA-Rho Kinase Signaling Mediates Endothelium- and Endoperoxide-Dependent 

Contractile Activities Characteristic of Hypertensive Vascular Dysfunction, found in the May 

2010 issue of American Journal Physiology – Heart and Circulatory Physiology. This study 

expands upon the vasomotor findings of Thesis Study I by further exploring the cell-signaling 

mechanisms of EDCF activity in the CCA of SHR vs. WKY rats, with a particular focus on VSM 

receptor signaling effectors.  

Thesis Study III is described in Chapter 4, presented as an unpublished manuscript 

Effect of Glutathione Depletion and Aging on Endothelium-Derived Relaxing and Contracting 

Factor Activity in the Common Carotid Artery of Sprague Dawley Rats. This study describes the 

in vivo pressure-flow environment and in vitro endothelium-dependent relaxation (EDRF) and 

contractile (EDCF) responses in the CCA of Adult and Aging SD rats, and explores how chronic 

experimental manipulation of anti-oxidant status and oxidative stress may affect age-associated 

CCA EDCF signaling activity.  

1.1.4. Preface to General Background and Introduction, and General Summary and 

Perspectives 

The remainder of Chapter 1 – General Background and Introduction is organized as follows. 

Section 1.2 – Endothelial Function: Paradigm of Its Importance, Section 1.3 – Endothelium-

Dependent Vasorelaxation: A Display of Endothelial (Dys)function, and Section 1.4 – Methods 

Used to Evaluate Endothelial Vasomotor (Dys)function outline the overall importance of the 

endothelium and how its functions can be measured. Section 1.5 – Endothelial Function and 

Dysfunction: Balancing EDRF and EDCF Signaling Activities provides two background reviews 

of the current literature: one regarding Under-Active EDRF Signaling Mechanisms (1.5.1 and 

1.5.2) and the other regarding Over-Active EDCF Signaling Mechanisms (1.5.3) of Endothelial 
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(Dys)function Under CVD Risk Conditions, each review finishing with a summary. Section 1.6 – 

CCA: An Advantageous Model to Study Vascular (Dys)function and the Role of Endothelial Cells 

describes the CCA circulation and its (patho)physiological importance, and highlights advantages 

of the CCA as an experimental model. Then, Section 1.7 – Specific Rationale, Objectives, and 

Hypotheses of Thesis Studies provides a specific Introduction to the underlying rationale for each 

thesis study and their particular experimental objectives and hypotheses.  

Following the experimental chapters (2-4), Chapter 5 – General Summary and 

Perspectives summarizes the key findings, conclusions, and novel contributions of each thesis 

study (Section 5.1), which is followed by a brief perspective on the general conclusions of the 

thesis studies and future directions of the research area (Section 5.2 and 5.3), and then closing 

remarks (Section 5.4) .   
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1.2 Endothelial Function: Paradigm of Its Importance 

Endothelial cells have an important function in maintaining vascular homeostasis (Figure 1.1). 

Because of its location at the blood-wall interface, the endothelium is able to directly sense and 

respond to vascular perturbations in homeostasis caused by blood-borne signals and 

hemodynamic forces. Through the synthesis and release of a wide variety of autocrine/paracrine 

factors, endothelial cells can influence a multitude of cellular and non-cellular constituents of the 

vascular wall and blood, including VSM, elastin and collagen matrix proteins, platelets and 

clotting factors, and inflammatory/immune cells. Under physiological conditions, the balanced 

production of endothelial-derived factors acts to maintain a ‘healthy’ degree of vascular tone, 

inflammation, growth and remodeling, and blood and vascular fluidity. However, under 

pathological conditions, characterized by exposure to CVD risk factor(s), the endothelium can 

adopt a pro-constrictory, pro-inflammatory, pro-oxidant, proliferative/fibritic, and pro-thrombotic 

phenotype. This CVD phenotype thus predisposes the vasculature to multiple cellular-molecular 

dysfunctions that contribute significantly to overt disease manifestations, including: 

atherosclerosis – i.e. plaque formation, progression, and rupture ((125, 218, 391, 410); reflecting 

a pro-inflammatory/pro-oxidant/pro-thrombotic phenotype); arteriosclerosis – i.e. increased 

arterial stiffness ((10, 145, 412); reflecting a proliferative/fibritic/pro-constrictory phenotype); 

and downstream organ/tissue hypo-perfusion ((393, 395); also reflecting a pro-

constrictory/proliferative/fibritic phenotype). In turn, these states of vascular consequence may 

lead to a number of adverse structural-functional complications (e.g. myocardial infarction, 

stroke, left ventricular (LV) overload, and end-organ micro-vascular damage) and conditions (e.g. 

ischemic heart disease, cardiomyopathy, heart failure, renal insufficiency, and cerebral 

deterioration) associated with profound morbidity and mortality.  

1.3 Endothelium-Dependent Vasorelaxation: A Display of Endothelial 

(Dys)function  
Endothelial (dys)function can be characterized by the ability of the stimulated endothelium to 

elicit relaxation of the underlying VSM, termed endothelium-dependent vasorelaxation. This was 

recognized shortly after the discovery that endothelial cells could actually produce vasoactive 

factors, before which time the endothelium was considered as an inert diffusional barrier.  

In 1980, Furchgott and Zawadski published their seminal work demonstrating that upon 

stimulation with the muscarinic receptor agonist acetylcholine (ACh), an isolated donor strip of 

rabbit aorta with endothelium could release a diffusible substance they termed ‘endothelium- 
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Figure 1.1. Paradigm of the importance of endothelial function. Refer to Section 1.2 and Section 1.3 for 
details. 

 

-derived relaxing factor’, or EDRF, which could elicit vasorelaxation in an isometrically-mounted 

adjacent strip denuded of endothelium (120). It was further discovered that this endothelium-

dependent vasorelaxation response could be elicited not only by ACh but also by a wide range of 

more physiological stimuli, including shear stress (caused by the flow of viscous blood across the 

endothelium), circulating hormones (e.g. catecholamines, vasopressin), products of platelet 

activation (e.g. serotonin, adenosine diphosphate (ADP)), autocoids (e.g. histamine, bradykinin, 

prostaglandins (PGs)), and thrombin (384). Of pathophysiological interest were the subsequent 

observations that endothelium-dependent vasorelaxation could be blunted by states of known 

CVD risk. By 1988, it had already been shown that impaired endothelium-dependent 

vasorelaxation existed in the isolated conduit aortic or iliac vasculature of various rodent models 

of hypertension (199, 221, 229, 232, 415) and in hypercholesterolemic rabbits (167, 175, 390) 

and diet-induced atherosclerotic monkeys (116), as well as in vivo in the conduit coronary 

vasculature of atherosclerotic patients (225). Moreover, in the aorta of SHR, endothelium-
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dependent contractile activity was found (230, 231). These early reports prompted the suggestion 

that endothelial dysfunction could be an early marker of CVD (174).  

Since then, a plethora of experimental and clinical research has confirmed that 

endothelial dysfunction can be an early, sensitive biomarker of CVD and discriminating target for 

its risk factors ((125, 391, 405, 410); PubMed citations in response to the search term ‘endothelial 

dysfunction’ from 1988 to 2010 exceed 30000, excluding reviews; www.pubmed.gov). In both 

humans and animal models studied in vivo and in vitro, impaired endothelium-dependent 

vasorelaxation has been found to be a hallmark of overt CVD states/conditions and associated 

with each of its major (traditional) risk factors, including: advanced age, family history, 

hypertension, hypercholesterolemia/hyperlipidemia, type-I/type-II diabetes, smoking, physical 

inactivity, and menopause; as well as its many emerging risk factors, including: obesity, 

hyperhomocyestinemia, hyperinsulinemia, hyperglycemia, systemic inflammation, and the 

metabolic syndrome. The presence of multiple CVD risk factors is related to a progressive 

worsening of endothelium-dependent vasorelaxation (32, 406), while many lifestyle (i.e. dietary 

factors and physical activity) and pharmacological (i.e. drug) interventions that reduce CVD risk 

factors also improve endothelium-dependent vasorelaxation (308, 410).  

The presence of clinical and sub-clinical indices of atherosclerosis, including coronary 

plaque, CCA intima-media thickness (IMT), and circulating inflammatory biomarkers such as C-

reactive protein (125, 134, 392, 410), are independently associated with the extent of impaired 

endothelium-dependent vasorelaxation, as are indices of arterial stiffness, including CCA-femoral 

(aortic) pulse-wave velocity, CCA pressure wave reflection and augmentation index (AI), and 

CCA or brachial distensibility (99, 249, 412), as well as indices of major target organ damage, 

including LV hypertrophy, reduced renal function, and cerebral decline or white matter hyper-

intensities (69, 190, 393). Furthermore, clinical trials have firmly established that impaired 

endothelium-dependent vasorelaxation, assessed via agonist- or flow-stimulation in either the 

conduit macro-vasculature or resistance micro-vasculature of the coronary or more accessible 

arm/forearm circulation, is of prognostic significance, independently predicting future CVD-

related clinical events in various populations (125, 308, 391, 394).  

Thus, it has become apparent that endothelium-dependent vasorelaxation provides an 

important window to display both the (patho)biological and (patho)mechanical activities of 

endothelium-derived factors in the vasculature, which besides acting acutely to affect arterial or 

arteriolar tone, may also signal to either prevent or promote a sustained CVD phenotype and 

function (Figure 1.1). Accordingly, it is an ongoing priority in vascular research to gain a better 

understanding of the endothelial-VSM cell-signaling mechanisms controlling vasomotor activity 
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and exactly how these mechanisms may become dysfunctional in each state of CVD risk. This 

work has been successful in, and continues to hold the promise of, identifying new or more 

effective targets or indices to be used in prevention and treatment strategies aimed at combating 

specific CVD pathologies and their consequences (93, 103, 106, 302, 361, 393).  

In this thesis, the endothelium-derived factors and cellular-molecular mechanisms 

accounting for endothelial-VSM cell-signaling and vasomotor (dys)function were investigated 

in states of hypertension and aging, both of which are known to impart substanial CVD risk.  

1.4 Methods Used to Evaluate Endothelial Vasomotor (Dys)function  
1.4.1 Human In Vivo Approaches 

In humans, macro-vascular endothelial vasomotor (dys)function is evaluated clinically in the 

coronary circulation using quantitative angiography to measure diameter changes of the conduit 

epicardial artery in response to endothelial agonist(s) infused through an intra-coronary arterial 

catheter, or in response to increased blood flow induced by agonist-mediated dilation of the 

downstream resistance vasculature. In addition, coronary micro-vascular endothelial 

(dys)function can be assessed by using intra-coronary arterial Doppler ultrasound to measure the 

hyperemic response to vasoactive agonist infusion. Because the coronary circulation is the most 

prominent site of atherosclerosis and CVD-related clinical events, these approaches have been 

considered as ‘gold standard’ methods in evaluating human endothelial dysfunction. However, 

their utility is greatly limited by accessibility and risk (308, 394). Consequently, assessment of the 

more accessible arm vasculature has been used extensively to study endothelium-dependent 

vasomotor (dys)function in humans.  

 Micro-vascular endothelial (dys)function can be assessed using strain-gauge venous 

occlusion plethysmography or Doppler ultrasound to measure vasodilation and subsequent 

hyperemia of the forearm in response to the brachial artery infusion of agonist(s). Although still 

moderately invasive and risky, this approach is particularly valuable experimentally because of 

the ability to reliably generate dose-response relationships to agonists that may be mechanistically 

dissected using co-infused pharmacological inhibitors and/or antagonists. Accordingly, most 

studies investigating the cell-signaling mechanisms accounting for endothelium-dependent 

vasomotor activity in humans have been performed using this forearm blood flow technique 

(394). 

 Because of its relative accessibility and non-invasiveness, echo-tracking ultrasound 

imaging of flow-mediated dilation (FMD) in the macro-vascular brachial artery, stimulated by 

forearm occlusion and subsequent reactive hyperemia, is also widely used to assess human 
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endothelial (dys)function. Although this approach is considerably limited by technical expertise, 

high day-to-day variability, and sometimes dubious stimulus-response parameters and cell-

signaling mechanisms (308, 394), it is still very useful because it can readily identify populations 

with impaired endothelial function, thus bolstering its use both experimentally and clinically.  

 Indeed, a significant correlation, albeit modest, has been found between impaired 

endothelium-dependent vasodilation measured as brachial artery FMD, agonist-stimulated 

forearm hyperemia, and/or agonist-stimulated coronary artery dilation within the same 

patient/participant (11, 12), thus supporting the concept that endothelial dysfunction is systemic 

in nature and as such may be evaluated indiscriminately. However, it has become apparent from 

experimental investigations in both humans and animal models of disease that heterogeneity does 

exists throughout the vasculature regarding the extent to which endothelium-dependent 

vasodilation/relaxation is affected by particular CVD risk factors, as well as the exact cell-

signaling mechanisms accounting for endothelial function and dysfunction. Accordingly, these 

heterogeneities must be appreciated when evaluating endothelial function, since different tests 

could provide disparate clinical information about the health or pathology of the vasculature 

(394). 

1.4.2 Animal In Vitro Approaches 

In animals, the function and cell-signaling activities of a particular segment within the macro-

vasculature or micro-vasculature can be investigated in great detail. The most widespread means 

of evaluating endothelial vasomotor (dys)function remains to be the classic vascular myography 

approaches pioneered by Furchgott and contemporaries (120, 281), where a segment of the 

arterial macro-vasculature (e.g. aorta, coronary epicardial, CCA, brachial, renal, or femoral 

artery) or arteriolar micro-vasculature from a certain organ or tissue (e.g. the coronary, cerebral, 

renal, mesenteric, or limb skeletal muscle circulatory bed) is excised from an animal (or a human, 

if possible; e.g. see Refs. (418, 419)) and evaluated in vitro (see Figure 1.2). In a temperature-

controlled organ bath filled with aerated physiological buffer, the dose-dependent relaxation 

and/or contractile responses to vasoactive agonist(s) can be measured as the tension lost (i.e. 

relaxation) or gain (i.e. (pre-/re-)contraction) by an isometrically-mounted segment (ring) of 

isolated vasculature (308). Alternatively, FMD can be measured in an isolated vascular segment 

mounted on perfusion pipettes and situated in an organ bath on a microscope stage, thus allowing 

for specific manipulations of pressure and flow while continuously measuring arterial diameter 

via video microscopy (308). While these approaches do have the inherent limitation of being  
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Figure 1.2. Isometrically-mounted vascular myography approach to evaluating endothelial vasomotor 
(dys)function. Refer to Section 1.4 (and the experimental chapters) for details. Image of vascular segment 
supports from http://www.radnoti.com/products/tissue_bath_accessories#s1908 (accessed on 09/12/2010).    
 
 
isolated from specific in vivo (patho)physiological conditions that may significantly affect 

vascular function (e.g. sympathetic activation, the precise biochemical milieu of circulating and 

local factors, and, in the former more so than in the latter, the prevailing stresses of pressure and 

flow), they for this same reason have the distinct advantage of providing a precisely controlled 

and easily manipulatible environment in which to clearly identify and thoroughly examine 

vascular cell-signaling mechanisms (e.g. via pharmacological or genetic manipulations and/or 

environmental clamping) and to specifically evaluate the intrinsic vascular effects of 

(patho)physiological conditions (e.g. CVD risk factors or overt CVD conditions) and/or potential 

therapeutic interventions (e.g. drugs or lifestyle factors).  

 In each of the three studies of this thesis, an isometrically-mounted vascular myography 

approach was used as the primary means by which to investigate the endothelial-VSM cell-

signaling mechanisms controlling vasomotor function and dysfunction in the CCA of rats. 

Details of how this methodological approach was employed are described in the Materials and 

Methods section of each experimental chapter.   

1.5 Endothelial Function and Dysfunction: Balancing EDRF and EDCF 

Cell-Signaling Activities 
Following the work of Furchgott and Zawadski (120), it was discovered that the stimulated 

endothelium can elicit vasorelaxation via the synthesis and release of various EDRFs, including 

nitric oxide synthase (NOS)-derived nitric oxide (NO), cyclooxygenase (COX)-derived 

prostaglandin (PG)I2, as well as non-NOS/non-COX-derived substances classified as 
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endothelium-derived hyperpolarizing factors (EDHFs) (101, 384). Also important was the 

discovery by Vanhoutte and colleagues that the stimulated endothelium can under certain 

circumstances elicit concomitant vasocontractile activity via the synthesis and release of 

contracting factors, termed EDCFs, which is abrogated by the inhibition of COX (385).  

 Therefore, impaired agonist-/flow-stimulated endothelium-dependent 

vasorelaxation/dilation can be caused by under-active EDRF signaling, over-active EDCF 

signaling, or both (Figure 1.3).  

 In relation, much more is known regarding the cell-signaling mechanisms of EDRF activity 

(Figure 1.4) and its role in the pathogenesis of endothelial dysfunction and CVD. A current 

review of this knowledge is provided in Sections 1.5.1 and 1.5.2 below (Review #1). Following 

that, Section 1.5.3 provides a review of the current knowledge regarding the cell-signaling 

mechanisms of EDCF activity (Figure 1.5) and its role in the pathogenesis of endothelial 

dysfunction and CVD (Review #2).  

 For abbreviated overviews of this knowledge relating to EDRF and EDCF signaling 

activities, refer to the summaries located at the end of Section 1.5.2 and Section 1.5.3, 

respectively. 

 

 
Figure 1.3. Imbalance between EDRFs and EDCFs causing impaired agonist- or flow-stimulated 
endothelium-dependent vasorelaxation. 
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Figure 1.4. Outline of EDRF cell-signaling activity. Refer to the Section 1.5.1-1.5.2 Review for details. 
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Figure 1.5. Outline of EDCF cell-signaling activity. Refer to the Section 1.5.3 Review for details. 
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Background Review #1 

Under-Active EDRF Signaling Mechanisms of Endothelial (Dys)function  

Under CVD Risk Conditions 

1.5.1 EDRF Cell-Signaling Pathways 

Overview  

Endothelium-dependent vasomotor activity is initiated by a rise in endothelial intracellular Ca2+ 

concentration ([Ca2+]i) in response to agonist stimulation of endothelial cell-surface receptors or 

shear stress disruption of the endothelial cell-surface matrix. In turn, this may elicit the activation 

of Ca2+-dependent enzymes or ion channels within the endothelium, leading to the 

production/activation of multiple potential EDRFs that either diffuse, or travel through cell-to-cell 

(i.e. myo-endothelial) gap junctions (MEGJ), to the underlying VSM and elicit relaxation via 

multiple potential mechanisms (Figure 1.4).  

In VSM, contractile tone is dictated by the phosphorylation state of the 20-kD regulatory 

light chain subunits of myosin (RLC20), which in turn is controlled by the opposing activities of 

myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) (341, 342, 348). 

An increase in [Ca2+]i leads to the formation of Ca2+-calmodulin (Ca2+-CaM) complexes that bind 

to and stimulate MLCK, which phosphorylates RLC20, thus increasing acto-myosin ATPase 

activity resulting in cross-bridge cycling and contraction. In addition to this classic Ca2+-

dependent mechanism, contractile tone can be activated and sustained through a Ca2+-

independent mechanism, typically involving stimulation of protein kinase signaling pathways, 

which act to phosphorylate and inhibit MLCP, and/or phosphorylate and activate MLCK, thus 

increasing the Ca2+-CaM-MLCK:MLCP activity ratio, resulting in Ca2+ sensitization – i.e. an 

increase in contraction without an concomitant increase in [Ca2+]i; (348). Thus, EDRFs can elicit 

vasorelaxation via decreasing [Ca2+]i and/or de-activating Ca2+ sensitization. As with contractile 

stimulation, these relaxation effects may occur via pharmaco-mechanical (i.e. membrane 

potential-independent, receptor-mediated) coupling and/or electro-mechanical (i.e. membrane 

polarization-mediated) coupling mechanisms (341).      

NOS-Derived NO  

Throughout the vasculature, NO has been found to act as both a potent EDRF and a pivotal 

mediator in the protection against a CVD phenotype and function (see Under-Active EDRF 

Signaling and Endothelial Dysfunction, below, for details). NO is a free radical synthesized from 

the amino acid L-arginine by the reductase and oxygenase activities of the NOS enzyme, which 

requires the presence of molecular oxygen and the co-factors nicotinamide adenine dinucleotide 
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phosphate (NADPH), flavin adenine dinucleotide, flavin mononucleotide, heme, and 

tetrahydrobiopterin (BH4). NOS has three isoforms: neuronal NOS (nNOS, or NOS1), inducible 

NOS (iNOS, or NOS2), and endothelial NOS (eNOS, or NOS3). While both eNOS and nNOS are 

constitutively expressed, iNOS expression is typically very low or seemingly absent unless 

induced by cellular perturbations such as pro-inflammatory stimuli (e.g. cytokines). In endothelial 

cells, NO production is largely mediated by the abundantly expressed eNOS isoform, which is 

activated by stimulus-induced Ca2+-CaM binding as well as protein phosphorylation (20).  

The main physiological target of NO is soluble (i.e. cytosolic) guanylate cyclase (sGC) 

that converts GTP to cGMP, thus activating cGMP-dependent protein kinase I (cGKI, also called 

protein kinase G, PKG-I). NO has been found to elicit VSM relaxation by decreasing [Ca2+]i, and 

thus MLCK activity (68, 70). This may occur through pharmaco-mechanical coupling mediated 

by sGC-cGMP-PKG-dependent, or sometimes -independent (i.e. direct) mechanisms, involving 

both the stimulation of Ca2+ efflux/uptake, via increasing plasma membrane Ca2+-ATPase and 

Na+-Ca2+ exchanger activity and sarcoplasmic reticulum (SR) Ca2+-ATPase activity, and the 

inhibition of Ca2+ release from the SR, via decreasing IP3-receptor activity. NO may also decrease 

[Ca2+]i and tone through electro-mechanical coupling mechanisms involving the stimulation of 

various plasma membrane K+ channels – most notably large-conductance Ca2+-activated channels 

(BKCa) and ATP-sensitive channels (KATP), either directly (via thiol group modification – i.e. 

nitrothiosylation) or by PKG-dependent phosphorylation, thus resulting in VSM hyper-

polarization, which acts to inhibit plasma membrane (or SR) voltage-gated Ca2+ channel activity 

and Ca2+ influx (39). Besides affecting these ion regulatory targets, there is evidence that the 

targeting of Ca2+ sensitization pathways is an important means by which NO elicits VSM 

relaxation (65, 212, 277). This may occur through pharmaco-mechanical coupling mediated by a 

sGC-cGMP-PKG-dependent mechanism involving the de-activation of protein kinase signaling 

pathways acting to inhibit MLCP activity, most notably the RhoA-Rho-associated kinase (ROCK) 

signaling pathway (342). The effect of EDRF signaling on RhoA-ROCK and MLCP activity is 

further introduced below when describing the rationale for Thesis Study II (see Rationale, 

Objectives, and Hypotheses of Thesis Studies, and Chapter 3). Altogether, these multiple and 

redundant actions decreasing both [Ca2+]i and Ca2+ sensitization explain the potent vasorelaxation 

properties of NO.   

COX-Derived PGI2  

Even before the work of Furchgott and Zawadski, Moncada demonstrated that PGI2 was produced 

by the vascular wall where it could act as both a vasorelaxant and a potent endogenous inhibitor 

of platelet aggregation and thrombosis (263, 264). PG production in mammalian cells occurs via 
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three sequential biosynthetic steps ((380); see both Figure 1.4 and 1.5). Stimulus-induced 

activation of phospholipases, in particular cytosolic Ca2+-dependent phospholipase A2 (PLA2), 

leads to the breakdown of cell-membrane phospholipids and the intracellular liberation of 

arachidonic acid (AA), which can be metabolized by several enzyme systems, including 

cytochrome P450 monoxygenases (CYP450s), lipoxygenases (LOXs), and COXs, each known to 

have tissue- and cell-specific distributions. Liberated AA is metabolized to the endoperoxide 

PGG2 and then PGH2 by the cyclooxygenation and peroxidation activities of COX. This enzyme 

has two isoforms: COX-1, which in most tissues is constitutively expressed, and COX-2, which 

relative to COX-1 often has a low level of expression unless, like iNOS, it is induced by pro-

inflammatory cellular perturbations. The endoperoxide PGH2, itself bio-active, is a short-lived 

intermediary, next metabolized to one of various bio-active PGs, namely PGI2, PGE2, PGD2, 

PGF2α, or thromboxane (TX)A2, by their respective terminal PG synthases (PGSs; e.g. PGI 

synthase for PGI2, TX synthase for TXA2). In healthy endothelial cells, PGI2 is the major COX-

derived metabolite of AA (105, 111).  

Like all PGs, PGI2 exerts its vasoactive effects via activation of seven trans-membrane 

G-protein-coupled receptor(s) (GPCR). PG receptors are classified into the sub-types IP, EP, DP, 

FP, and TP, based on their sensitivity for PGI2, PGE2, PGD2, PGF2α, and TXA2, respectively. 

Hence, PGI2 is the preferential activator of IP receptors, while TXA2 is the preferential activator 

of TP receptors. The target-cell/tissue effect of any GPCR agonist depends on the type of G-

protein(s) and downstream signal transduction effectors coupled to the receptor it activates (341). 

PGI2-activated IP receptors are typically coupled to the GS class of the heterotrimeric G-protein 

family, which stimulates adenylate cyclase (AC) that converts ATP to cAMP, thus activating 

cAMP-dependent protein kinase (also called protein kinase A; PKA). Acting through this GS-AC-

cAMP-PKA signaling cascade, PGI2 has been found to elicit VSM relaxation by both decreasing 

[Ca2+]i and de-activating Ca2+ sensitization (and thus decreasing MLCK activity and increasing 

MLCP activity) through a number of the same pharmaco-mechanical or electro-mechanical 

coupling mechanisms as NO (i.e. the targeting of VSM Ca2+ and/or K+ regulatory proteins, and 

protein kinase signaling pathways, as described above).  

Non-NOS/Non-COX-Derived EDHFs 

Traditionally, endothelium-dependent vasorelaxation responses that were found not to be 

mediated by NOS-derived NO or COX-derived PGI2 were supposed to be mediated by a then 

unknown factor termed EDHF, since VSM hyper-polarization was a characteristic feature of these 

non-NOS/non-COX-mediated relaxation responses (108, 110). It is now known that the 

stimulated endothelium may cause VSM hyper-polarization, subsequent inhibition of voltage-
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gated Ca2+ channels, and relaxation, through diverse electro-mechanical coupling mechanisms 

that indeed may or may not involve the release of ‘factors’ per se (101). Briefly, this latter 

mechanism has been shown to involve the stimulation of endothelial Ca2+-activated K+ channels 

(intermediate-conductance (I)KCa and small-conductance (S)KCa) leading to endothelial hyper-

polarization, which can be transferred to the VSM via MEGJ, thus resulting in VSM hyper-

polarization directly. Furthermore, endothelial hyper-polarization may cause accumulation of K+ 

ions in the endothelial-VSM space, which can elicit VSM hyper-polarization by stimulating VSM 

plasma membrane inward-rectifying K+ channels and/or Na+/K+-ATPase. In regard to a true 

‘factor’-mediated EDHF response, the EDRFs NO and PGI2, as described above, may elicit 

vasorelaxation in part through VSM hyper-polarization. Additionally, numerous non-NOS/non-

COX-derived EDRFs have been discovered that elicit vasorelaxation predominantly through 

VSM hyper-polarization, and are thus considered EDHFs. These include certain species of 

epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs) derived from the 

metabolism of AA by specific isoforms of CYP450s and LOXs, respectively. Other putative 

EDHFs may include hemeoxygenase (HO)-derived carbon monoxide (CO), cystathionine β-

synthase/cystathionine γ-lyase (CSE)-derived hydrogen sulfide (H2S), as well as vasoactive 

peptides such as C-type natriuretic peptide. In addition, hydrogen peroxide (H2O2), a reactive 

oxygen species (ROS) formed by the spontaneous or enzymatic reduction of superoxide anion (O2
-

) generated as a by-product of many endothelial enzymes (see Pivotal Role of NO Bioavailability 

and Oxidative Stress in the Pathogenesis of Endothelial Dysfunction, below, for details), may also 

act as an EDHF. While the exact electro-mechanical coupling mechanisms remain to be 

elucidated, these EDHF factors all share the ability to effectively stimulate VSM plasma 

membrane K+ channels, in particular BKca and/or KATP (101, 108, 110)  

 In the studies of this thesis, the relative contributions of NOS, COX, and non-NOS/non-

COX signaling pathways in mediating agonist-stimulated, endothelium-dependent 

vasorelaxation responses were systematically investigated using pharmacological inhibitors of 

NOS and COX, alone or in combination.   

1.5.2 Under-Active EDRF Signaling and Endothelial Dysfunction 

EDRF Signaling Activity Under Physiological Conditions  

The relative contribution of NO, PGI2, and different EDHFs to EDRF signaling activity can vary 

considerably depending on the vascular bed/territory (organ/tissue) or segment (macro-vascular 

vs. micro-vascular) of the particular animal or human model investigated, and sometimes the 

particular receptor agonist or physical stimuli employed (109), likely reflecting exposure (and 
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resulting adaptation) to differing local neuro-humoral, metabolic, and hemodynamic 

environments throughout the vasculature in combination with differing genetic backgrounds. The 

L-arginine analogs Nω-nitro-L-arginine methyl ester (L-NAME) and Nω-monoethyl-L-arginine (L-

NMMA) are competitive inhibitors of NOS routinely used in vitro and in vivo, respectively, to 

assess the NO component of endothelial cell-signaling in vascular function and dysfunction. By 

and large, in smaller peripheral arteries and arterioles of the coronary, cerebral, renal, mesenteric, 

and limb skeletal muscle vascular territories, etc., EDRF activity is found to be mediated 

substantially in part by NO signaling, as evidenced by a ~40-60% reduction in endothelial 

agonist-/flow-stimulated vasorelaxation/dilation following acute NOS inhibition, while COX-

mediated and in particular non-NOS/non-COX-mediated EDHF signaling also contribute 

substantially (101). In larger more central arteries, including the aorta, epicardial, CCA, brachial, 

renal, and femoral arterial conduits, the contribution of NO signaling to EDRF activity is 

generally found to be even more substantial, as evidenced by a ~75-95% reduction in endothelial 

agonist-/flow-stimulated vasorelaxation/dilation following acute NOS inhibition. Hence, both in 

the resistance micro-vasculature – where moment-to-moment changes in blood flow and pressure 

are primarily regulated, and even more so in the conduit macro-vasculature – the focal site of 

pulsatile hemodynamic buffering, arterial stiffness, and atherosclerotic plaque development, NO 

is recognized as the most prominent EDRF produced by the endothelium. As such, the role of NO 

signaling activity in regulating vascular homeostasis, and thus protecting against a CVD 

phenotype and function, has been studied extensively, including its contribution to under-active 

EDRF signaling in states of overt CVD and CVD risk.  

NO, Vascular (Dys)regulation, and Under-Active EDRF Signaling Under Pathological 

Conditions  

Pathophyiological and Pathobiological Impact of NO Signaling Activity 

An acute and/or chronic loss of NO production in vivo, provoked by in vivo pharmacological 

inhibition (via L-NAME or L-NMMA infusion) or genetic deletion (via gene knockout) of eNOS, 

can significantly decrease organ (216) and limb blood flow (394, 395), elevate blood pressure 

(298), increase large artery stiffness (412), and accelerate atherogenesis and plaque rupture (30, 

72), thus clearly demonstrating the (patho)physiological impact of NO signaling activity. Using a 

multitude of in vitro, ex vivo, and in vivo approaches, it has been firmly established that the bio-

activity of NO possesses far-reaching abilities to prevent the development of pro-constrictory, 

pro-inflammatory, pro-oxidant, proliferative/fibritic, and pro-thrombotic phenotypes within the 

constituents of the vascular wall and blood that lead to dysregulation and pathobiological events 

(30, 391, 410). Beyond acting as a potent EDRF, NO can inhibit the synthesis or action of 
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vasocontractile factors; the release of pro-inflammatory cytokines/chemokines; the expression of 

adhesion molecules; the recruitment and activation of macrophages and T lymphocytes; the 

oxidation of LDL; VSM de-differentiation, proliferation, and migration; endothelial and VSM 

apoptosis; extracellular matrix degradation; vascular wall collagen deposition; as well as the 

activation of platelets and the fibrinolytic system. As a result, maintaining a ‘healthy’ level of NO 

signaling activity appears to be of governing importance in protecting against the pathogenesis of 

a CVD phenotype and function. As described next, this is strongly supported by the fact that 

endothelial vasomotor dysfunction found under conditions of CVD risk, as well as overt CVD, is 

often caused by reduced EDRF activity accounted for by alterations in NO signaling.   

Cell-Signaling Pathways Responsible for Reduced EDRF Activity Under Pathological 

Conditions 

Indeed, acute NOS inhibition via L-NAME incubation or L-NMMA infusion can often essentially 

eliminate or significantly diminish the impaired agonist/flow-stimulated vasorelaxation/dilation 

responses that inevitably develop in both the conduit artery and resistance artery/arteriolar 

vasculature of animals and humans exposed to each traditional and emerging CVD risk factor – 

including advanced age, hypertension, hypercholesterolemia and atherosclerosis, type-I/type-II 

diabetes and obesity, and hyperhomocysteinemia (64, 93, 109, 308, 395), signifying that reduced 

NO-mediated signaling activity is largely responsible for the endothelial dysfunction found under 

pathological conditions. In contrast, while attenuation of EDHF-mediated signaling responses 

have undoubtedly been found to independently contribute to impaired endothelium-dependent 

vasorelaxation/dilation under certain pathological conditions – including states of hypertension, 

diabetes/obesity, and advanced age (93, 103, 226), the EDHF component of EDRF signaling 

activity is instead often found to be augmented, at least during early exposure to pathological 

conditions, in recompense for a loss of NO-mediated signaling. This is consistent with findings in 

eNOS knockout or eNOS/COX-1 double-knockout mice wherein endothelium-dependent 

vasorelaxation, while still impaired, is partially maintained by a compensatory increase in EDHF 

signaling activity (110). In this way, EDHF-mediated responses, together with PGI2-mediated 

signaling activity, are thought to provide a ‘vasodilatory reserve’ in the face of compromised NO 

signaling, thereby helping to avoid endothelial dysfunction. In gracilis muscle arterioles of eNOS 

knockout mice (163), the renal artery of SHR (50), and the forearm vasculature of essential 

hypertensive patients (350), this compensatory response appears to involve CYP450-derived 

EETs, which, besides acting as EDHFs, have also been discovered to exert strong anti-

inflammatory and anti-mitogenic effects within the vasculature (170), and so, like NO (or PGI2), 

may signal to protect against the development of a CVD phenotype.  
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Notwithstanding the potential importance of either augmented or attenuated EDHF-

mediated responses that may occur in states of CVD risk, which mechanistically could involve 

alterations in the bioavailability of multiple signaling factors (103, 108, 110) including EETs, 

HETEs, K+, MEGJ, or H2O2, among other putative EDHFs (see Section 1.5.1: Non-NOS/non-

COX-derived EDHFs), the vast majority of studies investigating the pathogenesis of endothelial 

dysfunction have focused on mechanisms responsible for a reduction in NO bioavailability – that 

is, its level of production, destruction, and VSM sensitivity (308). Through this work, it has 

become evident that an excess level of vascular oxidative stress, a common condition amid the 

discerning clinical/experimental features of each CVD risk factor (e.g. months/years of existence 

in aging, high transmural pressure and neuro-humoral status in states of hypertension, high LDL 

cholesterol in hyperlipidemia, high glucose and insulin-insensitivity in diabetes), can have 

multiple adverse effects on NO bioavailability and EDRF signaling activity.  

Pivotal Role of NO Bioavailability and Oxidative Stress in the Pathogenesis of Endothelial 

Dysfunction 

Defining Oxidative Stress and ROS 

Sies (346) defines oxidative stress in biological systems as an imbalance between pro-oxidant and 

anti-oxidant activities in favor of the former, potentially leading to ROS-induced damage (or 

dysfunction). This distinction between ‘oxidative stress’ and ‘oxidative damage’ relates to the fact 

that a chronic or acute accumulation of ROS, and thus increased oxidative stress, per se does not 

necessarily lead to damage and dysfunction, since biological systems may have the capacity to 

adapt to, or compensate for, a pro-oxidant environment or challenge. Indeed, ROS, including O2
-•, 

H2O2, and hydroxyl radical (OH•) (196, 283, 346), are normally produced and accumulate at low 

‘physiological’ levels within the vasculature where through ‘redox’-mediated cell-signaling they 

make important contributions to the regulation of homeostasis (48, 346). However, while the 

vasculature does have some potential adaptive/compensatory capacity in regard to 

accommodating ‘non-physiological’ increases in oxidative stress (see Consideration of Potential 

ROS-Mediated Compensatory Adaptations in Attempt to Prevent Endothelial Dysfunction below 

in this section), conditions promoting the excess production and/or impaired or outstripped 

buffering of ROS certainly do lead to a level of vascular oxidative stress that have 

pathophysiological consequences.  

NO Bioavailability and Vascular Oxidative Stress: Original Findings 

An appreciation for the impact of oxidative stress on NO bioavailability and endothelial 

(dys)function first emerged from the discovery that NO produced by endothelial cells can be 
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destroyed by O2
-• before it is able to diffuse to its target-tissue and stimulate its protective effects 

– i.e. VSM relaxation signaling in the case of EDRF activity (148, 307) (see Figure 1.4). For 

example, ACh-stimulated, NO-mediated relaxation of a healthy arterial segment in vitro can be 

markedly impaired by simultaneous exposure to exogenous O2
-• (via a O2

-• generating system; 

(148)) or stressors that stimulate endogenous O2
-• generation (e.g. pro-inflammatory cytokines, 

hormones; (431)), while the presence of exogenous superoxide dismutase (SOD) (307) or 

previous vascular wall over-expression of endogenous SOD isoforms ((143); e.g. via gene/protein 

transfer or exercise training) may correct this vasomotor impairment.  

The interaction between NO and O2
-• occurs at an extremely fast, near diffusion-limited 

rate (6.7x109•M•s-1; 3 times faster than the dismutation of O2
-• by SOD; (54)), leading to the 

formation of peroxynitrite (ONOO-), which, in contrast to NO, has many detrimental effects on 

vascular cell-signaling and function (see below, Role of Decreased NO Production and Target-

Tissue Sensitivity in Endothelial Dysfunction with Links to Oxidative Stress). Thus, it has been 

well-established that to allow for the efficient endothelial-to-VSM transfer of an adequate amount 

of NO when stimulated under a given set of circumstances or conditions, it is essential to maintain 

an optimal concentration of ROS within the vascular wall, which is in turn accomplished by 

maintaining optimal balance between vascular pro-oxidants and anti-oxidants, the determinants of 

which are next briefly defined (see Figure 1.4).  

Determinants of Pro-oxidant/Anti-oxidant Balance in the Vascular Wall 

Pro-oxidants. In endothelial cells and VSM, pro-oxidant sources of O2
-• may include: NADPH 

oxidase; ‘uncoupled’ eNOS (explained below in NO Production and eNOS Activation); AA 

metabolizing enzymes – COX, CYP450, and LOX; xanthine oxidase (XO); and the mitochondrial 

(Mito) electron transport chain (54, 89). Among these sources, the multi-subunit enzyme 

NADPH oxidase is typically found to be the chief contributor to vascular O2
-• and H2O2 

production under both physiological (45, 207) and pathological (147) conditions. In fact, both the 

endothelium and VSM constitutively express isoforms of NADPH oxidase that are localized to 

the plasma membrane and to various internal membrane compartments (45) where the enzyme 

has been shown to act as an ‘upstream’ initiator/integrator of ROS production from other pro-

oxidant sources, including eNOS (204), xanthine oxidase (250), and the mitochrondria (90), 

which can contribute significantly to excess vascular oxidative stress under numerous 

pathological conditions including hypertension and aging (54, 75, 91). 

Anti-oxidants. Vascular anti-oxidant capacity to defend against excess ROS accumulation 

has two main components: enzymatic and chemical. Chemical anti-oxidants include lipid-soluble 
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compounds such as α-tocopherol (vitamin E), as well as water-soluble compounds such as 

ascorbic acid (vitamin C) and low-molecular weight thiols, most notably glutathione (GSH), the 

manipulation of which was a major focus of Study III in this Thesis (see Rationale, Objectives, 

and Hypotheses of Thesis Studies in Section 1.7, and Experimental Chapter 4). Beyond directly 

scavenging O2
-• (among other ROS) and reducing (redox recycling) compounds that have become 

oxidized, these water-soluble anti-oxidants also act as co-factors for anti-oxidant enzymes (346). 

Enzymatic anti-oxidants in the vascular wall include three constitutively expressed isoforms of 

SOD (308), which metabolize O2
-• to H2O2. Cu,Zn-SOD (SOD-1) is found predominantly in the 

cytosol of both endothelial cells and VSM, and Mn-SOD (SOD-2) in the mitochondria, while an 

extracellular version of Cu,Zn-SOD (SOD-3, or ecSOD) is found bound to the outer matrix in the 

vascular extracellular space. The H2O2 produced by these SOD isoforms can in turn be 

metabolized to H2O by the activity of either catalase (CAT) or GSH peroxidase (GPx), both of 

which are constitutively expressed in the cytosol of endothelial cells and VSM. In addition, H2O2 

and O2
-• can be metabolized in the presence of free transition metals (Fe2+or Cu2+); however this 

conversion leads to the production of OH•, thus supporting pro-oxidant and not anti-oxidant 

capacity.  

Powerful Role of Oxidative Stress-Mediated NO Destruction in Endothelial Dysfunction. 

Under physiological conditions, only a moderate amount of O2
-• is produced in the vascular wall, 

and its accumulation, and spontaneous interaction with NO, is limited to a ‘healthy’ level by 

adequate anti-oxidant defenses, thus preserving endothelial function. In contrast, a large body of 

evidence suggests that a major mechanism of impaired endothelium-dependent 

vasorelaxation/dilation responses found in states of CVD and CVD risk is an excess accumulation 

of ROS leading to NO destruction, reduced NO bioavailability, and under-active EDRF signaling 

(Figure 1.4). In humans, support for this hypothesis has come from studies demonstrating that 

endothelial dysfunction of the coronary or arm/forearm conduit or resistance vasculature can be 

significantly improved, not just by chronic anti-oxidant supplementation, but also by acute 

exposure to chemical anti-oxidants, such as vitamin C or GSH, in patients with CVD risk factors, 

including atherosclerosis/hypercholesterolemia (200, 296, 371), diabetes (369, 370), 

hyperhomocysteinemia (400), as well as essential hypertension (98, 351, 352, 400), and in 

otherwise healthy individuals aged >60 years (352). Congruent with these findings, ROS 

measured in the vascular wall in a basal state or upon stimulation with endothelial agonists can be 

increased several-fold in animal models of these pathological conditions (54, 89, 288), and is 

often associated with impaired NO-mediated relaxation in isolated arterial segments, which may 

be corrected, at least in part, not just by chronic in vivo anti-oxidant treatment, but also by acute 
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in-bath incubation with chemical antioxidants, or with ecSOD, or SOD or SOD+CAT mimetics  

(44, 54, 308, 309, 346, 376, 411). 

Pro-oxidant/Anti-oxidant Balance in States of CVD risk. While a reduction in vascular 

anti-oxidant capacity – via decreased chemical anti-oxidant concentrations and/or decreased 

expression or activity of SOD, CAT, and/or GPx enzymes – can certainly contribute to excess 

ROS accumulation in states of CVD risk ((44, 270, 346); also see Introduction to Chapter 4), the 

oxidative stress-mediated endothelial dysfunction found under these conditions appears to be 

primarily linked to the marked over-production of O2
-•, most notably derived from NADPH 

oxidase (as introduced above in Determinants of Pro-oxidant/Anti-oxidant Balance in the 

Vascular Wall). In fact, the activity and expression of endothelial and VSM isoforms of NADPH 

oxidase are regulated by peptide hormones (e.g. angiotensin II (AII), endothelin-1), pro-

inflammatory cytokines/chemokines (e.g. tumor necrosis factor-α, interlukin-1β, interferon-γ), and 

hemodynamic stresses (i.e. low/oscillatory flow/shear stress; high pressure/circumferential stress) 

that are known to be involved in the pathogenesis of vascular aging (75), hypertension (206), 

amid many other CVD risk conditions (54, 147, 196). For example, introduction of AII or pro-

inflammatory cytokines into the medium of endothelial or VSM cell cultures results in a sustained 

increase in NADPH oxidase activity and O2
-• production (80, 146), as does exposure of 

endothelial cells to low/oscillatory shear stress, which mimicks the ‘pro-atherogenic’ 

low/oscillatory flow/shear profile that exists at sites of plaque formation (i.e. sharp arterial 

bifurcations/curvatures), as compared to endothelial cells exposed to laminar unidirectional shear 

stress, which mimicks a ‘anti-atherogenic’ physiological flow/shear profile (81, 165). Prolonged 

exposure of vascular cells to these oxidative stress-promoting hormone, cytokine, or shear stress 

stimuli in turn activates redox- and shear-sensitive transcription factors, most notably mitogen-

activated protein kinase (MAPK) cascades and nuclear factor (NF)-κB (75, 363), which can 

induce the expression of a wide variety of enzymatic and chemical factors mediating CVD 

phenotypes (71). Likewise, isolated arterial segments exposed to high circumferential stress, 

which mimicks the intra-vascular pressure exerted on the vascular wall with hypertension, has 

been shown to elicit increased O2
-• production (214, 389), the expression of a NF-κB-driven pro-

atherogenic (303) or proliferative/fibritic (214) phenotype, and marked impairment of 

endothelium-dependent vasorelaxation (389), all of which could be prevented in large part by 

inhibiting NADPH oxidase subunit assembly and subsequent activation. Moreover, inhibition of 

NADPH oxidase activity can substantially improve impaired NO-mediated relaxation found in 

the vasculature of various experimental models of hypertension, including SHR, 

deoxycorticosterone acetate salt-treated or Dahl salt-sensitive rats, and AII-infused or L-NAME-
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infused rats or mice (109, 290, 376, 422), where endothelial and VSM NADPH oxidase subunit 

expression and O2
-• production may be considerably increased (322).  

Role of Decreased NO Production and Target-Tissue Sensitivity in Endothelial Dysfunction 

with Links to Oxidative Stress 

In addition to the powerful acute phenomenon of NO destruction, other mechanisms resulting in a 

decrease in NO production or decrease in target-tissue sensitivity to NO can reduce NO 

bioavailability (Figure 1.4) causing under-active EDRF signaling and endothelial dysfunction in 

states of CVD risk, which in many cases may be linked to chronic exposure to excess vascular 

oxidative stress.  

VSM Sensitivity to NO. In both humans and animals, the dose-dependent 

dilatory/relaxation response to NO donors (e.g. the intra-arterial infusion or in-bath injection of 

sodium nitroprusside (SNP)) is typically well preserved even under advanced pathological 

conditions, suggesting that decreased VSM sensitivity to NO does not play a major role in under-

active EDRF signaling and endothelial dysfunction, but it certainly may. For example, it is 

interesting to note that endothelium-dependent relaxation in the aorta of hypercholesterolemic 

rabbits has been found to be impaired because of a significant decrease in the sensitivity and 

maximum amplitude of NO-stimulated relaxation caused by ONOO--mediated tyrosine oxidation-

nitration (i.e. nitro-tyrosine residue formation) and subsequent inactivation of VSM SR Ca2+-

ATPase, all of which could be reversed by chronic antioxidant treatment (3). In addition, a 

decrease in VSM sensitivity to NO has been found to contribute to impaired endothelium-

dependent relaxation under conditions where sGC expression is significantly down-regulated or 

when sGC responsiveness to NO is reduced due to oxidation of its heme moiety (via O2
-• or 

ONOO-) (273, 297, 416), thus decreasing cGMP production and subsequent PKG activation in 

response to the endothelium-derived NO that is able to reach the VSM.  

NO Production and eNOS Expression. A decrease in the production of NO can occur via 

multiple mechanisms affecting either the expression or activation of eNOS, the regulations of 

which have been studied extensively (20). Expression of eNOS is both redox- and shear-sensitive. 

Physiological flow/shear stress induces endothelial mRNA and protein expression of eNOS while 

also stimulating the production of NO (20), which potently inhibits NF-κB and MAPK activation 

within the cells of the vascular wall, thus preventing the expression of CVD phenotypes (125, 

150, 218). Conversely, prolonged exposure of isolated arterial segments to low/oscillatory 

flow/shear stress results in reduced eNOS mRNA transcription and protein translation in 

conjunction with a marked impairment in endothelium-dependent NO-mediated vasorelaxation 
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(121). While, if found in states of CVD risk, a reduction in eNOS protein content – e.g. via 

cytokine- or hormone-stimulated post-transcriptional eNOS mRNA de-stabilization (20, 260), 

may certainly contribute to a decrease in endothelial NO production, it is more often impairment 

in eNOS activation that can contribute to reduced NO bioavailability and endothelial dysfunction 

under pathological conditions.  

NO Production and eNOS Activation. Proper activation of eNOS in response to physical 

or chemical stimuli depends not only on Ca2+-dependent CaM binding but also several important 

post-translational modifications (20, 326). These include eNOS myristoylation/palmitoylation-

dependent targeting and localization to endothelial membrane caveolea, protein-protein 

interactions with inhibitory caveolin or stimulatory heat shock protein 90, and 

phosphorylation/de-phosphorylation at stimulatory (e.g. serine 1177) or inhibitory (e.g. threonine 

495) sites via activation of numerous kinases, such as Akt (protein kinase B), PKA, PKC, ERK, 

ROCK, or AMP-activated protein kinase, and numerous phosphatases, such as protein 

phosphatase-1, -2A, or 2B/calcineurin. Indeed, exposure of cultured endothelial cells to oxidized 

LDL, but not native LDL, results in a dose-dependent decrease in ACh-stimulated NO production 

related specifically to membrane caveolea displacement (and thus mis-localization) of eNOS (36), 

which has also been shown to occur in states of hypertension (133). Moreover, as found under 

many CVD risk conditions, blunted agonist- or flow-stimulated eNOS serine 1177 

phosphorylation, most notably caused by inactivation of Akt via cytokine- or hormone-stimulated 

cell-signaling (20, 260), directly relates to a decrease in endothelial NO production that can 

impair endothelium-dependent vasorelaxation (166).  

In addition, NO production can be decreased by the endogenous eNOS inhibitor 

asymmetric dimethyl-L-arginine (ADMA), the plasma concentration of which significantly 

correlates with most CVD risk factors in humans. Synthesis of this L-arginine analogue depends 

on rates of protein turnover and the enzymatic degradation of arginine methylated proteins by 

protein arginine methyltransferase I, while its metabolism depends mostly on the enzymatic 

activity of dimethylarginine dimethylaminohydrolase, which can be inhibited by ONOO--

mediated oxidation-nitration (349).  

An important additional mechanism responsible for decreased NO production upon 

eNOS activation is the bioavailability of its substrate L-arginine or its co-factor BH4. If the 

immediate supply of either L-arginine or BH4 is inadequate, eNOS becomes ‘uncoupled’, in 

which case electron transport during enzymatic cycling no longer produces NO but instead O2
-• or 

H2O2 (115). In regard to NO bioavailability, the consequence of eNOS uncoupling is two-fold 

since not only is NO production decreased, but NO destruction is increased due to the 
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spontaneous ONOO--forming reaction of O2
-• with NO. BH4 is highly susceptible to oxidation-

nitration by ONOO- (258), while excess accumulation of H2O2, either produced directly or by 

SOD-mediated dismutation of O2
-•, can down-regulate in endothelial cells the enzyme 

dihydrofolate reductase responsible for recycling (reducing) oxidized BH4 (58), which in turn 

may further enable eNOS uncoupling leading to a ‘vicious cycle’ promoting reduced NO 

bioavailability and endothelial dysfunction (52, 203, 204). L-arginine supply in endothelial cells 

may be decreased by ADMA competing for its specific membrane transporter (67) or by an 

increase in its metabolism through the enzymatic activity of vascular arginases (33, 259, 311, 

314), which can be significantly up-regulated with exposure to excess H2O2 or OH• via conversion 

(102, 367). In any case, under conditions where eNOS may become a prominent source of 

vascular ROS, including aging, hypertension, diabetes, and hyperhomocysteinemia, 

supplementation with BH4 or L-arginine themselves, or treatments increasing their endothelial 

bioavailability (e.g. folate), have been shown to improve endothelium-dependent 

vasodilation/relaxation in both animals and humans (115). 

Therefore, a decrease in NO production related in large part to oxidative stress-mediated 

impairment in eNOS activation can certainly contribute along side NO destruction to the reduced 

NO bioavailability resulting in under-active EDRF signaling and endothelial dysfunction in states 

of CVD risk. 

Consideration of Potential ROS-Mediated Compensatory Adaptations in Attempt to Prevent 

Endothelial Dysfunction 

As described earlier (in Cell-Signaling Pathways Responsible for Reduced EDRF Activity Under 

Pathological Conditions of this sub-section), EDHF-mediated dilation/relaxation responses, 

which are thought to be relatively resistant (i.e. less susceptible) to oxidative stress, may become 

augmented in states of CVD risk to partially compensate for a reduction in NO-mediated 

signaling, so providing a ‘reserve’ of EDRF signaling activity helping prevent endothelial 

dysfunction. It is also apparent that acute and chronic compensatory adaptations in the eNOS-

NO-sGC signaling axis itself may occur in response to CVD risk conditions, in an attempt to 

maintain NO bioavailability and endothelial function in the face of increased oxidative stress. 

Though seemingly paradoxical, these adaptations appear to be mediated through ROS themselves 

(308), in particular H2O2 (42). For instance, under AII-induced pro-oxidant culture conditions, 

H2O2 produced in an NADPH oxidase-dependent manner by aortic endothelium, mediates a 

substantial increase in the production of NO in what is thought to be a compensatory mechanism 

for the concomitant production of O2
•- acting to destroy NO (55). In this way, despite increased 
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oxidative stress, NO bioavailability might be preserved, at least temporarily, by activating eNOS 

to produce more NO, thus allowing for an adequate amount of NO to reach the VSM 

undestroyed. In fact, especially during the earlier stages of exposure to CVD risk conditions, 

agonist-/flow-stimulated NO production can be increased resulting in preserved, or even 

augmented, endothelium-dependent vasodilation/relaxation, which may be related to both the 

activation and expression of eNOS by ROS (115).  

Indeed, acutely, H2O2 exposed to endothelial cells stimulates NO production from eNOS 

via AKT-dependent stimulatory site phosphorylation as well as inhibitory site de-phosphorylation 

(97, 368), while exposure of intact vascular segments to H2O2 may elicit endothelium-dependent, 

NOS-mediated vasorelaxation (428, 430). As well, depending on the particular vascular bed or 

segment, H2O2 may elicit endothelium-independent vasorelaxation via direct activation of either 

VSM sGC (56, 96, 132, 215) or VSM K+ channels (238, 334), whereby, in regard to this latter 

phenomenon, H2O2 might act as an EDHF (101, 110). In both these cases of H2O2 acutely 

eliciting endothelium-independent vasorelaxation, uncoupled eNOS or eNOS-SOD coupling have 

been recognized as potential H2O2 sources (96, 336). Chronically, H2O2 is a potent stimulus of the 

expression of eNOS both in vitro and in vivo (42, 53, 97). Thus, under most conditions of CVD 

risk, eNOS expression is increased (51, 115), which can contribute to enhance NO production, so 

long as the enzyme does not become pathologically uncoupled via oxidative stress-mediated 

mechanism(s) as described above (see NO Production and eNOS Activation). Concomitant with 

eNOS, the expression of ecSOD, found to occur in a NO-dependent manner (78, 118), can also be 

increased under CVD risk conditions, helping to counteract the destruction of NO by O2
•- while 

further contributing to the production of H2O2. Also, sGC expression can be increased in response 

to CVD risk conditions (25), which may enhance the vasomotor activity of the amount of NO (or 

H2O2) able to reach the VSM, thereby contributing to the preservation of NO bioavailability 

despite increased oxidative stress. 

Therefore, congruent with Sies’s definition of oxidative stress in biological systems (see 

Defining Oxidative Stress and ROS at the beginning of this sub-section), the vasculature indeed 

does have some adaptive/compensatory capacity to accommodate ‘potentially non-physiological’ 

increases in oxidative stress, thus preventing oxidative damage and dysfunction. However, upon 

persistent exposure to an excess level of oxidative stress under CVD risk conditions, the 

detrimental effects of ROS described throughout this sub-section can certainly overwhelm any 

compensatory mechanisms, resulting in reduced NO bioavailability and under-active EDRF 

signaling causing endothelial dysfunction.  
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In Summary, much work has been done to identify the cell-signaling pathways 

mediating EDRF activity (Figure 1.4) and to elucidate the pathobiological mechanisms 

responsible for endothelial dysfunction caused by under-active EDRF signaling in states of 

CVD risk. While the relative contribution of NO-, PGI2-, and EDHF-mediated signaling to 

EDRF activity can vary across vascular bed/territory, macro-/micro-vascular segment, and/or 

animal/human model, the most prominent and well-characterized EDRF is NO. 

Commensurate with its established role in protecting against a CVD phenotype and function, a 

reduction in the bioavailability of NO is often found to be responsible for under-active EDRF 

signaling and endothelial dysfunction in states of CVD risk, including both hypertension and 

aging. An imbalance between vascular pro-oxidant and anti-oxidant activities leading to excess 

ROS accumulation and oxidative stress has been identified as a major mechanism responsible 

for this reduction in NO bioavailability and EDRF activity, which is predominantly mediated 

by factors impairing the ability to activate eNOS to produce NO, and by the destruction of NO 

prior to it stimulating its protective effects in target-tissues.  
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Background Review #2 

Over-Active EDCF Signaling Mechanisms of Endothelial (Dys)function  

Under CVD Risk Conditions 

1.5.3 Over-Active EDCF Signaling and Endothelial Dysfunction 

Concomitant with producing EDRFs, the stimulated endothelium may produce EDCF(s), the 

signaling activity of which can oppose that of the former. Consequently, over-active EDCF 

signaling relative to EDRF signaling activity can independently contribute to impaired agonist-

/flow-stimulated endothelium-dependent vasorelaxation/dilation (Figure 1.3).  

 While much attention has been given to elucidating the endothelial-VSM cell-signaling 

mechanisms of EDRF activity and its particular role(s) in causing endothelial dysfunction (as 

detailed in the Section 1.5.2 Review, Under-Active EDRF Signaling and Endothelial Dysfunction; 

and Figure 1.4), less attention in these regards has been given to EDCF activity (Figure 1.5). 

However, since EDCF(s) have and continue to be found to play an important role in causing 

endothelial dysfunction in various states of CVD and CVD risk, the endothelial-VSM cell-

signaling mechanisms of EDCF activity, and how that signaling may become over-active under 

CVD risk conditions, are now being actively explored. 

Endothelium-Dependent Contractile Responses: Initial Findings and Characterization of 

EDCF Cell-Signaling Pathway 

In 1982, shortly after Furchgott’s discovery of the diffusible ACh-stimulated ‘EDRF’ ((120); see 

Section 1.3, Endothelium-Dependent Vasorelaxation: A Display of Endothelial (Dys)function), 

De Mey and Vanhoutte demonstrated in isolated, pre-contracted canine veins that exposure to 

AA, or the receptor-agonist thrombin, could elicit a dose-dependent increase in tension that was 

dependent on the presence of the endothelium (83). This represents the first reported observation 

of an endothelium-dependent contractile response. Following from this were four key findings 

that have helped to establish a basic characterization of the EDCF cell-signaling pathway. First, it 

was found that endothelium-dependent contractile responses could be elicited not just in veins but 

also in arteries, and not only by AA and thrombin but also by ACh and other endothelial receptor-

agonists, as well as by the receptor-independent Ca2+-mobilizing agent A23187 (185). Second, it 

was found that endothelium-dependent contractile responses could be completely abolished by 

the non-selective COX inhibitor indomethacin (Indo) (257). Third, it was found (using a similar 

bioassay approach as was used by Furchgott; (120)) that upon stimulation with ACh, an isolated 

donor strip of artery with endothelium could, via the release of a diffusible ‘EDCF’ substance(s), 

elicit contraction in an isometrically-mounted adjacent arterial strip denuded of endothelium, an 
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effect that was completely abolished when COX was inhibited in the donor strip, but nearly 

unaffected when COX was inhibited in the isometrically-mounted bioassay strip (424). And 

fourth, it was found that endothelium-dependent contractile responses could be almost abolished 

by TP receptor antagonists (such as S18886 or SQ29548), either when acutely exposed to isolated 

intact arterial segments (16), or to the bioassay arterial strips in the experiments described above 

in Three (424). Thus, the basics of the EDCF cell-signaling pathway appear to be characterized as 

follows. In response to stimulation, a rise in endothelial [Ca2+]i likely activates Ca2+-dependent 

PLA2, liberating AA that is next metabolized by COX leading to the synthesis and release of 

endoperoxides and/or PG(s), which then travel to the VSM, activating the TP receptor to initiate 

contractile signaling activity (Figure 1.5).  

 Indeed, subsequent studies have established the pivotal role of COX in endothelium-

dependent contractile responses (105, 383), and have identified the TP sub-type of the PG 

receptor family as being responsible for mediating almost all EDCF signaling activity in 

endothelium-dependent contractile responses (111). In addition to the four key findings described 

above, a fifth group of findings showed that acute exposure to inhibitors of ROS accumulation 

(e.g. SOD and/or catalase mimetics or the iron chelator deferoxamine) could, to varying degrees, 

partially attenuate endothelium-dependent contractile responses in either isolated intact arterial 

segments (184, 386, 423) or bioassay arterial strips ((424); see Three above). Noteworthy, these 

findings suggested the possibility of a ROS component to the EDCF cell-signaling pathway (see 

Figure 1.5), which has led to the exploration of ROS and oxidative stress as contributing factors 

to the regulation of this pathway, as is further described below (see Mechanisms of Over-Active 

EDCF Signaling: Role of PGs, ROS, and Oxidative Stress).  

Contribution of EDCF Responses to Endothelial Dysfunction under CVD Risk Conditions 

While endothelium-dependent contractile responses may certainly occur under physiological 

conditions, EDCF signaling activity is found to be particularly prominent under conditions of 

CVD risk, where it can result in endothelial dysfunction. In this way, EDCF responses are 

becoming known as a hallmark of endothelial dysfunction and CVD. 

SHR Aorta: The First Reporting of an EDCF Response Impairing Endothelium-Dependent 

Vasorelaxation 

The first observation of endothelium-dependent contractile activity contributing to the pathology 

of endothelial dysfunction was in the isolated thoracic aorta of SHR (230, 231), and since then, 

the characteristics of EDCF cell-signaling have been studied most extensively in this conduit 

vascular segment (105, 112, 360). As in many vascular segments or vascular beds of animals or 
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humans with CVD risk, endothelium-dependent relaxation/dilation in the aorta of adult SHR was 

found to be blunted (see account of pioneering studies in Section 1.3, Endothelium-Dependent 

Vasorelaxation: A Display of Endothelial (Dys)function). Hence, of isolated pre-contracted aortic 

rings, agonist-stimulated dose-dependent relaxation was impaired in SHR compared to 

normotensive age-matched WKY (199); however, several unique features of this impairment 

were soon identified. Not only was the predominantly NO-mediated maximal relaxation response 

to endothelial agonists, including ACh, blunted in SHR aorta, but the vasomotor responses 

stimulated at higher agonist doses were in many cases no longer that of relaxation but of overt 

‘re’-contraction (199, 230, 231). Notably, it was found that this re-contractile response blunting 

maximal relaxation could be completely reversed in the presence of Indo, resulting in a similarly 

robust endothelium-dependent L-NAME-sensitive aortic relaxation response between SHR and 

WKY (230).  

 Further exploring the apparent EDCF activity in SHR, these pioneering experiments more 

purposely assessed the endothelium-dependent contractile response to cumulative ACh in SHR 

aorta from a quiescent (basal) vasomotor state (i.e. isolated arterial rings isometrically-mounted 

and equilibrated but not pre-contracted prior to assessment of agonist-stimulated vasomotor 

activity). Using this approach, ACh was found to elicit a dose-dependent aortic contractile 

response that could be prevented by either PLA2 or COX inhibition (230) or by TP receptor 

antagonism (16), and could be significantly amplified by either inhibitors of NOS (L-NAME or 

L-NMMA; (17, 426), scavengers of NO (oxy-hemoglobin or carboxy-PTIO; (17, 426)), or 

inhibitors of sGC (ODQ or NS2028; (426)).    

 Thus, the impairment in agonist-stimulated endothelium-dependent vasorelaxation 

observed in the aorta of adult SHR was not found to be caused by a decrease in NO-mediated 

EDRF signaling activity, but rather by an increase in COX-mediated EDCF signaling activity that 

could over-power the EDRF response, thereby causing endothelial dysfunction. 

Balancing EDRF and EDCF Signaling Activities to Prevent or Promote Endothelial 

Dysfunction  

The above-described experiments demonstrating that acute inhibition of the eNOS-NO-sGC 

signaling axis amplifies ACh-stimulated COX- and TP receptor-mediated contractile activity in 

SHR aorta (17, 426) were important in establishing the concept that concomitantly produced 

EDRF(s) and EDCF(s) from the stimulated endothelium exert opposing cell-signaling effects on 

VSM tone and are hence functionally antagonistic of one another (107, 355). Thus, a rise in 

endothelial [Ca2+]i upon agonist stimulation can result not only in the activation of enzymes/ion 

channels leading to the production/activation of EDRFs (i.e. NOS-derived NO, COX-derived 
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PGI2, or Non-NOS/Non-COX-derived EDHFs; see above Section 1.5.1, EDRF Cell-Signaling 

Pathways: Overview; and Figure 1.4), but also in the activation of COX leading to the 

production/activation of EDCFs (Figure 1.5), both of which travel (either by free diffusion or 

through MEGJ) to the VSM to stimulate their respective targets, in turn activating both relaxation 

and contractile cell-signaling activities (Figure 1.3). In arteries where NO is the predominant 

EDRF, VSM sGC-mediated relaxation signaling activities (see EDRF Cell-Signaling Pathways: 

NOS-derived NO) must then act against (oppose) the TP receptor-mediated contractile signaling 

activities stimulated by EDCF(s), and vise versa (i.e. EDCF-stimulated activation of VSM TP 

receptor-mediated contractile signaling activities must act against sGC-mediated relaxation 

signaling activities stimulated by NO). It appears that this same functional antagonism between 

EDRF and EDCF cell-signaling activities operates in arteries/arterioles where EDHF(s) 

predominantly mediate EDRF responses, since acute inhibition of EDHF signaling activity (via 

K+ channel blockers or the presence of high KCl; see EDRF Cell-Signaling Pathways: Non-

NOS/Non-COX-derived EDHFs; and Figure 1.4) has been shown also to significantly amplify 

agonist-stimulated COX- and TP receptor-mediated contractile responses (254).   

 Therefore, in healthy vasculature, the activity of EDCF(s), if present, can be counter-

balanced completely by the activity of EDRFs, resulting in a robust endothelium-dependent 

relaxation/dilatory response. Whereas, under conditions of CVD risk, endothelium-dependent 

relaxation/dilation can be significantly impaired in one of three ways: i) an under-activation of 

EDRF signaling with no EDCF involvement; ii) an imbalance involving over-activation of EDCF 

signaling with normal EDRF signaling activity (relative to healthy controls; as in the adult SHR 

aorta, as described above); or iii) worst of all, an imbalance involving both under-active EDRF 

signaling and over-active EDCF signaling (see below, COX-Mediated EDCF Responses 

Contributing to Endothelial Dysfunction in Other SHR Vascular Segments, in Other Animal 

Models of CVD Risk, and in Humans). 

Identification and Specific Examination of COX-mediated EDCF Responses and Signaling 

Activities 

In order to definitively identify whether an EDCF response may be contributing to impaired 

agonist-stimulated endothelium-dependent vasorelaxation/dilation in a particular vascular 

segment or vascular bed, the following sequence of investigation should be employed (which is 

similar to that employed by the pioneering experiments investigating SHR aortic EDCF signaling 

activity as outlined above in SHR Aorta: The First Reportings of an EDCF Response Impairing 

Endothelium-Dependent Vasorelaxation).  
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 It must be determined to what extent the blunted dose-dependent relaxation/dilation 

response (which may or may not be accompanied by overt re-contraction) can be eliminated by 

NOS or COX inhibition via pharmaco-dissection using L-NAME/L-NMMA and Indo (acute 

incubation in the case of an isolated vascular segment, or acute infusion in the case of an intact 

vascular bed such as the human forearm). If the blunted relaxation/dilation can be eliminated 

completely by L-NAME/L-NMMA, then the likely cause of endothelial dysfunction is solely a 

decrease in NOS-mediated EDRF signaling activity; whereas, if it cannot be eliminated 

completely by L-NAME/L-NMMA but can be by Indo, then the likely cause of endothelial 

dysfunction is solely an increase in COX-mediated EDCF signaling activity. Accordingly, if the 

blunted relaxation/dilation can only be eliminated completely by both L-NAME/L-NMMA and 

Indo, then the likely cause of endothelial dysfunction is a combination of decreased NOS-

mediated EDRF signaling activity and increased COX-mediated EDCF signaling activity.  

 To verify and more specifically examine the agonist-stimulated COX-mediated EDCF 

signaling activity apparent in an isolated pre-contracted vascular segment, it has become common 

practice to assess the dose-dependent contractile response stimulated by the agonist with the 

vascular segment starting from a quiescent state and incubated with L-NAME ((387); also see 

thesis studies in experimental chapters). The quiescent state ensures that ample capacity for 

contraction is provided, while the L-NAME incubation acts to amplify contraction by ensuring 

that NOS-mediated EDRF signaling does not attenuate the EDCF signaling activity stimulated by 

the agonist (see above, Balancing EDRF and EDCF Signaling Activities to Prevent or Promote 

Endothelial Dysfunction), which together help to optimize the endothelium-dependent COX-

mediated contractile response, thus allowing for a more specific examination and pharmaco-

dissection of COX-mediated EDCF signaling and the mechanisms accounting for its over-

activation under conditions of CVD risk. 

 It is worth noting that even to date, some studies investigating endothelial dysfunction in 

states of CVD risk assume that the impairment in endothelium-dependent vasorelaxation/dilation 

observed in a vascular segment/bed in response to agonist/flow stimulation was caused only by a 

decrease in NO-mediated signaling activity, even though L-NAME and Indo were not 

systematically employed to dissect the response, let alone were experiments designed to 

specifically examine endothelium-dependent contractile activity (i.e. agonist stimulation of an 

isolated vascular segment in a quiescent state incubated with L-NAME, as described above in this 

sub-section). In this way, it is possible that the contribution of COX-mediated EDCF cell-

signaling to the pathology of endothelial dysfunction could be unrecognized in those vascular 

segments/beds in those states of CVD risk. 
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COX-Mediated EDCF Responses Contributing to Endothelial Dysfunction in Other SHR 

Vascular Segments, in Other Animal Models of CVD Risk, and in Humans 

Since the 1986 reporting of a COX-mediated EDCF response causing endothelial dysfunction in 

the aorta of SHR ((230, 231); see above, SHR Aorta: The First Reportings of EDCF Signaling 

Activity Impairing Endothelium-Dependent Vasorelaxation), the contribution of EDCF cell-

signaling to impaired agonist-/flow-stimulated endothelium-dependent vasorelaxation/dilation 

responses under CVD risk conditions has not only been further examined in the aorta of SHR, but 

has also been identified and examined in other SHR vascular segments, in other animal models of 

hypertension, in other animal models of CVD risk – most notably aging and diabetes (105, 111, 

385), and in humans – most notably essential hypertensive patients and otherwise healthy aging 

individuals (394, 395, 401, 403). In these pathological states, the endothelial dysfunction found 

often involves both under-active NO-mediated (and/or EDHF-mediated) EDRF signaling and 

over-active COX-mediated EDCF signaling. 

 Other SHR Vascular Segments. In addition to the aorta, COX-mediated EDCF responses 

have been found to contribute to endothelial dysfunction in various other segments of the SHR 

vasculature. Identification of an endothelium-dependent contractile response impairing ACh-

stimulated vasorelaxation in the small branch-order mesenteric arteries/arterioles of SHR 

provided the first demonstration that COX-mediated EDCF activity was not just a phenomenon of 

conduit macro-vasculature but also of the resistance micro-vasculature (88, 227). Such COX-

mediated EDCF activity has also been identified in resistance arteries/arterioles of other SHR 

vascular beds/territories, including isolated skeletal muscle cremasteric and gracilis arterioles in 

response to either agonists (159), flow (162, 198), or pressure (160, 161), and isolated renal 

arterioles in response to agonists (77, 117, 171). In the macro-vasculature of SHR, COX-mediated 

EDCF activity contributing to endothelial dysfunction has been clearly identified and specifically 

examined not just in the isolated conduit aorta but also the intermediate-sized conduit renal artery 

in response to agonists (180, 228, 254, 255).  

 In contrast, previous studies of SHR investigating the intermediate-sized conduit CCA 

((158, 166, 228); note: the SHR CCA was the focus of Study I and II of this thesis) and the smaller 

downstream basilar resistance artery (244, 339) of the cerebral circulation have found that the 

impaired endothelium-dependent vasorelaxation observed in these vascular segments appears to 

involve a decrease in NO-mediated EDRF activity with no indication of a COX-mediated EDCF 

response. These observations are based on the use of either L-NAME or Indo, but not 

experiments specifically examining endothelium-dependent contractile activity. Noteworthy, in 

the foremost EDCF Reviews from 2006 to date (109, 111, 112), the above-indicated studies of the 
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SHR CCA (158, 166, 228) and cerebral vasculature (244, 339) have been cited as examples to 

make the point that the existence of COX-mediated EDCF responses is not ubiquitous in the SHR 

vasculature. Unquestionably, this is an important point to be made, and is almost certainly true 

not only of SHR but of any other animal model of CVD risk, consistent with the heterogeneity 

well-known to exist throughout the vasculature regarding both the extent to which CVD risk 

factor(s) may affect endothelium-dependent vasodilation/relaxation and the varied cell-signaling 

mechanisms that can account for this endothelial (dys)function (109). However, these Reviews 

(109, 111, 112), in making this point, call particular attention to the CCA and downstream 

cerebral circulation as a vascular segment/territory devoid of COX-mediated EDCF signaling 

activity in SHR, as compared to stroke-prone (SP)-SHR where both the conduit CCA (333) and 

downstream pial arterioles (246) of the cerebral circulation are identified as possessing COX-

mediated EDCF activity that impair endothelium-dependent vasorelaxation. Yet, in addition to 

the two cited studies investigating the basilar artery of SHR (244, 339), a third uncited study 

investigating pial arterioles (245) found that the impaired ACh- and ADP-stimulated arteriolar 

dilation responses observed in SHR vs. WKY could be reversed with acute exposure to the TP 

receptor antagonist SQ29548, indeed suggesting that COX- (and TP receptor-) mediated EDCF 

signaling activity contributing to endothelial dysfunction may actually exist in the SHR cerebral 

vasculature, as it does in SP-SHR. Moreover, since in the cited studies investigating the CCA of 

SHR (158, 166, 228), L-NAME and Indo were not systematically employed, nor was 

endothelium-dependent contractile activity specifically examined, the possibility that COX-

mediated EDCF signaling activity exists in the CCA of SHR cannot be definitively excluded by 

these works (for further details, see Discussion of Thesis Study I).  

 Other Animal Models of Hypertension. In addition to SHR and SP-SHR, COX-mediated 

EDCF responses have been found to contribute to impaired endothelium-dependent 

vasorelaxation in various macro-vascular and micro-vascular segments of other animal models of 

hypertension, including the aorta or femoral artery of L-NAME-infused SD rats (298), Wistar rats 

(292, 323), and WKY (265); the aorta, CCA, or femoral artery of eNOS knockout mice (436); the 

aorta or small mesenteric arteries of AII-infused Wistar rats (181) or mice (398); the CCA or 

renal artery of Dahl salt-sensitive rats (433, 434); and the aorta of deoxycorticosterone acetate 

salt-treated rats (73), among other (trans)genetic or experimental hypertensive models (111). 

These findings are important as they help confirm that the genetic background of SHR is at least 

not obligatory for the occurrence of COX-mediated EDCF responses. Although, among animal 

models of hypertension (and Other Animal Models of CVD Risk, as described in the subsequent 

sub-section), it is apparent that COX-mediated EDCF signaling activity occurs most readily in the 
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vasculature of SHR, and thus remains the archetypal model for its study ((105); also see below, 

Potential Mechanisms of Over-Active EDCF Signaling: Role of PGs, ROS, and Oxidative Stress).  

 It was found in SHR aorta that the magnitude of the endothelium-dependent COX-mediated 

contractile response positively correlated with arterial blood pressure (172), prompting the 

suggestion that the COX-mediated EDCF activity found in different models of hypertension 

might be a consequence of chronic exposure of the vascular wall to the high intra-vascular 

pressure that is common amid the varying neuro-humoral and kidney abnormalities 

accompanying different models (385). However, not all vascular segments within a particular 

hypertensive animal are characterized by an augmented COX-mediated EDCF response despite 

exposure to similar increases in mean arterial pressure. In addition, COX-mediated EDCF activity 

has been identified in other animal models of CVD risk not associated with high blood pressure, 

such as normotensive aging and diabetes, as described next. 

 Other Animal Models of CVD Risk. In addition to models of hypertension, COX-

mediated EDCF responses impairing endothelium-dependent vasorelaxation are continuously 

being identified and specifically examined in the macro-vasculature and micro-vasculature of 

various animal species (e.g. rodents, rabbits, pigs) in a growing number of CVD risk models 

(111), for instance: aging (193, 329, 418), type-I (328, 330) and type II (240) diabetes , obesity 

(27, 141), hyperhomocysteinemia (19), estrogen deprivation (15), 

hypercholesterolemia/atherosclerosis (293), chronic heart failure (256), and vascular 

injury/endothelial denudation/regenerated endothelium (155, 291). As in models of hypertension, 

not all vascular segments within a particular CVD risk animal model are characterized by an 

augmented COX-mediated EDCF response. Nevertheless, an increase in COX-mediated EDCF 

signaling activity causing endothelial dysfunction has been identified in aortic, renal, carotid, and 

femoral conduit arteries and in the mesenteric, skeletal muscle, renal, coronary, and cerebral 

arterial/arteriolar vascular beds/territories across a range of models of diabetes and related 

metabolic abnormalities (27, 93, 332), where COX-mediated EDCF responses are often found to 

be prominent (105, 111). 

 Notably, it is apparent in the SHR-WKY aortic model that the prominence of COX-

mediated EDCF responses may be a characteristic of the aging vascular wall. Indeed, while 

endothelium-dependent contractile activity is either found to be absent or relatively low (vs. 

SHR) in the aorta of young adult WKY (~12-20wks), aging into later life (ranging from ~12-24 

months) is associated with a progressive blunting of maximal endothelium-dependent relaxation 

due to an age-related increase in COX-mediated EDCF activity (193, 194). Likewise, aging 

exacerbates the COX-mediated EDCF activity found in the aorta of adult SHR, resulting in a 
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further blunting of maximal endothelium-dependent relaxation with age (193, 194). These 

findings suggest that the earlier manifestation of augmented COX-mediated EDCF activity and 

endothelial dysfunction found in SHR compared to normotensive WKY may be indicative of a 

premature aging of the vascular wall (105, 385). Indeed, the age-related prominence of COX-

mediated EDCF signaling activity has also been identified in the vasculature of other aging but 

otherwise seemingly healthy animals, including the aorta, femoral artery and small mesenteric 

arteries of male or female SD rats (329, 345) (note: the CCA of aging male SD rats was the focus 

of Study III in this Thesis), the aorta and small mesenteric arteries of Wistar rats (153), and the 

aorta of hamsters (418). In addition, augmented COX-mediated EDCF activity has been found to 

impair endothelium-dependent vasorelaxation in Wistar rat femoral (155) and porcine coronary 

(291) arteries with regenerated endothelial cells in response to vascular injury (e.g. balloon 

angioplasty, photochemical damage). Together, these findings have prompted the suggestion that 

endothelial dysfunction and augmented EDCF activity may characterize the pre-mature aging of 

the vasculature brought about by chronic exposure to conditions of CVD risk, such as 

hypertension or diabetes, which leads to damage to the endothelium resulting in accelerated 

endothelial cell regeneration and senescence (361).     

 In Humans. Helping to strengthen the clinical relevance of the above-described findings 

in experimental animal vasculature, COX-mediated EDCF responses appear also to impair human 

endothelium-dependent vasorelaxation in various condition of CVD risk (394, 403). This was 

first discovered in the forearm circulation of adult untreated essential hypertensive patients, 

wherein the presence of intra-arterially administered Indo was found to partially but significantly 

improve the impaired dilatory response to cumulative ACh infusion as compared to age-matched 

normotensive control subjects, wherein a more robust ACh-stimulated dilatory response was 

unaffected by Indo (354). While improving endothelium-dependent vasodilation in essential 

hypertensive patients, Indo was found not to be effective in improving endothelial dysfunction in 

adult patients with secondary forms of hypertension ((354); including primary aldosteronism and 

reno-vascular hypertension). Of note, these findings are consistent with the more ready 

occurrence of COX-mediated EDCF responses in the vasculature of SHR as compared to other 

animal models of hypertension (see above, Other Animal Models of Hypertension). In addition to 

essential hypertension, Indo, or the TP receptor antagonist S18886 has been found to improve the 

impaired agonist-stimulated endothelium-dependent vasodilation in the forearm of patients with 

congestive heart failure (187), coronary artery disease (31), women post-ovariectomy/-

hysterectomy (402), and otherwise healthy, normotensive individuals aged >60 years (353), 
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suggesting that COX- (and TP receptor-) mediated EDCF signaling activity helps to define 

human endothelial dysfunction under CVD risk conditions.  

 Noteworthy, as in the SHR-WKY aortic model (see above, Other Animal Models of CVD 

Risk), comparisons made between aging essential hypertensive patients and normotensive control 

subjects also suggest that the endothelial dysfunction and augmented EDCF activity found in 

essential hypertension may be indicative of pre-mature vascular aging (385, 394, 403). In 

otherwise healthy, normotensive individuals, the decline in forearm agonist-stimulated 

endothelium-dependent vasodilation up to age 60 years was found to be largely L-NMMA-/L-

arginine-sensitive and essentially Indo-insensitive; conversely, the decline with age beyond 60 

years became partly sensitive to Indo (353), suggesting an age-related increase in COX-mediated 

EDCF signaling activity. In comparison, in essential hypertensive patients, reduced forearm 

agonist-stimulated endothelium-dependent vasodilation was only Indo-insensitive <30 years of 

age, after which the decline in this vasodilation became progressively more Indo-sensitive with 

aging up to and beyond 60 years (353). Thus, it appears in humans as it does in rats that 

augmented COX-mediated EDCF activity is a characteristic of the aging vascular wall with the 

conditions of essential hypertension acting to accelerate the workings of this change. 

 In this thesis, the identity and cell-signaling mechanisms of COX-mediated EDCF 

activity causing endothelial dysfunction were specifically examined in the CCA conduit 

vasculature of adult SHR and WKY (Study I and II), and adult and aging SD rats (Study III). 

Potential Mechanisms of Over-Active EDCF Signaling: Function of PGs, ROS, and 

Oxidative Stress 

The mechanisms of over-active EDCF signaling could involve changes affecting either the 

endothelial production of EDCF(s) or the EDCF-mediated activation of VSM contractile 

pathways.  

 As is indicated, much of the available evidence on the endothelial-VSM cell-signaling 

mechanisms of EDCF activity, and its pathological augmentation, pertains to EDCF(s) 

(over)production, coming in large part from studies in the SHR-WKY vasculature, in particular 

the isolated aorta. 

Mechanisms of EDCF (Over)Production: Critical Role of Regulating the PG Synthesis 

Pathway 

Possible EDCF Candidates. Under pathological conditions in particular, the endothelium can 

synthesize and release a variety of factors capable of promoting a CVD phenotype in addition to 
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eliciting vasocontractile activity, most notably ROS and GPCR agonists including not only 

various PGs but also the peptides AII and endothelin-1 (ET-1), acting, respectively, on VSM PG, 

AT1 and ETA receptors (44, 361). However, neither of these peptides (or other known EDCFs) 

appears to acutely mediate endothelium-dependent contractile activity stimulated by agonists or 

flow (385). Conversely, given that agonist-/flow-stimulated endothelium-dependent contractile 

activity, when found in animal models of CVD risk, can be completely abolished by the non-

selective COX inhibitor Indo, and almost eliminated by the TP receptor antagonists S18886 or 

SQ29548 (see above, Endothelium-Dependent Contractile Responses: Initial Findings and 

Characterization of EDCF Cell-Signaling Pathway), the most likely candidate(s) to act as 

diffusible EDCF substance(s) are metabolites derived from the activation of COX-1 and/or COX-

2, which may include endoperoxides and PGs (see COX-Derived PGI2 in Section 1.5.1), as well 

as ROS (see Determinants of Pro-oxidant/Anti-oxidant Balance in the Vascular Wall in Section 

1.5.2, and Role of ROS and Oxidative Stress in EDCF Signaling Activity below).  

 As previously introduced for PGI2 (see COX-Derived PGI2 in Section 1.5.1; and Figure 

1.4), AA, liberated from membrane phospholipids by phospholipases including Ca2+-dependent 

PLA2, can be metabolized by either COX-1 or COX-2, with equal potency, to the endoperoxides 

PGG2 and PGH2, which are subsequently metabolized to either PGI2, PGE2 PGD2, PGF2α, or 

TXA2 by their respective terminal PGSs, namely PGI, PGE, PGD, PGF, TX synthase (see Figure 

1.5). In addition, PG isomers, notably 8-isoprostane, can be formed either enzymatically via 

COX, or non-enzymatically via oxidation of membrane polyunsaturated fatty acids including AA 

(Figure 1.5). But while TXA2 is the preferential activator of TP receptors, and each other terminal 

PG for their so-named PG receptor (i.e. PGI2 of IP receptors, PGE2 of EP receptors, PGD2 of PD 

receptors, and PGF2α of FP receptors; Figure 1.5), it has been established that PGH2 and all other 

PGs can also activate VSM TP receptors with varying potencies (from Ref. (139); TXA2>>8-

isoprostane=PGF2α=PGH2>PGE2=PGD2>PGI2 in the aorta of SHR and WKY). Consequently, if 

produced in a high enough concentration, it is possible that any one of these endoperoxide-PG 

metabolites could act as a COX-derived EDCF, provided that the vasocontractile activity 

activated by TP receptor stimulation was greater than any vasorelaxation activity which might be 

trans-activated by stimulating PG receptor(s) that are G-protein-coupled to signaling cascades 

mediating relaxation (e.g. the IP receptor, which is typically known to activate VSM relaxation 

through Gs-AC-cAMP-PKA signaling activity, unless dysfunctional, like in SHR and aging 

WKY, as further described below in Mechanisms of EDCF Activation of VSM Contraction: Role 

of TP Receptor Signaling Activity).  
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 Indeed, across studies investigating agonist-/flow-stimulated endothelium-dependent 

contractile signaling, it has been found that, depending on the stimulus, vascular segment, and 

particular animal or CVD risk condition under study, a variety of PGs derived from COX-1, 

and/or COX-2 when expressed, may act as EDCFs, including TXA2, PGH2, PGF2α, and 8-

isoprostane (105, 111, 394, 403), and, though seemingly paradoxical ( considering its well-known 

role as an EDRF), also PGI2 (see Mechanisms of EDCF Activation of VSM Contraction: Role of 

TP Receptor Signaling Activity for explanation).  

 Thus, theoretically, anything changing the acute or chronic regulation parameters of the 

endothelial cell PG synthesis pathway – i.e. the expression and/or activation of PLA2, COX-

1/COX-2, or PG synthases – could contribute to the cause of augmented EDCF activity, if those 

changes result in the over-production of PGs capable of eliciting net TP receptor-mediated VSM 

contraction. 

 Over-Active EDCF Production via Altered Regulation of the PG Synthesis Pathway. In 

the SHR-WKY aortic model, key potential causes of augmented EDCF activity relating to EDCF 

production have been identified as: i) an endothelial cell over-expression of COX and PG 

synthases, and ii) a greater rise in endothelial [Ca2+]i upon agonist stimulation (360). 

Endothelium-derived PGs are over-produced in the aorta of adult SHR and aging WKY 

(vs. adult WKY), both in a quiescent state and upon agonist stimulation. In response to ACh, 

PGI2 (and possibly PGH2) derived from COX-1 has been found to be the predominant PG 

produced from the aorta of these animals (from Ref. (139); PGI2 10-100-fold 

>PGF2α>/=PGE2>TXA2>8-isoprostane=PGD2 in SHR and WKY aorta); accordingly, in SHR and 

aging WKY, both ACh-stimulated endothelium-dependent aortic PGI2 production and ACh-

stimulated aortic EDCF activity can be completely abolished by Indo or by the preferential COX-

1 inhibitor valeryl salicylate (VAS), but only partially attenuated by the preferential COX-2 

inhibitor NS398 (139). In contrast, in response to A23187, COX-1-derived TXA2 in addition to 

PGI2 (and possibly PGH2) appear to act together as EDCFs (from Ref. (140); PGI2 >TXA2= 

PGF2α=PGE2 in SHR and WKY aorta), as the TX synthase inhibitor dazoxiben was found to 

completely abolish the A23187-stimulated endothelium-dependent aortic production of TXA2 and 

attenuate A23187-stimulated EDCF activity by about half (140). Congruent with these functional-

biochemical findings, a significant over-expression of COX-1, PGI synthase, and TX synthase 

can be found in the aortic endothelium of adult SHR, while both COX-1 and COX-2 and TX 

synthase are found to be over-expressed in the aortic endothelium of aging WKY (359). Indeed, 

as in the SHR-WKY aortic model, the augmented EDCF activity found in other SHR vascular 

segments (399) and in other animal models of CVD risk (240, 298, 398) can also be linked to the 
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over-production of one or more PGs (TXA2, PGH2, PGF2α, 8-isoprostane, PGI2), which is 

consistently related to an up-regulation of COX-1 and/or COX-2 expression, while the expression 

of particular PG synthases has not been well investigated. In agreement also are the few direct 

studies of EDCF responses in the human vasculature, wherein the ACh-stimulated TP receptor-

mediated EDCF response found in quiescent renal artery segments isolated from aging 

hypertensive-diabetic patients was linked to the renal artery production of PGF2α in response to 

ACh, which could be abolished by the COX-2 inhibitor celecoxib (418). Moreover, the ACh-

stimulated endothelium-dependent relaxation response found in isolated, pre-contracted renal 

arteries from aging hypertensive patients could be significantly improved by celecoxib, and was 

coincident with renal artery COX-2 over-expression compared to renal artery segments isolated 

from age-matched normotensive patients (419).  

 In addition to chronic expression changes in COX-1 and/or COX-2 and PG synthases, the 

augmented PG production and EDCF activity, at least in the aorta of adult SHR vs. WKY, has 

been linked to changes in the acute regulation of endothelial [Ca2+]i homeostasis leading to over-

activation of the PG synthesis pathway (360). Indeed, ACh stimulation is found to elicit an 

increase in endothelial [Ca2+]i that is substantially greater in the aorta of SHR than WKY and 

associated with augmented EDCF activity (357). Interestingly, in response to A23187, the 

maximal increase in endothelial [Ca2+]i was comparable between SHR and WKY aorta, while the 

augmentation in A23187-stimulated aortic contractile response amplitude in SHR vs. WKY, 

albeit less than if stimulated by ACh, was still apparent (357), most likely explained by the COX-

1, PGI synthase, and TX synthase over-expression in the aorta of SHR (360), leading to an 

augmented production of vasocontractile PGs despite a presumably similar Ca2+-triggered release 

of AA by PLA2. Whether a similar dysfunction in the acute regulation of endothelial [Ca2+]i 

contributes to the augmentation of EDCF activity in other SHR vascular beds or in other CVD 

risk conditions remains to be determined.  

 Taken together, it certainly appears from the available evidence that the endothelial over-

production of EDCF(s) in the form of PGs contributes importantly to the cause of over-active 

EDCF signaling in states of CVD risk by a mechanism involving the up-regulation, and perhaps 

over-activation, of the main enzymatic parameters of the PG synthesis pathway, most notably 

COX-1 or COX-2.  

 

 

 

 



  41

Mechanisms of EDCF Activation of VSM Contraction: Role of TP Receptor Signaling Activity 

Compared to mechanisms of EDCF (over)production, much less is known regarding the VSM 

cell-signaling mechanisms by which EDCFs activate contractile activity, and whether changes in 

those cell-signaling activities might contribute to over-active EDCF signaling.  

 PG Receptor Involvement. As has been demonstrated under bioassay conditions, EDCFs, 

once produced, diffuse to the VSM and cause contraction (see above Endothelium-Dependent 

Contractile Responses: Initial Findings and Characterization of EDCF Cell-Signaling Pathway). 

While a component of non-TP receptor-mediated EDCF activity has been reported under some 

conditions, typically involving other PG receptor sub-types such as EP or FP receptors (240, 328, 

356), the ability of TP receptor antagonists (S18886 or SQ29548) to nearly or completely abolish 

agonist-/flow-stimulated endothelium-dependent contractile responses in almost all cases where 

they have been identified, strongly suggests that this PG receptor sub-type is obligatory in the 

EDCF-mediated activation of VSM signaling activity (Figure 1.5). 

TP-IP Receptor Balance. Considering the well-known role of PGI2 as an EDRF, its ability 

to act as a prominent EDCF in SHR and aging WKY is seemingly paradoxical. However, 

apparent as early as 3 months old in SHR, and progressively apparent after 3 months old in WKY 

(142), PGI2 cannot elicit relaxation, but rather elicits TP receptor-mediated contraction in these 

animals because their VSM IP receptors possess (acquire) a specific dysfunction (i.e. it is not 

found to be related to its expression or alterations in its downstream Gs-AC-cAMP-PKA 

signaling axis; (142)). This apparent imbalance between TP and IP receptor activities has also 

been found in other models of vascular dysfunction. Of note, in mesenteric arteries from aging 

Long-Evans control and type-II diabetic rats, the impairment found in ACh-stimulated 

endothelium-dependent vasorelaxation is largely attributed to a COX- and TP receptor-mediated 

contractile response linked to the over-expression of COX-1 and COX-2 and the ACh-stimulated 

over-production of PGI2 as well as TXA2 and PGE2 (239, 241), and in these arteries, exogenous 

PGI2, like in SHR and aging WKY, is found not to elicit relaxation, but TP receptor-mediated 

contraction. It is also of note that patients with a mutation rendering their IP receptor 

dysfunctional demonstrate accelerated atherogenesis and thrombogenesis (14), as do athero-prone 

apoE knockout mice with their IP receptor gene deleted (138). Accordingly, the COX- and TP 

receptor-mediated EDCF activity found to impair endothelial function in the aorta of SHR and 

aging WKY provides an important model example of the consequences of producing/over-

producing any endoperoxide or PG under conditions where the signaling activity stimulated by 

(trans)activating TP receptors (or theoretically any PG receptor G-protein-coupled to a 
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vasocontractile signaling axis; see below, Potential VSM GPCR-Mediated Contractile Signaling 

Pathways) cannot be successfully offset by the signaling activity stimulated by activating IP 

receptors (or theoretically any PG receptor G-protein-coupled to a vasorelaxation signaling axis; 

see above, EDRF Signaling Pathways / COX-Derived PGI2 in Section 1.5.1) (refer to both Figure 

1.4 and Figure 1.5).  

TP Receptor Expression. All PG receptor sub-types were shown to be constitutively 

expressed in the aortic VSM of SHR and WKY (359), and while an increased expression of VSM 

DP, EP3, and EP4 receptors was found in the aorta of SHR or aging WKY, the expression of all 

other PG receptors are unaltered, including the expression of both IP and TP receptors (359). 

Thus, judging from these data, it does not appear unlikely that a change in the expression of TP 

receptors (or other PG receptors) contributes importantly to the cause of over-active EDCF 

signaling.  

 TP Receptor Sensitivity. The dose-dependent contractile response elicited by the synthetic, 

selective TP receptor agonist U46619 has been found to be no different in SHR and WKY aorta 

denuded of endothelium (60, 129), suggesting that the sensitivity of VSM TP receptors to agonist 

stimulation is unaltered between strains. In contrast, while similar results were found for authentic 

PGF2α as for U46619, contraction in the VSM of SHR aorta was shown to be hyper-sensitive to 

authentic PGH2 (129), and in the VSM of aging type-II diabetic rats was shown to be hyper-

sensitive to authentic PGE2 (242). Moreover, in endothelium-denuded femoral artery or aortic 

segments from adult streptozotocin-induced type-I diabetic or L-NAME-infused hypertensive SD 

rats, respectively, the VSM contractile response to U46619 was found to be augmented compared 

to controls SD rats (298, 331). Thus, it appears that a hyper-sensitivity of TP receptors to EDCFs 

(at least in the form of PGH2 or PGE2) might have some contribution to over-active EDCF 

signaling in states of CVD risk.  

 EDCF-Stimulated Activation of VSM TP Receptor-Mediated Contractile Signaling 

Activity. Beyond the knowledge that EDCFs diffuse to the VSM and elicit TP receptor-mediated 

contractile activity, the exact signaling mechanisms by which this EDCF-stimulated contraction 

occurs is (was) unknown and has (had) not been investigated (note: until Study I and II of this 

thesis was performed and published; see below Section 1.7.2 and 1.7.3, Specific Rationale, 

Objectives, and Hypotheses of Thesis Study I and Study II, and Experimental Chapter 2 and 3). 

Thus, it is (was) unknown whether and what changes in the EDCF-stimulated TP receptor-

mediated contractile signaling axis might contribute to over-active EDCF signaling in states of 

CVD risk.  
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 Potential VSM GPCR-Mediated Contractile Signaling Pathways. Potential mechanisms 

of contractile signaling upon activation of VSM GPCRs, such as TP receptors, have been 

identified (see Figure 1.5). As previously introduced (see above Section 1.5.1, EDRF Cell-

Signaling Pathways), VSM contractile activity is dictated by myosin RLC20 phosphorylation 

which is in turn controlled by the opposing activities of MLCK and MLCP, the former of which 

is predominantly activated by Ca2+-dependent mechanisms and the latter of which can be 

activated or inhibited by a number of Ca2+-independent mechanisms. GPCRs eliciting VSM 

contraction are typically coupled to either or both of the Gq/11 and G12/13 class of G-protein(s). 

Stimulation of Gq/11 results in the initiation of contraction via a classical pharmaco-mechanical 

coupling mechanism involving the activation of membrane-bound phospholipase (PL)C-β leading 

to the intra-cellular generation of IP3 and diacylglycerol (DAG), the former of which binds to SR 

IP3 receptors resulting in an increase in VSM [Ca2+]i, the formation of Ca2+-CaM complexes, and 

the subsequent activation of MLCK (348). In contrast, stimulation of G12/13 can lead to 

contraction by the phenomenon of Ca2+ sensitization via activation of the RhoA-ROCK signaling 

axis (342, 348).  

 RhoA is a molecular switch (341, 342, 348); thus, in a quiescent state, inactivated RhoA-

GDP exists in the cytosol where its prenylated hydrophobic tail interacts with GDP dissociation 

inhibitor (Rho-GDI). GPCR-stimulated G12/13 activates guanine nucleotide exchange factors (Rho-

GEFs) resulting in the exchange of GTP for GDP on RhoA and the dissociation of Rho-GDI, 

after which RhoA-GTP becomes bound to the plasma membrane by its tail. This membrane-

bound ‘switched-on’ (i.e. activated) RhoA-GTP then interacts with and activates ROCK, which 

can phosphorylate MLCP at multiple inhibitory sites (on the MYPT1 myosin-targeting subunit), 

resulting in MLCP inhibition, a greater Ca2+-CaM-MLCK:MLCP activity ratio, and a subsequent 

Ca2+-independent increase in contractile activity. To ‘switch-off’ RhoA-GTP, Rho GTPase 

activating proteins (RhoGAPs) catalyze the hydrolysis of RhoA-bound GTP resulting in the re-

association of RhoA-GDP with Rho-GDI in the cytosol. Beyond this well-known role of RhoA-

GTP as a ROCK activator, it is noteworthy that both AA (13) and sphingosylphosphorylcholine 

(SPC; (335)) have been shown in VSM to activate ROCK in a RhoA-independent manner, and so 

represent possible alternate mechanisms in the cell-signaling activities involved in GPCR-

mediated, ROCK-dependent contractile activity (342, 348). Furthermore, in addition to ROCK, 

several other protein kinases, most notably Ca2+-independent or -dependent, DAG- (and/or AA-) 

activated PKC isoforms, have independently been shown to result in the phosphorylation of 

MYPT1 and inhibition of VSM MLCP (414), and so represent possible alternate mechanisms in 
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the cell-signaling activities involved in GPCR-mediated, MLCP-dependent contractile activity 

(348). 

 Thus, it appears possible that EDCF-stimulated contractions could be mediated by 

multiple potential VSM TP GPCR-mediated cell-signaling mechanisms, among which might 

involve activation of the RhoA-ROCK signaling axis (for further detail, see below Specific 

Rationale, Objectives, and Hypotheses of Thesis Study II, and Experimental Chapter 3). But 

whether and to what extent any of these cell-signaling mechanisms in fact contributes to EDCF 

activity or its augmentation in states of CVD risk remained to be determined (also see above, 

EDCF-Stimulated Activation of VSM TP Receptor-Mediated Contractile Signaling Activity).  

Role of ROS and Oxidative Stress in EDCF Signaling Activity 

Given that excess ROS accumulation and oxidative stress has been identified as a major 

mechanism responsible for under-active EDRF signaling in states of CVD risk (as detailed in the 

Section 1.5.2 Review, Under-Active EDRF Signaling and Endothelial Dysfunction; and Figure 

1.4), it might be expected that ROS and oxidative stress would also contribute to the 

mechanism(s) responsible for EDCF signaling activity and its augmentation in states of CVD 

risk, thus providing a common link to the causes of endothelial dysfunction under these 

pathological conditions.  

 Continuing from early findings suggesting the possibility of a ROS component in the 

EDCF cell-signaling pathway (see above, Endothelium-Dependent Contractile Responses: Initial 

Findings and Characterization of EDCF Cell-Signaling Pathway; and Figure 1.5), the role of 

ROS and oxidative stress in the regulation of EDCF signaling activity has been a focus of 

investigation in numerous models of CVD risk (note: as it was in both Study II and Study III of 

this Thesis; see below Section 1.7.3 and 1.7.4, Specific Rationale, Objectives, and Hypotheses of 

Thesis Study II and Study III, and Experimental Chapter 3 and 4).  

Acute Role of ROS in EDCF Signaling Activity 

The exact role(s) of ROS in acutely regulating EDCF signaling activity has been difficult to 

establish, perhaps owing to the heterogeneous vasomotor responses found to be elicited by 

different ROS (O2
-•, H2O2 , OH•) in different vascular segments from different animals, which, in 

regard to H2O2 for instance, may range from contraction, to relaxation, to sometimes both within 

the same vascular segment (see above in Section 1.5.2 – Consideration of Potential ROS-

Mediated Compensatory Adaptations in Attempt to Prevent Endothelial Dysfunction, and below 

in Experimental Chapter 4). Indeed, across studies, the extent to which a ROS component has 

been found to acutely mediate the EDCF cell-signaling pathway depends on the stimulus, 
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vascular segment, and particular animal or CVD risk condition under study (360, 394, 403), and 

the extent varies greatly, whereby the result of pre-incubating a vascular segment with ROS 

inhibitor(s) has ranged from having no attenuating effect (181, 418) to almost completely 

eliminating all agonist-/flow-stimulated endothelium-dependent contractile activity (186).   

 Broadly, there are three potential mechanisms by which ROS could act acutely to augment 

EDCF responses: i) indirectly, by decreasing EDRF signaling activity; ii) by acting themselves 

directly as an ‘EDCF’; or iii) by directly stimulating VSM (or endothelial) COX thus acting to 

amplify the COX-PG-TP receptor signaling axis (360, 417).  

 Potential Indirect Action of ROS in Augmenting EDCF Responses via Decreasing EDRF 

Activity. Certainly, an accumulation of ROS in the vascular wall can indirectly lead to the 

augmentation of an (underlying) COX-mediated EDCF response, if that ROS results in 

decreasing EDRF signaling activity upon agonist/flow stimulation (e.g. via O2
-• destruction of 

eNOS-derived NO), thereby leaving EDCF-stimulated VSM TP receptor-mediated signaling 

activity less opposed (also see above, Balancing EDRF and EDCF Signaling Activities to Prevent 

or Promote Endothelial Dysfunction). Nonetheless, considering that ROS inhibitor(s) have been 

shown to attenuate agonist-/flow-stimulated endothelium-dependent contractile responses both in 

pre-contracted vascular segments and in vascular segments specifically examined from a 

quiescent state and pre-incubated with L-NAME (also see above, Identification and Specific 

Examination of COX-mediated EDCF Responses and Signaling Activities), it is apparent ROS can 

act to augment EDCF signaling activity by a more direct mechanism independent of decreasing 

EDRF signaling activity.   

 Potential Direct Actions of ROS in Augmenting EDCF Responses via Modulation of 

COX-Mediated Activities. In metabolizing AA to endoperoxides, the cyclooxygenation and 

peroxidation activities of COX can also produce ROS (see above, Determinant of Pro-

oxidants/Anti-oxidant Balance in the Vascular Wall in Section 1.5.2 Review; and Figure 1.5). 

Indeed, the ACh- or A23187-stimulated COX- and TP receptor-mediated EDCF responses found 

in the aorta of adult SHR vs. WKY (357) and in the femoral artery of either aging vs. adult SD 

rats (329) or adult streptozotocin (STZ)-induced type-I diabetic vs. healthy SD rats (330) have not 

only been linked to the endothelial COX-1 or COX-2-derived over-production of PGs (see above, 

Over-Active EDCF Production via Altered Regulation of the PG Synthesis Pathway) but also to 

an Indo-sensitive accumulation of ROS in the endothelium (329, 330, 357), as detected by the 

fluorescence of dichorodihydrofluorescein diacetate (DCF), a non-specific intra-cellular ROS dye 

capable of detecting O2
-•, H2O2, OH•, and ONOO- (89). The fact that pre-incubation with ROS 
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inhibitor(s) can partially (30-50%) attenuate the EDCF responses found in SHR aorta and SD rat 

femoral arteries (330, 360, 423), and can also attenuate to varying extents the EDCF responses 

found in several, but not all ((181, 418); e.g. the aorta of AII-infused Wistar rats), other vascular 

segments and models of CVD risk (256, 399, 419), certainly suggests that in addition to the 

requisite COX-PG-TP receptor signaling axis, an agonist-/flow-stimulated COX-derived (or at 

least COX-mediated) over-production of ROS from the endothelium may play a direct 

contributing role in mediating EDCF signaling activity in models of CVD risk.  

Of note, pre-incubation with standard SOD (which dismutates O2
-• to H2O2) and/or CAT 

(which metabolizes H2O2 to H2O) has been found to be without effect on SHR aortic EDCF 

activity presumably because of their poor cellular permeability (360), since the cell-permeable O2
-

• scavenger Tiron and the cell-permeable SOD inhibitor diethyldithiocarbamic acid (DETCA), 

alone or in combination, can prevent both ACh- and A23187-stimulated COX-mediated 

endothelial DCF fluorescence (357) and attenuate by ~30-50% the associated EDCF responses in 

SHR aorta, the latter of which can also be accomplished by cell-permeable PEG-CAT or 

deferoxamine (an Fe2+ chelator thus preventing the formation of OH• which results from H2O2 

(usually higher concentrations) reacting with transition metals) (see above, Determinant of Pro-

oxidants/Anti-oxidant Balance in the Vascular Wall in Section 1.5.2), in addition to inhibitors of 

MEGJ (which may facilitate transfer of ROS from endothelial cells to VSM) (360) (see Figure 

1.5). Together, these findings indicate that the ROS contributing to the EDCF signaling activity in 

the SHR aorta may include COX-derived O2
-• and in particular its by-products including H2O2 

and possibly OH• (however, the contribution of other downstream-activated endothelial ROS 

sources, including NADPH oxidase, cannot be excluded; see Figure 1.5). These same particular 

ROS appear also to contribute to the EDCF signaling activity found in SD rat femoral arteries, 

since pre-incubation with Tiron or DETCA alone, but also CAT or deferoxamine alone, or 

MnTMPyP alone (a cell-permeable SOD+CAT mimetic), can attenuate by ~30-50% the A23187-

stimulated EDCF response in the femoral artery of STZ-induced diabetic SD rats (330). In 

addition to COX-1/COX-2 over-expression, the activity (but not expression) of catalase in both 

aging and STZ-induced diabetic SD rat femoral arteries is found to be reduced (329, 330). 

Accordingly, this suggests that in response to agonist stimulation, both an increase in COX-

mediated ROS generation and a decrease in ROS buffering capacity may result in the endothelial 

accumulation and subsequent over-production of H2O2 and/or OH• ROS in particular, leading to 

augmented EDCF signaling activity in states of CVD risk.  

 Following agonist-/flow-stimulated endothelial COX-derived (over)production of PGs and 

ROS, it is certainly possible that ROS themselves may act as EDCF(s) ‘proper’ (i.e. independent 
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of PGs) to elicit VSM contraction, thus directly mediating EDCF activity. For example, in a 

detailed study of (apparently healthy) canine basilar arteries (186), it was found that pre-

incubation with SOD+CAT could essentially abolish A23187-stimulated endothelium-dependent 

COX-mediated contractile activity; that an SOD-inhibitable contractile response could be elicited 

by exposure of endothelium-denuded arteries to exogenous xanthine (X):XO-derived ROS in the 

presence of CAT; and that the A23187-stimulated arterial production of TXA2, PGF2α, and PGE2 

could be abolished by removing the endothelium or by Indo but was unaffected by SOD+CAT, 

altogether indicating that endothelial COX-derived O2
-•, rather than PGs, must be the EDCF 

stimulating VSM contraction in this particular vascular model. Conversely, in the SHR aorta and 

STZ-induced diabetic SD rat femoral artery models, where acutely inhibiting O2
-•, H2O2, and/or 

OH• production only partial attenuates EDCF activity, the dose-dependent contractile responses 

of endothelium-denuded arteries to either exogenous X:XO (which can produce a mix of O2
-•, 

H2O2, and/or OH•) or H2O2 are much more substantial in SHR vs. WKY and STZ-induced 

diabetic vs. healthy SD rats, and can essentially be abolished by either COX inhibitors or TP 

receptor antagonists (330, 331, 423). From these findings, it is suggested that the predominant 

mechanism by which ROS ‘directly’ acts to mediate EDCF activity is most likely by amplifying 

an already activated [Ca2+]i-PLA2-AA-COX-PGS-PG-TP receptor-contractile signaling axis 

through further stimulation of VSM COX (and perhaps also endothelial COX) (see Figure 1.5), 

thus reconciling the lack of (181, 418) or only partial (256, 330, 399, 419, 423) attenuation of 

EDCF responses by ROS inhibitor(s) found across models of CVD risk.   

 Altogether, it appears from the available evidence that the COX-mediated endothelial over-

production of O2
-•-derived ROS including H2O2 and OH•, may themselves, independent of 

potentially decreasing NO-mediated EDRF activity, play an important modulating role in 

mediating EDCF signaling activity. In this way, a vascular wall pro-oxidant/anti-oxidant balance 

promoting the accumulation of ROS (see above in Section 1.5.2 Review. – Pro-oxidant/Anti-

oxidant Balance in States of CVD Risk) could make an important direct contribution to the cause 

of over-active EDCF signaling in states of CVD risk, in addition to the important contributions 

made by PG over-production via an up-regulation, and perhaps Ca2+-dependent over-activation, 

of the main enzymatic parameters of the endothelial cell PG synthesis pathway – most notably 

COX-1/COX-2 (see above, Mechanisms of EDCF (Over)Production: Critical Role of Regulating 

the PG Synthesis Pathway), and perhaps also by VSM TP receptor hyper-sensitivity or loss of 

VSM IP receptor functionality (see above, Mechanisms of EDCF Activation of VSM Contraction: 

Role of TP Receptor Signaling Activity).  
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Chronic Role of ROS and Oxidative Stress in EDCF Signaling Activity 

Since endothelium-dependent contractile responses can develop in many vascular segments of 

different animal models of CVD risk (see above, COX-Mediated EDCF Responses Contributing 

to Endothelial Dysfunction in Other SHR Vascular Segments, in Other Animal Models of CVD 

Risk, and in Humans), it is possible that the excess ROS accumulation and oxidative stress 

commonly defining these models could play a role in the chronic regulation of EDCF signaling 

activity. However, compared to the well-investigated role of oxidative stress in chronically 

regulating EDRF activity, particularly regarding mechanisms of under-active NO-mediated 

signaling (as detailed in the Section 1.5.2 Review – Role of Decreased NO Production and 

Target-Tissue Sensitivity in Endothelial Dysfunction with Links to Oxidative Stress), not much is 

known regarding the extent to and mechanism(s) by which oxidative stress chronically regulates 

EDCF activity and its development under CVD risk conditions.  

Potential Role of ROS in Chronically Regulating EDCF Activity via the PG Synthesis 

Pathway. In SHR, chronic in vivo treatment with the OH• scavenger dimethylthiourea was found 

to reduce by >50% ACh-stimulated COX-1-mediated EDCF activity specifically evaluated in 

intact aorta, as well as the X:XO-stimulated COX-1 and TP receptor-mediated contractile activity 

in endothelium-denuded aorta (423). Moreover, in mesenteric arteries of SHR (399), impairment 

in ACh-stimulated vasorelaxation sensitive to COX-2 inhibition could be restored following 

chronic in vivo treatment with vitamin C, the NADPH oxidase inhibitor Apocynin, or 

Atorvastatin (a lipid-lowering drug known to have pleiotropic anti-oxidant effects), which also 

reversed a related increase in basal intra-vascular ROS content, COX-2 over-expression, and 

ACh-stimulated COX-2-derived over-production of 8-isoprostane (399). Together, these findings 

suggest that chronic exposure to the excess ROS accumulation and oxidative stress known to 

exist in this animal model of hypertension (44, 376) could play a direct role in the regulation of 

EDCF signaling activity. Suggesting likewise, an excellent most recent study (419) has shown 

that 12h in vitro static arterial culture in incubation medium containing bone morphogenic protein 

(BMP)-4, a pro-inflammatory mediator known to be over-expressed in endothelial cells by 

low/oscillatory ‘pro-atherogenic’ shear stress (343), could induce COX-2 up-regulation and 

specific COX-2- and TP receptor-mediated EDCF activity able to impair ACh-stimulated 

vasorelaxation in otherwise healthy mouse aorta, all of which was prevented by co-incubation 

with Apocynin or the cell-permeable SOD mimetic Tempol, or with the p38 MAPK/transcription 

factor inhibitor SB202190 (see above in Section 1.5.2. Review – Pro-oxidant/Anti-oxidant 

Balance in States of CVD risk). Further demonstrated from these findings was that the specific 

COX-2-mediated EDCF signaling activity able to impair an otherwise robust ACh-stimulated 
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vasorelaxation response of SHR vs. WKY intra-lobar renal arteries, which over-expressed both 

BMP-4 and COX-2, could in fact be completed reversed by 12h culture in medium containing the 

BMP-4 inhibitor noggin, which caused marked COX-2 down-regulation. Furthermore, these same 

results found in SHR renal arteries were also found in renal arteries isolated from hypertensive 

patients, and like in healthy mouse aorta, 12h BMP-4 incubation of renal arteries isolated from 

normotensive patients resulted in ROS-mediated COX-2 up-regulation and specific COX-2-

mediated contractile activity able to impair ACh-stimulated vasorelaxation.  

Congruent with the described SHR findings, chronic in vivo AII infusion, a model 

characterized by increased blood pressure, NADPH oxidase over-expression, and ROS over-

production (299), induced both COX-1 and COX-2 up-regulation and specific COX-1-mediated 

EDCF activity able to impair ACh-stimulated vasorelaxation in the aorta of Wistar rats, while 

concomitant oral red wine polyphenol anti-oxidant treatment could prevent the over-expression of 

both COX-1 and COX-2, and the COX-mediated endothelial dysfunction (181). Of note, the 

EDCF activity found in this study was in fact not attenuated upon acute pre-incubation of the 

aorta with PEG-CAT and the cell-permeable SOD+CAT mimetic MnTMPyP, thus indicating that 

ROS may play distinct roles in the acute and chronic regulation of COX-mediated EDRF activity, 

as has been suggested in other arterial/arteriolar segments from other models of CVD risk (239, 

241).  

While chronic AII infusion in mice induced impairment of mesenteric artery ACh-

stimulated vasorelaxation sensitive to COX-1 inhibition, COX-1 was up-regulated but COX-2 

down-regulated (both at the mRNA and protein level), and while concomitant treatment with 

apocynin prevented the COX-mediated endothelial dysfunction, neither COX-1 nor COX-2 

expression was found to be affected (398). In contrast to the described findings in SHR and 

Wistar rats, the findings from this study indeed suggest that: i) the vascular expression of both 

COX isoforms may be regulated independent of ROS – i.e. because of the inconsistency found 

between the COX-1/-2 up-/down-regulation by AII-induced hypertension and oxidative stress, but 

not down-/up-regulation by preventing oxidative stress; and too ii) there may be important active 

point(s) of chronic regulation along the EDCF signaling axis other than COX protein content – 

i.e. because of the inconsistency found between changes in COX-mediated EDCF activity and 

changes (or not) in COX expression. In fact, these same inconsistencies have been found in recent 

studies of mesenteric arteries from aging Long-Evans type-II diabetic and control rats (239, 241), 

wherein chronic in vivo treatment with Metformin (241) (a glucose-lowing drug used to treat 

diabetes) or Losartin (239) (an antagonist of AII (AT1) receptors) did not affect COX-1 and COX-

2 over-expression in type-II diabetic arteries, but did significantly attenuate the increased basal 
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vascular ROS release, ACh-stimulated COX-derived PGE2 and TXA2 over-production, and 

specific COX-mediated EDCF signaling activity able to impair ACh-stimulated vasorelaxation.  

 Is it not certain what ROS-dependent and/or -independent chronic regulatory mechanism(s) 

beyond COX protein expression/content might account for agonist-stimulated over-activation and 

subsequent PG over-production through the endothelial cell [Ca2+]i-PLA2-AA-COX-PGS-PG 

synthesis pathway augmenting EDCF activity under CVD risk conditions. However, in cases 

under excess oxidative stress where under-active NO-mediated EDRF signaling accompanies 

over-active EDCF signaling, as was the case in both the described studies of the aging Long-

Evans type-II diabetic vasculature (239, 241), one possibility may relate to the inactivation of 

endothelial PGS synthase by ONOO-. In this way, excess ONOO-, formed through the interaction 

of NO with O2
-• (see above in Section 1.5.2, NO Bioavailability and Vascular Oxidative Stress: 

Original Findings), has been shown to cause oxidation-nitration and inactivation of endothelial 

PGI synthase in particular (317), the inhibition of which has been found to augment EDCF 

signaling activity in diabetic, SHR, and other states of CVD risk via a build up of COX-derived 

endoperoxides (not metabolized by PGI synthase) and their subsequent ‘spillover’ through other 

PGSs to produce potent vasocontractile PGs, such as PGF2α and PGE2, instead of PGI2 (105, 139, 

140). Whether alterations in endothelial intracellular Ca2+ handling, the expression/content of 

PLA2 or PGSs, or the non-content- and non-substrate-related activation of PLA2, COX, or other 

PGSs may be adversely affected by excess oxidative stress under CVD risk conditions remains 

largely unknown.  

Potential Role of ROS in Chronically Regulating EDCF Activity via VSM TP Receptor-

Mediated Signaling. Of note, in the described study of aging Long-Evans type-II diabetic 

vasculature (239), it was also demonstrated that the VSM TP receptor-dependent contractile 

response to exogenous PGE2 (but not U46619, PGF2α, or PGI2) was moderately augmented in 

diabetic mesenteric arteries, and could be normalized by the chronic in vivo Losartin treatment. 

Similarly, TP receptor hyper-sensitivity has been found in the femoral artery VSM of STZ-

induced type-I diabetic SD rats, and could be normalized by chronic in vivo Apocynin treatment 

(298), suggesting that chronic exposure to excess ROS and oxidative stress in states of CVD risk 

could play a role in regulating the EDCF signaling axis by directly affecting VSM TP receptors 

and/or part(s) of their contractile signaling pathways.  

  Taken together, the limited evidence available appears to support a possible role for both 

ROS-mediated and non-ROS-mediated mechanisms in the chronic regulation of the [Ca2+]i-PLA2-

AA-COX-PGS-PG-TP receptor-contractile signaling axis and its over-activation under CVD risk 
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conditions, by putative control mechanisms both related and unrelated to COX protein 

expression.   

In summary, in contrast to NO-mediated EDRF signaling activity, less is known 

regarding the endothelial-VSM cell-signaling pathways mediating EDCF activity (Figure 1.5) 

and the pathobiological mechanisms responsible for endothelial dysfunction caused by over-

active EDCF signaling. COX-mediated EDCF activity can become prominent in both the 

macro-vasculature and micro-vasculature in many states of CVD risk, most notably aging and 

the ‘pre-mature aging’ conditions of essential hypertension and diabetes. The factors 

mediating EDCF signaling activity predominantly include a variety of PGs derived from AA 

metabolism by either COX-1 or COX-2 isoforms. These PGs selectively activate TP receptors, 

which beyond eliciting VSM contraction may also result in the promotion of a CVD phenotype 

and function, thus counter-acting the vaso-protective effects of NO; however, the VSM cell-

signaling events responsible for EDCF-stimulated TP receptor-mediated contractile activity 

have not been investigated. While both the acute and chronic mechanisms remain to be 

elucidated, vascular COX-1 and/or COX-2 up-regulation, PG over-production, and perhaps 

also TP receptor hyper-sensitivity have been suggested as possible causes of over-active EDCF 

signaling, a component of which may involve ROS, thus representing a potential oxidative 

stress link between reduced NO-mediated EDRF activity and augmented EDCF activity under 

CVD risk conditions.  
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1.6 Common Carotid Artery: An Advantageous Model to Study Vascular 

(Dys)function and the Role of Endothelial Cells 
The focus of all Studies in this thesis was on the CCA, wherein the in vitro EDRF and EDCF 

signaling activities, as well as the in vivo pressure-flow hemodynamics, were investigated in the 

SHR-WKY hypertension model and an Adult-Aging SD rat model (see above briefing, Section 

1.1. Thesis Briefing; and below for details, Section 1.7. Specific Rationale, Objectives, and 

Hypotheses of Thesis Studies).  

 As described in the subsequent sub-sections, the CCA is a blood flow conduit to the 

cerebral circulation that is of importance both physiologically and clinically and experimentally is 

a highly accessible and advantageous arterial model to investigate (Figure 1.6), but is under-

studied particularly regarding EDCF signaling activity and the causes and potential consequences 

of vascular (dys)function.  

1.6.1. Anatomy and Accessibility 

CCA Anatomical Relations  

There are two essentially identical CCAs. The left CCA emerges directly from the top-left side of 

the aortic arch, while the brachiocephalic artery emerging from the top-right side of the aortic 

arch, quickly branches in two, giving rise to the right CCA (and the right subclavian artery, which 

continues distally as the brachial artery, then radial and ulnar arteries, etc., supplying blood to the 

arm, forearm, and hand). The bilateral left and right CCAs, separated by a small interval 

containing the trachea, travel straight upwards in parallel, more superficial than deep, through the 

cervical (neck) region giving off no branches until the level of the third cervical vertebrae, where 

bifurcation of each CCA gives rise to internal and external carotid artery branches. The external 

branch of the CCA continues upward more superficially (external), giving off multiple branches 

supplying blood to the neck and facial tissues. The internal branch of the CCA continues deep 

(internal), giving off no branches before traveling through the carotid canal of the skull (cranium). 

The intra-cranial internal carotid artery terminates as a trifurcation, giving rise to the middle 

cerebral artery, the anterior cerebral artery, and the posterior communicating artery. The latter 

two arteries from each CCA form a major part of the Circle of Willis (along with the posterior 

cerebral arteries emerging proximally from the basilar artery, which is formed proximally by the 

joining of the left and right vertebral arteries, which in turn proximally emerge from the left and 

right subclavian arteries and travel upward through the transverse foramen of each cervical 

vertebrae, giving off multiple branches, before entering the cranium). Together with the middle 

cerebral arteries, the Circle of Willis supplies all blood flow to the brain (cerebrum).  
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Figure 1.6. Features of the CCA. Refer to Section 1.6 for details. Image of rat arterial circulation from 
http://www.biologycorner.com/worksheets/rat_circulatory .html (accessed on 09/12/2010).        

 

CCA Macro-Anatomical Characteristics and Functional Accessibility 

The CCA is a relatively long, straight, cylindrical, and thin-walled conduit vessel segment with 

no side branches, and is relatively superficial and free of surrounding obstructions in vivo.  

 As is highlighted in this section, these characteristics are exceptionally favorable in 

regard to the ability to measure or manipulate the structural, hemodynamic, and/or cellular-

molecular properties of this vessel both in vivo/in situ and ex vivo/in vitro, which has and will 

continue to allow for a better understanding of cardiovascular function and dysfunction, and the 

roles played by the endothelium. 

1.6.2. Potential Physiological-Pathophysiological Importance and Clinical Relevance  

CCA IMT  

High-resolution ultrasound may be used to image the CCA in humans, where accurate 

measurements can be made not only of artery internal diameter changes but also of arterial wall 

structures, most notably the thickness of the intima-media space (IMT). Increased CCA IMT has 

been shown to be a strong indicator of coronary atherosclerotic plaque development in various 
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patient populations (40, 373), demonstrating the clinical utility and potential pathophysiological 

importance of CCA wall structural alterations. Though in different vascular districts, a significant 

correlation has been found between CCA IMT and impaired agonist-stimulated vasodilation in 

the forearm of hypertensive patients (134). 

CCA Blood Flow and Pressure: Conduit and Buffering Functions  

Large arteries serve two important physiological functions: i) a conduit function, to provide 

passage of blood from the heart to the tissues; and ii) a buffering (Windkessel) function, to 

provide efficient dampening of pulsatile hemodynamic fluctuations caused by intermittent 

ventricular contraction, thus allowing for adequate and constant flow through to the arteriolar and 

capillary networks of downstream organs/tissues (279, 312). 

 Conduit Function. Blood flow through the bilateral internal branches of the CCA 

contributes ~80% to the total perfusion of the brain in both humans and rodents (100). In this 

way, the CCA is a physiologically important extra-cranial large artery acting as a conduit between 

the heart and the downstream cerebral micro-vasculature (also see above, CCA Anatomical 

Relations).  

 Buffering Function. Large artery buffering function is impaired with increased arterial 

stiffness (i.e. arteriosclerosis; a loss of compliance/distensibility in the elastic macro-vasculature; 

(284)), most prominent in states of hypertension and advancing age. Arterial stiffness is 

influenced by i) a change in intra-vascular pressure; and/or ii) alterations to the ‘intrinsic’ visco-

elastic mechanical properties of the vascular wall, which are in turn influenced by: a) ‘passive’ 

structural changes (e.g. relative content of elastin, collagen, and VSM in media extracellular 

matrix (ECM); ECM geometry/integrity and its state of remodeling; absolute arterial wall mass 

and state of proliferation; and arterial wall permeability and viscosity); and b) an ‘active’ change 

in VSM tone (312). 

Arterial stiffness can have important pathophysiological consequences (284). Increased 

arterial stiffness (decreased compliance/distensibility) decreases ventricular-vascular coupling 

efficiency thus increasing LV after-load and myocardial perfusion (O2) requirements. As well, 

flow pulsations are transmitted further into habitually vasodilated organ beds, most notably the 

brain and kidneys, where the pulsatile energy must be dissipated by more fragile micro-vascular 

structures causing damage leading to micro-hemorrhaging and micro-infarcts (156, 285, 286). 

The speed of the peripherally traveling incident pressure wave, characterized as pulse wave 

velocity (PWV), is greater with increased arterial stiffness, as are the pressure waves reflecting 

back from distal sites of vascular impedance (i.e. discontinuous regions including branch points, 
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areas of altered compliance, and high-resistance arterioles), which in turn augments central 

arterial pressure in systole rather than in diastole, characterized as a pressure augmentation index 

(AI) (279), thus exacerbating LV after-load while decreasing diastolic myocardial perfusion. 

Together, these consequences may become clinically relevant as complications relating to heart 

failure, cardiomyopathy, and ischemic heart disease as well as intellectual deterioration and renal 

failure. Accordingly, measures of arterial stiffness/compliance have been found to predict future 

CVD events (10, 248). 

Clinically, arterial stiffness is routinely evaluated by PWV as well as pressure AI using 

the CCA (10). Aortic (or carotid-femoral) PWV is assessed by simultaneously measuring CCA 

and femoral pressure waveforms with surface arterial tonometry (then calculating the estimated 

difference in measurement site distance over the time-delay of the measured waves), and contour 

analysis of the CCA pressure waveform allows for assessment of forward and backward traveling 

reflected waves and AI. Moreover, direct measures of CCA compliance (i.e. change in diameter 

for a change in pressure) can be assessed using high-resolution ultrasound imaging and arterial 

tonometry, where decreased CCA compliance has been found to correlate with impaired brachial 

artery FMD or agonist-stimulated forearm vasodilation (5, 219).  

1.6.3. Experimental Animal Investigations: Advantages From In Vivo/In Situ to Ex 

Vivo/In Vitro 

Because of its described favorable anatomical characteristics and accessibility (see above, CCA 

Macro-Anatomical Characteristics and Functional Accessibility), the CCA has been widely 

employed to investigate a range of candidate CVD risk conditions and the causes and potential 

consequences of arterial (dys)function. Below, some examples are highlighted. 

In Vitro-In Situ Mechanical Properties of Large Arteries 

The fact that the CCA is relatively long, straight, and cylindrical with no side branches makes it 

an ideal vascular model for cannulation and detailed mechanistic examinations of large artery 

stiffness/compliance and its relationship to the visco-elastic mechanical properties of the vascular 

wall (312). In vitro, an excised and cannulated CCA segment can be exposed to step-increases or 

-decreases in pressure, or else to pulsatile pressure, while measuring wall internal diameter 

changes using very high-frequency ultrasonic echo-tracking, thus allowing for a precise ‘dose’-

dependent characterization of both static (pressure- and structural/active tone-dependent) and 

dynamic (also viscosity- and frequency-dependent) compliance properties. Furthermore, given 

that the CCA is relatively superficial and free of surrounding obstructions in vivo, it can be 

instrumented to perform similar measures in situ under more physiological conditions of 
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operating pressure and blood-borne factors (429). Indeed, such approaches (217, 269, 312) have 

led to the definitive demonstration that VSM tone, the presence of an intact endothelium, and the 

production and availability of NO may acutely and directly affect large artery 

stiffness/compliance in both animals and humans (99, 412, 413), before which time only passive 

distending pressure and inert structural components of the vascular wall were believed to play a 

role (see above, Buffering Function).   

In Vivo Manipulations Creating Models of Arterial Remodeling or Endothelial Regeneration  

Taking advantage of the two essentially identical, easily accessible, and relatively simple to 

manipulate CCAs, multiple in vivo large artery response-to-perturbation models have been 

developed. For example, ligation of both internal and external carotid arteries of one CCA during 

recovery surgery results in a low/no-flow CCA and a high-flow CCA with no associated pressure 

changes, thus creating an internally controlled chronic in vivo model of flow-induced arterial 

remodeling about which to mechanistically investigate in any number of healthy or diseased 

animal models (168, 169). Alternatively, insertion of a balloon catheter through the external 

carotid artery of one CCA followed by balloon inflation and luminal agitation during recovery 

surgery results in endothelial denudation of one but not the other CCA, thus creating an internally 

controlled chronic in vivo model of endothelial regeneration about which to mechanistically 

investigate (379). Such models and others’ similar (63, 377) have indeed led to the discovery of 

key roles for NO and numerous other endothelium-derived factors in controlling the vascular wall 

structural and functional alterations known to be consequential in states of CVD risk (109, 213).  

Ex Vivo Arterial Organ Culture and Pro-Atherogenic Mechanisms 

Considering together that the bilateral CCAs are straight and cylindrical with no side branches, 

can be manipulated and characterized under in vivo conditions, and are relatively thin-walled, this 

arterial segment has become a commonly used model for ex vivo organ culture under specific 

(patho)physiologically-relevant hemodynamic and biochemical conditions (121, 303, 364). The 

CCAs may be easily excised, cannulated, and perfused with nutrient-rich medium, one under 

candidate CVD risk conditions and the other under control physiological conditions, for a period 

of up to several days. Such approaches have been successful in chronically examining the specific 

mechanical effects of either flow profiles (i.e. high/normal or low/oscillatory shear stress; (121)), 

hypertension (i.e. increased intra-vascular pressure; (214, 303)), or reduced vascular wall motion 

(i.e. decreased compliance/cyclic stretch; (364)) on large artery phenotype and function in 

isolation from confounding in vivo factors (e.g. neuro-humoral alterations, other CVD risk 
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factors), and in testing the role of endothelial inflammatory activation on the molecular 

expression and pro-atherogenic consequences induced within the vascular wall (121, 303).  

In Vivo Selective Gene Transfer 

For endothelial genes of interest, including eNOS and many others, it has been shown that 

incubation of the rodent CCA lumen for 15 min with a gene delivery medium, which is infused 

through the external carotid artery into the CCA space contained by temporary clamping of the 

proximal CCA and internal carotid artery, results in the selective up-take and expression of the 

delivered gene only by the one CCA segment incubated and only by the endothelial cell layer of 

the vascular wall (166). Indeed, this represents a direct and powerful molecular manipulation that 

may be used in any number of ex vivo organ culture and/or in situ or in vivo animal models to 

test the specific effect of endothelial cell expressed proteins on vascular (dys)function within the 

context of an intact vascular wall or animal, respectively. 

 Thus, the CCA can indeed be an advantageous model to study and understand vascular 

(dys)function and the roles played by the endothelium. 

1.6.4. CCA Under-Studied in Particular Regarding the Causes and Potential 

Consequences of EDCF Signaling Activity 

SHR, WKY, and SD animals are commonly used models to investigate cardiovascular 

dysfunction under conditions of CVD risk and the roles played by the endothelium. However, 

while NO-mediated and EDHF-mediated EDRF signaling activities have been a major focus of 

investigation in the CCA (and most other vascular segments) of these and many other animal 

model of CVD risk (109), the contribution of COX- and TP receptor-mediated EDCF signaling 

activity to the CVD phenotype and function that can develop in this vascular segment has not (see 

above, COX-Mediated EDCF Responses Contributing to Endothelial Dysfunction in Other SHR 

Vascular Segments, in Other Animal Models of CVD Risk, and in Humans). Accordingly, the 

causes and potential consequences of EDCF signaling activity are largely unknown.  
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1.7 Specific Rationale, Objectives, and Hypotheses of Thesis Studies 
1.7.1. Review and Expansion of Thesis Global Purpose  

Global Purpose 

As declared in the Thesis Briefing (Section 1.1), the global purpose of this thesis was to gain a 

better understanding of the cellular-molecular mechanisms accounting for endothelial dysfunction 

in isolated CCA from animal models known to be characteristic of EDCF signaling activity, in 

particular essential hypertension and aging.  

 A further aim was to describe the in vivo hemodynamic characteristics of the CCA in 

each animal model investigated, serving both to identify the pressure-flow environment that the 

CCA is exposed to in vivo and to provide novel assessment of hypertension, aging, and oxidative 

stress effects on large artery hemodynamics.  

Global Objective and Approach Spanning Across Thesis Studies 

Under this global purpose, the global objective and approach spanning across the thesis studies 

was: i) to systematically examine the relative contributions of NOS and COX signaling pathways 

in mediating the endothelium-dependent relaxation (EDRF) and contractile (EDCF) activities of 

isometrically-mounted CCA in vitro, with particular focus on elucidating the cellular-molecular 

mechanisms responsible for COX-mediated EDCF signaling activity; and ii) to establish the in 

vivo pulsatile blood pressure and blood flow characteristics of the CCA.  

Animal Models Investigated 

The animal models investigated under this global purpose and objective included: i) SHR and 

WKY (in Thesis Study I and II); and ii) Adult and Aging SD rats (in Thesis Study III), both 

models in which COX-mediated EDCF signaling activity had been previously identified, but not 

in the CCA. In Adult and Aging SD rats, a chronic GSH anti-oxidant depletion model of 

oxidative stress was super-imposed. 

Preface to Thesis Study I, II, and III 

The subsequent sub-sections provide underlying rationale and the main specific objectives and 

hypotheses for the experiments conducted throughout each thesis study. This is immediately 

followed by the Experimental Chapters of this thesis, wherein Chapter 2, 3, and 4 presents a 

manuscript describing Thesis Study I, II, and III, respectively.  
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1.7.2 Rationale, Objectives, and Hypotheses of Thesis Study I  

Described in Chapter 2, Thesis Study I is presented (with permission; see Permission’s Pages) as 

the published article entitled: 

Impaired Hemodynamics and Endothelial Vasomotor Function via Endoperoxide-Mediated 

Vasoconstriction in the Carotid Artery of Spontaneously Hypertensive Rats 

found in the April 2009 issue of American Journal of Physiology:Heart and Circulatory 

Physiology.  

The overall objective of Thesis Study I was, in young adult SHR and WKY, to: i) 

characterize the in vivo pulsatile blood flow and blood pressure of the CCA across the cardiac 

cycle; and ii) systematically investigate the relative contribution of the NOS and COX signaling 

pathways in mediating ACh-stimulated endothelium-dependent CCA relaxation and contractile 

activities. 

Underlying Rationale 

Original Focus on CCA. An original major objective of the experimental work in this thesis was 

to design, construct, and implement an Ex Vivo Arterial Organ Culture System (see above, Ex 

Vivo Arterial Organ Culture and Pro-Atherogenic Mechanisms) to be used to examine the 

isolated mechanical effects of hypertensive and pro-atherogenic flow/shear hemodynamics on the 

phenotype and endothelium-dependent vasomotor functions of the CCA from donor SD, WKY, 

and SHR animals1. However, upon testing the system that was developed, a number of 

unforeseen issues became apparent which precluded its reasonable implementation as proposed2.  

A new direction was taken from this work that took advantage of techniques the 

Candidate had been establishing, in concert with the Ex Vivo Arterial Organ Culture System, to 

measure the in vivo pulsatile hemodynamics and in vitro endothelial vasomotor function of 

WKY, SHR, and SD rat CCA. 

 Insights from Preliminary CCA Hemodynamic and Vasomotor Function Data. Indeed, there 

had been very little published data characterizing the pulsatile hemodynamics through the CCA of 

these animals, and since this knowledge was needed to culture the CCA under 

                                                 
1

 as is detailed in the Candidate’s original Doctoral Thesis Proposal, entitled: Examining the Role of Hypertensive Hemodynamics on    
Common Carotid Artery Phenotype and Function. 
 
2 Issues with the developed Ex Vivo Arterial Organ Culture System related to both the biochemical and mechanical stability of the 
culture environment (including pH and pressure drifting), which were associated with comprised functional viability (as assessed by 
evaluating its in vitro endothelium-dependent vasomotor functions) of CCA segments cultured for 24-36h under ‘control’ conditions – 
i.e. at physiological levels of pulsatile pressure and flow/shear in 37°C nutrient-rich culture medium at 0.04 poise viscosity (note: there 
were also some technical complexities related to controlling pressure and flow independent of pulsatility and rate).   
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(patho)physiological pressure and flow/shear conditions, methods were developed in the 

laboratory to accurately quantify the in vivo pulsatile components of pressure and flow through 

the CCA of WKY and SHR (and SD animals) (for details, see Study I Methods and Appendix B: 

Supplemental Methods / CCA Hemodynamics / Rational for Procedural Approach and 

Quantification of CCA Blood Flow and Pressure). Similarly, there had been little published data 

characterizing endothelial vasomotor function in the CCA of these animals because conduit 

endothelial vasomotor function is typically measured in the aorta. Since endothelial vasomotor 

function was to be a main outcome measure after CCA culture, methods were adapted from those 

used in the laboratory to measure aortic in vitro endothelial vasomotor function (114, 143) in 

order to characterize endothelial vasomotor function in the CCA of WKY and SHR (and SD 

animals) (for details, see Study I Methods and Appendix B: Supplemental Methods / CCA 

Vasomotor Function).  

 In preliminary hemodynamic testing, it was unexpectedly found that mean blood flow 

was reduced in the CCA of young adult SHR compared to WKY. Carefully searching the 

literature, it was discovered that this was consistent with two reports comparing CCA blood flow 

– either mean blood flow velocity (76) or peak systolic blood flow (166) – in hypertensive (SHR) 

and normotensive (Wistar or WKY) rodents (as referenced in the Introduction to Thesis Study I). 

However, this occurrence of reduced CCA blood flow in SHR had not been well-characterized. 

This provided motivation to further investigate and characterize the pulsatile flow and pressure 

responses across the cardiac cycle in the CCA of SHR and WKY, which therefore became a main 

objective of Thesis Study I. Preliminary hemodynamic analysis found that SHR CCA blood flow 

was reduced at peak systole and throughout diastole; however, unexpectedly, flow during late 

systole was found to be relatively higher in SHR compared to WKY (see Results of Thesis Study 

I for details). It was speculated that this could have resulted from a forward traveling reflected 

pressure wave acting to prolong the decay of systolic flow (279). Carefully searching the 

literature, it was discovered that ‘flow augmentation’ in late systole had in fact been observed in 

the CCA of aged humans and attributed to pressure wave reflection returning from the lower body 

(and thus a forward traveling wave) in systole to augment CCA pulse pressure ((156); also see 

above, CCA Blood Flow and Pressure: Conduit and Buffering Functions). This provided 

motivation to assess the inter-relationship between CCA pressure and flow waveforms in SHR 

and WKY (as described in the Methods, Results, and Discussion of Thesis Study I).   

 In preliminary vasomotor testing, it was found that endothelium-dependent vasorelaxation 

of isolated and pre-contracted SHR CCA was impaired compared to WKY. This was consistent 

with past reports in the literature assessing the vasorelaxation properties of the CCA from 



  61

similarly aged (young adult) animals (158, 166, 228), where the dysfunction in SHR CCA was 

assumed to be the result of impaired NOS-mediated EDRF activity (see above in Section 1.5.3 – 

COX-Mediated EDCF Responses Contributing to Endothelial Dysfunction in Other SHR 

Vascular Segments, in Other Animal Models of CVD Risk, and in Humans). However, 

inconsistent with past works, the impaired vasorelaxation was found to be associated with overt 

re-contraction to higher concentrations of the endothelial cell stimulant ACh, indeed suggesting 

that the CCA of young adult SHR may possess EDCF activity (see above in Section 1.5.3 – 

Endothelium-Dependent Contractile Responses: Initial Findings and Characterization of EDCF 

Cell-Signaling Pathway). In the aorta of SHR, EDCF activity had been shown to be mediated by 

COX signaling (see above in Section 1.5.3 – SHR Aorta: The First Reporting of an EDCF 

Response Impairing Endothelium-Dependent Vasorelaxation). This provided motivation to 

further investigate and characterize the relative contribution of NOS and COX pathways in 

mediating endothelium-dependent relaxation in the CCA of SHR and WKY, with a particular 

focus on characterizing SHR CCA EDCF activity under specific conditions (i.e. from a quiescent 

state in the presence of L-NAME; see above in Section 1.5.3 – Identification and Specific 

Examination of COX-mediated EDCF Responses and Signaling Activities) and its dependency on 

COX-1 vs. COX-2 and the TP receptor (see above in Section 1.5.3 – Endothelium-Dependent 

Contractile Responses: Initial Findings and Characterization of EDCF Cell-Signaling Pathway), 

which therefore became a second main objective of Thesis Study I.  

 Two past observations (referenced in the Introduction to Thesis Study I) provided 

motivation to consider SHR CCA endothelial vasomotor dysfunction and EDCF activity in 

conjunction with CCA hemodynamics in Thesis Study I. First, the same study that found reduced 

peak systolic blood flow in the CCA of SHR (166) also found that ACh-stimulated vasorelaxation 

was impaired in isolated pre-contracted SHR CCA, and further showed that selective in vivo gene 

transfer of AKT (see above in Section 1.5.2. – NO Production and eNOS Activation) to the CCA 

endothelium could reverse both the endothelial vasomotor dysfunction and reduced blood flow in 

the SHR CCA, thus suggesting that endothelial vasomotor dysfunction in the CCA might directly 

affect CCA resistance to flow, presumably by increasing its compliance (decreasing its stiffness) 

(166). The second observation, from other researchers, was that the diameter and compliance of 

young adult SHR and WKY CCA, assessed at physiological pressures in situ or in vitro (see 

above in Section 1.6.3 – In Vitro-In Situ Mechanical Properties of Large Arteries), could be 

increased with abolition of VSM tone (with potassium cyanide) or with removal of the 

endothelium (57, 217, 269), suggesting that the mechanical properties of the CCA may be 

affected by vasomotor activity related to endothelium-derived vasocontractile signal(s). In light of 



  62

these observations, the potential that CCA EDCF signaling activity could affect CCA blood flow 

was considered in Thesis Study I (see Discussion / Perspectives), highlighting the prospect that 

local (CCA) endothelial vasomotor dysfunction might, via altered mechanical properties of the 

artery wall, be linked directly to CCA hemodynamics. 

Main Specific Objectives and Hypotheses 

The following provides a descriptive overview of the main specific objectives and hypotheses of 

each set of experiments conducted throughout Thesis Study I, from the experiments originally 

conducted to those performed in response to the findings of the original experiments.  

Objective A: To establish the in vivo pulsatile blood pressure and blood flow characteristics of the 

CCA. 

Hypothesis A: It was hypothesized (originally) that mean, systolic (maximum), diastolic 

(minimum), and pulse pressure would be greater in SHR vs. WKY, but that blood flow 

parameters would be no different between strains. 

Objective B: (Given that mean, maximum, and minimum blood flow were reduced in SHR) to 

examine the blood flow and blood pressure response across the cardiac cycle. 

Hypothesis B: It was hypothesized (originally) that SHR blood flow would be persistently 

reduced across the cardiac cycle compared to WKY. 

Objective C: (Given that late systolic blood flow was relatively augmented in SHR) to assess the 

inter-relationship between pressure and flow waveforms across the cardiac cycle. 

Hypothesis C: It was hypothesized that late systolic blood flow augmentation in SHR would 

accompany systolic pressure augmentation. 

Objective D: To establish the dose-dependent ACh-stimulated endothelium-dependent NO-

mediated relaxation response in PE-pre-contracted WKY and SHR CCA. 

Hypothesis D: It was hypothesized (originally) that both sub-maximal and maximal 

vasorelaxation would be blunted in SHR vs. WKY and that this would be normalized by L-

NAME. 

Objective E: (Given that sub-maximal vasorelaxation was not blunted, maximal blunting was 

associated with overt re-contraction in SHR, and L-NAME did not normalize this difference) to 

determine the effect of Indo on the ACh-stimulated vasomotor responses. 

Hypothesis E: It was hypothesized that Indo might normalize the difference between SHR and 

WKY. 
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Objective F: (Given that Indo almost fully restored maximal vasorelaxation in SHR) to 

specifically examine the dose-dependent ACh-stimulated endothelium-dependent contractile 

response (EDCF activity) in SHR CCA and its dependency on COX-1 vs. COX-2 and the TP 

receptor. 

Hypothesis F: It was hypothesized that EDCF activity might be eliminated by the preferential 

COX-1 inhibitor VAS and the TP receptor antagonist SQ29548, but possibly not by the 

preferential COX-2 inhibitor NS398. 

Objective G: To determine the level of eNOS, COX-1, and COX-2 protein expression in the CCA 

of SHR and WKY. 

Hypothesis G: It was hypothesized that eNOS and COX-1, and possibly COX-2 might be over-

expressed in the SHR CCA. 

1.7.3 Rationale, Objectives, and Hypotheses of Thesis Study II  

Described in Chapter 3, Thesis Study II is presented (with permission; see Permission’s Pages) as 

the published article entitled: 

RhoA-Rho Kinase Signaling Mediates Endothelium- and Endoperoxide-Dependent Contractile 

Activities Characteristic of Hypertensive Vascular Dysfunction  

found in the May 2010 issue of American Journal of Physiology:Heart and Circulatory 

Physiology.  

The overall objective of Thesis Study II was to confirm and expand upon the vasomotor 

findings of Thesis Study I (which established the SHR CCA as an bona fide experimental model 

to explore the mechanisms of EDCF signaling activity in endothelial dysfunction) by further 

exploring the cell-signaling mechanisms of EDCF activity in young adult SHR vs. WKY CCA in 

regard to: i) the role of ROS and COX-derived PG production; and, in particular, ii) the role of 

the RhoA-ROCK pathway in EDCF-stimulated TP receptor-mediated contraction. 

Underlying Rationale 

Decision to Focus on CCA EDCF Signaling Activity. In consideration of the hemodynamic and 

vasomotor findings of Thesis Study I, a decision was made to focus on further exploring the cell-

signaling mechanisms of the EDCF activity identified for the first time in the SHR-WKY CCA 

model. The decision not to actively pursue the novel hemodynamic findings of Thesis Study I 

[i.e. i) the reduced peak systolic and diastolic CCA blood flow in SHR; and/or ii) the SHR CCA 

late systolic flow augmentation], or the prospect that COX- and TP receptor-mediated EDCF 

activity in the CCA of SHR might contribute to shifting its mechanical properties thus affecting 
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CCA blood flow (see Thesis Study I, Perspectives), was partially based on the fact that the 

technical resources and expertise required to do so definitively (e.g. in the latter case, selective 

gene transfer to the endothelium in conjunction with in situ/in vivo assessment of 

stiffness/compliance using high-resolution echo-tracking; see Thesis Study I, Limitations) did not 

at the time make this a reasonable next step in the thesis. 

 Further Exploration of CCA EDCF Signaling Mechanisms. There were two main 

motivations for the direction of further exploration of the SHR CCA EDCF signaling activity 

identified in Thesis Study I. The first related to the possible mechanisms of EDCF production, 

and the second to the potential mechanism of EDCF activation of VSM contractile activity.  

 Past works exploring the mechanisms of EDCF production had demonstrated the possible 

involvement of either COX-1 or COX-2 and the potential for multiple ‘factors’ acutely mediating 

the EDCF response, including a variety of different PGs as well as a variety of different ROS, 

depending on the particular endothelial stimulant, vascular segment, or animal model used (see 

above in Section 1.5.3 – Mechanisms of EDCF (Over)Production: Critical Role of Regulating the 

PG Synthesis Pathway and – Acute Role of ROS in EDCF Signaling Activity). Thus, following 

from the findings of Thesis Study I, it became an objective of Thesis Study II to further elucidate 

the mechanisms of EDCF production in SHR (and WKY) CCA by testing another endothelial 

stimulant, confirming the dependency of COX-1 vs. COX-2, exploring which PG(s) are released 

upon endothelial stimulation, and establishing what role might be played by ROS.  

 Relating to EDCF activation of VSM contractile activity, the potential mechanism(s) by 

which this occurs had not previously been investigated in any vascular segment (see above in 

Section 1.5.3 – Mechanisms of EDCF Activation of VSM Contraction: Role of TP Receptor 

Signaling Activity). It became the major objective of Thesis Study II to test the hypothesis that 

EDCF-stimulated VSM contractile activity is mediated through activation of RhoA-ROCK 

signaling (see above in Section 1.5.3 – Potential VSM GPCR-Mediated Contractile Signaling 

Pathways for basic description of RhoA-ROCK signaling pathway). Consideration of this 

hypothesis was based (directly or indirectly) on several different observations of the previous 

literature: i) it was known (and confirmed in SHR CCA in Thesis Study I) that TP receptors 

mediate essentially all EDCF activity in all studies where it has been identified (as described 

above in Section 1.5.3 – PG Receptor Involvement); ii-a) in various cell types, TP receptors, part 

of the GPCR family, may be coupled to both the Gq class of G-protein, which can activate PLC- 

IP3- SR- Ca2+ signaling, and the G12/13 class of G-protein, which can activate Ca2+-independent 

RhoA-ROCK signaling (as described in the Introduction to Thesis Study II, and above in Section 

1.5.3 – Potential VSM GPCR-Mediated Contractile Signaling Pathways); and ii-b) in VSM in 
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particular, TP receptors are often preferentially coupled to G12/13 (342); iii-a) it had been 

established in endothelium-denuded and/or membrane permeabilized arterial segments that direct 

TP receptor PG agonist stimulation could elicit Ca2+-independent contraction associated with both 

membrane-bound RhoA activation and activated-ROCK-mediated MYPT1 phosphorylation 

((414); as referenced in the Introduction to Thesis Study I); and iii-b) in endothelium-denuded 

arterial segments that direct exposure to exogenously-produced ROS could elicit contraction 

associated with RhoA and ROCK activation responses ((177); as referenced in the Introduction to 

Thesis Study I); iv-a) NO-mediated signaling activity can acutely inhibit EDCF activity at the 

level of the VSM via sGC (as described above in Section 1.5.3 – Balancing EDRF and EDCF 

Signaling Activities to Prevent or Promote Endothelial Dysfunction), and sGC-cGMP-PKG 

signaling activity has been shown to prevent GPCR-mediated contraction via phosphorylation and 

inhibition of RhoA (316); and iv-b) conversely, activated RhoA-ROCK has been shown to inhibit 

NO production via phosphorylation and inhibition of eNOS ((260); referenced also above in 

Section 1.5.2 – NO Production and eNOS Activation); v) activated RhoA and/or ROCK has been 

found in the conduit artery wall from SHR and other models of CVD risk (324) and is associated 

with the expression of a pro-atherogenic/proliferative/fibritic phenotype (320) (see also 

Discussion of Thesis Study II); and vi) acute infusion of ROCK inhibitors is associated with a 

decrease in blood pressure in SHR (222, 272) and improved vasomotor function in the forearm or 

coronary circulation of patients with essential hypertension or in other states of CVD risk (192, 

236, 237, 261). 

 Tools and Potential Caveats to Directly Testing this Hypothesis. The main approach to 

testing the hypothesis that EDCF-stimulated VSM contractile activity is mediated through 

activated RhoA-ROCK signaling in Thesis Study II was by examining the dose-dependent effect 

of the commonly used selective ROCK inhibitor Y27632 on the ACh-stimulated contractile 

response in the CCA of SHR and WKY. However, of this approach were known (a priori) a 

number of putative concerns that may have precluded direct testing of the hypothesis; 

accordingly, these concerns were considered experimentally, as briefly reasoned below (and 

referenced within the Results and Discussion of Thesis Study II).   

 First, as is already standard for specifically evaluating EDCF activity, the effect of ROCK 

inhibition on the ACh-stimulated contractile response was evaluated in the presence of L-NAME, 

thus excluding any attenuating effect of ROCK inhibition indirectly via changes in NO 

bioavailability (see iv-a and iv-b above). 

 Second, even if the selective ROCK inhibitor Y27638 did dose-dependently attenuate 

EDCF activity, this effect may not have been directly caused by inhibiting activation of VSM 
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RhoA-ROCK signaling, since Y27638 (especially higher concentrations) has been shown to non-

selectively inhibit several isoforms of PKC, which can also become activated and elicit VSM 

contraction upon GPCR stimulation ((414); also see above in Section 1.5.2 – Potential VSM 

GPCR-Mediated Contractile Signaling Pathways). Accordingly, the effect of a more potent 

ROCK inhibitor H1152 was also evaluated, as was the effect of a broad-spectrum PKC inhibitor 

(GF109203X).     

 Third, even if Y27638 and H1152 did only (specifically) inhibit ROCK in the CCA wall, 

the attenuating effect of these inhibitors on EDCF activity may not have been directly caused by 

inhibiting activation of VSM RhoA-ROCK signaling, since RhoA and ROCK are also known to 

be expressed in endothelial cells (223); thus, it is possible that this attenuating effect may have 

been caused by reducing EDCF production by inhibiting activation of endothelial RhoA-ROCK 

signaling. Accordingly, the effect of ROCK inhibition on ACh-stimulated CCA PG production 

was evaluated.   

 Forth, the effect of ACh stimulation on CCA RhoA activation itself was evaluated. In this 

way, it has been shown that VSM ROCK signaling can become activated by factors other than 

RhoA (including AA or sphingosylphosphorylcholine (342, 348); also see Section 1.5.3 – 

Potential VSM GPCR-Mediated Contractile Signaling Pathways); thus, it appears possible that an 

attenuating effect of ROCK inhibitors on EDCF activity, even if specific to ROCK and to the 

VSM, may not necessarily imply involvement of RhoA activation in the response.    

Main Specific Objectives and Hypotheses 

The following provides a descriptive overview of the main specific objectives and hypotheses of 

each set of experiments conducted throughout Thesis Study II.  

Objective A: To determine the dose-dependent effect of the receptor-independent endothelial 

stimulant A23187 on CCA contractile activity in SHR and WKY. 

Hypothesis A: It was hypothesized that the pattern of A23187-stimulated EDCF activity would be 

similar to that of ACh in both strains. 

Objective B: To determine the effect of the specific COX-1 inhibitor SC560 on ACh-stimulated 

EDCF activity in SHR and WKY (as compared to the preferential COX-1 inhibitor VAS and the 

preferential COX-2 inhibitor NS398 used in Thesis Study I). 

Hypothesis B: It was hypothesized that SC560 would be effective in eliminating all EDCF 

activity in both strains. 
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Objective C: To determine the effect of the cell-permeable agents apocynin (an NADPH oxidase 

inhibitor), Tiron, (an O2
-• scavenger), Tempol (considered an SOD mimetic), and PEG-CAT (a 

H2O2-metabizing enzyme) on ACh-stimulated EDCF activity in SHR and WKY.   

Hypothesis C: It was hypothesized that Tiron, apocynin, and PEG-CAT might attenuate EDCF 

activity, while Tempol might augment EDCF activity, in SHR, and possibly also (but to a lesser 

extent) in WKY.   

Objective D: To determine the basal (quiescent) and ACh-stimulated COX-1-derived production 

of PGI2 and TXA2 from the CCA of SHR and WKY. 

Hypothesis D: It was hypothesized that: i) the CCA would produce PGI2 and possibly TXA2 in a 

COX-1-dependent manner; ii) both the basal and ACh-stimulated CCA production of these PGs 

would likely be greater in SHR vs. WKY; and iii) the level of ACh-stimulated CCA PG 

production might significantly correlate with the concomitant ACh-stimulated contractile 

response.  

Objective E: To determine the effect of (a high-dose of the ROCK inhibitor) H1152 on ACh-

stimulated PGI2 production from the CCA of SHR and WKY. 

Hypothesis E: It was hypothesized that H1152 would likely not affect, but if so reduce, ACh-

stimulated CCA PGI2 production in both strains.  

Objective F: To determine the basal (quiescent) and ACh-stimulated activation of RhoA in the 

CCA of SHR and WKY. 

Hypothesis F: It was hypothesized that: i) both the basal and ACh-stimulated RhoA activation 

would likely be greater in SHR vs. WKY; and ii) the level of ACh-stimulated CCA RhoA 

activation might significantly correlate with the concomitant ACh-stimulated contractile 

response.  

Objective G: To determine the level of RhoA and ROCK-II protein expression in the CCA of 

SHR and WKY. 

Hypothesis G: It was hypothesized that RhoA and ROCK-II would either be similar or over-

expressed in the CCA of SHR vs. WKY. 

Objective H: To functionally determine the role of ROCK signaling in SHR and WKY CCA 

contractile activity by assessing the dose-dependent effect of (the ROCK inhibitor) Y27632 on 

sustained CCA contraction stimulated by either the depolarizing agent KCl (via electro-

mechanical coupling) or the GPCR agonists PE (an α1 receptor-specific agonist) or U46619 (a 
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synthetic TP receptor agonist) (via pharmaco-mechanical coupling), either in the presence or 

absence of an intact endothelium, or in the presence an intact endothelium with L-NAME. 

Hypothesis H: It was hypothesized that: i) Y27632 would be capable of eliciting vasorelaxation in 

all cases, but to a greater extent under PE and even more so U46619 contractile conditions; ii) this 

stimulated vasorelaxation might be mediated in part by endothelium- and NO-dependent 

signaling; iii) this stimulated vasorelaxation might be augmented in SHR vs. WKY.  

Objective I: To determine the dose-dependent effect of (the selective ROCK inhibitor) Y27632 

and (the more potent selective ROCK inhibitor) H1152, and high-dose effect of (the broad-

spectrum PKC inhibitor) GF109203X, on ACh-stimulated EDCF activity in the CCA of SHR and 

WKY. 

Hypothesis I: It was hypothesized that: i) Y27632 would cause a dose-dependent attenuation of 

EDCF activity in both strains; ii) GF109203X might attenuate EDCF activity; and iii) H1152 

would cause a dose-dependent, but maybe less effective, attenuation of EDCF activity.  

Objective J: To determine in SHR and WKY CCA the dose-dependent contractile response 

stimulated by exogenous H2O2, and the effect of (the COX-1 specific inhibitor) SC560, (the 

preferential COX-2 inhibitor) NS398, (the TP receptor antagonist) SQ29548, (a high-dose of the 

ROCK inhibitors) Y27638 and H1152, and (the broad-spectrum PKC inhibitor) GF109203X.  

Hypothesis J: It was hypothesized that H2O2-stimulated contractile activity would be augmented 

in SHR vs. WKY, and in both cases eliminated by COX-1 (but not COX-2) inhibition and TP 

receptor antagonism as well as by ROCK inhibition, and possibly attenuated in part by PKC 

inhibition.   

1.7.4 Rationale, Objectives, and Hypotheses of Thesis Study III  

Described in Chapter 4, Thesis Study III is presented as the (unpublished) manuscript-article 

entitled: 

Effect of Glutathione Depletion and Aging on Endothelium-Derived Relaxing and Contracting 

Factor Activity in the Common Carotid Artery of Sprague Dawley Rats  

The overall objective of Thesis Study III was to: i) characterize the in vivo pulsatile blood 

flow and blood pressure of the CCA; and ii) investigate the contributions of NOS, COX, and ROS 

signaling in mediating ACh-stimulated CCA EDRF and EDCF activities, in Adult and Aging SD 

rats treated with L-buthionine sulfoximine (BSO) to chronically deplete the cellular anti-oxidant 

GSH. 
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Underlying Rationale 

Decision to Focus on CCA EDRF and EDCF Signaling Activities of Adult and Aging GSH-

Depleted SD rats. The decision to focus on exploring CCA EDRF and EDCF signaling activities 

of Adult and Aging chronically GSH-depleted SD rats in Thesis Study III was led by two main 

considerations: i) the opportunity to work with this model as part of a larger project undertaken 

by the laboratory; and ii) the data available in the literature regarding, in particular, EDCF 

activity, aging, and the potential roles of ROS and oxidative stress.  

 In regard to opportunity, a major ‘BSO-Aging’ study was to be conducted in the laboratory 

investigating ‘Adult’ (~30 wk old) and ‘Aging’ (~65 wk old) SD rats under ‘CON’ (control) 

conditions or treated for 10d with BSO, a compound able to deplete cellular GSH – a known 

chemical anti-oxidant and co-factor for the H2O2-metabolizing enzyme GPx (see above in Section 

1.5.2 – Determinants of Pro-oxidant/Anti-oxidant Balance in the Vascular Wall; and both Figure 

1.4 and 1.5). Previously, the laboratory had conducted a chronic BSO treatment study in ~20 wk 

old SD rats, demonstrating efficacy in depleting liver GSH (a hallmark of the model) and 

augmenting both liver and conduit vascular (aortic) ROS production, which was associated with 

two intriguing findings: i) no increase in blood pressure, in contrast to other works demonstrating 

a marked BSO-induced hypertensive effect in adult SD rats (388); and ii) only modest 

impairment in isolated aortic NO-mediated EDRF activity, in conjunction with an up-regulated 

eNOS, SOD, and sGC expression profile suggestive of a possible compensatory adaptation to the 

elevated oxidative stress (114) (see above in the Section 1.5.2. Review – Consideration of 

Potential ROS-Mediated Compensatory Adaptations in Attempt to Prevent Endothelial 

Dysfunction). Two subsequent works from separate laboratories found consistent hemodynamic 

findings in adult BSO SD rats combined with no attenuation (25), or a CAT-inhibitable (i.e. 

presumably involving H2O2) modest augmentation (173), in aortic NO-mediated EDRF activity, 

also suggesting a compensatory adaptation to elevated oxidative stress in this model. 

Accordingly, the BSO-Aging study provided an opportunity to further explore the effect of 

chronic in vivo BSO-induced GSH depletion on CCA hemodynamics and NOS-, COX-, and 

ROS-mediated EDRF signaling activity in the context of Aging SD rats that might not be as 

adaptable to oxidative stress, and thus potentially more susceptible to hemodynamic instability 

and endothelial dysfunction related to reduced NO bioavailability and EDRF activity. 

Importantly, the BSO-Aging study also provided a unique opportunity to explore EDCF 

signaling activity, aging, and the acute and chronic roles of ROS and oxidative stress. Like 

essential hypertension, aging can be hallmarked by augmented COX-mediated EDCF activity, as 

has most clearly been demonstrated in both the SHR-WKY aortic model and in the forearm 
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vasculature of essential hypertensive patients-otherwise healthy individuals, where the endothelial 

dysfunction found in the hypertensive state appears to be reflective of a ‘pre-mature aging’ of the 

vascular wall (see above in Section 1.5.3. – COX-Mediated EDCF Responses Contributing to 

Endothelial Dysfunction in Other SHR Vascular Segments, in Other Animal Models of CVD Risk, 

and in Humans). In SD rat vasculature, EDCF responses are not as readily apparent as in SHR or 

aging WKY animal models. Yet, in the available literature, augmented COX- and TP receptor-

mediated EDCF activity had been identified in the femoral artery of adult animals under chronic 

STZ-induced type-I diabetic conditions (328, 330) and also in the aorta (183), femoral artery 

(329), and small mesenteric arteries (345) of aging (50-60 wk old) vs. adult SD rats. Thus, it 

appeared possible that the CCA of SD rats in the BSO-Aging study might also be established as a 

model of EDCF signaling activity.  

Regarding the role of GSH in EDCF signaling activity, there had been no previous 

investigations; however, in the available literature, an acute mediating (in particular by H2O2) and 

chronic regulatory role of excess ROS and oxidative stress in EDCF responses had been 

suggested under various CVD risk conditions in numerous animal vascular models: adult SHR 

aorta (423) and mesenteric arteries (399); adult AII-infused hypertensive Wistar rat aorta (181) 

and mouse mesenteric arteries (398); aging Long Evans type-II diabetic rat mesenteric arteries 

(239, 241); and adult STZ-induced type-I diabetic (330) or aging (329) SD rat femoral arteries 

(for details see above in Section 1.5.3 – Acute Role of ROS in EDCF Signaling Activity and – 

Chronic Role of ROS and Oxidative Stress in EDCF Signaling Activity, respectively). In this 

context, a proposed unique benefit of exploring the CCA COX- and ROS-mediated EDCF 

signaling activities of Adult and Aging SD rats under BSO-induced GSH depletion conditions 

was the possibility of more specifically, than in studies before, evaluating the acute and chronic 

role of ROS and oxidative stress in EDCF signaling activity. This was proposed since the 

oxidative stress induced in the BSO model, as compared to the oxidative stress conditions found 

in the described previous models studied – i.e. SHR, AII infused-hypertension, and diabetic 

models, was anticipated to be more independent of blood pressure or other overt discerning 

clinical features of CVD risk (e.g. hyperglycemia/hyperinsulinemia in diabetes) that might, aside 

from oxidative stress, play a direct role in regulating the EDCF response. 

Main Specific Objectives and Hypotheses 

The following provides a descriptive overview of the main specific objectives and hypotheses of 

each set of experiments conducted throughout Thesis Study III, from the experiments originally 

conducted to those performed in response to the findings of the original experiments.  
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Objective A: To determine the effect of BSO and Aging on systemic and conduit vascular 

indicators of treatment efficacy, including: i) GSH content in the liver and the aorta (used as a 

conduit artery surrogate due to CCA tissue limitations); ii) H2O2 content in the liver, plasma, and 

aorta.  

Hypothesis A: It was hypothesized that: i) BSO treatment efficacy would be confirmed by a 

substantial reduction in liver and aortic GSH and an increase in liver, aortic, and plasma H2O2, 

both of which might be more drastic in Aging vs. Adult; and ii) GSH might be reduced in Aging 

vs. Adult liver and aorta, and H2O2 would be increased in Aging vs. Adult liver, aorta, and 

plasma.  

Objective B: To establish the in vivo pulsatile blood pressure and blood flow characteristics of the 

CCA under CON and BSO, and Adult and Aging conditions. 

Hypothesis B: It was hypothesized that mean, systolic (maximum), diastolic (minimum), and 

pulse pressure would be: i) not significantly affected in Adult CON and BSO; ii) possibly 

increased with Aging (in particular systolic and pulse pressures); and iii) possibly increased in 

Aging BSO vs. CON; and that mean, maximum, and minimum blood flow would be: a) not 

significantly affected in Adult CON and BSO; b) possibly decreased with Aging; and c) possibly 

decreased in Aging BSO vs. CON. 

Objective C: To establish the dose-dependent ACh-stimulated endothelium-dependent contractile 

response in quiescent and L-NAME pre-incubated CON and BSO, and Adult and Aging CCA 

(EDCF activity), and to determine the effect of Indo (to non-selectively inhibit COX), SC560 (to 

specifically inhibit COX-1), NS398 (to preferentially inhibit COX-2), Tempol (considered a SOD 

mimetic), and MnTMPyP (considered a SOD+CAT mimetic). 

Hypothesis C: It was hypothesized that CCA EDCF activity would be: i) negligible in Adult but 

augmented in Aging; ii) possibly augmented in BSO in Aging but likely not in Adult (and if at all 

augmented in Adult, to a lesser extent than in Aging); iii) eliminated with Indo in all cases where 

found, while SC560 and NS398 might each only partially attenuate the response; and iv) possibly 

augmented with Tempol and attenuated with MnTMPyP in all cases were found. 

Objective D: To establish the dose-dependent ACh-stimulated endothelium-dependent relaxation 

response in PE-pre-contracted CON and BSO, and Adult and Aging CCA (EDRF activity), and to 

determine the effect of L-NAME (to inhibit NOS), Indo (to inhibit COX), Tempol (considered a 

SOD mimetic), and MnTMPyP (considered a SOD+CAT mimetic). 

Hypothesis D: It was hypothesized that in CCA: i) maximal vasorelaxation would be blunted in 

Aging vs. Adult, and this blunting likely eliminated with Indo, possibly attenuated with 



  72

MnTMPyP, and possibly augmented with Tempol; ii) maximal vasorelaxation would likely be no 

different in Adult BSO vs. CON but attenuated in Aging BSO vs. CON; iii) sub-maximal 

vasorelaxation would be predominantly L-NAME-sensitive, and might be modestly attenuated, 

no different, or modestly augmented in Adult BSO vs. CON, with this response potentially 

affected by Tempol or MnTMPyP; iv) sub-maximal vasorelaxation would be predominantly L-

NAME-sensitive, and likely attenuated in Aging BSO vs. CON, with this response improved by 

both Tempol or MnTMPyP.  

Objective E: (Given that NO bioavailability and EDRF activity appear to be minimally affected 

by BSO in adult SD rats) to determine the effect of AII exposure on the dose-dependent ACh-

stimulated endothelium-dependent NO-mediated relaxation response in pre-contracted Adult 

CON and BSO CCA.  

Hypothesis E: It was hypothesized that 24h in vitro exposure of CCA to AII: i) might only 

modestly affect NO-mediated EDRF activity in Adult CON; and ii) could result in significant 

attenuation of NO-mediated EDRF activity in Adult BSO.    

Objective F: (Given the potential role of H2O2 in eliciting vasorelaxation or vasocontractile 

activity) to establish the role of exogenous H2O2 in CCA vasomotor activity by: i) determining 

the dose-dependent H2O2-stimulated relaxation response in PE-pre-contracted Adult CON and 

BSO, and the effect of L-NAME (to inhibit NOS); and ii) determining the dose-dependent H2O2-

stimulated contractile response in quiescent and L-NAME pre-incubated Adult CON and BSO, 

and the effect of Indo (to inhibit COX). 

Hypothesis F: It was hypothesized that: i) H2O2 would likely elicit a substantial vasorelaxation 

response that was in part L-NAME-sensitive, and might be modestly augmented in Adult BSO vs. 

CON; and ii) H2O2 would likely elicit a substantial vasocontractile response that was 

predominantly Indo-sensitive, and might be modestly augmented in Adult BSO vs. CON.  
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2.1 Preface 
This Chapter presents Thesis Study I as a ‘Full Text’ reproduction of the article Impaired 

Hemodynamics and Endothelial Vasomotor Function via Endoperoxide-Mediated 

Vasoconstriction in the Carotid Artery of Spontaneously Hypertensive Rats published in 2009 by 

The American Physiological Society as referenced above.  

Written permission to include the reproduced materials in this thesis has been obtained 

from the publisher and can be found at the end of this thesis in the Permission’s Pages (Thesis 

Study I) immediately prior to the References section. 

Included in this Chapter are the Overview (Section 2.2), Introduction (Section 2.3), 

Materials and Methods (Section 2.4), Results (Section 2.5), and Discussion (Section 2.6) of the 

article, reproduced as published, except in the format of this thesis.  

Figures (Figure 2.1 to 2.4) and the Table (Table 2.1) corresponding to the Results are 

located in order at the end of Section 2.5.  

The Supplemental Material for this article, published as an Online Supplement as 

referenced above, is reproduced in Appendix A as published, except in the format of this thesis. 

The Supplemental Material includes Supplemental Methods and Supplemental Results comprised 

of Supplemental Figure A-1 and A-2.  
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2.2  Overview 
The fact that endothelium removal increases diameter and compliance in the CCA of SHR, and 

that improving CCA endothelium-dependent vasorelaxation has been shown to normalize a 

reduced systolic blood flow through the SHR CCA compared to normotensive WKY, suggests 

that endothelial vasomotor dysfunction may be linked to altered large artery hemodynamics in 

hypertension. The experiments herein were designed to further investigate WKY and SHR CCA 

hemodynamics and endothelium-dependent vasomotor functions. It was hypothesized that CCA 

blood flow and conductance would be reduced throughout the cardiac cycle in SHR, and that 

endothelium-dependent contractile activity would impair SHR CCA vasorelaxation. We report 

that mean, maximal systolic, and diastolic blood flow were reduced in SHR vs. WKY CCA, as 

was vascular conductance. Pressure was augmented in SHR CCA and accompanied by late 

systolic flow augmentation so that total flow during systole was indeed no different between 

strains, possibly explained by earlier lower body wave reflection. While ACh stimulation in 

isolated pre-contracted WKY CCA caused a robust NO-mediated vasorelaxation, endothelium-

dependent, COX-mediated contractile activity stimulated by high [ACh] impaired NO- and non-

NO/non-COX-mediated vasorelaxation in precontracted SHR CCA. In quiescent CCA, this 

endothelium-dependent contractile response was COX-1- and TP receptor-mediated, and 

modulated by the availability of NO. These data collectively suggest that endothelium-dependent, 

COX-mediated endoperoxide signaling in the CCA of SHR may elicit vasoconstriction, which 

could shift the mechanical properties of this conduit artery and contribute to reduced CCA blood 

flow in vivo. 

2.3 Introduction 
The CCAs are of great physiological and clinical importance because their internal carotid artery 

branches contribute ~80% to the total perfusion of the brain in humans and in rodents (100), and 

CCA IMT (374) and hemodynamics (294) are strong predictors of arterial atherosclerosis and 

cardiovascular risk. In humans, CCA blood flow remains relatively similar in early-stage essential 

hypertensive patients compared to age-matched normotensive subjects, but is significantly 

reduced in patients with sustained essential hypertension (43, 113, 176, 209). CCA 

hemodynamics have not been fully investigated in animal models of hypertension, but 

preliminary evidence indicates that CCA blood flow is reduced in SHR, a model of human 

essential hypertension. Cunha et al found that CCA blood flow velocity was reduced to a greater 

extent with age in SHR compared to normotensive Wistar rats (76). More recently, Iaccarino et al 

found that CCA systolic blood flow was reduced in a small sample of young adult SHR compared 
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to WKY, and that AKT gene transfer to the CCA endothelium normalized the blood flow 

reduction and corrected a blunted response to vasodilator stimulants in SHR (166). These findings 

suggest that CCA endothelial vasomotor dysfunction in hypertensive humans and animals (109) 

may be associated with altered CCA hemodynamics.  

Interestingly, in the absence of an endothelial lining, CCA diameter and compliance are 

increased in young adult WKY and SHR (217, 269), suggesting a net vasoconstrictive role for the 

endothelium; an effect that was found to be greater in SHR (57). Indeed, it has been documented 

in the aorta of adult SHR that ACh, and other vasoactive compounds that elevate endothelial 

[Ca2+]i, can stimulate the release of not only EDRF(s) such as NO and EDHF(s), but also of 

EDCF(s). These EDCF(s) include COX-derived endoperoxides, which elicit a ‘net’ vasomotor 

dysfunction by competing with EDRFs (109, 385). However, no studies have systematically 

investigated this pathway as a potential mediator of vasomotor dysfunction in the CCA of SHR. It 

is therefore unknown whether impaired endothelium-dependent, endoperoxide-mediated, CCA 

vasomotor function and reduced CCA blood flow indeed coexist in SHR.  

 The main objective of the present study was to quantify CCA blood flow and blood 

pressure across the cardiac cycle in young adult SHR and WKY, and to systematically investigate 

the relative contributions of the NOS and COX pathways in mediating ACh-stimulated, 

endothelium-dependent CCA vasomotor function. We hypothesized that CCA blood flow and 

conductance would be reduced across the cardiac cycle in the CCA of SHR compared to WKY, 

and that COX and TP receptor-mediated, endothelium-dependent vasocontraction would impair 

endothelium-dependent, NO-mediated vasorelaxation in SHR but not WKY CCA. 

2.4 Materials and Methods 
All experiments were performed using young adult rats aged 16-20wks. WKY and SHR were 

purchased from Harlan (Indianapolis, IN) at 10wks of age and were housed four per cage in a 

temperature-controlled facility (21±1ºC) on a reversed 12:12h light:dark cycle, having free access 

to standard lab chow and tap water. All procedures involving rats were approved by the 

University of Waterloo Animal Care Committee and were in accordance with the guidelines of 

the Canadian Council on Animal Care.  

An expanded Methods section appears in the Supplemental Material for this article, 

which is available online at the American Journal of Physiology-Heart and Circulatory 

Physiology website (and in Appendix A).  
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2.4.1. CCA Hemodynamics 

The current study took a number of steps to ensure an accurate quantification of blood flow and 

pressure in the CCA across the cardiac cycle (see Supplemental Methods in Appendix A for 

details regarding Rationale for procedural approach and Quantification of CCA blood flow and 

pressure). Blood flow through the left CCA of anesthetized rats was measured using a 

perivascular flow-probe, followed by removal of the flow-probe and insertion of a catheter-tip 

pressure transducer into the left CCA to measure intra-arterial blood pressure, thereby enabling us 

to subsequently excise from the same rat the structurally undisturbed right CCA for assessment of 

vasomotor function. Heart rate during flow and pressure waveform collection remained the same 

(p>0.500 for differences between cyclic rates from flow waveforms and pressure waveforms; data 

not shown) signifying a steady cardiovascular state within rats throughout the entire in vivo 

measurement duration (35-45min). Accordingly, blood flow and pressure data were treated as 

though they were recorded simultaneously (279), which allowed for analysis of CCA pressure-

flow relationships across the cardiac cycle (see Figure 2.1 legend for details).  

Pressure augmentation in the large arteries of the upper body is a consequence of 

‘backward’ and/or ‘forward’ traveling reflected waves (279). Because in the current study the 

CCA had to be securely tied around the catheter measuring intra-arterial pressure (see 

Supplemental Methods in Appendix A), transmission of any reflected waves downstream 

returning (backward) from sites at or beyond the CCA bifurcation may have been obstructed by 

the tie and thus not represented in the pressure waveform measured by the catheter-tip transducer; 

consequently, this pressure waveform presumably included the incident wave and a reflected 

wave returning (forward) from upstream peripheral sites. The AI (‘augmentation index’) of this 

resulting CCA blood pressure waveform was defined as [PS-PI]/[PS-PD] (Figure 2.1, lower panel), 

wherein PD is end diastolic pressure, PI is the pressure at the inflection (i.e. shoulder) point during 

systole, and PS is peak systolic pressure (279). As recently described by Hirata et al (156), a blood 

flow AI in the CCA was similarly defined as [FS-FLSP]/[FS-FD] (Figure 2.1, lower panel), wherein 

FD is end diastolic flow, FS is peak systolic flow occurring at about the same point in the cardiac 

cycle as PI, and FLSP is peak flow occurring late in systole normally at about the same point in the 

cardiac cycle as PS.      

2.4.2. Tissue Preparations  

Anesthetized animals were killed by removing the heart. The left ventricle and brain 

(hemispheres+midbrain+cerebellum) were dissected and weighed. The right CCA was carefully 

excised, immediately placed in a 4°C Kreb’s bicarbonate buffer solution, and cleaned of fat, 

surrounding connective tissue, and blood. Some CCA segments were flash-frozen, stored at -



  77

80°C, and later homogenized (see Supplemental Methods in Appendix A). From other CCA 

segments, arterial rings 2.0mm in axial length were cut in preparation for testing CCA vasomotor 

function. In a number of cases, arterial rings were mechanically denuded of endothelium (-Endo) 

by insertion of a 250µm diameter stainless steel wire through the vessel lumen followed by gentle 

rolling on Whatman paper wet with 4°C buffer. The efficacy of denudation was later confirmed 

by the absence of a relaxation response to ACh in pre-contracted rings. 

2.4.3. CCA Vasomotor Function 

CCA vasomotor function experiments were adapted from those previously published by our 

laboratory using WKY and SHR rat aorta (Ref. (143, 310); see Supplemental Methods in 

Appendix A for additional details regarding CCA Vasomotor Function experiments). Briefly, 

each arterial ring was mounted between two 127µm diameter wires, one fixed to a glass rod and 

the other connected to a force transducer, and suspended in a 37°C water-jacketed tissue bath 

containing 10ml of buffer solution constantly gassed with 95% O2-5% CO2. Resting tension on 

rings was slowly increased over 60min to a final resting tension of 2.75-3.00g, which was found 

in our preliminary contractile experiments to correspond with the optimal length for drug-

stimulated CCA isometric tension production (see Supplemental Figure A-1 in Appendix A).  

Rings were pre-incubated for 30min in buffer containing either: no drug (ND), Nω-nitro-

L-arginine methyl ester (LN; 10-4M in bath) to inhibit NOS (17, 355, 425-427), Indo (10-5M) to 

non-selectively inhibit both the constitutive (COX-1) and inducible (COX-2) isoforms of COX (7, 

228, 300, 356), LN+Indo to inhibit both NOS and COX-1/-2, LN+valeryl salicylate (VAS; 3•10-

3M) to inhibit NOS and COX-1 preferentially (139, 140, 423-425), LN+NS398 (10-6M) to inhibit 

NOS and COX-2 preferentially (7, 129, 140, 423), or LN+SQ29548 (10-6M) to inhibit NOS and 

to antagonize the TP receptor (7, 127, 300). The type and concentration of inhibitors/antagonists 

used were based on the indicated previous studies in which efficacy has been demonstrated under 

similar experimental conditions.   

Drug pre-incubated rings were exposed to one of two protocols. In one protocol, 

cumulative dose-response relationships to ACh followed by the NO donor SNP were measured in 

rings precontracted with 10-6M PE, shown in our preliminary experiments to elicit a sustained 

vasocontraction with an amplitude 80-90% of maximal PE vasocontraction (see Supplemental 

Figure A-1 in Appendix A). In a second protocol, cumulative dose-response relationships to ACh 

were measured in quiescent (non-pre-contracted) rings. At the beginning of each test of 

vasomotor function, rings were stimulated to contract twice with exposures to 60mM KCl. 
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2.4.4. Western Blotting 

The relative expression of eNOS, COX-1, and COX-2 enzymes in the CCA of WKY and SHR 

was determined by Western blotting. Procedures for gel electrophoresis of prepared CCA 

homogenate samples, protein transfer to PVDF membranes, and immunoblotting and detection of 

these enzymes were performed as described in the Supplemental Methods in Appendix A. 

2.4.5. Drugs, Reagents, and Antibodies 

Kreb’s bicarbonate buffer solution consisted of (in mM): 131.5 NaCl, 13.5 NaHCO3, 11.2 

glucose, 5.0 KCl, 2.5 CaCl2 1.2 NaH2PO4, 1.2 MgCl2, and 0.025 EDTA (prepared fresh daily, pH 

7.40). All drugs and reagents were purchased from either Sigma-Aldrich (St. Louis, MO via 

Oakville, ON, Canada) or BioShop Canada Inc. (Burlington, ON, Canada) unless indicated. LN 

was reconstituted in distilled water, INDO in DMSO, SQ29548 (Cayman Chemical, Ann Arbor, 

MI) in ethanol, and VAS (Cayman Chemical) and NS398 (Cayman Chemical) in N2-purged 

ethanol. Primary antibodies specific for COX-1 or COX-2 were purchased from Cayman 

Chemical, and for eNOS from BD (Franklin Lakes, NJ). Appropriate secondary antibodies were 

purchased from Santa Cruz (Santa Cruz, CA).   

2.4.6. Statistics 

Data are expressed as mean±SEM; n refers to the number of animals/rings per group or drug 

condition. Statistical analyses were performed using SAS v9.1 or SAS Enterprise Guide v3.0 

software (SAS Institute Inc., Cary NC). Differences were considered statistically significant if 

p<0.05. Two-tailed, independent-sample Student’s t-tests were used for single-point comparisons 

and one-way or two-way ANOVAs with Bonferroni posttests, when necessary, were used for 

multiple within and/or between group comparisons.  

2.5 Results 
2.5.1. Reduced Blood Flow and Conductance in the CCA of SHR  

Physical attributes of the WKY and SHR used in these experiments are listed in Table 2.1. Table 

2.1 also presents WKY and SHR CCA hemodynamics averaged across 5 min of stable waveforms 

measured in vivo (see Figure 2.1, top panel, for example of measured CCA pressure and flow 

waveforms). Mean CCA blood flow was significantly reduced (absolute [abs.], ~-25%; relative to 

body weight [rel.], ~-31%) in SHR compared to WKY, as were maximum (abs., ~-33%; rel., ~-

38%) and minimum (abs., ~-63%; rel., ~-65%) flow. Conversely, CCA mean, systolic, diastolic, 

and pulse pressures were all ~1.5 to 2-fold elevated in SHR compared to WKY, and heart rate 

was on average ~105 cycles/min higher in SHR. As a result, there was a marked ~65% reduction 

in mean vascular conductance calculated at the level of the CCA.   
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In SHR, stenoses of the cervical arteries are not likely to account for reduced CCA blood 

flow since these rats are devoid of overt atherosclerosis (197). Given that the major organ 

supplied by the CCA, the brain, was found by others (276) and in the current study to be ~12-

14% reduced in normalized weight in young adult SHR vs. WKY (Table 2.1), and that hypo-

metabolism already exists in selected brain regions in these SHR (409), it was speculated that 

reduced SHR brain weight could have to some degree accounted for the ~25% reduction in mean 

flow through this conduit artery. However, when this was accounted for in a subset of animals, 

mean SHR CCA blood flow relative to brain weight remained ~18% reduced compared to WKY 

(n=6 per strain; data not shown).  

2.5.2. CCA Pressure Augmented in SHR and Accompanied by Late Systolic Flow 

Augmentation 

The relationship between CCA pressure and flow across time-normalized cardiac cycles (i.e. as a 

fraction of a cardiac cycle; 0.000 and 1.000 representing the beginning and end of the cardiac 

cycle respectively; see Figure 2.1 legend for details) averaged within the 16 WKY and 12 SHR is 

presented in the lower inset left and middle panels of Figure 2.1. Pressure waveforms analysed 

from both strains had a systolic inflection in pressure (PI; SHR, 174±6 mmHg; WKY, 99±4 

mmHg; normalized time; SHR, 0.071±0.005; WKY, 0.113±0.008) prior to peak pulse pressure 

(PS; SHR, 204±9 mmHg; WKY, 102±4 mmHg; normalized time: SHR, 0.275±0.008; WKY, 

0.168±0.014), which began earlier and was more prolonged in SHR (all p<0.001), resulting in a 

markedly higher pressure AI in SHR compared to WKY (56.5±3.4% vs. 11.6±1.7%; p<0.001).  

Peak systolic flow (FS), which was ~30% lower in SHR vs. WKY (13.21±1.12 vs. 

19.19±1.10 ml/min; p=0.002), occurred in early systole in both strains just following PI 

(normalized time: SHR, 0.115±0.008; WKY, 0.131±0.004). After FS, although pressure, 

especially in the case of SHR, continued to rise, flow began to decrease, but much more quickly 

in WKY than in SHR so that total flow during systole (the 0.000 to 0.390 normalized time 

interval in both strains) was not statistically different between strains when considering the 

greater number of cardiac cycles per minute in SHR (SHR, 2.83±0.24 vs. WKY, 3.31±0.26 ml in 

1 min; p=0.197). Indeed, in all SHR animals there was a secondary peak in flow during late 

systole (FLSP; 7.25±0.62 ml/min) just following PS (normalized time: 0.276±0.015) corresponding 

to an average flow AI of 50.3±3.7%. In WKY, flow waveforms from only 9 of 16 animals 

possessed a secondary peak in flow during late systole (FLSP; 5.55±0.44 ml/min; p=0.037 vs. 

SHR), occurring much after PS (normalized time: 0.321±0.011), corresponding to a markedly 

lower average flow AI of 21.1±2.1% (p<0.001 vs. SHR). During diastole (0.400 to 1.000 

normalized time interval), total flow was ~40% lower in SHR vs. WKY (1.19±0.15 vs. 2.10±0.22 
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ml in 1 min; p=0.003). As a result of these pressure-flow interactions, SHR maintained a 

markedly lower CCA vascular conductance (Figure 2.1, lower right panel) throughout the entire 

cardiac cycle compared to WKY (averaged ~-55% in systole, ~-70% in diastole; p<0.001).   

2.5.3. Endothelium-Dependent, COX-Mediated Contractile Activity Impairs NOS- and 

non-NOS/non-COX-mediated Relaxation Responses in the PE-Pre-contracted CCA 

of SHR  

Following measures of left CCA hemodynamics, the right CCA was excised for assessment of the 

relative contributions of NOS and COX pathways in mediating vasomotor functions in PE-pre-

contracted arterial rings pre-incubated with either ND, LN, INDO, or LN+INDO (Figure 2.2). 

Control experiments confirmed that there were no significant differences in vasomotor functions 

between CCA harvested from animals following hemodynamic measures and CCA freshly-

harvested from age-matched WKY and SHR (see Supplemental Methods in Appendix A). 

Contractile responses to 10-6 M PE were 40-50% lower in SHR than WKY across all drug 

conditions (p<0.001) and this persisted when considered relative to their drug condition-

respective KCl-stimulated contractions, which were not different between strains. Incubation with 

LN and LN+INDO compared to ND and INDO respectively caused a moderate but significant 

increase in developed tension to KCl in both WKY and SHR (10-15%; p=0.002), and a much 

more significant increase in developed tension to PE (80-95%; p<0.001). There was no difference 

between strains in the PE-LN:PE-ND developed tension ratio, a putative indicator of an NO effect 

on basal tone (95, 149, 289, 289). A similar pattern of response existed between drug conditions 

within and between strains in the full PE dose-response relationships evaluated in our preliminary 

contractile experiments (see Supplemental Figure A-1 in Appendix A). 

ACh-Stimulated Responses in PE Pre-contracted WKY and SHR CCA  

Control experiments (see Supplemental Methods in Appendix A) confirmed that all ACh-

stimulated vasomotor activity in PE-pre-contracted CCA (Figure 2.2, bottom left and right) was 

endothelium-dependent. ACh elicited a concentration-dependent relaxation in WKY CCA and 

INDO caused a ~10% increase in both the maximum amplitude (Max Amp) and area under the 

curve (AUC) compared to ND (see Figure 2.2, inset data). Incubation with LN or LN+INDO 

caused an ~90% decrease in both Max Amp and AUC compared to ND and INDO, respectively. 

Compared to LN, LN+INDO significantly increased Max Amp.  

The response to ACh in ND and LN SHR CCA was biphasic: relaxing from a 

precontracted baseline in a sigmoid-like shape to a Max Amp (stimulatory phase; -9.0 to ~-6.5 

LogM) followed by recontraction in a sigmoid-like shape (inhibitory phase; ~-6.0 to -4.0 LogM). 
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Thus, these responses were found to be best fit to a bell-shaped dose-response curve that sums the 

two sigmoidal dose-response relationships wherein EC50_1 and EC50_2 define the [ACh] 

resulting in 50% of the theoretical plateau in amplitude for the stimulatory (relaxation) and 

inhibitory (re-contraction) phases, respectively. In ND SHR CCA, ACh first stimulated relaxation 

reaching Max Amp at -6.1±0.1 LogM after which rings re-contracted through to -4.0 LogM. LN 

caused a significant blunting of the relaxation phase of the ACh response, inducing an ~75% 

decrease in Max Amp and a lower EC50_1. The re-contraction phase was also present in the LN 

SHR CCA; the extent of re-contraction was ~2.5-fold greater than in ND. Notably, INDO 

completely abolished the re-contraction phase of both ND and LN SHR CCA, thus markedly 

increasing both Max Amp and AUC compared to similar conditions without INDO.  

 WKY vs. SHR. Peak relaxation (Max Amp) to ACh was distinctly lower in ND SHR vs. 

WKY CCA (p<0.001), moreover a dose-dependent recontraction phase occurred at higher [ACh] 

(~-6.0 to -4.0 LogM) but only in SHR. In contrast, at lower [ACh] (-9.0 to ~-6.5 LogM), 

relaxation was indeed augmented in ND SHR vs. WKY CCA (EC50_1; p<0.001) resulting in no 

significant difference in overall AUC between strains (p=0.130). This augmented relaxation 

response in SHR at lower [ACh] persisted in the presence of LN, INDO, or LN+INDO (p<0.001). 

Similar peak relaxation and AUC occurred in INDO SHR compared to INDO WKY CCA, and 

SHR CCA incubated with LN or LN+INDO had a higher peak relaxation and increased AUC 

compared to responses than both LN and LN+INDO WKY CCA (p<0.001).     

SNP, used to assess VSM sensitivity to exogenous NO, elicited comparable sigmoidal-

shaped concentration-dependent relaxation responses in all WKY and SHR CCA from all drug 

conditions (see Supplemental Figure A-2 in Appendix A).  

2.5.4. ACh-Stimulated Contraction in Quiescent SHR CCA is Endothelium-Dependent, 

COX- and TP Receptor-Mediated, and Modulated by the Availability of NO 

To further investigate the re-contraction response to ACh >-6.5 LogM in PE-pre-contracted SHR 

CCA (see Figure 2.2), experiments were performed with freshly harvested, intact or endothelium-

denuded (-Endo) quiescent (i.e. not pre-contracted) WKY and SHR CCA pre-incubated with 

either ND, LN, LN+INDO, LN+VAS, LN+NS398 or LN+SQ29548 (Figure 2.3). The effects of 

COX inhibitors and the TP receptor antagonist were evaluated only in the presence of LN since 

this optimizes ACh-stimulated contractile responses (17, 355, 426) and allows for distinguishing 

effects of these drugs on ACh-stimulated CCA contraction independently of confounding effects 

of NOS. VAS and NS398 were used at concentrations within the range of their reported 

selectivity for COX-1 and COX-2, respectively (179, 423). At these concentrations, VAS but not 
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NS398 abolish ACh-stimulated PG production in SHR aorta (139). [ACh] from -9.0 to -4.0 LogM 

did not elicit vasomotor activity in any WKY CCA condition. In SHR CCA, [ACh] less than -6.5 

Log M did not elicit vasomotor activity, but [ACh] from -6.5 to -4.0 LogM elicited a dose-

dependent contraction in ND, LN, LN+NS398 and LN+SQ29548 conditions. An ~3-fold increase 

in AUC and Max Amp occurred in the presence of LN compared to ND in SHR CCA, consistent 

with the effect of LN on ACh-stimulated recontraction in PE-pre-contracted SHR CCA (Figure 

2.2) and further confirming that SHR conduit artery contraction in response to ACh is markedly 

amplified by inhibiting the production of NO (17, 355, 426). This ACh-stimulated contraction 

was completely abolished by endothelial denudation, INDO (LN+INDO), or the COX-1 

preferential inhibitor VAS (LN+VAS), while the COX-2 preferential inhibitor NS398 

(LN+NS398) only partially attenuated the response. The TP receptor antagonist SQ29548 

(LN+SQ29548) abolished ~90% of the contractile response.  

2.5.5. Increased COX-1 and eNOS Protein Expression in the CCA of SHR  

Immunoblot analyses revealed significant increases in the protein expression of eNOS (30%) and 

COX-1 (57%) in CCA of SHR relative to those of WKY (Figure 2.4), whereas no statistically 

significant difference was detected for COX-2. 
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Figure 2.1. Hemodynamics in the CCA of WKY (n=16) and SHR (n=12). The top panel shows a raw 1s 
CCA blood pressure and blood flow waveform measured in a WKY animal. The lower panel shows the 
relationship between pressure and flow in the CCA of WKY (left) and SHR (middle) over 1 cardiac cycle 
(data represent means; error bars were omitted for clarity). CCA blood flow and pressure waveforms for 
each rat were extracted from the same phase of the respiratory cycle as depicted (beginning and end of each 
waveform identified by the diastolic nadir of the previous waveform and the waveform to be extracted 
respectively using Chart™ software algorithms). Because of differences in cardiac cycle times between 
WKY (170-260ms) and SHR (130-155ms), these extracted waveforms were next individually (i.e. per 
waveform, per rat) time-normalized across the cardiac cycle (0.000 depicting the beginning, and 1.000 the 
end, of the cardiac cycle) then averaged within a strain so that the hemodynamic waveforms synchronized 
with the cardiac cycle. Vascular conductance over 1 cardiac cycle in the CCA of WKY vs. SHR (right) was 
calculated from these individual time-normalized flow and pressure values then averaged within WKY and 
SHR (data represent means±SEM; *p<0.01 vs. WKY at each normalized time point). [PS-PI]/[PS-PD] and 
[FS-FLSP]/[FS-FD] were used to calculate the augmentation index of the pressure and flow waveforms 
respectively (see Methods for details, and Results for statistical comparisons).  
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Table 2.1 Physical attributes and CCA hemodynamics of young adult WKY and SHR 

Data represent means±SE of stable hemodynamic waveforms measured in the left CCA of anesthetized 
WKY (n=16) and SHR (n=12). Due to differences in whole body weight between strains, data were 
reported in both absolute terms and relative to 100 g of whole body weight (/100 g body) where 
appropriate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 WKY SHR p 
Age, wks 17.2±0.2 17.2±0.2      0.948 
Weight    

Whole body, g 305±4 334±4    <0.001 

Left ventricle, mg (or /g body)     685±9 (2.24±0.02)    850±14 (2.54±0.03)    <0.001 

Brain, mg (or /g body) 1832±3 (5.78±0.08)  1730±2  (5.00±0.08)    <0.001  

Heart Rate, bpm 303±9 408±7    <0.001 
CCA Blood Flow,  
ml/min (or /100g body) 

   

Maximum 19.20±1.00 (6.47±0.34) 12.84±0.98 (3.99±0.34)    <0.001 

Minimum   1.57±0.35 (0.53±0.12)  0.58±0.26 (0.18±0.08)    <0.030 

Mean  5.10±0.38 (1.72±0.14) 3.84±0.32 (1.19±0.11)    <0.020 
CCA Blood Pressure, mmHg     

Systolic 101±4 202±8    <0.001 

Diastolic 69±4 147±5    <0.001 

Pulse 31±1 55±4    <0.001 

Mean 84±4 172±6    <0.001 

Mean Vascular Conductance, 
µl/min/mmHg (or /100g body) 

62.3±5.4 (21.1±1.9) 22.4±1.7 (6.9±0.6)    <0.001 
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Figure 2.2. Vasomotor function in WKY and SHR CCA rings incubated with either no drug (ND; n=27), 
Nω-nitro-L-arginine methyl ester (LN; n=21), Indo (INDO; n=9), or LN+INDO (n=12). Arterial rings were 
stimulated to contract with KCl then washed and pre-contracted with PE (top left and right), after which 
rings were exposed to cumulative ACh concentrations (bottom left and right). Data represent means±SEM 
and are expressed relative to PE pre-contraction. p<0.05; * vs. ND, † vs. INDO, ‡ vs. LN within strain. See 
Results for WKY vs. SHR statistical comparisons. Max Amp, maximum amplitude of the curve; EC50_1 and 
EC50_2, ACh dose resulting in 50% of the plateau in amplitude of the relaxation and re-contraction phases 
of the curve, respectively; AUC, area under the curve.  
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Figure 2.3. ACh-stimulated contraction in quiescent WKY and SHR CCA rings. Endothelium-denuded 
arterial rings (-Endo; n=3 per strain) were incubated with no drug (ND) and intact rings with either ND 
(n=3-5 per strain), Nω-nitro-L-arginine methyl ester (LN; n=3-11 per strain), LN+Indo (LN+INDO; n=3-4 
per strain), LN+valeryl salicylate (LN+VAS; n=5), LN+NS398 (n=5), or LN+SQ29548 (n=4) prior to 
exposure to cumulative ACh concentrations. Data represent means±SEM and are expressed relative to 
contraction stimulated by KCl. p<0.05; * vs. LN, † vs. ND, ‡ vs. LN+NS398, § vs. LN+SQ29548 within 
strain. Max Amp, maximum amplitude of the curve; EC50, ACh dose resulting in 50% of the plateau in 
amplitude of the curve; AUC, area under the curve.  
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Figure 2.4. Expression of eNOS, COX-1, and COX-2 protein in the CCA of WKY and SHR by Western 
blot. Shown are representative immunoblots of 1 standard (STD), 6 SHR, and 6 WKY CCA samples. Bar 
graph data represent means±SEM of protein expression in 12 SHR and 12 WKY CCA assayed in duplicate, 
quantified by densitometry, and expressed relative to STD. 
 



  88

2.6 Discussion 
The present study provides evidence that blood flow through the CCA of young adult SHR is 

reduced at peak systole and throughout diastole compared to WKY, whereas MAP and PP are 

much higher throughout the entire cardiac cycle, resulting in a persistently decreased vascular 

conductance in SHR. Furthermore, this study demonstrates that co-existent with the altered CCA 

hemodynamics, ACh-stimulated vasorelaxation in CCA excised from SHR is blunted as a result 

of a competitive, COX- and TP receptor-mediated vasocontractile response that is exacerbated by 

inhibiting the production of NO. Together, these findings support the working hypothesis that 

CCA vasomotor dysfunction, via endothelium-dependent, COX- and TP receptor-mediated 

contractile activity, could be associated with altered CCA hemodynamics in SHR.   

2.6.1. CCA Hemodynamics Across the Cardiac Cycle in WKY and SHR  

Our findings that mean, maximum systolic, and minimum diastolic CCA flow and conductance 

were significantly reduced in young adult SHR compared to age-matched WKY are congruent 

with previous reports of reduced CCA blood flow in sustained essential hypertensive patients (43, 

113, 176, 209) and in young adult SHR (76, 166). To our knowledge though, the present study is 

the first in the WKY-SHR model of hypertension to have analysed CCA pressure and flow across 

the cardiac cycle and to have investigated their interrelationships, an approach which produced a 

number of novel findings. A markedly reduced total flow during diastole accounted for the 

greatest part of the ~25% reduction in mean CCA blood flow in SHR. Although peak systolic 

flow was also significantly reduced, total systolic flow per minute of cardiac cycles was no 

different between strains because of a higher heart rate in SHR vs. WKY and a prolonged post-

systolic peak decay in SHR CCA flow that may have been the result of a much higher pressure 

augmentation during this same time (i.e. post-peak-to-late systole). CCA pressure augmentation 

measured in our study presumably represents a reflected waveform returning early from upstream 

peripheral sites – e.g. due to aortic degeneration and increased pulse wave velocity (74, 156). This 

forward reflected waveform in systole would have accelerated (or prolonged the decay of) 

forward CCA flow, thus augmenting total systolic flow. Late systolic flow augmentation, 

attributed to pressure wave reflection returning early from the lower body, has recently been 

reported in the aging human CCA, and was implicated in cerebral microvascular damage (156). 

In the case of the young adult SHR in the present study wherein total CCA blood flow was 

reduced predominantly because of a reduction in flow during diastole, it could be speculated that 

the late systolic flow augmentation may indeed assist in preventing hypo-perfusion of 

downstream brain tissues.  
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2.6.2. CCA Vasomotor Function in WKY and SHR 

In young adult SHR conduit arteries, α1 adrenergic receptor-stimulated contractile responses have 

previously been found to be either similar to WKY (7, 8, 166, 228, 254, 356, 396) or lower (131, 

137, 143, 228) as in the current study. Since there was no difference between our WKY and SHR 

CCA in KCl-stimulated contractile responses or in the PE-LN:PE-ND developed tension ratio, 

neither a general impairment of contractile function (131) nor a NO-mediated suppression of 

contractile activity (8, 94, 95), respectively, likely accounts for the differences in PE 

responsiveness. Adaptations in CCA α1-adrenergic receptors and their intracellular signaling 

mechanisms themselves may provide an explanation (131, 397). Importantly, there is no apparent 

reason to suspect that these differing PE responses corrupted our evaluation of WKY and SHR 

CCA ACh-stimulated vasomotor functions and the elucidation of the COX-EDCF-TP receptor 

mechanism.  

The current study demonstrates that whereas ACh initiates a robust endothelium-

dependent, NOS-mediated relaxation response in the PE precontracted CCA of WKY, ACh 

initiates two distinct competing responses in the CCA of SHR: an endothelium-dependent 

relaxation response to lower [ACh] mediated by both NOS and non-NOS/non-COX signaling, 

and an endothelium-dependent contractile response to higher [ACh] mediated by COX. Previous 

studies have shown impaired ACh-stimulated vasorelaxation but no overt re-contraction in CCA 

from SHR vs. WKY aged 12-24wks (158, 166, 228), which is presumed to be NO-dependent 

(109) even though NOS inhibitors were not systematically used. Indo has elicited robust 

vasorelaxation in SHR or SP-SHR CCA in some (61, 333) but not other (228) studies. There does 

not appear to be a single compelling potential explanation for the discrepancies between the past 

and the current study of the SHR CCA, but important factors might include: the source and/or 

exact age of the animals investigated (158, 166, 228); the pre-contractile agonist used (158, 228); 

and the range of [ACh] evaluated, especially the exclusion of higher [ACh] in past works (158, 

166). The current study was designed to provide a more definitive assessment by including the 

higher [ACh] that elicit the recontraction phase, systematically evaluating NOS and COX 

blockade effects, and elucidating the involvement of the COX-EDCF-TP receptor axis. 

Our results demonstrate that impaired endothelium-dependent relaxation in SHR CCA 

can be caused exclusively by competitive COX-mediated vasocontraction. Data from the NOS 

inhibition, eNOS expression, and sensitivity to SNP experiments do not support a major role for 

altered NO bioavailability in causing the SHR CCA ACh-stimulated vasomotor dysfunction. This 

interpretation is consistent with reports from SHR aorta (109, 385). Conversely, non-specific 

COX inhibition completely abolished the re-contraction response to higher [ACh] in pre-
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contracted SHR CCA resulting in a similar peak relaxation to that observed for WKY CCA. The 

endothelium-dependent contractile response to cumulative [ACh] in quiescent SHR CCA was 

also completely abolished by non-selective COX inhibition, and by preferential inhibition of 

COX-1 but not of COX-2. Likewise, this ACh-stimulated contraction in quiescent SHR CCA was 

almost completely abolished by TP receptor antagonism. Supporting these vasomotor findings, 

we further showed that COX-1, but not COX-2, was significantly over-expressed in the CCA 

tissue of SHR compared to WKY, consistent with previous aortic studies (129, 359). Thus, it is 

likely that a TP receptor-binding endoperoxide product(s) of AA metabolism by COX-1 was 

responsible for the ACh-stimulated CCA contractile activity. In SHR aorta, COX-1-derived 

EDCF(s) generated in response to ACh have been identified as PGH2 and PGI2, which activate 

VSM TP receptors (109, 385). It should be noted that very recent evidence in SD rat femoral 

arteries suggests that VAS at the dosage used herein might have TP receptor antagonist properties 

in addition to its COX-1 inhibition effects (331). The possibility that this also occurs in the 

current study does not change the overall interpretation, however, since even if the VAS 

experiment is ignored, the combination of the INDO and NS398 results suggests that COX-1 is 

the source of the EDCF(s), and the SQ29548 results suggest that the TP receptor is the EDCF 

target.   

The robust ACh-stimulated WKY CCA relaxation in the current study was almost 

exclusively mediated by NO signaling since this response was blunted ~90% by LN and 

negligibly affected by INDO. In contrast, the SHR CCA relaxation phase stimulated by lower 

[ACh], which was augmented compared to WKY over the same dose range, again was negligibly 

affected by INDO but interestingly was blunted only ~70-80% by LN or LN+INDO. Together 

these data suggest that this augmented ACh-stimulated response in SHR CCA was mediated by a 

non-NOS/non-COX-dependent signaling mechanism, traditionally considered to involve an 

EDHF pathway (108, 110). Others have found augmented relaxation to lower [ACh] in the aorta 

and/or CCA from SHR or SP-SHR aged 8-20wks (95, 143, 289, 372), speculated to be an age-

dependent compensation to hypertension development (95, 109, 289). However, there have been 

no attempts to systematically investigate the mechanism responsible; notably, none have 

determined the effect of blocking Ca2+-activated K+ channels which are ubiquitously involved in 

EDHF signaling (110). In SHR vasculature, peak VSM hyper-polarization (92) and ACh-

stimulated EDHF-mediated relaxation is generally found to be impaired (108, 110), but not in all 

cases (50, 313) which may be related to age and/or the vascular wall remodeling state (108). 

Although our results might suggest that an EDHF may in fact be responsible for the augmented 
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low [ACh]-stimulated SHR CCA relaxation, there are no additional data directly substantiating 

this supposition.   

2.6.3. Perspective  

Congruent with the working hypothesis that CCA endothelial vasomotor dysfunction could be 

associated with altered CCA hemodynamics in hypertension, Iaccarino et al found that improving 

vasomotor dysfunction with AKT gene transfer to the CCA endothelium corrected a ~30% 

reduction in peak systolic CCA flow in SHR.  The authors suggested this improvement was a 

result of increased vessel wall compliance thus reducing CCA resistance to flow (166). This is 

consistent with findings by Levy and associates (57, 217, 269) that the endothelium can alter 

CCA diameter and compliance in SHR, which might be attributed to the disappearance of a 

contracting factor produced in the SHR endothelium (269). Though it is impossible with our 

methodological approach to directly link the in vitro vasomotor function responses with the in 

vivo hemodynamics, in light of the Iaccarino et al and Levy and associates findings (57, 166, 217, 

269), it is intriguing to speculate from our data that endothelium-dependent, endoperoxide-

mediated signaling may elicit vasocontraction in the CCA of SHR and contribute to the ~25% 

reduced mean blood flow through this artery in vivo. This would likely contribute most to the 

~33% reduced peak systolic flow we observed, whereas the ~63% reduced total flow we found 

during diastole would likely be more dependent on elevated downstream arterial/arteriolar 

resistance in SHR due to luminal narrowing, rarefaction, and endothelial vasomotor dysfunction 

(28). This overall interpretation highlights that the vascular system is a continuum (347), with 

both conduit and resistance vessel endothelial vasomotor dysfunction contributing to altered CCA 

hemodynamics in hypertension.  

2.6.4. Limitations 

No in vivo experiments to manipulate CCA NO or endoperoxide signaling were performed in the 

current study to establish whether these vasomotor pathways indeed do affect blood flow through 

the CCA of SHR. So this study cannot conclude with causality that the overactive endoperoxide 

signaling and enhanced ability of the SHR CCA to contract played a physiologically important 

role in reducing CCA blood flow in vivo. Rather, this Perspective is put forth as a working 

hypothesis to be further investigated. In such an investigation, it will be necessary to ensure that 

experiments directly manipulating CCA endoperoxide or NO signaling in vivo, as was 

accomplished by Iaccarino et al via selective gene transfer to the CCA endothelium (166), avoid 

concomitant effects on downstream cerebrovascular tone and/or uncontrollable systemic 
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compensations, which may occur with acute or chronic infusions or topical application of drugs, 

that consequently would corrupt interpretation of CCA flow changes.  

2.6.5. Clinical Relevance 

Because the CCAs contribute ~80% to the total perfusion of the brain (100), and normal brain 

function is highly reliant on CCA blood flow (287), a 25% reduction in this parameter could 

result in significant hypo-perfusion that may contribute to the predisposition of SHR to localized 

neurological deficits (9, 266). Future investigation of the SHR CCA circulation will provide 

insight into the roles of reflected pressure waveforms in altering CCA blood flow (37, 195), and 

in this way may help elucidate mechanisms that govern CCA and cerebral blood flow in human 

essential hypertension (43, 156, 208). Future investigation of the COX- and TP receptor-mediated 

vasocontractile characteristics of the SHR CCA will provide insight into the possible role of over-

active endoperoxide signaling in shifting the mechanical properties of the CCA (i.e. 

stiffness/compliance) affecting blood flow, which could have both downstream (cerebral 

perfusion) and upstream (left ventricular after-load) consequences. Accordingly, this signaling 

pathway may prove to be an important therapeutic target in the prevention and treatment of 

hypertensive complications related to ventricular-vascular coupling (412).  
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3.1 Preface 
This Chapter presents Thesis Study II as a ‘Full Text’ reproduction of the article RhoA-Rho 

Kinase Signaling Mediates Endothelium- and Endoperoxide-Dependent Contractile Activities 

Characteristic of Hypertensive Vascular Dysfunction published in 2010 by The American 

Physiological Society as referenced above.  

Written permission to include the reproduced materials in this thesis has been obtained 

from the publisher and can be found at the end of this thesis in the Permission’s Pages (Thesis 

Study II) immediately prior to the References section. 

Included in this Chapter are the Overview (Section 3.2), Introduction (Section 3.3), 

Materials and Methods (Section 3.4), Results (Section 3.5), and Discussion (Section 3.6) of the 

article, reproduced as published, except in the format of this thesis.  

Figures (Figure 3.1 to 3.7) corresponding to the Results are located in order at the end of 

Section 2.5. The Figure (Figure 3.8; Schematic of potential mechanim) corresponding to the 

Discussion is located at the end of Section 3.6.    

The Supplemental Material for this article, published as an Online Supplement as 

referenced above, is reproduced in Appendix B as published, except in the format of this thesis. 

The Supplemental Material includes Supplemental Methods and Supplemental Results comprised 

of Supplemental Table B-1 and Supplemental Figure B-1 to B-6.  
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3.2 Overview 
Hypertensive vasomotor dysfunction is defined by endothelium-dependent contractions involving 

PGs and ROS. Since both TP receptor signaling and ROS activate RhoA-ROCK in VSM 

preparations, we hypothesized that enhanced endothelium-dependent contraction in the CCA of 

SHR is ROCK-mediated. ACh-stimulated contractions were ~2-fold greater in SHR vs. 

normotensive WKY, abolished by endothelial denudation or COX-1 inhibition, and nearly 

eliminated by TP receptor blockade. RhoA but not ROCK-II protein expression was increased 

(~50%) in SHR CCA. Inhibition of ROCK, but not PKC, caused a dose-dependent reduction in 

endothelium-dependent contractions to ACh across strains, at the highest dose mirroring the 

effect of high-dose TP receptor antagonism. Conversely, ROCK inhibition caused dose-

dependent and endothelium- and NO-independent relaxation in CCA pre-contracted with the TP 

receptor agonist U46619. PGI2 was the predominant PG produced by ACh-stimulated CCA with 

>2-fold more released from SHR vs. WKY, and its production was unaffected by ROCK 

inhibition. RhoA activation was ~2-fold higher in quiescent SHR CCA compared to WKY, and 

significantly increased by ACh stimulation. Augmenting chemical superoxide-quenching with 

tiron or inhibiting the NADPH oxidase-derived superoxide-producing pathway with apocynin 

reduced ACh-stimulated contractile activity in SHR more than in WKY, whereas the superoxide 

dismutase mimetic Tempol amplified the response. CCA exposure to exogenous H2O2 caused 

contractions, similar to ACh stimulation, that were: greater in SHR than WKY, abolished by 

COX-1 inhibition, and highly attenuated by TP receptor blockade or ROCK inhibition. These 

results indicate that RhoA-ROCK may act as a molecular switch transducing signals from 

endothelium-derived PG(s) and ROS, which are over-produced in SHR CCA, to ‘turn on’ VSM 

contractile pathways, thus mediating the enhanced endothelium- and endoperoxide-dependent 

vascular contractions characteristic of hypertension, among other CVD states such as diabetes and 

aging. 

3.3 Introduction 

Endothelium-dependent vasomotor (dys)function is dictated by a balance between EDRFs and 

EDCFs (109). Though much is known regarding VSM relaxation mechanisms of EDRFs (212, 

320), this is not the case for EDCFs. Whether EDCFs activate the well-characterized RhoA-

ROCK contractile pathway in systemic arteries is uncertain. RhoA activation by GPCR 

stimulation of G12/13 results in [Ca2+]i sensitization via ROCK-mediated phosphorylation of the 

myosin targeting subunit MYPT1 of MLCP, leading to its inhibition (342). This in turn causes 

sustained myosin RLC20 phosphorylation, and hence contraction, through the classic [Ca2+]i-
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dependent CaM-MLCK pathway initiated by GPCR stimulation of Gq/11-linked PLCβ. However, 

since these mechanisms have largely been studied under conditions of vascular endothelial 

denudation and/or membrane permeabilization, there is little direct evidence demonstrating how 

the endothelium or EDCFs may activate/modulate RhoA-ROCK-mediated vasocontractile 

activity.  

 Several lines of evidence suggest that vascular RhoA-ROCK signaling plays a 

pathophysiological role in CVD states (223, 320), including both human and animal models of 

hypertension (212). EDCF(s) impair endothelium-dependent vasorelaxation, causing vascular 

dysfunction in SHR compared to normotensive WKY (109, 385). The factors responsible for this 

endothelium-dependent contractile activity appear to be COX-derived endoperoxides and/or 

PG(s) and ROS (360, 385). Importantly, EDCF activity is nearly abolished by antagonism of 

VSM TP receptors, part of the GPCR family (275). These findings, together with the fact that 

rodent VSM contraction in response to ROS (177) or agonist stimulation of TP receptors (414) is 

mediated predominantly by RhoA activation and ROCK-mediated MYPT1 phosphorylation, gave 

us compelling reason to hypothesize that activation of RhoA-ROCK signaling may be a VSM 

mediator of EDCF actions, and enhanced in arteries from hypertensive animals. Therefore, the 

purpose of the current study was to test this hypothesis by investigating the effect of ROCK 

inhibition on EDCF activity in the CCA of SHR, a model in which we recently found marked 

endothelium-dependent, COX- and TP receptor-mediated contractile activity ((85); i.e. Thesis 

Study I). 

3.4 Materials and Methods 
3.4.1. Materials 

See text below for details. Unless otherwise indicated, all reagents and drugs were purchased 

from Sigma-Aldrich (St. Louis, MO via Oakville, ON, Canada) or BioShop Canada Inc. 

(Burlington, ON, Canada).  

3.4.2. Animals and Vascular Tissue Preparations 

All experiments were performed using young adult SHR and WKY aged 18-24wks (purchased at 

age 7-10wks from Harlan Laboratories, Indianapolis, IN, or Charles River Laboratories, 

Wilmington, MA) housed in a reversed 12h light:12h dark cycle, temperature-controlled facility 

(21±1°C) with free access to standard laboratory chow and tap water. All procedures involving 

rats were approved by the University of Waterloo Animal Care Committee and were in 

accordance with the guidelines of the Canadian Council on Animal Care. 
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We chose to study CCA from young adult SHR and WKY to further develop our past 

findings (85). Young adult animals were used so that early established alterations in vascular 

function could be investigated in response to sustained essential hypertension, since the rise in 

SHR blood pressure with age reaches a relatively stable plateau by 12-20wks (e.g. see Refs. (119) 

and (437)). The CCA segment of the systemic vasculature was investigated because of its 

importance both physiologically (CCA contributes ~80% to total brain perfusion; (100)) and 

clinically (CCA IMT (374) and hemodynamics (294) are strong predictors of atherosclerosis and 

CVD risk), and because of its high degree of accessibility.   

Animals were anesthetized via a 60-70mg/kg body weight intra-peritoneal injection of 

sodium pentobarbital (Vetoquinol N.-A. Inc., Lavaltrie, QC, Canada). In some cases, CCA 

hemodynamics were measured using a Millar® catheter-tip pressure transducer and Transonic® 

perivascular flow probe as we previously described in detail (85). Animals were then killed by 

removal of the heart. The left and right ventricles were dissected and weighed. The right and left 

CCA were excised and cleaned of surrounding connective tissue in 4°C buffer solution 

containing, in mM, 131.5 NaCl, 13.5 NaHCO3, 11.2 glucose, 5.0 KCl, 2.5 CaCl2 1.2 NaH2PO4, 

1.2 MgCl2, and 0.025 EDTA, prepared fresh daily in ultra-pure water at pH 7.40. Some CCA 

segments were blot-dried, flash-frozen, and stored at -80°C for later homogenization as detailed 

in the Supplemental Methods section of the Supplemental Material for this article, which is 

available online at the Am J Physiol Heart Circ Physiol website (and in Appendix B). Other CCA 

segments were immediately prepared into arterial rings; those cut 2.0mm in axial length used for 

testing CCA vasomotor functions, and those cut 3.0mm in axial length used for measuring CCA 

PG production and RhoA activation, as explained below. Digital images of CCA rings were 

captured through a dissecting microscope’s calibrated eyepiece and processed using ImageJ 

software (v1.37, standard toolbar, Rasband WS., NIH, Bethesda MD) to quantify their 

dimensions. Care was taken not to damage the endothelium upon CCA excision and processing as 

evidenced by a robust endothelium-dependent vasorelaxation response to the muscarinic receptor 

agonist ACh (maximal WKY CCA relaxation, >90% of pre-contraction to the α1-adrenergic 

receptor agonist PE; see Supplemental Figure B-1 in Appendix B). To test the vasomotor 

functions of CCA without an intact endothelium (-Endo), arterial rings were first denuded 

mechanically as described previously (85). We found that, compared to endothelium-intact rings, 

this consistently resulted in the loss of ACh-stimulated CCA relaxation, and a >80% reduction in 

CCA eNOS protein expression assessed via Western blotting (data not shown).  
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3.4.3. Vascular Mechanical and Molecular Functions 

Vasomotor activities, PG production, and RhoA activation were examined to characterize CCA 

function. Each CCA ring was mounted and equilibrated at an optimal length for drug-stimulated 

isometric tension production in a 37°C tissue bath containing 5ml of 95% O2-5% CO2-gassed 

buffer solution, as we have previously described in detail (85). Next, rings were stimulated to 

contract twice with exposures to 60mM KCl and washed thoroughly, after which rings were pre-

incubated for 30-90min in buffer without or with enzyme/protein inhibitor(s), mimetic(s), or 

receptor antagonist drugs as described in the Results, then exposed to one of four protocols.  

In one protocol, Y27632-stimulated relaxation responses were examined, wherein dose-

dependent relaxation to the selective ROCK inhibitor Y27632 (Calbiochem, San Diego CA), and 

then to a maximal dose of the NO donor SNP, was measured in CCA that had been stimulated to 

contract near-maximally with one of three distinct agents: KCl, PE, or the TP receptor agonist 

U46619 (Cayman Chemical, Ann Arbor, MI). In a second protocol, ACh-, Ca2+ ionophore 

A23187-, and H2O2-stimulated contractile responses were examined, wherein dose-dependent 

contraction to these vasomotor stimulants was measured in quiescent (basal, non-pre-contracted) 

CCA. And in a third and forth protocol, ACh-stimulated PG production and RhoA activation, 

respectively, were examined, wherein a maximal ACh dose (determined to be 10-4 M) was used to 

stimulate quiescent CCA. In the third protocol, the bathing buffer was collected at the time of 

peak contraction (4-5 minutes following ACh stimulation), snap-frozen in liquid N2, stored at -

80°C, and later used to assess PG production by measuring the stable metabolites of TXA2 and/or 

PGI2 using competitive EIA kits according to the manufacturer’s instructions (Cayman). PG 

concentrations were normalized to CCA protein content measured in homogenized rings via a 

standard BCA protein assay (see Supplemental Methods online). In the forth protocol, CCA rings 

were snap-frozen in liquid N2 at the time of peak contraction, quickly homogenized (~5 minutes) 

and stored at -80°C, then used within 12-18 hours to assess RhoA activation by measuring GTP-

bound RhoA using an absorbance-based G-LISA™ kit according to the manufacturer’s 

instructions (Cytoskeleton Inc., Denver CO). Rings were homogenized in the kit’s lysis buffer 

and protease inhibitor cocktail, in addition to 1X Halt™ Phosphatase Inhibitor Cocktail (Thermo 

Scientific, Rockford IL), after which homogenate supernatant protein concentration was 

immediately determined using the kit’s Precision Red™ protein assay, and equalized to 0.5 µg/µl 

protein. RhoA activation was measured using 30 µg of protein homogenate loaded in equal 

volume. Prolonged (>24 hours) storage of either CCA rings or ring homogenates at -80°C was 

found to significantly degrade the RhoA activation signal (data not shown). 
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3.4.4. Vascular Protein Expression 

Homogenization and Western blotting as previously described (85) was used to quantify the 

relative expression of RhoA and ROCK-II protein in WKY and SHR CCA. See Supplemental 

Methods in Appendix B for details. The ROCK-II (i.e. ROCKα) isoform of the protein was 

investigated because it is most associated with MYPT1 phosphorylation and VSM Ca2+ 

sensitization (282). 

3.4.5. Data Analyses and Statistics 

Data are expressed as means ± SE. For details of data collection and curve fitting analysis, see 

Supplemental Methods in Appendix B. Statistical analyses were performed using Statistical 

Analysis Software v9.1 (SAS Institute, Cary, NC). Differences were considered statistically 

significant if P < 0.05. Two-tailed, independent-sample Student’s t-tests were used for single-

point comparisons, and one- or two-way ANOVAs with Bonferroni posttests, when necessary, 

were used for multiple within and/or between group comparisons. 

3.5 Results 
3.5.1. Rat Physical Characteristics and CCA Hemodynamics 

As indicated in Supplemental Table B-1 in Appendix B, compared to WKY, aged-matched young 

adult SHR exhibited a markedly increased CCA blood pressure as well as greater LV mass and 

CCA wall cross-sectional area, indicative of cardiovascular hypertrophy. Furthermore, we 

confirmed our previous findings (85) that CCA blood flow and conductance are significantly 

reduced in SHR vs. WKY and that CCA pressure augmentation accompanied by late systolic flow 

augmentation, which are emerging markers of cardio- and cerebro-vascular damage and risk 

(156), were already much more exaggerated in this young adult hypertensive state (data not 

shown).  

3.5.2. ROCK inhibition with Y27632 Can Reverse SHR and WKY CCA Contractions 

Independent of NO- and Endothelium-Mediated signaling  

Y27632-Stimulated Vasomotor Activity in Pre-Contracted SHR and WKY CCA 

We first assessed the ability of Y27632 to reverse tonic contractions (i.e. developed to a plateau 

over 30-45min; see Supplemental Figure B-2 in Appendix B) stimulated by either electro-

mechanical coupling via KCl, thought to be more dependent on Ca2+-dependent CaM-MLCK 

signaling (46), or pharmaco-mechanical coupling via the α1-adrenergic receptor agonist PE 

(Sigma-Aldrich) or the TP receptor agonist U46619 (Cayman), thought to be more dependent on 

Ca2+ sensitization via G12/13-RhoA-ROCK-mediated MYPT1 phosphorylation (378). Y27632 

elicited a robust dose-dependent relaxation under all three pre-contractile conditions in both 
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strains (Figure 3.1), indicating that RhoA-ROCK activity contributes significantly to both GPCR- 

and membrane depolarization-stimulated SHR and WKY CCA tonic contraction, as it does in 

other vascular beds/animals (46). This Y27632-stimulated vasorelaxation effect was least potent 

under KCl pre-contraction compared to either GPCR-mediated contractile state and most potent 

under PE pre-contraction (Figure 3.1).  

There were no strain-dependent differences found in Y27632-stimulated vasorelaxation 

under KCl pre-contraction, while there were a number of small differences under GPCR-

stimulated contractile states: SHR CCA under PE pre-contraction was slightly more sensitive to 

Y27632 (p=0.028), and under U46619 pre-contraction had a slightly blunted peak magnitude of 

relaxation (p=0.015), compared to WKY (Figure 3.1). However, collectively these differences 

were relatively modest, suggesting that there is not a striking distinction between young adult 

SHR and WKY regarding the contribution of RhoA-ROCK activity to tonic CCA contraction in 

response to a given level of membrane-depolarization or concentration of α1 adrenergic receptor 

or TP receptor agonist.  

Effect of NOS Inhibition, Endothelium Removal, and SNP Exposure 

Because ROCK isoforms are expressed not just in VSM but also in endothelial cells (223), and 

because RhoA-ROCK activation and NO production/signaling pathways may be inter-connected 

(320), we further assessed whether EDRFs could be mediating the observed Y27632-stimulated 

reversal of SHR and WKY CCA tonic contraction. This was accomplished by examining 

conditions wherein NOS was inhibited with L-NAME or the CCA endothelium was removed (-

Endo). There were no differences found between No Drug and L-NAME or –Endo groups in 

Y27632-stimulated vasorelaxation under KCl pre-contraction, while there were again a number of 

small differences under GPCR-stimulated contractile states: L-NAME or –Endo decreased the 

sensitivity to Y27632 under PE pre-contraction and reduced the magnitude of relaxation to 

Y27632 under U46619 pre-contraction (Figure 3.1). Collectively, these data suggest that 

‘unmasked’ EDRF activity, and in particular NO, could in fact be mediating a small part of the 

reversal of tonic contraction stimulated by Y27632, as has previously been suggested (212); 

however, this vasorelaxation response stimulated by ROCK inhibition is predominantly 

independent of NO- and endothelium-mediated signaling, consistent with previous findings in 

intact aorta from SHR and eNOS knockout mice (222).  

SNP was able to elicit an additional relaxation response, beyond that caused by the 

maximal Y27632 dose, in both strains under all experimental conditions (Figure 3.1).  
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3.5.3. Endothelium-Dependent, Endoperoxide-Mediated CCA Contractions are Greater in 

SHR and Markedly Attenuated by ROCK Inhibition but not by PKC Inhibition  

ACh-Stimulated Vasomotor Activity in Pre-contracted SHR and WKY CCA 

We confirmed our previous findings (85) that ACh, while stimulating a robust endothelium- and 

NO-mediated vasorelaxation response in PE pre-contracted WKY CCA, in fact stimulates an 

endothelium-dependent, COX-mediated ‘re-contraction’ response at ≥ -6.5 LogM ACh that 

significantly impairs an otherwise robust, predominantly NO-mediated vasorelaxation response in 

SHR CCA (see Supplemental Figure B-1 in Appendix B).  

ACh-Stimulated Contractile Activity in Quiescent SHR and WKY CCA: Effect of NOS 

Inhibition and Endothelium Removal 

We further confirmed our previous findings (85) that contraction stimulated by ACh 

concentrations ≥ -6.5 LogM in quiescent SHR CCA was completely abolished by –Endo 

compared to No Drug, whereas contraction was markedly increased (>5-fold) in the presence of 

L-NAME (Figure 3.2A) indicating the endothelium dependence of this effect and that NO 

strongly inhibits EDCF activity consistent with findings in the conduit vasculature of SHR and 

eNOS knockout mice (85, 109, 385, 426). In quiescent WKY CCA, whereas no contractile 

activity was stimulated by cumulative ACh in the No Drug condition, there was an ACh-

stimulated, endothelium-dependent contractile response unmasked in the L-NAME condition 

(Figure 3.2A) that was about half the magnitude of the corresponding SHR response (p<0.001), 

again consistent with previous works (109, 385).  

Effect of Selective COX-1 and COX-2 Inhibition, and TP Receptor Antagonism 

The primary objective of the current study was to investigate the effect of ROCK inhibition on 

SHR and WKY EDCF activity. Therefore, considering that NO inhibition of EDCF activity in 

SHR aorta is mediated to a large extent by sGC (426), and that cGMP-stimulated PKG-I signaling 

can prevent VSM contraction via phosphorylation of RhoA thereby inhibiting RhoA activation 

(316), the effects of all enzyme/protein inhibitor(s), mimetic(s), and receptor antagonist drugs 

were evaluated only while co-incubated with L-NAME. This approach is consistent with previous 

works in this area (85, 109, 357).  

We confirmed our previous findings (85) that the non-selective COX inhibitor Indo and 

the preferential COX-1 inhibitor VAS (Cayman) completely abolish ACh-stimulated CCA 

contractions, whereas the preferential COX-2 inhibitor NS398 (Cayman) partly blunts the 

responses (Figure 3.2B), this latter effect possibly due to a non-selective inhibition of COX-1 as 

previously discussed (85). VAS was recently reported to cause mild non-specific TP receptor 
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antagonism (331). Thus, we further clarified the COX-1 dependency of endothelium-dependent 

contractile activity, which is consistent with findings in the conduit vasculature of SHR and 

COX-1 knockout mice (85, 109, 385), by using the more selective and potent inhibitor SC560 

(Cayman) (338). This compound indeed completely abolished ACh-stimulated CCA contraction 

(Figure 3.2B) but did not affect KCl- or U46619-stimulated contractions (Supplemental Figure B-

3 in Appendix B) thus confirming its specificity.  

The TPr antagonist SQ29548 (Cayman), which highly attenuated contraction stimulated 

by U46619 but did not affect KCl-stimulated contraction (Supplemental Figure B-3 in Appendix 

B), abolished ~90% of the ACh-stimulated contractile response in SHR and completely abolished 

this response in WKY (Figure 3.2B).  

Effect of Selective ROCK Inhibitors and PKC-Specific Inhibition 

The selective ROCK inhibitor Y27632 caused a dose-dependent attenuation of ACh-stimulated 

contraction in both SHR and WKY (Figure 3.2C) that at the highest dose (-5.0 LogM) mirrored 

the degree of abolishment caused by SQ29548, consistent with our hypothesis that the 

vasocontractile signal following COX-1-derived EDCF stimulation of VSM TP receptor is 

transduced by RhoA-ROCK activation. Within the dose range used in these experiments, Y27632 

has previously been shown not only to inhibit ROCK but possibly also certain PKC isoforms 

(414), which if activated can phosphorylate CPI-17 (PKC-potentiated inhibitor protein of 17kDa) 

leading to Ca2+ sensitization via inhibition of MLCP at its PP1c (protein phosphatase type 1c) 

catalytic site (342). Therefore, to further elucidate the potential roles of these kinases in the EDCF 

response, we also assessed the effects of H1152 (Calbiochem), a more potent and structurally 

distinct ROCK inhibitor (compared to Y27632) which has little effect on PKCs (315), and of 

GF109203X (Calbiochem), a highly-selective broad-spectrum PKC inhibitor (375). H1152 

caused a dose-dependent attenuation of ACh-stimulated contraction (highest dose, -6.0 LogM) 

very similar to Y27632, but with greater potency, in both SHR and WKY (Figure 3.2C). In 

contrast, ACh-stimulated contraction was unaffected by GF109203X across strains (Figure 3.2D). 

The dose of GF109203X used for these experiments (-5.5 LogM) was chosen because of its 

effectiveness in completely eliminating SHR and WKY CCA contraction to the potent PKC 

activator phorbol-12,13-dibutyrate (PDBu; Calbiochem; Supplemental Figure B-4 in Appendix 

B). Conversely, we found that neither high dose Y27632 nor H1152 altered PDBu-stimulated 

contraction (Supplemental Figure B-4 in Appendix B). Moreover, GF109203X did not affect 

U46619- or KCl-stimulated contraction, whereas both high dose Y27632 and H1152 caused a 

>50% reduction in U46619-stimulated contraction without affecting contraction to KCl 

(Supplemental Figure B-3 in Appendix B).  
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Altogether these data strongly indicate that endothelium-, COX-1-, and TP receptor-

dependent CCA contractions in response to ACh are mediated by ROCK, without PKC 

involvement.  

A23187-Stimulated Contractile Activity in Quiescent SHR and WKY CCA: Effect of COX-1/-2, 

TP Receptor, and ROCK Inhibition 

To confirm that the above findings were not exclusively related to endothelial muscarinic receptor 

signaling via ACh, a known endothelial Ca2+ mobilizer (357), we also assessed the effects of 

Indo, SC560, NS398, SQ29548, Y27632, and H1152 on endothelium-dependent, A23187-

stimulated contraction in quiescent CCA (Supplemental Figure B-5 in Appendix B). These 

experiments yielded a similar pattern of results to our ACh-stimulated contractile data, signifying 

that the common initiating element required to trigger CCA EDCF signaling is a rise in 

endothelial intra-cellular Ca2+ (357).  

3.5.4. COX-1-Dependent CCA PG Production is Greater in SHR, Positively Correlated 

with ACh-Stimulated Contraction, and Unaffected by ROCK inhibition  

PGI2 and TXA2 Production in Quiescent and ACh-Stimulated SHR and WKY CCA 

COX-derived endoperoxides and/or PGs appear to be EDCF(s) (360). In response to high-dose 

ACh stimulation, PGI2 has been found to be the main PG produced from the aorta of SHR and 

WKY, with TXA2 produced at a much lower concentration (360). In agreement with these 

previous works, although we could detect the production of TXA2 in quiescent SHR CCA, we did 

not detect a statistically significant increase in this PG upon stimulation with -4.0 LogM ACh, nor 

was its production affected by the preferential COX-1 inhibitor VAS (Supplemental Figure B-6 in 

Appendix B). In contrast, a ~2-fold higher production of PGI2 was evident in quiescent SHR vs. 

WKY CCA (Figure 3.3A; p<0.001), and a >3-fold increased production of this PG from SHR 

CCA occurred in response to ACh-stimulated contraction (Figure 3.3A and 3.3B, respectively).  

Effect of Selective COX-1 Inhibitors 

As expected, COX-1 inhibition with either VAS (data not shown) or SC560 completely abolished 

ACh-stimulated contraction in SHR CCA (Figure 3.3B) and reduced PGI2 production below the 

quiescent state level; however, SC560 was significantly more effective in doing so, causing a 

>60% reduction (Figure 3.3A; vs. VAS, ~20% reduction; p<0.001), thus confirming the relatively 

greater potency of this inhibitor. SC560 was even more effective in reducing PGI2 production in 

ACh-stimulated WKY CCA (Figure 3.3A), suggesting a complete reliance on COX-1 for its 

generation in these vessels.     



  103

Effect of Selective ROCK Inhibition 

Because both endothelial and VSM cells were present in our experimental vascular preparations, 

we wanted to confirm that the attenuation of endothelium-dependent CCA contractions by ROCK 

inhibition was not caused by a possible ROCK-dependent decrease in EDCF production. We 

found that although ACh-stimulated contraction in SHR and WKY CCA was almost completely 

eliminated by high-dose H1152 (Figure 3.3B; corroborating Figure 3.2C), PGI2 production was 

unaffected (Figure 3.3A), thus implying that the effect of ROCK inhibition on COX-1-and TP 

receptor-mediated EDCF signaling is VSM specific, and not dependent on decreased EDCF 

production.  

Correlation Between ACh-Stimulated SHR and WKY CCA PGI2 Production and Associated 

Contraction 

In WKY CCA, ACh-stimulated contraction was about half the magnitude observed in SHR 

(Figure 3.3B, p<0.001; corroborating Figure 3.2A) and associated with a less pronounced (~2-

fold) increase in PGI2 production (Figure 3.3A; SHR vs. WKY, p<0.001). Indeed, within each 

strain, there was a significant positive correlation between CCA PGI2 production and contraction 

(Figure 3.3C), which we were able to demonstrate directly for the first time because of our unique 

experimental approach which provided for contemporaneous assessment of both variables.  

3.5.5. RhoA but not ROCK-II Protein is Over-Expressed in the CCA of Young Adult SHR  

We confirmed our past findings (85) that CCA eNOS and COX-1 proteins are over-expressed in 

young adult SHR vs. WKY (data not shown), consistent with the CCA functional data reported 

herein and previously (85). Indeed, there is considerable variability surrounding the expression of 

RhoA-ROCK signaling components in the vasculature of young adult SHR and WKY (222, 267, 

321, 324). So we used immunoblot analysis to establish the relative CCA expression of RhoA and 

ROCK-II protein in our SHR and WKY (Figure 3.4A and 3.4B), revealing that only RhoA was 

significantly over-expressed in SHR CCA (54% vs. WKY, per µg CCA protein).  

3.5.6. RhoA Activation is Greater in the CCA of Young Adult SHR and Increased by ACh 

Stimulation  

RhoA Activation in Quiescent SHR and WKY CCA 

The function of RhoA depends on its molecular switch from an ‘inactive’ GDP-bound state to an 

‘active’ GTP-bound state (342). Compared to normotensive controls, a more than 2-fold higher 

GTP-bound RhoA-to-total RhoA ratio has been found in freshly harvested intact aorta and 

isolated VSM cultured from SHR and SP-SHR, among other hypertensive models (267, 321, 

324). Congruent with these works, we found that RhoA activation was ~2-fold higher per µg of 
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protein in quiescent SHR CCA compared to WKY (Figure 3.5A; p=0.033). Notably, this effect 

could not have been caused by a difference in NO bioavailability between strains (thus inhibiting 

RhoA activation by cGMP-PKG-I-dependent RhoA phosphorylation (316)) since these measures 

were made on CCA incubated with L-NAME. Moreover, the higher level of quiescent CCA 

RhoA activation measured in SHR was markedly greater than the increase in SHR RhoA protein 

expression per µg of CCA protein (see Figure 3.4A), suggesting that total RhoA over-expression 

could not solely account for the over-activation.  

Effect of ACh Stimulation on SHR and WKY CCA RhoA Activation 

In mounted de-endothelialized aortas isolated from SD rats, stimulation with the TP receptor 

agonist U46619 increases both contraction and RhoA activation (325). Moreover, increased 

RhoA activation has been stimulated by thrombin in cultured VSM isolated from SHR and WKY 

aorta (321). However, to our knowledge, no study has investigated the effect of agonist 

stimulation on RhoA activation in intact arteries from SHR. We found that CCA RhoA activation 

was significantly increased in SHR (83±16%; p=0.001) and to a similar extent in WKY (81±26%; 

p=0.032) in response to ACh stimulation (Figure 3.5A), which elicited a >2-fold greater 

contraction in SHR than in WKY (Figure 3.5B, p<0.001; corroborating Figure 3.3B and Figure 

3.2A).  

In contrast to the quiescent PG production-RhoA activation status, wherein each were ~2-

fold higher in SHR (see Figure 3.3A and Figure 3.5A, respectively), the ~80% increase in ACh-

stimulated RhoA activation found in both SHR and WKY (Figure 3.5A) did not mirror the 

differential increase in PGI2 production in response to ACh (Figure 3.3A), which was ~2-fold 

higher in SHR vs. WKY. Moreover, no significant correlation could be detected between ACh-

stimulated RhoA activation and contraction, as was found for ACh-stimulated PG production and 

contraction (Figure 3.3C), possibly related to the number of animals/rings used.  

3.5.7. ROCK Inhibition but not PKC Inhibition Highly Attenuates Endothelium- and NO-

Independent, COX-1- and TP Receptor-Dependent CCA Contraction Stimulated by 

Exogenous H2O2 

In addition to PGs, ROS may play a role in EDCF signaling (357, 360). In SD rats, VSM 

contraction stimulated by exogenous X:XO (which can produce a mix of O2
•-, H2O2, and OH-) has 

been associated with RhoA activation and ROCK-mediated MYPT1 phosphorylation (177). 

Moreover, exposure of conduit vascular segments from various rodent models to exogenous 

X:XO, or H2O2
 itself, stimulates contractile activity that is sensitive to COX inhibition and TP 

receptor antagonism (360). We confirmed and extended upon these findings by assessing the 
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effect of COX-1, TP receptor, ROCK, and PKC inhibition on exogenous H2O2-stimulated 

contraction of SHR and WKY CCA.  

H2O2-Stimulated Contractile Activity in Quiescent SHR and WKY CCA: Effect of NOS 

Inhibition and Endothelium Removal 

Consistent with previous works (360), both –Endo and L-NAME caused a significant 

augmentation of CCA contraction to exogenous H2O2 in both strains (data not shown). Therefore, 

similar to the rationale for the approach to assessing ACh-stimulated contractions, we evaluated 

the effects of all enzyme inhibitors and receptor antagonist drugs using CCA with intact 

endothelium only while co-incubated with L-NAME.   

Effect of COX-1, TP Receptor, ROCK, and PKC Inhibition 

Exogenous H2O2-stimulated contraction was almost 2-fold greater in SHR vs. WKY CCA (Figure 

3.6; p<0.001). In both strains, the selective COX-1 inhibitor SC560 completely abolished 

contraction to H2O2, as did the TP receptor antagonist SQ29548 and the selective ROCK inhibitor 

H1152 in WKY; whereas in SHR, SQ29548 and H1152 similarly abolished >90% of the H2O2-

stimulated contractile response (Figure 3.6), as they did in the ACh-stimulated contractile 

responses described above (Figure 3.2B and 3.2C, respectively). Conversely, the selective PKC 

inhibitor GF109203X had a minimal effect on H2O2-stimulated contraction in either strain (Figure 

3.6).  

Effect of Catalase Treatment 

Both PEG-CAT (500 U/ml; from bovine liver) and un-conjugated CAT (1200 U/ml; from bovine 

liver) abolished all contractile activity to exogenous H2O2 (data not shown), confirming the 

specificity of the H2O2 contractile effects.  

Together these data suggest that SHR and WKY CCA contractions in response to the 

potential EDCF H2O2 are dependent on COX-1 and mediated by TP receptor and RhoA-ROCK 

signaling.  

3.5.8. Augmentation of ACh-Stimulated CCA Contraction by Tempol and Attenuation by 

Tiron and Apocynin Suggest that Endogenous H2O2 Acts as an EDCF 

Since herein we found that ACh- and H2O2-stimulated CCA contractions are each greater in SHR 

vs. WKY, and each reliant on a signaling mechanism including COX-1, TP receptor, and RhoA-

ROCK to elicit these contractions, we further explored the effect of modulating ROS generating 

or ROS quenching pathways on ACh-stimulated SHR and WKY CCA contraction.  
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ACh-Stimulated Contractile Activity in Quiescent SHR and WKY CCA: Effect of Tiron and 

Apocynin 

ROS could affect EDCF signaling either directly by stimulating VSM contraction, or indirectly 

by decreasing NO bioavailability (360). In the presence of L-NAME, thus excluding the latter 

possibility, both the cell-permeable O2
•- scavenger Tiron (Figure 3.7A) and the cell-permeable 

NADPH oxidase inhibitor Apocynin (Figure 3.7B) moderately reduced the sensitivity and 

maximal amplitude of ACh-stimulated contraction in SHR CCA, whereas in WKY CCA there 

was only a small, non-significant reduction in sensitivity, consistent with work demonstrating a 

greater burst of endothelial ROS production in SHR vs. WKY aorta following ACh stimulation 

(357).  

Notably, at the commonly used concentrations employed in our experiments, there is 

evidence suggesting that Tiron can bind Ca2+ thereby affecting contraction (135), and Apocynin 

may elicit vasorelaxation by a mechanism possibly involving ROCK inhibition (318). 

Importantly, we found that neither Tiron nor Apocynin affected contraction stimulated by KCl (a 

Ca2+-dependent mechanism; see Ref. (46)) or U46619 (a ROCK-dependent mechanism; see Ref. 

(378) and Supplemental Figure B-3 in Appendix B) thereby discrediting these potential non-

specific effects in our SHR and WKY CCA preparations.  

Effect of Tempol and PEG-catalase 

Tempol is a cell-permeable nitroxide compound which can metabolize O2
•- to H2O2 , and hence is 

considered a SOD mimetic (411). In both SHR and WKY CCA, Tempol significantly augmented 

ACh-stimulated contraction (Figure 3.7A) without exerting non-specific effects on KCl- or 

U46619-stimulated contractions (Supplemental Figure B-3 in Appendix B).  

Taken altogether, these data suggest that endogenous H2O2, possibly derived from an 

elevated NADPH oxidase-derived O2
•- production and made more available by the SOD mimetic 

properties of Tempol, may act as an EDCF in the CCA of SHR and WKY, congruent with our 

exogenous H2O2 responses (Figure 3.6) and work in other vascular beds and/or animal models 

using various other inhibitors (360). As such, it was further hypothesized that CAT, which 

completely eliminated contraction to exogenous H2O2 (described above in Results), might inhibit 

ACh-stimulated contraction at least to the same extent as Tiron and Apocynin. We exposed SHR 

and WKY CCA to a 500 U/ml concentration of PEG-CAT for at least 3hrs prior to assessing 

ACh-stimulated contraction as to ensure its penetration into the cells of the vascular wall (411), 

an unmitigated concern when using non-conjugated catalase (358, 360). However, contrary to the 

hypothesis, PEG-CAT actually augmented contraction stimulated by ACh in both strains to the 

same extent as did Tempol (Figure 3.7A). As addressed in the Discussion, this last finding 
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potentially raises some controversy regarding the precise vasomotor action of endogenous H2O2 

that may be produced in response to ACh in the current model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  108

 
 
Figure 3.1. For Figure Legend, see next page.   
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Figure 3.1. Vasorelaxation stimulated by Y27632 in denuded (-Endo, n=4) or intact SHR and WKY CCA 
rings incubated with either No Drug (n=4) or Nω-nitro-L-arginine methyl ester (L-NAME, 10-4.0 M, n=4). 
Rings were stimulated to contract with a near-maximal dose of either KCl (A,B), PE (C,D), or U46619 
(E,F), then exposed to cumulative Y27632 doses followed by a maximal dose of SNP. Pre-contraction 
magnitude with KCl and U46619 was similar between strains and unaffected by NOS inhibition or 
endothelium removal whereas contraction to PE was lower in SHR compared to WKY but augmented in 
both strains by NOS inhibition or endothelium removal (see Supplemental Figure B-2 in Appendix B), as 
we have previously reported and discussed (85). Data represent means±SEM, expressed relative to 
sustained pre-contraction. p<0.05; * vs. No Drug within strain. See Results for SHR vs. WKY comparisons. 
Max Amp, maximum curve amplitude; EC50, dose resulting in 50% of Max Amp; AUC, area under the 
curve. Because Y27632-stimulated relaxation in U46619 pre-contracted rings did not begin to plateau, no 
reasonable EC50 could be computed. 
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Figure 3.2. For Figure Legend, see next page.   
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Figure 3.2. Contraction stimulated by ACh in denuded (-Endo, n=3-4) or intact quiescent SHR and WKY 
CCA rings incubated with either No Drug (n=4-6), Nω-nitro-L-arginine methyl ester (L-NAME or LN, 10-4.0 
M, n=17-18), which acted as a Control for all other drug conditions (see Results), or L-NAME co-incubated 
with Indo (LN+Indo, 10-5.0 M, n=3-4), valeryl salicylate (LN+VAS, 3*10-3.0 M, n=4-5), SC560 
(LN+SC560, 3*10-7.0 M, n=7-8), NS398 (LN+NS398, 10-6.0 M, n=8-9), SQ29548 (LN+SQ29548, 10-6.0 M, 
n=6-8), Y27632 (Y) at 10-6.0, 10-5.5, 10-5.0 M (LN+Y-6.0, n=7-8; LN+Y-5.5, n=8-9; LN+Y-5.0, n=5-7), H1152 
(H) at 10-7.0, 10-6.5, 10-6.0 M (LN+H-7.0, n=7-8; LN+H-6.5, n=8-9; LN+H-6.0, n=5-7), or GF109203X 
(LN+GF109203X, 10-5.5 M, n=8-9). For clarity, the curve with curve parameters representing the 
contraction response in LN control rings from SHR (A, top left) and WKY (A, top right) was duplicated as 
a dashed line in B), C), and D) in their respective graphs. Data represent means±SEM, expressed relative to 
previous contraction stimulated by KCl. p<0.05; * vs. LN, † vs. LN+SQ29548, ‡ vs. LN+ Y-6.0 or LN+H-7.0, 
§ vs. LN+Y-5.5 or LN+H-6.5 within strain. PKC, protein kinase C; Max Amp, maximum curve amplitude; 
EC50, dose resulting in 50% of Max Amp; AUC, area under the curve. 
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Figure 3.3. Production of PGI2 (A) from quiescent or ACh-stimulated CCA rings isolated from SHR and 
WKY and incubated with Nω-nitro-L-arginine methyl ester (L-NAME, or LN, 10-4.0 M, n=6-7) or LN co-
incubated with SC560 (LN+SC560, 3*10-7.0 M, n=6-7), or H1152 (LN+H1152, 10-6.0 M, n=6-7). Rings 
were stimulated to contract with 60mM KCl then washed. In some cases, rings were incubated in a 
quiescent state for 45min before bathing buffer was collected. In other cases, after 40min of quiescent 
incubation, rings were exposed to a maximal dose of ACh eliciting peak contraction within 4-5 minutes (B; 
expressed relative to previous KCl-stimulated contraction), at which time bathing buffer was collected. The 
concentration of 2,3-dinor-6-keto-PGF1α in the collected buffer was used as a marker of CCA PGI2 
production, expressed relative to CCA ring protein per ml of bathing buffer. C) represents the relationship 
between individual ring PGI2 production in A) and its corresponding ACh-stimulated tension development 
in B). Data represent means±SEM. P<0.05; * vs. quiescent LN, † vs. ACh-stimulated LN within strain. See 
Results for SHR vs. WKY comparisons. 
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Figure 3.4. Expression of RhoA (A) and ROCK-II (B) protein in the CCA of SHR and WKY by Western 
blot. Inset the bar graphs for RhoA or ROCK-II protein are representative immunoblots of a SHR and 
WKY CCA sample run on the same gel. Bar graph data represent means±SEM of protein expression 
assayed in at least duplicate, quantified by densitometry, normalized to α-actin, and expressed first relative 
to a Standard run on each gel, then to WKY. Equal protein loading (30 µg per sample) and transfer 
efficiency were confirmed with ponceau red dye. *denotes statistical significance. 
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Figure 3.5. Activation of RhoA (A) in quiescent or ACh-stimulated CCA rings isolated from SHR and 
WKY and incubated with Nω-nitro-L-arginine methyl ester (L-NAME, or LN, 10-4.0 M, n=5-6). Rings were 
stimulated to contract with 60mM KCl then washed. In some cases, rings were snap-frozen after being 
incubated in a quiescent state for 45min. In other cases, after 40min of quiescent incubation, rings were 
exposed to a maximal dose of ACh eliciting peak contraction within 4-5 minutes (B; expressed relative to 
previous KCl-stimulated contraction), then snap-frozen. The optical density corresponded to the amount of 
‘active’ GTP-bound RhoA in each sample, expressed relative to the optical density of a constitutively 
active RhoA protein standard acting as a positive control. Data represent means±SEM. P<0.05; * vs. SHR 
quiescent LN, † vs. WKY quiescent LN.  
 
 
 
 
 
 
 
 
 
 



  115

 
 
Figure 3.6. Contraction stimulated by H2O2 in intact quiescent SHR (top) and WKY (bottom) CCA rings 
incubated with either Nω-nitro-L-arginine methyl ester (L-NAME or LN, 10-4.0 M, n=8-10), which acted as a 
Control for all other drug conditions (see Results), or L-NAME co-incubated with SC560 (LN+SC560, 
3*10-7.0 M, n=5-6), NS398 (LN+NS398, 10-6.0 M, n=5-6), SQ29548 (LN+SQ29548, 10-6.0 M, n=5-6), 
Y27632 (or Y; LN+Y-5.0, n=5-6), H1152 (or H; LN+H-6.0, n=5-6), or GF109203X (LN+GF109203X, 10-5.5 
M, n=6-7). Rings were stimulated to contract with 60mM KCl then washed, after which rings were exposed 
to cumulative H2O2. Data represent means±SEM, expressed relative to previous KCl-stimulated 
contraction. p<0.05; * vs. LN, † vs. LN+SQ29548, within strain. See Results for SHR vs. WKY 
comparisons. Max Amp, maximum curve amplitude; EC50, dose resulting in 50% of Max Amp; AUC, area 
under the curve. 
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Figure 3.7. Contraction stimulated by ACh in intact quiescent SHR and WKY CCA rings incubated with 
either Nω-nitro-L-arginine methyl ester (L-NAME or LN, 10-4.0 M, n=8-10), which acted as a Control for all 
other drug conditions (see Results), or L-NAME co-incubated with Tiron (LN+Tiron, 10-2.0 M, n=6-7), 
Tempol (LN+Tempol, 10-3.0 M, n=6-7),  PEG-Catalase (LN+PEG-catalase, 500 U/ml, n=6-7), or Apocynin 
(LN+Apocynin, 10-3.0 M, n=6-7). Rings were stimulated to contract with 60mM KCl then washed, after 
which rings were exposed to cumulative ACh (A and B). For clarity, the curve with curve parameters 
representing the ACh-stimulated contractile response in LN control rings from SHR (Figure 3.2A, left) and 
WKY (Figure 3.2A, right) was duplicated as a dashed line in A) and B) in their respective graphs. Data 
represent means±SEM, expressed relative to previous KCl-stimulated contraction. p<0.05; * vs. LN, † vs. 
LN+Tiron, within strain. See Results for SHR vs. WKY comparisons. Max Amp, maximum curve 
amplitude; EC50, dose resulting in 50% of Max Amp; AUC, area under the curve. 
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3.6 Discussion 
The data presented provide important new information related to vascular EDCF signaling and 

support our hypothesis that EDCF(s) trigger RhoA-ROCK signaling in the arterial wall, 

particularly in SHR. Thus, RhoA-ROCK may act as a molecular switch transducing signals from 

EDCF(s) to ‘turn on’ VSM pathways related to contractile activity, uniquely implicating RhoA-

ROCK in the multi-faceted disorder of endothelium-dependent vascular dysfunction hallmarking 

hypertension. This work contributes to a growing body of evidence elucidating the mechanisms 

of RhoA-ROCK signaling in VSM contraction (342, 414) and its over-activation and function in 

CVD states including hypertension (212, 223, 320).  

3.6.1. Methodological Considerations  

Vascular endothelial denudation and/or membrane permeabilization preparations have provided 

much insight into the regulation of RhoA-ROCK in VSM contraction. However, as recently 

highlighted by Neppl et al (277), such preparations by their nature cannot be employed to 

investigate whether endothelial cell signaling affects RhoA-ROCK-mediated VSM activation and 

function, which they showed can occur at a molecular level in important ways. Studying intact 

vasculature, though, carries with it the inherent difficulty of accurately interpreting such findings 

because of the presence of both endothelial and VSM cells, each expressing RhoA and ROCK 

(223), and thus the possibility of ROCK inhibition having cell-specific effects. Importantly, it is 

apparent in the current study that the prevention of endothelium-dependent, COX-1- and TP 

receptor-mediated CCA contractions can be attributed to the action of ROCK inhibition on the 

VSM exclusive of the endothelium. Indeed, alterations in EDRF production/activity can be 

excluded because TP receptor-stimulated contraction could be reversed by ROCK inhibition in a 

manner independent of an intact endothelium or the EDRF NO, and because ROCK inhibition in 

the presence of L-NAME could prevent TP receptor-stimulated contraction, together with the fact 

that L-NAME was co-incubated while testing the inhibitory effect of ROCK inhibition on ACh 

and H2O2 stimulation. Moreover, alterations in EDCF production can be excluded because ACh-

stimulated PG production was not affected by ROCK inhibition.  

The specificity of ROCK inhibitors, with respect to their activity toward PKC isoform(s) 

(342), presents another difficulty in studying the role of RhoA-ROCK in vascular functions. 

However, by demonstrating herein that contraction stimulated by PKC activation was unaffected 

by the two structurally distinct ROCK inhibitors used, and that broad-spectrum PKC inhibition 

did not affect ACh- or H2O2-stimulated contraction, it is apparent that the effect of the ROCK 
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inhibitors on endothelium-dependent CCA contractions cannot be attributed to their previously 

reported non-specific effects (414).  

3.6.2. Evidence for a Direct Role of EDCF in Activating Vascular RhoA-ROCK Signaling 

Some reports in the pulmonary vasculature suggest that EDCF(s) may play a significant role in 

mediating hypoxia-stimulated pulmonary vasoconstriction by activating VSM RhoA-ROCK 

signaling, although the exact identity of the potential EDCF(s) remains elusive (304, 305). While 

major inherent differences exist between the pulmonary and systemic vasculature, the current 

study’s data may help elucidate the mechanism(s) by which EDCF(s) activate RhoA-ROCK in 

the pulmonary vasculature, and possibly provide important insight into the potential mechanisms 

of established and emerging therapeutic interventions used to treat pulmonary hypertension (1, 

26), including PGI2 analogs (e.g. epoprostenol, iloprost) and ROCK inhibitors (e.g. Fasudil). 

As the current manuscript was in preparation for submission, Chan et al published a study 

that evaluated the effect of the ROCK inhibitors Y27632 and HA1077 (Fasudil) on contractions 

in the aorta of SHR and WKY (60). The data from this independently conceived and executed 

work, though generated using a distinct segment of the systemic conduit arterial system from 

differently aged animals, eloquently supports our findings that high-dose ROCK inhibitors can 

almost abolish ACh- and A23187-stimulated contractile activity, in addition to corroborating our 

findings that this effect must be mainly due to a direct inhibition of VSM ROCK. Notably, the 

current study both strengthens and extends the work by Chan et al, and other studies evaluating 

effects of ROCK inhibitors on vascular function, in a number of important regards. Our well-

controlled functional experiments establish that inhibition of endothelium-dependent contractions 

was indeed concentration-dependent, and maximally effective in both strains at the typically used 

high-dose of Y27632, as well as H1152, a more potent and specific ROCK inhibitor than either 

Y27632 or HA1077. Moreover, our control experiments discredit the possibility of any PKC-

related non-specific effects previously reported of Y27632, thus solidifying the interpretation of 

vascular function data sets relying on the effect of ROCK inhibitors.  

As an obvious major extension of the study by Chan et al, we demonstrate not only that 

quiescent RhoA activation is elevated in SHR CCA compared to WKY, but also show for the first 

time that RhoA activation is stimulated by ACh, thus providing molecular support of the 

functional ACh-stimulated findings. Furthermore, beyond confirming with different 

pharmacological tools previous works suggesting that ROS contributes to conduit vascular 

endothelium-dependent contractions (360), we establish for the first time that H2O2, which is 

speculated to be an EDCF (360), elicits a COX-1- and TP receptor-dependent contraction in both 

SHR and WKY CCA that is indeed mediated by ROCK. Thus, our data provide strong evidence 
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that the two most likely candidate species for EDCFs, COX-1-derived PGs and ROS, both trigger 

VSM contraction by TP receptor-dependent RhoA-ROCK signaling.  

Noteworthy, by using Tempol and PEG-CAT for the first time in ACh-stimulated SHR 

and WKY vascular preparations, we found that these two pharmacological tools in fact both 

augmented ACh-stimulated CCA contraction. A potential explanation to reconcile these 

unexpected and seemingly paradoxical results could emerge from considering that H2O2 has also 

been shown to elicit relaxation, acting presumably as an EDHF endogenously, in many vascular 

beds and animal models including intermediate-sized arteries from SHR and WKY (50, 85, 128), 

and that Tempol can act also as a catalase mimetic (411). Thus, it appears possible that Tempol, 

like CAT, augmented ACh-stimulated contractile activity not by enhancing (as conventionally 

suggested) but by diminishing the bioavailability of H2O2 (411), which endogenously may have in 

fact been acting not as an EDCF (as suggested by our exogenous H2O2 data) but as an EDRF thus 

curtailing contraction, akin to the effect of NO demonstrated herein and by others (85, 109, 385, 

426). Because these findings were contrary to our hypothesis of how these pharmacological tools 

(in particular PEG-CAT) would act, we have no additional data to directly substantiate this 

possible caveat put forth. Therefore, it is clear that further functional-biochemical and 

pharmacological exploration is required to definitively support or refute this controversial 

hypothesis.  

3.6.3. Proposed Mechanism: Over-production of EDCF(s) Cause Over-Active RhoA-

ROCK Signaling in Intact SHR Vasculature 

Although it is well established that both endothelium-dependent contractions (85, 109, 360, 385) 

and RhoA-ROCK activation (212, 267, 272, 320, 321, 324, 407) are greater in hypertensive 

vasculature, the important root cause(s) of these pathological characteristics have not been fully 

elucidated. Reconciling findings from the current study with previous literature, a novel 

mechanism accounting for conduit artery endothelium-dependent RhoA-ROCK activation and 

contractile activity can be hypothesized to better understand what may account for triggering the 

over-activation of this signaling pathway in hypertension (Figure 3.8). We propose that over-

production of EDCFs could be a main cause of over-active RhoA-ROCK signaling in the intact 

vascular wall of SHR.  

To our knowledge, it is currently unknown whether RhoA, ROCK, and their regulatory 

proteins are differentially expressed in SHR endothelium. We herein, and others (321), have 

found greater RhoA protein in intact CCA or aorta, and cultured aortic VSM, from young adult 

SHR or SP-SHR vs. WKY, whereas others found no expression difference (267, 324). Similarly, 

we herein, and others (60, 222, 267, 321, 324), have found no difference in ROCK-II protein or 
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mRNA, whereas others have found greater ROCK-II or ROCK-I expression (6, 272), in intact, 

denuded, or aged CCA or aorta, or cultured aortic VSM, from SHR or SP-SHR. Likewise, 

expression of Rho-GDIα, a RhoA-ROCK regulatory factor, has been found to be no different 

(267, 321) or greater (34) in SHR or SP-SHR aorta. From these conflicting results, it is not clear 

whether an over-expression of VSM RhoA and ROCK associated proteins per se could itself be a 

significant cause of greater membrane-bound RhoA-GTP (i.e. activated RhoA) (267, 321, 324) 

and/or ROCK-mediated MYPT1 phosphorylation (i.e. activated ROCK) (267, 272, 407) found in 

intact conduit arteries or cultured VSM from hypertensive models (324). Certainly it could play a 

role (272, 321), as may be reflected in reports of SHR VSM contractile hyper-responsiveness to 

agonists such as PGH2 (130); however, in the current study and in past works (267, 321, 324), the 

level of RhoA expression does not appear to account for the increase in SHR RhoA activation, 

nor an increase in MYPT1 phosphorylation (267). 

Alternatively, the main cause of over-active RhoA-ROCK signaling in SHR vasculature 

may be an over-production of GPCR agonists. As we propose for the first time, those agonist(s) 

could include EDCFs. Endothelium-derived PGs (360) and ROS (357) are both produced in 

greater amounts in SHR vs. WKY conduit vasculature. This may be best explained by a greater 

rise in endothelial intra-cellular Ca2+ upon agonist stimulation (357), coupled with an over-

expression of endothelial cell COX-1 and PGI2 and TXA2 synthases (359) as well as subunits of 

NADPH oxidase (143). Indeed, ACh elicits a large endothelium-dependent increase in SHR and 

WKY vascular PGI2 production, which the current study established has a strong direct 

correlation with contraction magnitude; conversely, the endothelial Ca2+ mobilizers A23187 and 

ADP elicit a large increase in TXA2 production (360). COX-1 activation appears to be the source 

of these endoperoxide derivatives in SHR and WKY; whereas, in other vessel beds (399) and/or 

animal models and in humans (418), various PGs derived from either over-expressed COX-1- or 

COX-2-specific activation, including PGF2α and 8-isoprostane, have been reported to be 

associated with endothelium-dependent contractions. In response to endothelial Ca2+ mobilizers, 

COX (357), and NADPH oxidase as indicated for the first time in the current study, may be 

sources of ROS which might possess EDCF action. 

Stimulation of VSM TP receptors is essential in eliciting endothelium-dependent, 

endoperoxide-mediated contractions (85, 109, 360, 385, 399, 418). As clearly demonstrated in the 

current findings, ROCK signaling activated via TP receptor stimulation by PGs, and possibly 

ROS, plays an obligatory role in transducing these endothelium-derived signals within the VSM. 

Certainly, future investigation is necessary to elucidate exactly how EDCFs promote the RhoA-

GTP membrane association shown in the current study, in turn activating ROCK, and to establish 
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exactly what effect this has on MYPT1 and  RLC20 phosphorylation status (177, 277, 325, 342, 

414). In addition, it will be important to establish at this molecular level how the production of 

EDRF(s), including NO (212, 316, 320), and also EDHF(s) (e.g. via K+ channels; (178)), 

counteract these EDCF-triggered RhoA-ROCK-mediated signaling events, and vice versa. 

In SHR VSM, the IP receptor, which typically transduces a vasorelaxation signal from 

PGI2, is equally expressed (359) but dysfunctional (142) compared to WKY VSM. So instead, 

PGI2 is transduced, like TXA2 and PGF2α, as a vasocontractile signal via the TP receptor which is 

also equally expressed across strains (359). Accordingly, in contrast to the evidence suggesting 

hyper-responsiveness to PGH2 (130), we herein, and others (60), have shown that SHR VSM 

contraction to the ROCK-dependent TP receptor agonist U46619 is no different from WKY. 

Therefore, taken altogether, it appears that both endothelium-dependent contractions and RhoA-

ROCK activation in SHR conduit arteries may be best explained by EDCF over-production. 

Moreover, the SHR VSM contractile hyper-responsiveness to exogenous H2O2 shown herein and 

by others (360) also may best be explained not necessarily by an over-expression of VSM RhoA 

and ROCK associated proteins, but by H2O2 stimulation of VSM COX-1 (201), which is over-

expressed in SHR VSM (359), thus resulting in PG over-production that, via VSM TP receptors, 

elicits RhoA activation and ROCK-mediated MYPT1 phosphorylation (177).  

3.6.4. Pathophysiological and Clinical Significance 

Impaired vasorelaxation caused by endothelium-dependent contractions occurs not only in SHR 

but also various other hypertensive animal models and in human essential hypertension (385), as 

well as in aging (418) and diabetic (328) models. Our current data collectively signify that this 

vasomotor dysfunction characteristic may be a biomarker of over-active vascular RhoA-ROCK 

signaling, supported by the fact that bio-molecular evidence exists for vascular RhoA-ROCK 

over-activation in all of these risk factor cohorts (220, 253, 324, 420). Beyond its contractile 

effects, over-active RhoA-ROCK stimulates cytoskeletal re-organization, 

proliferation/differentiation, migration, inflammation, and apoptosis (223), all cellular processes 

implicit in CVD states including hypertension. Thus, small artery/arteriolar EDCF activity, 

recently shown in SHR to be prevented by statin treatment (399), which is known to have a 

pleiotropic RhoA-ROCK inhibition-related effect (220), may be responsible for both active-

functional (endothelium-dependent vasomotor tone) and passive-structural (vascular remodeling 

and rarefaction) resistances, thereby directly contributing to elevated blood pressure. 

Furthermore, since EDCF activity in conduit vasculature, in which the current experiments were 

performed, beyond potentially exerting a mechanical consequence (85), may also impart a 

biological consequence (e.g. inflammatory mediators, VSM migration/activation), this could help 



  122

explain at a cellular-molecular level why hypertension conveys such a high risk of developing 

large vessel diseases related to RhoA-ROCK over-activation such as atherogenesis (234) and 

aortic aneurism (408), which also occur with aging and diabetes. Accordingly, a better 

understanding of the mechanisms governing endothelium-dependent contraction and RhoA-

ROCK signaling in both conduit and resistance vasculature should uncover new prevention 

and/or treatment strategies, beyond COX or TP receptor blockade (319), to combat vascular 

pathologies characteristic of hypertension and other CVD disorders. 
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Figure 3.8. Proposed mechanism accounting for endothelium-dependent contractile activity prominent in 
the CCA of SHR. See Discussion for details.  
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Chapter 4 

Thesis Study III 

 Effect of Glutathione Depletion and Aging on Endothelium-Derived Relaxing 

and Contracting Factor Activity in the Common Carotid Artery of Sprague 

Dawley Rats  

Steven G Denniss, Andrew S Levy, and James WE Rush 

Integrative Vascular Biology Laboratory, University of Waterloo, Waterloo, ON Canada 

Unpublished Manuscript-Article 

4.1 Preface 
This Chapter presents Thesis Study III as the manuscript Effect of Glutathione Depletion and 

Aging on Endothelium-Derived Relaxing and Contracting Factor Activity in the Common Carotid 

Artery of Sprague Dawley Rats written in journal article style.  

Included in this Chapter are the Overview (Section 4.2), Introduction (Section 4.3), 

Materials and Methods (Section 4.4), Results (Section 4.5), and Discussion (Section 4.6) of the 

manuscript in the format of this thesis.  

Figures (Figure 4.1 to 4.4) and Tables (4.1 to 4.3) corresponding to the Results are 

located in order at the end of Section 2.5.     
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4.2 Overview 
The role of the anti-oxidant GSH in mediating vascular (dys)function, and how that role may 

depend on age, is unclear. The main purpose of the current study was to investigate the effect of 

chronic in vivo BSO-induced GSH depletion (30mM BSO in drinking water for 10d) on EDRF 

and EDCF activity in the isolated CCA of Adult (25-36wk old) and Aging (60-75wk old) SD rats. 

Confirming treatment efficacy, BSO induced depletion of GSH in both the liver (~55%; p<0.01) 

and conduit vasculature (~30% in aorta; p<0.01), and elevated indices of oxidative stress, 

including plasma (~40%; p<0.01), liver (~65%; p<0.01), and aortic (~45%; p=0.09) H2O2 

content, as compared to control rats (CON) consuming untreated drinking water. There were no 

significant differences (p>0.05) in liver or aortic GSH or H2O2 content between Adult and Aging 

rats. Moreover, blood pressure and blood flow measured in the CCA were unaffected by Aging, 

or BSO. EDRF activity was assessed in excised, pre-contracted CCA as endothelium-dependent 

relaxation to cumulative ACh (-9.0 to -4.0 LogM). In both Adult and Aging CCA, ACh 

stimulated a robust NOS-mediated relaxation response, which in Aging CCA was blunted 

moderately (~14% at maximum amplitude; p<0.01) at higher ACh concentrations (-6.0 to -4.0 

LogM), an effect abolished by COX inhibition, but not by NOS inhibition or by the ROS 

inhibitors Tempol or MnTMPyP. Assessing ACh-stimulated EDCF activity specifically in 

quiescent NOS-inhibited CCA confirmed that a dose-dependent contractile response could be 

elicited at ACh concentrations between -6.0 to -4.0 LogM, which was ~3.5-fold greater in Aging 

vs. Adult CCA (p<0.01) and abolished completely by COX-1-specific inhibition, but unaffected 

by ROS inhibitors. In response to BSO treatment, ACh-stimulated relaxation in Adult pre-

contracted CCA was not significantly affected, even under the stress of 24h exposure to AII. In 

Aging pre-contracted CCA, maximal ACh-stimulated relaxation was also unaffected by BSO, 

whereas the relaxation sensitivity to ACh was actually augmented modestly (~0.40 LogM 

leftward shift in EC50; p=0.01), an effect found to be eliminated by either COX (p<0.01) or ROS 

(p<0.04) inhibitors. ACh-stimulated contractile responses in both Adult and Aging quiescent 

CCA were unaffected by BSO. Likewise, BSO had no effect on the vasomotor responsiveness to 

exogenous H2O2, which stimulated a dose-dependent and partly NOS-mediated relaxation 

response in pre-contracted Adult CCA, and a dose-dependent and predominantly COX-mediated 

contractile response in quiescent Adult CCA. In conclusion, the data herein demonstrate that 

NOS-mediated EDRF signaling activity is well-preserved, and Age-related COX-mediated EDCF 

signaling activity is unaffected, in the CCA of Adult and Aging SD rats following BSO treatment, 

suggesting that, regardless of age, chronic GSH depletion itself does not play an obligatory role in 

causing endothelium-dependent vasomotor dysfunction. 
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4.3 Introduction 
GSH (L-γ-glutamyl-L-cysteinyl-glycine), the most abundant low-molecular weight thiol in vivo, 

has been found to play a multi-faceted role in anti-oxidant defense against the accumulation of 

ROS including O2
•-, H2O2, and OH- (152). Aging (18, 151, 243, 268, 295, 337) and age-associated 

CVD risk factors such as hypertension (123, 388, 435), hyperlipidemia (2, 205, 233), and 

hyperglycemia/diabetes (191, 331), are characterized by increased oxidative stress and have been 

linked to a decline in GSH content and related anti-oxidant defenses in a variety of tissues 

including the heart and vasculature. However, the specific role of GSH in mediating endothelial 

function, and how that role may depend on age, is unclear. 

Impaired endothelium-dependent vasorelaxation is a putative biomarker of endothelial 

dysfunction and a hallmark of overt CVD and its associated risk factors (410). Vasorelaxation is 

mediated by EDRFs, the most predominant of which is eNOS-derived NO (107, 109). A major 

cause of impaired endothelium-dependent vasorelaxation relates to reduced NO bioavailability, 

largely attributed to the destruction of NO by ROS, particularly by O2
•- (54). Accordingly, work 

investigating the role of GSH in endothelial (dys)function has focused on its potential to affect 

NOS-mediated vasorelaxation. Early studies found that acute augmentation of GSH in CVD 

states (2, 200, 296, 404) or acute depletion of GSH in healthy states (2, 123, 210) could elicit, 

respectively, an improvement or impairment of endothelium-dependent relaxation in the conduit 

or peripheral vasculature. Furthermore, chronic depletion of GSH in vivo was initially reported to 

be associated with a pronounced increase in blood pressure linked to biomarkers of elevated ROS 

and reduced NO bioavailability (123, 388, 435). However, subsequent reports from our laboratory 

(114) and others’ (25, 173) examining the direct effect of chronic in vivo GSH depletion on 

vascular function have found varied responses, with NO-mediated relaxation either undergoing a 

modest impairment (114), no change (25), or modest augmentation (173), and with little (25) or 

no (114, 173) increase in blood pressure. Thus, the pathophysiological consequence of chronic 

GSH depletion on endothelial vasomotor function remains controversial. Moreover, no 

investigation of GSH and endothelial vasomotor function has focused on the potential interactive 

effect of GSH delpletion with age.  

In addition to NO, other signaling mediators may act as EDRFs, including certain COX-

derived PGs, and, under some circumstances, H2O2 (109). It is also becoming increasingly 

evident that endothelial cells can produce contracting factors, EDCFs, which competitively inhibit 

vasorelaxation (109, 385). These EDCFs have been identified as COX-derived PGs (105, 360, 

385), with a possible regulatory influence of ROS (332, 360). Hence, impaired vasorelaxation 

may be multi-factorial, dictated by an imbalance between EDRF and EDCF activity driven by 
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cascades of NOS-, COX-, and ROS-mediated signaling (109). In fact, conduit vasomotor 

dysfunction can be caused not only by under-active EDRF signaling but in particular by over-

active EDCF signaling in various states of oxidative stress and CVD risk including advancing age 

(142, 144, 153, 329, 359, 395, 403, 418).  

It was therefore hypothesized that chronic depletion of GSH would alter endothelium-

dependent vasorelaxation by affecting NOS-, COX-, and ROS-mediated signaling and that aging 

would cause a shift toward impaired EDRF activity and augmented EDCF activity, resulting in 

vasomotor dysfunction that would be expected to be exacerbated by GSH depletion. The main 

purpose of the current study was to test this hypothesis by systematically investigating 

endothelium-dependent vasomotor functions in conduit arteries isolated from adult and aging rats 

treated chronically with BSO, an irreversible γ-glutamyl-cysteine synthase inhibitor effective in 

depleting cellular GSH (251).  

4.4 Methods 
4.4.1 Animals  

Experiments were performed using male SD rats obtained from a colony maintained at the 

University of Waterloo, established using breeders purchased from Harlan Laboratories 

(Indianapolis IN). Animals were housed in a reversed 12h light:12h dark cycle, temperature-

controlled facility (21±1°C) with free access to standard laboratory chow and tap water. All 

procedures involving these animals were in accordance with the guidelines of the Canadian 

Council on Animal Care and approved by the University of Waterloo Animal Care Committee. 

A 60-70mg/kg body weight intra-peritoneal injection of sodium pentobarbital was used to 

anesthetize each animal prior to hemodynamic measures and/or excision of blood and tissues.  

4.4.2 Aging and BSO treatment: Experimental design 

Animals were investigated at either 6-9 months (25-36wks) or 15-18 months (60-75wks) of age. 

Herein, these younger and older animal cohorts are defined as ‘Adult’ and ‘Aging’, respectively 

(see Results for cohort characteristics). SD rats were chosen for use in the current study because 

they represent a commonly employed, otherwise healthy model to study the effects of GSH 

depletion (21-25, 29, 114, 122-124, 173, 388, 435) and elevated oxidative stress (211, 262, 299).   

Ten days prior to testing, animals from the Adult and Aging cohorts were randomly 

selected to continue receiving untreated tap water, defined as CON, or tap water containing 30 

mM (67g/100ml) BSO. This water was prepared fresh for drinking every other day. The mode 

(drinking water), concentration (30mM), and duration (10 days) of BSO treatment was chosen 
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based on our previous work demonstrating efficacy in depleting tissue GSH and augmenting 

tissue ROS in adult SD rats (114). 

4.4.3 Hemodynamic Measures 

Arterial hemodynamics were measured in the CCA of a subset of anesthetized animals from each 

group using a high-fidelity catheter-tip pressure transducer (Millar Instruments, Inc., Houston 

TX) and transit-time perivascular flow-probe (Transonic Systems Inc., Ithaca NY) as we have 

previously described in detail (85). HR was determined by a frequency/time count of the 

pressure-flow waveforms.  

4.4.4 Tissue Preparations 

Anesthetized animals were killed by excision of the heart. Blood was collected into a heparinized 

syringe and then centrifuged (at 4°C) to yield plasma. Liver, CCA (left and right), and descending 

aortic tissues were excised and cleaned of surrounding connective material in 4°C buffer solution 

containing, in mM, 131.5 NaCl, 13.5 NaHCO3, 11.2 glucose, 5.0 KCl, 2.5 CaCl2 1.2 NaH2PO4, 

1.2 MgCl2, and 0.025 EDTA, prepared fresh daily in ultra-pure water at pH 7.40. Care was taken 

not to damage the endothelium upon excision and processing of the vascular segments. 

Sections of liver, aorta, and CCA tissues were blot-dried and, together with plasma, flash-

frozen and stored at -80°C for later biochemical analysis (as described below). To test vasomotor 

function, freshly-harvested CCA were immediately prepared into arterial rings cut 2.0mm in axial 

length. Rings either remained completely intact or were mechanically denuded of endothelial 

cells (-Endo) as we have previously described and validated (84, 85).   

4.4.5 Measurement of Vascular Function 

Vasomotor responses were examined in the CCA primarily because of our recent work 

establishing that over-active COX-mediated contractile signaling was related to vasomotor 

dysfunction and impaired hemodynamics in the CCA of other rodent strains ((84, 85); i.e. in 

Thesis Study I and II). Furthermore, beyond its high degree of accessibility, this conduit vascular 

segment is attractive to study because of its significance both physiologically (owing to the major 

contribution of the CCA to total brain perfusion (100)) and clinically (owing to the strong 

correlation of CCA IMT (374) and CCA hemodynamics (294) to atherosclerosis and CVD risk).   

CCA vasomotor responses were examined by measuring isometric tension in rings 

mounted between wires and equilibrated in a 37°C tissue bath containing 5ml of 95% O2-5% 

CO2-gassed buffer solution, as we have previously described in detail (84, 85). The resting 

tension on each ring was set to 2.75g, which was shown in our preliminary experiments to 

correspond with the optimal length for agonist-stimulated isometric tension production in CCA 
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rings from SD rats (data not show). As a reference, each ring was first stimulated to contract 

twice with exposure to maximal (60mM) KCl and then washed thoroughly. Rings were incubated 

for 45min in buffer without (No Drug) or with drugs known to manipulate NOS, COX, or ROS 

signaling, as described in the Results and corresponding Figures. From this quiescent state, or 

following near-maximal sustained agonist-stimulated pre-contraction, rings were cumulatively 

exposed to a specific agonist to assess vasocontractile or vasorelaxation responses, respectively. 

These experimental protocols were primarily designed to examine EDCF and EDRF activities, 

respectively, as we have previously explained in detail (84, 85).  

4.4.6 Measurement of Tissue GSH and GSSG  

To characterize the impact of BSO treatment and aging on GSH and its oxidized disulfide, GSSG, 

we used an HPLC protocol to quantify GSH and GSSG content in the liver and conduit 

vasculature, where aortic tissue was used as a surrogate due to CCA sample volume limitations. 

According to procedures we have previously described (114, 301), these tissues were 

homogenized and extracted, and then injected through a Mircosorb 5µm 25cm x 4.5cm column 

and detected spectrophotometrically at a wavelength of 350nm. Values from tissue samples were 

normalized to their wet weight. 

4.4.7 Measurement of Plasma and Tissue ROS 

To characterize the impact of BSO treatment and Aging on oxidative stress, we quantified ROS in 

plasma, liver, and aorta using a 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red)-horseradish 

peroxidase (HRP) assay which detects H2O2 (89). Procedures for this assay were slightly 

modified from what we have previously described (114, 310). Briefly, tissue sample homogenates 

(ground in ice-cold PBS) or plasma (diluted in PBS) were added to a 10µM Amplex® Red-

0.2U/ml HRP solution (89) in a microplate well (1:1; 100µl total volume) and incubated for 

30min in the dark at room temperature, after which fluorescence from resorufin, an oxidation 

product of Amplex® Red, was measured every 15min for 1h using 530/590nm excitation/emission 

wavelengths. A standard curve (R2=0.998) was used to calculate sample H2O2 concentration. 

Values from tissue samples were normalized to protein content determined via a standard 

bicinchoninic acid assay.  

Liver and aortic ROS were also assessed by measuring the fluorescence of 

dichlorofluorescein, an oxidation product of 2’,7’-dichlorodihydrofluoresein-diacetate (DCFH-

DA; considered a general ROS detector (89)), according to procedures we have previously 

described (114, 310)). 
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4.4.8 Exposure to Angiotensin II 

Some CCA from Adult CON and BSO SD rats were cultured for 24h with AII or vehicle, after 

which their vasomotor responses were examined. CCA were excised and prepared into arterial 

rings as described above in the Methods, but in 4°C sterile media comprised of DMEM with 

100U/ml penicillin, 100µg/ml streptomycin, and 0.25µg/ml amphotericin B. Using a protocol 

adapted from others’ past works (66, 87, 431), 2mm rings were placed in sterile dishes (BD 

Falcon™; 60x15 mm) containing 6ml of media without or with 1µM AII and cultured for 24h in a 

standard cell culture incubation environment (sterile-filtered room air plus 5% CO2 at 37°C and 

100% humidity).  

 Vasomotor responses were also examined in 2mm CCA rings excised from Adult SD rats 

that had been infused for 8d with AII (or vehicle) using a protocol adapted from previous studies 

(299), as follows. Animals were anesthetized (with isoflurane) before an osmotic mini-pump 

(Alzet Model 2002; DURECT Corporation, Cupertino CA) was implanted subcutaneously in the 

nape of the neck. Prior to implantation, mini-pumps were pre-filled with either AII reconstituted 

in sterile saline or saline alone. The mini-pumps delivered an average of 0.47mg/kg/d AII. 

4.4.9 Drugs, Chemicals, and Solutions 

All reagents were purchased from either Sigma-Aldrich (St. Louis, MO via Oakville, ON, 

Canada) or BioShop Canada (Burlington, ON, Canada) unless otherwise indicated.  

Stock solutions of PE, KCl, ACh, SNP, H2O2, L-NAME, Tempol, MnTMPyP 

(Calbiochem, EMB Biosciences, La Jolla, CA), CAT (from bovine liver), and AII were prepared 

in ultra-pure water; Indo in DMSO; and U46619 (Cayman Chemical, Ann Arbor, MI), SC560 

(Cayman Chemical), and NS398 (Cayman Chemical) in N2-purged ethanol; all at a 1000-fold 

higher concentration than the desired in-bath/culture concentration, and then diluted 1:1000 with 

buffer/media. The effect of DMSO or ethanol vehicles on vasomotor function at this 1000X 

dilution was found to be negligible in pilot experiments. Stock solution(s) of each compound used 

were either prepared fresh daily or stored at -20°C, depending on its reconstituted stability as 

reported by the manufacturer. BSO was prepared directly in tap water, as described above in the 

Methods.  

Amplex Red®-HRP assay kits and DCFH-DA (Molecular Probes® Inc., Eugene, OR) 

were purchased from Invitrogen™. Stock solutions for these assays were prepared and stored as 

directed by the manufacturer.  

DMEM (HyClone® SH30021 medium) and penicillin-streptomycin-amphotericin B 

solutions were purchased from Thermo Fisher Scientific Inc. Stock solutions of culture media 

were prepared and stored under sterile conditions. 
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Sodium pentobarbital was purchased from Vetoquinol N.-A. Inc. (Lavaltrie, QC, Canada) 

and isoflurane from Abbott Laboratories Ltd. (Saint-Laurent, QC). 

4.4.10 Data Analysis and Statistics 

Data are expressed as means ± SE. Curve fitting and statistical comparisons were performed 

using GraphPad Prism v4.03 (La Jolla, CA). Differences were considered statistically significant 

if P < 0.05. n refers to the number of rats or ring responses per condition. Ring cumulative 

tension responses to a vasomotor stimulus were individually best fit by non-linear regression to a 

sigmoidal dose-response curve, generating maximum amplitude (Max Amp), dose resulting in 

50% of Max Amp (EC50), and area under the curve (AUC) parameters, which were then 

averaged within their respective condition. Student’s t-tests were used for single-point 

comparisons, and one- or two-way ANOVA with Bonferroni posttests, when necessary, were 

used for multiple within and/or between group comparisons.  

4.5 Results 
4.5.1 General Characteristics of SD rats with Age and BSO treatment 

Data and statistics on animal age, body weight, and food and water intake are presented 

in Table 4.1. Aging animals were initially (before treatment) ~15% heavier than Adult animals. 

Body weight in Adult CON animals was stable over the 10 day treatment period, whereas body 

weight in Aging CON animals decreased despite a similar intake of food and water. In both age 

cohorts, BSO was associated with a decrease in body weight, likely explained by a corresponding 

decrease in food intake.   

Within our rat colony, the mortality rate of the Aging (60-75 week old) cohort was ~9%, 

consistent with survival rate data reported of SD rats commercially available from Harlan 

(personal communication with Harlan Laboratories).  

4.5.2 Liver and Aortic GSH Decreased with BSO Treatment but not Age 

Data and statistics on liver and aortic GSH content are presented in Table 4.2. GSH content in 

both the liver and aorta was not different between Adult and Aging animals. Within each age 

cohort, BSO treatment was effective in decreasing GSH in both the liver (~55%) and aorta 

(~30%). There was no Age interaction with BSO treatment. 

 

4.5.3 Indices of Oxidative Stress were Increased with BSO Treatment but not Age 

Data and statistics on plasma, liver, and aortic H2O2 content are presented in Table 4.2. H2O2 

levels were not different between Adult and Aging animals in the liver or aorta while in the 
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plasma there was actually a decrease in H2O2 with aging. Within each age cohort, BSO was 

effective at increasing H2O2 in the plasma (~40%), liver (~65%), and aorta (~45%), though the 

increase in aortic H2O2 did not reach statistical significance. There was no significant Age 

interaction with BSO treatment. DCF fluorescence showed similar trends, with increased liver 

and vascular ROS in response to BSO but not aging (data not shown).  

 Data and statistics on liver and aortic GSSG (oxidized GSH) and the GSH:GSSG (redox) 

ratio are presented in Table 4.2. GSSG was increased significantly with aging in aorta (~45%) but 

not in liver, whereas GSH:GSSG was decreased with aging in both tissues (liver, ~15%; aorta, 

~25%), perhaps suggesting some age-dependent redox abnormality. Within each age cohort, 

GSH:GSSG was significantly decreased by BSO in the liver (~30%) but not the aorta, as a result 

of a less pronounced decrease in aortic (~20%) compared to liver (~40%) GSSG. There were no 

significant Age interactions with BSO treatment. 

4.5.4 CCA Hemodynamics were Unaffected by Age and BSO treatment 

Data and statistics on HR, blood pressure, and blood flow in the CCA are presented in Table 4.3. 

Adult CON animals were normotensive, and there were no significant effects or interactions of 

Age and/or BSO treatment on the hemodynamic variables measured, indicating that neither aging 

nor BSO-induced GSH depletion resulted in altered CCA hemodynamics.    

4.5.5 BSO-Induced GSH Depletion did not Impair EDRF Activity nor Augment Aging-

Related EDCF Activity 

ACh-Stimulated Responses in Pre-Contracted CCA (Assessment of EDRF Activity): Effect 

of Endothelial and NOS Signaling Pathways 

ACh is a commonly used agonist to test endothelium-dependent vasomotor functions (25, 84, 85, 

114, 329). Under the No Drug condition (Figure 4.1A), cumulative ACh elicited a robust 

vasorelaxation response in Adult CCA (97.4±1.2% Max Amp; -6.64±0.14 LogM EC50; 260±12 

AUC). Aging was associated with a ~14% decrease in the Max Amp of ACh-stimulated 

vasorelaxation (83.9±2.7%; p<0.01) while EC50 (p=0.12) and AUC (p=0.18) were not 

significantly affected by aging. In response to BSO treatment, ACh-stimulated vasorelaxation 

parameters were unaffected in Adult CCA (p>0.50), whereas in Aging CCA, BSO caused a ~0.40 

LogM leftward shift in EC50 (-7.06±0.08; p=0.01) while Max Amp (p=0.61) and AUC (p=0.06) 

were not significantly affected. These data indicate that aging resulted in a moderate blunting of 

the maximal vasorelaxation response to ACh, and that BSO-induced GSH depletion resulted in no 

change in adults, and with aging actually caused a modest augmentation, in vasorelaxation 

sensitivity.   
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Eliminating endothelial signaling under the –Endo condition (represented in Figure 4.1B) 

completely abolished vasomotor activity to cumulative ACh in Adult and Aging, CON and BSO 

PE-pre-contracted CCA, thus confirming that ACh-stimulated relaxation in fact represents EDRF 

activity in these animals/conditions. 

Inhibiting NOS signaling with L-NAME (10-4 M; (84, 85, 114, 329, 330)) (Figure 4.1B) 

caused a >85% reduction in Adult CCA relaxation to cumulative ACh (13.7±2.7% Max Amp; 

24±6 AUC; p<0.01 vs. No Drug), indicating that endothelium-dependent vasorelaxation in the 

CCA from SD rats is almost exclusively mediated by the EDRF NO. In Aging CCA, the response 

to ACh was also reduced >85% but was biphasic: causing a small amount of vasorelaxation from 

-9.0 to -6.5 LogM (Max Amp, 3.1±1.1% at -6.5 LogM) followed by re-contraction through to -4.0 

LogM (Max Amp, -8.9±4.8% at -4.0 LogM) (Figure 4.1B), suggesting that CCA from Aging SD 

rats in particular may possess vasocontractile (i.e. EDCF) activity in response to high-dose (i.e. -

6.0 to -4.0 LogM) ACh that could be responsible for the age-related blunting of maximal 

vasorelaxation. There was no BSO treatment, or Age-BSO interaction, effect within these 

responses (p>0.45), suggesting that NO was likely mediating the observed increase in low-dose 

(i.e. -9.0 to -6.0 LogM) ACh-stimulated vasorelaxation sensitivity induced by BSO.   

ACh-Stimulated Responses in Quiescent CCA (Assessment of EDCF Activity): Effect of 

Endothelial and NOS Signaling Pathways 

ACh-stimulated contraction, which can blunt maximal relaxation causing net vasomotor 

dysfunction (85, 109), is best assessed in a quiescent vasomotor state, classically in the presence 

of L-NAME to inhibit competitive NOS signaling activity, thus amplifying the response (84, 85, 

385). Cumulative ACh did not elicit contraction in No Drug quiescent Adult CON or BSO CCA, 

whereas a modest dose-dependent contractile response was elicited in Aging CON and BSO CCA 

from -6.0 to -4.0 LogM ACh (Max Amp, 3.8±1.6% at -4.0 LogM; data not shown). In the 

presence of L-NAME (Figure 4.1C), a modest contractile response to ACh was uncovered from -

6.0 to -4.0 LogM in Adult CCA (6.1±0.9% Max Amp; -5.08±0.16 LogM EC50; 6±1 AUC), while 

the ACh-stimulated contractile response in Aging CCA was amplified >3.5-fold (24.5±4.8% Max 

Amp; -5.09±0.17 LogM EC50; 22±4 AUC; p<0.01 vs. No Drug). These data confirm that ACh-

stimulated EDCF activity exists in the CCA of SD rats and that this activity is greater in Aging 

vs. Adult animals (3.5- to 4-fold under the L-NAME condition; p<0.01). The contractile 

parameters from these ACh-stimulated responses were no different between CON and BSO 

treatment within both Adult and Aging CCA (p>0.50), suggesting that EDCF activity is 

unaffected by BSO-induced GSH depletion. There was no Age-BSO interaction effect on these 

ACh-stimulated responses (p>0.55). The average threshold for eliciting ACh-stimulated 



  134

vasocontractile activity was ~-6.0 LogM across Age, BSO treatment, and L-NAME, and these 

factors had no effect on EC50 (p>0.40). 

Eliminating endothelial signaling with –Endo (represented in Figure 4.1C) abolished all 

vasomotor activity to cumulative ACh in Adult and Aging, CON and BSO CCA, thus confirming 

that ACh-stimulated contraction actually represents EDCF activity in quiescent CCA from these 

animals/conditions. 

SNP-Stimulated Responses in Pre-Contracted CCA: Effect of Endothelial and NOS 

Signaling Pathways 

SNP is a NO donor and is commonly used to test the sensitivity of VSM to endothelium-

independent NO-mediated relaxation (25, 85, 114). Cumulative SNP elicited a robust 

vasorelaxation response in Adult CCA (100.1±0.4% Max Amp; -8.34±0.04 LogM EC50; 332±4 

AUC) that was unaffected by Age, BSO treatment, or the Age-BSO interaction (Figure 4.1D; 

p>0.25), indicating that neither aging nor BSO-induced GSH depletion affected VSM sensitivity 

to NO. These SNP-stimulated responses in Adult and Aging, CON and BSO CCA were 

unaffected by –Endo or L-NAME (Figure 4.1D; p>0.35), or by any other pre-incubation drug, or 

drug combination, condition used in the current study (p>0.20; data not shown). 

PE-Stimulated Responses in Quiescent CCA: Effect of Endothelial and NOS Signaling 

Pathways 

PE is a specific agonist of α1 adrenergic receptors located on the plasma membrane of VSM, as 

well as endothelial cells (85, 182, 252), and is commonly used to test pharmaco-mechanical 

contractile coupling (84). Under the No Drug condition (Figure 4.1E), cumulative PE elicited a 

robust vasocontractile response in Adult CCA (104.0±4.1% Max Amp; -6.82±0.06 LogM EC50; 

189±12 AUC). Aging was associated with a ~40-45% decrease in PE-stimulated vasocontraction 

(p<0.01), characterized by a 65.1±4.9% Max Amp and 100±10 AUC, and a ~0.35 LogM 

rightward shift in EC50 (-6.48±0.07; p=0.01), whereas there was no BSO treatment or Age-BSO 

interaction effect on the PE-stimulated responses (p>0.35). These data indicate that α1 adrenergic 

receptor-mediated contractile signaling was markedly impaired by aging, but unaffected by BSO-

induced GSH depletion.  

Inhibiting NOS signaling with L-NAME (Figure 4.1F) augmented PE-stimulated 

contraction in both Adult and Aging CCA (p<0.01 vs. No Drug), characterized, respectively, by a 

~25% and ~55% increase in Max Amp (128.4±3.6% and 122.6±4.7%), a ~60% and ~70% 

increase in AUC (302±12 and 233±17), and a ~0.55 and ~0.45 leftward shift in EC50 (-7.37±0.07 

and -6.91±0.12 LogM). L-NAME completely eliminated the difference between the Max Amp of 
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PE-stimulated contraction in Aging vs. Adult CCA, and the differences in AUC and EC50, while 

still apparent (p<0.01), were markedly attenuated. Eliminating endothelial signaling with –Endo 

had similar effects as L-NAME (p<0.01 vs. No Drug; data not shown), together indicating that 

the age-related impairment in α1 adrenergic receptor-mediated contractile signaling may have at 

least in part been caused by augmented endothelial NO signaling in Aging CCA. As in the No 

Drug conditions, there was no BSO treatment or Age-BSO interaction effect within the L-NAME 

condition responses (p>0.35). Besides L-NAME, no pre-incubation drug (and drug combination) 

condition used in the current study had an affect on PE-stimulated CCA contraction (in Adult or 

Aging, CON or BSO; data not shown), with the exception of MnTMPyP, which in all cases 

modestly attenuated both contractile sensitivity and magnitude (p<0.01; data not shown).  

KCl-Stimulated CCA Responses 

KCl is a depolarizing agent and is commonly used to test electromechanical contractile coupling 

(84). Maximal (60mM) KCl reference contractions in quiescent CCA, ~1.0g in amplitude, were 

not significantly affected by Age, BSO treatment, or the Age-BSO interaction (p>0.30; data not 

shown), or by any other pre-incubation drug, or drug combination, condition used in the current 

study (p>0.30; data not shown). 

Effect of COX and ROS Inhibitors on ACh-stimulated Responses in Pre-Contracted and 

Quiescent CCA  

In pre-contracted Adult CON and BSO CCA (Figure 4.2A and 4.2C, respectively), neither the 

non-selective COX-1/2 inhibitor Indo (10-5 M; (84, 85, 329, 330)), the nitroxide ROS scavenger 

Tempol (10-4 M; (62, 84, 274, 411)), nor the manganese porphyrin ROS scavenger MnTMPyP 

(10-4 M; (79, 274, 330)) significantly affected ACh-stimulated relaxation parameters (p>0.16). In 

pre-contracted Aging CON CCA (Figure 4.2B), ACh-stimulated relaxation parameters were also 

unaffected by Tempol or MnTMPyP (p>0.25), whereas Indo increased Max Amp (98.3±2.5%; 

p=0.04) so that the difference between Adult and Aging CON CCA relaxation (see Figure 4.1A) 

was eliminated. Indo also increased Max Amp in pre-contracted Aging BSO CCA (96.4±2.0%; 

p<0.01), as well as right-shifted the EC50 of ACh-stimulated relaxation (-6.64±0.11 LogM; 

p<0.01) (Figure 4.2D), so that the difference between Adult and Aging BSO CCA relaxation (see 

Figure 4.1A) was eliminated. Both Tempol and MnTMPyP, while not affecting Max Amp 

(p>0.65), also right-shifted the EC50 (-6.72±0.10 and -6.62±0.17 LogM, respectively; p<0.04), as 

well as decreased the AUC (211±20 and 205±9, respectively; p<0.01), of ACh-stimulated 

relaxation in pre-contracted Aging BSO CCA (Figure 4.2D) so that the difference between Aging 

CON and BSO CCA relaxation (see Figure 4.1A) was eliminated. Together these data indicate 
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that the age-related blunting of maximal ACh-stimulated CCA relaxation was mediated solely by 

COX signaling, and suggest that the BSO-induced augmentation in the sensitivity of ACh-

stimulated NO-dependent CCA relaxation with aging might have involved COX and ROS 

signaling.  

 The effect of the COX and ROS inhibitors on quiescent CCA stimulated with ACh was 

assessed only in the presence of L-NAME, which amplifies endothelium-dependent contractile 

responses (as confirmed herein; see above in Results) thus improving the ability to distinguish if, 

and the extent to which, a particular inhibitor affects ACh-stimulated EDCF activity (84, 85, 329, 

330). In quiescent Adult CON and BSO CCA (Figure 4.2E), Indo eliminated the contractile 

activity stimulated by ACh, as did the COX-1 specific inhibitor SC560 (3 • 10-7 M; (84, 331, 

338)) and the preferential COX-2 inhibitor NS398 (10-6 M; (84, 85, 139, 329, 423)), whereas 

Tempol had no effect. In quiescent Aging CON and BSO CCA (Figure 4.2F), both Indo and 

SC560 eliminated all contractile activity stimulated by cumulative ACh, while NS398 partially 

attenuated this activity (9.4±2.3% Max Amp; -4.87±0.16 LogM EC50; 9±3 AUC; p<0.01 vs. L-

NAME), perhaps related to non-selective COX-1 inhibition even at its supposedly ‘COX-2 

preferential’ concentration used in the current study and previously (85, 423). Neither Tempol nor 

MnTMPyP had a significant effect on the ACh-stimulated contractile response in Aging CON or 

BSO CCA (Figure 4.2F; p>0.09). Together these data suggest that the ACh-stimulated contractile 

activity in quiescent CCA of Adult and Aging animals was mediated by COX-1-specific signaling 

but apparently not by ROS signaling, consistent with the maximal ACh-stimulated relaxation 

response findings in pre-contracted CCA (see Figure 4.2A-D). 

Exogenous H2O2-Stimulated Responses in Pre-contracted or Quiescent CCA: Effect of NOS 

and COX Signaling Pathways  

Since GSH is a co-factor for the H2O2-metabolizing enzyme GPx (152), limiting GSH 

bioavailability can result in the accumulation of H2O2 (114), as confirmed herein by our 

biochemical findings (see Table 4.2). H2O2 can elicit vasomotor activity; however, depending on 

the species, vascular territory, and/or phenotype of the animal studied, H2O2 has been proposed to 

act as either an EDRF (101, 110) or an EDCF (360), and exogenous H2O2 stimulation has been 

shown to elicit either vasorelaxation (128, 365, 428) or vasocontraction (84, 306, 327, 344, 365, 

366), or both (126, 365). To determine the vasomotor responsiveness to H2O2 in the CCA of our 

SD rats, and whether those responses are affected by BSO-induced GSH depletion, we examined 

exogenous H2O2-stimulated relaxation and contraction in Adult CON and BSO CCA.  

In pre-contracted CCA (Figure 4.3A), H2O2 elicited a small contractile response (in some 

but not all cases) from -6.0 and -4.17 LogM (on average, -10.8±3.2% Max Amp at -4.17 LogM), 
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followed by a robust dose-dependent relaxation response through to -3.0 LogM (69.0±2.4% Max 

Amp; -4.01±0.03 LogM EC50; 66±3 AUC) that was no different between CON and BSO 

(p>0.55). L-NAME right-shifted the EC50 (-3.61±0.03 LogM; p<0.01) and decreased the AUC 

(45±2; p<0.01) of relaxation stimulated by H2O2 in both CON and BSO CCA, while Max Amp 

was unaffected (p>0.55). Eliminating endothelial signaling with –Endo had a similar effect as L-

NAME on the H2O2-stimulated relaxation response parameters (p<0.01 vs. No Drug; data not 

shown). Together, these data indicate that H2O2 could indeed stimulate relaxation in the CCA of 

our SD rats, which was in part mediated by endothelial NO signaling, and that these H2O2-

stimulated relaxation responses were unaffected by BSO-induced GSH depletion. 

A maximal dose of SNP (-4.0 LogM) following the H2O2 dose-relaxation response 

(which elicited ~70% relaxation at -3.0 LogM H2O2; see Figure 4.3A) resulted in near complete 

complete relaxation (90-100%; data not shown) in both CON and BSO CCA, thus confirming 

robust VSM responsiveness to NO after cumulative (high-dose) H2O2 exposure. 

CAT (1200 U/ml; (84, 330, 423)) abolished all vasomotor activity to cumulative H2O2 in 

pre-contracted CCA, thus confirming the specificity of the H2O2-stimulated response; conversely, 

Tempol did not affect the response (p>0.25; data not shown). 

H2O2-stimulated contractile activity (Figure 4.3B) was specifically assessed in quiescent 

CCA (co)incubated with L-NAME (84, 330, 423), similar to the approach used to optimally 

assess ACh-stimulated contractile activity (see above in Results). Under these conditions, H2O2 

elicited a contractile response from -6.0 to -3.5 LogM (20.1±1.9% Max Amp; -4.30±0.05 LogM 

EC50; 16±2 AUC) that was no different between CON and BSO CCA. Indo caused a ~90% 

reduction in CCA contraction to cumulative H2O2 (4.0±0.8% Max Amp; 2±1 AUC; p<0.01 vs. L-

NAME) in both CON and BSO. Together these data indicate that H2O2 could indeed stimulate 

contraction in the CCA of our SD rats, which was predominantly mediated by COX signaling, 

and that these H2O2-stimulated contractile responses were unaffected by BSO-induced GSH 

depletion. 

Effect of AII Exposure on ACh-Stimulated Responses in Pre-Contracted CCA 

ACh-stimulated relaxation has been shown to be preserved in CCA isolated from adult 

heterozygous GPx-1-deficient mice, whereas, in contrast to wild-type CCA, heterozygous GPx-1-

deficient CCA were not able to defend against 24h exposure to AII in culture, which induced 

substantial oxidative stress-mediated endothelial dysfunction (66). Since BSO-induced GSH 

depletion in the current study did not significantly impair endothelium-dependent CCA 

vasomotor functions, we examined ACh-stimulated relaxation responses in Adult CON and BSO 

CCA after the additional stress of 24h culture with AII.  
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PE-stimulated contraction in cultured CCA was markedly diminished and would not 

establish a sustained pre-contractile state; hence, the pre-contraction prior to cumulative ACh 

exposure in cultured CCA was established by exposure to a near-maximal dose of the 

thromboxane-prostanoid receptor agonist U46619 (10-6.5 M; (84, 331)). U46619 was found to 

stimulate a robust dose-contractile response in SD CCA (157.8±6.5% Max Amp relative to 

60mM KCl contraction; -7.40±0.05 LogM EC50; 143±8 AUC) that was no different between 

CON and BSO, nor between No Drug and AII culture conditions (p>0.45) (data not shown). 

Furthermore, similar to PE-stimulated contractile responses (see Figure 4.1E and F), U46619-

stimulated CCA contractile responses were augmented by L-NAME (188.7±10.5% Max Amp; -

7.68±0.04 LogM EC50; 218±9 AUC; p<0.01), while unaffected by Indo (p>0.65) (data not 

shown). 

ACh-stimulated relaxation responses were no different between CON and BSO in 

U46619 pre-contracted CCA either freshly-harvested (69.9±3.8% Max Amp; -6.01±0.10 LogM 

EC50; 146±10 AUC) or cultured under control (No Drug) conditions (45.2±3.1% Max Amp; -

5.71±0.13 LogM EC50; 78±5 AUC; p>0.15) (Figure 4.4A; consistent with the relaxation 

responses to cumulative ACh found in freshly-harvested Adult CON vs. BSO CCA pre-

contracted with PE shown in Figure 4.1A). In both freshly-harvested and cultured CCA, L-

NAME almost completely eliminated relaxation to cumulative ACh (8.0±1.0% Max Amp; AUC 

18±1; p<0.01 vs. No Drug; Figure 4.4A), while –Endo abolished all vasomotor activity (data not 

shown), thus confirming that ACh-stimulated relaxation from the U46619-stimulated pre-

contractile state was predominantly mediated by NO. Accordingly, the blunted vasorelaxation 

response to ACh observed following arterial culture (Figure 4.4A) was likely caused by 

prolonged exposure of the CCA to an environment free of endothelial shear stress, which is 

known to promote robust NO bioavailability (136). 

In response to culture with AII (Figure 4.4B and 4.4C), the Max Amp (36.7±2.6%) and 

AUC (63±5) of ACh-stimulated relaxation were modestly decreased in both CON and BSO CCA, 

however these effects were not significant (p>0.09). Furthermore, AII culture did not affect CON 

or BSO CCA relaxation responses to cumulative SNP (p>0.45; data not shown). These data 

indicate that CCA isolated from Adult SD rats were able to defend against the stress of AII 

exposure even following BSO-induced GSH depletion. Likewise, we found that an 8d infusion of 

AII (vs. saline vehicle) in Adult CON SD rats, while inducing severe hypertension (177±5 vs. 

137±4 mmHg mean CCA pressure; p<0.01; data not shown), also did not significantly affect 

ACh-stimulated CCA relaxation response parameters (p>0.35; data not shown). 
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Table 4.1. General characteristics of animals in relation to BSO treatment and Age.  

Adult and Aging SD rats were administered either vehicle (tap water; CON) or 30mM BSO for 10d in the 
drinking water. Data represent means±SEM; n=26-31 per condition. A p<0.05 was considered statistically 
significant; NS, not significant. Based on water consumption, the estimated dose of BSO received by the 
Adult and Aging rats was 2.5-3.5 mmol • kg-1 • d-1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Effect 
   

Adult 
  

Aging 
  

Age 
  

BSO 
 Age x 

BSO 
   

CON 
 

BSO 
  

CON 
 

BSO 
 p 

value 
 p 

value 
 p 

value 
Age, months 8.2 ± 

0.2 
8.5 ± 
0.1 

 16.7± 
0.3 

17.0± 
0.2 

 --  --  -- 

Body weight            
Initial, g 499± 

8 
506± 

5 
 571± 

11 
580± 

9 
 <0.01  --  -- 

    Change after 10d  
    treatment, % 

0.3± 
0.4 

-4.2± 
0.5 

 -2.5± 
0.5 

-8.8± 
1.3 

 <0.01  <0.01  0.02 

Food consumption,  
g • d-1 

23.1± 
0.5 

19.8± 
0.5 

 23.4± 
0.8 

16.8± 
1.2 

 NS 
(0.06) 

 <0.01  0.03 

Water consumption,  
ml • d-1 

47± 
2 

55± 
2 

 56± 
4 

47± 
3 

 NS 
(0.99) 

 NS 
(0.90) 

 <0.01 
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Table 4.2. Biochemical Characteristics of Animals in Relation to BSO treatment and Age.   

Reduced GSH, oxidized GSH disulfide (GSSG), and H2O2 concentrations in plasma and/or tissues from 
Adult and Aging SD rats following administration of either vehicle (tap water; CON) or 30mM BSO for 
10d. Data represent means±SEM; n=8-14 per condition. A p<0.05 was considered statistically significant; 
NS, not statistically significant. Aortic tissue was used as a conduit vascular surrogate due to CCA sample 
volume limitations (see Methods). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Effect 
   

Adult 
  

Aging 
  

Age 
  

BSO 
 Age x 

BSO 
   

CON 
 

BSO 
  

CON 
 

BSO 
 p 

value 
 p 

value 
 p 

value 
Tissue GSH and 
GSSG,  
nmol •mg wet weight-1  

           

Liver             
GSH 7.020± 

0.256 
3.655± 
0.409 

 7.171± 
0.319 

2.863± 
0.265  

NS 
(0.39) 

 <0.01  NS 
(0.21) 

GSSG 0.774± 
0.070 

0.541± 
0.040 

 0.896± 
0.038 

0.456± 
0.061  

NS 
(0.73) 

 <0.01  NS 
(0.06) 

GSH:GSSG ratio 9.87± 
0.84 

6.82± 
0.60 

 8.08± 
0.32 

6.09± 
0.22  0.02  <0.01  NS 

(0.33) 
Aorta             

GSH 0.393± 
0.020 

0.295± 
0.023 

 0.444± 
0.035 

0.291± 
0.022  

NS 
(0.37) 

 <0.01  NS 
(0.29) 

         GSSG 0.028± 
0.003 

0.021± 
0.002 

 0.038± 
0.006 

0.032± 
0.004  

0.03  0.03  NS 
(0.58) 

GSH:GSSG ratio 15.37± 
1.92 

14.35± 
0.86 

 12.62± 
1.17 

10.09± 
1.17  

0.01  NS 
(0.20) 

 NS 
(0.58) 

Plasma H2O2,  
µmol • l-1 

1.446± 
0.129 

1.886± 
0.150 

 1.020± 
0.155 

1.585± 
0.146 

 0.02  <0.01  NS 
(0.67) 

Tissue  H2O2,  
nmol • mg protein-1 

           

Liver  2.844± 
0.344 

4.173± 
0.358 

 2.479± 
0.229 

4.478± 
0.593 

 NS 
(0.94) 

 <0.01  NS 
(0.42) 

Aorta  3.530± 
0.453 

4.920± 
1.127 

 3.670± 
0.710 

5.334± 
1.041 

 NS 
(0.76) 

 NS 
(0.09) 

 NS 
(0.88) 
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Table 4.3. Hemodynamic Characteristics of Animals in Relation to BSO treatment and Age.   

CCA blood pressure and blood blow in Adult and Aging SD rats following administration of either vehicle 
(tap water; CON) or 30mM BSO for 10d. Data represent means±SEM; n=5-7 per condition. A p<0.05 was 
considered statistically significant; NS, not statistically significant.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Effect 
   

Adult 
  

Aging 
  

Age 
  

BSO 
 Age x 

BSO 
   

CON 
 

BSO 
  

CON 
 

BSO 
 p 

value 
 p 

value 
 p 

value 
Heart rate,  
cycles • min-1 

345± 
9 

337± 
11 

 322± 
6 

327± 
9 

 NS 
(0.07) 

 NS 
(0.89) 

 NS 
(0.46) 

Carotid blood 
pressure, mmHg             

Systolic 139± 
5 

142± 
3 

 133± 
3 

141± 
5 

 NS 
(0.54) 

 NS 
(0.18) 

 NS 
(0.51) 

Diastolic 106± 
4 

107± 
2 

 97± 
2 

103± 
3 

 NS 
(0.12) 

 NS 
(0.18) 

 NS 
(0.29) 

Pulse 33± 
2 

36± 
1 

 37± 
1 

38± 
2 

 NS 
(0.15) 

 NS 
(0.33) 

 NS 
(0.76) 

Mean 122± 
5 

123± 
2 

 117± 
2 

121± 
4 

 NS 
(0.43) 

 NS 
(0.33) 

 NS 
(0.46) 

Carotid blood flow, 
ml • min-1  

           

Maximum (systolic) 30.0± 
1.9 

27.8± 
1.2 

 27.2± 
1.2 

27.7± 
1.8 

 NS 
(0.35) 

 NS 
(0.64) 

 NS 
(0.49) 

       Minimum 
(diastolic) 

5.0± 
0.5 

5.3± 
0.5 

 5.10± 
0.4 

5.8± 
0.2 

 NS 
(0.51) 

 NS 
(0.21) 

 NS 
(0.73) 

Mean 10.1± 
0.6 

10.1± 
0.6 

 10.3± 
0.7 

11.1± 
0.4 

 NS 
(0.23) 

 NS 
(0.49) 

 NS 
(0.53) 

Carotid conductance, 
Mean,  
µl • min-1 • mmHg 

83± 
5 

82± 
4 

 89± 
6 

91± 
4 

 NS 
(0.18) 

 NS 
(0.92) 

 NS 
(0.78) 
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Figure 4.1. For Figure Legend, see next page. 
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Figure 4.1. Endothelium- and NO-dependent vasomotor functions of the CCA excised from Adult and 
Aging SD rats treated for 10d with either vehicle (CON) or BSO (30mM), a GSH depleting agent (see 
Table 4.2 for liver and conduit vascular GSH data). To assess EDRF activity, arterial rings were first 
stimulated with the depolarizing agent KCl (60mM), then washed thoroughly and pre-contracted with a 
near-maximal dose of the α1 adrenergic receptor agonist PE (10-6 M), after which rings were exposed to the 
muscarinic receptor agonist ACh (panel A and B). To assess endothelium-independent vasorelaxation, rings 
were exposed to the NO donor SNP (panel D). To assess EDCF activity, arterial rings were first stimulated 
with KCl (60mM) then washed thoroughly, after which rings (in a quiescent state) were exposed to ACh 
(panel C). To assess endothelium-independent vasocontraction, rings were exposed to PE (panel E and F). 
Data were collected using intact rings pre-incubated with either no drug (n=5-13) or the NOS inhibitor Nω-
nitro-L-arginine methyl ester (L-NAME; 10-4.0 M; n=5-14), or in endothelium-denuded rings (-Endo; n=3-
4); see Results for additional details. Data represent means±SEM, expressed relative to PE pre-contraction 
or previous KCl contraction, as indicated. p<0.05 was considered statistically significant. * denotes a 
significant main effect from ANOVA; see Results for statistical comparisons of curve-fit parameters. 
Absolute KCl contraction was no different across Age or BSO treatment and unaffected by drug pre-
incubation (net average: 1.00±0.03g). 
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Figure 4.2. For Figure Legend, see next page. 
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Figure 4.2. EDRF and EDCF activity stimulated by ACh in intact CCA rings, excised from Adult and 
Aging SD rats treated for 10d with either vehicle (CON) or the glutathione-depleting agent BSO, and pre-
incubated with either the non-selective COX inhibitor Indo (10-5.0 M; n=4-12), the COX-1-specific inhibitor 
SC560 (3 • 10-7.0 M; n=3-4), the preferential COX-2 inhibitor NS398 (10-6.0 M; n=3-4), the nitroxide ROS 
scavenger Tempol (10-4.0 M; n=3-7), or the manganese porphyrin ROS scavenger MnTMPyP (10-4.0 M; 
n=3-5), in the absence (for assessment of EDRF activity; panels A-D) or co-presence (for assessment of 
EDCF activity; panels E and F) of the NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME+; 10-4.0 

M); see Results for additional details. EDRF and EDCF activities were assessed as described in the Figure 
4.1 legend. For clarity, the curves in Figure 4.1A representing the ‘Control’ no drug conditions of ACh-
stimulated vasomotor activity in PE (10-6.0 M)-pre-contracted rings (EDRF activity), and the curves in 
Figure 4.1C representing the ‘Control’ L-NAME conditions of ACh-stimulated vasomotor activity in 
quiescent rings (EDCF activity), were duplicated as thick dashed lines herein the appropriate graphs. Data 
represent means±SEM, expressed relative to PE pre-contraction or previous KCl contraction, as indicated. 
p<0.05 was considered statistically significant. * denotes a significant main effect from ANOVA; see 
Results for statistical comparisons of curve-fit parameters.  
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Figure 4.3. Vasomotor functions stimulated by H2O2 in intact CCA rings, excised from Adult SD rats 
treated for 10d with either vehicle (CON) or the glutathione-depleting agent BSO, and pre-incubated with 
either no drug (n=5-10), the NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME; 10-4.0 M; n=4-16), 
and/or the non-selective COX inhibitor Indo (10-5.0 M; n=3-7); see Results for additional details. To assess 
the vasorelaxation effect of H2O2 (panel A), arterial rings were first stimulated with the depolarizing agent 
KCl (60mM), then washed thoroughly and pre-contracted with a near-maximal dose of the α1 adrenergic 
receptor agonist PE (10-6 M). To specifically assess the vasocontractile effect of H2O2 (panel B), arterial 
rings were first stimulated with the depolarizing agent KCl (60mM), and then washed thoroughly to 
establish a quiescent state. Data represent means±SEM, expressed relative to PE pre-contraction or 
previous KCl contraction, as indicated. p<0.05 was considered statistically significant. * denotes a 
significant main effect from ANOVA; see Results for statistical comparisons of curve-fit parameters.  
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Figure 4.4. Vasomotor functions of the intact CCA rings, excised from Adult SD rats treated for 10d with 
either vehicle (CON) or the glutathione-depleting agent BSO, cultured for 24h without or with AII (10-6 M), 
and pre-incubated with either no drug (n= 5-6) or the NOS inhibitor Nω-nitro-L-arginine methyl ester (L-
NAME; 10-4.0 M; n=2-3); see Results for additional details. To assess endothelium-dependent 
vasorelaxation, arterial rings freshly-harvested (Fresh; n=5-6), 24h-cultured (24h; n=5-6), and 24h-cultured 
with AII (24h AII; n=5-6) were first stimulated with the depolarizing agent KCl (60mM), then washed 
thoroughly and pre-contracted with a near-maximal dose of the TP receptor agonist U46619 (10-6.5 M), after 
which rings were exposed to the muscarinic receptor agonist ACh. For clarity, the curves in Figure 4.4A 
representing the ‘Control’ no drug conditions of ACh-stimulated vasomotor activity in U46619 (10-6.5 M)-
pre-contracted CON and BSO rings cultured for 24h, were duplicated as thick dashed lines in Figure 4.4B 
and 4.4C, respectively. Data represent means±SEM, expressed relative to U46619-pre-contraction or 
previous KCl contraction, as indicated. p<0.05 was considered statistically significant. * denotes a 
significant main effect from ANOVA; see Results for statistical comparisons of curve-fit parameters.  
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4.6 Discussion 
The experiments herein were primarily designed to investigate the effect of GSH depletion and 

Aging on the endothelium-dependent signaling pathways affecting vasomotor activity in the 

conduit vasculature. Novel aspects of this work are the systematic approach used to examine 

endothelium-dependent vasomotor function in response to the GSH-depleting drug BSO, which 

unlike past approaches accounted for the possibility that the depletion of GSH might affect either 

EDRF or EDCF signaling activities, and might exert differential effects with age, or in response 

to AII exposure. The major findings of the current study provide evidence that chronic BSO 

treatment, while effective in significantly depleting GSH and elevating ROS, neither: 1) induced 

vasomotor dysfunction in Adult animals, where NO-mediated EDRF activity was robust, even 

under the stress of AII; nor 2) worsened age-related vasomotor dysfunction, wherein a similarly 

robust maximal NO-mediated EDRF activity was moderately impaired by competitive COX-

mediated EDCF activity. The data presented help to elucidate past findings from our laboratory 

(114) and others (25, 173) signifying little-to-no direct pathological effect of chronic GSH 

depletion in vivo on vascular function linked to EDRF signaling activity, and demonstrate for the 

first time that chronic GSH depletion does not overtly affect EDCF signaling activity, a hallmark 

of endothelium-dependent vasomotor dysfunction in aging and other states of CVD risk.  

4.6.1 GSH and Vascular Hemodynamic Function 

The role of GSH in maintaining hemodynamic homeostasis is controversial. Experimental GSH 

depletion via chronic BSO treatment in adult SD rats has been reported to cause arterial blood 

pressure to increase either: markedly (by 40-80 mmHg; (122, 388, 435)); mild-to-moderately (by 

10-25 mmHg; (21-23, 25, 29, 124)); or not at all (24, 114, 173). Herein, we confirm and extend 

upon our previous pressure-related hemodynamic findings by showing that BSO treatment had no 

effect on either blood pressure or blood flow in the CCA of Adult SD rats. We anticipated that 

BSO treatment might alter CCA hemodynamics with aging, which can be predisposing to arterial 

hypertension (49, 278, 340) and cerebral hypo-perfusion (157). However, under both CON and 

BSO treatment conditions in the current study, neither blood pressure nor blood flow was affected 

in the CCA of our Aging SD rats.   

In our previous work (114) we speculated that the divergent reports of BSO-induced 

blood pressure effects in the literature may be due to an interaction between the tail cuff 

plethysmography measurement procedure and a central BSO effect predisposing animals to 

stress-induced blood pressure elevation. To date, all studies reporting no blood pressure change 

(24, 114, 173) and 4 of 6 studies reporting mild-to-moderate hypertension (21-23, 25) in response 
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to chronic BSO treatment have used indwelling catheters, while all studies reporting marked 

hypertension (122, 388, 435) have used tail cuff plethysmography. Thus, the available data 

maintain support for our previous speculation (114). More importantly, these data together 

support the conclusion that chronic GSH depletion has little impact on conduit artery 

hemodynamic homeostasis, even in the context of Aging, as established herein. 

4.6.2 GSH and EDRF Activity 

The current study found that ACh-stimulated EDRF activity in the CCA from both Adult and 

Aging animals could almost exclusively be accounted for by NOS-mediated signaling, and that 

this EDRF signaling activity could temper contractions stimulated by PE, U46619, or ACh. The 

main experiments herein clearly demonstrate that BSO treatment did not cause impairment of 

NO-mediated EDRF signaling activities or the endothelium-independent NO-mediated relaxation 

activity stimulated by SNP, despite the fact that our BSO treatment, consistent with past studies, 

was effective in depleting tissue GSH (liver by >50% (114, 173, 388, 435), and aortic by >30% 

(25)), provoking a redox abnormality characterized by a decreased tissue GSH:GSSH ratio (123) 

and elevated markers of oxidative stress (21-23, 25, 122, 124, 388, 435), in particular an increase 

in both systemic and vascular ROS, including H2O2, by 40-65% (29, 114, 123).  

Our laboratory was first to investigate the direct effect of chronic GSH depletion on 

isolated vascular function (114). This built on studies solely focused on the acute effects of GSH 

manipulations in vivo (123, 200, 210, 296, 404) or in vitro (2) suggesting a pathological role of 

reduced GSH related to impaired NO-mediated vasomotor activity. While our previous work did 

find that chronic BSO-induced GSH depletion and ROS elevation in vivo enhanced PE-

stimulated contraction, and blunted ACh-stimulated NO-mediated relaxation in the conduit aortic 

vasculature excised from adult SD rats (114), these effects were relatively modest as compared to 

studies showing substantial impairment of endothelium-dependent conduit artery relaxation 

linked to oxidative stress in animal models of CVD risk (143, 271), or in healthy adult SD rats 

chronically exposed to oxidative stress-promoting agents such as AII (211, 299). Cell culture 

studies using harvested aortic endothelial cells have found little effect of BSO-induced GSH 

depletion on NO bioactivity (164, 270), supporting the view that GSH depletion has little effect 

on endothelial function. An over-expression of eNOS, SOD-1/-2, and the VSM NO target effector 

sGC in the vascular wall was proposed to explain our previous findings (114). Indeed, subsequent 

work from other laboratories have confirmed over-expression of these proteins in the conduit 

aortic vasculature of adult SD rats in response to chronic BSO-induced GSH depletion (25, 173, 

432). Furthermore, other results from these studies are consistent with the current study, including 

the demonstration of no impairment in ACh-stimulated NO-mediated vasorelaxation and little-or-
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no impairment in SNP-stimulated vasorelaxation despite increased markers of oxidative stress 

such as nitro-tyrosine, a biological footprint for NO destruction by O2
•- (25, 388, 435). Thus, the 

data presented herein, in concert with past findings (25, 114, 173), indicate that the conduit 

arterial vasculature of adult SD rats is able to accommodate for a chronic GSH depletion and 

prevent any substantial reduction in NO-mediated EDRF activity.  

Our previous work (114) proposed that a physiological or pharmacological stressor in 

addition to GSH depletion might elicit substantial vascular dysfunction in BSO-treated animals 

by exceeding their apparent compensatory buffering capacity. In the current study, we established 

that the ability of our SD rats to defend against BSO-induced impairment in NO-mediated EDRF 

activity was in fact well preserved under the anticipated stress of either aging (4, 154, 224, 340, 

421) or 24h AII exposure (66, 86, 87, 431). These data add new perspective on the capacity of the 

vasculature to accommodate for GSH depletion, while providing further support to the available 

evidence, as described above (25, 114, 173), indicating no direct apparent pathological effect of 

chronic GSH depletion on conduit artery EDRF signaling activity. 

The cell-signaling mechanism(s) responsible for these apparent vascular compensatory 

adaptations to chronic in vivo GSH depletion and increased oxidative stress induced by BSO 

remain to be determined. It is tempting to speculate that a BSO-induced vasorelaxation 

mechanism involving H2O2 might be operating in the conduit arterial vasculature of SD rats. In 

this regard, Iwata et al (173) reported that chronic BSO treatment augmented the sensitivity to 

ACh-stimulated NO-mediated relaxation in the aorta of adult SD rats, an effect which was 

eliminated by the H2O2-metabolizing agent CAT. Somewhat unexpectedly, we found in the 

current study a similar augmentation in ACh-stimulated NO-mediated relaxation in Aging but not 

Adult BSO CCA, an effect which was eliminated by either the COX inhibitor Indo or by the ROS 

inhibitors Tempol, considered a SOD mimetic (62, 274, 411), or MnTMPyP, considered a 

SOD+CAT mimetic (79, 274, 330). A potential explanation for these findings could be that ROS 

produced in a COX-dependent manner stimulates NO-mediated vasorelaxation. Certainly, COX, 

which can be over-expressed in SD rat conduit vasculature in aging and other pathophysiological 

states (329), has been identified as a source of elevated vascular ROS in response to endothelial 

agonists including ACh (328, 329, 357), and herein we demonstrate that H2O2, the accumulation 

of which was elevated by BSO treatment, could exogenously elicit CCA relaxation at least in part 

by an endothelium- and NO-dependent manner. However, we also demonstrate herein that 

exogenous H2O2 could elicit COX-mediated CCA contraction, thus signifying a potentially multi-

faceted role of H2O2 in conduit artery vasomotor activity, which appears to depend on both the 

concentration of H2O2 (126, 128) and the prevailing level of contractile tone (365). To what 
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extent these exogenous H2O2-stimulated vasomotor findings may reflect the vasomotor activity of 

endogenously produced H2O2 is uncertain. For that matter, whether ACh stimulation at any level 

of pre-contractile tone can in fact increase the endogenous concentration of conduit vascular H2O2 

high enough to elicit any vasomotor activity (35, 367), and whether there are differences in these 

effects between BSO and CON, is also uncertain. Accordingly, while data presented by Iwata et 

al, and by the current study, may indirectly suggest that BSO-treated vasculature could preserve 

NO-mediated EDRF activity in the face of elevated ROS via vasorelaxant properties of H2O2, it is 

clear that further investigation is necessary to directly assess this as a probable mechanism.  

4.6.3 GSH, EDCF Activity, and Aging 

The Aging animal cohort in this study was not associated with hypertension, a decline in hepatic 

or vascular GSH, or a substantial change in hepatic or vascular redox environment. However, 

maximal ACh-stimulated CCA relaxation was found to be moderately blunted compared to the 

younger Adult animal cohort. This impaired response was likely not caused by a reduction in the 

bioavailability of the EDRF NO (4, 154, 224, 340, 421), as evidenced by a preserved ability of 

SNP to elicit relaxation in Aging CCA, and by a preserved ability of L-NAME to attenuate ACh-

stimulated relaxation, augment ACh-stimulated contraction, and augment PE-stimulated 

contraction in Aging CCA, the latter of which was actually enhanced with Aging – i.e. the PE-L-

NAME-to-PE-No Drug ratio, a putative biomarker of the effect of NO on basal tone (85, 95). 

Instead, this Age-associated vasomotor impairment was related exclusively to a competitive 

endothelium-dependent contractile response that could be eliminated by COX-1-specific 

inhibition. Hence, the results herein confirm that endothelial dysfunction in the CCA of our 

Aging animals can be attributable to enhanced EDCF activity mediated by COX-dependent 

signaling (142, 153, 329, 359, 418).  

To the best of our knowledge, the current study is the first to examine the effect of 

manipulating GSH bioavailability on COX-mediated vasomotor function. It is well established 

from animal models of essential hypertension, diabetes, and aging that the EDCF signaling axis 

involves activation of COX-1 and/or COX-2 which are typically over-expressed in the vascular 

wall of these animals, leading to the production of PGs in response to endothelial agonists (e.g. -

6.0 to -4.0 LogM ACh), in turn stimulating VSM TP receptors that initiate contractile activity 

(105, 360, 385). In addition, a number of studies suggest that the production of ROS may amplify 

this EDCF signaling axis (332, 360, 417). We hypothesized that COX-mediated CCA EDCF 

signaling activity might be exacerbated by BSO treatment, since reduced GSH bioavailability 

induced by BSO is known to elevate vascular oxidative stress (114), and to affect PG production 

both in endothelial cell cultures (38, 47) and in rodent tissues including the aortic wall and plasma 
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of SD rats (29, 41, 122-124, 235, 247). The data herein, however, clearly demonstrate that the 

ACh-stimulated contractile responses found in the CCA of both Adult and Aging animals were 

unaffected by BSO treatment. These findings suggest that regardless of Age, chronic GSH 

depletion induced by BSO does not augment COX-mediated EDCF activity in the conduit 

vasculature of SD rats.  

Shi et al has found in SD rats that aging (12 month vs. 20 weeks old; (329)) or adult (20 

weeks old) STZ-induced diabetes (328, 330) impaired conduit femoral artery vasomotor function 

via endothelium-dependent COX- and TP receptor-mediated contractile activity. This dysfunction 

was partially attenuated by CAT or MnTMPyP incubation (330), and related to increased 

endothelial ROS production from over-expressed COX (328, 329), and to decreased vascular wall 

catalase activity but not GSH content (329, 330). Furthermore, exogenous H2O2 stimulated COX- 

and TP receptor-dependent contractile activity in endothelium-denuded vasculature of the STZ-

treated animals (330, 331). Collectively, it is suggested from these findings that a redox 

abnormality promoting H2O2 accumulation does contribute significantly to COX-mediated EDCF 

activity in SD rat conduit vasculature (332, 360).  

In view of this work by Shi et al, it is somewhat surprising that the BSO treatment in the 

current study did not augment endothelium-dependent CCA contractile activity despite 

significantly lowering vascular GSH content and evidently causing accumulation of H2O2. It is 

possible that the systemic and vascular redox abnormalities caused by the BSO-induced GSH 

depletion were not marked enough in magnitude or duration to provoke a significant vascular 

wall over-expression of COX (329-331), or other proteins involved in the endothelial production 

and/or VSM activity of vasocontractile PGs (360). Furthermore, it is possible that the BSO-

induced GSH depletion and redox abnormalities in the current study did not affect endothelium-

dependent contractile activity because of the particular vascular model used, which appears to be 

characterized by COX-mediated EDCF activity wherein ROS does not contribute to the cell-

signaling axis. Indeed, the COX-mediated CCA EDCF activity found in the CCA model used 

herein was augmented with age despite no detectable age-related change in vascular GSH content 

or oxidative stress. While the CCA was certainly capable of eliciting COX-mediated contractile 

activity in response to (exogenous) H2O2, the agonist-stimulated endothelium-dependent 

contractile responses found in our CCA preparations were not significantly affected by incubation 

with ROS inhibitors (Tempol or MnTMPyP), as they were in Shi et al’s femoral artery 

preparations (330), implying that any ROS species produced upon endothelial stimulation were 

likely not contributing to CCA EDCF signaling activity. For this reason, it is likely that any redox 

abnormalities caused by BSO-induced GSH depletion would not have augmented COX-mediated 
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EDCF activity in our CCA, as the aging- or diabetes-related redox abnormalities did in Shi et al’s 

femoral arteries (328-330). In this way, it is conceivable that GSH depletion subsequent to BSO 

treatment might augment endothelium-dependent contractile activity and impair endothelial 

vasomotor function in an animal/vascular model where ROS contributes significantly to the 

development of COX-mediated EDCF signaling; however, this remains to be determined. 

4.6.4 Study Conclusion and Pathophysiological Perspective  

It is concluded from the current study that chronic in vivo depletion of GSH induced by 10d BSO 

treatment, although increasing oxidative stress, does not impair endothelium-dependent NOS-

mediated relaxation activity or augment age-exacerbated endothelium-dependent COX-mediated 

contractile activity in the conduit CCA vasculature of 25-36wk old Adult or 60-75wk old Aging 

SD rats.  

 The findings herein may have implications regarding the specific role of GSH in the 

pathogenesis of vascular dysfunction in response to aging or other age-associated CVD risk 

conditions, since it is suggested from these findings that chronic GSH depletion itself does not 

play an obligatory role in causing endothelium-dependent vasomotor dysfunction, relating either 

to under-active NOS-mediated EDRF signaling or to over-active COX-mediated signaling, 

regardless of age, at least to the point in life of our Aging cohort (which may be considered 

‘upper middle-aged’ compared to 100+ wk old ‘survivor’ SD rats (4, 18, 188, 189, 224, 278, 

421)). Identifying the time-dependent molecular, biochemical, and functional responses to BSO-

induced GSH depletion in the CCA of the commonly used SD rat model, and in the context of 

other vascular and/or animal models that may perhaps be more susceptible/less adaptable to 

oxidative stress and aging (381), will certainly provide additional insight into the ROS-mediated 

compensatory adaptations that might occur with chronic GSH depletion, and help to discern the 

potential circumstances under which GSH may or may not act as an effective target and/or 

biomarker for the prevention or treatment of age-associated vascular pathologies. 

 

 

 

 

 

 

 

 



  154

Chapter 5 

General Summary and Perspectives 

5.1 Summary of Key Findings, Conclusions, and Novel Contributions of 

Thesis Studies  

It was the global purpose of this thesis to gain a better understanding of the cellular-molecular 

mechanisms accounting for endothelial dysfunction in the CCA of animal models known to be 

characteristic of EDCF signaling activity. Consistent with this purpose, the studies of this thesis 

systematically examined the relative contributions of NOS and COX signaling pathways in 

mediating the endothelium-dependent relaxation (EDRF) and contractile (EDCF) activities of the 

CCA isolated from young adult WKY and SHR (Study I and II) and from Adult and Aging SD 

rats (Study III), with particular focus on elucidating the cellular-molecular mechanisms 

responsible for COX-mediated EDCF signaling activity.  

The individual vasomotor findings of each of these studies have been thoroughly 

discussed in their respective Chapters (see Sections 2.6, 3.6, and 4.6). Section 5.1.1 and 5.1.2 

below briefly summarizes the key findings, conclusions, and novel and/or important contributions 

of these vasomotor works, after which Section 5.1.3 briefly summarizes the novel and/or 

important contributions of the hemodynamic findings of the thesis studies.  

This is followed (in Section 5.2 and 5.3) by a brief perspective on the general conclusions 

of the thesis studies and future direction of the research area.   

5.1.1. Young Adult WKY-SHR CCA Model (Study I and II) 

Key Findings and Conclusions 

1) ● ACh-stimulated endothelium-dependent and largely L-NAME-sensitive CCA 

relaxation was no different-to-modestly augmented sub-maximally in SHR vs. WKY; 

whereas maximal relaxation in SHR CCA was significantly blunted by an overt re-

contractile response, which was completely eliminated by COX inhibition. 

Conclusion:  

● An endothelium-dependent COX-mediated contractile response impairs 

endothelium-dependent vasorelaxation in the CCA of young adult SHR, while 

NO-mediated EDRF signaling activity remains well-preserved.  

2) ● Examination of vasomotor activity in quiescent CCA found an ACh-stimulated 

EDCF response in SHR, but none in WKY; whereas L-NAME uncovered the 
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existence of EDCF activity in WKY, while amplifying >5-fold (vs. no drug) the 

EDCF activity in SHR.  

Conclusion:  

● NO-mediated EDRF activity can completely suppress any COX-mediated 

EDCF activity found in WKY CCA, while the NO-mediated EDRF activity in 

SHR, which is at least as robust as in WKY (as per Conclusion 1), cannot fully 

suppress the augmented COX-mediated CCA EDCF activity. 

3) ● Specific EDCF response examination in quiescent L-NAME pre-incubated CCA, 

revealed that ACh-stimulated contractile activity was >2-fold augmented in SHR vs. 

WKY, completely eliminated by COX-1-selective, but not COX-2-preferential 

inhibition, and nearly abolished by either selective TP receptor antagonism or 

selective ROCK inhibition, but unaffected by broad-spectrum PKC inhibition. 

 ● CCA contractile activity stimulated by the ROCK-dependent TP receptor agonist 

U46619 was no different between strains under the specific vasomotor examination 

conditions, or in no drug or endothelium-denuded conditions. 

 ● Specific vasomotor examination also revealed that while exogenous H2O2-stimulated 

CCA contractile activity, similar to ACh stimulation, was ~2-fold greater in SHR vs. 

WKY and nearly abolished by COX-1, TP receptor, and ROCK inhibition (but not 

PKC inhibition), the effects of cell-permeable ROS quenching/metabolizing 

compounds on ACh-stimulated contractile activity were only found to be modest, and 

were inconsistent, in both strains. 

● eNOS, COX-1, and RhoA, but not COX-2 or ROCK, proteins were found to be over-

expressed in the vascular wall of SHR vs. WKY CCA.   

● Under the specific conditions examined, both basal and ACh-stimulated CCA PGI2 

production were increased >2-fold in SHR vs. WKY, which was sensitive to COX-1 

inhibition but not ROCK inhibition. 

● RhoA activation was ~2-fold greater in basal SHR vs. WKY CCA under the specific 

conditions examined, and increased 1.5-2-fold in both strains upon ACh stimulation. 

Conclusions:  

● EDCF activity in the young adult SHR-WKY CCA model appears to be 

characterized by a COX-1-PG-TP receptor-RhoA-ROCK contractile signaling 

axis, which might be subject to modest amplification via ROS-mediated COX-1 

activation.   
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● Augmented EDCF activity in the CCA of SHR appears to be predominantly 

related to COX-1 over-expression and EDCF over-production in the form of 

PGI2, which results in TP receptor-mediated over-activation of RhoA-ROCK 

signaling activity, leading to contraction. 

Novel and/or Important Contributions  

 ● First published studies to specifically evaluate both endothelium-dependent 

relaxation and contractile activities in the CCA of SHR and WKY. 

 ● As a result, establishes (Study I) with confirmation (Study II) the SHR-WKY CCA as 

a bona fide experimental model to examine EDCF activity – a conduit vascular 

model more assessable and conducive to ex vivo/in situ/in vivo experimental 

investigations than previously identified SHR-WKY EDCF vascular models. 

 ● Furthermore, establishes the CCA of young adult SHR-WKY – representing an 

‘early-into-pathology’ essential hypertensive state – as a vascular model of 

endothelial vasomotor dysfunction solely caused by over-active COX-mediated 

EDCF signaling and not by reduced NO bioavailability and under-active EDRF 

signaling.  

  ● Provides assessment of previously identified cellular-molecular-biochemical 

characteristics of the EDCF signaling axis; in doing so, establishing the particular 

EDCF signaling axis characteristics of the young adult SHR-WKY CCA, while 

offering comparative validation and contrast to particular findings from other 

vascular and animal models of EDCF activity – most notably the well-examined 

archetypal SHR-WKY aortic model. 

 ● Provides the first examination among published studies of the mechanism by which 

EDCF(s) may stimulate VSM TP receptor-mediated contractile activity. 

 ● As a result, presents through carefully-controlled experiments, direct evidence that 

activation of VSM RhoA-ROCK signaling plays an obligatory role in EDCF activity, 

and thus, the proposal that augmented EDCF activity may be a biomarker of over-

active vascular RhoA-ROCK signaling.  
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5.1.2. Adult-Aging SD Rat CCA Model + Super-Imposed Chronic In Vivo BSO-Induced 

GSH Depletion Model of Oxidative Stress (Study III) 

Key Findings and Conclusions 

1) ● No detectable differences in hepatic or vascular GSH or ROS content could be found 

in ‘Aging’ 60-75wk old vs. ‘Adult’ 25-36wk old SD rats, while, in both Age cohorts, 

10d BSO treatment induced depletion of both hepatic (~55%) and vascular (~30%) 

GSH content, together with an ~40-65% increase in hepatic, plasma, and vascular 

ROS content.  

Conclusions:  

● GSH depletion and elevated ROS accumulation suggests treatment efficacy 

within the BSO model of oxidative stress employed. 

● In the Adult-Aging SD rat cohort investigated, systemic and vascular GSH 

bioavailability and oxidative stress appear to be well-maintained with Age (up 

to 75wks), and equally responsive to GSH manipulation.  

2) ● ACh-stimulated endothelium-dependent and largely L-NAME-sensitive CCA 

relaxation was no different sub-maximally in Aging vs. Adult; whereas maximal 

relaxation in Aging CCA was moderately blunted, which was completely eliminated 

by COX inhibition but unaffected by cell-permeable ROS metabolizing compounds 

(ROS inhibitors).   

 ● BSO-induced GSH depletion, while resulting in no difference-to-modest 

augmentation in ACh-stimulated CCA sub-maximal relaxation, did not affect 

maximal relaxation in either age cohort. 

 ● Exogenous H2O2-stimulated, partially L-NAME-sensitive CCA relaxation was no 

different with BSO treatment. 

 ● BSO-induced GSH depletion did not significantly affect ACh-stimulated 

endothelium-dependent and largely L-NAME-sensitive CCA relaxation following 

24h in vitro static arterial culture with exposure to AII.  

Conclusion:  

● An endothelium-dependent COX-mediated ROS-independent BSO-insensitive 

contractile response impairs endothelium-dependent vasorelaxation in the CCA 

of Aging SD rats, while NO-mediated EDRF signaling activity remains well-

preserved, even following 24h chronic AII exposure.  
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3)  ● Examination of vasomotor activity in quiescent CCA found an ACh-stimulated 

EDCF response in Aging, but none in Adult; whereas L-NAME uncovered the 

existence of EDCF activity in Adult, while amplifying >3.5-fold (vs. no drug) the 

EDCF activity in Aging.  

Conclusion:  

● NO-mediated EDRF activity can completely suppress any COX-mediated 

EDCF activity found in Adult CCA, while the NO-mediated EDRF activity in 

Aging SD rats, which is as least as robust as in Adult SD rats (as per 

Conclusion 2), cannot fully suppress the augmented COX-mediated CCA 

EDCF activity. 

4) ● Specific EDCF response examination – in quiescent L-NAME-pre-incubated CCA – 

revealed that ACh-stimulated contractile activity was >3.5-fold augmented in Aging 

vs. Adult, completely eliminated by COX-1-selective, but not COX-2-preferential 

inhibition, and unaffected by ROS inhibitors. 

 ● Specific vasomotor examination also revealed that BSO-induced GSH depletion had 

no effect on this ACh-stimulated CCA contractile activity in either Age cohort, or on 

exogenous H2O2-stimulated, predominantly COX-meditated CCA contractile activity. 

Conclusion:  

● EDCF activity in the Adult-Aging SD rat CCA model appears to be 

characterized by a COX-1-dependent contractile signaling axis, which is not 

subject to ROS-mediated amplification and is unaffected by BSO-induced GSH 

depletion.   

Novel and/or Important Contributions  

 ● First among published studies to specifically evaluate both endothelium-dependent 

relaxation and contractile activities in the CCA of Adult and Aging SD rats. 

 ● As a result, establishes that the Adult-Aging SD rat CCA can be used as an 

experimental model to examine EDCF activity – a conduit vascular model more 

assessable and conducive to ex vivo/in situ/in vivo experimental investigations than 

previously identified SD rat EDCF vascular models. 

 ● Furthermore, establishes the CCA of Adult-Aging SD rats – likely representing an 

‘early-into-pathological aging’ state – as a vascular model of endothelial vasomotor 

dysfunction solely caused by over-active COX-mediated EDCF signaling and not by 

reduced NO bioavailability and under-active EDRF signaling.  
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  ● Confirms in the CCA, previous findings in adult SD rat aorta that chronic BSO-

induced GSH depletion does not impair NO-mediated EDRF signaling activity, and 

further establishes that the ability to accommodate this perturbation is preserved 

under conditions of Aging or AII exposure.  

 ● Provides the first examination among published studies of the effect of manipulating 

GSH bioavailability on COX-mediated vasomotor function. 

 ● As a result, provides evidence that chronic in vivo GSH depletion and increased 

oxidative stress in the apparent absence of CVD risk factors in Adult, or in Aging, 

does not augment COX-mediated EDCF signaling activity. 

 

5.1.3. CCA Hemodynamic Characteristics in Young Adult WKY-SHR and Adult-Aging + 

BSO SD Rat Models 

An additional aim of this Thesis was to describe the in vivo hemodynamic characteristics of the 

CCA in each animal model investigated, which served two main purposes: to identify the 

pressure-flow environment that the CCA was exposed to in vivo, and to provide an assessment of 

large artery hemodynamics in the model states of spontaneous hypertension (Thesis Study I), 

aging (Thesis Study III), and BSO-induced GSH depletion (Thesis Study III).  

The individual hemodynamic findings in each animal model investigated have been 

discussed in detail in their respective Chapters (see Sections 2.6 and 4.6).  

The following briefly summarizes the novel and/or important contributions of these 

hemodynamic findings. 

Novel and/or Important Contributions of Findings 

 ● In WKY, SHR, and SD rats – three animal types commonly used to investigate 

cardiovascular pathologies – provides (or will provide pending publication of Study 

III) previously unavailable data quantifying the in vivo pulsatile (mean, maximum, 

and minimum) blood pressure and blood flow characteristics, and the corresponding 

agonist-stimulated endothelial vasomotor functions, of the CCA – a vascular model 

commonly used in vitro/ex vivo/in situ/in vivo to investigate the relationship between 

hemodynamic forces and vascular pathogenesis.  

 ● Provides the first examination of SHR-WKY CCA hemodynamics across the cardiac 

cycle; in doing so, providing compelling and conclusive evidence supporting past 

preliminary and incidental findings suggesting a reduction in mean and maximal 

CCA blood flow in young adult SHR vs. WKY, and also providing evidence for late 

systolic flow augmentation in the SHR CCA. 
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 ● Confirms past findings that BSO-induced GSH depletion has no effect on CCA blood 

pressure in adult SD rats, while further establishing that BSO has no effect on either 

CCA blood flow in adult SD rats, or on CCA blood pressure or blood flow in Aging 

SD rats, and that there are no apparent changes in CCA hemodynamics in a likely 

‘early-into-pathological aging’ state in SD rats.    

 

5.2 General Conclusions of Thesis Studies  
Regarding the global purpose of this thesis – to gain a better understanding of the cellular-

molecular mechanisms accounting for endothelial dysfunction – the findings of the thesis studies 

presented herein, as summarized in Sections 5.1.1 and 5.1.2 above, support the following general 

conclusions: 

• COX- and TP receptor-mediated EDCF signaling activity can be a prominent 

characteristic of the CCA vascular wall. 

• Endothelial dysfunction at the early stages of either spontaneous hypertension or 

normotensive aging may be related to the development of over-active EDCF 

signaling which is unrelated to reduced NO bioavailability and under-active EDRF 

signaling. 

• ROS, oxidative stress, and GSH status do not play obligatory roles in over-active 

EDCF signaling activity. 

• EDCF activity can be characterized by the activation of vascular RhoA-ROCK 

signaling. 

 

5.3. Global Perspective and Future Directions: Of Cause and Consequence 

5.3.1. Causes of Endothelial Vasomotor Dysfunction Related to Over-Active EDCF 

Signaling 

Despite a relatively firm grasp of the basic cellular-molecular components and cell-signaling axis 

mediating and modulating EDCF signaling activity (see Figure 3.8 depiction of proposed 

mechanism in Thesis Study II), the underlying causes of over-active EDCF signaling under CVD 

risk conditions remain to be elucidated. As concluded in the most recent 2010 published articles 

reviewing endothelium-dependent COX-mediated contractile activity: 
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“The mechanisms that regulate the balance between endothelium-derived relaxing and 

contracting factors and the processes transforming the endothelium from a protective 

organ to a source of vasoconstrictor, pro-aggregatory, and pro-mitogenic mediators such 

as COX-dependent EDCFs, remains to be determined.” (direct quote from Human 

Endothelial Dysfunction: EDCFs by A. Virdis, L. Ghiadoni, and S. Taddei; (403)). 

“It is likely that the prominence of endothelium-dependent contractions observed in 

arteries of aging and diseased (essential hypertension, diabetes) animals and humans 

reflects the progressive inability of the endothelial cells to generate enough NO to curtail 

the production of EDCF. Shifting from the normal release of NO (and EDHF) to that of 

EDCF likely plays an important role in the development of vascular disease” (direct 

quote from COX-Mediated Endothelium-Dependent Contractions: From the Past to 

Recent Discoveries by M. Wong and PM Vanhoutte; (417)).  

 As detailed in the Section 1.5.2 Review (Under-Active EDRF Signaling and Endothelial 

Dysfunction), reduced NO bioavailability and under-active EDRF signaling has been identified as 

a major cause of endothelial vasomotor dysfunction under CVD risk conditions by mechanisms 

relating to the development of a pro-oxidant / anti-oxidant imbalance leading to excess ROS 

accumulation and oxidative stress resulting in increased NO destruction and multiple impairments 

in the ability to activate eNOS to produce enough NO to stimulate robust VSM relaxation. 

Accordingly, it is natural to suspect that both NO and ROS might be contributing factors to the 

cause(s) of over-active EDCF signaling under CVD risk conditions.  

 Indeed, previous studies and the studies of this thesis have established that both NO and 

ROS, independently, or in concert (through ROS-mediated NO destruction), can acutely act, 

respectively, to negatively and positively modulate the defined [Ca2+]i-PLA2-AA-COX-1/-2-PGS-

PG-TP receptor-RhoA-ROCK contractile signaling axis mediating EDCF activity: NO via 

competitive VSM relaxation signaling activity, and ROS via activation of endothelial or VSM 

COX-1/-2 (as detailed in the Section 1.5.3 Review – Over-Active EDCF Activity and Endothelial 

Dysfunction, and throughout the Experimental Thesis Chapters; and depicted in Figure 3.8). Thus, 

the increased ROS and oxidative stress and under-active NO-mediated EDRF signaling often 

accompanying states of CVD risk certainly can be contributing factors to the acute cause of 

EDRF / EDCF imbalance and endothelial vasomotor dysfunction related to over-active EDCF 

signaling. However, it is important to consider that these factors do not necessarily mediate the 

chronic underlying molecular cause of the prominent existence of EDCF signaling activity under 

CVD risk conditions.  
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 In this regard, the collective findings of the studies in this thesis, by demonstrating in early-

stage spontaneous hypertension and aging that the prominent existence of EDCF signaling 

activity is principally disconnected from changes in NO bioavailability or oxidative stress, 

suggest that over-active EDCF signaling may develop under CVD risk conditions by a cause 

independent of decreased NO bioavailability or increased ROS accumulation and oxidative stress. 

Beyond what little is known about ROS-/NO-dependent molecular signaling mechanisms and the 

chronic up-regulation of the EDCF pathway (as detailed in the Section 1.5.3 Review / Potential 

Mechanisms of Over-Active EDCF Signaling: Function of PGs, ROS, and Oxidative Stress), what 

might be the molecular signaling mechanism(s) responsible for a ROS-/NO-independent chronic 

up-regulation of the EDCF pathway remain(s) to be elucidated. Therefore, ROS-/NO-independent 

and -dependent regulatory mechanisms should be a focus of future studies in the EDCF research 

arena. One such study focus might include examination of the potential involvement of a ROS-

/NO-independently-activated pro-inflammatory cell-signaling axis resulting in the over-

expression and/or the ability to over-activate multiple components of the endothelial PG synthesis 

pathway (PLA2, COX-1/-2, and/or PGSs) under CVD risk conditions.  

Future Application of the CCA Model to Study EDCF Signaling Causes. Noteworthy, the 

CCA, of which the EDRF / EDCF vasomotor and corresponding hemodynamic characteristics 

were quantified in SHR, WKY, and SD rats in the studies of this thesis (summarized in Section 

5.1.3), could be a particularly advantageous future model in which to explore both the acute and 

chronic regulatory mechanisms causing EDRF / EDCF imbalance and over-active EDCF 

signaling resulting in endothelial vasomotor dysfunction in states of CVD risk. These advantages 

(generally introduced in Section 1.6; depicted in Figure 1.6) especially include the fact that: i) the 

CCA can be cultured for prolonged periods (i.e. long enough to establish chronic molecular 

changes) under specific hemodynamic conditions (i.e. high vs. normal pressure; low/oscillatory 

vs. normal flow) and biochemical conditions (e.g. high/normal glucose; high/normal pro-/anti-

oxidants; high/normal pro-inflammatory cytokine(s)) known or speculated in vivo to be 

associated with EDCF activity; and ii) selective CCA endothelium gene transfer and protein 

expression is possible even in live animals, thus allowing for specific manipulation of endothelial 

proteins that are candidates for affecting EDCF signaling activity (e.g. COX-1/-2, PGSs, PLA2, 

NADPH oxidase, TP or IP receptors, RhoA-ROCK).  
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5.3.2. Consequences of Endothelial Dysfunction Related to Over-Active EDCF Signaling: 

Reaching Beyond VSM Activation  

As outlined to begin this thesis, endothelial dysfunction measured as impaired agonist-/flow-

stimulated endothelium-dependent vasorelaxation/dilation indeed predicts future CVD-related 

clinical events and correlates significantly with multiple indicators of cardiovascular dysfunction 

and overt pathologies, including indices of atherosclerosis (coronary plaque, CCA IMT, 

circulating inflammatory biomarkers), arterial stiffness (PWV, CCA AI and distensibility), and 

major target organ damage (LV hypertrophy, reduced renal function, cerebral decline/white 

matter hyper-intensities) (as referenced in Section 1.3; depicted in Figure 1.1). This is believed to 

reflect the ability of the endothelium to interact not only with itself and with the VSM but also 

with inflammatory/immune cells and platelets/clotting factors, in doing so serving a pivotal 

function in vascular homeostasis by regulating a tight balance not only of relaxation and 

contraction but also the prevention or promotion of VSM proliferation/migration and collagen-

elastin matrix remodeling, inflammation and adhesion, and blood fluidity and coagulation (as 

referenced in Section 1.2; depicted in Figure 1.1). While the ability and mechanisms by which 

NO-mediated EDRF signaling in particular may prevent these cellular-molecular processes and 

their acute and chronic mechanical and biological consequences has been well-established (as 

detailed in the Section 1.5.2 Review), investigations of the role of over-active EDCF signaling in 

these processes and related cardiovascular consequences is indeed just beginning and has focused 

on the TP receptor, found to be expressed in platelets, endothelial cells, and inflammatory/ 

immune cells (104, 111).   

 In this regard, the findings in Study II of this thesis demonstrating that RhoA-ROCK is an 

mediator of over-active COX- and TP receptor-dependent EDCF signaling represents another 

mechanistic clue as to how the dysfunctional endothelium might promote a CVD phenotype and 

function. Indeed, the activation of RhoA-ROCK signaling has previously been shown in multiple 

cell-types to stimulate not only contraction but also cytoskeleton re-organization, 

proliferation/differentiation, migration, inflammation, and apoptosis; moreover, its inhibition has 

been found to significantly delay atherogenesis and aortic aneurism formation (as referenced in 

the Pathophysiological and Clincical Signifance Discussion of Thesis Study II). Therefore, future 

studies should focus not only on further elucidating the molecular mechanisms by which RhoA-

ROCK may contribute to the EDRF / EDCF imbalance and endothelial vasomotor dysfunction 

related to over-active EDCF signaling under CVD risk conditions, but also on the direct 

relationship between that over-active EDCF-TP receptor-RhoA-ROCK signaling and its 

mechanical and biological consequences.  
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Future Application of the CCA Model to Study EDCF Signaling Consequences. 

Noteworthy, the CCA (of which, as stated above, the EDRF / EDCF vasomotor and 

corresponding hemodynamic characteristics were quantified in SHR, WKY, and SD rats in the 

studies of this thesis; see Section 5.1.3) could be a particularly advantageous future model in 

which to explore the possible relationships between over-active COX-mediated EDCF-TP 

receptor-RhoA-ROCK signaling and mechanical and biological consequences in states of CVD 

risk. These advantages (generally introduced in Section 1.6; depicted in Figure 1.6) especially 

include the fact that: i) the CCA is readily accessible for measuring (stiffness/compliance) or 

manipulating (e.g. high/normal or low/oscillatory flow/shear) its endothelium-dependent 

mechanical or biological characteristics in situ/in vivo, after which a detailed pharmaco-

dissection of its vasomotor characteristics may be performed; and ii) the CCA can be cultured for 

prolonged periods (i.e. long enough to establish chronic biological changes) under specific 

hemodynamic and biological/biochemical conditions that mimic pro-atherogenic conditions (for 

instance (303), with circulating monocyte/macrophage + a pro-inflammatory cytokine stimulant 

or pro-atherogenic flow/pressure profile), after which the extent of atherogenic consequence can 

be measured (for instance, adhesion molecule expression and macrophage uptake into the sub-

intimal space) and a detailed pharmaco-dissection of its vasomotor characteristics performed. 

5.4. Closing Remarks 

It is the hope that gaining a better understanding of the causes and consequences of endothelial 

vasomotor signaling may lead to the identification of new or more effective targets or indices to 

be used in prevention and treatment strategies aimed at countering the development and clinical 

complications of CVD conditions. This thesis mechanistically and methodologically adds to an 

emerging body of evidence suggesting that EDCF signaling activity, in addition to under-active 

NO-mediated EDRF signaling, contributes importantly to the endothelial vasomotor dysfunction 

that hallmarks both experimental animals and humans in states of CVD risk. As the areas of 

vascular research and medicine/health move forward, it will be exciting to see how the factors 

identified as mediating over-active EDCF signaling may be used as primary or adjunct targets or 

indices in the prevention and treatment of CVD in regard to both pharmacological interventions 

and diet and exercise lifestyle regimes.  
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Appendices 

Appendix A 

Supplemental Material for Thesis Study I in Chapter 2 
Supplemental Methods 

CCA Hemodynamics 

Rationale for Procedural Approach. Previous works investigating the hemodynamic and/or 

mechanical properties of the rat CCA have concurrently measured blood pressure in one of the 

bilarteral CCAs, which requires total occlusion of the artery, and internal diameter and/or flow 

velocity in the other CCA (76, 362, 429). Although this approach has the advantage of 

quantifying CCA blood pressure and flow simultaneously, it has the major disadvantage of 

potentially altering the normal physiological hemodynamics of the CCA and downstream 

cerebrovascular beds due to contralateral CCA occlusion, given that acute unilateral CCA 

occlusion in rats results in a ~50% increase in contralateral CCA blood flow (169), and a distinct 

reduction in total blood flow to both cerebral hemispheres (82). Therefore, in the current study, 

blood flow through the left CCA of anesthetized rats was measured using a perivascular flow-

probe, followed by removal of the flow-probe and insertion of a catheter-tip pressure transducer 

into the left CCA to measure intra-arterial blood pressure, thus allowing us to obtain an 

uninterrupted measure of CCA blood flow followed by a direct measure of CCA blood pressure 

within the same arterial segment. 

  Quantification of CCA Blood Flow and Pressure. Blood flow through the left CCA of 

WKY and SHR rats was measured using a TS420 flow-meter module and a MA1PRB transit-

time perivascular flow-probe (ultrasound frequency, 7.2MHz; bidirectional flow scale setting, 

1V=20ml/min; maximum flow range, 100ml/min; interfaced with flow-meter module using 

1.25m extension cable; Transonic Systems Inc., Ithaca, NY) chosen so that the in vivo 

pressurized CCA from each strain of rat would fill >75% and <100% of the flow-probe’s acoustic 

window volume (1.1x2.0x1.5mm) in order to avoid probe positional sensitivity and arterial lumen 

impingement. The output voltage signal from the flow-meter is low-pass filtered (3-pole 

Butterworth) to exclude high-frequency non-flow related noise, with factory bandwidth output 

filter settings of 0.1, 10, 40, and 160Hz. In each animal, it was determined that only filtering at 40 

or 160Hz could fully resolve the pulsatile contours of the CCA flow signal (4.6-7.1Hz 

fundamental harmonic [i.e. heart rate, 275-425bpm] + higher harmonics), but that the 160Hz filter 

also allowed a considerable amount of noise into the output signal (data not shown). Therefore, 

only data from the 40Hz output voltage signal filter was used in the present study to quantify both 
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the steady and pulsatile components of the left CCA blood flow waveform in WKY and SHR, 

which should have allowed for resolution of the first harmonic (i.e. fundamental ‘beat’) and 5-9 

higher harmonics (i.e. contours relating to cardiac events and/or arterial properties) in the signal 

(see Ref. (279); also see TS400 Series Flow-meter Operator’s Manual, Technical Note 95). 

Prior to surgery on the day of experiments, rats were anesthetized via an intra-peritoneal 

injection of pentobarbital sodium (60-70mg/kg body weight) and placed lying supine on a heating 

pad adjusted so that the temperature between the animal and the pad was 38±1ºC. Through a 

small incision in the neck, the left CCA was carefully dissected free from the carotid sheath and a 

~1.5cm arterial segment cleaned of fat and surrounding connective tissue was exposed. Using 

blunted micro-forceps the exposed arterial segment was gently maneuvered into the flow-probe’s 

acoustic window, which was pre-filled with surgical lubricant (Surgilube®, Fourgera & Co., 

Melville, NY), and re-positioned to its anatomical location using a custom probe-positioning 

device. The entire incision area was next filled with lubricant and covered with Parafilm® to 

promote good acoustical coupling (i.e. a signal strength >60%) and prevent dehydration and heat 

loss. A stable signal of pulsatile blood flow in the left CCA was collected for at least 5min.  

Immediately following blood flow data collection, the flow-probe was gently removed 

and the lubricant cleared from the incision area which was then rinsed well with sterile 37°C 

saline. With flow interrupted, a small incision was made at the cephalic end of the exposed left 

CCA segment for the intra-arterial insertion of a pressure catheter, which was secured in the 

artery with a removable tie (4-0 surgical suture) adjacent to the incision. In each animal, a 

comparison was made between two intra-arterial catheter-transducer systems: a fluid-filled 

catheter (PE50 tubing catheter ~30cm long filled with heparinized saline to ensure no air 

bubbles/clots) coupled via a 23-gauge needle tip and 3-way stopcock to a domed membrane 

pressure transducer (BS4 72-4496, Harvard Apparatus, South Natick, MA), verses a high-fidelity 

catheter-tip transducer (Model SPR-320, 2F Mikro-Tip® Pressure Transducer Catheter, Millar 

Instruments, Inc., Houston, TX). The order of the catheter measurements was counter-balanced, 

where in half of the animals from each strain the fluid-filled catheter was inserted into the 

exposed left CCA segment first and a stable intra-arterial pressure signal was collected for at least 

5min, followed by removal of the fluid-filled catheter and the immediate insertion of the catheter-

tip transducer for an additional >5min collection of a stable intra-arterial pressure signal, and vice 

versa for the other half of the animals. It was demonstrated from these measurements that using 

the catheter-tip pressure transducer system was far superior in quantifying the pulsatile, contoured 

components of CCA blood pressure as compared to the commonly employed (202, 382) fluid-

filled catheter-transducer system, which we found was able to accurately quantify MAP but only 
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registered pressure oscillations of 5-10 mmHg and did not capture any waveform contours 

relating to cardiac events and arterial properties (data not shown). In addition, this fluid-filled 

catheter-transducer system did not distinguish the well-established difference in CCA pulse 

pressure between WKY and SHR (59, 74). For this reason, only data from the catheter-tip 

pressure transducer system was used in the present study to quantify both the steady and pulsatile, 

contoured components of the left CCA blood pressure waveform in WKY and SHR. It should be 

noted that, in contrast to our findings described above, rodent aortic pressure waveforms with 

very similar mean and pulsatile, contoured components have been recorded from fluid-filled and 

Mikro-Tip® catheter transducer systems in previous studies from other laboratories (74, 280), 

perhaps owed to more favorable catheter dimensions (e.g. PE50+PE10 tubing fused to tip) which 

may have provided an improved dynamic frequency response with minimal damping in their 

fluid-filled systems (202, 382).  

The total time from injection of anesthesia into the animal to completion of stable blood 

flow and blood pressure measurements was in each case between 35-45min. Each pressure 

catheter, which had to be inserted into the lumen of the left CCA and tied thus totally occluding 

the arterial segment, only remained in the lumen for 10-12min.  

Blood flow and blood pressure signals were calibrated daily and recorded at a 1000Hz 

sampling rate to a PowerLab® data acquisition and analysis system (4SP channel unit, Chart™ 

v5.5.1, ADInstruments, Colorado Springs CO). The Transonic flow-meter and Harvard pressure 

transducer were interfaced directly to the PowerLab® unit, whereas the Millar Mikro-Tip® 

pressure transducer catheter was interfaced to the PowerLab® unit via a ML110 ADInstruments 

Bridge Amp set to DC high-pass and 100Hz low-pass filtering.  

CCA Vasomotor Function 

Vasomotor Function of Freshly-Harvested Pre-contracted CCA. To exclude the possibility that 

the measures of right CCA vasomotor function were somehow adversely affected by first 

investigating left CCA hemodynamics before right CCA excision (e.g. animal under anesthesia 

for ~40min, transient disturbances of the CCA circulation during hemodynamic measures), the 

same measures of vasomotor function across drug conditions were also performed using right 

CCA freshly harvested from age-matched WKY (n=8) and SHR (n=8) upon which no 

hemodynamic measures were made before vessel excision. Indeed, no differences in the 

amplitude of KCl- or PE-stimulated contraction or Max Amp, EC50, or AUC indices of ACh- or 

SNP-stimulated vasomotor function were found between arterial rings harvested from animals 

following hemodynamic measures compared to freshly-harvested rings (all p>0.200; data not 

shown).  
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 Effect of Endothelial Denudation on the Vasomotor Function of Pre-contracted CCA. In 

the absence of a functional endothelium, cumulative ACh elicited neither vasorelaxation nor 

vasocontraction in pre-contracted CCA freshly harvested from age-matched WKY and SHR, 

whereas SNP elicited complete vasorelaxation (n=3-5 CCA rings from each strain; data not 

shown).  

Each transducer (Model MLT0201/D, ADInstruments) used to measure isometric force 

production in mounted CCA (Vascular Myography unit, Radnoti Glass Technology Inc., 

Monrovia, CA) was interfaced to an 8SP PowerLab® system via a ADInstruments Bridge Amp 

(DC high pass filter; 100Hz low-pass filter) and was calibrated daily. Isometric tension signals in 

g were recorded at a 100Hz sampling rate throughout the entire experimental protocol. The total 

time from right CCA dissection and excision to completion of each of the in vitro vasomotor 

function protocols was between 5-6h. 

When achievable, the cumulative response to ACh or to SNP for a given CCA ring were 

individually fit by non-linear regression to dose-response curves (either sigmoidal or bell-shaped; 

GraphPad Prism® v4.03 software; San Diego CA) and then averaged within their respective drug 

treatment and strain. In the LN and LN+INDO WKY CCA conditions, ACh-stimulated responses 

did not fit well to any model dose-response curve-fitting equation; therefore no accurate EC50 

could be found, so the Max Amp and AUC computed from the measured data points were reported 

(see Figure 2.2, inset data). 

Western Blotting  

Tissue preparation and immunoblotting was performed as previously described (114, 143, 310). 

Frozen CCA segments were hand-homogenized in 200µl of ice-cold extraction buffer (10mM 

NaH2PO4, 1% SDS, 6M urea at pH 7.4), incubated at 60°C for 3h with recurrent vortexing, and 

centrifuged (15min, 10000rpm), after which the supernatant samples were retrieved and a 

bicinchonic acid (BCA) protein assay was performed, and samples were prepared for Western 

blotting by diluting them to 1.0µg/µl in gel loading buffer containing 150mM dithiothreitol 

(DTT).  

Immediately prior to electrophoresis (175V for ~50-60min), prepared CCA samples were 

denatured for 5min at 95°C and loaded at 30µg/lane onto sodium dodecyl sulphate-

polyacrylamide (SDS-PAGE) gels (5-10%). Proteins separated in the gels were transferred (25V 

for 40-45min) onto microporous PVDF membranes (Roche Diagnostics, Mannheim, Germany) 

and prior to immunoblotting were stained with ponceau red dye to confirm equal total protein 

loading of samples in lanes. Immunoblotting and detection of individual proteins was performed 

by first blocking the membranes for 1h at room temperature, then incubating for 1h with primary 
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antibodies specific for either eNOS (1:750), COX-1 (1:200), or COX-2 (1:200), followed by 

incubation with HRP-conjugated anti-mouse or anti-rabbit IgG secondary antibodies (1:2000-

4000) for 1h before the protein-immunocomplexes were detected and their signals quantified 

using enhanced HRP-luminol chemiluminescence reagents (Amersham, Little Chalfont, UK) and 

a Syngene system (Syngene, Cambridge, UK). All blocking and antibody solutions were made 

using Tris (10mM)-buffered saline (100mM) with 0.1% Tween-20 (TBS-T) containing either 5% 

bovine serum albumin (BSA) or 10% non-fat milk powder, and thorough washes after blocking 

and antibody incubation periods were done with TBS-T alone.  
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Supplemental Results 

 
 

 
 
Supplemental Figure A-1. Preliminary contractile experiments in CCA rings excised from 16-20wk old 
WKY and SHR. Beginning at a resting tension of 2.00g, 2.0mm arterial rings were stimulated to contract 
with KCl at 0.25g resting tension increments until the magnitude of developed isometric tension reached a 
plateau (top), after which rings were washed every 15min for 1h, incubated with either no drug (ND; n=6 
per strain), Nω-nitro-L-arginine methyl ester (LN; n=6 strain), Indo (INDO; n=6 per strain), or LN+INDO 
(n=6 per strain) for 30min, then exposed to cumulative PE concentrations (bottom left and right; data 
expressed relative to contraction stimulated by KCl). Data represent means±SEM. p<0.05; * vs. ND, † vs. 
INDO, within strain. Max Amp, maximum amplitude of the curve; EC50, PE dose resulting in 50% of the 
plateau in amplitude of the curve; AUC, area under the curve.  
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Supplemental Figure A-2. Vasomotor function in WKY and SHR CCA rings incubated with either ND 
(n=27), Nω-nitro-L-arginine methyl ester (LN; n=21), INDO (n=9), or LN+INDO (n=12). Arterial rings 
were pre-contracted with PE then exposed to cumulative concentrations of the NO donor SNP. Prior to this, 
rings had been stimulated to contract with KCl then washed and pre-constricted with PE, after which rings 
were exposed to cumulative ACh concentrations (see Methods and Figure 2.2). Between ACh and SNP 
dose-response curves, rings were washed every 15min for 1h. Data represent means±SEM and are 
expressed relative to PE preconstriction. Max Amp, maximum amplitude of the curve; EC50, SNP dose 
resulting in 50% of the plateau in amplitude of the curve; AUC, area under the curve. 
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Appendix B 

Supplemental Material for Thesis Study II in Chapter 3 
Supplemental Methods 

Homogenization and Western Blotting   

Frozen CCA segments were individually hand-homogenized in 80-100µl of ice-cold lysis buffer 

(20mM HEPES, 10mM NaCl, 1.5mM MgCl, 1mM DTT, 20% Glycerol, and 0.1% Triton X-100; 

Sigma-Aldrich or BioShop) at pH 7.40 with Complete Protease Inhibitor Cocktail (1X; Roche 

Diagnostics, Laval QC, Canada) and Halt Phosphatase Inhibitor Cocktail (1X; Thermo Scientific, 

Rockford IL)), after which the supernatant was isolated via centrifugation (15min, 10000rpm), its 

protein concentration determined via a standard BCA protein assay, and the sample diluted to 

1.0µg/µl in gel loading buffer containing 150mM DTT.  

Prepared samples were denatured (5 min, 95°C), loaded at 30µg/lane onto SDS-PAGE 

gels (5-12%), and exposed to electrophoresis (50-60min at 175V). Proteins separated in the gels 

were transferred (40-45min at 25V) onto microporous PVDF membranes (Roche Diagnostics, 

Mannheim, Germany).  

Prior to immunoblotting, membranes were stained with Ponceau Red dye to confirm 

equal total protein loading and transfer of samples.  

Membranes were blocked in solution for 1h at room temperature, then incubated with 

either mouse anti-RhoA-specific monoclonal antibody solution (1:1000; Cytoskeleton Inc., 

Denver CO) or mouse anti-ROCK-II (i.e. ROCKα)-specific monoclonal antibody solution (1:200; 

BD Biosciences, Franklin Lakes, NJ) for at least 1h, followed by incubation with horseradish 

peroxidase-conjugated anti-mouse IgG secondary antibody solution (1:1000-2000; Santa Cruz, 

Santa Cruz, CA) for 1h before the protein-immunocomplexes were detected and their signals 

quantified using enhanced HRP-luminol chemiluminescence (reagents from Amersham, Little 

Chalfont, UK) and a Syngene system (Syngene, Cambridge, UK). Each membrane was re-probed 

for α-actin (primary antibody dilution, 1:300000, Sigma-Aldrich, St. Louis, MO) and quantified. 

All blocking and antibody solutions used were prepared using TBS-T containing either 

5% BSA or 10% nonfat milk powder. Between blocking, primary antibody, secondary antibody, 

and chemiluminescent reagent incubations, membranes were washed thoroughly with TBS-T 

alone. 

Data Analyses 

To minimize ring-to-ring variability, duplicate CCA rings from the same animal were always 

used for each drug condition and then their responses averaged. n refers to the number of 
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averaged ring responses per drug condition/strain. When achievable, each averaged ring’s 

cumulative tension response to a vasomotor stimulus was best fit by non-linear regression to a 

sigmoidal dose-response curve using GraphPad Prism® v4.03 (San Diego CA), generating 

maximum amplitude (Max Amp), dose resulting in 50% of Max Amp (EC50), and area under the 

curve (AUC) parameters that were then averaged within their respective drug condition/strain.  
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Supplemental Results 
Supplemental Table B-1. Physical attributes of young adult SHR and WKY 

Data represent means±SEM. SHR and WKY ranged in age from 18 to 24wks and in weight from 300 to 
400g. There was <30g weight-gain within animals across this age range. CCA dimensions were measured 
in a non-pressured, non-stretched (i.e. passive) state as described in the Methods.  

 

 

 

 

 

 

 

 

 

 

 

 SHR WKY p 
Age, wks         22.9±0.4         22.8±0.2     0.286 
Weight      

Whole body, g          359±4          355±3     0.445 
Left ventricle, mg          1.069±0.030       0.843±0.024   <0.001 
Right ventricle, mg       0.200±0.009       0.212±0.010     0.378 

CCA dimensions (passive)    
Outer diameter, mm 1.061±0.003 0.912±0.006   <0.001 
Inner (lumen) diameter, mm 0.609±0.003 0.498±0.003   <0.001 
Wall thickness, mm 0.226±0.002 0.201±0.001     0.003 
Lumen cross-sectional area, mm2   0.291±0.003 0.198±0.002   <0.001 
Wall cross-sectional area, mm2   0.588±0.006 0.462±0.006   <0.001 
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Supplemental Figure B-1. ACh-stimulated vasomotor function in PE-pre-contracted CCA rings isolated 
from SHR and WKY and incubated with either No Drug (n=6), the NOS inhibitor Nω-nitro-L-arginine 
methyl ester (L-NAME, 10-4.0 M, n=6), the COX inhibitor Indo (10-5.0 M, n=6), or L-NAME+Indo (n=6). 
Arterial rings were stimulated to contract with 60mM KCl then washed and pre-contracted with a near-
maximal dose of PE, after which rings were exposed to cumulative ACh doses. Data represent means±SEM 
and are expressed relative to PE pre-contraction. *P<0.05 vs. WKY.  
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Supplemental Figure B-2. Magnitude of contraction prior to cumulative Y27632-stimulated relaxation 
(see Figure 3.1) in CCA rings isolated from SHR and WKY and incubated with either No Drug (n=4) or the 
NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, 10-4.0 M, n=4), or denuded of endothelium (-
Endo; n=4). Arterial rings were stimulated to contract with 60mM KCl then washed, after which rings were 
pre-contracted with either KCl, PE, or U46619. Contractions were allowed to develop to a near-maximal 
plateau over 30-45min, and control experiments confirmed contractile sustainability over the entire 
protocol (~120min). Data represent means±SEM and are expressed relative to previous KCl contraction. 
*p<0.05 vs. WKY, † vs. No Drug.   
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Supplemental Figure B-3. Magnitude of KCl- and U46619-stimulated contraction following cumulative 
ACh-stimulated contraction in CCA rings isolated from SHR and WKY and incubated with either the NOS 
inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, 10-4.0 M, n=8), which acted as a Control for all other 
drug conditions (see Results for details), or L-NAME co-incubated with the selective COX-1 inhibitor 
SC560 (L-NAME+SC560; 3*10-7.0 M, n=5), the preferential COX-2 inhibitor NS398 (L-NAME+NS398; 
10-6.0 M, n=5), the TP receptor antagonist SQ29548 (L-NAME+SQ29548; 10-6.0 M, n=5), the ROCK 
inhibitors Y27632 (L-NAME+Y27632; 10-5.0 M, n=6) or H1152 (L-NAME+H1152; 10-6.0 M, n=6), the 
PKC inhibitor GF109203X (L-NAME+GF109203X; 10-5.5 M, n=5), the superoxide anion scavenger Tiron 
(L-NAME+Tiron; 10-2.0 M, n=6), the SOD mimetic Tempol (L-NAME+Tiron; 10-3.0 M, n=6), or the 
NADPH oxidase inhibitor Apocynin (L-NAME+APO; 10-3.5 M, n=6). To test the specificity of these 
inhibitors, mimetics, and/or antagonists for affecting CCA contraction, arterial rings were stimulated to 
contract with 60mM KCl then washed and exposed to cumulative ACh to stimulate contraction (see Figure 
3.2 and 3.7), after which rings were washed thoroughly and stimulated to contract with either 60mM KCl 
(post) or 10-6.0 M U46619 (post). These contractions were tonic – i.e. allowed to develop over 30-45min. 
Data represent means±SEM and are expressed relative to initial KCl contraction. *p<0.05 vs. L-NAME 
rings, † vs. L-NAME+Y27632 or L-NAME+H1152, pre-contracted with 10-6.0 M U46619.   
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Supplemental Figure B-4. Contraction stimulated by the potent PKC activator phorbol-12,13-dibutyrate 
(PDBu) in CCA rings isolated from SHR and WKY and incubated with either the NOS inhibitor Nω-nitro-
L-arginine methyl ester (L-NAME, 10-4.0 M, n=4), which acted as a Control for all other drug conditions 
(see Results for details), or L-NAME co-incubated with the broad-spectrum PKC inhibitor GF109203X (L-
NAME+GF109203X; 10-5.5 M, n=4) or the ROCK inhibitors Y27632 (L-NAME+Y27632; 10-5 M, n=4) or 
H1152 (L-NAME+H1152; 10-6 M, n=4). Arterial rings were stimulated to contract with 60mM KCl then 
washed, after which rings were exposed to PDBu doses cumulatively. Data represent means±SEM and are 
expressed relative to KCl contraction. *p<0.05 vs. -7.0 LogM PDBu within drug condition, † vs. L-NAME, 
L-NAME+Y27632, or L-NAME+H1152 within PDBu concentration. 
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Supplemental Figure B-5. Contraction stimulated by the calcium ionophore A23187 in quiescent SHR and 
WKY CCA rings incubated with the NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, 10-4.0 M, 
n=8), which acted as a Control for all other drug conditions (see Results for details), or L-NAME co-
incubated with the non-selective COX inhibitor Indo (LN+Indo, 10-5.0 M, n=4), the selective COX-1 
inhibitor SC560 (LN+SC560, 3*10-7.0 M, n=7), the preferential COX-2 inhibitor NS398 (LN+NS398, 10-6.0 
M, n=7), the TP receptor antagonist SQ29548 (L-NAME+SQ29548; 10-6.0 M, n=5), or the ROCK inhibitor 
Y27632 at 10-6.0, 10-5.5, 10-5.0 M concentrations (L-NAME+Y-6.0, n=6; L-NAME+Y-5.5, n=7; L-NAME+Y-5.0, 
n=5). Arterial rings were stimulated to contract with 60mM KCl then washed, after which rings were 
exposed to cumulative A23187. Data represent means±SEM and are expressed relative to previous 
contraction stimulated by KCl. p<0.05; * vs. LN, † vs. SQ29548, ‡ vs. LN+Y-6.0, § vs. LN+ Y-5.5 within 
strain.  
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Supplemental Figure B-6. Production of TXA2 from quiescent or ACh-stimulated CCA rings isolated 
from SHR and incubated with the NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, or LN, 10-4.0 
M, n=5) or L-NAME co-incubated with the preferential COX-1 inhibitor valeryl salicylate (LN+VAS, 
3*10-3.0 M, n=5). Arterial rings were stimulated to contract with 60mM KCl then washed. In some cases, 
rings were incubated in a quiescent state for 45 minutes before the bathing buffer was collected. In other 
cases, after 40 minutes of quiescent incubation, rings were exposed to a maximal dose of ACh eliciting 
peak contraction within 4-5 minutes, at which time the bathing buffer was collected. The concentration of 
TXB2 in the collected buffer was used as a marker of CCA TXA2 production. For detection within the 
linear range of the assay, collected buffer had to be systematically concentrated (6-fold), which was 
performed according to the kit’s instructions using commercially available C18 columns. Data represent 
means±SEM and are expressed relative to CCA ring protein per ml of bathing buffer. 
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	NOS-Derived NO 
	Throughout the vasculature, NO has been found to act as both a potent EDRF and a pivotal mediator in the protection against a CVD phenotype and function (see Under-Active EDRF Signaling and Endothelial Dysfunction, below, for details). NO is a free radical synthesized from the amino acid L-arginine by the reductase and oxygenase activities of the NOS enzyme, which requires the presence of molecular oxygen and the co-factors nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide, flavin mononucleotide, heme, and tetrahydrobiopterin (BH4). NOS has three isoforms: neuronal NOS (nNOS, or NOS1), inducible NOS (iNOS, or NOS2), and endothelial NOS (eNOS, or NOS3). While both eNOS and nNOS are constitutively expressed, iNOS expression is typically very low or seemingly absent unless induced by cellular perturbations such as pro-inflammatory stimuli (e.g. cytokines). In endothelial cells, NO production is largely mediated by the abundantly expressed eNOS isoform, which is activated by stimulus-induced Ca2+-CaM binding as well as protein phosphorylation (20). 

