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Abstract

Empirical likelihood, which was pioneered by Thomas and Grunkemeier (1975)

and Owen (1988), is a powerful nonparametric method of statistical inference that

has been widely used in the statistical literature. In this thesis, we investigate the

merits of empirical likelihood for various problems arising in ratio estimation. First,

motivated by the smooth empirical likelihood (SEL) approach proposed by Zhou &

Jing (2003), we develop empirical likelihood estimators for diagnostic test likelihood

ratios (DLRs), and derive the asymptotic distributions for suitable likelihood ratio

statistics under certain regularity conditions. To skirt the bandwidth selection prob-

lem that arises in smooth estimation, we propose an empirical likelihood estimator

for the same DLRs that is based on non-smooth estimating equations (NEL). Via

simulation studies, we compare the statistical properties of these empirical likeli-

hood estimators (SEL, NEL) to certain natural competitors, and identify situations

in which SEL and NEL provide superior estimation capabilities.

Next, we focus on deriving an empirical likelihood estimator of a baseline cu-

mulative hazard ratio with respect to covariate adjustments under two nonpropor-

tional hazard model assumptions. Under typical regularity conditions, we show

that suitable empirical likelihood ratio statistics each converge in distribution to a

χ2 random variable. Through simulation studies, we investigate the advantages of

this empirical likelihood approach compared to use of the usual normal approxima-

tion. Two examples from previously published clinical studies illustrate the use of

the empirical likelihood methods we have described.

Empirical likelihood has obvious appeal in deriving point and interval estimators
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for time-to-event data. However, when we use this method and its asymptotic

critical value to construct simultaneous confidence bands for survival or cumulative

hazard functions, it typically necessitates very large sample sizes to achieve reliable

coverage accuracy. We propose using a bootstrap method to recalibrate the critical

value of the sampling distribution of the sample log-likelihood ratios. Via simulation

studies, we compare our EL-based bootstrap estimator for the survival function

with EL-HW and EL-EP bands proposed by Hollander et al. (1997) and apply this

method to obtain a simultaneous confidence band for the cumulative hazard ratios

in the two clinical studies that we mentioned above.

While copulas have been a popular statistical tool for modeling dependent data

in recent years, selecting a parametric copula is a nontrivial task that may lead to

model misspecification because different copula families involve different correlation

structures. This observation motivates us to use empirical likelihood to estimate

a copula nonparametrically. With this EL-based estimator of a copula, we derive

a goodness-of-fit test for assessing a specific parametric copula model. By means

of simulations, we demonstrate the merits of our EL-based testing procedure. We

demonstrate this method using the data from Wieand et al. (1989).

In the final chapter of the thesis, we provide a brief introduction to several areas

for future research involving the empirical likelihood approach.
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Chapter 1

Introduction

The likelihood method is one of the most powerful tools in statistical inference.

For parametric models, Wilks (1938) showed that under suitable regularity condi-

tions the likelihood ratio statistic converges in distribution to a chi-squared random

variable as the sample size, n, increases. Therefore, we can use the likelihood ra-

tio statistic to test hypotheses and construct confidence intervals in parametric

model settings. However, when the underlying probability model is misspecified,

the maximium likelihood estimator (MLE) obtained from parametric likelihood

can be biased and inefficient. Thus, as an alternative, statistical researchers have

explored using the principles of the likelihood method in nonparametric contexts.

Empirical likelihood is a nonparametric method which was first described by

Thomas and Grunkemeier (1975). In that pioneering paper, they employed a non-

parametric likelihood ratio idea to construct pointwise confidence intervals for the

survival function. Subsequently, their idea was extended by Owen (1988), who

proposed the method of empirical likelihood for estimating a univariate mean and

various other statistics. Since then, empirical likelihood has been widely applied to
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numerous problems in statistical inference; see Owen (2001) for details.

Unlike its parametric counterpart, the empirical likelihood method does not

assume the data come from a known family of distributions. Therefore, it avoids

the model misspecification problem that confronts parametric analysis. Instead this

empirical method of inference defines the likelihood to be the product of probability

masses at observed data points,
∏

i P (Xi). Therefore, by finding the nonparametric

maximum likelihood estimator, which consists of the point masses that maximize

the empirical likelihood function, we can define the analogue, for empirical likeli-

hood, of the likelihood ratio statistic. As Owen (1988) demonstrated, the empirical

likelihood ratio statistics for various parameters, θ(F ), of an unknown distribution

function F each have an asymptotic χ2 distribution under certain regularity condi-

tions. Consequently, we can use the empirical likelihood ratio statistic to carry out

statistical inference in a way that is completely analogous to using the parametric

likelihood ratio statistic in the parametric setting.

Since empirical likelihood (EL) makes use of the flexibility and effectiveness of

the likelihood method, its approach to the problem of estimation has many unique

properties such as range preserving, data-determined asymmetric confidence inter-

val, Bartlett correctable, better coverage probability for small samples compared

to alternative estimators based on other nonparametric methods. As Owen (2001)

demonstrates, EL may easily incorporate known constraints on parameters, and

adjust for biased sampling schemes. It is also easier to combine data from multiple

sources, with possibly different distributions. A further advantage of EL is that it

can be combined with estimating equations to obtain a more efficient estimator.

Therefore, the EL method has been extensively used not only for complete data
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but also for censored and truncated data.

Before presenting my work in empirical likelihood for ratio estimation for com-

plete and right-censored data, I will first provide a summary of some key results in

empirical likelihood theory.

1.1 Key Results in Empirical Likelihood

Definition 1. Let X1, ..., Xn ∈ R. The empirical cumulative distribution function

(ECDF) of X1, ..., Xn is

Fn(x) =
1

n

n
∑

i=1

1Xi≤x , (1.1)

for −∞ < x <∞.

Theorem 1. Let X1, ..., Xn be i.i.d random variables with a common cumulative

distribution function (CDF) F0. The nonparametric likelihood of the CDF F,

L(F ) =

n
∏

i=1

{F (Xi) − F (Xi−)}, (1.2)

is maximized by the ECDF of X1, ..., Xn.

Proof. See Theorem(2.1) in Owen (2001).

Definition 2. Let T1, ..., Tn be i.i.d lifetimes with CDF F (t) = P (Ti < t). Let

C1, ..., Cn be censoring times with CDF G(t) = P (Ci < t). Assume, further, that

the lifetimes and the censoring times are independent. Under the random censorship

model, we observe only Xi = min(Ti, Ci), δi = I(Ti < Ci), i = 1, ..., n. The EL of F
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is

EL(F ) =

n
∏

i=1

[∆F (Xi)]
δi[1 − F (Xi)]

1−δi , (1.3)

where ∆F (Xi) = F (Xi) − F (X−
i ).

Definition 3. Let ∆Λ(t) = ∆F (t)
1−F (t−)

be the hazard function for the CDF F (t), with

Λ(t) as the corresponding cumulative hazard function. The EL of Λ is

EL(Λ) =
n
∏

i=1

[∆Λ(Xi)]
δi exp{−Λ(Xi)}. (1.4)

Note that the expression (1.4) is not the exact likelihood function of Λ, but a

Poisson extension of the exact likelihood function; see Murphy (1995) for the details.

It can be shown that among all cumulative distribution functions, the Kaplan-Meier

estimator maximizes the empirical likelihood in expression (1.3), and the Nelson-

Aalen estimator is the nonparametric maximum likelihood estimator (NPMLE) of

Λ in expression (1.4).

Definition 4. For a distribution function F , let Fn be the NPMLE for F0, the true

distribution function. We define the empirical likelihood ratio to be

R(F ) =
L(F )

L(Fn)
, (1.5)

for F ∈ Γ, a set of all distribution functions in ℜ.

Definition 5. Suppose that we are interested in a parameter θ = T (F ) for some

function T of distributions. The profile empirical likelihood ratio function of θ is

R(θ) = sup{R(F )|T (F ) = θ, F ∈ Γ}. (1.6)
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For example, if we are interested in estimating µ, the population mean for

a single-sample inference problem, using only probability distributions wi with
∑n

i=1wi = 1, the profile empirical likelihood ratio function for µ is

R(µ) = max

{

n
∏

i=1

nwi|
n
∑

i=1

wiXi = µ, wi ≥ 0,

n
∑

i=1

wi = 1

}

Theorem 2. Let X1, ..., Xn be i.i.d random variables with distribution function F0.

Let µ0 = E(Xi), and suppose that Var(Xi) <∞. Then −2 log(R(µ0)) converges in

distribution to χ2
1 as n→ ∞.

Proof. See Theorem (2.2) in Owen (2001)

Therefore, the corresponding 100(1−α)% empirical likelihood confidence region

for µ is

{µ| − 2 log(R(µ)) ≤ q1−α}

= {∑n
i=1wiXi| − 2

∑n
i=1 log(nwi) ≤ q1−α, wi ≥ 0,

∑n
i=1wi = 1} .

where q1−α is the 1 − α quantile of the χ2
1 distribution.

Theorem 3. For i.i.d random vectors X1, ..., Xn in ℜd with mean µ0, we can

similarly define the empirical likelihood ratio function R(µ) for the multivariate

mean and the corresponding confidence region. Provided X1, ..., Xn have a finite

variance-covariance matrix with rank q > 0, −2 logR(µ0) converges in distribution

to a χ2
q random variable as n→ ∞.

Proof. See Theorem (3.2) in Owen (2001).
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Since estimating equations are widely used for estimating population parameters

and deriving the corresponding statistics, we next consider combining empirical

likelihood with estimating equations.

Let m(X, θ) = 0 be an estimating equation for θ0. Define

R(θ) = max

{

n
∏

i=1

nwi|
n
∑

i=1

wim(Xi, θ) = 0, wi ≥ 0,

n
∑

i=1

wi = 1

}

to be the empirical likelihood ratio function for θ.

Theorem 4. Suppose Var{m(Xi, θ0)} is finite with rank q > 0. If θ0 satisfies

E{m(X, θ0)} = 0, then −2 logR(θ0)
D−→ χ2

q as n→ ∞.

Proof. See Theorem (3.4) in Owen (2001).

Now consider the empirical likelihood for the cumulative hazard function under

the constraint
∫

gn(t, θ)dΛ(t) = 0, where gn(t) is a stochastic function and θ is the

parameter of interest.

Theorem 5. Let T1, ..., Tn be i.i.d lifetimes with CDF F (t) = P (Ti < t), and

C1, ..., Cn be censoring times with CDF G(t) = P (Ci < t) as described in Definition

2. Suppose that gn(t) is a sequence of predictable functions with respect to the

filtration Ft, and gn(t)
P−→ g(t) with

0 <

∫ |g(x)|mdΛ(x)

(1 − F (x))(1 −G(x))
<∞, m = 1, 2.
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Let Λ̂n(t) be the Nelson-Aalen estimator of Λ(t). Then

−2 log
supΛEL(Λ)

EL(Λ̂n(t))

D−→ χ2
1 as n→ ∞.

Proof. See Theorem 2 in Pan and Zhou (2002).

The reminder of this thesis is organized as follows. In chapter 2, we propose

empirical likelihood estimators for diagnostic test likelihood ratios, and obtain the

asymptotic distributions for the corresponding likelihood ratio statistics under cer-

tain regularity conditions. Using simulation studies, we also compare the statistical

properties of these EL estimators to certain natural competitors. In chapter 3 we

derive an empirical likelihood estimator of a baseline cumulative hazard ratio with

respect to covariate adjustments under two nonproportional hazard model assump-

tions. We show that the empirical likelihood ratio statistics each converge in distri-

bution to a χ2 random variable under suitable regularity conditions. Via simulation,

we explore the advantages of this empirical likelihood approach compared to the

usual normal approximation to this problem in statistical inference. We investigate

use of the bootstrap to estimate simultaneous confidence bands for the survival and

cumulative hazard functions in chapter 4. By comparing our EL-based bootstrap

with several natural estimator competitors in terms of coverage probabilities at the

nominal level of 95% in a simulation study, we discover the merits of our method,

especially when the sample sizes are small. We apply this bootstrap method to

the two real datasets and obtain the simultaneous confidence band of the adjusted

cumulative hazard ratios for all t in a time interval of interest. In chapter 5 we

derive an empirical likelihood-based estimator for two-dimensional copulas. Using
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this EL-based estimator we are able to develop a goodness-of-fit test to check the

suitability of a parametric model of interest. In the final chapter, we outline some

avenues for future research involving the empirical likelihood method.
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Chapter 2

Empirical Likelihood for

Diagnostic Test Likelihood Ratios

2.1 Introduction

Diagnostic test likelihood ratios (DLRs), which are important characteristics used

to interpret a diagnostic test outcome, have been reported in the clinical and epi-

demiologic literature for several decades. These ratios provide valuable information

about the predictive properties of a diagnostic test, while having the attractive

feature of being independent of the prevalence of disease in the study population.

For any diagnostic test, we assume there are two subgroups in the study pop-

ulation, the disease-free and diseased individuals, respectively. The diagnostic test

likelihood ratios (DLRs) that correspond to positive and negative outcomes of a

given test are

ρ+ =
Pr(positive test outcome|diseased)

Pr(positive test outcome|disease-free)
=

sensitivity

1-specificity
,
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and

ρ− =
Pr(negative test outcome|diseased)

Pr(negative test outcome|disease-free)
=

1-sensitivity

specificity
.

DLRs are ratios of conditional probabilities that we can use to calculate the pos-

terior odds in favour of disease, given the actual test result and the prior odds. A

value of ρ+ greater than one indicates the degree to which disease is more likely

given a positive test result. A value of ρ− that belongs to the interval (0, 1) indicates

that the patient is less likely to have disease if a negative test result is observed.

For a binary diagnostic test we assume two subpopulations, the disease-free and

diseased groups, labeled 1 and 2, respectively. Let Xi represent the number of

positive diagnostic test results observed in the ni members of group i, (i = 1, 2),

Let 1 − p1 be the test specificity and p2 be the sensitivity; then

ρ+ = p2/p1 and ρ− = (1 − p2)/(1 − p1).

Since

p1 = (1 − ρ−)/(ρ+ − ρ−), p2 = ρ+(1 − ρ−)/(ρ+ − ρ−)

is a 1-1 transformation for ρ+ > 1 and 0 < ρ− < 1, the corresponding log-likelihood

function is

l(ρ+, ρ−) = x2 log ρ+ + (x1 + x2) log(1 − ρ−) − (n1 + n2) log(ρ+ − ρ−)

+(n2 − x2) log ρ− + (n1 + n2 − x1 − x2) log(ρ+ − 1)

10



from which we can obtain MLEs and the information matrix. Furthermore, we can

use score, Wald, or likelihood ratio statistics to obtain marginal confidence intervals

or a joint confidence region for ρ+ and ρ−.

When there are covariates that may influence the accuracy of the diagnostic

test, Leisenring and Pepe (1998) proposed a regression method that allows for

direct assessment of covariate effects on DLRs for binary diagnostic tests. They

used the GEE method to estimate the regression coefficients even for clustered or

unbalanced data. However their method does not accommodate continuous test

results which also commonly arise in practice.

For continuous-scale diagnostic tests we can use parametric, semi-parametric,

and nonparametric methods to estimate the DLRs. But when the model is misspec-

ified, these parametric and semi-parametric estimators can be biased and inefficient.

Therefore, we consider using a nonparametric method to estimate DLRs. Since the

DLRs, regarded as functions of the cdfs from the disease-free and diseased groups

may be smooth, kernel estimation is a natural nonparametric method to consider.

In a study of the receiver operating characteristic (ROC) curve, which is also a

function of the two cdfs from disease-free and diseased groups, Lloyd and Yong

(1999) showed that the kernel estimator for ROC has smaller mean squared errors

than the empirical estimator. This result encouraged us to use a kernel method to

estimate the DLRs. Also, Claeskens et al.(2003) described a smooth empirical like-

lihood method based on kernel estimating equations to obtain an estimator of ROC

that retains a high degree of efficiency and coverage accuracy compared to other

nonparametric estimators. This motivated us to consider adapting their method to

the problem of estimating DLRs.
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Smooth empirical likelihood is a nonparametric method that combines the em-

pirical likelihood function (see Owen, 2001) with kernel estimating equations. It

was first proposed by Zhou and Jing (2003) for estimating differences of quantiles,

and also advocated by other authors. Chen, Peng and Zhao (2009) applied this

approach to copulas. We adapted the smooth empirical likelihood (SEL) method

to estimate DLRs and obtain the SEL estimators and their corresponding asymp-

totic distributions. From simulation studies we found that the SEL estimator is

more efficient than both the kernel and empirical estimators, and the SEL interval

estimate has higher coverage accuracy than its kernel and empirical competitors.

However since the SEL method involves selecting a suitable bandwidth, which is

often a challenging problem, the SEL method has an unavoidable drawback that

may prevent its application in some situations.

To skirt this bandwidth selection problem we next consider combining the em-

pirical likelihood function with non-smooth estimating equations. Since the em-

pirical likelihood method involves a constrained maximization problem, instead of

obtaining nuisance parameter estimates from estimating equations as regular SEL

does, we derived the profile log-likelihood function by solving its dual optimization

problem, which does not need smooth estimating equations. Under certain regular-

ity conditions, we showed that the empirical log-likelihood ratio statistic converges

in distribution to a χ2
1 random variable. A second simulation study demonstrated

that the non-smooth empirical likelihood (NEL) estimator outperforms the corre-

sponding empirical estimator in term of having smaller coverage error, and hence

higher coverage accuracy, especially when the sample sizes are small.

Fan, Huang and Wong (2000) show that the empirical log-likelihood ratio statis-
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tic has a chi-squared limiting distribution only if the limiting distributions of any

nuisance parameter and NEL estimators exist. Using the corollary of Pakes and

Pollard (1989) we showed that the nuisance parameters and NEL estimator have

asymptotic normal distributions, and this justifies the NEL method. Using this

method, we can adopt appropriate estimating functions, such as indicator or quan-

tile functions, without worrying about their smoothness. This extends the applica-

tion of the empirical likelihood method.

2.2 A Smooth Empirical Likelihood Estimator

2.2.1 Notation and Definitions

Suppose that X11, ..., X1n1
and X21, ..., X2n2

are independent random samples from

the disease-free and diseased populations with distribution functions F1 and F2

respectively. Let Gh1
(t) and Gh2

(t) be kernel estimators for F1 and F2 with corre-

sponding bandwidths h1 and h2, where hj = hj(nj) → 0 as nj → ∞ for j = 1, 2.

Without loss of generality we only consider the positive DLR, which we denote

by θ. In the spirit of a binary diagnostic test, θ corresponds to the ratio of test

sensitivity to the false positive rate, i.e., 1− specificity. In order to construct a

smooth empirical estimator of θ, we define p = (p1, ..., pn1
) and q = (q1, ..., qn2

) to

be two probability vectors with
∑n1

i=1 pi = 1 and
∑n2

j=1 qj = 1. Let

F̂h1,p(η) =
∑n1

i=1 piGh1
(η −X1i) and F̂h2,q(η) =

∑n2

j=1 qjGh2
(η −X2j).
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The smooth empirical likelihood of θ is

L(θ) = sup
(p,q,η)

(

n1
∏

i=1

pi)(

n2
∏

j=1

qj), (2.1)

subject to the following constraints:

F̂h1,p(η) =
n1
∑

i=1

piGh1
(η −X1i) = 1 − t, 0 ≤ t ≤ 1 (2.2)

and

F̂h2,q(η) =

n2
∑

j=1

qjGh2
(η −X2j) = 1 − θt, θ > 0. (2.3)

In constraints (2.2) and (2.3), the parameter η represents the fixed threshold that

separates a positive diagnostic test outcome from its negative counterpart, and t

denotes the corresponding false positive rate of the test in the disease-free popula-

tion.

Using Lagrange multipliers, the log-likelihood function under constraints (2.2)

and (2.3), as well as
∑n1

i=1 pi = 1 and
∑n2

j=1 qj = 1, is

l(θ) =

n1
∑

i=1

log(pi) +

n2
∑

j=1

log(qj) + n1λ1{(1 − t) −
n1
∑

i=1

piGh1
(η −X1i)}+

n2λ2{(1 − θt) −
n2
∑

j=1

qjGh2
(η −X2j)} + λ3(1 −

n1
∑

i=1

pi) + λ4(1 −
n2
∑

j=1

qj).

Set ∂l(θ)/∂pi = 0 and ∂l(θ)/∂qj = 0; we get λ3 = n1 − n1λ1(1 − t) , λ4 = n2 −

n2λ2(1 − θt), and
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pi =
1

n1{1 + λ1w1(η,X1i)}
, i = 1, ..., n1,

qj =
1

n2{1 + λ2w2(η,X2j)}
, j = 1, ..., n2,

where

w1(η,X1i) = Gh1
(η −X1i) − (1 − t) and w2(η,X2j) = Gh2

(η −X2j) − (1 − θt).

Then

g1(η, θ) =

n1
∑

i=1

w1(η,X1i)

n1{1 + λ1w1(η,X1i)}
= 0, (2.4)

g2(η, θ) =

n2
∑

j=1

w2(η,X2j)

n2{1 + λ2w2(η,X2j)}
= 0, (2.5)

are estimating equations for θ.

In order to obtain the smooth empirical estimators of θ, we first need to find λ1

and λ2 that satisfy the equations

∂l(θ)/∂λj =

nj
∑

i

wj(η,Xji)

1 + λjwj(η,Xji)
= 0, j = 1, 2, (2.6)

and the constraints 1 + λjwj(η,Xji) > 1/nj, for j = 1, 2, which come from the

probability requirements, 0 ≤ pi ≤ 1 and 0 ≤ qj ≤ 1, for i = 1, ..., n1, j = 1, ..., n2.

Following Owen (2001), the constraint equations for λ1 and λ2 can be solved via

the dual problem of globally minimizing

L∗(λj) = −
nj
∑

i=1

log∗{1 + λjwj(η,Xji)}, j = 1, 2. (2.7)
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where

log∗(z) =

{

log(z), if z ≥ 1/n,

log(1/n) − 1.5 + 2nz − (nz)2/2, if z < 1/n.

Therefore, for a given value of η we can obtain λj = λj(η), j = 1, 2. But η is also a

nuisance parameter. We can eliminate it by l∗(θ) = maxη minλ{
∑2

j=1L∗(λj , θ, η)}

to obtain the profile empirical log-likelihood of θ. Define the empirical log-likelihood

ratio as

ln(θ) = −2{
n1
∑

i=1

log(n1pi) +

n2
∑

j=1

log(n2qj)}.

Then

ln(θ) = 2

2
∑

j=1

nj
∑

i=1

log{1 + λjwj(η,Xji)},

is the profile empirical log-likelihood ratio statistic, and θ̂ = argminθ ln(θ) is the

smooth empirical likelihood estimator of θ.

2.2.2 Point Estimation and Confidence Intervals

We adopt the same conditions (C1-C4) that were identified by Claeskens et al.

(2003). That is, for j = 1, 2 we assume that:

(C1) The density function fj is r smooth in a neighbourhood of η, i.e., there

exists an integer r ≥ 2 such that f
(r−1)
j exists in the neighbourhood of η. Also, fj

is continuous at η and f1(η)f2(η) > 0.

(C2) As min(n1, n2) → ∞, nj/(n1 + n2) → γj, where 0 < γj < 1.

(C3) The kernel Kj is an rth-order (r ≥ 2) kernel satisfying

16



∫

skKj(s)ds =































1, if k = 0,

0, if 1 ≤ k ≤ r − 1,

c 6= 0, if k = r.

(C4) For j = 1, 2, njh
4r
j → 0, and njh

2r
j / lognj → ∞ as nj → ∞.

Note that the smoothness requirements in condition (C1) come from the kernel

estimating equations, and f1(η)f2(η) > 0 guarantees the asymptotic variance of the

estimator has correct order. Condition (C2) requires that the growth rate of the two

sample sizes be balancing, i.e., one sample size cannot grow too fast to dominate the

other sample size. Condition (C3) gives the form of kernel functions that are usually

used in nonparametric estimation of densities. Finally, condition (C4) assures the

convergence rate of estimates of any nuisance parameter in estimating equations as

well as the convergence rate of the profile empirical log-likelihood ratio.

Theorem 1. Assume that conditions (C1)-(C3) hold, for fixed t, 0 ≤ t ≤ 1. If

n2h
2r
2 → 0, the smooth empirical likelihood estimator θ̂ satisfies

√
n2{θ̂(t) − θ(t)} D−→ N [0, {θ(1 − θt)/t+ n2f

2
2 (η)Var(η̃)/t2}], (2.8)

where Var(η̃) = θ(1−θt)t(1−t)

n1f2

1
(η)θ(1−θt)+n2f2

2
(η)(1−t)

.

Proof. By Qin and Lawless (1994), the log-likelihood of θ under constraints (2.2)

and (2.3) acquires its maximum value at θ̂ in the neighborhood of radius n−1/3 of θ.

Since η = F−1
1 (1−t) = F−1

2 (1−θt), in order to obtain the asymptotic result for θ̂(t)

17



we first consider the bias and variance of η̃, where η̃ = argmaxη minλ{
∑2

j=1L∗(λj, θ, η)}.

Based on Lemma 3 in Claeskens et al. (2003) we have

0 = E[g2(θ)] = E

[

n2
∑

i=1

w2(η̃, X2i, θ)

n2{1 + λ2(η̃)w2(η̃, X2i, θ)}

]

≃ E[w2(η̃, X21, θ)] = F2(η̃) − F2(η) + o(hr
2),

so that E(η̃) − η = o(hr
2).

Similarly, using the approach followed by Claeskens et al. (2003) we obtain

Var(η̃) =
θ(1 − θt)t(1 − t)

n1f 2
1 (η)θ(1 − θt) + n2f 2

2 (η)(1 − t)

Now, consider a Taylor expansion of g2(θ) around θ̂; this yields

g2(θ) ≃
n2
∑

i=1

{

w2(η̂, X2i, θ̂)

n2{1 + λ2(η̂)w2(η̂, X2i, θ̂)}
+

(θ − θ̂)t

n2{1 + λ2(η̂)w2(η̂, X2i, θ̂)}2

}

= 0 +

n2
∑

i=1

(θ − θ̂)t

n2{1 + λ2(η̂)w2(η̂, X2i, θ̂)}2
≃ (θ̂ − θ)t

Therefore, as n2h
2r
2 → 0, θ̂ has an asymptotic normal distribution with mean θ.

Using another Taylor expansion and some results from Claeskens et al. (2003), for

ni → ∞, (i = 1, 2) we can show that

E(g2
2) = 1

n2

2

E[
∑n2

j=1w2(η̃, X2j, θ)
2] + f 2

2 (η)Var(η̃)

= F2(η)(1 − F2(η))/n2 + f 2
2 (η)Var(η̃).

Therefore, the asymptotic variance of the smooth empirical likelihood estimator is
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AV ar(θ̂) = E(g2
2)/t

2 = θ(1 − θt)/n2t+ f 2
2 (η)Var(η̃)/t2

Theorem 2. Under conditions (C1)-(C4), the smooth empirical log-likelihood ratio

ln(θ)
D−→ χ2

1

Proof of the theorem is similar to that provided by Claeskens et al. (2003) so

we do not include it here. Theorem 2 is a smooth nonparametric version of Wilks’

theorem for a DLR. Based on this asymptotic result, we can construct a 100(1−α)%

confidence interval for the smooth empirical likelihood estimator as we show in the

next corollary.

Let Aq1−α = {θ : ln(θ) ≤ q1−α}, where q1−α is the 1 − α quantile of a χ2
1

distribution.

Corollary 1. Under conditions (C1)-(C4),

P (θ ∈ Aq1−α) = 1 − α + o(1).

2.2.3 Simulation Study

In order to compare the accuracy and coverage probability of the smooth em-

pirical likelihood estimator with its natural kernel and empirical competitors, we

generated pseudorandom samples with various sample sizes from known distribu-

tions Fj , j = 1, 2, for the disease-free and diseased populations. We computed the

smooth empirical likelihood estimator of DLR, θ̂(t), for 0 < t < 1, the false positive

probability in the disease-free population.
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Table 2.1: Comparison of the mean squared errors of SEL, KE, EE

The estimated mean squared errors of the smooth empirical likelihood (SEL), kernel (KE) and empirical estimators
(EE) arising from different sample sizes for disease-free (n1) and diseased (n2) groups.

n1 n2 SEL KE EE
50 50 0.140 0.161 1.923
50 90 0.659 0.676 0.675
90 50 0.623 0.637 1.522
100 100 0.0027 0.0029 0.328

First we generated pseudorandom samples from F1 ∼ N(6, 2) and F2 ∼ N(10, 4)

with different sample sizes. We used Gaussian kernels and the bandwidth function

bw.nrd0 in R in all sample settings except for the case of sample sizes n1 = 50, n2 =

90 for which the method of Sheather and Jones (1991) was used to select band-

widths. For ti = i/100, i = 1, 2, ..., 99 we calculated the mean squared errors, based

on the same two samples, for the SEL, kernel and empirical estimators. The study

results are given in Table 2.1.

From Table 2.1 we observe that the smooth empirical likelihood estimator out-

performs the kernel and empirical estimators in all cases. The relative gain in

accuracy of the smooth empirical likelihood estimator compared to the kernel esti-

mator is smaller than the corresponding relative gain with respect to the empirical

estimator except for the case of n1 = 50, n2 = 90. However, the performance of

the smooth empirical likelihood estimator depends on the choice of bandwidths.

In the simulation study we selected Gaussian bandwidths, h1 and h2, that were of

O(n−1/5), which satisfies conditions (C1)-(C4).

To gain a visual impression of the smooth empirical estimator of DLR, we plot

the smooth empirical likelihood estimator vs t for normal samples with sample sizes

(n1, n2) equal to (50, 50), (50, 90) in Figures 2.1 and 2.2 respectively. In Figure 2.3
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Figure 2.1: DLR for normal data with sample sizes n1 = n2 = 50

we show the smooth empirical likelihood estimator for data with F1 ∼ Exp(1/6),

F2 ∼ Exp(1/10) and n1 = n2 = 50.

Figures 2.1 and 2.2 show that the smooth empirical estimator fits normally

distributed data with equal sample sizes very well, and similar datasets with unequal

sample sizes well provided t > 0.2. For data from exponential distributions the fit

is less satisfactory when t < 0.1 but noticeably better when t ≥ 0.4. As we can see

in Figure 2.4, the smooth empirical likelihood estimator is a smooth function of t

while the empirical estimator is distinctly jagged.
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Figure 2.2: DLR for normal data with sample sizes n1 = 50, n2 = 90
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Figure 2.3: DLR for exponential data with sample sizes n1 = n2 = 50
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Figure 2.4: Comparing the SEL and EE estimators of the DLR function for F1 ∼
N(6, 2), F2 ∼ N(10, 4) with n1 = n2 = 50
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To compare the coverage accuracy of interval estimates based on the smooth

empirical likelihood estimator with corresponding kernel and empirical ones, we

conducted a Monte Carlo study using 10,000 pseudorandom samples for each sce-

nario from F1 ∼ N(6, 2) and F2 ∼ N(10, 4) at a nominal confidence level of 95%.

We used the same Gaussian kernel and bandwidth for both the kernel and the

smooth empirical likelihood interval estimates.

Confidence intervals constructed from the empirical estimator of the DLR can

be obtained as follows. The asymptotic variance of the empirical estimator is given

by

V (t) =
θ(1 − θt)

n2t
+

[

f2(η)

f1(η)

]2
(1 − t)

n1t

Replacing θ, η in the above formula by their empirical versions, and using kernel

estimates for fi, i = 1, 2, we can obtain a consistent estimator of V (t), called V̂ (t).

Then the 100(1−α)% confidence interval corresponding to the empirical estimator

is
(

θ̂(t) − zα/2

√

V̂ (t), θ̂(t) + zα/2

√

V̂ (t)

)

where zα/2 is the 1−α/2 quantile of N(0,1). Likewise, if we replace θ, η, fi, i = 1, 2

by their kernel versions, we can obtain an interval estimate based on the kernel es-

timator. By Theorem 2, there are no unknown quantities that arise in constructing

a confidence interval based on the smooth empirical likelihood estimator. There-

fore, we can use Aq1−α = {θ : ln(θ) ≤ q1−α} to obtain a 100(1 − α)% confidence

interval based on the smooth empirical likelihood estimator. Table 2.2 summarizes

the coverage accuracy of interval estimates corresponding to these three estimators

at the nominal level of 95%.
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Table 2.2: Estimated coverage probabilities for SEL, KE, EE

Percentage of estimated coverage accuracy and standard error of 95% confidence intervals for the smooth empirical
likelihood (SEL), kernel (KE) and empirical (EE) estimators with different sample sizes for disease-free (n1) and
diseased (n2)groups.

n1 n2 Method t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
25 25 SEL 93.0 92.8 91.9 90.6 84.9

(.26) (.26) (.27) (.29) (.35)
KE 91.7 92.1 91.5 90.9 89.1

(.28) (.27) (.28) (.29) (.31)
EE 89.8 89.7 87.9 90.7 68.1

(.30) (.30) (.33) (.29) (.47)
20 30 SEL 92.8 93.1 93.1 91.5 86.5

(.26) (.25) (.25) (.28) (.34)
KE 91.6 92.6 92.8 91.1 83.2

(.28) (.26) (.26) (.28) (.37)
EE 89.3 90.1 92.9 90.8 66.6

(.31) (.30) (.26) (.29) (.47)
30 20 SEL 93.9 93.0 90.6 87.9 81.4

(.24) (.26) (.29) (.33) (.39)
KE 92.2 92.1 90.7 88.4 85.2

(.27) (.27) (.29) (.32) (.36)
EE 91.4 94.0 85.9 86.2 58.9

(.28) (.24) (.35) (.34) (.49)
50 50 SEL 92.6 92.6 92.6 91.7 89.9

(.26) (.26) (.26) (.28) (.30)
KE 92.3 93.4 93.3 92.7 94.7

(.27) (.25) (.25) (.26) (.22)
EE 92.1 93.2 93.8 90.2 86.8

(.27) (.25) (.24) (.30) (.34)
100 100 SEL 92.4 92.2 92.0 91.5 92.2

(.26) (.27) (.27) (.28) (.27)
KE 92.7 93.0 92.9 92.8 97.1

(.26) (.26) (.26) (.26) (.17)
EE 93.3 93.6 93.7 92.9 90.5

(.25) (.24) (.24) (.26) (.29)
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From Table 2.2 we notice that the SEL estimator has a higher coverage proba-

bility than either its kernel or empirical competitors in almost every situation when

the sample from a patient group involves fewer than 50 individuals. This observa-

tion is particularly true whenever the false positive probability in the disease-free

group is less than 0.7, which means it ought to apply in most practical situations

involving diagnostic tests. However, if the sample sizes in the disease-free and dis-

eased groups are larger than 50, it appears that the kernel-based estimated coverage

probabilities are closest to the nominal value of 95%, although all three methods

of interval estimation seem somewhat anti-conservative. Of course, the coverage

accuracy of these methods depends on using the optimal bandwidth, which is still

an open problem.

2.2.4 The CA 19-9 Diagnostic Test

We used the smooth empirical likelihood method to analyze data that were first

published by Wieand et al. (1989) concerning CA 19-9 diagnostic test measure-

ments in patients with pancreatic cancer (diseased) or pancreatitis (disease-free).

Point estimates and 95% point-wise interval estimates for the positive DLR are

displayed in Figure 2.5. The kernel functions we used were Gaussian with Gaussian

bandwidths h1 = 0.355 and h2 = 0.857. From the relationship between the posi-

tive and negative DLRs we derived corresponding estimates for the negative DLR

displayed in Figure 2.6.

27



0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

t

D
LR

smooth empirical likelihood estimator
95% confidence interval for the SEL estimator

Figure 2.5: Positive DLR estimator for the CA 19-9 data
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Figure 2.6: Negative DLR estimator for the CA 19-9 data
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2.3 An Empirical Likelihood Method Using Non-

smooth Estimating Equations

Although the smooth empirical likelihood method can deliver a more efficient es-

timator of the DLR with superior coverage accuracy compared to its kernel and

empirical competitors, its performance depends on selecting the proper bandwidth.

This bandwidth selection problem may be difficult in some situations such as un-

equal sample sizes for the disease-free and diseased groups. To avoid this bandwidth

selection problem, we next consider an empirical likelihood method involving non-

smooth estimating equations, based on indicator functions.

Let

F̂1,p(η) =
∑n1

i=1 piI(X1i ≤ η) and F̂2,q(η) =
∑n2

j=1 qjI(X2j ≤ η).

Then the empirical likelihood of θ, the positive DLR, is

L(θ) = sup
(p,q,η)

(

n1
∏

i=1

pi)(

n2
∏

j=1

qj), (2.9)

subject to the constraints

F̂1,p(η) = 1 − t and F̂2,q(η) = 1 − θt, 0 ≤ t ≤ 1, θ > 0.

As before,

pi =
1

n1{1 + λ1w1(η,X1i)}
, i = 1, ..., n1,

qj =
1

n2{1 + λ2w2(η,X2j)}
, j = 1, ..., n2,
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where

w1(η,X1i) = I(X1i ≤ η) − (1 − t), and w2(η,X2j) = I(X2j ≤ η) − (1 − θt).

Then

g1(η, θ) =

n1
∑

i=1

w1(η,X1i)

n1{1 + λ1w1(η,X1i)}
= 0, (2.10)

g2(η, θ) =

n2
∑

j=1

w2(η,X2j)

n2{1 + λ2w2(η,X2j)}
= 0. (2.11)

are the corresponding estimating equations for θ.

Note that for j = 1, 2, gj is a continuous function of λj, so we can make use

of L∗(λj) to obtain λj (see formula (2.7)).With the specific indicator functions, for

given η, let mj(η) =
∑nj

i=1 I(Xji < η) for j = 1, 2. From equations (2.10) and (2.11)

it follows that λ1 = 1
t
[1 − m1(η)

n1(1−t)
] and λ2 = 1

θt
[1 − m2(η)

n2(1−θt)
].

Let η̃ = argmaxη minλ{
∑2

j=1 L∗(λj , θ, η)}. Then θ̂n = argminθ ln(θ) is the

empirical likelihood estimator of θ, where ln(θ) is the profile empirical log-likelihood

ratio

ln(θ) = 2
∑2

j=1

∑nj

i=1 log{1 + λ̃jwj(η̃, Xji)}

= 2{m1(η̃) log m1(η̃)
n1(1−t)

+ [n1 −m1(η̃)] log n1−m1(η̃)
n1t

}

+2{m2(η̃) log m2(η̃)
n2(1−θt)

+ [n2 −m2(η̃)] log n2−m2(η̃)
n2θt

}

= A1 + A2.

(2.12)

Let l(θ) = 2
∑2

j=1

∑nj

i=1E{log(1 + λjwj(η,Xji)}, where λj(η) satisfies

E{ wj(η,Xji)

1 + λjwj(η,Xji)
} = 0, j = 1, 2. (2.13)
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For given θ0, let η0 satisfy (2.13); then l(θ0) = 0, since λ(η0) = 0. Therefore l(θ),

ln(θ0) satisfy the following conditions:

(i) |ln(θ)| ≤ op(1) + infθ∈Θ |ln(θ)|

(ii) ln(θ0) = op(1)

(iii) sup‖θ−θ0‖>δ ‖ln(θ)‖−1 = Op(1)

By theorem (3.1) of Pakes and Pollard (1989), η̃
p−→ η0 as n1, n2 → ∞.

Now assume
∫

X1dF1(X1) < ∞ and
∫

X2dF2(X2) < ∞. By the WLLN, m1(η̃)

has an approximate normal distribution with mean {n1F1(η̃)} and F1(η̃)
p−→ F1(η0),

so m1(η̃)
D−→ N(n1(1− t), n1t(1− t)); likewise m2(η̃)

D−→ N(n2(1− θt), n2θt(1− θt)).

Since A1, A2 are Wilks’ statistics for binomial random variables with parameters

(n1, 1 − t), (n2, 1 − θt), respectively, ln(θ0)
D−→ χ2 with df = 2 − 1 as n1, n2 → ∞

since the parameter η is unknown and is estimated.

Unlike the situation where t, the false positive probability in the disease-free

population is given, it is common in diagnostic testing to define a test result to be

positive if Xji > η, for given η. Then we define

ρ+ =
1 − F2(η)

1 − F1(η)
, ρ− =

F2(η)

F1(η)

In this case t is a nuisance parameter. From the estimating equations (2.10)

and (2.11) we can obtain λ1 = 1
t
[1 − m1(η)

n1(1−t)
], λ2 = 1

θt
[1 − m2(η)

n2(1−θt)
], and t̃ =
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argmaxt minλ{
∑2

j=1L∗(λj , θ, t)}. By the same argument we have ln(θ0)
D−→ χ2

1.

In order to compare the coverage accuracy of confidence intervals obtained from

this empirical likelihood method with the usual normal approximation, we com-

puted the variance of the empirical estimator ρ̂+ = 1−F̂2(η)

1−F̂1(η)
by the delta method as

follows:

V ar(ρ̂+) = exp{log(1 − F2(η)) − log(1 − F1(η))}2{Var[log((1 − F̂2(η))]

+Var[log((1 − F̂1(η))}

=

[

1−F2(η)
1−F1(η)

]2

{ 1
[1−F2(η)]2

Var(1 − F̂2(η)) + 1
[1−F1(η)]2

Var(1 − F̂1(η))}

=

[

1−F2(η)
1−F1(η)

]2

{ F2(η)
n2[1−F2(η)]

+ F1(η)
n1[1−F1(η)]

}

We conducted a second simulation study to compare the estimated coverage

probabilities of 95% confidence intervals using empirical likelihood and the usual

normal approximation. For each sample size we generated 10,000 pseudorandom

samples with F1 ∼ N(6, 2) and F2 ∼ N(10, 4). The simulation results are shown

in Table 2.3. From the table we observe that the empirical likelihood method has

smaller coverage error and therefore higher coverage accuracy than the correspond-

ing normal approximation when η = 4, 6, 8. The coverage errors for both methods

are relatively large when η = 2 because there are few observations that can be used

to estimate ρ+ in that region of the test measurement scale.

2.4 Conclusions

Empirical likelihood, as a nonparametric method of statistical inference, is an ef-

fective tool that can be used to pool information from different data sources to
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Table 2.3: Percentage of estimated coverage probabilities and standard errors of
non-smooth empirical likelihood (NEL) and the corresponding empirical estimator
(EE)

n1 n2 Method η = 2 η = 4 η = 6 η = 8
25 25 NEL 97.5 93.7 94.6 95.0

(.16) (.24) (.23) (.22)
EE 99.8 93.6 94.5 90.3

(.04) (.24) (.23) (.30)
50 50 NEL 93.1 95.0 94.8 94.7

(.25) (.22) (.22) (.22)
EE 98.5 95.9 95.3 91.5

(.12) (.20) (.21) (.28)
50 90 NEL 93.0 94.2 94.7 94.4

(.26) (.23) (.22) (.23)
EE 95.0 94.1 94.4 93.2

(.22) (.24) (.23) (.25)
90 50 NEL 93.1 94.4 94.9 94.5

(.25) (.23) (.22) (.23)
EE 97.6 95.1 95.4 94.4

(.15) (.22) (.21) (.23)
100 100 NEL 93.3 95.1 95.3 94.8

(.25) (.22) (.21) (.22)
EE 96.8 94.7 95.1 94.3

(.18) (.22) (.22) (.23)

produce more accurate point and interval estimators. We employ the empirical

likelihood method to incorporate information from samples of disease-free and dis-

eased subjects to estimate diagnostic likelihood ratios, which are widely used in the

medical and clinical literature.

For continuous-scale diagnostic tests, we combine the empirical likelihood method

with kernel estimating equations to obtain a smooth empirical likelihood estimator

that is more efficient than competing kernel and empirical estimators. Moreover

this smooth empirical likelihood interval estimator has higher coverage accuracy

in small sample settings than its kernel and empirical competitors. However, the

smooth empirical likelihood method involves selecting a suitable bandwidth that

may be a challenging problem in some situations. To avoid this bandwidth selec-
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tion problem, we adopt an empirical likelihood method with non-smooth estimating

equations to estimate DLRs.

The non-smooth empirical likelihood estimator of DLR is an optimization es-

timator, and under certain regularity conditions we show that the empirical log-

likelihood ratio statistic converges to a chi-squared random variable. Our simulation

study demonstrates that the non-smooth empirical likelihood estimator has smaller

coverage errors, and therefore higher coverage accuracy in term of 95% confidence

intervals than the usual normal approximation. By combining empirical likelihood

with non-smooth estimating equations, we have extended the application of empir-

ical likelihood to more general situations in which the estimating equations, such

as those based on quantile or indicator functions, may not be smooth.
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Chapter 3

Empirical Likelihood for

Cumulative Hazard Ratio

Estimation

3.1 Introduction

In medical studies that assess a treatment effect in terms of hazard ratios, the ab-

sence of proportionality can be problematic. To cope with nonproportional hazards

in the Cox regression model, investigators usually assume that the treatment ef-

fect has some smooth functional form over time or perhaps is piece-wise constant.

However, it is generally difficult to assess whether the functional form chosen for

the treatment effect is correct. Moreover, study investigators may be more inter-

ested in the cumulative effect of treatment over time, rather than its instantaneous

value. These considerations motivate us to propose a nonparametric estimator for

the cumulative treatment effect under nonproportional hazards.

Several methods have been proposed in the literature for estimating the ratio of

cumulative hazards in nonparametric settings. Kalbfleisch and Prentice (1981) esti-
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mated an average hazard ratio using a weight function. Schemper (1992) suggested

a covariate-adjusted estimator of the average hazard ratio in the two populations via

a weighted Cox model. Under a nonproportional hazards model, Xu and O’Quigley

(2000) employed a weighted score equation to estimate the average regression effect.

In 2008, Wei and Schaubel proposed an estimator of the ratio of baseline cumulative

hazards in two populations under a stratified Cox model. The resulting estimator

has an asymptotic normal distribution, but the normal approximation-based confi-

dence region is not easy to construct. Moreover it is always symmetric, which may

not be desirable in every situation, and the coverage probability of a 100(1 − α)%

interval estimator for the true cumulative hazard ratio when the sample size is small

is also far below the nominal level (as shown in their simulation studies).

To overcome these limitations of the normal approximation, and improve the

coverage accuracy of the corresponding interval estimates, we used empirical like-

lihood (EL) to derive an interval estimator for the ratio of covariate-adjusted cu-

mulative hazards in two populations. Compared to a normal approximation, our

EL-based confidence region for the cumulative hazard ratio has the the following

advantages: (1) It is easier to construct since there is no need to compute a vari-

ance estimator; (2) It has superb coverage accuracy in small samples; (3) It is not

necessarily symmetric, which enables it to better reflect the shape of the underlying

distribution.

Many authors have investigated the use of EL in time-to-event settings. The

pioneering contributions were due to Kaplan and Meier (1958) and Thomas and

Grunkemeier (1975). Li (1995) and Murphy (1995) provided a theoretical founda-

tion for applications of EL used in survival analysis. Li, Qin and Tiwari (1997) and
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Hollander, McKeague and Yang (1997) derived EL-based confidence intervals for

survival functions using truncated or right-censored data. Wang and Jing (2001)

applied an adjusted EL to the estimation of a class of functionals of the survival

function involving right-censored data. Pan and Zhou (2002) studied statistical

behaviour of the EL ratio statistic for data that may be right censored when the

parameter of interest is a linear functional of the cumulative hazard function. Li and

van Keilegom (2002) extended the pioneering work of Thomas and Grunkemeier

(1975) to the nonparametric regression setting, obtaining confidence intervals and

bands for conditional survival and quantile functions. McKeague and Zhao (2002,

2005) constructed a simultaneous confidence band for the difference or ratio of two

survival functions based on independent right-censored data.

As far as we are aware, no one has describe the use of EL to estimate the ratio of

arbitrary baseline cumulative hazard functions in two populations, in the presence

of covariate adjustments. To address this problem of estimation, we begin with

the Poisson extension of the exact likelihood function for the cumulative hazard

function introduced by Murphy (1995), since it can incorporate the Cox regression

model directly, and thereby allow for covariate adjustment of the cumulative hazard

ratio of interest even when the functional itself is not constant and therefore the

two baseline cumulative hazards are not proportional. In what follows we outline

such a nonparametric estimator, obtaining both point and interval estimates. The

rest of the chapter is structured as follows. In Section 2, we describe the ratio of

arbitrary cumulative hazards in two populations where the adjustment for other

covariate information follows a stratified Cox regression model. In Section 3, we

relax the requirements of the stratified regression model to include the possibility
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of group-specific adjustment for other covariate information. Simulation studies

that investigate the performance of these EL-based estimators compared to the

usual normal approximation are described in section 4. We then illustrate each of

the proposed methods in section 5, using separate datasets concerning the survival

experience of non-Hodgkin’s lymphoma and ovarian cancer patients. The chapter

concludes with some summary remarks.

3.2 Empirical Likelihood Estimation of a Covariate-

adjusted Cumulative Hazard Ratio

Suppose that T11, ..., T1n1
and T21, ..., T2n2

are independent samples of event times

from a well-defined, common origin for populations 1 and 2 with distribution func-

tions F1 and F2, respectively. We refer to group 1 as the reference category, and as-

sume that the cumulative hazard functions for the two groups are not proportional,

i.e., the corresponding ratio is arbitrary, under any right-censoring mechanism.

For j = 1, 2, let Cj1, ..., Cjnj
be independent censoring times with corresponding

distribution functions Gj, j = 1, 2, respectively. We assume that T and C are un-

conditionally independent. The observation time and observed event indicator are

Xji = min(Tji, Cji) and δji = I(Xji ≤ Cji). The function Nji(t) = δjiI(Xji < t)

is the corresponding counting process; the risk indicator is Yji(t) = I(Xji ≥ t).

Thus, the observed data consist of n = n1 +n2 mutually independent vectors, each

consisting of Xji, δji and Zji, a vector of subject-specific covariate information.

For group j, we assume that Tji follows a Cox regression model with hazard
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function

λji(t) = λj0(t) exp(βT
0 Zji), (3.1)

where λj0(t) is an unspecified baseline hazard function, and β0 is an unknown

parameter vector. Under model (3.1), we assume that the hazards are proportional

with respect to the adjustment for covariate information within each group but

not across the groups, which is less restrictive. Note also that we assume the

covariate vector is constant over time. Hence model (3.1) represents a stratified

Cox regression model in which the two strata correspond to the two groups of

interest.

Let β̂ be the partial likelihood (Cox, 1975) estimator of β0, which we obtain by

solving the equation U(β) = 0, where

U(β) =
2
∑

j=1

nj
∑

i=1

∫ ∞

0

{Zji − Z̄j(t, β)}dNji(t),

and

Z̄j(t, β) =

∑nj

i=1 Yji(t)Zji exp(βTZji)
∑nj

i=1 Yji(t) exp(βTZji)
.

We define the parameter of interest to be

θ(t) =
Λ20(t)

Λ10(t)
, (3.2)

where Λj0(t) =
∫ t

0
λj0(s)ds is the baseline cumulative hazard function for group

j. This ratio of the baseline cumulative hazards characterizes any discrepancy in

aggregate response experience between the two groups over the interval (0, t], after
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adjustment for other covariate information. In addition, if the two groups represent

treatment levels, then equation (3.1) implies that θ(t) reflects the contrast effect of

treatment between subjects whose covariate information is identical.

To simplify subsequent notation, we will suppress the time-dependence of θ(t)

and just refer to θ. If we adopt the usual normal approximation, then

θ̂ =
Λ̂20(β̂, t)

Λ̂10(β̂, t)
, (3.3)

where Λ̂j0(β̂, t) is the Breslow (1972) estimator

Λ̂j0(β̂, t) =
1

nj

nj
∑

i=1

∫ t

0

dNji(s)

S0
j (s, β̂)

j = 1, 2. (3.4)

Here, S0
j (t, β̂) = n−1

j

∑nj

i=1 Yji(t) exp(β̂TZji).

To derive an empirical likelihood estimator for θ(t) we first consider the two

likelihood functions

EL(Λj) =

nj
∏

i=1

[△Λj(Xji)]
δji exp(−Λj(Xji)) j = 1, 2, (3.5)

for the two cumulative hazards, Λ1(t) and Λ2(t), where △Λj(x) =
△Fj(x)

1−Fj(x−)
. Note

the likelihood function specified in equation (3.5) is not the exact likelihood function

but the Poisson extension of the likelihood; see Murphy (1995) for details.

Without loss of generality, we assume that Xj1 ≤ Xj2 ≤ ... ≤ Xjnj
, for j =

1, 2. Let w0
ji = dNji(Xji)/{njS

0
j (Xji, β̂)} be the hazard increment for the Breslow

estimator. To define empirical likelihood hazard increments {pi}, {qk}, for i =
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1, ..., n1, k = 1, ..., n2, we force the last increase in the estimated cumulative hazard

function to be the same as that of the Breslow increment, i.e., pn1
= w0

1n1
and qn2

=

w0
2n2
. This follows from the definition of △Λj(x) =

△Fj(x)

1−Fj(x−)
, which requires the last

jump of a proper discrete cumulative hazard function to be 1. Correspondingly,

the last observation for the Breslow dominated discrete cumulative hazard function

has the same jump as the Breslow estimator.

Therefore, after covariate adjustment the empirical likelihood of θ is:

EL(θ) = sup
(p,q,η)

(

n1
∏

i=1

[pi exp(β̂TZ1i)]
δ1i exp{−(

i
∑

m=1

pm) · exp(β̂TZ1i)}
)

·

(

n2
∏

k=1

[qk exp(β̂TZ2k)]
δ2k exp{−(

k
∑

m=1

qm) · exp(β̂TZ2k)}
)

, (3.6)

subject to the following constraints:

n1−1
∑

i=1

δ1iI(X1i ≤ t) · pi + δ1n1
I(X1n1

≤ t) · pn1
= η, (3.7)

n2−1
∑

k=1

δ2kI(X2k ≤ t) · qk + δ2n2
I(X2n2

≤ t) · qn2
= η · θ, (3.8)

where pi > 0, qk > 0, i = 1, ...n1, k = 1, ..., n2, which satisfies the usual require-

ments for a hazard increment.

Although it is possible to estimate β and θ jointly, the focus of scientific interest

is the ratio of the baseline cumulative hazard functions, and the values of β should

not be associated with the value of θ. Instead, estimates of β should be evalu-

ated independently, using relevant information collected in each group of subjects.
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Therefore, here we have adopted a commonly-used estimator, the maximum partial

likelihood estimator as the estimator of β. Using this fixed value of β, we can then

derive an interval estimate of the ratio of baseline cumulative hazard functions that

is our primary focus. This approach is reinforced by the results of Johansen (1983),

who demonstrated that the Nelson-Aalen estimator is the profile estimator of the

baseline cumulative hazard function when the vector of regression coefficients, β,

is fixed. In the same paper Johansen also showed that to estimate β, we should

maximize the familiar partial likelihood function of Cox (1975).

Using the Lagrange multipliers ξ1 and ξ2, we can represent the empirical log-

likelihood of θ under constraints (3.7) and (3.8) by,

l(θ) =

n1
∑

i=1

δ1i[log(pi) + β̂TZ1i] −
n1
∑

i=1

{(
i
∑

m=1

pm) · exp(β̂TZ1i)}+

n2
∑

k=1

δ2k[log(qk) + β̂TZ2k] −
n2
∑

k=1

{(
k
∑

m=1

qm) · exp(β̂TZ2k)}+

n1ξ1{
n1−1
∑

i=1

δ1iI(X1i ≤ t) · pi + δ1n1
I(X1n1

≤ t) · pn1
− η}+

n2ξ2{
n2−1
∑

k=1

δ2kI(X2k ≤ t) · qk + δ2n2
I(X2n2

≤ t) · qn2
− η · θ}. (3.9)

From the score equations ∂l(θ)/∂pi = 0 and ∂l(θ)/∂qk = 0 we obtain, for i =

1, ..., n1 − 1, k = 1, ..., n2 − 1,
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pi =
δ1i

∑n1

m=i exp(β̂TZ1m) + n1ξ1δ1iI(X1i ≤ t)

=
δ1i

∑n1

m=i exp(β̂TZ1m)
· 1

1 + n1ξ1δ1iI(X1i ≤ t)/
∑n1

m=i exp(β̂TZ1m)

= w0
1i ·

1

1 + n1ξ1δ1iI(X1i ≤ t)/
∑n1

m=i exp(β̂TZ1m)
,

qk =
δ2k

∑n2

m=k exp(β̂TZ2m) + n2ξ2δ2kI(X2k ≤ t)

=
δ2k

∑n2

m=k exp(β̂TZ2m)
· 1

1 + n2ξ2δ2kI(X2k ≤ t)/
∑n2

m=k exp(β̂TZ2m)

= w0
2k ·

1

1 + n2ξ2δ2kI(X2k ≤ t)/
∑n2

m=k exp(β̂TZ2m)
,

where w0
1i = δ1i

∑n1

m=i exp(β̂T Z1m)
, w0

2k = δ2k
∑n2

m=k exp(β̂T Z2m)
are the Breslow (1972) cumu-

lative hazard increments, and ξ1 and ξ2 satisfy constraints (3.7) and (3.8). For any

fixed value of θ, by substituting these expressions for pi and qk into constraints

(3.7) and (3.8), we can obtain ξ1 = ξ1(η), ξ2 = ξ2(η). Then if we substitute ξ1, ξ2,

pi and qk as functions of η into the log-likelihood function we obtain the profile

log-likelihood function of (θ, η)

l(θ, η) =
n1
∑

i=1

δ1i[log(pi) + β̂TZ1i] −
n1
∑

i=1

{(
i
∑

m=1

pm) · exp(β̂TZ1i)}+

n2
∑

k=1

δ2k[log(qj) + β̂TZ2k] −
n2
∑

k=1

{(
k
∑

m=1

qm) · exp(β̂TZ2k)}. (3.10)

Let η̂ = argmaxη l(θ, η), and ln(θ) = l(θ, η̂); then ln(θ) is the empirical log-
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likelihood function of θ and θ̂ = argmaxθ ln(θ) is the empirical likelihood estimator

of the cumulative hazard ratio θ(t) after the covariate adjustment.

Without constraints (3.7) and (3.8), the log-likelihood function with covariate

adjustment is maximized by the Breslow cumulative hazard increments w0
ji, i =

1, 2, ...nj, j = 1, 2, and is equal to

l0 =
n1
∑

i=1

δ1i[log(w0
1i) + β̂TZ1i] −

n1
∑

i=1

{
n1
∑

m=i

exp(β̂TZ1m)w0
1i} +

n2
∑

k=1

δ2k[log(w0
2k) + β̂TZ2k] −

n2
∑

k=1

{
n2
∑

m=k

exp(β̂TZ2m)w0
2k}.

Therefore, the empirical log-likelihood ratio is lE(θ) = ln(θ) − l0.

3.2.1 Asymptotic Properties

To study the limiting distribution of the profile empirical log-likelihood ratio of θ,

we assume the following regularity conditions hold for subjects in group j, j = 1, 2

(C1) The observed data (Xj, δj , Zj) are independent and identically distributed

random vectors.

(C2) Zji is bounded for all i = 1, ..., nj.

(C3)
∫ τ

0
λj0(s)ds <∞ for some prespecified time point τ .

(C4) s0
j(t, β), which is the limiting value of S0

j (t, β) as nj → ∞, is bounded away

from 0 for t ∈ [0, τ ] and β in a neighborhood of β0, the true value of the regression

parameter in model (3.1).
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Let h(x) = I(x ≤ t), and write

Aji =
δjih(Xji)

∑nj

m=i exp(β̂TZjm)/nj

.

Lemma 1. Under regularity conditions (C1)-(C4), the solutions of constraint (3.7)

for ξ1 and (3.8) for ξ2 satisfy

ξ1 =
1/n1

∑n1

i=1A1i − η̂

1/n1

∑n1−1
i=1 A2

1i

+ op(n
−1/2
1 ),

ξ2 =
1/n2

∑n2

i=1A2i − θη̂

1/n2

∑n2−1
i=1 A2

2i

+ op(n
−1/2
2 ).

Therefore,

√
njξj

D−→ N(0, [σ2
j (h)]

−1),

where σ2
j (h) =

∫ h2(x)dΛj0(x)

s0

j (x,β0)(1−Gj (x))
.

Proof. Apply Lemma 1 of Pan and Zhou (2002) to ξj, j = 1, 2.

Theorem 1. Under regularity conditions (C1)-(C4), the empirical log-likelihood

ratio lE(θ) satisfies −2lE(θ)
D−→ χ2

1.

Proof. Note that

pi = w0
1i · 1

1+ξ1A1i
, i = 1, ..., n1 − 1

= w0
1n1
, i = n1

qk = w0
2k · 1

1+ξ2A2k
, k = 1, ..., n2 − 1

= w0
2n2
, k = n2
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Thus, we can rewrite ln(θ) in terms of w0
ji as follows:

ln(θ) =

n1
∑

i=1

δ1i[log(pi) + β̂TZ1i] −
n1
∑

i=1

(

n1
∑

m=i

exp{β̂TZ1m}) · pi +

n2
∑

k=1

δ2k[log(qk) + β̂TZ2k] −
n2
∑

k=1

(

n2
∑

m=k

exp{β̂TZ2m}) · qk

=

n1−1
∑

i=1

δ1i log(
w0

1i

1 + ξ1A1i
) +

n1
∑

i=1

δ1iβ̂
TZ1i −

n1−1
∑

i=1

{
n1
∑

m=i

exp(β̂TZ1m)
w0

1i

1 + ξ1A1i
} +

δ1n1
log(w0

1n1
) − w0

1n1
exp(β̂TZ1n1

) +

n2−1
∑

k=1

δ2k log(
w0

2k

1 + ξ2A2k

) +

n2
∑

k=1

δ2kβ̂
TZ2k −

n2−1
∑

k=1

{
n2
∑

m=k

exp(β̂TZ2m)
w0

2k

1 + ξ2A2k
} + δ2n2

log(w0
2n2

) − w0
2n2

exp(β̂TZ2n2
).

Without constraints (3.7) and (3.8), the maximized value of the log-likelihood func-

tion with covariate adjustment is:

l0 =

n1
∑

i=1

δ1i[log(w0
1i) + β̂TZ1i] −

n1
∑

i=1

{
n1
∑

m=i

exp(β̂TZ1m)w0
1i} +

n2
∑

k=1

δ2k[log(w0
2k) + β̂TZ2k] −

n2
∑

k=1

{
n2
∑

m=k

exp(β̂TZ2m)w0
2k}.

Therefore, the logarithmic profile empirical likelihood ratio for θ is

ln(θ) − l0 =

n1−1
∑

i=1

δ1i log(
1

1 + ξ1A1i
) −

n1−1
∑

i=1

{
n1
∑

m=i

exp(β̂TZ1m)(
w0

1i

1 + ξ1A1i
− w0

1i)} +

n2−1
∑

k=1

δ2k log(
1

1 + ξ2A2k

) −
n2−1
∑

k=1

{
n2
∑

m=k

exp(β̂TZ2m)(
w0

2k

1 + ξ2A2k

− w0
2k}.
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Since

w0
ji =

δji
∑nj

m=i exp(β̂TZjm)
,

we can use the Taylor expansions of 1
1+x

= 1 − x + x2 + O(x3) and log(1 + x) =

x− 1
2
x2 +O(x3) to obtain

ln(θ) − l0 =

n1−1
∑

i=1

δ1i log(
1

1 + ξ1A1i
) +

n1−1
∑

i=1

{δ1iξ1A1i − δ1i(ξ1A1i)
2 +Op(|ξ1A1i|3)} +

n2−1
∑

k=1

δ2k log(
1

1 + ξ2A2k
) +

n2−1
∑

k=1

{δ2kξ2A2k − δ2k(ξ2A2k)
2 +Op(|ξ2A2k)|3}

= −
n1−1
∑

i=1

[
1

2
δ1i(ξ1A1i)

2 +Op(|ξ1A1i|3)] −
n2−1
∑

k=1

[
1

2
δ2k(ξ2A2k)

2 +Op(|ξ2A2k|3)].

Since δjiAji = Aji, we have

− 2(ln(θ) − l0) =

n1−1
∑

i=1

{ξ2
1A

2
1i +Op(|ξ1A1i|3)} +

n2−1
∑

k=1

{ξ2
2A

2
2k + Op(|ξ2A2k|3)} (3.11)

where

nj−1
∑

i=1

Op(|ξjAji|3) ≤ Op(|ξj|3)Op(max |Aji|)
nj−1
∑

i=1

A2
ji

≤ Op(n
− 1

2

j )op(n
1

2

j ) · 1

nj

nj−1
∑

i=1

A2
ji

= op(1) as nj → ∞.
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Also, as nj → ∞, β̂
p−→ β0; therefore,

1

nj

nj−1
∑

i=1

A2
ji =

1

nj

nj
∑

i=1

A2
ji =

∫

h2(Xji)w
0
ji

∑nj

k=1 exp(β̂TZjk)/nj

p−→
∫

h2(x)dΛj0(x)

s0
j(x, β0)(1 −Gj(x))

<∞.

And from Lemma 1,

ξ1 =
1/n1

∑n1

i=1A1i − η̂

1/n1

∑n1−1
i=1 A2

1i

+ op(n
−1/2
1 ),

ξ2 =
1/n2

∑n2

i=1A2i − θη̂

1/n2

∑n2−1
i=1 A2

2i

+ op(n
−1/2
2 ).

By Theorem (3.1) of Pakes and Pollard (1989) we have η̂
p−→ η. Therefore, by

Slutsky’s theorem, each term of expression (3.11) converges in distribution to a χ2
1

random variable. However since we are profiling with respect to the variable η,

the logarithmic profile empirical likelihood ratio satisfies −2(ln(θ)− l0)
D−→ χ2 with

2 − 1 = 1 degree of freedom.

3.3 Empirical Likelihood Estimation of a Group-

specific Covariate-adjusted Cumulative Haz-

ard Ratio

Instead of assuming that the covariate effects are the same for both groups of sub-

jects, we now consider situations in which the covariate adjustments in each group

are different. For example, patients with the same blood pressure level may expe-

rience differential effects on their respective times to response. For these situations
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we consider the model

λji(t) = λj0(t) exp(βT
j Zji) (3.12)

for i = 1, 2, ..., nj and j = 1, 2. Note that β1 6= β2 so that the assumed model is no

longer a stratified proportional hazards regression model but one with a different

covariate adjustment within each group of subjects.

Let β̂j be the regression estimator for this PH model in group j. Then the

cumulative hazard ratio after covariate adjustment is

θ(t) =
Λ20(t)

Λ10(t)
. (3.13)

The usual estimator based on a normal approximation is

θ̂(t) =
Λ̂20(β̂2, t)

Λ̂10(β̂1, t)
, (3.14)

where Λ̂j0(β̂j, t) is the Breslow (1972) estimator.

If we replace the value of β̂ associated with group j by β̂j in expression (3.6),

we obtain a profile empirical likelihood function for θ after covariate adjustment,

which is

EL(θ) = sup
(p,q,η)

(

n1
∏

i=1

[pi exp(β̂T
1 Z1i)]

δ1i exp{−(

i
∑

m=1

pm) · exp(β̂T
1 Z1i)}

)

·

(

n2
∏

k=1

[qk exp(β̂T
2 Z2k)]

δ2k exp{−(
k
∑

m=1

qm) · exp(β̂T
2 Z2k)}

)

, (3.15)

subject to constraints (3.7) and (3.8) as well as pi > 0, qk > 0, i = 1, ..., n1, k =
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1, ..., n2.

By simply adapting our previous results for i = 1, ..., n1 − 1, k = 1, ..., n2 − 1,

we have

pi =
δ1i

∑n1

m=i exp(β̂T
1 Z1m) + n1λ1δ1iI(X1i ≤ t)

=
δ1i

∑n1

m=i exp(β̂T
1 Z1m)

· 1

1 + n1λ1δ1iI(X1i ≤ t)/
∑n1

m=i exp(β̂T
1 Z1m)

= w0
1i ·

1

1 + n1λ1δ1iI(X1i ≤ t)/
∑n1

m=i exp(β̂T
1 Z1m)

,

qk =
δ2k

∑n2

m=k exp(β̂T
2 Z2m) + n2λ2δ2kI(X2k ≤ t)

=
δ2k

∑n2

m=k exp(β̂T
2 Z2m)

· 1

1 + n2λ2δ2kI(X2k ≤ t)/
∑n2

m=k exp(β̂T
2 Z2m)

= w0
2k ·

1

1 + n2λ2δ2kI(X2k ≤ t)/
∑n2

m=k exp(β̂T
2 Z2m)

.

Substituting pi and qk into the empirical log-likelihood function for θ we obtain

l(θ, η) =

n1
∑

i=1

δ1i[log(pi) + β̂T
1 Z1i] −

n1
∑

i=1

{
i
∑

m=1

pm · exp(β̂T
1 Z1i)}+

n2
∑

k=1

δ2k[log(qj) + β̂T
2 Z2k] −

n2
∑

k=1

{
k
∑

m=1

qm · exp(β̂T
2 Z2k)}. (3.16)

Let ln(θ) = maxη l(θ, η); then ln(θ) is the profile empirical log-likelihood function of

θ, and η̂ = argmaxη l(θ, η). Clearly, the empirical likelihood estimator for the cumu-

lative hazard ratio θ under group-specific covariate adjustment is θ̂ = argmaxθ ln(θ).

As in the previous section, we define the empirical log-likelihood ratio lE(θ) =

51



ln(θ) − l0, where

l0 =

n1
∑

i=1

δ1i[log(w0
1i) + β̂T

1 Z1i] −
n1
∑

i=1

{(
n1
∑

m=i

exp(β̂T
1 Z1m)w0

1i} +

n2
∑

k=1

δ2k[log(w0
2k) + β̂T

2 Z2k] −
n2
∑

k=1

{(
n2
∑

m=k

exp(β̂T
2 Z2m)w0

2k)}.

Note that w0
ji = dNji(Xji)/{njS

0
j (Xji, β̂j)} for i = 1, 2, ..., nj, and j = 1, 2.

To derive the asymptotic distribution of ln(θ) we need to modify regularity

condition (C4) to require

(C4)′ s0
j(t, β), which is the limiting value of S0

j (t, β) as nj → ∞, is bounded away

from 0 for t ∈ [0, τ ] and β in a neighborhood of βj, the true value of the vector of

regression coefficients in model (3.12).

Theorem 2. Under regularity conditions (C1) − (C3) and (C4)′, the empirical

log-likelihood ratio lE(θ) satisfies −2lE(θ)
D−→ χ2

1.

Proof. As we previously showed in the proof of Theorem 1, the analog of the first

and second terms in the expansion of lE(θ) each converge independently to a χ2
1

random variable. However, since the parameter of interest is a scalar quantity for

each fixed value of t, we estimated θ by profiling the joint empirical likelihood

function with respect to the value of η. Thus, the logarithmic profile empirical

likelihood ratio, −2lE(θ) = −2(ln(θ) − l0), has a limiting distribution that is χ2
1 as

nj → ∞, j = 1, 2.

Using the empirical log-likelihood ratio statistic we can construct the 100(1 −
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α)% confidence interval,

I1−α = {θ : −2lE(θ) ≤ q1,(1−α)}

for θ, where q1,(1−α) denotes the (1 − α)-quantile of χ2
1.

3.4 Simulation Study for the EL-based Estimator

of the Cumulative Hazard Ratio Under the

Stratified Model

Wei and Schaubel (2008) investigated the properties of the normal approximation

for obtaining point estimates and point-wise interval estimates of the covariate-

adjusted cumulative hazard ratio for treatment effect. However when the sample

sizes are small, i.e., n1 + n2 = 50, the estimated coverage probability of their 95%

confidence interval is no more than 92%. To compare the coverage accuracy of our

empirical likelihood estimator with their normal approximation at a nominal level

of 95%, we adopted the same simulation design that they described.

Let Tji, i = 1, ..., nj, j = 1, 2, be the event times. These are generated via the

transformation

Tji = {− log(Uji)/[αj exp(β0Zji)]}1/γj

where Uji is a uniform (0, 1) random variable, β0 = 0.5, Zji ∼ Bernoulli(0.5). In
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this set-up, {Tji} follows a Weibull distribution with hazard function

λji(t) = αjγjt
γj−1 exp(β0Zji).

Therefore, within each of the two strata, the hazards that correspond to distinct

values of Z are proportional. By choosing different values of γj, j = 1, 2, we ensure

that the baseline hazard functions for the two groups will not be proportional. Let

the censoring times Cji ∼ uniform(2.5, 5). By varying the value of αj we can adjust

the proportion of censoring. For sample sizes n = 50, 70, 100, 200, 500, we used

the Monte Carlo method to generate 1000 replicate samples, each involving a total

of n observations. From each replicate sample we calculated the point-wise 95%

confidence interval at the 75th percentile of the combined observation times in the

two groups. The study results are summarized in Table 3.1 as estimated coverage

probabilities for the resulting interval estimates.

The results in Table 3.1 show that our empirical likelihood estimator has an

estimated coverage probability that is closer to the nominal value of 95% than the

corresponding value for the normal approximation reported by Wei and Schaubel

(2008), when the sample size is small. Wei and Schaubel (2008) reported that

when the total sample size is 50, the estimated coverage probability of their normal

approximation is no more than 92%. Clearly, the empirical likelihood estimator

has an estimated coverage probability very close to the nominal level of 95%, even

when a high proportion of the observations are right censored (say 40%). Also,

unlike the symmetric interval estimates generated via the normal approximation,

the confidence regions produced by the empirical likelihood method directly reflect
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Table 3.1: Estimated coverage probabilities for adjusted cumulative hazard ratio
interval estimates of treatment effect, at a nominal level of 95%. C% represents
percent censored; C.P. represents coverage probability.

γ1 γ2 α1 α2 n1 n2 C% C.P.
1.4 1.2 0.4 0.35 25 25 0% 94.6%

30 40 0% 95.7%
50 50 0% 94.4%
100 100 0% 94.5%
250 250 0% 94.8%

1.4 1.2 0.4 0.35 25 25 10% 95.1%
30 40 10% 94.1%
50 50 10% 94.4%
100 100 10% 94.6%
250 250 10% 95.0%

1 1.5 0.2 0.1 25 25 40% 93.7%
30 40 40% 94.1%
50 50 40% 94.9%
100 100 40% 94.9%
250 250 40% 95.0%

the shape of the data, which should be more appropriate in practice.

Since Wei and Schaubel (2008) also consider the log-transformation to improve

the coverage probability when the sample is small, we compare it with our EL

method in terms of coverage accuracy and average length of the estimated cumu-

lative hazard ratio at the 75th percentile of the total observation time under a

stratified model when the total sample size is 50. The results are given in Table

3.2. From these simulation results we find that the EL method has better coverage

accuracy and a slightly wider confidence interval than the log transformation, and

both of methods of estimation outperform the usual normal transformation.
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Table 3.2: Estimated coverage probabilities and average lengths (in parentheses)
for adjusted cumulative hazard ratio interval estimates of treatment effect under a
stratified model, at a nominal level of 95%. C% represents percent censored; Log
represents the logarithmic ratio; EL represents the empirical likelihood.

γ1 γ2 α1 α2 n1 n2 C% Log EL
1.4 1.2 0.4 0.35 25 25 0% 94.7%(1.062) 94.9%(1.091)
1.4 1.2 0.4 0.35 25 25 10% 94.6%(1.116) 94.9%(1.141)
1 1.5 0.2 0.1 25 25 40% 94.5%(1.811) 94.9%(1.842)

3.5 Simulation Study for the EL-based Estima-

tor of the Group-Specific Cumulative Hazard

Ratio

To investigate the coverage probability of the group-specific covariate adjustment

method that we described in §3.3, we used the same simulation set-up as we de-

scribed above, except that β1 = 0.5 and β2 = 1.5. We obtained the estimated

coverage probabilities of 95% confidence intervals based on the empirical likelihood

estimator with total sample sizes 50, 100, 200, 500. The simulation results are sum-

marized in Table 3.3.

Since the maximum partial likelihood estimator used in the group-specific ad-

justment specified in formula (3.12) is evaluated separately in each of the groups, we

should anticipate some loss of efficiency compared to the results that we obtained

when covariate adjustment is based on a stratified proportional hazards regression

model. Therefore, it is not surprising that the estimated coverage probabilities for

the empirical likelihood estimator of θ summarized in Table 3.3 are noticeably lower
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Table 3.3: Estimated coverage probabilities for group-specific adjusted cumulative
hazard ratio interval estimates of treatment effect, at a nominal level of 95%. C%
represents percent censored; C.P. represents coverage probability.

γ1 γ2 α1 α2 n1 n2 C% C.P.
1.4 1.2 0.4 0.35 25 25 0% 88.6%

50 50 0% 89.1%
100 100 0% 89.1%
250 250 0% 89.4%

1.4 1.2 0.4 0.35 25 25 9% 87.6%
50 50 9% 90.2%
100 100 9% 89.6%
250 250 9% 90.3%

1 1.5 0.115 0.1 25 25 40% 81.0%
50 50 40% 82.2%
100 100 40% 81.3%
250 250 40% 82.4%

than the corresponding values that we report in Table 3.1. In addition, it appears

that the statistical behaviour of our empirical likelihood estimator is more sensitive

to the effects of right censoring. In particular, when right censoring of the data is

severe, e.g., 40%, coverage errors increase markedly.

However, since empirical likelihood is Bartlett correctable, we can use the boot-

strap method to derive a null distribution that provides better calibration for the

empirical likelihood estimator with group-specific covariate adjustment.

3.5.1 Bartlett Correction

As one of key properties of empirical likelihood, Bartlett correction is a delicate

second-order property, implying that a simple mean adjustment to the likelihood
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ratio can improve the approximation to the limiting chi-square distribution by one

order of magnitude. Therefore, it can be used to enhance the coverage accuracy of

likelihood-based confidence regions. In the context of testing hypotheses, Bartlett

correction reduces the errors between the nominal and actual significant levels of

an EL-based test.

Following the arguments in the previous sections, we have

P{−2lE(θ) < z} = P (χ2
1 < z) +O(n−1)

Using the Edgeworth expansion of the test statistic −2lE(θ), we can obtain an

adjustment a such that

P{−2lE(θ) < (1 + an−1)z} = P (χ2
1 < z) +O(n−2)

The exact formula for a can be very complex. However, we can use the bootstrap

method suggested by Chen and Cui (2007) to obtain â, an estimator of a, to improve

the coverage accuracy of θ at a specified significance level of α.

To implement Bartlett correction in a general situation, the adjustment value

a has to be estimated. Due to the complexity of the Edgeworth expansion, the

formula for a can be lengthy; therefore, we adapt the following bootstrap estimator

γ̂ = 1 + ân−1 to replace (1 + an−1) in Bartlett correction.

Step 1: Generate a bootstrap resample (X∗
i , Y

∗
i )n

i=1 by sampling with replace-

ment from the original sample (Xi, Yi)
n
i=1 and compute d∗(θ̂) = −2l∗E(θ̂), where θ̂

is the empirical likelihood estimator based on the original sample, and l∗ is the
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logarithm of the empirical likelihood ratio based on the bootstrap sample.

Step 2: For a large integer B, repeat Step 1 B times and obtain d∗1(θ̂), ..., d
∗
B(θ̂).

Then γ̂ = 1/B
∑B

i=1 d
∗
i (θ̂).

Following standard bootstrap arguments, (see Hall (1992) for details), we have

E(γ̂) = (1 + an−1){1 +Op(n
−1/2)}.

Therefore, γ̂ is a
√
n−consistent estimator of (1+an−1). The corresponding critical

region based on Bartlett correction is

IBC = {θ : l(θ) > γ̂q1,(1−α)}.

The above use of the bootstrap to estimate γ can be computationally intensive

when B is large. Instead of using the bootstrap for γ̂, one can use a bootstrap

quantile to calibrate the logarithm of the empirical likelihood ratio directly. Let

q̂b,(1−α) be the ([B(1−α)]+1) ordered value of −2l∗E(θ̂)B
i=1. Then a direct bootstrap

critical region at a nominal level α is IB = {θ : −2lE(θ) > q̂b,(1−α)}.

3.5.2 EL-based Bootstrap

The bootstrap method of inference was first introduced by Efron (1979) for com-

plete data, and then by Efron (1981) and Reid (1981) for censored data. Using

simulation studies, Efron (1982) showed that confidence intervals produced by the

bootstrap method are more accurate than those based on the asymptotic distribu-

tions of parameter estimators. Akritas(1986) investigated the bootstrapping of the
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Kaplan-Meier estimator and found that the bootstrap confidence band has more

accurate coverage than the Hall-Wellner (HW) band, especially in small sample sce-

narios. In our problem setting involving a group-specific cumulative treatment ef-

fect, following Chen and Cui (2007), our EL-based bootstrap method approximates

Bartlett correction under certain regularity conditions. Therefore, we should ex-

pect to reduce the coverage errors to O(n−2), and correspondingly observe improved

coverage accuracy for EL-based confidence intervals of the cumulative hazard ratio

with covariate adjustments.

For the given sample (Xj1, δj1), . . . , (Xjnj
, δjnj

), j = 1, 2, let θ̂ be the point

estimate of the group-specific covariate-adjusted baseline cumulative hazard ratio,

where β̂j is the estimated regression parameter for group j. Following Efron (1981),

we take a bootstrap sample (X∗
j1, δ

∗
j1), . . . , (X

∗
jnj
, δ∗jnj

) for each of the two groups

by associating the probability mass n−1
j with each of the observed pairs in a group,

and then drawing a bootstrap sample of size nj , with replacement, from the data

for group j.

From each pair of bootstrap samples from the two groups, we calculate the

corresponding value of the profile empirical log-likelihood ratio l∗E(θ̂). Repeating

this series of bootstrap sample calculations B times generates a bootstrap sampling

distribution for the logarithmic profile empirical likelihood ratio. By extracting the

100(1 − α)% quantile from this bootstrap distribution and using it as the critical

value, we can generate a corresponding pointwise 100(1 − α)% confidence interval

for θ(t).

Simulation results for this bootstrap procedure are summarized in Table 3.4

in terms of estimated coverage probabilities for approximate 95% confidence inter-
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vals. Evidently, using critical values from the bootstrap sampling distribution leads

to noticeable improvements in the coverage accuracy of our empirical likelihood-

based procedure in this group-specific covariate adjustment problem setting. The

estimated coverage probabilities are very close to the nominal value of 0.95 except

when the proportion of censored observations is fairly substantial, e.g., roughly 40%

of the combined sample size.

Table 3.4: Estimated coverage probabilities for group-specific adjusted cumulative
hazard ratio interval estimates of treatment effect, at a nominal level of 95%. The
interval estimates were obtained using bootstrap critical values for the logarithmic
profile empirical likelihood ratio.

γ1 γ2 α1 α2 n1 n2 C% C.P.
1.4 1.2 0.4 0.35 25 25 0% 94.7%

50 50 0% 94.5%
100 100 0% 94.6%
250 250 0% 94.6%

1.4 1.2 0.4 0.35 25 25 9% 94.6%
50 50 9% 94.7%
100 100 9% 94.6%
250 250 9% 94.8%

1 1.5 0.115 0.1 25 25 40% 92.0%
50 50 40% 92.2%
100 100 40% 92.6%
250 250 40% 92.7%

We also compare the coverage accuracy and average length of the interval-

estimated cumulative hazard ratio at the 75th percentile of the total observation

time under a group-specific model using a normal approximation, a logarithmic

transformation, the EL method directly, as well as the bootstrap method, when the

total sample size is 50. These comparisons are summarized in Table 3.5.
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Table 3.5: Estimated coverage probabilities and average length for adjusted cumulative hazard ratio interval
estimates of treatment effect under a group-specific model, at a nominal level of 95%. C% represents percent
censored; Log represents the logarithmic ratio; EL indicates the empirical likelihood method; EB represents
empirical likelihood using the bootstrap procedure.

γ1 γ2 α1 α2 n1 n2 C% Normal Log EL EB
1.4 1.2 0.4 0.35 25 25 0% 84.7%(1.657) 86.6%(1.634) 87.9%(1.784) 94.7%(2.251)
1.4 1.2 0.4 0.35 25 25 10% 82.3%(1.712) 85.4%(1.691) 87.6%(1.803) 94.6%(2.345)
1 1.5 0.2 0.1 25 25 40% 76.3%(1.952) 78.3%(1.910) 81.0%(2.025) 92.0%(2.549)
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The simulations show that the EL method outperforms both the normal ap-

proximation and the logarithmic transformation in terms of achieving a coverage

probability that is closer to the nominal level of 95%. Since the sample size of each

group is small, using the asymptotic critical value from χ2
1 for the empirical log-

likelihood ratio of θ does not work particularly well. However, the EL-bootstrap

method reduces the coverage error significantly. Consequently, the coverage prob-

ability for our EL-based bootstrap method is much closer to the nominal level

of 95%. Of course, the average lengths of the EL-based interval estimates are

somewhat greater than the alternatives based on the usual normal approximations.

However, this increase in average length should be expected, and represents the

cost of superior coverage probability.
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3.6 Applications

3.6.1 Non-Hodgkin’s Lymphoma Data Analysis

To illustrate the use of our empirical likelihood approach in a practical problem,

we analyzed data from Matthews and Farewell (2007) concerning 64 non-Hodgkin’s

lymphoma patients with different stages of disease at diagnosis to compare their

survival experience. The data also include information about presenting symptoms

and bulky disease as covariates, both of which are statistically significant with

respect to patient survival in our stratified model (stratified by stage, stage IV vs

Stage II or III disease). We chose to adopt a stratified model based on a likelihood

ratio test, i.e., two times the difference of the maximized log-likelihood function

between the stratified model and the non-stratified model with different regression

parameters for the two groups, which is 2.6, much less than 3.84, the 95% quantile

of χ2
1.

To obtain the cumulative hazard ratio for Stage IV versus Stage II or III disease,

adjusted for the effect of presenting symptoms and bulky disease, we first estimated

the regression parameter for symptoms and bulky disease using the stratified model.

The estimated regression coefficients were 1.11 for presenting symptoms and 1.80

for bulky disease, with corresponding estimated standard errors of 0.41 and 0.69.

Then we used the empirical likelihood method outlined in section 2 to derive the

point estimates and pointwise 95% confidence intervals for the covariate-adjusted

cumulative baseline hazard ratio. The resulting estimates are displayed in Figure

3.1.
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Figure 3.1: Estimated baseline cumulative hazard ratios of death for non-Hodgkin’s
patients with Stage IV compared to Stage II or III disease, adjusted for the effect
of presenting symptoms and the presence of bulky disease
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Prior to the eight-month mark, the estimated cumulative hazard ratio does

not exist because observed deaths had not occurred in both groups of patients.

Thereafter, the estimated ratio increases slightly as observed deaths occur among

Stage IV patients. When two Stage III patients die at roughly the same time (406

and 409 days following diagnosis), the estimated cumulative hazard ratio declines.

Overall, since many patients with very advanced (Stage IV) disease are observed to

die, whereas Stage II and III patients give rise to right-censored observations, the

estimated ratio tends to increase gradually with time, with only occasional declines

observed as the time from diagnosis increases. From this plot we see that all the

lower bounds of the pointwise interval estimates of the cumulative hazard ratio

exceed 1 implying that the cumulative hazard function for patients with Stage IV

disease is statistically greater than that for Stage II or III patients, after adjusting

for the effect of presenting symptoms and bulky disease at diagnosis. We conclude

that the adjusted risk of death for patients with Stage IV disease is greater than

that for patients with Stage II or III disease at diagnosis. However that risk ratio

does not appear to be constant, but increases or decreases over time, especially

during the first three years following diagnosis with non-Hodgkin’s lymphoma.

3.6.2 Ovarian Cancer Data Analysis

To illustrate the results outlined in section 3, we use data from an observational

study of 146 ovarian cancer patients that were kindly provided by a Finnish re-

searcher. Each patient had six covariates that were recorded at the beginning of

follow-up — disease stage, grade, patient age, an indicator of residual tumor size, as

well as the values of human chorionic gonadotropin beta (hcg) and ca125, a particu-
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lar cancer antigen. After fitting separate proportional hazard regression models for

each covariate measured, we found that both the amount of hcg and the logarith-

mic ca125 measurements affected patient survival, and their effects differed in the

two groups of patients according to the residual tumor size when patient follow-up

began. Since there was no residual tumor size measurement for one study subject,

we divided the remaining 145 patients into two groups, 41 with at least a 1 cm

residual tumor and 104 with little or no residual disease. Within each group, we

adjusted the survival experience for the combined effects of hcg and logarithmic

ca125 concentrations, and then estimated the ratio of the two baseline cumulative

hazards for these ovarian cancer patients.

For patients with little or no residual tumor, the estimated regression coefficients

for hcg and log ca125 were 0.242 and 0.487, with corresponding estimated standard

errors of 0.087 and 0.137, respectively. Among the 41 patients with a residual tumor

exceeding 1 cm in diameter, the estimated regression coefficients and estimated

standard errors for these effects on patient survival were 0.052 (0.026) and 0.199

(0.134), respectively. The point and interval estimates of the resulting ratio are

displayed in Figure 3.2. Since the pointwise 95% lower confidence bounds of this

baseline cumulative hazard ratio all exceed 1, we conclude that the risk of death

for patients in the group with a residual tumor after treatment greater than 1 cm is

distinctly greater than that experienced by patients with little or no residual tumor,

after adjustment for the differential effect of hcg and logarithmic ca125 in these two

patient groups. This estimated risk ratio appears to be most elevated during the

second year following treatment, and then gradually decreases to a long-term stable

value of roughly 2.7 on the logarithmic scale.
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Figure 3.2: Logarithm of estimated baseline cumulative hazard ratios for ovarian
cancer patients with residual tumors exceeding 1 cm compared to those with little
or no residual tumor, adjusted for the differential effects of hcg and logarithmic
ca125 on patient survival experience.
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3.7 Discussion

Despite the widespread use of proportional hazards regression modelling of data

from observational and randomized studies, the justification for doing so is fre-

quently overlooked, or rarely mentioned in published reports. When the hazard

functions for important subgroups are not proportional, careful investigators are

forced to rely on alternative methods of summarizing the relevant data with re-

spect to the focal interest of the study. Wei and Schaubel (2008) proposed use of

the ratio of cumulative hazards, and described an estimator of this ratio which has

asymptotic properties that derive from the usual normal approximation. In the

discussion of their method of estimation, they outlined several excellent reasons for

preferring a summary measure that is cumulative, rather than instantaneous, when

the key hazard functions involved do not appear to satisfy the usual proportional

hazards assumption. In large enough samples, their estimator should be adequate;

however, in settings that involve fewer subjects, more reliable statistical tools would

be desirable.

Using the tools of empirical likelihood, we have described methods for deriv-

ing point and interval estimators of the cumulative hazard ratio that appear to be

better suited to those study settings involving non-proportional hazards and fewer

subjects. If adjustment for confounding variables, by means of appropriate propor-

tional hazard modelling, is required, our estimators, like those of Wei and Schaubel

(2008), can accommodate the added computational complexity. This accommo-

dation applies both in the case of adjustment via stratification, or via distinctly

separate models in the two primary subgroups represented in the numerator and
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denominator of the hazard ratio. In each of these cases, theoretical calculations

reveal that the asymptotic calibrating distribution for the derivation of pointwise

interval estimates of the cumulative hazard ratio should be chi-squared with one

degree of freedom. Simulation studies that rely on the original design of Wei and

Schaubel (2008) provide persuasive evidence that when the number of subjects

in each stratum or subgroup is no more than 100, our proposed estimators have

estimated coverage probabilities that are noticeably closer to the nominal value

of 0.95 than the corresponding estimated coverage probabilities reported by Wei

and Schaubel (2008) in the same study setting. Moreover, our interval estimators

are invariant under one-to-one transformation, range preserving, and their shape is

wholly determined by the data, since they inherit these properties directly from the

empirical log-likelihood function. In addition, no variance estimate is required, and

the computations involved are straightforward to carry out. Yet another advantage

of empirical likelihood is that by introducing a Bartlett correction, we can reduce

the error rate for interval estimates from O(n−1) to O(n−2). Since this Bartlett

correction can be approximated by using the bootstrap method for censored data

(see Efron, 1981), we can employ bootstrap quantiles to calibrate the critical value

for the asymptotic distribution of the empirical likelihood ratio function. With

the bootstrap method we can effectively improve the coverage accuracy for the

EL-based estimator with group-specific covariate adjustment.

In two separate examples discussed in §3.6, corresponding to observational stud-

ies of mortality in non-Hodgkin’s lymphoma and ovarian cancer patients, we illus-

trated the use of our proposed methods. The resulting point and pointwise interval

estimates of the cumulative hazard ratios that we report would contradict reliance
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on PH modelling with respect to disease stage in the former instance, and for the

subgroups of ovarian cancer patients determined by the size of any residual tumor

following primary treatment for their disease. In each instance, adjustment for the

possible confounding effect of concomitant measurements collected at the beginning

of the study period was warranted, and was incorporated into the estimators that

we reported.

Both the estimator proposed by Wei and Schaubel (2008), and our empirical

likelihood-based alternative, cannot be calculated prior to the larger of the smallest

complete observation recorded in the two subgroups of study subjects involved

in the cumulative hazard ratio. This restriction avoids any possibility that the

denominator of the estimated ratio is 0, resulting in an estimated ratio that is

undefined. Without making further assumptions that may be unwarranted, this

particular restriction is clearly unavoidable.
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Chapter 4

Simultaneous Confidence Bands

for Survival and Ratio of

Cumulative Hazard Functions

4.1 Introduction

In certain statistical inference problems involving ratio estimation, point estimates

and point-wise confidence intervals may not be sufficient. For example, researchers

may want to construct a confidence region for the ratio of interest, simultaneously,

for all points in a domain D ∈ ℜp. Such a goal is analogous, in the hypothesis

testing context, to testing the null hypothesis that a ratio function, R(t), is equal

to R0(t), for all t ∈ [a, b], a specified interval, at the overall significance level α.

To achieve this goal, we need to construct a confidence band for the function of

interest. However, instead of constructing such a confidence region by relying on

asymptotic properties, which typically necessitate very large sample sizes to achieve

reliable coverage accuracy, bootstrap calibration is commonly used as a basis for

statistical inference.
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The bootstrap method of inference was first introduced by Efron (1979) for

complete data, and then by Efron (1981) and Reid (1981) for censored data. Us-

ing simulation studies, Efron (1982) showed that confidence intervals produced by

the bootstrap method can be more accurate than those based on the asymptotic

distributions of parameter estimators. For complete data, Li, Tiwari and Wells

(1999) used a bootstrap percentile to construct a simultaneous confidence band

for a vertical quantile comparison function. Claeskens and van Keilegom (2003)

built bootstrap confidence bands for regression curves and their derivatives. By

combining the bootstrap method with an empirical likelihood estimator, Hall and

Owen (1993) developed empirical likelihood confidence bands for kernel estimates.

Likewise, Claeskens et al. (2003) investigated a bootstrap confidence band for

comparison distributions and ROC curves.

For survival data, it is commonly the case that an asymptotic global (1 − α)

confidence band is not well-behaved for small samples. In terms of the Nelson-Aalen

estimator, although one can obtain confidence bands such as the equal precision

band (EP), or the Hall-Wellner (HW) band, via the weak convergence of the Nelson-

Aalen estimator, these bands perform badly even with sample sizes of 100-200; see

Andersen et al. (1993). It is even harder to construct confidence bands for cu-

mulative hazard ratios. McKeague and Zhao (2002) constructed a simultaneous

confidence band for the ratio of two survival functions based on independent, right-

censored data. In subsequent work (McKeague and Zhao, 2005) they described

a method of estimating either the difference or ratio of two distribution functions

that relies on empirical likelihood. However, since they used the exact nonpara-

metric likelihood, it may be difficult to account for covariate adjustments in any
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estimated functionals of interest using their approach. Wei and Schaubel (2008)

built a confidence band for a cumulative hazard ratio with covariate adjustments

based on simulations of a limiting Gaussian process, but their estimator is not easy

to implement because of the complexity of the associated variance formula.

An alternative approach involves using bootstrap methods. Following the boot-

strap scheme proposed by Efron (1981), Akritas(1986) investigated the bootstrap-

ping of the Kaplan-Meier estimator and found that the bootstrap confidence band

has more accurate coverage than the Hall-Wellner (HW) band, especially in small

sample scenarios. In this chapter, we first investigate using the bootstrap to es-

timate simultaneous confidence bands for the survival function when the exact

likelihood is used. Then we adapt the bootstrap method to incorporate the Poisson

extension of the likelihood function to derive a simultaneous confidence band for the

ratio of cumulative hazard functions with covariate adjustment. Via a simulation

study, we compare our EL-based bootstrap with several competitors in terms of

coverage probabilities at the nominal level of 95%. We illustrate the method in the

problem of estimating a cumulative treatment effect using the two observational

studies concerning the survival of non-Hodgkin’s and ovarian cancer patients that

we described in the previous chapter.
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4.2 Simultaneous Confidence Bands in the Sta-

tistical Literature

4.2.1 HW and EP Confidence Bands for a Survival Func-

tion

The HW and EP bands for a survival function are simultaneous confidence bands

that are based on the asymptotic distribution of the Kaplan-Meier estimator, uni-

formly, over the time span of interest. We consider a continuous time interval

I = [0, τ ] or [0, τ) for given stopping time τ , 0 < τ < ∞. Let (Ω, F ) be a measur-

able space equipped with a filtration (Ft, t ∈ I). Then we can define a counting

process N = {N(t), t ∈ I} on (Ω,F).

Let T1, ..., Tn be i.i.d. survival times with the survival function S, and let

C1, . . . , Cn be the i.i.d corresponding censoring times with survival function SC ,

independent of the T ′
is. The observed data consist of (X1, δ1), . . . , (Xn, δn), where

Xi = min(Ti, Ci), δi = I(Ti ≤ Ci). Let Y (t) = Σn
i=1I(Xi ≥ t) be the number of

individuals at risk just before time t; then N(t) = Σn
i=1I(Xi ≤ t, δi = 1).

Definition 1. Let Θ denote a connected, nonempty, random subset of the rectangle

[0, τ ] × [0, 1), such that Θ ∩ {(t, p) : 0 ≤ p ≤ 1} is nonempty for each t ∈ [0, τ ].

We call Θ a confidence band for S over the set A ∈ [0, τ ] with coverage probability

(1 − α) if P{(t, S(t)) ∈ Θ for all t ∈ A} = 1 − α.

For arbitrary right-censored data, we denote the true underlying survival func-

tion by S0, and the corresponding Kaplan-Meier estimator, based on a sample of
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size n, by Sn . The HW and EP bands for A, a finite interval, are constructed using

the weak convergence of n1/2{Ŝn(t) − S0(t)}, to a Gaussian process, for t ∈ A. By

transforming the Gaussian process to a Brownian bridge limit, we can obtain the

confidence band

Ŝn(t) ± n−1/2Ŝn(t)Kq,α(d1, d2)(1 + σ̂2(t))/q{ σ̂2(t)

1 + σ̂2(t)
}

for A on [t1, t2], where Kq,α(d1, d2) is the (1 − α) quantile of the distribution of

sup
t∈(d1,d2)

|q(t)B0(t)|.

B0(t) represents the standardized Brownian bridge, and the constants d1, d2 are

approximated by

di =
σ̂2(ti)

1 + σ̂2(ti)
.

Here σ̂2(t) = n
∫ t

0
I(Y (x)>0)

Y (x)(Y (x)−dN(x))
dN(x) estimates the variance of the cumulative

hazard function at time t.

For the HW band q(t) = 1, whereas for the EP band q(t) = {t(1−t)}−1/2. Since

the quantile Kq,α(d1, d2) can be obtained by simulating a standardized Brownian

bridge, computing either band is not hard. However, each estimator has the draw-

back that it can give rise to values outside [0, 1]. Moreover, Bie et al. (1987) show

that the coverage probabilities associated with either band are not satisfactory,

even when the sample size is 100–200.

A natural remedy for these problems involves using a suitable transformation of

the parameter of interest to improve the approximation of the limiting distribution.
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The usual transformations to consider include the log-log and arcsine. However,

as Bie (1987) observes, the HW band is too wide in the tails of the distribution,

and the EP band is too wide in the middle of the distribution, even after applying

transformations; therefore the two confidence bands are not very useful in practice.

4.2.2 EL-based Confidence Bands for a Survival Function

Hollander et.al. (1997) adapted empirical likelihood to obtain both the HW and

EP-type confidence bands for the survival function as well as the cumulative haz-

ard function. Compared to the usual HW and EP bands, these EL alternatives

have higher coverage accuracy in small samples, while maintaining the range-

preserving and transformation-respecting advantages enjoyed by the empirical like-

lihood method of inference.

Let L(S) be the likelihood function for the survival function S; then

L(S) =
∏

u

[S(X−
i ) − S(Xi)]

∏

c

S(Xi), (4.1)

where u, c represent the sets of uncensored and censored observations, respectively,

in the sample.

Following Thomas and Grunkemeier(1975), the EL-based LR statistic is

R(p, t) =
sup{L(S) : S(t) = p, S ∈ Γ}

L(Sn)
,

where Γ denotes the family of all discrete survivor functions supported by the

distinct, complete observations in the sample, 0 < p < 1. For any fixed value of t,
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the point-wise asymptotic 100(1 − α)% confidence interval for S0(t) first obtained

by Thomas and Grunkemeier is

{p : −2 logR(p, t) ≤ q1−α},

where q1−α is the 1 − α quantile of the chi-squared distribution with 1 degree of

freedom.

To construct the EL-based HW and EP bands for S0, we need the asymptotic

properties of the LR statistic to hold uniformly. Let L(S, t) = −2 logR(S(t), t),

and define W (S, t) to be the signed root-log-LR statistic, that is,

W (S, t) = sgn{Sn(t) − S(t)}
√

L(S, t).

Hollander et al. (1997) show that the process {σ̂(t)W (S0,t), t ∈ [0, τ)} converges

in distribution to a Gaussian martingale with mean zero and variance σ2(t), where

σ̂2(t), as we have previously defined it, is a consistent estimator of σ2(t).

By transforming this limiting process to a Brownian bridge B0, Hollander et al.

(1997) show that

sup
t∈[0,τ ]

∣

∣

∣

∣

σ̂(t)W (S0, t)

1 + σ̂2(t)

∣

∣

∣

∣

D−→ sup
x∈[0,d]

|B0(x)|,

where B0(x) denotes a standardized Brownian bridge, and d is a constant that can

be approximated by d̂ = σ̂2(τ)/(1 + σ̂2(τ)). Then the EL-based 100(1 − α)% HW
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band for S0 is

BHW = {S(t) :
∣

∣

∣

σ̂(t)W (S,t)
1+σ̂2(t)

∣

∣

∣
≤ Kq,α(d), t ∈ [0, τ ]}

= {S(t) : |W (S(t), t)| ≤ C(t), t ∈ [0, τ ]}

= {S(t) : L(S(t), t) ≤ C2(t), t ∈ [0, τ ]}

where C(0) = 0, and

C(t) = Kq,α(d̂)
1 + σ̂2(t)

σ̂(t)
, for t > 0.

If C2(t) in this HW band is replaced by e2α(a, b), Hollander et al. (1997) showed

that the EL-based 100(1 − α)% EP band for S0 is

BEP = {S(t) : L(S(t), t) ≤ e2α(a, b)}

for all the values of t in the set {t : a ≤ σ̂2(t)
1+σ̂2(t)

≤ b}. Here e2α(a, b) is the upper α

quantile of the distribution of supx∈[a,b]
|B0(x)|

[x(1−x)]1/2
.

Although these EL-based confidence bands will be range-preserving and transformation-

respecting, they may be as unattractive as the usual HW and EP bands due to

excessive width. As a result, in the succeeding section we investigate using the

bootstrap method to achieve our goal of deriving a confidence band for the true

survivor function S0.
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4.3 A Bootstrap Confidence Band for the Sur-

vival Function

Since the HW and EP confidence bands may be too wide to be of practical use,

an alternative way to obtain a confidence band for S0 that has more attractive

features is to rely on the bootstrap. This method of inference was first introduced

by Efron (1979) for complete data, and then by Efron (1981) and Reid (1981) for

censored data. Using simulation studies, Efron (1982) showed that the confidence

intervals produced by the bootstrap method are more accurate than those based on

asymptotic distributions of the estimators. Akritas (1986) investigated the boot-

strapping of the Kaplan-Meier estimator and found that only Efron’s resampling

plan can lead to asymptotically correct confidence bands for the survival function,

and the bootstrap confidence band has more accurate coverage than the HW band,

especially in small sample scenarios.

Although direct bootstrapping of the Kaplan-Meier estimator can improve the

coverage accuracy of confidence bands for the survivor function, this method cannot

circumvent the range problem, i.e., producing values of the confidence band that lie

outside the interval [0, 1]. Hollander et al. (1997) proposed EL-based confidence

bands for a survivor function that are range-preserving, transformation-invariant,

have greater coverage accuracy than the corresponding asymptotic confidence band,

and a shape that is determined by the observed data. However, the disadvantage of

this method is the width of the resulting confidence band, in the tail region when

the EL-based band is of HW-type, and in the middle of the distribution when the

EL-based band is an EP-type.
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Therefore, to enhance the performance of these EL-based confidence regions

for a survival function, we now consider using empirical likelihood together with

the bootstrap method to calibrate the critical value of the sampling distribution

better. Our goal in doing so is to reduce the width of the EL-based confidence

band without sacrificing coverage accuracy or the other attractive features of this

method of inference.

We assume random censorship, and only focus on the bootstrap method de-

scribed in Efron (1981). Let (Xi, δi), i = 1, ...n, be the i.i.d. censored data, where

Xi = min{Ti, Ci} is the observed survival time, and δi is the censoring indicator,

which is 1 when Xi = Ti and 0 when Xi = Ci; the variables Ti and Ci are the true

survival time and censoring time respectively. For t ∈ [0, τ ], where τ is a fixed

stopping time, let Sn(t) and Cn(t) be the corresponding Kaplan-Meier estimators of

S0(t) and SC(t). Following Efron (1981), we obtain an i.i.d. sample T ∗
i , . . . , T

∗
m with

replacement from the observed complete response times, Tj , and a corresponding

i.i.d. sample C∗
1 , . . . , C

∗
m with replacement from the observed censoring times Cj .

Then (X∗
i , δ

∗
i ), i = 1, ..., m is the bootstrap sample, where

X∗
i = min{T ∗

i , C
∗
i }, δ∗i = I(X∗

i = T ∗
i ).

As shown by Efron(1981), this resampling plan is equivalent to taking a sample

(X∗
i , δ

∗
i ), i = 1, ..., m with replacement from (Xi, δi), i = 1, ..., n.

In order to adapt the empirical likelihood method to the bootstrap sample, we

need a process of likelihood ratio statistics. According to Hollander et al. (1997),
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the likelihood ratio can be written as

L(S, t) =
nK2

σ̂2
+Op(n

−1/2), (4.2)

where K(S, t) = log Sn(t) − logS(t). Let ϕ(S)(t) = K(S, t). Applying the delta

method, we can approximate ϕ(S0) by dϕ(S0)(Sn −S0), where dϕ is the Hadamard

derivative of ϕ, with the expression

dϕ(S) =
−1

S(t)
.

Following the well-known weak convergence result

√
n(Sn − S0)

D−→ −S0U

(see, Anderson et al. (1993), theorem. IV.3.2) and the delta method, we have

√
nK(S0, t)

D−→ U(t), where U(t) is a Gaussian martingale with zero mean and

variance function σ2(t). Further,

L(S0, t) =

{

U(t)

σ̂(t)

}2

=

{

U(t)

1 + σ̂2(t)

}2

· A(t)2

where A(t) = 1+σ̂2(t)
σ̂(t)

. Since the process U(t)
1+σ̂2(t)

has the same distribution as the

Brownian bridge B0{σ̂2(t)/[1 + σ̂2(t)]}, write D(t) = σ̂2(t)/[1 + σ̂2(t)]. Therefore

sgn{Sn(t) − S(t)}
√

L(S0, t)/A(t)
D−→ B0 ◦D(t).

From Gill et al. (1989) we require the following definition.

Definition 2. Let B1, B2 be normed vector spaces and φ : B1 → B2 is a measurable
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function. Then φ is said to be weak continuous compact differentiable at x = F if

there exists a linear and continuous function dφ : B1 → B2 such that

φ(xn + tnhn) − φ(xn)

tn
= dφ(x) · h,

as xn
||·||−→ x, hn

||·||−→ h, tn → 0 in ℜ, Here || · || is the supremum norm, i.e,

||x|| = supt |x(t)|.

Now consider the likelihood ratio statistic L(S∗, t), from the bootstrap sam-

ple. Under the assumption of weak continuous compact differentiability, as defined

above, Gill et al.(1989) shows that the bootstrap works if the delta method works,

i.e., n1/2(φ(S∗)− φ(Sn)) has the same limiting distribution as n1/2(φ(Sn)− φ(S0)),

if the limiting distribution of the latter exists.

Theorem 1. The bootstrap likelihood ratio statistic sgn{S∗
n(t)−Sn(t)}

√

L∗(Sn, t)/A(t)
D−→

B0 ◦D(t).

Proof. Let φ(S)(t) = K∗(S, t) = logS∗
n(t) − logS(t), where S∗

n(t) is the Kaplan-

Meier estimator obtained from the bootstrap sample. By Theorem 4 of Gill (1989),

n1/2K∗(Sn, t)
D−→ dφ(S0)(t) · {−S0(t)U(t)} = U(t), where U(t) is a Gaussian mar-

tingale with zero mean and variance function σ2(t). From equation (4.2) we have

L∗(Sn, t) =
nK∗2

σ̂2
+Op(n

−1/2). (4.3)

If we replace the limiting distribution of n1/2K∗(Sn, t) by U(t) and apply Slutsky’s

theorem we have sgn{S∗
n(t)− Sn(t)}

√

L∗(Sn, t)/A(t)
D−→ B0 ◦D(t) as required.
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For each bootstrap sample we can obtain supt∈[0,τ ] L∗(Sn, t)/A(t)2. By repeating

the bootstrap process B times we can acquire the 100(1 − α)% bootstrap quantile

of these values. By taking the bootstrap quantile as the critical value, denoted

by (K∗
q,α)2 we can obtain an HW-type bootstrap confidence band for S(t) when

t ∈ (0, τ) i.e.,

B∗

HW = {S(t) : L(S(t), t) ≤ C∗(t)2, t ∈ [0, τ ]}

where C∗(0) = 0,

C∗(t) = K∗
q,α(d̂)

σ̂(t)

1 + σ̂2(t)
, for t > 0.

Similarly for all values of t that satisfy a ≤ σ̂2(t)
1+σ̂2(t)

≤ b, if we use the 100%(1−α)

bootstrap quantile of L∗(Sn, t) as the critical value, which is denoted by e∗(a, b)2,

we can obtain the EP type of bootstrap confidence band for the survival function

in (0, τ ].

B∗

EP = {S(t) : L(S(t), t) ≤ e∗(a, b)2, t ∈ [0, τ ]}.

Since the above bootstrap methods are based on suitable transformations to

Brownian bridge, although they can reduce the coverage errors by using the boot-

strap quantile of K∗
q,α(d̂) they still cannot solve the problem of excessive width

in certain regions of the HW-type or EP-type bands. An alternative method in-

volves simply using (1 − α) bootstrap sample quantile of supt∈[a,b] L∗(Sn, t) as the

critical value to obtain the simultaneous confidence band for the survival function

S0(t), t ∈ [a, b]. The proof of the result follows from equation (4.3), since the RHS
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of that expression has a limiting distribution U2(t)/σ2(t) uniformly for t ∈ [a, b].

Therefore supt∈[a,b] L∗(Sn, t)
D−→ supt∈[a,b] U

2(t)/σ2(t).

4.4 A Bootstrap Confidence Band for the Ratio

of Cumulative Hazard Functions

Another key function in survival analysis is the cumulative hazard function

Λ(t) = −
∫ t

0

dS(s)

S(s−)
, t ∈ [0, τ ].

Since

S(t) =
∏

s≤t

(1 − ∆Λ(s)), (4.4)

and ∆Λ(t) = −∆S(t), we can express the likelihood function of S(t) — see equation

(4.1) — in terms of the cumulative hazard function, and obtain

L(Λ) =
n
∏

i=1

∆Λ(Ti)
δi





∏

j:Tj<Ti

(1 − ∆Λ(Tj))





δi

·





∏

j:Tj≤Ti

(1 − ∆Λ(Tj))





1−δi

. (4.5)

Since the Nelson-Aalen estimator, which maximizes L(Λ), is a nonparametric

maximum likelihood estimator of the true cumulative hazard function Λ0, the like-

lihood ratio with respect to the cumulative hazard function A is

R(A, t) =
sup{L(Λ) : Λ(t) = A,Λ ∈ Υ}

L(Λn)
,
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where Λn is the Nelson-Aalen estimator based on a sample size of n. Then, as

Hollander et al. (1997) show, an asymptotic 100(1 − α)% confidence band for Λ0

is given by

D = {A : −2 logR(A, t) ≤ C2(t), t ∈ [0, τ ]},

where C2(t) is defined as before. Define L(A, t) = −2 logR(A, t); Hollander et al.

(1997) derive the EL-based HW band

DHW = {A(t) : L(A(t), t) ≤ C(t)2, t ∈ [0, τ ]},

and EP band

DEP = {A(t) : L(A(t), t) ≤ e(a, b)2, t ∈ [0, τ ]}.

Equation (4.4) indicates that Λ(t) is a function of S(t), i.e., Λ(t) = φ(S). Since

the EL-based estimator is transformation-preserving, we can obtain an EL-based

confidence band for Λ0 simply by transforming an EL-based confidence band for S0

or vice versa, i.e.,

D = {A(t) = φ(S) : S ∈ B}.

Although the exact likelihood (4.5) is widely used to estimate functionals of the

survival and cumulative hazard, this approach maybe more suitable for randomized

clinical trials without covariate adjustments. Mckeague and Zhao (2005) used the

exact form to construct simultaneous confidence bands for the difference and the

ratio of two survival functions under an independent right-censoring mechanism.

However, since they used the exact nonparametric likelihood, it may be difficult

to account for covariate adjustments in any estimated functionals of interest using
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their approach. In observational studies with covariate adjustments, where Cox

regression models are very commonly used, using the Poisson extension of the like-

lihood function for Λ(t) (Murphy 1995) that can accommodate the Cox regression

model directly, maybe a prudent choice to deal with the situation.

Murphy (1995) discussed the merits of the Poisson extension of the likelihood

function for Λ, that is

L(Λ) =

n
∏

i=1

∆Λ(Ti)
δi exp(−Λ(Ti)). (4.6)

Using this Poisson extension of the likelihood function for Λ leads to the same

nonparametric maximum likelihood estimators for the survivor function and the

cumulative hazard function that maximize the exact version of L(Λ) specified in

equation (4.5), i.e, the Kaplan-Meier estimator of S0, and the Nelson-Aalen esti-

mator of Λ0. Therefore, the Poisson extension specified in equation (4.6) can be

used to obtain a corresponding likelihood ratio statistic and to derive the EL-based

estimator.

A notable advantage of this Poisson extension is the fact that the only constraint

which ∆Λ(t) must satisfy is that it has to be positive. This absence of any other

restrictions can circumvent certain complications that can arise in some samples

when the version of L(Λ) specified in equation (4.5) is used to define a likelihood

ratio statistic, and derive confidence intervals or bands for Λ(t). In addition, as

Pan and Zhou (2002) show, the difference between the Poisson extension and the

exact version goes to zero in probability as n → ∞, i.e, the Poisson extension of

L(Λ) is asymptotically equivalent to equation (4.5), and is the version that we will
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use to derive EL-based confidence bands in what follows.

Since the confidence bands that Mckeague and Zhao derived in 2005 are based

on the limiting distribution of the empirical log-likelihood ratio, adopting their

approach would necessitate large sample sizes to achieve any desired coverage ac-

curacy. When the sample sizes are small, EL-type confidence bands for survival

functions need bias adjustments to reduce coverage errors (see Hollander et al.

1997). However, Mckeague and Zhao (2005) did not consider such adjustments. To

achieve the appropriate adjustments in estimating a confidence band for the ratio

of the baseline cumulative hazard functions in a small sample scenario, we employ

a bootstrap method to improve the coverage accuracy of the confidence bands.

Recall from chapter 3, the profile empirical log-likelihood ratio is −2lE(θ(t));

let L(θ(t), t) = −2lE(θ(t)). For each observed failure time point t ∈ [a, b], generate

a bootstrap sample and calculate the corresponding value of the profile empirical

log-likelihood ratio L∗(θ̂(t), t), where θ̂(t) is the point estimate at time t . Then

take the supremum of L∗(θ̂(t), t) for t ∈ [a, b], i.e., supt∈[a,b] L∗(θ̂(t), t). Repeating

this series of bootstrap sample calculations B times generates a bootstrap sampling

distribution for the supremum of the logarithmic profile empirical likelihood ratio

for all t ∈ [a, b]. By extracting the 100(1 − α)% quantile from this bootstrap

distribution and using it as the critical value, denoted by q1−α, we can generate a

corresponding 100(1 − α)% confidence band for θ(t), t ∈ [a, b], i.e.,

B = {θ(t) : L(θ(t), t) ≤ q1−α}.

To justify our bootstrap approach, we first notice that from the proofs of theo-
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rems 1 and 2 in Chapter 3, the logarithmic empirical likelihood ratio is a function

of ξi, i = 1, 2. Each Lagrange multiplier converges in distribution to a Gaussian

martingale, and therefore it has a limiting distribution uniformly for t ∈ [a, b]; see

Anderson et al. (1993). Then, based on the weak consistency of the bootstrap, as

established in theorem 5 from Gill (1989), we can use the 100(1 − α)% bootstrap

quantile of the supremum of a finite set of logarithmic empirical likelihood ratios

as the critical value to calibrate the confidence interval or band of θ(t) at overall

level of confidence 1 − α, for all t ∈ [a, b].

Following Chen and Cui (2007), for a given t, this bootstrap method approx-

imates Bartlett correction under certain regularity conditions. Consequently, we

should expect to reduce the coverage errors to O(n−2). As shown in our simulation

of pointwise intervals for a given t in the Chapter 3, this bootstrap method notice-

ably reduces the coverage errors and correspondingly improves coverage accuracy

of a confidence interval for the cumulative hazard ratio with covariate adjustments.

Consequently, we should expect that using these quantiles from the bootstrap dis-

tribution of the supremum of logarithmic empirical likelihood ratios would have a

similar effect on simultaneous confidence bands of the cumulative hazard ratio for

all t ∈ [a, b].

4.5 Simulation Study

To compare our bootstrap confidence band with the EL-type HW and EP bands

proposed by Hollander et al. (1997), we generate the survival times and censoring

times from S0 = exp(1), and SC = uniform(α) respectively. By choosing different
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values of α, we can adjust the proportion of censoring in our data. Here, we set

α = ∞, 3.72 and 1.595 to represent no censoring, 25% and 50% censoring. The

stopping time τ is selected to guarantee that at least 10% of the total sample size

of survival times is greater than or equal to τ . This is done to avoid instability in

the estimated confidence bands for large τ . For the EL-type HW and EP bands,

we need the asymptotic critical values at the nominal level of 95%; according to

Hollander et al. (1997), these are 1.358 and 3.31 respectively. Based on 5000

samples we calculated the error rate, as the estimated probability that S0(t) falls

outside the confidence band for some t ∈ [0, τ ]; the results are given in Table 4.1.

Table 4.1: Observed error rates and corresponding estimated standard errors (in
parenthesis) of EL and bootstrap confidence bands for the survival function, S(t),
at a nominal confidence level of 95%.

θ n EL-HW EL-EP Boot-HW Boot-EP EL-boot
∞ 25 4.0(.284) 7.3(.368) 4.2(.284) 7.0(.361) 4.8(.302)

50 4.2(.277) 7.2(.366) 4.1(.280) 7.0(.361) 4.9(.305)
100 5.3(.317) 6.8(.356) 5.2(.314) 6.5(.349) 5.1(.311)
200 5.5(.322) 6.3(.344) 5.3(.317) 6.2(.341) 5.0(.308)

3.72 25 3.8(.270) 7.4(.370) 4.1(.280) 7.2(.366) 4.9(.305)
50 4.3(.287) 7.3(.368) 4.4(.290) 6.9(.358) 4.8(.302)
100 4.8(.302) 7.1(.363) 4.7(.299) 7.0(.361) 4.9(.305)
200 4.9(.305) 6.5(.349) 5.0(.308) 6.3(.344) 5.0(.308)

1.595 25 3.1(.245) 7.2(.366) 3.5(.260) 6.8(.356) 5.0(.308)
50 3.6(.263) 7.1(.363) 3.8(.270) 6.9(.358) 5.1(.311)
100 3.8(.270) 7.2(.366) 4.0(.277) 6.7(.354) 4.9(.305)
200 4.3(.287) 6.8(.356) 4.5(.293) 6.4(.346) 5.0(.308)

From the estimated error rates displayed in the table, we notice that both

bootstrap-HW and bootstrap-EP have a coverage probability closer to the nomi-

nal level of 95% than the corresponding direct EL method of deriving HW or EP
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bands for the survival function in virtually all scenarios. But the improvement in

the associated coverage accuracy is relatively limited. On the other hand, when

the EL-bootstrap is used to estimate the confidence band for a survival function,

we obtain an estimated coverage probability very close to the nominal level of 95%.

This is due to an advantage of the EL-bootstrap, namely that it can approximate

Bartlett correction, and correspondingly reduce the error rate and improve the cov-

erage accuracy of the confidence band for the survival function, especially in small

sample scenarios. In addition, by using the bootstrap quantile of the supremum

of the logarithm of the empirical likelihood ratio statistic for all t in a fixed time

interval, the EL-bootstrap avoids the excess width in the tails of the distribution

that characterizes the HW-bands, as well as the corresponding excess in the middle

part of the EP-bands.

4.6 Applications

We use two datasets concerning the survival experience of non-Hodgkin’s lymphoma

and ovarian cancer patients that we previously analyzed in Chapter 3 to illustrate

how to compute a simultaneous confidence band for the cumulative treatment effect

θ(t), for t ∈ [a, b].

The 95% simultaneous confidence bands of baseline cumulative hazard ratios

with covariate adjustment for these two datasets are displayed in Figures 4.1 and

4.2. From Figure 4.1 we see that although all the lower bounds of the pointwise

interval estimates of the cumulative hazard ratio exceed 1, the 95% confidence

band for the adjusted cumulative hazard ratio, displayed on a logarithmic scale,
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includes 1 from roughly 13 to 18 months following diagnosis. Apart from this brief

anomaly, however, it seems reasonable to conclude that the adjusted risk of death

for non-Hodgkin’s lymphoma patients with stage IV disease is greater than the

corresponding risk for patients with stage II or III disease at diagnosis.

For ovarian cancer patients, although the 95% simultaneous confidence bands

of the baseline cumulative hazard ratio are wider than the corresponding pointwise

confidence bounds, the lower band exceeds 1 uniformly, which confirms our previous

conclusion based on the pointwise interval estimates. We conclude that the risk of

death for patients in the group with a residual tumor after treatment greater than 1

cm is distinctly greater than that experienced by patients with little or no residual

tumor, after adjustment for the differential effect of hcg and logarithmic ca125 in

these two patient groups.
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Figure 4.1: Estimated baseline cumulative hazard ratios of death for non-Hodgkin’s
patients with Stage IV compared to Stage II or III disease, adjusted for the effect
of presenting symptoms and the presence of bulky disease
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Figure 4.2: Estimated baseline cumulative hazard ratios for ovarian cancer patients
with residual tumors exceeding 1 cm compared to those with little or no residual
tumor, adjusted for the differential effects of hcg and logarithmic ca125 on patient
survival experience.
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4.7 Summary

To derive point and interval estimators for time-to-event data, the method of em-

pirical likelihood has obvious appeal. As we mentioned previously, it is range-

preserving and transformation-invariant. The resulting interval estimates are data-

determined, may be asymmetric, and have better coverage probability for small

samples. However, when we use this method and its asymptotic critical value to

construct simultaneous confidence bands for survival or cumulative hazard func-

tions in a small sample scenario, the estimated error rate is higher than expected

and the width of the confidence bands is frequently excessive at some points in the

interval of interest.

To overcome these limitations of the empirical likelihood approach, we propose

using a bootstrap method to recalibrate the critical value of the sampling distri-

bution of the sample log-likelihood ratios. The resulting bootstrap-based band has

an estimated coverage probability closer to the nominal level of 95%. In addition,

this approach seems to rectify some of the excesses associated with either HW or

EP bands.

By extending this bootstrap method from the exact likelihood for the survival

function to Murphy’s Poisson extension for the cumulative hazard function, we

were able to consider adjusted hazards that involve the Cox proportional hazards

regression model. Using this extension, we showed how to derive simultaneous

confidence bands for the ratio of two baseline cumulative hazards with covariate

adjustment, and illustrated our method using the two datasets.
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Chapter 5

Empirical Likelihood for

Copula-based Estimation

5.1 Introduction

Copulas, which are functions that couple marginal one-dimensional distributions to

obtain multivariate distribution functions, have been a particular focus of statistical

research for modeling dependent data in recent years. By combining marginal

distributions of any specified form via a suitable copula, statistical researchers are

able to construct multivariate distributions and study the resulting dependence.

Since an appealing feature of copula models is that the margins do not depend on

the choice of the dependency structure, copula-based estimation can be divided into

two stages, i.e., marginal and joint analysis. This two-stage approach can make the

estimation simpler and possibly more reliable since the marginal distributions can

be estimated using well-established tools for statistical inference.

This interest in copula models has prompted new developments in the analysis

of multivariate survival data that consist of several possibly related failure times,
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e.g., the times to occurrence of a certain event such as the occurrence of a particular

disease for siblings. Many authors have employed a copula approach to construct

the joint survival function of such data or to measure the association among the

related failure variables. Joe (1997) and Hougaard (2000) described how to combine

appropriate marginal models with a suitable copula to form a valid and flexible

multivariate distribution. Sun, Wang, and Sun (2006) suggested fitting a Clayton

copula with nonparametric marginal distributions to estimate the association for

bivariate interval-censored failure data. Bogaerts and Lesaffre (2008) used a one-

parameter copula, where the association parameter can depend on covariates, to

model the marginal distributions with an accelerated failure time model and a

flexible error term.

While a copula is a good statistical tool, selecting a parametric copula is a

non-trivial task that may lead to model misspecification because different copula

families involve different correlation structures. This observation motivates us to

use empirical likelihood to estimate a copula nonparametrically and, thereby, to

obtain the joint distribution (survival) functions or the correlation parameter of

interest. Section 5.2 outlines the details of our method. With this EL-based esti-

mator of a copula, we can also derive a goodness-of-fit test for assessing a specific

parametric copula model. The specifics of such a test can be found in Section 5.3.

By means of a simulation study, we demonstrate the merits of our EL-based testing

procedure.
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5.2 Empirical Likelihood Estimator of Copulas

for Complete Data

In medical studies, researchers may be interested in estimating the risk, in patients

who suffer from kidney disease, that both organs fail prior to some fixed t that

measures the time since diagnosis of the disease. Knowing this risk would enable

clinicians to determine whether or not to recommend kidney transplantation.

Let (X, Y ) be the times of organ failure after diagnosis for a subject’s left and

right kidneys, respectively. Let H be the joint distribution function of X, Y . For

a certain time point, e.g., 5 years, researchers want to estimate Pr(X ≤ 5, Y ≤ 5).

Since the event of one organ failure may be associated with that of the other organ

in the same patient, we consider using the copula model and empirical likelihood

to tackle this problem.

Suppose that (X1, Y1), ..., (Xn, Yn) are independent and identically distributed

random vectors with distribution function H . The copula of H is defined by

C(x, y) = H(F−1
1 (x), F−1

2 (y)), where F1(x), F2(y) denote the marginal distribu-

tion functions for {Xi} and {Yi}, respectively, and H is the joint distribution for

(Xi, Yi), i = 1, ..., n.

In order to construct an estimator for C(x, y), which we denote by θ, we in-

troduce link variables s, t such that F1(s) = x, F2(t) = y for 0 < x, y < 1, and

C(x, y) = H(s, t) = θ. Let F̂X(s) and F̂Y (t) be the estimators of F1 and F2,

respectively. Define

F̂Xi
(s) = I(Xi ≤ s), F̂Yi

(t) = I(Yi ≤ t),
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and

wi(s, t) = F̂Xi
(s)F̂Yi

(t) − θ, w1i(s) = F̂Xi
(s) − x, w2i(t) = F̂Yi

(t) − y.

By defining p = (p1, ..., pn) to be a probability vector with
∑n

i=1 pi = 1, we have

the empirical likelihood for θ,

L(θ) = sup(
n
∏

i=1

pi)

subject to the following three constraints:

n
∑

i=1

piwi(s, t) = 0,
n
∑

i=1

piw1i(s) = 0,
n
∑

i=1

piw2i(t) = 0.

Using Lagrange multipliers λ1, λ2, λ3, it follows that

pi =
1

n{1 + λ1wi(s, t) + λ2w1i(s) + λ3w2i(t)}
, i = 1, ..., n.

Therefore, the logarithmic empirical likelihood ratio statistic for θ is

l0(θ) = −2

n
∑

i=1

log(npi) = 2

n
∑

i=1

log{1 + λ1wi(s, t) + λ2w1i(s) + λ3w2i(t)},

where λi, i = 1, 2, 3 should satisfy the following equations:

n
∑

i=1

wi(s, t)

{1 + λ1wi(s, t) + λ2w1i(s) + λ3w2i(t)}
= 0, (5.1)
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n
∑

i=1

w1i(s)

{1 + λ1wi(s, t) + λ2w1i(s) + λ3w2i(t)}
= 0, (5.2)

n
∑

i=1

w2i(t)

{1 + λ1wi(s, t) + λ2w1i(s) + λ3w2i(t)}
= 0, (5.3)

and constraints 1 + λ1wi(s, t) + λ2w1i(s) + λ3w2i(t) > 1/n, which come from the

probability requirements pi < 1. Using the same method that we first adopted in

section 2.2, we can derive the constrained solutions of λi(s, t), i = 1, 2, 3, where s, t

are nuisance parameters. Since this copula function of θ does not depend on the

marginal distributions F1 and F2, we can plug in the estimators of s and t that

derive from the marginal distributions, i.e. ŝ = F̂−1
1 (x), t̂ = F̂−1

2 (y), to obtain the

empirical log-likelihood ratio statistic

l(θ) = 2
n
∑

i=1

log{1 + λ1wi(ŝ, t̂) + λ2w1i(ŝ) + λ3w2i(t̂)}. (5.4)

Therefore, the point estimator of θ is θ̂ = argminθ l(θ).

To obtain the interval estimators of θ, we need the asymptotic property of

l(θ) that depends on the selected estimators of marginal distribution functions,

F̂X(s), F̂Y (t). Next, we discuss the use of empirical and kernel methods to incorpo-

rate these estimated marginal distributions into the empirical likelihood framework

to estimate the copula of interest.

First, we consider the empirical estimators of F1(s), F2(t). Recall that

F̂Xi
(s) = I(Xi ≤ s), F̂Yi

(t) = I(Yi ≤ t).
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Then

wi(s, t) = I(Xi ≤ s)I(Yi ≤ t)−θ, w1i(s) = I(Xi ≤ s)−x, w2i(t) = I(Yi ≤ t)−y.

Let

A =
n
∑

i=1

I(Xi ≤ s)I(Yi ≤ t), B =
n
∑

i=1

I(Xi ≤ s)I(Yi > t),

C =
n
∑

i=1

I(Xi > s)I(Yi ≤ t), D =
n
∑

i=1

I(Xi > s)I(Yi > t).

Define

ρ1 = Pr{X ≤ s, Y ≤ t}, ρ2 = Pr{X ≤ s, Y > t},

ρ3 = Pr{X > s, Y ≤ t}, ρ4 = Pr{X > s, Y > t}.

Therefore, {A/n,B/n, C/n,D/n} follows a multinomial distribution with param-

eters {ρ1, ρ2, ρ3, ρ4}. Denote P̂ = (A/n,B/n, C/n,D/n)T , P = (p1, ρ2, ρ3, ρ4)
T .

According to central limit theory P̂
D−→ N(P,Σ0) as n → ∞, where Σ0 is the stan-

dard covariance matrix for the multinomial distribution, i.e., for i < j, the (i, j)-th

element of Σ0 is

nρi(1 − ρi) for i = j

−nρiρj for i 6= j.

Let Q1, Q2 and Q3 be the LHS of (5.1),(5.2) and (5.3), respectively, where

Q̃ = (Q1, Q2, Q3)
T , and λ̃ = (λ1, λ2, λ3)

T . Then λ̃ satisfies Q̃(λ̃) = 0̃. Using a
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Taylor expansion

Q̃(λ̃) ≃ Q̃(0̃) + ∂Q̃

∂λ̃
|λ̃=0̃λ̃

=













∑n
i=1wi

∑n
i=1w1i

∑n
i=1w2i













+













∑n
i=1w

2
i

∑n
i=1wiw1i

∑n
i=1wiw2i

∑n
i=1wiw1i

∑n
i=1w

2
1i

∑n
i=1w1iw2i

∑n
i=1wiw2i

∑n
i=1w1iw2i

∑n
i=1w

2
2i













·













λ1

λ2

λ3













=













A− nθ

A+B − nx

A+ C − ny













+













v11 v12 v13

v21 v22 v23

v31 v32 v33













·













λ1

λ2

λ3













,

where V = (vij) =













A− 2Aθ + nθ2 A− Ax− Aθ − Bθ + nθx A− Ay − Aθ − Cθ + nθy

A−Ax− Aθ − Bθ + nθx A− 2Ax+B − 2Bx+ nx2 A− Ay − Ax− By − Cx+ nxy

A− Ay − Aθ − Cθ + nθy A− Ay − Ax−By − Cx+ nxy A− 2Ay + C − 2Cy + ny2













Therefore, we have λ̃ = −V −1Q̃(0̃). Using a Taylor expansion of the empirical

log-likelihood,

l0(θ) = 2
∑n

i=1 log{1 + λ1wi(s, t) + λ2w1i(s) + λ3w2i(t)}

≃ λ̃TV λ̃

= Q̃(0̃)TV −1Q̃(0̃).

As n → ∞, Q̃(0̃) = (A − nθ, A + B − nx,A + C − ny)T has a multinormal
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distribution with mean zero and covariance matrix

Σ =













nθ(1 − θ) nθ(1 − x) nθ(1 − y)

nθ(1 − x) nx(1 − x) nθ − nxy

nθ(1 − y) nθ − nxy ny(1 − y).













And by the SLLN, V
a.s.−−→ Σ, as n → ∞. Hence, l0(θ)

D−→ χ2
d, where d = 3. Since

the nuisance parameters s and t are unknown and need to be estimated from the

marginal distributions, and clearly ŝ
a.s.−−→ s and t̂

a.s.−−→ t, using Slutsky’s theorem we

have l(θ)
D−→ χ2 with df = 3 − 2 = 1.

Now, we consider combining kernel estimators of the two marginal distributions

with the empirical likelihood for the joint distribution to obtain an estimator of the

copula. Let k(x) be a kernel density function with distribution function K(x) =
∫ x

−∞
k(u)du. Let h > 0 be a bandwidth. Define

wi(s, t) = K

(

Xi − s

h

)

K

(

Yi − t

h

)

− θ,

w1i(s) = K

(

Xi − s

h

)

− x, w2i(s, t) = K

(

Yi − t

h

)

− y.

Let C0 be the true copula, and θ0 = C0(x, y). According to Chen et al. (2009),

the empirical log-likelihood ratio l(θ)
D−→ χ2

1 under the following regularity condi-

tions:

(i) F
′′

1 (s), F
′′

2 (t), ∂H(s,t)
∂s2 , ∂H(s,t)

∂t2
, ∂H(s,t)

∂s∂t
are continuous at point (s, t) = (s0, t0),

where s0 and t0 satisfy F1(s0) = x and F2(t0) = y;
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(ii) k(x) is a symmetric density with support (−1, 1) and k′(x) is bounded;

(iii) nh4 → 0 and n−3/4h−2(log n)2 → 0 as n→ ∞.

Since l(θ) has an asymptotic χ2
1 distribution in both of the situations where ker-

nel or empirical estimators replace the two marginal distributions, the empirical

likelihood-based confidence interval for θ is

I1−α(x, y) = {θ : l(θ) ≤ q1−α},

where q1−α denotes the (1 − α)-quantile of χ2
1.

5.3 An Empirical Likelihood-based Goodness-of-

fit Test for Copulas

Many authors have investigated goodness-of-fit (gof) tests for copulas. For com-

plete data, Genest et al. (2009) provided a critical review summarizing the proce-

dures used to develop a gof test. They categorized gof tests into 3 classes: tests

based on the empirical copula, tests based on Kendall’s transform, as well as tests

based on Rosenblatt’s transform. Via a large-scale Monte Carlo study to assess the

finite-sample properties of a selection of the proposed gof tests for various choices

of dependence structures and degrees of association, they presented the power es-

timates for these proposed gof tests, In the spirit of their investigation, we now

consider an EL-based gof test.

Since the empirical likelihood estimator of the copula C(x, y), which we denote
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by θ, is estimated nonparametrically, and l(θ), for the true parameter θ, has an

asymptotic χ2
1 distribution, we can use l(θ) as a test statistic for the goodness of

fit under null hypothesis H0 : C ∈ C0 for a certain class C0 of copulas.

For given x, y, we can calculate θ = C0(x, y) under the null hypothesis H0 :

C ∈ C0. If l(θ) < q1−α, the (1 − α) quantile for χ2
1, then we do not reject H0 at a

significant level of α; otherwise, we reject the null hypothesis at significance level

α. Usually, we cannot directly obtain the true θ, since it may involve one or more

parameters β , say, under the null hypothesis. However, if we replace β in the

expression for C0(x, y) with its parametric estimator, we can obtain the parametric

estimator of θ, which we denote by θ̂. Therefore, l(θ̂) is the test statistic for the

goodness of fit under suitable regularity conditions.

5.3.1 Example

The data consist of 1000 two-dimensional replicates with sample sizes of 50, 100, 200

and 500, respectively, generated from a Gumbel copula with parameter β = 3, i.e.

C0(x, y, β) = exp{−[(− log x)β + (− log y)β]1/β}

For selected ordered pairs (x, y), where (x, y) = (0.25, 0.25), (0.5, 0.5), and (0.75, 0.75),

respectively, we want to test H0 : C = C0 against the composite alternative

H1, C 6= C0. First, we assume that β, the copula parameter under the null hy-

pothesis, is known, and use the asymptotic distribution of l(θ), which is χ2
1. The

critical region is

{θ : l(θ) > q1,(1−α)}
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Table 5.1: Percentage of the estimated reject rates for true θ and estimated θ
(in parentheses) at a significant level of 5% by using empirical (EM) and kernel
marginal (K1, K2) estimates with bandwidths h1 = 0.5n−1/3 and h2 = 1/3n−1/3,
respectively.

n (x, y) EM K1 K2

50 (0.25, 0.25) 3.7(4.4) 9.3(7.2) 6.9(5.2)
(0.50, 0.50) 5.7(3.9) 6.7(8.0) 6.7(4.8)
(0.75, 0.75) 2.7(4.8) 15.6(16.0) 9.3(9.1)

100 (0.25, 0.25) 4.0(3.6) 6.9(5.1) 5.3(3.1)
(0.50, 0.50) 2.9(3.0) 6.0(4.2) 5.9(3.4)
(0.75, 0.75) 6.5(5.8) 13.3(11.2) 8.8(6.5)

200 (0.25, 0.25) 4.4(4.8) 7.0(5.5) 5.8(4.4)
(0.50, 0.50) 5.1(3.8) 6.6(5.0) 6.4(3.4)
(0.75, 0.75) 4.4(4.1) 11.2(9.6) 6.8(6.0)

500 (0.25, 0.25) 5.4(3.3) 5.2(3.6) 4.8(3.6)
(0.50, 0.50) 5.9(4.5) 5.3(4.0) 4.5(3.7)
(0.75, 0.75) 5.4(4.2) 7.5(4.7) 5.5(4.4)

where q1,(1−α) is the (1 − α) quantile of χ2
1, and α is the nominal size of the EL

test. Therefore, we reject H0 if l(θ) > q1,(1−α). When β is unknown, we assume

H0 is true and use a parametric estimator, β̂, to replace β. Again, we reject

H0 if l(θ̂) > q1,(1−α). We used both empirical and kernel estimators of the two

marginal distributions of the copula. In the latter case we used the kernel function

k(x) = 3/4(1−x2), |x| ≤ 1. The estimated rejection rates, based on 1000 replicates

with each of the different sample sizes mentioned above at significance level α = 0.05

are displayed in Table 5.1.

From Table 5.1, we observe that using empirical estimators of the two marginal

distributions outperforms the approach involving kernel estimators in terms of hav-

ing estimated rejection rates closer to the nominal significance level of 5% for
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roughly 75% of the scenarios that we considered. And when the kernel estima-

tors of the marginal distribution are used, the type I errors can be noticeably

reduced by selecting an appropriate bandwidth. For example, using bandwidth

h2 = 1/3n−1/3, the kernel estimator K2 yields lower type I errors than the alter-

native K1 with bandwidth h1 = 1/2n−1/3. Unfortunately, bandwidth selection can

be a challenging problem in practice. Chen et al. (2009) used cross-validation to

select a suitable bandwidth but, as they pointed out, this method of selecting a

bandwidth cannot guarantee the required coverage accuracy. Selecting the optimal

bandwidth to ensure coverage accuracy in the context of using kernel estimators of

the two marginal distributions to obtain EL-based estimates of copula functions is

an open problem.

To illustrate visually the association induced by the Gumbel copula with pa-

rameter β = 3, we plot realizations from this copula with sample sizes n =

50, 100, 200, 500 in Figures 5.1-5.4, respectively. From these plots we see that the

Gumbel copula exhibits strong right-tail dependence and relatively weak left-tail

dependence when the sample sizes are greater than 200. However, when the sample

size is less than 200, the dependence structure is less evident. Since the Gum-

bel copula belongs to the Archimedean family of copulas (see the Appendix to

this chapter), we also show plots of samples from the other Archimedean copulas,

namely the Clayton and Frank copulas, with sample sizes of 200, and parameters

β = 2 and β = 1.81, respectively; see Figures 5.5, 5.6. These choices of copula

parameters for the Clayton and Frank families guarantee they both have the same

degree of association as the Gumbel copula family with β = 3, i.e., a value of 2/3

for Kendall’s τ .
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Figure 5.1: A sample of size 50 from a Gumbel copula with β = 3
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Figure 5.2: A sample of size 100 from a Gumbel copula with β = 3
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Figure 5.3: A sample of size 200 from a Gumbel copula with β = 3
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Figure 5.4: A sample of size 500 from a Gumbel copula with β = 3
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Figure 5.5: A sample of size 200 from a Clayton copula with β = 2
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Figure 5.6: A sample of size 200 from a Frank copula with β = 10.05
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5.4 Simulation Study and Data Analysis

Instead of using l(θ) or l(θ̂), a logarithmic likelihood ratio derived from the empirical

copula as the test statistic, to test H0 : C ∈ C0 for a given pair, (x, y), researchers

may want to test a null hypothesis, H0 : C ∈ C0 for all (x, y) ∈ D1 ×D2 ⊆ [0, 1] ×

[0, 1]. We can use the bootstrap method for a simultaneous confidence band that we

described in Chapter 4, either Kn = sup(x,y)∈D1×D2
l(θ) or Kn = sup(x,y)∈D1×D2

l(θ̂),

as a test statistic. Denote the 1 − α quantile of Kn under H0 as the critical value

q1−α. Then, reject H0 at the overall significance level of α if Kn > q1−α.

In order to compare the power of our test statistic Kn with its empirical coun-

terpart Tn proposed by Genest et al. (2009), we generated samples from various

Archimedean copulas with sample sizes of 150 and τ = .25. For each copula spec-

ified under H0, we calculated the power of our EL-based test statistic, Kn, and

the corresponding empirical test statistic, Tn, if the true copulas are the two other

Archimedean copula families. The results are summarized in Table 5.2. We no-

tice that Kn outperforms Tn in terms of having greater power to detect the copula

families that are different from the null models in the Archimedean family of cop-

ulas. Another advantage of Kn is that it is transformation-invariant, which makes

it easy to compute in practice without any of the complexity that other choices of

transformations may involve.

We illustrate our method of copula estimation using data from Wieand et al.

(1989) concerning CA 19-9 and CA 125 diagnostic test measurements in patients

with pancreatic cancer (diseased) or pancreatitis (disease-free). For the subset

of 90 patients with pancreatic cancer, we display a scatter plot of CA 19-9 and
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Table 5.2: Percentage of estimated rejection rate of Kn and Tn, using a sample
size of 150, for τ = .25. EM indicates the empirical statistic proposed by Genest et
al. (2009).

.

Copula under H0 True copula EL EM
Gumbel Gumbel 5.4(0.71) 4.4(0.65)

Clayton 75.5(1.36) 62.4(1.53)
Frank 16.3(1.17) 15.1(1.03)

Clayton Gumbel 67.9(1.48) 61.2(1.54)
Clayton 5.2(0.07) 5.4(.71)
Frank 36.8(1.52) 32.7(1.48)

Frank Clayton 38.3(1.54) 36.5(1.52)
Gumbel 18.6(1.23) 18.3(1.22)
Frank 4.6(0.66) 4.7(0.67)

CA 125 in Figure 5.7. The plot reveals that the relationship between CA 19-

9 and CA 125 is clearly not linear, so using a Pearson correlation coefficient to

characterize the association between the two biomarkers will not prove satisfactory.

To estimate the association appropriately, we plot the empirical distributions of CA

19-9 and CA 125 in Figure 5.8, which suggests that a Frank copula may fit the data.

After fitting a Frank copula, we obtain the estimated copula parameter β̂ = .6177

with a corresponding estimated Kendall’s τ̂ = 0.0684, as well as the test statistic

Kn = 9.721. By bootstrapping the Frank copula with parameter β = 0.6177, we

estimated the p-value of Kn = 9.721 as 0.787. Therefore, we do not reject the null

hypothesis of a Frank copula with parameter β = 0.6177. We also calculated the

standard error of β̂ from the bootstrap samples, which is SD(β̂) = 0.392. Since

the 95% confidence interval for β is 0.6177 ± 1.96 ∗ 0.392 = (−0.151, 1.386), and

using the relationship between β and τ from a Frank copula family, we obtain the
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Figure 5.7: Scatter plot of the CA19-9 and CA125 biomarkers for 90 pancreatic
cancer patients

corresponding interval is (-0.0167, 0.151)for τ , we conclude that there is no strong

association between CA 19-9 and CA 125 measurements.
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Figure 5.8: EL-based estimated association between the biomarkers CA19-9 and
CA 125 in 90 pancreatic cancer patients
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5.5 Appendix: Archimedean Family of Copulas

The Archimedean copulas are an important class of copulas, which are defined by

C(x, y) = ψ−1(ψ(x) + ψ(y)).

where ψ is a generator of the copula. Because of the ease with which they can

be constructed and the nice properties they possess, there are three Archimedean

copulas in common use, the Gumbel, Clayton and Frank.

5.5.1 Gumbel Copula

The Gumbel copula (also referred to as Gumbel-Hougard copula) is an asymmetric

Archimedean copula, exhibiting greater dependence in the positive tail than in the

negative. This copula is given by:

Cβ(x, y) = exp{−[(− log x)β + (− log y)β]1/β};

its generator is

ψβ(t) = (− ln(t))β

where β ∈ [1,∞). The relationship between Kendall’s τ and the Gumbel copula

parameter β is given by:

β =
1

1 − τ
.
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5.5.2 Clayton Copula

The Clayton copula is an asymmetric Archimedean copula, exhibiting greater de-

pendence in the negative tail than in the positive. This copula is given by:

Cβ(x, y) = max([x−β + y−β − 1]−1/β, 0);

its generator is

ψβ(t) =
1

β
(t−β − 1)

where β ∈ [−1,∞)\0. The relationship between Kendall’s τ and the Clayton copula

parameter β is given by:

β =
2τ

1 − τ
.

5.5.3 Frank Copula

The Frank copula is a symmetric Archimedean copula given by:

Cβ(x, y) = − 1

β
ln

(

1 +
(e−βx − 1)(e−βy − 1)

(e−β − 1)

)

;

its generator is

ψβ(t) = ln

(

e−βt − 1

e−β − 1

)

where β ∈ (−∞,∞)\0. The relationship between Kendall’s τ and the Frank copula

parameter β is given by:

D1(β) − 1

β
=

1 − τ

4
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where D1(β) = 1
β

∫ β

0
t

et−1
dt is a Debye function of the first kind.
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Chapter 6

Future work

6.1 Copula estimation for censored data

In multivariate survival analysis that involves multiple possibly related events and

right censoring , the commonly used dependency measures such as Pearson’s corre-

lation coefficient, Kendall’s tau, as well as Spearman’s rho cannot fully characterize

the association structure between the times of occurrence of these events. In re-

cent years, copulas have become a popular tool for modeling the dependence in

a vector of continuous time-to-event random variables subject to censoring; see,

for example, Chen and Bandeen-Roche (2005), Lakhal-Chaieb et al. (2008), and

Lakhal-Chaieb (2010). Under a copula model, complex joint probabilities can be

efficiently estimated.

Suppose that (X1, Y1), ..., (Xn, Yn) are independent and identically distributed

random vectors with joint survival function π. For j = 1, 2, let Cj1, ..., Cjn be

right-censoring times, with corresponding distribution functions Gj, which are in-

dependent of (X, Y ). According to Sklar (1959), there exists a unique copula C
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such that the joint survival function of (X, Y ) can be expressed as

π(s, t) = Pr(X > s;Y > t) = C{SX(s), SY (t)},

i.e.,

C(x, y) = π(S−1
X (x), S−1

Y (y)),

where SX and SY are the marginal survival functions of X and Y , respectively, and

SX(s) = x, SY (t) = y for 0 < x, y < 1. Typically, copulas can often be indexed by

some parameter β, which reflects the level of association between X and Y .

In order to construct an estimator of C(x, y), which we denote by θ, let ŜX(s)

and ŜY (t) be the estimators for SX and SY , respectively. Some natural choices

might be the Kaplan-Meier estimators, or perhaps the Nelson-Aalen estimators.

Let

wi(s, t) = ŜXi
(s)ŜYi

(t) − θ, w1i(s) = ŜXi
(s) − x, w2i(t) = ŜYi

(t) − y,

Following the same procedure that we described in §5.2, we obtain the empirical

log-likelihood ratio of θ

l(θ) = 2
n
∑

i=1

log{1 + λ1wi(s, t) + λ2w1i(s) + λ3w2i(t)}. (6.1)

where λj , j = 1, 2, 3, should satisfy equations (5.1) − (5.3) and the n additional

constraints 1+λ1wi(s, t)+λ2w1i(s)+λ3w2i(t) > 1/n. Using nuisance estimators ŝ, t̂,

derived from the marginal survival functions SX , SY , respectively, the logarithmic

122



likelihood ratio statistic based on the empirical log-likelihood of θ should be

l(θ) = 2

n
∑

i=1

log{1 + λ1wi(ŝ, t̂) + λ2w1i(ŝ) + λ3w2i(t̂)}. (6.2)

Therefore, the point estimator of θ is θ̂ = argminθ l(θ).

In order to obtain an interval estimate of θ = C(x, y) at a certain fixed point

(x, y) of interest, we need the asymptotic distribution of l(θ), the logarithmic empir-

ical likelihood ratio statistic of θ. Based on this asymptotic distribution, we should

be able to construct a point-wise confidence interval for θ at a nominal confidence

level of 100(1−α)%. Alternatively, we could evaluate a goodness-of-fit test at each

of these points of interest.

An alternative way to obtain the required confidence interval or a confidence

band for θ is via bootstrapping. Using the 100(1 − α)% sample quantile from

the bootstrap sample distribution of l(θ̂) as a critical value, we could then derive

the corresponding confidence interval at a nominal level of 1 − α, where θ̂ is the

point estimate of θ. By taking the supremum of l(θ̂) for {(x, y) ∈ [a, b] × [c, d] ⊆

[0, 1]× [0, 1]} from each bootstrap sample, we would obtain the sample quantile at

a nominal level of 100(1−α)% from this bootstrap sample distribution, and hence

derive a corresponding confidence band for θ, for all (x, y) ∈ [a, b] × [c, d] at the

overall confidence level of 1 − α.
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6.2 EL-based Estimation for a Marginal Survival

Function Under Dependent Censoring

In medical studies involving the analysis of multiple events, situations may arise

when the censoring mechanism is not independent of event times of interest. For

example, to assess the possible benefits of radiation therapy in a cancer clinical trial

where the time to death is a primary outcome, researchers may also be interested

in the time to relapse or normal tissue toxicity (morbidity). Since morbidity can

only occur before death, the time to morbidity is censored by death. Clearly the

time to morbidity may be correlated with time to death, therefore we cannot use

the Kaplan-Meier estimator, which assumes independent censoring, to estimate the

survival function of morbidity time. Thus, we have to address the problem of

estimating a survival function in presence of dependent censoring.

This semi-competing risks problem which is defined by one event being cen-

sored by another but not vice versa, was first introduced by Fine et al.(2001).

These researchers proposed estimators of two marginal survival functions by us-

ing a parametric copula family to characterize the underlying dependency. Jiang

et al. (2005) discussed some drawbacks of these estimators and suggested a self-

consistent estimator of a copula model. Lakhal-Chaieb et al. (2008) used a general

copula model, Archimedean copula, and a copula-graphic estimator, to estimate a

marginal survival function subject to dependent censoring.

To obtain the estimator of a marginal survival function of interest in the semi-

competing risk setting, they first assumed a parametric form of copula, and then

estimate the copula parameter, which is independent of the marginal survival func-
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tions. Based on this association parameter and the relationship between the copula

model and the marginal survival functions, they derived the marginal survival func-

tion of interest. However, since they estimated the association parameter first, it

is hard to test if the selected copula model is valid. Also, when the copula model

is misspecified, the resulting estimator of the survival function would be biased or

invalid.

To deal with the model misspecification problem, we plan to use the empiri-

cal likelihood method to estimate the association parameter and marginal survival

function nonparametrically. With this model and empirical likelihood ratio statis-

tics, we should be able to carry out a goodness-of-fit test for the selected copula,

and corresponding marginal survival estimator.

6.3 EL for Frailty Models

Clustered survival data are encountered in many scientific disciplines including

human and veterinary medicine, biology, epidemiology, public health and demogra-

phy. Frailty models provide a powerful tool for analyzing clustered survival data. In

recent years a number of papers and a wide variety of frailty models have been in-

vestigated. L. Duchateau and P. Janssen (2008) gave a comprehensive introduction

to frailty models in their book.

In order to use a frailty model to accommodate the dependency of clustered

survival data, the distribution of the frailty terms must be specified. Duchateau

and Janssen (2008) discussed several distributions for frailty terms, and identified

the corresponding type of dependence that they induce on the event times in the
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cluster. However as these authors observe, the cluster dependency induced by

certain frailty distributions, such as the lognormal, is hard to evaluate so that the

set of parametric families that can be chosen for frailty terms remains limited in

practice.

To overcome this limitation of the parametric frailty model, we plan to investi-

gate the potential of the frailty model in a nonparametric setting, i.e., no parametric

distribution for the frailty terms, by using empirical likelihood. By comparison with

using a parametric frailty model, we would be able to study the efficiency of an es-

timator of interest and further identify the possible model misspecification problem

involved in making parametric assumptions for frailty terms.

As an alternative to frailty models, copulas can also take the clustering of data

into account, and in some situations these two models are equivalent. Comparing

the two models in the same simulation setting may provide some insights into

important practical aspects of model selection for clustered data.
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