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Abstract 

Vision provides relevant information for safe locomotion in a variety of environments. During stair 

locomotion visual information may be important to detect step boundaries, transitions between 

ground level and stairs, handrail location, and potential hazards. Although there is a large body of 

literature on the role of vision during locomotion there is relatively little focussed on how visual 

information is used during stair walking. Stairs are related to a significant number of accidents in 

daily living, and many of these accidents are attributed to visual factors. Therefore, understanding the 

role of vision during stair walking could provide insight into the mechanisms involved in stair 

accidents. The purpose of this thesis was to investigate the properties of the visual input used to guide 

locomotion on stairs. Study 1 was design to describe the gaze patterns during stair locomotion with a 

specific focus on transitions and handrails. Study 2 investigated the effects of performing concurrent 

visual and non-visual tasks on walking performance and associated gaze behaviour during stair 

ascent. Study 3 explored the role of peripheral visual information during visual and non-visual dual 

tasking. Finally, Study 4 investigated the effects of restricting the lower peripheral visual field to walk 

on stairs. Studies relied on the measurement in health young adults of:  gaze behaviour using an eye 

tracker, temporal characteristics of walking using foot switches, and reaction time and errors of dual 

task performance. Overall, the findings of these studies highlight the importance of the lower visual 

field in guiding stair locomotion and the specific importance for stair transitions. Moreover, foveal 

vision is not specifically critical to detecting handrails or steps. Results are interpreted in the light of 

the specialization of the dorsal ventral stream in processing peripheral visual field information. 

Findings of this thesis provide basic understanding on the role of vision for stair navigation with 

potential applications in stair-related accident prevention programs and stair design. 
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Chapter 1 

Introduction 

The challenge of walking on stairs 

1.1 Background 

Walking on stairs is a challenging activity of daily living for many individuals, such as older adults 

and individuals with lower limb and balance impairments, and is related to high incidence of falls. 

Stair locomotion imposes specific challenges to balance control, precise foot placement on steps, and 

adaptations in the gait cycle to transition from ground level to stair level. 

The literature provides extensive information on the physiological and mechanical demands 

during stair locomotion. However, the perceptual mechanisms involved during stair walking are still 

not well understood. Although the importance of visual information during overground walking has 

been extensively reported in the literature, the current knowledge about the role of vision during stair 

locomotion is based on how people perceive stair heights , and on observations of video recordings of 

stair users (Archea, Collins, & Stahl, 1979; Templer, 1992). Therefore, research with a more direct 

approach on the specific role of vision during stair locomotion may provide important contributions 

to this field of study. 

1.2 Rationale 

Stair walking is considered one of the most difficult daily activity tasks (Williamson & Fried, 1996). 

Stairs are linked to a high incidence of falls in the elderly population, and falls on stairs are associated 

with injuries that require medical attention even in younger age groups. Interestingly, the first top and 

bottom steps seem common locations for stair falls (Wild, Nayak, & Isaacs, 1981). However, the 
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current literature is scarce of research on the locomotion in stair transitions, with most studies 

focusing on the control of locomotion in the mid step region. Additionally, many stair falls are 

attributed to perceptual errors, which could be a consequence of failing to extract relevant visual 

information and/or allocating the appropriate executive resources for gait control. However, the visual 

and executive mechanisms involved in the control of stair locomotion are not well understood. With a 

better understanding of the visual and executive mechanisms underlying safe stair walking (including 

locomotion on transitions), this knowledge can be applied in the field of stair design and fall 

prevention programs. The studies of this thesis are intended to provide basic understanding of the role 

of vision during stair locomotion. It is anticipated that this work would lead to future work focussed 

on the application of such knowledge to understanding of challenges faced by older adults or those 

with physical or cognitive dysfunction. 

 

1.3 Research questions and objectives 

This thesis is characterized by four main studies, in which the following research questions are 

addressed: 

Study 1: Gaze behaviour during stair walking 

• Where do people look at when they are walking up and down stairs? 

• How do people acquire visual information regarding handrails? 

• Do transitions between ground level and stairs require unique visual information compared 

to steady-state stair walking? 
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Study 2: Effects of dual tasking on gaze behaviour during stair ascent 

• Are foveal fixations necessary during stair walking? 

• Does the performance of a concurrent visual/non-visual task cause changes in locomotor 

and gaze behaviours during stair walking? 

• Does visual/no-visual dual-tasking have a specific influence on locomotion on transitions?  

 

Study 3: Dual task, stair descent and lower visual field 

• Do people need to look down during stair descent? 

• Do people use the handrail when dual tasking during stair descent? 

• Is the information provided by the lower peripheral visual field sufficient to guide stair 

descent in a dual task context? 

 

Study 4: Assessing the role of the lower visual field during stair walking 

• Does the lower peripheral visual field play a role in guiding stair locomotion? 

• Does the lower peripheral visual field play a specific role during walking on transitions vs. 

middle steps? 

• Does the lower peripheral visual field play a specific role during stair ascent vs. descent? 
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Chapter 2 

Literature review 

2.1 The challenges of stair locomotion for balance control 

Although stair walking is a common everyday activity and we are able to climb stairs from a young 

age, at the same time, stair walking is a complex locomotor task that imposes challenge to balance 

control. Compared to ground level walking, stair walking is more challenging given the increased 

mechanical, spatial, perceptual and executive demands. Additionally, stairs vary in their designs and 

are present in a variety of environments, which can lead to different levels of challenge (Cavanagh, 

Mulfinger, & Owens, 1997; Startzell, Owens, Mulfinger, & Cavanagh, 2000, for review). This section 

provides a brief overview of some of the main factors influencing balance control during stair 

locomotion that are directly related to the scope of this thesis. 

2.1.1 Biomechanical challenges 

Biomechanical analysis of stair locomotion has been well documented in the literature in the last 30 

years (Andriacchi, Andersson, Fermier, Stern, & Galante, 1980; McFadyen & Winter, 1988; 

Protopapadaki, Drechsler, Cramp, Coutts, & Scott, 2007; Riener, Rabuffetti, & Frigo, 2002). Stair 

locomotion is extensively used to assess knee function given its relevance in the daily living activities 

(Andriacchi, Dyrby, & Johnson, 2003; Brechter & Powers, 2002).Although both stair and level 

walking share a similar joint moment pattern, the increased moment magnitudes during stair 

locomotion makes stair walking a highly demanding locomotor task. For instance, stair locomotion 

causes larger joint angular range of motion and extensor support moment magnitudes in comparison 

to level walking, with the maximum knee extension moment reaching an increase of three times the 

knee moment observed during level walking (Andriacchi et al., 1980; McFadyen & Winter, 1988; 
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Riener et al., 2002). During stair walking, the contact with the step is most often done with the 

forefoot, which reduces the support surface and increases the demands for balance control (Riener et 

al., 2002). Additionally, stair ascent and descent also differ from each other, with high generation of 

energy during ascent and energy absorption during stair descent (McFadyen & Winter, 1988; 

Protopapadaki et al., 2007; Riener et al., 2002). 

2.1.2 Step dimensions and transitions 

Stairs differ from each other in dimensions and materials and this variability can have a significant 

impact on gait parameters and risk for falls. For instance, joint angles, moments, and power patterns 

increase with increasing staircase inclination (Riener et al., 2002). The stair dimensions present in 

standard guidelines have been determined by historical architectural traditions rather than 

experimental approaches (Templer, 1992). However, a psychophysical study showed that the typical 

step dimensions of 18cm rise vs. 29cm tread is within values for self-selected preferred stair 

dimensions independently of gender and age (Irvine, Snook, & Sparshatt, 1990). 

The assumption that steps are uniform within a staircase seems an important factor for stepping 

behaviour. On average, the foot clears the step by 2.5cm, however the foot clearance is increased on 

the first riser and this distance is reduced as individuals walk on the steps (Cavanagh & Higginson, 

2003; Hamel, Okita, Higginson, & Cavanagh, 2005; Simoneau, Cavanagh, Ulbrecht, Leibowitz, & 

Tyrrell, 1991). This reduction in foot clearance in the subsequent steps is attributed to the use of 

somatosensensory information. Prior to stepping on the first step, visual information is the only 

sensory input available regarding the step dimensions. When the foot interacts with the first step, 

somatosensory information, combined with assumption of step dimension constancy, can also be used 

to guide foot trajectory over the following steps. With uniformity of the steps confirmed within the 

first few steps, the stride is shortened and the clearance is reduced. This reduction in foot clearance 



 

 6 

along a stairway is even observed in poor visual conditions, such as darkness and blurriness (Archea 

et al., 1979; Hamel, Okita, Bus, & Cavanagh, 2005; Simoneau et al., 1991). Therefore, the first 

transition (floor-to-stair) is unique in terms of providing additional somatosensory information that 

can be used to modulate the progression during the following steps. Additionally, because foot clears 

the steps at a very small distance, it should be noted that even minimal variability in step dimensions 

could be precursor for trips and falls. 

Interestingly, most falls during stair walking happen on the first or last step (Wild et al., 1981), 

which could be related to the challenge of navigating between floor-to-stair and stair-to-floor. 

Changes in gait pattern must to be performed to allow a fluent transition between over ground 

walking and stairs (McFadyen & Carnahan, 1997). Additionally, age-related decrements in the ability 

to regulate body sway during stair-to-floor transition may be a contributor for the high incidence of 

stair accidents during the last steps in staircases (Lee & Chou, 2007; Sheldon, 1960). 

 

2.1.3 Handrails 

Holding a handrail is considered an efficient strategy to increase safety during stair walking, and stair 

design standards recommend at least one handrail beside stairs (Archea et al., 1979; Fitch, Templer, 

& Corcoran, 1974; Hall & Bennett, 1956; McGuire, 1971; Sheldon, 1960). Although there is 

evidence that there are more accidents on stairs with handrails, these accidents tend to cause less 

serious injuries (Archea et al., 1979). Handrails can provide an extra surface for support, which can 

reduce the load on the lower extremities and avoid falls after a misstep or slip. Older adults can be 

seen relying on handrails to pull themselves up and trying to reach for nonexistent handrails following 

a loss of balance (Archea et al., 1979). In addition, somatosensory information acquired from a light 
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touch of the hands on handrails could also be used to control balance and to monitor the progression 

on stairs, which has been observed during quiet standing (Jeka, Easton, Bentzen, & Lackner, 1996; 

Jeka & Lackner, 1994). Given the importance of handrails for safety, the design and provision of 

adequate handrails are a key factor in any program for stair accident prevention. Unfortunately, the 

presence of handrails does not guarantee that people will use them: approximately only 1/3 of users 

hold the handrail to climb up or down stairs (Cohen & Cohen, 2001; Templer, 1992). Despite the lack 

of handrail use, there is observational estimate that 59% of stair users place themselves within arm’s 

distance of the handrail while walking on stairs (Cohen & Cohen, 2001), which could allow a 

grasping response in the event of loss in stability. There is evidence that grasping on a handrail can be 

rapid enough to effectively restore balance in response to a postural perturbation (Ghafouri, McIlroy, 

& Maki, 2004). Even when the hand is distant from the rail, arm movements can be accurate and fast 

enough to grasp the handrail with appropriate stabilizing forces (Maki, Perry, & McIlroy, 1998). 

Although these findings are based on an experiment that had participants being perturbed from a 

static stepping position (Maki et al., 1998), videotapes of real life stair users seem to confirm the 

ability to recover balance by quickly holding a handrail (Archea et al., 1979). 

 

2.2 Mechanism of falls on stairs and prevention  

Stairs are the most common sites for accidents in homes accounting for more than 27% of domestic 

accidents (McGuire, 1971). Stair-related injuries increase monotonically with age (Hemenway, 

Solnick, Koeck, & Kytir, 1994), and approximately one third of all falls requiring medical care 

happen on stairs (Sheldon, 1960). Estimates are that one in seven people will at some time in her or 

his life have a stair accident resulting in injuries severe enough to require hospital treatment (Archea 
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et al., 1979). Considering the high incidence and the severity of injuries, it is important to understand 

the mechanisms involved in stair accidents in order to design efficient fall prevention programs. 

A variety of circumstances have been related to stair accidents, such as inadequate light 

conditions, vertigo, and missing the last step (Sheldon, 1960). Additionally, in a study analyzing 

video recordings of stair users, behaviours commonly observed preceding a stair accident included 

change in the focus of attention, movement laterally on the stairway, distraction, change in handrail 

use, and reaction to another stair user (Archea et al., 1979). It is worth noting, however, that those 

behaviours occurred only in less than a half of the incidents studied, being unclear the factors 

triggering the other half of incidents. 

There is evidence that falls during stair descent are more frequent than during stair ascent 

(Fitch et al., 1974; Sheldon, 1960; Svanstrom, 1974; Tinetti, Speechley, & Ginter, 1988). This 

difference between ascent and descent could be simply because falls during stair descent are more 

likely to cause injuries requiring medical care compared to stair ascent. However, the high incidence 

of falls during stair descent could also be associated with a greater challenge for balance control, such 

as increased movement speed and greater centre of mass-centre of pressure separation in comparison 

to stair ascent (Zachazewski, Riley, & Krebs, 1993). 

In order to better understand stair accidents and create guidelines for safe stairs, Archea et al. 

(1979) analysed video recordings of stair accidents and proposed a stair use and behaviour model. 

This model highlights that during the approach to a flight of stairs, the user tends to first look at the 

flight of stairs as a whole, following by a look at the first several treads; the visual information 

acquired at this point is used to adjust gait to the riser and tread dimensions. During the approach, 

visual information about the steps is the only sensory information available to guide stepping 

behaviour, which leads to a higher step clearance over the first riser (during ascent), or a slower foot 



 

 9 

drop onto the first tread (during descent). As users initiate to ascend or descend the stairs, they have 

additional information from the somatosensory system regarding the first step, which can confirm the 

previous visual input. If somatosensory inputs validate similar step characteristics while negotiating 

the second step, the idea of uniformity in the stair dimensions is established resulting in reduction in 

stride length foot clearance. At this point, the somatosensory information reduces the need for visual 

information and the user can scan around the environment surrounding the stair. This is also the point 

when the user may become susceptible to tripping on tread or nosing irregularities.  

By assuming the importance of perceptual factors for stair safety in their model, Archea et al. 

(1979) listed a series of recommendations based on the premise that accidents on stairways are caused 

by human perceptual errors frequently triggered by some defect in the design or construction of 

stairways themselves. The model and the guidelines highlight the importance of the stair in being the 

most conspicuous feature in the environment and that visual factors dominate over other sources of 

information during the early stages of stair negotiation. 

 

2.2.1 Perceptual errors 

Perceptual errors refer to inappropriate detection and/or interpretation of relevant sensorial input to 

guide stair walking and they have been considered the most often cause for stair accidents. 

Additionally, perceptual errors are associated to multi factors, such as lack of attention to relevant 

stimuli, illusions, distractions, and misjudgement (Archea et al., 1979; Startzell et al., 2000; Templer, 

1992). Any sensorial modality could be source for perceptual errors, however, visual information is 

most often associated with perceptual errors during in stair navigation. Videotapes of people’s 

behaviour during stair walking suggest that successful stair negotiation was related to: 1) looking at 
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the steps, particularly at the first steps of a stair flight; and 2) looking down at the steps immediately 

prior to the actual stepping action rather than looking down during the stepping (Archea et al., 1979). 

 The importance of visual information preceding the stepping action is not surprising given its 

role in providing information about step characteristics prior to physical contact with the stairs. 

Although somatosensory information can also be used to guide locomotion after the feet make contact 

with the steps, visual factors are still believed to be precursors of falls during the entire stairway 

navigation (Archea et al., 1979; Templer, 1992). In the “Stair behaviour model” proposed by Templer 

(1992), visual information is required in different phases during stair walking and interruptions of 

these processes can increase the risk of falls (Figure 2.1). For instance, the initial conceptual scan is 

intended to form a cognitive map of the stairs containing the general stairs configuration, which 

includes handrail location, step shape, obvious obstructions and hazards. Further in the model, the 

step location scan refers to a fixation on the first step before the actual stepping on the stairs. 

Additionally, the model also includes continuous monitoring scans to search for obstacles and allow 

appropriate gait changes during the ongoing stair climbing. 
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evidence for a general visual scanning during the approach to a staircase, nor a reduction in visual 

scanning following the navigation on the first few steps as proposed in these models. 

 

2.3 Visual information during stair locomotion  

There is no doubt that visual information is important during locomotion. By simply closing our eyes 

and trying to move around, even in a familiar space, we cannot deny the importance of vision in 

guiding our behaviour.  

The visual system provides rich information that can be used in many ways during locomotion, 

such as for planning, to guide action and for balance control. Visual information can be used to plan 

ahead changes in gait pattern for a safe and smooth navigation, as well as to control foot trajectory 

over obstacles and stepping on targets (Patla, 1998). Additionally, vision provides relevant 

information for balance control during locomotion, in part by providing a stable frame of reference 

for upright posture, and dynamic visual information through the use of optic flow (Bardy, Warren, & 

Kay, 1996). 

 Despite of the importance of vision for locomotion, only a few studies have investigated the 

role of vision during stair locomotion and therefore there are still many questions regarding how 

visual information is utilized to properly adapt our locomotor behaviour to a stair context. The 

following sections summarize the current knowledge on how vision is used during stair locomotion. 

As research on vision during stair walking is scarce in some areas, studies regarding vision during 

other locomotor tasks are also referred to give additional insights into other potential roles for vision 

during stair locomotion. 
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2.3.1 Perception of climbability 

Vision provides information on the environmental properties of stairs, which allows individuals to 

adaptively calibrate their own action according to a given situation. By simply having the view of a 

set of stairs, people can judge if they are able to climb the stairs as well as to perceive both their own 

maximal and optimal stair riser height for stair climbing (Konczak, Meeuwsen, & Cress, 1992; 

Meeuwsen, 1991; Warren, 1984). This precise perceptual judgment is related to the concept of 

affordance, which in general terms refers to the capability of perceiving the functional utility of an 

object for an individual with certain action capabilities (Gibson, 1979). Therefore, the perception of 

maximum climbability is linked to the individual’s biomechanical constraints. Generally, the stair 

riser height judged to be optimal has been estimated at approximately 25% of leg length, which 

corresponds very closely to height related to the minimum energy expenditure for stair climbing 

(Warren, 1984). However, older adults perceive and select stairs that are significantly lower in riser 

height than young adults (Cesari, 2005) due to additional constraint factors (other than leg length), 

such as leg strength and hip flexibility (Konczak et al., 1992). This refined ability to judge step risers 

shows that visual information provides input on relevant stair properties that can be used to regulate 

action according the individual’s physical characteristics. 

 

2.3.2 Visual impairments 

Falls are strongly associated with poor visual function. Low scores in visual acuity, depth perception, 

contrast sensitivity, and visual field tests are related to fall risk (Lord & Dayhew, 2001). Specifically 

in terms of stair locomotion, contrast sensitivity was found to be one of the factors significantly 

associated with stair negotiation speed and handrail use (Tiedemann, Sherrington, & Lord, 2007). In 
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addition, reduced visual conditions affect stair walking. When healthy old individuals walked down 

stairs under a blurred condition, it caused slower cadence, larger foot clearance and a more posterior 

foot placement on the step, indicating a safety-oriented adjustment strategy. Under normal visual 

conditions, gait parameters across multiple steps suggest that safer strategies are adopted only at the 

beginning of the stairway, with reduced safety margin along the following steps. Differently, when 

visual conditions are not favourable, the safety strategy is also maintained on subsequent steps 

(Simoneau et al., 1991). These findings indicate that, although the somatosensory information from 

the feet might contribute to regulate foot trajectory in the following steps, vision still provides 

continual visual information for the modulation of locomotor strategies. 

Epidemiological studies provide evidence that multifocal spectacle wearers are more likely to 

fall on stairs (Lord, Dayhew, & Howland, 2002). The lower part of this type of lens is designed for 

reading at a near distance (40 to 60 cm), which can cause distortion in the image of distant objects is 

available in the lower visual field, such as stairs and curbs (Johnson, Buckley, Scally, & Elliott, 2007; 

Lord et al., 2002). It is not surprising, therefore, that multifocal spectacle users show an increased 

variability in foot clearance, which can lead to trips and falls (Johnson et al., 2007). 

Visual field impairments have been also reported as a strong predictor for mobility disability, 

including difficulty to navigate on stairs (Sakari-Rantala, Era, Rantanen, & Heikkinen, 1998; West et 

al., 2005). Individuals with visual field loss generally show reduced gait speed and increased number 

of bumps on objects in the environment (Turano et al., 2004). Individuals with retinitis pigmentosa 

(which causes visual field loss) seem to rely more on the central vision than healthy controls by 

directing their gaze to a larger area in the environment and looking down more often to detect 

obstacles on the floor (Turano, Geruschat, Baker, Stahl, & Shapiro, 2001).  
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The investigation of the role of the lower peripheral visual field during walking has shown the 

importance of the visual information acquired from peripheral vision to regulate gait. Generally, 

restriction in the peripheral visual field (by occlusion or disease) causes compensatory strategies 

during walking, such as, increased toe clearance over obstacles (Patla, 1998), reduced gait speed 

(Marigold & Patla, 2008; Turano et al., 2004), reduced step length, and increased downward head tilt 

(Marigold & Patla, 2008). The peripheral visual field seems to provide enough information to 

successfully guide the implementation of changes in the limb trajectory during obstacle avoidance, 

since downward saccades to the obstacle region rarely happen, and when they occur, they are initiated 

only after following the onset of muscle activity (Marigold, Weerdesteyn, Patla, & Duysens, 2007). 

Additionally, individuals with peripheral field loss have poorer performance in memory-guided 

walking to a goal, which demonstrates the importance of the peripheral vision to build and update the 

spatial representation with the position of goal and landmarks (Turano, Yu, Hao, & Hicks, 2005). 

The specific role of the lower visual field during stair walking has not been investigated. There 

is some evidence that the lower visual field is important to provide visual information to control foot 

placement during stepping. During a single-step descent task, restriction in the lower visual field 

caused significant changes in landing behaviour reflecting a safer landing strategy, such as reduction 

in knee and ankle velocity, and vertical reaction time force (Timmis, Bennett, & Buckley, 2009). 

These findings from a single step task give some evidence that the visual information from the lower 

peripheral field might also be used to finely tune foot position during stair walking. However, a single 

stepping task differs from walking on a full stair flight because it does not include the transition from 

level walking to the step, it does not require walking on multiple steps consecutively, it does not 

involve the chance of using handrails as a compensatory strategy, and it prevents the advantages of 

using dynamic visual information. These differences between single and multiple stepping can 

potentially give different or additional roles for the peripheral vision during full flight stair walking. 
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2.3.3 Gaze behaviour 

Since (1967), when Yarbus recorded eye movements during scene view, it has been demonstrated that 

eye movements are linked to the observer’s cognitive goals. Currently, gaze behaviour is being 

studied in a broad range of tasks, including driving, walking, sports, and making tea or sandwiches as 

an attempt to understand the underling cognitive processes during voluntary movement (Hayhoe & 

Ballard, 2005; Land, 2006, 2009, for review). With the technological advances in the past few 

decades, new generation eye-trackers are lightweight, mobile and easier to calibrate, providing 

opportunities to assess gaze behaviour in real-world activities. 

The study of gaze behaviour provides information on eye movements and the relative direction 

of gaze in the environment. The direction of gaze demonstrates which area in the environment is 

being viewed by the central vision. The central vision incorporates the fovea, which is the region with 

highest visual acuity. Between the rapid eye movements (saccades), the eyes have periods when they 

remain relatively still, which are called gaze fixations. It is during fixations that visual information 

regarding the environment can be extracted and processed (Land, 2006; Vickers, 2007). 

Gaze behaviour is influenced by the goals and specific requirements of the locomotor task. For 

instance, when people are asked to walk on a hallway and turn at the fifth door on the left, most 

fixations are directed to the doors on the left side with the fifth door receiving a greater number of 

fixations than the previous doors (Turano, Geruschat, & Baker, 2003). Gaze fixations are not only 

linked to the task requirement, but they are also tightly linked in time to the evolution of the task 

indicating their role in guiding action (Ballard, Hayhoe, & Pelz, 1995; Patla & Vickers, 2003). For 

example, people consistently fixate two steps ahead in their travel, even when the walk requires 

precise foot falls on targets on the floors, which corresponds approximately to one second before the 

start of the actual stepping action on that location (Patla & Vickers, 2003). During this fixation, it is 

thought that visual information is being acquired to plan the stepping action. This fixation preceding 
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action has also been observed in non-locomotor tasks and called “just in time fixation” (Ballard et al., 

1995). For locomotion, the time between the fixation and the actual action seems to be feasible 

enough to plan the stepping action, as changes in stepping placement can be efficiently implemented 

within one step cycle (Patla, Prentice, Rietdyk, Allard, & Martin, 1999).  

An important question is which type of information is extracted during fixations during 

locomotion. There is evidence for an optimal point of gaze that fits the spatio-temporal demands of 

the task. During driving, for instance, drivers keep their direction of gaze on the "tangent point" on 

the inside of each curve (where the edge of the road reverses direction) from 1-2 s before each bend to 

approximately 3 seconds into the bend. This point relative to the car's heading predicts the curvature 

of the road ahead (Land & Lee, 1994). Additionally, there is also evidence that fixations provide the 

specific visual information relevant for the task. Cinelli et al. (2009) investigated gaze behaviour 

while people walked through “moving doors”. They found that during the approach, fixations were 

distributed on the right and left door, and the aperture. However, when participants were in their last 

steps before crossing, fixations were predominantly directed to the aperture, and variability in gait 

speed was increased to adjust the walk and successfully cross the doors. Additionally, fixation 

duration was longer when the doors moved asymmetrically, which was related to a longer time 

needed to extract and process information during this complex condition. The findings from this study 

show the role of fixations extracting the relevant information (from the aperture) “just in time” to 

make the appropriate changes gait speed to perform the task (crossing). 

Not many studies that have directly assessed gaze behaviour during stair locomotion, however 

findings from a recent study reveals that gaze behaviour can be a promising source to understand the 

use of visual information during stair walking. Zietz and Hollands (2009) studied the gaze behaviour 

of healthy young and old adults while walking up and down the central 8-steps of and 12-step 

staircase. They observed that participants spent between 75 and 90% of the time fixating at their 
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future stepping location in the travel path. Moreover, participants looked most frequently three steps 

ahead, which is one step further than during over ground level walking (Patla & Vickers, 2003). 

Added to these general observations on gaze behaviour during stair walking, gaze fixations during 

stair descent showed differences compared to stair ascent: during stair descent, the last gaze fixation 

on a stair is closer in time to the foot contact with that stair, suggesting that a more up-to-date visual 

information about stair properties guides stepping movements during descent (Zietz & Hollands, 

2009). This study was the first attempt to investigate gaze behaviour during stair walking, and 

provides the general profile of gaze behaviour during steady-state stair walking. However, many other 

questions regarding vision and gaze behaviour during stair locomotion remain to be addressed. For 

example, what are the gaze behaviour characteristics during transitions between stairs and level 

ground? Is gaze behaviour necessary for grasping responses on the handrail? Does cognitive load play 

a role on gaze behaviour profiles during stair walking? Do people at risk for falls show different gaze 

behaviour?  

In summary, stair locomotion is a challenging task significantly associated with accidents and 

falls. Knowledge of the mechanisms involved in the control of stair locomotion is important for stair 

design and fall prevention programs. As vision is the primary sensory information utilized during stair 

locomotion, the investigation of eye movements and gaze behaviour can provide relevant information 

on how people control their steps on stairs. The following chapters detail four studies intended to 

explore specific aspects of the role of vision during stair ascent and descent in healthy young adults, 

which provide essential information to guide future studies in older adults focussed on factors 

contributing to and minimizing fall risk during stair locomotion. 
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Chapter 3 

Study 1 – Gaze behaviour on stairs, transitions and handrails 

With kind permission from Springer Science+Business Media: Experimental Brain Research, Where 

do we look when we walk on stairs? Gaze behaviour on stairs, transitions and handrails, v.209, 2011, 

73-83, Miyasike-daSilva V, Allard F, McIlroy WE. 

 

3.1 Overview 

Stair walking is a challenging locomotor task and visual information about the steps is considered 

critical to safely walk up and down. Despite the importance of such visual inputs, there remains 

relatively little information on where gaze is directed during stair walking. The present study 

investigated the role of vision during stair walking with a specific focus on gaze behaviour relative to 

1) detection of transition steps between ground level and stairs, 2) detection of handrails, and 3) the 

first attempt to climb an unfamiliar set of stairs. Healthy young adults (n=11) walked up or down a set 

of stairs with 7 steps (transitions were defined as the two top and bottom steps). Gaze behaviour was 

recorded using an eye-tracker. Although participants spent most part of the time looking at the steps, 

gaze fixations on stair features covered less than 20% of the stair walking time. There was no 

difference in the overall number of fixations and fixation time directed towards transitions compared 

to the middle steps of the stairs. However, as participants approached and walked on the stairs, gaze 

was within 4 steps ahead of their location. The handrail was rarely the target of gaze fixation. It is 

noteworthy that these observations were similar even in the very first attempt to walk on the stairs. 

These results revealed the specific role of gaze behaviour in guiding immediate action, and that stair 

transitions did not demand increased gaze behaviour in comparison to middle steps. These findings 

may also indicate that individuals may rely on a spatial representation built from previous experience 
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and/or visual information other than gaze fixations (e.g. dynamic gaze sampling, peripheral visual 

field) to extract information from the surrounding environment. 

 

3.2 Introduction 

Stairs are related to a high number of accidents and injuries (Sheldon, 1960; Templer, 1992). In 

comparison to level ground walking, stair navigation imposes additional demands on the control of 

stability, such as the vertical control of body mass while moving up or down each step, and the 

coordination for precise foot placement on each step. In order for the central nervous system (CNS) to 

address the issue of navigation on stairs, vision is considered to play a major role in providing 

information regarding stair features, such as step characteristics, transitions, and handrails (Archea et 

al., 1979; Templer, 1992). Although reliance on visual information to guide locomotion has been well 

documented during over ground walking (Patla, 1997, 1998, 2004; Patla, Adkin, Martin, Holden, & 

Prentice, 1996; Warren & Hannon, 1990; Warren, Kay, Zosh, Duchon, & Sahuc, 2001) and obstacle 

avoidance (Berard & Vallis, 2006; McFadyen, Bouyer, Bent, & Inglis, 2007; Mohagheghi, Moraes, & 

Patla, 2004; Patla & Vickers, 1997; Rhea & Rietdyk, 2007), only a few studies have addressed this 

issue during stair walking (Simoneau et al., 1991; Timmis et al., 2009; Zietz & Hollands, 2009). 

Videotapes of stair users suggest that a fall is more likely to occur when a person does not look at the 

steps prior to start the ascent or descent (Archea et al., 1979), however this assumption about gaze 

behaviour is based on qualitative observation of head/eye pitch movements recorded by security 

cameras. Given the paucity of information about the role of vision during stair walking, this study 

focused on direct, rather than indirect, measurements of gaze behaviour using eye-tracking 

technology. 
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Gaze fixation, a common index of gaze behaviour, refers to periods between saccades when 

gaze is held almost stationary (Land, 2006). Because gaze fixations are considered to represent times 

when visual information about environment is acquired, they are often used to provide insight into the 

visual information utilized for movement control. One study that recently investigated gaze behaviour 

during stair walking found that individuals spent most of the time looking at the steps approximately 

3 steps ahead (Zietz & Hollands, 2009). The aforementioned study only investigated navigation on 

the steps in the middle of a staircase, excluding the transitions between level ground and stairs (e.g. 

stair-to-floor and floor-to-stair transitions). 

Transitions can be specially challenging for balance control as a consequence of changes in gait 

implemented to accommodate the locomotor pattern to changes in the surface level (Lee & Chou, 

2007; McFadyen & Carnahan, 1997). Additionally, the three steps at the bottom and at the top of 

stairs are reported as the most common location for missteps and stair accidents (Sheldon, 1960; 

Templer, 1992; Wild et al., 1981). Visual information seems to be particularly important for 

successful walking on transitions. In stair walking under reduced visual conditions, for instance, a 

significant reduction in the downward velocity of the foot and walking speed is observed while 

walking on the first step (Cavanagh & Higginson, 2003). Therefore, considering that visual factors 

are likely to play an important role while making the transition to and from stairs, the current work 

was designed to investigate how people acquire visual information about the environment to navigate 

stairs, with special attention to the issue of transitions. 

There are likely several roles for the acquisition of visual information during stair walking. 

First, visual information may be used to extract specific environmental information to guide 

immediate action, such as stepping. Visual information about steps, and more specifically transition 

steps, is probably the most important to guide stair walking. In contrast to transitions, the middle 

portion of extended stairs may demand less visual guidance, considering that steps are commonly 
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equi-spaced and their dimensions can be predicted based on the first few steps. As a result we 

expected that individuals would rely on foveal visual information (as gaze fixations) approximately 

two to three steps prior arriving at the transitions (start and end of the stairs) paralleling the findings 

in over ground walking, obstacles avoidance and middle section of stairs. In contrast to transitions, 

we anticipate that individuals would show less gaze fixations directed to the middle stairs. 

A potential second role of vision during stair walking is the use of visual information to build a 

spatial map, which would include more global representation of environmental features, not 

necessarily related to the immediate action, but useful in possible future action. The construction of a 

visual spatial map is considered an important element for successful execution of rapid compensatory 

balance reactions to unexpected perturbations (Maki & McIlroy, 2007). For example, in the control of 

rapid compensatory grasping reactions, the location of handrails does not require gaze fixations 

following a perturbation due to the reliance on spatial maps of the environment established prior to 

the perturbation (Ghafouri et al., 2004). Similarly, a spatial map of a stairway may contain 

information regarding the location of potential support surfaces (e.g., handrails) that could be used in 

the event of a sudden unexpected loss of stability requiring rapid corrective movement, such as a 

grasping response. Considering that information on handrail location is an important visual 

requirement prior to or during stair walking, in this study, we expected that gaze would be briefly 

directed to the handrail during the approach phase to the stair supporting the building of its spatial 

representation. 

Of additional importance in the present study is the potential difference in gaze behaviour 

between familiar and unfamiliar environments. The specific reliance on general feature extraction is 

likely unique to unfamiliar environments. In order to explore this issue, we prevented participants 

from viewing the stairs used in this experiment until the start of the first trial. We expected to observe 

an increased number of fixations and/or fixation time on stair features during the first attempt to 
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climb the stairs compared to the following trials, which could be potentially related to the building of 

a spatial map during the first trial. 

 

3.3 Methods 

3.3.1 Participants 

Eleven participants (4 males, 7 females) between 23 and 38 years and height ranging from 1.62-

1.85m volunteered to participate in the study. All participants had normal vision or vision corrected to 

normal with contact lenses. All participants reported no medical condition affecting their balance or 

ability to traverse stairs. All participants provided written consent prior to participating in the study. 

This study was approved by the Office of Research Ethics at the University of Waterloo. 

3.3.2 Protocol 

Participants were asked to approach and walk up and down a set of stairs with 7 steps (Figure 3.1a). 

The steps were 96 cm wide and had a rise of 18 cm and a tread of 26 cm. A 2.23 m pathway was 

extended at the bottom step. A lift table (length 2.23 m, width 1.22 m) was positioned at the same 

level of the top step to provide an elevated walkway. A handrail, at the height of 89 cm from the 

tread, was placed on one side of the stair (right side ascending/left side descending) and extended 

along the lift. On the other side, there was a wooden wall along the steps (no handrail was present). 

Along the sides of the top level, two cables were extended for safety. 
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Figure 3.1: (A) Schematic of the experimental stairs (see text for details); (B) Video frame from the 
video recordings with the sagittal view of the stairs (left), eye view (top left) and scene view from 
head-mounted camera (right); (C) Gaze location classification for UP (left) and DOWN (right); 
T1=first transition; M1=first mid step region; M2=second mid step region; T2=second transition 

 

Participants performed 5 trials in each direction (UP and DOWN). Stairs and handrails were 

kept covered by a tarp until just prior to the start of the first trial. At the beginning of each trial, 

participants stood at the beginning of the pathway looking straight ahead. The experimenter held a 

cardboard visual screen in front of the participant’s visual field to prevent him/her from being able to 

view the stairs and handrail. When the trial began, the visual screen was removed and the participant 

received the command to walk. Participants were instructed to walk on the stairs at their comfortable 

pace. At the end of each trial, participants remained facing away from the stairs. When the visual 

screen was repositioned to block the view of the stairs, participants turned around to be ready for the 
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next trial. The participant was asked to stand at one of the three start positions (20 cm apart from each 

other), randomly assigned in each trial. Stair ascent (UP) and descent (DOWN) were alternated and 

the starting condition (UP or DOWN) was randomized across participants. Six participants performed 

their first trial ascending, and five participants descending the stairs (note that participants were able 

to stand in position to descend the stairs by using the lift table without having them walk up or view 

the stairs). 

A head-mounted eye tracker 5000 (ASL, Bedford, MA, USA) was used to record eye 

movements and calibrated using the 9 point calibration method with 1º accuracy over the stair area. 

Briefly, this method requires participants to fixate their gaze on 9 points displayed in a 3 by 3 grid. 

Each fixation produces a distinct vector between cornea and pupil reflection, which is associated to 

the coordinates of the respective point providing the line of gaze. Calibration was checked 

periodically between trials. The eye tracker system provided gaze location represented by a gaze 

cursor displayed superimposed on the participant’s field of view captured by a head-mounted camera 

(scene view). A video mixer was used to combine the images from the eye tracker system (scene view 

and eye view), and from a sagittal camera (handrail side), which was digitally recorded at 30Hz; 

Figure 3.1b). Similar approach was previously used in a locomotor study (Patla & Vickers, 1997). 

Footswitches (B&L Engineering, Tustin, CA, USA) were placed inside of participants’ shoes 

under the toe and heel area to provide temporal measurement of their steps. An infrared light switch 

positioned on the bottom step denoted the time when the foot broke the switch prior to contact with 

the bottom step. This information was used to synchronize foot switch data relative to location on the 

stairs. A program written in LabVIEW (National Instruments, Austin, TX, USA) was used to collect 

footswitch and infrared switch data (240Hz). The same program sent a pulse to the eye tracker system 

leaving a mark on the video recordings, which allowed synchronization between eye tracker and 

footswitch data. 
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3.3.3 Data Analysis 

Footswitch data provided time series of foot-contact (FC) and foot-off (FO) for every step, which was 

used to determine participants’ foot stride location with respect to the stairs in the following phases: 

standing [from when the visual screen was removed to the initial FO]; far approach [from the initial 

FO to two FC prior the stairs (-2FC)]; near approach [from -2FC to the last FC prior the stairs (0FC)]; 

first transition [from 0FC to the foot contact on step 2 (2FC)]; first mid steps [from 2FC to foot 

contact on step 4 (4FC)]; second mid steps [from 4FC to the foot contact on step 6 (6FC)]; and 

second transition [from 6FC to foot contact out of the stairs (8FC)]. 

A frame-by-frame analysis of the video recordings was conducted to identify the gaze location 

along each trial, from the start of the trial (when the visual screen was removed) to the end of stair 

walking (8FC position). Gaze location was classified in one of the following step regions (Figure 

3.1c): (1) first transition step (T1): one tread-length before the stair and step 1; (2) mid step 1 (M1): 

steps 2 and 3; (3) mid step 2 (M2): steps 4 and 5; (4) second transition step (T2): steps 6 and 7. When 

not directed to the steps, gaze was classified in one of the following categories: approaching path 

(before the stairs); path following the stairs; end of the path; handrail; or elsewhere. An overall 

measure of gaze behaviour included the total gaze time in each region, expressed as a percentage of 

the trial duration. Additionally, gaze fixations on stair regions (T1, M1, M2, and T2) were determined 

when gaze remained stable for 100 ms or longer (3 frames) with maximal deviation of 1 degree of 

visual angle in each direction, similar to previous locomotion studies (Hollands, Patla, & Vickers, 

2002; Patla & Vickers, 1997, 2003). Gaze fixations on step regions were analyzed in terms of number 

of fixations (percentage of the total number of fixations), mean fixation duration, and fixation time 

(percentage of the trial duration) for each step region. Each gaze variable was averaged across trials 

separately for UP and DOWN directions. 



 

 27 

To test the hypothesis of increased gaze behaviour on the transition steps we compared the 

number of fixations, fixation duration, and fixation time across walking direction (UP vs. DOWN) 

and gaze location (T1, M1, M2, and T2) using a two-way repeated measures ANOVA. When 

required, data were rank-transformed prior to analysis to address concerns of non-normal distribution. 

Planned comparisons (Tukey adjustment) were computed to identify difference in the dependent 

variables between transitions (T1, T2) and mid steps (M1, M2). Tukey post-hoc analysis was 

performed on significant main effects and interactions. The role of gaze fixations in guiding action in 

UP and DOWN was analyzed by computing: 1) the percentage of gaze fixations directed to each step 

region according to participant’s stride location (stride location was defined as the stride in which a 

gaze fixation was initiated); and 2) total gaze time looking ahead against the number of steps looked 

ahead. To test the hypothesis for gaze in building a spatial representation of handrail location, total 

gaze time, number of fixations and fixation time on the handrail were calculated for UP and DOWN. 

Additionally, to find evidence for spatial map built during the early phase of the walking task, total 

gaze time and fixation time directed on stair features prior to walk initiation were analyzed by a one-

way ANOVA with trial number as factor, for each direction. To test the hypothesis for gaze 

behaviour differences in the first trial, total gaze time and fixation time directed on stair features 

(steps and handrail) were analyzed by an one-way repeated measures ANOVA with trial number 

(1,2,3,4, and 5) as a factor, for each direction (UP and DOWN). First trial data was only available 

from 8 of the 11 participants due to technical problems during the first trial in the other 3 participants. 

Of these 8 participants, 4 ascended and 4 descended the stairs in their first trial. Significance level 

was set at 0.05 for all analyses. 
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3.4 Results 

3.4.1 Overall gaze behaviour and gaze fixation characteristics 

Gaze fixations (including fixations on stair and non-stair features) covered on average 2.32±0.80s 

(mean±SD) and 2.82±1.19s of each trial during UP and DOWN, respectively. These values 

corresponded to 24.8±7.4% and 30.6±11.7% of the time to walk up and down the stairs, respectively. 

In each trial, participants performed an average of 15.75±5.60 and 17.51±6.64 fixations during UP 

(range=6-30; mode=16) and DOWN (range=5-31; mode=15), respectively. The average rate of 

fixations observed during the trials was 1.49±0.50 fixations/s and 1.75±0.68 fixations/s during UP 

and DOWN, respectively. 

As anticipated, participants spent a high proportion of the time gazing on stair features (UP: 

60.5%; DOWN: 42.2%; Table 1). Gaze fixations on stair features covered approximately only 1/3 of 

the total gaze time, in both UP (18.9%) and DOWN (13.7%). However, because most fixations were 

directed at the stairs this led to the highest total fixation time compared to any other location (e.g., 

path preceding/following the stairs). The majority of fixations were task-specific given that a small 

number of fixations were classified as “elsewhere”. Additionally, UP showed significantly higher 

percentage of fixations (F(1,10)=23.45, P<0.001) and increased fixation time (F(1,10)=9.82, 

P=0.011) on stairs features compared to DOWN. 
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Table 3.1: Means (standard deviations) for gaze time, fixation time and number of fixations in 
different regions for stair ascent (UP) and stair descent (DOWN) 

Gaze 
location 

Stair Ascend (UP)  Stair Descend (DOWN) 
Gaze time 
(% time) 

Fixation time 
(% time) 

Number of 
fixations (%) 

 
Gaze time 
(% time) 

Fixation time 
(% time) 

Number of 
fixations (%) 

Approacha 0 0 0  0.98(2.1) 0.2(0.5) 0.6(1.7) 
Stairs 60.5(7.7) 18.9(6.3) 71.6(10.0)  42.2(11.0) 13.7(8.4) 47.6(12.8) 
Pathb 10.7(4.5) 1.6(1.6) 7.7(5.6)  13.2(8.7) 3.3(3.1) 11.3(10.5) 
Endc 19.7(8.7) 3.5(2.2) 17.0(8.9)  23.4(7.9) 8.8(4.2) 26.8(6.0) 
Elsewhere 4.1(4.9) 0.6(0.7) 3.6(5.7)  10.9(9.8) 4.3(4.3) 13.7(13.1) 
a path that precedes the stairs 
b path that follows the stairs 
c end of path that follows stairs 

 

3.4.2 Gaze behaviour during first trial 

Despite the fact that the details of the stairs were kept from view prior to the start of the first trial, 

gaze behaviour directed to stair features in the first trial did not differ from subsequent trials during 

UP and DOWN. Gaze behaviour on stair features was not different across trials comparing total gaze 

time (UP: F(4,12)=0.28, P=0.88; DOWN: F(4,12)=0.5, P=0.73) and fixation time (UP: F(4,12)=0.94, 

P=0.475; DOWN:F(4,12)=0.27, P=0.892). Similarly, prior to the onset of walking and after the 

removal of the visual screen, there was no difference across trials in gaze behaviour on stair features 

considering total gaze time (UP: F(4,12)=0.99, P=0.44; DOWN: F(4,12)=0.41, P=0.80) or fixation 

time (UP: F(4,12)=0.86, P=0.51; DOWN:F(4,12)=0.85, P=0.52). 

It is worth mentioning that walking time ascending and descending the stairs did not differ 

significantly across trials (UP: F(4,12)=1.10, P=0.402); DOWN: F(4,12)=1.90, P=0.176). The 

average walking time to traverse the stairs was 7.02±0.91s for UP and 6.30±0.57s for DOWN. 
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3.4.3 Gaze Fixations on stair regions 

When considering the specific characteristics of gaze fixations on the stair features, a main effect of 

walking direction (F(1,10)=16.47, P=0.002), and an interaction between gaze location and direction 

(F(3,30)=3.31, P=0.033) were observed for number of fixations (Figure 3.2 a). Planned comparison 

revealed that number of fixations on the mid steps (M1 and M2) was significantly larger than on the 

transition steps (T1 and T2) during UP (P=0.027). 
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Figure 3.2: (A) Number of fixations on step regions when ascending (UP) or descending (DOWN). 
(B) Fixation time on steps regions. Fixation time was normalized for each trial by the total time taken 
to ascend or descend the stairs. (C) Mean fixation duration for fixation on step regions. Planned 
comparison (M1, M2 vs. T1, T2) indicated in each graph; T1: first transition; M1: first mid step; M2: 
second mid step; T2: second transition; *p<0.05 

 

For fixation time, there was a significant main effect of walking direction (F(1,10)=6.36, 

P=0.030) and interaction between gaze location and walking direction (F(3,30)=4.34, P=0.012; Figure 

3.2 b). Post-hoc tests evidenced that fixation time on M2 was greater during UP compared to DOWN 



 

 32 

walking (P=0.037). Planned comparison revealed that, during UP, there was increased fixation on 

mid steps (M1 and M2) compared to transitions (T1 and T2; P=0.008). 

For fixation duration there was a significant main effect for walking direction (F(1,10)=10.11, 

P=0.010) and an interaction between walking direction and gaze locations (F(3,30)=3.19, P=0.038; 

Figure 3.2 c). Post-hoc test evidenced that fixation duration on M2 was increased during UP 

compared to DOWN (P=0.032). Planned comparison showed significant longer fixation duration on 

the mid steps (M1 and M2) compared to transitions (T1 and T2) during UP (P=0.016). 

 

3.4.4 Gaze behaviour relative to action 

Fixations were analyzed relative to the participant’s stepping location. Figure 3.3a illustrates the 

fixation pattern as participants walked along the stair during UP and DOWN tasks, respectively. 

Colour gradients represent the percentage of fixations that were directed to each location (steps, 

handrail, and end of path) while participants were walking/standing on the area represented by the 

stick figure. Note that the sum of percentages does not necessarily equal 100% because some 

fixations were directed to locations other than the stairs or handrail (Table 1). Fixation behaviour 

differed from the phase when participants were standing at the beginning of the path prior to walking 

initiation compared to the subsequent phases when they were actually walking. During standing, there 

was a higher percentage of fixations directed to the mid step region during UP, and to the end of the 

pathway during DOWN. However, during walking, a ‘look ahead’ fixation pattern was observed 

during both UP and DOWN tasks. In DOWN, fixations were kept within 4 steps of participants’ 

stepping location, whereas in UP fixations tended to be directed between 2 to 4 steps ahead of 

participants’ stepping location. This look ahead pattern can be confirmed in Figure 3.3b, which shows 
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the frequency distribution of steps looked ahead. In UP, gaze was directed 2 to 4 steps (i.e., two 

strides) ahead for more than 50% of the time, whereas during DOWN, participants had their gaze for 

approximately 30% of the time directed to each 0 to 2 and 2 to 4 steps ahead (1 and 2 strides). 

 

Figure 3.3: (A) Distribution of fixations (%) on stair features relative to participant’s stepping 
location during UP (left) and DOWN (right). Each set of stairs shows the participant’s stepping 
location (stick figure) and the respective percentage of fixations directed from that location on each 
step region (T1, M1, M2, T2), handrail, and end of the pathway (vertical bar). Note that for the first 
stairs at the top (in UP and DOWN) participants were standing before walking initiation. Darker 
colour areas represent the most fixated region; (B) Percentage of time which gaze was directed steps 
ahead during walking for UP and DOWN; (C) Percentage of time which gaze was directed to the 
handrail across participants. Dashed arrows indicate when handrail was used. Participants #6 and 10 
held the handrail while ascending and descending the stairs, and participant #8 only when descending. 
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3.4.5 Gaze behaviour on handrail and handrail use 

Compared to the steps, gaze behaviour on the handrail was minimal and varied across participants. 

Six of the 11 participants revealed some period of gaze fixation on the handrails. Fixations on the 

handrail were infrequent and widely varied within these participants, accounting on average for only 

4.1±3.3% and 5.3±4.0% of all fixations, for UP and DOWN, respectively. Average total fixation time 

on the handrail was only 0.3±0.4% and 0.4±0.5% of the trial time for UP and DOWN, respectively. 

Even when the total time that gaze was considered (i.e., including periods of time shorter than 100 

ms), only 2 participants (participant # 6 and 10) spent more than 5% of the time gazing to the handrail 

(Figure 3.3c) and many of the subjects had little to no gaze time towards the handrail. 

Importantly, the handrail was rarely used by participants when walking UP or DOWN the 

stairs. Two participants (participant #6 and 10) used the handrail during both UP and DOWN, and 

one participant (participant #8) during DOWN only (Figure 3.3c, dashed arrows). These three 

participants held the handrail in every trial of the respective conditions (UP and/or DOWN). Usually, 

participants contacted the handrail at the beginning of the stair walking, and their hands either moved 

from one point to the other on the rail, or slid along the rail, until participants stepped on the last two 

steps. 

For the participants who used the handrail (participants 6, 8 and 10), fixations on the handrail 

occurred in 48% of the trials. For all other participants who did not use the handrail, only 10% of the 

trials were characterized by some fixation towards the handrail. When considered across all 

participants, most fixations on the handrail (12% of all fixations) happened prior to reaching the stair 

compared to only a few that occurred during the stair walking phase (less than 1%; Figure 3.3c). 
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3.5 Discussion 

This study investigated gaze behaviour during stair walking and, particularly, explored gaze 

behaviour that may be associated with feature extraction of handrails and stair transitions. This study 

also focused on characterizing a dual role of gaze fixations on extraction of specific information 

relative to steps and transitions (to guide immediate action), and in acquiring more general 

information regarding the environment (to build a spatial map with a specific focus on handrails). 

This work highlights that timing of gaze fixations on stair features is linked to the immediate action of 

stair walking. However, in contrast to the predictions, there was no evidence that transitions were a 

location for more frequent fixation behaviour. In addition, the handrail was rarely fixated and when 

this occurred, it happened during the approach to the stair for the small number of subjects who 

tended to use the handrail. Finally, the first walk experienced with a regular set of stairs (with no prior 

visual information) appeared not to influence gaze behaviour when compared to subsequent 

repetitions on the increasingly familiar set of stairs. 

The results of the current study support the idea that participants used gaze fixations to extract 

visual information about the environment to control their stepping approximately one or two strides in 

advance. Overall gaze remained within 4 steps ahead during stair descent and 2-4 steps ahead during 

stair ascent. These results parallel the gaze behaviour observed during steady-state stair walking (i.e., 

mid steps), which showed that gaze fixations were directed around 3 steps ahead (Zietz & Hollands, 

2009). It is well known that visual information is important for implementation of appropriate gait 

changes (Cinelli, Patla, & Allard, 2008; Lee, Lishman, & Thomson, 1982; Patla et al., 1999) as well 

as for heading direction (Warren & Hannon, 1990; Warren, Kay, Zosh, Duchon, & Sahuc, 2001). 

During gaze fixation events, relevant visual information regarding environmental features is likely 

extracted to guide immediate action for a successful walking performance. Saccades towards footfall 

targets are observed just prior the actual step on the target (Hollands, Marple-Horvat, Henkes, & 
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Rowan, 1995). Similarly, in the presence of obstacles, gaze is directed toward the obstacle area within 

two steps before the crossing (Patla & Vickers, 1997). Additionally, when walking through apertures, 

the centre of mass trajectory “follows” the line of gaze within the last 2 seconds before the crossing, 

which is directed to the centre of the aperture (Cinelli et al., 2008). Therefore, in the present study, the 

occurrence of gaze fixations approximately three steps ahead in the travel path provides support for 

the use of fixations to guide action, by extraction of information regarding stair properties (probably 

step dimensions) relevant for foot placement. Such a relatively fixed gaze position, a few steps ahead 

in the travel path, may also augment the use of optic flow to control heading direction. 

Despite the evidence that restricted visual conditions affect the control of locomotion in 

transitions between floor level and stairs (Cavanagh & Higginson, 2003), the findings of the current 

study do not show that transition steps require additional gaze fixations in comparison to mid steps. 

Two possible explanations may be accounted for the absence of more frequent foveal fixations on 

transitions. One possible explanation is a lack of environmental complexity and a second possibly 

related factor is a greater reliance on peripheral versus foveal vision for such task conditions. With 

respect to complexity, the knowledge that the stairs had regular/predictable step dimensions could 

contribute to less dependency on extended foveal fixation periods. Gaze behaviour is known to be 

driven by context complexity and task specificity. During a search task to copy models, for example, 

gaze fixations increase as a rate of the complexity of the model and dynamic changes in the 

environment (Aivar, Hayhoe, Chizk, & Mruczek, 2005). In addition, in some locomotor tasks, 

fixation behaviour is shown to increase when task demands are greater. For instance, when walking 

over obstacles, the number of fixations on obstacles increases with obstacle height (Patla & Vickers, 

1997), and when walking through moving doors, fixations last longer when the doors move 

asymmetrically than symmetrically (Cinelli et al., 2009). Therefore, gaze behaviour during 

locomotion seems modulated in accordance with the nature of the visual information that needs to be 
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processed and the relationship to task challenge. Experiments exploring stair walking in more 

challenging contexts (e.g., uneven steps, higher risers, concurrent stair users, low illumination, dual-

tasking) may confirm this trend in the range of fixation behaviour required during walking on 

transitions and mid stairs. 

The reliance on peripheral vision could be a secondary factor contributing to the evenly 

distributed fixation behaviour across transitions and mid steps. The use of visual information from the 

peripheral visual field has been reported in many locomotor contexts. For instance, occlusion of the 

lower visual field leads to a reduction in ankle and knee angular velocity during stepping (Timmis et 

al., 2009), reduction in gait speed, and an increase in downward head pitch angle during walking on 

irregular terrains (Marigold & Patla, 2008). Additionally, it was demonstrated that, in an immersive 

virtual environment with different levels of contrast, reduction in the visual field results in reduction 

in gait speed, delay in gait initiation, and increased number of contacts with obstacles (Hassan, Hicks, 

Lei, & Turano, 2007). It is not surprising, therefore, that the use of multifocal spectacles are 

associated with accidents and difficulty to negotiate steps (Davies, Kemp, Stevens, Frostick, & 

Manning, 2001; Lord et al., 2002). Thus, the lower peripheral visual field could be providing reliable 

visual information to guide stair walking in a predictable environment as in the present study, thereby 

minimizing the need for foveal fixations on transitions. 

Under normal environmental conditions, gait patterns are accommodated as people progress on 

a flight of stairs, reflected by a reduction in foot clearance and increase in walking speed across the 

steps (Hamel et al., 2005; Simoneau et al., 1991). In the present study, it was anticipated a similar 

accommodation in gaze behaviour reflected by fewer fixations directed on the mid steps due the 

predictability of the stairs/environment would be seen. However, participants fixated nearly equally 

on every stair region prior to stepping on that region; the only moment that a stair section showed 

significant increased fixation behaviour occurred on the mid steps while participants were standing 
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prior to ascending the stairs. The increase in fixations prior to walking initiation could be due to the 

construction of the stair spatial representation. However, this gaze behaviour is more likely to be 

related to the participant’s comfortable gaze fixation point. When participants were on level ground 

prior to ascending the stairs, the mid steps were approximately at comfortable eye level height. 

Similarly, during stair descent there was a higher number of fixations directed off the stairs 

(comfortable field of view was located on the surrounding environment at the end of the path 

following the stairs). Consequently, such fixations were more likely the product of neutral gaze 

behaviour rather than specific feature extraction of environmental characteristics prior to walk 

initiation. However, when gait was initiated and participants approached the stairs, gaze behaviour 

changed to a more action-guiding pattern. 

The current findings support the notion of gaze fixation for action in stair locomotion based on 

the timing of fixations. However, it should be noted that gaze fixations covered a small proportion of 

the total gaze time, with approximately 2/3 of the total gaze time directed towards the steps not being 

fixations. In other locomotor tasks, such as walking on foot targets, individuals spent around 13-16% 

of the time fixating on the foot targets (Patla & Vickers, 2003), which is close to the findings from the 

present study (19% for ascent and 14% for descent). However, other studies found that people 

execute around 5 fixations per second while walking on a hallway (Turano et al., 2001), which is 

higher than the finding from the present study (less than 2 fixations/s). Potential sources for 

discrepancies could come from the parameters used to define gaze fixations (67ms in Turano et al. 

2001 versus 100ms in the present study). Most gait studies report gaze fixations as a percentage of the 

total fixation time instead of the entire task time, which limits opportunity to compare results. 

However, the findings from the present study seem to support the idea that individuals spend a 

considerable amount of the time looking at the stairs but not necessarily fixating. It is possible that, 

under usual environmental conditions, both gaze fixations and periods shorter than a fixation provide 
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similar information about the environment, with both contributing to a stable frame of reference to 

use optic flow and exproprioceptive visual information to guide locomotion. This might explain the 

current results, which reveal that: 1) both gaze fixations and overall gaze were similarly directed 

within 2-4 steps ahead (Figure 3.3a and b), and 2) participants spent most part of the time looking at 

the steps but not fixating. Determining the specific importance of foveal fixations on the control of 

walking over stairs will likely require task conditions that demand gaze fixations elsewhere (e.g. 

visual dual tasking). At present, the overall low frequency of fixations (100ms or longer) on the stair 

also suggests that alternative mechanisms may be used under such task conditions to guide behaviour, 

such as reliance on peripheral vision, shorter fixation periods and/or feed forward control via internal 

spatial maps. 

This study found modest evidence that foveal vision has a role in extracting information to 

build a spatial representation regarding handrail location. Overall, the handrail was rarely targeted by 

gaze fixations, which may be associated with the fact that the participants in this study rarely used 

handrails. The fact that only a few participants held the handrail in this is study is not surprising 

considering that only 1/3 of stair users hold handrails when climbing stairs (Cohen & Cohen, 2001; 

Templer, 1992), and young adults are usually less likely to grasp handrails even when balance is 

perturbed (Maki & McIlroy, 2006). The few fixations on the handrail observed in this study occurred 

mainly before the participants actually started to walk on the stair (i.e., during the approach phase), 

suggesting that during the action of stair walking, extraction of information about stepping and steps 

is prioritized. In the present study, at least for stair descent, fixations on the handrail occurred during 

the phases prior to stair walking, which could be contributing to the development of such a spatial 

map. However, considering that fixations on the handrail were very rare and even absent in almost 

half of the participants, fixations may not be a primary source for determination of handrail location. 

Alternatively, periods shorter than a single gaze fixation could be enough to acquire and confirm the 
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handrail location coordinates, particularly for a stable/predictable environment, which was the case in 

the present study. Saccades toward a rail happen when people enter into a new environment and this 

has been related to extraction of information about environmental features (King, Lee, & Maki, 2007; 

Lee, Scovil, McKay, Peters, & Maki, 2007). The present study also found that participants briefly 

gazed at the handrail prior to reaching the steps, which might have contributed to building the spatial 

map for the handrail. Additionally, two other explanations may account for the limited foveal 

fixations on the handrail: 1) reliance on remembered spatial map and/or 2) reliance on peripheral field 

of view. Individuals could rely on a stored representation of stair and handrail dimensions from 

previous experience since the current stair/handrail was designed based on standard guidelines (e.g. 

Archea et al., 1979). In addition, extra-foveal information may have been used to build the spatial 

map (i.e., peripheral vision). Future studies investigating groups that actually rely more on the use of 

rails to improve balance via mechanical support, such as older adults with balance impairments, will 

give insightful information on the relationship between gaze behaviour, handrail use, and grasping 

response. 

In this study, there was not a single incident that required a participant to grasp the handrail in 

order to recover balance. The absence of fixations raises the question of whether participants would 

have been able to reach to successfully grasp the handrail in the event of an unexpected loss of 

balance. Grasping a handrail is a common strategy used when balance is disturbed, and the likelihood 

of recovering balance increases when a handrail is available for grasping (Bateni, Zecevic, McIlroy, 

& Maki, 2004). Grasping reactions to balance perturbation are quickly initiated limiting the use of 

foveal vision following the perturbation to guide the initiation of the grasping. Because of the short 

latency for compensatory grasping responses, spatial information regarding handrail features might be 

extracted beforehand and used if necessary to guide such fast action. Previous studies have indicated 

that, in the control of rapid compensatory grasping reactions, the location of handrails does not 
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require gaze fixations following a perturbation due to the reliance on spatial maps of the environment 

established prior to the perturbation (Ghafouri et al., 2004). The finding from the present study 

provide complementary evidence that , at least in a “perturbation-free” environment, people are likely 

to acquire information relative to the handrail location prior to climbing the stairs, which could be 

used to guide grasping response in the event of loss of balance. However, the reduced gaze fixation 

behaviour on the handrail observed in this study also suggests that handrail location may be coded by 

using peripheral visual information. 

We did not find a trial effect on the gaze variables analyzed in the present study. Even when 

participants were prevented from looking at the stair before the start of the first trial, this did not 

produce an increase in fixation behaviour. Similar gaze behaviour across repeated trials suggests that 

the CNS did not need augmented visual information even among the most novel of the trials to either 

build a spatial representation of a flight of stairs or to guide stepping action. As noted previously, it is 

important to consider that the stairs in the current study followed standard measures, which may have 

allowed participants to rely on their previous experiences with stair locomotion. Stair climbing is a 

well-learned task and adults are able to make appropriate perceptual judgments of climbable stairs 

(Konczak et al., 1992; McKenzie & Forbes, 1992; Warren, 1984). Taking into account that steps in a 

stairway are typically similar in dimension and the stable gaze behaviour found in this study, 

inconspicuous step irregularities may not be visually detected and computed to implement appropriate 

gait adjustments. Further studies should investigate a possible role for foveal information in detecting 

stair irregularities and its relation with stair accidents. 

In summary, the findings of this study give support for the use of both foveal and peripheral 

vision for stair locomotion. Foveal vision seems to be used a few steps in advance potentially to 

detect step properties to guide stepping action on the stair in detecting step properties to guide 

locomotion on stairs. Additionally, peripheral (extra-foveal) information is potentially involved with 
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handrail detection and online control of the limb trajectory. Together, foveal and peripheral visual 

information can be acquired to guide appropriate gait adaptations for a smooth transition from level 

ground walking to stairs. 
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Chapter 4 

Study 2 – Effects of dual-tasking on gaze and locomotor behaviour 

during stair climbing 

 

4.1 Overview 

The aim of this study was to investigate the role of foveal vision during stair locomotion and ground-

stair transitions. The study exploited a dual task paradigm to influence the reliance of foveal vision 

during stair ascent. Participants walked on a 7-step staircase under four different conditions: 1) stair 

walking alone (CONTROL); 2) stair walking fixating on a target at the end of the pathway 

(TARGET); 3) stair walking while performing a visual reaction time task (VRT); 4) stair walking 

while performing an auditory reaction time task (ART). Foveal gaze fixations were recorded by an 

eye-tracker. Step time on each stair step and reaction time behaviour were also calculated. Gaze 

fixations towards stair features were significantly reduced in TARGET and VRT compared to 

CONTROL and ART. In spite of reduced fixations, participants were able to successfully ascend 

stairs and rarely used the handrail. Step time was increased during VRT compared to CNT in all stair 

steps. Navigating transition steps did not require more gaze fixations than the middle steps. However, 

reaction time tended to increase during locomotion on transitions suggesting that additional executive 

challenges are present during this phase. These findings indicate that foveal vision may not be a major 

source for extraction of visual information regarding stair features. Instead, looking at the steps likely 

provides a stable reference frame to allow the extraction of visual information regarding step features 

from the whole visual field. 
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4.2 Introduction 

Many accidents during stair walking are attributed to perceptual errors and distractions (Archea et al., 

1979) illustrating the importance of appropriate visual information during stair walking. More 

generally during walking, gaze is directed to the heading direction which potentially facilitates the use 

of optic flow to control gait (Cinelli et al., 2009; Hollands et al., 2002; Land & Lee, 1994). Studies on 

stair locomotion indicate that gaze behaviour is evenly distributed across the steps in a staircase, and 

that the fixation point is maintained a few steps ahead in the path, which support the importance of 

keeping foveal vision continuously directed to the stairs to guide immediate stepping (Miyasike-

daSilva, Allard, & McIlroy, 2011; Zietz & Hollands, 2009). In spite of this potential role for vision, in 

everyday life, stair climbing is often performed when the view of the steps is not available. With 

minimal gait adjustments, people are able to walk on stairs while holding objects (e.g., boxes, laundry 

basket) that block the close view of the steps suggesting that continuous visual information about the 

steps may not be essential. Under such conditions, people may require visual information that is 

sampled intermittently rather than continuously to control locomotion (Patla, Adkin, Martin, Holden, 

& Prentice, 1996). 

In contrast to reliance on foveal vision, either continuously or intermittently, it is possible that 

gaze behaviour documented in stair-related studies (Miyasike-daSilva et al., 2011; Zietz & Hollands, 

2009) may simply be the product of natural gaze tendencies in a familiar task and predictable 

environment. For example, the larger amount of time that people spend looking at the steps during 

ascent compared to descent (Miyasike-daSilva et al., 2011) could be the result of the steps being 

naturally available in the visual field for longer time during ascent than during descent. Consequently, 

overall gaze behaviour may overestimate the actual requirements for visual information during stair 

locomotion and have little involvement with specific feature extraction of stair properties to guide 

stepping. 
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In order to understand the specific role of foveal vision during stair locomotion, the present 

study specifically explored the influence of a concurrent visual task (using a dual-task paradigm) 

requiring gaze fixations to ‘non-stair’ features during stair walking. Such an approach would reveal 

the specific requirements for foveal vision by examining changes in the performance of the stair 

walking, gaze behaviour and performance of the secondary visual task. Although this study was 

designed to explore the role of foveal vision in stair locomotion, the use of a dual-task paradigm will 

also have a confounding effect due to possible changes in executive function. A growing body of 

evidence indicates that walking imposes a load on executive function (Yogev-Seligmann, Hausdorff, 

& Giladi, 2008 for a review). In fact, during dual-task stair walking, young and old adults showed a 

decrement in a secondary attentional task (i.e., longer voice reaction time to an auditory tone) in order 

to maintain walking speed similar to single-task stair walking (Ojha, Kern, Lin, & Winstein, 2009). 

Considering the important interaction between foveal vision demands and executive function during 

dual-tasking, the present study also addresses the concurrent influence of changes in executive 

function demands and the role of vision in stair walking. Of specific importance in the present study 

is the potential importance of foveal vision on transitions regions during stair walking (level ground 

to first step and last step to level ground). Transitions between level ground and stairs are commonly 

associated with accidents (Sheldon, 1960; Templer, 1992; Wild et al., 1981). Therefore, the present 

study may provide insight into the specific control of gaze during locomotion on stair transitions by 

increasing the complexity of stair walking in a dual-task context. 

The current study was designed to determine the specific impact of diverting gaze to another 

task and the separate influence of the executive challenge of such a task. To distinguish the influences 

of gaze direction from executive function challenge, stair walking was compared in three dual-task 

conditions: (1) visual reaction time (gaze fixation and executive challenge), (2) stationary target 

fixation (gaze fixation but no executive challenge), and (3) auditory reaction time task (no gaze 
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fixation and executive challenge). Overall, it was hypothesized that gaze behaviour towards the stairs 

would be less frequent when dual-task requires gaze fixations independently of executive challenges 

(i.e., simple fixation and visual reaction time). However, it was expected that fixations on the steps 

would be preserved, particularly in the phases preceding the transitions. Additionally, with increasing 

challenge imposed by the dual-task context, it was expected that individuals would adopt a safer more 

conservative movement strategy characterized by an increased use of handrails and slower walking 

speed. It was also anticipated that reaction time would be increased and accuracy decreased while 

dual tasking specifically during transition phases of stair walking where the visual and executive 

demands are expected to be greatest. 

 

4.3 Methods 

4.3.1 Participants 

Fifteen healthy young adults, 8 females, 7 males participated in the study (mean age=26.9±3.3 years, 

height=169.9±10.4cm). Participants reported no medical condition affecting their balance or ability to 

traverse stairs and had normal vision or vision corrected to normal with contact lenses. All 

participants provided written consent prior to participating in the study. This study was approved by 

the Office of Research Ethics at the University of Waterloo. 

 

4.3.2 Protocol 

Participants were asked to approach and walk up a set of stairs with 7 steps (Figure 4.1). The steps 

were 96.5 cm wide and had a rise of 18 cm and a tread of 25.5 cm. A pathway was extended at the 
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bottom step and a lift table at the same level of the top step provided an elevated walkway. Handrails 

were placed on each side of the stairs. Participants wore a safety harness attached to a retractable 

lanyard, which ran along a cable at the ceiling as participants walked on the stairs. 

 
Figure 4.1: Schematics of the experimental setup for TARGET and VRT conditions (A) with the 
monitor for presentation of visual stimuli. In ART (B), the monitor was occluded and computer 
speakers emitted the auditory stimuli. (C) Classification scheme for stepping location when ascending 
the stairs. Steps 0, -1, and -2 represent the steps in the approach. Steps 1 to 8 are the steps on the 
stairs. Steps 1 and 2 = first transition; Steps 7 and 8 = second transition; FC=foot contact. 
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Participants were asked to walk up the stairs under four experimental conditions: 1) stair ascent 

alone with no secondary tasks (CONTROL); 2) Visual target (TARGET): ascent the stairs while 

fixating on the letter “X” continuously presented on a monitor; 3) Visual reaction time (VRT): stair 

walking while performing a visual go/no go reaction time task; and 4) Auditory reaction time (ART): 

stair walking while performing a auditory go/no go reaction time task (Figure 4.1b). 

During VRT task conditions the stimuli consisted of the letters “X” or “O” (Figure 4.1A), 

randomly presented (proportion of occurrence of 3/1) on a computer monitor at the end of the 

walkway. Each letter was presented for 100ms at random time intervals between 750 and 1250 s. 

Participants were asked to click on a wireless mouse button every time they saw an “X”. For ART 

task condition the stimulus comprised of either a high and a low frequency tone randomly emitted by 

computer speakers (proportion of occurrence: 3/1; stimulus duration:100ms; inter-stimulus interval: 

750 to 1250 s). Participants were asked to click the wireless mouse button every time they heard the 

high tone. 

Participants practice the visual and auditory reaction time tasks prior to the walk trials. Prior to 

each trial, a cardboard visual screen was held by an assistant in front of the participant to prevent 

him/her from being able to view the stairs and handrails. At the end of each trial, the participant was 

asked to return to the start position downstairs. Subjects were randomly positioned at 1.5m, 1.75m or 

2.0m from the bottom step prior to each trail, to prevent prior plan for approach distance. Participants 

were instructed to walk at their comfortable pace, and to perform both concurrent secondary task and 

stair walking at the same time, with no instruction about which task they should prioritize. 

Participants carried the wireless mouse with their preferred hand during all trials in all four 

conditions. In CONTROL and ART, the monitor was turned off and occluded. The fixation target and 

the stimulus for the reaction time tasks were delivered for the entire trial until participants reached the 

end of the pathway.  
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Participants performed five blocks of trials. CONTROL was performed in block 1 and 5. The 

order of the remaining task blocks (TARGET, VRT and ART) was randomly assigned. For 

CONTROL and TARGET, participants performed 5 trials in each block. For ART and VRT blocks, 

participant performed 10 trials dual-tasking (reaction time task + stair walking), and 5 trials with the 

single-task version for the secondary task (reaction time task only). Dual-task and single-task trials 

were randomly assigned within the VRT and ART blocks. VRT and ART blocks comprised of more 

trials than in CONTROL and TARGET blocks to allow sufficient number of stimulus-response 

events across the stairs for data analysis. 

 

4.3.3 Instrumentation and data acquisition 

Eye movements were recorded via a head-mounted eye-tracker 5000 (ASL, USA) at 30Hz and 

digitally recorded. The eye-tracker was calibrated using the 9-point calibration method with 1º 

accuracy over the stair area. Footswitches (B&L Engineering, USA) were placed inside of 

participant’s shoes to provide foot contact times. An infrared light switch positioned at the bottom 

step served as a reference to determine foot contact time on approach and stairs. A customized 

LabVIEW program (National Instruments, USA) was used to collect and synchronize footswitch and 

infrared switch data. Another customized LabVIEW program was used to control the timing and 

presentation of the visual and auditory stimuli. The same program recorded the time for each stimulus 

delivery the mouse button press responses. 
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4.3.4 Data Analysis 

A frame-by-frame analysis of the gaze recordings was conducted to identify gaze location on each 

step of the stairs. Mean gaze time on the stairs was calculated for each task condition. Gaze fixations 

required gaze to remain stationary for 67 ms or longer with maximal deviation of 1 degree of visual 

angle in each direction. The mean number of fixations (percentage of the total number of fixations), 

mean fixation duration, and mean fixation time (percentage of the trial duration) were calculated for 

each step and condition. 

Footswitch data were used to determine participants’ location with respect to the stairs. Step 

time was calculated from foot contact to foot contact for the last three steps in the approach phase (-2, 

-1, and 0) and for each step on the stairs (1 to 8; Figure 4.1c). The mean step time was calculated for 

each task condition. Steps 1 and 2 were defined as first transition and steps 7 and 8 for the second 

transition. 

 Reaction time and accuracy were calculated for the auditory and visual reaction time tasks. 

Reaction times below 200ms were excluded (1.13% of all reaction times across all participants). 

Accuracy was calculated as the percentage of correct responses. Mean reaction time and accuracy  

were calculated for each step and condition, noting that only reaction times which the stimulus-

response pair fell within the same step (from foot-contact to the next foot-contact) were considered 

for this calculation. 

For each gaze variable (total gaze time, number of fixations, fixation duration, and fixation 

time), a one-way ANOVA was performed with task condition as the factor. Frequency distribution of 

fixations directed to the stairs was computed according to participants’ stepping location on the stairs 

in each experimental condition. Step time was assessed using a two-way ANOVA (condition x step 

number). Reaction times and accuracy were assessed using a one-way ANOVA to examine single-
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task/dual-task effects. Reaction time and accuracy were further analyzed by two-way mixed ANOVA 

to evaluate the effect of task (ART, VRT) and step location. Tukey’s post-hoc analysis was performed 

to determine task or step location differences. Significance level was set at 0.05 for all analyses. 

 

4.4 Results 

4.4.1 Gaze behaviour 

Total time that gaze was directed to the steps was significantly influenced by task conditions 

(F(3,42)=56.38, p<0.0001). The total gaze time was lower for the TARGET and VRT conditions 

compared to the CONTROL and ART conditions (Figure 4.2a). 

Similarly, there were task related differences in total fixation time (F(4,56)=42.92, p<0.0001), 

number of fixations (F(3,42)= 58.03, p<0.0001), and fixation duration (F(3, 35)=5.33, p<0.005) . The 

vision conditions, TARGET and VRT, were characterized by reduced fixation time (Figure 4.2b) and 

number of fixations (Figure 4.2c) compared to ART and the CONTROL. Additionally, fixations were 

significantly longer during ART compared to all other conditions (Figure 4.2d). 
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Figure 4.2: Effects of experimental conditions on gaze behaviour for total gaze time (A), fiation time 
(B), number of fixations (C), and fixation duration (D); ST=stair walking; TARGET= visual fixation 
target; ART=auditory reaction time; VRT=visual reaction time; *different from CONTROL and ART 
(p<0.0001); **p<0.01; ***p<0.05. 

 

Figure 4.3a and b display the frequency of gaze fixations directed to any step on the stairs 

referenced to participants’ stepping location. For CONTROL and ART (Figure 4.3a), there was a high 

number of fixations towards the stairs during the approach and the fixation frequency was 

progressively reduced as participants continued walking upstairs. For TARGET and VRT, fixation 

frequency was higher during the approach steps and initial transition (Figure 4.3b). However, it is 
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important to note that the frequency of fixations and the percentage of subjects that performed gaze 

fixations on the stairs were much lower during TARGET and VRT compared to CONROL and ART 

conditions. 

 

Figure 4.3: Frequency distribution of gaze fixations directed to any stair relative to participants’ 
stepping location (positive step numbers are the steps on the stairs). Frequency represents all fixations 
observed across participants. Numbers at the top of the bars represent the percentage of participants 
contributing with fixations. Step “zero” represents the step ending with the last foot contact on the 
ground prior to the stairs. CONTROL and ART (A), and TARGET and VRT (B) were plotted in two 
difference graphs due to the large difference in scale; (C) Overall gaze fixation frequency directed on 
each step by condition. Frequencies represent the summation of all fixations observed across 
participants. 
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conditions (TARGET or VRT). More specifically handrail contact occurred in TARGET (3 

participants in 1, 2, and 5 trials, respectively) and VRT (1 participant in 9 trials) conditions. 

Interestingly, all the 3 participants used the handrail in their first trial of the task condition. 

Qualitative inspection of the video recordings from these trials showed that participants contacted the 

handrail when stepping on the bottom step, and moved their hands (left hand) across the length of the 

handrail until reaching the last step. Participants did not fixate on the handrails in any trial on this 

study, regardless of whether they used the handrail. 

 

4.4.3 Reaction time performance 

Overall, the performance of the reaction time task was influenced by dual-tasking. Reaction time was 

significantly longer during dual-tasking compared to single-task for ART (F(1,15)=20.61, p=0.0005; 

single-task: 319.5±27.0ms; dual-task: 353.3±37.6ms) and VRT (F(1,15)=8.58, p=0.011; single-task: 

307.24±23.4ms; dual-task: 324.2±22.4ms). Similarly, accuracy was reduced during dual-task 

compared to single-task in both ART (F(1,15)=19.92, p=0.0005; single-task: 96.3±3.8%; dual-task: 

92.0±3.3%) and VRT (F(1,15)=15.67, p=0.0014; single-task: 96.6±2.8%; dual-task: 91.5±5.4). 

Reaction time and accuracy did not differ for ART and VRT conditions (p>0.05). 

For reaction time, there was a main effect of stepping location (F(10,139)=2.81, p=0.0034) and 

an interaction condition vs. step (F(10,118)=2.81, p=0.0037). Longer reaction times were observed 

during locomotion on step 1 in VRT, and steps 7 and 8 in ART. In both VRT and ART, the mid steps 

(2, 3, 4, and 5) showed reaction times as fast as in the single-task condition. Accuracy was not 

influenced by step regions (mean: 85.0±11.3%). 
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Figure 4.5: Reaction times for auditory and visual reaction time referenced to location on the stairs 
(step number). Note filled symbols reflect mean single-task performance. Horizontal axis defines the 
step number in which both reaction time stimulus and response occurred. Positive numbers refer to 
steps on the stairs. Steps 1, 2, 7 and 8 represent the transition steps (shaded). Single-task performance 
was obtained from participants standing at the start position and performing the reaction time task 
alone. 

 

4.5 Discussion 

This study investigated gaze behaviour during stair walking under conditions requiring gaze to be 

fixated away from the stairs. Results showed that gaze fixations on stair features were drastically 

reduced when a visual task was applied concurrently with stair walking, including in the transition 

steps. Despite this altered gaze, participants were still able to successfully walk on the stairs with only 

a few instances of handrail use and modest change in locomotor speed. Locomotor behaviour 

measured as step time was affected only when dual-tasking involved executive and visual challenged 

combined. Finally, the small increase in reaction time during locomotion on the transition steps may 

indicate that executive function and/or visual factors play a role in locomotion on transition steps. 
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Previous studies demonstrated that individuals spend a significant amount of time looking at 

the steps during stair walking suggesting that foveal fixations are required to guide locomotion 

(Miyasike-daSilva et al., 2011; Zietz & Hollands, 2009). However, using a dual-task paradigm, the 

current study revealed that foveal vision may not be an essential requirement to extract visual 

information regarding stair properties to control locomotion. When vision is not constrained by a 

concurrent visual task, there are likely advantages in keeping foveal vision on the steps since the 

entire visual field can be used to extract relevant visual information. It has been demonstrated, for 

instance, that peripheral visual information is sufficient to implement alternate foot placement, even 

when an obstacle suddenly appears in the travel path (Marigold et al., 2007). In the current study, 

although fixations on the steps were limited during visual dual-task conditions, individuals could still 

use the lower visual field to extract visual information regarding the steps. During locomotion, when 

the view of an obstacle is unavailable in the central visual field within two steps and during the 

crossing, gait changes can still be implemented by using visual information about the obstacle in a 

feed-forward manner to plan successful obstacle negotiation (Graci, Elliott, & Buckley, 2010). This 

mechanism could have been used in the present study when vision was diverted from the stairs. 

However, unlike the work of Graci et al. (2010) visual information could not have been extracted via 

central vision since participants did not fixate on the stairs even during the approach phase. It is 

possible that peripheral vision was an alternate source of visual information to guide stair walking 

when vision is diverted, since the view of the stairs was likely available in the lower visual field as 

participants approached the stairs. In this context, peripheral visual information likely provided online 

exproprioceptive information to fine tune limb trajectory on the steps, similarly to studies in obstacle 

avoidance (Graci et al., 2010; Marigold et al., 2007; Patla, 1998). 

While the many observations from this study appear to diminish the potential importance of 

foveal vision, and may elevate potential role for peripheral vision, we did observe an increase in gaze 
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fixations during the auditory reaction time task compared to the other conditions. One possible 

explanation for this result is that the auditory task increased executive load leading to a narrowing in 

the functional attentional visual field (Ball, Beard, Roenker, Miller, & Griggs, 1988). Consequently, 

foveal information about the steps could have been used to compensate for the lack of peripheral 

information. However, most of the fixations while performing the auditory task were directed to the 

last steps in the staircase. The last steps are at a comfortable height for line of gaze and may allow 

feature extraction of stair properties from the full visual field. It is therefore, possible that these 

fixations may serve to provide a stable frame of reference to use optic flow and peripheral visual 

information to guide locomotion rather than as a means to feature extract step characteristics through 

foveal vision. In a similar way, the monitor that presented the visual stimuli and fixation point may 

have functioned as a stable frame of reference. Once again, a concern that rises is the interpretation of 

such gaze fixations in terms of use of foveal information or peripheral information for locomotion. 

The present study did not find strong evidence for a specific role of foveal gaze behaviour in 

locomotion on stair transitions. A minimum amount of fixations was relatively preserved only during 

the approach to the first transition; however, these fixations were performed for only half of 

participants. Additionally, it is important to note that gaze was not directed to transitions more often 

than to other steps. This finding indicates that the transitions do not require additional foveal fixations 

compared to mid steps. It is possible peripheral visual information is enough to guide stair walking on 

transitions. 

Foveal fixation to an external target implemented in this study had a relatively small effect on 

walk time suggesting that foveal vision may not be the major source of visual information to guide 

locomotion on stairs and that peripheral visual field may provide sufficient visual information to 

guide behaviour. As participants walked up the stairs looking at the computer monitor the view of the 

stairs was at least partially available in the lower peripheral field. Similarly, the auditory task had a 
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small effect on step time, which is in agreement with previous obstacle avoidance study that found 

that young adults kept gait parameters, such as gait velocity and stride time, constant while 

performing an auditory Stroop task (Siu, Catena, Chou, Van Donkelaar, & Woollacott, 2008). 

However, when a secondary task combining visual and executive requirements was applied, 

participants walked slower on all step regions. One possible explanation for this finding is that the 

load in executive function in this condition caused a narrowing in the attentional visual field. Previous 

studies have shown that the useful visual field reduces when individuals have their central visual field 

engaged in attentional tasks (Ball et al., 1988; Brabyn, Schneck, Haegerstrom-Portnoy, & Lott, 2001), 

and this could have been the case for the VRT condition in the current study, which made participants 

reduce their gait speed. 

Concurrent reaction time performance provided additional information on the executive 

function demands for stair walking. The finding that reaction time was increased in the first transition 

(VRT) and second transition (ART) suggest that transition may impose additional executive demands 

compared to the middle steps. The reason for the different effects of VRT and ART on the transitions 

is still unclear requiring further investigation. However, the fact that the middle steps did not show 

such increase in reaction time could be associated with an overall reduction of executive/visual 

challenges in the mid steps as gait accommodates to the step dimensions after negotiating the first few 

steps. Similar accommodation is observed in gait parameters, such as foot clearance, which is reduced 

in the mid steps in comparison with the first step (Simoneau et al., 1991). 

The current findings indicate that gaze fixations (and foveal vision in general) do not seem to 

be a requirement for detection of transitions and handrail location. Participants showed few fixations 

on the transitions when required to fixate on a secondary task and fixations directed to the handrails 

were not observed in this study. These results support the role of peripheral vision in providing online 

information for stair walking. Additionally, the fact that the staircase used in this study was built 
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under regular stair design guidelines (e.g., Archea et al., 1979) could had allowed the use of prior 

experience with stairs as a reference for handrail use and control of walking. Under controlled 

conditions, such was the context of this study, extra-foveal visual information showed to be 

appropriate to guide stair walking. Further investigation can contribute to indicate whether foveal 

vision is required for locomotion on irregular steps or under less optimal visual conditions. 

 

4.6 Conclusion 

In a regular set of stairs, young adults are able to successfully control gait with minimal need for 

foveal vision to be directed to stair features. It is suggested that the peripheral visual information is 

able to deal with visual requirements for the control of locomotion on stairs, potentially to plan 

stepping and online control. 
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Chapter 5 
Study 3 – Stair descent and dual-tasking: evidence for a role of 

peripheral visual field 

 

5.1 Overview 

Stairs are related to a significant number of falls in young and old population. The majority of stair 

accidents are linked to poor stair design in association with a failure by the user to perceive stair 

physical properties and make appropriate gait adjustments. Considering the importance of vision in 

extracting information about stair features, the understanding of the role of vision during stair walking 

can provide insightful information on fall mechanisms, stair design and for the development of fall 

prevention programs. The purpose of this study was to explore the role of peripheral vision during 

stair walking. Participants were asked to climb down a regular set of stairs (seven steps) during 

unrestricted walking (CONTROL), and while performing a concurrent visual reaction time task 

consisted of clicking on a wireless mouse in response to letter displayed on a computer monitor at the 

end of the stairway. The monitor was presented in two different locations: at the participants’ eye 

height when they were upstairs (~4m above the ground level) (HIGH); or 0.5m above the ground 

level (LOW). The monitor location either restricted (HIGH) or facilitated (LOW) the view of the 

stairs in the participants’ lower peripheral visual field. Eye movements were recorded using an eye-

tracker and analysed to identify downward gaze shifts. Results showed that, in the presence of a 

visual task, downward gaze shifts were drastically reduced compared to CONTROL conditions. 

Gazes shift frequency remained similarly low independently if the visual task facilitated or restricted 

the use of the lower visual field to extract visual information regarding the stairs. However, 

individuals largely varied in their gaze behaviour when the visual task restricted the view of the stairs. 
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Individuals adopted different strategies such as walking slower, using the handrails, and/or looking 

down. While overall, gait and visual task were not significantly different in the phases prior to 

transition steps there was an increase in variability between subjects in gaze behaviour and 

performance in the visual task near locomotion on transitions when the view of the stairs was 

restricted in the lower visual field. Finally, as well reaction times were increased when the view of the 

stairs was restricted in the lower visual field and the fastest reaction times occurred in the middle 

(non-transition steps). 

 

5.2 Introduction 

Falls account for approximately 33% of injures in the young adult population, increasing to 60% after 

the age of 65 (Government of Canada, 2005). A significant number of theses falls is linked to stair 

accidents. Between 2002 and 2003, 26% of all falls suffered by people aged 65 or older occurred 

while going up or down stairs (Government of Canada, 2005). Interestingly, a higher percentage of 

falls happen during descent compared to ascent (Cohen, Templer, & Archea, 1985; Tinetti et al., 

1988). The majority of stair accidents are linked to poor stair design in association with a failure by 

the user to perceive stair physical properties and make appropriate adjustments. Some individuals 

who fall while walking on stairs report that they had “missed their steps” and tripped, which could be 

considered a perceptual error (Wild et al., 1981). Not surprising, falls are highly correlated to visual 

impairments (Lord & Dayhew, 2001). Considering the importance of vision in extracting information 

about stair features, the understanding of the role of vision during stair walking can provide insightful 

information on fall mechanisms with applications in stair design and fall prevention programs. 

Visual information to guide locomotion can be obtained from both central and peripheral visual 

fields (Marigold & Patla, 2008; Patla, 1998; Turano et al., 2004; Turano et al., 2005). Visual field loss 
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is commonly associated with mobility deficits and the influence on mobility varies according to the 

affected region in the visual field (Geruschat, Turano, & Stahl, 1998; Long, Rieser, & Hill, 1990; 

Turano et al., 2004). For instance, individuals with central field loss report difficulty in tasks 

requiring detection of elevation changes, such as steps (Szlyk, Fishman, Grover, Revelins, & 

Derlacki, 1998) and show reduced ability to use optic flow to guide walking (Turano et al., 2005). 

Loss in the peripheral visual field, such as that caused by retinitis pigmentosa, is related to a 

significant reduction in gait speed and an increased number of contacts with objects in the 

environment (Geruschat et al., 1998). In this regard, the lower visual field seems to play a particularly 

important role during level ground walking. Restriction in the lower visual field while negotiating a 

multi-surface terrain caused a larger head pitch downwards and reduction in gait speed and step 

length in young and older adults (Marigold & Patla, 2008). Information acquired from the lower 

visual field also seems sufficient to modulate foot trajectory during obstacle crossing (Graci, Elliott, 

& Buckley, 2010). Additionally, during single step descent, the lower visual field seems to provide 

online information regarding step height to control landing behaviour, since occlusion in the lower 

visual field is associated to a “cautious landing” behaviour reflected by a reduction in vertical reaction 

force, knee and ankle angular velocity, and delayed body weight transfer to the leading limb (Timmis 

et al., 2009). 

Although the specific role for the lower visual field in stair walking has not been investigated, 

there is some evidence suggesting that peripheral vision might play an important role in guiding 

immediate action on stairs. The preliminary findings from Study 2 of this thesis revealed a reduction 

of fixation behaviour on stair features when central vision was engaged in a concurrent visual task 

with little associated impact to locomotor behaviour. These findings indicate that visual information 

acquired from the peripheral visual field is probably appropriate to guide stair walking. During 

unrestricted stair walking, the peripheral visual field could provide information about the 
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location/properties of the stairs since the lower visual field can easily “capture” the view of the stairs 

while walking up or down. Similarly, the lateral visual fields may acquire information on handrail 

location. If that is the case, a condition for the use of peripheral visual field would be to keep the line 

of gaze in an optimal location to allow extraction of visual information from extra foveal visual field. 

Additionally, the ability to rely on peripheral visual field information would provide possible 

advantages including: 1) reduction in the need to scan large field of view with foveal vision and 2) 

release of the foveal vision to perform concurrent scan of the environment and to engage executive 

processes directed towards other tasks. 

The purpose of this study was to explore the role of peripheral vision during stair walking. In 

order to influence gaze direction, a dual task paradigm was conducted concurrently with stair 

walking. During stair descent individuals performed a concurrent go/no-go reaction time task 

requiring gaze fixations to “non-stair” targets and allowing influence over the available peripheral 

vision.. The central visual task was manipulated to restrict (visual stimulus position in a high 

position) or facilitate (visual stimulus in a low position) the view of the steps in the lower visual field. 

This manipulation caused a natural restriction of the view of the stairs in the lower visual field, which 

could cause disruption in locomotor and gaze behaviour during stair descent. It was hypothesized that 

the lower peripheral field of view is important to navigation of stairs, specifically the transition 

phases. We anticipated that varied restrictions in lower visual field would lead to differences in gaze 

behaviour, speed of stair walking and reaction time latency/ accuracy. For gaze behaviour it was 

hypothesized that, when the dual task limited lower peripheral visual field (visual target in high 

position), individuals would execute transient downward gaze shifts towards the steps within one 

stride prior to transition steps. For time to perform stair walking, it was hypothesized that this natural 

restriction in the lower visual field would result in a more cautious gait including an increase time to 

walk downstairs and single support time during negotiation with the transition step. Finally, for 
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reaction time performance, it is hypothesized increased latency and reduced accuracy under task 

conditions that gaze limits the available lower visual field. 

 

5.3 Methods 

5.3.1 Participants 

Ten healthy young adults (5 females and 5 males) participated in the study (mean age 23.8±3.0 years, 

height 1.68±0.8 m). Participants were screened for medical condition or history that would affect their 

balance or ability to traverse stairs. Participants had normal vision or vision corrected-to-normal (with 

contact lenses), with binocular visual acuity of 20/20 or higher at the Snellen test and mean contrast 

sensitivity at Mars Letter test of 1.79 ±0.05 log. All participants provided written consent prior to 

participating in the study. This study was reviewed and accepted by the Office of Research Ethics at 

the University of Waterloo. 

5.3.2 Protocol 

 Participants were asked to walk down a 7-step staircase at a self selected pace. The steps were 96.5 

cm wide and had a rise of 18 cm and a tread of 25.5 cm. A walkway was provided at the bottom step 

(approximately 3 m long), and at the top step (by a 2.23 vs. 1.22 m lift table). Handrails were present 

in both sides of the stairs. Along the sides of the top level, two cables were extended providing a 

guardrail. Participants wore a safety harness attached to a retractable lanyard that ran along a cable 

above the stairs and walkway. Before the beginning of each trial, the view of the stairs and the 

handrails was blocked with a visual screen held by an assistant. When a trial started, the screen was 

removed and participants walked down the stairs at their natural pace, reached the ground level and 
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walked for 3 to 4 more steps before stopping. At the end of each trial, participants were asked to 

return to the start position upstairs. When the participant reached the start position area, he/she turned 

around to face the stairs again, the visual screen was set back in front of them, and then they were 

asked to move to one of the 3 different start points marked on the lift table. The start points were set 

at 1.2m, 1.4m, and 1.6m from the edge of the first step. 

The dual-task comprised of performing a visual go/no-go reaction time task concurrently with 

stair walking. The visual task consisted of pressing a wireless mouse button in response to a visual 

stimulus displayed in a flat computer monitor. The stimulus consisted of the letter “X” or “O” 

randomly presented in the centre of the computer monitor at a proportion of occurrence of 3/1 (X 

more frequent than O). Stimuli were presented for 100ms at random time intervals between 750 and 

1250 s. Participants were asked to click on a wireless mouse button every time they saw an “X”. The 

series of stimulus was delivered during the entire walking. Participants were provided with practice 

trials for the reaction time task the beginning of the data collection session. 

Participants walked downstairs performing the dual task in two different conditions (Figure 

5.1). The condition in which the view of the stairs in the lower visual field was facilitated (LOW), the 

monitor was located downstairs on the walkway following the stairs at 50cm above the ground level. 

The condition in which the view of the stairs in the lower visual field was restricted (HIGH), the 

monitor was raised at participants’ eye height (~3.5 m above the ground level) when standing at the 

top of the stairs. The monitor location in HIGH restricted subjects from seeing the steps in their lower 

peripheral field of view as they walked downstairs, since it required participants to direct their gaze 

upwards to perform the visual task. Additionally, participants walked downstairs without performing 

the visual task concurrently (CONTROL), and with no specific information about where they should 

look. Participants carried the wireless mouse on their preferred hand during all trials (including in 

CONTROL), which was the right hand for all participants. In both LOW and HIGH conditions, the 
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monitor location allowed participants to perform at least 3 steps after reaching the ground. During the 

dual task conditions participants were asked to perform both the reaction time and walking at the 

same time, and no specific instruction was given on which task they should prioritize. No instruction 

was given on use of handrails. Each participant performed two blocks with 5 stair walking trials in 

each condition (CONTROL, HIGH, LOW). Participants also performed the visual task in a single 

task version (reaction time task alone), while standing on the start position upstairs. For HIGH and 

LOW blocks, three trials (10 seconds length) in the single task version were randomly added in each 

block. Condition blocks were presented in random order. 

 

Figure 5.1 Experimental protocol. (A) Dual-task with peripheral vision facilitation (LOW); (B) dual-
task with peripheral vision restricted (HIGH); (C) Unrestricted walking (CONTROL); (D) Video 
frames from head-mounted camera, with participant’s view of the monitor (circle) and steps from the 
top of the stair during HIGH (left) and LOW (right) conditions. Dashed line in A and B illustrates 
participant’s line of gaze oriented towards the monitor. 

 

D HIGH LOW 
C 

CONTROL 

A 

LOW 

B 

HIGH 
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5.3.3 Instrumentation and data acquisition 

A head-mounted eye tracker 5000 (ASL, Bedford, MA, USA) was used to record eye movements at a 

rate of 60Hz. The eye-tracker was calibrated using the 9 point calibration method with 1º accuracy 

over the stair area. The eye tracker system provided video outputs of both, the eye view, and the gaze 

location superimposed on the participant’s field of view (scene view). Additionally, a video camera 

recorded the full-body image of participants walking on the stair, which was used to code handrail 

use. The images of the eye view, the scene view, and the video camera were digitally recorded. 

Footswitches (B&L Engineering, Tustin, CA, USA) placed inside of participant’s shoes 

provided temporal measurement of their steps. An infrared light switch positioned at the bottom step 

was used to denote the timing prior to contact with the first step. This information was used to 

synchronize foot contact information with location on the stairs. Footswitch and infrared switch data 

were collected at 240Hz and recorded using a program written in LabVIEW (National Instruments, 

Austin, TX, USA). 

A custom designed LabVIEW program was used to control the timing and presentation of the 

visual stimulus for the secondary task. The same program recorded the time for each stimulus 

delivery and each time that the participants pressed the mouse button. 

 

5.3.4 Data analysis 

5.3.4.1 Locomotor behaviour 

Footswitch data provided time series of foot-contact and foot-off times for every step for each trial. In 

combination with the infrared signal prior to contact with the bottom step, footswitch data were used 

to determine participants’ location with respect to the stairs and each step. Participants’ stepping 
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location was classified in one of the following categories (Figure 5.2): a) approach (AP), the first foot 

off (FO) to the last foot contact before the stair (0FC); b) first transition (T1), from 0FC to the foot 

contact on the step 2 (2FC); c) first mid steps (MS1), from 2FC to the foot contact on the step 4 

(4FC); d) second mid steps (MS2), from 4FC to the foot contact on the step 6 (6FC); g) and second 

transition (T2), from 6FC to the first foot contact out of the stairs (8FC). Total walk time (from FO to 

FC8) was calculated per condition per participant. Walk time was also calculated for each stair region 

(T1, M1, M2, and T2). Single support duration in each step was calculated. 

 
Figure 5.2: Classification scheme for participants’ step location when descending the stairs. 
AP=approach; T1=first transition; MS1=first mid step region; MS2=second mid step region; 
T2=second transition; FO=initial foot off; -2FC=two foot contacts before stepping on the stair; 0FC= 
last foot contact before the stair; 2FC=foot contact on the step 2; 4FC =foot contact on the step 4; 
6FC= foot contact on the step 6; 8FC=first foot contact out of the stairs. 

 

Handrail use was obtained from the video recordings. The frequency of trials that the handrails 

were contacted by the participants was determined. 

5.3.4.2 Gaze behaviour 

A frame-by-frame analysis of the video recordings was conducted to identify gaze shifts downward 

along each trial, from the start of the trial (when the visual screen was removed) to the end (8FC). A 

gaze shift downward was defined every time that a downward movement of the eye was detected in 

the eye view image. For each participant, the percentage of trials per condition in which downward 

gaze shifts occurred was calculated. Gaze shift duration was calculated as a percentage of trial time. 

0FC 2FC 4FC 6FC 8FC

AP T1 M1 M2 T2

FO
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Additionally, for each gaze shift, the participant’s stepping location on the stairs was assessed and the 

gaze shifts were classified as approach (AP), transition 1 (T1), mid steps 1 (MS1), mid steps 2 

(MS2), or transition 2 (T2). The percentage of trials with gaze shifts was computed per condition per 

step region. 

5.3.4.3 Performance in the central visual task 

Performance in the reaction time task was assessed by reaction time and accuracy. Accuracy was 

calculated as the percentage of correct responses. A response was considered correct when 

participants pressed the mouse button following a “X” stimulus, or did not press the mouse button 

following the “O”. Mean reaction time and accuracy was calculated for each condition. Reaction 

times below 200 ms were considered an error for anticipation and timing was not included in the 

calculation of mean reaction time. Additionally, mean reaction time and accuracy was calculated for 

each step region per condition (only events that stimulus and response fell within the same step region 

were considered to calculate the means). 

5.3.4.4 Statistical analysis 

Mean downward gaze shift duration was analyzed by a one-way repeated measures ANOVA with 

task condition as a factor with three levels (CONTROL, LOW, HIGH). Gaze shift frequency, walk 

time, reaction time and accuracy were all analyzed using a two-way repeated measures ANOVA with 

task condition and step region as the two factors. Single support time was analysed using a two-way 

ANOVA with condition (CONTROL, LOW, HIGH) and specific step location (from -1 to 7) as 

factors. Post-hoc analysis (Tukey adjustment) was performed to characterize the differences across 

conditions and step regions. Significance level was set at 0.05 for all analyses. 
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5.4 Results 

5.4.1 Gaze behaviour 

As summarized in Table 5.1, gaze behaviour directed to the stairs was reduced in LOW and HIGH as 

compared to the CONTROL conditions. Specifically, the gaze shifts were shorter in duration, 

occurring in fewer trials and less frequently. This reduction is evidenced by a significant main effect 

of experimental conditions on total gaze shift time (F(2,18)=87.88, p<0.0001; Figure 5.3A). 

Table 5.1: Gaze shift characteristics across experimental conditions (means±standard deviation). 

  CONTROL  LOW  HIGH 

# of participants performing gaze shifts  10  7  9 

Mean gaze shift duration (ms)  421±50  250±62  274±96 

% trials with gaze shifts  60.9±15.6  1.9±1.9  11.8±12.1 

Mean number of gaze shifts per trial  6.6±1.6  0.2±2.5  1.2±3.1 

 

For gaze shift frequency, ANOVA evidenced a main effect for condition (F(2,18)=98.73, 

p<0.0001), step region (F(4,36)=13.18, p<0.0001) and an interaction of condition versus step region 

(F(8,72)=8.75, p<0.0001). Figure 5.3B shows the frequency of downward gaze shifts with respect to 

participant’s location on the stairs for each condition. Overall, gaze shift frequency was increased in 

CONTROL compared to LOW and HIGH in all step regions. In CONTROL, the percentage of gaze 

shifts decreased as participants walked on the stairs. In LOW and HIGH, there was an overall 

reduction in the percentage of trials with gaze shifts across all step regions. In HIGH, the observed 

increase in downward shift frequency in step regions prior to transitions (e.g., AP and M2) did not 

reach statistical significance when compared to the other step regions, however they showed a large 

standard deviation. 
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Figure 5.3: (A) Mean gaze shift duration in each condition. (B) Gaze shift frequency in according to 
participants’ stepping location on the stairs in each condition. *p<0.0001 

 

5.4.2 Locomotor behaviour  

For walk time, there was a main effect of task condition (F(2,18)=19.83, p<0.0001), step region 

(F4,36=11.14, p<0.0001) and a condition versus step region interaction (F(8,72=4.2, p=0.0004; 
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Figure 5.4). Overall, walk time was reduced in LOW and HIGH compared to CONTROL and was 

slower in the first transition compared to other step regions. In contrast to the differences between 

control and other tasks, there was no difference in the walk time comparing between the LOW and 

HIGH tasks. 

 

Figure 5.4: Step time (s) for each experimental condition and step region. T1=transition 1; M1=mid 
steps 1; M2=mid steps 2; T2=transition 2. 

 

Video recordings taken during the experimental trials suggested that some participants 

performed a “foot search” in order to find the transition step when dual tasking reflected by an 

increase in the foot swing phase. In order to confirm this observation, the single support time in each 

step was calculated (Figure 5.5). Similarly to step time, there was a main effect for condition 

(F(2,18)=17.36, p<0.0001), step (F(6,72)=22.47, p<0.0001), and an interaction between task 

condition and step location (F(16,144)=5.69, p<0.0001). It was expected that dual-task would 

increase the single support phase during negotiation with the first and last step. However, single 

support time was significantly longer in every step in both LOW and HIGH compared to CONTROL 

(excluding step -1 in LOW, and step 7 in LOW and HIGH). Single support time was also similar 
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between LOW and HIGH (except for step -1). Although the increase in single support time in the 

transitions was not statistically different from the increase in other steps, it can be observed in Figure 

5.5A, a larger standard deviation in the steps “0”, “5”, and “6” during HIGH, which seems to indicate 

that some participants may have increased single support time but others did not. Figure 5.5B and C 

show two representative subjects for these cases. Subject S5 (Figure 5.5B) showed very little increase 

in single support time in all steps when comparing LOW and HIGH vs. CONTROL. Controversially, 

subject S10 (Figure 5.5C) showed increased single support time in LOW and HIGH compared to 

CONTROL, particularly in the single support phase preceding the foot contact with the first stair 

(step “0”) and prior to landing on ground level (steps “5” and “6”). 
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Figure 5.5: Single support time in each step by condition. (A) Average across participants (and 
standard deviation); (B) Data from a representative subject who showed minimal difference in single 
support duration across conditions; (C) Data from a representative subject who showed increased 
difference in single support duration across conditions. 

 

Four of the 10 participants used the handrail at some point in the study. Only one participant 

held the handrail during CONTROL condition and this occurred in only one trial. In the LOW task, 

handrail use was increased, with three participants holding the handrail in a total of 25 trials (26% of 
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all trials). The highest handrail use was in HIGH task with 4 participants holding the handrail in 34 

trials (34.7% of trials). 

5.4.3 Central visual task performance 

Table 5.2 shows reaction time and accuracy in the visual task. As expected, dual-task significantly 

increased reaction time compared to single-task in LOW (F(1,9)=18.34, p=0.002) and HIGH 

(F(1,9)=32.51, p=0.0003). Similarly, accuracy was significantly reduced during dual-task compared 

to single-task in LOW (F(1,9)=12.42, p=0.0065) and HIGH (F(1,9)=33.39, p=0.0003).  

For reaction time, there was a main effect of task condition (F(1,9)=5.65, p=0.041) and step 

region (F(4,36)=7.57, p=0.0002; Table 5.2). Specifically reaction time was increased in the HIGH 

compared to the LOW condition. Additionally, reaction times at the first mid step (M1) showed the 

fastest reaction times in comparison to all other step regions during dual tasking. There was no 

significant difference in accuracy comparing between LOW and HIGH conditions (p>0.05), between 

step regions (p=0.090) and there was no statistically significant interaction between step region and 

task condition (p=0.072). 

Table 5.2: Performance in the reaction time task during dual and single task performance across the different 
task conditions (HIGH and LOW visual target location). Means±SD for reaction time (ms) and accuracy (% 
correct responses). 

 
LOW  HIGH  Totala 

Reaction 
Time (ms) 

Accuracy 
(%)  Reaction 

Time (ms) 
Accuracy 

(%)  Reaction 
time (ms) 

Accuracy 
(%) 

Single-task 314±25 91.0±5.3  318±24 89.4±8.9    
Dual-taska 337±45* 82.7±15.1  351±48* 80.2±15.2    
Approach 363±42 82.8±5.7  375±48 78.2±10.0  369±44 80.5±8.27 
T1 334±42 80.5±10.5  352±52 80.7±13.6  343±37 80.6±11.9 
M1 302±28 84.3±16.7  305±41 91.5±10.4  303±34** 87.9±14.0 
M2 348±43 75.8±24.2  362±39 71.1±21.3  355±40 73.4±22.3 
T2 339±50 90.0±10.4  361±56 79.7±16.2  350±53 84.8±14.3 
aMeans across all step regions in LOW and HIGH; b Means across conditions for each step region (approach, 
T1, M1, M2, T2); *statistical difference between LOW and HIGH (p<0.05); ** statistical difference between 
M1 and other step regions (p<0.0001). 
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5.4.4 Individual strategies 

Inspection of individual data revealed that participants selected two different walking strategies. Four 

participants reduced drastically walk speed during the most restricted condition (HIGH), while the 

other 6 showed only a small reduction in walk speed compared to CONTROL. Table 5.3 shows the 

descriptive data for these two subgroups. Participants were assigned as “slow walkers” if they showed 

an increase in walk time larger than 25% in HIGH compared to CONTROL. Handrail was used more 

often for participants who walked slower (N=3) than faster (N=1). Participants who walked faster in 

HIGH tended to perform downward gaze shifts more often than slower walkers. In the secondary task 

performance, three slow walkers showed the lowest dual-task cost in reaction time, while one 

participant in this group showed higher dual-task cost levels similar to the faster walkers. All slow 

walkers showed lower dual-task cost in accuracy in LOW, however they appear similar to fast 

walkers in HIGH.
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Table 5.3: Summary of individual data describing locomotor behaviour, gaze behaviour, secondary task performance, and handrail use. 

 
1 Dual task cost was calculate as the percentage of change in performance in the dual task (DT) condition compared to single task (ST) performance as: 
ݐݏ݋ܿܶܦ ൌ ሺሺܵܶ െ  ܶܦ/ሻ  100/ሻܶܦ

 

CNT LOW HIGH LOW HIGH CNT LOW HIGH Single 
task

LOW HIGH LOW HIGH Single 
task

LOW HIGH LOW HIGH CNT LOW HIGH

S1 4.32±0.6 4.48±0.2 4.41±0.2 3.6 2.0 100 0 10 295±29 324±46 360±46 9.9 22.2 90.6±9.9 90.2±12.0 82.1±14.9 -0.4 -9.4 0/10 0/10 0/10
S2 4.74±0.2 5.14±0.3 5.02±0.3 8.5 6.0 100 30 100 312±22 355±41 342±57 13.9 9.8 93.9±12.6 81.1±15.0 79.4±13.8 -13.6 -17.8 0/10 0/10 0/10
S3 4.57±0.3 5.12±0.2 5.18±0.2 12.2 13.4 100 22 60 312±14 362±43 359±30 15.8 15.1 97.1±4.1 89.2±11.2 95.3±10.0 -8.1 -2.0 0/9 0/9 0/10
S4 4.78±0.2 5.68±0.1 5.44±0.2 18.8 13.8 100 50 100 320±37 351±44 356±63 9.5 11.0 96.2±5.8 80.0±11.9 80.3±6.8 -16.8 -19.9 0/7 0/8 0/10
S5 4.95±0.2 5.56±0.3 5.67±0.1 12.2 14.4 100 0 10 285±20 309±25 348±57 8.2 22.1 94.5±5.1 73.0±16.1 84.2±15.2 -22.8 -14.1 0/9 0/9 0/10
S6 5.94±0.1 6.94±0.3 7.21±0.6 16.9 21.5 100 30 100 331±28 383±59 384±36 15.4 15.8 91.2±8.6 80.3±13.2 80.8±14.0 -11.9 -13.0 0/8 7/10 7/10

S7 4.75±0.5 6.24±0.1 6.55±0.6 31.5 37.9 100 10 67 326±22 333±46 338±40 2.2 3.7 84.9±12.5 86.5±8.5 72.2±14.5 1.8 -14.7 0/10 0/10 0/9
S8 3.84±0.3 5.62±0.2 6.27±0.2 46.4 63.3 100 0 20 373±28 377±43 386±27 1.2 3.5 89.4±9.4 89.4±10.2 68.6±19.9 0.0 -23.3  1/10 0/10 10/10
S9 4.68±0.7 6.43±0.5 7.67±0.6 37.4 63.8 100 10 0 305±19 349±30 379±46 14.7 24.3 94.9±6.2 90.7±10.0 85.0±7.3 -4.4 -10.9 0/10 10/10 10/10
S10 4.73±0.3 7.85±0.6 8.05±1.6 65.8 69.9 100 10 22 300±19 308±29 301±38 2.6 0.3 92.1±9.2 90.2±11.7 77.2±14.6 -2.1 -16.6 0/10 8/10 7/9

Accuracy   
dual task cost

# trials/total # trials

< 25% walk time increase

> 25% walk time increase

Locomotion Gaze Secondary task Handrail use

Walk time (s) % change Gaze shifts (% trials) Reaction time (ms) Reaction time 
dual task cost

Accuracy (%)Subject
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The classification as “slow walkers” and “fast walkers” was able to account for the variability 

found in the group analysis. Figure 5.6 illustrates individual data for gaze, locomotion, and visual task 

variables in the HIGH task condition. Large gaze shift variability prior to transitions in HIGH could 

be explained by the considerable variation between fast walkers in this variable (Figure 5.6A). For 

instance, during M2, half of the fast walkers performed gaze shifts in most of the trials (N=3), one 

participant looked down for only one trial (S3) and the remaining two participants did not perform 

gaze shifts in any trial. Large variation in gaze behaviour could also be observed in the approach 

phase. Slow walkers showed very low frequency or absence of gaze shifts throughout all step regions. 

Figure 5.6B shows percent of change in stride duration in HIGH compared to CONTROL 

(positive values indicate that the stride duration in that phase was increased). Overall, fast walkers 

were less likely to slow down throughout all step regions, while slow walkers did slow down in all 

step regions. 

Figure 5.6C shows individual data for dual task cost on accuracy in the reaction time task in 

each step region comparing slow and fast walkers in the HIGH condition. In M2, dual task cost 

largely varied between participants. This variation in M2 across participants accounted for the large 

standard deviation in accuracy in this step region compared to the other steps. 
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Figure 5.6: (A) Frequency of trials with gaze shifts in each step region during the HIGH condition for 
each subject; "fast walkers" in grey bars and "slow walkers" in white bars. (B) Mean walk time in 
each step region for fast and slow walkers. (C) Dual-task cost in accuracy for the secondary task in 
each step region in the HIGH task condition. 
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5.5 Discussion 

The aim of this study was to probe the potential role of the lower visual field during stair walking. 

The line of gaze was manipulated by presenting a visual reaction time task in two different locations, 

which naturally facilitated or limited the view of the stairs in the lower visual field during stair 

descent. Results showed that, in the presence of a visual task, downward gaze shifts were drastically 

reduced compared to unrestricted or control conditions. Gaze shift frequency remained similarly low 

independently if the visual task facilitated or restricted the use of the lower visual field to extract 

visual information regarding the stairs. However, individuals largely varied in their gaze behaviour 

when the visual task restricted the view of the stairs. In support of the hypotheses to deal with the 

dual task conditions, individuals adopted different strategies such as walking slower, using the 

handrails, and/or looking down. While overall, gait and visual task were not significantly different in 

the phases prior to transition steps there was some indirect support for the potential unique 

importance of lower visual field in transition phases. This included the increase in variability between 

subjects in gaze behaviour near locomotion on transitions, where the view of the stairs was restricted 

in the lower visual field. Finally, reaction times were increased when the view of the stairs was 

restricted in the lower visual field and the fastest reaction times occurred in the middle (non-transition 

steps). 

 

5.5.1 Role for lower visual field 

In a previous study, Rosenbaum (2009) recorded people walking down a staircase in a public venue 

and reported that the last look down occurred approximately in the third or fourth step from the 

bottom, which he suggested to be triggered by the disappearance of the view of the stairs from the 
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visual field. In agreement with these qualitative observations, the present study also found a reduction 

in looks down in the last steps under unrestricted walking (CONTROL condition). 

In the presence of a concurrent visual reaction time task, participants drastically reduced the 

time looking down independently whether the line of gaze was high or low. Considering that the 

human lower visual field extends for more than 60 degrees inferiorly from the midline (Millodot, 

2008), the view of the steps in the lower visual field was potentially facilitated when the line of gaze 

was directed to the monitor located downstairs, which minimized the need for additional looks down 

in the middle of the stairs. Studies have shown that peripheral visual information is appropriate to 

implement changes in gait (Graci et al., 2010; Marigold & Patla, 2007; Timmis et al., 2009). In the 

case when the monitor was elevated, the large variability in the phase preceding the last transition 

(i.e., 3-4 steps from the bottom) suggests that at least some participants looked down possibly to 

regain the view of the steps within the lower visual field, similar to the last look reported by 

Rosenbaum (2009). For those participants who rarely looked down, there are three possible 

explanations for their behaviour. First, it is possible that they were able to infer information regarding 

stair features, since a specific restriction in the peripheral visual field was not applied in the current 

study (e.g., occluding glasses). In fact, some participants reported that they used the view of the 

handrails (in the peripheral vision) as a “cue” to know where the beginning and the end of the stairs 

were. Second, taking into account the size of the human visual field, participants may have had a 

view of the first steps in the visual field while fixating in the monitor mounted on the wall; however, 

as participants walked down, the view of the stairs became less available since the line of gaze 

became relatively higher. Finally, it is possible that in the last few steps, individuals could make use 

of a stored representation of the stairs, considering that people can use memory of environmental 

layout to guide walking within short periods of time (Thomson, 1980). Future studies investigating 

the use peripheral visual information during locomotion will confirm the use of extra-foveal visual 
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information. Nevertheless, the present study demonstrated a reduction in downward gaze shifts during 

dual-tasking in stair descent. This reduction indicates that gaze fixations can be minimized during 

stair walking, and supports the notion that the lower peripheral vision can provide relevant visual 

information to control stair walking. Future studies investigating the range of peripheral vision for 

stair walking in more controlled conditions will provide substantial information of this role. 

5.5.2 Locomotor strategy 

Individuals dealt with the dual-task context by adopting two main strategies. First, all participants 

slowed walking speed to some degree during dual-tasking independent of whether the view of the 

stairs was facilitated or not. Reduction in gait speed is common during dual-tasking in more 

challenging locomotor conditions, such as obstacle avoidance, which is thought to be related to the 

increased executive requirements under more complex conditions (Siu et al., 2008). Handrail use was 

a second strategy more likely used during dual-tasking. In the present study, less than half of 

participants adopted this strategy, a rate slightly above the general handrail use frequency in the 

young population, which is approximately 1/3 of stair users (Cohen & Cohen, 2001). The current 

results reveal that even in more challenging situations such as dual-tasking, holding a handrail is still 

not a predominant strategy by young adults.  

In the present study, the transitions were not characterized by a specific change in walk time 

compared to the other step regions. This could be interpreted as transitions and mid steps having 

similar requirements in terms of executive load, and consequently, similar strategies could be used to 

compensate for the dual-task challenge. It should be considered, however, that at the top of the stairs, 

participants were likely able to see the first steps in the lower visual field, even when looking at the 

monitor mounted high on the wall, which might have reduced the uncertainty regarding the beginning 

of the stairs and the need for major changes in gait speed. Additionally, the fact that participants 
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widely varied in the degree they reduced gait speed prior to the second transition due to individual 

preferences, may have contributed to the lack of effect of transitions on walk time. Future studies 

with more controlled restriction conditions will be able to confirm specific requirements when 

walking on transition steps as well as different alternate strategies. 

5.5.3 Visual dual-task 

Longer reaction times were observed when walking downstairs, which was probably an effect of 

prioritizing locomotion and balance control over the visual task, a common strategy adopted by 

healthy individuals while dual-tasking (Yogev-Seligmann et al., 2008). When the visual task 

restricted the view of the stairs in the lower visual field (HIGH), even longer reaction times were 

observed, which could be linked to the additional challenge imposed by a restricted lower visual field 

of view. More specifically, there could have been a change in the functional field of view referring to 

the total visual field area in which a stimulus can be detected (Ball et al., 1988). When the central 

vision is engaged in an attentional visual task, the detection of stimuli in the peripheral visual field is 

reduced (Ball et al., 1988; Brabyn et al., 2001). The narrowing in the functional visual field is well 

established in a range of visual tasks involving visual function assessment, relationship with driving 

skills, and aging effects (Ball et al., 1988; Brabyn et al., 2001; Rogé, Pébayle, Campagne, & Muzet, 

2005). However, there is less information on the relationship between functional visual field and 

activities requiring balance control, such as locomotion where visual information gathered from 

peripheral visual field is crucial. Future studies associating the concept of functional visual field and 

tasks challenging balance control will be able to explore the limits of the peripheral visual 

information in more complex contexts. 

Interestingly, the shortest reaction times occurred during walking in the mid steps. Possible 

explanations for this result are the reduction in executive requirements to control gait in the middle 
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steps by using knowledge gained from the interaction with the first steps and reliance on 

somatosensory information and a stored representation of the stairs. The highly predictable step-to-

step distances surely permits a greater reliance on stored representation of the expected distances and 

reduced reliance on visual information. The distance in which the foot clears the steps reduces along 

successive steps on a staircase, which is associated with an accommodation of foot trajectory to the 

steps dimension, assuming that the steps are similar within a staircase (Hamel et al., 2005). This 

accommodation process could also reduce visual attentional demands in the mid steps, which 

contributed to improvement in the visual task. 

Although the phases prior to transition steps did not significantly increase reaction times and 

accuracy, it is interesting to note that participants widely varied in accuracy prior to the last transition. 

This could mean that, at least in some people, there was a shift in attention to gait at the end of the 

stairs, as a tentative to detect the end of the stairs. This need to switch attentional resources to gait 

might be associated with increased downward gaze shifts performed for a few participants (e.g., 

foveal gaze transiently diverted from the stimulus). It is possible that in the case of participants who 

did not perform gaze shifts, they could also be switching attentional resources to the peripheral visual 

field without an associated gaze shift. 

5.5.4  Individual differences 

The fact that participants did not receive explicit instruction on which task they should prioritize 

allowed them to use different strategies to find a solution to walk while dual tasking and with the 

view of the stairs restricted. Some participants chose to preserve locomotor behaviour and reduce the 

performance in the reaction time task while others chose to preserve the performance in the reaction 

time task to the detriment of walking speed. The reduction in gait speed was associated with handrail 

use in order to increase safety on the stairs. Interestingly, individuals who employed a more cautious 
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strategy exhibited this strategy whether or not the view of the stairs was facilitated. When participants 

chose to maintain walking speed, they tended to perform more gaze shifts downwards, which in some 

cases had an effect on the reaction time performance. In other cases, participants seemed to find a 

balance point between the two tasks minimizing large performance decrements in both tasks. In real 

world activities, this broad range of strategies is likely to happen, and possibly related to individuals 

perception of threat in the task. Future studies investigating individual differences will shed light into 

understanding challenges for balance control under dual task conditions in everyday life activities and 

the factors that influences locomotor strategies. 

 

5.6 Conclusions 

In the presence of a central visual task people do not look down as often when walking downstairs, 

which supports the use of peripheral visual information to guide stair walking. To deal with dual task 

conditions, individuals adopt different strategies such as walking slower, using the handrails, and 

looking down. Walking on the mid steps of a staircase seems to require less from executive function, 

whereas visual attention seems to be required to detect the last transition via gaze shifts or overt 

visual attention towards the peripheral vision. 
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Chapter 6 
Study 4 – The role of the lower visual field in stair climbing 

 

6.1 Overview 

Locomotion on stairs is challenging for balance control, and is related to a significant incidence of 

falls. The visual system provides relevant information to guide locomotion and there is evidence that 

information from the peripheral visual field is specifically important to guide locomotion. The present 

work focused on the role of peripheral vision for walking on stairs. Healthy young adults (n=12) were 

asked to walk up and down a 7-step staircase while wearing customized goggles, which restricted the 

lower visual field (LVF). Three visual conditions varying LVF restriction were tested: full visual field 

(FULL VISION); 30º (MILD), and 15º (SEVERE) of lower visual field available. Step time, head 

pitch angle and handrail use were measured during approach, transitions (two steps at the top and 

bottom of the stairs) and middle step phases. Transient pitch head angles increased with LVF 

restriction, while walk speed decreased and handrail use increased. Stair descent appeared to be more 

impaired by occlusion than stair ascent, showing larger increases in head pitch angles and slower 

walk times. LVF restriction showed greater influence on walk time and head angle during the 

approach to the first transition compared to other stair regions. This study provides evidence for the 

use of lower visual field information to guide stair walking and its particular importance when 

negotiating the first few steps of a staircase. Restriction in lower visual field information during stair 

walking results in more cautious locomotor behaviour such as walking slower and using the handrails. 
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6.2 Introduction 

Visual inputs provide important information to guide action and there is evidence that information 

from the peripheral visual field is specifically important to guide movements such as locomotion. 

Restriction in the lower visual field has been related to a reduction in gait speed and increase in 

downward head movements during walking to compensate for the reduction in peripheral visual 

information (Geruschat et al., 1998; Marigold & Patla, 2008; Patla, 1998). Additionally, information 

acquired from the lower visual field seems appropriate to control stepping reactions in response to 

balance perturbation (Zettel, Holbeche, McIlroy, & Maki, 2005) and implement changes in gait to 

avoid obstacles (Marigold et al., 2007), without the need for initial redirection of gaze towards the 

obstacle region or landing area. 

Previous studies have attempted to determine the minimum visual field required to walk under 

different contexts such as natural environments, in-laboratory walking courses, and virtual 

environments. In such studies, walking performance is commonly assessed by global variables such 

as contact/collisions with objects in the environment or walking speed. Overall, these studies have 

shown that loss in the central 21° of visual field and the lower visual field (radius 58°) is associated 

with a reduction in gait speed and contact/collisions with objects in the environment tested in 

individuals with simulated and actual visual field loss (Hassan et al., 2007; Lovie-Kitchin, Mainstone, 

Robinson, & Brown, 1990). 

The present work focused on the role of peripheral vision for the control of walking on stairs. 

Considering the apparent importance of the lower visual field information during the performance of 

level ground locomotor tasks, information from the peripheral visual field is likely very important 

during stair walking where foot placement is more constrained. Although the role of the peripheral 

visual field information has not been specifically investigated during stair walking, there is some 
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indirect evidence that supports this view. First, central visual information about the steps does not 

seem to be a requirement for stair ascent/descent as demonstrated in the Studies 2 and 3 of this thesis, 

where individuals were able to successfully walk with minimal foveal fixations on the stairs. Second, 

from Study 3, the view of the stairs in the lower visual field seems adequate to guide stairs walking. 

Study 3 revealed that gaze shifts downwards rarely occur when the view of the stairs is available in 

the lower visual field. A potential benefit of relying on peripheral visual information to control stair 

walking is the release of the central vision for the performance of another concurrent task or 

acquisition of more specific information regarding navigation. 

The present study investigated the role of the lower visual field (LVF) during stair ascent and 

descent. Two different levels of restriction in the LVF were applied in this study (mild and severe 

LVF restriction). It was expected that locomotor behaviour would be more affected during descent 

compared to ascent, observed by increased handrail use, reduction in gait speed, and increase in head 

tilt. For the restriction levels in the LVF, it was expected that the mild level restriction would have no 

effects on locomotion and head tilt. However, it was hypothesized that the severe restriction in the 

LVF would cause compensatory strategies in order to extract enough online visual information during 

stair walking marked by an increase in head angle (to redirect gaze). Additionally, locomotor 

behaviour was expected to be influenced by the severe restriction in the LVF including a reduction in 

walking speed and increased handrail use. Finally, it was expected that the severe restriction in the 

LVF would have a stronger effect during the transition to stairs, demonstrated by increased head tilt, 

reduction in gait speed, and handrail reaching movement during the approach to the transition and 

during the transition. 
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6.3 Methods 

6.3.1 Participants 

Twelve healthy young adults (6 females and 6 males) participated in this study (mean age=29.7±3.1 

years, height=168.1±6.5cm). Participants were free of any medical condition affecting their balance 

or ability to traverse stairs. All participants showed normal vision or vision corrected to normal with 

contact lenses in terms of visual acuity (Snellen test) and contrast sensitivity (Mars Letter test). This 

study received Ethics approval from the Office of Research Ethics at the University of Waterloo and 

all participants provided written consent to participate in the study. 

6.3.2 Protocol 

Participants were asked to walk up and down the 7-step staircase used in the previous studies. 

Handrails were present in both sides of the stairs. A walkway was extended at the bottom step 

(approximately 3 m long), and at the top step (by a 2.23 vs. 1.22 m lift table). Participants wore a 

safety harness attached to a retractable lanyard running along a cable above the stairs and walkway. 

At the beginning of each trial, participants were asked to look straight ahead and keep a comfortable 

head and gaze line. Participants alternately walk up and down the stairs at their self-selected pace; 

participants walked for at least 3 steps before reaching the stairs and following the stairs. At the end 

of a trial, participants were asked to turn around and get in position for the next trial, at one of 5 

different start points marked on floor. The starting points varied by 20cm from each other, at a 

distance from the stairs that required a minimum of 3 steps before reaching the first stair-step. 
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monitor screen during stair walking (FIX). One computer monitor was placed at each end of the 

pathway (i.e., upstairs and downstairs) at 3 m from the stairs and at 1.5m height. In the other half of 

trials, participants had no specific instruction on where to gaze (FREE). In summary, each 

participants performed a total of 60 trials, with 5 trials in each condition combining stair direction 

(UP and DOWN), visual field (FULL VISION, MILD, SEVERE), and gaze (FIX and FREE). 

6.3.3 Data acquisition and analysis 

Footswitches (B&L Engineering, Tustin, CA, USA) were placed inside of participant’s shoes to 

provide temporal measurement of their steps. An infrared light switch positioned at the bottom step 

was used to denote the timing just prior to contact with the bottom step. Footswitch and infrared 

switch data were collected at 240Hz and recorded using a program written in LabVIEW (National 

Instruments, Austin, TX, USA). Footswitch data provided time series of foot-contact and foot-off 

times for every step for each trial. In combination with the infrared signal prior to contact with the 

bottom step, footswitch data were used to determine participants’ stepping location with respect to the 

stairs. Participant’s location was classified in one of the following categories (Figure 6.2) : a) 

approach (AP), from two steps (-2FC) to the last foot contact before the stair (0FC), d) first transition 

(T1), from 0FC to the foot contact on the step 2 (2FC); e) first mid steps (MS1), from 2FC to the foot 

contact on the step 4 (4FC); f) second mid steps (MS2), from 4FC to the foot contact on the step 6 

(6FC); g) and second transition (T2), from 6FC to the first foot contact out of the stairs (8FC). 
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Figure 6.2: Classification scheme for participant’s location when ascending and descending the stairs. 
Top of the figures shows location for stair descent and bottom for stair ascent. AP = approach; T1 = 
first transition; M1 = first mid step region; M2 = second mid step region; T2=second transition; -
2FC=two foot contacts before stepping on the stair; 0FC= last foot contact before the stair; 2FC=foot 
contact on the step 2; 4FC =foot contact on the step 4; 6FC= foot contact on the step 6; 8FC=first foot 
contact out of the stairs. 

 

Walk time was calculated from -2FCto 8FC, as well as for each step region (AP, T1, MS1, 

MS2, T2). Additionally handrail use was obtained from the video recordings. The frequency of trials 

that handrail was held per condition was calculated. 

Head movement was recorded by an Optotrak system (3020, Northern Digital, CA). Clusters of 

active markers were mounted on two plates. The plates were attached on a head frame at the forehead 

(3 markers) and at the back of the head (4 markers). Markers were collected at 120Hz and filtered at 

2Hz. Pitch head angle was calculated using Cardan angle rotation sequence. Head pitch angle was 

calculated relative to reference vertical line in the experiment coordinate system. Head angle during 

the trials was normalized by the head angle during quiet standing, with the participant looking 

comfortably straight ahead. Therefore, a positive normalized head angle represented greater head 
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pitch and a negative value will give a reduced head tilt. The mean and maximum head angle was 

calculated per participant and per condition. 

Walk time, mean head angle, maximum head angle, and head angle variability were analyzed 

by a 3-way repeated-measures ANOVA with direction (UP vs. DOWN), visual occlusion (FULL 

VISION, MILD, SEVERE), and visual target (FREE vs. FIX) as factors. Provided that this analysis 

showed similar trend for all variables between FREE and FIX (details in Results session), walk time, 

mean and maximum head angle, and head angle variability in FREE were independently analysed by 

a three-way ANOVA with occlusion (FULL VISION, MILD, SEVERE), stair direction (UP, 

DOWN), and stair region (AP,T1, M1, M2, and T2) as factors. FREE was selected as opposed to FIX 

because it provided a more ecologically relevant condition. Additionally, a 3-way ANOVA was 

computed for the percentage of trials with handrail use with direction, occlusion and stair region as 

factors. Post-hoc analysis (Tukey adjustment) was performed to characterize the differences in gaze 

behaviour across visual conditions and walking direction. Significance level will be set at 0.05 for all 

analyses. 

 

6.4 Results 

6.4.1 Locomotion 

For the overall time spent to walk on the stairs, there was a significant main effect for occlusion 

(F(2,22)=22.86, p<0.001) and direction vs. occlusion interaction ( F(2,22)=5.12, p=0.0149; Figure 

6.3). Stair walking time significantly increased as occlusion level increased for both walking UP and 

DOWN. Walk time was moderately shorter in DOWN compared to UP only in the full vision 

condition. 
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Figure 6.3: (A) Stair walk time across for UP and DOWN in each occlusion condition. (B) Stride time 
in each stair region for UP and DOWN. (C) Stride time in each stair region according to occlusion 
condition. FULL VISION: no vision occlusion; MILD: 15º occlusion; SEVERE: 30º occlusion; 
*denotes significant difference compared to the respective FULL VISION condition (p<0.05); 
#significant difference compared to respective MILD condition (p<0.05). 

 

For stride time in the FREE gaze condition, there was a main effect for direction (F(1,11)=9.39, 

p=0.0108), occlusion (F(2,22)=12.62, p<0.001) and stair region (F(4,44)=14.74, p<0.0001). In 

addition, there was a significant interaction between direction and step region (F(4,44)=61.64, 

p<0.0001; Figure 6.3b), and between occlusion and step region (F(8,88)=4.84, p<0.0001; Figure 

6.3c). Overall, the stride time was longer in SEVERE vision and in the transition regions. The 
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interaction between direction and step region revealed that stride time was increased during the 

approach and first transition in DOWN, and in the last transition in UP (Figure 6.3b). For occlusion 

level, SEVERE significantly increase stride time in T1 and T2 compared to FULL VISION and 

MILD conditions (Figure 6.3c). 

6.4.2 Head angle 

For mean head tilt angle, there was a main effect for direction (F(1,11)=97.43, p<0.0001), occlusion 

(F(2,22)=25.78, p<0.0001), and gaze (F(1,11)=6.03, p=0.032; Figure 6.4a), and an interaction 

between direction and occlusion (F(2,22)=3.93, p<0.035; Figure 6.4b). As might be expected, the 

mean head angle was increased in DOWN compared to UP conditions and during the FREE condition 

compared to FIX gaze condition. Mean head angle also increased with occlusion level though there 

was no statistical difference in mean head angle between SEVERE and MILD in DOWN condition. 
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Figure 6.4: (A) Mean head angle as a function of gaze fixation. (B) Mean head angle across walk 
direction and occlusion. (C) Peak head angle as a function of stair walk direction. (D) Peak head 
angle as a function of gaze. (E) Peak head angle as a function of occlusion level. (FULL VISION: no 
vision occlusion, MILD: 15º occlusion; SEVERE: 30 occlusion; FREE: no visual target; FIX: visual 
target; UP: stair ascent; DOWN: stair descent; *significant different from FULL VISION in the 
respective walk direction, p<0.001; # significant different from MILD in the respective walk 
direction, p<0.05). 

 

Peak head angle followed a similar pattern to mean head angle. For peak head angle, there was 

a main effect for direction (F(1,11)=31.41, p=0.0002), gaze (F(1,11)=8.33, p=0.015), and occlusion 

(F(2,22)=32.85, p<0.0001). Peak head angle was larger during DOWN compared to UP (Figure 6.4c), 
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and during FREE compared to FIX (Figure 6.4d). Additionally, peak head angle was significantly 

lower in FULL VISION compared to MILD and SEVERE (Figure 6.4e). 

Importantly while FIX condition produced head angles with smaller magnitudes than FREE, 

there was no interaction between FIX/FREE and direction of walking or degree of occlusion. As a 

result, the following analysis considered head angles only in FREE to investigate the differences 

across step regions (noting that head angles in FIX showed similar trend). 

For mean head angle in each step region, there was a main effect for direction (F(1,11)=89.96, 

p<0.0001), occlusion (F(2,22)=20.54, p<0.0001) as expected from the previous analysis. In addition 

there was a significant difference related to step region (F(4,88)=25.06, p<0.0001), and an interaction 

between direction vs. step region (F(4,44)=27.15, p<0.0001) and occlusion vs. step region 

(F(8,88)=9.97, p<0.0001). Overall, mean head angle was increased in DOWN compared to UP in all 

step regions excluding T2 (Figure 6.5A). Mean head angle decreased in all step regions in DOWN, 

while it decreased from AP to M1in UP. Additionally, although mean head angle remained the same 

in FULL VISION  both occlusion levels (MILD and SEVERE) resulted in larger mean head angle 

across all step regions excluding T2 (Figure 6.5B). 

For peak head angle across step regions there was a main effect for direction (F(1,11)=76.03, 

p<0.0001), occlusion (F(2,22)=25.29, p<0.0001) and step region (F(4,88)=35.59, p<0.0001). Similar 

to mean head angle, there were interactions between direction and stair region (F(4,44)=14.45, 

p<0.0001) and occlusion and step region (F(8,88)=14.22, p<0.0001). Larger peak head angle was 

observed in DOWN compared to UP in all step regions excluding T2 (Figure 6.5C). Peak head angle 

decreased in every stair region in DOWN, while it decreased from AP to M1 while walking UP. Peak 

head angle was similar across all step regions in FULL VISION (Figure 6.5D). In comparison to 
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FULL VISION, both occlusion levels (MILD and SEVERE) resulted in larger peak head angles 

across all stair regions. The largest peak angles occurred in the SEVERE occlusion condition. 

For head angle variability, there was a main effect for occlusion (F(2,22)=12.87, p<0.001), step 

region (F(4,88)=9.96, p<0.0001), and an interaction between occlusion and stair region 

(F(4,44)=4.97, p<0.0001). While head angle variability remained constant across all step regions in 

FULL VISION, it showed a significant increase in SEVERE occlusion at the approach and initial 

transition phases, and in the transition phase for the MILD occlusion (Figure 6.5E). 
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Figure 6.5: Mean head angle in each stair region according to stair walking direction (A) and in the 
three levels of occlusion (B). Peak head angle in each stair region according to stair walking direction 
(C) and in the three levels of occlusion (D). Head angle variability in each occlusion level by stair 
region (E); FULL VISION: no vision occlusion, MILD: 15º occlusion; SEVERE: 30º occlusion; 
FREE: no visual target; FIX: visual target; UP: stair ascent; DOWN: stair descent; AP: approach 
phase; T1: first transition; M1: mid steps 1; M2: mid steps 2; T2: second transition. 
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6.4.3 Handrail use 

Handrail use was significantly affected by occlusion (F(2,22)=4.78, p=0.019), with increased handrail 

use in both MILD and SEVERE occlusions. The greatest degree of use was in walking DOWN the 

stairs with the SEVERE occlusion. Table 6.1 details the increased prevalence of handrail use and 

greater number of involved participants with increases level of occlusion and between direction and 

gaze conditions. 

Table 6.1: Summary of handrail use. Total number of trials with handrail use and respective 
percentage of trials were calculated across all participants according to stair direction, occlusion level 
and gaze task. The number of participants who contacted the handrails for each condition is also 
shown. 

UP DOWN 

   
FULL 

VISION MILD SEVERE  
FULL 

VISION MILD SEVERE 

FREE 
Number of trials 19 28 29 18 27 39 
Percentage of trials (%) 32.2 48.3 49.2 31.0 47.4 66.1 
Number of participants 4 6 6 4 6 8 

FIX 
Total number of trials 24 33 38 32 33 40 
Percentage of trials 40.7 56.9 65.5 56.1 56.9 66.7 
Number of participants 5 7 8 7 7 8 

 

6.4.4 Adverse events during the experiment 

During the experiment, there was no occurrence of any trial in which a participant lost her/his balance 

requiring the use of the harness to stop a fall. However, there were a few trials where participants 

interrupted the stair walking, which was possibly linked to the restriction in the lower visual field. 

Table 6.2 summarizes the occurrence of these trials. It can be observed that most of the events 

occurred in DOWN and under some level of occlusion. In many trials participants reported they were 

“expecting one more step” and it could be observed in the video recordings a respective trajectory of 
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the foot landing on the ground as it was reaching a stair step. In addition to these trials in which there 

was clear evidence of a disruption to walking and likely some degree of instability, there were also 

some trials that were characterized by unusual foot contacts that did not result in apparent interruption 

of walking. These were most commonly seen as the heel making contact with the edge of the step 

during the swing phase. This heel contact on the edge of the step was observed in the video 

recordings and confirmed by the footswitch data. From the 25 heel contacts on the step edge 

observed, 5 were in FULL VISION, 5 trials in MILD and 15 trials in SEVERE. In all this 25 trials, 

there was no apparent loss of balance or interruption of the alternate stair climbing pattern. 

 

Table 6.2: Summary of trials with observed events causing interruption of alternate gait pattern. 

Direction Occlusion Gaze Participant Event 

UP SEVERE FIX S3 Expected an extra step at the bottom 
 MILD FREE S2 Instability backwards at the first step 
DOWN FULL VISION FREE S8 Missed the last step 
  FIX S10 Missed the last step 
 MILD FREE S8 Missed the last step 

  FIX S10 Stopped walking prior to first step and reached for the 
handrail 

   S11 Expected an extra step at the bottom  
 SEVERE FREE S1 Expected an extra step at the bottom 

   S6 Did not expected the last step (participant thought 
having reached the last step at step# 5-6) 

  FIX S3 Stopped walking prior to the first step to look down 
   S7 Expected an extra step at the bottom 
 

6.5 Discussion 

The aim of this study was to investigate the role of the lower visual field in stair locomotion. Young 

healthy adults walked upstairs and downstairs, with the lower visual field occluded to a varying 

degree. Overall the study revealed changes in behaviour (head pitch angles, walking speed, handrail 

use and unusual events) that were associated with the degree of occlusion and reinforced the 
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importance of the lower visual field for stair walking. It was found that pitch head angles increased 

with occlusion, while walk speed decreased and handrail use was increased. Stair descent appeared to 

be more disrupted by occlusion than stair ascent, showing a larger increase in head pitch angles and 

walk time. Finally, occlusion of the lower visual field showed a greater effect on walk time and head 

angle in the approach to the first transition compared to other stair regions. 

The present findings indicate the role of visual information acquired from the lower visual field 

for stair locomotion. When lower visual information is restricted, individuals walked more cautiously 

on the stairs by reducing gait speed and using the handrail. Such cautious locomotor behaviour has 

been reported when peripheral visual information is restricted during other locomotor tasks, such as 

walking avoiding obstacles (Geruschat et al., 1998) and on irregular terrains (Marigold & Patla, 

2008). Interestingly, stair descent was more affected by lower visual field occlusion than stair ascent. 

A possible cause for this finding is that lower visual field restriction during stair descent is more 

likely to remove a greater amount of the steps in the visual field, differently from stair ascent, in 

which the stairs (or at least some steps) is likely to fill the field of view when an individual 

approaches the stairs. The greater effect of lower visual field restriction in stair descent may also 

relate to the greater incidence of accidents during stair descent compared to ascent reported in the 

literature (Cohen et al., 1985; Tinetti et al., 1988). 

Although a number of studies have evidenced the importance of the peripheral visual field 

during over ground walking, it is has not been well established the extent of field of view that is 

required. For safe driving, for instance, a minimum of 15º degrees above and below fixation point is 

required (Canadian Ophthalmological Society, 2000). Additionally, in a virtual environment, it was 

shown that a visual field raging from 11 to 32º is required for efficient navigation under a wide range 

of contrast levels (Hassan et al., 2007). In the present study, even a mild occlusion level (i.e., at least 

30º of the lower visual field available) caused changes in head angle and locomotor behaviour, 
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suggesting that a larger lower visual field is necessary to guide locomotion in natural environments, 

particularly in stair walking. Although in this study, the occlusion varied approximately ±5º between 

individuals and the capacity to see the stairs in the lower visual field also depends on individuals’ 

height (which changes the height of the line of gaze), head pitch increased approximately between 10 

and 15 degrees to compensate both levels of occlusion. Therefore, the severe restriction generally did 

not cause larger head angle than the mild level of restriction. Possibly this degree of change in head 

angle allowed participants to use peripheral visual information regarding the steps and at the same 

time minimized the change in head posture relative to gravity. During locomotion, head is actively 

stabilized in order to provide a stable gravitational reference for the vestibular system maximizing 

otolithic signal for estimate of head linear movement (Pozzo, Berthoz, & Lefort, 1990). 

Consequently, large changes in head posture were likely avoided during stair walking to reduce 

ambiguous signal between head rotation and translation. 

The present findings also highlight the importance of peripheral visual information about the 

stairs for locomotion on transitions. When the lower visual field is restricted, gait speed is reduced in 

the transitions to and from stairs. Similar changes are observed in other locomotor tasks when the 

lower visual field is restricted (Graci et al., 2010; Rhea & Rietdyk, 2007). In the context of stair 

walking, the lower visual field provides information about the steps as well as about the near ground 

relative to the lower limbs. The larger increase in head pitch within two steps of entering the stairs 

and in the first transition indicates the importance of the lower visual field information to deal with 

the first steps in staircase. The fact that gait speed and head angles were less affected in the mid steps 

by the lower visual field restriction potentially indicates that the interaction with the first steps in a 

staircase provides enough information (e.g., proprioceptive information) about step configuration that 

helps to reduce the requirements for visual information when negotiating subsequent steps. 

Interestingly, restriction in the lower visual field had a smaller effect in the transition from stairs to 
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level ground (second transition) in comparison to the first transition. One possible reason for this lack 

of effect of lower visual field restriction in the second transition was the fact that some participants 

may have counted their steps on the stairs in this repeated trial experiment. Of the 12 participants in 

the experiment, 3 participants declared they counted their steps every trial, while other three 

mentioned they counted sometimes and one participant admitted counting steps after a misstep (in the 

first block of trials). Anecdotally this reliance on counting is also a strategy used when individuals 

traverse stairs in the dark. Additionally, the fact that the stairs used in the present study had only 7 

steps, may have contributed to use visual memory to control stepping throughout the entire staircase. 

Visual information seems to be retained for at least 4 strides (8 steps) and used to control obstacle 

crossing and for around 8 seconds to step on targets (Mohagheghi et al., 2004; Thomson, 1980), 

which suggest that similar visual stored representation of the stair could have been used. 

In summary, this study showed evidence for the use of lower visual field information to guide 

stair walking and its particular importance when negotiating the first few steps in a staircase. 

Restriction in lower visual field information during stair walking results in more cautious locomotor 

behaviour such as walking slower and using the handrails.  
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Chapter 7 

General Discussion 

The motivation of this thesis was to gather a better understanding on the role of vision during 

locomotion specifically in stair walking. Stair walking is a challenging task, requiring precise foot 

placement and balance control demands. These increased demands could potentially create a scenario 

to reveal in more depth the relevance of visual information during locomotion and importantly 

provide understanding that might address the high prevalence of falls that occur on stairs, particularly 

within the top and bottom steps (transitions). From the experiments described in this thesis, it was 

observed that healthy young adults consistently look down to the steps but rarely look at the handrails 

(Study 1). Interestingly, when people are challenged during stair walking to perform a concurrent 

visual task (Study 2 and 3), they drastically reduce the time they look at the steps, giving an 

indication that they may monitor the steps through peripheral vision rather than foveal vision. This is 

finally confirmed in Study 4 where individuals had a need to increase head movements downwards 

when they had peripheral vision occluded. Generally, manipulation of dual-tasks and visual field 

occlusion required participants to reduce gait speed, use the handrails and decrease performance in 

the secondary task. Importantly, these studies also revealed differences between subjects showing that 

even among young adults, individuals have individualized strategies to solve control challenges. 
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7.1 Contributions for the understanding of the role of visual information during 

locomotion 

7.1.1 Stairway models 

In the stair behaviour models proposed by Archea et al. (1979) and Templer (1992), vision has an 

important role during stair walking (Figure 2.1). For instance, when approaching a staircase it is 

suggested that individuals perform a “conceptual scan” to form a cognitive model of the stairs, and 

“close-up fixation looking down on the first step” (Templer, 1992). Results from this thesis could 

support the idea of a conceptual scan occurring prior to stair ascent since during unconstrained stair 

walking, the line of gaze is directed to the stairs ahead, and generally people look down within three 

steps to reach the stairs. However, the experiments in this thesis also demonstrated that people do not 

often look in advance to the steps during stair descent nor while performing a concurrent visual task 

when walking up or down. Indeed some people do not foveate directly onto the steps whatsoever, 

suggesting that the first step location and general properties of stairs could be determined by 

peripheral vision. 

Considering a main purpose for the conceptual scan is to detect potential hazards and 

peculiarities in a staircase, it is possible that under very predictable environment and standard 

staircases (such was the case in this thesis), these conceptual scans can be as short as a snapshot of the 

environment, and visual information is acquired from the visual field as a whole rather than from 

active foveal visual scan. People are able to detect global features in a scene (“scene gist”) from 

glances as short as 26ms, such as categorizing natural scenes (Rousselet, Joubert, & Fabre-Thorpe, 

2005). Additionally, environmental information via peripheral visual field seems plausible since 

objects requiring large-scale integration of features (e.g., buildings) tend to activate retinotopic visual 

areas that overlap the peripheral visual field representation (Levy, Hasson, Avidan, Hendler, & 
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Malach, 2001). Possibly, peripheral visual information is effective enough for detection of the first 

step. In the case of any detected abnormal characteristics of the stairs (e.g., differences in step 

dimensions, another stair user, low light level, etc) prolonged visual scanning including gaze fixations 

would probably be observed. It is also possible that in more challenging situations, such as low 

contrast or illumination there may be a greater reliance on foveal feature extraction. Based on the 

present findings, it seems fair to say that during stair walking under conventional conditions there is 

limited need for gaze fixations. An advantage to this strategy is that saccades to a target location take 

longer to be performed when eyes are engaged in a fixation (Kingstone & Klein, 1993). By not 

keeping eyes fixating during stair walking, faster saccades could be generated if any unexpected 

variable detected in the visual field requires redirection of foveal vision for additional visual 

processing. 

7.1.2 Role of peripheral vision in stair walking 

Using peripheral vision to control locomotion has its advantages. First, compared to foveal vision, 

peripheral vision can cover a wider area in the environment in which global environmental 

information can be acquired. Tatler et al. (2005) demonstrated that when looking at real-world scenes 

(rooms mimicking a kitchen, office, etc), object presence in the scene, colour of objects can be 

encoded via peripheral vision (no direct fixation on the object), which could certainly be important in 

detecting stair edges. Second, the dynamic visual information regarding the near ground provided by 

the lower visual field during walking likely contributes to regulation of foot trajectory for appropriate 

foot placement in the stairs, similarly to other locomotor tasks (Lee et al., 1982; Patla & Greig, 2006). 

For stair walking, this source of information seems particularly crucial to navigate the first steps on 

the stairs. Finally, using peripheral vision to control locomotion in the near space allows the use of 

foveal vision in other tasks or to scan the imminent space. The use of the lower visual field to control 
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locomotion likely relates to the fact that gaze is directed a few steps ahead, when foveal vision is not 

engaged in a concurrent task. Considering that lower visual field information can be used to guide 

quick stepping reactions in response to balance perturbation (Zettel et al., 2005), it seems plausible its 

role in a regular and predictable set of stairs. 

7.1.3 CNS control mechanism for visual information to control locomotion 

Information gathered from central and peripheral vision is thought to be processed via two different 

visual systems (Milner & Goodale, 2006; Milner & Goodale, 2008): 1) ventral stream, considered the 

vision for perception system; and 2) dorsal stream, the vision-for-actions system. The table below 

summarizes the main characteristics for both systems. 

Table 7.1: Ventral and dorsal stream pathways and main functions (Milner & Goodale, 2006; Milner 
& Goodale, 2008). 

 Ventral stream Dorsal stream 
Other names Vision-for-perception, what stream 

 
Vision-for-action, where pathway 

Neural path From occipital lobe (primary visual cortex 
(V1) through the temporal lobes  
 

From the occipital lobe to the top of the 
posterior parietal cortex 

Functions Cognitive processing of information and 
higher executive processes 
 

Orienting gaze and sustaining attention at 
one location 

 Assign meaning to objects and events Rapid processing and updating of 
information for orientation in space and 
movement 
 

 Guides the anticipation and planning of 
actions – takes more time 

Parietal lobes appear to contain the master 
map of locations that we use for navigating 
and for controlling our orientation in space 

 

Central vision is represented more densely in the parvocellular layers at the LGNd, which cells 

synapse on layers of V1 that project largely to the ventral stream. Receptive fields are more likely to 

include foveal regions than peripheral regions, which leads to a cortical magnification of the fovea in 

the ventral stream, but not necessarily in the dorsal stream. On the other hand, parvocellular density 



 

 110 

declines more rapidly with eccentricity than magnocellular density (Azzopardi, Jones, & Cowey, 

1999). Interestingly, there is some overlap between the two systems. The magno-dominated pathways 

synapse on layers of V1 that project to both ventral and dorsal extrastriate areas (Milner & Goodale, 

2006). By projecting to both systems possibly contributes for engagement of foveal vision in the 

event of any unexpected feature detected in the peripheral visual field requiring higher level of 

processing. At the same time, dorsal stream sub-areas, such as the parieto-occipital cortex, have 

receptive fields that represent central and peripheral visual fields relatively evenly (Colby, Gattass, 

Olson, & Gross, 1988), which may also justify the use of foveal vision for action. 

The lower visual field seems specifically important to locomotor tasks. In comparison to the 

upper visual field, the lower visual field shows increased visuomotor performance, which is in part 

attributed to increased retinal ganglion cell density in the superior hemiretina projecting more 

strongly to the dorsal stream (Danckert, Sharif, & Goodale, 2001; Danckert & Goodale, 2001). 

Although this lower visual field specialization has been investigated only in upper limb movements, it 

is possible that it is also an important contributor to the control of walking. 

 

7.2 Limitations 

The four studies of this thesis focused on healthy young adults, therefore, one must be cautious about 

generalizing the present finding to other populations such as older adults and individuals with balance 

or mobility impairments. Most importantly, individuals within the same cohort may also very 

between each other (e.g., Study 3), therefore individual differences should also be considered. 

The experiments of this thesis were conducted using a 7-step staircase with standard 

dimensions as recommended for home stairs (Archea et al., 1979). Considering that stairs may 

broadly vary, other factors such as stair dimensions, environmental conditions (illumination, 
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indoor/outdoor), concurrent stair users, length of stairs may contribute to different results. Of 

particular interest would be to explore locomotion on stairs in the presence of step irregularities, such 

as in step dimensions (height and depth), which would give interesting insight on the limits of visual 

information (and in the peripheral visual information) to control stair walking and possible relation to 

fall risk. 

Three studies in this thesis investigated gaze behaviour related to stair features by using an eye 

tracker. Although eye trackers provide relatively reliable measure for gaze behaviour (Patla & 

Vickers, 1997), limitation of this method should be considered. For instance, gaze behaviour analysis 

is restricted to the useful visual field range provided by the device (approximately 30° of visual field). 

Additionally, recordings of eye movements in a natural task in which the participant is moving could 

create oscillation in the gaze cursor with effects on the precision of gaze location estimation, 

particularly when gaze is directed to boundaries of distinct areas of interest (e.g., border between 

transition and mid step region). Additionally, this approach does not estimate the exact eccentricity of 

objects in the visual field, which limits the interpretation of the extent of the visual field necessary for 

stair locomotion. Future studies should look at the precision of the peripheral visual field (at different 

eccentricities) to detect stair features and particularly stair irregularities. 

 

7.3 Future directions 

The studies of this thesis provided basic understanding on the visual mechanisms used by young 

adults during stair locomotion and the particular role of peripheral visual information for stair 

locomotion. Future studies exploring visual field function in more challenging context and in 

different populations will provide additional insight in theses mechanisms. 
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One possible follow-up study would be to investigate age-related changes in the use of lower 

visual field information during stair locomotion. Previous studies have shown that with aging, 

locomotion is affected when a concurrent task is performed, which is related to the load in executive 

function (Yogev-Seligmann et al., 2008). Additionally, in visual field studies, it is been demonstrated 

that loss in the visual field is associated with mobility difficulties (increased contacts with objects and 

reduction in gait speed) (Turano et al., 2004). Older adults tend to rely more on central vision to guide 

walking (and stair walking) compared to young adults (Zietz & Hollands, 2009). Therefore, it is 

possible that dual tasking affects locomotion because of executive load or inability to use peripheral 

visual information, or a combination of both. To test these alternatives, an experiment could be 

designed in which young and older adults would walk performing a current visual task. The visual 

task would be manipulated in two levels: 1) executive load, and 2) environmental location. Stairs 

could also be used here as locomotor task. If the decrements in dual tasking are due to executive load 

(and narrowing in the functional visual field), even when the visual task location optimize the 

extraction of peripheral visual information for locomotion, significant decrement in walking 

performance would be observed. If there is an inability to use peripheral visual information, 

performance in the locomotor task will be similarly degraded independently of visual task executive 

load. Possible age-related differences could be found, such as that locomotion in older adults is more 

affected by the visual task, as they are thought to rely more on central vision to guide locomotion than 

young adults do. Global locomotor measures, such as walk speed and handrail use could be assessed 

as well as more specific measures, such as foot clearance on the steps. Gaze behaviour measures 

could be used to control gaze direction and provide information on eccentricity for stair features in 

the visual field (a recent approach proposed by Scovil and colleagues (2009). 
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7.4 Implications 

The findings of this thesis reveal the importance of peripheral visual information during stair 

locomotion and this in turn may have potential implications in the field of stair design and fall 

prevention programs. In stair design, for instance, building codes (e.g., the Ontario Building Code, 

1997) could include recommendations for stair building taking into account characteristics that 

optimize the use of peripheral visual information (e.g., steps and handrails with high contrast). As 

well, fall prevention programs could use this information in order to better instruct individuals to 

maximize the use of peripheral visual information about the steps during stair walking (e.g., gaze line 

downwards). Although such interventions still need to be tested in order to confirm their utility in 

reducing stair accident incidence, they appear to be feasible given the findings of this thesis. 

The results of this thesis also demonstrated that by using contexts that are more challenging 

during stair locomotion, including dual-tasking and visual field occlusion, it was possible to influence 

the role of visual contributions. This has implications to the potential differences in the role of vision 

during more natural task conditions when distraction and concurrent task performance are common. 

The use of such methods in clinical settings could possibly contribute to assessment of safety and 

behaviour on stairs. 

7.5 Conclusions 

This thesis investigated the role of vision during stair walking. Stair locomotion in healthy young 

adults was assessed under different conditions including dual-tasking and visual field occlusion. It 

was observed that peripheral visual information plays a particularly important role in guiding stair 

walking including navigation on transitions between ground and stairs. Visual input from the lower 

visual field seems specifically important to guide locomotor behaviour during stair walking. The 

findings of this thesis may potentially contribute for the field of stair design and fall prevention 

programs.  
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