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Abstract

Spectral domain optical coherence tomography (SD-OCT) is a dispersed interferometric
technology used to obtain tomographic images, typically of tissue for medical applications.
OCT is a competing technology with confocal microscopy (CM) and confocal fluorescent
microscopy (CFM), which are both used for biopsy imaging for pathology as the gold
standard. OCT offers several advantages over CM/CFM: it is able to acquire a full 3D
image in a single pass, it requires little or no sample preparation time, and the axial (depth)
and lateral (transverse) resolution are not dependent on one another. SD-OCT is limited
in imaging depth to a few millimetres due to the quality performance of the spectrograph
section of the instrument—that which determines the sensitivity of the SD-OCT system.

In this thesis a design for an SD-OCT system is presented that is suitable for biopsy
imaging for pathological studies, i.e. an OCT microscope. The purpose of this system is
to provide a fast diagnosis to be made in a surgical environment to reduce the amount of
tissue removed from a patient and lower the chance of a returned visit at a later date due to
insufficient tissue removal. The secondary purpose of the SD-OCT microscope is to serve
as a research testbed system for implementing novel hardware advancements. One such
technology, called an optical pupil slicer (OPS), will be implemented in the instrument to
improve the depth imaging performance of the SD-OCT system over conventional SD-OCT
systems. The OPS is a device that generally improves the performance of a dispersive-type
spectrograph by increasing the spectral resolution without a loss in throughput, thereby
increasing the sensitivity of the SD-OCT system.
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Chapter 1

Introduction

Optical coherence tomography (OCT) is an imaging modality based fundamentally on
interferometry and spectroscopy. It has numerous applications in various areas, however
the use of OCT is widely used for medical imaging to produce high-resolution 3D images
of tissue. A significant advantage of an OCT instrument to other high-resolution medical
optical imaging devices is that OCT is able to image several millimetres into tissue and
still provide cellular resolution (< 10 pm). Despite the relatively large penetration depth
of OCT, it is still a limiting factor of all OCT systems—this limitation is often dependent
on the sensitivity of the OCT instrument [18].

The stated problem that we attempt to solve in this thesis is one of increasing the
penetration depth and image quality of a specific implementation of an OCT instrument,
called a spectral domain OCT (SD-OCT) instrument, by increasing the sensitivity beyond
conventional techniques. An optical device known as an optical pupil slicer (OPS) is
able to improve the quality of a dispersive spectrograph fundamentally. This fundamental
improvement manifests itself as a sensitivity increase in SD-OCT because the sensitivity in
SD-OCT is limited by the quality of the spectrograph section of the instrument [18] 35} [38],
39, 55, [63]. The topic of this thesis is to describe the nature of the problem regarding the
sensitivity of SD-OCT and then attempt to fundamentally improve the instrumentation
hardware by implementing the OPS.

1.1 Medical Imaging

The goal of medical imaging is to produce images for diagnostic or screening purposes
to aid in the process of patient care and treatment. Image content may range from as
large as a full body to as small as organelles. Organelles are multiple membrane sub-
cellular components that as a whole make up the entirety of a eukaryote cell (a cell in

1
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Figure 1.1: A cartoon figure showing the imaging spatial resolution versus the imaging
depth for confocal microscopy, optical coherence tomography, ultrasound, computed to-
mography, and magnetic resonance imaging. Image taken from [40].

which the DNA is segregated from the rest of the cellular constituents) [40]. All animal
and plant life are composed of eukaryote cells, which vary in size from about 10-100 pm.
Various technologies exist which produce medical images and are based on different physical
principles. Examples of such technologies and methods include, but are not limited to,
magnetic resonance imaging (MRI), x-ray (XR), computerized (automated) tomography
(CT or CAT), positron emission tomography (PET), single photon emission computerized
tomography (SPECT), ultrasound (US), confocal (fluorescence) microscopy (CM or CFM),
and optical coherence tomography (OCT). The primary imaging modality of interest for
this thesis is OCT. A summary of a few imaging characteristics can be seen in fig. [I.1]

A general trend in medical imaging is a trade off between resolution and penetration
depth, i.e. if one wishes to achieve deeper imaging, spatial resolution is decreased. Medi-
cal imaging instruments typically are designed and chosen to operate in a fixed region of
resolution-depth parameter space, the restriction typically being due to the physical prin-
ciples of instrument operation. Therefore medical imaging devices are usually very task
specific and each technology is usually used for very specific purposes.

Optical coherence tomography is a specific method of obtaining full 3D tomographic
images using optical electromagnetic radiation. OCT may be used as a medical imaging



technology that may be characterized by several features such as being able to obtain
cellular spatial resolution, may be used in non-contact operation, relatively fast operation
time, does not use harmful ionizing radiation, and is able to achieve several millimetres of
imaging depth. OCT is often described as being the optical equivalent of ultrasound since
the imaging characteristics are very similar, e.g. they both record reflectivity as a function
of depth for a single iterative scan.

OCT is a relatively new medical imaging modality, with the first papers being pub-
lished in the late 1980’s and early 1990’s [I§]. OCT has had applications primarily in
ophthalmology, dermatology, and haematology due to its ability to acquire cellular reso-
lution images in nearly real-time and being able to operate in both in vivo and ezx vivo
[12, 17, 18, 221 B0, [48]. So far the largest application of OCT is retinal imaging since it is
able to image all layers of the retina with cellular resolution over a large field of view in
non-contact operation, however OC'T has tremendous potential in other applications such
as general histology tissue imaging [10, [I8] 25], 26}, 45].

1.2 Dispersed Interferometry

Dispersed optical interferometry has its origins in the field of astronomy [19] 20} 211, 58].
An instrument called the dispersed Fourier transform spectrograph (dFTS) was invented
in the mid 1990’s and was used to determine the radial velocity of stellar targets by
measuring the stellar spectra [5, 31, 32, [33]. The dF'TS instrument is essentially a standard
Fourier transform spectrograph based on the conventional Michelson design, but with a
standard dispersive-based spectrograph used to record the output. The dFTS was shown
to improve the signal-to-noise ratio (SNR) of measured spectra over a regular FTS by a
factor proportional to the square root of the resolving power of the back-end spectrograph,
which can be several thousand easily.

The first optical coherence tomography systems were essentially Fourier transform spec-
trographs and are known as time-domain OCT systems (TD-OCT). At the same time the
dFTS instrument was invented in the mid 1990’s a new method of OCT was also invented
based on an instrument design similar to the dF'TS in which the output spectrum is mea-
sured by a dispersive-based spectrograph. These OCT instruments record a depth scan by
taking the Fourier transform of the measured spectrum, and hence is called Fourier-domain
OCT (FD-OCT); the specific implementation of FD-OCT by using a dispersive-based spec-
trograph is called spectral-domain OCT (SD-OCT). SD-OCT is extremely similar to the
dFTS with the fundamental difference being the delay-induced mirror is replaced by a sam-
ple object. SD-OCT reports SNR improvements over TD-OCT with factors proportional
to the number of detector elements in the back-end spectrograph [13| 14} (18, [39]. There
are definite parallels between dispersed optical interferometry systems in astronomy and



SD-OCT, and it can be seen that SD-OCT is formally a dispersed optical interferometry
system applied towards medical imaging.

1.3 Motivation

OCT fills a nice gap between confocal microscopy and ultrasound in terms of imaging
performance, as depicted in fig. . Confocal (fluorescent) microscopy has historically
been used as a microscope technology to image prepared tissue samples for pathological
applications. These images are often considered a gold standard because of the high spatial
resolution CM/CFM is able to provide. Despite the imaging advantages of CM/CFM the
process of acquiring an image can be quite slow due to lengthy sample preparation (freezing,
cutting, staining and/or fluorescent dying), and the imaging operation time is lengthy due
to an iterative depth slice selection procedure.

OCT offers several advantages over confocal (fluorescence) microscopy such as being
able to acquire full depth imaging for each point scanned across a sample, requires very
little preparation time, and is still able to provide cellular resolution, thereby coming close
to gold standard imaging. At the current time of the writing of this thesis there are very
few commercial OCT based microscopes that are designed specifically for imaging tissue
in a manner similar to CM/CFM.

Because of OCT’s short sample preparation time and fast imaging operation time, such
a microscope could be very useful in a clinical surgery type environment where biopsies
are being taken. Ordinarily many tissue samples are taken in a surgical biopsy procedure
which may cause irreparable damage to a patient. These tissue samples are then prepared
and imaged using CM/CFM and a medical professional then examines these images and
determines the diagnosis. This procedure may take up to 1-2 weeks at which time the
patient may need to return for additional surgery if the diagnosis was dubbed inconclusive
due to a quantitative lack of tissue samples. An instrument that is able to image each
tissue sample at “silver standard” level quality as it is extracted from the patient could
be extremely useful in the surgery room so that a high quality pre-diagnosis can be made
during the surgical procedure. The impact would be less healthy tissue would be removed
from the patient and the possibility of returning for additional surgery may be minimized.

One of the stated goals for this research is to construct an OCT based microscope that
is suitable for biopsy imaging for pathology in a surgical environment, that of which there is
a limited commercial market. The topic of the thesis is to incorporate a unique technology
into the OCT microscope system to boost the performance beyond that of conventional
OCT, thereby closing the gap between CM/CFM and OCT and raising the imaging quality
close to that of the gold standard.



1.4 Scope and Thesis Structure

This thesis aims to solve a very specific problem: increasing the sensitivity of an SD-OCT
instrument while maintaining maximal light throughput in order to increase the image
quality and depth penetration of the OCT image. The topics and material presented in
this thesis provide enough background theory relevant to understand the problem and
solution, namely sensitivity in SD-OCT, dispersive spectroscopy and interferometry, and
optical imaging. A full description of the entire theory and physics of optical coherence
tomography, dispersive spectroscopy, and interferometry are beyond the scope of this thesis
and further information on the subjects are provided in the references. Selected theory and
physics from optics and OCT are presented in the framework of the research presented in
this thesis.

The rest of the chapters in this thesis, and the content within, is structured as follows:
Chapter [ provides background theory used to understand and explain OCT on a funda-
mental level, the OPS, and the results of implementing the OPS in the SD-OCT system.
If the reader is already very familiar with geometrical optics and ray tracing, and more
advanced topics such as interference, diffraction, and optical coherence, then chapter
may be quickly glossed over for brevity. Chapter [3] introduces the theory and mode of
operation of SD-OCT and also presents the design and results from the SD-OCT system
microscope constructed and used in this research. Chapter [4] begins with a discussion on
dispersive spectroscopy relevant to the SD-OCT system and develops into discussions on
optical slicers. The design of the optical pupil slicer is presented and performance results
and characteristics are shown. Chapter [5|is the heart of the thesis where expected im-
provements in the SD-OCT system due to the OPS are presented, followed by how the
OPS was implemented and the performance results of the SD-OCT system with the OPS.
The results show that the performance of the OPS are not good enough to make an im-
provement, and so the remainder of chapter [5| discuss the shortcomings of the OPS and
necessary improvements to the SD-OCT system and the OPS. The thesis finishes with a
conclusion of the results in chapter [0






Chapter 2

Background

In this chapter the fundamental theory relevant to the remainder of this thesis is presented.
The topics presented in this chapter are broken into two classifications: geometrical optics,
and wave optics. Geometrical optics is a simplification of the more advanced topics of
optical physics and serves as a useful descriptor of how optical systems behave without
requiring knowledge of the intricate details of the full physical description of light. The
subjects of ray tracing, aberrations, and radiometry will be presented under the framework
of geometrical optics with several fundamental definitions such as focal length, the optical
invariant, and numerical aperture. Wave optics is a more complete theory of optical physics
and is able to properly explain advanced phenomena. The topic of wave optics is important
to understand in this thesis because the subjects of interference, diffraction, and coherence
are unable to be explained by geometrical optics.

If the reader is already familiar with the fundamentals of optical theory and especially
the topics of interference, diffraction, and coherence, then this chapter can be skipped for
brevity and the reader may proceed directly to chapter [3] This chapter serves as a basis
for further developments of the theory more applicable to the research in this thesis and
later topics will be referred to different portions of this chapter.

2.1 Geometrical Optics

Geometrical optics, or ray optics, is a simplification of the general wave treatment of optics
in order to describe wave propagation in terms of rays which are perpendicular to the phase
front, or the normal vector. Most optical phenomena may be described as such, and to first
order the light path through an optical system can be described with great detail using the
model of rays. Geometrical optics provides a powerful engineering model of optics because
of its simplicity but overall completeness and ease of implementation into software, e.g.
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ray tracing programs such as ZEMAX®. Geometrical optics does not include, or rather
is incapable, of describing diffraction and interference properly, however elements such as
a diffraction grating can be modelled using ray optics. In this section the general ray
optics model will be presented, the paraxial region will be defined and the paraxial ray
tracing equations will be presented. Moving beyond the paraxial region induces higher
order effects that cause rays to deviate from the perfect paraxial case; these are known as
optical aberrations and some basic aberration theory will be presented. The measurement
of electromagnetic radiation in optics is known as radiometry, which is large enough a field
to be in its own section, however since it is highly geometric in nature and only a few basic
results will be presented, it is appropriate to classify it under an extension of ray optics.

2.1.1 Snells Law

Deriving from the boundary conditions from Maxwell’s equations describing a propagating
plane wave, the angular description of the propagation of the plane wave upon transmitting
through an optical medium is given by Snell’s law,

k;sin (6;) = kysin (6;) , (2.1)

where k; and k; are the incident and transmitted wavenumbers, and 6; and 6; are the
incident and transmitted angles as measured from the surface normal of the optical medium
the light is interacting with [§]. The wavenumber may be given by,

L — 21/ € (W) pir (W)

Ae ’

(2.2)

where A, is the wavelength of light in a vacuum and the material is described by the
dielectric and magnetic variables, €,(w) and p,.(w) respectively, that depend on the optical
angular frequency, w. The speed of light in a material, v, may be given as,

V= (2.3)

where the speed of light in a vacuum is given as, ¢ ~ 3 x 10®* m/s. The term in the
denominator of eqn. is called the index of refraction and is commonly denoted by n(w).
The index dependence on the optical angular frequency means that light will travel at
different speeds in a material, this phenomena is known in optics as dispersion. Since the



speed of any travelling wave is given by the frequency multiplied by the wavelength, and
since the speed of light in a medium is always less than the speed of light in a vacuum
(v < ¢), and the optical frequency is constant (energy must be conserved), this implies
the wavelength must decrease by a factor given by the index, and hence the presence
of the material parameters in the numerator of eqn. 2.2 Substituting the definition for
wavenumber into Snell’s law, an alternative version is presented,

n;(w) sin (6;) = ny(w) sin (6;) , (2.4)

where n;(w) and n;(w) are the indicies of refraction of the incident material and the trans-
mitted material respectively. This representation of Snell’s law is the fundamental equation
in which all of geometrical optics may be derived from, and is also known as the law of re-
fraction. A mirror may be modelled by eqn. [2.4| by substituting in n;(w) = —n;(w) whereby
the result 6; = 6; arises which is the law of reflection: reflected angle equals incident angle.

2.1.2 Paraxial Region

The law of refraction in eqn. [2.4] is sufficient to describe the transmission and reflection of
rays through an optical system, however the computation is somewhat complex due to the
sin functions. When the angles, 6; and 6, are small, a small angle approximation may be
substituted into eqn. to define the paraxial law of refraction,

ni(w)u; = ngy(w)uy, (2.5)

where u; and u; are the paraxial small angles defined by u = 6 ~ sin(#). In the small angle
approximation the tangent angle can also be used to approximate the sin of the angle, in
which case the paraxial angle, v, may be defined as

u =0 ~sin(f) ~ tan(0). (2.6)

Often the approximation of sin(f) ~ tan(f) is used in paraxial optics because the
tangent angle for right triangles is defined as the height divided by the base. In optical ray
tracing the height is often the height location of the ray at any point in an optical system
and the base is the distance from the height location to where the ray crosses the optical
axis. To visualize the error associated with the paraxial approximation the relative error
may be plotted as a function of actual angle, #; this is seen in fig. It can be seen that
for errors less than 1.5% the paraxial appoximation should only be used for angles less
than 10°. An error of 1.5% is quite significant when rays propagate long distances.
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Figure 2.1: A plot of the relative error of assuming tan(f) = sin(#) as a function of 6.

2.1.3 Ray Tracing Equations

A spherical lens is an optical element usually made of a certain type of glass, e.g. N-BK7,
that has at least one circularly curved surface. Given the index of refraction of the glass,
ng(w), and the medium immediately before the lens, n,;(w), and the radius of curvature of
the surface, Ry, the power of the optical surface, ¢, may be defined as [29]

pw) = M (2.7)

It is seen that the power of an optical surface is dependent on the optical frequency
because the index of refraction is dependent on the optical frequency. A lens has some real
thickness, d;, and has two optical surfaces. The total power of the lens is a combination
of the powers of the two surfaces, ¢; and ¢, and the lens thickness and is defined as [29]

P10) = 1)+ 02(0) 1 Wil 28)

The focal length of the lens is given as the inverse optical power,
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frlw) = : (2.9)

The fact that the focal length depends on the optical frequency means that light of
different wavelengths will come to a focus as different points. This is known as chromatic
aberration and will be discussed more in section [2.1.4 Perhaps the most important aspect
of geometrical optics is its ability to trace a ray through an optical system. There are
two fundamental ray tracing equations: the refraction equation, and the transfer equation.
The refraction equation is derived from eqns. and while the transfer equation is
derived from simple trigonometry [29]. The ray tracing equations are stated as,

ne(w)us = ny(w)u; — hl@lg(“)» (2.10)

and
hz = hl + Uzd, (211)

where uy is the paraxial angle upon transmitting through a surface with power ¢ 5, the
height of the ray from the centre of the optical axis is given as hy, u; is the paraxial angle
of the ray incident on the optical surface, and n; and n, are the indicies of refraction of
the material before and after refraction. The second equation determines the height of
the ray after travelling some distance, d, with paraxial angle uy with initial height hq. If
the optical surface has some focal length, f,, and the initial ray is parallel to the optical
axis (u; = 0) with an initial height h;, then the ray will be refracted and have zero height
(hy = 0) after travelling a distance equal to the focal length multiplied by the index of
refraction (d = na(w)fs), also known as the optical distance. This is the classic condition
of collimated light entering a lens and coming to a focus at the focal point. Although the
above example is very simple, any ray with appropriate starting conditions may be traced
through an optical system with a high degree of complexity. The process of tracing a ray
through a complex optical system is very repetitive and only relies on eqns. and
with the power of the surface being defined by eqn. 2.7 and hence is a very good job for a
computer to do. Ray tracing software packages, such as ZEMAX®, are used to design and
model optical systems [64].

The Optical Invariant

Optical systems are of finite size and therefore they are limited in the rays which are
allowed to pass through them. An aperture is an opening in which rays may pass through
unblocked. The limiting aperture in an optical system is called the stop. The entrance
pupil (EP) is the image of the stop in object space (in front of the optical system) and
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the exit pupil (XP) is the image of the stop in image space (after the optical system).
The location and size of the EP and XP may be found by using the standard ray tracing

equations (eqns. and [2.11]).

Two types of rays may be traced through the system in order to describe the image
at any location. These two rays are called the marginal ray and the chief ray [29]. The
marginal ray begins on the optical axis at the object location and travels to the edge of the
entrance pupil and also goes through the edge of the system stop and exit pupil. The image
locations are defined as whenever the marginal ray crosses the optical axis. The marginal
ray also defines the maximum angle at which rays may enter the optical system starting
along the optical axis. The marginal ray angle and height are given by u and y. The chief
ray begins at the height of the object and goes through the centre of the entrance pupil
and also goes through the centre of the system stop and exit pupil. The image heights are
defined as the height of the chief ray whenever the marginal ray crosses the optical axis.
The chief ray angle and height are given by u and y.

The field of view (FOV) of an optical system is defined as the full angular range that
is seen by the entrance pupil, which is 2u. Often the reverse problem is assigned in which
the detection area is the limiting factor. In this case a reverse chief ray is traced starting
at the detector height and passing through the centre of the exit pupil. The FOV is then
found to be twice the emerging chief ray angle out of the front of the optical system, 2u’.

The rays passing though an optical system are constrained given the parameters of the
optical system (focal lengths, lens separations, lens sizes, apertures, etc). Given two rays
in an optical system an invariant, or constant, of the system is found to be

O12(w) = n(w) (urhy — ughy) , (2.12)

where u; and hy are the paraxial angel and height of the first ray, and uy and hs are the
paraxial angle and height of the second ray at any location in an optical system with an
index of refraction n(w) [29]. If the two rays in eqn. are the marginal and chief rays
then the optical invariant is known as the Lagrange invariant given as,

Op(w) = n(w) (ay — uy) - (2.13)

The optical or Lagrange invariant is constant at any axial location throughout the
optical system. The Lagrange invariant will be seen again in section [2.1.5|in a different
form. As stated the invariant is constant, however in practise it can degrade due to losses
in the optical system, such as focal ratio degradation. An example of this would be passing
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light through an optical fibre if the input FOV was smaller than the acceptance and exit
angle.

Numerical Aperture and F/#

Perhaps the most widely used term in optics is the f-number (f/#), or numerical aperture
(NA) describing the rays in the system. These terms are also very commonly used to
describe a lens, e.g. an f/2 lens, or a lens with NA=0.5. The f-number is defined formally
as the ratio of the focal length of an optical system to the diameter of the entrance pupil
when the object is at infinity,

flw) = 5

(2.14)

For a single lens the lens itself serves as the system stop and therefore the entrance
and exit pupil are located at the lens and the diameters are equal to the lens diameter.
In this case the f-number is simply the focal length divided by the diameter of the lens.
A more practical way to describe the rays is to use the numerical aperture (NA), which
by definition is the index of refraction of the optical space in which the rays are being
described, n(w), multiplied by the sin of the marginal ray angle, 6,,,

NA(w) = n(w)|sin(b,,)| ~ n(w)|ul, (2.15)

where the small angle paraxial approximation may be used. If a lens is assumed to have
zero thickness and placed in air then the numerical aperture and f-number are related by

1

fl#w) = INAW)’ (2.16)

2.1.4 Optical Aberrations

The paraxial region and the paraxial ray tracing equations describe an ideal optical system,
such as a lens whereby all the rays come to a focus at a single point. The paraxial region
makes use of the small angle approximation in Snell’s law, but an approximation always
has some error associated with it, as was shown in fig. 2.1, The proper way to trace a ray
through a real lens is to use the full form of Snell’s law without any approximations. The
location of the traced real ray will be different than the location of the traced paraxial ray.
This difference is called an optical aberration because it is a deviation of an ideal result.
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’ Fundamental Aberrations ‘

Name Term Description | Order
Defocus Wozo 1
Tilt Wi 1
Spherical Woao 3
Coma Wiz 3
Asigmatism Waon 3
Distortion Wi 3
Field Curvature Waso 3

Table 2.1: Description of the Fundamental Aberrations

Optical aberrations show up as characteristic patterns in the focal plane that depend
on the physical cause for the aberration itself. For example, chromatic aberration shows
up as a different focal point for each frequency of light due to the dispersive nature of glass.
Aberration theory describes the aberrations in terms of errors in the wavefront (difference
between the actual wavefront and the paraxial wavefront) that manifest themselves as
positional errors in the focal plane. Even though a wave description is used to describe
and define the aberrations, a geometrical ray model is sufficient to trace an aberrated
optical system. It is convenient to describe the wavefront error in rotationally invariant
coordinates, H?, p?, and Hpcos(?). The coordinate H is equal to the normalized radius of
the image point(H? = x? + y?), p is equal to the normalized radius of the object point in
the exit pupil (p* = xi + yﬁ), and 9 is equal to the polar angle of the object point position
in the exit pupil. Aberration theory defines several fundamental optical aberrations that
typically contribute the most in optical systems, these are summarized in table [4, 18], 27].

The terms Wiy, cos9 are constant coefficients called the aberration coefficients and the
subscripts describe which independent variable terms are used by expressing the power to
which they are raised. For example, coma, given as Wi3; would have a wavefront error
expressed as Wiz Hp® cos(d). The value of the aberration coefficient describes how strong
the aberration is in the optical system and depends on the physical parameters of the
optical system (focal length, diameter, incident angle, etc.). The positional ray error, or
ray aberration, in the focal plane of a lens is given as the partial derivative of the wavefront
error with respect to a coordinate axis in the image plane, e.g. x; or y;, multiplied by the
negative ratio of the radius of curvature of the paraxial wavefront, R,, to the radius of the
exit pupil, Dxp/2. For example, the ray positional error for coma aberration would be
given by,
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—2R, 0
Dxp Ox;

—2R,
Dxp

e, (H, p,cos(d)) = (Wisi Hp® cos(d)) = PWis1 H p? sin(299), (2.17)

and

—2R, 0 —2R,
Wis1H ¥)) =
Dy oy, WVinfle eos) = 57

ey, (H, p,cos(V)) = PWisi Hp*(2 + cos(20)).  (2.18)

It can be observed that the positional error depends on the square of the distance in
the exit pupil and linearly on the distance in the image plane, therefore this aberration is
classified as a 3¢ order aberration. If a lens is traced with a numerous amount of rays, N,
then a spot diagram will be produced as the image of all the rays. Spot diagrams are very
useful for determining what effects the various aberrations of an optical system have on
an image. From the spot diagram an average spot position (£4,&9,) and root-mean-square
(RMS) spot size may be defined using radial coordinates of the image,

|
EH = NZEHJ., (219)
J=1
[N
By, = NZ%’ (2.20)
j=1
and
1 2 1
RMS = —//(sH—EH)2pdpd19. (2.21)
s
0 0

Description of the Optical Aberrations

Defocus is caused either by choosing the wrong location for the focal plane, or by axially
moving the lens by a distance dz. It can be seen that the defocus error depends linearly
on the radius of the exit pupil, so that by stopping down the lens, and hence decreasing
the radius of the exit pupil, the positional error due to a defocus will decrease. This is the
fundamental reason why stopping down a lens will give better depth of focus.

Tilt is caused by an angular tilt offset either in the lens or the focal plane, or more
generally because the focal plane and the lens plane are not parallel. The positional error
for tilt depends linearly on the lens focal length and the error tilt angle. There is no way
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to reduce this positional error other than by fixing the system so no tilt is in place, or by
reducing the focal length of the system.

The effect of spherical aberration is that rays further out towards the edge of the exit
pupil come to a focus closer to the exit pupil, i.e. before the paraxial focus, for a positive
focal length lens, and opposite for a negative focal length lens. Hence it can be seen that by
stopping down the lens the spherical aberration effect is reduced, as is the case in defocus.
Having a parabolic curved surface can also eliminate this aberration.

Distortion is seen as an image magnification that depends on the position in the focal
plane, hence the H? dependence on the position error. Distortion is caused by the location
of the system stop relative to the position of the lens. If the stop is placed before a positive
lens, and hence is the entrance pupil, the sign of W3 is negative and the ray error moves
towards the optical axis; this is known as barrel distortion. If the stop is placed after a
positive lens, and hence is also the exit pupil, the sign of W3, is positive and the ray error
moves away from the optical axis; this is known as pincushion distortion. If the stop is
coincident with the lens, and hence the lens itself is the system stop, then W3;; = 0 and
there is no distortion aberration.

Field curvature is due to the focal plane being planar and not curved. In the paraxial
case off-axis object points in a plane are imaged onto a plane. In reality an off-axis object
point in a plane will come to a focus at a point either before or after the paraxial focal
plane depending if the power of the lens system is positive or negative. The deviation of
the position of this focal point increases as the image point is further away from the optical
axis. The surface that all points come to a focus on is called the Petzval surface.

Astigmatism is similar to field curvature in that the effect is seen to be that an off-axis
object point will come to a different focal point than an on-axis object point. In fact, the
y-axis positional error, €,, for astigmatism has the same functional form as field curvature,
however the wavefront error is different and the x-axis positional error, €., does not exist,
or is zero. This implies that astigmatism is basically an additional effect similar to field
curvature, however it only results in a positional error in one axis. Astigmatism is not due
to the focal plane being planar and hence can be present even if field curvature is absent.

Coma is caused by an image magnification that is dependent upon the exit pupil lo-
cation. Depending on the sign of the aberration coefficient, W3, this magnification is
either positive or negative. An object point can generally trace out a circle in the pupil
with expanding radii until the pupil is completely filled. A spot diagram analysis indicates,
and can be seen in the functional form of coma, that the image will also be a circle and
displaced from the paraxial focal point in a direction depending on the sign of Wi3. A
summation of these circles, and hence the full spot diagram, will look like a snow-cone
with the cone subtending 60°.
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2.1.5 Radiometry

Radiometry is the science of measurement of electromagnetic radiation and it can be used
to generally describe the light propagation throughout an optical system. Radiometry
is highly geometric in nature and quantifies electromagnetic radiation in terms of joules,
Watts, area, and solid angles. The solid angle, typically denoted by €2, is a two dimensional
angle in 3D space with dimensionless units of steradians. A steradian is the solid angle
subtended by the surface area that is equal to the radius of a sphere squared. Since a
sphere has a surface area of WDEP there are 47 steradians in a sphere. The solid angle for
an object that is a section of a sphere as measured at the centre of the radius of curvature
(centre of the sphere) can be calculated as,

Pmaz Pmaz
Q- / / sin(0e)dfadda. (2.22)

%9} (7

where 6, is the polar or zenith angle and ¢q, is the azimuthal or rotational angle [4,8]. This
equation is not always useful because not all objects have a spherical curvature to them,
although for spherical wavefronts and spherical lenses eqn. [2.22] is very relevant. Often
eqn. [2.22l may be difficult to compute for complicated geometries and so an approximation
for solid angle may be used given the area of a 2D object, Asp, and the distance to the

observation point, d,,

PP (2.23)

The error of this approximation compared to the 3D spherical object with area, Asp, is
similar to the small angle approximation error shown in fig. and so this approximation
should only be performed when the observation distance is much larger than the height
of the object area (d, > /Asp). A plot of the error as a function of zenith angle, 6q, is

shown in fig.

In an optical system that is emitting radiation from a finite source area, A,, located at
some distance, dgp, from an entrance pupil with area, Agp, the total amount of geometrical
light collected by the optical system may be calculated as,

_ / / / sin(00)d A pdfoddo, (2.24)

o 0o Agp

(1]
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Figure 2.2: The relative error between the actual solid angle and the paraxial approxima-
tion plotted as a function of the zenith angle, fg. As the object distance d, increases the
zenith angle decreases and the error in the approximation decreases.

where the limits on the integration are taken over the source area angular description and
the area of the entrance pupil. This is simply calculating the solid angle of the source as
observed from every point within the area of the entrance pupil and taking the integrated
value. This resulting value is known as the étendue and describes the light collection
efficiency of an optical system. In the small angle approximation the solid angle can
simply be expressed according to eqn. and the étendue becomes,

= AQpp, (2.25)

where is can be seen that the étendue can be represented as the area of the EP multiplied
by the solid angle of the source, (), or the area of the source multiplied by the solid angle of
the EP. The most useful aspect of the étendue is that it is a constant in an optical system,
and is therefore analogous to the Lagrange invariant defined in eqn. 2.13] The étendue is
the solid angle equivalent to the Lagrange invariant when the chief and marginal ray solid
angles are used; the two are related by [29],

07 (w) = . (2.26)
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2.2 Wave Optics

Physical optics, or wave optics, is the treatment of light as an electromagnetic wave, rather
than a ray. The wave optics model is necessary to describe optical phenomena such as
interference and diffraction.

2.2.1 The Wave Equation and the Plane Wave Solution

Electric and magnetic fields in a medium with no charge or current may be described by
the complex vectorial representation of Maxwell’s equations given as:

V-D=0, (2.27)
V-B=0, (2.28)

V x E = —iwB, (2.29)
V x H = iwD, (2.30)

where 6-, 6><, and V denote the divergence, curl, and gradient operator respectively, and
i = /—1[8,34]. The complex electric and magnetic fields are given as Eand H respectively
and have units of volts per metre, and amperes per metre. The complex fields D = ¢E
and B = uﬁ are the electric and magnetic displacement fields and depend on the material
parameters where € is the dielectric material parameter, and p is the magnetic material
parameter. From now on only the electric field component will be discussed because optical
instruments typically only measure the electric field and the mathematical treatment of
the electric and magnetic field are essentially equivalent. The complex representation of a
harmonic electric field is given as,

E(7,t) = E(F) exp (iwt), (2.31)

where t is time, w is the angular optical frequency, and 7 is the positional vector. In a
dispersive medium the dielectric and magnetic material parameters will depend on the
optical angular frequency, i.e. e(w) and p(w). If the curl of eqn. is taken with
substitution of eqn. [2.30] the resulting relation is

—

V x V x E = (e(w)pu(w)) w’E. (2.32)
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If a mathematical identity of V2V = V(V-V)=V xV xV ([34]) is used with substituting
in eqn. then the result becomes,

V2E — 2(w)E = 0, (2.33)

where we make use of the definition of the material wavenumber, &, given in eqn. and
the definition of relative material variables, €, = €/¢y and p,. = 1/, where €, and g are
the permittivity and permeability constants of free space (vacuum). This result is known
as the wave equation and all electromagnetic fields in a source free medium must obey
eqn. A plane wave is a solution to eqn. [2.33| and is described mathematically as

B(7,t) = Eyexp <i(wt k- f’)), (2.34)

where Eo is the complex amplitude of the electric field and k is the vectorial material
wavenumber. The vectorial nature of the material wave number is evident upon solving
eqn. for each scalar coordinate of the field. Plane waves are often the most useful
and common types of electromagnetic waves encountered in optics. Plane waves describe
collimated light and the normal to the plane defies the light ray used in geometrical optics.

2.2.2 Interference of Light

Interference is the result of two or more electromagnetic waves interacting with each other
and may result in a measurable effect of which the type of interaction may be deduced.
Often optical systems are designed with interference in mind in order to perform mea-
surements not achievable through direct imaging. For example, the position of an object
relative to a known distance may be determined with precision several orders of magnitude
below the wavelength of the electromagnetic field. In this section we will assume the elec-
tromagnetic wave is planar and monochromatic, i.e. of a single frequency or wavelength.
A more general treatment on interference with quasi-monochromatic or polychromatic ra-
diation will be seen in section where the concept of coherence is introduced. Using
general complex notation the interference of two plane waves may be represented as,

Bi(7t) = By, exp (z’(wt — k- F)) + By, exp (z’(wt k- F)), (2.35)

where E; is the interfered electric field comprising of the two electric fields denoted by
subscripts 1 and 2. Optical detectors measure the square of the real part of the electric
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field, I3 2 but since the optical frequency is much larger than the temporal response of the
detector, the time average of the squared real electric field is measured and defined to be
the optical intensity given as,

1= (&%, (2.36)

where (-); denotes the time average (see list of symbols and definitions). The real com-
ponent may be represented using complex notation as 26 = F + E*, where * denotes
the complex conjugate. Using this relationship the measured optical intensity of the two
interacting plane waves may be expressed as,

T
I = SB[ + |Bof') + 5 (By - Ej + B - By). (2.37)

It is noticed that the first term in eqn. [2.37is simply the sum of the optical intensities
from the two plane waves. The second term in eqn. [2.37]is the interference term between the
two plane waves and it can be seen to explicitly depend on the vectorial product between
the two fields. The vectorial nature of the electric fields is a statement of the polarization
of the light. The amount of observed interference depends on the degree of polarization
between the two interacting electric fields [g].

In eqn. [2.35 it was assumed the two plane waves had travelled for a time ¢ before
interacting and being measured, however, this assumption is not always correct. It is
possible for two plane waves to have travelled different times before reaching a location,
7. We will denote the time of flight for the first wave as ¢; and the time of flight for the
second wave as to. The time difference is given as 7 = t; — t5. This time difference will
manifest itself as an additional phase in one of the plane waves as A¢ = wr, that can also
be expressed as a distance phase A¢ = kAd, where Ad is the optical path length difference
between the two waves. This last point is valid because light has the highest probability
of taking the shortest optical path [§ 24, [41]. Adding this additional phase to one of the
waves in eqn. [2.35], and assuming maximal polarization, the general interference wave can
be expressed as,

[i = [1 + [2 + 2\/ [1[2 COS(A(]ﬁ). (238)

The interference intensity varies sinusoidally as a function of the phase, A¢, which de-
pends on the time of flight difference, and equivalently the optical path difference between
the two waves. When the interferometric term is greater than 0 it is referred to as con-
structive interference and when it is less than 0 it is referred to as destructive interference.
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The sinusoidal oscillations of intensity are traditionally called fringes. The visibility of the
fringes, V', may be defined in order to quantify the degree of interference, it is defined as

1 — I
| VL — L 2.39
Imaw +Imin ( )

2.2.3 Diffraction of Light

Diffraction is entirely due to the wave nature of the electromagnetic field itself and is typ-
ically observed when a field interacts with an object and does not require interaction with
another wave, as is the case in interference. Diffraction ultimately limits the resolution
of any optical system and is able to describe the response function of an optical system
based on known measurable parameters (diameter of lenses, focal lengths, etc.). The most
general treatment of diffraction begins with the complex vector formalism of Maxwell’s
equations and analyzes the electromagnetic field in various geometries. Without simplifi-
cation and approximation very few diffraction problems may be solved completely [§], and
therefore the most general treatment is often not practical. In order to understand the
results of basic diffraction in common practise it is sufficient to describe the subject using
scalar theory with valid approximations. Such will be the treatment of diffraction in this
section.

Diffraction Gratings

A very important type of optical element, called a diffraction grating, is similar in effect to
a prism in that the direction of the transmitted (or reflected) field depends on the optical
frequency, w. The diffraction grating operates under the principles of diffraction while a
prism operates under the principles of refraction and dispersion. In the most basic sense a
diffraction grating obeys the grating equation given as

TZ—/\ = sin(6;) + sin(6;), (2.40)
g

where m indicates the order number and is an integer, d, is the line spacing of the grating
usually quoted in inverse lines per millimetre, and the two angles 6; and 6, are the incident
and transmitted angles [8, 47]. The order number, m, refers to the number of wavelength
differences in the constructive interference pattern.

Diffraction gratings are either reflective or transmissive and each have advantages and

disadvantages [3| [7]. Gratings are characterized in terms of their line spacing, d,, and
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their blaze wavelength or angle. The blaze wavelength, A\, is the wavelength at which the
grating has maximum efficiency, while the blaze angle, 6z, is the angle of incidence at which
the grating has maximum efficiency. A diffraction grating typically has highest efficiency
when the incident angle and reflected /transmitted angle are equal, such a configuration
is called the Littrow configuration [47]. Ideally the blaze angle and the Littrow angle are
made to be equal and given by

Op = 01, = arcsin (22;) : (2.41)

Transmissive gratings operate slightly differently than reflective gratings. A transmis-
sive grating is holographic in nature, and is typically formed by illuminating a photore-
sistive material by two monochromatic plane waves separated by an angle 20. This will
result in an interference pattern across the material where the period of the constructive
interference is given as C' [2§]. If the photoresistive material is tilted at an angle ® during
exposure then the grating period at normal incidence appears to be C, = C/ cos(®) and
the grating equation becomes

mA = Cy(sin(6;) + sin(6;)). (2.42)

In an analogous manner, the maximum efficiency for a transmissive grating occurs in
the Littrow configuration, which can be stated generally as 6; — ® = 6, + ®. This physically
means the incident electromagnetic field is reflecting off of the plane of fringes, which occur
at angle ®. In this case the blaze condition for a transmissive grating may be stated as

mAp = 2C'sin(0; — P), (2.43)
where the angle inside the sin argument is known as the blaze angle for a transmissive
grating. Some vendors claim ® as the blaze angle, so some caution must be taken when

examining grating specification. In the latter case the blaze condition may be approximated

by

Ag = (n —1)d,sin(P), (2.44)

where n is the index of refraction of the grating material.

23



Diffraction Limit

It can be shown that the complex electric field at the focal point of a lens is the Fourier
transform of the field before the lens multiplied by the aperture function of the lens [2§],

o0

exp (i%(fv? + y?)) o
E(xi,yi, k) = It // Eo(xpa yp>H(xp7 yp) exXp (_i_(xpxi + yp%’)) dx,dy,,

INfL M
(2.45)

where fr, is the focal length of the lens, k is the wavenumber, x; and y; are the coordinates
in the focal plane of the lens, x, and y, are the coordinates in the exit pupil of the lens,
and II(zp,y,) is the aperture function of the lens. Equation leads to the celebrated
diffraction limit of a lens or imaging system. If a plane wave of unit amplitude is incident on
a lens with a circular aperture with a diameter, D,, and image coordinate H = \/x? + 4?2,
the complex field distribution is seen to be,

(2.46)

B(H.F) = exp (,kH?) 7D? (zjl (k;DaH/ZfL)> |

"2f, ) ainf, \ kD.H/2f,

where J; is a Bessel function of the first kind, first order. The measured signal is the
optical intensity (|E(H)|*) which is shown to be,

[(H, k) = (2@?)2 <2J1k%?;[§;ﬁfL))2 . (2.47)

This celebrated intensity distribution is known as the Airy pattern, a plot of the cross
section of the pattern can be seen in fig. 2.3l The width of the central lobe is defined as
when the function first reaches zero, the width, w, of this lobe is given as

_1.22)

= 2.4
w NA (2.48)

It can be shown that in general any infinitesimal point in the image is convolved by
the Airy pattern [28], and therefore it is typically claimed that the spot size in an image is
limited by diameter of the central lobe in the Airy pattern given by eqn.[2.48 This claim
is known as the diffraction limit. The Rayleigh spatial resolution condition states that two
diffraction limited spots may be resolved if the peak of one Airy pattern lies on top on the
first zero point of the other Airy pattern.
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Cross Section of Airy Pattern
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Figure 2.3: A cross section of the 2D Airy pattern for a uniformly illuminated circular
pupil. The functional form is given in eqn. and the domain is plotted in units of
A/ NA.

2.2.4 Optical Coherence

The development of interference in section was overly simplistic in that it assumed
completely monochromatic light that was perfectly spatially coherent. Coherence in the
context of optics means the electromagnetic radiation is of the same origin. In optics there
are two basic kinds of coherence, temporal coherence means that the radiation has emitted
at the same time, and spatial coherence means the radiation has emitted from the same
location. In order for interference to occur with good visibility the wave must be both
spatially and temporally coherent [41], 61].

Temporal Coherence

Given two complex electric fields originating from different locations, 7} and 75, and inter-
acting at a location, 7, by travelling for times, t; and ¢y, via path lengths, d; and ds, the
interaction may be given by

E('F,t) :El(Fl,t—tl)—f—EQ(Fg,t—tQ) (249)

The time average optical intensity is given as
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I(F) = I(7h) + 1(75) + 2R [['(71, 75, 7)] (2.50)

where R[-] denotes the real part. The function I'(7, 75, 7) where 7 = ¢; — t5 is known as
the mutual coherence function and is given formally as the time average cross-correlation
between the two electric fields [41, [61],

F<F17F27T) = <ET(F17t)E2(F27t+T>>t (251)

In general the mutual coherence function is complex. It may be normalized to form the
complex degree of coherence, v given by,

V(L T, T) = ———es, (2.52)
V() 1(7)
which is also complex and may be represented as a magnitude and phase,
Y(7, 72, 7) = |y(71, 7%, T)| exp (iwT), (2.53)

where w is given as the mean optical angular frequency of light for the source bandwidth.
An additional phase term has been neglected from eqn. [2.53|since it is only leads to higher
order effects and are beyond the scope of this thesis. For a complete treatment of coherence
theory refer to [41]. From eqns. and [2.50] the interaction at location 7" may expressed
as

I(7) = I(71) + 1(7%) + 2+/1(71) 1 (72) [y (71, 7%, T)| cos (wT) . (2.54)

It can be seen that the total optical intensity of the interaction of the two electric fields
will vary sinusoidally with a dependence on the optical path difference |d; — ds| = 7¢. The
third term in eqn. [2.54] is known as the interference term. The fringes are defined as the
sinusoidal deviations from the mean optical intensity level, given as the sum of the first two
terms. The amplitude of the fringe deviations depends on the magnitude of the complex
degree of coherence, which varies from 0 to 1. The fringe visibility is defined according to

eqn. but with eqn. expressing the optical intensity.
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Spectral Coherence

The complex electric field may be represented as a Fourier transform as follows [41] [61],

E(rt) = /E(F,w) exp (—iwt)dw, (2.55)

0

where it is understood that E (7,w) = 0 for w < 0. Since E(7,t) is a complex representation
of the real measurable field &(7, ), it follows that E(7, —w) = E*(F,w) and therefore nega-
tive frequencies carry no additional information than positive frequencies. From eqn.|2.55a
cross-spectral density function may be defined analogous to the mutual coherence function,

U (7, 7y, w) = (B*(7, w)E (7, o)), (2.56)

where (-). represents the ensemble average (see list of symbols and definitions), and «’
is any optical frequency different from w. From the Wiener-Khintchine Theorem, the
mutual coherence function is shown to be the Fourier transform of the cross-spectral density
function [41], [61]. The Wiener-Khintchine Theorem is stated that that the cross-spectral
density function is the Fourier transform of the cross-correlation functionﬂ Since the cross-
spectral density function, U, is the cross-correlation of the inverse Fourier transform of an
electric field, we may express I' and W as,

o0

L(7, 7, 7) = /\I/(ﬁ,f'g,w) exp (—iwT)dw, (2.57)
0
and -
1
W(F, 7, 0) = o / T(Fy, 7, 7) exp (icwr)dr. (2.58)
T

If the two points 7 and 75 are both the same the cross-spectral density function is
reduced to the optical power spectrum of the source,

S(7,w) = W(F, w), (2.59)

'For a proof of the Wiener-Khintchine Theorem see appendix
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where S(7,w) is the optical power spectrum measured at some point in space given by 7.
In lieu of eqns. and it is shown that the optical power spectrum of light may be
given as the inverse Fourier transform of the autocorrelation function (see appendix .
Similar to the complex degree of coherence, a normalized cross-spectral density function,
called the spectral degree of coherence, 1, may be defined as,

\II — —
(i, Ty ) = T T2) (2.60)
VS (71, w) S (7, w)
This may also be represented in magnitude and phase similar to eqn. [2.53]
w(FbF?aw) = |¢(F1,F2,W)|€Xp (Z(JJT) (261)
Using eqn. the spectral equivalent of eqn. is found to be
S(F,w) = S(71,w) 4+ S (7, w) + 24/ S(F1, W) S (o, w) [Y(71, T, w)]| cos (wT) . (2.62)

This equation is known as the spectral interference law. It can be see that the spectral
density, S(7,w), at a position, 7, is given as the sum of the spectral densities from the
two points 7} and 75 plus a general interference term, that depends sinusoidally on the
optical path difference |d; — dy] = 7¢, and whose amplitude depends on the degree of
spectral coherence at some frequency w. Because of the Wiener-Khintchine theorem, the
spectral degree of coherence, 1, is related in a Fourier-like mannerﬂ to the complex degree
of coherence, 7.

2.3 Statistical Optics

Statistical optics is a subject that deals with the statistical nature of optical detection.
Fundamentally on a quantum level optics is probabilistic in nature, however, this level of
detail is outside the scope of this thesis. A semi-classical treatment may be provided in
which the fields are described classically, but the detection may be treated discretely with
a probabilistic nature.

2The two are not strictly Fourier transform pairs, however we will treat them as so. The higher order
effects and rigorous mathematical treatment are beyond the scope of this thesis. Refer to [4I] for a complete
treatment.
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’ Optical Properties of Tissue ‘

Name Symbol | Typical Value
Absorption Llg 0.005 mm~*
Scattering s 0.5 mm™?
Anisotropy g 0.8

Index of refraction n 1.4

Table 2.2: Description of tissue parameters with common values in the visible region of
the electromagnetic spectrum

2.3.1 Light Propagation In Tissue

Tissue is a very complex material from the point of view of modelling it in terms of the ma-
terial parameters € and u, which are typically used to describe most materials encountered
in optics. The interaction of electromagnetic radiation in a material where ¢ and p are
well defined is well understood, and analytic solutions may be found in most cases. Tissue
in general cannot practically be modelled as a composition of regions with different mate-
rial parameters because the problem becomes too complex and near impossible to solve.
A simpler model for optical tissue interaction takes a more probabilistic and statistical
approach and is able to produce results that agree well with experiment.

The common model of optical tissue interaction embraces the concept of photons and
describes probabilistically the different events that a photon may take as it propagates
and interacts with the tissue. Tissue may be modelled simply as homogeneous material
with scattering and absorption coefficients (1, and fi,), an index of refraction, n, and an
anisotropy factor, g, that describes the scattering direction. Besides the index of refraction,
the other coefficients may be thought of as a probability that a photon may be absorbed
or scattered, and if it is scattered the anisotropy factor determines the scattering angle.
A list giving typical values for these parameters for tissue in the visible-NIR region of the
electromagnetic spectrum are given in table [2.2

The absorption and scattering coefficients are given in units of inverse distance because
they are used in a Beer’s law formulation to describe the attenuation of optical intensity
after travelling some distance, d. Beer’s law is stated as [57],

I = Iyexp (—pud). (2.63)

Beer’s law describes the number photons that have not had any event, either scattered
or absorbed, as a function of distance. From the values in table [2.2] it is seen that after a
distance of 2 mm the number of photons unaffected by scattering in the tissue has decreased
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by a factor of e~!. Similarly at a distance of 200 mm the number of photons unaffected
by absorption has decreased by a factor of e™!. It is seen that a photon has a much higher
probability of being scattered than absorbed in tissue. Since a photon may be absorbed or
scattered simultaneously a total attenuation coefficient must be used in eqn. [2.63| given as,

[ = o + [hs. (2.64)

In general the absorption and scattering coefficients are a function of wavelength. In
typical tissue in the visible to near-infrared region of the electromagnetic spectrum the scat-
tering coefficient decreases and the absorption coefficient increases with increasing wave-
length, therefore longer wavelength light is able to pass through more tissue without being
affected (scattered or absorbed).

When a photon is scattered the direction is random in both polar angle and azimuthal
angle (05 and ¢,) but the polar angle depends on the anisotropy factor, g, such that there
is a preferred direction of scattering. The azimuthal angle is assumed to be uniform over
27r. The scattering angles may be given by [57]

(9)—i 1+¢%— _1-g Y (2.65)
coSYs 29 9 1—g+29U ’ '

b5 = 21U, (2.66)

and

where U is a uniform random variable with values from 0 to 1. Sometimes it is more useful
to view the the probability density function for the polar angle, which is given as

_ 1-g°
Pricos(6.)) = 2(1 + g% — 2gcos(6,))3 (2.67)

Most optical tissue interaction models are fundamentally based on these equations.
Common methods to model a tissue imaging system is to perform a Monte Carlo simulation
based on the absorption and scattering coefficients [49]. Analytic models use a diffusion
approximation derived from the radiative transfer equation [57]. The analytic models are
more accurate than the Monte Carlo simulations, but typically are more complex.
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2.3.2 Photon Statistics

Of great interest in optics is the statistics of radiation detection. For the sake of this
discussion the concept of photons will be used, which are the particulate description of
electromagnetic radiation. An optical detector is exposed to electromagnetic radiation
for some amount of time. For each incident photon there is some probability that it will
be converted to an electron, this probability is known as the quantum efficiency of the
detector, . Each electron adds an electron volt of charge across the detector. After a
certain amount of time given as the exposure time the voltage is measured. The voltage
divided by the integration time is proportional to the average optical power incident on the
detector during the exposure time. Essentially the optical detection process is a photon
counting procedure. The photon emission from a radiating source is uncorrelated, i.e.
independent, and therefore the counting procedure can be modelled as a Poisson process.
The probability distribution of photon arrival can be given as the Poisson distribution,

B Pl exp (—P)

Pr(j) 7 , (2.68)

where j is the number of photons counted and P is the mean number of detected photons,
also known as the Poisson rate [4]. The mean and variance are both equal to the Poisson
rate, P. In the context of optics the mean optical power is given by P/t., where t. is
the exposure time. The signal-to-noise ratio (SNR) may be defined as the mean signal,
j divided by the standard deviation, o;, of the signal. For optics obeying the Poisson
probability distribution the SNR may be given as

sNR=L - L B (2.69)
oj P

It is seen that the photon noise goes as the square root of the expected number of
detected photons during an exposure time event. To understand the spectral, or frequency,
characteristics of an optical signal consider a constant optical power is incident on a detector
with a fixed exposure time, hence P is a constant. If the optical signal is plotted as a
function of time, each time point will have a different value of j given by eqn.[2.68 Since
photon arrival is uncorrelated the values for 5 will be uncorrelated as well even though
their means are all the same. This means that if j is much larger than P for a particular
time point nothing can be said about the value of j for an adjacent time point. If the
Fourier transform of the optical signal with its mean subtracted is taken (FT [j(t) — P])
the resulting spectrum will have equal power over an infinite extent and therefore the

photon noise is said to be white noise.
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Chapter 3

Optical Coherence Tomography

Optical coherence tomography (OCT) is an imaging modality that operates on the prin-
ciples of interferometry in order to measure the reflectivity of a sample as a function of
depth. OCT is typically used as a medical imaging instrument because it is able to produce
3D volume images of tissue with several millimetres of penetration depth at sub-cellular
resolution (< 10 pm). OCT does not necessarily need to be in contact with the tissue
it is imaging so this advantage allows OCT to be used as a non-invasive medical imaging
system, which has a large impact in the field of ophthalmology. OCT is also a good can-
didate for a tissue sample microscope since high-resolution images can be obtained with
very little preparation time and the 3D depth sectioning is already inherent to the OCT
signal, while for confocal microscopes only single thin layers (~6 pm) may be imaged at a
time and typically require long preparation times. An OCT system was constructed that
was designed to operate as a tissue sample microscope and also serve as a research test-bed
system for easily trying out various ideas for hardware implementation. One example of
this is the implementation of the optical pupil slicer (OPS) into the OCT instrument to
evaluate its performance improvement. This chapter is divided into two sections, the first
goes over the history and basic theory of OCT, and goes into specific theory on a certain
implementation of OCT called spectral domain optical coherence tomography (SD-OCT).
The next section describes the custom built OCT system used in this research and provides
some system characterization results and an example image. The operation of the spec-
trograph and the inclusion of the OPS is briefly mentioned but is left to a more lengthy
discussion in chapter
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3.1 Theory and Background of Optical Coherence To-
mography

Optical coherence tomography is a relatively new field, with the first OCT papers being
published in the late 1980’s and early 1990’s [I§]. The foundations of OCT are based on
low coherence interferometry and diffuse microscopy; essentially a hybrid between inter-
ferometry and optical imaging of tissue. The core of most OCT systems is a Michelson
interferometer, for which its inventor, Albert Michelson, won the Nobel Prize in Physics in
1907. Today the Michelson interferometer is considered fundamental, and the properties
and applications are well understood.

A Michelson interferometer may be used as a spectrograph due to the Weiner-Khintchine
Theorem (see appendix. By translating the mirror in one of the interferometer arms an
interferogram is produced, which is the autocorrelation function of the input light source,
and its Fourier transform may be taken to produce the spectrum. This configuration of the
Michelson interferometer is commonly known as a Fourier Transform Spectrograph (FTS).
The interferogram has a maximum value when the optical path difference (OPD) between
the two arms is zero and is an even function. If the input spectrum is broadband, i.e. has
low temporal coherence, then the interferogram will be narrow and only have strong signal
very close to the zero OPD location.

The very first OCT systems were essentially FTS systems with the stationary mirror
being replaced by a focusing lens and a tissue sample. A tissue sample typically has multiple
reflection locations, and therefore has multiple locations of zero OPD when the scanning
mirror is translated. The fundamental OCT signal is a depth scan, called an a-scan,
that shows the reflectivity profile as a function of depth. At each reflection location the
interferogram is seen with an amplitude corresponding to the reflectivity at that location.
A narrow interferogram, i.e. broadband light source, is required to distinguish between
different reflection positions located close to one another.

A significant improvement to OCT technology was adopted in the late 1990’s, when
it was discovered that a-scans could be produced without having to scan a mirror in the
interferometer [18, 22], [35]. Instead, the spectrum of the output of the interferometer could
be recorded and the reflectivity profile could be obtained by taking the Fourier transform.
This method of OCT is called Fourier Domain OCT (FD-OCT), as opposed to Time
Domain OCT (TD-OCT), which requires scanning a mirror. It was quickly discovered that
FD-OCT offers a significant sensitivity improvement over TD-OCT [13, [14, [39]; signal-to-
noise ratio improvements on the order of 20 dB are seen in the latest literature [13] [38].
Not only does FD-OCT offer significant signal improvement over TD-OCT, it is also much
faster since an entire a-scan is collected at once.

There are two basic methods of achieving FD-OCT: one is by recording the output of
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the interferometer with a spectrograph and using a broadband light source, and the second
is by recording the spectrum of the light source by using a single element detector and a
frequency sweeping light source. The former method is called Spectral Domain OCT (SD-
OCT) and the latter method is called Swept Source OCT (SS-OCT). Both SD and SS OCT
produce similar results and the systems typically only differ in the types of components
that cause the limiting factors. In this research an SD-OCT system was constructed so
this implementation of FD-OCT will be considered for the remainder of this thesis.

3.1.1 The SD-OCT Signal

The goal of OCT is to produce a depth image of the reflectivity of a sample. In the
biomedical field the sample is typically tissue and the reflectivity depth image is used
to examine the tissue structure. In SD-OCT a broadband light source is used in the
interferometer to probe the tissue and a dispersive spectrograph is used to record the light
to produce the image. A more complete treatment of dispersive spectrographs and their
properties will be given in chapter 4] but for now their properties and how they affect
SD-OCT will be explained.

The light exiting the sample will be reflecting from many different depths and therefore
have different optical path lengths (OPL) over which it has travelled. On the other hand,
the light from the reference arm has a constant OPL. Subtracting the OPL of the refer-
ence arm from the OPLs from the sample arm will result in many different optical path
differences (OPD). The goal of OCT in general is to distinguish and measure the reflection
locations in the sample by measuring the OPDs. In SD-OCT this is achieved by recording
the spectrum of the interfered light by using a dispersive spectrograph. To appreciate how
the OPD information is manifested in the spectrum first consider the general interference
equation for measuring light as a function of wavenumber for a fixed delay position,

I(k) = L.(k) + Is(k) + 2/ I.(k)Is(k) cos (kAd) , (3.1)

where Ad = |d, — ds| and d, and d are twice the distances from the beam splitting device
to the reflection locations in the reference and sample arms respectively (twice the distance
because the light has to travel from the beam splitting device to the reflection location,
and then back to the beam splitting device), k is the wavenumber of light being measured
(see eqn. [2.2), and I,.(k) and I (k) are the optical power spectra of the reference arm and
the sample arm respectively. It is seen that for a fixed optical delay (OPD = |d,. — d;|) the
intensity of the interference spectrum will vary sinusoidally as a function of wavenumber.
Since the frequency of the sinusoidal oscillation depends on the OPD, signal processing
to measure the frequency will also measure the OPD. The simplest way to measure the
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sinusoidal frequency of a signal is to perform the Fourier transform. With optimal signal

processing available by subtracting the effects of the reference and sample spectra from the
interference spectrum, an a-scan, A(d), can be produced,

B

A(d) = bl (0(d — Ad) + d(d + Ad)) , (3.2)

where 0(d) is the Dirac delta function as a function of optical delay, d, and B is the average
integrated spectral reflectivity at the reflection location. The theory presented in eqns. 3.1
and represents the most ideal case and only serves as a proof of concept of the signal
extraction. In reality there are many other factors that must be taken into account, but
the general SD-OCT signal philosophy is embedded in the above theory. In SD-OCT the
spectrum is recorded with a dispersive spectrograph with a limited number of pixels with
finite width, therefore it is impossible to record the spectrum as a function of infinitesimal
wavenumber. Instead, the spectrum is recorded as a function of wavelength, A, with each
spectral sample being separated by a wavelength range, AX. Since each pixel has finite
width, it will have a full-width half maximum bandwidth, d\, which serves as the spectral
resolution of the spectrograph.

Because of the spectral measurement conditions the idealized interference equation
may not be used to describe the recorded spectrum. A more general treatment using
optical coherence theory must be constructed. From the description of optical coherence
in section [2.2.4] we may construct a description of the optical intensity in a single pixel, 7,
due to a single reflection location,

L) = [(@O)+ L) i

Y

+  |¢; (Ad,d);)]| cos <27r%) -/2\/IT()\)IS(ds,)\)d>\, (3.3)

J
Y

where §); is the spectral bandpass with central wavelength A; for the j™ pixel, and v, is
the spectral coherence function for the j*" pixel, which depends on the OPD and the pixel
bandpass. Comparing the advanced description of the interference intensity (eqn. with
the idealized description (eqn. we see that the two are very similar with the greatest
difference being the spectral coherence function term, ;. It is the coherence function that
is of critical importance to describing signal characteristics of the SD-OCT system. The
interfered spectrum will be recorded with a given number of pixels, J, each with a different
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central wavelength, A;, and bandpass function d);. As a reasonable approximationﬂ, the
wavelength separation between any two adjacent pixels is the same for all pixels in the
spectrograph; this value is defined as AX. With complete knowledge of the sample arm and
reference arm spectra, their modulation effect may be taken out of eqn. by subtracting
the spectra and dividing by the geometrical (square root) mean. The a-scan OCT signal
is given as the discrete Fourier transform of the processed spectrum,

= Ad id
A(d) =) Bih; (Ad, 6);)| cos (2“—> exp (-m%). (3.4)
=0 J

We see that the general form of the a-scan given in eqn. is the Fourier transform of
the sinusoidal function amplitude multiplied by the spectral coherence function amplitude
in each pixel. From the convolution theorem this can be expressed as the Fourier transform
of the sinusoidal function convolved with the Fourier transform of the spectral coherence
function for a given OPD across the pixels [28]. The Fourier transform of the sinusoidal
function is simply a pair of Dirac delta functions, as was seen in eqn. [3.2] located at
d = £|d, — ds|. The Fourier transform of the spectral coherence function with respect to
the pixel number is something that requires a little more thought.

We define the spectral coherence envelope as the envelope along the delay axis of the
spectral coherence function—for a single pixel this is given as the Fourier transform of
the spectral bandpass function in the pixel, or equivalently the envelope of the complex
degree of coherence function, v (see section . The independent variable in the Fourier
transform (1/AA) may be converted to OPD by multiplying it by )\]2- (refer to appendix
for a proof). The attenuation of interference intensity as a function of OPD is described
by this relationship. Given a delay position, the value of the spectral coherence envelope
is unique for each pixel since the bandpass function for each pixel is different. Assuming a
different coherence envelope for each pixel will tend to complicate the end result beyond the
scope of this thesis and is only useful for examining higher order effects. It may be assumed
that the entire SD-OCT system may be characterized by the average spectral coherence
function, which assumes that each pixel behaves the same. Since each pixel will have the
same attenuation value for a given delay, the Fourier transform of the spectral coherence
function with respect to the pixel numbers will be a Dirac delta function convolved with a
sinc function with a width inversely proportional to the spectral imaging window—and of
course the amplitude is given as the attenuation value at the specific delay position

The spectral coherence envelope is given as the Fourier transform of the spectral band-
pass function in a pixel, or equivalently the envelope of the complex degree of coherence
function through the Wiener-Khintchine Theorem (see section [2.2.4)). The pixel has a

1See chapter [4] for a description of why this approximation is valid.
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spectral width given by AX and an actual bandwidth d\ centred about a mean system
wavelength \g. Since the pixel spatial response function is typically a RECT function, and
the bandpass is typically described by a Gaussian function, the spectral coherence envelope
is generally accepted in the literature to be,

b(2) = sinc? (273\2)\2) exp (— (i—gz)z 2?2(22)) (3.5)

where z is given as the physical delay, equal to half the OPD. The signal that is pertinent to
SD-OCT is the sinusoidal variation of the spectrum [16] I8, [63]. Since the sinusoid is being
sampled with a limited number of pixels with a sample separation of A\, the maximum
frequency that can be measured without signal aliasing will be limited by Nyquist. The
maximum number of sinusoidal oscillations that can be be measured with J pixels is J/2.
Since each pixel is separated by A\ and the conversion in the coherence envelope domain
from wavenumber to physical delay is given by multiplying the independent variable by
A2/2, the maximum unaliased imaging depth in SD-OCT may be given by,

1 a2

Zmaz = RA_)\7 (36)
where n is the index of refraction of the sample; this relationship is proved in appendix [A]
This maximum unaliased imaging depth is implicitly embedded in the functional form for
the spectral coherence envelope in equ. [3.5] We see from the spectral coherence envelope
that the depth imaging characteristics in SD-OCT may be almost completely described
by the wavelength separation between pixels, A\, and the bandwidth per pixel, dA. As
will be seen in chapter [4], these two values are completely determined by the spectrograph
hardware, and therefore the depth imaging performance in SD-OCT is determined by the
quality of the spectrograph. The depth imaging resolution, however, is only dependent on
the total measured bandwidth of the system light source, AA. An illustrative example of

the process of converting a recorded spectrum in an SD-OCT system to an a-scan is shown
in fig. [3.1] and the SD-OCT system parameters are summarized in table [3.1]

The interference spectra in fig. were generated by assuming the reflecting object
was a perfect mirror, i.e. the sample and reference arm spectra were identical. The coher-
ence envelope was defined according to eqn. [3.5] with A\ =0.0489 nm and d\ =0.08 nm,
and used in eqn. to generate the interference spectra. It can be seen that as the phys-
ical delay is increased, the resulting frequency of the interference sinusoid also increases
while the modulation amplitude decreases. By convention in interferometry each sinusoidal
oscillation is called a fringe and the relative amplitude of the fringes compared with the
mean signal is defined as the visibility (see eqn. . Using this terminology we say that

38



Interference Spectra
I T T I

4 T T T T T T T T T n
= Spectral Envelope =
- Delay Spectrum (80C0um |
C Delay” Specirum {(1000um N
7 Delay Spectrum (1500um |
3 g
2 L ]
@ - -
§ 20 -
-
= - -
u e ‘ ‘ ‘ L .
= ||\H| “"“' M.u. ——
800 820 84-0 860 880 900
Wavelength [nm]
(a) Spectrum
A—scan
]-D\\I\IIIIII\III\I\\III\IIII\I,\,"‘T’-.\\\\\‘I\IIIII\I\\\\‘\I\I‘IIII‘I\III
— Py b Coherence Envelopg — - - — — - —
. \ A—Scan Signal (800um) ———
r /| N A=Scan Signal (1000uM} ——— [
L S . A—Scan Signal (1500um} ———— ||
Y
- .
0.8 — ” \\ —
L [ ; Y B
- r
e T 2 \ ]
u = / ‘v 1
6 o0.8— : ', —
a - /! Y -
c / '
a L : ’ i
wn " ‘\
T [ ’ ) —
S 04— ! ) —
g I ‘ K -
: /. |
5 . s . .
2 s A
. . . .
02— S " —
|- ’ \\ —
I’ ~
L . S _
00 eborcr T JL .JL . ol JL A T P

—-3500 —-3000 -2500 2C|C|C| —1500 —-1000 -500 0 500
Physical Delay [um]

1000 1500 2000 2500 3000 3500
(b) A-Scan

Figure 3.1: The interference spectra for a delay positions of 500 pym, 1000 pgm, and 1500 pm
and the corresponding a-scan signal produced with optimal signal processing.
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’ Simulation Input Parameters

Parameter Value

Ao 850 nm
FWHM Source 35 nm

# Pixels 2048
Pixel Width 10 pm
AN 0.0489 nm
oA 0.0800 nm

Table 3.1: The relevant parameters to determine the SD-OCT signal depth imaging signal
for an example system.

the visibility of the fringes decreases with increasing delay, or imaging depth, according
to the spectral coherence envelope. The converted a-scan in fig. shows positional
locations corresponding with the physical delay but shows that the reflection locations
occur at + the actual delay position, i.e. the a-scan is an even function. This is because
the spectra collected are real with no phase information so the Fourier transform cannot
discern between positive frequencies and negative frequencies. If we wish we can examine
only one side of the a-scan, but we lose half our pixel resolution to do so. The peaks of the
a-scan are equal to the total reflected power at that location modulated by the spectral
coherence envelope. We can see with this SD-OCT system the fringe contrast at 1.5 mm
of physical delay is only 0.4, or -3.98 dB, even though 100% of the light is being reflected.

The signal in SD-OCT may be defined as the total optical power, say the mean number
of photons detected, P, multiplied by the visibility, V,

Soct = PV, (3.7)

where the visibility is given by eqn. which is determined by the coherence envelope, 1.
This is a useful definition for signal because it scales the total amount of light collected at
a reflection depth with the sensitivity corresponding to that depth. Using this definition it
becomes clear that collecting 10% photons at a depth with a sensitivity of -10 dB is a better
situation than collecting 10° photons with a sensitivity of -30 dB. In the latter case an
order of magnitude more photons were collected but the OCT signal in the former case is
10 dB higher, therefore collecting more light does not necessarily mean better signal. The
spectral coherence envelope in SD-OCT defines the sensitivity of the system as a function
of depth.

Even though eqn. defines the maximum theoretical unaliased imaging depth in
SD-OCT, the practical and actual imaging depth is often less than this value [2, 18] [54].
Systems may be designed to have aliasing depths on the order of 7 mm even though
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practical imaging depths are rarely larger than 3 mm. The reason for this is because the
imaging depth in highly scattering media, such as tissue, is limited by the signal-to-noise
ratio (SNR). According to light propagation in tissue (section [2.3.1)), the amount of light
that penetrates tissue without becoming absorbed or scattered decreases exponentially
with an extinction coefficient proportional to the absorption and scattering coefficients.
The type of light that SD-OCT is sensitive to is the light that is single back-reflected
from a certain depth. Very often the ratio of optical power of single back-reflected light to
multiply scattered light at a given depth will be much less than 1; when this ratio becomes
too small then the noise contributing from the multiple scattered light (and reference arm
light) will dominate the signal from the single back-reflected light (using the definition
for SD-OCT signal above), and this defines the maximum imaging depth in SD-OCT as
limited by SNR. A practical way to think of this in terms of the interference spectrum is
that the light intensity variation has a larger variance than the visibility of the interference
fringe.

A higher sensitivity SD-OCT instrument may increase the imaging depth because the
point at which multiple scattered light dominates single back-reflected light will occur at
larger imaging depths. This may physically be achieved by having a broader spectral coher-
ence envelope, which can furthermore be achieved by having a higher quality spectrograph
(see chapter ). Not only will the imaging depth increase with a higher performing spec-
trograph, but the quality of the depth images will also increase by having a more sensitive
SD-OCT instrument with a broader spectral coherence envelope and therefore producing
images with higher SNR.

3.1.2 Other Limiting Parameters of SD-OCT

A powerful advantage of OCT over conventional imaging is that the axial and lateral
resolution are independent of one another, albeit the central wavelength, A\g. In other
words, to increase one resolution, the other resolution does not need to change. The
lateral resolution in OCT is defined by the classic Rayleigh criteria,

061

A
TTTNA

(3.8)

where Az is the closest two independent points may be separated and still be independently
resolved. This value depends directly on the centre wavelength Ay and inversely on the
numerical aperture, NA, of the focused beam. The focused spot size width is twice the

Rayleigh value (w = 2Ax) and is also defined as the diffraction limit (see eqn. [2.48]). The
axial resolution in OCT is given famously as [18|, 22]
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This value assumes the light spectrum is Gaussian about centre wavelength \g with a
full width half maximum bandpass of AA. From eqns. and it can be seen that
the two resolutions are independent of one another except for the choice of wavelength; a
smaller wavelength results in better resolution keeping all other parameters equal.

Upon examining eqn. [3.8] it can be seen that in order to obtain the smallest lateral
resolution the numerical aperture must be maximized. The trade off for large NA is a
small depth of focus (DOF). The DOF is classically defined as the region in which the spot
size is less than v/2 times the minimum spot size, which is often called the Rayleigh range
[8, 28]. Thus, a high NA beam will give good lateral resolution, but only over a small
depth range. The depth of focus is defined as,

(0.61)2n2m A

DOF =
NA? ’

(3.10)

and the spot width at any axial location, z, may be given as,

w(z) = 2\/(0&30)2 + (Ogﬁwz)Q. (3.11)

In order to obtain the smallest axial resolution it can be seen from eqn. 3.9 that a broad
spectrum is desired. However, since the axial point spread function (PSF) is given as the
Fourier transform of the light spectrum, the shape of the spectrum is also important. It is
desirable to have as close to a Gaussian spectrum as possible in order to obtain a good axial
PSF without anomalous features such as side lobes which will induce imaging artifacts.
A disadvantage of a very broad light source is the light will suffer from more dispersion,
which may severely broaden out the axial PSF and degrade imaging performance. However,
numerical dispersion correction techniques may be applied in SD-OCT in order to minimize
these effects [23],[60]. The practical trade off for a broadband spatial coherent light source is
cost; broad bandwidth light sources such as a Titanium-Sapphire laser are very expensive.
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3.2 The Custom OCT System Designed and Used in
this Research

A custom SD-OCT system was built with the purpose of serving as a tissue imaging
microscope. The system is designed to be able to take large volumes of about 3 mm cubes
and produce a 3D tomographic high-resolution image on time scales of several minutes.
The OCT instrument also serves as a test-bed prototype system for experimenting with
various hardware configurations and advancements, such as the optical pupil slicer.

The SD-OCT system consists of three primary subsystems: the interferometer, the
spectrograph, and the sample imaging system which is called “the trapeze.” The OCT
system is designed to operate in the visible-NIR region (0.8 pum - 1.1 pm) of the electro-
magnetic spectrum as opposed to the NIR-IR region (1.1 gm - 2 um) for several reasons.
First because higher optical frequencies (shorter wavelengths) provide better lateral and
axial resolution (see equs. and , and second because standard silicon detectors may
be used which are cheaper, more available, and provide better spatial resolution than IR
detectors, which are typically made of InGaAs. A disadvantage of vis-NIR light is that the
scattering coefficient is larger than for light in the 1.3 pm to 1.5 pum region, however, the
absorption coefficient is lower and penetration depths of up to several millimetres are still
seen with vis-NIR light [49] 54, [57].

3.2.1 Optical Design of the SD-OCT System

An annotated cartoon drawing of the SD-OCT system can be seen in fig. and the
sample handling subsystem, “the trapeze,” is seen in fig. Everything to the right of
the pinhole (PH) is the spectrograph part of the SD-OCT instrument, and everything to
the left of the pinhole (PH) is the interferometer section of the instrument, including the
sample handing system, “the trapeze.” A list summarizing the hardware components used

in the SD-OCT system can be seen in tables [3.2] and

Interferometer

For the following section refer to fig. [3.2l The light source used in the SD-OCT system is
a broadband super-luminescent diode (SLD) system with a centre wavelength of 845 nm,
a FWHM of 100 nm, and total output power of 16 mW (Superlum, Broadlighter D-855-
HP2). The SLD source for the SD-OCT system is coupled into a single mode fibre and
fastened to the fibre launcher mount (FL) as the input to the system. The fibre launcher
mount (New Focus, 8051) is kinematic and has translation control in the XY plane by two
mini pico motors that have 30 nm precision and the mount allows for a =3 mm movement.
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Figure 3.2: A cartoon layout of the SD-OCT system including the location of the optical
pupil slicer.

’ SD-OCT System Hardware ‘

Parameter Value

Ao 845 nm
AA 100 nm

L1 Focal Length 75 mm, f/3
L2 Focal Length 75 mm, f/3
L3 Focal Length 75 mm, f/3
L4 Focal Length 150 mm, f/3
DG power 1200 1/mm
Pixel Width 10 pm
Pixel Height 20 pm

# Pixels 2048

Table 3.2: The hardware parameters for the SD-OCT system components in the interfer-
ometer and spectrograph sections.
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Figure 3.3: A cartoon layout of the sample scanning system, “the trapeze,” in the SD-OCT
system.
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’ Trapeze System Hardware ‘

Parameter Value

L1 Focal Length 100 mm, /2
GM scan range 0.349 rad
GM scan precision 5.3 prad

TS scan range 28 mm

TS scan precision 50.5 pm/rad
NM scan range 50 mm

NM scan precision 10 nm

NM scan accuracy 50 nm

Table 3.3: The hardware parameters for the sample handling subsystem in the SD-OCT
instrument, “the trapeze.”

The NA of the emerging beam is 0.14 and is collimated to be a 20 mm beam using a 1”
diameter achromatic doublet (L.1) with a focal length of 75 mm and design wavelengths of
706.5 nm, 855 nm, and 1015 nm (Thor Labs, AC254-075-B). The beam is split equally by a
2” diameter 50:50 non-polarizing beam splitting plate (BS) (Thor Labs, BSW17) where half
the light is sent towards the reference arm of the interferometer and the other half of the
light is sent towards the trapeze. The reference beam is directed towards a 1”7 hollow retro
reflector (RR) (CVI Melles Griot, CCH-25.4-1-LEBG) that is mounted on two orthogonal
translation stages (New Focus, 9067-COM) with two pico motors attached (New Focus,
8302) in order to provide up to +0.5” XY translation control with 30 nm precision. The
translation control on the fibre launcher and retro reflector provide all the alignment control
necessary in the interferometer [I1]. The return beams from the reference and trapeze arms
recombine at the beam splitting plate, BS, and are sent towards a spatial filter relay. The
spatial filter consists of an identical focusing and re-collimating 1”7 diameter achromatic
lens (L2 and L3) with a focal length of 75 mm and design wavelengths of 706.5 nm, 855 nm,
and 1015 nm (Thor Labs, AC254-075-B), and a 10 pum pinhole (PH) (Newport, 910-PH10)
at the focal point mounted in a kinematic lens position mount with translation control in
XYZ (New Focus, 9841). The pinhole, PH, and collimating lens, L3, are the entry point
to the spectrograph.

Trapeze

For the following section refer to fig. [3.3] The light entering the trapeze is directed towards
a single galvanometer scanning mirror system (GM) (Nutfield, QuantumScan-30) by two
27 silvered mirrors (M5 and M6) (Thor Labs, PF20-03-P01). Upon reflecting off of the scan
mirror, GM, the beam is directed downwards towards the sample (S); the scanning mirror
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system is fastened in a custom mount. The light is brought to a focus by a 2”7 diameter
achromatic doublet lens (L1) with a focal length of 100 mm and design wavelengths of
706.5 nm, 855 nm, and 1015 nm (Thor Labs, AC508-100-B) fixed in a custom mount. The
sample is placed on a translation stage (TS) (New Focus, 9064-X) apparatus that is able
to provide +14 mm axial translation for depth positioning by a micrometer screw with
80 threads per inch. This translation stage is furthermore fastened to a high precision
automated translation stage (NM) (Nanomotion, FB050) that is able to provide £25 mm
movement with 10 nm precision and 50 nm accuracy and repeatability. The Nanomotion
stage movement direction is perpendicular to the scan mirror direction so that as the scan
mirror sweeps back and forth in the X direction the translation stage is able to provide
scanning in the Y direction; the OCT instrument provides the depth axial scanning. This
way a full lateral 3D scan across the sample is obtained, thus producing a tomographic
image. A publication describing the design, operation, and performance results in more
detail can be found in [36].

Spectrograph

For the following section refer to fig. [3.2l The spectrograph in the SD-OCT system is a
standard diffraction grating based dispersive spectrograph. The details on spectrograph
operation are left to chapter [ The entry point to the spectrograph is a 10 gm pinhole,
PH (Newport, 910-PH10), collimated by a 1”7 diameter achromatic doublet lens (L3) with
a focal length of 75 mm and design wavelengths of 706.5 nm, 855 nm, and 1015 nm (Thor
Labs, AC254-075-B). The collimated light is then reflected off of a 2” silver mirror, M1
(Thor Labs, PF20-03-P01), mounted in a kinematic mirror mount that allows for rotation
in the X and Y axis (Thor Labs, KM200). The light is dispersed by a 1200 1/mm volume
phase holographic diffraction grating (DG) with a blaze wavelength of 850 nm and a peak
efficiency of 95% (Kaiser Optical). All the dispersed light in the first diffraction order is
collected by a 2” diameter achromatic doublet lens (L4) with a focal length of 150 mm and
design wavelengths of 706.5 nm, 855 nm, and 1015 nm (Thor Labs, AC508-150-B). The
dispersed light is brought to a focus onto a linear array detector (LD) (Basler, spL.2048-
70k) where the spectrum is collected and sent to the CPU. The detector has two rows of
2048 square pixels of size 10 um on a side. The camera also allows vertical binning so the
effective pixel size is 10 pm wide by 20 pm tall. The focal length ratios of the collimating
lens (L3) and the focusing lens (L4) dictate a 2x imaging magnification (see eqn. SO
the 20 pm pinhole image will just fit on the 20 um tall pixel size.

Optical Pupil Slicer

The purpose of this thesis is to implement an optical pupil slicer (OPS) into the SD-OCT
system and measure its effects. A lengthy discussion on how optical slicers work is left
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to chapter 4] and the specific implementation in the SD-OCT system is left to chapter
At this point it is simply mentioned that the OPS is placed in the system spectrograph
after the collimating lens, L3, and before the diffraction grating, DG. In order to aid in
the process of measuring the SD-OCT system performance both with and without the
OPS a setup shown in fig. is implemented. The spectrograph mirror M1 is made to be
removable so that when it is in place the collimated light is directed towards the diffraction
grating, DG, and is focused onto the linear detector, LD, by a camera lens, L4. If this
mirror, M1, is removed then the collimated light continues toward two 2” silver folding
mirrors (M2 and M3) (Thor Labs, PF20-03-P01) that changes the light direction by 180°
and directs it to the entrance of the OPS. The light exiting the OPS is reflected off of
another 2” silver folding mirror (M4) (Thor Labs, PF20-03-P01) and sent towards the
diffraction grating, DG, and follows the same optical path as the light would with M1 in
place. By including or excluding mirror M1 the spectrograph can quickly and easily be
changed from a non-sliced spectrograph to a sliced spectrograph.

3.2.2 Results from the SD-OCT System

The SD-OCT system is able to image samples and produce images with high-resolution in
a timely fashion. The imaging parameters and characteristics can be determined from the
hardware parameters in tables and and from the general OCT theory presented in
section 3.1 A summary of the SD-OCT system imaging parameters and characteristics
can be found in table 3.4

The sensitivity of the instrument was measured by placing a silver mirror in the sample
arm (Thor Labs, PF10-03-P01) and recording 1024 interference spectra with a reference
arm physical delay of 0.25 mm. The resulting averaged a-scan can be seen in fig. [3.4, The
SNR is measured as the difference between the peak signal (-5.63 dB) and the average noise
floor (-41.35 dB) and results in a SNR value of 35.72 dB. A neutral density filter (ND) with
an optical density (OD) of 4.0 (Thor Labs, NE240B) was placed after the collimating lens
(L1) in the SD-OCT system (sce fig. [3.2)). The optical power measured after the pinhole,
PH, for the reference arm was 1.40 uW and for the sample arm it was 1.78 W, resulting in
a fringe contrast of -0.0305 dB; this factor must be subtracted from the measured SNR to
correct for non-ideal optical power fringe contrast. The resulting SNR is therefore 35.75 dB.
The maximum power that can make it through the pinhole from the sample arm (with no
ND) is 1.3 mW. An integration time of 6.5 us was used to collect the a-scan and completely
fill the dynamic range of the camera. The maximum integration time of the camera is 1 ms
so a factor of 0.65% less light could be collected, resulting in an optical power of 11.57 nW.
The ratio of the maximum to minimum sample power is 50.51 dB. The sensitivity in SD-
OCT is defined as the SNR (35.75 dB) plus the ratio of the maximum optical power to
the minimum optical power from the sample (50.51 dB), therefore the sensitivity of the
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’ SD-OCT Imaging Parameters

Parameter Value
Axial Resolution (n=1.0) 3.7 pum
Axial Resolution (n=1.4) 2.6 pm
Lateral Resolution (n=1.0) 5.2 pm
Lateral Resolution (n=1.4) 3.7 pm
Depth of Field (n=1.0) 197.6 pm
Depth of Field (n=1.4) 141.1 pm

Max. Lateral Spot Width (n=1.0) | 394.6 pm
Max. Lateral Spot Width (n=1.4) | 281.9 um

Max. Scan Depth (n=1.0) 3.78 mm

Max. Scan Depth (n=1.4) 2.70 mm

GM scan precision 1.1 pm

Typical Scan Step 3.4 pm

Typical Lateral Scan Range 3.5 mm by 3.5 mm
Typical Lateral Scan Samples 1024 by 1024
Typical Exposure Time 200 ps

Typical B-Mode Scan Time 300 ms
Sensitivity 86 dB

Table 3.4: The imaging parameters and characteristics for the SD-OCT system and a
typical scan setup.

SD-OCT instrument, as measured at 0.25 mm delay, is 86.26 dB. Likely the sensitivity for
the instrument is higher than this value due to sub-optimal signal processing to generate
the a-scan.

Although a single sensitivity number of 86.26 dB was reported, the sensitivity of the
SD-OCT instrument is dependent on the physical delay in accordance to the spectral
coherence envelope (see section . A full in-depth analysis of the spectral coherence
envelope of the SD-OCT system is left to chapter 5| whereby it is compared to the results
obtained with the optical pupil slicer. Nevertheless an a-scan produced from a mirror in
the sample arm with various different delay positions can be seen in fig. along with
corresponding interference spectra in fig. . It can be seen that as the delay increases
the SNR decreases, which in effect decreases the sensitivity of the SD-OCT instrument as
a function of delay.

Since the sensitivity decreases exponentially as a function of delay and the signal re-
turning from a highly scattering sample decreases exponentially as a function of depth (see
section , one way to increase the SNR at large imaging depths is to make the delay
equal to zero at a large imaging depth. This may be realized by increasing the physical
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Figure 3.4: An A-scan produced with a silver mirror in the sample arm with a neutral
density filter (OD=4.0) and a reference delay of 0.25 mm.

path length of the reference arm so the zero OPD position lies somewhere inside the sam-
ple, as opposed to above the sample, as is typically done in SD-OCT [18]. This provides
a way to probe depths larger than the commonly accepted maximum imaging depth given
by eqn. and even beyond commonly accepted maximum imaging depths based on SNR
[2, 54]. An example image using this technique was produced with the SD-OCT system.
The target was a USAF 1951 resolution target (Edmund Optics, NT38-257), section #0-2
with line widths of 466 pm, imaged through 3.3 mm of chicken breast tissue, corresponding
to an index of refraction of about n = 1.4. The classically stated maximum imaging depth
for this system is about 2.70 mm (see table and traditional light transport theory
would state the practical imaging depth is even less [49], however the resulting image in
fig. clearly shows that the lines from the target can be imaged through 3.3 mm of tissue.
The target was tilted at about 8° from the nanomotion translation stage axis of motion.
The quality of the resulting image is not too great but it demonstrates that reversing the
sensitivity of the SD-OCT instrument can have great impact.
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Figure 3.5: An a-scan produced with a silver mirror in the sample arm and various delay
positions induced by the reference arm.
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Figure 3.6: Section #0-2 of the 1951 USAF resolution target imaged through 3.3 mm of
chicken breast. The target was tilted at 8°.

52



Chapter 4

Optical Slicers

The fundamental operating description of an SD-OCT system was discussed in chapter [3]
In there we saw that the depth-imaging characteristics are heavily dependent on the per-
formance of the spectrograph used to record the interfered light. The maximum unaliased
imaging depth was seen to depend on the wavelength separation between spectral mea-
surements, A\, and the attenuation falloff envelope function, called the spectral coherence
envelope, depended on the spectral bandpass in a spectral measurement, dA. In OCT the
amount of light returning from a sample depth decreases exponentially with depth accord-
ing to photon transport theory (see section , therefore in most tissue imaging the
imaging depth is limited by SNR, or sensitivity of the instrument [54].

The sensitivity of an SD-OCT system is characterized by the spectral coherence en-
velope, and therefore by the performance of the spectrograph. A general treatment of
dispersive spectrographs will be given in section with practical considerations towards
the types of dispersive spectrographs found in SD-OCT. The metrics used to define the
performance of spectrographs, namely the resolving power, R, and the throughput effi-
ciency, T, will be given. These two standard metrics can be used to define the quality
factor, @), of the spectrograph. Two standard techniques to improve the resolving power
will be discussed and will be shown to be lossy methods that decrease the throughput
efficiency. The sensitivity in SD-OCT depends on the resolving power, R, and the speed-
efficiency in SD-OCT depends on the throughput efficiency, T'. Therefore for high-speed
high-performance SD-OCT applications the quality factor of the spectrograph is an ap-
propriate metric for quantifying the SD-OCT system. A device known as an optical slicer
is able to fundamentally improve the quality factor for a given spectrograph design and
therefore fundamentally improve the performance of the SD-OCT system. The basic the-
ory and operation of optical slicers will be given in section [£.3] An actual implementation
of a specific kind of optical slicer, called an optical pupil slicer, was constructed and the
performance evaluation was performed; these results will be presented in section [4.4]
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4.1 Dispersive Spectroscopy and Spectrographs

Spectroscopy in optics is the study of the different frequency, or wavelength, components
of a given light source, and using this information to deduce additional information about
a given problem. A classic example of optical spectroscopy in the biomedical field is pulsed
oximetry, where the optical spectrum of blood is used to measure the oxygenation of
hemoglobin [51]. In puled oximetry only two wavelengths are needed, but more advanced
problems require knowledge of many more different wavelengths. Typically in spectroscopy
the measurement of the optical power spectrum of the given light source is performed,
and the device that performs the spectral measurement is called a spectrograph. The
goal of any spectrograph is to be able to distinguish at least two different wavelengths
from one another. The accuracy and quality of the measured spectrum depends on the
nature of the application and there are predefined metrics to quantify measured spectra.
The two most important metrics are resolving power, R, and the signal-to-noise ratio
(SNR). The resolving power is a relative quantification of smallest wavelength difference
between any two given wavelengths and still be distinguished from one another, it is defined
mathematically as

(4.1)

where 0\ is the smallest wavelength difference that can be resolved, also known as the
spectral resolution, and Ay is the mean wavelength about which the two wavelengths are
being distinguished from one another. As an example, a spectrum that is able to tell the
difference between the wavelengths 849.5 nm and 850.5 nm would have a spectral resolution
0A=1 nm and a mean wavelength \¢=850 nm, therefore according to eqn. will have a
resolving power R=850. There are many different methods of measuring an optical power
spectrum, and there are many different types of spectrographs. The method most relevant
to SD-OCT and our application is measuring the spectrum by spatially dispersing the
light and measuring the optical power as a function of position; this is known as dispersive
spectroscopy and the instruments are dispersive spectrographs.

The goal of a dispersive spectrograph is to distinguish two different wavelengths from
one another by spatially resolving them, i.e. by recording an image of the light distribution
and using prior knowledge that each spatial position corresponds to a different wavelength.
The clearest example of dispersive spectroscopy in everyday life is by looking at a rainbow;
the colours, or wavelengths of light, are located in different positions in the sky and there-
fore are located in different positions on our retina thereby forming an image. In the case
of the human eye we are able to distinguish the colours from one another independent of
location because our image sensors (cones) are narrowband and produce a different signal
for different colours, or wavelengths, and our brain is highly calibrated and is able to inter-
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pret these signals as being different known colours [6]. In the case of conventional imaging
technology, the detectors used typically have broadband responsivity and are not good at
distinguishing different wavelengths. The closest we can come to mimicking a human cone
is by placing a known narrowband colour filter over the detector so the recorded signal will
be the total optical power of the source light in the wavelengths associated with the colour
filter. This is typically how colour images are produced in digital photography, by using
a Bayer colour filter over millions of pixels (single element detectors) [6]. This method
works well for colour photography, where only three colours are measured (red, green, and
blue) so only three different filters are needed; however, for hyper-spectral applications it
becomes terribly inconvenient, or impossible in high-precision applications, to have numer-
ous different colour filters placed over each detection element. Instead of a colour filter
approach, in dispersive spectroscopy the light in each spatial position is recorded with an
identical detector characterized by a general responsivity, however the spatial calibration
of the different wavelengths becomes critical in wavelength differentiation.

In an optical system the light is spatially altered in deterministic ways by elements
such as mirrors, lenses, prisms, and diffraction grating. The way in which light is affected
by these elements is determined completely by measurable properties such as radii of
curvature, index of refraction, relative orientation geometry, and groove spacing. A simple
dispersive spectrograph comprises of a dispersive element such as a prism or diffraction
grating, a focusing lens, and a detector. The detector may be comprised of a single element
that moves spatially along the dispersive direction of light, many smaller single element
detectors (pixels) orientated along the dispersive direction in an array, or a single element
fixed in place while the dispersive element is moved to change the central mean wavelength
incident on the detector. All these configurations achieve the same end result of recording
an optical power spectrum and have numerous advantages and disadvantages associated
with each depending on the application, however the one implementation we will focus
on is the detector comprised of many smaller single element detectors in an array, i.e. a
camera. This configuration is the one typically seen in SD-OCT instruments and has the
advantage of recording the entire optical power spectrum with a single exposure.

We saw in section that the signal quality for SD-OCT instruments is dependent
on the spectral resolution, §\, as well as the wavelength separation between each pixel, A\.
In a dispersive spectrograph using a transmission diffraction grating, the light is angularly
dispersed upon exiting the grating and is described according to the grating equation,

mA = d, (sin (0;) + sin (6;)), (4.2)
where m is the diffraction order, d, is the groove spacing typically quoted in inverse units of

lines per millimetre (1/mm), 6; is the angle incident onto the diffraction grating as measured
from the surface normal, and 6; is the dispersed angle transmitted as measured from the
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surface normal. For a complete description of these terms and the grating equation refer
to section 2.2.3] For the configuration relevant to SD-OCT the position of the diffraction
grating is fixed and the angularly dispersed light is focused onto the camera using a lens
system with an effective focal length, fr. Assuming the small angle approximation (6 <
10°) we may describe the position of the light on the focal plane using the paraxial ray
trace equations (see eqns. and and arrive at the result,

May) = L {Sin (arctan (x—) + eB> + sin(e,-)] , (4.3)

m Jr

where x; is the position on the focal plane relative to the blaze position, x g, associated
with the blaze wavelength, Ag, and fp is the dispersion angle associated with the blaze
wavelength. Again, refer to section for a definition and description of these terms.
Suffice it to say that the above eqn. is sufficient to describe the spatial position, z;,
of the wavelengths, A, exactly for a transmission diffraction grating and a focusing lens
with the aforementioned known parameters and measurable orientation geometries, fr,, d,,
0;, 0, and observing diffraction order number, m; it is implicit that the blaze angle, 05,
is a function of the order number, m. Since the size and position of two adjacent pixels
are known eqn. [4.3] can be used to determine the wavelength separation, A\ between the
two adjacent pixels. In an ideal case the bandwidth in a pixel would be equal to A\
and therefore the spectral resolution would equal to the wavelength separation within the
pixel, i.e. 0\ = AX. This situation is physically impossible because it requires the focused
spots have zero width. Practically the spots have some width and therefore the spectral
resolution is always greater than the wavelength separation in the pixel; spectral resolution
is analogous to spatial resolution in a dispersive-based spectrograph.

Spatial resolution was discussed in section [2.2.3] and diffraction limited resolution was
defined using eqn. known as the Rayleigh criterion. It was seen that the spatial
resolution is related to the metric of the spot size, in this case the diameter of the central
lobe in the Airy pattern. If two focused spots are separated by a given distance such
that the zero intensity location of one spot coincides with the peak intensity of the other
spot then the two spots are said to be resolved. The spatial resolution was defined to be
half the width of the central Airy lobe, which upon centring about the middle of the lobe
corresponds to about 36.75% of the normalized peak intensity and results in about a 20%
intensity dip between the two peaks. The full-width at half maximum (FWHM) value
corresponds to 42.17% of the Airy diameter, therefore it may be concluded that a FWHM
value may also be used to define the spatial resolution with a reasonable degree of accuracy;
the intensity dip between the two peaks is about 4%, which is close to the accepted Dawes
limit of 5% [I]. This FWHM definition is a more useful result when dealing with focused
spots not equal to the Airy pattern since the Rayleigh limit does not correspond with non-
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diffraction limited spots. In the case of Gaussian spot profiles the intensity dip in between
the peaks separated at the FWHM is about 8%, a well resolvable criterion.

The spectral resolution, 0\ in a dispersive spectrograph is equal to the FWHM of the
bandpass in a pixel in accordance with the previous FWHM definition for spatial resolu-
tion assuming the bandpass in a pixel is approximately Gaussian, which is a good first
order approximation. The bandpass function for a pixel may be given as the convolution
of the spatial pixel response function (typically a RECT function) with the spatial light
distribution function of the focused spot, which is approximately Gaussian, but strictly
the Airy pattern convolved with the image pattern. The resulting convolution is therefore
approximately Gaussian if the FWHM of the spatial light distribution function is similar
to the full support of the spatial pixel response function. The convolution function will
take on the shape more dominated by the larger supported function, therefore this approx-
imation breaks down when the pixel size is much larger than the FWHM, in which case
the convolution resembles the pixel function more closely.

Consider each pixel to be the convolved Gaussian function centred about the pixel
location, therefore if two pixels are separated by some distance, x, then two Gaussian
functions will be separated by the same distance, z. In accordance with the FWHM
definition of spatial resolution, the Gaussian function must be separated by the FWHM
value, and therefore the pixels must be separated by the same distance. If there are any
pixels with a separation distance smaller than this value then the intensities will be too
similar to each other and the two spots will be unresolvable. The FWHM value, which
determines pixel separation distance, can be converted to wavelength difference, 0\, by
eqn. [£.3] The number of pixels, J, spanning the recorded spectrum multiplied by the ratio
of wavelength separation divided by the spectral resolution gives the number of resolution
elements, N,.s, in a dispersive spectrograph,

AN

Nyes = J S (4.4)

Not only does the resolving power matter in a dispersive spectrograph, the SNR is also
important. If the noise introduced in the recorded spectrum is larger than the variation in
the intensity dip between any two resolution elements then the spectrum looses resolving
power and may be unresolved. For example, consider a broadband flat spectrum with a fully
absorbing feature with a spectral width equal to the spectral resolution, d\. The recorded
spectrum with infinite SNR would show an intensity dip at the absorption wavelength with
the dip equal to the definition of resolvability; using the FWHM definition from above this
would be about 8%. If the SNR causes the intensity to vary at the 8% level then it is
possible that the recorded intensity at the dip location will increase to be equal to the
intensity of the rest of the spectrum, therefore the absorption feature is unresolved. The
spectral SNR required is heavily application dependent, and typically problems are defined
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by a minimum SNR at a given spectral resolution, or resolving power. In the simplest case
where SNR is proportional to the total amount of light collected then there is a one-to-one
correspondence with resolving quality and total signal. This situation occurs when the
noise is dominated by photon noise and photon statistics are relevant (see section [2.3.2)).

The total amount of light, or optical power, collected by a dispersive spectrograph is
never equal to the total amount optical power emitted by the source in practise. Losses
occur at every optical surface and the conversion efficiency from photons to electrons
(quantum efficiency, 1) is very often less than 100%. Additional losses occur due to the
efficiency of the diffraction grating. Typically a spectrograph with a diffraction grating
is designed to record only a single order number, e.g. m = 1; however, diffracted light
will enter all orders. Some types of diffraction gratings, such as volume phase holograph
transmission gratings, may be designed such that as much light as possible will enter a
prescribed order number [3,[7]. The relative amount of optical power for a given wavelength
in the designed order to the total amount of optical power at that wavelength in the source
is defined as the efficiency of the grating at that particular wavelength; an efficiency as a
function of wavelength may be defined and measured for any diffraction grating. Combining
all the losses in a dispersive spectrograph, an overall throughput, 7" may be defined as the
ratio of the total optical power recorded, I, to the total optical power input, Iy,

1

T=—.
Iy

(4.5)

By defining a desired SNR in the recorded spectrum, and using the throughput ef-
ficiency, T, the required exposure time with a total optical source power input to the
spectrograph may be found.

How does one determine the quality of a dispersive spectrograph? We already men-
tioned that the resolving power, R, is a good metric for determining how well the spec-
trograph can resolve two different wavelengths from one another about their central wave-
length. We also mentioned that the SNR may affect this measurement so the amount
of light is also an important metric, and is coupled with the resolving power. The same
amount of light dispersed over a larger (large R) area will have less optical power per pixel
and lower SNR per channel than if the light were dispersed over a smaller area (small
R). The absolute SNR in a spectrograph, or the recorded spectrum, is not a good quality
indicator of the instrument, though the efficiency at which the spectrograph utilizes the
input light is a good quality indicator; we have defined this as the throughput efficiency,
T. A dispersive spectrograph quality metric may be defined as the resolving power, R,
multiplied by the throughput efficiency, T,

X 1

QZR'T:(S_)\'E' (4.6)
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The hardware configuration determines the resolving power, and in the types of dis-
persive spectrographs with fixed detectors and diffraction gratings this metric is constant.
For a given application with a single instrument the SNR may increase or decrease but the
throughput efficiency will remain constant for every application since it is only hardware
dependent. Given that both the resolving power and the throughput efficiency are com-
pletely determined by the hardware of a given dispersive spectrograph, the combination
of these two factors in defining the quality factor of the instrument is a useful way to
characterize the performance.

In many applications it is desirable to have as high a resolving power as possible since
finer spectral features can be resolved. The resolving power in a dispersive spectrograph
is often limited by the size of the focused spots, rather than the dispersing power of the
diffraction grating or prism. The maximum obtainable resolving power based on diffraction
theory for a diffraction grating based spectrograph is given as

me
d Y

g

Rmax -

(4.7)

where m is the order number, D, is the diameter of the beam incident on the diffraction
grating in units of millimetres, and d,, is the groove spacing of the grating (mm/line) [8, 47].
It is often the case that the pixel size and focused spot size decrease the resolving power from
this value, although this is not always true, for example in a poorly designed spectrograph.
We mentioned above that the spectral resolution, dJ, is always greater than the wavelength
range in a pixel, A\, and this was because the focused spots had finite width. In order to
increase the resolving power of the spectrograph the spot size must decrease in width to the
about the same size of a pixel, at which point the approximation for Gaussian bandpasses
breaks down and our resolvability definition must take on a new meaning. Once the spot
size is small enough the spectral resolution and wavelength range are approximately equal
(06X ~ AN) and the spectrograph resolving power is maximized for the given hardware
configuration. The overall resolving power may be increased by decreasing the wavelength
range and keeping the spot size the same size of the pixels. Decreasing the wavelength
range may be performed by a couple of methods: first, by increasing the angular dispersion
induced by the dispersive element, and second, by increasing the focal length of the camera
lens.

In a diffraction grating based spectrograph both these points are evident from exam-
ining eqn. [£.3] The dispersive power is inversely proportional to the groove spacing so
having a small d; means more lines per millimetre and a larger angular spread for a given
wavelength region. Increasing the focal length, fr, of the camera lens is seen to inversely
scale the independent variable, or in this case the position in the focal plane relative to the
blaze wavelength location, x;. In the first case of using a higher power grating the prac-
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tical consequences are that the input-output angleﬂ increases so the system may become
unwieldy if these angles get larger than 90°, the large angular range will likely increase the
complexity and/or size of the camera lens thereby driving up the cost of the spectrograph
significantly, and the maximum diffracted wavelength is limited to M., < 2d, [8]. The
general design philosophy is to use as high power a diffraction grating as possible without
imposing on other practical engineering considerations, for example, an angular spread of
larger than 10° will require highly complex lens systems. In the second case of increasing
the focal length of the camera lens, the light will be spread over a larger area for a given
dispersive angular region since the light has to travel a longer distance, but the spot size
also increases by the same factor the focal length was increased. This is because an object-
image size multiplied by the propagation angle is an invariant in an optical system (see
eqn. ; by increasing the focal length by a given factor, the propagation angle decreases
by that same factor (in the small angle paraxial approximation), and therefore the image
size must increase by the same factor. A visual example of this is clear to anyone that has
performed some amateur photography: using a longer focal length lens makes the image
bigger. The spot size must be decreased by some other means in order to keep it about
the same size of the pixels when the camera focal length increases.

In a dispersive spectrograph the input light is typically emitted from a finite source size,
such as a pinhole aperture or fibre optic cable. These finite source areas serve as the image
on the focal plane on the detector with appropriate magnification scaling factors due to the
optics. The source emits light and a cone is collected and collimated by a lensing device,
typically a refractive lens, but may be a reflective lens. This collimated light interacts
with the diffraction grating either reflecting or transmitting at different angles depending
on the wavelength. Afterwards the light is focused onto the detector by another lensing
device (refractive or reflective). The size of the focused spot is equal to the size of the
source object multiplied by the ratio of the camera focusing lens focal length to the source
collimating lens focal length,

fa
)

hi = ho
fsl

(4.8)

where h; is the image size, h, is the object size, f. is the focal length of the camera focusing
lens, and fy is the focal length of the source collimating lens. In accordance with our above
discussion on the optical invariant, it can readily be seen in eqn. that the image size is a
multiple of the object size depending on the propagation angles, which are determined by
the focal lengths. It may be seen that one way to decrease the focused spot size is to ensure
the ratio of the focal lengths is small, either by having a large focal length for the source
lens, or a short focal length for the camera lens. Since a long focal length for the camera

IThis is for a transmission grating not a reflection grating.
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lens is desired to reduce A\, to make small spots the focal length of the source lens should
be even larger. In our analysis we have not considered the collimated beam diameters, Dy,
which can play an important roll considering the maximum resolving power is partially
determined by it (see eqn. ; it is important to keep the diameter large enough that the
resolving power is not limited by the diffractive effects of the grating. The amount of light
collected and collimated by the source lens is determined by the ratio of the numerical
aperture (NA) of the lens over the NA of the source up to a maximum of 1 (obviously we
cannot collect more light than is emitted even if our acceptance NA is larger)ﬂ,

T = (ZZZ)Z, (4.9)

where D, is the diameter of the source lens and D, is the diameter of the collimated
source beam. By increasing the focal length of the source lens the diameter of the source
beam incident on the source lens increases. Once the diameter of the source beam is larger
than the diameter of the lens, throughput loss occurs. This is the first instance where we
see a trade-off between resolving power and throughput efficiency; by increasing the focal
length of the source lens the spot image size decreases—increasing the resolving power—
but the amount of light collected decreases and the throughput efficiency decreases. By
using the definition of spectrograph quality factor in eqn. a system configuration may
be examined and an optical hardware configuration may be found that maximizes the
quality factor. An example of this analysis is performed with a hardware configuration
similar to the SD-OCT system spectrograph. The hardware parameters are summarized in
table[d.1] and the resolving power, throughput efficiency, and quality factor graphs are seen
in figs. [A.1}}4.3] These results assume a circular source object that is uniformly illuminated.

From figs. it can be seen that as the focal length of the collimating lens increases
(increasing f/#) the throughput remains constant until about f/4.8, where the throughput
starts to decrease. At f/4.8 the diameter of the source beam is equal to the diameter of
the collimating lens so all light from the source is being collimated. It is also seen that as
the focal length of the collimating lens increases the resolving power increases because the
bandwidth in a pixel is decreasing. The resolving power starts to plateau because once the
spots start getting smaller than a pixel then the bandwidth is limited by the pixel size. The
quality factor plot (fig. shows a peak in spectrograph quality when the collimating lens
is £/4.8, or when the focal length is about 120 mm. We see that the quality factor, @, is
a very helpful tool in dispersive spectrograph design. The SD-OCT system spectrograph,
however, employed a focal length of 75 mm, or /3, for the collimating lens because the
divergence angle from the pinhole is fixed and the slicer was designed to work with a beam

2For a discussion on numerical aperture refer to eqn. m
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’ Simulation Input Parameters

Parameter Value

Ao 850 nm
Source Aperture 10 pm
Camera lens focal length 150 mm
Source NA 0.103
Collimating lens diameter 25.4 mm
Grating power 1200 1/mm
Blaze wavelength 850 nm

Pixel width 10 pm
Collimating lens focal length 25 mm - 500 mm
Slit Width 1 pm - 10 pm

Table 4.1: Input hardware parameters to calculate the throughput efficiency, resolving
power, and ultimately the quality factor for a spectrograph as a function of both slit width
and focal length of the collimating lens.
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Figure 4.1: A plot showing the throughput efficiency of the spectrograph as a function of
the collimating lens f/#.

62



Resolving Power of Spectrograph
BRI LR R B L Ll I LR Rl R L L RN L

2-0x10+ :”H”'H”””'”""”‘"“""""“‘ EARLLRRRRY LaRRRRANY i i .
1.5x10* — _|
5 i .
=
O | —
& | —
T 1.0x10* — B
E i —
O | —
br
1] - |
m | —
5.0x10% — _|
o ) T T TR oV ST R PO | | | T

]
@]

TIETTRIRR T IR TTRTRT] RTNUTRTTR] IRTIRTTRTE IR TTRTTR] FRTRTTHITE INRITRTRTI RTTRRTRITANNT]
1 2 3 4 5 868 7 8 9 10 11 12 13 14 15 16 17 18 19
F/# of Callection Optics

Figure 4.2: A plot showing the resolving power of the spectrograph as a function of the
collimating lens f/#.
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Figure 4.3: A plot showing the quality factor of the spectrograph as a function of the
collimating lens f/#.
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diameter no larger than 15 mm (22 mm clear aperture). This simple analysis is shown to
not take into account all aspects of a spectrograph design.

Increasing the focal length of the collimating lens is not the only way to reduce the spot
size on the focal plane—a slit may be used at a conjugate focal point in the spectrograph.
Slits have a long history in optics, but the first documented evidence of using a slit to
increase the resolving power of a spectrograph occurred in 1802 by William Hyde Wollaston
[53, 62]. A slit is an aperture with a narrow width in the dispersive direction but a tall
height in the cross-dispersive direction that is placed at a conjugate focal point so that the
final focused spot is narrower than it would be if no slit were used. Since the resolving power
is dependent on the spot width, a slit is seen to increase the resolving power. Slits are very
easy to implement and make intuitive sense in a spectrograph so they are advantageous
on several fronts, as can be testified by their use in virtually all dispersive spectrographs
for the past 200 years! The only obvious disadvantage to a slit is that they are very lossy
because they block most of the light from a source. Assuming a source object can be
modelled as a uniform circular disc, the throughput efficiency of a rectangular slit with
height larger than the source object can be expressed analytically as,

2
g

2 (wsm + r? arcsin (%))
= Lt (4.10)

2
g

Ws
4
T = V12— 2?dx
0

where 7, is the radius of the source object and w, is the half-width of the slit. The slit
throughput derivation assumed the slit was placed exactly on top of the source object,
rather than at a different conjugate focal point. The difference between the two techniques
is negligible when the source object is many times larger than the diffraction limit, but
close to the diffraction limit a more advanced model is needed. By following a similar
analysis for evaluating the spectrograph quality factor by use of the resolving power and
the throughput efficiency due to a slit, we arrive at the results presented in figs.
The spectrograph hardware parameters are also summarized in table [£.1l For the slit
spectrograph system the focal length of the collimating lens was chosen to be 75 mm.

In fig. it can be seen that the throughput efficiency is almost linear with respect to
the slit width except when the slit is almost the same size as the source object. The re-
solving power increase from using the slit (fig. 4.5)) also shows a near-linear trend, although
the slope is small, meaning the spectrograph does not see much improvement from using a
slit. This is because the source size is already close to the diffraction limit and the width
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Throughput Efficiency of Slit Spectrograph
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Figure 4.4: A plot showing the throughput efficiency of the spectrograph as a function of
the slit width. This is the graphical representation of eqn. [4.10]

Resolving Power of Spectrograph
HLREL L B B B B L L

2.0%1Q* [T

1.5x10*

1.0x10*

Reselving Power

5.0x10°

[0 T I B

TTI T AU ST S N A IR ST SO R A SR O
0.1 0.2 0.3 0.4 0.5 0.6
Slit Width / Source Aperture

0.7 0.8 0.9

o

Figure 4.5: A plot showing the resolving power of the spectrograph as a function of the
slit width.

65



Quality Factor of Spectrograph (R«T)
L L B L L L L

- Slit Speetragraph —M8M8MMM8 |

L Slicer Spectrograph ----------- i

1.5x10% = " mme ]

5 L T e _

g - S i

£ 1.0x10* - e _

‘E," = ek P -

= - .|
a

3 = ]

O — —

5.0%107 |- —

0_".‘.‘."|"...‘..‘l..‘..‘..‘l‘.".‘...\‘.".‘.‘.l‘.‘....‘.l‘...u.‘.l..‘.u .|..‘.H..._

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

Slit width / Saurce Aperture

Figure 4.6: A plot showing the quality factor of the spectrograph as a function of the slit
width.

of a pixel. Nevertheless the quality factor may be defined for this spectrograph system and
it is seen that there is a peak when the slit width is about 8 pm.

For a given hardware configuration for a spectrograph with a slit there will be a maxi-
mum quality factor. A fundamental way to improve the quality of a dispersive spectrograph
would be to be able to increase the resolving power by a factor larger than the throughput
loss. A system that is able to do this perfectly, i.e. with no losses, is also shown in fig.
Such a device is called a slicer. The subject of slicers in dispersed spectrographs will be
the topic of the remainder of this chapter.

4.2 History of Different Designs and Implementations
of Optical Slicers

Historically the first optical slicer appeared as an astronomical instrument to reduce the
light loss at the slit of a spectrograph [9]. This type of slicer was called the Bowen slicer
named after its inventor in 1938. A modified form of the Bowen slicer was conceived in
1972 by Walraven and Walraven and was called the Bowen-Walraven (BW) slicer [56]. This
slicer was a solid prism design so while it was robust, the performance was limited. The BW
slicer had issues where the slices were not properly aligned, and had limited performance
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due to high dispersion through the glass material. Several modifications have been done
to the BW slicer and other optical slicer designs have been considered since 1972, such as
fibre and waveguide based [15], 52].

Both fibre and waveguide based slicers are not very efficient devices in terms of preserv-
ing light throughput, which seems contradictory considering one of the main the purposes
of a slicer is to maintain light throughput. In a fibre based slicer the light is typically
focused onto a bundle of fibres arranged in a circular geometry and then the bundle of
fibres at the output are arranged in a linear geometry. The light coupling efficiency may
be approximately given as the core area of the fibre divided by the total area of the fibre
(core plus cladding), which in a typical 0.22 NA, 50 um core fibre optic cable may be on
the order of 10% to 15%. Another disadvantage of fibre and waveguide based slicers is that
each slice on the output image plane has some separation distance that may require the
use of a large detector area.

Optical slicers may have numerous applications, but historically they have been used to
increase the performance of a spectrograph without the use of a slit. There may be many
designs and implementations of optical slicers but they all basically are based on spatially
altering the light distribution in some form. Optical slicers can be broken down into two
fundamental categories that depend on where the light manipulation occurs: spot slicers,
and pupil slicers.

A spot slicer performs the optical slicing at or close to the focus of the light, therefore
it is manipulating the spot profile. For example, the Bowen-Walraven slicer is a spot slicer.
These types of slicers are more intuitively obvious because there is a direct comparison to
how the slicing is being performed and what is seen at the conjugate focal plane in the
spectrograph. Spot slicers are typically easier to conceive than pupil slicers, however they
are somewhat harder to implement because of the high precision and alignment required,
and also because the slicing hardware needs to be very small.

Pupil slicers, on the other hand, perform the optical slicing in collimated space, or in
the pupil plane. Since collimated space is often synonymous with Fourier space in optics
it is often less intuitive to think of manipulating the Fourier transform of a spot to change
its spatial distribution profile. A pupil slicer offers several advantages over a spot slicer.
First the slicing hardware does not necessarily need to be tiny, second the light may be
manipulated over large path lengths, third the focused spot shape is independent of the
pupil shape, and fourth in that multiple pupil slicers can be run in series to achieve a
multiplicative effect. Pupil slicers are based on manipulating the étendue of the beam.
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4.3 Design of the 2X Refractive Optical Pupil Slicer

The general design philosophy behind an optical slicer is that it achieves the same resolving
power performance boost effect of a slit but with a minimal loss of throughput. This is
readily achievable by causing the focused spot size to be reduced in width, or in the
dispersive direction dimension. In order to preserve light the focused spot size must increase
in length along the orthogonal direction. Since the spectral resolution is only dependent
upon the width of the spots in the dispersive direction, an increase in length along the
orthogonal direction is acceptable. Typically 2D arrays or pixels with high aspect ratios
are used in dispersive spectrographs so having a high aspect ratio focused spot does not
reduce throughput; however, care must be taken to ensure the focused spot fits entirely on
the detector.

The radiance, L, of an optical system is conveniently defined such that it remains a
constant at all locations of a perfect lossless optical system,

P/t,

L=—+-"——
AppQscosh’

(4.11)

where P/t. is the total optical source power in Watts given as the mean number of photons,
P, per exposure time, t., Agp is the area of the entrance pupil in m?, €, is the solid angle
that the source subtends entering the optical system in steradians, and @ is the angle
deviation between the source normal and the optical axis in radians [4]. Given a perfect
lossless optical system the total amount of optical power, P/t., remains constant, and
furthermore in the ideal case the source is aligned with the optical axis such that 6 = 0
and maximum radiance is obtained. The other two terms in equation describe the
source and optics geometry, and is known as the étendue, defined by

== AEPQS ~ ASQEP7 (412)

where the approximation is given by eqn. in the small angle regime. The étendue in
a perfect optical system is constant at all locations and serves as the optical invariant of
a system (see section . Because the étendue only depends on the area of the source
and the 2D description of the pupil shape, the sub-geometrical description of the area and
solid angle may be arbitrarily defined as long as the resulting product remains constant.
By changing one variable in the étendue, such as the source area, A, the solid angle, Qgp,
must change to keep the product a constant, and therefore to keep the radiance, L, a
constant resulting in a lossless system.

A conventional slit in a spectrograph decreases the source area, A,, but leaves the
solid angle, Qg p, unchanged resulting in a decrease in étendue and therefore a decrease in
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’ Refractive Slicer Element Parameters ‘

Element fr (mm) Diam. (mm)
L1 200 254
L2 20 25.4
L3 20 25.4
L4 100 20.8

Table 4.2: The focal lengths and diameters the individual elements in the refractive 2X
slicer design. Information protected under United States patent [44].

radiance, L: the definition of a lossy optical system. The operation of the slicer aims to
keep the area of the source the same, but changes the sub-geometrical description of the
spot shape such that the width in the dispersion axis is reduced. Because the source area
is kept constant, the solid angle, €1, is also kept constant, however, the sub-geometrical
description is changed so that the angular profile corresponding to the dispersive axis
results in a constant étendue and a lossless system.

In the case of the conventional slit the source area was manipulated directly by use of
an aperture and the remaining optical elements were left unchanged. In the case of the
slicer, the optical elements are used to manipulate the sub-geometrical description of the
solid angle, Qg p, directly resulting in an automatic source geometry change such that the
width along the dispersive axis is reduced; keeping the solid angle, 2gp, constant results in
keeping the source area, A, constant and therefore resulting in a lossless optical system.

. 2 2 I
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! . M4 M3
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Figure 4.7: A diagram showing the optical design for the 2X refractive pupil slicer. L.1 and
L2 are cylindrical lenses used for beam compression, M1 and M2 are redirecting mirrors,
M3 and M4 are mirrors used for pupil slicing, and L3 and L4 are spherical lenses used for
beam expansion. Figure protected under United States patent [44].

An optical pupil slicer was chosen to have slicing power of 2X because it is the simplest
implementation of all optical pupil slicers, and it is able to provide a large reduction factor
that should be measurable in almost all scenarios. The slicer was chosen to be constructed
using refractive optics because these types of components are generally available off the
shelf, easy to implement, and provide an on-axis design.
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Orientation of the Slicer Elements

Element X (mm) Y (mm) Z (mm) Tilt X Tilt Y
L1 0.0 0.0 0.0 0.0 0.0

L2 30.0 0.0 82.95 0.0 0.0

L3 33.75 1.875 217.55 0.0 0.0

L4 33.75 1.875 356.81 0.0 0.0

M1 0.0 0.0 80.0 0.0 -10.28°
M2 30.0 0.0 0.0 0.0 -10.28°
M3 30.0 0.0 197.55 1.1° -2.28°
M4 33.75 1.875 97.55 1.1° -2.28°

Table 4.3: The locations of the elements in the refractive slicer. Measurements are ref-
erenced to the centre of L1, which coincides with the centre of the input beam. All
measurements are to the centre of the optical element except the re-arranging mirrors.
The measurement locations for M3 and M4 are the centre of the vertical straight edge.
Information protected under United States patent [44].

The optical design of the 2X refractive pupil slicer can be seen in fig. and the
optical parameters and locations are summarized in tables and The design of the
slicer is protected under a United States provisional patent [44]. Lens L1 is a circularly
symmetric cylindrical lens made from N-BK7 glass with a focal length of 200 mm (Thor
Labs, LJ1653RM-B). Lens L2 is also a circularly symmetric cylindrical lens made from
N-BK?7 glass but with a focal length of 50 mm (Thor Labs, LJ1695RM-B). The two lenses
are placed 246.3 mm apart so the light emerging from L2 is collimated but compressed
vertically by a factor of 4. To save on space the light is reflected in a dogleg by using
mirrors M1 and M2 (Thor Labs, BB1-E03).

All the spot area aspect ratio manipulation in the slicer is performed by the cylindrical
lenses. However, if only cylindrical lenses are present the pupil beam profile aspect ratio
will be the inverse of the spot area aspect ratio, i.e. not circular. There are several reasons
why a circular pupil function is desired. First, the diffraction limited Airy pattern will be
circularly symmetric. Second, if aberrations are present then they will be symmetric across
the pupil. Third, it allows for the use of circularly symmetric optics. Fourth, a circular
pupil is needed if multiple pupil slicers are to be used in series. Fifth, when used in a grating
spectrograph the light is spread over a larger vertical area on the diffraction grating so the
effects of any imperfection is minimized. Since the focused spot shape does not depend
on the aperture spatial transmission function, albeit pupil aberrations and diffraction Airy
patterns (according to eqn. , which can be ignored for a first order description, the
pupil spatial light distribution may be oriented in any desired shape. Therefore the non-
circular pupil emerging from the cylindrical lens relay may be “sliced” and reoriented to
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form a circular pupil without changing the étendue. This is achievable by the use of the
redirecting mirrors, M3 and M4, in a dogleg orientation. The mirrors used are a special
kind of mirror called a D-mirror because they resemble the letter 'D,” in reality the mirrors
are semicircles (Thor Labs, BBD1-E03). The mirrors in the slicer are placed 100 mm apart
and they are tilted by 1.1° about the dispersive axis and -2.28° about the cross-dispersive
axis.

After the cylindrical lenses and slicing mirrors the pupil is collimated and circular, but
the diameter is a factor of 2 smaller than the input diameter. The focused spot will have an
aspect ratio of 1:4 and the width will be equal to the width of the original spot because the
étendue has not changed in that dimension. In order to dilute the pupil so the diameter is
equal to that of the incoming beam a telescope relay may be used with circularly symmetric
lenses. The lenses used are L3 and L4. Lens L3 is an achromatic doublet lens with design
wavelengths of 706.5 nm, 855 nm, 1015 nm and a focal length of 50 mm (Thor Labs,
AC254-050-B). The light exiting L3 is collimated again upon exiting lens L4, which is also
an achromatic doublet lens with design wavelengths 706.5 nm, 855 nm, 1015 nm but with
a focal length of 100 mm (Thor Labs, AC508-100-B). The two lenses are placed 139.26 mm
apart from each other. This telescope relay increases the solid angle of the beam in both
dimensions equally by a factor of 2 and therefore decreases the height and width of the
focused spot by a factor of 2; the focused spot’s width will be reduced by a factor of 2
compared to the original width, and the height will be increased by the same factor of 2.

4.4 Performance of the 2X Refractive Optical Pupil
Slicer

In order to test the performance of the 2X refractive slicer it was placed in a custom-built
in-house dispersive spectrograph; the following results and discussion were presented in [42].
The 2X refractive slicer was designed to be placed in a dispersive-type spectrograph with a
beam diameter of 15 mm and a clear aperture diameter on the optics of 22 mm; therefore
the input and output beam diameter of the slicer fit entirely within a 22 mm diameter
clear aperture. The input to the spectrograph is a 50 pum core diameter fibre. The fibre
light is collimated using a 50 mm focal length, 25.4 mm diameter achromatic doublet lens
with design wavelengths of 706.5 nm, 855 nm, and 1015 nm (Thor Labs, AC254-050-B).
The collimated light is angularly dispersed by a 300 1/mm holographic transmission grating
with a blaze angle of 31.7° (Thor Labs, GTI50-03A) tilted at an incident angle of 7.5°. The
dispersed light is then focused using a 100 mm focal length, 50.8 mm diameter achromatic
doublet lens with design wavelengths of 706.5 nm, 855 nm, and 1015 nm (Thor Labs,
AC508-100-B). The light is detected by a linear 1D array CCD camera with 3648 pixels of
size 8 pm by 200 pm with a 16 bit readout (Mightex, TCE-1304-U).
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(a) Before Slicer (b) After Slicer

Figure 4.8: The images of the focused spot shape before and after passing through the
slicer.

The slicer was designed to operate in the NIR band of light covering the wavelengths
from 700 nm to 1000 nm. The throughput of the slicer was measured by placing narrow-
band interference filters in the beam path and measuring the optical power using a power
meter (Newport, 1918-C) with a calibrated silicon-based detector wand (Newport, 818-
ST/DB). The filters used to measure the throughput have centre wavelengths of 700 nm,
750 nm, 800 nm, 850 nm, 900 nm, 950 nm, and 1000 nm with bandwidths of 10 nm
(Thor Labs, FB700-10, FB750-10, FB800-10, FB850-10, FB900-10, FB950-10, FB1000-
10). The light source used is a calibrated black-body tungsten-halogen source operating at
2,850°K (Avantes, AvaLight-HAL). A resulting plot of calculated throughput can be seen
in fig. . The average measured throughput was found to be 85.58% over the spectral
range 700 nm to 1000 nm.

The power of the slicer is defined by its reduction in spot width at a given étendue and
wavelength band. The étendue for the source fibre and collimating lens is calculated to
be approximately = = 298.556 [um? sr]. Images of the focused spot were captured using
the same focusing lens in the spectrograph (Thor Labs, AC508-100-B) and a high-quality
CMOS web-cam with 6 um by 6 pm pixels (IDS, UI-1225LE-M-GL), these can be seen
in fig. 1.8} The images were vertically binned to create the 1D focused spot profile plots,
shown in fig. [£.9(b)] A full-width at half-maximum (FWHM) value was measured from
the resulting 1D plots in order to measure the slicer power. An average power of 2.00X in
spot width reduction was measured going from a 81.6 um to 40.8 um over the wavelengths
700 nm to 1000 nm.

The goal of the slicer is to improve the quality factor, @), of a dispersive-type spectro-
graph by increasing the resolving power, R, by reducing the spot width in the dispersive
direction by a factor larger than the loss of throughput efficiency, T". The slicer is shown to
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potentially improve the resolving power by a factor of 2.00 while maintaining an average
throughput of 0.8556, thereby improving the quality factor of a dispersive-type spectro-
graph by a factor of 1.7112. The slicer was used in the spectrograph described above and
spectra of calibrated atomic emission line sources were captured. These resulting spectra
were compared against the spectrograph with no slicer (and no conventional slit). The light
sources used were a calibrated mercury-argon emission source (Ocean Optics, HG1) and a
calibrated neon emission source (Avantes, AvaLight-CAL-Neon). Both light sources have
strong emission features over the spectral band 700 nm to 1000 nm. A select wavelength
region for each light source and the resulting spectra both with and without the slicer are
shown in figs. and . Given the spectrograph hardware parameters and the
measured spot width FWHM, the resolving power of the spectrograph without the slicer
is about R = 315 and with the slicer it is increased to about R = 630.

The resulting spectra clearly show an increase in the resolving power by using the slicer.
In fig. a single emission line at 859.12 nm is enhanced by the slicer, and three
closely separated emission lines at 863.46 nm, 865.43 nm, and 867.94 nm are unresolved
without the slicer but easily resolved with the slicer, the wavelength separation values
were taken from the NIST spectral database [50]. A similar observation is seen in the
mercury-argon emission spectra where a single emission at 826.45 nm is enhanced by the
slicer and two closely separated emission lines at 840.82 nm and 842.46 nm are unresolved
without the slicer but easily resolved with the slicer. The resolving power required to
resolve the mercury-argon doublet is at least R = 513, and since the spectrum shows a
good resolution it is likely that the resolving power of the slicer spectrograph is larger
(R > 513). The spectra from the using the slicer do not have an apparent loss in signal
strength, thereby confirming the throughput advantage of using a slicer as opposed to a
conventional slit—the measured average throughput for both spectra is 83.88%.
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Figure 4.9: Plots showing the throughput efficiency of the slicer measured as a function of
wavelength over the spectral band 700 nm to 1000 nm, and the focused spot before light
passes through the slicer (solid) and after (dashed).
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Chapter 5

Implementing the Slicer in the
SD-OCT System

In section we saw that a refractive based optical pupil slicer designed to have a slicing
factor of 2X was able to reduce the focused spot width by a factor of 2.00 from 81.6 pm to
40.8 pm from a fibre source of core diameter 50 pm and maintain 85.58% efficiency over
a bandpass from 700 nm to 1000 nm. This effectively increased the resolving power, R,
of the spectrograph by a factor of 2.00 and the spectrograph quality, @), by a factor of
1.7112 (see eqn. [4.6)). The quality of an SD-OCT system may be determined by the quality
of the back-end spectrograph as was discussed in section [3.1.1} the resolving power plays
a crucial role in the imaging depth characteristics and the throughput limits the speed-
efficiency of the OCT system. Designing and implementing a custom spectrograph for the
in-house SD-OCT system which includes the optical pupil slicer described in section
will be considered in this chapter. An SD-OCT system including an optical pupil slicer
in its design is protected by an International patent [43]. First a justification, simulation,
and analysis on optical pupil slicers in SD-OCT systems will be given. This is followed
by the method of the actual implementation of the 2X refractive optical pupil slicer in the
SD-OCT system and the results which follow. As will be seen, the refractive 2X slicer does
not provide any improvement in the custom SD-OCT system. The analysis and evaluation
on this failing result will be given and the necessary improvements to be made on both the
SD-OCT system and the optical pupil slicer will be presented.
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5.1 Justification for Implementing a Slicer in an SD-
OCT System

The maximum obtainable unaliased imaging depth, z,,4:, in SD-OCT systems is given
by eqn. which is dependent on the pixel wavelength separation, A\, and hence the
resolving power, R, of the back-end spectrograph. The signal obtained from a SD-OCT
system, Socr, is given by eqn. 3.7, which is the fringe contrast (visibility) multiplied by the
number of detected photons. A practical maximum imaging depth, zpmq,, may be defined
as the point at which the signal-to-noise ratio (SNR) drops to below a chosen threshold.
Ordinarily in highly scattering media this point occurs before the maximum unaliased
imaging depth (Zpmaz < Zmaz). Since the fringe contrast verses depth (see fig. is
dependent on the resolving power, it follows that the maximum practical imaging depth,
Zpmaz, 15 also dependent on the resolving power. It is a common practise in OCT, and
especially in the design of SD-OCT systems, to attempt to increase the resolving power as
much as possible. However, it is often not useful to increase the resolving power beyond
a certain point where the improvement seen is minimal (see example fig. [1.2), nor is it
practical to attempt to increase the resolving power beyond the maximum theoretical
resolving power, R,,q., given by eqn. [£.7]

As was discussed in section [4.3] a common technique for increasing the spectral resolu-
tion, and hence the resolving power, is to place a slit or pinhole at a conjugate focal point
in the spectrograph; however, this technique throws away valuable light and decreases the
throughput and efficiency of the spectrograph. This is not a desirable trade-off in OCT
since little light is collected anyway, and this is especially true in speed-limited OCT ap-
plications like ophthalmology [12) 48]. Using a slicer-type spectrograph in an SD-OCT
system makes sense because it is able to provide high spectral resolution, and therefore
good imaging depth quality, without a large sacrifice in throughput, hence increasing the
quality factor of the SD-OCT system.

If a perfectly efficient (100% throughput and quantum efficiency, ) spectrograph were
used in an SD-OCT system that had maximized the light delivery intensity as dictated
by safety regulations and collected every useful photon returning from the sample and
reference arm, this represents the best possible scenario. Suppose that one then wishes
to increase the resolving power by use of a slit, this now drives the throughput efficiency
down by some factor and the OCT system is no longer “perfect.” By using an optical pupil
slicer instead of a slit the throughput may be maintained ideally at 100% but the spectral
resolution will be increased and hence the SD-OCT quality factor will increase. This is a
fundamental improvement to SD-OCT systems.
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5.1.1 SD-OCT System and Slicer Simulation

The philosophical justification for pursuing the endeavour of implementing an optical pupil
slicer in an SD-OCT system was given in section [5.1 Embedded within the argument it
was claimed that slicers can make a fundamental improvement to SD-OCT because they
are able to increase the resolving power of the back-end spectrograph while maintaining
throughput. The resulting throughput maintenance performance of the 2X refractive slicer
was shown in section [4.4} these results served as the proof that the optical pupil slicer can
maintain throughput while increasing spectral resolution. In order to justify using hard
numbers and quantitative, as well as qualitative, analysis a proper study of how an optical
pupil slicer affects the SD-OCT signal must be carried out. Since the throughput argument
has already been proved and justified, the effect of increasing the resolving power on the
custom built in-house SD-OCT system described in section remains to be evaluated.
For the purposes of simulation an interpreting-type programming language called IDL
(Interactive Data Language) version 7.0 was used [37].

Simulation Model and Theory

The purpose of the simulation is to generate a relative fringe contrast versus depth plot—
like the one in fig. 3.1(b)l—for the custom SD-OCT system both with and without a slicer.
Several steps are taken to generate this plot and some assumptions are made to simplify
the process. The general design philosophy of the simulation is to work backwards and
then express the input in parameters controllable by the slicer and the spectrograph hard-
ware. To understand the fringe contrast versus depth relationship first consider the signal
obtained by a single pixel. The signal in the j*" pixel of the SD-OCT spectrograph as a
function of sample reflection location, z,, may be given by

I;(zs) :/(Ir()\)—l—fs(zs,)\))d)\

Y

o (2, 00)] cos (47r§) . / o/ T VL (o N, (5.1)

J

J

which is seen to be very similar to eqn. except in the term z, as opposed to Ad
(these differ by a factor of 2 due to physical delay as opposed to optical delay). The
functions I,(\) and I(zs, A) represent the optical intensity of the reference and sample
arms respectively as a function of sample reflection distance from the beam splitter device,
zs, and wavelength, A. The function ¢, (25, §;) is the spectral coherence function of the j™

79



pixel. From sectionthe spectral coherence envelope for the j' pixel may be expressed
as the Fourier transform of the optical power spectrum in the j*® pixel. The optical power
spectrum in a pixel may be given as the convolution of the pixel spatial response function
with the image of the source object, and then further convolved with the diffraction Airy
spot pattern for each wavelength in the source bandpass. Using the convolution theorem
the spectral coherence envelope for the SD-OCT system can be represented as

U(z,) =FT [ / P(xi,yi)dyz} -FT { / IAiry<a:i,yi)dy¢] BT [ / Ilmage(xi,yi)dyi} , (5:2)

where the pixel spatial response function is given as P(x;,y;), the diffraction Airy pattern
produced by the camera lens is given as Iaiy (i, ¥;), and the image of the source object
is given as Iimage(2i,y;). The arguments have been given in terms of x; and y;, which are
the 2D rectangular coordinates on the focal plane for the dispersive and cross-dispersive
directions respectively. The dispersive positions on the focal plane, x;, can be converted
to wavelength, A, by eqn. that can furthermore be converted to sample depth as was
discussed in section [3.1.1] Given the spatial pixel response function is typically a RECT
function, and the two intensity profiles (Iairy and Iimage) may be approximated by Gaussian
functions, it can be seen that eqn. [5.2]is similar to the commonly accepted eqn. for the
spectral coherence envelope. It has been assumed that all pixels in the SD-OCT system
spectrograph have the same bandpass functions and that the sample is a perfect grey-body
reflector, therefore the entire SD-OCT system may be characterized using the spectral
coherence envelope. Given some hardware input parameters such as wavelength bandpass
(AA), diffraction grating line spacing (d,), sample material index (n), focal length of
camera lens (f.), pixel width, and extended input source geometry, the fringe contrast
versus depth relationship (¢) may be completely determined.

Simulation Results

The spectrograph of the SD-OCT system described in section may be simply modelled
using the hardware parameters, as were summarized in table [3.2l The optical pupil slicer
described in section [4.3|may be modelled as a black box with a given slicing factor that only
affects the horizontal compression and vertical expansion of the original extended input
source geometry, in this case being a perfect uniform circle. These parameters are the input
to the simulation code and are summarized in table 5.1} Several plots are produced that
attempt to explain the effect of including a slicer in the SD-OCT system and are shown in

figs. 5.4]
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Simulation Input Parameters

Parameter Value
Amin 800 nm
Amaz 900 nm
Ao 850 nm
Grating line spacing 1200 1/mm
Collimated beam diameter 15 mm
Camera focal length 150 mm
Collimating lens focal length 75 mm
Pixel width 10 pm
Number of pixels 2048
Pinhole diameter 10 pm
Slicing factor 2
Material index 1.0

Table 5.1: Input hardware parameters to model the spectrograph in the SD-OCT system
for the simulation code to compare the fringe contrast versus depth relationship for both
with and without a slicer.

Discussion

The results from the SD-OCT simulation characterize the spectrograph in terms of the
imaging point spread function (PSF) and the spectral bandpass in each pixel, J\, as well
as how the performance of the spectrograph affects the depth imaging results of the SD-
OCT system. We know from the OCT theory presented in section that the depth
signal is attenuated according to the spectral coherence envelope, which furthermore is
affected by the spectral resolution, or the spectral bandwidth in each pixel. By narrowing
the width of the imaging PSF the resolving power of the spectrograph is increased, and the
coherence envelope falls off more slowly. Since the coherence envelope serves as the fringe
contrast as a function of imaging depth, and furthermore since the OCT a-scan signal is
proportional to the fringe contrast (see eqn. , better depth imaging will be observed
for higher spectral resolving power.

The plots in fig. show the normalized spatial-spectral distribution of light on the
focal plane of the camera lens, which coincides with the location of the detection plane
of the camera. The functions are plotted in the domain of wavelength space, which is
equivalent to physical location space by eqn. The finite extended image source in the
spectrograph is the 10 pym pinhole in the spatial filter. Using eqn. with the central
wavelength, \g and the focal length of the collimating lens, the diameter of the collimated
beam may be found to be approximately 15 mm. Given this diameter of 15 mm and the
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Figure 5.1: A plot showing the functions on the focal plane that are used to generate
the fringe contrast versus depth relationship. The narrowest function is the vertically
integrated Airy pattern (solid black) inherently produced by the camera lens. This is
convolved with the vertically integrated perfect image (fig. to produce the imaging PSF
(green) for both without (solid) and with (dashed) the slicer. Furthermore the PSFs are
convolved with the pixel spatial response function (blue) to produce the pixel bandpasses
(red) both without (solid) and with (dashed) the slicer.

focal length of the camera lens, the Airy pattern may be computed according to eqn. [2.47]
The theoretical central lobe width is equal to 20.74 pm while the pixel width is equal to
10 pm, telling us that the pixels are well below the diffraction limit.

The vertically integrated images of the pinhole are shown in fig. [5.2 The pinhole was
modelled as a perfect uniform circle, but in physical reality there is some limb darkening
present, this was excluded from the simulation at present for simplification. These image
functions are plotted in the domain of physical extent. It is seen that the non-slicer image
has an extent of 20 pum, which is exactly what we would expect from a 10 ym diameter
pinhole imaged through a system with a magnification of 2. The slicer image has a physical
extent of 10 pum, which is exactly what we would expect after passing through an optical
pupil slicer with a slicing factor of 2X. The non-sliced image has an extent approximately
the same as the diffraction limit while the sliced image has an extent approximately half
the diffraction limit. These image functions are convolved with the Airy pattern to produce
the imaging PSFs.

82



Perfect Image of Pinhole Function
T T T T T

08—

o
o

24
=

Verticolly Integroted Area
I

02—

0.0 I I I | I I | | I
—-40 =20 a 20 40
Physical Extent (um)

Figure 5.2: A plot showing the vertically integrated perfect image of the pinhole on the
camera focal plane. The pinhole is modelled as a uniform circular function. The plot
shows the results for both without (black solid) and with (red dashed) a slicer in the
system. These functions are convolved with the Airy pattern depicted in fig. [5.1]

These imaging PSF's are furthermore convolved with the spatial pixel response function,
in this case being a perfect RECT function. Since the pixel width is less than the width of
the imaging PSFs an improvement in the pixel bandpass for slicer and non-slicer is seen.
The plots in fig. show that the bandpass functions appear Gaussian in nature, however
this is not strictly true given that there are no Gaussian functions in the simulation,
nevertheless the sliced bandpass has a smaller bandwidth than the non-sliced spectrum by
about 73% (factor of 1.377X), reaffirming the finding that the slicer is not providing the full
50% reduction as would be ideal with a 2X slicer. In the simulation it was assumed that
each pixel would have the same bandpass function so a convenient central wavelength of
850 nm was chosen. In reality each pixel will have its own bandpass function which provides
a convenient way to characterize the spectrometer, however to illustrate the underlying
general operation and characterization of the SD-OCT system the higher order effects of
using different bandpasses for each pixel may be ignored[T]

The Fourier transform of the bandpass for a single pixel will provide the coherence
envelope and therefore determine the maximum obtainable fringe visibility as a function of
optical delay, or scan depth. A high temporal coherence in a single pixel will provide a slow

Lthis was the assumption in section
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Figure 5.3: A plot showing the fringe contrast versus depth relationship for the SD-OCT
system as indicated by the coherence envelope. The plot shows the results for both without
(black solid) and with (black dashed) a slicer in the system. These were obtained by taking
the Fourier transform of the bandpass functions depicted in fig. .1 Also shown is the
location of the maximum unaliased imaging depth (solid bold blue).

envelope decay and therefore large signal strength over a scan depth range. High temporal
coherence may be obtained by highly spatially dispersing a low temporal coherence light
source.

The Fourier transforms of the bandpass functions in fig. are taken and plotted in
fig. as a function of physical delay. The unit conversion from wavelength to physical
delay was achieved through the use of appendix [A] It is seen that the coherence envelope
for the non-sliced system decays faster than the sliced system, as is expected, but the
improvement for slicer is not profound. The ratio of the coherence envelopes is plotted in
fig. [5.4l From this plot the effect of a slicer gives a 1.5X improvement in fringe contrast at
around 2.1 mm, a 2X improvement at around 2.7 mm, and at most a 5X improvement at
the theoretical maximum unaliased imaging depth of 3.7 mm. Keep in mind is this all for
physical delay in vacuum, in a typical tissue with an index of 1.4 these distances become
1.5 mm, 1.9 mm, and 2.7 mm.

From the results presented in this section and the above discussion of said results,
an argument can me made to justify the inclusion of a 2X slicer in the SD-OCT system
spectrograph. First of all the fringe contrast improvement is quite significant at the largest
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Figure 5.4: A plot showing the ratio of the fringe contrast versus depth relationship for
the SD-OCT system with and without the slicer (black solid). Also shown is the location
of the unaliased imaging depth.

imaging depths and no worse than the system without a slicer at all imaging depths. The
most significant justification, however, is due to the fact that the slicer is able to achieve
these results with virtually no loss in light, thereby increasing the practical imaging depth
by increasing the SNR relative to a system that would try to achieve the same improvement
in resolving power by use of a slit or additional pinhole. In other words, the slicer acts as a
virtual slit providing a fundamental improvement to the quality of the spectrograph, and
therefore improving the quality of the SD-OCT system.

5.2 Results From the SD-OCT System With and With-
out the Slicer

The 2X refractive slicer was constructed and tested separately from the SD-OCT system
using a custom built spectrograph with calibrated light sources. The performance and
results of the slicer were presented in section 4.4, To summarize, the 2X refractive slicer
had a 85.58% throughput over a 700 nm to 1000 nm bandpass and was able to achieve
a slicing factor of 2.00. This was done by slicing an image of a 50 pum fibre core. The
next step was to rebuild the 2X refractive slicer in the SD-OCT system spectrograph and
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perform a calibration experiment to measure the fringe visibility versus depth relationship,
i.e. the spectral coherence envelope, ¥. The expected results should match the theoretical
predictions presented in section [5.1.1] The actual results showed that the SD-OCT system
without the slicer performed worse than expected and that the SD-OCT system with the
slicer performed even worse than without. A more accurate model and simulation of the
SD-OCT system was conducted in order to match and explain the measured data. A more
rigorous analysis is able to explain the degraded performance of the SD-OCT system and
does indeed show that the implementation of the 2X refractive optical pupil slicer further
degrades the performance beyond the non-slicer system.

5.2.1 Physical Implementation

According to the SD-OCT system design depicted in fig. the slicer was implemented
after the collimating lens and before the diffraction grating in the spectrograph. A diagram
of the actual implementation of the slicer in the spectrograph is shown in fig. 5.5l It can
be observed that a fold mirror (M1) is located before the entrance into the slicer in order
to direct the light towards the diffraction grating. If the fold mirror is removed the light
follows through the slicer and then is directed towards the diffraction grating in the same
manner as before. The reason for this design is so the system is able to switch quickly and
easily between non-slicer mode and slicer mode by either including or removing the fold
mirror. The physical space was limited so different parts of the slicer (beam compressor,
reformatting mirrors, and beam expander) were placed in different sections and the light
was directed by fold mirrors. The additional loss of throughput due to the folding mirrors
is acceptable considering this is not a fundamental loss in the slicer design and the physical
implementation is non-ideal.

Method of Construction

For the following discussion on the method of construction of the refractive slicer refer
to fig. .5] A kinematic fold mirror (SFM1) was used to direct the light into the slicer.
The kinematic control at this point was necessary to correct for any tip and tilt in the
collimated beam induced by imperfect lateral positioning of the spectrograph collimating
lens. The beam was reflected off of SFM1 and allowed to propagate unaffected by about
3 metres. The mirror was rotated about the x and y axis using the kinematic control so
that the reflected beam was parallel to the optical table and formed a 90° angle with the
input beam before SFM1.

The beam compressor was constructed in the beam path following fold mirror SFM1.
The collimation, tip, and tilt of the output from the beam compressor was checked in
a similar manner as before by allowing the beam to propagate unaffected by about 3
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Figure 5.5: A cartoon drawing of the physical implementation of the refractive 2X slicer
in the SD-OCT system spectrograph.
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metres. The collimation was adjusted by changing the longitudinal location of the second
compressor lens (SCL2), and the tip-tilt was corrected by rotating the first compressor fold
mirror (SCM1) about the x and y axis using the kinematic control. These adjustments
are not independent so an iterative approach was taken, e.g. by adjusting the tip-tilt the
collimation was slightly affected.

The light exiting the beam compressor was directed to the reformatting mirrors by
another fold mirror (SFM2). This mirror has kinematic control to ensure the reflected
beam maintains no tip or tilt through the reformatting section. The kinematic control,
however, is not strictly necessary since the reformatting mirrors are also kinematic and can
compensate for any small amount of tip or tilt in the beam. For this reason the kinematic
control on SMF2 is dubbed optional but preferred.

To align the reformatting mirror section of the slicer the first reformatting mirror
(SDM1) is placed in the beam path such that the through beam has half the width.
Next, the second reformatting mirror (SDM2) is placed some prescribed distance in front
of SDM2. The height is adjusted such that the full through beam just barely passes by
it unaffected. The lateral position of SDM2 is adjusted so that the reflected beam from
SDM1 lands entirely in the clear aperture region of the mirror. The reformatting mirrors
are rotated about their x and y axis such that the reflected beam has the same tip and
tilt as the through beam. This is ensured by allowing the beams to propagate unaffected
a long distance down the optical table (about 2 metres).

The reformatted pupil is directed towards the beam expander section of the slicer by use
of another kinematic fold mirror (SFM3). This fold mirror needs to be kinematic to ensure
the beam entering the expander is parallel to the optical table and forms a 90° relative to
the input before SFM3. Also the beam needs to have slight shear control to ensure the
slicer pupil is coincident with the non-sliced pupil entering the diffraction grating. The
beam reflected off of SMF3 was allowed to propagate semi-unaffected by about 2 metres
and the mirror was rotated about the x and y axis to eliminate any tip and tilt in the
beam. The reason for semi-unaffected is because the beam passes through the grating and
the zero order (m=0) is translated by a fixed amount,

Az, =d - nsin(6;), (5.3)

where Az, is the translation amount in the x direction, d is the physical thickness of the
diffraction grating, n is the index of refraction of the grating, and 6; is the incident angle.
Once the reflected beam was aligned and had no tip or tilt associated with it the beam
expander was placed in the path to expand the pupil diameter by a factor of 2. The
output from the beam expander is the final output of the slicer and is directed towards
the diffraction grating in a coincident manner with the non-sliced beam to ensure equal
spatial placement on the detector.
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(¢) Non-Slicer Spectrum

Figure 5.6: The spectra for the slicer and non-slicer reference arm. The through beam
from the slicer is shown in (a), the sliced beam from the slicer is shown in (b), and the
non-sliced spectrum is shown in (c).

Method of Alignment

The rough bulk alignment procedure of the slicer was mentioned above. The first step of
slicer alignment is to ensure the unformatted through beam is collimated upon exiting the
beam expander and focuses down onto the camera to produce the same spectrum as the
non-sliced beam albeit with a loss in throughput and increase in spectral resolution. The
second step of slicer alignment is to ensure that the reformatted sliced beam is collimated
upon exiting the beam expander and focuses down onto the camera to produce the same
spectrum as the through beam. These first two steps are done independently at first by
blocking the other half of the pupil (through beam or sliced beam). The third step in
slicer alignment is to ensure that both spectra from the through beam and sliced beam are
indeed on top of one another at the same time.

The through beam did not produce the exact same spectrum as the non-sliced beam.
The two spectra can be seen in figs. [5.6(c)| and |5.6(a)l One of the largest most obvious
differences is the overall spectral shape. The through-beam spectrum appears to be much
flatter than the non-sliced spectrum and have additional attenuation at the longer wave-
lengths. This may be due to many additional reflections and transmission losses through
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the optical elements that compose the refractive slicer. It is hard to comment on any dif-
ferences the spectral resolution may induce since we are examining a broadband spectrum
with no high resolution features such as narrow emission or absorption lines, however, both
spectra seem to have the same resolution. The location of the wavelengths is also not iden-
tical between the two spectra. This can be explained physically as not having the exact
same incident angle into the diffraction grating, and can be explained practically by noting
a fold mirror must go in and out to capture the two different spectra. It is a challenging
task to ensure the exact same angle is achieved every time the fold mirror is removed and
placed back in the system and inevitably sub-pixel and small pixel number shifts will be
seen. This mismatch, however, has a very minor effect on the system performance and
may be calibrated out.

The rough alignment of the sliced beam onto the camera was performed through the
kinematic control of the reformatting mirrors, most notably the control of SDM2 (see
fig. [5.5). The sliced beam spectrum can be seen in fig. . It is observed that this
spectrum has slightly lower intensity on the blue end than the through beam spectrum
for several reasons. First of all the sliced beam is reflected off of two additional mirrors
that each have a specific reflection spectra that will affect the overall spectrum of the
sliced beam. Second of all the sliced beam has a different pupil shape and is passing
through different locations of the optical components which all contribute minor effects to
the overall spectrum.

The most important aspect of aligning the slicer is to ensure the two spectra from
both the through beam and the sliced beam fall on top of one another. This means that
any single wavelength in both spectra share the same spatial location and this holds for
all wavelengths. In first evaluating the performance of the 2X refractive slicer, calibrated
high resolution line light sources were used (see section which made aligning the
two beams relatively easy. In the case of the SD-OCT system the convenience of line
sources was not available for several reasons. At first and attempt was made to couple
the spectral line sources into the SLD single mode fibre by use of a 1:1 imaging relay
system. The output from the light source is a multi-mode fibre so the coupling efficiency
was extremely low. Upon propagating through the interferometer and exiting the pinhole,
only slightly less than 1 nW of power made it through. This corresponds to at best
4.28 x 10° photons/s. Given the dispersive nature of the spectrometer, the quantum
efficiency of the detector (37%), and the efficiency of the grating (90%), this corresponds to
at best 695, 750 electrons/s/pixel. The maximum integration time of the camera is 1 ms so
this gives us at most 696 electrons/pixel. Given the geometry of the pixels on the camera,
only half the light from the sliced spectrograph was captured, so only one quarter of this
value was ideally seen for both the through beam and the sliced beam. The read noise of
the camera is quoted to be 14 electrons and the photon noise is about 14 electrons (see
eqn. giving an ideal noise floor at 28 electrons, in reality there are other noise sources
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Figure 5.7: The interference spectrum produced from an aligned slicer. The delay intro-
duced is equal to 2 mm. This data is synthetically generated.

so this is a lower bound. This corresponds to a maximum SNR of about 6 in the ideal case.
In practise the SNR was observed to be closer to 1 or 2, a value far too small to perform
effective fine alignment of the sliced spectrograph using the line source in this method.

A new method of aligning the two spectra from the slicer was devised using the inter-
fered broadband spectrum from the SLD. First the sample and reference arm were allowed
to interfere in order to generate chromatic spectral fringes in the spectra. A small delay
was introduced in the reference arm in order to observe a few fringes across the bandpass,
e.g. 5 to 10. Both spectra from the through beam and sliced beam were incident on the
detector at the same time. The sliced beam was adjusted so the fringe peaks lined up with
the peaks of the through beam. Next, the delay in the reference arm was increased to
produce more fringes across the bandpass. Consequently the fringes were narrower allow-
ing a finer alignment of the sliced beam. This process was continued until the combined
spectra were aligned to one another at the highest resolvable fringe frequency. At large
fringe frequencies (large delay) if the sliced beam was slightly misaligned a beating pattern
was observed in the combined spectra, so it became relatively straightforward to keep the
sliced beam aligned. This process is pictorially represented in figs. and and an
example interference spectrum of the aligned slicer is shown in fig. [5.9,
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(e) 1 pixel shift (f) 0.1 pixel shift

Figure 5.8: Plots of the interference spectra collected from a misaligned slicer. The delay
introduced is equal to 2 mm. This data is synthetically generated.

5.2.2 Measurement of the Coherence Envelope

In order to measure the coherence envelope of the SD-OCT system simply the interference
spectrum as a function of delay needs to be measured. This is readily achieved by placing
a flat mirror at the focal point in the sample arm and recording an a-scan for various delay
positions induced in the reference arm. As the path length difference between the reference
arm and sample arm is increased in magnitude the spectral chromatic fringes will increase
in spatial frequency and also decrease in visibility. With proper signal-image processing
the spectrum may be converted in a Fourier-like manner to produce an a-scan that is
composed of a single spike corresponding to delay position with an intensity proportional
to the fringe contrast. This concept is illustrated in fig.
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Figure 5.9: A subsection of the interference spectrum passing through the properly aligned
slicer. Detector pixels 800 to 1200 were used corresponding to wavelengths 840 nm to
860 nm.

To induce different delay positions in the reference arm with reasonable accuracy and
repeatability (50 nm) in a timely fashion, the retro-reflector was placed on the computer
controlled sample scanning translation stage (Nanomotion, FB050). The system computer
commanded the stage to move a predefined amount a certain number of times, and at
each delay position a number of spectra were recorded, that of which the a-scan could be
produced.

The a-scan was produced by reducing the recorded spectrum in a more specialized
manner than was typically done to produce the OCT image in fig. Roughly, the
procedure was to subtract both the reference arm and sample arm spectra, and then divide
by the geometrical average (square root) of the two spectra. Afterwards the spectra was
re-sampled to linearize it in wavenumber space as opposed to wavelength space. A Fourier
transform was taken and a custom dispersion correction was performed. The custom
dispersion correction routine found the best distance parameter in order to maximize the
peak in the a-scan. For more on numerical dispersion correction see [23, [60].

Non-Slicer Coherence Envelope

The non-slicer coherence envelope was collected by scanning through a physical delay range
of £4 mm at 10 um steps thus producing 800 unique delay positions. At each delay position
1024 spectra were collected which were then averaged together in post-processing to obtain
a spectrum with a better SNR by a factor of 32 compared to a singly collected spectrum.
A neutral density filter with an optical density of 4.0 at 633 nm (Thor Labs, NE240B) was
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placed after the collimating lens in the interferometer to prevent saturation on the detector.
The camera was set to have an exposure time of 6.5 us that caused the peak central fringe
signal to be slightly less than the saturation value. A few example interference spectra can
be seen in fig. |5.10(a)l The processed spectra after subtracting the reference and sample
spectra and dividing by the geometrical mean can be seen in fig. .

The data was further processed by re-sampling, taking the Fourier transform, and then
applying a custom dispersion correction to each delay position. Only the spectral pixels 800
to 1200 were used in this computation. The peak a-scan value for each delay position was
used to generate the plot of the coherence envelope for the non-sliced spectrograph. The
resulting plot was smoothed using a 10-point averaging kernel. Afterwards a Gaussian fit
routine in IDL was performed to estimate an analytical function describing the coherence
envelope. The resulting measured coherence envelope and the Gaussian fit are shown in

fig. p12(a)

Slicer Coherence Envelope

The slicer coherence envelope was collected in a similar manner to the non-slicer coherence
envelope, except only the through beam was used. The scanning physical delay range was
+4 mm with 10 gm steps and 1024 spectra were collected at every delay position. The
exposure time was set to 24 ps which resulted in a similar spectral signal strength as the
non-sliced case. It is noted that the exposure time is roughly 4 times longer than the non-
sliced case, as would be expected from one quarter the amount of light, which is indeed
what is expected from the through beam only. A few example interference spectra can
be seen in fig. . The processed spectra after subtracting the reference and sample
spectra and dividing by the geometrical mean can be seen in fig. |5.11(b)}

The sliced data was further processed by re-sampling, taking the Fourier transform,
and then applying a custom dispersion correction to each delay position. Only the spectral
pixels 800 to 1200 were used in this computation. The peak a-scan value for each delay
position was used to generate the plot of the coherence envelope function for the sliced
spectrograph. Afterwards a Gaussian fit routine in IDL was performed to estimate an
analytical function describing the coherence envelope. The resulting measured coherence
envelope and the Gaussian fit are shown in fig. [5.12(b)|
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Figure 5.12: The spectral coherence envelopes as a function of physical delay. The plots

were generated by converting the processed spectra into a-scans and optimizing for peak
signal. Over plotted are the Gaussian fits.
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Figure 5.13: (a) The non-sliced envelope is shown as solid black and the sliced envelope is
shown as dashed red. (b) Ratio of Gaussians along with the ratio of the actual data from
figs. [p.12(a)| and [5.12(b)}

98



Discussion

It is observed that the best fringe visibility for the non-sliced spectra in figs is
in the centre of the detector with pixel numbers 800 to 1200; this region corresponds to
approximately 840 nm to 860 nm in the spectrum. This is a critical observation in the
SD-OCT system spectrograph and implies that the focused spot size outside this region
is larger than expected. The fringe visibility is expected to decrease slightly at shorter
wavelengths as compared to the longer wavelengths since the shorter wavelength pixels
have a more rapidly decaying spectral coherence envelope. In section [3.1.1]it was assumed
each pixel behaves the same, however this is not strictly true in the SD-OCT system
used so a restricted spectral window is chosen for evaluation so the higher order effects
are minimized. Since the spectral coherence envelope does not depend on the wavelength
region chosen insofar as much as several fringes can be observed, this restriction is valid.

The comparison between the non-sliced and sliced spectrograph results is the most im-
portant aspect of these data sets. The theoretical prediction states that the sliced spot
size should be reduced by a factor of 1.377X compared to the non-sliced spot, that results
in a slower decay of the spectral coherence envelope and therefore provides an improve-
ment in the fringe visibility as a function of depth. These predictions are summarized
in section |5.1.1} Even though the spectral coherence envelope may not strictly be Gaus-
sian, it is extremely close and the fitting does an excellent job as shown in figs. and
. Also, current literature accepts the Gaussian approximation to the spectral coher-
ence envelope, as was shown in eqn. [3.5] of section [3.1.1] The Gaussian functions have the
advantage of providing us with a closed form analytical solution for the spectral coherence
envelope. Plotting the Gaussian fits on the same plot will give us a similar comparison to
the theoretical predictions, this plot can be seen in fig. [5.13(a)|

It is observed that the Gaussian fit for the sliced spectrograph has a smaller variance
(narrower function) than the non-sliced spectrograph. This is in fact opposite of what
is theoretically predicted and indicates that the SD-OCT system performs worse with a
sliced spectrograph than without one. Furthermore, if we compare the measured results
after curve fitting (fig. [p.13(a)]) to the theoretical predictions shown in fig. [5.3] we note
that they do not agree. The non-sliced spectrograph seems to be performing worse than
expected, but this is not a huge surprise considering the simulation was highly idealized. A
plot of the measured relative fringe contrast improvement is shown in fig. that was
computed by taking the point-by-point ratio of the slice to non-slice data; also included in
this comparison is the ratio of the two Gaussian fitted curves. This result can be compared
to the theoretical prediction shown in fig. [5.4l It is observed that the ratio decreases as
physical delay is increased, which again emphasizes the point that the SD-OCT system
behaves worse with a sliced spectrograph than without one.

The reason why the data for the slicer was collected for the through beam only and
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not both beams combined, as would be the normal mode of operation, is because the
sliced beam, for all intensive purposes, is identical to the through beam and only offers a
throughput advantage. The effect of spectral resolution increase is inherent in both beams
of the slicer so it is only necessary to demonstrate the principle using one of the beams with
the understanding that the same effect will be observed with both beams combined and
properly aligned. Another point to mention is that by using only one of the beams a more
direct comparison can be made to the non-slicer spectrograph because the possibility of
subtle effects due to misalignment and non-equality between the through and sliced beam
may be eliminated.

The results conclude that the 2X refractive slicer does not offer any improvement to
the SD-OCT system as compared to the non-sliced spectrograph. This is because the slicer
is not behaving ideally (perfect 2X reduction in spot width) in the regime the SD-OCT
system spectrograph is operating in; however, this does not imply that the slicer is not
working properly. The only possible explanation of the behaviour of the slicer is that the
optical elements contained within the slicer cause a degradation in the étendue such that
the resulting spot size after being focused by the camera lens ends up being the same as
the original spot size, i.e. the 2X refractive slicer has a working slicing factor less than
1X. In section the étendue for the spectrograph was = = 298.556 [um? sr|, but for the
SD-OCT spectrograph the étendue is = = 2.62 [um? sr|, over two orders of magnitude
smaller. An in depth optical model and ray trace of the refractive slicer is necessary to
confirm this hypothesis.

5.2.3 Zemax Model of the Slicer

The concluding result from the data collected to measure the spectral coherence envelopes
for the sliced and non-sliced spectrograph in the SD-OCT system is that the 2X refractive
slicer offered no fringe contrast improvement, and it was hypothesized that the reason for
this is because the focused spot size after passing through the slicer ends up being about
the same as the original spot size without the slicer. The idealized theoretical predictions
were unable to foresee this effect because the model was too simplistic and did not take
into account the effects of optical aberrations. The discussions of optical aberration theory
in section [2.1.4] alluded to the point that the most effective way to fully analyze an optical
system is to put it through a ray tracing software package. By modelling the 2X refractive
slicer in a ray tracing environment the exact distribution of light incident on the detector
may be found, which of course gives the ultimate focused spot size.

The ray tracing software package ZEMAX®, herein referred simply as Zemax, was used
to model the 2X refractive slicer. Zemax is an optical modelling software package that
allows for ray tracing to analyze a complex optical system [64]. The general design of the
2X refractive slicer as described in section including the spectrograph collimating lens
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and camera lens were input into the Zemax program. The actual lens prescriptions and
coatings were available to download from the Thor Labs website so the real lens model was
used. A 3D model of the 2X refractive slicer can be seen in fig. 1.7 The most powerful
tool in Zemax, for our application, will be to compute the final focused spot shape of the
10 pm circular pinhole object after it passes through the slicer, and compare this to the
final focused spot shape if no slicer were present. For these purposes the spot diagram
analysis tool and the image simulation tool were used.

Spot Diagram Analysis

The spot diagram analysis tool produces a map of the locations of a starting ray bundle after
it passes through the prescribed optical system; this procedure is executed by employing
the ray tracing equations (eqns. and . For our purposes it is desirable to examine
the spot diagrams for the three extreme wavelengths in the SD-OCT system (800 nm,
850 nm, and 900 nm). We also wish to produce spot diagrams for a bundle of rays starting
in the centre of the pinhole, at the edge of the pinhole (10 um), and at the radial location
corresponding to half the area (7.07 ym). The spot diagrams for these various conditions,
both with and without the slicer, are shown in figs. 5.1445.19] A list summarizing the
diffraction limited spot size and the aberrated spot sizes for the sliced and non-sliced
spectrograph is given in table [5.2]

The spot diagrams indicate that the focused spot shape is largely affected by aberra-
tions and especially for the extreme wavelengths of 800 nm and 900 nm. The extreme
wavelengths pass through the camera focusing lens at angles of £4°, therefore showing
that the off-axis performance of the single achromatic doublet camera lens is quite poor.
The differences in the spot diagrams between different areas of the 10 um diameter object
are negligible compared with the size of the spot diagram, as can be visually observed in

figs. 5.19|

For the on-axis case (850 nm) for the slicer and non-slicer, the spot diagrams appear
to be only slightly larger than the diffraction limit, meaning that most of the imaged rays
from the ray trace fall within the Airy diameter. For the off-axis case for the slicer and
non-slicer, the spot diagrams show that the aberrations caused by the camera focusing
lens result in focused rays spreading much further out from the Airy diameter. The most
significant aberrations affecting the spot size in the off-axis case are coma and astigmatism,
a summary of these aberrations are described in section [2.1.4] The rays are spread out
much more horizontally than vertically because the horizontal tilt angle is +4° while the
vertical tilt angle is 0°. In the sliced spectrograph the rays are not spread out as much
vertically as they are in the non-sliced spectrograph, as can be seen by observing figs. |5.14)
15.17, [5.16} and |5.19]
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Figure 5.14: Spot diagram for the 10 pum extended source imaged through the sliced

spectrograph for 800 nm light.
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Figure 5.15: Spot diagram for the 10 pum extended source imaged through the sliced

spectrograph for 850 nm light.
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Figure 5.16: Spot diagram for the 10 pum extended source imaged through the sliced
spectrograph for 900 nm light.
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Figure 5.17: Spot diagram for the 10 ym extended source imaged through the non-sliced
spectrograph for 800 nm light.
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Figure 5.18: Spot diagram for the 10 um extended source imaged through the non-sliced
spectrograph for 850 nm light.

0BT: 0.0000, ©.0000 MM 0BT: 0.0071, 0.0800 MM = 09000

200.00

IMA: -10.544, 0.000 MM IMA: -10.558, -0.000 MM

OBT: @.0100, 0.0000 MM

IMA: -10.564, -0.000 MM
SPOT DIAGRAM

SURFACE: IMA

2X REFRACTIVE SLICER
UNITS ARE um, AIRY RADIUS : 7,937 um

FIELD : | 2 3
RMS RADIUS : 39.774 39.897 39.949
GED RADIUS : 82.135 82.076 82.052 NOSLICER3 . ZMX
SCALE BAR 200 REFERENCE @ CENTROID CONFIGURRTION 1 OF 1

Figure 5.19: Spot diagram for the 10 um extended source imaged through the non-sliced
spectrograph for 900 nm light.
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’ Theoretical Spot Diagram Results

Non-Slicer Slicer
Wavelength | Airy Diam. | Spot size | Airy Diam. | Spot size
800 nm 14.11 pm 200 pm 20 pm 160 pm
850 nm 15.09 pm 20.5 pm 20 pm 30 pm
900 nm 15.87 pm 160 pm 20 pm 120 pm

Table 5.2: A table listing the approximate diffraction limited Airy diameter as well as
the aberrated spot size diameter for the 10 pm extended pinhole source using the sliced
and non-sliced spectrograph in the SD-OCT system. The diameters are in the dispersive
x-direction only.

Image Simulation Analysis

The image simulation tool in Zemax extends upon the ray tracing procedure to produce an
actual simulated image of a user defined input object. Essentially the tool produces a spot
diagram for every point in an object. The actual implementation and variables that go
into this tool are beyond the scope of this thesis and the reader is referred to the program
documentation [64]. The input parameters to run the image simulation tool, as well as
the starting object image, can be found in table and fig. [5.20] The resulting simulated
images of the pinhole object relevant to the SD-OCT system both with and without a slicer
in the spectrograph can be found in fig. [5.21] The widths were calculated by vertically
binning the spot images, and then measuring the FWHM of a Gaussian fit to the curve,
these plots can be seen in fig. 5.22] A list giving the measured FWHM spot sizes for the
non-sliced and sliced spectrograph can be found in table [5.4]

The spot images for the non-sliced and sliced spectrograph shown in fig. agree well
with the spot diagram images in figs. The images, however, show the density of
rays more clearly so they provide a better understanding on how the non-sliced and sliced
spectrograph behave. In the spot diagrams the horizontal spreading of the rays away from
the Airy diameter appeared to be quite significant, but the generated images show that
these rays do not contribute towards a significant fraction of the total amount of light.
Before with the spot diagrams the widths in table were given in terms of the maximal
horizontal extent, however, with the simulated images a FWHM may easily be computed,
which provides a better metric for the spot size width.

The FWHM values for the sliced images is less than the non-sliced images for all
wavelengths, as is shown in table[5.4] For the on-axis case of 850 nm the simulated images
show the slicer provides a width reduction by a factor of 1.27, but the off-axis cases for
800 nm and 900 nm show reduction factors of 1.01 and 1.27; clearly the slicer does not
provide much improvement at the shorter wavelengths near 800 nm. This is partly due
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to the fact that even the non-sliced spectrograph has much worse performance at these
wavelengths compared to the longer wavelengths, which is an indication of large chromatic
aberration.

Conclusions

In section [5.1.T using the idealized simulation a slicing factor of 1.377X was predicted. From
the measured simulated images a slicing factor of 1.27X was seen for wavelengths 850 nm
to 900 nm and with virtually no improvement for 800 nm light. The Zemax simulation for
on-axis light is only slightly worse than the ideal IDL simulation, however both of these
results indicate that some improvement in the coherence envelope should be observed in
the SD-OCT system—this was not the case. The measured data presented in section [5.2.2]
show that the slicing factor is less than 1X so there appears to be a mismatch between
theoretical predictions and measured results. The goal is then to develop a more accurate
theoretical model of the sliced and non-sliced spectrograph to match the measured results.

\ Image Simulation Input Parameters \

Parameter Value
Field size 10 pm
Image Size 600 pum
# Rays 5 x 10°
# Pixels 600 x 600

Table 5.3: A table listing the input parameters to the geometric image simulation tool in
Zemax.

’ Image Simulation Spot Widths ‘

Wavelength | Non-slicer Slicer

800 nm 45.125 pm 44.625 pm
850 nm 20.500 pm 16.125 pm
900 nm 34.875 pm 27.500 pm

Table 5.4: A table listing the spot widths from the simulated images for the non-sliced and
sliced spectrograph. The widths are measured by FWHM.
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Figure 5.20: The circle image used as the starting object in the Zemax geometric image
simulation tool.

(a) 800 nm (b) 850 nm (¢) 900 nm

' .

(d) 800 nm (e) 850 nm (f) 900 nm

Figure 5.21: The resulting spot images from the Zemax image simulation tool. Figs. (a)-(c)
are without the slicer, and figs. (d)-(f) are with the slicer.
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Figure 5.22: The vertically binned pinhole images generated using Zemax for the non-sliced
and sliced spectrograph. Over-plotted are a non-linear and linear Gaussian curve fit to the
image simulation results.

5.2.4 Updated Simulation

In the previous simulation we had assumed the pinhole object formed a perfect image in
the focal plane of the camera lens and we did not take into account any aberrations. We
have seen from ray tracing results in section that the pinhole image is largely affected
by aberrations, in both the sliced and non-sliced case. In order to properly explain the
measured results presented in section the effect of the aberrated image must be taken
into account in the simulation model. The other assumption of using the same Airy pattern
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for both the slicer and non-slicer must also be re-examined.

The most important thing to change in the simulation is the shape and size of the
pinhole image function. We can no longer assume a perfect image, as was shown in fig. [5.2]
rather we must construct an image that accurately represents the image simulation results
given in section [5.2.3] The vertically binned 1D images from the Zemax simulated pinhole
images shown in fig. [5.21] are shown in fig. |[5.22| along with a linear and non-linear Gaussian
curve fit. We wish to use these data sets to construct the imaging PSFs in the updated
simulation. Since the measured results for the coherence envelope were only done using the
on-axis data due to poor off-axis performance, the updated simulation will only generate
imaging PSFs using the Zemax simulation results for the on-axis 850 nm light.

The updated pinhole images were constructed by generating Gaussian functions with
FWHM values matching the values in table|5.4| for the on-axis 850 nm light only. These two
pinhole images, one for the slicer and one for the non-slicer, were convolved with vertically
binned Airy patterns with diameters taken from table in order to generate the updated
imaging PSFs. Since the goal of the updated simulation is to match the measured results,
the FWHM values used to generate the Gaussian pinhole images were allowed to increase
or decrease. Once final values are obtained, as is indicated by a close match between
theory and experiment, the resulting spot widths may be compared to directly measured
spot widths.

Updated Simulation Results

Using the two new pinhole images shown in fig. [5.23] the rest of the simulation may be
performed unaltered. The resulting FWHM values for the aberrated pinhole images are
20.5 pm and 21.5 pm. The imaging PSFs are convolved with the spatial pixel response
function to generate the overall average pixel bandpass for the non-sliced and sliced spectro-
graph. These bandpass functions are then Fourier transformed to generate the coherence
envelopes that describe the fringe visibility versus depth relationship for the two types
of spectrographs. The resulting coherence envelopes can be seen in fig. and the
relative improvement between sliced and non-sliced spectrograph in SD-OCT can be seen

in fig. -24(0)

Discussion of Updated Simulation Results

The updated simulation now matches the measured results very closely, as can be seen
by comparing the coherence envelopes in figs. |5.24(a)| and [5.13(a)}, and the coherence en-
velope enhancement functions shown in figs. [5.24(b)| and [5.13(b)l Both simulation and
measurement show a small width reduction in the coherence envelope for the sliced SD-
OCT system and the ratio of the coherence envelopes shows a downward trend in fringe
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Figure 5.23: A plot showing the vertically integrated aberrated image of the pinhole on
the camera focal plane. The plot shows the results for both without (black solid) and with
(red dashed) a slicer in the system. These functions are to be convolved with the Airy
pattern to form the imaging PSFs.

visibility improvement factor with a degrading factor of slightly less than 0.5X at 3.7 mm
of imaging depth.

The Gaussian pinhole images have FWHM values of 20.5 pym and 21.5 pm. These
values may be compared to the widths of the directly imaged focused spots from the sliced
and non-sliced spectrograph for on-axis 850 nm light. Images of the directly imaged spots
are shown in fig. [5.25] The same camera focusing lens and a high quality web-cam with
6 pm by 6 pum square pixels was used to generate these images. The images are highly
pixelated because the spot size should be on the order of 20 ym, which only corresponds
to between 3 and 4 pixels. A non-linear Gaussian function was fit to the vertically binned
image in order to measure the FWHM of the spot. The resulting values are summarized
on table 5.5l Because so few pixels were used in this method the accuracy is not very high
so large error bars of 43 um (half a pixel width) are applied to the uncertainty in these
measurements. The simulation FWHM values of 20.5 ym and 21.5 ym are within the error
bar so the results seem reasonable. The sliced spot size increase from the Zemax simulated
result of 16.125 um to the updated matched measurement simulation of 21.5 ym means
that the slicer is performing 33% worse than expected in practise.
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shown as dashed black. (b) Ratio of coherence envelopes showing the effect of the slicer
on the SD-OCT system.
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(a) Non-Slicer (b) Slicer

Figure 5.25: An image of the non-sliced and sliced spot imaged directly.

(a) Non-slicer (b) Slicer

Figure 5.26: The vertically binned profiles of the direct imaged spots from (a) the non-sliced
spectrograph and (b) the sliced spectrograph

’ Direct Spot Image Widths ‘

Non-Slicer Slicer
20.24+3.0 pm 19.3+3.0 um

Table 5.5: The widths of the directly imaged spots for the slicer and non-slicer in the SD-
OCT system. These values are measured by FWHM from the non-linear Gaussian fitted
functions in figs. [5.26(a)| and [5.26(b)|
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5.3 Necessary Improvements Required in the SD-OCT
System

The current implementation of the SD-OCT system spectrograph introduces significantly
strong aberrations, therefore limiting the performance. The largest aberrations are intro-
duced by sending the light through the camera lens at the dispersion angles of about +4°
from the diffraction grating. If the aberrated spot size is larger than the perfect pinhole
image then slicing the image will have a smaller effect, therefore reducing the working
slicing factor (WSF). It is with this point in mind that in order to use a slicer effectively,
in general, the object of interest should be significantly larger than the aberrations intro-
duced. In the current implementation of the SD-OCT system spectrograph the aberrated
spot size plus the diffraction limit, 15 pum, varies between 21.4 pym for 850 nm light on-axis
to 45.7 pym and 35.5 pm for 800 nm and 900 nm light off-axis. The aberrated spot size
plus the diffraction limit, 20 pum, from the refractive 2X slicer was shown to be 18.0 um,
45.6 pm, and 28.8 pm for the wavelengths 850 nm, 800 nm, and 900 nm. Dividing the two
results gives the working slicing factor for the SD-OCT system spectrograph, calculated to
be 1.19X for 850 nm, 1.00X for 800 nm, and 1.23X for 900 nm. These results are summa-
rized in table[5.6] Also shown are the WSF values if the 33% increase in sliced spot size is
taken into account, that was proposed in section [5.2.4] Each of those resulting values are
less than 1.

The relative effect of the aberrations on the spot size introduced by the base spectro-
graph may be taken by dividing the measured aberrated spot widths in table by 20 pm.
Similarly the relative effect of aberrations on the spot size introduced by the slicer may be
computed by dividing the sliced spot widths by 10 gm and dividing out the aberrations
introduced by the base spectrograph alone. These results are summarized in table [5.7]

Both the base spectrograph and the 2X refractive slicer induce too many aberrations and
limit the performance of the SD-OCT system. The aberrations induced by the spectrograph
limit the off-axis performance and make the ideal WSF (2.0X) smaller than desired, and
the aberrations induced by the refractive slicer continue to worsen this effect. In order to
make a substantial improvement to the system a better performing base spectrograph is
needed that is able to provide diffraction limited performance. A better performing slicer
is also needed since the 2X refractive slicer induces many aberrations theoretically, and
practically the aberration factor is larger than 2, meaning the sliced spot is always larger
than the non-sliced spot.
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| Aberrated Slicing Results

Wavelen. | Non-Slicer | Slicer Slicer+33% WSF WSF-33%
800 nm 45.68 pm 45.56 pm 60.28 pum 1.0026 0.7578
850 nm 21.48 pm 18.04 pm 23.04 pm 1.1907 0.9323
900 nm 35.52 pm 28.80 pm 37.72 pm 1.2333 0.9417

Table 5.6: The spot widths of the spectrograph using the values from table [5.4] and taking
into account the Airy diameters given in table[5.2] The ratio between the widths gives the
working slicing factor.

] Aberration ratios \

Wavelength | Spect. Spec.+Slicer Slicer Slicer+33%
800 nm 2.2562 4.4625 1.9778 2.6371
850 nm 1.0250 1.6125 1.5731 2.0975
900 nm 1.7437 2.7500 1.5770 2.1027

Table 5.7: The aberration factor introduced by the base spectrograph, base spectrograph
and the slicer, and the aberration factor introduced by the slicer itself. The values were
computed by dividing the spot widths in table by the ideal unaberrated spot width.
These values do not take into account diffraction.

5.3.1 Improvements Needed in the Spectrograph

The performance of the base spectrograph will affect the overall depth imaging performance
of the SD-OCT system. The large aberration factors presented in table show that the
off-axis performance of the spectrograph induces aberrations increasing the spot widths
on the order from 75% to 125%, with the shorter wavelengths being affected more than
the longer wavelengths. This type of performance is unacceptable to construct a high-
performance SD-OCT system and will limit the practical imaging depth since the coherence
envelope is quite narrow, or will mean trading off imaging depth for axial resolution since
only the centre 20 nm gives acceptable performance. Choosing the latter option is a waste
of resources since the source bandwidth is 100 nm and a high-quality diffraction grating
is used with a large area detector. The best way to improve the performance of the base
spectrograph is to use a camera lens that is designed to reduce the off-axis aberrations, such
as coma, astigmatism, and field curvature, and also reduce the on-axis aberrations such as
spherical and chromatic—a description of these aberrations can be found in section [2.1.4]

A complex three element lens oriented in an image telecentric configuration (XP located
at infinity) was designed with off-the-shelf parts. This lens design was based off of a
previous prescription used in other SD-OCT systems [I8]. The complex lens uses two
achromatic doublet lenses placed in a symmetric configuration (flint-crown, crown-flint),
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Figure 5.27: The design of the complex three element lens to upgrade the performance of

the SD-OCT system spectrograph.
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Spectrograph Lens Prescription

Surface Radius Thickness Material
1 Infinity 3.000 mm N-SF6HT
2 234.470 mm 4.000 mm N-BAF10
3 -261.187 mm 5.000 mm AIR

4 261.187 mm 4.000 mm N-BAF10
5 -234.470 mm 3.000 mm N-SF6HT
6 Infinity 5.000 mm AIR

7 254.920 mm 4.000 mm N-BK7

Table 5.8: The general prescription for the custom complex three element camera lens
design. Surfaces 1-5 are the two achromatic doublet lenses and surfaces 6-7 is the convex-
plano singlet lens.

followed by a convex-plano singlet lens. Each of the lens elements were separated by
5 mm since this is the standard size of two 2” retaining rings (Thor Labs, SM2RR). The
achromatic doublets used in the design are 2” in diameter and have a 500 mm focal length
with design wavelengths of 706.5 nm, 855 nm, and 1015 nm (Thor Labs, AC508-500-B),
and the convex-plano lens used is 2”7 in diameter and has a 500 mm focal length and is
made of N-BK7 glass (Thor Labs, LA1380-B). The general prescription is given in table|5.8
and the lens design is shown in fig. [5.27]

The upgraded camera lens has an effective focal length of 169.6 mm and a diameter of 2”.
The lens is placed 151.6 mm after the diffraction grating so that the system is telecentric in
image space. Image space telecentric means that the exit pupil is located at infinity so the
chief ray is also located at infinity (see section . This design configuration reduces
the off-axis aberrations (coma, astigmatism, field curvature, etc), and decouples image
magnification from defocus. Aberrations are further reduced from the multiple element
design employing advanced lens design techniques of symmetry, lens-breaking, and field
correctors [27].
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Upgraded Performance Results

In order to evaluate the performance of the upgraded spectrograph an identical procedure
of generating aberrated spot images that was employed in section was used. From
the simulated images generated using Zemax the FWHM of the spots can be calculated
from the vertically binned spot profiles. The FWHM values can furthermore be used in
the updated IDL simulation to produce the spectral coherence envelope. The resulting
simulated images from Zemax for the upgraded non-sliced spectrograph can be seen in
fig. the resulting vertically binned spot profiles are shown in fig. and the FWHM
values for the spot widths are summarized in table

The spot images generated from using the upgraded spectrograph show much better
off-axis performance compared with the single camera lens spectrograph. The simulated
spot images do not show idealized results partly due to the fact that the three element lens
design is not a complete custom lens design and the design wavelengths for the achromats
do not match the system wavelengths. However, the simplicity of this design make up for a
small amount of performance sacrificed. Another thing to note about the results is that the
spot width on-axis is larger than the spot widths off-axis, contrary to what might normally
be expected for an off-axis optical system. This is a classic result in lens design for off-axis
systems where some on-axis performance is sacrificed in order to boost the performance
off-axis [27].

5.3.2 Improvements Needed in the Slicer

The performance of the 2X refractive slicer in the SD-OCT system was shown to introduce
aberrations that increase the spot size to be larger than the non-sliced spot size. In an
ideally performing 2X refractive slicer the final focused spot size should have been less
than the non-sliced spot size, as are indicated by the WSFs in table [5.6], however the
performance of the 2X refractive slicer is not perfect and was shown to perform 33% worse
than expected; given the 33% degradation the WSFs are reduced to below 1.00. The
refractive slicer contains singlet cylindrical lenses for the beam compressor section which
introduces significant chromatic aberrations and results in poor collimation for the design
wavelengths for the SD-OCT system. The beam expander section of the refractive slicer
does contain achromatic doublet lenses, but the design wavelengths are 706.5 nm, 855 nm,
and 1015 nm, which do not match the SD-OCT design wavelengths of 800 nm, 850 nm,
and 900 nm. This will induce secondary chromatic aberration effects and further degrade
the refractive slicer performance. In all cases of the refractive slicer spherical lenses are
used (surfaces with spherical curvature), which induce spherical aberrations. A higher
performing 2X slicer is needed that reduces the effect of the aberrations significantly to
the point where the slicer is diffraction limited.
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There are two major improvements than can be made in order to boost the performance
of the 2X slicer significantly. First, all reflective elements can be used to eliminate chromatic
aberration. Second, parabolic surfaces can be used to reduce spherical aberrations; it is a
well known result in lens design that parabolic surfaces can reduce spherical aberration [27].
With these ideas in mind a 2X reflective diffraction limited slicer was designed. The results
from this upgraded slicer are presented here but the details of the design are included in
section 0.4

Upgraded Performance Results

In a similar fashion to the upgraded spectrograph results presented in section [5.3.1] the
upgraded slicer was modelled in Zemax and simulated images of the focused spot in the up-
graded spectrograph were generated. These images were vertically binned and the FWHM
values were computed. The FWHM values can be used to generate the spectral coherence
envelope of the predicted SD-OCT system. The resulting simulated images from Zemax
for the upgraded sliced spectrograph can be seen in fig. [5.28] the resulting vertically binned
spot profiles are shown in fig. [5.29] and the FWHM values for the spot widths are summa-
rized in table 5.9

The spot widths for the upgraded slicer placed in the upgraded spectrograph are nar-
rower than the spot widths with the refractive slicer in the single lens spectrograph. The
off-axis performance is greatly enhanced due to the upgraded spectrograph lens and because
the reflective slicer does not have any chromatic aberration. The off-axis performance is
not ideal, but this is not inherently due to the slicer, but rather the upgraded spectrograph
lens, as was discussed in section [5.3.1}

’ Image Simulation Spot Widths ‘

Non-Slicer Slicer
Wavelength | Width Airy Diam. | Width Airy Diam.
800 nm 23.000 pm 17 pm 13.625 pm 21 pm
850 nm 25.125 pm 17 pm 10.250 pm 21 pm
900 nm 21.750 pm 17 pm 18.875 pm 21 pm

Table 5.9: A table listing the spot widths from the simulated images for the upgraded spec-
trograph and slicer. The widths are measured by FWHM. Also included is the diffraction
limited Airy diameter.

117



) 800 nm ) 850 nm ) 900 nm
) 800 nm ) 850 nm ) 900 nm

Figure 5.28: The resulting spot images from the Zemax image simulation tool for the
upgraded spectrograph (a)-(c), and with the upgraded slicer (d)-(f).
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Figure 5.29: The vertically binned pinhole images generated using Zemax for the upgraded
spectrograph and upgraded slicer. Over-plotted are a non-linear and linear Gaussian curve

fit to the image simulation results.
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| Aberrated Slicing Results |

Wavelen. | Non-Slicer | Slicer Slicer+33% WSF WSF-33%
800 nm 24.12 pm 16.00 pm 20.08 pm 1.5075 1.2012
850 nm 26.16 pym 13.20 pm 16.04 pm 1.9818 1.6310
900 nm 22.92 pm 20.72 pm 26.68 pum 1.1061 0.8591

Table 5.10: The spot widths of the upgraded spectrograph using the values from tables
taking into account the Airy diameters. The ratio between the widths gives the working
slicing factor.

’ Aberration ratios ‘

Wavelength | Spect. Spect.+Slicer Slicer Slicer+33%
800 nm 1.0171 1.2050 1.1848 1.5797
850 nm 1.1111 0.9065 0.8159 1.0879
900 nm 0.9618 1.6693 1.7356 2.3142

Table 5.11: The aberration factor introduced by the upgraded spectrograph, upgraded
spectrograph and the upgraded slicer, and the aberration factor introduced by the upgraded
slicer itself. The values were computed by dividing the spot widths in table by the ideal
unaberrated spot width. These values do not take into account diffraction.

5.3.3 Predicted SD-OCT System Performance with the Upgraded
Spectrograph and Slicer

The final spot size taking into account the diffraction Airy spot is used to predict the
working slicing factor (WSF). The final focused spot sizes for the upgraded non-sliced
spectrograph with an Airy diameter of 17 ym are 24.1 pm, 26.2 pym, and 22.9 pym for the
wavelengths 800 nm, 850 nm, and 900 nm. Similarly for the reflective slicer with an Airy
diameter of 21 pm the final focused spot widths are 16.0 pgm, 13.2 pm, and 20.7 pm for
the wavelengths 800 nm, 850 nm, and 900 nm. The ratio of the spot widths gives the
WSF which are calculated to be 1.51, 1.98 and 1.11 for 800 nm, 850 nm, and 900 nm. The
measured results from the refractive slicer showed a 33% increase in spot widths, taking
this as a worse-case scenario for the upgraded reflective slicer the WSFs are calculated to
be 1.20, 1.63, and 0.86. With the exception of 900 nm light, even in a worse-case scenario
the upgraded slicer will still show an improvement. It is not believed that a 33% error will
be observed in the upgraded slicer because very high precision optical components are used
in the design (see section . The upgraded slicing results are summarized in table

The relative effect of the aberrations introduced by the upgraded spectrograph may be
taken by dividing the measured aberrated spot widths in table by 22.61 pm (imaging
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magnification is 2.26 with a 10 gm pinhole). Similarly the relative effect of the aberrations
introduced by the upgraded slicer may be computed by dividing the sliced spot widths
in table by 11.30 pgm and dividing out the aberrations introduced by the upgraded
spectrograph alone. These results are summarized in table [5.11]

In both the cases for the 900 nm light in the upgraded spectrograph and the 850 nm
light in the upgraded slicer, the values in table imply that the amount of aberrations
introduced is making the spot size FWHM less than the unaberrated spot size. This
result is perfectly acceptable because Gaussian functions are being used to model the
vertically binned spot profiles and the FWHM does not equate to the full spot size width;
a Gaussian has infinite extent but the aberrated spot image must have finite extent. For
this reason the values presented in table |5.11| should be understood qualitatively, rather
than quantitatively.

Comparing the aberration ratios in tables and it can be seen that the amount
of aberrations introduced by the upgraded spectrograph and upgraded reflective slicer are
much less. Even with a 33% estimated worst-case scenario for the reflective slicer the
aberrations cause the spot size from the slicer to be less than the non-sliced beam in the
upgraded spectrograph, with the exception of 900 nm light. This is indeed what is desired
for the upgraded system.

Spectral Coherence Envelopes

As was performed in the updated simulation in section the FWHM spot size from
the upgraded spectrograph and the upgraded reflective slicer are used to generate the
spectral coherence envelopes for the upgraded SD-OCT system. The envelope functions
can be divided by one another to show an improvement factor in the signal as a function of
imaging depth. A 33% increase in sliced spot size was used in order to model a worst-case
scenario upgraded SD-OCT system. The values used for the spot widths are 25.125 um for
the non-sliced spectrograph and 13.7 um for the sliced spectrograph. Also, Airy diameters
of 17 pym and 21 pm were used. The resulting aberrated spot profile plots are shown
in fig. , the coherence envelopes are shown in fig. , and the ratio showing the
improvement factor is shown in fig. |5.31(b)}

The maximum unaliased imaging depth has been increased from 3.767 mm to 4.273 mm
because a longer focal length camera lens has been used and the wavelength separation,
A\, between pixels has been decreased (see eqn. . Also to note that the aberrated
pinhole spot profile for the sliced system is much narrower than the non-sliced system.
The spectral coherence envelope for the sliced system is much broader than the non-sliced
system indicating that an improvement in signal strength versus imaging depth will be seen
with the sliced SD-OCT system. The ratio of the coherence envelopes shows that a very
large improvement over the non-sliced SD-OCT system is observed. A 2.75X improvement
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Figure 5.30: A plot showing the vertically integrated aberrated image of the pinhole on the
camera focal plane. The pinhole is modelled as a uniform circular function. The plot shows
the results for both without (black solid) and with (red dashed) a slicer in the system.

in fringe contrast at around 2.2 mm, a 7.0X improvement at around 3.1 mm, and at most a
42.6X improvement at the theoretical maximum unaliased imaging depth of 4.2 mm. Keep
in mind is this all for physical delay in a vacuum, in a typical tissue with an index of 1.4
these distances become 1.57 mm, 2.21 mm, and 3.05 mm.

5.4 Design of the Diffraction Limited Reflective Slicer

The chromatic, spherical, and other higher order aberrations introduced by the optical ele-
ments in the refractive-based 2X slicer caused the focused spot size FWHM to be enlarged
by 6-7 pm. In the custom spectrograph used to test the performance of the refractive slicer
initially in section the starting spot size was on the order of 50 um, while as for the
SD-OCT system the starting spot size is on the order of 10 ym. The amount of aberra-
tions introduced by the refractive slicer in the SD-OCT system is about 50% of the desired
focused spot size while in the testing spectrograph it is about 10%. In the former case
the aberrations introduced are catastrophic to the system performance, while in the latter
case the effects are barely significant. It is also worth mentioning that the Airy diameter
in the SD-OCT system was on the order of 20 ym while for the testing spectrograph it
was on the order of 14 um. The aberrated spot shape is convolved with the Airy pattern
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so in a perfect slicer that reduces the width of the spot shape by a factor of 2X exactly, a
factor of 2X in final focused spot width reduction is never truly realized. In the ideal case
of on-axis 850 nm light the focused spot widths for before and after the 2X refractive slicer
are 21.48 pm and 18.04 pm giving an ideal slicing factor of only 1.19X (see table [5.6]). For
the testing spectrograph the spot sizes FWHM were measured to be 81.6 pm and 40.8 ym
giving a slicing factor of 2.00. Of course these measurements are FWHM, which may not
be the best indicator for actual reduction factor, but FWHM measurements are typically
the values that are performed in optical measurements and provide a standard metric. The
Airy diameter for the SD-OCT system is larger than the desired spot width by nearly a
factor of 2, while for the testing spectrograph it was only about 25%. The main conclusion
of this analysis is that if a slicer is used to reduce the width of something that is close to
the size of the diffraction limit then the working slicing factor (WSF) may be much less
than the designed slicing factor. Furthermore, if the width of the spot is very small, then
the aberrations introduced by the slicer may be a large percentage of the spot width and
this will further reduce the WSF. In the case of the SD-OCT system both the spot size is
on the order of the Airy diameter and the aberrations introduced by the slicer are a signif-
icant percentage of the spot width. In order to increase the WSF for the SD-OCT system
the aberrations induced by the slicer have to be decreased significantly and a “diffraction
limited” design needs to be employed.

The chromatic aberrations in the refractive slicer is quite significant. In order to elimi-
nate the chromatic aberration an all reflective design may be employed. Reflective optical
elements (mirrors) when used as lenses do not have a focal length that is dependent on
wavelength. Recall from section that the wavelength dependence on focal length is
due to glass being a dispersive medium so the index of refraction is dependent on wave-
length, and the focal length is dependent on the index of refraction. With a mirror the
light is not travelling through any glass so there is no dispersion (except due to the air,
which is minimal) and therefore no wavelength dependence on focal length.

One of the challenges of working with reflective lenses is that typically the light is
obscured by other optical elements, as is the case for many reflective telescopes, or the
light must enter off-axis. In the former case there is a significant loss of throughput as
a trade-off for a straight line, on-axis design. In the latter case the throughput efficiency
is very high but an off-axis design is complex and sometimes introduces more aberrations
[27]. The goal of the newly designed diffraction limited slicer is to reduce the aberrations
as much as possible without sacrificing much throughput. An on-axis design would be able
to keep aberrations to a minimum, but would be too costly in terms of throughput, so an
off-axis reflective design was chosen for the diffraction limited slicer.

The spherical and other higher order aberrations in the refractive slicer were also quite
significant in addition to the chromatic aberrations. Similar aberrations would still be
present in the reflective design if spherical surfaces are used for the lens elements. Recall
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(a) Side View

i e

(b) Top view

Figure 5.32: The Zemax model of the 2X reflective slicer as shown from the top and side.
Figure protected under United States patent [44].

from section that spherical aberration is due to the surface of an optical element
having spherical curvature, and that this aberration can be eliminated by using a parabolic
surface instead. For a spherical surface the rays of light incident close to the centre of the
optical element will come to a focus at a different point than the rays incident further away
from the centre of the optical element. If the surface is parabolic then all the rays come to
a focus at the same point.

Having reflective parabolic lenses is arguably one of the most ideal designs since there
are no chromatic or spherical aberrations. However, using the elements off-axis still in-
troduce other aberrations such as coma, astigmatism, field curvature, distortion, and so
on. These higher order aberrations are still very small and ultimately result in the newly
designed reflective slicer to be diffraction limited. The newly designed slicer employs a re-
flective off-axis parabolic set-up. The final design can be seen in fig. and an annotated
3D representation is seen in fig.

The first two elements of the diffraction limited slicer serve as the beam compressor
and are off-axis parabolic mirrors with curvature only in one dimension, hence they are
dubbed off-axis parabolic cylindrical mirrors. The focal lengths, dimensions, and off-axis
distances (OAD) are summarized in table The incident light reflects off of the first
mirror, CM1, and is focused to a line in-front and above the mirror. The second mirror,
CM2, is placed above and in-front of mirror CM1 such that the focal planes coincide. The
light from CMI1 reflects collimated off of CM2 and continues along the same light input
direction but sheared upwards. The compressor mirrors are oriented parallel to one another
and centred about the input optical axis. This orientation makes it quite easy to construct
in a final instrument since the mirrors can be specified by rectangular coordinates and 90°
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angles. The orientation of the compressor mirrors are summarized in table [5.13]

The second two elements of the diffraction limited slicer are the pupil re-arranging
mirrors, DM1 and DM2, that work in a similar manner to the mirrors in the refractive
design (see section . The orientations of the re-arranging mirrors are summarized in
table [5.13] The light after the re-arranging mirrors is centred slightly below and sheared
slightly horizontally from the light before the re-arranging mirrors.

The last two elements of the diffraction limited slicer serve as the beam expander and
are off-axis parabolic mirrors with curvature in both dimensions, hence they are circularly
symmetric and simply called off-axis parabolic mirrors. The focal lengths, dimensions, and
off-axis distances are summarized in table [5.12] The light emerging from the re-arranging
mirrors is reflected off of the first expander mirror, EM1, that is sheared slightly horizon-
tally. The reflected light is focused to a point below, in-front, and sheared horizontally
from EM1. The light continues to diverge from the focal point and is reflected collimated
off of the second expander mirror, EM2. The second expander mirror is oriented below,
in-front, and sheared horizontally from EM1. The orientation of the expander mirrors
are summarized in table 5.13] The horizontal shears of mirrors EM1 and EM2 cause the
output collimated beam from the diffraction limited slicer to be centred with the same
lateral coordinates as the input beam, i.e. input and output are the same location. This
a highly desirable effect because it means the diffraction limited slicer can be integrated
into a spectrograph a lot easier than any current slicer design. Also, the series effect of
stacking slicers is more easily realized (see section .

The orientation and sizes of the focusing mirrors in the new slicer are designed so that
all the mirrors may be specified with 90° angles and the bases of the mirrors lie on the
same horizontal plane. This results in the construction of the slicer being quite simple
since there are no tilted components in the system with the exception of the re-arranging
mirrors, but that point is trivial.

A spot diagram of the off-axis parabolic slicer was produced in Zemax to demonstrate
the diffraction limited off-axis performance. Perfect collimating and focusing lenses were
used to model the spectrograph so the only aberrations introduced would be from the
slicer. This is compared against a spot diagram produced in the same way but using the
refractive slicer. Simulated images of the focused spots were also produced. The resulting
spot diagrams are shown in fig. [5.35] and the simulated images are shown in fig.
The spot diagrams clearly show that the reflective slicer is diffraction limited while the
refractive slicer has rays that focus well outside the Airy diameter, hence the off-axis
parabolic reflective slicer is diffraction limited. The resulting simulated images shows that
the reflective slicer produces a much cleaner spot profile than the refractive design.
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EM1

EM2

Figure 5.33: The Zemax model of the 2X reflective slicer shown as a 3D shaded model.
Figure protected under United States patent [44].

’ Reflective Slicer Element Parameters ‘

Element FL (mm) Width (mm) Height (mm) OAD (mm)
CM1 20 30 30 4.5

CM2 12.5 30 10.5 0.0

DM1 00 12.7 254 N/A

DM2 i~ 25.4 12.7 N/A

EM1 25 15 15 0.0

EM2 50 30 30 0.0

Table 5.12: The focal lengths, widths, heights, and the off-axis distance of the individual
elements in the reflective diffraction limited 2X slicer design. Information protected under

United States patent [44].
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Orientation of the Slicer Elements

Element X (mm) Y (mm) Z (mm) Tilt X Tilt Y
CM1 0.0 0.0 0.0 0.0 0.0
CM2 0.0 24.375 -62.5 0.0 0.0
DM1 0.0 24.375 15.0 -1.08° -2.2°
DM?2 3.75 22.5 115.0 -1.08° -2.2°
EM1 2.5 22.5 200 0.0 0.0
EM2 1.25 0.0 125 0.0 0.0

Table 5.13: The locations of the elements in the reflective slicer. Measurements are ref-
erenced to the centre of CM1, which coincides with the centre of the input beam. All
measurements are to the centre of the optical element except the re-arranging mirrors.
The the measurement locations for DM1 and DM2 are the centre of the vertical straight
edge. Information protected under United States patent [44].

(a) Reflective Slicer

(b) Refractive Slicer

Figure 5.34: The simulated images produced in Zemax for the reflective 2X slicer and the
refractive 2X slicer. The wavelength is 850 nm and a 10 um source diameter was used.
Image simulation input parameters are taken from table [5.3]
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Figure 5.35: The spot diagrams produced in Zemax for the reflective 2X slicer and the
refractive 2X slicer. The wavelength is 850 nm and a 10 pum source diameter was used.
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Chapter 6

Conclusions

In chapter |3| the general theory of spectral domain optical coherence tomography (SD-
OCT) was presented and the image signal was derived in eqn. . It was seen that the
interference term gives rise to sinusoidal fringes across the spectrum where the frequency
is dependent and proportional on the probe depth in a sample. The relative amplitude of
the fringes is defined to be the visibility, and it was seen that the visibility decreases as the
frequency of the fringes increases—this is due to the spectral coherence of the spectrograph.
The function that describes the visibility decrease was presented in eqn. and is is known
as the spectral coherence envelope, and it depends on the wavelength separation between
the pixels, A\, and the bandwidth per pixel, d\, which is also the spectral resolution. The
coherence envelope serves as the sensitivity for the SD-OCT system, which determines the
signal-to-noise ratio of the OCT image.

A refractive-based optical pupil slicer with a design slicing factor of 2X was constructed
and the performance was evaluated in chapter ] It was shown that the slicer is able to
reduce the spectral resolution, 0\ by a factor of 2.00, as measured by FWHM. The slicer
is also able to maintain an 85.58% throughput efficiency. By definition of a spectrograph
quality factor in eqn. [4.6|the slicer is able to increase the quality of a dispersive spectrograph
by a factor of 1.7112.

The expected impact of the slicer in the SD-OCT system was initially modelled in
IDL and the results were presented in the beginning of chapter )| It was shown that
the slicer could boost the sensitivity of the SD-OCT instrument by a factor of 5X at the
maximum unaliased imaging depth of 3.7 mm and therefore provide an increase to the
SNR of the OCT image. The resulting measurement of the spectral coherence envelopes
of the SD-OCT system, both with and without the slicer, showed a worse than expected
performance. The coherence envelope for the sliced SD-OCT system ended up showing a
decrease in sensitivity because the amount of optical aberrations introduced by the slicer
combined with the fact that the source image is about the same size as the diffraction
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limited spot size, resulted in the fact that the slicer increased spot width. The increased
spot width increases the spectral resolution and bandwidth per pixel, d A, which was shown
in eqn. to have a negative impact on the SD-OCT signal sensitivity.

In section two proposed upgrades to the SD-OCT system and the optical pupil
slicer were presented. First, a complex lens system for the spectrograph focusing lens was
shown to be required for good off-axis performance. This custom lens design uses three
off-the-shelf lenses oriented in a telecentric image space configuration. While this design
takes up a reasonable amount of space, it is cost-effective and easy to implement. The
second upgrade proposed is a reflective-based diffraction-limited optical pupil slicer with
a design slicing factor of 2X. This design offers superior optical performance compared
to the refractive-based design, and is also easier to construct because all the components
may be fixed in place specified with 90° angles. The expected results of the upgraded SD-
OCT system spectrograph with the reflective slicer were modelled in IDL and sensitivity
improvements on the order of 40X were shown.

6.1 List of Contributions

A list summarizing the unique contributions of this thesis are as follows:

e Presents results demonstrating that inducing additional delay in the reference arm of
the SD-OCT system provides sensitivity depth selection and shows imaging depths
beyond traditional standards of up to 3.3 mm (see fig. [3.6)).

e Presents a useful metric, called the spectrograph quality factor, ), that can aid in
the design of dispersive spectrographs (see section |4.1J).

e Provides an SD-OCT spectrograph simulation model to calculate the spectral coher-
ence envelope (see section [5.1.1). This type of simulation model is not seen in the
current literature.

e Presents an optical design of a refractive-based pupil slicer with a design slicing power

of 2X (see section [4.3)).

e Provides a unique alignment procedure for implementing a pupil slicer into an SD-
OCT system by measurement of spectral beating (see section [5.2.1).

e Proposes an upgraded reflection-based diffraction-limited in-line optical design of a
pupil slicer with a design slicing factor of 2X (see section [5.4)).
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6.2 Relevance to Other Fields

Historically slicers first appeared in the field of astronomy in order to boost the resolving
power of spectrographs without sacrificing throughput. In astronomy light is extremely
limited and telescope time is quite expensive therefore throughput is valued very high
on astronomical instruments. The relevance of slicers in astronomy still holds today so
presenting a unique optical design for a new kind of slicer is quite relevant to current
astronomers.

The optical pupil slicer has value not only in SD-OCT, but in other dispersive spectro-
scopic based instruments as well. It was seen in chapter 4| that the optical pupil slicer can
fundamentally improve the quality factor of dispersive-based spectrographs. Instruments
and applications that are primarily limited based on the performance of the spectrograph
typically demand high-resolution as well as high-speed. SD-OCT instruments used in oph-
thalmology typically fall into this category and researchers are attempting to boost the
performance of these systems [12, [48]. Raman-based spectrographs are another excellent
example where high-speed and high-resolution are needed—these systems would also benefit
from an optical pupil slicer.

Perhaps one of the nicest features of the optical pupil slicer is that it operates in
pupil-space as opposed to image-space, i.e. collimated light versus focused light. The
entire optical pupil slicer can be modelled as a black-box that takes an input beam of
a given diameter corresponding to a given focused spot width, and outputs a beam of
roughly the same diameter that now corresponds with a spot width some factor smaller
than the original-—these factors may be upwards of several. Optical pupil slicers can easily
and quickly be implemented in pre-existing spectrographs with minimal alterations to the
system layout but provide improvements upwards of 200% or more. Optical pupil slicers
may also be arranged in a series to provide a multiplicative effect on this improvement
factor.

6.3 Future Work

The complete subject of optical pupil slicers in SD-OCT is not contained within the scope of
this document, nor is all the work finished on the subject. This research has paved the way
for identifying some of the pitfalls and limitations of optical pupil slicers in spectrographs
already operating close to the diffraction limit. It was shown that the original design for the
refractive 2X slicer was not good enough to provide an improvement in the particular SD-
OCT system outlined in chapter [3} in fact it made the system perform worse. This result
was not expected given the performance results of the 2X refractive slicer in a custom-built
spectrograph presented in chapter [4] although the spectrograph was quite low performance
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to begin with. The results of this research also have pioneered the topic of optical pupil
slicers in SD-OCT instruments and provided useful methods of construction as such.

The reflective-based diffraction-limited in-line optical pupil slicer has never been built
nor tested. This is a direction of future research that is essential to implement optical
pupil slicers in pre-existing diffraction limited spectrographs.

There are numerous improvements that can be made to the SD-OCT system design,
most notably in the spectrograph section of the instrument. A custom camera lens design
was proposed, but has not been constructed and implemented. This upgrade is viewed
as essential in lieu of the off-axis performance results of the current SD-OCT system
spectrograph. A more complex custom camera lens, and even collimating lens, may be
implemented also in order to reduce the aberrations introduced in the spectrograph.

The study of optical pupil slicers implemented into dispersive-based spectrographs in
general could benefit from defining a performance characteristic region. In this research
only two points in this region were shown. The first was when the image size was much
larger than the diffraction limit (chapter [4]), and the second was when the image size is
about the same size as the diffraction limit (SD-OCT). The slicer was shown to perform
well in the first region but poorly in the second region. An aberration analysis provided
additional insight to these results. Extrapolating these results over a much more general
parameter space taking into account various degrees of aberrations, diffraction limited spot
sizes, and slicing factors can provide a useful engineering tool for implementing optical pupil
slicers in any dispersive-based spectrograph.
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Appendix A

Derivation of the Maximum
Unaliased Imaging Depth in SD-OCT

Consider the general OCT interference condition:

I(k) = L(k) + L(k) + 27/, (k)1,(k) cos (kd) (A1)

where k is the wavenumber, d is the optical path difference (OPD), I, and I, are the optical
power spectra from the reference and the sample arm respectively. Consider the reference
and sample arm to be completely known. The phase difference, A¢, at two difference
sampled wave numbers is given by,

A¢ = d(k; — k). (A.2)

In taking the Fourier transform (FT) of the interference spectrum over a sample band-
width, AA, the separation between samples in the Fourier transform is given as [1/AA]. If
the spectrograph has J pixels then the domain in the FT goes from [0] to [(J — 1)/AA].
At each FT sample location the domain has units of cycles per bandwidth, AA. A cycle
is defined as a full 27 of phase. The minimal phase that can be distinguished between
FT samples, 0@, is given as the phase difference in the two extreme wavenumbers in the
source, Kpmae and k.. Using eqn. this minimal detectable phase difference per FT
sample is given as,

5¢mm == d(kmaac - kmzn) (A3>

The sampling units in the FT are given as,
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5 min .
{2?AA]} ’ (A-4)

where j is the sample number and has range [0] to [/ —1]. Using the definition of wavenum-
ber as k = 2w/, the sampling units in eqn. can be expressed as,

N
where )\ is the central wavelength in the interference sample bandwidth. In order to

express the F'T sample units in terms of OPD, or d, eqn. must be solved for d so it is
seen that samples have spacing given by

d
il A5

_AA2
R

A (A.6)

As a reasonable approximation the second term in eqn. may be neglected and it is
seen that the conversion from the F'T sample space units to OPD is given by multiplying
by the squared central wavelength in the sample band A\2.

For a real interference spectrum collected with no phase information over J pixels, the
FT is unable to distinguish between positive and negative frequencies. Due to Nyquist
sampling criteria, the maximum number of cycles that can be detected unaliased with
J pixels is J/2. This means that the unaliased imaging domain in the FT goes from
[(1—J)/2AA] to [J/2AA]. The maximum unaliased OPD can be solved by,

T [ AN\ a2
dmam - m <)‘0 - 4 ) — m (A7)

As a reasonable approximation the wavelength separation between each pixel, A), is
equal to the sample bandwidth, AA, divided by the number of pixels, J, i.e. AN = AA/J.
Using this relation the maximum OPD becomes

S
Gmas = AN

Since the OPD is twice the sample probe depth (d = 2z), eqn. can be expressed in
terms of the maximum unaliased imaging depth in SD-OCT as,

(A.8)

_ 20 (A.9)
Zmer = AL .

138



Appendix B

Proof of the Wiener-Khintchine
Theorem

We may define a complex random process in time as z(t). The function may be said to
be stationary if the random fluctuations in time, ¢, do not depend on the value of ¢, and
hence the expectation value of z(t) also does not depend on ¢, nor a coordinate shift.
Mathematically this may be represented as

(2(t —10))e = (2(t))e = /zPr(z,t)dQ,z = /zPr(z)ch. (B.1)
The two-time autocorrelation function for z(¢) is defined as,

F(tl,tg) = <Z*(t1>2(t2)>e (BQ)

If 2(t) is a stationary process then we may induce a time coordinate shift of value
T =ty — t1, hence

(z"(t1)z(t2))e = /ZTZQPT(ZQ,tg;zl,tl)d221d222

— /ZTZQPT(ZQ,?S -+ tQ — tl; 21, t)d221d222
= ("(t)z(t+ta —t1))e =T'(7). (B.3)

It is seen that the autocorrelation function is also independent of time, ¢.
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If and ensemble average of a random process carries the same statistical information as
a time average of a single ensemble, the random process is said to be ergodic. Simply, the
time average is equal to the ensemble average—this is generally the case for optical fields.

Wiener showed that for a complex random process z(t) the power spectrum may be
given as [59],

(e 9]

S(w) = % / [(7) exp (iwT)dT, (B.4)
where
L(7) = (z"(t)z(t + 7))¢. (B.5)

We may define the Fourier transform of the complex random process z(t) as z(w). The
ensemble average of z*(w)z(w’) may be given as,

B 1
- 4n2

(z"(w)z(w))e //(z* (t)z(t"))e exp (i(w't’ — wt))dtdt’, (B.6)

where eqn. is expressed as a Fourier transform. If the complex random process z(t)
is stationary then the two-time autocorrelation function inside the double integral is only
dependent on time difference 7 =t — ¢, i.e. I'(1) = (2*(£)2(t')).. We may then express

eqn. [B.6| as

(z*"(w)z(W))e = %/exp (i(w — w))dt %/F(T) exp (iw'T)dr
= TNw)d(w—u). (B.7)

Furthermore if z(t) is ergodic then the time and ensemble average are equal so the
autocorrelation function is equal to the time average, i.e. I'(1) = (2*(¢)z(t'));. From
Wiener’s statement on the power spectrum expression (see eqns. and we see that
S(w) = I'(w) and we may express the power spectrum of z(t) as

1

S(w) = oy / ['(7) exp (iwT)dT. (B.8)

— 00
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Equation states that if a complex random process is stationary and ergodic then
the power spectrum may be given as the Fourier transform of the autocorrelation of the
random process, and its inverse statement also holds. Although we have followed the work
of Wiener in this proof, a similar result was shown by Khintchine using a different approach
a few years after Wiener, and hence the theorem is credited to both parties.
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